
ADVANCED CAPITAL BUDGETING

Learning objectives
* Sensitivity analysis
* Inflation in capital budgeting
* Abandonment decision
* Replacement decision
* Base case NPV and adjusted NPV
* Probability analysis
* Certainity earnivalent approach
* Risk adjusted discount rate.
* Simulation technique
* Decision tree approach.
* Miscellaneous.
Before you start with advanced capital
budgeting, it is highly recommended to have fantastic clasity on basics and
have fantastic clarity on basics and
fundamentals of capital budgeting which
covers all concepts like ——
* Pay back
* Discounted pay back
* Annual rate of return
* NPV
+ IRR
* PI
* modified NPV & modified IRR.
* Capital rationing
* Life & timing disparity analysis.
The advanced CB chapter covers concepts
which stems out of the above said
basics and therefore I have annexed
CA Inter CB chapter notes before Adv. CB.
more over, in terms of video classes also
SD has of CB from CA Inter is available
in google drive watch the videos and
consider the notes (Both wort CA Inter)
before you start Adv. CB or else this
chapter may not be dearer to you.

CA KOUSHÍK MUKHESH

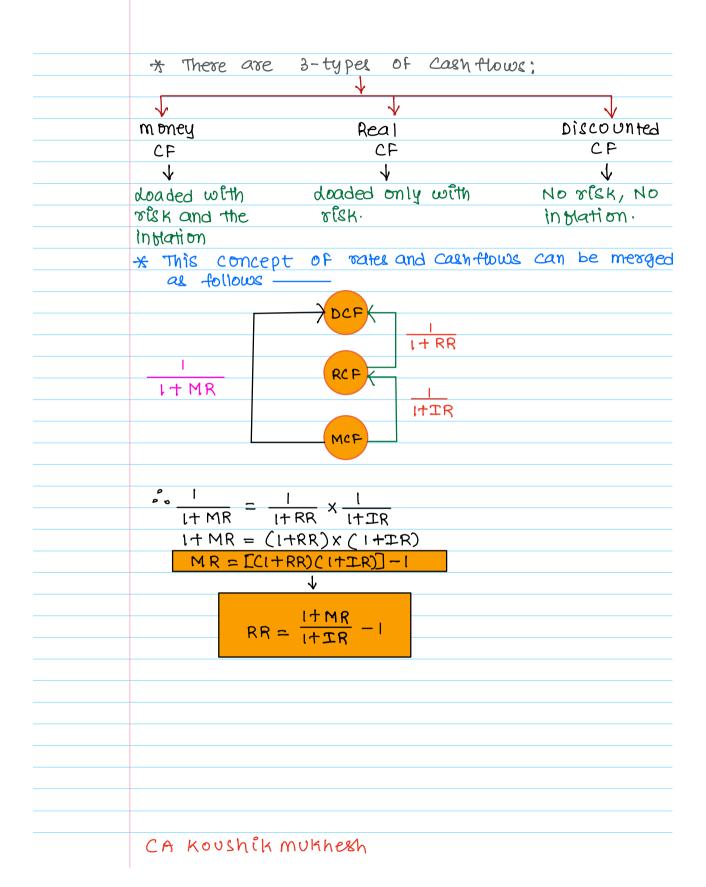
 Replacement decision:
life disposity - Refer CA Internotes also
* NPV sees the avantum of return, while IRR
sees the speed (or) rate of return.
* Longer the project, more the auantum,
more the NPV.
* Faster the cash flows, more the IRR.
* If project A has longer libe and project B
has faster CFS, NPV selects project A and IRR
selects project B. Hence, con trict arises.
* It is wrong to compare NPV of project with
another project with inequal libe we shouk
not compare a project having cay, 3 years
libe with another project with say a years
libe.
* The night way is to make the projects into
eaval libe and then compare. This can be
done 2 ways
\downarrow
 Repetition method EAB/EAC
↓
Perform 3 years project calculate NPV on p.a.
 a times and a year project basis and then we
3 têmes make it into 6 yas compare.
CF and then compare NPV.
* NPV p.a is what we refer as EABC Eauated
annuity benefit).
 EAB = NPV
annuity factor
* It it is outblow dominated acception, we
will go for EAC.
The above theory, can be practically taken
as under ——

