
DIVIDEND DECISIONS

	learning of	objectives			
	1. understan	ding dividends and its on	le in shave		
	valuation	•			
	2. understand	ding perpetual cash flow			
	3. Types of				
	4. Dividend	relevance models			
	· Walter r	nodel			
	· Gordon	model			
	· Graham	& Dodd models.			
	· 2-Stage dividend model.				
	s. Dividend	irrelavance model - mod	digliani k		
		mil	ler model.		
	6. Dividend	pay out model - Linter	s model.		
		eous issues.			
(.		ling dividends.			
	* value of	any asset is PV of FCF a	discounted@		
	RR.				
	* Type of a	assets, their cash flows & r	espective disc		
	rates are	as under —			
	Debt	preference	Eauity		
cash-flow		Preference dividend	Dividend		
disc rate		kp	ke		
Life		ed Pre-determined	Perpetual.		
	* In case c	of Share, the carn-flow is	"dividend"		
	There fore, a	dividend will necessatily	impact the		
	Share price	3.			
گ ٠		f perpetual Cash flows.			
		CFs are those CFs which rec	iur constantly		
	till perpetu	lity ·			

۲۰.	pividend relevance models.
	* Dividend relevance models proposes that the div
	payment and non-payment will affect the show
	prices.
	* There are a models which are as follows——
	· walter's model
	· Gordon's model
	* walter model is based on constant dividend and
	without growth, where as Gordon model is based on
	constant growth.
	walter's model
	I. Basics:-
	* As per walter's model, dividend payment/
	non payment will affect the price of a share
	* As per the model, dividend decision will impact
	the wealth of the SH.
	II. Formula: + Po = Current Mps.
	₹ D = DPS
	* r = ROI%
	$Po = \frac{D + \mathcal{T}}{ke} (E - D) \qquad \text{t ke = Cost of earlier} / Share.}$
	Ke # E-D= Retention/Shave.
	since formula has "D" in it, dividend will impact
	the price of the share.
	III. Interpretation of formula
	The formula has a parts namely —
	V
	(2)
	$\frac{D}{V}$ (E-D)
	ke <u>ke CC D</u>
	* Part (1) OF the formula is analyzing the Dy of
	* Part (1) of the formula is analysing the pv of
	perpetual dividends.

			_					
*	Part (2) c							b
	perpetual	return	on or	e-inva	estmen	t com	ing tor	
	perpetua							
ĬΫ.	Derivation	n ot i	PartCi) (2)	0+ fo	rmula.		
	Ţ				L	Γ		
	of perpetua	al CFS		PVO	+ perp	etual 8	etention	
=	<u> </u>					↓		
	RR			48 -1		- 2	yr-3	
	↓		E	10	<u> </u>	0	ID	
PV	of perpetual	dividenc	K-D	(4)	C	(4)	(4)	
	<u>/</u>		R	6		6	6	
=	D		(E-D)					_
	ke				Numer	ical ar	nalysis	_
				18 <u>-1</u>		<u> </u>	r-2	
			E =			1 D	· 10	
			- D =	(4)				
			R≥	6		R =	6 CE-	-D)
				N/SE	≥−ุุ่ท∨		7	
		perp	etual (rrate		re-in	
		1 1	yean		\checkmark		for per	P
				6	X X		yeax	
					ke		4	
		perp	petual	K			'r' rate	
		ret	uM	1	perpetu	al	bxr	
				•	yeax	١	ke	
<u>V</u> .	Divi dend	Policy	υ&n <	y wa	alter 1	mode		
8	situation	Polic	- 4		R	emarly	\	
	v>ke *	100% 1	etentic	m si	nce, u	bea Ith	mazimi	Sel
	*	0% pc	ayout	in	the	hands	of comp	any
	v= he	India	f-ferent			_		
	rcke *	0% re	tention	sir	nce, w	ealth	maximis	es
	-X	100% pa	ayout	in	the r	nands	of SH.	
		1	7					

VI. Assumptions of walter model
* Company has constant earning * Company has constant dividend.
* only source of investment is retained earnings.
* No earlity issue Cnew).
* No Taxes
* markets are perfect.
VII. Advantages of walter model
* Easy to understand & compute.
* Different prices at different situations by Changing
Some factors in formula we derive different prices.
* Doesn't consider all factors affecting share prices.
* No taxes.
IX. Dividend policy analysis using formula
a. If r>he
co-efficient of E-D is more than co-efficient
$Of D.$ $P = D + \frac{x}{ke} (E-D)$ $ke > 1$
$(D) + (\frac{3}{2}) \in -D)$ Ke
Ke
$D \rightarrow I \times D$
co-eff
since co-efficiency of retention being t-D
is more than co-efficiency of dividend CD), it
is recommended to go by higher co-efficiency
being "100% retention". b. It r <ke< td=""></ke<>
co-efficient of $D(i) > Co$ -efficient of $E-D(C1)$
C. If r=ke
$P = D + \frac{1}{16}(E - D) \Rightarrow P = D + 1(E - D)$
$P = \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$
P= Ø+E-Ø/ke P=Elke

