

BUSINESS MATHEMATICS CHART BY MAYANK MAHESHWARI

INDICES	LOGARITHMS	RATIO	PROPORTION	EQUATIONS														
<ul style="list-style-type: none"> $a \times a \times a \times \dots$ upto n terms = a^n where a = Base where n = the index of power $a^{-m} = 1/a^m$ and $1/a^{-m} = a^m$ $(a \cdot m)^n = a^m \cdot n$ $(a \cdot b)^m = a^m \cdot b^m$ $(a/b)^n = a^n / b^n$ $\sqrt[n]{a} = a^{1/n}$ $a^m \times a^n = a^{m+n}$ (base must be same) $a^m / a^n = a^{m-n}$ (base must be same) $a^0 = 1$ $a^x = a^y \rightarrow x = y$ (base must be same) $a^x = b^x \rightarrow a = b$ (power must be same) $a^x = b^y \& a \neq b \rightarrow$ when $x = 0$ $a^x = y \rightarrow a = y^{1/x}$ 	<ul style="list-style-type: none"> $\log_a 1 = 0$ (where $a \neq 0$) $\log_a a = 1$ $\log_a a^x = x$ $\log_a a^x = x \log a$ $\log_a y = \log y / \log a = 1 / \log_y a$ $\log_a(\frac{1}{a}) = -\log_a a$ $\log_a b = \log_b b / \log_a a$ $\log_b a = \log_a b \times \log_a c$ $\log_a y = \log y / \log a = m \log y / m \log a = \log y^m / \log a^m = \log_a y^m$ $\log_a y^m = \frac{m}{n} \log_a y$ $\log a + \log b = \log a \cdot b$ $\log a - \log b = \log \frac{a}{b}$ $\log a + \log b - \log c = \log \frac{a \cdot b}{c}$ $\log_a b \times \log_b a = 1$ $\log_b a \times \log_a c = \log_c a$ If $\log_a y = \log_b y$, then $x = y$ $\log_a y = \log_b y$ $\log_a x = n$, then $a^x = n$ $\log_a a = 1$ 	<ul style="list-style-type: none"> Ratio = $\frac{a}{b}$ or $a : b$ where $b \neq 0$ Where, a = First term or Antecedent b = Second term or Consequent Both terms of ratio can be multiplied or divided by the same (non-zero) number If a quantity increases or decreases in the ratio $a : b$ then new quantity = $\frac{b}{a} \times$ Original Qty. The reciprocal of a given ratio is called Inverse ratio The ratio compounded of the two ratios $a : b$ & $c : d$ is $ac : bd$ The duplicate ratio of $a : b$ is $a^2 : b^2$ The triplicate ratio of $a : b$ is $a^3 : b^3$ The sub-duplicate ratio of $a : b$ is $\sqrt{a} : \sqrt{b}$ The sub-triplicate ratio of $a : b$ is $\sqrt[3]{a} : \sqrt[3]{b}$ 	<ul style="list-style-type: none"> Equality of two ratios is called proportion. If a, b, c, d are said to be in proportion then $a : b = c : d$ Here, a and d are Extremes; b and c are Means $\frac{a}{b} = \frac{c}{d} \rightarrow ad = bc$ Product of extremes = Product of means (Cross product rule) If a, b, c are in continuous proportion then $a : b = b : c$ $b^2 = a \cdot c$ (by cross product rule) $a : b : c : d \rightarrow a : b : c : d$ (Invertendo) $a : b : c : d \rightarrow a : c : b : d$ (Alternendo) $a : b : c : d \rightarrow (a+b) : (c+d) : d$ (Componendo) $a : b : c : d \rightarrow (a-b) : b : (c-d) : d$ (Dividendo) $a : b : c : d \rightarrow (a+b) : (a-b) : (c+d) : (c-d)$ (Componendo & Dividendo) $a : b : c : d \rightarrow (a+c) : (b+d) : (a-b) : (c-d)$ (Addendo) $a : b : c : d \rightarrow (a-c) : (b-d)$ (Subtrahendo) Formula for inverse variable <p>If y is inversely proportional to x i.e. $y \propto 1/x$, then, $y = K/x$ Here, K is the constant of proportionality</p>	<ul style="list-style-type: none"> An equation of degree 1 is called linear equation An equation of degree 2 is called quadratic equation. e.g. $ax^2 + bx + c = 0$, Where, a, b and c are constants and $a \neq 0$ <ul style="list-style-type: none"> If $b = 0$, then the equation is called pure quadratic equation If $b \neq 0$, then the equation is called a mixed or affected quadratic equation A quadratic equation has two roots (i.e. x has two values) Roots of a quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Sum of roots ($x_1 + x_2 = \frac{-b}{a}$) Product of roots ($x_1 \cdot x_2 = \frac{c}{a}$) Discriminant ($D = b^2 - 4ac$) If 2 roots of a quadratic equation are given, then quadratic equation is $x^2 - (\text{Sum of roots})x + \text{Product of roots} = 0$ 														
