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A well-defined collection of 
objects is called a set.

Well defined?

Collection which does not change 
from person to person.

SETS 
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●   We denote sets by capital        

letters A, B, C, X, Y, Z, etc.

●    The objects in a set are called 

its members or elements.

●     Elements are usually  denoted    

by small letters.

●      If a is an element of a set A,      

we write, a ∈ A, which means 

that a belongs to A or that 

a is an element of A.

    

  

    A   =   {  a , e , i , o  , u }   



i. The elements of a set may be listed in any order

Thus, {1, 2, 3} = {2, 1, 3} = {3, 2, 1}.

ii. The repetition of elements in a set has no meaning.

Thus, {1, 2, 3} = {1, 1, 2, 3, 2} = {1, 1, 2, 2, 3, 3, 3}, etc.

POINT  TO  REMEMBER  



       CARDINALITY / CARDINAL NUMBER  

The number of distinct elements in a set is called as Cardinal number 
of it .

For a set A , we represent cardinality with n(A) .

Example:

          Let A = {1, 3, 5} 

         Then,

           n(A)  = 3



 PRESENTATION  OF  A  SET

Descriptive Form

Roster/Tabular Form/ 
Braces Form

Set Builder Form/Algebraic 
Form/Rule Method/ 

Property Method

Ꭰ = The set of odd digits between 1 and 9 both 

inclusive.

   D = { 1 , 3 , 5 , 7 , 9 } 

D = { x : x = 2n- 1, where n ∊ N and   1≤ n ≤ 
5}



Roster/Tabular Form

● In the roster form, we list all the members of the set 

within braces { }  and separate them by commas.



Set builder Form

● In the set-builder form, we list the property or properties satisfied by

 all the elements of the set.

● We write,

                     {x : x satisfies properties P},     which is read as 'the set of all 

those x such that each x has properties P'.



TYPES  OF   SETS 

Empty Set:

● A set containing no element at all is called the empty set or 

the null set or the void set, denoted by  ф. or { }.

Example:

i. {x : x ∈ N and 2 < x < 3} = ф .



TYPES  OF   SETS 

Singleton Set:

● A set containing exactly one element is called a singleton set.

Example:

i. {x : x ∈ Z and x + 4 = 0} = {-4}, which is a singleton set.



TYPES  OF   SETS 

Finite sets

● An empty set or a non-empty set in which the process of counting

 of elements surely comes to an end is called a finite set.

● The number of distinct elements contained in a finite set A is denoted by n(A).

Example:

i. Let A = { 2, 4, 6, 8, 10, 12 }.

Then, A is clearly a finite set and n(A) = 6.



TYPES  OF   SETS 

 Infinite Sets:

● A  set  which  is  not  finite  is  called an infinite set .

EXAMPLE

ii. N : the set of all natural numbers .

iii. Z : the set of all integers. 



TYPES  OF   SETS 

Equal Set:

● Two non-empty sets A and B are said to be equal, if they have exactly 

the same elements and we write, A = B.

EXAMPLE :

Let A = Set of letters in the word ‘follow’

       B  = Set of letters in the word ‘wolf ‘

Here ,

                      A= B 



TYPES  OF   SETS 

Equivalent Set:

● Two finite sets A and B are said to be equivalent, if n(A) = n(B).

● Equal sets are always equivalent. But, equivalent sets need not be 

equal.

Example:

i. Let A = {1, 3, 5} and B = {2, 4, 6}.

Then, n(A) = n(B) = 3.

So, A and B are equivalent.



SUBSETS 

A set A is called a subset of a set B if every element of A is also  element of B 

SUPERSET 

If ‘A’ is subset of ‘B’ then ‘B’ is called a Superset of ‘A’



PROPER SUBSET 

When A is a subset of B but A is not equal to B , then A is a proper 

subset of B .

A⊂ B



IMPROPER SUBSET 

If A is a subset of B and also B is a subset of A , then both are improper subsets 

of each other , this is possible only when both the sets are equal.

A⊆ B



          FORMULAE  

● No. of possible subsets of  set containing n elements

                                    2n

● No. of proper subsets of  set containing n elements
                   

                                             2n - 1



          FORMULAE  

● Every set is a subset of itself. 