	project - A		
	(<i>≤</i> ₹0)	(5 50)	
In flow			PV@10%
year−1 year-2	₹ 30	₹90	
year-2	₹ 90	_	
		cannot comp	
project A &	B directly be	cause, project	A IS a
ayean pr	oject and pr	mject B is a	lyear
		s are having	
lives. There	e fore, it res	suited in timine	a disparaty.
 Before reso	olving this co	nfact / disparite	j, we
 need to ti		d existing NPV	
 C	Proj. A	bsó	j. B
		P)]-320 [C390XO.	
= ₹ 101	2 ₹ = 02₹-10.	1·61 =₹81·81-	18:1EF=02F
IRR	dow	His	3h
	Coue to low-	er (Due to recove	h igher
	recovery)	recove	M)
	case NPV fav	oux project 1	and
		· This is due	
lives and	can be res	olved using a	approaches
Approach	-1 Repetition	on method	
under this	s method, bo	th are compare	ed by
bainging	CFS to eauiv	arent stage. In	the given
		eass libe and P	
is of 1	year libe, to a	compare on eve	nly basis,
Project x	should be a	carried out 1 t	ime (ayx)
and pro	ject y should	be camed out	t a times
Clyrx2 =	ayx). The res	suit is as foll	ows —
CA KOUSH	ik mukhesh		

CA	Koushik	mukhesh
----	---------	---------

	CH KOOSILLA MOTHESA
Project X (₹)	project y (F)
Yr CF PV@10% PVC	
(1) (1)	
। 30 ०.909 २ त. व	
2 90 0.826 <u>74.31</u>	
NPV = \$51.6	
	1 (20) 0.909 (45.45)
	2 90 0.826 <u>74:34</u>
	NPV = \$60.70
: It is clear that	project y is recommended
Approach-2 Eagua	te annuity benefit model
This model is just	opposite to the previous
	oject of any libe is then
expressed in perann	um terms.
1	
NPV	
PVAF	
par	ojects
	<u> </u>
<u> </u>	<u> </u>
X	Y
NPN= ₹21.61	NPV= 73181
PVAF= I	₩
1.436	This is already in
EAB = \$29.73	lyear terms.
Since EAB of Proje	ect y is higher, it is to
be accepted.	
No	tes
Though it can be d	lone 2 ways namely the
repetition model an	d EAB model, EAB model
	led since repetition model
9	his can be understood as
under —	· -

project x project Y Action to be taken
Life ayeax Iyear *Carry X I time
* Carry Y a times
Life 4 years 3 years * Carry x 3 times
*carry y 4 times
Life 9 years 11 years *carry x 11 times
*carry y 9 times
when lite of projects are very big like in
the 3rd case in above example, the project
should be repeated for 99 times and hence
one need to analyse 99 years cash flows
which is eventually impracticable. Hence,
EAB model is best bit for projects with
uneavual lives.
AN EXAMPLE
1. discount rate : 10%
2. CF details
year 0 1 2 3
outlay -1,000
Revenue - +900 +800 +700 Costs400 -350 -350
400 - 350 - 350
scrap - +650 +400 +150
* we have 3 options in this case.
* In this case, the acception is not about
whether a machine is reautived. It is
all about when to replace the machine.
* We reautre a machine continuously, which
means machine is used perpetually. But
the problem is machine cant have a
perpetual life. So, we need to replace the
machine at an appropriate time, what is the
appropriate time is subject matter of discussion
* In the given case, we can replace the
machine as follows —
1. once in every year.
CA Koushik mukhesh
Ch Roosilia montash