	දිර	rdon's model	
I. Basics			
1. As per	fordon's	model, divider	nd will have impact
on share	prices.		
2. Model	analysed	I that 920wth wi	ill be the major
influenci	ng factor	in share pricing.	
II. Formula	7		
Gordon (on Sideri	ng 2 types of	for mulae
		\downarrow	
			<u> </u>
DI	* D1 =	Expecteddividen	d
Po= DI	→ D ₁ =	Do (149)	$P_0 = \frac{E(1-b)}{k_e - b\gamma}$
rie-g	T Po=	Current Share pri	ce he - b i
		900 with rate.	
	* p =	retention propor	tion
		Return on eaulity	
	* I-b=	= payout proportion	m
	* E =	Earnings per sho	me
	* ECI-	b) = Dividend per s	shave
	* PXX	= 9	
III. Deviv	ati on		
value ob	shave		dividends discoke
rear	CF	PV@Ke	PVCF
l	DI		Di
		(Itke)	(Itke)
2_	D 2_		D ₂
		(1+ke)2	(Ithe)2
3	PB	1	Dэ
		(I tke)3	(Itke)3
:	•	-	
:	•		Dn
n	Þ'n	(Itke)n_	(Itke)n
			Po

```
This series forms a geometric progression which
can be simplified as under-
  y= a
                y= Term to be limited = Po
                a= 1st term in series
                r= Longest term
                   shortest term
      <u>Dr</u>
Itke
                      DZ
                 r= (1+ke)<sup>2</sup>
DI
1+he
                r= p(C1+9) x 1+ke
(1+ke)C1+ke) x D1
                     149
                      1+9
1- 1+9
              1-Y=
                     1tke-1-9
                       ke-9
                        1the
         Po= a
                         DI
                        Ke-9
                         Ithe
                         \downarrow
```

ĪV. U	understanding growth	
* 60	bowth is a product ot	bxr.
* Th	nis means, the company	will not keep the reserve
ç	ble, rather it invests at	a place which gives
tt i	γ% ¹¹ retum.	
* Tr	nis growth is assumed	as constant till the
* G	repetuity rowth increases the price	es of shores also.
又. (Concept detailed by mo	<u>del</u>
	model clarifies that	
Such	n payout/retention ratio	o which gives highest
pric		
	del analyked both advo	
05	dividend & retention which	n are as follows —
	\bigvee	
↓		
Divi	dend	Retention
	↓	<u> </u>
	* Visible cash flow	Adv: * Propell growth.
	* Increased confidence.	* Kr < Ke
D.Adv.		D'Adv: * No VISIBLE Cassy
	* New issue as 1PO	flow.
	is costly it all	* 10% of confidence
	dividends are paid.	<u> </u>
		A Bird in a hand is
		better than a in a bush!
<u>VI</u> .	Assumptions of the mod	el constant rate
	Earnings are growing at	
	company follow Stable	pay out.
	Markets are perfect.	
* *	re49.	la makalmada a amalmad
	only source of financing	is tetained earnings.
	No taxes.	
* 0	company has ready inve	&tments.

walter mode * Eps= ? P = D - = ?	en avuesti el, compa 100% rete 0% pay 10 , DPS= $0+\frac{x}{ke}$ (E $0+\frac{0\cdot12}{0\cdot10}$ (on, a any s ention yout =0,	Shall follow	means, as per
walter mode * Eps= ? P = D - = ?	en avuesti el, compa 100% rete 0% pay 10 , DPS= $0+\frac{x}{ke}$ (E $0+\frac{0\cdot12}{0\cdot10}$ (on, a any s ention yout =0,	v>ke, which shall follow n E-D= ₹10	means, as per
walter mode * Eps= ? P = D - = ?	21, Compa 100% rete 0% pay 10, DPS= 0+ re (E Ke 0+ 0-12 (iny s ention yout =0,	Shall follow	
* * EPS= \$ P = 0 = \$	100% rete 0% pay 10, DPS= 0+ re(E Ke 100% rete 100% rete 100% rete	ention yout = 0,	N E-D= ₹10	
* P = D = 0 = \$	0% pay 10, DPS= $\frac{x}{ke}$ (E Ke) $+\frac{0.12}{0.10}$ (0.10	yout = 0, =-D)	E-D= 210	
P =	$\frac{x}{\text{Ke}} \in \frac{x}{\text{Ke}}$ $\frac{x}{\text{Ke}} = \frac{x}{\text{Ke}}$ $\frac{x}{\text{O} \cdot 10} \in \frac{x}{\text{Ce}}$	<u>(d</u>		
P =	$\frac{x}{\text{Ke}} \in \frac{x}{\text{Ke}}$ $\frac{x}{\text{Ke}} = \frac{x}{\text{Ke}}$ $\frac{x}{\text{O} \cdot 10} \in \frac{x}{\text{Ce}}$	<u>(d</u>		
= ₹	010	10-0) _	
= ₹	010		_	
-				
-	(2 <i>0</i> ,			
		D = 1	مداه	
Prices at				10081 00 (
576 POK	50% POK		45% PO	100% PO 4
S to Ketry	50% Retn		as% Retn	0% Retn.
- 1 0.15 (4.2)	C+ 0, D		4.57 0.15 Co.	-) IO
21000	0.10	(2	137 010 CX3	- <u>NU</u>
<u>まれた</u> あれり	0,10		0,10	0 10
۲ (۱) S	= ₹110		= \$105	= \$100
Reple cal	culation	0 K _1	EAFCH.	
				<u> </u>
•	1 C			A
_	nn x 1,2°/-1	_	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · ·
	D N 14 10)	<u>-</u>	5 18,00,00	0
		=		C\$18L/3L)
	Step 1: cal Net poor	FILE 0.10 = \$110 Step 1: calculation Net profit -) Pref. div (71,00,00,000 x 12%) EAESH	FILE 0.10 = \$110 Step 1: calculation of Net profit =	= \$110 = \$105 Step 1: calculation of EAESH. Net profit = \$30,00,000 -> Pref.div = (\$12,00,00 (\$1,00,00,000 x 12%) EAESH = \$18,00,00

```
stepa: calculation of payout.
                                      P = D+ re(E-D)
                    ⇒ ₹42= D+ 0.80 (₹6-D)
                                                                                                0.16
                     ⇒ ₹6.72 = D+1.25 (₹6-D)
                       今 まらせる - D+ きょっこ - 1·82 D
                      → ₹6.72= -0.25D+7.5
                        タナ・0 くとって マイ・コント・ロント・ロント・ロント・コーマー
                        → O·QSD= そO·78
                         ⇒ D= 至3·12
                                 Payout ratio = DPS = \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\finter{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\f
                           Step 1: calculation of EAESH.
4.
                                net profit
                                                                                                                                                    ₹30,00,000
                    (-) Pref. div
                                                                                                                                                   (712,00,000)
                           (₹1,00,00,000 x12%)
                                                                                                                                                    ₹ 18,00,000
                                   EAESH
                                                                                                                                                                                                                   ($18L/3L)
                                                                                                                                                     ₹6
                                  EPS
                            Stepa: calc of Po
                         case 1: When P.O = 25%
                                  P_0 = E(1-b)
                                                                 ke - (bxr)
                                                             (27.0 - 1)35
                                                           0.1P-(0.4ZX0.50)
                                                              ₹I·S0
                                                                                                                           ₹1.Z0
                                                           21.0-41.0
                                                                                                                               0.01
                                                                                                                         3150
```