<p>PERMUTATION</p> <ul style="list-style-type: none"> Number of Permutations when r objects are chosen out of n different objects. Denoted by- ${}^n P_r = \frac{n!}{(n-r)!}$ Or ${}^n P_r = n(n-1)(n-2).....(n-r+1)$, where the product has exactly r factors. $1x1! + 2x2! + 3x3! + + nxn! = (n+1)! - 1$ or $\sum_{r=1}^n r \cdot {}^n P_r = {}^n P_{n+1} - 1$ $(n-1)! = n!/n$ ${}^n P_r = {}^n C_r \cdot r!$ where, $n \geq r$ ${}^n P_r = {}^{n-1} P_{r-1} + r \cdot {}^{n-1} P_{r-1}$ The no. of arrangements when things can be repeated is n^r <p>Linear permutations of n articles having some articles of same nature</p> <ul style="list-style-type: none"> Arrangements = $\frac{n!}{\text{Repetition}}$ <p>Sum of all possible arrangements of given digits</p> <p>1111.. (no. of digits) \times sum of digits \times (no. of digits-1)!</p> <p>Sum of digits containing 0.</p> <p>[1111.. (no. of digits) \times sum of digits \times (no. of digits-1)] - [111.. (no. of digits - 1) \times sum of digits \times (no. of digits-2)]</p> <p>Sum of digits containing repetitive digits</p> <p>1111.. (no. of digits) \times sum of digits \times (no. of digits-1)! / Repetitions!</p>	<p>TIME VALUE OF MONEY</p> <p>SIMPLE INTEREST $SI = \frac{PRT}{100}$, $A = P \left[1 + \frac{RT}{100} \right]$, $A = P + SI$</p> <p>COMPOUND INTEREST $A = P \left(1 + \frac{R}{100 \cdot m} \right)^{T \cdot m}$ $CI = P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$ Where, P=Principal; R=Rate; T=Time SI=Simple Interest CI=Compound Interest m=No. of conversion period</p> <table border="1"> <thead> <tr> <th>Conversion Period</th> <th>m</th> </tr> </thead> <tbody> <tr> <td>Compounded daily</td> <td>365</td> </tr> <tr> <td>Compounded monthly</td> <td>12</td> </tr> <tr> <td>Compounded quarterly</td> <td>4</td> </tr> <tr> <td>Compounded bi-monthly</td> <td>6</td> </tr> <tr> <td>Compounded semi annually</td> <td>2</td> </tr> <tr> <td>Compounded annually</td> <td>1</td> </tr> </tbody> </table> <p>EFFECTIVE RATE OF INTEREST Effective Rate = $\left(1 + \frac{R}{100 \cdot m} \right)^m - 1$</p> <p>FUTURE VALUE (FV) $FV = PV \left(1 + \frac{R}{100 \cdot m} \right)^{T \cdot m}$</p> <p>PRESENT VALUE (PV) $PV = FV / \left(1 + \frac{R}{100 \cdot m} \right)^{T \cdot m}$</p>	Conversion Period	m	Compounded daily	365	Compounded monthly	12	Compounded quarterly	4	Compounded bi-monthly	6	Compounded semi annually	2	Compounded annually	1	<p>SEQUENCE & SERIES</p> <p>ARITHMETIC PROGRESSION:</p> <ul style="list-style-type: none"> A sequence $a_1, a_2, a_3, \dots, a_n$ is called an arithmetic progression when $a_2 - a_1 = a_3 - a_2$. $t_n = a + (n-1) d$ Where, a = first term n = number of terms d = common difference t_n = last term/ n^{th} term $S = \frac{n}{2} [2a + (n-1)d]$ or $\frac{n}{2} [a + t_n]$ Where, S = Sum of n terms a = first term n = number of terms d = common difference t_n = last term/ n^{th} term Sum of S_n of the first n natural numbers = $n(n+1)/2$ Sum of first n odd numbers = n^2 Sum of the Squares of the first n natural numbers = $S = n(n+1)(2n+1)/6$ Sum of the cubes of first n natural numbers = $[n(n+1)/2]^2$ <p>GEOMETRIC PROGRESSION:</p> <ul style="list-style-type: none"> A sequence $a, ar, ar^2, ar^3, \dots, ar^n$ is called Geometric Progression. n^{th} term of GP: $t_n = a \cdot r^{n-1}$ Where, a = first term n = number of terms r = common ratio t_n = last term/ n^{th} term Common ratio = $\frac{\text{Any Term}}{\text{Preceding Term}} = \frac{ar}{a} = \frac{r^2}{r} = r$ If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$, which gives $b^2 = a \cdot c$, ($b = \sqrt{ac}$), b is called the geometric mean between a & c. $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$ [Sum of GP of n terms] $S_n = a (r^n - 1) / (r - 1)$ when $r > 1$ [Sum of GP of n terms] where, a = first term n = number of terms r = common ratio a_n = last term/ n^{th} term S_n = Sum of n terms $S_{\infty} = \frac{a}{1-r}$, for $r < 1$. [Sum of infinite terms] 	<p>LINEAR INEQUALITY</p> <ul style="list-style-type: none"> The Inequality is not affected by adding/subtracting any number. The Inequality is not affected by multiplying/dividing by a non-zero, positive number. When inequality is multiplied/divided by a negative number the inequality symbol is reversed. 	<p>Nature of Roots:</p> <ul style="list-style-type: none"> If $D > 0$ but not a perfect square then the roots are real, irrational and unequal If $D < 0$ then the roots are imaginary or not real If $D = 0$ then roots are real and equal If $D > 0$ and perfect square then the roots are real, rational and unequal
Conversion Period	m																	
Compounded daily	365																	
Compounded monthly	12																	
Compounded quarterly	4																	
Compounded bi-monthly	6																	
Compounded semi annually	2																	
Compounded annually	1																	