a once in a q	
3. once in 3	yean
and not fur	rther since libe is 3 years.
* Analysis on n	umbex
Holding period	cash flow analysis
lyear	Investment = (71,000)
	Salus = 7900
	costs = (7400)
	Scrap = 7650
a years	Investment = (\$1,000)
- (0	sales (1-yr) = 7900
	Sales (2-yr)= = \$ 800
	COSAS (1-41) = (\$400)
	COSts (2-yr) = (₹350)
	scrap (2-yr) = 7400
3 yeax	Investment = (\$1,000)
	salus (1-yr) = ₹900
	Salu (2-yr) = 7 800
	salus (3-yr) = = 700
	COSTS (1-72) = (\$400)
	COSTS (2-41) = (= 350)
	COSAS (3-41) = (\$320)
	scrap (2-yr) = 7400
Notes:	, - , -
	chausts, scrap value reduces.
	h ever option gives us
	at should be selected.
	olem is, we cant compare
all 3 options	as it is because, option
1 is having	I year CF where as a has
	nd option 3 with 3 years
	there exists a life
or er mence,	WEIG DAIS DE THE

	dispa	arity.					
	* we	need	to v	ye EA	B/ EAC	due i	neavual
	lives.						
				olution			
year	PVF	option	<u> </u>	option	n a	opti	M 3
	@10%	CF	DCF	CF	DCF	CF	DCF
0	1	(1,000)	(1,000)	(C1000)	(1,000)	C1,000)	(1,000)
1				200	72 p	2002	455
		900 - 400)				
	+	- 6720)					
a	0.8364		_	820	702	420	372
3	0.7513		_	_	-	2002	376
NPY			45		157		203
	Further						
	It is	wron	g to	compare	OPt	1,2,3	NPVS
	dire ct	y be	cause,	higher	the h	olding	pessiod
	higher	າ ພຳໃ	be	the NP	V. That	means	, it we
				ith opto			
	can be carried out 3 times and NPV will				/ will		
				we use			
	Inter	notes	tor	indept	h appi	ication	١) ٠
	Final	801Ut	<u>i ຫາ</u>				
	Particu	ulax		0pt-1 45	Opi	t-a	opt-3
	NPV			45	1	キマ	ર્થ ૦ ૩
	Annui	ty tack	M	0.9091	١٠.	7325	
	EAB			49	·	90	82
	NPV						
	PVAF						
	Repla	ace o	on ce	in aye	east s	ince e	AB is
	nigh	est in	optic	m-a.			
	CA KO	oshikr	nukhex	h			
		= (-+-1		* •			

	Inflation in Capital Budgetings-
Δ.	DISCUSSION AND ANALYSIS
	* capital budgeting is an exercise company's will
	undertake to select (or) reject projects.
	* It a project is estimated to give a positive
	NPV, it shall be accepted and negative means
	NPV, it shall be accepted and negative means rejected. INPV maximises the wealth and negative
	NPY exodes the wealth.
	* NPV shall be calculated as follows—
	Year FCF PV@RR PVCF
	l xxx xxx xxx
	Q XXX XXX XXX
	3 xxx xxx <u>xxx</u>
	EDISCI = XXX
	(-) EDISCO= (XXX)
	NPV = x x x
	SI: Estimate future cash flow
	sas Estimate an appropriate discount rate
	83: Calc sum of all discounted cash flows. 84: Deduct the Initial cost from the cumulative
	345 Deduct the Initial cost from the cumulative discounted CFs.
	ss: Resultant is called as NPV
	33. REGULATU 12 CAUCA AS 141
	tve NPV —ve NPV
	V
	Accept. Reject.
	* while estimating the cash flows we need to estimate two things namely —
	Volume estimate cost estimate

