CA FOUNDATION JANUARY'25

QUANTITATIVE APTITUDE

-CHAPTER NAME: PERMUTATIONS & COMBINATIONS

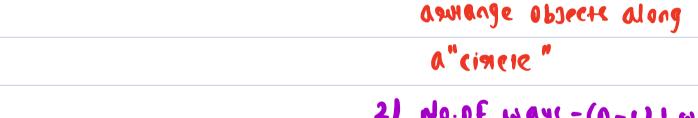
CIRCULAR, COMBINATIONS & SHORTCUTS

Permutations & Combinations

1)
$$fACTORIAL$$
: $n! OM [n]$

$$n! = n(n-1)(n-2).....3 \times 2 \times 1$$

$$OR$$


$$n! = n(n-1)! OM n(n-1)(n-2)!$$

REHEMBER
$$0! = 1$$
 $4! = 24$ $8! = 40920$
 $1! = 1$ $5! = 120$ $4! = 362880$
 $2! = 2$ $6! = 720$ $10! = 3628800$
 $3! = 6$ $7! = 5040$

2) RULES OF COUNTIAM: 1) AND MUITIPHICATION RULE Total ways = mxn ways 2) OR/Addition Rule Total ways = m +n ways 3) PERMUTATIONS: 1) ARRANGEMENTS 2) $n_{k} = u_{i}$ u > x Kebennou (1 - 8)

3) of ways (Repetition Allows)

Neven Togethen Always Together 1) FIRST ARRANGE Objects Total ways that should be always together Always Togethon (Jiske upou (ondition hoi) 2) Now, Consider these of "1" single object and "Ada" to Renaining Objects and NOW ARRANGE THEM 3) Total wass = Itep 1 x step 1

2) No. of ways = (n-1) | ways 3) FOR gorlands, necklate

Some key points to be remembered:

- Total number of arrangements of 2 particular things never occur together out of n things in (n-2)(n 1)! Ways
- 3) \$ 8.8! = (1+1)!-1
- 4) No. of Recordangements = (n! -1) ways
- 5) $2n! = 2^{n} [1.3.5...(2n-1)].n!$
- 6) Number of Pennutations of 'n' distinct objects taken
 'v' at a time when a Panticular Object is not taken
 in any amangement is n-les ways (NEVER includes)

7) Always Theodes:
$$x$$
, $n-1p_{x-1}$ ways.

2) Onder of celetion

2) Onder of celetion \Rightarrow Not Imp

3) $n_{x} = n!$
 $x_1 \cdot (n-x)!$

4) $n_{x} = n!$
 $x_1 \cdot (n-x)!$

5) $n_{x} = np_{x} \cdot (n-x)!$
 $x_1 \cdot (n-x)!$

Note 1: No of straight lines with the given n points:

Note 2: No of Triangle with the given n points:

Note 3: No of straight lines with the given n points where m points are collinear:

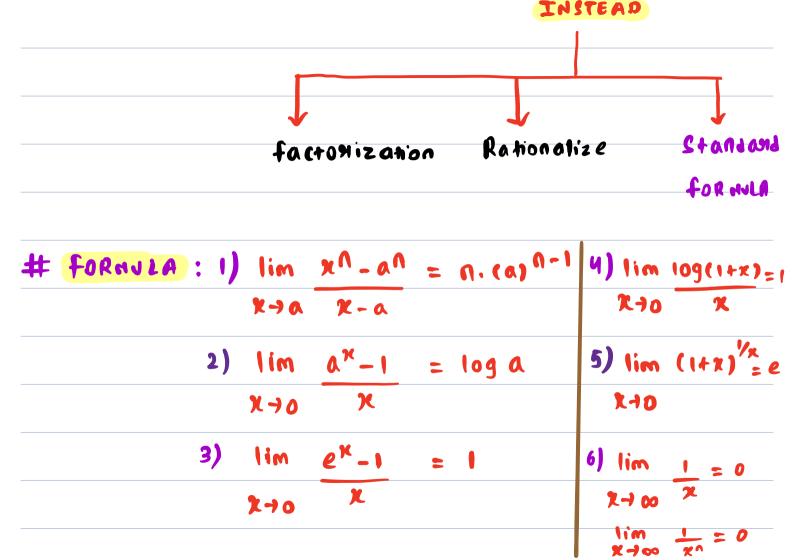
Note 4: number of triangles with the given n points where m points are collinear: $^{\circ}$ - $^{\circ}$