<p>SETS, RELATIONS & FUNCTIONS</p> <p>Sub Sets: A subset of a main set is a set which is formed by choice of any number of elements from the main set. Number of possible subsets = 2^n where n = no. of elements.</p> <p>Also, in all possible sets, one is improper subset and remaining are proper Subsets.</p> <p>Therefore, Proper subsets = $2^n - 1$ and Improper subset = 1</p> <p>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by $P(A)$.</p> <p>No of elements in power set = $n[P(A)] = 2^n$</p> <p>No. of elements in Power set of a power set $n[P(P(A))] = 2^{2^n}$</p> <p>$n(AB) = n(A) \times n(B)$</p>	<p>INTEGRATION</p> <p>Integration is the reverse process of differentiation.</p> <p>$f(x) \rightarrow$ Differentiate $\rightarrow f'(x)$ $f(x) \rightarrow$ Integrate $\rightarrow \int f(x) dx$</p> <p>Integration Formulas:</p> <ol style="list-style-type: none"> $\int 1 dx = x + C$ $\int a dx = ax + C$ $\int x dx = (\frac{x^{n+1}}{n+1}) + C$ $\int (1/x) dx = \log x + C$ $\int e^x dx = e^x + C$ $\int a^x dx = (a^x / \log a) + C$ $\int a^x dx = (a^x / \log a) + C$ $\int x^a dx = \frac{x^{a+1}}{a+1} + C$ $\int x^a dx = (a^x / \log a) + C$ $\int x^a dx = \frac{x^{a+1}}{a+1} + C$ 																	
<p>FORMULAS -</p> <ol style="list-style-type: none"> $n(AUBUC) = n(A) + n(B) + n(C) - n(AnB) - n(BnC) - n(CnA) + n(AnBnC)$ [Not disjoint sets] $n(AUBUC) = n(A) + n(B) + n(C)$ [If A and B are disjoint sets] $n(AUB) = n(A) + n(B) - n(AnB)$ [If A and B are not disjoint sets] $n(AUB) = n(A) + n(B)$ [If A and B are disjoint sets] $n(A - B) = n(A) - n(AnB)$ $n(A'UB') = n[(AnB)'] = n(S) - n(AnB)$ $n(A'AnB') = n[(AUB)'] = n(S) - n(AUB)$ $(P \cup Q)' = P' \cap Q'$ $(P \cap Q)' = P' \cup Q'$ 	<p>STANDARD FORMULA</p> <ol style="list-style-type: none"> $\int \frac{dx}{x-a^2} = \frac{1}{2a} \log \frac{x-a}{x+a} + C$ $\int \frac{dx}{a^2-x^2} = \frac{1}{2a} \log \frac{x+a}{a-x} + C$ $\int \frac{dx}{\sqrt{x^2-a^2}} = \log \left x + \sqrt{x^2-a^2} \right + C$ $\int \frac{dx}{\sqrt{x^2-a^2}} = \log \left x + \sqrt{x^2-a^2} \right + C$ $\int e^{\int f(x) dx} f'(x) dx = e^{\int f(x) dx} + C$ $\int \sqrt{x^2+a^2} dx = \frac{x}{2} \sqrt{x^2+a^2} - \frac{a^2}{2} \log \left(x + \sqrt{x^2+a^2} \right) + C$ $\int \sqrt{x^2-a^2} dx = u \int \frac{du}{\sqrt{u^2-a^2}} = \frac{1}{2} \log \left(u + \sqrt{u^2-a^2} \right) + C$ $\int \frac{f(x)}{g(x)} dx = -\log g(x) + C$ 																	
<p>FONCTIONS</p> <ul style="list-style-type: none"> One-One Function (Injective): Let $f : A \rightarrow B$. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping. Into function: If in $A \rightarrow B$, there exist even a single element in B having no pre-image in A, then f is said to be an into function. Onto function (Surjective): A function f defined from the set X to set Y (i.e. $f : X \rightarrow Y$) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain. Bijection (One-One onto): A mapping which is both injective and surjective is called a bijection. 	<p>INTEGRATION BY PARTS</p> $\int u v dx = u \int v dx - \int \left(\frac{du}{dx} \right) v dx$ <p>where u and v are two different functions of x</p> <p>APPLICATION</p> <ul style="list-style-type: none"> If Marginal cost = $C'(x)$ then Total cost $C(x) = \int C'(x) dx$ If Marginal Revenue $R(x) = \int R'(x) dx$ then Total revenue $R(x) = \int R'(x) dx$ If Marginal profit = $P'(x)$ then Total Profit $P(x) = \int P'(x) dx$ 																	
<p>Some Important Tricks –</p> <ul style="list-style-type: none"> How to count no. parallelograms using n_1 & n_2 parallel lines intersecting each other = $n_1 \cdot C_2 \times n_2 \cdot C_2$ How to count no. of lines that can be made using n points (no 3 or more points are collinear) Or How to find no. of chords in a circle having n points = C_2 How to count no. of lines that can be made using n points out of which m points lie on the same line (collinear) = $C_2 - C_2 - C_1$ How to count diagonals in a polygon with n sides = $C_2 - n$ How to count Triangles out of n Points <ul style="list-style-type: none"> No 3 are collinear = C_3 3 or more are collinear = $C_3 - C_2$ where, m = points lie on the same line 	<p>“Don't settle for average. Bring your best to the moment. Then, whether it fails or succeeds, at least you know you gave all you had.”</p> <p>ALL THE BEST!!!</p> <p>Chart prepared by Mayank Maheshwari</p>																	