● The empty set is a subset of every set .



          POWER SET   

● Let A be a set . Then the collection of all subsets of A is called the 

power set of A and is denoted by P(A)

● A is a finite set having n elements , then P ( A ) has  2 n  elements 



         UNIVERSAL SET

If there are some sets under consideration, then there happens to be a set which is a 

superset of each one of the given sets. Such a set is known as the universal set for those 

sets. We shall denote a universal set by U.

Example:

● Let A = {1, 2, 3}, B = {2, 3, 4, 5} and C = {6, 7}.

If we consider the set U = {1, 2, 3, 4, 5, 6, 7}, then clearly, U is a superset of 
each of the given sets.

Hence, U is the universal set.



         OPERATIONS ON SETS 

A ⋃ B = {x : x ∈ A or x ∈ B}.

 

A ⋂ B = {x : x ∈ A and x ∈ B}

UNION INTERSECTION 



DIFFERENCE  OF  SETS

A - B = {x : x ∈ A and x ∉ B} B - A = {x ∈ B and x ∉ A}



COMPLEMENT OF A SET 

● Let U be the universal set and let A be 

a set such that A ⊂ U. Then, the 

complement of A with respect to U is 

denoted by A' or Ac or U - A and is 

defined the set of all those elements 

of U which are not in A



For any two sets A and B,

(i) (A ⋃ B)’ = (A’ ⋂ B’)

(ii)  (A ⋂ B)’ = (A’ ⋃ B’)

         DE MORGAN'S LAW  



         FORMULAE 

●  n(A ⋃ B)= n(A) + n(B)-n(A ⋂ B)

● n(P ⋃ Q ⋃ R) = n(P) + n(Q) + n(R) − n(P ⋂ Q) – n(Q ⋂ R) − n(P ⋂ R) + n(P ⋂ Q ⋂ R)



Que1. The number of subsets of the set {2, 3, 5} is

a. 3

b. 8

c. 6

d. None of these

EXERCISE 7(A)



Que 2. The number of subsets of a set containing n elements is

a. 2n

b. 2-n

c. n

d. None of these



Que 3. The null set is represented by.

a. {ф}

b. {0}

c. ф
d. None of these



Que 4. A = {2, 3, 5, 7}, B = { 4, 6, 8, 10} then AกB can be written as

a. {}

b. {ф}

c. (A ⋃ B)'

d. None of these



Que 5. The set {x | 0< x < 5} represents the set when x may take 
integral values only

a. {0, 1, 2, 3, 4, 5}

b. {1, 2, 3, 4}

c. {1, 2, 3, 4, 5}

d. None of these



Que 6. The set {0, 2, 4, 6, 8, 10} can be written as

a. {2x |  0 < x < 5 }

b. {x :  0 < x < 5 }

c. {2x :  0 ≤ x ≤ 5 }

d. None of these



Que 7. The data to be used If P = {1, 2, 3, 5, 7}, Q = {1, 3, 6, 10, 15}, 
Universal Set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

The cardinal number of P ⋂ Q is

a. 3

b. 2

c. 0

d. None of these



Que 8. The data to be used If P = {1, 2, 3, 5, 7}, Q = {1, 3, 6, 10, 15}, 
Universal Set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

The cardinal number of P ⋃ Q is

a. 10

b. 9

c. 8

d. None of these



Que 9. The data to be used If P = {1, 2, 3, 5, 7}, Q = {1, 3, 6, 10, 15}, 
Universal Set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

n (P')  is

a. 10

b. 5

c. 6

d. None of these



Que 10. The data to be used If P = {1, 2, 3, 5, 7}, Q = {1, 3, 6, 10, 15}, 
Universal Set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

n (Q') is

a. 4

b. 10

c. 4

d. None of these



Que 11. The set of cubes of the natural number is

a. A finite set

b. An infinite set

c. A null set

d. None of these



Que 12. The set { 2x  |  x is any positive rational number } is

a. An infinite set 

b. A null set

c. A finite set

d. None of these



Que 13. { 1 - (-1)x  } for all integer x is the set

a. { 0 }

b. { 2 }

c. { 0, 2 }

d. None of these



Que14. E is a set of positive even numbers and O is a set of positive 
odd numbers, then E ⋃ O is a