Note 5: No of parallelogram with the given one set of : \(\cap\chi_2 \times \mathbb{M}_2\)
m parallel lines And another set of n parallel lines

Note 6: No of diagnols with n sides: "(2-n on nen-3)

CA FOUNDATION JANUARY'25

QUANTITATIVE APTITUDE

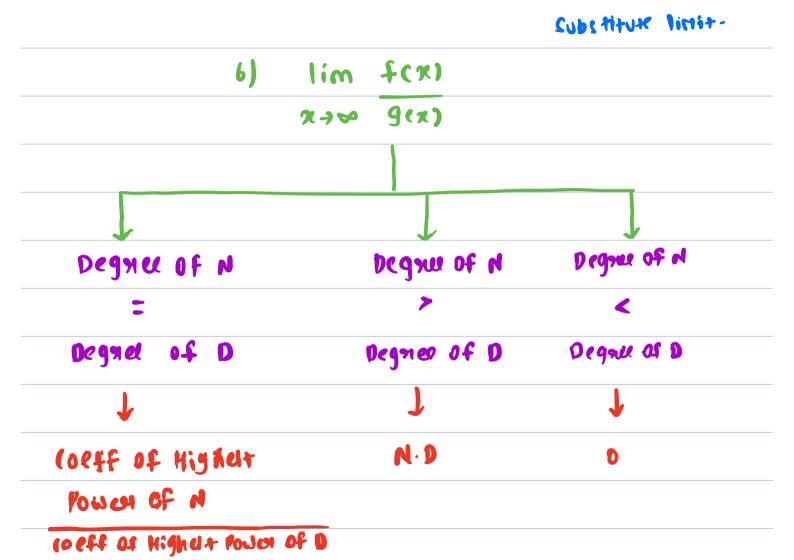

KEY POINTS & SHORTCUTS 🥠

Limits, Perivatives & integral calculus

1) LINITS: a) limit exist only if
$$\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

APPIY limit

SHORTCUTE: 1) lim
$$x^n - a^n = n \cdot (a)^{n-m}$$
 $x + a \quad x^m - a^m = m$


2) lim $(1 + kx)^{1/x} = e^k$
 $x + a$

3) $\lim_{x \to \infty} (1 + k \cdot 1/x)^x = e^k$

4) $a^x + a^{-x} - 2 = (a^x - 1)^2$
 a^x

5) lim $f(x) \Rightarrow 0$ on ∞
 $x + a \quad g(x) \Rightarrow 0$ on ∞

Directly Differentian and $n \in D$ and

$$\frac{1}{dx}(x^n) = n \cdot (x)^{n-1} \quad \frac{d}{dx}(\log x) = \frac{1}{x}$$

$$\frac{\partial}{\partial x} \left(e^{x} \right) = e^{x}$$

$$(\alpha^{x}) = \alpha^{x} \cdot \log \alpha$$

$$3 \frac{d}{dx} (\alpha^{x}) = \alpha^{x} \cdot \log \alpha$$

$$\left(\frac{1}{\kappa}\right) =$$

$$\frac{dx}{dx} \left(\frac{\Lambda}{\Lambda} \right) = \Lambda \frac{dx}{d\Lambda} - \Pi \cdot \frac{dx}{d\Lambda}$$

dx

(10) If f(x,y) = 0 (Implicit function)

dy = - [Demirative w.x.t 'x' keeping 'y' constant]

Deminative wiret 'y' keeping 'x' constant

 $\chi^{2} + 2\chi y + y^{2} = 0$, $\frac{\partial y}{\partial x} = \left[-\frac{2\chi + y(2)}{2\chi + 2y} \right]$

dy = 49/4+

dn d1/1+

If
$$x^{m} \cdot y^{n} = (x+y)^{m+n}$$
, then
$$\frac{dy}{dx} = \frac{y}{x}, \quad \frac{d^{2}y}{dx^{2}} = 0$$
If $ax^{2} + 2nxy + by^{2} = 0$, then