STATISTICS CHART BY MAYANK MAHESHWARI

STATISTICAL DESCRIPTION OF DATA		MEASURES OF CENTRAL TENDENCY	
I. BASIC <ul style="list-style-type: none"> Meaning <ul style="list-style-type: none"> The Word "Statistics" has different meanings when used in "Singular" and "Plural" Senses. In Plural sense Statistics refers to the data, qualitative as well as quantitative. In Singular sense Statistics refers to the scientific method 		<ul style="list-style-type: none"> Types of Series <ul style="list-style-type: none"> Individual Series Discrete Series Continuous Series Properties of Mode <ul style="list-style-type: none"> Change of Origin & Scale: If x and y are 2 variables related as $y = a + bx$, then $M_{(y)} = a + b \cdot M_{(x)}$ Mode = 3 Median - 2 Mean 	
<ul style="list-style-type: none"> Applications of Statistics <ul style="list-style-type: none"> Economics Business Management Commerce and Industry Characteristics (Attributes) <ul style="list-style-type: none"> Aggregate of facts Affected to marked extent by large number of causes Expressed Numerically Reasonable percent of assurance Systematic manner Pre-defined purpose Limitations of Statistics <ul style="list-style-type: none"> It ignores the quality aspect No importance to an individual data Does not reveal real story Data should uniform and homogeneous 		<ul style="list-style-type: none"> Geometric Mean (GM) <p>Geometric Mean is the n^{th} root of n terms. It is the best measure of central tendency for ascertaining rate of change over a period of time</p> 	
II. DATA <ul style="list-style-type: none"> Types of data - Primary and Secondary Data <ul style="list-style-type: none"> Data which is collected & used for the first time is known as Primary Data Data as being already collected, is used by a different person or agency is secondary data Methods of collecting data <ul style="list-style-type: none"> Interview Method <ul style="list-style-type: none"> Personal Interview – quick, accurate Indirect Interview – problem in reaching Telephone Interview – less consistent, wide coverage, non – responses are high Mailed Questionnaire – wide coverage, maximum non-responses Observation Method – best accurate, time consuming, laborious, best method Questionnaires - used for larger enquiries 		<ul style="list-style-type: none"> Properties of GM <ul style="list-style-type: none"> If any observation is zero (0) then GM is not defined If all the observations are same, say a, then GM is also same. i.e. a GM of the product of 2 variables is the product of their GM. i.e. if $z = xy$, then $GM of z = GM of x \cdot GM of y$ GM of the ratio of 2 variables is the ratio of the GM's of 2 variables i.e. if $z = x/y$ then $GM of z = GM of x / GM of y$ GM-AM It is the best measure of central tendency for ascertaining the average rate of change over a period of time It is the most appropriate average to be used for construction of index numbers It is the most suitable average to be used when it is desired to give more weightage to smaller items 	
<p style="text-align: center;">Primary Sources</p> <ul style="list-style-type: none"> International sources Government sources Private and quasi-government sources Unpublished sources <p style="text-align: center;">Secondary Sources</p>		<ul style="list-style-type: none"> Arithmetic Mean (AM) <p>Individual Series: $\bar{x} = \frac{\sum x}{n}$</p> <p>Discrete or Continuous Series: $\bar{x} = \frac{\sum fx}{n}$</p> Properties of AM <ul style="list-style-type: none"> If all the observations are same, say 'k', then the AM is also 'k' The algebraic sum of deviations of the given set of observations taken from the AM is always ZERO. i.e. $\sum f(x - \bar{x}) = 0$ (Change of Origin) If each observation of a data is increased or decreased by a constant 'k', then the AM of new data also gets increased or decreased by 'k' (Change of Scale) If each observation of a data is multiplied or divided by a constant 'k', then the AM of new data also gets by multiplied or divided by 'k' (Change of Origin & Scale) AM is affected due to change of origin and/or scale which implies that if the original variable 'x' is changed to another variable 'y' by affecting a change of origin, say a, and change of scale, say, b, i.e. $y = a + bx$, then AM of y is given by $y = a + b\bar{x}$ The sum of Square of deviations of given set of observations is minimum when taken from AM. i.e. $\sum (x - \bar{x})^2$ is minimum Correcting incorrect mean <p>Step 1: Calculate wrong total (\bar{x}_w) Step 2: Calculate correct total = Wrong total - wrong observations + correct observations Step 3: Correct mean = $\frac{\text{correct total}}{\text{no. of observations}}$</p> If there are two groups containing n_1 and n_2 observations and \bar{x}_1 and \bar{x}_2 as the respective arithmetic means, then the combined AM is given by 	
