CAINTER COST & MANAGEMENT ACCOUNTING

VOLUME 1

SOLVED QUESTION BANK

ONE BOOK. EVERY SOLUTION. EXAM READY!

Crafted with Creativity, Designed for Success!

Covers 100% ICAI Study Material, Past Exam Papers, RTP & MTP (Case Study Based MCQs included)

CA GANESH BHARADWAJ

Solved Question Bank

Welcome to this 'One of a Kind' Solved Question Bank on Cost & Management Accounting.

This book is your single source of Costing preparation as it is meticulously compiled to include all questions & Case Study Based MCQs with solutions from ICAI Study Material, Past Exam Papers (PEPs), Revision Test Papers (RTPs), and Mock Test Papers (MTPs)—ensuring you have everything you need in one place.

For the first time ever, similar questions are grouped together with unique numbering & a distinct colour background to make your revision structured and effortless. The best part is that I have personally improvised the presentation of solutions wherever required to enhance your learning experience, making them easy to follow and apply in your exams. This innovative approach will help you collate problem solving faster and practice efficiently.

Study smarter, stay ahead, and ace your exams with confidence. Remember, a perfect 100/100 in Costing is soon a reality for you.

With Best Wishes, CA Ganesh Bharadwaj

FOREWORD

In 1999-2000 my son and his group of ten friends who were pursuing the Chartered Accountancy course wanted me to coach them in Cost Accounting and Financial Management to which I agreed.

When they passed the Intermediate level of the course, they wanted me to teach Advanced Management Accounting and Strategic Financial Management for the Final level of the course. That was when my journey in coaching CA Intermediate and Final started.

Since then, I took more than 30 batches for Intermediate and Final students in small groups. To my satisfaction, I have a success rate of more than 90%.

I am satisfied that my students have been well placed in the industry. But to my surprise, I found that none of my students were interested in teaching. With this background, I got a call from Ganesh for an appointment. Ganesh was my student in CA Intermediate and Final level for the subjects Costing and Financial Management. He told me his desire to enter the teaching profession and wanted my views. Immediately I gave him the consent and gave some tips from my experience to start coaching students.

In Ganesh, I found an enterprising character and an urge to excel in whatever he does. As a student, he learned some finer points and asked pertinent questions. To his advantage, he has a command over technology and is tech-savvy. He keeps himself abreast of the latest technology and uses tech to his advantage.

Ganesh prepared this study material and wanted my views. A casual glance of this study material suggested the hard work and intelligence put in by him in preparing the study material. He has taken micro care in ensuring that this study material covers all the syllabus of the CA curriculum. The chapters are arranged in logical order and questions are arranged well from basic fundamental level to high professional level. Also, he has grouped all the similar questions together which will help students to revise similar questions in a short time span. This idea is definitely one of a kind!

With the well-prepared study material and well-motivated Ganesh, I am absolutely certain that the students will benefit from his coaching sessions. If followed sincerely there is no doubt that students can face the CA exams with courage and determination.

I pray to my Guru to shower his blessings to Ganesh and reward him and his students for the hard work

Love you all. V N Prabakar CA, CMA, CS

PREFACE

It gives me immense pleasure to present this Solved Question Bank on Financial Management designed specifically for students pursuing the **Intermediate level** of **Chartered Accountancy (CA)** course as per the New Syllabus.

As per the learning objectives prescribed on the subject by The Institute of Chartered Accountants of India, a student at the Intermediate level is expected to develop an in-depth understanding of basic concepts and applications to establish the cost associated with the production of products and provision of services and apply the same to determine prices, develop an understanding of cost accounting statements and acquire the ability to apply information for cost ascertainment, planning, control, and decision making.

This book is a classroom supplement and contains a rich collection of solved problems ranging from Easy to Difficult, that covers 100% of the Illustrations, Exercise Problems & Case Study Based MCQs prescribed in ICAI Study Material, Past Exam Papers (PEPs), Revision Test Papers (RTPs) & Mock Test Papers (MTPs). An extensive and in-depth discussion on the concepts dealt with by these problems along with the tips on the presentation of answers in exams will be covered during the lectures.

I am forever grateful to my parents (Shri Seetharaman & Smt Usha Seetharaman) and my brother Hari, for their constant motivation and support in all walks of my life. Many thanks to my friends Mohit and Srinivas who have stood by me through thick and thin in various phases of my life no matter what. I sincerely thank & appreciate the efforts of my student Bharathi, who helped me in editing the contents of this book. Special thanks to Habib and team for their complete DTP support.

I dedicate this book to my Costing & FM guru Shri CA V.N. Prabakar Sir who not only inculcated me with interest in the subject but was also kind enough to write a foreword to this book.

Finally, none of this would have been a reality without the blessings of Shri Kanchi Maha Periyava and I bow down to the great lineage of gurus originating from Shri Adi Shankaracharya.

I wish the students the very best in all their future endeavors. As the famous verse from the Bhagavad Gita goes - "Your right is for action alone, never for the results. Do not become the agent of the results of action. May you not have any inclination for inaction."

So, give your best and leave the rest. Success will automatically follow.

With Best Wishes, CA Ganesh Bharadwaj "Work Hard in Silence. Let your success make all the noise."

INDEX

VOLUME I

1	BASIC CONCEPTS	01
2	COST SHEET	08
3	OVERHEADS - ABSORPTION COSTING METHOD	49
4	ACTIVITY BASED COSTING	102
5	COST ACCOUNTING SYSTEM	139
6	JOB COSTING	190
7	UNIT & BATCH COSTING	198
8	MATERIAL COST	215
9	EMPLOYEE COST & DIRECT EXPENSES	258
10	PROCESS COSTING	293
11	JOINT & BY PRODUCTS	332
	VOLUME II	
12	SERVICE COSTING	362
13	MARGINAL COSTING	400
14	STANDARD COSTING	464
15	BUDGET & BUDGETARY CONTROL	508
16	MULTIPLE CHOICE QUESTIONS & CASE SCENARIOS	552

CHAPTER 01: BASIC CONCEPTS

PROBLEM - 1:

ABC Pistons Ltd. operates an automobile service facility that specializes in replacing pistons on compact cars. The following table shows the costs incurred during a month when 600 pistons were replaced.

Particulars	Piston Replacements				
rariiculars	500	600	700		
Fixed costs	α	₹ 42,000	Ь		
Variable costs	С	₹ 30,000	d		
Total costs	е	₹ 72,000	f		
Cost per Piston Replacement:					
Fixed costs	9	h	i		
Variable cost	j	k	ı		
Total cost per piston replacement	m	n	0		
Descriped: Fill in the missing emounts labelled a through (a) in the table					

Required: Fill in the missing amounts, labelled a. through (o), in the table.

SOLUTION:

	Piston Replacements			
Particulars	500 Units	600 Units	700 Units	
Fixed Cost	₹ 42,000	₹ 42,000	₹ 42,000	
Variable Cost	₹ 25,000	₹ 30,000	₹ 35,000	
Total Cost	₹ 67,000	₹ 72,000	₹ 77,000	
Fixed Cost Per Unit	₹ 84	₹ 70	₹ 60	
Variable Cost Per Unit	₹ 50	₹ 50	₹ 50	
Total Cost Per Unit	₹ 134	₹ 120	₹ 110	

W.N 1: Fixed Cost = ₹ 42000 (Given)

Variable Cost = ₹ 30000 ÷ 600 Units = ₹ 50 Per Unit

Observation:

- 1. Variable Cost Increases In Total As Volume Increases. However, Variable Cost Per Unit Remains Constant.
- 2. Fixed Cost Remains Constant In Total But Decreases On A Per-Unit Level As The Volume Increases.
- 3. Total Cost Increases As The Volume Increases Because Of Variable Cost.
- 4. Total Cost Per Unit Decreases As The Volume Increases Because Of Fixed Cost Per Unit.

PROBLEM - 2

A single-product manufacturing company gives the following budgetary details for a year when production is maintained at 80,000 units (80%).

Particulars	Cost per unit (₹)
Direct materials	40
Direct labour	25
Production overheads (60% fixed)	15
Administration overheads (100% fixed)	5
Selling and distribution overhead (60% variable)	10

Prepare the company's budgetary details per unit and in total when it works at 90% capacity.

SOLUTION:

Flexible Budget

	80,00	00 Units	90,00	00 Units
Particulars	Per Unit	Amount	Per Unit	Amount
		(₹)		(₹)
Direct Material	40	32,00,000	40	36,00,000
Direct Labour	25	20,00,000	25	22,50,000
Prime Cost	65	52,00,000	65	58,50,000
Production Overheads (Fixed) ₹ 15 x 60%	9	7,20,000	8	7,20,000
Production Overheads (Variable) ₹ 15 x 40%	6	4,80,000	6	5,40,000
Manufacturing Cost/Works/ (Factory Cost)	80	64,00,000	79	71,10,000
Administrative Overheads (Fixed)	5	4,00,000	4.44	4,00,000
Selling & Distribution (Fixed)	4	3,20,000	3.55	3,20,000
Selling & Distribution (Variable)	6	4,80,000	6	5,40,000
Total Cost	95	76,00,000	92.995	83,70,000

PROBLEM - 3

A newly established manufacturing company has an installed capacity to produce 1,00,000 units of a consumer product annually. However, its practical capacity is only 90%. The actual capacity utilization may be substantially lower, as the firm is new to the market and demand is uncertain.

The following budget has been prepared for 90% capacity utilization:

Particulars	Cost per unit (₹)
Direct materials	12
Direct labour	8
Direct expenses	5
Production overheads (40% variable)	10
Administration overheads (100% fixed)	5
Selling and distribution (50% variable)	6

You are required to prepare a budget at 60%, 70% and 80% levels of capacity utilization giving clearly the unit variable cost, the unit fixed cost and the total cost under various heads at all the above levels.

SOLUTION:

Flexible Budget

	90,000 Units (Given)		
Particulars	Per Unit	Amount	
		(₹)	
Direct Material	12	10,80,000	
Direct Labour	8	7,20,000	
Direct Expenses	5	4,50,000	
Prime Cost	25	22,50,000	
Production Overheads (Variable)	4	3,60,000	
Production Overheads (Fixed)	6	5,40,000	
Factory Cost	35	31,50,000	
Administrative Overheads (Fixed)	5	4,50,000	
Selling & Distribution (Variable)	3	2,70,000	
Selling & Distribution (Fixed)	3	2,70,000	
Total Cost	46	41,40,000	

Flexible Budget

Particulars	Per Unit	60,000 units Value (₹)	Per Unit	70,000 units Value (₹)	Per Unit	80,000 units Value (₹)
Direct Material	12	720000	12	840000	12	9,60,000
Direct Labour	8	480000	8	560000	8	6,40,000
Direct Expenses	5	300000	5	350000	5	4,00,000

Prime Cost	25	1500000	25	1750000	25	20,00,000
Add: Variable @ 40%	4	240000	4	280000	4	3,20,000
(Production Overhead)						
Add: Fixed @ 60%	9	5,40,000	7.7	5,40,000	6.75	5,40,000
(Production Overhead)						
Gross Works Cost	38	2280000	36.7	2570000	35.75	28,60,000
Administration Overhead	7.5	4,50,000	6.42	4,50,000	5.62	4,50,000
Selling & Other	3	180000	3	210000	3	2,40,000
Overheads						
Variable @50%						
Fixed @50%	4.5	2,70,000	3.85	2,70,000	3.37	2,70,000
Total	53	3180000	49.97	3500000	47.75	3820000

PROBLEM - 4

Action plan manufacturers normally produce 8,000 units of their product in a month, in their Machine Shop. For the month of January, they had planned for a production of 10,000 units. Owing to a sudden cancellation of a contract in the middle of January, they could only produce 6,000 units in January.

Indirect manufacturing costs are carefully planned and monitored in the Machine Shop and the Forman of the Shop is paid 10% of the savings as a bonus when in any month the indirect manufacturing cost incurred is less than the budgeted provision.

The Forman has put out in a claim that he should be paid a bonus of ₹ 88.50 for the month of January. The Works Manager wonders how anyone can claim a bonus when the company has lost a sizeable contract. The relevant figures are as under:

Indirect Manufacturing Costs	Budgeted exp	Budgeted expenses in	Actual cost
	in (₹)	(₹)	in
	for 8,000 units	for 10,000 units	(₹)
Salary of foreman	1,000	1,000	1,000
Indirect labour	720	900	600
Indirect material	800	1,000	700
Repairs and maintenance	600	650	600
Power	800	875	740
Tools consumed	320	400	300
Rates and taxes	150	150	150
Depreciation	800	800	800

Insurance	100	100	100
Total	₹ 5,290	₹ 5,875	₹ 4,990

Do you agree with the works Manager? Is the Forman entitled to any bonus for the performance in January? Substantiate your answer with facts and figures.

SOLUTION:

Flexible Budget for 6000 Units:

Particulars	Nature of Cost	Computation	Amount (₹)
1. Forman Salary	Fixed	Given	1000
2. Indirect Labour	Variable @ 0.09 Per Unit	6000 units x ₹ 0.09	540
3. Indirect Material	Variable @ 0.10 Per Unit	6000 units x ₹ 0.10	600
4. Repairs &	Variable @ 0.025 Per Unit	(6000 units x ₹ 0.025)	550
Maintenance (WN-1)	+ Fixed @ ₹ 400	+ ₹ 400	
5. Power (WN-2)	Variable @ 0.0375 Per Unit + Fixed @ ₹ 500	(6000 units x ₹ 0.0375) + ₹ 500	725
6. Tools Consumed	Variable @ 0.04 Per Unit	6000 units x ₹ 0.04	240
7. Rates and Taxes	Fixed	Given	150
8. Depreciation	Fixed	Given	800
9. Insurance	Fixed	Given	100
Total			4705

WN1: Segregation Of Repairs & Maintenance Cost into Variable & Fixed

• Variable Cost per unit = $\triangle Cost \div \triangle Units = (7650 - 7600) \div (10000 Units - 8000 Units)$

= ₹ 50 ÷ 2000 Units

= ₹ 0.025 per unit

• Fixed Cost = Total Cost - Variable Cost

= ₹ 650 - (10000 units \times ₹ 0.025)

= ₹ 650 - ₹ 250

= ₹ 400

WN2: Segregation of Power Cost into Variable & Fixed

• **VC per unit** = $\triangle Cost \div \triangle Units = (₹ 875 - ₹ 800) \div (10000 Units - 8000 Units)$

= ₹ 75 ÷ 2000 Units

= ₹ 0.0375 per unit

Fixed Cost = Total Cost - Variable Cost

= ₹ 875 - (10000 units \times ₹ 0.0375)

= ₹ 875 - ₹ 375

= ₹ 500

The Foreman Claim Is Incorrect Since He Has Spent ₹ 4990 As Against Target Cost ₹ 4705. Hence, He Is Not Entitled To Bonus.

PROBLEM - 5

Several costs incurred by Marina Beach Golf Equipment, Ltd., are listed below. For each cost, indicate which of the following classification best describe the cost.

More than one classification may apply to the same cost item. For example, a cost may be both a variable cost and a product cost.

Cost Classifications:

- 1. Variable
- 2. Fixed
- 3. Period
- 4. Product
- 5. Administrative
- 6. Selling
- 7. Manufacturing
- 8. Research and development
- 9. Direct material
- 10. Direct labour
- 11. Manufacturing overhead

Cost Items:

- 1. Metal used in golf clubs.
- 2. Salary of plant manager.
- 3. Cost of natural gas used to heat the factory.
- 4. Commissions paid to sales personnel.
- 5. Wages paid to employees who assemble golf bags.
- 6. Salary of an engineer who is working on a prototype of a new solar-powered golf cart.
- 7. Depreciation on the word processing equipment used by the company president's secretary.

SOLUTION:

- 1. Variable, Product, Manufacturing, Direct Material
- 2. Fixed, Product, Manufacturing Overheads.
- 3. Variable, Product, Manufacturing, Manufacturing Overheads.
- 4. Variable, Period, Selling, NA

- 5. Variable, Product, Manufacturing, Direct Labour
- 6. Fixed Period, Research & Development, NA
- 7. Fixed, Period, Administrative, NA.

CHAPTER 02: COST SHEET

PROBLEM - 1:

Farewell Company is a metal and wood cutting manufacturer, selling products to the home construction market. Consider the following data for the year 20x1:

5 No	Particulars	Amount (₹)
1	Sandpaper	₹ 2,000
2	Materials-handling costs	₹ 70,000
3	Lubricants and coolants	₹ 5,000
4	Miscellaneous indirect manufacturing Labour	₹ 40,000
5	Direct manufacturing labour	₹ 3,00,000
6	Direct materials, January 1, 20x1	₹ 40,000
7	Direct materials, December 31, 20x1	₹ 50,000
8	Finished goods, January 1, 20x1	₹ 1,00,000
9	Finished goods, December 31, 20x1	₹ 1,50,000
10	Work in process, January 1, 20x1	₹ 10,000
11	Work in process, December 31, 20x1	₹ 14,000
12	Plant-leasing costs	₹ 54,000
13	Depreciation - plant equipment	₹ 36,000
14	Property taxes on plant equipment	₹ 4,000
15	Fire insurance on plant equipment	₹ 3,000
16	Direct materials purchased	₹ 4,60,000
17	Revenues	₹ 13,60,000
18	Marketing promotions	₹ 60,000
19	Marketing salaries	₹ 1,00,000
20	Distribution costs	₹ 70,000
21	Customer-service costs	₹ 1,00,000

Required:

- 1. Prepare an income statement with a separate supporting schedule of cost of goods manufactured. For all manufacturing items, indicate by V or F whether each is basically a variable cost or a fixed cost (where the cost object is a product unit). If in doubt, decide on the basis of whether the total cost will change substantially over a wide range of units produced.
- 2. Suppose that both the direct materials and plant-leasing costs are tied to the production of 9,00,000 units. What is the unit cost for the direct materials assigned

- to each unit produced? What is the unit cost of the plant-leasing costs? Assume that the plant-leasing costs are a fixed cost.
- 3. Repeat the computation in requirement 2 for direct materials and plant-leasing costs, assuming that the costs are being predicted for the manufacturing of 10,00,000 units next year. Assume that the implied cost-behavior patterns persist.
- 4. As a management consultant, explain concisely to the president why the unit costs for direct materials did not change in requirements 2 and 3 but the unit costs for plant-leasing costs did change.

SOLUTION:

Part - 1: Income Statement With Supporting Schedule of COGS:

Cost Sheet of Farewell Company

Particulars	(₹)	
1. Opening Stock of Raw Materials (Given)	40,000	
2. Purchases (Given)	4,60,000	
3. Closing Stock of Raw Materials (Given)	(50,000)	
4. Direct Materials Consumed (1 + 2 - 3)		4,50,000
5. Direct Labour		3,00,000
6. Prime Cost (4 + 5)		7,50,000
7. Production Overheads (W.N.1)		2,14,000
8. Gross Works Cost (6 + 7)		9,64,000
9. Opening WIP		10,000
10. Closing W I P		(14,000)
11. Net Works Cost (8 + 9 - 10)		9,60,000
12. Opening Finished Goods		1,00,000
13. Closing Finished Goods		(1,50,000)
14. Cost of Goods Sold (11 + 12 - 13)		9,10,000

Income Statement

Particulars	(₹)
Sales	13,60,000
(-) Cost Of Goods Sold (Statement 1)	(9,10,000)
Gross Profit	4,50,000
(-) Selling Overheads (W.N.2)	(3,30,000)
Operating Profit	1,20,000

W.N.1: Production Overheads

Particulars	(₹)	
Sandpaper	2,000	Variable Cost
Material Handling Costs	70,000	Variable Cost
Lubricants & Coolants	5,000	Fixed Cost
Misc. Indirect Labour	40,000	Fixed Cost
Plant Leasing	54,000	Fixed Cost
Depreciation On Plant	36,000	Fixed Cost
Fire Insurance On Plant	3000	Fixed Cost
Property Taxes	4,000	Fixed Cost
Total	2,14,000	

W.N.2: Selling Overheads

Particulars	(₹)
Marketing promotions	60,000
Salary	1,00,000
Distribution cost	70,000
Customer service costs	1,00,000
Total	3,30,000

Part - 2: Calculation of Direct Material & Plant Leasing Cost Per Unit When Production is 9,00,000 Units (Raw Materials Consumed)

a) Direct Material per unit =
$$\frac{\text{₹ 4,50,000}}{9,00,000 \text{ units}}$$
 = ₹ 0.50 per unit

b) Plant Leasing cost per unit =
$$\frac{$\fint{54,000}}{9,00,000 \text{ units}} = $\fint{0.06} \text{ per unit}$$

Part - 3: Calculation Of Direct Materials & Plant Leasing Cost When Production Increases To 10,00,000 Units

a) Direct Material Per Unit =
$$\frac{\text{₹ 5,00,000}}{10,00,000 \text{ units}}$$
 = ₹ 0.50 Per Unit

W.N.: Consumed Units

4,50,000 9,00,000 u \times 10,00,000 u $\times = 75,00,000$

b) Plant Leasing Cost Per Unit =
$$\frac{$54,000}{10,00,000 \text{ units}}$$
 = $$0.054 \text{ Per Unit}$

Part - 4: Cost Behaviour Pattern

- 1. Direct Material Cost Per Unit Did Not Change in Requirement 2 And 3 Because It Is Variable Cost And Variable Cost Remains Constant Per Unit At All Volume Levels.
- 2. Plant Leasing Cost Per Unit Did Change in Requirements 2 And 3 Because It Is A Fixed Cost And Fixed Cost Remains Constant in Total But Varies Per Unit.

PROBLEM - 2:

The following data relates to the manufacture of a standard product during the month of April:

•	
Particulars	
Raw materials	₹ 1,80,000
Direct wages	₹ 90,000
Machine hours worked (hours)	10,000
Machine hour rate (per hour)	₹ 8
Administration overheads (general)	₹ 35,000
Selling overheads (per unit)	₹ 5
Units produced	4,000
Units sold	3,600
Selling price per unit	₹ 125
	-

You are required to PREPARE a cost sheet in respect of the above showing:

- a. Cost per unit
- b. Profit for the month

SOLUTION:

Cost Sheet Output: 4,000 units

Particulars	Total Cost	Cost per
	(₹)	(unit) (₹)
Raw Materials	1,80,000	45.00
Direct Wages	90,000	22.50
Prime Cost	2,70,000	67.50
Add: Factory Overheads (10,000 Hours × ₹ 8 Per Hour)	80,000	20.00
Cost Of Production	3,50,000	87.50
Less: Closing Stock of Finished Goods (4,000 - 3,600 Units)	(35,000)	
Cost Of Goods Sold	3,15,000	87.50
Add: Administration Overheads (General)	35,000	9.72
Add: Selling Overheads (3,600 Units × ₹ 5 Unit)	18,000	5.00
Cost Of Sales (Total Cost)	3,68,000	102.22

Statement of Profit

Particulars	Total Cost (₹)
Sales Revenue (3,600 Units @ ₹ 125)	4,50,000
Less: Cost of Sales	3,68,000
Profit	82,000

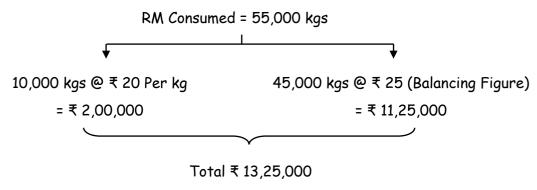
PROBLEM - 3:

Prepare a cost sheet and compute the income for the given period.

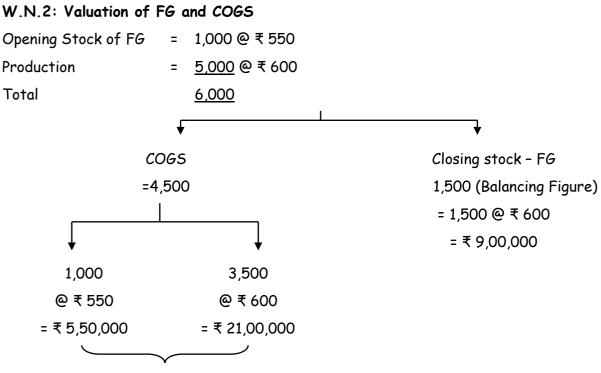
•			
Opening stock of Raw materials	10,000 kgs @ ₹ 20 per kg		
Purchases	50,000 kgs @ ₹ 25 per kg		
Consumption during the period	55,000 kgs		
Direct wages	₹ 6,75,000		
Production overheads	₹ 10,00,000		
Work in process	Nil		
Opening finished goods	1,000 units @ ₹ 550		
Production	5,000 units		
Units sold	4,500 units @ ₹ 750 per unit		
Administration expenses	₹ 2,50,000		
Selling expenses	₹ 3,00,000		

SOLUTION:

Part I - FIFO Method


Step - 1: Cost Sheet (Production: 5,000 Units)

Particulars	Per Unit	(₹)	
1. Direct Materials Consumed (W.N.1)	265	13,25,000	
2. Direct Labour	135	6,75,000	
3. Prime Cost (1 + 2)	400	20,00,000	
4. Production Overheads	200	10,00,000	
5. GWC Or Cost Of Production	600	30,00,000	
6. Opening Stock Of Finished Goods	110	5,50,000	
7. Closing Stock Of Finished Goods (W.N.2)	(600)	(9,00,000)	
8. Cost Of Goods Sold (W.N.2)	588.55	26,50,000	


W.N.1: Direct Materials Consumed

Opening Stock of Raw Material 10,000 kgs @ ₹ 20 Per kg
Purchases 50,000 kgs @ ₹ 25 Per kg

₹ 26,50,000

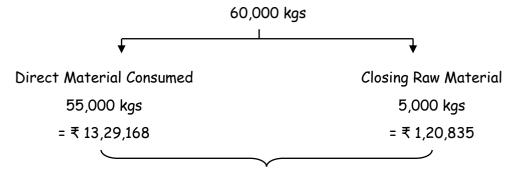
Step - 2: Income Statement (Sales - 4500 Units)

Particulars	(₹)
Sales	33,75,000
(-) COGS (Statement 1)	(26,50,000)
Gross profit	7,25,000
(-) Administrative Overheads	(2,50,000)
(-) Selling Overheads	(3,00,000)
Operating profit	1,75,000

II. Weighted Average Method:

Step - 1: Cost Sheet (Produced = 5,000 Units)

Particulars	Per Unit	(₹)
1. Direct Materials Consumed (W.N.3)	265.83	13,29,168
2. Direct Labour	135.00	6,75,000
3. Prime Cost	400.83	20,04,168
4. Production Overheads	200	10,00,000
5. GWC or Cost of Production	600.83	30,04,168
6. Opening Stock of Finished Goods	550	5,50,000
7. Closing Stock of Finished Goods (W.N.2)	(592.3613)	(8,88,542)
8. Cost of Goods Sold (W.N.4)	592.3613	26,65,626

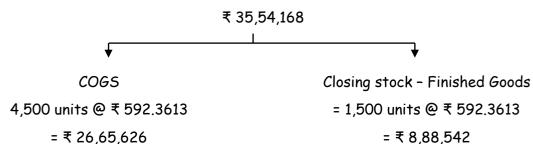

W.N.3: Direct Materials Consumed

Opening Raw Material 10,000 kgs @ ₹ 20 Per kg = ₹ 2,00,000

Purchases 50,000 kgs @ ₹ 25 Per kg = ₹ 12,50,000

<u>60,000</u> <u>₹ 14,50,000</u>

Weighted Average price = $\frac{14,50,000}{60,000 \text{ kgs}}$ = \$24.167 Per Kg


Total ₹ 13,25,000

W.N.4: Valuation of FG and COGS

 Opening Stock of FG
 = 1,000 @ ₹ 550
 = ₹ 5,50,000

 Cost of Production
 = 5,000 @ ₹ 600.83
 = ₹ 30,04,168

 Cost of goods available
 6,000 ₹ 35,54,168

Step - 2: Income statement (Sold = 4,500 units)

Particulars	Per Unit	(₹)
Sales	750	33,75,000
(-) COGS	(592.3613)	(26,65,626)
Gross profit	157.6386	7,09,374
(-) Administrative Overheads	(55.55)	(2,50,000)
(-) Selling Overheads	(66.66)	(3,00,000)
Operating profit	35.4164	1,59,374

PROBLEM - 3A: (MTP 2 MAY 24)

Following information relate to a manufacturing concern for the year ended 31st March, 2023:

	(₹)
Raw Material (opening)	2,28,000
Raw Material (closing)	3,05,000
Purchases of Raw Material	43,50,000
Freight Inwards	1,20,000
Direct wages paid	12,56,000
Direct wages-outstanding at the end of the year	1,50,000
Factory Overheads	20% of prime cost
Work-in-progress (opening)	1,92,500
Work-in-progress (closing)	1,40,700
Administrative Overheads (related to production)	1,73,000
Distribution Expenses	₹ 16 per unit
Finished Stock (opening)- 1,320 Units	6,08,500
Sale of scrap of material	7,000

The firm produced 14,350 units of output during the year. The stock of finished goods at the end of the year is valued at cost of production. The firm sold 14,903 units at a price of ₹579 per unit during the year.

PREPARE cost sheet of the firm.

SOLUTION:

Cost sheet for the year ended 31st March, 2023

Units produced - 14,000 units

Units sold - 14,153 units

Particulars	Amount (₹)
Raw materials purchased	43,50,000
Add: Freight Inward	1,20,000
Add: Opening value of raw materials	2,28,000
Less: Closing value of raw materials	(3,05,000)
	43,93,000
Less: Sale of scrap of material	(7,000)
Materials consumed	43,86,000
Direct Wages (12,56,000 + 1,50,000)	14,06,000
Prime Cost	57,92,000
Factory overheads (20% of Prime Cost)	11,58,400
Add: Opening value of W-I-P	1,92,500
Less: Closing value of W-I-P	(1,40,700)
Factory Cost	70,02,200
Add: Administrative overheads	1,73,000
Cost of Production	71,75,200
Add: Value of opening finished stock	6,08,500
Less: Value of closing finished stock [₹ 500(71,75,200/14,350) × 767]	
(1,320 + 14,350 - 14,903 = 767 units)	(3,83,500)
Cost of Goods Sold	74,00,200
Distribution expenses (₹16 × 14,903 units)	2,38,448
Cost of Sales	76,38,648
Profit (Balancing figure)	9,90,189
Sales (₹ 579 × 14,903 units)	86,28,837

PROBLEM - 4

Easy feet Shoe Co. manufactures two types of shoes A and B. production costs for the year ended 31st March 20X1 were:

Direct materials	₹ 15,00,000
Direct wages	₹ 8,40,000
Production overhead	₹ 3,60,000

There was no work in progress at the beginning or at the end of the year. It is given that

- a. Direct material in type A shoes consists twice as much as that in type B shoes.
- b. The direct wages for type B were 60% of those for type A shoes.
- c. Production overhead was the same per pair of A and B types.
- d. Administrative overhead for each type was 150% of direct wages.
- e. Selling cost was ₹ 1.50 per pair.
- f. Production during the year was:
 - Type A 40,000 pairs of which 36,000 were sold.
 - Type B 1,20,000 pairs of which 1,00,000 were sold.
- g. The Selling price was ₹44 for type A and ₹28 per pair for type B.

Prepare a Statement showing Cost and Profit for each pair of each type.

SOLUTION:

Step - 1: Cost Sheet Of Easy Feet Shoe Company

Production A 40,000 units B 1,20,000 units

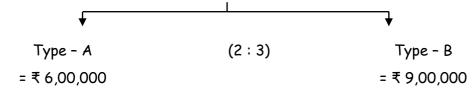
Particulars	Type - A		Type - A		Туре - В	
	Per Unit	₹	Per Unit	₹		
1. Direct Materials (W.N.1)	15.00	6,00,000	7.50	9,00,000		
2. Direct Wages (W.N.2)	7.50	3,00,000	4.50	5,40,000		
3. Prime Cost	22.50	9,00,000	12.00	14,40,000		
4. Production Overheads (W.N.3)	2.25	90,000	2.25	2,70,000		
5. GWC Or Cost Of Production	24.75	9,90,000	14.25	17,10,000		
6. Opening Finished Goods	-	-	-	-		
7. Closing Finished Goods (W.N.4)	24.75	(99,000)	14.25	(2,85,000)		
8. Cost Of Goods Sold	24.75	8,91,000	14.25	14,25,000		

Step - 2: Income statement (units sold A 36,000 units B 1,00,000 units)

Particulars	Ту	Type - A		Type - B	
	Per Unit	₹	Per	₹	
			Unit		
Sales	44	15,84,000	28	28,00,000	
(-) Cost Of Goods Sold	(24.75)	(8,91,000)	(14.25)	(14,25,000)	
Gross Profit	19.25	6,93,000	13.75	13,75,000	
(-) Administrative Overheads	(12.50)	(4,50,000)	(8.10)	(8,10,000)	
(-) Selling Overheads	(1.50)	(54,000)	(1.50)	(1,50,000)	

Operating Profit	5.25	1,89,000	4.15	4,15,000
------------------	------	----------	------	----------

W.N.1: Apportionment of Direct Material cost


Ratio A: E

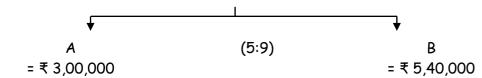
Consumption 2 : 1

Production 40,000 : 1,20,000

Weighted Ratio 80,000 1,20,000 = 2:3

Direct Material Consumed = ₹ 15,00,000

W.N.2: Apportionment of Direct Wages


Ratio A: B

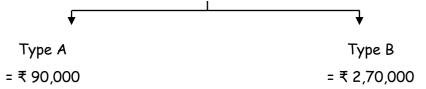
Consumption 100 : 60

Production 40,000 : 1,20,000

Weighted Ratio 40,00,000 = 5:9

Direct Wages = ₹ 8,40,000

W.N.3: Apportionment of Production Overheads


Ratio A: B

Consumption 1 : 1

Production $\underline{40,000}$: $\underline{1,20,000}$

Weighted Ratio 40,000 = 1:3

Production Overheads = ₹ 3,60,000

W.N.4: Apportionment of Administrative Overheads

A - ₹ 3,00,000 × 150% = ₹ 4,50,000

B - ₹ 5,40,000 × 150% = ₹ 8,10,000

W.N.5: Valuation of Closing Finished Goods

Particulars	A (₹)	B (₹)
Production	40,000	1,20,000
(-) Sales	(36,000)	(1,00,000)
Closing FG (in units)	4,000	20,000
Cost of Production Per Unit	24.75	14.25
Closing Finished (in ₹) (1 × 2)	99,000	2,85,000

PROBLEM 4A: (RTP JAN 25)

IC Ltd. manufactures two types of phone covers, one is 'plastic' phone cover and another is 'silicon' phone cover.

The cost data relating to the manufacturing of both the phone covers for the year ended 31stMarch is provided below:

Particulars	Amount (₹)
Direct Materials	1,00,00,000
Direct Wages	56,00,000
Production Overhead	32,00,000
Total	1,88,00,000

Other information relating to the production of the phone covers is as follows:

- Direct material cost per unit of 'silicon' phone cover was twice than that of 'plastic' phone cover.
- Direct wages per unit for 'plastic' phone cover were 60% of those for 'silicon' phone cover.
- · Production overhead per unit was at same rate for both the type of phone covers.
- Administration overhead being part of cost of production was 50% of Production overhead.
- Selling cost and Selling Price of 'silicon' phone cover were ₹ 8 and ₹ 140 per unit respectively.

No. of units of 'silicon' phone covers sold- 90,000

No. of units of Production of

> 'silicon' phone cover: 1,00,000

> 'plastic' phone cover: 3,00,000

You are required to PREPARE a cost sheet for 'silicon' phone cover showing Cost and Profit (per unit and Total).

SOLUTION:

Preparation of Cost Sheet for 'silicon' phone covers

No. of units produced = 1,00,000 Units No. of Units sold = 90,000 units

Particulars	Per unit	Total
	(₹)	(₹)
Direct Materials (Working note- (i))	40.00	40,00,000
Direct Wages (Working note- (ii))	20.00	20,00,000
Prime Cost	60.00	60,00,000
Production Overhead (Working note- (iii))	8.00	8,00,000
Factory Cost	68.00	68,00,000
Administration Overhead (50% of Production Overhead)	4.00	4,00,000
Cost of Production	72.00	72,00,000
Less: Closingstock (1,00,000 units - 90,000 units)	-	(7,20,000)
Cost of Goods Sold i.e. 90,000 units	72.00	64,80,000
Selling cost	8.00	7,20,000
Cost of Sales / Total Cost	80.00	72,00,000
Profit	60.00	54,00,000
Sales Value (₹ 140 × 90,000 units)	140.00	1,26,00,000

Working Notes:

(i) Direct material cost per unit of 'plastic' phone cover = M

Direct material cost per unit of 'silicon' phone cover = 2M

Total Direct Material Cost = $2M \times 1,00,000$ units + $M \times 3,00,000$ units

Or, M =
$$\frac{\text{₹ 1,00,00,000}}{\text{5.00.000}}$$
 = ₹ 20

Therefore, Direct material Cost per unit of 'silicon' phone cover = $2 \times 70 = 740$

(ii) Direct wages per unit for 'silicon' phone cover = W Direct wages per unit for 'plastic' phone cover = 0.6W So,

$$(W \times 100,000) + (0.6W \times 3,00,000) = 756,00,000$$

$$Or,1,00,000 \text{ W} + 1,80,000 \text{ W} = ₹ 56,00,000$$

Or, W =
$$\frac{₹56,00,000}{2.80,000}$$
 = ₹20 per unit

(iii) Therefore, Direct wages per unit of 'silicon' phone cover = ₹ 20

Production overhead per unit =
$$\frac{\text{₹ 32,00,000}}{(1,00,000 + 3,00,000)} = \text{₹ 8}$$

Production overhead for 'silicon' phone cover = ₹ 8 × 1,00,000 units = ₹ 8,00,000

PROBLEM 5:

The books of Adarsh Manufacturing Company present the following data for the month of April:

Direct Labour cost ₹ 17,500 being 175% of works overheads.

Cost of goods sold excluding administrative expenses ₹ 56,000.

Inventory accounts showed the following opening and closing balances:

	April 1 (₹)	April 30 (₹)
Raw materials	8,000	10,600
Work-in-progress	10,500	14,500
Finished goods	17,600	19,000

Other data are:

	(₹)
Selling expenses	3,500
General and administration expenses	2,500
Sales for the month	75,000

You are required to:

- FIND out the value of materials purchased.
- PREPARE a cost statement showing the various elements of cost and also the profit earned

SOLUTION:

Computation of the value of materials purchased

To find out the value of materials purchased, reverse calculations from the given data can be presented as below:

Particulars	(₹)
Cost Of Goods Sold	56,000
Add: Closing Stock Of Finished Goods	19,000
Less: Opening Stock Of Finished Goods	(17,600)
Cost Of Production	57,400
Add: Closing Stock Of Work-In-Progress	14,500
Less: Opening Stock Of Work-In-Progress	(10,500)
Works Cost	61,400
Less: Factory Overheads: (₹17,500 × 100)	(10,000)
Prime Cost	51,400
Less: Direct Labour	(17,500)

Raw Material Consumed	33,900
Add: Closing Stock Of Raw Materials	10,600
Raw Materials Available	44,500
Less: Opening Stock Of Raw Materials	(8,000)
Value Of Materials Purchased	36,500

Cost Statement

	(₹)
Raw Material Consumed [Refer to Statement (I) Above]	33,900
Add: Direct Labour Cost	17,500
Prime Cost	51,400
Add: Factory Overheads	10,000
Works Cost	61,400
Add: Opening Work-In-Progress	10,500
Less: Closing Work-In-Progress	(14,500)
Cost Of Production	57,400
Add: Opening Stock Of Finished Goods	17,600
Less: Closing Stock Of Finished Goods	(19,000)
Cost Of Goods Sold	56,000
Add: General And Administration Expenses	2,500
Add: Selling Expenses	3,500
Cost Of Sales	62,000
Profit (Balance Figure ₹ 75,000 - ₹ 62,000)	13,000
Sales	75,000

PROBLEM - 5A:

XYZ, a Manufacturing Firm, has revealed the following information for September:

Particulars	1 st September	30 th September
Raw Materials	₹ 2,42,000	₹ 2,92,000
Work-in-Progress	₹ 2,00,000	₹ 5,00,000

The Firm incurred the following expenses for targeted production of 1,00,000 units during the month:

Particulars	Amount (₹)
Consumable Stores and Spares of Factory	₹ 3,50,000
Research and Development Cost for process improvements	₹ 2,50,000

Quality Control Cost	₹ 2,00,000
Packing Cost (secondary) per unit of goods sold	₹ 2
Lease Rent of Production Asset	₹ 2,00,000
Administrative Expenses (General)	₹ 2,24,000
Selling and Distribution Expenses	₹ 4,13,000
Finished Goods (Opening)	Nil
Finished Goods (Closing)	5,000 units

- Defective Output which is 4% of targeted production, realizes 61 per unit.
- Closing Stock is valued at Cost of Production (excluding Administrative Expenses)
- Cost of Goods Sold, excluding Administrative Expenses amounts to ₹78,26,000.
- Direct Employees Cost is 1/2 of the Cost of Material Consumed.
- Selling Price of the Output is 110 per unit.

Required:

- 1. Calculate the Value of Material Purchased.
- 2. Prepare Cost Sheet showing the Profit earned by the Firm.

SOLUTION:

Cost Sheet

Particulars	(₹)	(₹)
Opening Stock of Raw Material	2,42,000	
Add: Purchases (Balancing Figure)	52,50,000	
Less: Closing Stock of Raw Material	2,92,000	
Direct Materials Consumed (W N 1)		52,00,000
Add: Direct Labour (₹ 52 Lakhs x 50%)		26,00,000
Prime Cost		78,00,000
Add: Production Overheads (₹ 3,50,000 + ₹ 2,00,000)		5,50,000
Gross Works Cost		83,50,000
Add: Opening W I P (Given)		2,00,000
Less: Closing W I P (Given)		(5,00,000)
Net Works Cost		80,50,000
Add: Quality Control Cost (Given)		2,50,000
Add: Research & Distribution (Given)		2,00,000
Less: Sale of Scrap (1,00,000 X 4% x ₹ 61)		(2,44,000)
Cost of Production (96,000 x ₹ 86)		82,56,000
Add: Opening Finished Goods		-

Less: Closing Finished Goods (5,000 X ₹ 86)	(4,30,000)
Cost Of Goods Sold (Given)	78,26,000
Add: Administrative Overheads	2,24,000
Add: Selling Overheads (95,000 x ₹ 2 + 4,13,000)	6,03,000
Cost Of Sales	86,53,000
Profit (Balancing Figure)	13,57,000
Sales (91,000 x ₹ 110)	1,00,10,000

W N 1: Calculation of Direct Material Consumed

Direct Employee Cost = 50% of Direct Material Consumed

Prime Cost = Direct Material + Direct Employee Cost

78,00,000 = Direct Material + 50% of Direct Material

78,00,000 = Direct Material + (1 + 50%)

 $78,00,000 = Direct Material \times 1.5$

Direct Material = 52,00,000

W.N.2: Computation of Good Units Produced and Units Sold

Targeted Production Units = 1,00,000

(-) Defective Output @ 4% = (4,000)

Good Units Produced = 96000

(-) Closing Finished Goods = (5,000)

Units Sold = 91,000

PROBLEM - 6:

From the following particulars, prepare a Cost Statement showing the component of Total Cost and the Profit for the year ended 31 December.