If function
$$\left[x^{n} - y^{n} \right] = k$$
, then $dy = y$

(14) Slope of tangent =
$$dy/dx$$
 (gradient)

(15) Slope of normal = $-1/dy/dx$

(16) If $y = f(x)$, then $f'(x) > 0$, Increasing function $f'(x) \ge 0$, Decreasing function

For Minima Maxina: (1) find f(x) (4) let f'(x) = 0 < x =(2) f'(x) (5) Substitute value of x in f''(x)(3) f''(x) If f''(x) > 0, minima f''(x) < 0, maxina

$$\frac{d}{dx}(x^{x}) = x^{x} (1 + \log x)$$

$$\frac{d}{dx}$$

$$\frac{d}{dx} = x^{x} (1 + \log x)$$

$$\frac{d^2y - (H+H)}{dx^2} = 0$$

21)
$$C \Rightarrow Total (0)t$$
 $C = VC + fC$
 U
 $f(x)$
 U
 V
 V
 $V = no.0f$
 $V =$

22) Avg. (0s+ =
$$\frac{c}{x}$$
, noviginal cox = $\frac{d}{dx}$

23) Total Revenue =
$$R = P \times D$$

Aug. Revenue = $R = P \times D = P$

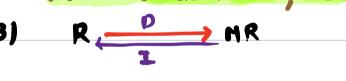
D

Manginal Revenue = $AR = D \times D$
 $AR = P \times D$

Marginal Revenue.	7 d K	on de
	dp	d 0

24) Profit = R-C

BEP & R = C


Integral calculus

fex dx

1)
$$f(x) \xrightarrow{D} f'(x)$$

2) $C \xrightarrow{D} H \cdot C$

Note: When
$$x = 0$$
, (3) $R \xrightarrow{p} MR$

NOTE: When x = 0, C = fixed cost

3) R PMR

 $\frac{1}{N_0 + 6} : \frac{1}{N_0 + 6} \times \frac{1}{N_0 + 6$

5) P 109 x dx = R 109 x - x + c

6) Pu. v d v = u P v d x -

iii) $f[f(x)]^{n}$. $f'(x) dx = [f(x)]^{n+1} + c$

0+1 iv) fex (f(x)+f'(x))dx = ex (f(x)) +c

$$R = P. Q$$

$$= (10800 - wx^{2}) \cdot x$$

$$R = 10800 \times - 4x^{3}$$

$$10800 - 12x^{2} \cdot 0$$

$$10800 - 12x^{2}$$

$$\frac{dR}{dx} = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

$$R = 10800 - 12x^{2}$$

$$-30 > x > 30$$

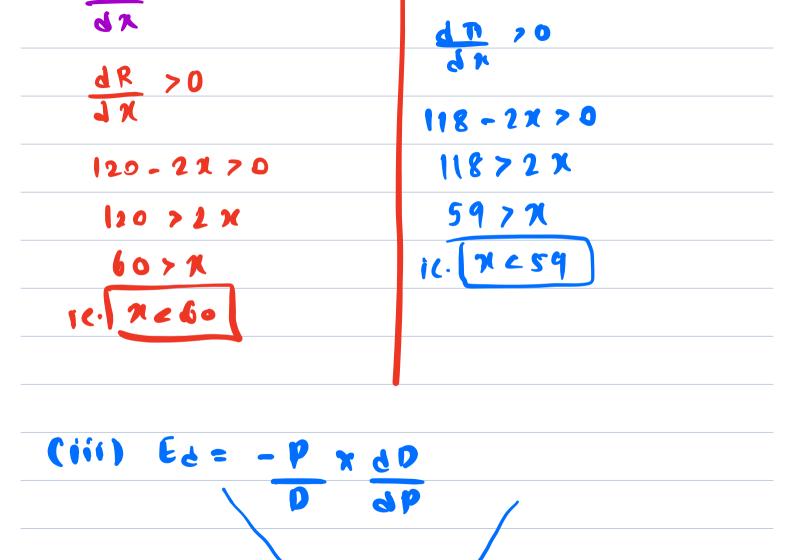
$$R = 10800 - 12x^{2}$$

6)
$$C = 47x + 300x^2 - x^4$$

Ac = C
 x
 $= 47x + 300x^2 - x^4$
 x
 $= 47x + 300x^2 - x^4$

Ac = $47x + 300x - x^3$
 $= 400x^2$

Ac = $400x^2$


Ac =

1)
$$R = P \cdot Q$$
 = 120 $R - R^2 - 40 - 2x$