a. Set of whole numbers

b. N

c. A set of rational number

d. None of these



Que 15. If R is the set of positive rational numbers and E is the set of 
real numbers then

a. R ⊆ E

b. R ⊂ E

c. E ⊂ R

d. None of these



Que.16 If  N is the set of natural numbers  and I is the set of positive  
integers, then

a. N ⊂ I

b. N ⊂ I

c. N ⊆ I

d. None of these



Que.17 If I is the set of isosceles triangles and E is the set of equilateral 
triangles, then

a. I ⊂ E

b. E ⊂ I

c. E = I

d. None of these



Que 18. If R is the set of isosceles right angled triangles and I is set of 
isosceles triangles, then

a. R = I

b. R ⊃ I

c. R ⊂ I

d. None of these



Que19. { n(n + 1)/2 : n is a positive integer) is

a. A finite set

b. An infinite set

c. Is an empty set

d. None of these



Que20. If A = {1, 2, 3, 5, 7 }, and B = {x2 : x ∈ A}

a. n(b) = n(A) 

b. n(B) > n(A)

c. n(A) = n(B)

d. n(A) < n(B)



Que21. A ⋃ A is equal to

a. A

b. E

c. ф
d. None of these



Que22. A ⋂ A is equal to

a. ф
b. A

c. E

d. None of these



Que23. (A ⋃ B)’ is equal to 

a. (A ⋂ B)’

b. A ⋃ B’

c. A’ ⋂ B’

d. None of these



Que24. (A ⋂ B)’ is equal to 

a. (A’ ⋃ B)’

b. A’ ⋃ B’

c. A’ ⋂ B’

d. None of these



Que25. A ⋃ E is equal to (E is a superset of A)

a. A

b. E

c. ф
d. None of these



Que26. A ⋂ E is equal to (E is a superset of A)

a. A

b. E

c. ф
d. None of these



Que 27. E ⋃ E is equal to E is a superset of A

a. E

b. ф
c. 2E

d. None of these



Que 28. Aก E’ is equal to E is a superset of A

a. E

b. ф
c. A

d. None of these



Que 29. A ⋂ ф is equal to E is a superset of A

a. A

b. E

c. ф

d. None of these



Que 30. A ⋃ A’ is equal to E is a superset of A

a. E

b. ф

c. A

d. None of these



Que 31. If E = {1, 2, 3, 4, 5, 6, 7, 8, 9}, the subset of E satisfying 5 + x > 10 
is

a. {5, 6, 7, 8, 9}

b. {6, 7, 8, 9}

c. { 7, 8, 9}

d. None of these



Que 32. If A∆ B = (A-B) ⋃ (B-A) and A = {1, 2, 3, 4}, B = {3, 5, 7} than A∆ B 
is

a. {1, 2, 4, 5, 7}

b. {3}

c. { 1, 2, 3, 4, 5, 7}

d. None of these
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 The set of cubes of natural number is

(a) Null set

(b) A finite set

(c) An infinite set 

(d) Singleton Set

Jan    2021

ANS : C
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 The numbers of proper subsets of the set { 3, 4, 5, 6, 7} is:

(a) 32

(b) 31

(c) 30

(d) 25

JUNE  2012  , MAY 2018

 ANS : b
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 Two finite sets have m and n elements. The total number 

of sub - sets of the first set is 56 more than the total 

number of sub -sets of the second set. The values of m and 

n are

(a) 6 , 3

(b) 7 , 6

(c) 5 , 1

(d) 8 , 7

       JUNE  2022  , DEC 2020

ANS : a
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If A = {1, 2, 3, 4, 5, 6, 7, 8, 9} ; B = {1, 3, 4, 5, 7, 8}  ; C = {2, 6, 8}

Then find (A-B) ⋃ C

(a) {2, 6}

(b) {2, 6, 8}

(c) {2, 6, 8, 9}

(d) None

       JUNE  2019

ANS : c
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 If A = {1, 2, 3, 4, 5, 6, 7} and B={2, 4, 6, 8}. Cardinal number of A - B 

is:

(a) 4

(b) 3

(c) 9

(d) 7

       JUNE  2019

Ans : a
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 Let U be the universal set, A and B are the subsets of U. If n(U)=650, n(A) =  310, 

n(A ∩ B) =  95 and n(B) = 190. then                          is equal to

(a) 400

(b) 200

(c) 300

(d) 245

      May 2018

Ans : d



Ordered Pair

● Two numbers a and b listed in a specific order and enclosed in parentheses form 
an ordered pair (a, b).