<p style="text-align: center;">IV. FREQUENCY DISTRIBUTION</p> <ul style="list-style-type: none"> Meaning: Frequency Distribution is a Tabular Representation of Statistical Data that distributes the total frequency to a number of classes. Width or Size or length of a Class Interval: The width of a Class Interval is the difference between the UCB and the LCB of that Class Interval. [Class Interval = UCB - LCB] Class Limit – inclusive & exclusive series Class Boundary – exclusive series only Mid-Point or Class Mark $\text{Mid-Point} = \frac{UCL+LCL}{2} \text{ or } \frac{UCB+LCB}{2}$ Frequency Density = Frequency of Given Class / Class width Relative Frequency = Class Frequency / Total Frequency Percentage Frequency = Relative Frequency x 100 		<ul style="list-style-type: none"> Theoretical Distributions <ul style="list-style-type: none"> Discrete Probability Distributions – Binomial, Poisson distributions Continuous Probability Distribution – Normal distribution BINOMIAL DISTRIBUTION $P(x) = C_n^x p^x q^{n-x} \text{ where, } n = \text{no. of trials (} n = 0, 1, 2, \dots, n \text{)} \\ x = \text{Success required (} x = 0, 1, 2, \dots, n \text{)} \\ p = \text{Probability of success of single event} \\ q = \text{Probability of failure of single event}$ Properties: <ul style="list-style-type: none"> Binomial distribution is bi-parametric. 2 parameters are (n and p) Mean = $\mu = np$; Variance = $\sigma^2 = npq$; SD = $\sigma = \sqrt{npq}$ Variance is always less than Mean Variance will be highest when $p = q$ (i.e. $p = q = 1/2$) = $n/4$ Mode = $(n+1)p$; if $(n+1)p$ is not integer then mode = highest integer value. (i.e. Uni-modal); if $(n+1)p$ is integer then mode = $(n+1)p + (n+1)p - 1$ (i.e. Bi-modal) POISSON DISTRIBUTION $P(x) = \frac{e^{-m} m^x}{x!} \text{ where, } e = \text{exponential function (} e = 2.71828 \text{)} \\ m = \text{Average or mean} = np = \mu \\ x = \text{no. of success required (} 0, 1, 2, 3, \dots, \infty \text{)}$ Properties: <ul style="list-style-type: none"> It is Uni-parametric. 1 parameter is m Mean = $\mu = m$; Variance = $\sigma^2 = m$; SD = $\sigma = \sqrt{m}$ Mode = m; if m integer, then mode = m, $m-1$ (Bi-modal); if m non-integer, then mode = m (Uni-modal) NORMAL DISTRIBUTIONS $F(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ for } -\infty < x < \infty, \text{ where, } \sigma = S.D., \mu = \text{mean}$ A function $f(x)$ is Probability Density Function (PDF) if – <ul style="list-style-type: none"> $I. \quad F(x) \geq 0, -\infty < x < \infty$ $II. \quad \int_{-\infty}^x f(x) dx = 1$ The normal distribution curve is a bell-shaped curve. At the center of the curve lies Mean, Median & Mode (i.e. $\mu = \text{Mean, Median \& Mode}$) Normal distribution curve is Uni-modal The curve never touches the x-axis The total area under the curve = 1 or 100% The point of inflection are $\mu + \sigma$ & $\mu - \sigma$ For a standard normal variate, value of Mean = 0, SD = 1 The skewness of the normal distribution curve is zero The normal distribution has 2 parameters i.e. μ & σ $Q1 = \mu - 0.675\sigma; Q3 = \mu + 0.675\sigma$ $QD : MD : SD = 10 : 12 : 15; MD = 0.8\sigma; QD = 0.675\sigma$ If X and Y are 2 independent normal variables with mean as a & b and SD as x & y, then normal distribution ($X+Y$) is distributed with $\text{Mean} = a+b$ & $SD = \sqrt{x^2 + y^2}$ 	