	case-2: When PO is SD%
	$P_0 = \frac{E(1-b)}{a}$
	he-Cbxr)
	$= \underbrace{\$ 6(1-0.20)}_{}$
	0·(b-(0·20x0·30)
	$= \frac{3}{23} = \frac{3}{200} = 3$
	case-3: When PO is 100%
	$P_0 = \underbrace{E(1-b)}$
	He-Cbxr)
	= \$6(1-0) = \$6(1-0)
	= 76 - 73-37-50.
	9.19
٤٠	Since the company is a no growth company, g=0.
<u> </u>	Therefore, same dividend will be paid till perpetuity.
	P- D
	P= D Ke
	010 = <u>\$Z</u> = <u>\$</u>
	0 10
6.	calculation of Po
	$P_0 = P_1$ $P_0 C(fg)$
	$P_0 = D_1 = D_0 C(1+9)$ $ke-9 \qquad ke-9$
	= 72(1.02)
	= \(\frac{2}{1.02}\)
	= ₹2.04
	0.13
	= \$15.69,
	7 13 31

7.	calc of price	of share at	vanious	growth levels			
	As per Gordo	n model,					
	$P_{\mathcal{O}} = D_{\mathcal{I}}$						
	ke-9						
	case-1	case-	<u>) </u>	case-3			
	Cg= 5%)	Cg= 8%)	(9=3%)			
	Po = \(\frac{2}{2}\alpha(1.05)	Po= ₹ 2C1.0	(80	Po= ₹2(1.03)			
	20.0-21.0	0-210	.08	0.12-0.03			
	= 72.10	= ₹ 2 ·16		= 3 2.06			
	0.10	0.07		<u>ه</u> ،اع			
	= 721	= ₹30.8	6	= \$17.17.			
	a a alamba	V 1 504					
12.	Stepi: calcula	TION OF EPS	and DP	<u>S</u>			
	a) Eps						
	= 200,000						
	100,000						
	•						
	b) DPS						
	= Eps x Por						
	= 75 x 60%						
	= \frac{1}{2}		+ airion	Dallaut Satio			
	Stepa: calculati	on of price a	it given	payour ballo			
	_ D·	t & (E-D)					
	P = -	$\frac{+ \frac{x}{ne}(E-D)}{ke}$ $\frac{+ \frac{0.15}{0.12}(25-1)}{(25-1)}$					
	= F:	3+0.12 (===	- 5 27				
	~ .	0.12	<i>~ 3)</i>				
		0·12					
	= ₹3	3+720					
		0.12					
	= 1	45-83.					
	Step 3: Optimur		Ptimum	price			
	since $\gamma > ke$,						
	* 0% pa		,				
	× 100% v	Etention					
	Control of the Contro						

	D- D+ re(E-D)
	$P = \frac{D + ke^{-CD-D}}{ke}$
	$P = 0 + \frac{0.15}{0.12} \times 5$
	<u> </u>
	© · 12
	P = 6.25 0.12
	P= ₹52.08
13 ·	calculation of price pershave for various tirms
	Particular Growth firm Normal-firm Declining firm
	Po= E(1-b) ₹400 ₹100 ₹76.92
	ke-(bxv)
	$ \frac{(06.0000) - 01.0}{(80.0000) - 01.0} = \frac{(06.0 - 1)01}{(01.0000) - 01.0} = \frac{(06.0 - 1)01}{(01.0000) - 01.0} $
	(80.0009.0)-01.0 (01.0009.0)-01.0 (51.0009.0)-01.0
	= 4 = 4
	0 10 -0.01 0.00 0.10 -0.048
	= 4 = 4
	0.01 0.04 0.052
14.	1-calculation of value of share using walter model
	$P = \frac{D + \frac{x}{\kappa}(E - D)}{\kappa}$
	ke
	$= (760 \times 30\%) + \frac{0.15}{0.15} (60 - 18)$
	$\frac{-(200 \times 30\%)}{0.15} = \frac{-0.15}{0.15}$
	21.0
	= 718+770
	0,12
	<u> </u>
	0.12
	= \$586.67.
	2. Decision as per Gordon model
	As per Gordon model, more the retention, more the