                                           (a, b) ≠ (b, a)

 A × B = {(a, b) : a ∈ A and b ∈ B}.

Cartesian Product of Two Sets
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● Let A and B be two sets. Then a relation R from set A to set B is a subset of A × B.

● Thus, R is a relation from A to B ⇔ R ⊆ A × B

●

● If A and B are finite sets consisting of m and n elements respectively then A × B has 

mn 

,

  

total number of relations from A to B is 2mn.

         RELATION 
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➢ If  A = {1, 3, 5, 7}

 B = {2, 4, 6, 8, 10} and R is relation from A to B

                                           R = {(1, 8), (3, 6), (5, 2), (1, 4)}

         DOMAIN ,RANGE , CODOMAIN OF A RELATION 



Reflexive 

Transitive Symmetric

Equivalence relation
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Example: A = {1, 2, 3} and R1, R2, R3 be the relations given as

R1 = {(1, 1),(2, 2), (3, 3)}

R2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3)} 

R3 = {(2, 2), (2, 3), (3, 2), (1, 1)}

  

Reflexive relation

 Reflexive relation

 Not Reflexive relation

         REFLEXIVE RELATION 
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Example: Let A = {1, 2, 3} and R1 , R2 , R3 be the relations on A

R1 = {(1,2), (2, 1)}, 

R2 = {(1, 2), (2, 1), (1,3), (3, 1)}

R3 = {(1, 3), (3, 1), (2, 3)}

  

Symmetric relation

     Symmetric relation

  Not  Symmetric relation

         SYMMETRIC RELATION 
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Example: Let A = {1, 2, 3}  and   R1 and   R2  in A be defined as

R1 = {(1, 2), (2, 3), (1, 3), (3, 2)}

R2 = {(1, 3), (3, 2), (1, 2)}

  

 Not Transitive relation

   Transitive relation

         TRANSITIVE     RELATION 
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If A = {1, 2, 3}

Let R1 , R2, R3 be relation on A

R1 = {(1, 1), (2, 2), (3, 3)}

R2 = {(1, 1), (2, 2)}

R3 = {(1, 1), (2, 2), (3, 3), (1, 3)}

  

Identity relation

Not Identity relation

Not Identity relation

        IDENTITY   RELATION 



        INVERSE  RELATION 

   R-1  = { ( b , a ) : ( a, b ) ∊ R }

Let A = { 1, 2, 3 } ,

B= { a, b , c ,d }

be two sets and

 let R = { ( 1 , a ) , ( 1 , c ) , ( 2 , d ) ,  ( 2 , c ) } be a relation from 

A to B .

 Then , R-1  = { ( a , 1 ) , ( c , 1 ) , ( d , 2 ) , ( c , 2 )  } is a relation 

from B to A .

EXAMPLE 
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● Let A and B be two non-empty sets. Then a function 'f' from set A to set B is 

a rule or method or correspondence which associates elements of set A to 

elements of set B such that:

i. All elements of set A are associated to elements in set B.

ii. An element of set A is associated to a unique element in set B.

                           FUNCTION  
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Que. Identity which of them  is a function from A to B ?
  

1

2

3

4

5

6

1

2

3

4

5

6

A B BA

Not a Function Not a Function
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Que. Identity which of them  is a function from A to B ?
  

1

2

3

4

5

6

A B

1

2

3

4

5

6

BA

Function Function
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 If A= {a, b, c, d}; B = {p, q, r, s} which of the following relation is a function from A to B

(a) R1 = {(a, p), (b, q), (c, s)}

(b) R2 = {(p, a), (b, r), (d, s)}

(c) R3 = {(b, p), (c, s), (b, r)}

(d) R4 = {(a, p), (b, r), (c, q), (d, s)}

      June  2019

Ans : d 
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●   If f : A → B, the set A is known as the domain of f and the set B is known as the 

co-domain of f.