* Volume es	timate.			
We predic	ct to sell	say, le	olooo onits	in 1styr,
	nits in and			
	only mer			
	ed. Therefore			
	SK. This ris			
	indertaken.			
	vices, the o	isk is 10	ow but oth	erwile
	very high.			
* cost/pri				
For the	volume esti	mated, u	se do the -	following-
		<u> </u>		
sales value 1	material cost		101 000 00	• • • • •
J.	V		dabour ai	na otnet
Product of P	rooduct of es	Himated		L
	ales volume,		Product c	<u> </u>
	onite of taw i		has for e	
	for lunitand		and no c	
	per kg of ra			<u> </u>
<u> </u>	4		we estim	
NOU X SP	NOU X NO. 01	r·kgsx	other var	
	cost per kg		fixed one	•
			V	
			NOU X NO.	ob-hack
			cost per	hour etc.
* When we	estimate the	buture	cash Hows	there are
a options a	vaîlable no	mely —		
	Cor)		\downarrow
Estimate as pe			Estimate a	
the current pur	chasing		the respec	
power.			estimated	purchasing
			power.	
CA Koushik	MUKhesh			

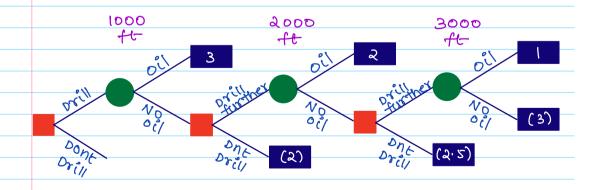
	1
costs, sales and	costs, sales and
everything is estimated	everything is estimated
at today's costs.	at inflation applied
- (0 to (g	values
	J
1. sales salu	1. Sales ur-1 CP AT
1. sales x sales units price	1. sates x yr-1 sp@I1 units yr-a sp@I2
—	yr-3 \$P@ I3
All estimates for	
future at today's	All estimates are made
instation only. That	not at today's PP, but
means, inflation is	at the respective year's
ignored.	PP.
a. sales x cost	a sates x cost
volume per unit	volume per unit
	
material Labour Olts m	atenial dabour otts
prices for all future years.	
* There are 3-types of rates	
↓	
money rate/ Real ra	te Inflation
Nominal vate	rate
\downarrow \downarrow	\downarrow
compensates for compensate	
inflation and visk of t	
risk. project.	In flation.

Example CA Koushik mukha	esh
a.Investment proposal = \$ 8,00,000	
b. Real cash inflows p.a = \$ 2,80,000 Ctodays P. F	>)
c. monetarry cost of capital = 9%	
d. Inflation = 3.2% p.a	
Compute	
(i) Real coc	
(ci.) PV of cash interws in real terms.	
(iii) compute nominal cash inflow from real cash	1
inflows and also calculate PV on basis of	of
nominal carm inflows.	
Solution	
Step 1: Calculation of real rate	
RR = I+MR	
1+ IR	
= 1+0.09	
1+0.032	
= 1.09	
1.032	
= 5·6a%	
Step 2: Calculation of NPV	
year carnintlow PV@5.62% PVC	<u>F</u>
1-4 7280,000 3.496 9,78,8	१२५
(-) DISCO (8,00)	000)
NbA +&ide	१८८५
Step 3: Calculation of NPV using money CFS	
year cash inflow (7) PV@9% PVCF	·
1 2180,000 x1.03a = 288960 0-917 265,00	12
2 21881960 XI-03Q = 21981207 0-842 2151,00	
3 21981 807X 1.030 = 3104149 0.742 8134161	13
4 3,07,749x1.032=3,17,597 0.708 <u>2,24,98</u>	22
DISCI 917817	
- DISCO (8,00,0	00)
NPV + 2178,7	Q o.