	growth. more the growth, higher the share price. So, to achieve optimum share price as per nordon model in the case of 8>ke, company shall follow 0% payout.
	Graham & Dodd model * This traditional pricing model assumed that the SH will give 3-times more weight to the dividends than retained earnings. * Formula under this model is P= Price of 8h m= PE multiple. P= [D+ E] xm E= Earnings
8.	calc of share price under Graham & Dodd model $P = \left[D + \frac{E}{3} \right] \times m$ $= \left[(730 \times 60\%) + \frac{730}{3} \right] \times 2$ $= (718 + 710) \times 2$ $= 756.$
9.	Calc of Eps using GLD model $P = \left(D + \frac{E}{3}\right) \times m$ $58.33 = \left[5 + \frac{E}{3}\right] \times 7$ $8.33 = 5 + \frac{E}{3}$ $3.33 = \frac{E}{3}$ $Eps = 9.99 \approx 70$
	EFS- 1-11- 310

	Linte's model for dividend payment
	* This model analysed that every company should
	pay atleast the dividend already paid in the
	last year added with some extra payment taking
	adjustment factor into consideration.
	* <u>Lintex</u> formula
	$D_1 = D_0 + [EPS \times PR] - D_0] \times AF$
	DI = Div to be paid, Do = Div already paid Eps = Earnings per share, PR = Payout ratio, AF = Adjustment factor/Speed of adjustment/Dividend
	Eps= Earnings per snare, PR= Payout ratio,
	AF= Adjustment tachon/speed of adjustment/Dividend
	Velocity.
1.5	and all living and to the angle to have the living the
10.	calc of dividend to be paid under linter model
	$D_1 = D_0 + [(EPCXPOR) - D_0] \times AF$
	$D_1 = D_0 + [(e_{P} \times POR) - D_0] \wedge AP$
	= = = (C20x 60) - 9.80] x 45%
	= \frac{7}{29.80} + (2.50x42)
	= 39.80+0.99
	<u>=</u> ₹10.74

(PP1)	calculation of PIE using G&D model
	As per traditional approach, $P = D + E \times M$
	P= not given, D= 0-4E, E= not given, m=9
	$P = \left[0, 4E + \frac{E}{3}\right] \times 9$
	[0.4E 1.3] X
	$P = \frac{1 \cdot 2E + E}{3} \times 9 \Rightarrow 2 \cdot 2E \times 3 = 6 \cdot bE$
	P= 6.6E, P/E= 6.6 times.
	1 2 0 00 / 1/6 - 0 0 1/1/102
(PP4)	1. Price as per walter model.
	$P = \frac{D + \frac{x}{ke}(E - D)}{ke}$
	Ke Ke
	$= 6 + \frac{0.25}{0.20} (10-6)$
	<u> </u>
	<u>ల · ఫి</u> ర
	= 6+5 = 2 55
	a. Price as per Gordon's model
	$P_0 = \frac{E(1-b)}{E(1-b)} = \frac{\frac{1}{2}(0(1-0.40))}{\frac{1}{2}(0.40)}$
	Ke-(bxx) 0.20-(0.40x0.25)
	$P_0 = \frac{E(1-b)}{ke - (b \times v)} = \frac{2 \cdot b}{2 \cdot 0 \cdot (1 - 0 \cdot 40)}$ $V = \frac{2 \cdot b}{2 \cdot 0 \cdot 0} = \frac{2 \cdot b}{2 \cdot 0 \cdot 0} = \frac{2 \cdot b}{2 \cdot 0}$
	0.50-0.10 0.10
(PP5)	1. Calculation of EPS
	Particular Amount (2)
	Net profit 50,00,000
	(→ Pref.div (15,00,000) (₹100LX15%)
	EA ESH 35,00,000
	000,000 20N
	EPS マチ・

	a. calc of Po unde	r 3 conditions	
	工	IL	皿
	POR@25%	POR@SD9%	POR@100%
	Po= EC(-b)	Po= E(1-b)	Po= E(1-b)
	ke-br	ke-b8	ke-br
	= 37(1-0.75)	(02.0-1) 4 = =	= ₹ 7 (1-0)
	POR@ 25% Po= ECI-b) ke-br = \frac{7}{(1-0.75)} o.1b-(0.75x0.20)	0.16-(0.2000.50)	0.16-0
	= 31-75	$=$ $\frac{2}{3}$, $\frac{3}{50}$	<u>-</u> ₹f
	0.01	0.06	७ । ७
	= \(\frac{2}{5}\) 7 = \(\frac{2}{5}\)	= ₹58.33	- 27·6 - 27·64 € =
(PP2)	1. comments on p		
	a. calc of RoeCr		
		given, it is ca	
		000 8N X 7100 = 7	201001000
	Earnings (Return)) = \(\frac{2}{3}\)20000	
	ROE = Return x100 = そ2000000 x100		
	€auty ₹20,00,000		
	= 10%		
	b. Calc of ke		
	since, he is not given, it is calculated as invesse		
	to PE.		
	$\frac{P}{} = 12.50$; he	= E casper consto P earnings m	ant
	E	r earnings m	odel)
		<u> </u>	
	K.	e E	
	:. ke= [1/12.20 = 8%	
		•	
	c comments		
	In the given case,	7>ke-That means	, as per walter
	model, company st to achieve optimum	rall tollow 100%	setention 4 0% Po,
	to achieve optimum	Share price but,	in the given case,
	company paid of therefore, dividend	5% of earnings	as dividends and
	therefore, dividend	policy & price are	not optimal.
		-	•