Particulars	ON 1st January	ON 31 st December
Stock of Raw Materials	₹ 4,00,000	₹ 5,00,000
Stock of Finished Goods	₹ 60,000	₹ 1,50,000
Stock of Work-In-Progress	₹ 1,50,000	₹ 1,00,000

Particulars	Amount (₹)	Particulars	Amount (₹)
Raw Materials Purchased	₹ 47,50,000	Sales for the year	₹ 90,00,000
Carriage Inwards	₹ 1,25,000	Selling Expenses	₹ 92,500
Wages	₹ 17,50,000	General Expenses	₹ 3,20,000
Works Manager's Salary	₹ 3,00,000	Debenture Interest	₹ 50,000
Salary-Factory Employees	₹ 3,00,000	Dividend Paid	₹ 10,000

Salary-Office Staff	₹ 2,00,000	Income-Tax Provision	₹ 5,000
Salary-Salesmen	₹ 1,00,000	Goodwill written off	₹ 1,00,000
Factory Rent & Insurance	₹ 72,500	Goods and Services Tax	₹ 1,60,000
		Collected and Paid	
Power Expenses	₹ 95,000	Transfer to Machinery	₹ 1,00,000
		Replacement Fund	
Other Production Expenses	₹ 4,20,000	Interest on Loan	₹ 75,000
Bad Debts written off	₹ 15,000	Bank Charges	₹ 5,000
Loose Tools written off	₹ 10,000	Discount Allowed	₹ 27,000
		Research and Development	
Quality Control Cost	₹ 15,000	Cost	₹ 15,000

SOLUTION:

Cost sheet for the Year Ended 31st December

Particulars	Amount (₹)
Opening stock of Raw Materials	4,00,000
Add: Purchases of Raw Materials + carriage inwards	48,75,000
Less: Closing stock of Raw Materials	(5,00,000)
Direct materials consumed	47,75,000
Add: Direct Labour	17,50,000
Prime cost	65,25,000
Add: Production Overheads (W N 1)	11,97,500
Gross Works Cost	77,22,500
Add: Opening WIP	1,50,000
Less: Closing WIP	(1,00,000)
Net Works Cost	77,72,500
Add: Quality Control Cost	15,000
Add: Research & Development Cost	15,000
Cost Of Production	78,02,500
Add: Opening Finished Goods	60,000
Less: Closing Finished Goods	(1,50,000)
Cost Of Goods Sold	77,12,500
Add: Administrative Overheads (W N 2)	5,25,000
Add: Selling Overheads (₹ 1,00,000 + ₹ 92,500)	1,92,500
Cost Of Sales	84,30,000

Add: Profit (Balancing Figure)	(5,70,000)
Sales (Given)	90,000

W.N.1: Production Overheads

Pa	rticulars	₹
1.	Works Manager salary	3,00,000
2.	Salary - Factory	3,00,000
3.	Factory Rent and Insurance	72,500
4.	Power Expenses	95,000
5.	Other Production Expenses	4,20,000
6.	Loose tools Written Off	10,000
	Total	11,97,500

W.N.2: Administrative Overheads

Salary Office staff ₹ 2,00,000 General Expenses ₹ 3,20,000 Bank Charges ₹ 5,000 Total ₹ 5,25,000

Note: Exclusions from Cost Sheet

	Particulars	(₹)	Reason
1.	Bad Debts	15,000	Inefficiency In Collection (Non-Operating Item)
2.	Debenture Interest	50,000	Financial Item
3.	Dividend Paid	10,000	Appropriation Of Profits
4.	Income Tax Provision	5,000	Profit Based Outflow (Non - Operating Item)
5.	Goodwill Written Off	1,00,000	Amortization Of an Intangible Asset
			(Non - Operating Item)
6.	<i>G</i> ST	1,60,000	Collection & Remittance
			On Behalf Of Government (Not A Revenue Or a
			Cost)
7.	Transfer To Machinery	1,00,000	Appropriation Of Profits
	Replacement Fund		
8.	Interest On Loan	75,000	Financial Expenses
9.	Discount Allowed	27,000	It Is Policy-Based Transaction
			(Non-Operating Expenses)

PROBLEM 7:

(RTP MAY 24 / SEPT 24)

P Ltd. has gathered cost information from ledgers and other sources for the year ended 31st December 2023. The information are tabulated below:

SI.		Amount	Amount
No.		(₹)	(₹)
(i)	Raw materials purchased		5,00,00,000
(ii)	Freight inward		9,20,600
(iii)	Wages paid to factory workers		25,20,000
(iv)	Royalty paid for production		1,80,000
(v)	Amount paid for power & fuel		3,50,000
(vi)	Job charges paid to job workers		3,10,000
(vii)	Stores and spares consumed		1,10,000
(viii)	Depreciation on office building		50,000
(ix)	Repairs & Maintenance paid for:		
	- Plant & Machinery	40,000	
	- Sales office building	20,000	60,000
(x)	Insurance premium paid for:		
	- Plant & Machinery	28,200	
	- Factory building	18,800	47,000
(xi)	Expensespaid for quality control check		18,000
	activities		
(xii)	Research & development cost paid for		20,000
	improvement in production process		
(xiii)	Expenses paid for pollution control and		36,000
	engineering & maintenance		
(xiv)	Salary paid to Sales & Marketing managers		5,60,000
(xv)	Salary paid to General Manager		6,40,000
(xvi)	Packing cost paid for:		
	- Primary packing necessary to maintain quality	46,000	
	- For re-distribution of finished goods	80,000	1,26,000
(xvii)	Fee paid to independent directors		1,20,000
(xviii)	Performance bonus paid to sales staffs		1,20,000
(xix)	Value of stock as on 1 st January, 2023:		
	- Raw materials	10,00,000	
	- Work-in-process	8,60,000	

	- Finished goods	12,00,000	30,60,000
(xx)	Value of stock as on 31 st December, 2023:		
	- Raw materials	8,40,000	
	- Work-in-process	6,60,000	
	- Finished goods	10,50,000	25,50,000

Amount realized by selling of scrap and waste generated during manufacturing process – ₹48,000/-

The board meeting is scheduled to be held in next week and you being an associate to the chief cost controller of the company, has been asked to PREPARE a cost sheet.

SOLUTION:

Statement of Cost of P Ltd. for the year ended 31st December, 2023:

SI.	Particulars	Amount	Amount
No.		(₹)	(₹)
(i)	Material Consumed:		
	- Raw materials purchased	5,00,00,000	
	- Freight inward	9,20,600	
	Add: Opening stock of raw materials	10,00,000	
	Less: Closing stock of raw materials	(8,40,000)	5,10,80,600
(ii)	Direct employee (labour) cost:		
	- Wages paid to factory workers		25,20,000
(iii)	Direct expenses:		
	- Royalty paid for production	1,80,000	
	- Amount paid for power & fuel	3,50,000	
	- Job charges paid to job workers	3,10,000	8,40,000
	Prime Cost		5,44,40,600
(iv)	Works/ Factory overheads:		
	- Stores and spares consumed	1,10,000	
	- Repairs & Maintenance paid for plant & machinery	40,000	
	- Insurance premium paid for plant & machinery	28,200	
	- Insurance premium paid for factory building	18,800	
	- Expenses paid for pollution control and engineering	36,000	
	& maintenance		2,33,000
	Gross Factory Cost		5,46,73,600
	Add: Opening value of W-I-P		8,60,000
	Less: Closing value of W-I-P		(6,60,000)

	Factory Cost		5,48,73,600
(v)	Quality control cost:		
	- Expenses paid for quality control check activities		18,000
(vi)	Research & development cost paid for improvement in		20,000
	production process		
(vii)	Less: Realizable value on sale of scrap and waste		(48,000)
(viii)	Add: Primary packing cost		46,000
	Cost of Production		5,49,09,600
	Add: Opening stock of finished goods		12,00,000
	Less: Closing stock of finished goods		(10,50,000)
	Cost of Goods Sold		5,50,59,600
(ix)	Administrative overheads:		
	- Depreciation on office building	50,000	
	- Salary paid to General Manager	6,40,000	
	- Fee paid to independent directors	1,20,000	8,10,000
(x)	Selling overheads:		
	- Repairs & Maintenance paid for sales office building	20,000	
	- Salary paid to Manager- Sales & Marketing	5,60,000	
	- Performance bonus paid to sales staffs	1,20,000	7,00,000
(xi)	Distribution overheads:		
	- Packing cost paid for re-distribution of finished		
	goods		80,000
	Cost of Sales		5,66,49,600

PROBLEM - 7A:

The following figures are extracted from the Trial Balance of G.K. Co. on 31st March:

PARTICULARS	Dr.	Cr.
	₹	₹
Inventories:		
Finished Stock	80,000	
Raw Materials	1,40,000	
Work-in-Process	2,00,000	
Office Appliances	17,400	
Plant & Machinery	4,60,500	
Building	2,00,000	

Sales		7,68,000	
Sales Return and Rebates	14,000		
Materials Purchased	3,20,000		
Freight incurred on Materials	16,000		
Purchase Returns		4,800	
Direct employee cost	1,60,000		
Indirect employee cost	18,000		
Factory Supervision	10,000		
Repairs and factory up-keeping expenses	14,000		
Heat, Light and Power	65,000		
Rates and Taxes	6,300		
Miscellaneous Factory Expenses	18,700		
Sales Commission	33,600		
Sales Travelling	11,000		
Sales Promotion	22,500		
Distribution Dept.—Salaries and Expenses	18,000		
Office Salaries and Expenses	8,600		
Interest on Borrowed Funds	2,000		
Parker days a constitution of thems			

Further details are available as follows:

i. Closing Inventories:	
Finished Goods	1,15,000
Raw Materials	1,80,000
Work-in-Process	1,92,000
ii. Outstanding expenses on:	
Direct employee cost	8,000
Indirect employee cost	1,200
Interest on Borrowed Funds	2,000
iii. Depreciation to be provided on:	
Office Appliances	5%
Plant and Machinery	10%
Buildings	4%
iv. Distribution of the following costs:	
Heat, Light and Power to Factory, Office and Distribution	ion in the ratio 8: 1: 1

Rates and Taxes two-thirds to Factory and one-third to Office.

Depreciation on Buildings to Factory, Office and Selling in the ratio 8: 1: 1.

With the help of the above information, you are required to PREPARE a condensed Profit and Loss Statement of G.K. Co. for the year ended 31st March along with supporting schedules of:

- a. Cost of Sales.
- b. Selling and Distribution Expenses.
- c. Administration Expenses

SOLUTION:

Profit and Loss Statement of G.K Co. for the year ended 31st March

	(₹)	(₹)
Gross Sales	7,68,000	
Less: Returns And Rebates	(14,000)	7,54,000
Less: Cost Of Sales (Excluding Interest on Borrowed		(7,14,020)
Funds) [Refer To Schedule (I)]		
Net Operating Profit		39,980
Less: Interest On Borrowed Funds (₹ 2,000 + ₹ 2,000)		(4,000)
Net Profit		35,980

(i) Schedule of Cost of Sales

	(₹)	(₹)
Raw Material (Inventory Opening Balance)		1,40,000
Add: Material Purchased	3,20,000	
Add: Freight On Material	16,000	
Less: Purchase Returns	(4,800)	3,31,200
		4,71,200
Less: Closing Raw Material Inventory		(1,80,000)
Materials Consumed in Production		2,91,200
Direct Employee Cost (₹ 1,60,000 + ₹ 8,000)		1,68,000
Prime Cost		4,59,200
Factory Overheads:		
Indirect Employee Cost (₹ 18,000 + ₹ 1,200)	19,200	
Factory Supervision	10,000	
Repairs And Factory Up-Keeping Expenses	14,000	
Heat, Light And Power (₹ 65,000 × 8/10)	52,000	
Rates And Taxes (₹ 6,300 × 2/3 rd)	4,200	

Miscellaneous Factory Expenses	18,700	
Depreciation Of Plant (10% Of ₹ 4,60,500)	46,050	
Depreciation Of Buildings (4% Of ₹ 2,00,000 × 8/10)	6,400	1,70,550
Gross Works Cost		6,29,750
Add: Opening Work-In-Process Inventory		2,00,000
Less: Closing Work-In-Process Inventory		(1,92,000)
Cost Of Production		6,37,750
Add: Opening Finished Goods Inventory		80,000
Less: Closing Finished Goods Inventory		(1,15,000)
Cost Of Goods Sold		6,02,750
Add: Administration Expenses [See Schedule (iii)]		18,870
Add: Selling And Distribution Expenses [See Schedule (ii)]		92,400
Cost Of Sales		7,14,020

Alternatively Interest on Borrowed funds of \neq 4000 (\neq 2000 + \neq 2000) may be added to arrive at Cost of Sales.

(ii) Schedule of Selling and Distribution Expenses

	(₹)
Sales Commission	33,600
Sales Travelling	11,000
Sales Promotion	22,500
Distribution Department Salaries and Expenses	18,000
Heat, Light and Power	6,500
Depreciation of Buildings	800
Total	92,400

(iii) Schedule of Administration Expenses

	(₹)
Office Salaries and Expenses	8,600
Depreciation of Office Appliances	870
Depreciation of Buildings	800
Heat, Light and Power	6,500
Rates and Taxes	2,100
Total	18,870

PROBLEM 7B: (MTP 1 SEP 24)

From the following data of Meta Ltd., CALCULATE Cost of Production:

		Amount
		(₹)
(i)	Repair & maintenance paid for plant & machinery	9,80,500
(ii)	Insurance premium paid for inventories	26,000
(iii)	Insurance premium paid for plant & machinery	96,000
(iv)	Raw materials purchased	64,00,000
(v)	Opening stock of raw materials	2,88,000
(vi)	Closing stock of raw materials	4,46,000
(vii)	Wages paid	23,20,000
(viii)	Value of opening Work-in-process	4,06,000
(ix)	Value of closing Work-in-process	6,02,100
(x)	Quality control cost for the products in manufacturing process	86,000
(xi)	Research & development cost for improvement in production	92,600
	process	
(xii)	Administrative cost for:	
	- Factory & production	9,00,000
	- Others	11,60,000
(xiii)	Amount realised by selling scrap generated during the	9,200
	manufacturing process	
(xiv)	Packing cost necessary to preserve the goods for further	10,200
	processing	
(xv)	Salary paid to Director (Technical)	8,90,000
(xvi)	Expenses paid for pollution control and engineering & maintenance	22,000

SOLUTION:

Calculation of Cost of Production of Meta Ltd for the period

Particulars	Amount (₹)
Raw materials purchased	64,00,000
Add: Opening stock	2,88,000
Less: Closing stock	(4,46,000)
Material consumed	62,42,000
Add: Wages paid	23,20,000
Prime cost	85,62,000
Add: Repair and maintenance cost of plant & machinery	9,80,500

Cost of Production	1,05,70,000
Less: Amount Realised by selling scrap	(9,200)
Add: Expenses paid for pollution control and engineering & maintenance	22,000
Add: Primary packing cost	10,200
Add: Administrative overheads related with factory and production	9,00,000
Add: Research & development cost	92,600
Add: Quality Control Cost	86,000
Works Cost	94,68,400
Less: Closing value of W-I-P	(6,02,100)
Add: Opening value of W-I-P	4,06,000
Gross Works Cost	96,64,500
Add: Insurance premium paid for plant & machinery	96,000
Add: Insurance premium paid for inventories	26,000

Notes:

- Other administrative overhead does not form part of cost of production.
- · Salary paid to Director (Technical) is an administrative cost.

PROBLEM 7C: (MTP 2 SEP 24)

ABC Ltd is engaged in producing electronic equipment's. It has furnished following details related to its products produced during a month:

	Units	Amount (₹)
Opening stock	10,000	5,00,00,000
Purchases	4,90,000	25,20,00,000
Closing stock	17,500	85,00,000
Works-in-progress		
Opening	20,000	1,20,00,000
Closing	10,000	60,50,000
Direct employees' wages, allowances etc.		5,50,50,000
Primary packaging cost (per unit)		140
R&D expenses & Quality control expenses		1,90,00,000
Guards' salaries		20,00,000
Directors' salaries		60,00,000
Consumable stores, depreciation on plant related to		3,42,00,000
factory overhead		
Product inspection (before primary packaging)		22,00,000

Distribution of the following costs:

Guard's salaries to Factory, Office and Distribution in the ratio 7: 2:1.

Hiring of cars is only for selling and distribution

AMC of CCTV to Factory, Office and Selling in the ratio 6:2:2.

The company paid EPF of 12% over above basic pay. However, Guards will not receive any incentive or EPF.

It has lucky draws every month giving the first prize of ₹ 1,00,000; 2^{nd} prize of ₹ 50,000, 3rd prize of ₹ 20,000 and three consolation prizes of ₹ 10,000 each to customers buying the product.

It also sponsors a television programme every week at a cost of ₹ 20,00,000 per month. The hiring of cars attracts GST under RCM @5% without credit.

There was a normal scrap of 2,000 units of direct material which realized ₹ 350 per unit. The entire finished product was sold at a profit margin of 25% on sales.

You are required to PREPARE a cost sheet

SOLUTION:

Cost Sheet

Particulars	Units	Amount (₹)
Material		
Opening stock	10,000	5,00,00,000
Add: Purchases	4,90,000	25,20,00,000
Less: Closing stock	(17,500)	(85,00,000)
	4,82,500	29,35,00,000

Less: Normal wastage of materials realized @ ₹ 350 per	(2,000)	(7,00,000)
unit		
Material consumed		29,28,00,000
Add: Direct employee's wages and allowances		5,50,50,000
Add: Direct expenses- Royalty paid for production		3,10,50,000
Prime cost	4,80,500	37,89,00,000
Add: Factory overheads - Consumable stores,		3,42,00,000
depreciation etc.		
Add: Rearrangement design of factory machine		75,00,000
Gross Works Cost	4,80,500	38,64,00,000
Add: Opening WIP	20,000	1,20,00,000
Less: Closing WIP	(10,000)	(60,50,000)
Factory/Works Cost	4,90,500	39,23,50,000
Add: Administration Overheads related to production		3,45,00,000
Add: R&D expenses and Quality control cost		1,90,00,000
Add: AMC cost of CCTV installed at factory premises		6,00,000
Add: Guard Salaries for factory premises		14,00,000
Add: Product Inspection		22,00,000
Add: Primary packaging cost @ ₹ 140 per unit		6,86,70,000
Cost of production	4,90,500	51,87,20,000
Administration Overheads		
Add: Guard salaries for office		4,00,000
Add: Audit and legal fees		29,00,000
Add: Director's Salaries		60,00,000
Add: EPF Director's Salaries @12%		7,20,000
Add: AMC cost for CCTV installed at office.		2,00,000
Selling and Distribution Overheads		
Add: Cost of maintaining website for online sale		60,75,000
Add: Secondary packaging cost @ ₹ 20 per unit	4,90,500	98,10,000
Add: Gift and snacks		30,50,000
Add: Guard salaries for selling department		2,00,000
Add: AMC cost for CCTV installed at selling department		2,00,000
Add: Hiring charges of cars		25,00,000
Add: GST @5% on RCM basis		1,25,000
Add: Television programme sponsorship cost		20,00,000
	1	1

Add: Customers' prize cost*	2,00,000
Add: Selling expenses	3,94,50,000
Cost of sales	58,64,75,000
Add: Profit @ 25% on sales or 33.333% of cost	19,54,89,712
Sales value	78,19,64,712

*Customers' prize cost:

	Amount (₹)
1st Prize	1,00,000
2nd Prize	50,000
3rd Prize	20,000
Consolation Prizes (3 × ₹ 10,000)	30,000
Total	2,00,000

*Customers' prize cost:

	Amount (₹)
1st Prize	1,00,000
2nd Prize	50,000
3rd Prize	20,000
Consolation Prizes (3 × ₹ 10,000)	30,000
Total	2,00,000

PROBLEM - 7D: (MTP 1 JAN 25)

Following information is available from the books of YSPP Ltd. for the current year ending 31st March:

S.No.	Particulars	Amount (₹)	Amount (₹)
(i)	Raw materials purchased		35,00,00,000
(ii)	Freight inwards		39,22,100
(iii)	Wages paid to factory workers		1,02,20,000
(iv)	Contribution made towards employees' PF & ESIS		12,60,000
(v)	Hire charges paid for hiring specific equipment		8,40,000
(vi)	Amount paid for power & fuel		16,17,000

(:i)	Amount poid for purchase of moulds and		21 24 000
(vii)	Amount paid for purchase of moulds and		31,36,000
	patterns (life is equivalent to four years		
4	production)		
(viii)	Job charges paid to job workers		28,42,000
(ix)	Lease rent paid for production assets		3,92,000
(x)	Depreciation on:		
	Factory building	2,94,000	
	Office building	1,96,000	
	Plant & Machinery	4,41,000	
	Delivery vehicles	3,01,000	12,32,000
(xi)	Salary paid to supervisors		4,41,000
(xii)	Repairs & Maintenance paid for:		
	Plant & Machinery	1,68,000	
	Sales office building	63,000	2,31,000
(xiii)	Insurance premium paid for:		
	Plant & Machinery	1,09,200	
	Factory building	63,350	
	Stock of raw materials & WIP	1,26,000	2,98,550
(xiv)	Expenses paid for quality control check		68,600
	activities		
(xv)	Salary paid to quality control staffs		3,36,700
(xvi)	Research & development cost paid for		63,700
	improvement in production process		
(xvii)	Expenses paid for administration of		4,15,100
	factory work		
(xviii)	Salary paid to functional mangers:		
	Production control	33,60,000	
	Finance & Accounts	32,13,000	
	Sales & Marketing	35,42,000	1,01,15,000
(xix)	Salary paid to General Manager		43,96,000
(xx)	Packing cost paid for:		
	Primary packing necessary to maintain	3,36,000	
	quality		
	For re-distribution of finished goods	3,92,000	7,28,000

(xxi)	Fee paid to auditors		6,30,000
(xxii)	Fee paid to independent directors		7,70,000
(xxiii)	Value of stock as on 1st April (beginning):		
	Raw materials	63,00,000	
	Work-in-process	32,20,000	
	Finished goods	38,50,000	1,33,70,000
(xxiv)	Value of stock as on 31st March (ending):		
	Raw materials	33,60,000	
	Work-in-process	30,45,000	
	Finished goods	63,00,000	1,27,05,000

Due to delay in picking up cargo from the port, YSPP Ltd. had to pay ₹ 15,000 as demurrage in the month of March.

From the above data you are required to PREPARE Statement of cost for YSPP Ltd. for the year ended 31st March, showing (i) Prime cost, (ii) Factory cost, (iii) Cost of Production, (iv) Cost of sales.

SOLUTION:

Statement of Cost of YSPP Ltd for the year ended 31st March:

5.NO.	Particulars	Amount (₹)	Amount (₹)
(I)	Material consumed:		
	Raw materials purchased	35,00,00,000	
	Add: Freight inwards	39,22,100	
	Add: opening stock of raw materials	63,00,000	
	Less: closing stock of raw materials	(33,60,000)	35,68,62,100
(II)	Direct employee (Labour) cost:		
	Add: Wages paid to factory workers	1,02,20,000	
	Add: Contribution made towards employees' PF	12,60,000	1,14,80,000
	& ESIS		
(III)	Direct expenses:		
	Add: Hire charges paid for hiring specific equipment	8,40,000	
	Add: Amount paid for power & fuel	16,17,000	
	Add: Amortised cost of Moulds and patterns	7,84,000	
	Add: Job charges paid to job workers	28,42,000	60,83,000
	Prime cost		37,44,25,100

(IV)	Works/ factory overheads:		
• •	Add: Lease rent paid for production assets	3,92,000	
	Add: Depreciation on factory building	2,94,000	
	Add: Depreciation on plant & machinery	4,41,000	
	Add: Repairs & maintenance paid for plant &	1,68,000	
	machinery		
	Add: Insurance premium paid for plant &	1,09,200	
	machinery		
	Add: Insurance premium paid for factory building	63,350	
	Add: Insurance premium paid for stock of raw	1,26,000	
	materials & WIP		
	Add: Salary paid to supervisors	4,41,000	20,34,550
	Gross factory cost		37,64,59,650
	Add: opening value of WIP		32,20,000
	Less: closing value of W I P		(30,45,000)
	Factory cost		37,66,34,650
(V)	Quality control cost:		
	Add: Expenses paid for quality control check	68,600	
	activities		
	Add: Salary paid to quality control staffs	3,36,700	4,05,300
(VI)	Research & development cost paid for		63,700
	improvement in production process		
(VII)	Administration cost related with production:		
	Add: Expenses paid for administration of factory	4,15,100	
	work		
	Add: Salary paid to production control manager	33,60,000	37,75,100
(VIII)	Add: primary packing cost		3,36,000
	Cost of production		38,12,14,750
	Add: opening stock of finished goods		38,50,000
	Less: closing stock of finished goods		(63,00,000)
	Cost of Goods Sold		37,87,64,750
(IX)	Administrative overheads:		
	Add: Depreciation on office building	1,96,000	
	Add: Salary paid to manager- finance & accounts	32,13,000	

	Add: Salary paid to general manager	43,96,000	
	Add: Fee paid to auditors	6,30,000	
	Add: Fee paid to independent directors	7,70,000	92,05,000
(X)	Selling overheads:		
	Add: Repairs & maintenance paid for sales office	63,000	
	building		
	Add: Salary paid to manager- sales & marketing	35,42,000	36,05,000
(XI)	Distribution overheads:		
	Add: Depreciation on delivery vehicles	3,01,000	
(XII)	Add: Packing cost paid for re- distribution of	3,92,000	6,93,000
	finished goods		
	Cost of sales		39,22,67,750

Note: Demurrage is a type of penalty, thus will not form part of cost.

PROBLEM 8: (PYP SEP 24)

MNP Limited have the capacity to produce 84,000 units of a product very month. Its prime cost per unit at various levels of production is as follows:

Level	Prime Cost per unit (₹)
10%	50
20%	48
30%	46
40%	44
50%	42
60%	40
70%	38
80%	36
90%	34
100%	32
70% 80% 90%	38 36 34

Its prime cost consists of raw material consumed, direct wages and direct expenses in the ratio of 3:2:1. In the month of January 2024, the company worked at 40% capacity and raw material purchased amounting to ₹ 8,40,000. In the month of February 2024, the company worked at 100% capacity and raw material purchased for ₹ 16,46,400.

It is the policy of the company to maintain opening stock of raw material equal to 1/3 of closing stock of raw material. Factory overheads are recovered at 60% of direct wages

cost. Fixed administration expenses (as part of production cost) and fixed selling and distribution expenses are ₹ 2,01,600 and ₹ 1,68,000 per month respectively. During the month of January 2024 company sold 33,600 units @ ₹ 68.8 per unit. The variable distribution cost amounts to ₹ 1.5 per unit sold.

The management of the company chalks out a pl for the month of February 2024 to sell its whole output @ ₹ 61 per unit by incurring following further expenditure:

- (i) Company sponsors a television programme on every Sunday at a cost of₹ 26,250 per week. There are 4 Sundays in February 2024.
- (ii) Hi-tea programme every month for its potential customers at a cost of ₹ 1,05,000.
- (iii)Special gift item costing ₹ 105 on sale of a dozen units.
- (iv)Lucky draws scheme is introduced every month by giving the first prize of ₹ 1,00,000; second prize of ₹ 80,000; third prize of ₹ 40,000 and four consolation prizes of ₹ 8,000 each.

Note: (In the month of February 2024, there is a significant saving in material cost per unit due to entry of new suppliers in the market and saving in per unit cost of Direct wages and Direct expenses due to introduction of new policy by the management.)

Prepare a cost sheet for the month of January 2024 and February 2024 showing prime cost (with different elements of prime cost), factory cost, cost of production, total cost and profit earned.

SOLUTION:

Cost Sheet

Particulars	January 2024	February 2024
	33,600 Units	84,000 Units
Opening Stock Of Raw Material	50,400	1,51,200
Add: Purchases	8,40,000	16,46,400
Less: Closing Stock Of Raw Material	(1,51,200)	(4,53,600)
Direct Materials Consumed:	7,39,200	13,44,000
Add: Direct Wages	4,92,800	8,96,000
Add: Direct Expenses	2,46,400	4,48,000
Prime Cost	14,78,400	26,88,000
Add: Factory Overheads (60% Of Direct	2,95,680	5,37,600
Wages)		
Factory / Works Cost	17,74,080	32,25,600
Add: Administration Overhead (Production)	2,01,600	2,01,600
Cost Of Production / Cost Of Goods Sold	19,75,680	34,27,200

Add: Fixed Selling And Distribution Overhead	1,68,000	1,68,000
Add: Variable Distribution Overheads (₹ 1.5 Per	50,400	1,26,000
Unit)		
> Sponsorship Cost	-	1,05,000
> Hi Tea Programme	-	1,05,000
> Special Gifts (84,000 X 1/12 X 105)	-	7,35,000
> Lucky Draw Prize *	-	2,52,000
Cost Of Sales / Total Cost	21,94,080	49,18,200
Add: Profit (Balancing Figure)	1,17,600	2,05,800
Sales Revenue	23,11,680	51,24,000

*Lucky draw prize:

	Amount (₹)
1 st Prize	1,00,000
2 nd Prize	80,000
3 rd Prize	40,000
Consolation Prizes (4 × ₹ 8,000)	32,000
Total	2,52,000

Working note:

Calculation of opening and costing stock of Raw Material

January

Units Manufactured = $84,000 \times 40\% = 33,600$ units

Prime Cost = 33,600 units $x \neq 44 = \neq 14,78,400$

Raw Material consumed = ₹ 14,78,400 X 3 ÷ 6 = ₹ 7,39,200

Raw Material purchase (given) = ₹8,40,000

Let closing stock of Raw Material be x

Opening stock of Raw Material be $1 \div 3x$

Opening Stock + Purchase - closing stock = Raw Material consumed

 $1 \div 3x + ₹ 8,40,000 - x$ = ₹ 7,39,200

 $(1 \div 3x) - x$ = ₹ 7,39,200 - ₹ 8,40,000

2 ÷ 3x = ₹ 1,00,800

x = = ₹ 1,51,200 (closing stock)

Opening stock = $= 1,51,200 \times 1 \div 3 = 50,400$

February

Prime Cost = $84,000 \times 32 = ₹ 26,88,000$

Raw Material consumed = $₹ 26,88,000 \times 3 \div 6 = ₹ 13,44,000$

Raw Material purchased (given) = ₹ 16,46,400

Opening Stock + Purchase - closing stock = Raw Material consumed

₹ 1,51,200 + ₹ 16,46,400 - closing stock = ₹ 13,44,000

Closing stock = ₹4,53,600

PROBLEM - 8A:

A Ltd. Co. has the capacity to produce 1,00,000 units of a product every month.

Its works cost at varying levels of production is as under:

LEVEL (%)	WORK COST PER UNIT (₹)
10%	400
20%	390
30%	380
40%	370
50%	360
60%	350
70%	340
80%	330
90%	320
100%	310

Its fixed administration expenses amount to ₹ 1,50,000 and fixed marketing expenses amount to ₹ 2,50,000 per month respectively. The variable distribution cost amounts to ₹ 30 per unit.

It can sell 100% of its output at ₹ 500 per unit provided it incurs the following further expenditure:

- 1. It gives gift items costing ₹ 30 per unit of sale;
- 2. It has lucky draws every month giving the first prize of ₹ 50,000; 2nd prize of ₹ 25,000, 3rd prize of ₹ 10,000 and three consolation prizes of ₹ 5,000 each to customers buying the product.
- 3. It spends ₹ 1,00,000 on refreshments served every month to its customers;
- 4. It sponsors a television program every week at a cost of ₹ 20,00,000 per month.

It can market 30% of its output at ₹ 550 per unit without incurring any of the expenses referred to in 1 to 4 above.

PREPARE a cost sheet for the month showing total cost and profit at 30% and 100% capacity level

SOLUTION:

Cost sheet

		30%		100%	
land of Constitut	30,	30,000 units		1,00,000 units	
Level of Capacity	Per	₹	5	₹	
	Unit	₹	Per Unit	•	
Works Cost	380	114,00,000	310	310,00,000	
Add: Fixed Administrative Expenses	5.00	1,50,000	1.50	1,50,000	
Add: Fixed Marketing Expenses	8.33	2,50,000	2.50	2,50,000	
Variable Distribution Cost	30.00	9,00,000	30.00	30,00,000	
Add: Special Cost					
- Gift Item Costs			30.00	30,00,000	
- Customer Prizes			1.00	1,00,000	
- Refreshments			1.00	1,00,000	
- Television Programme Sponsorship			20.00	20,00,000	
Cost					
Cost of sales	423.33	1,27,00,000	396.00	3,96,00,000	
Add: Profit (Balancing Figure)	126.67	38,00,000	104.00	104,00,000	
Sales Revenue	550	165,00,000	500	5,00,00,000	

Customers Prize Cost

	Amount (₹)
1 st Prize	50,000
2 nd Prize	25,000
3 rd Prize	10,000
Consolidated Prizes (3 x 5000)	15000
Total	1,00,000

PROBLEM - 9:

ML Auto Ltd is a manufacturer of auto components and the details of its expenses for the previous year are given below:

Particulars	AMOUNT
Opening Stock of Material	₹ 1,50,000

Closing Stock of Material	₹ 2,00,000
Purchase of Material	₹ 18,50,000
Direct Labour	₹ 9,50,000
Factory Overhead	₹ 3,80,000
Administrative Overhead related to Production Activity	₹ 2,50,400

During next year, the Company has received an order from a Car Manufacturer where it estimates that the Cost of Material and Labour will be \mp 8,00,000 and \mp 4,50,000 respectively. ML Auto Ltd charges Factory OH as a Percentage of Direct Labour and Administrative OH related to Production, as a Percentage of Factory Cost based on previous year's cost. The cost of delivery of the components at the Customer's Premises is estimated at \mp 45,000.

You are required to -

- a. Calculate the Overhead Recovery Rates based on Actual Costs for the previous year.
- b. Prepare a detailed Cost Statement for the order received in the next year, and the price to be quoted if the Company wants to earn a profit of 10% on Sales.

SOLUTION:

Step 1: Calculation of Overheads Recovery Rates

Particulars	Last Year	Computation
	Actuals	
	₹	
Opening Stock Of Raw Materials	1,50,000	Given
Add: Purchases	18,50,000	Given
Less: Closing Stock Of Raw Materials	(2,00,000)	Given
Direct Materials Consumed	18,00,000	
Add: Direct Labour	9,50,000	Given
Prime Cost	27,50,000	
Add: Factory Overheads	3,80,000	Given
		(3,80,000 ÷ 9,50,000) × 100
		= 40%
Gross Works Cost / Net Works Cost	31,30,000	
Add: Admin Overheads Related to	2,50,400	(2,50,400 ÷ 31,30,000) × 100 = 8%
Production		
Cost Of Production	33,80,400	

Step 2: Cost Statement & Price to be Quoted for the Order Received Next Year

Particulars	Last year actuals	Computation
	₹	₹
Direct Materials	8,00,000	Given
Add: Direct Labour	4,50,000	Given
Prime cost	12,50,000	
Add: Factory Overheads	1,80,000	40% × 4,50,000
Gross Works Cost or Net Works Cost	14,30,000	
Add: Admin Overheads Related to Production	1,14,400	8% × 14,30,000
Cost of Production	15,44,400	
Add: Selling Overheads	45,000	Given
Cost of sales	15,89,400	
Add: Profit @ 10% on sales	1,76,600	
1 ÷ 10 on sales		(15,89,400 ÷ 90) x 10
1 ÷ 9 on cost		
Sales	17,66,000	

PROBLEM - 10:

A Company produces a Machine and sells it for ₹ 3,000. There is an increase of 20% in the Cost of Material, 10% in Labour, and 10% in Overhead Cost. The only figures available are that Material Cost is 50% of Cost of Sales, Labour Cost is 30% of Cost of Sales and Overhead Cost is 20% of Cost of Sales.

The anticipated increased cost in relation to the present Sales Price would cause a 30% decrease in the amount of the present Gross Profit.

What would be the Selling Price of the machine to give the same percentage of Gross Profit as before?

SOLUTION:

Part 1: Computation of Total Cost

Let the present cost be \notin C and the profit be \notin P the breakup of Materials, Labour and Overheads are as follows:

Particulars	Existi	Existing Proposed		:d		
	Workings	₹	Workings	₹		
Direct Materials	0.5 <i>C</i>	1000	0.5 <i>C</i> × 120%	1200		
+ Direct Wages	0.3 <i>C</i>	600	0.3 <i>C</i> × 110%	660		
+ Overheads	0.2 C	400	0.2 <i>C</i> × 110%	440		

Total cost of sales	С	2000	1.15 C	2300
+ Profit	Р	1000	0.7 P	700
Selling price	3000	3,000	3000	3000

Existing: C + P = ₹ 3000 Equation - 1

Proposed: 1.15 C + 0.7 P = ₹ 3000 Equation - 2

0.7 C + 0.7 P = 2100

1.5 C + 0.7 P = ₹ 3000

- 0.45*C* = - ₹ 900

C = ₹ 2000

C + P = ₹ 3000

₹ 2000 + P = ₹ 3000

P = ₹ 1000

Part - 2: Computation of New Selling Price

Present GP to Cost = $\frac{\text{₹ 1000}}{\text{₹ 2000}}$ × 100 = 50% on cost

New selling price (T) = New Cost + GP Margin

= ₹2300 + 50% (₹2300)

= ₹2300 + ₹1150 = ₹3450

<u>CHAPTER 03: OVERHEADS - ABSORPTION</u> <u>COSTING METHOD</u>

PROBLEM - 1:

The following figures are extracted from the accounts of a manufacturing concern for the month of September, 20×1 -

Particulars		Amount (₹)
Indirect materials:		
- Production Dept.	P1	₹ 950
- Production Dept.	P2	₹ 1,200
- Production Dept.	Р3	₹ 200
- Maintenance Dept.	51	₹ 1,500
- Stores Dept.	52	₹ 400
Indirect wages:		
- Production Dept.	P1	₹ 900
- Production Dept.	P2	₹ 1,100
- Production Dept.	P3	₹ 300
- Maintenance Dept.	S1	₹ 1,000
- Stores Dept.	52	₹ 650
Power and light		₹ 6,000
Insurance on assets		₹ 1,000
Rent and rates		₹ 2,800
Meal charges		₹ 3,000

Depreciation on capital value of assets is 6% per annum. From the above information prepare a primary distribution summary with the following departmental data:

Particulars	Production Cost Centres			Service Cost Centres		
r di riculai s	P1	P2	Р3	51	52	
Area (sq. m.)	4,000	4,000	3,000	2,000	1,000	
Capital value of assets (000)	100	120	80	60	40	
Kilowatt hours	4,000	4,400	1,600	1,500	500	
Number of employees	90	120	30	40	20	

SOLUTION:

Statement Of Primary Distribution Summary

Particulars	Total	Basis	P ₁	P ₂	P ₃	S ₁	S ₂
	(₹)		(₹)	(₹)	(₹)	(₹)	(₹)
Indirect Material	4,250	Direct Allocation	950	1200	200	1500	400
Indirect Wages	3,950	Direct Allocation	900	1100	300	1000	650
Power & Light	6,000	Kilowatt Hours	2000	2200	800	750	250
		(40 : 44 : 16 : 15 :					
		5)					
Insurance On Assets	1,000	Capital Value	250	300	200	150	100
		(10:12:8:6:4)					
Rents & Rates	2,800	Area	800	800	600	400	200
		(4:4:3:2:1)					
Meal Charges	3,000	Employees	900	1200	300	400	200
		(90 : 120 : 30 : 40					
		: 20)					
Depreciation On Capital	2000	Capital Value	500	600	400	300	200
Assets		(10:12:8:6:4)					
(Capital Value x 6%) x							
1 Month ÷ 12 Months							
Primary Distribution	23,000		6,300	7,400	2,800	4,500	2,000
Summary							

PROBLEM - 2:

A Ltd. manufactures a number of products. It has two production departments P1 and P2 and service departments S1 and S2. The estimated overhead costs for 20×1 and interdepartmental relationship matrix are as follows:

SERVICE PROVIDED BY	SERVICE PROVIDED TO						
	P1 P2 S1 S2						
51	40%	50%	-	10%			
52	50%	30%	20%	-			
Estimated overhead (₹)	₹ 7,000	₹ 6,000	₹ 18,000	₹ 8,000			

You are required to calculate overhead costs for P1 and P2 using -

- 1. Direct apportionment method;
- 2. Step method of apportionment -
 - Apportioning S1 costs first, and

- Apportioning S2 costs first;
- 3. Reciprocal method of apportionment -
- 4. Repeated distribution method,
- 5. Simultaneous equations method, and
- 6. Trial & Error Method.

SOLUTION:

1. Direct Re-Distribution Method:

Particulars	P ₁	P ₂	S ₁	S ₂
	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	7,000	6,000	18,000	8,000
S ₁ (4:5)	8,000	10,000	(18,000)	-
S ₂ (5:3)	5,000	3,000	-	(8,000)
Secondary Distribution Summary	20,000	19,000	-	-

2. Step - Ladder Method:

a) Apportioning S₁ Cost First

Particulars	P ₁	P ₂	S ₁	S ₂
	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	7,000	6,000	18,000	8,000
S ₁ (4:5:1)	7,200	9,000	(18,000)	1,800
S ₂ (5:3)	6,125	3,675	-	(9,800)
Secondary Distribution Summary	20,325	18,675	-	-

b) Apportioning S2 cost first

Particulars	P ₁	P ₂	S ₁	S ₂
	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	7,000	6,000	18,000	8,000
S ₁ (5 : 3 : 2)	4,000	2,400	1,600	(8,000)
S ₂ (4:5)	8,711	10,889	(19,600)	-
Secondary Distribution Summary	19,711	19,289	-	-

3. Repeated Distribution Method:

Particulars	P ₁	P ₂	S ₁	S ₂
	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	7,000	6,000	18,000	8,000
S ₁ (4:5:1)	7,200	9,000	(18,000)	1,800
S ₂ (5 : 3 : 2)	4,900	2,940	1,960	(9800)

S ₁ (4:5:1)	784	980	(1,960)	196
S ₂ (5 : 3 : 2)	98	59	39	(196)
S ₁ (4:5:1)	16	19	(39)	4
S ₂	2	2	-	(4)
Secondary Distribution Summary	20,000	19,000	-	-

4. Simultaneous Equation Method

Step 1: Forming Equations

Let Overheads of S_1 be x

S₂ be y

Step 2: X = ₹ 18,000 + 0.20 y

Y = ₹ 8,000 + 0.10 X

Substituting - 1 in 2

 \Rightarrow y = ₹ 8,000 + 0.10(₹ 18,000 + 0.20У)

⇒ y = ₹ 8,000 + ₹ 1800 + 0.02Y

⇒ 0.98У = ₹ 9800

⇒ y = ₹ 10,000

 \Rightarrow x = ₹ 18,000 + 0.20 (y)

 \Rightarrow x = ₹ 18,000 + 0.20 (₹ 10,000)

⇒ x = ₹ 20,000

Step 3: Apportionment

Particulars	P ₁	P ₂	S ₁	S ₂
	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	7,000	6,000	18,000	8,000
S ₁ (4:5:1)	8,000	10,000	(20,000)	2,000
S ₂ (5:3:2)	5,000	3,000	2,000	(10,000)
Secondary Distribution Summary	20,000	19,000	-	-

5. Trial & Error Method:

Step 1:

Particulars	S ₁	S ₂
	(₹)	(₹)
Primary Distribution Summary	18,000	8,000
$S_1 \rightarrow S_2 (10\% x \mp 18000)$		1,800
$S_2 \rightarrow S_1(20\% x \mp 9800)$	1,960	
$S_1 \rightarrow S_2 (10\% \times 1960)$		196

$S_2 \to S_1(20\% \times 196)$	39.2	
$S_1 \rightarrow S_2 (10\% \times 39.2)$		3.92
$S_2 \rightarrow S_1$ (rounded off)	0.8	0.08
	20,000	10,000

Step 2: Apportionment

Particulars	P ₁	P ₂
	(₹)	(₹)
Primary Distribution Summary	7,000	6000
S ₁ (90% x ₹ 20,000) (4 : 5)	8,000	10,000
S ₂ (80% x ₹ 10,000) (5 : 3)	5,000	3,000
Secondary Distribution Summary	20,000	19,000

PROBLEM - 3:

A factory is having three production departments A, B and C, and two service departments Boiler-house and pump room. The boiler-house has to depend upon the pump - room for supply of water and pump room in its turn is dependent on the boiler-house for the supply of steam power for driving the pump. The expenses incurred by the production departments during a period are

A - 38,00,000; B - 37,00,000; and C - 35,00,000.

The expenses for the boiler-house are $\stackrel{?}{_{\sim}}$ 2,34,000 and the pump - room - $\stackrel{?}{_{\sim}}$ 3,00,000.

The expenses of the boiler-house and pump- room are apportioned to the production departments on the following basis

PARTICULARS	Α	В	С	В.Н	P.R
Expenses of boiler-house	20%	40%	30%	-	10%
Expenses of pump-room	40%	20%	20%	20%	-

Show clearly as to how the expenses of boiler- house and pump-room would be apportioned to A, B and C departments. Use algebraically equation.

SOLUTION:

Step 1: Forming equation

Let B.H Overheads be x

P.R Overheads be y

 $X = 34000 + 0.20 y \rightarrow 1$

 $Y = 3.00.000 + 0.10 \times \rightarrow 2$

Substituting $\rightarrow 1$ in $\rightarrow 2$

Y = 300000 + 0.10 (3234000 + 0.20y)

Y = ₹ 300000 + ₹ 23400 + 0.02

0.98y = ₹ 3,23,400

Y = ₹ 3,30,000

Substituting y in $\rightarrow 1$

X = ₹ 2,34,000 + 0.20 (₹ 3,30,000)

X = ₹ 2,34,000 + ₹ 66,000

X = ₹ 3,00,000

Step 2: Apportionment

Particulars	A (₹)	B (₹)	C (₹)	BH (₹)	PR (₹)
Primary Distribution	8,00,000	7,00,000	5,00,000	2,34,000	3,00,000
Summary					
S ₁ (2:4:3:1)	60,000	1,20,000	90,000	(3,00,000)	30,000
S ₂ (4 : 2 : 2 : 2)	1,32,000	66,000	66,000	66,000	(3,30,000)
Secondary Distribution	9,92,000	8,86,000	6,56,000	-	-
Summary					

PROBLEM - 4:

A manufacturing company has two production departments P1 and P2, and three service departments, time-keeping, stores and maintenance. The departmental distribution summary showed the following expenses for December, 20×1 :

PARTICULARS	AMOUNT (₹)
Production department P1	₹ 24,000
Production department P2	₹ 16,000
Service DeptStores	₹ 5,000
Service DeptTime keeping	₹ 4,000
Service DeptMaintenance	₹ 3,000
Total	₹ 52,000

Additional information:

	Produc	tion				
Particulars	Depart	ment	Service Department			
rariiculars	P1	P2	STORES TIME MAINTENAN KEEPING			
No. of employees	20	15	10	8	5	
No. of requisitions	12	10	-	-	3	
Machine hours	2400	600	-	-	-	

Apportion the service department expenses to production cost centres P1 and P2.

SOLUTION:

Step - Ladder Method:

Particulars	P ₁	P ₂	Maintenance	Stores	Time Keeping
	(₹)	(₹)	(₹)	(₹)	(₹)
Primary Distribution Summary	24,000	16,000	3,000	5,000	4,000
Time Keeping (20: 15: 5: 10)	1600	1200	400	800	(4,000)
Stores (12: 10: 3)	2,784	2,320	696	(5800)	-
Maintenance (24: 6)	3,277	819	(4096)	-	-
Secondary Distribution Summary	31,661	20,339	-	-	-

Notes:

- 1. It Can Be Observed That There Are No Reciprocal Services Among Service Department. Hence We Can Use Step Ladder Method.
- 2. While Distributing Overheads, Distribute Overheads Of That Department Which Provides Services To Maximum No Of Other Service Departments And Go In Descending Order.

PROBLEM - 4A:

Deccan Manufacturing Ltd., have three departments which are regarded as production departments. Service departments' costs are distributed to these production departments using the "Step Ladder Method" of distribution. Estimates of factory overhead costs to be incurred by each department in the forthcoming year are as follows. Data required for distribution is also shown against each department:

Department	Factory overhead	Direct Labour	No. of	Area in
	(₹)	hours	employees	Square
				Meter
Production:				
×	₹ 1,93,000	4,000	100	3,000
У	₹ 64,000	3,000	125	1,500
Z	₹ 83,000	4,000	85	1,500
Service:				
Р	₹ 45,000	1,000	10	500
Q	₹ 75,000	5,000	50	1,500
R	₹ 1,05,000	6,000	40	1,000
S	₹ 30,000	3,000	50	1,000

The overhead costs of the four service departments are distributed in the same order, viz. P, Q, R and S respectively on the following basis.