= (120 - 2) $R = 118 R - R^2 - 40$

	- 120 K K = 40° CK
= (120-71) . 1	$T1 = 118 \times -10^2 - 40$
R = 120x - x2	

R = 120x - x2	
	$d\Pi = 118 - 2x$

= 120 - 2 K

$$= -80 \times 2$$

$$= -160$$

$$= -169$$

$$= -169$$

$$= -0.8$$

$$= -0.8$$

$$Reserved I-1$$

$$= -0.8$$

$$Rm = RA \left[1 - \frac{1}{EI} \right] \qquad R = 120 \times 120 = 120 - 2 \times 120 = 120 - 160$$

-40 = 40 [1-1] RM = -40 -1=!-<u>1</u>

1 : 2 Ed Ed = 1

RA = R

 $= 120 \chi - \chi^2$

$$= -\frac{P}{2} \times \frac{A}{A} = \frac{P}{2} = \frac{120 - P}{2}$$

$$= -\frac{P}{2} \times \frac{A}{2} = \frac{120 - P}{2}$$

$$= -\frac{(120 - N)}{2} \times -1$$

$$= \frac{120 - N}{2} = \frac{2}{2}$$

(Relatively elatic)

P= 120 - X

$$\frac{dD}{P-3} = \frac{P+6}{P-3} + \frac{P-3}{P-3} + \frac{P+6}{P-3} = \frac{P-3}{P-3} + \frac{P+6}{P-3} = \frac{P+6}{P-3} + \frac{P+6}{P-3} = \frac{P+6}{P-3} + \frac{P+6}{P-3} = \frac$$

(P-3)2

 $(P-3)^2$

E9=- b x 9 b

46) (P-3)x

$$= -4 \times -9$$

$$= 36$$

$$= 3.6$$

$$= 3.6$$

$$D = 29 + 3$$

 $D = \frac{27+3}{3P-1}$ $\frac{dD}{dP} = \frac{(3P-1)\cdot 2 - (2P+3)\cdot 3}{(3P-1)^2}$

$$F = -\frac{P}{A} \times \frac{AD}{AP}$$

$$F = -\frac{P}{AP} \times -\frac{A}{AP}$$

$$F$$

= 1 - 2 - 11 - 9

90

96

 $(3P-1)^2$

$$(2P+3)(3P-1) = 14P$$

$$6P^{2}-2P+9P-3=14P$$

$$6P^{2}-7P-3=0$$

$$6P^{2}-9P+2P-3=0$$

$$3P(2P-3)+1(2P-3)=0$$

$$3P+1=0 2P-3=0$$

P= 3/2

37 +1= 0 29-3=0 27=3 3 9 = -1

1= -1/3

13)
$$E.C. = (0.0003) I^2 + (0.0751)$$

HPC = $d(EC)$

= 1-0.675

= 0.0006 I + 0.075

HPS = 0.325

A+ I = 1000

= 0.0006×1000 +0.071 APC = EC × 1000 + 0.075

10000

= 0.600 + 0.0 7r 465 = 0.632

APC: 0.00031

0.075

$$AP(=0.37)$$

$$AP(=1-APC)$$

$$=1-0.37$$

$$AP(=0.37)$$

$$AP(=0$$

$$\frac{3}{2} \left[(16)^{3/2} - (4)^{3/2} \right]$$

$$\frac{2 (64 - 8)}{2} = \frac{2 \times 56}{3} = \frac{112}{3}$$

2. ((4)2×3/2 - (2)2×3/2)