			indifferent point		
			tel, when $v=$	ke, the divid	ends
	donot	affect the	porice.		
	30 K	== 8 => Ke=	10%, PE = 1	ke= 1/0:10=	lotimes.
	3. Con	ments on sev	ised ke		
			cenaño, PE=	8times. That	means,
		1/8 = 12.5%.			
			The and C		
			policy of		
	But	in the given	case, compar	ly has paid t	mly 75%
	ot its	earnings as	dividends an	d hence, it is	; not
	tollog	unitg optimu	m dividend po	olicy.	
				•	
		2-stage d	ividend valua		
(PP6)	year	CF(F)	P V @ 20%	PVCF	
·	Γt	138.00	0.833	114.95	
	2	158.70	0.694		
9=1	\$% 3	158·70 182·51 209·88 1:469·16	0.579 0.482	105.67	
	L 4	୬ ୦9∙୫୫	०.५८२	101.19	
9= :	5% <u>u</u>	1,469.16		£08·14	
			Vs	3=71140.05	
	· 	DS			
		e-9			
	= [4(1 1 9)			
	ke-9				
	= 209.88(1.08)				
	0.80-0.02				
	= 220.37				
		0.12			
	= 5	₹1,469.16			
	Notes:				
	1. 2-Sta	ige dividend	l model focu	ses on invest	270
	tîme-	horizon.			

	a. Every person investing in the stocks traded in
	the market shall have a time horizon. In the
	given a uestion, it is 4 years.
	3. That means, in the given case, the investor invests
	today, hold it for 4 years and sell the shares at the
	end of 4th year.
	4. Therefore, investor is expecting dividend for next
	4 years @ growth of 15% and sell @ perpetual
	growth of 5%p.a.
	s. since, the investor desires to sell the share at the
	end of 4th year, he need to expect a value which
	would occur after 4 years. Hence, we calculated
	Py, which considers all cash flows from Ds to Dao
	at a perpetual growth rate of 5%. That price has
	come to \$11469.16.
	6. Using all these data inputs we discounted the
	future CFs and value (S = 1/140.05.
	conclusion:
	The real worth of company's share is only
	\$1,140.05, whereas it traded in the market@
	\$ 3122. Hence, it is overpriced to the tune of
	ञ्च ।,981·95·
(PP7)	step 1: calc of he Cexisting)
	since, the dividend expected is \$20, it shall
	be considered as Dr. CAS against Do given in
	(m 21
	Po = DI
	ke-9
	$ke = D_1 + g$
	Po
	= <u>至20</u> + 0·045 =>> 8·84% ぞり460
	₹1,460

stepas call of revised he
since, company is changing its retention propn,
it is sure that it will change its growth because
growth = retention propx ROF
= bx ~
a. calc of revised growth
9= b x x
$= \circ \cdot 6 \circ \times \circ \cdot \circ$
= 0.06
b. calc of existing payout & retention propn
9= b x 8
0.075 = px 0.10
b=0.75 (retention prop)
I-b=0.25 (payout prop)
c. calc of existing Eps
Payout amount expected = 720
POUNT poon = 25%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
100 %> ? = \frac{7}{80}
. It is considered that 780 is expected Eps.
d. calc of revised ke
ke = DICREVISED + 9
Po Po
_
= Epsix Rev Po +9 Po
= 380 x 40% + 0.06
₹1,460
= \frac{3}{2} + 0.06
<u> </u>
= 0.0219 + 0.06
= 8.19%

	Company of Cloubles (Market of the shape of the shap
	Summary of Chapter (
1.	Particular Walter model	Formula P=
1,	walter model	D+ x (E-D)
		<u>ке</u> (Е-Д)
		ke
	Car Jan man Jal	ne
ર્સ.	Gordon model	$P_0 = \frac{DI}{ke-g}$
		Carry
		(or) Po= E(1-b)
		ke-br
ع ،	modigliani k miller model	1. Po = D1+P1
J	Manghanie Mener Moss	1 the
		2. mp = I-CE-nDi)
		3. $nP_0 = P_1(n+m) - I + \varepsilon$
		1+ ke
L 4.	Graham & Dodd model	
1		$P = \left[D + \frac{E}{3}\right] \times M$
	Linters model	D1= D0+[(EPS X POR)-D0]
		KAF
6.	Miscellaneous	1. EPS = BYPS X ROE
		2. PE = mpsl Eps 3. ke = Dilpo +9.
		3. ke = D1/po +9.
		4. mps= Epsx PE
		5. ke = 1/PE
		6. PE = 1/Ke.
	THE END	

MODIGLIANI AND MILLER MODEL

1. Introduction: * All the previous models like walter & Gordon has emphasised that, dividend declaration/non-declaration will necessarily affect the share price. Both these modely has dividend in its formula. * But, MM model, to the contrary, states that the dividend policy of the company will not affect the shareholdeds wealth / company's wealth. * As per MM model, it is the investment decision that decides the wealth of a company. This can be understood through an example as under: 2. The example The balance sheet of a company is as under— Liabilities Amount(?) Assets Amount (3) Eaguity . 10,000 Fixed assets 9,000 0 cash 1,000 Pebt 10,000 10,000 No. of shares = 1,000, Investment opportunity = \$1,000 It this company want to takeup an investment project, it has a options namely option-1 option -a cash will paid as Declare div Invest the cash of with cash & cash \$1,000 → \$1,000 will dividend & CO L raise easuity For the invst become the will issue new sharres in 1PO investment at ex-dividend mice. in fixed assets $P \cdot T \cdot O$ $P \cdot T \cdot O$