● The set of all f-images of elements of A is known as the range of f or image set of A 

under f and is denoted by f(A).

  Domain, Codomain and Range of Function
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 A is {1, 2, 3, 4} and B is { 1, 4, 9, 16, 25} if a function f is defined from set A to B 

where f(x) = x 2 then the range of f is:

(a) {1, 2, 3, 4} 

(b) {1, 4, 9, 16}

(c) {1, 4, 9, 16, 25} 

(d) None of these

      Nov   2018

Ans : b
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                           TYPES  OF  FUNCTION  

 ONE - ONE   FUNCTION 
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 MANY ONE FUNCTION 

                         TYPES  OF  FUNCTION  
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 ONTO    FUNCTION 

                         TYPES  OF  FUNCTION  
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                   TYPES  OF  FUNCTION  

 INTO    FUNCTION 
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 BIJECTIVE FUNCTION  ( ONE ONE ONTO 
)

                   TYPES  OF  FUNCTION  
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 Let N be the set of all Natural number; E be the set of all even natural numbers 

then the function

F : N → E defined as f(x) = 2x ; ν X ∈ N is:

(a) One-one into

(b) One-one onto 

(c) Many-one into 

(d) Many-one onto

      Dec  2014

   Ans :  b



IDENTITY  FUNCTION 

●  The function f : R → R :  

               f(x) = x  

● Dom (f) = R and Range (f) = R



CONSTANT   FUNCTION 

 f : R → R :  

f(x) = k  

● Dom (f) = R and

●  Range (f) is the singleton set { k}
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The No. of elements in range of constant function is

(a) One

(b) Zero

(c) Infinite

(d) None

      Dec  2014

 Ans : a



        COMPOSITION   OF   
FUNCTION 

● fog(x) = f(g(X))

● gof(x) = g(f(x))
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 If f(x) = x2 and g(x) = √x then

(a) go f(3) = 3

(b) go f(-3) = 9

(c) go f(9) = 3

(d) go f(-9) = 3

       June 2019

Ans : a
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 If f(x) = x2-1 and g(x) = |2x + 3|, then fog(3) - g of(-3) =

(a) 71

(b) 61

(c) 41

(d) 51

      July  2021

Ans : b



        INVERSE   OF   FUNCTION 

●  Let f : A → B be one -one and onto function , then there exist a 

unique function  g : B→ A ,

 such that f(x) =y ⇔ g(y) = x  ∀ x ∊ A , y  ∊ B . 

● Then g is said to be inverse of f . Thus g = f-1



        INVERSE   OF   FUNCTION 

● ALGORITHM

Let  f : A → B be a bijection . To find the inverse of f we follow the following 

steps : 

STEP 1 :  Put f(x) =y 

STEP 2:  Solve f(x) = y to obtain x in terms of y 

STEP 3:  In the relation obtained in Step 2 replace x by f-1 (y) to obtain the 

required inverse 
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 If u(x) = 1/(1-x), then u-1(x) is

(a) 1/(x-1)

(b) 1-x

(c) 1-(1/x)

(d) (1/x)-1
Ans : C 

      Dec 2021 , June 2022



         EQUAL    FUNCTION 

● Two function f and g are said to be equal , written as f=g 

if they have the same domain and they satisfy the 

condition f(x) = g(x) , for all x 



   Venn diagram 



   Venn diagram 



   Venn diagram 



Que 1. If A = {x, y, z}, B = {p, q, r, s} which of the relations on A to B are 
functions.

a. {(x, p), (x, q), (y, r), (z, s)}

b. {( x, s), (y, s), (z, s)}

c. {(y, p), (y, q), (y, r),(z, s)}

d. {(x, p), (y, r), (z, s)}

   Exercise 7(B)