$$x=3 \qquad y^{2} = 4x$$

$$y=\pm 2\sqrt{x}$$

$$y=\pm 2\sqrt{x}$$

$$y=2\sqrt{x}$$

$$= 4 \left(\frac{\chi^{3/2}}{3/2} \right)^{3}$$

$$= 8 \left((3)^{3/2} \right)$$

1 4-X2 9 P

$$= 10 \left[\frac{x}{2} \right] \frac{14 - x^2 + 4 \cdot 2in^{-1} (x)}{2}$$

$$= 10 \left[\frac{2}{2} \right] \times 1in^{-1} (1)$$

$$= 10 \left(\frac{2 \times 1in^{-1}(1)}{1} \right)$$

$$= 10 \times 2 \times 1$$

$$= 10 \times 2 \times 1$$

= 10 77 10 -10-

$$y = \frac{x^2}{7}$$

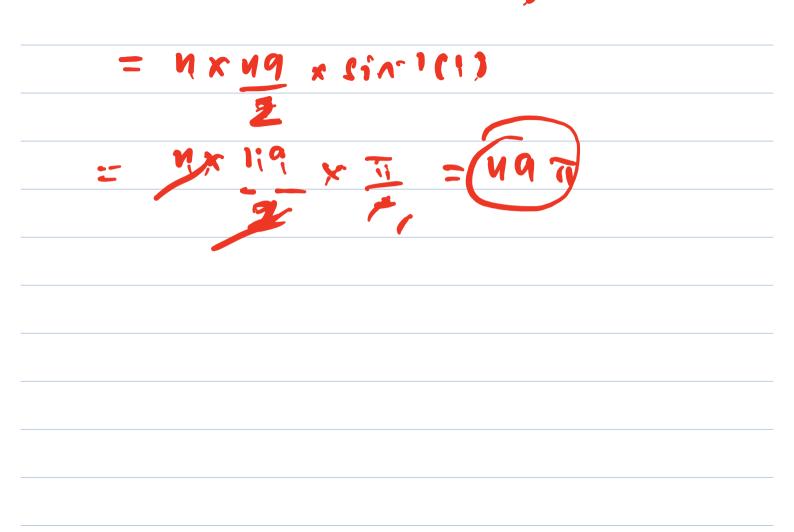
$$y = \frac{x^3}{7}$$

$$\frac{x^4}{7^2} = 7x$$

 $y^{2} = 7x$ $x^{4} = 7^{3}x$ $x^{4} = 7^{2}x = 0$ y = 175i

= [7x2]7+[7

$$A_{2} = \begin{cases} \chi^{2} & \lambda \lambda \\ 7 & \gamma \end{cases}$$


$$= \frac{1}{7} \left(\frac{\chi^{3}}{3} \right)_{0}$$

$$= (7)^{3} = 49$$

$$7 \times 3 = 3$$

$$98 - 49 = 49 \text{ Jenn.}$$

$$x^2 + y^2 = uq$$
 $y^2 = uq - x^2$

2)
$$77 - 27 \le -4$$
 $7x \le -4 + 27$
 $7x \le 21$
 $0 \le x - 5 \le 12$
 $x \le 3$
 $x \ge 3$