Department Basis

- P Number of employees
- Q Direct Labour hours
- R Area in Square Metres
- S Direct Labour Hours

You are required to:

- a. PREPARE a schedule showing the distribution of overhead costs of the four service departments to the three production departments; and
- b. CALCULATE the overhead recovery rate per direct labour hour for each of the three production departments.

SOLUTION:

a) Deccan Manufacturing Limited

Schedule Showing The Distribution Of Overhead Costs Among Departments

	Production			Service			
	X (₹)	У (₹)	Z (₹)	Ρ (₹)	Q (₹)	R (₹)	S (₹)
Overhead Cost	1,93,000	64,000	83,000	45,000	75,000	1,05,000	30,000
Distribution of Department P	10,000	12,500	8,500	-45,000	5,000	4,000	5,000
(100 : 125 : 85 : - : 50 : 40 : 50)							
Distribution of Department Q	16,000	12,000	16,000	-	-80,000	24,000	12,000
(4:3:4:-:-:6:3)							
Distribution of Department R	57,000	28,500	28,500	-	-	-1,33,000	19,000
(6:3:3:-:-:-:2)							

Distribution of Department S	24,000	18,000	24,000	-	-	-	-66,000
(4:3:4:-:-:-)							
Total	3,00,000	1,35,000	1,60,000				

b) Calculation of Overhead Recovery Rate

	Dept-X	Dept-Y	Dept-Z
Total Apportioned Overheads	₹ 3,00,000	₹ 1,35,000	₹ 1,60,000
Direct Labour Hours	4,000	3,000	4,000
Overhead Recovery Rate per Labour Hour	₹ 75	₹ 45	₹ 40

PROBLEM - 5:

Super class Co. Ltd. has three production departments X, Y and Z and two service departments A and B.

The following estimated figures for a certain period have been made available: -

Particulars	Amount (₹)
Rent and Rates	₹ 10,000
Lighting and Electricity	₹ 1,200
Indirect Wages	₹ 3,000
Power	₹ 3,000
Depreciation of Machinery	₹ 20,000
Other Expenses and Sundries	₹ 20,000

Following are further details which are also available: -

Particulars	Total	×	У	Z	Α	В
Floor Space (Sq. mts)	10,000	2,000	2,500	3,000	2,000	500
Light Points (Nos.)	120	20	30	40	20	10
Direct wages	₹ 20,000	₹ 6,000	₹ 4,000	₹ 6,000	₹ 3,000	₹ 1,000
Horsepower of machine	300	120	60	100	20	-
Cost of Machinery (₹)	₹ 1,00,000	₹ 24,000	₹ 32,000	₹ 40,000	₹ 2,000	₹ 2,000
Working hours		4,670	3,020	3,050	-	-

The expenses of the service departments A and B are to be allocated as follows: -

Particulars	X	У	Z	Α	В
Α	20%	30%	40%	-	10%
В	40%	20%	30%	10%	-

You are required to calculate the overhead absorption rate per hour in respect of the three production departments.

What will be the total cost of an article with a material cost of 80 and direct Labour cost of 40 which passes through X, Y and Z for 2, 3 and 4 hours respectively?

SOLUTION:

Step 1: Primary Distribution of Overheads

Particulars	Produc	Production Department					
	Basis	×	У	Z	A	В	
		₹	₹	₹	₹	₹	
Rent & Rates	Floor Space	2000	2500	3000	2000	500	
(2:2.5:3:2:0.5)							
Lighting & Electricity	Light Points	200	300	400	200	100	
(2:3:4:2:1)							
Indirect Wages	Direct Wages	900	600	900	450	150	
(6:4:6:3:1)							
Power	Horse Power of	1200	600	1000	200	-	
(12:6:10:2)	Machine						
Depreciation	Cost of Machine	4800	6400	8000	400	400	
(24:32:40:2:2)							
Other expenses	Direct Wages	6,000	4,000	6,000	3,000	1,000	
(6:4:6:3:1)							
Direct Wages of Service	Direct	-	-	-	3000	1000	
Department	Allocation						
Primary Distribution		15,100	14,400	19,300	9,250	3,150	
Summary							

Step 2: Secondary Distribution Simultaneous Equation Method:

a. Equation:

Let Overheads of Department A be A

Let Overheads of Department B be B

$$\Rightarrow$$
 A = $₹$ 9,250 + 0.10 B \rightarrow 1

$$\Rightarrow$$
B = ₹ 3,150 + 0.10 A \rightarrow 2

b. Solving Equation:

Substituting 2 in 1

$$\Rightarrow$$
 A = ₹ 9,250 + 0.10 (₹ 3150 + 0.10A)

$$\Rightarrow$$
 A = ₹ 9250 + ₹ 315 + 0.01 A

- ⇒ *A* = ₹ 9662
- ⇒ B = ₹ 3150 + 0.10 A
- \Rightarrow B = ₹ 3150 + 0.10 (₹ 9662)
- ⇒ B = ₹ 4116

c. Apportionment

Particulars	X (₹)	У (₹)	Z (₹)	A (₹)	B (₹)
Primary Distribution	15100	14400	19300	9250	3150
Summary					
A (2:3:4:1)	1932	2899	3865	(9662)	966
B (4:2:3:1)	1646	823	1235	412	(4116)
Secondary Distribution	18678	18122	24400	-	-
Summary					

Step 3: Absorption of Overheads

a. Calculation of Absorption Rate:

Particulars	X (₹)	У (₹)	Z (₹)
1. Secondary Distribution Summary	18678	18122	24400
2. Labour Hours	4670 Hours	3020 Hours	3050 Hours
3. Absorption Rate (1 ÷ 2)	₹4 Per hour	₹6 Per hour	₹8 Per hour

b. Charging of Overheads to the Products

Overheads = Absorption Rate x Base Quantity Consumed

Dept. $X = 4 \times 2$ Hours = 8

Dept. $Y = 46 \times 3$ Hours = 418

Dept. $Z = 8 \times 4$ Hours $= \frac{32}{2}$

Overheads Cost ₹ 58

Step 4: Total Cost Per Unit

Particulars ₹

Direct Materials 80

Direct Wages 40

Prime Cost 120

Add: Overheads 58

Total Cost Per Unit 178

PROBLEM - 5A:

The ABC Company has the following account balances and distribution of direct charges on 31st March.

	Total	Producti	on Depts	Service Depts		
		Machine	Packing	General	Store &	
		shop		Plant	Maintenance	
	(₹)	(₹)	(₹)	(₹)	(₹)	
Allocated Overheads:						
Indirect labour	₹ 14,650	₹ 4,000	₹ 3,000	₹ 2,000	₹ 5,650	
Maintenance material	₹ 5,020	₹ 1,800	₹ 700	₹ 1,020	₹ 1,500	
Misc. supplies	₹ 1,750	₹ 400	₹ 1,000	₹ 150	₹ 200	
Superintendent's salary	₹ 4,000	-	-	₹ 4,000	-	
Cost & payroll salary	₹ 10,000	-	-	₹ 10,000	-	
Overheads to be						
apportioned:						
Power	₹ 8,000					
Rent	₹ 12,000					
Fuel and heat	₹ 6,000					
Insurance	₹ 1,000					
Trade License fees	₹ 2,000					
Depreciation	₹ 1,00,000					
	₹ 1,64,420	₹ 6,200	₹ 4,700	₹ 17,170	₹ 7,350	

The following data were compiled by means of the factory survey made in the previous year:

	Floor	Radiator	No. of	Investment	H.P
	Space	Sections	Employees	(₹)	hours
	(Sq ft)				
Machine Shop	2,000	45	20	6,40,000	3,500
Packing	800	90	10	2,00,000	500
General Plant	400	30	3	10,000	-
Store & Maintenance	1,600	60	5	1,50,000	1,000
	4,800	225	38	10,00,000	5,000

Expenses charged to the stores and maintenance departments are to be distributed to the other departments by the following percentages:

Machine shop 50%; Packing 20%; General Plant 30%; General Plant overheads is distributed on the basis of number of employees

Prepare

- i. An overhead distribution statements.
- ii. Distribution of the service departments' expense to production departments.

SOLUTION:

(a) Overhead Distribution Statement

Particulars	Production [Department	Service D	epartment
	Machine	Packing	General Plant	Stores &
				Maintenance
Allocated Expenses:				
Indirect Labour	4,000	3,000	2,000	5,650
Maintenance material	1,800	700	1,020	1,500
Superintendent's salary	-	-	4,000	-
Misc. supplies	400	1,000	150	200
Cost & payroll salaries	-	-	10,000	-
Total Allocated Overheads	6,200	4,700	17,170	7,350
Apportioned expenses	77,720	25,800	2,830	22,650
(as per schedule below)				
Total Overheads	83,920	30,500	20,000	30,000

Schedule of Apportioned Expenses

Item	Basis	Total	Production Department		Service Department	
		Amount				
			Machine	Packing	General	Store &
			shop		Plant	Maintenance
		(₹)	(₹)	(₹)	(₹)	(₹)
Power (7:1:-:2)	HP Hours	8,000	5,600	800	-	1,600
Rent (5 : 2 : 1 : 4)	Floor Space	12,000	5,000	2,000	1,000	4,000
Fuel and heat	Radiator	6,000	1,200	2,400	800	1,600
(3:6:2:4)	Sectors					
Insurance	Investment	1,000	640	200	10	150
(64 : 20 : 1 : 15)						
Trade License	Investment	2,000	1,280	400	20	300
Fees (64 : 20 : 1 :						
15)						

Depreciation	Investment	1,00,000	64,000	20,000	1,000	15,000
(64 : 20 : 1 : 15)						
Total		1,29,000	77,720	25,800	2,830	22,650

Distribution of Service Department Expenses

	Production Department		Service [Department
	Machine	Packing	General	Store &
	shop		Plant	Maintenance
	(₹)	(₹)	(₹)	(₹)
Total Expense [as per (a)]	83,920	30,500	20,000	30,000
Distribution of Store & Maintenance	15,000	6,000	9,000	- 30,000
(5:2:3)				
Distribution of General plant (4:2:1)	16,571	8,286	-29,000	4,143
Distribution of Store & Maintenance	2,072	829	1,242	-4,143
(5:2:3)				
Distribution of General plant (4:2:1)	710	355	-1,242	177
Distribution of Store & Maintenance	89	35	53	-177
(5:2:3)				
Distribution of General plant (4:2:1)	35	18	-53	0
Total	1,18,397	46,023		

PROBLEM - 5B: (MTP 1 JAN 25)

Baba Ltd. belongs to an automotive industry, manufacturing hybrid bicycles. The production of bicycles passes through three departments, viz. X1, Y2, Z3. The bicycles being equipped with gears needs quality check from time to time. Thus, the company also operates two service departments, namely quality control (QC) and maintenance (M), for its bicycle.

Following information is extracted from the accounting books regarding expenses as incurred/ charged:

Particulars	(₹)
Rent and Rates	40,00,000
General Lighting	4,80,000
Indirect Wages	15,51,200
Power	12,00,000
Depreciation on Machines	80,00,000
Sundries	77,56,000

Additional information:

	Prod	uction Departm	Service De	epartments	
	X1	У2	QC	W	
Direct wages (₹)	24,00,000	16,00,000	24,00,000	12,00,000	1,56,000
Working hours	6,140	8,950	4,838	-	-
Value of	4,80,00,000	6,40,00,000	8,00,00,000	40,00,000	40,00,000
machines (₹)					
H.P. of	120	60	100	20	-
machines					
Light points	20	30	40	20	10
Floor space (sq.	4,000	5,000	6,000	4,000	1,000
ft.)					

A technical assessment unveiled the following basis for the apportionment of expenses of service departments:

	X1	У2	Z 3	Q <i>C</i>	W
QC	20%	30%	40%	-	10%
M	40%	20%	30%	10%	-

You are required to DETERMINE the following:

- (i) Overheads distributed to all the departments, viz. X1, Y2, Z3, QC and M.
- (ii) Overheads total and rate per hour under all the Production Departments after redistribution of Service Department's Overhead.
- (iii)Total cost of a bicycle, considering the Direct Material and labour Cost of ₹ 20,000 and ₹ 12,000 respectively, which is being processed for manufacturing in Departments X1, Y2 and Z3 for 4, 5 and 3 hours respectively.

SOLUTION:

(i) Statement Showing Distribution of Overheads of Baba Ltd.

Particulars	Basis	Total	Production Departments		Service De	partments	
			X1	У2	Z 3	QC	M
		(₹)	(₹)	(₹)	(₹)	(₹)	(₹)
Direct wages	Actual	13,56,000	-	-	-	12,00,000	1,56,000
Rent & rates	Area	40,00,000	8,00,000	10,00,000	12,00,000	8,00,000	2,00,000
General	Light	4,80,000	80,000	1,20,000	1,60,000	80,000	40,000
Lighting	points						
Indirect	Direct	15,51,200	4,80,000	3,20,000	4,80,000	2,40,000	31,200
Wages	wages						
Power	H.P.	12,00,000	4,80,000	2,40,000	4,00,000	80,000	-

Depreciation of	Value of	80,00,000	19,20,000	25,60,000	32,00,000	1,60,000	1,60,000
Machines	Machines						
Sundries	Direct	77,56,000	24,00,000	16,00,000	24,00,000	12,00,000	1,56,000
	Wages						
		2,43,43,200	61,60,000	58,40,000	78,40,000	37,60,000	7,43,200

(ii) Redistribution Of Service Department's Expenses Over Production Departments

	X1	У2	Z 3	Q <i>C</i>	W
	(₹)	(₹)	(₹)	(₹)	(₹)
Total overhead distributed	61,60,000	58,40,000	78,40,000	37,60,000	7,43,200
as above					
Dept. QC Overheads	7,52,000	11,28,000	15,04,000	-37,60,000	3,76,000
apportioned					
(20 : 30 : 40 : — : 10)					
Dept. M overheads	4,47,680	2,23,840	3,35,760	1,11,920	- 11,19,200
apportioned					
(40 : 20 : 30 : 10 : —)					
Dept. QC Overheads	22,384	33,576	44,768	-1,11,920	11,192
apportioned					
(20 : 30 : 40 : — : 10)					
Dept. M overheads	4,477	2,238	3,358	1,119	-11,192
apportioned					
(40 : 20 : 30 : 10 : —)					
Dept. QC Overheads	224	336	448	-1,119	112
apportioned					
(20:30:40:-:10)					
Dept. M overheads	45	22	34	11	-112
apportioned					
(40 : 20 : 30 : 10 : —)					
Dept. QC Overheads	2	3	5	-11	-
apportioned					
(20 : 30 : 40 : — : 10)					
Total	73,86,812	72,28,015	97,28,373		
Working hours	6,140	8,950	4,838		
Rate per hour	1,203	808	2,011		

(iii)Determination of Total Cost of a Bicycle:

Particulars	(₹)
Direct material cost	20,000
Direct labour cost	12,000

Overhead cost (See working note)	14,885
	46,885

Working Note:

Overhead cost

= (₹ 1,203 × 4 Hours) + (₹ 808 × 5 Hours) + (₹ 2,011 × 3 Hours)

= ₹ 4,812 + ₹ 4,040 + ₹ 6,033 = ₹ 14,885

PROBLEM - 6:

AC Limited is a small company that undertakes a variety of jobs for its customers Budgeted profit and loss statement for the year ending 31 December 20×1 .

PARTICULARS	AMOUNT (₹)	AMOUNT (₹)
Sales		₹ 7,50,000
Cost:		
Direct materials	₹ 1,00,000	
Direct wages	₹ 50,000	
Prime cost	₹ 1,50,000	
Fixed production overhead	₹ 3,00,000	
Production cost	₹ 4,50,000	
Selling, Distribution and Administration cost	₹ 1,60,000	₹ 6,10,000
Profit		₹ 1,40,000
Budgeted data:		
Labour hours for the year	25,000	
Machine hours for the year	15,000	
Number of jobs for the year	300	

An enquiry has been received, and the production department has produced estimates of the prime cost involved and of the hours required to complete job A57.

Particulars	Amount (₹)
Direct materials	₹ 250
Direct wages	₹ 200
Prime cost	₹ 450
Labour hours required	80
Machine hours required	50

You are required to:

A. Calculate by different methods six overhead absorption rates;

B. Calculate cost estimates for job A57 using in turn each of the six overhead absorption rates calculated in a..

SOLUTION:

Step 1: Calculation of absorption rate (all six types)

S.	Formula	Calculation	Absorption rate
No			(₹)
1.	Labour Hour Rate = Overheads Labour Hours	3,00,000 25,000 Hours	₹ 12 Per Labour Hour
2.	Machine Hour Rate = Overheads Machine Hours	3,00,000 15,000 Hours	₹ 20 Per Machine Hour
3.	Material Cost Rate = $\frac{Overheads}{Material Cost} \times 100$	₹3,00,000 ₹1,00,000 × 100	300% of Direct Material Cost
4.	Labour Cost Rate = Overheads Labour Cost × 100	₹3,00,000 ₹50,000 × 100	600% of Direct Labour Cost
5.	Prime Cost = $\frac{Overheads}{Prime cost} \times 100$	₹3,00,000 ₹1,50,000 × 100	200% of Prime Cost
6.	Production Unit Rate = $\frac{Overheads}{No. \text{ of Jobs}}$	₹3,00,000 300 jobs	₹ 1000 Per job

Step 2: Charging Overheads to Job A57 and Calculating Total Cost of Job A57

Method	Direct	Direct	Prime Cost	Production Overheads	Total
	Material	Labour	(₹)	(₹)	Cost (₹)
	(₹)	(₹)	(1 + 2) = (3)	(4)	(5) = (3 + 4)
	(1)	(2)			
Labour	250	200	450	80 Hours x ₹ 12 Per	1410
Hour Ratio				Hour	
Machine	250	200	450	50 Hours x ₹ 20 Per	1450
Hour Ratio				Hour	
Material	250	200	450	250 x 300 % = ₹ 750	1200
Cost Rate					
Labour	250	200	450	200 × 600 % = ₹ 1200	1650
Cost Rate					
Prime Cost	250	200	450	450 x 200 % = ₹ 900	1350
Rate					
Production	250	200	450	1000 × 1 = ₹ 1000	1450
Units Cost					

PROBLEM - 7:

ABC Ltd manufactures a single product and absorbs production overheads at a predetermined rate of ₹ 10 per machine hour.

At the end of the financial year, it has been found that actual production overheads incurred were $\pm 6,00,000$. It included $\pm 45,000$ on account of written off obsolete stores and $\pm 30,000$ being the wages paid for the strike period under an award.

The production and sales data for the year are as under:

Finished goods produced: 20000 units

WIP [50% complete in all aspects]: 8,000 units

Goods sold: 18,000 units.

The actual machine hours worked during the year was 48,000 hours. It has been found that one-third of the under absorption was due to lack of production planning and the rest were attributable to a normal increase in costs.

You are required to:

- i. Calculate the amount of under absorption of production overheads during the year.
- ii. Show the accounting treatment of under absorption of production overheads.

SOLUTION:

Step 1: Calculation of Under or Over Absorption during the Year:

(₹)

A. Total Production Overheads Actually Incurred = 6,00,000

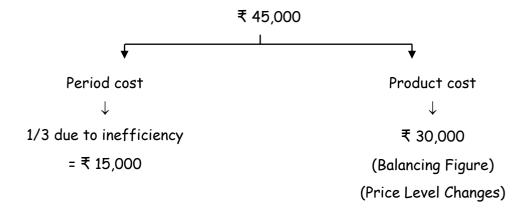
(-) B. Written Off Absolute Stores = (45,000)

Wages Paid For Strike Period = (30,000)

C. Net Production Overheads Actually Incurred = 5,25,000

(Note - 1)

D. Absorbed POH (Absorption Rate x Machine Hours) = $\frac{4,80,000}{1}$


 $(\pm 10 \times 48,000 \text{ Hours})$

E. Under Absorption (C - D) = 45,000

Note 1: (b) - Are Excluded From Actual OH Incurred As They Are Directly Chargeable To Costing Profit and Loss A/c as Period Costs.

Step 2: Classification of under absorption into product or period cost:

Step 3: Apportionment of product cost between the products using supplementary rate

Particulars	Units	Computation	₹
a. FG sold	18,000 (Given)	18,000 x ₹ 1.25	22,500
b . FG unsold (Closing Stock)	2000	2,000 x ₹ 1.25	2,500
	(20,000 - 18,000)		
c. WIP (8000 Units x 50%)	4,000	4,000 x ₹ 1.25	5,000
	24,000		30,000

Supplementary Rate = $\frac{\text{Under Absorption*}}{\text{Total Equivalent Units Produced}}$

*Only To Extent Of Product Cost Per Unit = $\frac{30,000 \text{ *}}{24,000 \text{ Units}} = 1.25 \text{ Per Unit}$

Date	Particulars		Debit (₹)	Credit (₹)
	Cost of sales A/c	Dr	22,500	
	FG A/c	Dr	2,500	
	WIP A/c	Dr	5,000	
	Costing P & L A/c	Dr	15,000	
	To POH A/c			45,000
	(Being Under Absorption Accounted			
	For)			

Note 2: Due To The Above Adjustment Current Year Profit Comes Down By $\stackrel{₹}{}$ 37,500 ($\stackrel{₹}{}$ 22,500 + $\stackrel{₹}{}$ 15,000) & Stock Increases By $\stackrel{₹}{}$ 7,500 ($\stackrel{₹}{}$ 2500 + $\stackrel{₹}{}$ 5000)

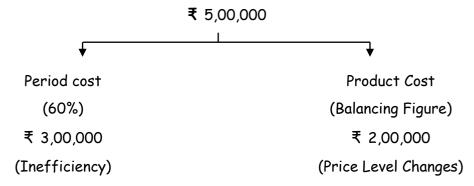
PROBLEM - 7A:

In a manufacturing unit, Overhead was recovered at a pre-determined rate of ₹ 20 per labour hour. The total Factory OH paid and the labour-hours actually worked were ₹ 45,00,000 and 2,00,000 labour - hours respectively. During this period 30,000 units were sold. At the end of the period, 5,000 units were held in stock while there was no Opening Stock of Finished Goods. Similarly, though there was no stock of uncompleted units at the beginning of the period, at the end of the period there were 10,000 uncompleted units, which may be reckoned at 50% complete.

The cost accountant was able to obtain the following other information:

- 1. Actual factory OH included the following items:
 - a. ₹ 1,25,000 paid to workers for a strike period under an award of the labour court.
 - b. ₹ 25,000 being a penalty paid for contravention of Central Excise Rules.
 - c. ₹ 40,000 being obsolete stores now written off.
 - d. ₹ 10,000 paid towards Consumables, relating to prior periods, now paid after settlement of a dispute.
- 2. ₹ 2,00,000 of Factory OH for the period was still payable and not yet accounted in the books.

On analysing the reasons, it was found that 60% of the unabsorbed OH were due to defective planning and the rest were attributable to an increase in OH costs. How would Unabsorbed OH be treated in cost accounts?


SOLUTION:

Step 1: Calculation Of Under Or Over Absorption:

	Particulars		₹
a.	Total Production Overheads Actually Incurred		45,00,000
b.	Factory Overheads Incurred For The Period But Not		2,00,000
	Accounted		
c.	Production Overheads Actually Incurred		47,00,000
d.	Strike Wages	1,25,000	
	Penalty - Central Excise	25,000	
	Obsolete Stores	40,000	
	Prior Period Settlement	10,000	(2,00,000)
e.	Net Production Overheads Actually Incurred		45,00,000
f.	Absorbed Overheads (₹ 20 X 2,00,000)		40,00,000
g.	Under Absorbed Overheads (E - F)		5,00,000

Step 2: Classification Of Under Absorption Into Product & Period Cost

Step 3: Apportionment Of Under Absorption To Output Using Supplementary Rate

	Particulars	Value	Computation	(₹)
α.	Units sold Finished Goods	30,000	30,000 x ₹ 5	1,50,000
b.	Units unsold Finished Goods	5,000	5,000 x ₹ 5	25,000
C.	Closing WIP (10,000 x 50%)	5,000	5,000 x ₹ 5	25,000
		40,000		2,00,000

Supplementary rate =
$$\frac{\text{Product}\cos t}{\text{Units}\,\text{Produced}} = \frac{\text{₹ 2,00,000}}{40,000\,\text{units}} = \text{₹ 5 Per Unit}$$

Particulars		Debit (₹) Credit (₹)
Cost of sales A/c	Dr	1,50,000)
FG A/c	Dr	25,000	
WIP A/c	Dr	25,000	
Costing P & L A/c	Dr	3,00,000)
To Production Overh	eads		5,00,000
(Being Treatment Of Ur	ider Absorption)		

Note: Due To Above Adjustment, Profit Comes Down By ₹ 4,50,000 & Stock Value Increases By ₹ 50,000 (₹ 25,000 & ₹ 25,000)

PROBLEM - 7B:

Your company uses an integrated accounting system and applies overheads on the basis of "pre-determined" rates. The following figures are extracted from the Trial balance as at 31st March.

PARTICULARS	AMOUNT (₹)	PARTICULARS	AMOUNT (₹)
Manufacture Overhead	₹ 4,26,544 Dr.	Work-in- Progress	₹ 1,41,480 Dr.
Manufacture Overhead applied	₹ 3,65,904 Dr.	FG stock	₹ 2,30,732 Dr.
		Cost of goods sold	₹ 8,40,588 Dr.

You are required to show the profit implications of treating under-absorption under the following methods:

- A. Write off to Profit and Loss Account;
- B. Adjustment to cost of sales and inventories of WIP and Finished goods.

SOLUTION:

Step 1: Calculation Of Under Or Over Absorption

	Particulars	(₹)
a.	Total Production Overheads Actually Incurred	4,26,544
b.	Absorbed Overheads (Note)	3,65,904
c.	Under Absorption (A - B)	60,640

Step 2:

A) Under Absorption - $\stackrel{?}{\stackrel{\checkmark}{=}}$ 60,640 Treated As Period Cost It Will Be Written Off To Costing Profit and Loss A/c

Costing Profit and Loss A/c Dr. 60,640

To Production Overheads 60,640

Due To This Adjustment, The Profit Reduces By ₹ 60,640

B) Under Absorption - ₹ 60,640 Treated As Product Cost It Will Be Distributed Between FG Sold, FG Unsold, And WIP Units In Supplementary Rate.

	Particulars	Units	Computation	(₹)
α.	WIP	1,41,480	1,41,480 × 5%	7074
b.	FG stock	2,30,732	2,30,732 × 5%	11537
c.	FG Sold	8,40,588	8,40,588 × 5%	42029
		12,12,800		₹ 60,640

Supplementary Rate = $\frac{\text{Under Absorption}}{\text{Cost Of Production}} = \frac{\text{₹ 60,640}}{\text{₹ 12,12,800}}$

Note: Since Value Is Given, Supplementary Rate Is Calculated As A %

Cost of sales A/c Dr. ₹42029

FG A/c Dr. ₹ 11534

WIP A/c Dr. ₹7077

To Production Overheads ₹ 60,640

PROBLEM - 7C: (MTP 2 JAN 25)

Shanu Ltd has calculated a predetermined overhead rate of \mathbb{Z} 22 per machine hour for its Quality Check (QC) department. This rate has been calculated for the budgeted level of activity and is considered as appropriate for absorbing overheads. The following overhead expenditures at various activity levels had been estimated.

Total overheads	Number of machine hours
₹ 3,38,875	14,500
₹ 3,47,625	15,500
₹ 3,56,375	16,500

You are required to:

- (i) CALCULATE the variable overhead absorption rate per machine hour.
- (ii) CALCULATE the estimated total fixed overheads.
- (iii)CALCULATE the budgeted level of activity in machine hours
- (iv)CALCULATE the amount of under/over absorption of overheads if the actual machine hours were 14,970 and actual overheads were ₹ 3,22,000.
- (v) STATE the arguments for and against using departmental absorption rates as opposed to a single or blanket factory wide rate.

SOLUTION:

(i) Variable Overhead Absorption Rate: =
$$\frac{\text{Difference In Total Overheads}}{\text{Difference In Levels In Terms Of Machine Hours}}$$
$$= \frac{\text{₹ 3, 47,625 - ₹ 3,38,875}}{15,500 \text{ Hours } -14,500 \text{ Hours}} = \text{₹ 8.75 Per Machine Hour}$$

(ii) Calculation of Total fixed overheads:

	Amount (₹)
Total Overheads At 14,500 Hours	3,38,875
Variable Overheads = ₹ 8.75 × 14,500 Hours	1,26,875
Total Fixed Overheads	2,12,000

(iii) Calculation Of Budgeted Level Of Activity In Machine Hours:

Let Budgeted Level Of Activity = X

Then,
$$\frac{(\text{₹ 8.75 X} + \text{₹ 2,12,000})}{\text{X}} = \text{₹ 22}$$

$$8.75X + ₹ 2,12,000 = 22 X$$

$$X = 16.000$$

Thus, Budgeted Level Of Activity = 16,000 Machine Hours

(iv) Calculation of Under or Over absorption of overheads:

	Amount (₹)
Actual Overheads	3,22,000
Absorbed Overheads = 14,970 Hours × ₹ 22 Per Hour	3,29,340
Over-Absorption (₹ 3,29,340 - ₹ 3,22,000)	7,340

(v) Departmental absorption rates provide costs which are more precise than those provided by the use of blanket absorption rates. Departmental absorption rates facilitate variance analysis and cost control. The application of these rates makes the task of stock and work-in-process (WIP) valuation easier and more precise. However, the setting up and monitoring of these rates can be time-consuming and expensive.

PROBLEM - 8:

The Pipe Company manufacture two products, A and B during the first year of its operations. For purposes of product costing, an overhead rate of application of ₹ 1.70 per direct-labour hour was used, based on budgeted factory overhead of ₹ 3,40,000 and budgeted direct-labour hours of 2,00,000 as follows.

	Budgeted overhead	Budgeted hours
Department 1	₹ 2,40,000	1,00,000
Department 2	₹ 1,00,000	1,00,000
Total	₹ 3,40,000	2,00,000

The number of labour hours required to manufacture each of these products was:

	Product A	Product B
In Dept. 1	4	1
In Dept. 2	1	4
Total	5	5

At the end of the year, there was no work in process. There were, however, 2,000 and 6,000. Finished Units, respectively, of products A and B on hand. Assume that budgeted activity was attained.

- i. What was the effect on the Company's income of using a plant wise overhead rate instead of departmental overhead rates?
- ii. Assume that material and labour costs per unit of Product A were ₹ 10/- and that the selling price was established by adding 40 per cent to cover profit, what selling price results from the use of departmental against plant wise overhead rates?

iii. Explain why departmental overhead rates were generally preferable to plant wise rates.

SOLUTION:

Part - A: Effect On Company's Income Due To Use Of Plant-Wise Rate Instead Of Departmental Rate

Step 1: Overhead Cost Charged To Products Using Plant Wise Rate (Blanket Rate)

Absorption rate =
$$\frac{\text{Budgeted Total Overheads}}{\text{Budgeted Total Labour Hours}}$$
$$= \frac{₹ 3,40,000}{2,00,000 \text{ Hours}} = ₹ 1.70 \text{ Per Hour}$$

Prod. A = 5 Hours $x \neq 1.70 = \neq 8.50$ Per Unit

Prod. B = 5 Hours x ₹ 1.70 = ₹ 8.50 Per Unit

Step 2: Overhead Cost Charged To Products Using Departmental Rate

	Particulars	Department 1	Department 2
α.	Budgeted Overheads	₹ 2,40,000	₹ 1,00,000
b.	Labour Hours	1,00,000	1,00,000
c.	Absorption rate (a ÷ b)	₹ 2.40 Per Hour	₹ 1.00 Per Hour

Product $A = (4 \text{ Hours } x \neq 2.4) + (1 \text{ Hour } x \neq 1) = \neq 10.60 \text{ Per Unit}$

Product B = (1 Hour $\times \neq 2.4$) + (4 Hours $\times \neq 1$) = $\neq 6.40$ Per Unit

Step 3: Impact on profit

Particulars	Α	В	
Blanket Rate (₹)	8.50 Per Unit	8.50 Per Unit	
Departmental Rate (₹)	10.60 Per Unit	6.40 Per Unit	
Difference (₹)	2.10 Per Unit	2.10 Per Unit	
	(Under Costed)	(Over Costed)	
Stock (units)	2000 Units	6000 Units	
Difference in Stock Value	₹ 4200	₹ 12,600	
	(Under Valued)	(Over Valued)	
Net	₹ 8400 (Overvalued)		

Due To Over Valuation Of Closing Stock On Account Of Using Blanket Rate The Profit Stands Overstated By \pm 8,400

Part -B: Computation Of Selling Price Per Unit Of Product A Using Plant Wise Rate & Departmental Rate:

Particulars	Plant Wise Rate (₹)	Departmental Wise Rate (₹)
Material + Labour	10.00	10.00
Add: Overheads	8.50	10.60
Total cost	18.50	20.60
Add: Profit @ 40%	7.40	8.24
Selling price	25.90	28.84

Due To Use By Blanket Rate, Product A Has Been Under - Priced By ₹ 2.94 (₹ 28.84 - ₹ 25.90)

PROBLEM - 9:

A machine shop has 8 identical Drilling Machines manned by 6 operators. The machines cannot be worked without an operator wholly engaged on it. The original cost of all these 8 machines works out to ₹ 8 lakhs. These particulars are furnished for a six month period:

Normal available hours per month	208
Absenteeism (without pay) - hours	18
Leave (with pay) - hours	20
Normal idle time unavoidable - hours	10
Average rate of wages per day of 8 hours	₹ 20
Production Bonus estimated on Wages	15%
Value of Power consumed	₹ 8,050
Supervision and Indirect Labour	₹ 3,300
Lighting and Electricity	₹ 1,200

The following particulars are for a year:

- Repairs and maintenance including consumables 3% on the value of machines.
- Insurance ₹ 40,000.
- Depreciation 10% on original cost.
- Other Sundry works expenses ₹ 12,000.
- General Management expenses allocated ₹ 54,530.

You are required to work out a comprehensive machine hour rate for the Machine Shop.

SOLUTION:

W.N.1: Calculation of Paid Hours and Effective Working Hours.

Particulars	6 operators
	And 6 months
A. Normal Available Hours	7,488
(208 Hours × 6 Months × 6 Operators)	
B. Absenteeism Without Pay	(108)
(18 Hours x 6 Operators)	
C. Paid Hours (A - B)	7,380
D. Leave With Pay (20 Hours x 6 Operators)	(120)
E. Normal Idle Time (10 Hours x 6 Operators)	(60)
F. Effective Working Hours (C - D - E)	7,200

Note:

As The Machine Cannot Be Worked Without An Operator Wholly Engaged On Them. Therefore The Effective Working Hours Of 6 Operators For 6 Months Are The Hours For Which The Machines Can Be Used.

Hence 7200 Hours Represent Hours Of Machine Operation.

W.N.2: Computation Of Operators Wages

Average Rate Of Wages =
$$\frac{\text{₹ 20}}{\text{8 Hours}}$$
 = ₹ 2.5 Per Hour

∴ Total Wages Paid To 6 Operators For 6 Months = 7380 Hours x ₹ 2.5 Per Hour = ₹ 18450

Computation Of Comprehensive Machine Hour Rate Of Machine Shop:

	Particulars	(₹)
1.	Operator's wages (W.N.2)	18450
2.	Production Bonus (15% x ₹ 18450)	2768
3.	Power consumed	8050
4.	Supervision	3300
5.	Lighting & Electricity	1200
6.	Repairs (3% x ₹ 8,00,000 x 6 Months ÷ 12 Months)	12,000
7.	Insurance (₹ 40,000 × 6 Months ÷ 12 Months)	20,000
8.	Depreciation (₹ 8,00,000 x 10% x 6 Months ÷ 12 Months)	40,000
9.	Sundry Expenses (₹ 12,000 × 6 Months ÷ 12 Months)	6,000
10.	General Management Expenses (₹ 54,530 x 6 Months ÷ 12 Months)	27,265
	Total Overheads	139033

Comprehensive Machine Hr Rate = $\frac{\text{Total Overheads}}{\text{Total Machine Hours (W.N.1)}}$ = $\frac{\$1,39,033}{7200 \text{ Hours}}$ = $\frac{\$19,31 \text{ Per Machine Hour}}{\$19,31 \text{ Per Machine Hour}}$

PROBLEM 9A:

A machine shop cost centre contains three machines of equal capacities. To operate these three machines nine operators are required i.e., three operators on each machine. Operators are paid ₹20 per hour. The factory works for fourty eight hours in a week which includes 4 hours set up time. The work is jointly done by operators. The operators are paid fully for the fourty eight hours. In additions they are paid a bonus of 10 per cent of productive time. Costs are reported for this company on the basis of thirteen four-weekly period.

The company for the purpose of computing machine hour rate includes the direct wages of the operator and also recoups the factory overheads allocated to the machines. The following details of factory overheads applicable to the cost centre are available:

- i. Depreciation 10% per annum on original cost of the machine. Original cost of each machine is ₹52,000.
- ii. Maintenance and repairs per week per machine are ₹60.
- iii. Consumable stores per week per machine are ₹75.
- iv. Power: 20 units per hour per machine at the rate of 80 paise per unit. No power is used during the set-up hours.
- v. Apportionment to the cost centre: Rent per annum ₹5,400, Heat and Light per annum ₹9,720, foreman's salary per annum ₹12,960 and other miscellaneous expenditure per annum ₹18.000.

Required:

i. Calculate the cost of running one machine for a four-week period.

SOLUTION:

Effective Machine Hour For Four-Week Period

- = Total Working Hours Unproductive Set-Up Time
- = $\{(48 \text{ hours} \times 4 \text{ weeks}) \{(4 \text{ hours} \times 4 \text{ weeks})\}$
- = (192 16 Hours) = 176 Hours.

(i) Computation Of Cost Of Running One Machine For A Four Week Period

		Amount (₹)	Amount (₹)
(A)	Standing charges (per annum)		
	Rent	5,400	
	Heat and light	9,720	
	Forman's salary	12,960	
	Other miscellaneous expenditure	18,000	
	Standing charges (per annum)	46,080	
	Total expenses for one machine for four week period $\left(\frac{\text{₹ 46,080}}{\text{3 machines } \times \text{13 four - week period}}\right)$		1,181.54
	Wages (48 hours × 4 weeks × ₹ 20 × 3 operators)		11,520.00
	Bonus {(176 hours × ₹ 20 × 3 operators) × 10%}		1,056.00
	Total standing charges		13,757.54
(B)	Machine Expenses		
	Depreciation $\left(₹52,000 \times 10\% \times \frac{1}{13 \text{ four - week period}}\right)$		400.00
	Repairs and maintenance (₹ 60 × 4 weeks)		240.00
	Consumable stores (₹ 75 x 4 weeks)		300.00
	Power (176 hours \times 20 units \times ₹ 0.80)		2,816.00
(C)	Total machine expenses		3,756.00
	Total expenses (A) + (B)		17,513.54

(ii) Machine hour rate =
$$\frac{₹ 17,513.54}{176 \text{ Hours}} = ₹ 99.51$$

PROBLEM -9B:

A machine costing ₹ 1,00,00,000 is expected to run for 10 years. At the end of this period its scrap value is likely to be ₹ 9,00,000. Repairs during the whole life of the machine are expected to be ₹ 18,00,000 and the machine is expected to run 4,380 hours per year on the average.

Its electricity consumption is 15 units per hour, the rate per unit being ₹ 5. The machine occupies one-fourth of the area of the department and has two points out of a total of ten for lighting.

The foreman has to devote about one sixth of his time to the machine. The monthly

rent of the department is \mp 30,000 and the lighting charges amount to \mp 8,000 per month. The foreman is paid a monthly salary of \mp 19,200. FIND OUT the machine hour rate, assuming insurance is @ 1% p.a. and the expenses on oil, etc., are \mp 900 per month

SOLUTION:

Total Number Of Hours Per Annum- 4,380

Total Number Of Hours Per Month- 365

Computation of Machine Hour Rate

	Per Month (₹)	Per Hour (₹)
Fixed Costs (Standing Charges)		
Depreciation (Refer Working Note-1)	75,833	
Rent ($₹30,000 \times \frac{1}{4}$)	7,500	
Lighting Charges {(₹ 8,000 × 2 Points) ÷ 10 Points}	1,600	
Foreman's Salary (₹ 19,200 × 1/6)	3,200	
Sundry Expenses (Oil Etc.)	900	
Insurance {(1% Of ₹ 1,00,000,000) ÷ 12 Months}	8,333	
	97,366	266.76
Variable Costs:		
Repairs (Refer Working Note -2)		41.10
Electricity (15 Units × ₹ 5)		75.00
Machine Hour Rate		382.86

Working Notes:

Depreciation Per Month =
$$\frac{\text{Cost Of Machine - Scrap Value}}{\text{Life The Machine}}$$
$$= \frac{\text{₹ 1,00,00,000 - ₹ 9,00,000}}{\text{(10 years x 12 months)*}} = \text{₹ 75,833}$$

*In the question the life of the machine is given as 10 years and it is also mentioned the machine will run for 4,380 hours per annum. The depreciation can be calculated either on the basis of time i.e. 10 years or on the basis of activity of 43,800 hours (4,380 hours p.a.)

Repairs for the whole life is ₹ 18,00,000, which can be linked to activity level of 43,800 Hours. Thus, Repairs cost per hour = ₹ 18,00,000 ÷ 43,800 Hours = ₹ 41.10

PROBLEM - 9C: (RTP SEP 24)

From the details furnished below you are required to compute a comprehensive machinehour rate:

Original purchase price of the machine	
(subject to depreciation at 10% per annum on original cost)	₹12,96,000
Normal working hours for the month	
(The machine works for only 75% of normal capacity)	200 hours
Wages to Machine-man	₹800 per day
	(of 8 hours)
Wages to Helper (machine attendant)	₹500 per day
	(of 8 hours)
Power cost for the month for the time worked	₹1,30,000
Supervision charges apportioned for the machine centre for the	
month	₹18,000
Electricity & Lighting (fixed in nature) for the month	₹9,500
Repairs & maintenance (machine) including consumable stores per	₹17,500
month	
Insurance of Plant & Building (apportioned) for the year	₹18,000
Other general expense per annum	₹18,000

The workers are paid a fixed dearness allowance of ₹4,500 per month. Production bonus payable to workers in terms of an award is equal to 10% of basic wages and dearness allowance. Add 10% of the basic wage and dearness allowance against leave wages and holidays with pay to arrive at a comprehensive labour-wage for debit to production.

SOLUTION:

Effective Machine Hours = 200 Hours × 75% = 150 Hours

Computation Of Comprehensive Machine Hour Rate

	Per Month	Per Hour
	(₹)	(₹)
Fixed Cost		
Supervision Charges	18,000.00	
Electricity And Lighting	9,500.00	
Insurance Of Plant And Building (₹ 18,000 ÷ 12 Months)	1,500.00	
Other General Expenses (₹ 18,000 ÷ 12 Months)	1,500.00	
Depreciation (₹ 1,29,600 ÷ 12 Months)	10,800.00	

	41,300.00	275.33
Direct Cost		
Repairs And Maintenance	17,500.00	116.67
Power	1,30,000.00	866.67
Wages Of Machine Man		196.00
Wages Of Helper		136.00
Machine Hour Rate (Comprehensive)		1,590.67

Wages Per Machine Hour

	Machine Man	Helper
Wages For 200 Hours		
Machine-Man (₹ 800 × 25)	₹ 20,000.00	
Helper (₹ 500 × 25)		₹ 12,500.00
Dearness Allowance (Da)	₹ 4,500.00	₹ 4,500.00
	₹ 24,500.00	₹ 17,000.00
Production Bonus (10% Of Basic And DA)	₹ 2,450.00	₹ 1,700.00
Leave Wages (10% Of Basic And DA)	₹ 2,450.00	₹ 1,700.00
	₹ 29,400.00	₹ 20,400.00
Effective Wage Rate Per Machine Hour	₹ 196.00	₹ 136.00

PROBLEM - 9D: (MTP 1 SEP 24)

The following particulars refer to process used in the treatment of material subsequently, incorporated in a component forming part of an electrical appliance:

- (i) The original cost of the machine used (Purchased in June 2023) was ₹ 10,000. Its estimated life is 10 years, the estimated scrap value at the end of its life is ₹ 1,000, and the estimated working time per year (50 weeks of 44 hours) is 2,200 hours of which machine maintenance etc., is estimated to take up 200 hours.
 - No other loss of working time expected. Setting up time, estimated at 100 hours, is regarded as productive time. (Holiday to be ignored).
- (ii) Electricity used by the machine during production is 16 units per hour at cost of a 9 paisa per unit. No current is taken during maintenance or setting up.
- (iii)The machine required a chemical solution which is replaced at the end of week at a cost of ₹ 20 each time.
- (iv) The estimated cost of maintenance per year is ₹ 1,800.
- (v) Two attendants control the operation of machine together with five other identical machines. Their combined weekly wages, insurance and the employer's contribution to

holiday pay amount ₹ 120.

(vi)Departmental and general works overhead allocated to this machine for the current year amount to ₹ 3,000.

You are required to CALCULATE the machine hour rate of operating the machine.