Que.2 {(x, y) | x + y = 5} where x, y ∈ R is a

a. Not a function 

b. A composite function 

c. One-one mapping 

d. None of these



Que 3. {(x, y) | x = 4} where x, y ∈ R is a

a. Not a function 

b. Function

c. One-one mapping

d. None of these



Que.4 {(x, y), y = x2} where x, y ∈ R is

a. Not a function 

b. A function

c. Inverse mapping

d. None of these



Que 5. {(x, y) | x < y} where x, y ∈ R is

a. Not a function 

b. A function

c. One-one mapping

d. None of these



Que 6. The domain of {(1, 7), (2, 6)} is

a. {1, 6}

b. {7, 6}

c. {1, 2}

d. {6, 7}



Que 7. The range of {(3, 0), (2, 0), (1, 0), (0, 0)} is

a. {0, 0}

b. {0}

c. {0, 0, 0, 0}

d. None of these



Que 8. The domain and range of {(x, y) : y = x2} where x, y ∈ R is

a. (Reals, Natural Numbers)

b. (Reals, Reals)

c. (Reals, Non-negative reals)

d. None of these



Que 9. Let the domain of x be the set {1}. Which of the following 
functions gives values equal to 1

a. f(x) = x2, g(x) = x

b. f(x) = x, g(x) = 1−x

c. f(x) = x2 + x + 2, g(x) = (x+ 1)2

d. None of these



Que.10 If f(x) = 1/1 - x, f(-1) is

a. 0

b. 1⁄2

c. 0

d. None of these



Que.11 If g(x) = (x - 1)/x, g(-½) is

a. 1

b. 2

c. 3/2

d. 3



Que 12. If f(x) = 1/1 - x and g(x) = (x − 1)/x, then fog(x) is

a.  x

b. 1/x

c. -x

d. None of these



Que 13. If f(x) = 1/1 - x and g(x) = (x − 1)/x, then gof(x) is

a. x-1

b. x

c. 1/x

d. None of these



Que 14. The function f(x) = 2x is

a. One-one mapping 

b. Many-one

c. One-many 

d. None of these



Que 15. The range of the function f(x) = log10(1 + x) for the domain of 
real values of x when 0 ≤ x ≤ 9 is

a. [0, 1]

b. [0, 1, 2]

c. {0, 1}

d. None of these



Que 16. The Inverse function f-1 of f(x) = 2x is

a. 1/2x

b. x/2

c. 1/x

d. None of these



Que 17. If f(x) = x + 3, g(x) = x2, then fog(x) is

a. x2 + 3

b. x2 + x + 3

c. (x + 3)2

d. None of these



Que 18. If f(x) = x + 3, g(x) = x2, then f(x).g(x) is

a. (x + 3)2

b. x2 + 3

c. x3 + 3x2

d. None of these



Que 19. The Inverse h1 when h(x) = log10x is

a. log10x

b. 10x

c. log10(1/x)

d. None of these



Que 20. For the function h(x) = 101+x the domain of real values of x 
where 0 ≤ x ≤ 9, the range is

a. 10 ≤ h(x) ≤ 1010

b. 0 ≤ h(x) ≤ 1010

c. 0 < h(x) < 10

d. None of these
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 If a relation S = { (1,1), (2,2), (1,2), (2,1) }    on S = { 1,2,3 }    is 

symmetric and

(a) Reflexive but not transitive 

(b) Reflexive as well as transitive 

(c) Transitive but not reflexive 

(d) Neither transitive nor reflexive

      Dec  2014

Ans : c 
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 In the set of all straight lines on a plane which of the following is Not 'TRUE'?

(a) Parallel to an equivalence relation

(b) Perpendicular to is a symmetric relation

(c) Perpendicular to is an equivalence relation

(d) Parallel to a reflexive relation

      Jan 2021

Ans : c 
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 If A= {a, b, c, d}; B = {p, q, r, s} which of the following relation is a function from A to B

(a) R1 = {(a, p), (b, q), (c, s)}

(b) R2 = {(p, a), (b, r), (d, s)}

(c) R3 = {(b, p), (c, s), (b, r)}

(d) R4 = {(a, p), (b, r), (c, q), (d, s)}

      June  2019

Ans : d 
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 A is {1, 2, 3, 4} and B is { 1, 4, 9, 16, 25} if a function f is defined from set A to B 

where f(x) = x 2 then the range of f is:

(a) {1, 2, 3, 4} 

(b) {1, 4, 9, 16}

(c) {1, 4, 9, 16, 25} 

(d) None of these

      Nov   2018

Ans : b
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 We say that  if whenever x→a, f(x)→l.