As per opt	<u> </u>		option—2, the
 Shave poice	is as under	Shave poi	ce is as under
 \downarrow	,		<u> </u>
	ividend=₹10		dividend = ₹10
₹10,000	7/1,000	₹10,0	000/1,000
spatter in	restment will	sp after o	<u> dividend</u>
remain unch	langed because		SP= ₹10
cash become	es an asset and	DPS	= (₹ I)
balance sheet	ck wealth will	C71,000/1	<u>ව වට)</u>
remain unch	anged.	Ex-div. S	SP = ₹9
		\downarrow	
		This sp is	s shared by 1,000
		SH and w	ealth become
		₹9,000 (1,000 en x = 9/8h)
		1	/
once divider	id is declared,	₹10,000 000	th company will
become 7°	1,000 worth cor	npany. Now the	e SP of company
is ₹9 and	at this price	, the compan	y will make
	e to make inve		
	\downarrow		
No. of. en	ares to be iss	ned = 111 shar	es.
(210	00/39)		
	summary a	of wealth	
		,	
<u></u>			
It divis not			It divis
declared			declared
2	ay, holding 10		say, holding
Impact on	Impact on	Impact on	Impact on
cos wealth	SH wealth	cos wealth	Stls wealth
\downarrow	$\overline{}$		<u> </u>
1,00084XZ10	1084 X &10	1,1118h X =9	8h= 108h X79=790
= \$10,000	= \$100	= \$10,000	DIV = 1084 X포1 = 10
-		· 1	cash weath = \$100
I			

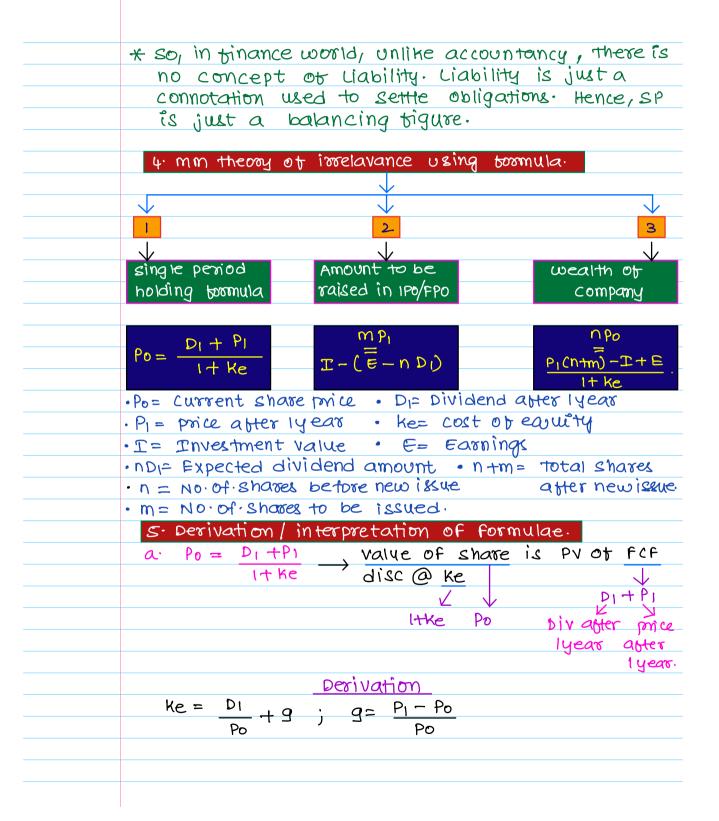
- * Therefore, model tries to explain that it a company has an investment opportunity, it will surely takes it whether I not the dividend is declared.
- * It the company distributes dividend it raises the required funds through new issue.
- * This will not affect the cos wealth as \$1000 goesout as dividend and come back as Capital. The same wealth which is shared by 1000 shares will now be shared by 1,111 shares @ \$9 8P.
- * In this case (div decl), the SH experiences both joyk sorrow. Toy because he receives dividend and sorrow because, SP drops. The dividend benefit is offset by the capital loss leaving SH wealth unchanged.

Super Summary

- MM-model Concentrates on dividends invelovance on the wealth of Co&SH.
- MM-model says that wealth of colst will remain unchanged it co has Good investment opportunity.

3. Bls interpretation

Liabilities	Amount(7)	Assets	Amount (>)
Earuity	101000	Fixed assets	9,000
pebt	0	cash	1,000
	10,000		10,000


The balance sheet shown above is not the accountancy balance sheet rather it is "Market Value" balance sheet.