SOLUTION:

Working Notes:

- i) Total Productive Hours = Estimated Working Hours Machine Maintenance Hours
 = 2,200 Hours 200 Hours = 2,000 Hours
- ii) Depreciation Per Annum = $\frac{\text{₹ 10,000 ₹ 1,000}}{\text{10 years}}$ = ₹ 900
- iii) Chemical Solution Cost Per Annum = ₹ 20 × 50 Weeks = ₹ 1,000
- iv) Wages Of Attendants (Per Annum) = $\frac{\text{₹ 120 × 50 weeks}}{6 \text{ machines}} = \text{₹ 1,000}$

Calculation Of Machine Hour Rate

Particulars	Amount ₹	Amount	
	(per annum)	(per hour)	
A. Standing Charge			
(i) Wages of attendants	1,000		
(ii) Departmental and general works overheads	3,000		
Total Standing Charge	4,000		
Standing Charges per hour = $\left[\frac{₹4,000}{2,000 \text{ Hours}}\right]$		2.0	
B. Machine Expense			
(iii) Depreciation	900	0.45	
(iv) Electricity	-	1.37	
(₹ 0.09 x 16 units x 1900 Hours ÷ 2000 Hours)			
(v) Chemical solution	1,000	0.50	
(vi) Maintenance cost	1,800	0.90	
Machine Operating Cost Per Hour (A + B)		5.22	

PROBLEM - 9E: (PYP SEP 24)

This data pertains to the three machines operating in the manufacturing division of PQR Corp for the financial year 2023-2024:

Particulars	Estimated Expenses			
	TOTAL	Machines		
	(₹)	X (₹)	У (₹)	Z (₹)
Direct Labour Expenses (per quarter)	2,50,000			
Oil Expenses (per quarter)	1,03,125	37,500	37,500	28,125
Machine Insurance Expenses (per	60,000			
quarter)				
Depreciation (per annum)	6,00,000	1,00,000	2,00,000	3,00,000
Building Maintenance Expenses (per	1,00,000			
quarter)				
Wages of Operator (per quarter)	2,25,000			
Electricity Expenses (per quarter)	3,00,000			
Rent and Rates (per month)	80,000			
Salary of Technician (per month)	62,500			

(The Technician works only on machines X and Y and the Operator controls all three machines and both spend equal time on each of the machines worked upon by them.)

There are 14 holidays besides Sundays in the year, of which six are on Saturdays. There was a Strike of workers for 5 working days (including one Saturday). The manufacturing department operates for 8 hours per day on regular week days, while on Saturdays, the operating hours are reduced by 2 hours per day. All machines operate at 80% capacity throughout the year. Assume 366 days in a year.

The following additional information is also available:

- (i) A 20% hike in the price of oil.
- (ii) A 10% rise in Oil consumption for machines 'X' and 'Y' only. (iii)

Particulars		Machines		
	X	У	Z	
No. of Workers	5	3	2	
Ratio of K.W. Rating	3	3	4	
Ratio of Floor space utilized	1	2	1	

Required:

Prepare a Statement detailing the allocation of expenses to each machine on an annual basis and thereafter, compute the comprehensive machine hour rate for each of the specified machine.

SOLUTION:

Computation Of Comprehensive Machine Hour Rate

Particulars	Basis of	Total (₹)	Machines		
	Apportionment		X (₹)	У (₹)	Z (₹)
Standing Charges					
(Per Annum)					
Direct Labour	No. of Workers	10,00,000	5,00,000	3,00,000	2,00,000
Expenses	(5:3:2)				
Wages of Operator	Equal	9,00,000	3,00,000	3,00,000	3,00,000
Machine Insurance	Depreciation	2,40,000	40,000	80,000	1,20,000
Expenses	(1:2:3)				
Building Maintenance	Floor Space	4,00,000	1,00,000	2,00,000	1,00,000
Expenses	(1:2:1)				
Rent and Rates	Floor Space (1:2:1)	9,60,000	2,40,000	4,80,000	2,40,000
Salary of Technician	(1:1:0)	7,50,000	3,75,000	3,75,000	-
Total Standing		42,50,000	15,55,000	17,35,000	9,60,000
Charges					
Hourly Rate (A)			856.28	955.40	528.63
Machine Expenses					
(Per Annum)					
Oil Expenses	Direct (W.N.1)	5,31,000	1,98,000	1,98,000	1,35,000
Depreciation	Direct	6,00,000	1,00,000	2,00,000	3,00,000
Electricity Expenses	K. W. Rating	12,00,000	3,60,000	3,60,000	4,80,000
Total Machine	(3:3:4)	23,31,000	6,58,000	7,58,000	9,15,000
Expenses					
Hourly Rate (B)			362.33	417.40	503.85
Total Expenses		65,81,000	22,13,000	24,93,000	18,75,000
(A) + (B)			1,218.61	1,372.80	1,032.49

Calculation of Effective Working Hours

	Per Machine
	Per Annum
Full Day Working Hours (250 days x 8 hours)	2,000
6 hours per day Working Hours (45 days × 6 hours)	270
Total Hours	2,270
Capacity Utilization	80%
Effective working hours	1,816
No. of Shutdown Days	
Sundays	52
Holidays	14
Strike Period	5
	71
No. of 6 Hours Working Days	
Saturdays	52
Less: Holidays	(6)
Less: Strike Period	(1)
	45

No. of Full Working Days

Total No of Days in a year 366
Less: No of Shutdown Days (71)
Less: No. of 6 Hours Working Days (45)
250

Working Notes

1. Calculation of Oil Expenses.

Particulars	Machines		
	X (₹)	У (₹)	Z (₹)
Oil Expenses	1,50,000	1,50,000	1,12,500
Add: Increase in Price @20%	30,000	30,000	22,500
	1,80,000	1,80,000	1,35,000
Add: Increase in Consumption @10%	18,000	18,000	-
Total	1,98,000	1,98,000	1,35,000

PROBLEM - 10:

Gemini Enterprises undertakes three different jobs A, B and C. All of them require the use of a special machine and also the use of a computer. The computer is hired and the hire charges work out to \$ 4,20,000 per annum. The expenses regarding the machine are estimated as follows: (\$)

Rent for a quarter 17,500

Depreciation per annum 2,00,000

Indirect charges per annum 1,50,000

During the first month of operation the following details were taken from the job register:

Number of hours the machine was used:	Job			
Number of hours the machine was asea.	Α	В	С	
a. Without the use of the computer	600	900	-	
b. With the use of the computer	400	600	1000	

You are required to COMPUTE the machine hour rate

- i. For the firm as a whole for the month when the computer was used and when the computer was not used
- ii. For the individual Jobs A, B and C

SOLUTION:

Step 1: Calculation Of Machine Hours With & Without Use Of Computers

Total Machine Hours = 3,500 Hours

(600 + 900 + 400 + 600 + 1000)

Machine Hours without use of Machine Hours with use of

Computers Computers

= 600 + 900 = 400 + 600 + 1000

= 1500 Hours = 2000 Hours

Step 2: Calculation Of Total Overheads Of The Machine & Computer Per Month:

1. Total Overheads Of Machine Per Month:

Rent (₹ 17,500 x 1 Month ÷ 3 Months) ₹ 5,833

Depreciation ($₹ 2,00,000 \times 1 \text{ Month} \div 12 \text{ Months}$) ₹ 16,667

Indirect charges ($₹ 1,50,000 \times 1 \text{ Month} \div 12 \text{ Months}$) ₹ 12,500

Total ₹ <u>35,000</u>

2. Computer Hire Charges ($₹ 4,20,000 \times 1 \text{ Month} \div 12 \text{ Months}$) ₹ 35,000

Step 3: Calculation Of Total Overheads With & Without Use Of Computer

- 1. Overheads For Using Machine Without Computers $\left(\frac{₹35,000}{3500 \text{ Hours}} \times 1500 \text{ Hours}\right) = ₹15,000$
- 2. Overheads For Using Machine With Computers

$$\left(\frac{35,000}{3500 \text{ Hours}} \times 2000 \text{ Hours}\right) + 35000 = 55,000$$

Step 4: Calculation Of Machine Hour Rate

1. With Computer =
$$\frac{\text{₹}55,000}{2000 \text{ Hours}}$$
 = ₹27.5 Per Machine Hour

2. Without Computer =
$$\frac{\text{₹ 15,000}}{\text{1500 Hours}}$$
 = ₹ 10 Per Machine Hour

Step 5: Computation Of Machine Hour Rate For Individual Jobs

Particulars	Rate Per		A		В		С
	Hour	Hours	₹	Hours	₹	Hours	₹
Overheads							
Without Computer	10	600	6,000	900	9,000	-	-
With Computer	27.5	400	11,000	600	16,500	1,000	27,500
Total		1,000	17,000	1500	25,500	1000	27,500
Machine Hour Date 1	verheads	₹ 17 P	er Hour	₹ 17 P	er Hour	₹ 27	.5 Per
(Total	Hours)					Н	our

PROBLEM - 11:

In an engineering company, the factory overheads are recovered on a fixed percentage basis on direct wages and the administrative overheads arse absorbed on a fixed percentage basis on factory cost.

The company has furnished the following data relating to two jobs undertaken by it in a period:

DADTICH ADC	Job 101	Job 102
PARTICULARS	(₹)	(₹)
Direct materials	₹ 54,000	₹ 37,500
Direct wages	₹ 42,000	₹ 30,000
Selling price	₹ 1,66,650	₹ 1,28,250
Profit percentage on Total Cost	10%	20%

Required:

 COMPUTATION of percentage recovery rates of factory overheads and administrative overheads.

- CALCULATION of the amount of factory overheads, administrative overheads and profit for each of the two jobs.
- Using the above recovery rates DETERMINE the selling price of job 103. The additional data being:

Direct materials	₹ 24,000
Direct wages	₹ 20,000
Profit percentage on selling price	12-1/2 %

SOLUTION:

Let The Factory Overheads as a % of Direct Wages be = F

Let The Admin Overheads as a % of Factory Cost be = A

Particulars	Job 101		Job 102	
	Workings	₹	Workings	₹
Direct Materials	54,000	54,000	37,500	37,500
Direct Wages	42,000	42,000	30,000	30,000
Prime cost	96,000	96,000	67,500	67,500
+ Factory	42,000F	25,200	30,000F	18,000
Overheads				
Factory Cost	96,000 + 42,000F	1,21,200	67,500 + 30,000 F	85,500
+ Administrative	(96,000 + 42000F)A	30,300	(67,500 + 30,000F)A	21,375
Overheads				
Total cost	96,000 + 42,000F	1,51,500	67,400 + 30,000 F +	1,06,875
	+96000A + 42000FA		67500A + 30000FA	
+ Profit	(Total Cost x 10%)	15,150	(Total Cost x 20%)	21,375
Selling Price		1,66,650		1,28,250

Factory Cost + Admin Overheads = Total cost

1. Job 101: (96,000 + 42,000F) + [(96,000 + 42,000F)A] = ₹ 1,51,500

2. Job 102:
$$(67,500 + 30,000 F) + [(67,500 + 30,000F)A] = ₹ 1,06,875$$
 (or)

₹96,000 + 42,000F

 $\frac{12,000}{\text{₹67,500 + 30,000F}} = 1.4175$

₹ 96000 + ₹ 42000F = ₹ 95681 + ₹ 42525F

₹ 319 = ₹ 525F

0.6076 = F or F = 60%

Substituting in $\rightarrow 1$

= ₹ 96,000 + (₹ 42,000 × 0.6) + [(₹ 96,000 + (₹ 42,000 × 0.6) A] = ₹ 1,51,500

- = = 1,21,200 + 1,21,200A = = 1,51,500
- = 1,21,200*A* = ₹ 30,300
- = B = 0.25 or 25%
- .. % of Recovery Rate:

Factory Overheads = 60% of Direct Wages

Admin Overheads = 25% of Factory Cost

Statement Of Jobs, Showing Amount Of Factory Overheads, Administrative Overheads And Profit:

	Job 101	Job 102
	(₹)	(₹)
Direct Materials	54,000	37,500
Direct Wages	42,000	30,000
Prime Cost	96,000	67,500
Factory Overheads		
60% Of Direct Wages	25,200	18,000
Factory Cost	1,21,200	85,500
Administrative Overheads		
25% Of Factory Cost	30,300	21,375
Total Cost	1,51,500	1,06,875
Profit (10% & 20% Respectively)	15,150	21,375
Selling Price	1,66,650	1,28,250

Computation Of Selling Price Of Job 103:

Particulars	₹
Direct Materials	24,000
Direct Wages	20,000
Prime Cost	44,000
+ Factory Overheads (60% x ₹ 20,000)	12,000
Factory Cost	56,000
+ Admin Overheads (25% × ₹ 56,000)	14,000
Total Cost	70,000
+ Profit (12.5% On Selling Price)	10,000
Selling Price	80,000

PROBLEM - 12:

Job No. 198 was commenced on October 10, 20x1 and completed on November 1, 20x1. Materials used were 6,000 and labour charged directly to the job was 4,000. Other information is as follows:

Machine No. 215 used for 40 hours, the machine hour rate being ₹ 35.

Machine No. 160 used for 30 hours, the machine hour rate being ₹ 40. Six welders worked on the job for five days of 8 hours each. The Direct labour hour per welder is ₹ 20.

General expenses related to production not included for calculating either the machine hour or direct labour hour rate totalled ₹ 20,000, total direct wages for the period being ₹ 2,00,000. COMPUTE the works costs for Job No. 198.

SOLUTION:

Computation Of Works Cost For Job 198:

Particulars		₹
Materials		6,000
Direct Labour		4,000
Prime Cost		10,000
Add: Factory Overheads		
Machine 215: (40 Hours × ₹35)	1,400	
Machine 160: (30 Hours × ₹40)	1,200	
Welders Labour Cost (6 Welders x 5 Days x 8 Hours Per Day	4,800	
x ₹20 Per Hour)		
General Expenses (10% x Wages)	400	7,800
Total Works Cost for Job 198		17,800

W.N.1: Absorption for General expenses =
$$\frac{\text{Total General Expenses}}{\text{Total Direct Wages}} \times 100$$

= $\frac{? 20,000}{? 2,00,000} \times 100 = 10\%$ of Direct Wages

PROBLEM - 13:

A factory has three production departments. The policy of the factory is to recover the production overheads of the entire factory by adopting a single blanket rate based on the percentage of total factory overheads to total factory wages. The relevant data for a month are given below.

	DIRECT	DIRECT	FACTORY	DIRECT	MACHINE
DEPARTMENT	MATERIAL	WAGES	OVERHEADS	LABOUR	HOURS
	(₹)	(₹)	(₹)	HOURS	HOURS
Budget:					
Machining	6,50,000	80,000	3,60,000	20,000	80,000
Assembly	1,70,000	3,50,000	1,40,000	1,00,000	10,000
Packing	1,00,000	70,000	1,25,000	50,000	-
Actual:					
Machining	7,80,000	96,000	3,90,000	24,000	96,000
Assembly	1,36,000	2,70,000	84,000	90,000	11,000
Packing	1,20,000	90,000	1,35,000	60,000	-

The details of one of the representative jobs produced during the month are as under:

Denoutment	Direct material	Direct wages	Direct labour	Machine
Department	(₹)	(₹)	hours	hours
Machining	1,200	240	60	180
Assembly	600	360	120	30
Packing	300	60	40	-

The factory adds 30% on the factory cost to cover administration and selling overheads and profit.

Required:

- 1. COMPUTE the overhead absorption rate as per the current policy of the company and determine the selling price of Job No. CW 7083.
- 2. Suggest any suitable alternative method(s) of absorption of the factory overheads and CALCULATE the overhead recovery rates based on the method(s) so recommended by you.
- 3. DETERMINE the selling price of Job CW 7083 based on the overhead application rates calculated in (2) above.
- 4. CALCULATE the department-wise and total under or over recovery of overheads based on the company's current policy and the method(s) recommended by you.

SOLUTION:

Part A:

Step 1: Calculation of overhead absorption rate as per current policy of the Company:

Department	Budgeted Factory	Budgeted
	Overheads (₹)	Direct wages (₹)
Machinery	3,60,000	80,000
Assembly	1,40,000	3,50,000
Packing	1,25,000	70,000
Total	6,25,000	5,00,000

Overheads Absorption rate =
$$\frac{\text{Budgeted Overheads}}{\text{Budgeted Direct Wages}} \times 100$$
$$= \frac{\$ 6,25,000}{\$ 5,00,000} \times 100 = 125\% \text{ of Direct wages}$$

Step 2: Calculation of selling price of Job CW 7083:

Particulars	₹
Direct Materials (₹ 1200 + ₹ 600 + ₹ 300)	2,100
Direct Wages (₹ 240 + ₹ 360 + ₹ 60)	660
Prime Cost	2,760
+ Factory Overheads (125% x ₹ 660)	825
Factory Cost	3,585
Profit Mark Up @ 30% on ₹ 3585	1,075.50
Selling Price Per Unit	4660.50

Part B: Methods Available For Absorbing Factory Overheads And Their Overhead Absorption Rate In Different Departments

1. Machinery Department

Note: In The Machining Department The Use Of Machine Time Is Predominant Factor Of Production. Hence Machine Hour Rate Should Be Used To Recover Overheads Is This Department

Machine Hour Rate =
$$\frac{\text{Budgeted Factory Overheads}}{\text{Budgeted Machine Hours}}$$

= $\frac{\text{₹ 3,60,000}}{\text{80,000 Hours}}$ = ₹ 4.50 Per Hour

2. Assembly Department

Note: In This Department Direct Labour Hours Is Main Factor Of Production. Hence Direct Labour Rate Should Be Used To Recover Overheads.

$$\label{eq:Direct Labour Hour Rate} \mbox{ = } \frac{\mbox{Budgeted Factory OH}}{\mbox{Budgeted Direct Labour Hours}}$$

$$= \frac{\text{₹ 1,40,000}}{\text{1,00,000 Hours}} = \text{₹ 1.40 Per Hour}$$

3. Packing Department

Note: In This Department Labour Is Important Factor Of Production. Hence Direct Labour Hour Rate Should Be Used To Recover Overheads Is This Department.

Direct Labour Rate =
$$\frac{\text{Budgeted Factory Overheads}}{\text{Budgeted labour Hours}}$$

= $\frac{\text{₹ 1,25,000}}{\text{50.000 Hours}}$ = ₹ 2.50 Per Hour

Part C: Calculation Of Selling Price Using Recovery Rate As In Part B:

Particulars	(₹)
Direct Materials	2,100
Direct Wages	660
Prime Cost	2,760
+ Factory Overheads (W.N.1)	1,078
Factory Cost	3838.00
+ 30% Mark Up	1,151.40
Selling Price	4,989.40

W.N.1: Overhead Summary Statement:

	Particulars	Basis	Hours	Rate	(₹)
1.	Machining	Machine	180	₹ 4.50	810
		Hours			
2.	Assembly	Labour Hours	120	₹ 1.40	168
3.	Packing	Labour Hours	40	₹ 2.50	100
	Total				1078

Part D: Department Wise Statement Of Under Or Over Absorption Of Overheads

a) Current Policy

Particulars	Machining	Machining Assembly		Total
	(₹)	(₹)	(₹)	(₹)
Direct Wages (Actual)	96,000	2,70,000	90,000	
 a. Absorbed Overheads 	1,20,000	3,37,500	1,12,500	5,70,000
(125% on Direct Wages)				
b. Actual Overheads	3,90,000	84,000	1,35,000	6,09,000

c. Under or Over Recovery of	(2,70,000)	2,53,500	(22,500)	(39,000)
Overheads (a-b)				

b) Proposed Policy:

Particulars	Machining	Assembly	Packing	Total
	(₹)	(₹)	(₹)	(₹)
Hours worked (actual)	96,000	90,000	60,000	
	(Machine	(Labour	(labour	
	Hours)	Hours)	Hours)	
Rate per Hour	₹ 4.5	₹1.4	₹2.5	
a. Absorbed Overheads	₹ 4,32,000	₹1,26,000	₹1,58,000	₹7,08,000
(Hours x rate)				
b . Actual Overheads	₹ 3,90,000	₹ 84,000	₹1,35,000	₹6,09,000
c. Under or Over Recovery of	₹42,000	₹42,000	₹15,000	₹99,000
Overheads (a-b)				

PROBLEM -14:

A light engineering factory fabricates machine parts for customers. The factory commenced fabrication of 12 nos. Machine parts as per customers' specifications, the expenditure incurred on the job for the week ending 21st August, 20x1 is as tabulated below:

Particulars	Amount (₹)	Amount (₹)
Direct materials (all items)		780
Direct labour (Manual) 20 hours @ ₹ 15 per hour		300
Machine facilities:		
Machine No. I: [4 hours @ ₹ 45]	180	
Machine No. II: [6 hours @ ₹ 65]	390	570
Total		1,650
Overheads @ ₹ 8 per hour on 20 manual hours		160
Total cost		₹ 1,810

The overhead rate of \mp 8 per hour is based on 3,000 man-hours per week; similarly, the machine hour rates are based on the normal working of Machine Nos. I and II for 40 hours out of 45 hours per week.

After the close of each week, the factory levies a supplementary rate for the recovery of full overhead expenses on the basis of actual hours worked during the week. During

the week ending 21st August, 20x1, the total labour hours worked was 2,400 and Machine Nos. I and II had worked for 30 hours and 32.5 hours respectively.

PREPARE a Cost Sheet for the job for the fabrication of 12 nos. Machine parts duly levying the supplementary rates.

SOLUTION:

Cost Sheet For The Week Ending August 21st

Particulars		₹
Direct Materials (all items)		780
Direct Labour (20 Hours @ 15 Per Hour)		300
Prime Cost		1080
Machine Facilities:		
Machine 1: (4 Hours @ ₹ 45 Per Hour)	180	
Machine 2: (6 Hours @ ₹ 65 Per Hour)	390	570
Total		1650
+ Overheads (₹ 8 Per Hour x 20 Manual Hours)		160
Total Cost		1,810
+ Supplementary Rates		
Overheads (₹ 2 Per Hour x 20 Hours) (W.N.1)	40	
Machine Facilities (W.N.2)		
- Machine 1 (₹ 15 x 4 Hours)	60	
- Machine 2 (₹ 15 x 6 Hours)	90	190
Cost		2,000

W.N.1: Overheads:

Note: Budgeted OH (3000 Hours $x \neq 8$) = \neq 24,000

In The Absence Of Information, It Is Assumed That Budgeted OH Is Same As Actual OH.

- ∴ Actual OH = ₹ 24,000
- ⇒ Actual Man Hours = 2400 Hours
- ⇒ Actual Rate Per Hour = ₹ 24,000 ÷ 2400 Hours = ₹ 10 Per Hour

Supplementary rate = ₹ 2 (₹ 10 - ₹ 8) Per Hour

W.N.2: Machine Facilities:

Particulars	M1	M2
1. Budgeted	₹ 1,800	₹ 2,600
	(40 Hours x	(40 Hours x
	₹45)	₹65)
2. Actual Number of Hours	30	32.50

3. Actual Rate Per Hour (1 ÷ 2)	₹60 Per Hour	₹80 Per Hour
4. Predetermined rate	₹45 Per Hour	₹65 Per Hour
5. Supplementary rate (AR - PR)	₹15 Per Hour	₹15 Per Hour

PROBLEM - 15:

A Ltd. manufactures two products A and B. The manufacturing division consists of two production departments P_1 and P_2 and two service departments S_1 and S_2 . Budgeted overhead rates are used in the production departments to absorb factory overheads to the products. The rate of Department P_1 is based on direct machine-hours, while the rate of Department P_2 is based on direct labour hours. In applying overheads, the predetermined rates are multiplied by actual hours.

For allocating the service department costs to production departments, the basis adopted is as follows:

- i. Cost of Department S1 to Department P1 and P2 equally, and
- ii. Cost of Department S2 to Department P1 and P2 in the ratio of 2:1 respectively.

The following budgeted and actual data are available:

Annual profit plan data:

Factory overheads budgeted for the year:

Production departments		Service departments	
P ₁	P ₂	S ₁ S ₂	
₹ 25,50,000	₹ 21,75,000	₹ 6,00,000	₹ 4,50,000

Budgeted output in units:

Product A - 50,000; B - 30,000.

Budgeted raw-material cost per unit:

Product A - 120; Product B - 150.

Budgeted time required for production per unit:

Department P ₁	Product A: 1.5 machine hours
Depar intent 11	Product B: 1.0 machine hour
Department P2	Product A: 2 Direct labour hours
Depai imenti i z	Product B: 2.5 Direct labour hours

Average wage rates budgeted in Department P2 are:

Product A - ₹ 72 per hour and Product B - ₹ 75 per hour.

All materials are used in Department P1 only.

Actual data: (for the month of July, 20x1)

Units actually produced: Product A: 4,000 units

Product B: 3,000 units

Actual direct machine hours worked in Department P1:

On product A - 6,100 hours; Product B - 4,150 hours.

Actual direct labour hours worked in Department P2:

On product A - 8,200 hours; Product B - 7,400 hours.

Costs actually incurred:	Product A	Product B	
Raw materials	₹ 4,89,000	₹ 4,56,000	
Wages	₹ 5,91,900	₹ 5,52,000	
Overheads:			
Department P1	₹ 2,31,000		
Department P2	₹ 2,04,000		
Department S1	₹ 60,000		
Department S2	₹ 48,000		

You are required to:

- i. COMPUTE the pre-determined overhead rate for each production department.
- ii. PREPARE a performance report for July 2020 that will reflect the budgeted costs and actual costs.

SOLUTION:

Part A: Calculation Of Pre-Determined Rate For Each Production Department Using Budgeted Data:

Particulars	P1 (₹)	P2 (₹)	S1 (₹)	52 (₹)
Budgeted	25,50,000	21,75,000	6,00,000	4,50,000
Factory				
Overheads (₹)				
51 (1 : 1)	3,00,000	3,00,000	(6,00,000)	-
52 (2 : 1)	3,00,000	1,50,000	-	(4,50,000)
Total	31,50,000	26,25,000	-	-
Overheads (₹)				

Budgeted Hours

	Pre Determined Rate	₹ 30 Per Hour	₹ 15 Per Hour
(W.N.2)	Budgeted Labour Hours	-	1,75,000
(W.N.1)	Budgeted Machine Hours	1,05,000	-

W.N.1: Budgeted machine Hours and Labour Hours

Particulars	A	В	Total
Budgeted Output (U)	50,000 Units	30,000 Units	-
Budgeted Machine Hours (P1)	75,000	30,000	1,05,000
	(50,000,x ₹ 1.5)	(30,000 × ₹ 1)	
Budgeted Labour Hours (P2)	1,00,000	75,000	1,75,000
	(50,000 x ₹ 2)	(300,000 ×	
		₹ 2.5)	

Part B: Performance Report For July 2020

	Budgeted (Standard)	Actuals
Raw Materials (Exclusively In P1)		
Product A (4000 X ₹ 120)	4,80,000	4,89,000
Product B (3000 X ₹ 150)	4,50,000	4,56,000
Wages (Exclusively In P2)		
Prod. A (4000 X 2 Hours X ₹ 72)	5,76,000	5,91,900
Prod. B (3000 X 2.5 Hours X ₹ 75)	5,62,500	5,52,000
Overheads Absorbed On Machine Hour Basis (P1)		
A (4000 x 1.5 Hours x ₹ 30)	1,80,000	1,74,371*
B (3000 x 1 Hour x ₹ 30)	90,000	1,18,629*
Overheads Absorbed on Labour Hour Basis (P2)		
A (4000 x 2 Hours x ₹ 15)	1,20,000	1,31,410*
B (3000 x 2.5 Hours x ₹ 15)	1,12,500	1,18,590*
Total	25,71,000	26,31,900

W.N 2: Calculation Of Actual Machine Hours & Actual Labour Hours.

Particulars	Α	В	Total
Actual output (Units)	4,000	3,000	-
Actual Machine Hours (P1)	6,100	4,150	10,250
Actual Labour Hours (P2)	8,200	7,400	15,600

W.N.3: Calculation of Actual Absorption Rate

Particulars	P1 (₹)	P2 (₹)	51 (₹)	52 (₹)
Actual Factory Overheads	2,31,000	2,04,000	60,000	48,000
S1 (1 : 1)	30,000	30,000	(60,000)	-
52 (2 : 1)	32,000	16,000	-	(48,000)
Total	2,93,000	2,50,000	-	-

Overheads

Part C: Computation of Actual Overheads Rate:

Particulars	P1 (₹)	P2 (₹)
Actual Overheads	₹ 293000	₹ 250000
Actual Machine Hours (P1)	10250 Hours	
Actual Labour Hours (P2)		15600 Hours
Actual Rate	₹ 28.59 Per Hour	₹16.02 Per Hour

Part D: Actual Overheads Absorbed

1. Based on Machine Hours (P1)

 $A = (6100 \times \text{ } \text{ } \text{ } 28.59 \text{ Per Hour}) = \text{ } \text{ } 1,74,371$ $B = (4150 \times \text{ } \text{ } 28.59 \text{ Per Hour}) = \text{ } \text{ } 1,18,629$

2. Based on Labour Hours (P2)

 $A = (8200 \times 16.02 \text{ Per Hour}) = 1,31,410$ $B = (7400 \times 16.02 \text{ Per Hour}) = 1,18,590$

PROBLEM - 16:

A company which sells four products, some of these are unprofitable. Company proposes to discontinue to sale one of these products. The following information is available regarding income, costs and activity for the year ended 31st March.

	Products					
	A B C D					
Sales (₹)	30,00,000	50,00,000	25,00,000	45,00,000		
Cost of goods sold (₹)	20,00,000	45,00,000	21,00,000	22,50,000		
Area of storage (Sq.ft.)	50,000	40,000	80,000	30,000		
Number of parcels sent	1,00,000	1,50,000	75,000	1,75,000		
Number of invoices sent	80,000	1,40,000	60,000	1,20,000		

Selling and Distribution overheads and the basis of allocation are:

	Amount (₹)	Basis of allocation to products
Fixed Costs		
Rent & Insurance	3,00,000	Area of storage
		(Sq. ft.)
Depreciation	1,00,000	No. of Parcels sent
Salesmen's salaries & expenses	6,00,000	Sales Volume

Overheads

Administrative wages and salaries	5,00,000	No. of invoices sent
Variable Costs:		
Packing wages & materials	₹ 2 per parcel	
Commission	4% of sales	
Stationery	₹ 1 per invoice	

You are required to PREPARE Costing Profit & Loss Statement, showing the percentage of profit or loss to sales for each product.

SOLUTION:

Statement of Profit or Loss on Various Products during the year ended March 31st

	Total (₹)	Products			
		A (₹)	B (₹)	C (₹)	D (₹)
Sales	1,50,00,000	30,00,000	50,00,000	25,00,000	45,00,000
Variable costs:					
Cost of goods	1,08,50,000	20,00,000	45,00,000	21,00,000	22,50,000
sold					
Commissions 4%	6,00,000	1,20,000	2,00,000	1,00,000	1,80,000
of sales					
Packing wages &	10,00,000	2,00,000	3,00,000	1,50,000	3,50,000
materials @ ₹ 2					
per parcel					
Stationery @ ₹ 1	4,00,000	80,000	1,40,000	60,000	1,20,000
per invoice					
Total variable	1,28,50,000	24,00,000	51,40,000	24,10,000	29,00,000
costs					
Contribution	21,50,000	6,00,000	(1,40,000)	90,000	16,00,000
(Sales - variable					
cost)					
Fixed Costs:					
Rent & Insurance	3,00,000	75,000	60,000	1,20,000	45,000
(5:4:8:3)					
Depreciation	1,00,000	20,000	30,000	15,000	35,000
(4:6:3:7)					
Salesmen's	6,00,000	1,20,000	2,00,000	1,00,000	1,80,000
salaries &					
expenses					

Overheads

(6:10:5:9)					
Administrative	5,00,000	1,00,000	1,75,000	75,000	1,50,000
wages & salaries					
(4:7:3:6)					
Total Fixed	15,00,000	3,15,000	4,65,000	3,10,000	4,10,000
costs					
Profit or Loss	6,50,000	2,85,000	(6,05,000)	(2,20,000)	11,90,000
(Contribution-					
fixed Costs)					
Percentage of	4.33	9.50	(12.10)	(8.80)	26.4
profit or Loss on					
sales (%)					

CHAPTER 04: ACTIVITY BASED COSTING

PROBLEM - 1:

Indirect expenses expended by a Machine shop in a factory during a period amounted to \pm 1,00,000. The machine running time for the period is 10,000 hours. The details of the utilization of the machine time are as follows:

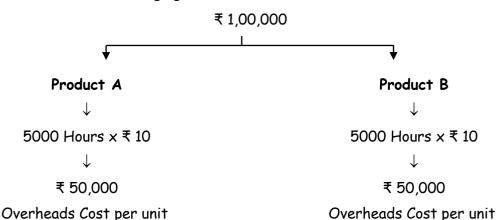
PRODUCT	PRODUCTION	MACHINE TIMES
Α	200 units	5000 hours
В	100 units	5000 hours

Trace the overhead cost per unit to the two products using the Traditional overhead absorption system.

The company collected more details relating to the activities performed by its Machine shop to enable tracing indirect costs using the ABC system.

ACTIVITY COST POOL	COST POOL	COST DRIVER	COST DRIVER CONSUMPTION		
7012177		COOT BRIVER	Product A	Product B	
Machine running	₹ 60,000	Machine hours	5000 Hours	5000 Hours	
Set up	₹ 15,000	Setup time	3000 Hours	2000 Hours	
Inspection	₹ 25,000	Inspection time	1500 Hours	3500 Hours	
Total	₹ 1,00,000				

Trace the overhead cost per unit to the two products using the ABC system.


SOLUTION:

Part - 1: Calculation Of Overheads Cost Per Unit Using Tradition At Overheads Absorption
System

Calculation Of Absorption Rate:

Machine Hour Rate =
$$\frac{\text{₹ 1,00,000}}{\text{10.000 Hours}}$$
 = ₹ 10 Per Machine Hour

Charging Overheads to the Products

=
$$\frac{₹50,000}{200}$$
 = ₹250 Per Unit

=
$$\frac{₹50,000}{100}$$
 = ₹500 Per Unit

Part 2: Activity Based Costing:

Step 1: Calculation Of Cost Driver Rate:

Activity	Cost Pool	Cost Driver	Cost Driver	Cost
(1)	(2)	(3)	Quantity	Driver
			(4)	Rate
				$(5) = (2 \div 4)$
Machine	60,000	Machine Hours	10,000 Hours	₹6 Per
				Machine Hour
Setup	15000	Setup time	5000 Hours	₹3 Per Setup
Inspection	25000	Inspection	5000 Hours	₹5 Per
				Inspection

Step 2: Appropriation of Overheads:

	Product P1		Product P2	
	Cost Driver	₹	Cost Driver	₹
	Quantity		Quantity	
Machine	5000	30,000	5000	30,000
Setup	3000	9000	2000	6,000
Inspection	1500	7500	3500	17,500
Total		46,500		53,500
Product		200 units		100 units
Overheads Per		232.50		535
Unit				

Since ABC System Uses Appropriate Cost Drivers to Apportion Cost it is More Accurate Than Traditional Costing System.

PROBLEM 1A: (MTP 1 MAY 24)

The following budgeted information relates to Pinku Ltd. for the year 2024:

	Products			
	A B C			
Production and Sales (units)	1,00,000	80,000	60,000	
	(₹)	(₹)	(₹)	

Selling price per unit	90	180	140
Direct cost per unit	50	90	95
	Hours	Hours	Hours
Machine department (machine hours per unit)	3	4	5
Assembly department (direct labour hours per unit)	6	4	3

The estimated overhead expenses for the year 2024 will be as below:

Machine Department ₹ 73,60,000

Assembly Department ₹ 55,00,000

Overhead expenses are apportioned to the products on the following basis:

Machine Department On the basis of machine hours

Assembly Department On the basis of Labour hours

After a detailed study of the activities the following cost pools and their respective cost drivers are found:

Cost Pool	Amount	Cost Driver	Quantity
	(₹)		
Machining services	64,40,000	Machine hours	9,20,000 hours
Assembly services	44,00,000	Direct labour hours	11,00,000 hours
Set-up costs	9,00,000	Machine set-ups	9,000 set-ups
Order processing	7,20,000	Customer orders	7,200 orders
Purchasing	4,00,000	Purchase orders	800 orders

As per an estimate the activities will be used by the three products:

	Products			
	A B C			
Machine set-ups	4,500	3,000	1,500	
Customer orders	2,200	2,400	2,600	
Purchase orders	300	350	150	

Prepare a product-wise profit statement using Activity-based method.

SOLUTION:

Profit Statement Using Activity Based Costing (ABC) Method:

	Particulars		Product		
		Α	В	С	
Α.	Sales Quantity	1,00,000	80,000	60,000	
B.	Selling price per unit (₹)	90	180	140	
c .	Sales Value (₹) [A × B]	90,00,000	1,44,00,000	84,00,000	3,18,00,000
D.	Direct cost per unit (₹)	50	90	95	

E.	Direct Cost (₹) [A × D]	50,00,000	72,00,000	57,00,000	1,79,00,000
F.	Overheads:				
	(Refer working note-3)				
(i)	Machining services (₹)	21,00,000	22,40,000	21,00,000	64,40,000
(ii)	Assembly services (₹)	24,00,000	12,80,000	7,20,000	44,00,000
(iii)	Set-up costs (₹)	4,50,000	3,00,000	1,50,000	9,00,000
(iv)	Order processing (₹)	2,20,000	2,40,000	2,60,000	7,20,000
(v)	Purchasing (₹)	1,50,000	1,75,000	75,000	4,00,000
G.	Total Cost (₹) [E + F]	1,03,20,000	1,14,35,000	90,05,000	3,07,60,000
Н.	Profit (₹) (<i>C</i> - <i>G</i>)	(13,20,000)	29,65,000	(6,05,000)	10,40,000

1. W.N: 1.

			Products		
		A	В	С	Total
A.	Production (Units)	1,00,000	80,000	60,000	
B.	Machine Hours Per Unit	3	4	5	
C.	Total Machine Hours [A×B]	3,00,000	3,20,000	3,00,000	9,20,000
D.	Rate Per Hour(₹)	8	8	8	
E.	Machine Department Cost [C×D]	24,00,000	25,60,000	24,00,000	73,60,000
F.	Labour Hours Per Unit	6	4	3	
G.	Total Labour Hours [A×F]	6,00,000	3,20,000	1,80,000	11,00,000
H.	Rate Per Hour(₹)	5	5	5	
I.	Assembly Department Cost	30,00,000	16,00,000	9,00,000	55,00,000
	[G×H]				

Machine hour rate =
$$\frac{₹73,60,000}{9,20,000 \text{ Hours}} = ₹8$$

Labour hour rate =
$$\frac{\text{₹ 55,00,000}}{11,00,000 \text{ Hours}} = \text{₹ 5}$$

2. Calculation Of Cost Driver Rate

Cost Pool	Amount (2)	Cost Driver (3)	Quantity (4)	Driver
(1)	(₹)			Rate (₹)
				(5 = 2 ÷
				4)
Machining Services	64,40,000	Machine Hours	9,20,000 hours	7.00
Assembly Services	44,00,000	Direct Labour	11,00,000 hours	4.00
		Hours		

Set-Up Costs	9,00,000	Machine Set-Ups	9,000 set-ups	100.00
Order Processing	7,20,000	Customer Orders	7,200 orders	100.00
Purchasing	4,00,000	Purchase Orders	800 orders	500.00

3. Calculation Of Activity-Wise Cost

			Products		Total
		A	В	С	Total
Α.	Machining hours	3,00,000	3,20,000	3,00,000	9,20,000
	(Refer Working note-1)				
B.	Machine hour rate (₹)	7	7	7	
	(Refer Working note-2)				
C.	Machining services cost (₹)	21,00,000	22,40,000	21,00,000	64,40,000
	[A × B]				
D.	Labour hours	6,00,000	3,20,000	1,80,000	11,00,000
	(Refer Working note-1)				
E.	Labour hour rate (₹)	4	4	4	
	(Refer Working note-2)				
F.	Assembly services cost (₹)	24,00,000	12,80,000	7,20,000	44,00,000
	[D × E]				
G.	Machine set-ups	4,500	3,000	1,500	9,000
Н.	Rate per set-up (₹)	100	100	100	
	(Refer Working note-2)				
I.	Set-up cost (₹) [G × H]	4,50,000	3,00,000	1,50,000	9,00,000
J.	Customer orders	2,200	2,400	2,600	7,200
K.	Rate per order (₹)	100	100	100	
	(Refer Working note-2)				
L.	Order processing cost (₹)	2,20,000	2,40,000	2,60,000	7,20,000
	[J × K]				
M.	Purchase orders	300	350	150	800
N.	Rate per order (₹)	500	500	500	
	(Refer Working note-2)				
О.	Purchasing cost (₹) [M × N]	1,50,000	1,75,000	75,000	4,00,000

PROBLEM - 2:

ABC Ltd. Manufactures two types of machinery equipment Y and Z and applies/absorbs Overheads on the basis of direct-labour hour. The budgeted Overheads and direct-labour hours for the month of December, 20×1 are $\frac{3}{2}$ 12,42,500 and 20,000 hours respectively. The information about Company's products is as follows:

PARTICULARS	EQUIPMENT Y	EQUIPMENT Z
Budgeted Production volume	2,500 units	3,125 units
Direct Material cost	300 per unit	450 per unit
Direct labour cost		
Y: 3 hours @ 150 per hour;	450	600
Z : 4 hours @ 150 per hour	750	300

ABC Ltd.'s Overheads of $\stackrel{?}{_{\sim}}$ 12,42,500 can be identified with three major activities: Order Processing ($\stackrel{?}{_{\sim}}$ 2,10,000), machine processing ($\stackrel{?}{_{\sim}}$ 8,75,000), and product inspection ($\stackrel{?}{_{\sim}}$ 1,57,500).

These activities are driven by the number of orders processed, machine hours worked, and inspection hours, respectively. The data relevant to these activities is as follows:

	ORDERS PROCESSED	MACHINE HOURS WORKED	INSPECTION WORKS
У	350	23,000	4,000
Z	250	27,000	11,000
Total	600	50,000	15,000

Required:

- 1. Assuming use of direct-labour hours to absorb/apply Overheads to production, compute the unit manufacturing cost of the equipment Y and Z, if the budgeted manufacturing volume is attained.
- 2. Assuming use of activity-based costing, compute the unit manufacturing costs of the equipment Y and Z, if the budgeted manufacturing volume is achieved.
- 3. ABC Ltd.'s selling prices are based heavily on cost. By using direct-labour hours as an application base, calculate the amount of cost distortion (under-costed or over-costed) for each equipment.

SOLUTION:

Part I: Calculation Of Unit Manual Cost Of Equipment Using Traditional Costing System

Particulars	Equipment Y (₹)	Equipment Z (₹)
Direct Materials Cost	300	450
Direct Labour Cost	450	600
Prime Cost	750	1050

Total Manufacturing Cost	936.375	1298.50
(W.N.1)	(62.125 x 3)	(62.125 x 4)
(+) Production Overheads	186.375	248.50

W.N.1: Calculation Of Labour Hour Rate

Labour Hour Rate = $\frac{\text{Budgeted Overheads}}{\text{Budgeted Labour Hour}} = \frac{\text{₹ 12,42,500}}{20,000} = \text{₹ 62.125 Per Hour}$

Part II: Calculation Of Total Equipment Cost Per Unit Using ABC System

Step 1: Calculation Of Cost Driver Rate

Activity	Cost Pool	Cost Driver	Cost Quantity	Cost Rate
(1)	(2)	(3)	(4)	(5) = 2 ÷ 4
Order	₹ 2,10,000	Order Processed	600	₹ 350 Per Order
Machine	₹ 8,75,000	Machine Hours	50,000	₹ 17.5 Per
				Machine
Product	₹ 1,57,500	Inspection	15,000	₹ 10.5
		Hours		Inspection Cost

Step 2: Apportionment

Particulars	Equipment Y (₹)		Equipment Z (₹)		
(Activity)	CDQ	₹	CDQ	₹	
Order	350	1,22,500	250	87,500	
Machines	23,000	4,02,500	27000	4,72,500	
Inspection	4,000	42,000	11,000	1,15,500	
Total		5,67,000		6,75,500	
Units		2500 Units		3125 Units	
Production Overheads Per Unit		226.8		216.16	

Step 3: Total Cost Under ABC

Particulars	Equipment	Equipment
	У (₹)	Z (₹)
Direct Materials	300	450
Direct Labour	450	600
Prime Cost	750	1050
Add: Production Overheads	226.8	216.16
Total Cost	976.80	1266.16

Part III: Calculation Of Cost Distortion:

Particulars	Equipment Y	Equipment Z
	(₹)	(₹)
Traditional System	936.375	1298.50
ABC	976.8	1266.16
Cost Distortion	40.425	32.34
	(Under Costed)	(Over costed)

PROBLEM - 2A:

ABC Ltd. is a multiproduct company, manufacturing three products A, B and C. The budgeted costs and production for the year ending 31st March are as follows:

	Α	В	С
Production quantity (Units)	4,000	3,000	1,600
Resources per Unit:			
- Direct Materials (Kg.)	4	6	3
- Direct Labour (Minutes)	30	45	60

The budgeted direct labour rate was ₹ 10 per hour, and the budgeted material cost was ₹ 2 per kg. Production Overheads were budgeted at ₹99,450 and were absorbed to products using the direct labour hour rate. ABC Ltd. followed the Absorption Costing System.

ABC Ltd. is now considering to adopt an Activity Based Costing system. The following additional information is made available for this purpose.

Budgeted Overheads were analysed into the following:

	₹
Material handling	29,100
Storage costs	31,200
Electricity	39,150

The cost drivers identified were as follows:

Material handling	Weight of material handled
Storage costs	Number of batches of material
Electricity	Number of Machine operations

Data on Cost Drivers was as follows:

	Α	В	С
For complete production:			
Batches of material	10	5	15
Per unit of production:			
Number of Machine operations	6	3	2

You are requested to:

- 1. PREPARE a statement for management showing the unit costs and total costs of each product using the absorption costing method.
- 2. PREPARE a statement for management showing the product costs of each product using the ABC approach.
- 3. STATE what are the reasons for the different product costs under the two approaches?

SOLUTION:

1. Traditional Absorption Costing

	A	В	С	Total
(A) Quantity (Units)	4,000	3,000	1,600	8,600
(B) Direct Labour (Minutes)	30	45	60	-
(C) Direct Labour Hours (A × B) ÷ 60 Minutes	2,000	2,250	1,600	5,850

Overhead Rate Per Direct Labour Hour:

- = Budgeted Overheads ÷ Budgeted Labour Hours
- = ₹ 99,450 ÷ 5,850 hours
- = ₹ 17 Per Direct Labour Hour

Unit Costs:

	A (₹)	B (₹)	C (₹)
Direct Costs:			
- Direct Labour	5.00	7.50	10.00
- Direct Material	8.00	12.00	6.00
Production Overhead:	8.50	12.75	17.00
	$\left(\frac{₹17 \times 30}{60}\right)$	$\left(\frac{₹17 \times 45}{60}\right)$	$\left(\frac{₹17 \times 60}{60}\right)$
Total unit costs	21.50	32.25	33.00
Number of units	4,000	3,000	1,600
Total costs	86,000	96,750	52,800

Activity Based Costing

	A	В	С	Total
Quantity (Units)	4,000	3,000	1,600	-
Material Weight Per Unit (Kg.)	4	6	3	-
Total Material Weight	16,000	18,000	4,800	38,800
Machine Operations Per Unit	6	3	2	-
Total Operations	24,000	9,000	3,200	36,200
Total Batches Of Material	10	5	15	30

Material Handling Rate Per Kg. = ₹ 29,100 ÷ 38,800 Kg.