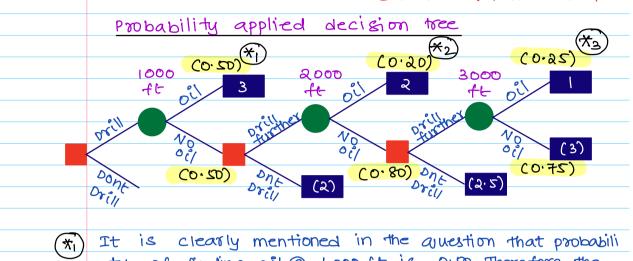
3٠	Special technia ues
	seavence of learning
	a. Decision tree
	b. Probability in Capital Budgeting
	C. Vaniance analysis
	d coefficient of variation
	e sensitivity analysis
	f-Simulation
	9. RADR
	h. CE approach.
	i. Scenazio analysis
	· ·
	Decision tree analysis in capital Budgeting
	decision tree approach CDTA) is widely used to
	analyse a project with multiple distributed probable
	cash flow. The aim of DTA is to calculate probable
	NPV from various scenarios.
	Example
	1. Investment = 7 40,000
	2. Life = 2 years
	3. salvage value = 0
	4. Probability & cash flows prob
	CF in year 725,000 0.40 730,000 0.60
	CF in yeara \$ 12,000 0:20 \$ 20,000 0:40
	₹ 16,000 0.30 ₹ 25,000 0.50
	₹ 22,000 0.10
	Discount rate @ 10%.
	s. Required
	* construct a Decision tree.
	* NPV it workt outcome is realised. What is
	the probability of occurence of this NPV?
	* What is the best outcome and its prob?
	* will the project be accepted?
	CA KOUSHIK MUKHESH

Solution
* we want to start a project with 2 years
lite.
* Today we need to invest \$ 40,000.
* 1st year the project may give \$25,000
(or) ₹30,000. (with prob of 40% & 60%)
* and year CF depends on what happenned
in 1st year. That means, it 1st year CF is
Fas,000 then, and year may give & 12,000
(or) \$16,000 (or) \$22,000 with probabilities
0.80, 0.30, 0.50 and it 1st year (Fis
\$30,000, then and year may give \$20,000,
₹25,000 (or) ₹30,000 respectively.
3 M21000 COI) 2 B01000 0 00 PCC-10013.
Part I: calculation of possible NPVs.
Step 1:
year CF(₹) PV@10% PVCF(₹) 1 25,000 0.9091 22,728
2 12,000 0.8264 9,917
DISCI 32/645
(-) DISCO (40,000)
728£ - Y9N
1,344.
ctende
Stepa:
NPV of Step1 = $(₹₹325)$
(+) PV of increased in flow
in and year = ₹ 3306
(₹16,000 - 12,000)X D.8264
NPV = <u>(= (= 4,049)</u>
Step 3:
NPV of Step2 = (
(t) PV of increased inflow
in year2 = ₹49.58
(7 22,000 - 716,000) XO. 8264
NPV = \frac{7}{2} 909

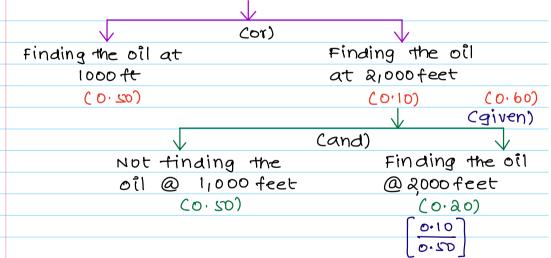
Step 4:			
	25 (5)	0.10 1.00	01445 (
year	<u>CF(₹)</u>	P V @ 10%	PVCF (₹)
<u> </u>		0.9091	27,273
d	20,000	0.8264	16,528
			43,801
			<u>C40,000)</u>
		NPY	+3,801
Step 5:			
	step 4		= ₹3,801
to V9 (+)	increased	in-flow	• /
in an	d year		= 34,132
	0-20,000)X D · &264	•
NPV	- , ,	· · ·	= ₹7,933
			* /
Step 6:			
	steps		= ₹7,933
	increased	in-thow	, , , , ,
	d year		= 341132
	00 - 25,000)X D · &264	9 (1 - 1
NPV		- ' '	= 712,065
	Dec	ision Tree	
	•		
		Deci	sion node
		\ 21	
	•	\longrightarrow Cha	nce node