<p style="text-align: center;">III. PRESENTATION OF DATA</p> <ul style="list-style-type: none"> Textual Presentation - This method comprises presenting data with the help of a paragraph or a number of paragraphs. This type of presentation can be taken as the first step towards the other methods of presentation. It is dull, monotonous and comparison between different observations is not possible Tabular Presentation - There are two types of table – Simple & Complex. <p>The Table under consideration should be divided into Caption, Box-head, Stub and Body. Caption is the upper part of the table, describing the columns and sub-columns, if any. The Box-head is the entire upper part of the table which includes columns and sub-column numbers, units(s) of measurement along with caption. Stub is the left part of the table providing the description of the rows. The body is the main part of the table that contains numerical figures.</p> <ul style="list-style-type: none"> It facilitates comparison between rows and columns. Complicated data can also be represented using tabulation. It is a must for diagrammatic representation. Without tabulation, Statistical Analysis of data is not possible 		<ul style="list-style-type: none"> Median in case of Individual Series <p>Step 1: Prepare 'less than' c.f. distribution Step 2: Find $n/2$, where n = no. of observations Step 3: See the c.f. just greater than equal to $(n+1)/2$th observation. Step 4: The variable corresponding to the c.f. is the median.</p> Median in case of Continuous Series <p>Step 1: Prepare 'less than' c.f. distribution Step 2: Find $n/2$, where n = no. of observations Step 3: See the c.f. just greater than equal to $n/2$th observation. Step 4: Find the class corresponding to the c.f. obtained in Step 3. This class is called median class. Step 5: Apply the following formula</p> $\text{Median} = I + \frac{\frac{n}{2} - C}{f} \times h$ <p>Where, I = lower limit of median class C = c.f. of the class preceding the median class f = frequency of the median class h = size or width of the median class</p> Properties of Median <ul style="list-style-type: none"> The sum of absolute deviations is minimum when the deviations are taken from the median. i.e. $\sum x - A$ is minimum, where A = median (Change of Origin & Scale) If x and y are two variables, to be related by $y = a + bx$ for any two constants a and b, then the median of y is given by $y_{\text{med}} = a + b x_{\text{med}}$ Mode <p>Mode is the value which occurs maximum number of times. Therefore, it is also called as fashionable average</p> 	
<ul style="list-style-type: none"> Individual Series <p>An observation repeated maximum number of times.</p> Discrete Series <p>Observation having Highest frequency.</p> Continuous Series <p>Step 1: Find Modal Class (i.e. Class with highest frequency) Step 2: Apply following formula:</p> $\text{Mode} = I + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ <p>Where, I = lower limit of modal class. f_1 = frequency of modal class f_0 = preceding frequency f_2 = succeeding frequency h = height of modal class</p> 		<ul style="list-style-type: none"> Deciles <ul style="list-style-type: none"> Deciles divide the set of observations into 4 equal parts $D_1, D_2, D_3, \dots, D_9$ Percentiles <ul style="list-style-type: none"> Percentiles divide the set of observations into 10 equal parts $P_1, P_2, P_3, \dots, P_{99}$ 	
<p style="text-align: center;">STATISTICS CHART FOR CA FOUNDATION BY MAYANK MAHESHWARI</p>		<p>Computation:</p> <ul style="list-style-type: none"> Individual Series <p>Step 1: Arrange data in order Step 2: Find the rank of $\frac{n+1}{4}$ Step 3: Corresponding Variable is Quartile.</p> Discrete Series <p>Step 1: Arrange data in order Step 2: Prepare c.f. distribution Step 3: Find the rank of $\frac{n+1}{4}$ Step 4: Then find the c.f. just greater than equal to $\frac{n+1}{4}$ Step 5: Corresponding Variable is Quartile.</p> Continuous Series <p>Step 1: Prepare c.f. distribution Step 2: Find $\frac{K_n}{4}$ Step 3: See the c.f. just greater than equal to $\frac{K_n}{4}$ Step 4: Find the Quartile class Step 5: Apply the formula:</p> $Q_1 = I + \frac{\frac{K_n}{4} - C}{f} \times h$ <p>Where, I = lower limit of Quartile class C = c.f. of the class preceding the Quartile class f = frequency of the Quartile class h = size or width of the Quartile class</p> <p>Note: For computation of Deciles, use same steps as used in Quartile calculation, just replace 4 with 10.</p> <p>Note: For computation of Percentiles, use same steps as used in Quartile calculation, just replace 4 with 100.</p> <ul style="list-style-type: none"> Relationship between AM, GM & HM <ul style="list-style-type: none"> When observations are unequal, positive & greater than zero, $AM > GM > HM$ always. If all the observations are equal, $AM = GM = HM$ $AM \times HM = (GM)^2$ 	