= ₹ 0.75 Per Kg.

Electricity Rate Per Machine Operations = ₹ 39,150 ÷ 36,200

= ₹ 1.081 Per Machine Operations

Storage Rate Per Batch = ₹ 31,200 ÷ 30 Batches

= ₹ 1,040 Per Batch

Unit Costs:

	A (₹)	B (₹)	C (₹)
Direct Costs:			
Direct Labour	5.00	7.50	10.00
Direct Material	8.00	12.00	6.00
Production Overheads:			
Material Handling	3.00	4.50	2.25
	(₹ 0.75 x 4)	(₹ 0.75 × 6)	(₹ 0.75 × 3)
Electricity	6.49	3.24	2.16
	(₹ 1.081 × 6)	(₹ 1.081 × 3)	(₹ 1.081 × 2)
Storage	2.60	1.73	9.75
	$\left(\text{₹ 10 x } \frac{\text{₹ 1040}}{4,000} \right)$	$\left(₹5 \times \frac{₹1,040}{3,000} \right)$	$\left(\text{₹ 15} \times \frac{\text{₹ 1040}}{1,060} \right)$
Total Unit Costs	25.09	28.97	30.16
Number Of Units	4,000	3,000	1,600
Total Costs	₹ 1,00,360	₹ 86,910	₹ 48,256

Comments: The Difference In The Total Costs Under The Two Systems Is Due To The Differences In The Overheads Borne By Each Of The Products. The Activity Based Costs Appear To Be More Precise.

PROBLEM 2B: (MTP 1 JAN 25)

Xtyle Ltd. is a leading manufacturer in the textile industry, renowned for its commitment to quality and innovation. With decades of experience, the company specializes in producing a diverse range of textile products, including high-quality towels, designed to meet the varying needs of its

Customers. The company offers mainly three types of towel, viz. Hand towels, Kitchen towels and Gym towels, catering to both everyday use and specialized applications. Below are the key production data for a recent period:

Particulars	Hand	Kitchen	Gym
	towels	towels	towels
Production (units)	9,000	15,000	60,000
Machine hours per unit	10	18	14
Direct Labour hours per unit	4	12	8
Direct Material per unit (₹)	450	400	600

Currently, the company utilizes a traditional costing method, which assigns all production overhead costs based on the number of machine hours used. The overhead cost is calculated at a rate of ₹ 30 per machine hour. Additionally, the direct labor cost is charged at ₹ 100 per hour.

Now, the company plans to implement an Activity-Based Costing (ABC) system to enhance cost accuracy and provide a clearer understanding of the costs associated with each product.

The activity analysis is provided as under:

Particulars	Hand	Kitchen	Gym
	towels	towels	towels
Batch size (units)	450	1,500	3,000
Number of purchase orders per batch	3	10	8
Store delivery	45	80	125
Number of inspections per batch	5	4	3

Further, the total production Overheads can be divided into several key categories. Machine setup costs account for 20% of the total, while inspection costs make up 35%. Material procurement-related costs represent 10%, and store delivery costs also constitute 10%. Finally, machine operation costs contribute 25% to the overall Overheads. This breakdown provides insight into how resources are allocated across various activities within the production process.

You are required to CALCULATE the cost per unit of each product using -

- (i) traditional method.
- (ii) activity based costing principles.

SOLUTION:

i) Statement Showing "Cost per unit - Traditional Method"

Particulars of Costs	Hand	Kitchen Towels	Gym
	Towels		Towels
	(₹)	(₹)	(₹)
Direct Materials	450	400	600
Direct Labour [(4, 12, 8 hours) x ₹ 100]	400	1,200	800
Production Overheads [(10, 18, 14 hours) × ₹ 30]	300	540	420
Cost Per Unit	1,150	2,140	1,820

ii) Statement Showing "Cost per unit - Activity Based Costing"

Products	Hand Towels	Kitchen Towels	Gym Towels
Production (units)	9,000	15,000	60,000
	(₹)	(₹)	(₹)
Direct Materials	40,50,000	60,00,000	3,60,00,000
	(9,000 units	(15,000 units	(60,000 units
	x ₹ 450)	x ₹ 400)	× ₹ 600)
Direct Labour	36,00,000	1,80,00,000	4,80,00,000
(refer Part (i) above)	(9,000 units	(15,000 units	(60,000 units
	x₹ 400)	×₹1,200)	x₹800)
Setup <i>Costs</i> @ ₹ 1,44,000	28,80,000	14,40,000	28,80,000
per setup	(20 setups	(10 setups	(20 setups
	×₹1,44,000)	× ₹ 1,44,000)	×₹1,44,000)
Inspection Costs @	63,00,000	25,20,000	37,80,000
₹63,000 per inspection	(100 inspections	(40 inspections	(60 inspections
	×₹63,000)	x₹63,000)	×₹63,000)
Purchase Related Costs @	6,75,000	11,25,000	18,00,000
₹ 11,250 per purchase	(60 purchase	(100 purchase orders	(160 purchase
order	orders x₹11,250)	× ₹ 11,250)	orders x₹11,250)
Store delivery costs @	6,48,000	11,52,000	18,00,000
₹ 14,400 per store delivery	(45 store delivery	(80 store delivery	(125 store delivery
	×₹14,400)	x ₹ 14,400)	×₹14,400)
Machine Related Costs @	6,75,000	20,25,000	63,00,000
₹7.5 per hour	(90,000 hours	(2,70,000 hours	(8,40,000 hours
	×₹ 7.5)	×₹ 7.5)	×₹ 7.5)

Total Costs	1,88,28,000	3,22,62,000	10,05,60,000
Cost Per Unit (Total Cost	2,092	2,151	1,676
+ No. Of Units)			

Working Notes:

A. Number of Batches, Purchase Orders, Inspections and Store Deliveries-

	Particulars	Hand	Kitchen	Gym	Total
		Towels	Towels	Towels	
Α.	Production (units)	9,000	15,000	60,000	
В.	Batch Size (units)	450	1,500	3,000	
C.	Number of Batches (A÷B)	20	10	20	50
D.	Number Of Purchase Order Per	3	10	8	
	Batch				
E.	Total Purchase Orders $[C \times D]$	60	100	160	320
F.	Number Of Inspections Per	5	4	3	
	Batch				
G.	Total Inspections [C x F]	100	40	60	200
Н.	Total Store Deliveries	45	80	125	250

B. Total Machine Hours:

	Particulars	Hand	Kitchen	Gym Towels
		Towels	Towels	
Α.	Machine Hours per unit	10	18	14
В.	Production (units)	9,000	15,000	60,000
<i>C</i> .	Total Machine Hours $[A \times B]$	90,000	2,70,000	8,40,000

Total Machine Hours = 12,00,000

Total Production Overheads = 12,00,000 Hours $\times = 30 = 3000000$

C. Cost Driver Rates-

Cost Pool	%	Overheads	Cost Driver Basis	Cost	Cost Driver Rate
		(₹)		Driver	(₹)
				(Units)	
Setup	20%	72,00,000	Number of batches	50	1,44,000 per Setup
Inspection	35%	1,26,00,000	Number of inspections	200	63,000 per Inspection
Purchases	10%	36,00,000	Number of purchase	320	11,250 per Purchase order
			order		
Store	10%	36,00,000	Number of store	250	14,400 per store delivery
delivery			deliveries		

	Machine	25%		Machine Hours	12,00,000	7.5 per Machine
(Operation		90,00,000			Hour

PROBLEM - 3: (PYP SEP 24)

GST Limited is a multi-product company. The production and cost details of its two products P and Q are given as follows:

Particulars	Product		
	Р	Q	
Quantity produced (No.)	9,000	7,200	
Direct material cost (₹)	72,000	50,000	
Direct labour hours	800	600	
Purchase requisition (No.)	180	144	
Production runs (No.)	144	108	
Quality inspections (No.)	27	18	

Direct wages rate is ₹ 14.50 per hour. Presently the company uses a single overhead recovery rate based on direct labour hours Overhead incurred by the company during the year 2023-24 are as follows:

Technical staff salary	₹ 45,000
Machine operation expenses	₹ 1,62,000
Machine maintenance expenses	₹ 27,000
Wages and salary of stores staff	₹ 36,000

During this period direct labour hours worked 72,000.

Now the Company wants to adopt Activity Based Costing. For this purpose, following activities are identified:

- Quality control
- Setup of machine for production runs
- Store receiving

It is also decided that salary of technical staff should be distributed among machine maintenance, setup and quality control in the ratio of 1:2:2. Machine maintenance expenses and machine operation expenses should be distributed in the ratio of 2:3 in between stores and production setup activities.

During this period cost drivers for these activities are identified as under:

- Requisition raised 5,760
- Production setup 7,200
- No. of quality test 720

You are required to compute:

- (i) The cost of products P and Q based on traditional absorption costing system.
- (ii) The cost of products P and Q based on ABC Costing system. (8 Marks)

SOLUTION:

(i) Statement Showing "Total Cost - Traditional Method"

Particulars of Costs	Р	Q
	(₹)	(₹)
Direct Materials	72,000	50,000
Direct Labour [(800,600 hours) x ₹ 14.5]	11,600	8,700
Production Overheads [(800,600 hours) x ₹ 3.75]	3,000	2,250
(WN1)		
Total Cost	86,600	60,950
Cost per unit (9,000, 7,200)	9.62	8.47

WN1: Calculation of Production Overhead:

	(₹)
Technical Staff Salary	45,000
Machine Operation Expenses	1,62,000
Machine Maintenance Expenses	27,000
Wages And Salary Of Stores Staff	36,000
Total Production Overhead	2,70,000
Total Direct Labour Hours Worked	72,000 hours
Production Overhead Rate Per Hour	3.75

(ii) Statement Showing "Total Cost - Activity Based Costing"

Products	Р	Q
Production (units)	9,000	7,200
	(₹)	(₹)
Direct Materials	72,000	50,000
Direct Labour [(800,600 hours) x ₹ 14.5]	11,600	8,700
Requisition Related Costs @ ₹ 20 per requisition raised	3,600	2,880
(180,144) (WN2)		
Production Setup Costs @ ₹ 19 per production runs	2,736	2,052
(144,108) (WN2)		
Quality Inspection Costs @ ₹ 25 per quality test (27,18) (WN2)	675	450
Total Costs	90,611	64,082

Cost per unit (9,000, 7,200)	10.07	8.90
------------------------------	-------	------

WN2: Statement Showing Distribution of Expenses

	Machine	Total	Production	Quality
	Maintenance	Stores	Setup	Control
	Expenses			
Technical staff salary of ₹ 45,000	9,000	-	18,000	18,000
(1:2:2)				
Machine operation expenses of				
₹ 1,62,000 (2:3)	-	64,800	97,200	-
Machine maintenance expenses of				
₹ 36,000 (2:3)	(9,000)	14,400	21,600	-
Wages and salary of stores staff	-	36,000	-	-
Total	-	1,15,200	1,36,800	18,000

WN3: Cost for each activity cost driver:

Activity	Total cost	Cost allocation base	Cost driver rate
(1)	(₹) (2)	(3)	(4) = [(2) ÷ (3)]
Stores Receiving	1,15,200	5,760 Requisitions	₹ 20 per requisition raised
		Raised	
Production Setup	1,36,800	7,200 Production Setup	₹ 19 per production setup
Quality Control	18,000	720 Quality Test	₹ 25 per quality test

PROBLEM - 4:

Family Store wants information about the profitability of individual product lines: Soft drinks, Fresh produce and Packaged food. Family store provides the following data for the current year for each product line:

	Soft drinks	Fresh produce	Packaged food
Revenues	₹ 39,67,500	₹ 1,05,03,000	₹ 60,49,500
Cost of goods sold	₹ 30,00,000	₹ 75,00,000	₹45,00,000
Cost of bottles returned	₹ 60,000	₹ 0	₹ 0
Number of purchase orders placed	360	840	360
Number of deliveries received	300	2,190	660
Hours of shelf-stocking time	540	5,400	2,700
Items sold	1,26,000	11,04,000	3,06,000

Family store also provides the following information for the current year:

Activity	Description of activity	Total Cost	Cost-allocation base
Bottles returns	Returning of empty bottles	€0,000	Direct tracing to
Ordering	Placing of orders for purchases	7,80,000	soft drink line 1,560 purchase
Delivery	Physical delivery and receipt of	12,60,000	orders 3,150 deliveries
Shelf stocking	goods Stocking of goods on store	8,64,000	8,640 hours of
	shelves and on- going restocking	, ,	shelf-stocking time
Customer Support	Assistance provided to customers including check-out	15,36,000	15,36,000 items sold

Required:

- i. Family store currently allocates support cost (all cost other than cost of goods sold) to product lines on the basis of cost of goods sold of each product line. CALCULATE the operating income and operating income as a % of revenues for each product line.
- ii. If Family Store allocates support costs (all costs other than cost of goods sold) to product lines using and activity-based costing system, CALCULATE the operating income and operating income as a % of revenues for each product line.

SOLUTION:

Working Notes:

1. Total Support Cost:

	(₹)
Bottles Returns	60,000
Ordering	7,80,000
Delivery	12,60,000
Shelf Stocking	8,64,000
Customer Support	15,36,000
Total Support Cost	45,00,000

2. Percentage Of Support Cost To Cost Of Goods Sold (COGS):

= Total Support Cost Total Cost Of Goods Sold X 100 ₹45,00,000

 $= \frac{\sqrt{43,00,000}}{1,50,00,000} \times 100$

= 30% of COGS

Activity (1)	Total cost (₹)	Cost Allocation Base	Cost Driver Rate
	(2)	(3)	(4) = [(2) ÷ (3)]
Ordering	7,80,000	1,560 purchase	₹ 500 per purchase order
		orders	
Delivery	12,60,000	3,150 deliveries	₹ 400 per delivery
Shelf-Stocking	8,64,000	8,640 hours	₹ 100 per stocking hour
Customer	15,36,000	15,36,000 items sold	₹1 per item sold
Support			

(i) Statement Of Operating Income And Operating Income As A Percentage Of Revenues For Each Product Line

(When support costs are allocated to product lines on the basis of cost of goods sold of each product)

	Soft Drinks	Fresh	Packaged	Total (₹)
	(₹)	Produce	Foods (₹)	
		(₹)		
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000
Cost of Goods sold	30,00,000	75,00,000	45,00,000	1,50,00,000
(COGS): (B)				
Support cost (30% of	9,00,000	22,50,000	13,50,000	45,00,000
COGS): (C)				
(Refer working notes)				
Total cost:	39,00,000	97,50,000	58,50,000	1,95,00,000
$(D) = \{(B) + (C)\}$				
Operating income:	67,500	7,53,000	1,99,500	10,20,000
E= {(A)-(D)}				
Operating income as a	1.70%	7.17%	3.30%	4.97%
percentage of				
revenues:				
(E ÷ A) × 100)				

(ii) Statement Of Operating Income And Operating Income As A Percentage Of Revenues For Each Product Line

(When support costs are allocated to product lines using an activity- based costing system)

	Soft Fresh Packaged		Packaged	Total
	drinks	Produce	Food	(₹)
	(₹)	(₹)	(₹)	
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000
Cost & Goods Sold	30,00,000	75,00,000	45,00,000	1,50,00,000
Bottle Return Costs	60,000	0	0	60,000
Ordering Cost*	1,80,000	4,20,000	1,80,000	7,80,000
(360:840:360)				
Delivery Cost*	1,20,000	8,76,000	2,64,000	12,60,000
(300:2190:660)				
Shelf Stocking Cost*	54,000	5,40,000	2,70,000	8,64,000
(540 : 5400 : 2700)				
Customer Support Cost*	1,26,000	11,04,000	3,06,000	15,36,000
(1,26,000:11,04,000:3,06,000)				
Total Cost: (B)	35,40,000	1,04,40,000	55,20,000	1,95,00,000
Operating Income C:{(A)-(B)}	4,27,500	63,000	5,29,500	10,20,000
Operating Income As A % Of	10.78%	0.60%	8.75%	4.97%
Revenues				

^{*} Refer to working note 3

PROBLEM - 4A:

Alpha Limited has decided to analyse the profitability of its five new customers. It buys bottled water at ₹ 90 per case and sells to retail customers at a list price of ₹ 108 per case. The data pertaining to five customers are:

	Customers				
	Α	В	С	D	E
Cases sold	4,680	19,688	1,36,800	71,550	8,775
Listed Selling Price	₹108	₹108	₹108	₹108	₹108
Actual Selling Price	₹108	₹106.20	₹99	₹104.40	₹97.20
Number of Purchase orders	15	25	30	25	30
Number of Customer visits	2	3	6	2	3
Number of deliveries	10	30	60	40	20
Kilometres travelled per delivery	20	6	5	10	30
Number of expedited deliveries	0	0	0	0	1

Ttc	five	activities	and	their	cost	drivers	are:
エ 13	11146	uciiviiies	unu	111611	CUSI	ui 1461 3	ui e ·

Activity	Cost Driver Rate
Order taking	₹750 per purchase order
Customer visits	₹ 600 per customer visit
Deliveries	₹ 5.75 per delivery Km travelled
Product handling	₹ 3.75 per case sold
Expedited deliveries	₹2,250 per expedited delivery

Required:

- 1. COMPUTE the customer-level operating income of each of five retail customers now being examined (A, B, C, D) and (B, C,
- 2. STATE what insights are gained by reporting both the list selling price and the actual selling price for each customer.

SOLUTION:

Working note:

Computation Of Revenues (At Listed Price), Discount, Cost Of Goods Sold And Customer Level Operating Activities Costs:

	Customers					
	A (₹)	B (₹)	C (₹)	D (₹)	E (₹)	
Cases sold: (a)	4,680	19,688	1,36,800	71,550	8,775	
Revenues (at	5,05,440	21,26,304	1,47,74,400	77,27,400	9,47,700	
listed price) (₹):						
(b) {(a) × ₹108)}						
Discount (₹):	-	35,438	12,31,200	2,57,580	94,770	
(c) {(a) × Discount		(19,688	(1,36,800	(71,550 cases	(8,775 cases	
per case}		cases ×	cases × ₹ 9)	× ₹ 3.60)	× ₹ 10.80)	
		₹ 1.80)				
Cost Of Goods	4,21,200	17,71,920	1,23,12,000	64,39,500	7,89,750	
Sold (₹): (D) {(A)						
× ₹ 90}						

Customer Level Operating Activities Costs

Order taking costs (₹):	11,250	18,750	22,500	18,750	22,500
(No. of purchase × ₹750)					
Customer visits costs (₹)	1,200	1,800	3,600	1,200	1,800
(No. of customer visits ×					

₹ 600)					
Delivery vehicles travel costs	1,150	1,035	1,725	2,300	3,450
(₹)	(5.75 x	(5.75 x	(5.75 x	(5.75 × 40	(5.75 x
(₹ 5.75 per km)	10×20)	30 x 6)	60x 5)	× 10)	20 x 30)
(Kms travelled by delivery					
vehicles × ₹ 5.75 per km.)					
Product handling costs (₹)	17,550	73,830	5,13,000	2,68,313	32,906
{(a) ×₹ 3.75}					
Cost of expediting deliveries	-	-	-	-	2,250
(₹) {No. of expedited					
deliveries × ₹ 2,250}					
Total cost of customer level	31,150	95,415	5,40,825	2,90,563	62,906
operating activities (₹)					

Computation Of Customer Level Operating Income

	Customers				
	A (₹)	B (₹)	C (₹)	D (₹)	E (₹)
Revenues (At List Price)	5,05,440	21,26,304	1,47,74,400	77,27,400	9,47,700
(Refer To Working Note)					
Less: Discount (Refer To	-	35,438	12,31,200	2,57,580	94,770
Working Note)					
Revenue (At Actual Price)	5,05,440	20,90,866	1,35,43,200	74,69,820	8,52,930
Less: Cost Of Goods Sold	4,21,200	17,71,920	1,23,12,000	64,39,500	7,89,750
(Refer To Working Note)					
Gross Margin	84,240	3,18,946	12,31,200	10,30,320	63,180
Less: Customer Level	31,150	95,415	5,40,825	2,90,563	62,906
Operating Activities Costs					
(Refer To Working Note)					
Customer Level Operating	53,090	2,23,531	6,90,375	7,39,757	274
Income					

Comment on the results:

 \triangleright Customer D is the most profitable customer. D's profits are even higher than C (whose revenue is the highest) despite having only 52.30% of the unit volume of customer C. The main reason is that C receives a discount of ₹ 9 per case while customer D receives only a ₹ 3.60 discount per case.

• Customer E is the least profitable. The profits of E is even less than A (whose revenue is least) Customer E received a discount of ₹ 10.80 per case, makes more frequent orders, requires more customer visits and requires more delivery kms. in comparison with customer A.

Insight gained by reporting both the list selling price and the actual selling price for each customer:

> Separate reporting of both-the listed and actual selling prices enables Alpha Ltd. to examine which customer has received what discount per case, whether the discount received has any relationship with the sales volume. The data given below provides us with the following information:

Sales volume	Discount per case (₹)
C (1,36,800 cases)	9.00
D (71,550 cases)	3.60
B (19,688 cases)	1.80
E (8,775 cases)	10.80
A (4,680 cases)	0

The above data clearly shows that the discount given to customers per case has a direct relationship with sales volume, except in the case of customer E. The reasons for ₹ 10.80 discount per case for customer E should be explored.

PROBLEM - 4B: (MTP 1 SEP 24)

Icecold a FMCG Company manufactures and sells three flavors of ice cream:

Dark chocolate, Chocolate, and Butterscotch. The batch size for the ice cream is limited to 1,000 ice cream based on the size of the fridge and ice cream molds owned by the company. Based on budgetary projections, the information listed below is available:

	Dark chocolate	<u>Chocolate</u>	Butterscotch
Projected sales in units	500,000	800,000	600,000
PER UNIT data:			
Selling price	₹ 80	₹ 75	₹ 60
Direct materials	₹ 20	₹ 15	₹ 14
Direct labor	₹ 4	₹ 2	₹ 2
Hours per 1000-unit batch:	,		
Direct labor hours	20	10	10
Fridge hours	1	1	1
Packaging hours	0.5	0.5	0.5

Total overhead costs and activity levels for the year are estimated as follo

<u>Activity</u>	Overhead costs	Activity levels	
Direct labor		2,400 hours	
Fridge	₹ 2,10,00,000	1,900 fridge hours	
Packaging	₹ 1,50,00,000	950 packaging hours	
	₹ 3,60,00,000		

Required:

- a. With the help of ABC system, for the Chocolate ice cream:
 - 1. Compute the activity-cost-driver rate
 - 2. Compute the estimated overhead costs per thousand ice cream.
 - 3. Compute the estimated operating profit per thousand ice cream.
- b. With the help of traditional system (with direct labor hours as the overhead allocation base), for the Chocolate ice cream, compute the estimated operating profit per thousand ice cream.

SOLUTION:

α.

1. Estimation Of Cost-Driver Rate

Activity	Overhead cost (₹)	Cost driver	Cost driver rate (₹)
(1)	(2)	(3)	(4) = 2 ÷ 3
Packaging	1,50,00,000	950 Packaging Hours	15,789.47
Fridge	2,10,00,000	1,900 Fridge Hours	11,052.63

2. Overhead Cost For Chocolate Ice Cream

Activity	Overhead for a 1,000-ice cream batch	Amount (₹)
Packaging	1 × ₹ 11,052.63	11,052.63
Fridge	0.5 x ₹ 15,789.47	7,894.74
Total		18,947.37

3. Operating Profit For Chocolate Ice Cream

Particulars	Amount (₹)
Revenue (1,000 × ₹ 75)	75,000.00
Less: Direct Material (1,000 x ₹ 15)	15,000.00
Less: Direct Labour (10,000 x ₹ 2)	20,000.00
Less: Overhead	18,947.37
Operating Profit	21,052.63

- b. Overhead Per Direct Hour
 - = Total Overhead ÷ Total Direct Labour Hours
 - $= 3,60,00,000 \div 24,000 \text{ hours}$
 - = ₹ 1,500 per direct labour hour

Since It Takes 10 Direct Labour Hour Per 1,000 Chocolate Ice Cream, The Overhead Is ₹ 15,000

Particulars	Amount (₹)
Revenue (1,000 x ₹ 75)	75,000.00
Less: Direct Material (1,000 x ₹ 15)	15,000.00
Less: Direct Labour (10,000 x ₹ 2)	20,000.00
Less: Overhead	15,000
Operating Profit	25,000

PROBLEM - 5:

RST Limited specializes in the distribution of pharmaceutical products. It buys from the pharmaceutical companies and resells to each of the three different markets.

- I. General Supermarket Chains
- II. Drugstore Chains
- III. Chemist Shops

The following data for the month of April, 20×1 in respect of RST Limited has been reported:

DADTICUL ADC	GENERAL	DRUGSTORE	CHEMIST
PARTICULARS	SUPERMARKET CHAINS	CHAINS	SHOPS
Average revenue per			
delivery	₹ 84,975	₹ 28,875	₹ 5,445
Average cost of goods sold			
per delivery	₹ 82,500	₹ 27,500	₹ 4,950
Number of deliveries	330	825	2,750

In the past, RST Limited has used gross margin percentage to evaluate the relative profitability of its distribution channels.

The company plans to use activity-based costing for analysing the profitability of its distribution channels.

The Activity analysis of RST Limited is as under:

ACTIVITY AREA	COST DRIVER
Customer purchase order processing	Purchase orders by customers
Line-items ordering	Line-items per purchase order
Store delivery	Store deliveries
Cartons dispatched to a stores	Cartons dispatched to a store per delivery
Shelf-stocking at customers store	Hours of shelf-stocking

Activity Ana	Total costs in	Total Units of Cost Allocation Base
Activity Area	April, 20x1	used in April, 20x1
Customer purchase order		
processing	₹ 2,20,000	5,500 orders
Line-item ordering	₹ 1,75,560	58,520 line items
Store delivery	₹ 1,95,250	3,905 store deliveries
Cartons dispatched to		
stores	₹ 2,09,000	2,09,000 cartons
Shelf-stocking at		
customer store	₹ 28,160	1,760 hours

Other data for April, 20x1 include the following:

General supermarket	Drugstore	Chemist	
chains	chains	shops	
385	990	4,125	
14	12	10	
330	825	2,750	
		_ /	
300	80	16	
3	0.6	0.1	
	chains 385 14 330 300	chains chains 385 990 14 12 330 825 300 80	

Required:

- i. COMPUTE for April, 20x1 gross-margin percentage each of its three distribution channels and compute RST Limited's operating income.
- ii. COMPUTE the April, 20×1 rate per unit of the cost-allocation base for each of the five activity areas.
- iii. COMPUTE the operating income of each distribution channel in April, 20x1 using the activity-based costing information. Comment on the results. What new insights are available with the activity-based cost information?
- iv. DESCRIBE four challenges one would face in assigning the total April, 20×1 operating costs of ₹ 8,27,970 to five activity areas

SOLUTION:

Part I: Statement of Operating Income and Gross Margin Percentage for Each of its Three Distribution Channel:

Particulars	General Super	Drug Store	Chemist	Total
	Market (₹)	(₹)	Shop (₹)	(₹)
Revenue	2,80,41,750	2,38,21,875	1,49,73,750	6,68,37,375
	(330 × ₹	(825 x ₹	(2750 x ₹	
	84,975)	28,875)	5,445)	
(-) COGS	(2,72,25,000)	(2,26,87,500)	(1,36,12,500)	6,35,25,000
	(330 x ₹	(825 x ₹	(2750 x ₹	
	82,500)	27,500)	4,950)	
Gross Profit	8,16,750	11,34,375	13,61,250	33,12,375
Less (-) Operating Cost				(8,27,970)
Operating Income				24,84,405
Gross Margin	2.91%	4.76%	9.09%	4.96
Operating Income %				3.72%

Part - II: ABC System Cost Allocation Base Of Fine Activity Areas

Activity	Cost Pool	Cost Driver	Cost Driver	Cost
(1)	₹	(3)	Quantity	Driver
	(2)		(4)	Rate ₹
				$(5) = (2 \div 4)$
Purchase order	2,20,000	Orders	5500	₹ 40 Per Order
Line items	1,75,500	Line Item	58,520	₹ 3 Per Line
				Item

Stores	1,95,250	Store Deliver	3905	₹ 50 Per Deliver
Cartons	2,09,000	Cartons	2,09,000	₹ 1 Per Cartons
Shelf	28,160	Hours	1760	₹ 16 Per Hour

Activity	Ge	neral Drug Chemist		eral Drug		emist
	CDQ	₹	CDQ	₹	CDQ	₹
Orders	385	15400	990	39600	4125	165000
Line item	5390	16170	11880	35640	41250	123750
Store Deliver	330	16500	825	41250	2750	137500
Cartons	99000	99000	66000	66000	44000	44000
Hours	990	15840	495	7920	275	4400
Total		162910		190410		474650

Apportionment Under ABC

Particulars	General (₹)	Drug (₹)	Chemist (₹)
Revenue	2,80,41,750	2,38,21,875	1,49,73,750
(+) COGS	(2,72,25,000)	(2,26,87,500)	(1,36,12,500)
Gross Profit	8,16,750	11,34,375	13,61,250
(-) Production	1,62,910	1,90,410	4,74,650
Overheads			
Operating Income	6,53,840	9,43,965	8,86,600
Operating Income %	2.33	3.96	5.92
Production	0.58%	0.80%	3.17%
Overheads %			

PROBLEM - 6:

'Humara - Apna' bank offers three products, viz., deposits, Loans and Credit Cards. The bank has selected 4 activities for a detailed budgeting exercise, following activity-based costing methods.

The bank wants to know the product wise total cost per unit for the selected activities, so that prices may be fixed accordingly.

The following information is made available to formulate the budget:

Activity	Present Cost	Estimation for the budget
	₹	period
ATM Services:		
a. Machine Maintenance	4,00,000	All fixed, no change.
b. Rents	2,00,000	Fully fixed, no change.
c. Currency	1,00,000	Expected to double during budget period
Replenishment Cos		
	7,00,000	(This activity is driven by no. of ATM
		transactions)
Computer Processing	5,00,000	Half this amount is fixed and no change is
		expected.
		The variable portion is expected to
		increase to three times the current level.
		(This activity is driven by the number of
		computer transactions)
Issuing Statements	18,00,000	Presently, 3 lakh statements are made. In
		the budget period, 5 lakh statements are
		expected.
		For every increase of one lakh statement,
		one lakh rupees is the budgeted increase.
		(This activity is driven by the number of
		statements)
Computer Inquiries	2,00,000	Estimated to increase by 80% during the
		budget period.
		(This activity is driven by telephone minutes)

The activity drivers and their budgeted quantifies are given below:

Activity Drivers	Deposits	Loans	Credit
			Cards
No. of ATM Transactions	1,50,000		50,000
No. of Computer Processing Transactions	15,00,000	2,00,000	3,00,000
No. of Statements to be issued	3,50,000	50,000	1,00,000
Telephone Minutes	3,60,000	1,80,000	1,80,000

The bank budgets a volume of 58,600 deposit accounts, 13,000 loan accounts, and 14,000 Credit Card Accounts.

Required:

- CALCULATE the budgeted rate for each activity.
- PREPARE the budgeted cost statement activity wise.
- COMPUTE the budgeted product cost per account for each product using (i) and (ii) above.

SOLUTION:

Statement Showing "Budgeted Cost Per Unit Of The Product"

Activity	Activity	Activity	No. of	Activity	Deposits	Loans	Credit
	Cost	Driver	Units of	Rate	(₹)	(₹)	Cards
	(Budgeted)		Activity	(₹)			(₹)
	(₹)		Driver				
			(Budget)				
ATM	8,00,000	No. of ATM	2,00,000	4.00	6,00,000		2,00,000
Services		Transaction					
Computer	10,00,000	No. of	20,00,000	0.50	7,50,000	1,00,000	1,50,000
Processing		Computer					
		processing					
		Transaction					
Issuing	20,00,000	No. of	5,00,000	4.00	14,00,000	2,00,000	4,00,000
Statements		Statements					
Customer	3,60,000	Telephone	7,20,000	0.50	1,80,000	90,000	90,000
Inquiries		Minutes					
Budgeted	41,60,000				29,30,000	3,90,000	8,40,000
Cost							
Units of Prod	Units of Product (as estimated in the budget period)					13,000	14,000
Budgeted Cos	Budgeted Cost per unit of the product					(₹) 30	(₹) 60

Working Note

Activity	Budgeted	Remark
	Cost	
	(₹)	
ATM Services:		
(a) Machine Maintenance	4,00,000	- All fixed, no change.
(b) Rents	2,00,000	– Fully fixed, no change.
(c) Currency Replenishment	2,00,000	- Doubled during budget period.
Cost		
Total	8,00,000	
	2,50,000	

Computer Processing	7,50,000	- ₹ 2,50,000 (half of ₹ 5,00,000) is
	10,00,000	fixed and no change is expected.
Total		– ₹ 2,50,000 (variable portion) is
		expected to increase to three times
		the current level.
Issuing Statements	18,00,000	- Existing.
	2,00,000	- 2 lakh statements are expected to be
		increased in budgeted Period. For every
		increase of one lakh statement, one lakh
Total	20,00,000	Rupees is the budgeted increase.
Computer Inquiries	3,60,000	- Estimated to increase by 80% during the
Total	3,60,000	budget period. (₹ 2,00,000 x 180%)

PROBLEM - 6A: (MTP 2 JAN 25)

XYZ Constructions is a leading engineering and construction company providing a range of infrastructure and industrial services. Recently, they have been asked to quote for residential building construction (RBC) and industrial plant construction (IPC) projects. However, they are winning fewer RBC contracts than expected.

XYZ Constructions has a policy to price all jobs at budgeted total cost plus 50%. Overheads are currently absorbed on a labour-hour basis. The company believes that switching to activity-based costing (ABC)

to absorb overheads would reduce the costs associated with RBC and make them more competitive.

You are provided with the following data:

Overhead category	Annual	Activity driver	Total number
	Overhead		of activities
	(₹ Lakhs)		per year
Supervisors	₹120	Site visits	600
Project Planners	₹ 80	Planning documents	300
Property related	₹400	Labour hours	50,000
Total	₹600		

For a typical RBC: Material cost: ₹ 5 lakhs, Labour hours: 1,200 hours, Site visits: 2 visits, Planning documents: 2 documents For a typical IPC: Material cost: ₹ 12 lakhs, Labour hours: 2,500 hours, Site visits: 10 visits, Planning documents: 8 documents Labour is paid at ₹ 100 per hour. Required:

- (a) CALCULATE the cost and quoted price of an RBC and an IPC using labour hours to absorb the overheads.
- (b) CALCULATE the cost and quoted price of an RBC and an IPC using ABC to absorb the overheads.
- (c) Assuming that the cost of an RBC falls by nearly 7% and the price of an IPC rises by about 2% as a result of the change to ABC, SUGGEST possible pricing strategies for the two services offered by XYZ Constructions. Additionally, suggest two reasons other than high prices for the current poor sales of RBC.

SOLUTION:

(a) Cost and Quoted Price Using Labour Hours to Absorb Overheads

		RBC	IPC
		(₹ in lakhs)	(₹ in lakhs)
Materials		5.00	12.00
Labour	1200 x ₹ 100; 2500 x ₹ 100	1.20	2.50
Overheads	1200 x ₹ 1200; 2500 x ₹ 1200	14.40	30.00
Total cost		20.60	44.50
Add: Profit	50% of Total Cost	10.30	22.25
Quoted Price		30.90	66.75

b) Cost and Quoted Price Using ABC

Step 1: Calculate Overhead Rates for Each Activity

Overhead Category	Total Overhead (₹ Lakhs)	Activity Driver	Activity Rate
Site Engineers	₹120	Site Visits	₹ 120 ÷ 600 = ₹ 20,000 per site visit
Project Planners	₹80	Planning Documents	₹ 80 ÷ 300 = ₹ 26,667 per planning document
Equipment Depreciation	₹400	Labour Hours	₹ 400 ÷ 50,000 = ₹ 800 per Labour Hour

Step 2: Allocate Overheads Using ABC

		RBC	IPC
		(in lakhs)	(in lakhs)
Materials		5.00	12.00
Labour	1200 × ₹100; 2500 × ₹100	1.20	2.50

Overheads			
Site Engineers	2 x ₹ 20,000; 10 x ₹ 20,000	0.40	2.00
Project Planners	2 x ₹ 26,667; 8 x ₹ 26,667	0.53	2.13
Equipment Depreciation	1200 x ₹ 800; 2500 x ₹ 800	9.60	20.00
Total cost		16.73	38.63
Add: Profit	50% of Total Cost	8.37	19.32
Quoted Price		25.10	57.95

c) Possible pricing strategies for the two services offered by XYZ Constructions

- ✓ The pricing policy is a matter for XYZ Constructions to decide. They could elect to
 maintain the current 50% mark-up on cost and if they did the price of the RBC would fall
 by around 7% in line with the costs. This should make them more competitive in the
 market.
- ✓ They could also reduce the prices by a little less than 7% (say 5%) in order to increase internal margins a little.

Reasons other than high prices for the current poor sales of RBC:

- ✓ If the quality of work or the reputation and reliability of the builder are questionable, lowering prices is unlikely to boost sales.
- ✓ While it is possible that XYZ Constructions has a strong reputation for IPC but not for RBC, it is more likely that a poor reputation would impact all their products. Poor service or inflexibility in meeting customer needs may also hurt sales and can't be fixed by lowering prices.
- ✓ Poor marketing strategies also discourage customers from selecting XYZ Constructions.
- ✓ XYZ Constructions faces competition and may need to adopt a more competitive pricing strategy, such as 'going rate pricing,' instead of simply adding a markup to costs.
- ✓ XYZ Constructions could enter the market by pricing some projects competitively to
 establish a foothold. Completed projects could then be leveraged to attract new
 customers.

PROBLEM - 7:

BABYSOFT is a global brand created by Bio-organic Ltd. The company manufactures three ranges of beauty soaps i.e. BABYSOFT- Gold, BABYSOFT- Pearl, and BABYSOFT- Diamond. The budgeted costs and production for the month of December are as follows:

	BABYSOFT Gold		BABYSOFT Pearl		BABYSOFT Diamond	
Production of soaps (Units)	4,000		3,000		2,000	
Resources per Unit:	Qty	Rate ₹	Qty	Rate ₹	Qty	Rate ₹
Essential Oils	60 ml	200 / 100ml	55 ml	300 / 100 ml	65 ml	300 / 100 ml
Cocoa Butter	20 g	200 / 100 g	20 g	200 / 100 g	20 g	200 / 100 g
Filtered Water	30 ml	15 / 100ml	30 ml	15 / 100 ml	30 ml	15 / 100 ml
Chemicals	10 g	30 / 100g	12 g	50 / 100 g	15 g	60 / 100 g
Direct Labour	30 minutes	10 / hour	40 minutes	10 / hour	60 minutes	10 / hour

Bio-organic Ltd. followed an Absorption Costing System and absorbed its production Overheads, to its products using direct labour hour rate, which were budgeted at ₹ 1,98,000.

Now, Bio-organic Ltd. is considering adopting an Activity Based Costing system.

For this, additional information regarding budgeted Overheads and their cost drivers is provided below:

Particulars	₹	Cost drivers
Forklifting cost	58,000	Weight of material lifted
Supervising cost	60,000	Direct labour hours
Utilities	80,000	Number of Machine operations

The number of machine operations per unit of production are 5, 5, and 6 for BABYSOFT-Gold, BABYSOFT- Pearl, and BABYSOFT- Diamond respectively.

(Consider (i) Mass of 1 litre of Essential Oils and Filtered Water equivalent to

0.8 kg and 1 kg respectively (ii) Mass of output produced is equivalent to the mass of input materials taken together.)

You are requested to:

- 1. PREPARE a statement showing the unit costs and total costs of each product using the absorption costing method.
- 2. PREPARE a statement showing the product costs of each product using the ABC approach. STATE what are the reasons for the different product costs under the two approaches.

SOLUTION:

Traditional Absorption Costing

	BABYSOFT-	BABYSOFT-	BABYSOFT-	Total
	Gold	Pearl	Diamond	
(a) Production of soaps (Units)	4,000	3,000	2,000	9,000
(b) Direct labour (minutes)	30	40	60	-
(c) Direct labour hours (a × b) ÷ 60	2,000	2,000	2,000	6,000
minutes				

Overhead rate per direct labour hour:

- = Budgeted Overheads ÷ Budgeted labour hours
- = 1,98,000 \div 6,000 hours
- = ₹ 33 per direct labour hour

Unit Costs:

	BABYSOFT-	BABYSOFT-	BABYSOFT-
	Gold (₹)	Pearl (₹)	Diamond (₹)
Direct Costs:			
- Direct Labour	5.00	6.67	10.00
	$\left(\frac{10\times30}{60}\right)$	$\left(\frac{10\times40}{60}\right)$	$\left(\frac{10\times60}{60}\right)$
- Direct Material	167.50	215.50	248.50
(Refer working note1)			
Production Overhead	16.50	22.00	33.00
	$\left(\frac{33\times30}{60}\right)$	$\left(\frac{33\times40}{60}\right)$	$\left(\frac{33\times60}{60}\right)$
Total unit costs	189.00	244.17	291.50
Number of units	4,000	3,000	2,000
Total costs	7,56,000	7,32,510	5,83,000

Working Note-1

Calculation of Direct material cost

	BABYSOFT-	BABYSOFT-	BABYSOFT-
	Gold (₹)	Pearl (₹)	Diamond (₹)
Essential oils	120.00	165.00	195.00
	$\left(\frac{200\times60}{100}\right)$	$\left(\frac{300 \times 55}{100}\right)$	$\left(\frac{300\times65}{100}\right)$
Cocoa Butter	40.00	40.00	40.00

	$\left(\frac{200\times20}{100}\right)$	$\left(\frac{200\times20}{100}\right)$	$\left(\frac{200\times20}{100}\right)$
Filtered water	4.50	4.50	4.50
	$\left(\frac{15\times30}{100}\right)$	$\left(\frac{15\times30}{100}\right)$	$\left(\frac{15\times30}{100}\right)$
Chemicals	3.00 $\left(\frac{30 \times 10}{100}\right)$	6.00 $\left(\frac{50 \times 12}{100}\right)$	9.00 $\left(\frac{60 \times 15}{100}\right)$
Total costs	167.50	215.50	248.50

Activity Based Costing

	BABYSOFT-	BABYSOFT-	BABYSOFT-	Total
	<i>G</i> old	Pearl	Diamond	
Quantity (Units)	4,000	3,000	2,000	-
Weight Per Unit	108	106	117	-
(Grams)	{(60 × 0.8) + 20 +	{(55 × 0.8)+20 +	{(65 × 0.8) + 20 +	
	30 + 10}	30 + 12}	30 + 15}	
Total Weight	4,32,000	3,18,000	2,34,000	9,84,000
(Grams)				
Direct Labour	30	40	60	-
(Minutes)				
Direct Labour	2,000	2,000	2,000	6,000
Hours	$\left(\frac{4000\times30}{60}\right)$	$\left(\frac{3000\times40}{60}\right)$	$\left(\frac{2000\times60}{60}\right)$	
Machine	5	5	6	-
Operations Per				
Unit				
Total Operations	20,000	15,000	12,000	47,000

Forklifting rate per gram = ₹ 58,000 ÷ 9,84,000 grams

= ₹ 0.06 per gram

Supervising rate per direct = ₹60,000 ÷ 6,000 hours

labour hour = ₹ 10 per labour hour

Utilities rate per machine

Operations = $₹ 80,000 \div 47,000$ machine operations

= ₹1.70 per machine operations

Unit Costs under ABC:

	BABYSOFT-	BABYSOFT-	BABYSOFT-
	Gold (₹)	Pearl (₹)	Diamond (₹)
Direct Costs:			
- Direct Labour	5.00	6.67	10.00
- Direct material	167.50	215.50	248.50
Production Overheads:			
- Forklifting cost	6.48	6.36	7.02
	(0.06 × 108)	(0.06 × 106)	(0.06×117)
- Supervising cost	5.00	6.67	10.00
	$\left(\frac{10\times30}{60}\right)$	$\left(\frac{10\times40}{60}\right)$	$\left(\frac{10\times60}{60}\right)$
Utilities	8.50	8.50	10.20
	(1.70×5)	(1.70 × 5)	(1.70×6)
Total unit costs	192.48	243.70	285.72
Number of units	4,000	3,000	2,000
Total costs	7,69,920	7,31,100	5,71,440

Comments: The difference in the total costs under the two systems is due to the differences in the Overheads borne by each of the products. The Activity Based Costs appear to be more accurate

PROBLEM - 8:

MST Limited has collected the following data for its two activities. It calculates activity cost rates based on cost driver capacity.

ACTIVITY	COST DRIVER	KILOWATT HOURS	COST
Power	Kilowatt hours	50,000 kilowatt hours	₹ 2,00,000
Quality inspections	Number of inspections	10,000 inspections	₹ 3,00,000

The company makes three products M, S and T. For the year ended March 31, 20×1 , the following consumption of cost drivers was reported:

PRODUCT	KILOWATT HOURS	QUALITY INSPECTIONS
W	10,000	3,500
5	20,000	2,500
Т	15,000	3,000

Required:

I. COMPUTE the costs allocated to each product from each activity.

II. CALCULATE the cost of unused capacity for each activity.

III. DISCUSS the factors the management considers in choosing a capacity level to compute the budgeted fixed overhead cost rate.