All amo	unts in ooc	ેંડ	NPY	Joint prob	Expected NPV
	<u> </u>	3/	(7226,7)	0.08	(883)
	.2/.	60:30	C4,049)	० । । २	C486)
	25 0, 40	35 040	909	0.50	182
Invest	30	0.00	3,801	0 · 24	912
	3,60	30 0.720	7933	0.30	2,380
Donil- invest		0%	12,065	0.06	<u> </u>
			out come	0.08	with prob ob
	2. NPV for	r best	out come	= 1210PZ	with probot (6%)
	3. Project positive		be accep	ted sinc	e NPV (S
			a Example		
		C A	dvanced)	C C D	(2V AN
	Big oil			ig decisio	on on oil
	Depth of		Cost	cum. prof	pv of oi
	Cte		(7 in	of findin	
	2,1		millions)	130	found (3
				- •	millions)
	1,000)	2.00	0.7.0	2,00
	2,00		Z.ZD	0.60	4.20
	3,00	0	3.00	0.70	4.00
	,				•

Solution

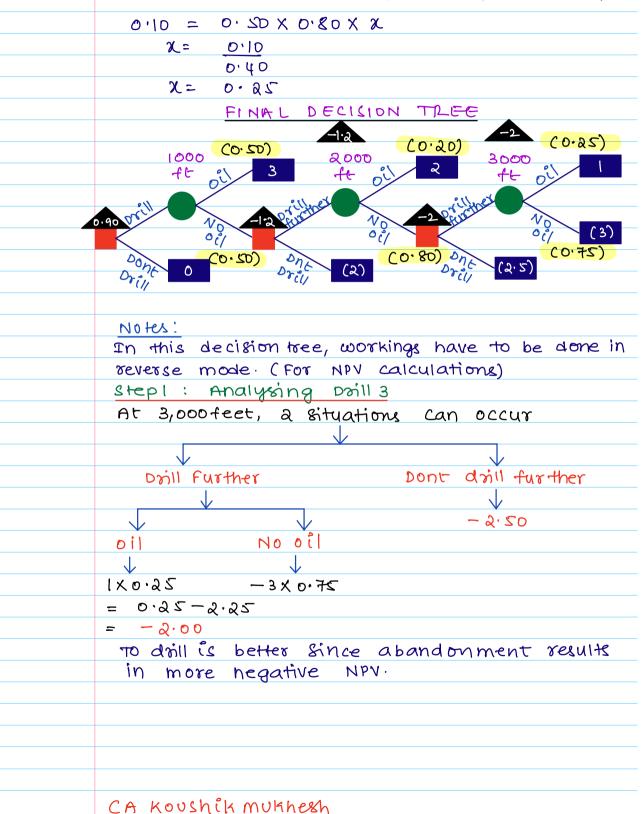

Analysis on a westion

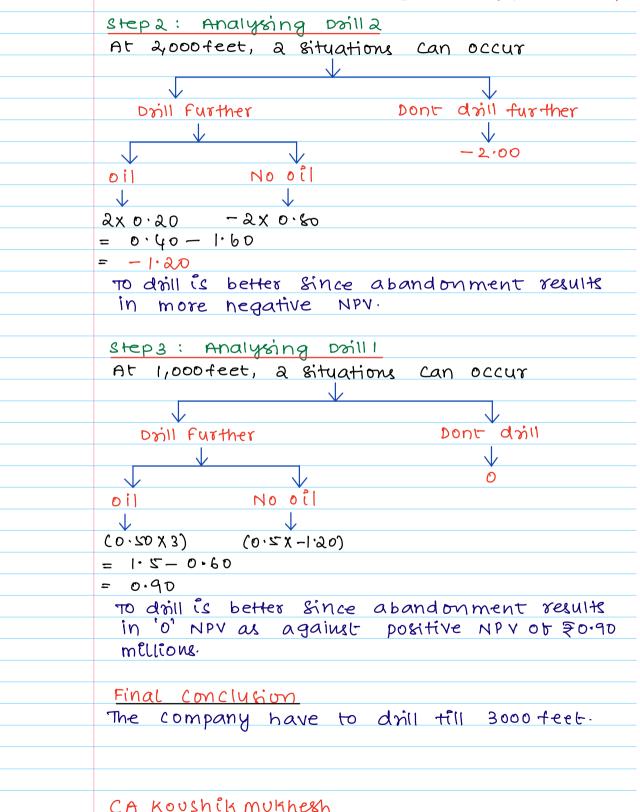
- * The company can drill upto loopfeet by spending \(\frac{7}{2} \) million. Finding the oil at 1000 feet is probable @ 0.50. In that case, the PV of oil value is \(\frac{7}{2} \) million. If we find the oil @ 1000 feet, it mean that well is deep and from 1000 feet everything found is oil and more extraction can happene therefore more present value.
- * If oil is not found @ 1000 feet, then we need to drill 1000 more feet till 2,000 feet. Then we need to spend \(\frac{7}{2} \cdot \text{million} \). At 2,000 feet chance of finding oil is 0.60 (Since more we drill, the chance of finding oil increases). It should be noted that \(\frac{7}{2} \cdot \cdot \text{million} \) is not additional amount to be spent rather it is total. That means, we need to spend additional 0.5 millions same way, probability of 0.60 is comulative.
- * If we dont find oil even at 2000 feet, we need to drill burther more 1000 feet to reach 3000 feet and results are to be interpreted as before.


Basic Decision bee

CA KOUSHIK MUKHESH