MEASURES OF DISPERSION	
The degree to which numerical data tend to spread about an average value is called the dispersion of data.	
High variation/Dispersion -	BAD
Low variation/ Dispersion -	GOOD
Absolute Measure	Relative Measure
Absolute measures are dependent on the unit of the variable under consideration	Relative measure of dispersion are unit free.
Absolute measures are not considered for comparison.	For comparing 2 or more distributions, relative measures are considered.
Absolute measures are easy to compute and understand.	Relative measures are difficult to compute and understand.

Types of Measures of Dispersion

Absolute Measure	Relative Measure
Range	Coefficient of Range
Quartile Deviation	Coefficient of Quartile Deviation
Mean Deviation	Coefficient of Mean Deviation
Standard Deviation	Coefficient of Variation

I. RANGE

Range is the simplest method of computing the dispersion.

$$\text{Range} = L - S$$

where, L = Largest value, S = Smallest value

$$\text{Coefficient of Range} = \frac{L-S}{L+S} \times 100$$

Properties of Range:

- Range is based on 2 extreme values of the observation & hence ill-defined.
- It is not possible to compute range in case of open-ended distribution.

Merits of Range:

- It is easy to calculate and understand
- It requires minimum time to calculate

Demerits of Range:

- It is not based on all observations
- Range is a poor measure of dispersion

II. QUARTILE DEVIATION (SEMI INTER QUARTILE RANGE)

QUARTILES: Q_1, Q_2, Q_3

It is defined as half of the deviation between the upper Quartile & Lower Quartile of the distribution.

$$Q.D. = \frac{Q_3 - Q_1}{2}$$

$$\text{Coefficient of Q.D.} = \frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$

OR

$$\text{Coefficient of Q.D.} = \frac{Q_3 - Q_1}{\text{Median}/Q_2} \times 100$$

$$\text{Coefficient of Q.D.} = \frac{Q_3 - Q_1}{Q_2} \times 100$$

Inter Quartile range = $Q_3 - Q_1$

$$Q_3 - Q_2 = Q_2 - Q_1$$

Properties of Q.D.

- It is best suited measure of dispersion for an open-end distribution.
- It is based on middle 50% of the values of the distribution
- First 25% & last 25% values are left out.

Merits of Q.D.:

- It is simple to understand and calculate
- It is superior to Range
- It can be computed for distribution with Open-end classes
- Q.D. is not affected by extreme values

Demerits of Q.D.:

- It is not based on all the observations
- It is not suitable for further mathematical treatment

III. MEAN DEVIATION (AVERAGE DEVIATION)

Mean Deviation is the A.M. of the absolute deviation of the observations from an appropriate measure of central tendency (i.e. Mean, Median or Mode)

$$M.D. = \frac{\sum |x - A|}{n} = \frac{\sum |D|}{n} \quad (\text{Individual Series})$$

$$M.D. = \frac{\sum |x - A|}{n} = \frac{\sum |D|}{n} \quad (\text{Discrete & Continuous Series})$$

Where, A = Mean, Median or Mode

$$D = X - A$$

$$\text{Coefficient of M.D.} = \frac{MD}{A} \times 100$$

Property of M.D.

- The M.D. is minimum when the deviations are taken from Median.

Merits of M.D.:

- It is based on each and every observation
- It is rigidly defined
- It is easy to calculate and understand
- As compared with S.D., it is less affected by extreme observations

Demerit of M.D.:

- Algebraic signs are ignored
- It is not suitable for further mathematical treatment
- It cannot be computed for distributions with open ended classes

All birds find shelter during the rain.
But eagle avoids the rain by flying above the clouds.
Be an Eagle
ALL THE BEST!!

CHART PREPARED BY MAYANK MAHESHWARI

IV. STANDARD DEVIATION (σ)	
It is defined as the root mean square deviation when the deviations are taken from A.M.	
Variance is Square of S.D. (i.e. Variance = σ^2)	
Calculation:	
$\text{S.D. or } \sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$ $\text{OR} = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}}$ $\text{OR} = \sqrt{\frac{\sum x^2}{n} - (\bar{x})^2}$	
$\text{Discrete & Continuous series}$ $\text{S.D. or } \sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$ $\text{OR} = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}}$ $\text{OR} = \sqrt{\frac{\sum x^2}{n} - (\bar{x})^2}$	
$\text{Coefficient of Variation} = \frac{S.D.}{A.M.} \times 100$	
$\text{Coefficient of S.D.} = \frac{S.D.}{A.M.}$	

Properties of S.D.	
S.D. of first n natural numbers = $\sqrt{\frac{n^2 - 1}{12}}$	
Q.D. = $\frac{2}{3} \sigma$ M.D. = $\frac{4}{3} \sigma$	Q.D. = $\frac{5}{6} \sigma$
S.D. of 2 numbers = $\sqrt{\frac{ a-b }{2}}$	OR = $\frac{ a-b }{\sqrt{a+b}}$
Combined S.D. = $\sqrt{\frac{n_1^2 + n_2^2 + n_3^2 + n_4^2}{n_1 + n_2}}$	where, $d_1 = \bar{x}_1 - \bar{x}$, $d_2 = \bar{x}_2 - \bar{x}$, $S_1 = \text{S.D. of } 1^{\text{st}} \text{ Group}$, $S_2 = \text{S.D. of } 2^{\text{nd}} \text{ Group}$; $n_1, n_2 = \text{No. of observations in } 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ group respectively}$

\bar{x} = Combined mean

Merits of S.D.