SOLUTION:

Part I: Computation Of Cost Allocate From Each Quantity:

Step 1: Calculation Of Cost Drive Rate:

Activity	Cost Pool	Cost Driver	Cost Driver	Cost
(1)	(2)	(3)	Quantity	Driver
			(4)	Rate
				(5) = (2 ÷ 4)
Power	2,00,000	Kilowatt	50000	₹ 4 Per Kilowatt
Quality	3,00,000	Quality inspection	10000	₹ 30 Per Quality
				Inspection

Step 2: Apportionment

Particulars	٨	٨	5	5	٦	Γ	Total
	CDQ	₹	CDQ	₹	CDQ	₹	₹
Power	10000	40000	20000	80000	15000	60000	180000
Quality	3500	105000	2500	75000	3000	90000	270000

Part II: Cost Of Unused Capacity For Each Quantity

Particulars	₹
Power (5000 kilowatt x ₹ 4)	20,000
Inspection (1000 Inspection $x \neq 30$)	30,000
Total cost of unused capacity	50,000

Part III: Factors To Be Considered In Choosing A Capacity Level:

- 1. Effect On Product Costing And Capacity Management
- 2. Effect On Pricing Decisions.
- 3. Effect On Performance Evaluation
- 4. Effect On Financial Statements.

CHAPTER 05: COST ACCOUNTING SYSTEM

PROBLEM - 1:

During the month of January the following transactions took place in A Co. Ltd:

PARTICULARS	AMOUNT
1. Material purchased:	
a. Credit purchases	₹ 9,000
b. Credit purchases for special job	₹ 400
c. Cash purchases	₹ 1,000
2. Returns to suppliers	₹ 500
3. Direct materials issued to production	₹ 6,000
4. Indirect materials issued	₹ 600
5. Materials return from production to stores	₹ 100
6. Materials transferred from Job No. 10 to Job No. 11	₹ 200

You are required to enter the transactions in the cost books.

SOLUTION:

Journal entries

s No	Particulars		Debit (₹)	Credit (₹)
1.a.	Stores Ledger Control A/c	Dr	9000	
	To General Ledger Adjustment A/c			9000
	(Being Purchases made)			
b.	WIP A/c	Dr	400	
	To General Ledger Adjustment A/c			400
	(Being Credit Purchase Made for Special Job)			
c.	Stores Ledger Control A/c	Dr	1000	
	To General Ledger Adjustment A/c			1000
	(Cash purchase)			
2.	General Ledger Adjustment A/c	Dr	500	
	To Stores Ledger Control A/c			500
	(Being Return made to Supplier)			
3.	WIP A/c	Dr	6000	
	To Stores Ledger Control A/c			6000
	(Being Direct Material Issued for Production)			
4.	Production Overheads A/c	Dr	600	
	To Stores Ledger Control A/c			600

	(Indirect Material Issued)			
5.	Stores Ledger Control A/c	Dr	100	
	To WIP A/c			100
	(Being Returned to Stores Ledger Control)			
6.	Job No 11	Dr	200	
	To Job No 10			200
	(Material Transferred from Job 10 to Job 11)			

PROBLEM - 2:

Enter the following transactions in cost books:

Particulars	Amount (₹)	Amount (₹)
Gross wages		₹ 10,000
Less: Deductions -		
Employees' State insurance	₹ 230	
Employees' provident fund	₹ 800	
Income-tax	₹ 200	₹ 1,230
Net cash		₹ 8,770

Provide employer's contribution to E.S.I. ₹ 250 and provident fund ₹ 800

The following particulars are obtained from the wages analysis book:

Particulars	Amount (₹)
Wages paid to direct Labour	₹ 8,000
Salaries paid to production staff	₹ 1,050
Salaries paid to administration staff	₹ 800
Salaries paid to selling and distribution staff	₹ 1,200

SOLUTION:

Transaction	Entry		Debit (₹)	Credit (₹)
Incurrence of Wages	Wages Control A/c	Dr	11050	
	To General Ledger Adjustment A/c			11050
	(₹ 1,00,000 + ₹ 250 + ₹ 800)			
Utilization of wages	WIP A/c	Dr	8000	
	Production Overhead A/c	Dr	1050	
	Administrative Overhead A/c	Dr	800	
	Selling Overhead A/c	Dr	1200	
	To Wages Control A/c			11050

PROBLEM - 3:

The following information is obtained from X Co., Ltd., during April, 20×1 -

PARTICULARS	AMOUNT (₹)
1. Overhead is incurred as under -	
a. Service supplied by creditors	5,000
b. Petty cash expenditure for miscellaneous expenses	200
Analysis of service reveals -	
Production overhead	2,000
Administration overhead	1,000
Selling and distribution overhead	2,000
Analysis of petty cash reveals -	
Production overhead	120
Administration overhead	10
Selling and distribution overhead	70
2. Overhead is absorbed as under -	
a. Production overhead	1,900
b. Administration overhead	1,050
c. Selling and distribution overhead	2,000
Enter the above transactions in the cost books.	

SOLUTION:

S.	Transaction	Journal entries		(₹)	(₹)
No					
1 a)	Production Overhead Incurred	Production Overhead A/c	Dr	2120	
		To General Ledger			2120
		Adjustment A/c			
1 b)	Administrative Overhead	Administrative Overhead A/c	Dr	1010	
	Incurred	To General Ledger			1010
		Adjustment A/c			
1 c)	Selling Overhead Incurred	Selling Overhead A/c	Dr	2070	
		To General Ledger			2070
		Adjustment A/c			
2 a)	Absorption of Production WIP A/c		Dr	1900	
	Overhead	To Production Overhead			1900
		A/c			

2 b)	Absorption of Administrative	Cost of Sales A/c	Dr	1050	
	Overhead	To Administrative Overhead			1050
		A/c			
2 c)	Absorption of Selling Overhead	Cost of Sales A/c	Dr	2000	
		To Selling Overhead A/c			2000
3 a)	Under Absorption	Costing Profit and Loss A/c	Dr	220	
		To Production Overhead			220
		A/c			
3 b)	Over Absorption	Administrative Overhead A/c	Dr	40	
		To Costing Profit and Loss			40
		A/c			
3 c)	Under Absorption	Costing Profit and Loss A/c	Dr	70	
		To Selling Overhead A/c			70

PROBLEM - 4:

The following balances are obtained from the books of XYZ Co., Ltd., on 1.1.20x1:

Particulars	Dr. (₹)	Cr. (₹)
Stores ledger control account	₹ 5,000	
Work-in-progress ledger control account	₹ 2,000	
Finished goods ledger control account	₹ 1,000	
General ledger adjustment account		₹ 8,000
TOTAL	₹ 8,000	₹ 8,000

The following information is received at the end of the year -

Particulars	AMOUNT	AMOUNT
Purchase for stores		₹ 29,500
Purchase for special jobs		₹ 1,800
Returned to suppliers from stores		₹ 200
Direct wages	₹ 20,500	
Indirect factory wages	₹ 4,500	
Salaries to administration staff	₹ 3,400	
Salaries to selling and distribution staff	₹ 2,400	
Abnormal idle time	₹ 300	₹ 31,100
Direct expense		₹ 2,200
Production expenses		₹ 5,100

Administration expenses	₹ 4,100
Selling and distribution expenses	₹ 2,600
Stores and issued to production	₹ 30,500
Materials lost from stores by theft	₹ 400
Stores issued to maintenance account	₹ 1,300
Production overhead applied to production	20% on prime
	cost
Administration overhead applied to finished goods	₹ 7,200
Selling and distribution overhead applied to cost of sales	6% on sales value
Finished goods produced during the year	₹ 66,000
Goods sold during the period – at sales value	₹ 80,000
Goods sold during the period – at cost	₹ 69,500

You are required to record the entries in the cost ledger for the year and prepare a trial balance.

SOLUTION:

Dr Stores Ledger Control A/c

Cr

Particulars	(₹)	Particulars	(₹)
To Balance b/d	5000	By General Ledger Adjustment	200
		A/c	
To General Ledger Adjustment	29500	By WIP A/c	30500
A/c			
		By Abnormal Loss A/c	400
		By Production Overhead A/c	1300
		By Balance c/d	2100
	34500		34500

Dr WIP Control A/c Cr

Particulars	(₹)	Particulars	(₹)
To Balance b/d	2000	By Finished Goods A/c	66000
To General Ledger Adjustment	1800		
(Special Job) A/c			
To Wages Control A/c (Direct	20500		
Wages)			

To General Ledger Adjustment	2200		
A/c (Direct Expenses)			
To Stores Ledger Control A/c	30500		
To Production Overhead A/c	11000		
(W N)			
		By Balance c/d	2000
	68000		68000

Dr Finished Goods Control A/c Cr

Particulars	(₹)	Particulars	(₹)
To Balance b/d	1000	By Cost of Sales A/c	69500
To Administrative Overhead A/c	7200	By Balance c/d	4700
To WIP A/c	66000		
	74200		74200

Dr Wages Control A/c Cr

Particulars	(₹)	Particulars	(₹)
To General Ledger Adjustment	31,100	By WIP A/c	20500
A/c			
		By Production Overhead A/c	4500
		By Administrative Overhead A/c	3400
		By Selling Overhead A/c	2400
		By Abnormal Loss A/c	300
	31,100		31,100

Dr Production Overhead A/c Cr

Particulars	(₹)	Particulars	(₹)
To Wages Control A/c	4500	By WIP A/c (WN)	11000
To General Ledger Adjustment	5100		
A/c			
To Stores Ledger Control A/c	1300		
To Costing Profit and Loss A/c	100		
	11000		11000

WN - Absorbed Production Overhead:

Direct Materials - ₹ 32300 [₹ 30500 + ₹ 1800]

Direct Wages - ₹ 20500

Direct Expenses - ₹ 2200

Prime *C*ost - ₹ 55000

Production Overhead Absorbed - [₹ 55000 x 20%] = ₹ 11000

Dr Administrative Overhead A/c Cr

Particulars	(₹)	Particulars	(₹)
To Wages Control A/c	3400	By Finished Goods A/c	7200
To General Ledger Adjustment	4100	By Costing profit and Loss A/c	300
A/c			
	7500		7500

Dr Selling Overhead A/c Cr

Particulars	(₹)	Particulars	(₹)
To Wages Control A/c	2400	By Cost of Sales (₹ 80,000 × 6%)	4800
To General Ledger Adjustment	2600	By Costing Profit and Loss A/c	200
A/c			
	5000		5000

Dr Cost of Sales A/c Cr

Particulars	(₹)	Particulars	(₹)
To Selling Overhead A/c	4800	By Costing profit and Loss A/c	74300
To Finished Goods A/c	69500		
	74300		74300

Dr Costing profit and Loss A/c Cr

Particulars	(₹)	Particulars	(₹)
To Administrative Overhead	300	By General Ledger Adjustment	80,000
		A/c (Sales)	
To Selling Overhead	200	By Production Overhead A/c	100
To Abnormal Loss	700		
To Cost of Sales A/c	74300		
To General Ledger Adjustment	4600		
A/c (Profit)			

Cr

80100	80100

Dr Abnormal Loss A/c

Particulars	(₹)	Particulars	(₹)
To Wages Control A/c	300	By Costing profit and Loss A/c	700
To Stores Ledger Control A/c	400		
	700		700

Dr General Ledger Adjustment A/c Cr

Particulars	(₹)	Particulars	(₹)
To Stores Ledger Control A/c	200	By Balance b/d	8000
To Costing profit and Loss A/c	80,000	By Stores Ledger Control A/c	29500
		By WIP A/c	1800
		By wages control A/c	31100
		By WIP A/c	2200
		By Production Overhead A/c	5100
		By Administrative Overhead A/c	4100
		By Selling Overhead A/c	2600
		By Costing profit and Loss A/c	4600
To Balance c/d	8800		
	89000		89000

Trial balance

Particulars	Debit (₹)	Credit (₹)
Stores Ledger Control A/c	2100	
WIP A/c	2000	
Finished Goods A/c	4700	
General Ledger Adjustment A/c		8800
	8800	8800

PROBLEM - 4A:

As on 31st March, the following balances existed in a firm's Cost Ledger:

	Dr	Cr
	₹	₹
Stores Ledger Control A/c	3,01,435	
Work-in-Process Control A/c	1,22,365	
Finished Stock Ledger Control A/c	2,51,945	
Manufacturing Overhead Control A/c		10,525
Cost Ledger Control A/c		6,65,220
	6,75,745	6,75,745

During the next three months the following items arose:

	₹
Finished product (at cost)	2,10,835
Manufacturing Overhead incurred	91,510
Raw Materials purchased	1,23,000
Factory Wages	50,530
Indirect Labour	21,665
Cost of Sales	1,85,890
Material issued to production	1,27,315
Sales returned at Cost	5,380
Material returned to suppliers	2,900
Manufacturing Overhead charged to production	77,200

You are required to PASS the Journal Entries; write up the accounts and schedule the balances, stating what each balance represents.

SOLUTION:

Journal entries are as follows:

			Dr	Cr
			(₹)	(₹)
1.	Finished stock ledger Control A/c	Dr	2,10,835	
	To Work-in-Process Control A/c			2,10,835
2.	Manufacturing Overhead Control A/c	Dr	91,510	
	To Cost Ledger Control A/c			91,510
3.	Stores Ledger Control A/c	Dr	1,23,000	
	To Cost Ledger Control A/c			1,23,000

4.	(i) Wage Control A/c	Dr	72,195	
	To Cost Ledger Control A/c			72,195
	(ii) Work-in-Process Control A/c	Dr	50,530	
	To Wages Control A/c			50,530
	(iii) Manufacturing Overhead Control A/c	Dr	21,665	
	To Wages Control A/c			21,665
5.	Cost of Sales A/c	Dr	1,85,890	
	To Finished Stock Ledger A/c			1,85,890
6.	Work-in-Process Control A/c	Dr	1,27,315	
	To Stores Ledger Control A/c			1,27,315
7.	Finished Stock Ledger Control A/c	Dr	5,380	
	To Cost of Sales A/c			5,380
8.	Cost Ledger Control A/c	Dr	2,900	
	To Stores Ledger Control A/c			2,900
9.	Work-in-Process Control A/c	Dr	77,200	
	To Manufacturing Overhead Control A/c			77,200

COST LEDGERS

Cost Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Stores Ledger Control A/c		By Balance b/d	6,65,220
(return)	2,900		
To Balance c/d	9,49,025	By Manufacturing Overheads Control A/c	91,510
		By Stores Ledger Control A/c	1,23,000
		By Wages Control A/c	72,195
	9,51,925		9,51,925

Stores Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	3,01,435	By Work in Process Control	1,27,315
To Cost Ledger Control A/c	1,23,000	By Cost Ledger Control A/c	2,900
		By Balance c/d	2,94,220
	4,24,435		4,24,435

Wages Control Account

	Particulars	(₹)	Particulars	(₹)
То	Cost Ledger Control A/c	72,195	By Work in Process Control A/c	50,530
			By Manufacturing Overheads Control	21,665
		72,195		72,195

Manufacturing Overhead Control Account

Particulars	(₹)	Particulars	(₹)
To Cost Ledger Control A/c	91,510	By Balance b/d	10,525
To Wages Control A/c	21,665	By Work in Process Control A/c	77,200
		By Balance c/d	25,450
	1,13,175		1,13,175

Work-in-Process Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	1,22,365	By Finished Stock Ledger Control A/c	2,10,835
To Wages Control A/c	50,530	By Balance c/d	1,66,575
To Stores Ledger Control A/c	1,27,315		
To Manufacturing OH Control	77,200		
	3,77,410		3,77,410

Finished Stock Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	2,51,945	By Cost of Sales Control A/c	1,85,890
To Work in Process Control	2,10,835	By Balance c/d	2,82,270
To Cost of Sales Control A/c (Return at cost)	5,380		
	4,68,160		4,68,160

Cost of Sales Account

Particulars	(₹)	Particulars	(₹)
To Finished Stock Ledger		By Finished Stock Ledger Control	
Control	1,85,890	(Return)	5,380
		By Balance c/d	1,80,510

1,85,890 1,85,890

Trial Balance

Particulars	Dr	Cr
	(₹)	(₹)
Stores Ledger Control A/c	2,94,220	
Work-in-Process Control A/c	1,66,575	
Finished Stock Ledger Control A/c	2,82,270	
Manufacturing Overhead Control A/c	25,450	
Cost of Sales A/c	1,80,510	
Cost Ledger Control A/c		9,49,025
	9,49,025	9,49,025

PROBLEM - 4B:

A company operates on historic job cost accounting system, which is not integrated with the financial accounts. At the beginning of a month, the opening balances in cost ledger were:

	(₹ in lakhs)
Stores Ledger Control Account	80
Work-in-Process Control Account	20
Finished Goods Control Account	430
Building Construction Account	10
Cost Ledger Control Account	540

During the month, the following transactions took place:

		(₹ in lakh)
Materials	Purchased	40
	Issued to production	50
	Issued to factory maintenance	6
	Issued to building construction	4
Wages	Gross wages paid	150
	Indirect wages	40
	For building construction	10
Works Overheads	Actual amount incurred	160
	(Excluding items shown above)	
	Absorbed in building construction	20

	Under absorbed	8
Royalty paid	(Related to production)	5
Selling, Distribution	25	
Sales		450

At the end of the month, the stock of raw material and work-in-Process was ₹55 lakhs and ₹25 lakhs respectively. The loss arising in the raw material accounts is treated as factory overheads. The building under construction was completed during the month. Company's gross profit margin is 20% on sales.

PREPARE the relevant control accounts to record the above transactions in the cost ledger of the company.

SOLUTION:

Cost Ledger Control A/c

Amount (₹ in lakhs)

Particulars	(₹)	Particulars	(₹)
To Costing P&L A/c	450	By Balance b/d	540
To Building Construction A/c	44	By Stores Ledger Control A/c	40
To Balance c/d	483	By Wages Control A/c	150
		By Works OH Control A/c	160
		By Royalty A/c	5
		By Administrative Overheads and	25
		Selling & Distribution Overheads	
		A/c	
		By Costing P&L A/c	57
	977		977

Stores Ledger Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	80	By Work-in-Process A/c	50
To Cost Ledger Control A/c	40	By Works Overheads Control A/c	6
		By Building Construction A/c	4
		By Works Overheads Control A/c	5
		(Balancing Figure) (Loss)	
		By Balance c/d	55
	120		120

Wages Control A/c

	Particulars	(₹)	Particulars	(₹)
То	Cost Ledger Control A/c	150	By Works Overheads Control A/c	40
			By Building Construction A/c	10
			By Work-in-process Control A/c	100
			(Balancing figure)	
		150		150

Works Overhead Control A/c

Particulars	(₹)	Particulars	(₹)
To Stores Ledger Control A/c	6	By Building Const. A/c	20
To Wages Control A/c	40	By Work-in-process Control A/c (Balancing figure)	183
To Cost Ledger Control A/c	160	By Costing Profit and Loss A/c (under-absorption)	8
To Store Ledger Control A/c (Loss)	5		
	211		211

Royalty A/c

	Particulars	(₹)	Particulars	(₹)
То	Cost Ledger Control A/c	5	By Work-in-process Control A/c	5
		5		5

Work-in-Process Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	20	By Finished Goods Control A/c	333
		(Balancing figure)	
To Stores Ledger Control A/c	50		
To Wages Control A/c	100		
To Works OH Control A/c	183		
To Royalty A/c	5	By Balance c/d	25
	358		358

Finished Goods Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	430	By Cost of Goods Sold A/c	360
To Work-in-process Control A/c	333	(80% of ₹ 450)	
		By Balance c/d	403

763	763	
-----	-----	--

Cost of Goods Sold A/c

Par	ticulars	(₹)	Particulars	(₹)
То	Finished Goods Control A/c	360	By Cost of sales A/c	360
		360		360

Selling, Distribution and Administration Overhead A/c

	Particulars	(₹)		Particulars	(₹)
То	Cost Ledger Control A/c	25	Ву	Cost of sales A/c	25
		25			25

Cost of Sales A/c

Particulars	(₹)	Particulars	(₹)
To Cost of Goods Sold	360	By Costing Profit and Loss A/c	385
To Administrative Overheads and	25		
Selling & Distribution Overheads A/c			
	385		385

Costing Profit and Loss A/c

Particulars	(₹)	Particulars	(₹)
To Cost of Sales A/c	385	By Cost Ledger Control A/c	450
		(Sales)	
To Works Overhead Control A/c	8		
To Cost Ledger Control A/c (Profit)	57		
(Balancing figure)			
	450		450

Building Construction A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	10	By Cost Ledger Control	44
		A/c	
To Stores Ledger Control A/c	4		
To Wages Control A/c	10		
To Works Overhead Control A/c	20		
	44		44

Trial Balance

(₹ in lakhs)

Particulars	Dr (₹)	Cr (₹)
Stores control A/c	55	
Work-in-Process A/c	25	
Finished Goods A/c	403	
Cost Ledger Adjustment A/c		483
	483	483

PROBLEM - 4C:

In the absence of the Chief Accountant, you have been asked to prepare a month's cost accounts for a company which operates a batch costing system fully integrated with the financial accounts. The following relevant information is provided to you:

	₹	₹
Balances at the beginning of the month:		
Stores Ledger Control Account		25,000
Work-in-Process Control Account		20,000
Finished Goods Control Account		35,000
Prepaid Production Overheads brought forward from previous month		3,000
Transactions during the month:		
Materials Purchased		75,000
Materials Issued:		
To production	30,000	
To factory maintenance	4,000	34,000
Materials transferred between batches		5,000
Total wages paid:		
To direct workers	25,000	
To indirect workers	5,000	30,000
Direct wages charged to batches		20,000
Recorded non-productive time of direct workers		5,000
Selling and Distribution Overheads Incurred		6,000
Other Production Overheads Incurred		12,000
Sales		1,00,000
Cost of Finished Goods Sold		80,000

Cost of Goods completed and transferred into finished goods	65,000
during the month	
Physical value of work-in-Process at the end of the month	40,000

The production overhead absorption rate is 150% of direct wages charged to work- in-Process.

Required: PREPARE the following accounts for the month:

- a. Stores Ledger Control Account.
- b. Work-in-Process Control Account.
- c. Finished Goods Control Account.
- d. Production Overhead Control Account.
- e. Costing Profit and Loss Account.

SOLUTION:

Stores Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	25,000	By Work in Process Control A/c	30,000
To Creditors/ Bank A/c	75,000	By Production Overhead Control A/c	4,000
		By Balance c/d	66,000
	1,00,000		1,00,000

Wages Control Account

Particulars	(₹)	Particulars	(₹)
To Bank A/c (Paid to direct workers)	25,000	By Work in Process Control A/c (Charged to batches)	20,000
To Bank A/c (Paid to indirect workers)	5,000	By Work in Process Control A/c (Charged to batches) By Production Overhead Control A/c By Production Overhead Control A/c (Non-productive wages)	5,000
		By Production Overhead Control A/c (Non-productive wages)	5,000
	30,000		30,000

Production Overhead Control Account

	Particulars	(₹)		Particulars	(₹)
То	Balance b/d (Prepaid	3,000	Ву	Work-in-Process Control A/c	30,000
	amount)			(150% of direct wages)	
То	Stores Ledger Control A/c	4,000			
То	Wages Control A/c	10,000			
	(₹ 5,000 + ₹ 5,000)				

То	Bank A/c	12,000	
То	Costing Profit and Loss A/c	1,000	
	(Over-absorption,		
	Balancing Figure)		
		30,000	30,000

Work-in-Process Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	20,000	By Finished Goods Control	65,000
To Store Ledger Control A/c	30,000	By Balance c/d (Physical value)	40,000
To Wages Control A/c	20,000		
To Production Overheads Control A/c (150% of Direct Wages)	30,000		
To Costing Profit and Loss A/c (Stock Gains)	5,000		
	1,05,000		1,05,000

Finished Goods Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	35,000	By Cost of Goods Sold * A/c	80,000
To Work-in-Process Control	65,000	By Balance c/d	20,000
	1,00,000		1,00,000

^{*} Alternatively, Costing Profit & Loss Account

Costing Profit & Loss Account

Particulars	(₹)	Particulars	(₹)
To Finished Goods Control A/c or Cost of Goods Sold A/c	80,000	By Sales A/c	1,00,000
To Selling & Distribution Overheads A/c	6,000	By Production Overheads Control A/c	1,000
To Balance c/d	20,000	By Work-in-Process Control A/c (Stock gain)	5,000
	1,06,000		1,06,000

Notes:

- (1) Materials Transferred Between Batches Will Not Affect the Control Accounts.
- (2) Non-Production Time of Direct Workers is a Production Overhead and Therefore Will Not Be Charged to Work-In-Process Control A/C.
- (3) Production Overheads Absorbed in Work-In-Process Control A/c Equals to ₹ 30,000 (150% Of ₹ 20,000).
- (4) In The Work-In-Process Control A/C The Excess Physical Value of Stock Is Taken Resulting in Stock Gain. Stock Gain Is Transferred to Profit & Loss A/C.

PROBLEM - 4D: (MTP 1 JAN 25)

The following information have been extracted from the cost records of a manufacturing company:

		(₹)
	Stores	
*	Opening balance	9,000
*	Purchases	48,000
k	Transfer from WIP	24,000
*	Issue to work-in-progress	48,000
*	Issue for repairs	6,000
t	Deficiency found in stock	1,800
	Work-in-Progress:	
*	Opening balance	18,000
*	Direct Wages applied	18,000
*	Overhead charged	72,000
*	Closing balance	12,000
	Finished Production:	
*	Entire production is sold at a profit of 10% on cost from work-	
	in-progress	
*	Wages paid.	21,000
k	Overhead incurred	75,000

DRAW the Stores Leger Control A/c, Work-in-Progress Control A/c, Overheads Control A/c and Costing Profit and Loss A/c.

SOLUTION:

Stores Ledger Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	9,000	By Work in Process	48,000
To General Ledger Adjustment A/c	48,000	By Overhead Control A/c	6,000
To Work in Process A/c	24,000	By Overhead Control A/c	1,800*
		(Deficiency)	
		By Balance c/d	25,200
	81,000		81,000

^{*}Deficiency assumed as normal (alternatively can be treated as abnormal loss)

Work in Progress Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	18,000	By Stores Ledger Control a/c	24,000
To Stores Ledger Control A/c	48,000	By Costing P/L A/c	
		(Balancing figures being Cost of	1,20,000
		finished goods)	
To Wages Control A/c	18,000	By Balance c/d	12,000
To Overheads Control a/c	72,000		
	1,56,000		1,56,000

Overheads Control A/c

Particulars	(₹)	Particulars	(₹)
To Stores Ledger Control A/c	6,000	By Work in Process A/c	72,000
To Stores Ledger Control A/c	1,800	By Balance c/d	13,800
		(Under absorption)	
To Wages Control A/c	3,000		
(₹ 21,000- ₹ 18,000)			
To General Ledger Adjustment	75,000		
A/c			
	85,800		85,800

Costing Profit & Loss A/c

Particulars	(₹)	Particulars	(₹)
To Work in progress	1,20,000	By General Ledger Adjustment	1,32,000
	A/c (Sales) (1,20,000 + 12,000)		

То	General	Ledger	12,000	
Adjustr	nent A/c			
(Profit)				
			1,32,000	1,32

PROBLEM - 5:

The following are the extracts of balances of X Co. Ltd., in its integrated ledgers on 1st January, 20×1 :

PARTICULARS	DEBIT	CREDIT
Stores Control account	₹ 36,000	
Work-in-progress account	₹ 34,000	
Finished goods account	₹ 26,000	
Cash at bank	₹ 20,000	
Creditors control account		₹ 16,000
Fixed assets account	₹ 1,10,000	
Debtors control account	₹ 24,000	
Share capital account		₹ 1,60,000
Depreciation provision account		₹ 10,000
Profit and loss account		₹ 64,000
Total	₹ 2,50,000	₹ 2,50,000

Transaction for the twelve months ended 31st December 20x1 was:

PARTICULARS	AMOUNT (₹)	REMARKS
Wages - direct paid	1,74,000	
Wages – indirect paid	10,000	
Stores purchased on credit	2,00,000	
Stores issued to repair order	4,000	
Stores issued to production	2,20,000	
Goods finished during the period at cost	4,30,000	
Goods sold at sales value (on credit)	6,00,000	
Goods sold at cost	4,40,000	
Production overhead recovered	96,000	
Production overhead	80,000	Paid for by
Administration overhead	24,000	Paid for by
Selling and distribution overhead	28,000	cheque

Depreciation (works)	2,600	
Payments to suppliers	2,02,000	By cheque
Payments from customers	5,80,000	
Rates prepaid included in production overhead incurred	600	
Purchases of fixed assets	4,000	
Charitable donation	2,000	
Fines paid	1,000	
Interest on bank loan	200	
Income - tax	40,000	

You are required to write up the accounts in the integral ledger and make out a trial balance. The administration overhead is written off to profit and loss account.

SOLUTION:

Dr. Stores Ledger Control A/c

Cr.

Particulars	(₹)	Particulars	(₹)
To Balance b/d	36000	By Production Overheads Control	4000
		A/c	
To creditors A/c	200000	By WIP	220000
		By Balance c/d	12000
	236000		236000

Dr. WIP A/c Cr.

Particulars	(₹)	Particulars	(₹)
To Balance b/d	34000		
To wages Control A/c	174000	By Finished Goods	430000
To Stores Ledger Control A/c	220000	By Balance c/d	94000
To Production Overheads	96000		
	5,24,000		5,24,000

Dr Finished Goods A/c Cr

Particulars	(₹)	Particulars	(₹)
To Balance b/d	26000	By Cost of Sales	440000
To WIP	430000	By Balance c/d	16000
	456000		456000

		•	Kompa
Dr.	Wages Con	itrol A/c	Cr.
Particulars	(₹)	Particulars	(₹)
To Bank A/c	184000	By WIP A/c	174000
		By Production Overheads A/c	10000
	184000		184000
Dr.	Produ	action Overheads A/c	Cr.
Particulars	(₹)	Particulars	(₹)
To Wages A/c	10,000	By WIP A/c	96000
To Stores Ledger Control A/c	4000	By Prepaid Expense A/c	600
To Bank A/c	80000		
To Depreciation A/c	2600		
	96600		96600
Dr.	Administ	rative Overheads A/c	Cr.
Particulars	(₹)	Particulars	(₹)
To Bank A/c	24000	By Profit and Loss A/c	24000
	24000		24000
Dr.	Selling (Overhead A/c	Cr.
Particulars	(₹)	Particulars	(₹)
To Bank A/c	28000	By Cost of Sales A/c	28000
	28000		28000
Dr.	Со	st of Sales A/c	Cr.
Particulars	(₹)	Particulars	(₹)
To Finished Goods A/c	440000	By Costing Profit and Loss A/c	468000
To Selling Overhead A/c	28000		
	468000		468000
Dr.	Costing P	rofit and Loss A/c	Cr.
Particulars	(₹)	Particulars	(₹)

468000

By Sales A/c

To Cost of Sales A/c

600,000

	600000	600000
To Profit & Loss (EBIT) A/c	132000	

Dr. Cash at Bank A/c Cr.

Particulars	(₹)	Particulars	(₹)
To Balance b/d	20000	By Wages A/c	184000
To Debtors A/c	580000	By Production Overhead A/c	80000
		By Administrative Overhead A/c	24000
		By Selling Overhead A/c	28000
		By Creditors A/c	202000
		By Fixed Asset A/c	4000
		By Donation A/c	2000
		By Fines A/c	1000
		By Interest A/c	200
		By Income tax A/c	40000
		By Balance c/d	34800
	600000		600000

Dr. Creditors A/c Cr.

Particulars	(₹)	Particulars	(₹)
To Bank A/c	202000	By Balance b/d	16000
To Balance c/d	14000	By Stores Ledger Control A/c	200000
	216000		216000

Dr. Fixed Asset A/c Cr.

Particulars	(₹)	Particulars	(₹)
To Balance b/d	1,10,000		
To Bank A/c	4000		
		By Balance c/d	1,14,000
	1,14,000		1,14,000

Dr. Debtors A/c Cr.

Particulars	(₹)	Particulars	(₹)
To Balance b/d	24000	By Bank A/c	580000
To Sales A/c	600000	By Balance c/d	44000
	624000		624000

	`	n	
ų	J		

Share Capital A/c

_	
′	n

Particulars	(₹)	Particulars	(₹)
To Balance c/d	160000	By Balance b/d	160000
	160000		160000

Dr.

Depreciation Provision A/c

Cr.

Particulars	(₹)	Particulars	(₹)
To Balance c/d	12600	By Balance b/d	10000
		By Depreciation A/c	2600
	12600		12600

Dr.

Prepaid Expenses A/c

Cr.

Particulars	(₹)	Particulars	(₹)
To Production Overhead A/c	600	By Balance c/d	600
	600		600

Dr.

Profit and Loss A/c

_		
	r	

Particulars	(₹)	Particulars	(₹)
To Donations	2000	By Balance b/d	64000
To Fines	1000	By Costing Profit and Loss A/c	132000
To Interest	200		
To Income tax	40000		
To Administrative Overhead	24000		
To Balance c/d	128800		
- I	196000		196000

Trial Balance

Particulars	Dr (₹)	Cr (₹)
Stores Ledger Control	12000	
WIP	94000	
Finished Goods	16000	
Bank	34800	
Creditors		14000
Fixed Asset	114000	
Debtors	44000	

Share Capital		160000
Provision for Depreciation		12600
Prepaid Expenses	600	
Profit and Loss A/c		128800
Total	315400	315400

PROBLEM - 5A:

Acme Manufacturing Co. Ltd. opens the costing records, with the balances as on 1st July as follows:

	₹	₹
Material Control A/c	1,24,000	
Work-in-Process Control A/c	62,500	
Finished Goods Control A/c	1,24,000	
Production Overhead Control A/c	8,400	
Administrative Overhead Control A/c		12,000
Selling & Distribution Overhead Control A/c	6,250	
Cost Ledger Control A/c		3,13,150
	3,25,150	3,25,150

The following are the transactions for the quarter ended 30th September:

	₹
Materials purchased	4,80,100
Materials issued to jobs	4,77,400
Materials to works maintenance	41,200
Materials to administrative office	3,400
Materials to sales department	7,200
Wages Direct	1,49,300
Wages Indirect	65,000
Transportation for Indirect Materials	8,400
Production Overheads incurred	2,42,250
Absorbed Production Overheads	3,59,100
Administrative Overheads incurred	74,000
Administrative Overheads allocated to production	52,900
Administrative Overheads allocated to sales department	14,800
Selling & Distribution overheads incurred	64,200

Selling & Distribution overheads absorbed	82,000
Finished goods produced	9,58,400
Finished goods sold	9,77,300
Sales	14,43,000

Make up the various accounts as you envisage in the Cost Ledger and PREPARE a Trial Balance as at 30th September.

SOLUTION:

Cost Ledgers Material Control A/c*

Particulars	(₹)	Particulars	(₹)
To Balance b/d	1,24,000	By Work-in-process Control A/c	4,77,400
To Cost Ledger Control A/c	4,80,100	By Production Overhead Control	41,200
(purchase)		A/c	
		By Administrative Overhead	3,400
		Control A/c	
		By Selling and Distribution	7,200
		Overhead Control A/c	
		By Balance c/d	74,900
	6,04,100		6,04,100

^{*}Material Control A/c may also be written as Stores Ledger Control A/c

Wages Control A/c

	Particulars	(₹)	Particulars	(₹)
То	Cost Ledger Control	2,14,300	By Work-in-process Control A/c	1,49,300
A/c				
			By Production Overhead Control	65,000
			A/c	
		2,14,300		2,14,300

Production Overhead Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	8,400	By Work-in-process Control	3,59,100
		A/c	
To Cost Ledger Control A/c:			
- Transportation	8,400		
- Production Overhead	2,42,250		
To Wages Control A/c	65,000		

То	Material Control A/c	41,200	Ву	Balance c/d	6,150
		3,65,250			3,65,250

Administrative Overhead Control A/c

Particulars	(₹)	Particulars	(₹)
To Cost Ledger Control A/c	74,000	By Balance b/d	12,000
To Material Control A/c:	3,400	By Finished Goods Control A/c	52,900
To Balance c/d	2,300	By Cost of sales A/c	14,800
	79,700		79,700

Work-in-Process Control A/c

Particulars	Particulars (₹) Particulars		(₹)
To Balance b/d	62,500	By Finished goods Control A/c	9,58,400
To Material Control A/c	4,77,400		
To Wages Control A/c	1,49,300		
To Production Overhead	3,59,100		
Control A/c			
		By Balance c/d	89,900
	10,48,300		10,48,300

Finished Goods Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	1,24,000	By Cost of Sales A/c	9,77,300
To Administrative Overhead	52,900		
Control A/c			
To Work-in-process Control	9,58,400	By Balance c/d	1,58,000
A/c			
	11,35,300		11,35,300

Selling and Distribution Overhead Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	6,250	By Cost of Sales A/c	82,000
To Cost Ledger Control A/c:	64,200		
To Material Control A/c	7,200		
To Balance c/d	4,350		
	82,000		82,000

Cost of Sales A/c

Particulars (₹) Particulars		Particulars	(₹)
To Finished Goods Control	9,77,300	By Costing P&L A/c	10,74,100
To Administrative Overhead Control A/c	14,800		
To Selling and Distribution Overhead Control A/c	82,000		
	10,74,100		10,74,100

Cost Ledger Control A/c

Particulars	(₹)	Particulars	(₹)
To Costing P&L A/c (Sales)	14,43,000	By Balance b/d	3,13,150
		By Material Control A/c	4,80,100
		By Wages Control A/c (₹	2,14,300
		1,49,300 + ₹ 65,000)	
		By Production Overhead Control	2,50,650
		A/c (₹ 8,400 + ₹ 2,42,250)	
		By Administrative Overhead A/c	74,000
		By Selling and Distribution	64,200
		Overhead Control A/c	
To Balance c/d	3,22,300	By Costing Profit & Loss A/c	3,68,900
	17,65,300		17,65,300

Costing Profit & Loss A/c

Particulars	(₹)	Particulars	(₹)
To Cost of sales A/c	10,74,100	By Cost Ledger Control A/c (sales)	14,43,000
To Cost Ledger Control A/c (profit) (Balancing Figure)	3,68,900		
	14,43,000		14,43,000

Trial Balance as at 30th September

	Dr (₹)	Cr (₹)
Material Control A/c	74,900	
Production OH Control A/c	6,150	

Total	3,28,950	3,28,950
Cost Ledger Control A/c		3,22,300
Finished Goods Control A/c	1,58,000	
Work-in-process Control A/c	89,900	
Selling & Distribution OH Control A/c		4,350
Administrative OH Control A/c		2,300

PROBLEM - 5B:

Dutta Enterprises operates an Integral system of accounting. You are required to PASS the Journal Entries for the following transactions that took place for the year ended 31st March.

(Narrations are not required.)

	Amount (₹)
Raw Materials purchased (50% on Credit)	6,00,000
Materials issued to production	4,00,000
Wages paid (50% Direct)	2,00,000
Wages charged to production	1,00,000
Factory Overheads incurred	80,000
Factory Overheads charged to production	1,00,000
Selling and Distribution Overheads incurred	40,000
Finished Goods at cost	5,00,000
Sales (50% Credit)	7,50,000
Closing stock	Nil
Receipts from debtors	2,00,000
Payments to creditors	2,00,000

SOLUTION:

Journal Entries are as Follows:

		Dr (₹)	Cr (₹)
Stores Ledger Control A/c	Dr	6,00,000	
To Payables (Creditors) A/c		0,00,000	3,00,000
To Cash or Bank			3,00,000
Work-in-Process Control A/c	Dr	4,00,000	
To Stores Ledger Control A/c			4,00,000

Wages Control A/c	Dr	2,00,000	
To Bank A/c			2,00,000
Factory Overhead Control A/c	Dr	1,00,000	
To Wages Control A/c			1,00,000
Work-in-Process Control A/c	Dr	1,00,000	
To Wages Control A/c			1,00,000
Factory Overhead Control A/c	Dr	80,000	
To Bank A/c			80,000
Work-in-Process Control A/c	Dr	1,00,000	
To Factory Overhead Control A/c			1,00,000
Selling and Dist. Overhead Control A/c	Dr	40,000	
To Bank A/c			40,000
Finished Goods Control A/c	Dr	5,00,000	
To Work-in-Process Control A/c			5,00,000
Cost of Sales A/c	Dr	5,40,000	
To Finished Goods Control A/c			5,00,000
To Selling and Distribution Control A/c			40,000
Receivables (Debtors) A/c	Dr	3,75,000	
Bank or Cash A/c	Dr	3,75,000	
To Sales A/c			7,50,000
Bank A/c	Dr	2,00,000	
To Receivables (Debtors) A/c			2,00,000
Payables (Creditors) A/c	Dr	2,00,000	
To Bank A/c			2,00,000

PROBLEM - 6:

The following incomplete accounts are furnished to you for the month ended 31st October, 20×2 .

Stores Ledger Control Account					
1.10.20×2	To Balance	₹ 54,000			
Work in Process Control Account					
1.10. 20×2	To Balance	₹ 6,000			
Finished Goods Control Account					
1.10. 20×2	To Balance	₹ 75,000			
Factory Overheads Control Account					

Total debits for Octob	er, 20x2		₹ 45,000	
Factory Overheads Applied Account				
Cost of Goods Sold Account				
Creditors for Purchases Account				
1.10. 20x2	By Balance		₹ 30,000	

Additional information:

- 1. The factory overheads are applied by using a budgeted rate based on direct Labour hours. The budget for overheads for 20x2 is ₹ 6,75,000 and the budget of direct Labour hours is 4,50,000.
- 2. The balance in the account of creditors for purchases on 31.10. 20x2 is ₹15,000 and the payments made to creditors in October, 20x2 amount to ₹ 1,05,000.
- 3. The finished goods inventory as on 31st October, 20x2 is ₹ 66,000.
- 4. The cost of goods sold during the month was ₹ 1,95,000.
- 5. On 31st October, 20x2 there was only one unfinished job in the factory. The cost records show that ₹ 3,000 (1,200 direct Labour hours) of direct Labour cost and ₹ 6,000 of direct material cost had been charged.
- 6. A total of 28,200 direct Labour hours were worked in October, 20x2. All factory workers earn same rate of pay.
- 7. All actual factory overheads incurred in October, 20x2 have been posted.

You are required to FIND:

- a. Materials purchased during October, 20x2.
- b. Cost of goods completed in October, 20x2.
- c. Overheads applied to production in October, 20x2.
- d. Balance of Work-in-Process Control A/c on 31st October, 20x2.
- e. Direct Materials consumed during October, 20x2.
- f. Balance of Stores Ledger Control Account on 31st October, 20x2.
- g. Over absorbed or under absorbed overheads for October, 20x2

SOLUTION:

Working Notes:

(i) Overhead recovery rate per direct labour hour:

Budgeted Factory Overheads = ₹ 6,75,000

Budgeted Direct Labour hours = 4,50,000

Overhead recovery rate = $\frac{\text{Budgeted Factory Overheads}}{\text{Budgeted Direct Labour hours}}$

$$= \frac{\text{₹ 6,75,000}}{\text{4,50,000 hours}}$$

= ₹ 1.50 per Direct Labour

(ii) Direct Wage rate per hour:

Direct Labour cost of WIP = ₹ 3,000

(on 31st October 2022)

Direct Labour hours of WIP = 1,200 hours

Direct wage rate per hour $= \frac{\text{Direct Labour Cost on WIP}}{\text{Direct Labour Hours on WIP}}$

$$= \frac{3,000}{1,200 \text{ hours}} = 2.50$$

(iii) Total Direct Wages charged to production:

Total direct Labour hours spent on production \times Direct wage rate per hour = 28,200 hours \times ₹ 2.50 = ₹ 70,500

a) Material Purchased During October, 2022

	(₹)
Payment Made to Creditors	1,05,000
Add: Closing Balance in the Account Of Creditors for Purchase	15,000
Less: Opening Balance	(30,000)
Material Purchased	90,000

b) Cost of Finished Goods in October, 2022

	(₹)
Cost Of Goods Sold During the Month	1,95,000
Add: Closing Finished Goods Inventory	66,000
Less: Opening Finished Goods Inventory	(75,000)
Cost Of Goods Completed During the Month	1,86,000

c) Overhead Applied to Production in October, 2022

= $28,200 \text{ hours} \times \$1.50 = \$42,300$

d) Balance of Work-in-Process on 31st October, 2022

	(₹)
Direct Material Cost	6,000
Direct Labour Cost	3,000

Overheads (₹ 1.50 × 1,200 Hours)	1,800
	10,800

e) Direct material consumed during October, 2022 = ₹78,000 (Refer to following Accounts)

Work in Process Control A/c

Partic	ulars	(₹)	Par	ticulars	(₹)
То	Balance b/d	6,000	Ву	Finished goods control A/c [Refer (b) above]	1,86,000
То	Wages ControlA/c [Refer working note (iii)]	70,500	Ву	Balance c/d [Refer (d)above]	10,800
	ctory OHControl A/c r(c) above]	42,300			
	terial consumed cing Figure)	78,000			
		1,96,800			1,96,800

f) Balance of Stores Control Account on 31st October, 2022 = ₹ 66,000 (Refer to following Account)

Stores Ledger Control Account

Part	ticulars	(₹)	Part	iculars	(₹)
То	Balance b/d	54,000	Ву	Work-in-process Control A/c [Refer (e) above]	78,000
То	Payables (Creditors) A/c [Refer (a) above}	90,000	Ву	Balance c/d (Balancing Figure)	66,000
		1,44,000			1,44,000

g) Over-absorbed or under-absorbed overheads for October, 2022: Balance in Factory Overhead Account below showing that ₹ 2,700 is under-absorbed.