	N	
A. meaning of fixed		
* The term fixed as		
	eset like Land & Buil	
•	n of all projects of	a company
which generates r		
* Value of asket h		
	its book value / wo	
* Fairvalue of any		
	t reavised rate of	
* fixed asset in thi	is example represents	s investments in
	of the company at	
Let us understand		accounting Bls
and fair value B	ls on accets side.	
	\downarrow	
<u> </u>		
Accounting BIS		Fair value Bls
\downarrow		\downarrow
purchase of FA		assume that the
worth 21,000	pooject	of fas is a
\downarrow		al pooject. Py of
Fixed assets all (Dr) ?!	000 perpetu	al CFs is CFPa
to calhaic	∑ 1,000	RR.
		<u> </u>
\downarrow	\downarrow	igstyle
₹>Ke	r=ke	74ke
(r= 10%, ke= & %)	(v=10%, ke=10%)	(8=8%, Ke=10%)
Cost of Fa (purch) \ \	V
CFP9 = 71,000 X 10%	CFP 9 _ 21,000 X10%	
Ke 8%	ke 10%	ke 10%
= 71,250.	= \(\frac{1}{2}\)\(\lambda\)000.	= 7800.
Bls	PIR	BK
Fixedassets 71,250	Fixedaesets 到1,00	00 FA \(\frac{2}{3}\)800
From this one can	understand that ac	counting tocuses
on costs and FM fo	ocuses on fair value	٤.

- As per mm model, when r=ke, ie when company gives a return exactly as what the SH expects, asket will be tairly valued at cost. This rituation is called as "Good" investment opportunity.
- * If r > ke, then it is called as best investment opportunity and it r < ke, then it is called as "sub-standard" investment opportunity.
- the assets is called as projects and value of all projects is value of the business.
- * Therefore, value of any butiness is the Present value of all tuture cash flows project is expected to generate discounted at he.

B. Meaning of Eauity.

- * Here, in this model, the term early is not ESC/ RASI both. It is bour value of early.
- * Though people call share capital as an item of liability, in reality share capital is also an asset. The reason is, shore value increases it business perform and share value fall it business doesn't perform we have already learnt that value of business is nothing but value of projects and value of projects is nothing but value of all assets and value of asset is nothing but PV of all fef. so, it company could not generate proper CF (@ r/>r), then value of assets tall, eventually value of project fall and thereby value of business tall which will then impact the SP. Therefore, it is clear that, Vs is affected by value of business and share doesn't have any seperate value on its own.
- * Hence, share is an asset of a kind which derives its value from value of its underlying asset called "Business".

$ke-g = \frac{p_1}{p_0}$, $ke - \left[\frac{p_1 - p_0}{p_0}\right]$
PO L PO L
$\frac{DI = \text{Ke}_{-} P_{1} - P_{0}}{P_{0}}$
, c
DI = Poke - PitPo
Po Po
$\frac{D_1}{P0} = \frac{P_0 k_e + P_0 - P_1}{P0}$
·
$D_1 = Poke + Po - P_1$
$D_1 = Po(ke+1) - P_1$
DI tPI = Po(Itke)
$Po = D_1 + P_1$
1+ ke
b. Amount to be raised from public i sque
$mp_1 = I - (E - nD)$ $m = no \cdot op \cdot new shares to be issued$
PI= Price of public issue.
That means, the amount to be raised should be
eaual to investment value reduced by net
earnings. Net earnings means earnings available
after de classing dividend.
c. current value of company
$Po = D_1 + P_1 $ ψ $mP_1 = I - (E - nD_1)$
1+he
multiply LHS and RHS by n
$nP_0 = nD_1 + nP_1$
Itke
Add and deduct mp1
$nP_0 = \frac{nD_1 + nP_1 - mP_1 + mP_1}{nP_0}$
1the
$nPo = \frac{nD_1 + nP_1 - [I - (E - nDD] + mP_1]}{1 + NP_2}$
Me
$nP_0 = n \delta_1 + nP_1 - I + E - n \delta_1 + mP_1$
itke

$nP_0 - nP_1 + mP_1 - T + E$	
$nPo = nP_1 + mP_1 - I + E$ $itke$	
nPo= P1(n+m)-I+E	
11F0= F(CIT(III)) I (C)	
TINE	
6. Plustrations from 19m	١-
Example-2	
· No. of shares = 2,00,000 .	MPS= \$10 · DPS= ₹3
• ke= 10%.	
Situational ana	lysis
↓	\downarrow
pividend is	Dividend not
declared	declared
↓	↓
Po= <u>D1+P1</u>	$Po = \frac{\sqrt{+P_1}}{1 + ke}$
1+ke	
₹10= ₹3+P1 1+0:10	₹10= <u>0+P1</u>
	(- (-
P _I = ₹8 (ex-dividend)	PI= ZII (Com-div)
↓	↓
No. of Shares to be issued	since there is no pyt of
to make investment of 76L	
₹2,000,000 X3 = 75,000 gh-	issuing new Shares doesn't
8	anise.
↓	
Market value= 2,75,000 8h x₹8	market value = 2,00,000 x ?11
> ₹ 22,00,000	= \(\frac{2}{5}\alpha\q_1001000\cdot\)

	1. Given intermation		
	Ke=10%, No. of ghares = 10,000, Mps= ₹100, D1= ₹5/8h.		
	Earnings available = \$1,00,000,	Investment = \ 3,00,000.	
	Step 1. Calculation of Mps (u	ofth & without dividend)	
	\		
	dividend is	Dividend not	
	declared	declared	
	V	→	
	$P_0 = \frac{D_1 + P_1}{D_1 + P_2}$	Po= DI +PI	
	1+ Ke	1 tke	
5	F100= ZS+P1	₹100= 0+P1	
	1 + 0.10	1+0.10	
	P1 = \$105.	P1= = 110.	
	step 2 calculation of no of.	shaves to be raised	
	<u> </u>		
	<u> </u>	\downarrow	
Σ	pividend is	Dividend not	
	declared	declared	
	$MP_1 = I - CE - NDI)$	$MP_1 = I - (E - NDI)$	
	(MX₹105)= ₹2,00,000-(₹1,00,000	(mx 7110) = 32,00,000	
	- 10,000×乏己)	- (₹1,00,000)	
	₹105m = ₹2,00,000- ₹50,000	Z110m = 7 1,00,000	
	7 105m = 7 1,50,000	m = 909.09 8haves	
	M = 1,428.57 Shaves.		
	steps calculation of curre	ent market value.	
	\		
	<u> </u>	\downarrow	
ε	pividend is	Dividend not	
	declared	declared	
1	npo= P1 (n+m) - I+E	nb= Pi(n+m)-I+E	
	Itke	Itke	