- It is clearly mentioned in the aluestion that probability of finding oil@ 1,000 ft is 0.50. Therefore, the probability of not finding oil@ 1000 ft will be 0.50 (1-0.50).
- As mentioned in the autestion, the probability of finding oil by 2,000 feet has got 2 cumulative events.




NOtes:

* As mentioned in the aluestion the comulative probof finding the oil by 2,000 feet is 0.60.

Cumulative probability uses "OR" That means the probability of finding oil by 2,000 feet will be more than probability of finding oil by 1,000 feet. So, probability increased to 0.60.

	Probability of tinding oil at 1,000 feet
	COR) 2000 feet is 0.60. The additional
	probability of finding oil @ 2000 feet is
	0:10. This 0:10 is possible only it a events
	"jointly" occur. They are, —
	a) Not finding oil @ 1000 feet (and)
	b) finding oil@ 2000 feet.
	b) finding oil@ 2000 feet. This all can be presented as under.
	Prob of finding - Prob of Prob of
	oil by 2000 feet tinding con tinding
	Prob of finding = prob of prob of oil by 2000 feet tinding (or) tinding oil@looo oil@feet 2000 feet
	0.60 = 0.80 + x.
	$ \begin{array}{rcl} 0.60 & = & 0.50 + \chi \\ \chi & = & 0.10 \\ \text{Prob of finding} & = & \text{Prob of not} & \text{Prob of} \\ \end{array} $
	panh of tinding = panh of not paob of
	oil@ a ooo feet tinding oil (AND) tinding
	@ 1000feet only @
	2,000 feet
	0.10 = 0.70 X Ã
	(1-0·2b)
	y = 0.10/0.50 = 0.80
	Notations to be remembered
	0 R
	AND X
(1 / ₃)	Probability of finding oil on 3rd doil i.e. 3000 feet
(13)	cumulative prob of finding oil in adails
	= 0.40
	(-) Prob of finding in a drill = (0.60)
	Prob of finding in 3rd drail = 0·10
	to tind oil in 3rd drill, 3 events snould have
	hapenned namely ——
	* Not tinding in 1st azill AND
	* Not finding in and daill AND
	* Finding in 3rd daill.
	n thronty in 50-1 Chaill.
	CA KOUSHÎK MUKHESH
	Ch Koosilett Monthosh