Factory Overhead Account

	Particulars	(₹)		Particulars	(₹)
То	Bank A/c	45,000	Ву	Work-in-process Control	42,300
				A/c (Factory OH applied)	
	,		Ву	Costing P/L A/c (Under-	2,700
				absorbed)	
		45,000			45,000

PROBLEM - 6A:

A fire destroyed some accounting records of a company. You have been able to collect the following from the spoilt papers/records and as a result of consultation with accounting staff for the period of January, 20×1 :

Incomplete Ledger Entries:

Materials Control A/c

PARTICULARS	AMOUNT	PARTICULARS	AMOUNT
To Balance b/d	₹ 32,000		

Work-in-Process Control A/c

PARTICULARS	AMOUNT	PARTICULARS	AMOUNT
To Balance b/d	₹ 9,200	By Finished Goods Control A/c	₹ 1,51,000

Payables (Creditors) A/c

PARTICULARS	AMOUNT	PARTICULARS	AMOUNT
		By Balance b/d	₹ 16,400
To Balance c/d	₹ 19,200		

Manufacturing Overheads Control A/c

PARTICULARS	AMOUNT	PARTICULARS	AMOUNT
To Bank A/c (Amount spent)	₹ 29,600		

Finished Goods Control A/c

PARTICULARS	AMOUNT	PARTICULARS	AMOUNT
To Balance b/d	₹ 24,000		

	By Balance c/d	₹ 30,000

Additional Information:

- 1. The bank book showed that ₹89,200 has been paid to creditors for raw material.
- 2. Ending inventory of work-in-process included materials of ₹ 5,000 on which 300 direct labour hours have been booked against wages and overheads.
- 3. The job card showed that workers have worked for 7,000 hours. The wage rate is ₹ 10 per labour hour.
- 4. Overhead recovery rate was ₹4 per direct labour hour.

You are required to COMPLETE the above accounts in the cost ledger of the company.

SOLUTION

Materials Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d		By Work-in-process control	
Cost Ledger Control A/c	32,000	A/c	53,000
To Payables (Creditors) A/c		By Balance c/d	71,000
(Purchases)	92,000		
	1,24,000		1,24,000

Manufacturing Overheads A/c

Part	ticulars	(₹)	Particulars		(₹)
То	Bank A/c (Amount	29,600	Ву	Work-in-process control	
	spent)			A/c (₹ 4 × 7,000hours)	28,000
			Ву	Costing P/L A/c	
				(Under-absorbed OH)	1,600
		29,600			29,600

Work-in-Process Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	9,200	By Finished Goods Control	1,51,000
		A/c	
To Wages Control A/c	70,000	By Balance c/d:	
(₹ 10 × 7,000 hours)			
To Overheads Control A/c	28,000	- Material 5,000	

(₹ 4 × 7,000 hours)			
		- Wages (₹ 10 × 3,000	
		300 hours)	
To Materials Control A/c	53,000	- Overheads (₹ 4	
(Balancing figure)		× 300 hours) <u>1,200</u>	9,200
	1,60,200		1,60,200

Finished Goods Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	24,000	By Cost of sales A/c (Bal.	
		fig.)	1,45,000
To Work-in-process Control		By Balance c/d	30,000
A/c (as above)	1,51,000		
	1,75,000		1,75,000

Payables (Creditors) A/c

Part	riculars	(₹)	Part	ticulars	(₹)
То	Bank A/c	89,200	Ву	Balance b/d	16,400
То	Balance c/d	19,200	Ву	Material Control A/c (Purchases) (Balancing Figure)	92,000
		1,08,400			1,08,400

PROBLEM - 7: (RTP SEP 24)

A manufacturing company disclosed a net loss of ₹ 3,47,000 as per their cost accounts for the year ended March 31,2024. The financial accounts however disclosed a net loss of Rs.5,10,000 for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of accounts.

	(₹)	
(i) Factory Overheads under-absorbed	40,00	0
(ii) Administration Overheads over-absorb	ed 60,00	0
(iii) Depreciation charged in Financial Accord	unts 3,25,0	00
(iv) Depreciation charged in Cost Accounts	2,75,0	00
(v) Interest on investments not included in	Cost Accounts 96,00	0

(vi) Income-tax provided	54,000
(vii) Interest on loan funds in Financial Accounts	2,45,000
(viii) Transfer fees (credit in financial books)	24,000
(ix) Stores adjustment (credit in financial books)	14,000
(x) Dividend received	32,000
PREPARE a memorandum Reconciliation Account	

SOLUTION:

Memorandum Reconciliation Accounts

Dr. Cr.

Particulars	(₹)	Particulars	(₹)
To Net Loss as per Costing	3,47,000	By Administration overheads	60,000
books		over recovered in cost accounts	
To Factory overheads under	40,000	By Interest on investment not	96,000
absorbed in Cost Accounts		included in Cost Accounts	
To Depreciation under charged	50,000	By Transfer fees in financial	24,000
in Cost Accounts		books	
To Income-Tax not provided in	54,000	By Stores adjustment	14,000
Cost Accounts		(Credit in financial books)	
To Interest on Loan Funds in	2,45,000	By Dividend received in financial	32,000
Financial Accounts		books	
		By Net loss as per financial	5,10,000
		books	
	7,36,000		7,36,000

PROBLEM - 7A: (PYP MAY 24)

S.K. Manufacturing Co. Ltd. showed a net profit of ₹ 5,40,400 as per their cost accounts for the year ended 31.03.2004. However, the financial books disclosed a net profit of ₹ 2,60,500 for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of books:

	₹
Factory overheads under absorbed	84,800
Administrative overheads over absorbed	24,000
Interest paid on bank borrowings	50,000
Interest & Divided received	65,200
Notional rent of own premises charged in cost accounts	60,000

Losses on the sales of fixed assets and investments	48,000
Donations and subscriptions	18,800
Overvaluation of closing stock of finished goods in Cost accounts	1,25,000
Store adjustments (credited in financial books)	7,500
Depreciation over charged in cost accounts	40,000
Income tax provided	1,50,000

You are required to:

- (i) Prepare a reconciliation statement taking net profit as per cost accounts as base.
- (ii) State when is the reconciliation statement of Cost and Financial accounts not required?

SOLUTION:

(i) Statement of Reconciliation of profit as obtained under Cost and Financial Accounts

	Amount (₹)	Amount (₹)
Profit as per Cost Records		5,40,400
Add: Administrative Overhead over absorbed	24,000	
Interest & Dividend Received	65,200	
Notional rent of own premises	60,000	
Stores adjustments (credited in financial books)	7,500	
Depreciation over charged in cost accounts	40,000	1,96,700
		7,37,100
Less: Factory overheads under absorbed	84,800	
Interest paid on bank borrowings	50,000	
Losses on sale of fixed assets and investments	48,000	
Donations and subscriptions	18,800	
Over-valuation of closing stock of finished goods in cost		
accounts	1,25,000	
Income tax	1,50,000	(4,76,600)
Profit as per Financial Records		2,60,500

(ii) Circumstances where reconciliation statement can be avoided:

When the Cost and Financial Accounts are integrated - there is no need to have a separate reconciliation statement between the two sets of accounts. Integration means that the same set of accounts fulfil the requirement of both i.e., Cost and Financial Accounts.

PROBLEM - 7B: (PYP SEP 24)

XYZ Ltd. declared a net profit of $\stackrel{?}{_{\sim}}$ 2,25,000 based on their financial accounts for the year ending 31st March, 2024. The profit disclosed in cost books are not matched with financial accounts. The following information were revealed during the scrutiny of the figures of both the sets of books:

S.No	Particulars	₹
1.	Preliminary expenses written off in financial accounts	35,000
2.	Factory Overheads Over charged in cost accounts	20,000
3.	Expenses on issue of shares in financial accounts	30,000
4.	Undervaluation of closing stock in cost accounts	65,000
5.	Interest on Bank Deposits in financial accounts	60,000
6.	Under recovery of administration overheads in cost accounts	25,000
7.	Notional Rent of own premises charged in cost accounts	30,000
8.	Under recovery of selling overheads in cost accounts	35,000
9.	Bad debts recovered in financial accounts	50,000

Required:

Prepare Reconciliation Statement to arrive at net profit/loss as per Cost Accounts.

SOLUTION:

Reconciliation Statement

Particulars	(₹)	(₹)
Profit (loss) as per Financial Accounts		2,25,000
Add:		
Preliminary expenses written off	35,000	
Expenses on issue of shares in financial accounts	30,000	
Under recovery of administration overheads in cost accounts	25,000	
Under recovery of selling overheads in cost accounts	35,000	
		1,25,000
Less:		
Factory Overheads Over charged in cost accounts	20,000	
Undervaluation of closing stock in cost accounts	65,000	
Interest on Bank Deposits	60,000	
Notional Rent of own premises charged in cost accounts	30,000	
Bad debts recovered in financial accounts	50,000	
		(2,25,000)

Net Profit as per Cost Accounts	1,25,000)
---------------------------------	----------	---

PROBLEM - 8:

The following figures are available from the financial records of ABC Manufacturing Co. Ltd. for the year ended 31st March.

	₹
Sales (20,000 units)	25,00,000
Materials	10,00,000
Wages	5,00,000
Factory Overheads	4,50,000
Administrative Overhead (production related)	2,60,000
Selling and Distribution Overheads	1,80,000
Finished goods (1,230 units)	1,50,000

	₹	₹
Work-in-Process:		
Materials	30,000	
Labour	20,000	
Factory overheads	20,000	70,000
Goodwill written off		2,00,000
Interest on loan taken		20,000

In the Costing records, factory overhead is charged at 100% of wages, administrative overhead 10% of factory cost and selling and distribution overhead at the rate of ₹ 10 per unit sold.

PREPARE a statement reconciling the profit as per cost records with the profit as per financial records.

SOLUTION:

Profit & Loss Account of ABC Manufacturing Co. Ltd. (for the year ended 31st March)

Particulars	(₹)	Particulars	(₹)
To Opening Stock	-	By Sales (20,000 units)	25,00,000
To Materials	10,00,000	By Closing Stock:	
To Wages	5,00,000	Finished goods(1,230 units)	1,50,000
To Factory Overheads	4,50,000	Work-in-Process	70,000
To Administrative Overheads	2,60,000		

To Selling & Distribution	1,80,000	
Overheads		
To Goodwill written off	2,00,000	
To Interest on loan	20,000	
To Net Profit	1,10,000	
	27,20,000	27,20,000

Cost Sheet

Particulars	(₹)
Materials	10,00,000
Wages	5,00,000
Direct Expenses	Nil
Prime Cost	15,00,000
Add: Factory Overhead @ 100% of wages	5,00,000
Gross Factory Cost	20,00,000
Less: Closing WIP	(70,000)
Factory Cost of (20,000 + 1,230) units	19,30,000
Add: Administrative Overhead @ 10% of Factory cost	1,93,000
	21,23,000
Less: Closing Stock of finished goods (1,230 units)	(1,23,000)*
Cost of Goods sold (20,000 units)	20,00,000
Add: Selling & Distribution Overhead @ ₹ 10 per unit	2,00,000
Cost of sales (20,000 units)	22,00,000
Sales of 20,000 units	25,00,000
Profit	3,00,000

^{* (₹ 21,23,000 × 1,230} units ÷ 21,230 units)

Reconciliation Statement

Particulars	(₹)	(₹)
Profit as per Cost Accounts		3,00,000
Add: Factory overheads over-absorbed	50,000	
(₹ 5,00,000 - ₹ 4,50,000)		
Selling & Distribution Overhead over-absorbed	20,000	
(₹ 2,00,000 - ₹ 1,80,000)		
Difference in the valuation of closing stock of finished	27,000	97,000
goods (₹ 1,50,000 - ₹ 1,23,000)		

		3,97,000
Less: Administrative overhead under-absorbed	67,000	
(₹ 2,60,000 - ₹ 1,93,000)		
Goodwill written off	2,00,000	
Interest on loan	20,000	2,87,000
Profit As Per Financial Accounts		1,10,000

PROBLEM - 8A:

Following are the figures extracted from the Cost Ledger of a manufacturing unit.

	Amount (₹)
Stores:	
Opening balance	15,000
Purchases	80,000
Transfer from WIP	40,000
Issue to WIP	80,000
Issue to repairs and maintenance	10,000
Sold as a special case at cost	5,000
Shortage in the year	3,000
Work-in-Process:	
Opening inventory	30,000
Direct Labour cost charged	30,000
Overhead cost charged	1,20,000
Closing Balance	20,000
Finished Products:	
Entire output is sold at 10% profit on actual cost from Work-in-	
Process.	
Others:	
Wages for the period	35,000
Overhead Expenses	1,25,000

ASCERTAIN the profit or loss as per financial account and cost accounts and reconcile them.

SOLUTION:

Stores Ledger Control A/c

Particulars		(₹)) Particulars		(₹)
То	Balance b/d	15,000	Ву	Work-in-Process ControlA/c (Issued to WIP)	80,000
То	Cost Ledger ControlA/c (Purchases)	80,000	Ву	Overhead Control A/c(Issued for repairs)	10,000
То	Work-in-Process Control A/c (Return from WIP)	40,000	Ву	Cost Ledger Control A/c(Sold at cost)	5,000
			Ву	Overheads Control A/c* (Shortages)	3,000
			Ву	Balance c/d	37,000
		1,35,000			1,35,000

^{*} Assumed normal

Wages Control A/c

Particulars	(₹)	Particulars	(₹)
To Cost Ledger Control A/c	35,000	By Work-in-process ControlA/c	30,000
		By Overhead Control A/c	5,000
	35,000		35,000

Overhead Control A/c

Particulars	(₹)	Particulars	(₹)
To Stores Ledger Control A/c	10,000	By Work-in-Process Control	1,20,000
		A/c	
To Stores Ledger Control A/c	3,000		
To Cost Ledger Control A/c	1,25,000		
To Wages Control A/c	5,000	By Balance c/d	23,000
	1,43,000		1,43,000

WIP Control A/c

Particulars	(₹)	Particulars	(₹)
To Balance b/d	30,000	By Stores LedgerControl A/c	40,000
To Stores Ledger Control A/c	80,000	By Finished GoodsControl A/c	2,00,000*
To Wages Control A/c	30,000		

To Overheads Control A/c	1,20,000	By Balance c/d	20,000
	2,60,000		2,60,000

* Finished output at cost 2,00,000

Profit at 10% on actual cost from WIP Sales 20,000

2,20,000

Statement of Profit as Per Costing Records

Particulars	(₹)
Direct Material Cost (₹ 80,000 - ₹ 40,000)	40,000
Direct wages	30,000
Prime Cost	70,000
Production Overheads	1,20,000
Works Cost	1,90,000
Add: Opening WIP	30,000
	2,20,000
Less: Closing WIP	(20,000)
Cost of finished goods	2,00,000
Profit (10% of cost)	20,000
Sales	2,20,000

Profit & Loss A/c

Particulars	(₹)	Particulars	(₹)
To Material (Opening Balance +		By Sales A/c	2,20,000
Purchases - Sale)	90,000		
To Opening WIP	30,000	By Closing WIP	20,000
To Wages for the period	35,000	By Closing stock of Raw	
		Material	37,000
To Overheads expenses	1,25,000	By Net loss	3,000
	2,80,000		2,80,000

Reconciliation Statement

Particulars	(₹)
Profit (Loss) as per Financial Accounts	(3,000)
Add: Overheads over absorbed (Refer Overhead control A/c)	23,000
Net Profit as per Cost Accounts	20,000

PROBLEM - 8B: (MTP 2 SEP 24)

(The financial books of a company reveal the following data for the year ended 31st March, 2024:

	Amount (₹)
Opening Stock:	
Finished goods 545 units	48,250
Work-in-process	38,000
01.04.2023 to 31.03.2024	
Raw materials consumed	5,00,000
Direct Labour	4,20,000
Factory overheads	3,56,000
Administration overheads	2,10,000
Stores Adjustment debited in financial Account	50,000
Dividend paid	98,000
Bad Debts	16,000
Selling and Distribution Overheads	84,000
Income tax paid	34,000
Interest received	42,000
Sales 14,250 units	13,96,500
Closing Stock: Finished goods 460 units	44,500
Work-in-process	36,200

The cost records provide as under:

- > Factory overheads are absorbed at 60% of direct wages.
- > Administration overheads are recovered at 20% of factory cost.
- > Selling and distribution overheads are charged at ₹ 6 per unit sold.
- > Opening Stock of finished goods is valued at ₹ 90 per unit.
- > The company values work-in-process at factory cost for both Financial and Cost Profit Reporting.

Required:

- (i) Prepare statements for the year ended 31st March, 2024 show
 - > the profit as per financial records
 - > the profit as per costing records.
- (ii) Present a statement reconciling the profit as per costing records with the profit as per Financial Records.

SOLUTION:

(a)

(i) Statement of Profit as Per Financial Records (for the year ended March 31, 2024)

	(₹)		(₹)
To Opening stock of Finished	48,250	By Sales	13,96,500
Goods			
To Work-in-Process	38,000	By Closing Stock Of	44,500
		Finished Goods	
To Raw Materials Consumed	5,00,000	By Work-in-Process	36,200
To Direct Labour	4,20,000	By Interest Received	42,000
To Factory Overheads	3,56,000	By Loss	3,35,050
To Administration Overheads	2,10,000		
To Selling & Distribution	84,000		
Overheads			
To Dividend Paid	98,000		
To Bad Debts	16,000		
To Stores Adjustment	50,000		
To Income Tax	34,000		
	18,54,250		18,54,250

Statement of Profit as per Costing Records (for the year ended March 31,2024)

Particulars	(₹)
Sales revenue (A)	13,96,500
(14,250 units)	
Cost of sales:	
Opening stock	49,050
$(545 \text{ units } \times ₹ 90)$	
Add: Cost of production of 14,165 units	14,08,560
(Refer to working note 2)	
Less: Closing stock (₹ 99.44 × 460 units)	45,742
Production cost of goods sold (14,250 units)	14,11,868
Selling & distribution overheads	
(14,250 units x ₹ 6)	85,500

Cost of sales: (B)	14,97,368
Profit / Loss: {(A) - (B)}	(1,00,868)

(ii) Statement of Reconciliation

(Reconciling the profit as per costing records with the profit as per financial records)

Particulars	(₹)	(₹)
Loss as per Cost Accounts		(1,00,868)
Add: Administration overheads over absorbed	24,760	
(₹ 2,34,760 - ₹ 2,10,000)		
Opening stock overvalued (₹ 49,050 - ₹ 48,250)	800	
Interest received	42,000	
Selling & distribution overheads over recovered	1,500	69,060
(₹ 85,500 - ₹ 84,000)		
		(31,808)
Less: Factory overheads over recovered	1,04,000	
(₹ 3,56,000 - ₹ 2,52,000)		
Closing stock overvalued (₹ 45,742 - ₹ 44,500)	1,242	
Stores adjustment	50,000	
Income tax	34,000	
Dividend	98,000	
Bad debts	16,000	(3,03,242)
Loss as per financial accounts		(3,35,050)

Working Notes:

1. Number of Units Produced	
	Units
Sales	14,250
Add: Closing stock	460
Total	14,710
Less: Opening stock	545
Number of units produced	14,165
2. Cost Sheet	
	(₹)
Raw materials consumed	5,00,000
Direct labour	4,20,000
Prime cost	9,20,000

Factory overheads	2,52,000
(60% of direct wages)	
Factory cost	11,72,000
Add: Opening work-in-process	38,000
Less: Closing work-in-process	36,200
Factory Cost of Goods Produced	11,73,800
Administration overheads	2,34,760
(20% of factory cost)	
Cost of Production of 14,165 units (Refer to working note 1)	14,08,560
Cost of production per unit:	99.44
₹ 14,08,560	
14,165	

PROBLEM - 8C:

The following information is available from the financial books of a company having a normal production capacity of 60,000 units for the year ended 31st March, 20x1:

- 1. Sales ₹ 10,00,000 (50,000 units).
- 2. There was no opening and closing stock of finished units.
- 3. Direct material and direct wage costs were ₹ 5,00,000 and ₹ 2,50,000 respectively.
- 4. Actual factory expenses were ₹ 1,50,000 of which 60% are fixed.
- 5. Actual administrative expenses related to production activities were ₹ 45,000 which are completely fixed.
- 6. Actual selling and distribution expenses were ₹ 30,000 of which 40% are fixed.
- 7. Interest and dividends received ₹ 15,000.

You are required to:

- a. Find out profit as per financial books for the year ended 31st March, 20x1;
- b. PREPARE the cost sheet and ascertain the profit as per cost accounts for the year ended 31st March, 20x1 assuming that the indirect expenses are absorbed on the basis of normal production capacity; and
- c. PREPARE a statement reconciling profits shown by financial and cost books.

SOLUTION:

a) Profit & Loss Account (for the year ended 31st March)

Parti	culars	(₹)	Particulars		(₹)
То	Direct Material	5,00,000	By Sales (50,000units)		10,00,000
То	Direct Wages	2,50,000	Ву	Interest and dividends	15,000

То	Factory expenses	1,50,000	
То	Administrative	45,000	
	expenses		
То	Selling & Dist.	30,000	
	Expenses		
То	Net Profit	40,000	
		10,15,000	10,15,000

(b) Cost Sheet (for the year ended 31st March)

Particulars	(₹)	(₹)
Direct Material		5,00,000
Direct Wages		2,50,000
Prime cost		7,50,000
Factory expenses:		
Variable (40% of ₹ 1,50,000)	60,000	
Fixed (₹ 90,000 × 50,000 Units ÷ 60,000 Units)	75,000	1,35,000
Works Cost/ Cost of Production		8,85,000
Administrative expenses:		37,500
(₹ 45,000 × 50,000 Units ÷ 60,000 Units)		
Selling & Distribution expenses:		
Variable (60% of ₹ 30,000)	18,000	
Fixed* (₹ 12,000 × 50,000/60,000)	10,000	28,000
Cost of Sales		9,50,500
Profit (Balancing Figure)		49,500
Sales revenue		10,00,000

^{*}It is assumed that the company sells what it generally produces i.e. normal production.

Statement of Reconciliation

(Reconciling profit shown by Financial and Cost Accounts)

Particulars	Amount (₹)	Amount
		(₹)
Profit as per Cost Account		49,500
Add: Income from interest and dividends		15,000
		64,500

Less: Factory expenses under-charged inCost Accounts (₹	15,000	
1,50,000 - ₹1,35,000)		
Administrative expenses under-charged inCost Accounts	7,500	
(₹ 45,000 - ₹ 37,500)		
Selling & distribution expenses under—charged in Cost		
Accounts (₹ 30,000 - ₹ 28,000)	2,000	(24,500)
Profit as per Financial Accounts		40,000

CHAPTER 06: JOB COSTING

PROBLEM - 1

A shop floor supervisor of a small factory presented the following cost for Job No. 303, to determine the selling price.

Particulars	Per unit
Materials	₹ 70
Direct wages 18 hours @ 2.50	₹ 45
(Dept. X - 8 Hrs; Dept. Y - 6 Hrs; Dept. Z - 4 Hrs)	
Chargeable expenses	₹ 5
	₹ 120
Add: 33-1/3 % for expenses cost	₹ 40
Total	₹ 160

Analysis of the Profit/Loss Account (for the year 20x1)

Particulars	Amount (₹)	Particulars	Amount (₹)
Materials used	₹ 1,50,000	Sales less returns	₹ 2,50,000
Direct wages:			
- Dept. X - 10,000			
- Dept. Y - 12,000			
- Dept. Z - 8,000	₹ 30,000		
Special stores items	₹ 4,000		
Overheads:			
Dept. X - 5,000			
Dept. Y - 9,000			
Dept. Z - 2,000	₹ 16,000		
Works cost	₹ 2,00,000		
Gross profit c/d	₹ 50,000		
	₹ 2,50,000		₹ 2,50,000
Selling expenses	₹ 20,000	Gross profit b/d	₹ 50,000
Net profit	₹ 30,000		
	₹ 50,000		₹ 50,000

It is also noted that average hourly rates for the three Departments X, Y and Z are similar.

You are required to:

- a. Draw up a job cost sheet.
- b. Calculate the entire revised cost using 20x1 actual figures as the basis.
- c. Add 20% to the total cost to determine the selling price.

SOLUTION:

Job Cost Sheet			
Customer Details —— Job No ——			
Date of commencement —— Date of comple	etion ——		
Particulars	Amount (₹)		
Direct Materials	70		
Direct Wages			
X ₹ 2.50 × 8 Hours = ₹ 20.00			
y ₹ 2.50 × 6 Hours = ₹ 15.00			
Z ₹ 2.50 × 4 Hours = ₹ 10.00	45		
Chargeable Expenses	5		
Prime Cost	120		
Overheads:			
$X = \frac{₹5,000}{₹10,000} \times 100 = 50\% \text{ of } ₹20 = ₹10.00$			
$y = \frac{₹9,000}{₹12,000} \times 100 = 75\% \text{ of } ₹15 = ₹11.25$			
$Z = \frac{₹2,000}{₹8,000} \times 100 = 25\% \text{ of } ₹ 10 = ₹2.50$	₹ 23.75		
Works cost	143.75		
Selling expenses= $\frac{₹20,000}{₹2,00,000} \times 100 = 10\% \text{ of work cost}$	14.38		
Total Cost	158.125		
Profit (20% of Total Cost)	31.63		
Selling Price	189.76		

PROBLEM - 2

In a factory following the Job Costing Method, an abstract from the work-in-progress as on 30th September was prepared as under.

				FACTORY
JOB NO:	MATERIALS	DIRECT HOURS	LABOUR	OVERHEAD
				APPLIED
115	₹ 1,325	400 Hrs	₹ 800	₹ 640
118	₹ 810	250 Hrs	₹ 500	₹ 400
120	₹ 765	300 Hrs	₹ 475	₹ 380
	₹ 2,900		₹ 1,775	₹ 1,420

Materials used in October were as follows:

Materials Requisition No.	Job No.	Cost
54	118	₹ 300
55	118	₹ 425
56	118	₹ 515
57	120	₹ 665
58	121	₹ 910
59	124	₹ 720
		₹ 3,535

A summary for Labour hours deployed during October is as under:

PARTICULARS	NUMBER OF HOURS	
FARTICULARS	SHOP A	SHOP B
Direct Labour:		
Job no: 115	25	25
Job no: 118	90	30
Job no: 120	75	10
Job no: 121	65	-
Job no: 124	25	10
Indirect Labour:		
Waiting of material	20	10
Machine breakdown	10	5
Idle time	5	6
Overtime premium	6	5
Total	321	101

A shop credit slip was issued in October that material issued under Requisition No. 54 was returned back to stores as being not suitable. A material transfer note issued in October indicated that material issued under Requisition No. 55 for Job 118 was directed to Job 124.

The hourly rate in shop A per labour hour is 3 per hour while at shop B, it is 2 per hour. The factory overhead is applied at the same rate as in September. Job 115, 118 and 120 were completed in October.

You are asked to compute the factory cost of the completed jobs. It is the practice of the management to put a 10% on the factory cost to cover administration and selling overheads and invoice the job to the customer on a total cost plus 20% basis. What would be the invoice price of these three jobs?

SOLUTION:

Factory Cost Statement Of Completed Job.

Month	Job No	Materials	Direct Labour	Factory Overheads (80% Of Direct Labour Cost)	Factory Cost
		(₹)	(₹)	(₹)	(₹)
September	115	1,325	800	640	2765
October	115	-	125	100	225
	Total	1,325	925	740	2,990
September	118	810	500	400	1,710
October	118	515	330	264	1,109
	Total	1,325	830	664	2,819
September	120	765	475	380	1,620
October	120	665	245	196	1,106
	Total	1,430	720	576	2,726

Invoice Price of Complete Job

Job No	115	118	120
	(₹)	(₹)	(₹)
Factory Cost	2,990	2,819	2,726
Administration And SellingOverheads			
@ 10% Of Factory Cost	299	281.90	272.60
Total Cost	3,289	3,100.90	2,998.60
Profit (20% Of Total Cost)	657.80	620.18	599.72

Invoice Price	3,946.80	3,721.08	3,598.32	Ī
---------------	----------	----------	----------	---

W N 1: Calculation of Absorption Rate for Factory Overheads

Job No	Labour Cost	Factory Overheads	Absorption Rate
(1)	(2)	(3)	(4 = 3 ÷ 2)
115	800	640	80% on Direct Labour
118	500	400	80% on Direct Labour
120	475	380	80% on Direct Labour

PROBLEM - 3

The manufacturing cost of a work order is ₹ 1,00,000; 8% of the production against that order spoiled and the rejection is estimated to have a realisable value of ₹ 2,000 only. The normal rate of spoilage is 2%. Record this in the costing journal.

SOLUTION:

Actual loss due to spoilage = 8% of ₹ 1,00,000 = ₹ 8,000 and Normal loss = 2% of ₹ 1,00,000 = ₹ 2,000, therefore abnormal loss = ₹ 6,000.

The rejection has a realisable value of ₹2,000, which is to be apportioned betweennormal loss and abnormal loss in the ratio of 2:6.

The accounting entries necessary for recording the above facts would be:

		(₹)	(₹)
Material Control Account	Dr.	2,000	
Overhead Control Account	Dr.	1,500	
Costing Profit and Loss Control Account	Dr.	4,500	
To Work-in-Progress Control Account			8,000

In the case of defectives being inherent in the manufacturing process, the rectification cost may be charged to the specific jobs in which they have arisen. In case detectives cannot be identified with jobs, the cost of rectification may betreated as factory overheads. Abnormal defectives should be written off to the Costing Profit and Loss Account.

PROBLEM - 4

Ares Plumbing and Fitting Ltd. (APFL) deals in plumbing materials and also provides plumbing services to its customers. On 12th August, 20x2, APFL received a job order for a students' hostel to supply and fitting of plumbing materials. The work is to be done on the basis of specification provided by the hostel owner. Hostel will be

inaugurated on 5th September, 20x2 and the work is to be completed by 3rd

September, 20x2. Following are the details related with the job work:

Direct Materials

APFL uses a weighted average method for the pricing of materials issues. Opening stock of materials as on 12th August 20x2:

- 15mm GI Pipe, 12 units of (15 feet size) @ ₹ 600 each
- 20mm GI Pipe, 10 units of (15 feet size) @ ₹ 660 each
- Other fitting materials, 60 units @ ₹ 26 each
- Stainless Steel Faucet, 6 units @ ₹ 204 each
- Valve, 8 units @ ₹ 404 each

Purchases:

On 16th August 20x2:

- 20mm GI Pipe, 30 units of (15 feet size) @ ₹ 610 each
- 10 units of Valve @ ₹ 402 each

on 18th August 20x2:

- Other fitting materials, 150 units @ ₹ 28 each
- Stainless Steel Faucet, 15 units @ ₹ 209 each

on 27th August 20x2:

- 15mm GI Pipe, 35 units of (15 feet size) @ ₹ 628 each
- 20mm GI Pipe, 20 units of (15 feet size) @ ₹ 660 each
- Valve, 14 units @ ₹ 424 each

Issues for the hostel job:

On 12th August 20x2:

- 20mm GI Pipe, 2 units of (15 feet size)
- Other fitting materials, 18 units

on 17th August 20x2:

- 15mm GI Pipe, 8 units of (15 feet size)
- Other fitting materials, 30 units

on 28th August 20x2:

- 20mm GI Pipe, 2 units of (15 feet size)
- 15mm GI Pipe, 10 units of (15 feet size)
- Other fitting materials, 34 units
- Valve, 6 units on 30th August 20x2:
- Other fitting materials, 60 units
- Stainless Steel Faucet, 15 units

Direct Labour:

Plumber: 180 hours @ ₹ 50 per hour (includes 12 hours overtime)

Helper: 192 hours @ ₹ 35 per hour (includes 24 hours overtime)

Overtimes are paid at 1.5 times of the normal wage rate.

Overheads:

Overheads are applied @ ₹ 13 per labour hour.

Pricing policy:

It is company's policy to price all orders based on achieving a profit margin of 25% on sales price.

You are required to

- i. Calculate the total cost of the job.
- ii. Calculate the price to be charged from the customer

SOLUTION:

(a) Calculation of Total Cost for the Hostel Job:

Particulars	Amount	Amount
	(₹)	(₹)
Direct Material Cost:		
- 15mm GI Pipe (Working Note- 1)	11,051.28	
- 20mm GI Pipe (Working Note- 2)	2,588.28	
- Other fitting materials (Working Note-3)	3,866.07	
- Stainless steel faucet	3,113.57	
15 units $\times \left(\frac{6 \times ₹204 + 15 \times ₹209}{21 \text{ units}}\right)$		
- Valve	2,472.75	23,091.95
6 units x $\left(\frac{8 \times ₹404 + 10 \times ₹402 + 14 \times ₹424}{32 \text{ units}}\right)$		
Direct Labour:		
- Plumber [(180 hours × ₹ 50) + (12 hours × ₹ 25)]	9,300.00	
- Helper [(192 hours × ₹ 35) + (24 hours × ₹ 17.5)] 7,140.00		16,440.00
- Overheads [₹ 13 × (180 + 192) hours]		4,836.00
Total Cost		44,367.95

(b) Price To Be Charged For The Job Work:

	Amount (₹)
Total Cost incurred on the job	44,367.95
Add: 25% Profit on Job Price $\left(\frac{44,367.95}{75\%} \times 25\%\right)$	14,789.32
	59,157.27

Working Note:

1. Cost of 15mm GI Pipe

Date		Amount (₹)
17-08-2022	8 units × ₹ 600	4,800.00
28-08-2022	$10 \text{ units } \times \left(\frac{4 \times \$ 600 + 35 \times \$ 628}{39 \text{ units}}\right)$	6,251.28
		11,051.28

2. Cost of 20mm GI Pipe

Date		Amount (₹)
12-08-2022	2 units × ₹ 660	1,320.00
28-08-2022	2 units $\times \left(\frac{8 \times \$660 + 30 \times \$610 + 20 \times \$660}{58 \text{ units}} \right)$	1,268.28
	Total	2,588.28

3. Cost of Other fitting materials

Date		Amount (₹)
12-08-2022	18 units × ₹ 26	468.00
17-08-2022	30 units × ₹ 26	780.00
28-08-2022	34 units $\times \left(\frac{12 \times ₹26 + 150 \times ₹28}{162 \text{ units}}\right)$	946.96
30-08-2022	60 units $\times \left(\frac{12 \times ₹26 + 150 \times ₹28}{162 \text{ units}}\right)$	1,671.11
		3,866.07

CHAPTER 07: UNIT & BATCH COSTING

PROBLEM - 1:

The following data relate to the manufacture of a standard product during the 4-week ended 28th February 20x1:

Particulars	Amount (₹)
Raw Materials Consumed	₹ 4,00,000
Direct Wages	₹ 2,40,000
Machine Hours Worked	3,200 hours
Machine Hour Rate	₹ 40
Office Overheads	10% of works cost
Selling Overheads	₹ 20 per unit
Units produced and sold	10,000 at ₹ 120 each

You are required to find out the cost per unit and profit for the 4- week ended 28th February 20×1 .

SOLUTION:

Statement Of Cost Per Unit and Profit Per Unit for the 4 Weeks Ended 28th Feb 20x1: No. Of Units Produced: 10,000 Units

Particulars	Cost per	Amount
	unit (₹)	(₹)
Raw Materials Consumed	40.00	4,00,000
Direct Wages	24.00	2,40,000
Prime Cost	64.00	6,40,000
Add: Manufacturing Overheads (3,200 Hours × ₹ 40)	12.80	1,28,000
Gross Works Cost	76.80	7,68,000
Add: Office Overheads (10% Of Works Cost)	7.68	76,800
Cost Of Goods Sold	84.48	8,44,800
Add: Selling Overheads (10,000 Units × ₹ 20)	20.00	2,00,000
Cost Of Sales	104.48	10,44,800
Add: Profit (Balancing Figure)	15.52	1,55,200
Sales	120.00	12,00,000

PROBLEM - 2

Atharva Pharma care Limited produced a uniform type of product and has a manufacturing capacity of 3,000 units per week of 48 hours from the records of the company, the following data are available relating to output and cost of 3 consecutive weeks.

Week	Units	Direct	Direct	Factory
Number	Manufactured	Material	Wage	Overheads
1	1,200	₹ 9,000	₹ 3,600	₹ 31,000
2	1,600	₹ 12,000	₹ 4,800	₹ 33,000
3	1,800	₹ 13,500	₹ 5,400	₹ 34,000

Assuming that the company charges a profit of 20% on selling price, find out the selling price per unit when the weekly output is 2,000 units.

SOLUTION:

Statement Of Cost And Selling Price For 2,000 Units Of Output

Particulars	Cost per unit	Total Cost
	(₹)	(₹)
Direct Materials	7.50	15,000
Direct Labour	3.00	6,000
Prime Cost	10.50	21,000
Add: Factory Overheads (Refer Working Note-2)	17.50	35,000
Total Cost	28.00	56,000
Add: Profit	7.00	14,000
(20% Of Sales Is Equivalent To 25% Of Cost)		
Sales	35.00	70,000

W N 1: Segregation of Factory Overheads into Variable and Fixed Cost:

We select week 1 and week 3 using high - low method

Variable Cost Per Unit = Change in Cost + Change in Units

 $= (\mp 34000 - \mp 31000) \div (1800 \text{ units} - 1200 \text{ units})$

= ₹5 Per Unit

Fixed Cost = Total Cost - Variable Cost = $₹ 34000 - (₹ 5 \times 1800 \text{ units})$

= ₹ 34000 - ₹ 9000 = ₹ 25000

Fixed Overheads for 2000 units = ($₹5 \times 2000 \text{ units}$) + ₹25000 = ₹35000

PROBLEM - 3

Arnav Confectioners (AC) owns a bakery that is used to make bakery items like pastries, cakes and muffins. AC use to bake at least 50 units of any item at a time.

A customer has given an order for 600 muffins. To process a batch of 50 muffins, the following cost would be incurred:

Particulars	Amount (₹)
Direct Materials	₹ 500
Direct Wages	₹ 50
Oven set-up cost	₹ 150

AC absorbs production overheads at a rate of 20% of direct wages cost. 10% is added to the total production cost of each batch to allow for selling, distribution and administration overheads. AC requires a profit margin of 25% of sales value.

Determine the selling price for 600 muffins.

SOLUTION:

Statement Of Cost Per Batch And Per Order

No. of batch = $600 \text{ units} \div 50 \text{ units} = 12 \text{ batches}$

Particulars	Cost per batch	Total Cost
	(₹)	(₹)
Direct Material Cost	500.00	6,000
Direct Wages	50.00	600
Oven set-up cost	150.00	1,800
Add: Production Overheads (20% of Direct wages)	10.00	120
Total Production cost	710.00	8,520
Add: S&D and Administration overheads	71.00	852
(10% of Total production cost)		
Total Cost	781.00	9,372
Add: Profit (1/3 rd of total cost)	260.33	3,124
Selling price	1,041.33	12,496
Selling Price per unit = 1041.33 ÷ 50 = ₹ 20.83		

PROBLEM - 3A (MTP 1 Jan 25)

Luxz Ltd. is into luxury pens business manufacturing 120 pens in a batch. To process a single batch of 120 pens, company needs to incur following expenditure:

Particulars	(₹)
Direct Materials	57,375

Direct wages	6,750
Batch Set-up cost	18,900

For each batch, the company absorbs the Production Overheads at a rate of 20% of direct wages and 15% of the total production cost is allocated to cover selling, distribution, and administrative overheads.

During the month of March, Luxz Ltd. received an order for 2,400 pens and the company aims to achieve a profit margin of 25% on its sales value.

You are required to DETERMINE the total sales value for 2,400 pens.

SOLUTION:

Determination of total sales value of Luxury	Amount per Batch	Amount for 2,400
pens		units or 20 batches
Particulars	(₹)	(₹)
Direct materials	57,375	11,47,500
Direct wages	6,750	1,35,000
Batch set-up cost	18,900	3,78,000
Production overheads (20% of direct wages)	1,350	27,000
Total Production Cost	84,375	16,87,500
Selling, distribution and administration cost	12,656	2,53,125
(15% of Total Production cost)		
Total Cost	97,031	19,40,625
Add: Profit (25% of Sales value or 1/3rd of	32,344	6,46,875
Total cost)		
Total Sales value	1,29,375	25,87,500

PRO	BLEM	- 4
-----	------	-----

500 units
₹ 60
₹ 20
10% per annum

Determine economic batch quantity. Also, calculate the Total Cost.

SOLUTION:

EBQ =
$$\sqrt{\frac{2DS}{C}} = \sqrt{\frac{2 \times 500 \times 12 \times 60}{0.1 \times 20}} = 600 \text{ units}$$

PROBLEM - 5

M/s. KBC Bearings Ltd. is committed to supplying 48,000 bearings per annum to M/s. KMR Fans on a steady daily basis. It is estimated that it costs ₹ 1 as inventory holding cost per bearing per month and that the setup cost per run of bearing manufacture is ₹ 3,200.

- 1. What would be the optimum run size of bearing manufacture?
- 2. What would be the interval between two consecutive optimum runs?
- 3. Find out the minimum inventory cost?

SOLUTION:

(i) Optimum Batch Size Or Economic Batch Quantity (EBQ):

EBQ =
$$\sqrt{\frac{2DS}{C}}$$
 = $\sqrt{\frac{2 \times 48,000 \times 3,200}{12}}$ = 5,060 units

- (ii) Number of Optimum runs = $48,000 \div 5,060 = 9.49$ or 10 run Interval between 2 runs (in days) = 365 days \div 10 = 36.5 days
- (iii)Minimum Inventory Cost = Average Inventory × Inventory Carrying Cost per unit per annum Average Inventory = 5,060 units ÷ 2 = 2,530 units Carrying Cost per unit per annum= ₹ 1 × 12 months = ₹ 12 Minimum Inventory Holding Costs = 2,530 units × ₹ 12 = ₹ 30,360

PROBLEM - 6

XYZ Ltd. has obtained an order to supply 48000 bearings per year from a concern. On a steady basis, it is estimated that it costs $\stackrel{?}{\underset{?}{?}}$ 0.20 as inventory holding cost per bearing per month and the set-up cost per run of bearing manufacture is $\stackrel{?}{\underset{?}{?}}$ 384.

You are required to:

- 1. compute the optimum run size and number of runs for bearing manufacture.
- 2. compute the interval between two consecutive runs.
- 3. find out the extra costs to be incurred, if company adopts a policy to manufacture 8000 bearings per run as compared to optimum run Size.
- 4. give your opinion regarding run size of bearing manufacture. Assume 365 days in a year.

SOLUTION:

i) Optimum Batch Size Or Economic Batch Quantity (EBQ):

EBQ =
$$\sqrt{\frac{2DS}{C}}$$
 = $\sqrt{\frac{2 \times 48,000 \times 384}{2.4}}$ = 3919.18 or 3,920 units

Number of Optimum runs = 48,000 ÷ 3,920 = 12.245 or 13 run

- ii) Interval between 2 runs (in days) = 365 days ÷ 13 = 28 days Or 365 ÷ 12.24 = 29.82 days
- iii) Statement Showing Total Cost At Production Run Size Of 3,600 And 8,000 Bearings

A .	Annual Requirement	48,000	48,000
В.	Run Size	3,920	8,000
C.	No. Of Runs (A ÷ B)	12.245	6
D.	Set Up Cost Per Run	₹ 384	₹ 384
E.	Total Set Up Cost ($C \times D$)	₹ 4,702	₹ 2,304
F.	Average Inventory (B ÷ 2)	1,960	4,000
G.	Carrying Cost Per Unit P.A.	2.40	2.40
Н.	Total Carrying Cost (F x G)	4,704	9,600
I.	Total Cost (E + H)	9,406	11,904

Extra cost incurred, if run size is of 8,000 = ₹ 11,904 - 9,406 = ₹ 2,498

iv) To save cost the company should run at optimum batch size ie 3,920 Units. It saves ₹ 2,498. Run size should match with the Economic production run of bearing manufacture. When managers of a manufacturing operation make decisions about the number of units to produce for each production run, they must consider the costs related to setting up the production process and the costs of holding inventory

PROBLEM - 7

A Company has an annual demand from a single customer for 50,000 litres of a paint product. The total demand can be made up of a range of colours to be produced in a continuous production run after which a set-up of the machinery will be required to accommodate the colour change. The total output of each colour will be stored and then delivered to the customer as s single load immediately before production of the next colour commences.

The Setup costs are \mathbb{T} 100 per set up. The Service is supplied by an outside company as required. The Holding costs are incurred on rented storage space which costs \mathbb{T} 50 per sq. meter per annum. Each square meter can hold 250 Litres suitably stacked.

You are required to calculate

- 1. Calculate the total cost per year where batches may range from 4,000 to 10,000 litres in multiples of 1,000 litres and hence choose the production batch size which will minimize the cost.
- 2. Use the economic batch size formula to calculate the batch size which will minimise total cost.

SOLUTION:

(i)

Production Batch Size	Set-up costs per	Holding Costs per	Total Costs per
(Litres)	annum (₹)	annum (₹)	annum (₹)
4,000	1,250	400	1,650
5,000	1,000	500	1,500
6,000	833	600	1,433
7,000	714	700	1,414
8,000	625	800	1,425
9,000	556	900	1,456
10,000	500	1000	1,500

As the Total cost is minimum at 7,000 Litres i.e. ₹ 1,414, thus economic production lot would be 7,000 Litres

ii) Economic Batch Quantity (EBQ):

$$EBQ = \sqrt{\frac{2DS}{C}}$$

Where,

D = Annual demand for the product = 50,000 Litres

S = Setting up cost per batch = ₹ 100 per set-up

C = Carrying cost per unit of production

= ₹ 50 ÷ 250 Litres = 0.20 per Litre per annum

EBQ =
$$\sqrt{\frac{2 \times 50,000 \times 100}{0.2 \times 1}}$$
 =7,071 Litres

Working Note:

1. For Production batch size of 7,000 litres

Number of set ups per year = $50,000 \div 7,000 = 7.14$ or 8 set-upsHence, annual set up cost per year = $8 \times ₹ 100 = ₹ 800$

Average Quantity = 7,000 ÷ 2 = 3,500 litres

Holding Costs = 3,500 ltr. \div 250 × 50 = ₹ 700

2. It can be seen that EBQ determined with mathematical formula (7,071 litres) slightly varies from the one determined by trial and error method (7,000 Litres)

PROBLEM - 8

Wonder Ltd. has a capacity of 1,20,000 Units per annum as its optimum capacity. The production costs are as under:

Direct Material	₹ 90 per unit
Direct Labour	₹ 60 per unit
Overheads:	
Fixed	₹ 30,00,000 per annum
Variable	₹ 100 per unit

Semi Variable Overheads: ₹ 20,00,000 per annum up to 50% capacity and an extra amount of ₹ 4,00,000 for every 25% increase in capacity or part thereof. The production is made to order and not for stocks. If the production programme of the factory is as indicated below and the management desires a profit of ₹ 20,00,000 for the year work out the average selling price at which each unit should be quoted.