Concept Of Limit
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● We consider a function f(x) = 2 x. 

● If x is a number approaching to the number 2 then f(x) is a 

number approaching to the value 2(2) = 4

● The following table shows f(x) for different values of x 
approaching 2

Concept Of Limit
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X f(x)

1.90 3.8

1.99 3.98

1.999 3.998

1.9999 3.9998

● Here x approaches 2 from values of x < 2 and for x being very close to 2  ,f(x) is 

very close 4. This situation is defined as left-hand limit of f(x) as x approaches 2 

and is written as lim f(x) = 4, x → 2 -
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X f(x)

2.0001 4.0002

2.001 4.002

2.01 4.02

● Here x approaches 2 from values of x greater than 2 and for x being very 

close 2  ,f(x) is very close to 4. This situation is defined as right-hand limit of 

f(x) as x approaches 2 and is written as lim f(x)= 4  as  x→2+
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●                          is said to exist when both left-hand limits and 

right hand limits  exists and they are equal

Existence of a Limit
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Example: A function is defined as follows: 

LHL and RHL Concept
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Important Results
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Important Results
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● DIRECT SUBSTITUTION

Rule 1 : Put x = a in the given function. If f(a) is a definite value then  

Example:

Methods Of Solving
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Example 1: Evaluate 
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INDETERMINATE FORMS OF LIMITS
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● If f(a) is indeterminate, we adopt the rules given below. 

Rule 2 : If f(x) is a rational function then factorize the numerator and 

the denominator. Cancel out the common factors and then x = a.  

FACTORISATION METHOD
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Example: Evaluate 
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● If f(a) is indeterminate, we adopt the rules given below. 

 Rule 3 : If the given function contains a surd then simplify it by using 

conjugate surds. After simplification, put x = a.

                RATIONALISATION METHOD
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Example: Evaluate 
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Some Important Limits 

Where a > 0



USE MY CODE : SS12

  

Some Important Limits 

Where a > 0
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Some Important Limits 
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TRICK    
   

    

lim f(x)g(x)     = e lim g(x) {f (x) - 1}  

x     a
  x     a
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Example: Find 
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TRICK   : Limits Of Rational Functions
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TRICK   : Limits Of Rational Functions

 =   a0 +a1x +a2x2 +.................+ amxm

 b0 +b1x +b2x2 +.................+ bnxn

m  =  n 

    am

  m  <  n

     0 

   m  > n
     
       ∞
ambn >  0

   m  > n 
      
       – ∞
ambn < 0

bn
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Example: Find 
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TRICK   : L’ HOSPITAL  RULE

Both f(x) and g(x) are continuous and differentiable at x = a

Continue the process till you get a finite answer
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● By the term continuous we mean some thing which goes on without 

interruption and without abrupt changes. 

 

CONTINUITY



USE MY CODE : SS12

● A function f(x) is said to be continuous at x = a if and only if

 

CONTINUITY
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● A function f(x) is said to be continuous at x = a if and only if

 

CONTINUITY

  OR
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i. The sum, difference and product of two continuous functions is a 

continuous function. 

ii. The quotient of two continuous functions is continuous function 

provided the denominator is not equal to zero.

 

CONTINUITY
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  Important results on continuous function

A constant function f(x) = k, is continuous everywhere.

Identity function f(x) = x, is continuous everywhere.

A polynomial function f(x) = a0+ a1x + a2x2 + ……. + anxn ,n ∈ N, x ∈ R, is 
continuous everywhere.
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  Important results on continuous function

The modulus function f(x) = |x| is continuous everywhere.

The logarithmic function is continuous in ( 0 , ∞ ) .

The exponential function  is continuous everywhere.
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Example f(x) = 

 

 x

x<1/2
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Example Find points of discontinuity of the function 

 