- It is the best measure of Dispersion
- It considers all observations
- It is rigidly defined
- It is useful for further mathematical treatment.

De-merits of S.D.

- Not that easy to calculate and understand
- It cannot be computed for distribution having open end class distributions

Common properties of measures of dispersion

- MOD are UNAFFECTED by CHANGE OF ORIGIN
- They CHANGE in the same ratio as CHANGE OF SCALE.
- If all the observations are same or zero then MOD is zero.
- If any 2 constants a, b and 2 variables are related by $y = a + bx$, then

Computation is as follows:

MOD	Value
Range	$R_n = b_1 - R_n $
Quartile Deviation	$Q.D. = b_1 , Q.D.$
Mean Deviation	$MD_n = b_1 , MD_n$
Standard Deviation	$SD_n = b_1 , SD_n$

PROBABILITY

Probability of n events refers to the chance of occurrence of such event in a Random Experiment.

$$P(A) = \frac{\text{Occurrence of favourable event } A}{\text{Total outcomes}}$$

$$OR = \frac{n(A)}{n(S)}$$

Property & Formulas -

- $P(A) + P(A') = 1$, or $P(A) = 1 - P(A')$
- $P(A \cup B) = P(A) + P(B)$ [mutually exclusive events]
- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ [not mutually exclusive events]
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) + P(A \cap B \cap C)$ [not mutually exclusive events]
- $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ [mutually exclusive events]
- $P(A \cap B) = P(A) \cdot P(B)$ [Probability of only A]
- $P(A \cap B) = P(B) \cdot P(A)$ [Probability of only B]
- $P(A \cap B) = P(A \cap B) = P(A \cap B)$ all are same
- $P(A \cap B) = P(A \cap B) = P(A \cap B)$ all are same

Types of events

- Independent Event - If outcome of one event does not influence the occurrence of the other event.
- $P(A \cap B) = P(A) \cdot P(B)$; $P(A \cap B') = P(A) \cdot P(B')$; $P(A' \cap B) = P(A') \cdot P(B)$
- Mutually exclusive events - If occurrence of one event prevents the occurrence of the other events.
- Therefore, $P(A \cap B) = 0$; $P(A \cap B \cap C) = 0$; $P(A \cap B) = P(A) + P(B)$
- Mutually exhaustive events - It means that the events together make up everything that can happen.
- $P(A \cup B) = 1$; $P(A \cup B \cup C) = 1$
- Mutually exclusive & exhaustive events
- $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ [when exclusive]
 $P(A \cup B \cup C) = 1$ [when exhaustive]
- $P(A \cap B) = P(A) + P(B) - P(A \cap B)$

Odd in Favour & Odd against

Odd in favour = Favourable outcomes : Unfavourable outcomes
Odd against = Unfavourable outcomes : Favourable outcomes

Total outcomes = Favourable + Unfavourable

Conditional Probability

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Statistical Definition of Probability

Mean = Expected Value = $\mu = E(X)$; X or Σx_i

Probability = $P(X) = P(X_1) = R$; Variable = $X = x_1$

Expected value of x^2 in given by: $E(X^2) = \Sigma x_i^2 \cdot P(x_i)$

Variance = $\sigma^2 = E(x^2) - \mu^2 = E(x^2) - \mu^2 = \Sigma P(x_i) \cdot x_i^2 - \mu^2$

Properties

- $E(x + y) = E(x) + E(y)$; $E(x - y) = E(x) - E(y)$; $E(xy) = E(x)E(y)$
- $E(kx) = kE(x)$ [Change of scale]
- Variance of a constant k is $V(k) = 0$

CORRELATION & REGRESSION ANALYSIS

CORRELATION

Correlation analysis determines the relation between 2 variables. Also, it measures the extent of relationship between 2 variables by means of a single number called a correlation coefficient (r).

$$-1 \leq r \leq +1$$

Methods of finding correlation coefficient (r) -

- Scatter Diagram - It is a simple diagrammatic method to establish relationship between a pair of variables. It can be used to find linear & non-linear relation. It fails to measure the extent of relationship between the variables.
- Karl Pearson's Coefficient of Correlation - It is also known as Product Movement Correlation.

$$\frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

$$OR = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$OR = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt$$