$$|C| \times 24$$

215 CO "n 2-370 22-5 273 Not Possibr.

1)
$$\chi - 2 > 0$$
 OH $\chi + r > 0$
 $\chi > 2$
 $\chi > 2$
 $\chi < 2$

On combining

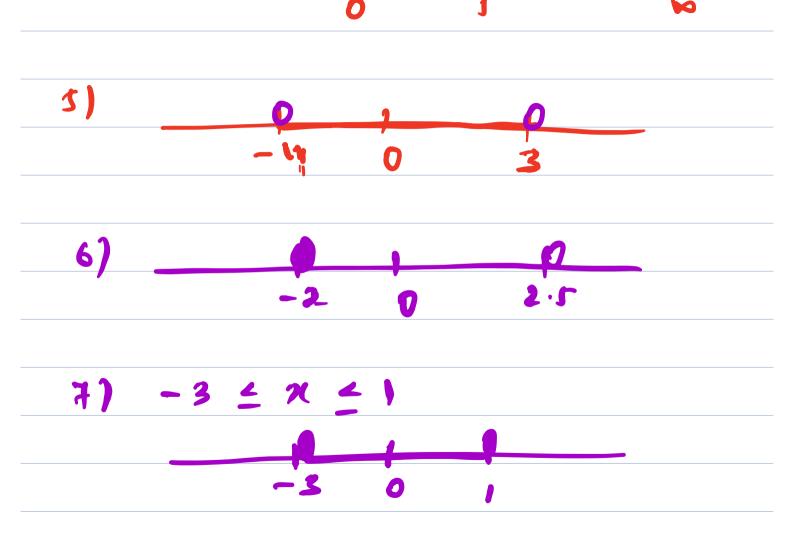
-5 > $\chi > 2$

Show what size =
$$\chi$$

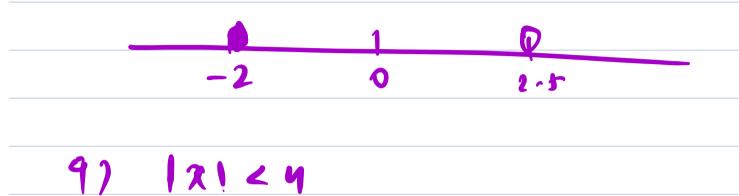
The state of the size = χ

The state of χ

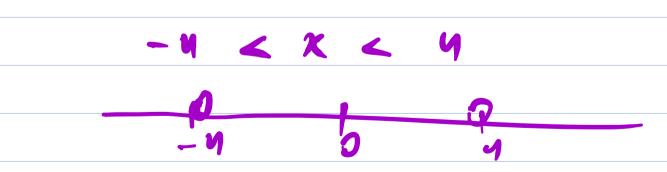
77, 9, 11 7) let 2' consecutive oft union pe 20-1, 20+\$ 21-1210 034 2041210 20211 20 210-1 n = 11/2 20 69 n 29/2 1 455 124.5 -(2)


20-11-11

$$2n-1 = 5$$
 $2n-1 = 7$
 $2n+1 = 7$ $2n+1 = 9$

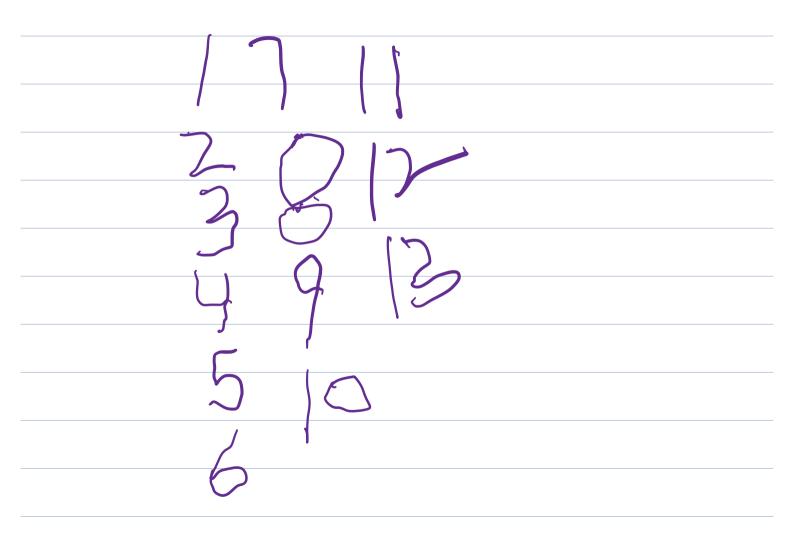

$$= 7 \qquad 2041 = 9$$

$$(7)$$


8)
$$2n$$
, $2n+2$
 $2n > 5$
 $2n+2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$
 $2 > 5$

8) -2 = 2 = 2.5

/ / / / / ~ ๆ


-3.5

ABCID EFG HIJKLMM

ABCDE F6H TITKL MNOP QRSTUV WXY 7 2 7 55 7 3 8 5358 1/4/954-59 5 | 51 56 31