= 7105(101000+1428.57)	= ₹ 110(10,000+909·09)
- 2,00,000 + 1,00,000	<u>-2,00,000 +1,00,000</u>
1.10	1,10
= \$ (0,00,000	= \$10,00,000
: value of tim remains t	he same across any situation.
(1) Add1 illustration1: Given intorm	
Ke= 12%, NO. of shares = 10,00	
Earnings available = ₹5,00,0	00, Investment = \$10,00,000.
step 1. Calculation of Mp.	s (with & without dividend)
↓	
<u> </u>	\downarrow
pividend is	Dividend not
declared	declared
\downarrow	<u> </u>
$P_0 = \frac{D_1 + P_1}{1 + \text{ke}}$	Po= D1 +P1
·	1 tke
₹100= <u>₹10+P1</u> 1+0+12	₹100 = 0 + PI
	1+0.13
P1 = ₹102	P(= \(\frac{1}{2}\) (12.
	shaves to be raised
<u> </u>	
pividend is	Dividend not
declared	declared
$MP_1 = I - (E - NDI)$	$mp_{l} = D - (E - NDI)$
₹102xm= \$10,00,000	<u> </u>
- (\$2,00,000 - 10,000 X10)	₹112m = ₹10,00,000 -
至102m= 至6,00,000	(0 - 000,000 ₹)
·	₹ 112m = ₹5/00/000
M = 2885.32 Shares	m = 4464.2984

	step3 calculation c	f current market value.	
		\	
	\	V	
	Dividend is	Dividend not	
	declared	declared	
	nPo = Pi (n+m) - I + E	nB = PICN+m)-I+E	
	14Ke	itke	
	= \$105(10/000 + 2885.32)		
	- 多10/00/000 +金2/00/		
	1.12	ા·ાર	
	= \$10,00,000.	= \$10,00,000	
	Desetion	On tolone City	
(000)		Problems (ISM)	
(PPQ)	step 1. Calculation of		
		<u> </u>	
	Dividend is	Dividend not	
	declared	declared	
	¥		
	$Po = \frac{D_1 + P_1}{D_1 + D_2}$	Po= DI+PI	
	1+ Ke	1 tke	
	3100 = 25+P1	₹100 = 0+P1	
	1:10	1.10	
	P1 = \$105	P1= ₹110·	
	Stepa. Calculation of no. of. Shares to be issued		
	I. When dividend is declared		
	mp1 = I-(E-NDD)		
	至 2 2 2 000,000 - (至 2,100,000 - 至1/52,000)		
	₹105m= ₹5,00,000		
	〒 3000/2年18 年 = m 201至		
	m = 3,571.43 showes.		

1	II. When dividend is not declared		
	$mP_1 = I - (E - nDi)$		
	子(10m = そ5,00,000 - えら,50,000		
	₹110m = ₹2,50,000		
	$m = a_1 a + a \cdot 43$		
	·		
	steps calculation of current my of the timm.		
	I. When dividend is declared		
	$nP_0 = P_1(n+m) - I + E$		
	Itke		
	= 105(28,571.43) - 5,00,000 + 2,50,000		
	1.10		
	= <u>₹30,00,000 - ₹2,50,000</u>		
	1.10		
	= ₹ 25,00,000·		
	II. When dividend is not declared		
	$nP_0 = P_1(n+m) - I + E$		
	Itke		
	= 110 (27,272,73) - 5,00,000 + 2,50,000		
	1.10		
	<u> </u>		
	· · · · · · · · · · · · · · · · · · ·		
	= ₹ 25,00,000·		

(PP &.)	Step 1. Calculation of	Mps (with & without dividend)	
	↓		
	↓		
	Dividend is	Dividend not	
	declared	declared	
	+	\downarrow	
	$P_0 = \frac{D_1 + P_1}{1 + ke}$	Po= DI+PI	
	_	1 tke	
	120 = 8+61	1SD = 0+P1 1:10	
	P1 = 2157	P1= \$16Z	
		no of shares to be issued	
	I When dividend is		
	$mP_1 = I - (E - NDI)$		
	157m = 26,00,000000 - (3,00,00000 - 20,000,000)		
	157m = 76,00,00,000 - 2,20,00,000		
	157m = \(\frac{7}{2}\) \(\frac{80}{100}\) \(\frac{1}{100}\)		
	m = 2,42,038.22 shares. II. When dividend is not declared		
	$mP_1 = I - (E - nD_1)$		
	$16 \leq m = 76/00/00/000 - 73/00/00/000$ $m = 1/81/818 \cdot 18 $ Shares.		
	Step3: Calculation of		
		are reactived to prove that	
	MY Of COMPANY is	same across any situation	
	at the END of year		
	If dividend is paid		
	MV= 12, 42,038.22 X 15		
	= \$19.50cx	= \$19.50 Cr.	
	- ~ 11 3000	7 1 1 33 31	