First 3 months: 50% capacity and remaining 9 months: 80% capacity.

Ignore Administration, Selling and Distribution overheads.

SOLUTION:

Statement of Cost and Total Sales Amount

(₹)

Particulars	First 3 Months	Next 9 Months	Total	
Capacity Utilisation	120,000 x 3 ÷ 12 x 50%	120,000 x 9 ÷ 12 x 80%	87,000	
(No of units)	= 15,000	= 72,000		
Direct Material	13,50,000	64,80,000	78,30,000	
Direct Labour	9,00,000	43,20,000	52,20,000	
Add:				
Overheads:				
- Fixed (1:3)	7,50,000	22,50,000	30,00,000	
- Variable	15,00,000	72,00,000	87,00,000	
Semi Variable	5,00,000 (For first 3	21,00,000 (at the rate	26,00,000	
	months at the rate of	of ₹ 28,00,000 for 9		
	₹ 20,00,000)	months)		
Total cost	50,00,000	2,23,50,000	2,73,50,000	
Add: Profit			20,00,000	
Sales			2,93,50,000	

Average Selling Price = ₹ 2,93,50,000 ÷ 87,000 units = ₹ 337.356

PROBLEM - 9

Rio Limited undertakes to supply 1000 units of a component per month for the Months of January, February and March 20×1 . Every month a batch order is opened against which materials and labour costs are booked at actual. Overheads are levied at a rate per labour hour. The selling price is contracted at ₹ 15 per unit.

From the following data, present the profit per unit of each batch order and the overall position of the order for the 3,000 units.

MONTH	BATCH OUTPUT	MATERIAL COST	LABOUR COST
January 20x1	1250 nos	₹ 6,250	₹ 2,500
February 20x1	1500 nos	₹ 9,000	₹ 3,000
March 20x1	1000 nos	₹ 5,000	₹ 2,000

Labour is paid at the rate of $\mathbf{\xi}$ 2 per hour. The other details are:

MONTH	OVERHEADS	TOTAL LABOUR HOURS
January 20x1	₹ 12,000	4,000
February 20x1	₹ 9,000	4,500
March 20x8	₹ 15,000	5,000

SOLUTION:

Statement Of Cost and Profit Per Unit Of Each Batch

	January		F	February		March		Total	
a) Batch Output (Nos.)	1,250			1,500 1,000		1,000	3,750		
b) Sales Value (@ ₹ 15 per unit)	₹	₹ 18,750		₹ 22,500 ₹		₹ 15,000		₹ 56,250	
Cost									
Material		6,250		9,000		5,000		20,250	
Wages		2,500		3,000		2,000		7,500	
Overheads		3,750		3,000		3,000		9,750	
c) Total		12,500)	15,000		10,000		37,500	
d) Profit per batch (b) - (c)		6,250		7,500		5,000		18,750	
e) Cost per unit (c) ÷ (a)		10		10		10			
f) Profit per unit (d) ÷ (a)		5		5		5			

Overall Position of the Order for 3,000 Units

Sales value (3,000 units × ₹ 15)	₹ 45,000		
Less: Total cost (3,000 units × ₹ 10)			
Profit	₹ 15,000		

Calculation Of Overhead Per Hour:

	January	February	March
i. Labour hours:			
= Labour Cost Labour Rates per hour	= ₹ 2,500 = 1,250	= ₹3,000 = 1,500	$=\frac{\text{₹ 2,000}}{2}=\text{1,000}$
ii. Overhead per hour:			
= Total overheads Total Labour hour	= ₹12,000 = ₹3	= ₹9,000 = ₹2	= ₹15,000 = ₹3
iii. Overhead for batch (i) × (ii)	₹ 3,750	₹ 3,000	₹ 3,000

PROBLEM - 10

A jobbing factory has undertaken to supply 200 pieces of a component per month for the ensuing six months. Every month a batch order is opened against which materials and labour hours are booked at actual. Overheads are levied at a rate per labour hour. The selling price contracted for is ₹ 8 per piece. From the following data present, CALCULATE the cost and profit per piece of each batch order and the overall position of the order for 1,200 pieces.

Month	Batch output	Material cost	Direct wages	Direct labour
January	210	₹ 650	₹ 120	240 hrs
February	200	₹ 640	₹ 140	280 hrs
March	220	₹ 680	₹ 150	280 hrs
April	180	₹ 630	₹ 140	270 hrs
May	200	₹ 700	₹ 150	300 hrs
June	220	₹ 720	₹ 160	320 hrs

The other details are:

Monthly chargeable	Expenses	Direct labour
January	₹ 12,000	4800 hrs
February	₹ 10,560	4400 hrs
March	₹ 12,000	5000 hrs
April	₹ 10,580	4600 hrs
May	₹ 13,000	5000 hrs
June	₹ 12,000	4800 hrs

SOLUTION:

Particulars	Jan	Feb	March	April	May	June	Total
Batch output (in units)	210	200	220	180	200	220	1,230
Sale value (₹)	1,680	1,600	1,760	1,440	1,600	1,760	9,840
Material cost (₹)	650	640	680	630	700	720	4,020
Direct wages (₹)	120	140	150	140	150	160	860
Overheads* (₹)	600	672	672	621	780	800	4,145
Total cost (₹)	1,370	1,452	1,502	1,391	1,630	1,680	9,025
Profit per batch (₹)	310	148	258	49	(30)	80	815
Total cost per unit (₹)	6.52	7.26	6.83	7.73	8.15	7.64	7.34
Profit per unit (₹)	1.48	0.74	1.17	0.27	(0.15)	0.36	0.66

Overall position of the order for 1,200 units

Sales value of 1,200 units @ ₹ 8 per unit

₹ 9,600

Total cost of 1,200 units @ ₹ 7.34 per unit

₹ 8,808

Profit

₹ 792

• (Overheads \div Direct Labour Hour for the Month) \times Direct Labour Hours for Batch

PROBLEM - 11

X Ltd. is committed to supplying 24,000 bearings per annum to Y Ltd. on a steady basis. It is estimated that it costs 10 paise as inventory holding cost per bearing per month and that the set-up cost per run of bearing manufacture is ₹ 324.

- a. What would be the optimum run size for bearing manufacture?
- b. Assuming that the company has a policy of manufacturing 6,000 bearings per run, how much extra costs the company would be incurring as compared to the optimum run suggested in a above?
- c. What is the minimum inventory holding cost?

SOLUTION:

(a) Optimum Production Run Size (Q) =
$$\sqrt{\frac{2DS}{C}}$$

where.

- D = No. Of Units to Be Produced Within One Year.
- S = Set-Up Cost Per Production Run

C = Carrying Cost Per Unit Per Annum.

$$= \sqrt{\frac{2DS}{C}} = \sqrt{\frac{2 \times 24,000 \times 324}{0.10 \times 12}} = 3,600 \text{ bearings}$$

(b) Total Cost (of maintaining the inventories) when production run size (Q) are 3,600 and 6,000 bearings respectively

Total cost = Total set-up cost + Total carrying cost.

	When run size is 3,600	When run size is 6,000
	bearings	bearings
Total set up cost	$= \frac{24,000}{3,600} \times \text$	= $\frac{24,000}{6,000}$ x ₹ 324 = ₹ 1,296
	Or,	
	No. of setups = 6.67	
	(7 setups)	
	= 7 × 324 = ₹ 2,268	
Total Carrying cost	½ × 3,600 × 0.10P × 12	½ × 6,000 × 0.10P × 12
	= ₹ 2,160	= ₹ 3,600
Total Cost	₹ 4,320 / ₹ 4,428	₹ 4,896

₹ 576 / ₹ 468 is the excess cost borne by the firm due to run size not being economic batch quantity.

(c) Inventory holding cost at EBQ = $\frac{1}{2}$ Q × C (when Q = 3,600 bearings) = $\frac{1}{2}$ × 3,600 bearings × 0.10P × 12 = ₹ 2,160

PROBLEM - 12

A customer has been ordering 90,000 special design metal columns at the rate of 18,000 columns per order during the past years. The production cost comprises ₹ 2,120 for material, ₹ 60 for labour and ₹ 20 for fixed overheads. It costs ₹ 1,500 to set up for one run of 18,000 columns and the inventory carrying cost is 5%.

- a. Find the most economic production run.
- b. Calculate the extra cost that company incur due to the processing of 18,000 columns in a batch.

SOLUTION:

(i) Total Cost of production= ₹ 2,120 + 60 + 20 = ₹ 2,200

Calculation of Economic Batch Quantity (EBQ):

EBQ = =
$$\sqrt{\frac{2 \times 90,000 \times 1500}{5\% \text{ of } 12,200}} = \sqrt{\frac{27,00,00,000}{100}} = 1,567 \text{ columns.}$$

(ii) Calculation of Extra Cost due to processing of 18,000 columns in a batch

	When run size is 1,567	When run size is 18,000
	columns	columns
Total set up cost	No. of setups	= \frac{90,000}{18,000} × ₹1,500
	= 90,000 ÷ 1567	18,000 = ₹ 7,500
	= 57.43 (58 setups)	- < 7,500
	= $\frac{90,000}{1,567}$ x ₹ 1,500	
	= ₹87,000	
Total Carrying cost	½ × 1,567 × ₹110	½ × 18,000 × ₹110
	= ₹86,185	= ₹9,90,000
Total Cost	₹ 1,73,185	₹ 9,97,500

Thus, extra cost = ₹ 9,97,500 - ₹ 1,73,185 = ₹ 8,24,315

PROBLEM - 13: (RTP MAY 24)

Arnav Ltd. operates in beverages industry where it manufactures soft- drink in three sizes of Large (3 litres), Medium (1.5 litres) and Small (600 ml) bottles. The products are processed in batches. The 5,000 litres capacity processing plant consumes electricity of 90 Kilowatts per hour and a batch takes 1 hour 45 minutes to complete. Only symmetric size of products can be processed at a time. The machine set-up takes 15 minutes to get ready for next batch processing. During the set-up power consumption is only 20%.

- (i) The current price of Large, Medium and Small are $\stackrel{?}{_{\sim}}$ 150, $\stackrel{?}{_{\sim}}$ 90 and $\stackrel{?}{_{\sim}}$ 50 respectively.
- (ii) To produce a litre of beverage, 14 litres of raw material-W and 25 ml of Material-C are required which costs ₹ 0.50 and ₹ 1,000 per litre respectively.
- (iii)20 direct workers are required. The workers are paid ₹ 880 for 8 hours shift of work.
- (iv)The average packing cost per bottle is ₹ 3
- (v) Power cost is ₹ 7 per Kilowatt -hour (Kwh)
- (vi)Other variable cost is ₹ 30,000 per batch.
- (vii) Fixed cost (Administration and marketing) is ₹ 4,90,00,000.

(viii) The holding cost is ₹ 1 per bottle per annum.

The marketing team has surveyed the following demand (bottle) of the product:

Large	Medium	Small
3,00,000	7,50,000	20,00,000

You are required to CALCULATE profit/loss per batch and also COMPUTE Economic Batch Quantity (EBQ).

Answer:

Workings:

1. Maximum Number Of Bottles That Can Be Processed In A Batch:

5,000 Litres

Bottle volume

Lai	rge	Medium		Sm	nall
Qty (Litres)	Max bottles	Qty (Litres) Max bottles		Qty (Litres)	Max bottles
3	1,666	1.5	3,333	0.6	8,333

^{*}For simplicity of calculation small fractions has been ignored.

2. Number Of Batches To Be Run:

		Large	Medium	Small	Total
Α	Demand	3,00,000	7,50,000	20,00,000	
В	Bottles per batch (Refer WN-1)	1,666	3,333	8,333	
С	No. of batches [A÷B]	180	225	240	645

^{*}For simplicity of calculation small fractions has been ignored.

Quantity of Material-W and Material C required to meet demand:

	Particulars	Large	Medium	Small	Total
Α	Demand (bottle)	3,00,000	7,50,000	20,00,000	
В	Qty per bottle (Litre)	3	1.5	0.6	
С	Output (Litre) [A × B]	9,00,000	11,25,000	12,00,000	32,25,000
D	Material-W per litre of	14	14	14	
	output (Litre)				
Ε	Material-W required	1,26,00,000	1,57,50,000	1,68,00,000	4,51,50,000
	(Litre) [C × D]				
F	Material-C required per	25	25	25	
	litre of output (ml)				
G	Material-C required (Litre)	22,500	28,125	30,000	80,625
	[(C × F) ÷ 1000]				

3. No. of Man-shift required:

		Large	Medium	Small	Total
Α	No. Of Batches	180	225	240	645
В	Hours Required Per Batch	2	2	2	
	(Hours)				
С	Total Hours Required (Hours) [A × B]	360	450	480	1,290
D	No. Of Shifts Required [C ÷ 8]	45	57	60	162
Ε	Total Manshift [D × 20 Workers]	900	1,140	1,200	3,240

4. Power consumption in Kwh

		Large	Medium	Small	Total
For p	processing				
Α	No. of batches	180	225	240	645
В	Hours required per batch (Hours)	1.75	1.75	1.75	1.75
С	Total hours required (Hours) [A × B]	315	393.75	420	1,128.75
D	Power consumption per hour	90	90	90	90
Ε	Power consumption in	28,350	35,437.5	37,800	1,01,587.5
	Kwh [C × D]				
F	Per batch consumption	157.5	157.5	157.5	157.5
	(Kwh) [E ÷ A]				
For s	set-up				
G	Hours required per batch (Hours)	0.25	0.25	0.25	0.25
Н	Total hours required (Hours) [A×G]	45	56.25	60	161.25
Ι	Power consumption per hour [20%×90]	18	18	18	18
J	Power consumption in Kwh [H × I]	810	1,012.5	1,080	2,902.5
K	Per batch consumption (Kwh) [J ÷ A]	4.5	4.5	4.5	4.5

Calculation of Profit or Loss per batch:

	Particulars	Large	Medium	Small	Total
Α	Demand (bottle)	3,00,000	7,50,000	20,00,000	30,50,000
В	Price per bottle (₹)	150	90	50	
С	Sales value (₹) [A × B]	4,50,00,000	6,75,00,000	10,00,00,000	21,25,00,000
	Direct Material cost:				
Е	Material-W (₹)	63,00,000	78,75,000	84,00,000	2,25,75,000
	[Qty in WN-3 × ₹ 0.50]				
F	Material-C (₹)	2,25,00,000	2,81,25,000	3,00,00,000	8,06,25,000
	[Qty in WN-3 x ₹ 1,000]				
G	[E+F]	2,88,00,000	3,60,00,000	3,84,00,000	10,32,00,000
Н	Direct Wages (₹)	7,92,000	10,03,200	10,56,000	28,51,200
	[Man-shift in WN- 4 ×				
	₹ 880]				
I	Packing cost (₹)	9,00,000	22,50,000	60,00,000	91,50,000
	[A × ₹ 3]				
	Power cost (₹)				
J	For processing (₹) [WN-5	1,98,450	2,48,062.5	2,64,600	7,11,112.5
	× ₹ 7]				
K	For set-up time (₹) [WN-5	5,670	7,087.5	7,560	20,317.5
	× ₹ 7]				
L	[J+K]	2,04,120	2,55,150	2,72,160	7,31,430
M	Other variable cost (Rs.)	54,00,000	67,50,000	72,00,000	1,93,50,000
	[No. of batch in WN-2 ×				
	₹ 30,000]				
N	Total Variable cost per	3,60,96,120	4,62,58,350	5,29,28,160	13,52,82,630
	batch				
	[G + H + I + L + M]				
0	Profit/ loss before fixed	89,03,880	2,12,41,650	4,70,71,840	7,72,17,370
	cost [C - N]				
Р	Fixed Cost				4,90,00,000
Q	Total Cost [O - P]		_		2,82,17,370

Computation of Economic Batch Quantity (EBQ):

$$EBQ = \sqrt{\frac{2 \times D \times S}{C}}$$

D = Annual Demand for the Product = Refer A below

S = Set-up cost per batch = Refer D below

C = Carrying cost per unit per annum = Refer E below

	Particulars	Large	Medium	Small
Α	Annual Demand (bottle)	3,00,000	7,50,000	20,00,000
Set-u	Cost:			
В	Power cost for set-up time (₹)	31.50	31.50	31.50
	[Consumption per batch in WN-5			
	× Rs.7]			
С	Other variable cost (₹) *	30,000	30,000	30,000
D	Total Set-up cost [B + C]	30,031.50	30,031.50	30,031.50
Ε	Holding cost:	1.00	1.00	1.00
F	EBQ (Bottle)	1,34,234	2,12,243	3,46,592

^{*} Other variable cost is assumed to be part of set-up cost.

CHAPTER 08: MATERIAL COST

PROBLEM - 1:

At WHAT price per unit would Part No. A 32 be entered in the Stores Ledger, if the following invoice was received from a supplier:

Invoice	₹
200 units Part No. A 32 @ ₹ 5	1,000.00
Less: 20% discount	(200.00)
	800.00
Add: GST @ 12%	96.00
	896.00
Add: Packing charges (5 non-returnable boxes)	50.00
	946.00

- a. A 2 per cent cash discount will be given if payment is made in 30 days.
- b. Documents substantiating payment of GST are enclosed for claiming Input credit.

SOLUTION:

Computation Of Cost Per Unit

	(₹)
Net Purchase Price	800.00
Add: Packing Charges (5 Non-Returnable Boxes)	50.00
	850.00
No. Of Units Purchased	200 units
Cost Per Unit	4.25

Note:

- (i) Cash discount is treated as interest and finance charges, hence, it is not considered for valuation of material.
- (ii) Input credit is available for GST paid; hence it will not be added to purchase cost.

PROBLEM - 1A:

An invoice in respect of a consignment of chemicals A and B provides the following information:

	₹
Chemical A: 10,000 kgs. at ₹ 10 per kg.	1,00,000

Chemical B: 8,000 kgs. at ₹ 13 per kg.	1,04,000
Basic custom duty @ 10% (Credit is not allowed)	20,400
Railway freight	3,840
Total cost	2,28,240

A shortage of 500 kgs. in chemical A and 320 kgs. in chemical B is noticed due to normal breakages. You are required to COMPUTE the rate per kg. of each chemical, assuming a provision of 2% for further deterioration.

SOLUTION:

Working:

Computation Of Effective Quantity Of Each Chemical Available For Use

	Chemical A (kg.)	Chemical B (kg.)
Quantity Purchased	10,000	8,000
Less: Shortage Due to Normal Breakages	500	320
	9,500	7,680
Less: Provision For Deterioration 2%	190	153.6
Quantity Available	9,310	7,526.4

Statement Showing the Computation Of Rate Per Kg Of Each Chemical

	Chemical A (₹)	Chemical B (₹)
Purchase price 10,000@ ₹ 10 per kg,	1,00,000	1,04,000
8,000 @ ₹ 13 per kg		
Add: Basic Custom Duty @10%	10,000	10,400
Add: Railway freight		
(in the ratio of quantity purchased i.e., 5:4)	2,133	1,707
Total cost (A)	1,12,133	1,16,107
Effective Quantity (see working) (B)	9,310 kg	7,526.4 kg
Rate per kg (A ÷ B)	12.04	15.43

PROBLEM - 1B: (MTP 1 MAY 24)

S & Sons, an unregistered supplier under GST, purchases material from V Ltd. which is a GST registered supplier. The following information is available for one lot of 5,000 units of material purchased:

Listed price of one lot ₹ 5,00,000

Trade discount @ 10% on listed price

CGST and SGST (Credit Not available) 18% (9% CGST + 9% SGST)

Cash discount @ 10%

(Will be given only if payment is made within 30 days.)

Toll Tax paid ₹ 1,800

Freight and Insurance ₹ 36,000

Demurrage paid to transporter ₹ 5,000

Commission and brokerage on purchases ₹ 10,000

Amount deposited for returnable containers ₹ 30,000

Amount of refund on returning the container ₹ 26,000

Other Expenses @ 2% of total cost 5% of material shortage is due to normal reasons.

The payment to the supplier was made within 21 days of the purchases.

You are required to calculate cost per unit of material purchased by 5 & Sons.

SOLUTION:

Calculation Of Cost Per Unit:

Particulars		Units	(₹)
Listed Price of Materials		5,000	5,00,000
Less: Trade discount @ 10% on Invoice Price			(50,000)
			4,50,000
Add: GST @18% of ₹ 4,50,000			81,000
			5,31,000
Add: Toll Tax			1,800
Freight and Insurance			36,000
Commission and Brokerage Paid			10,000
Add: Cost of Returnable Containers:			
Amount Deposited	₹ 30,000		
Less: Amount Refunded	₹ <u>26,000</u>		4,000
			5,82,800
Add: Other Expenses @ 2% of Total Cost			11,894
$\left(\frac{\$5,82,800}{98}\times2\right)$			
Total cost of material			5,94,694
Less: Shortage Material Due to Normal Reason	ns @ 5%	250	-
Total Cost Of Material Of Good Units		4,750	5,94,694
Cost Per Unit (₹ 5,94,694 ÷ 4,750 units)			125.20

Note:

- 1. GST Is Payable on Net Price that is Listed Price Less Discount.
- 2. GST Paid on Purchase Is Added with Cost as ITC On GST Cannot Be Claimed
- 3. Cash Discount Is Treated as Interest and Finance Item; Hence It Is Ignored.
- **4**. Demurrage Is Penalty Imposed by The Transporter for Delay in Uploading Or Off-Loading Of Materials. It Is an Abnormal Cost and Not Included.
- 5. Shortage Due to Normal Reasons Should Not Be Deducted From Cost To Ascertain Total Cost Of Good Units.

PROBLEM - 2:

From the following information calculate ordering cost and holding cost:

Estimated Annual material consumption	1,20,000 units	Ordering cost per order	₹ 100
Order quantity or order size	10,000 units	Holding cost per unit per annum	₹ 6

Also, state whether the above ordering quantity is the optimum ordering quantity. Also, calculate the relevant total cost at EOQ.

SOLUTION:

Part I: Calculation of Ordering Cost and Holding Cost

Step 1: Ordering Cost

Ordering Cost = No of Orders x Ordering Cost Per Order

No of orders =
$$\frac{A \text{ nnual } C \text{ onsumption}}{O \text{ rdering } Q \text{ uantity}} = \frac{A}{OQ}$$

$$= \frac{A}{OQ} \times O$$

$$= \frac{120000 \text{ Units}}{10000 \text{ Units}} \times \text{ \neq 100 = \neq 1200}$$

Step 2: Holding cost:

Holding cost = Average Inventory Held x Holding Cost Per Unit Per Annum

Total Relevant Inventory Cost = ₹ 30000 + ₹ 1200 = ₹ 31200

Part - II: Calculation of Economic Order Quantity (EOQ)

Economic Order Quantity (EOQ) =
$$\sqrt{\frac{2AO}{C}}$$

The Order Quantity At Which The Total Cost Is Minimum Is Called Economic Order Quantity (EOQ)

Where A = Annual Material Requirement

O = Ordering Cost Per Order

C = Carrying Cost Per Unit Per Annum

EOQ =
$$\sqrt{\frac{2 \times 120000 \text{ Units} \times \text{₹ 100}}{\text{₹ 6}}}$$
 = 2000 Units

PROBLEM - 3:

COMPUTE E.O.Q. and the total variable cost for the following:

Annual Demand	5,000 units
Unit price	₹ 20.00
Order cost	₹ 16.00
Storage rate	2% per annum
Interest rate	12% per annum
Obsolescence rate	6% per annum

DETERMINE the total cost that would result for the items if a new price of ₹ 12.80 is used.

SOLUTION:

Interest Rate = 12%

Obsolescence Rate = 6%

Total = 20% Per Annum

C = 20% Of ₹ 20 = ₹ 4 Per Unit Per Annum

Total Cost:

Ordering Cost =
$$\frac{5000 \text{ Units}}{200 \text{ Units}}$$
 = 25 Orders @ ₹ 16 = ₹ 400

Carrying Cost of Average Inventory

$$= \frac{200 \text{ Units}}{2} = 100 \text{ Units } @ ₹ 4$$

= ₹400

Total Cost ₹ 1,00,800

(ii) If The New Price Of ₹ 12.80 Is Used:

Economic Order Quantity (EOQ) =
$$\sqrt{\frac{2 \times 5000 \text{ Units } \times 16}{1000 \times 1000}} = 250 \text{ Units}$$

Total Cost:

= ₹ 64,000

= ₹ 320

Carrying Cost (Of Average Inventory) =
$$\frac{250}{2}$$
 = 125 Units @ ₹ 2.56 = ₹ 320

.

Total Variable Cost

= ₹ 64,640

PROBLEM - 4:

The Gardener is deciding on the economic order quantity for two brands of lawn fertilizer: Super Grow and Nature's own. The following information is collected:

PARTICULARS	FERTILIZERS		
TARTIGODARO	SUPER GROW	NATURE'S OWN	
Annual Demand	2,000 bags	1,280 bags	
Relevant ordering cost per purchase order	₹ 1,200	₹ 1,400	
Annual relevant carrying cost per bag	₹ 480	₹ 560	

Required:

- a. Compute EOQ for super Grow and Nature's own.
- b. For the EOQ, what is the sum of the total annual relevant ordering costs and total annual relevant carrying costs for Super Grow and Nature's Own?
- c. For the EOQ, compute the number of deliveries per year for Super Grow and Nature's Own.

SOLUTION:

Economic Order Quantity (EOQ) =
$$\sqrt{\frac{2AO}{C}}$$

Where,

A = Annual Demand

O = Ordering Cost Per Order

C = Inventory Carrying Cost Per Unit Per Annum

(i) Calculation of EOQ

(ii) Total Annual Relevant Cost = Total Annual Relevant Ordering Costs + Total Annual Relevant Carrying Cost

	Super Grow	Nature's Own
Number of Orders	2,000 ÷ 100 = 20 orders	1,280 ÷ 80 = 16 orders
= Annual Requirement ÷ EOQ		
Ordering Cost	20 × ₹ 1200 = ₹ 24000	16 × ₹ 1400 = ₹ 22,400
Carrying Cost	1/2 × 100 × ₹ 480 = ₹ 24,000	¹ / ₂ × 80 × ₹ 560 = ₹ 22,400
Total of Ordering and Carrying	= ₹ 24,000 + ₹ 24,000	₹ 22,400 + ₹ 22,400
Cost	= ₹ 48,000	= ₹ 44,800

(iii) Number of deliveries for Super Grow and Nature's own fertilizer per year

= Annual demand for fertilizer bags

EOQ

Super Grow	Nature's Own
$= \frac{2,000 \text{ Bags}}{100 \text{ Bags}} = 20 \text{ orders}$	$= \frac{1,280 \text{ Bags}}{80 \text{ Bags}} = 16 \text{ orders}$

PROBLEM - 5:

G. Ltd. produces a product which has a monthly demand of 4,000 units. The product requires a component X which is purchased at $\stackrel{?}{_{\sim}}$ 20. For every finished product, one unit of component is required. The ordering cost is $\stackrel{?}{_{\sim}}$ 120 per order and the holding cost is 10% p.a.

You are required to CALCULATE:

- i. Economic order quantity.
- ii. If the minimum lot size to be supplied is 4,000 units, what is the extra cost, the company has to incur?
- iii. What is the minimum carrying cost, the company has to incur?

SOLUTION:

(i) Economic Order Quantity (EOQ):

A (Annual Requirement or Component 'X')

$$C$$
 (Holding cost) = 10% Per Unit Per Annum

EOQ =
$$\sqrt{\frac{2AO}{C}} = \sqrt{\frac{2 \times 48,000 \text{ units } \times \text{ } 120}{10\% \text{ of } \text{ } 20}} = 2,400 \text{ units}$$

(ii) Extra Cost Incurred by the Company:

A. Total Cost When Order Size Is Equal 4,000 Units:

Total Cost = Total Ordering Cost + Total Carrying Cost

$$= \frac{A}{Q} \times O + \frac{1}{2} Q (C)$$

=
$$\left(\frac{48,000 \text{ units}}{4,000 \text{ units}} \times ₹120\right) + \left(\frac{1}{2} \times 4,000 \text{ units} \times 10\% \times ₹20\right)$$

B. Total Cost When Order Size Is Equal Economic Order Quantity that is 2,400 Units:

=
$$\left(\frac{48,000 \text{ units}}{2,400 \text{ units}} \times ₹ 120\right) + \left(\frac{1}{2} \times 2,400 \text{ units} \times 10\% \times ₹ 20\right)$$

Extra cost that the company has to incur = (A) - (B)

(iii) Minimum Carrying Cost: Carrying Cost Depends Upon the Size of The Order. It Will Be Minimum on The Least Order Size. (In This Part of The Question The Two Order Sizes Are 2,400 Units And 4,000 Units. Here 2,400 Units Is The Least Of The Two Order Sizes. At This Order Size Carrying Cost Will Be Minimum.)

The Minimum Carrying Cost In This Case Can Be Computed As Under:

Minimum Carrying Cost =
$$\frac{1}{2}$$
 × 2,400 Units × 10% × ₹ 20 = ₹ 2,400

PROBLEM - 5A:

Anil & Company buys its annual requirement of 36,000 units in 6 instalments. Each unit costs \mp 1 and the ordering cost is \mp 25. The inventory carrying cost is estimated at 20% of unit value. FIND the total annual cost of the existing inventory policy. CALCULATE, how much money can be saved by Economic Order Quantity?

SOLUTION:

a) Total Annual Cost in Existing Inventory Policy

	(₹)
Ordering cost (6 orders @ ₹ 25)	150
Carrying cost of average inventory $(36,000 \div 6) = 6,000$ units per order	
Average inventory = 3,000 units	
Carrying cost = 20% of ₹ 1 × 3,000 = 3,000 × 0.20	600
Total cost (A)	750

b) Total Annual Cost in E.O.Q

EOQ =
$$\sqrt{\frac{2 \times 36,000 \text{ units} \times 25}{1 \times 20\%}}$$
 = 3,000 units

	(₹)
No. of orders = 36,000 ÷ 3,000 units = 12 orders	
Ordering cost (12 x ₹ 25)	300
Carrying cost of average inventory (3,000 x 0.20) ÷ 2	300
Total Cost (B)	600
Savings due to E.O.Q (750 - 600) (A - B)	150

Note: As the units purchase cost of ₹1 does not change in both the computation, the same has not been considered to arrive at total cost of inventory for the purpose of savings.

PROBLEM - 6:

From the details given below, CALCULATE:

- a. Re-ordering level
- b. Maximum level
- c. Minimum level
- d. Danger level.

Re-ordering quantity is to be calculated on the basis of following information:

Cost of placing a purchase order is ₹ 20.

Number of units to be purchased during the year is 5,000

Purchase price per unit inclusive of transportation cost is ₹ 50

Annual cost of storage per units is ₹ 5.

Details of lead time: Average- 10 days, Maximum- 15 days, Minimum- 5 days.

For emergency purchases- 4 days.

Rate of consumption: Average: 15 units per day,

Maximum: 20 units per day.

SOLUTION:

Basic Data:

A (Number of units to be purchased annually) = 5000 units

O (Ordering cost per order) = ₹20

C (Annual cost of storage per unit) = ₹5

Purchase price per unit inclusive of transportation cost = ₹ 50

Computations:

(i) Re-Ordering Level (ROL) = Maximum Usage Per Period × Maximum Lead Time

= 20 Units Per Day × 15 Days

= 300 Units

(ii) Maximum Level ROL + ROQ - [Minimum Rate of Consumption ×

Minimum Lead Time] (Refer to Working Notes 1 And 2)

= 300 units + 200 units - [10 Units Per Day × 5 Days]

= 450 units

(iii) Minimum Level = ROL-Average Rate of Consumption × Average

Re-Order-Period

= 300 Units - (15 Units Per Day × 10 Days)

= 150 units

(iv) Danger Level = Average Consumption × Lead Time for Emergency

Purchases

= 15 Units Per Day × 4 Days

= 60 units

Working Notes:

1. Minimum Rate of Consumption Per Day

$$Average Rate Of Consumption = \frac{Average Rate Of Consumption}{Consumption} + \frac{Consumption}{Consumption} + \frac{Consumption}{2}$$

$$= \frac{(X \text{ Units} \div \text{Day}) + 20 \text{ Units Per Day}}{2} \text{ Or } X = 10 \text{ Units Per Day}.$$

2. Re-Order Quantity (ROQ) =
$$\sqrt{\frac{2AOQ}{C}}$$

$$\sqrt{\frac{2 \times 5000 \text{ Units } \times \text{₹ 20}}{5}} = 200 \text{ Units}$$

PROBLEM - 6A: (MTP 1 JAN 25)

Following information is extracted from the purchase department of A Ltd.:

- (i) Number of units to be purchased during the year is 10,000
- (ii) Cost of placing a purchase order is ₹ 40
- (iii) Purchase price per unit is ₹ 80
- (iv) Insurance charges to be paid for protecting goods during transit is ₹ 20 per unit
- (v) Cash discount to be received is 2%
- (vi) Annual cost of storage per unit is ₹ 5
- (vii) Details of lead time:

Average- 20 days

Maximum- 30 days

Minimum - 10 days

For emergency purchases 8 days.

(viii) Rate of consumption:

Average- 30 units per day

Maximum- 40 units per day.

From the information given above, you are required to CALCULATE:

- (i) Re-ordering level
- (ii) Maximum level
- (iii)Minimum level
- (iv) Danger level.

SOLUTION:

Basic Data:

A (Number of units to be purchased annually) = 10,000 units

O (Ordering cost per order) = ₹ 40

C (Annual cost of storage per unit) = ₹5

Purchase price per unit = ₹ 80 + ₹ 20 (Insurance charges)

= ₹ 100

(Note: Cash Discount Is Treated as an Interest and Finance Item And Thus, It Is Ignored.)

Computations:

(i) Re-ordering level = Maximum Usage Per Period × Maximum Lead Time

(ROL) = 40 Units Per Day × 30 Days

= 1,200 Units

(ii) Maximum Level = ROL + ROQ - [Minimum Rate Of Consumption × Minimum Lead Time]

(Refer To Working Notes 1 And 2)

= 1200 Units + 400 Units - [20 Units Per Day × 10 Days]

= 1,400 Units

(iii) Minimum Level = ROL - [Average Rate Of Consumption × Average Re - Order - Period]

= 1,200 Units - (30 Units Per Day × 20 Days)

= 600 Units

(iv) Danger Level = Average Consumption × Lead Time For Emergency Purchases

= 30 Units Per Day × 8 Days

= 240 Units

Working Notes:

1. Minimum Rate Of Consumption Per Day (X)

Average Rate Of Consumption = $\frac{A \text{ Minimum Rate Of }}{C \text{ Consumption}} + \frac{A \text{ Maximum Rate Of }}{C \text{ Consumption}}$

30 Units Per Day = $\frac{(X \text{ Units } \div \text{ Day}) + 40 \text{ Units Per Day}}{2}$

Or, X = 20 Units Per Day

2. Re-Order Quantity (ROQ) Or Economic Order Quantity (EOQ)

$$= \sqrt{\frac{2 \times 10,000 \text{ Units} \times \text{ } \text{ } \text{40}}{\text{₹} 5}}$$

= 400 Units

PROBLEM - 7:

Mohit Enterprises manufactures a special product "ZED". The following particulars were collected for the year

- a. Monthly demand of ZED 1,000 units.
- b. Cost of placing an order 100.
- c. Annual carrying cost per unit ₹ 15.
- d. Normal usage 50 units per week.
- e. Minimum usage 25 units per week.
- f. Maximum usage 75 units per week.

g. Re-order period 4 to 6 weeks.

Compute from the above:

1	Re-order Quantity
2	Re-order Level
3	Minimum Level
4	Maximum Levels
5	Average Stock Level

SOLUTION:

Step 1: Re-order Quantity ROQ (or) Economic Order Quantity EOQ

EOQ =
$$\sqrt{\frac{2AO}{C}}$$
 $O = 100 C = ₹15 Per Unit Per Annum$

A = Normal Usage Per Week x 52 Weeks

 $A = 50 \text{ Units } \times 52 \text{ weeks}$

= 2600 Units

=
$$\sqrt{2 \times \frac{2600 \times ₹100}{₹15}}$$
 = 186 Units

Step 2: Re order level

ROL = Maximum consumption x Maximum Lead time

= 75 Units x 6 weeks

= 450 Units

Step 3: Minimum Level

= Re Order Level - (Average consumption x Average Lead Time)

= 450 Units - [50 Units x 5]

= 450 Units - 250 Units = 200 Units

Step 4: Maximum Level:

Re Order Level - [Minimum consumption x Minimum Lead Time] + Re-order Quantity ROQ

= 450 - [25 Units x 4 Days] + 186

= 450 - [100] + 186

= 350 + 186

= 536 Units

Step 5: Average Stock Level

Formula 1	Formula 2
Minimum Level (+) Maximum Level 2	Minimum level + $\frac{1}{2}$ x ROQ
$= \frac{200 + 536}{2}$	$= 200 + \frac{1}{2} \times 186$
= 368 Units	= 200 + 93 = 293 Units

PROBLEM - 8:

- A Company manufactures a special product which requires a component 'Alpha'. The following particulars are collected for the year 2022-23:
- i. Annual demand of Alpha 8,000 units
- ii. Cost of placing an order ₹ 200 per order
- iii. Cost per unit of Alpha ₹ 400
- iv. Carrying cost p.a. 20%

The company has been offered a quantity discount of 4 % on the purchase of 'Alpha' provided the order size is 4,000 components at a time.

Required:

- i. COMPUTE the economic order quantity
- ii. STATE whether the quantity discount offer can be accepted.

SOLUTION:

(i) Calculation of Economic Order Quantity

EOQ =
$$\sqrt{\frac{2AO}{C}}$$
 = $\sqrt{\frac{2 \times 8,000 \text{ units} \times ₹200}{(₹400 \times 20 \div 100)}}$ = 200 units

(ii) Evaluation of Profitability of Different Options of Order Quantity

a. When Economic Order Quantity (EOQ) is ordered

		(₹)
Purchase Cost	(8,000 units × ₹ 400)	32,00,000
Ordering Cost	[(8,000 units ÷ 200 units) × ₹ 200]	8,000
Carrying Cost	(200 units $\times = 400 \times \frac{1}{2} \times 20 \div 100$)	8,000
Total Cost		32,16,000

b. When Quantity Discount is accepted

		(₹)
Purchase Cost	(8,000 units × ₹ 384 *)	30,72,000
Ordering Cost	[(8,000 units ÷ 4000 units) × ₹ 200]	400

Carrying Cost	(4000 units x ₹ 384 × $\frac{1}{2}$ × 20 ÷ 100)	1,53,600
Total Cost		32,26,000

^{*}Unit Cost ₹ 400

Less Quantity Discount @ 4% = ₹ 16

Purchase Cost = ₹ 400 - ₹ 16 = ₹ 384

Advise - The Total Cost of Inventory Is Lower If EOQ Is Adopted. Hence, The Company Is Advised Not to Accept the Quantity Discount.

PROBLEM - 8A: (PYP MAY 24)

Tesco cycles Ltd. used about 3,60,000 cycle locks per annum and the usage is fairly constant at 30,000 per month. The cycle lock costs ₹ 240 each at wholesale rate and carrying cost is estimated to be 10% of the annual average inventory value. The cost to place an order is ₹ 1200. It takes 45 days to receive delivery from the date of order. In order to avoid any kind of disruption in assembly line, safety stock of 6,500 cycle locks is always maintained by Tesco Cycles Ltd.

(Assume 360 days in a year). Compute:

- (i) E.O.Q.
- (ii) The re-order level.
- (iii) The company has been offered a quantity discount of 2% on the purchase of cycle locks provided the order size is 30,000 units at a time. Advise whether quantity discount offer can be accepted?

SOLUTION:

(i) Calculation of Economic Order Quantity

EOQ =
$$\sqrt{\frac{2AO}{C}} = \sqrt{\frac{2 \times 3,60,000 \text{ units } \times ₹ 1200}{₹ 24}} = 6,000 \text{ units}$$

Where.

A = Annual Demand = 3,60,000 units

O = Ordering cost per order = ₹ 1200

C = Inventory carrying cost per unit per annum = 10% of ₹ 240 = ₹ 24

(ii) Re-order Level = Safety Stock + Lead Time Consumption

$$= 6,500 + (1,000 \times 45)$$
 units $= 51,500$ units

Or,

Minimum level of cycle locks + [Average rate of consumption × Average time required to obtain fresh delivery]

 $= 6,500 + (1,000 \times 45)$ units = 51,500 units

(iii) Evaluation of Profitability of Different Options of Order Quantity

(a) When EOQ is ordered (order size of 6,000 units)

		(₹)
Purchase Cost	(3,60,000 units x ₹ 240)	8,64,00,000
Ordering Cost	[(3,60,000 units ÷ 6,000 units) x ₹ 1,200]	72,000
Carrying Cost	(6,000 units \times ₹ 240 \times $\frac{1}{2}$ \times 10 ÷ 100)	72,000
Total Cost		8,65,44,000

(b) When Quantity Discount is accepted (order size of 30,000 units)

		(₹)
Purchase Cost	$[3,60,000 \text{ units } \times 235.2 ($	8,46,72,000
Ordering Cost	[(3,60,000 units ÷ 30,000 units) $x \neq 1,200$]	14,400
Carrying Cost	$(30,000 \text{ units } \times 235.2 \times \frac{1}{2} \times 10 \div 100)$	3,52,800
Total Cost		8,50,39,200

Advise - The Total Cost of Inventory Is Lower If Discount Is Accepted. Hence, The Company Is Advised to Accept the Quantity Discount.

PROBLEM - 8B: (RTP JAN 25)

You are required the following:

- (i) CALCULATE the Economic Order Quantity for Material 'EXE'.
- (ii) COMMENT, should Ani Ltd. accept an offer of 2.5% discount by the supplier of Material 'EXE', if supply of the annual requirement of the Material is made in 4 equal installments?

SOLUTION:

Annual Demand of Material 'EXE'

- = 16,000 Units (Per Quarter) \times 4 (No. Of Quarter in A Year) \times 6 Kg (For Every Finished Product)
- = 3,84,000 kg.

(i) Calculation of Economic Order Quantity (EOQ) for material 'EXE'

EOQ =
$$\frac{2 \times \text{Annual Demand} \times \text{Ordering Cost}}{\text{Carrying Cost Per Unit Per Annum}}$$

$$= \sqrt{\frac{2 \times 3,84,000 \text{ kg} \times ₹2,000}{₹40 \times 15\%}}$$

$$= 16,000 \text{ kg}$$

(ii) Evaluation Of Cost Under Different Options Of 'Order Quantity'.

Particulars	When EOQ is	When discount of 2.5% is
	ordered	accepted and supply is in 4
		equal installments
Order size	16,000 kg	96,000 kg
		(3,84,000 kg ÷ 4 Kg)
No. of orders	24	4
	(3,84,000 kg ÷ 16,000 kg)	
Purchase Cost per kg.	₹ 40	₹ 39
		{₹ 40 - (₹ 40 × 2.5%)}
Total Purchase Cost (A)	₹ 1,53,60,000	₹ 1,49,76,000
	(3,84,000 kg x ₹ 40)	(3,84,000 kg x ₹ 39)
Ordering Cost (B)	₹ 48,000	₹ 8,000
	(24 orders x ₹ 2,000)	(4 orders x ₹ 2,000)
Carrying Cost (C)	₹ 48,000	₹ 2,80,800
	= $(16,000 \text{ kg} \div 2) \times 15\% \times$	= $(96,000 \text{ kg} \div 2) \times 15\% \times ₹ 39$
	₹ 40	
Total Cost (A + B + C)	₹ 1,54,56,000	₹ 1,52,64,800

COMMENT - The Total Cost Is Lower If Ani Ltd. Accept an Offer Of 2.5% Discount By The Supplier, When Supply Of The Annual Requirement Of Material 'EXE' Is Made In 4 Equal Installments.

PROBLEM - 9:

A Company uses three raw materials A, B and C for a particular product for which the following data apply:

Raw	Usage	Re-	Price	Delivery	period (ii	n weeks)	Re-	Minimum
Material	per unit	order	per				order	level
	of	quantity	Kg.				level	(Kgs.)
	Product	(Kgs.)					(Kgs)	
	(Kgs.)							
				Minimum	Average	Maximum		
Α	10	10,000	10	1	2	3	8,000	?
В	4	5,000	30	3	4	5	4,750	?
С	6	10,000	15	2	3	4	?	2,000

Weekly production varies from 175 to 225 units, averaging 200 units of the said product. COMPUTE the following quantities:

- i. Minimum stock of A,
- ii. Maximum stock of B,
- iii. Re-order level of C,
- iv. Average stock level of A.

SOLUTION:

(i) Minimum Stock of A

Re-Order Level - (Average Rate of Consumption \times Average Time Required To Obtain Fresh Delivery)

$$= 8,000 - (200 \times 10 \times 2) = 4,000 \text{ Kgs}.$$

(ii) Maximum Stock Of B

Re-Order Level + Re-Order Quantity - (Minimum Consumption × Minimum Delivery Period)

$$= 4,750 + 5,000 - (175 \times 4 \times 3)$$

(iii) Re-Order Level Of C

Maximum Delivery Period × Maximum Usage

$$= 4 \times 225 \times 6 = 5,400 \text{ Kgs.}$$

OR

Re-Order Level Of C

- = Minimum Level of C + [Average Rate of Consumption × Average Time Required to Obtain Fresh Delivery]
- $= 2,000 + [(200 \times 6) \times 3] \text{ Kgs} = 5,600 \text{ Kgs}.$

(iv) Average Stock Level Of A

= Minimum Stock Level of $A + \frac{1}{2}$ Re-Order Quantity Of A

=
$$4,000 + \frac{1}{2} \times 10,000 = 4,000 + 5,000 = 9,000 \text{ Kgs}$$

OR

Average Stock Level Of A

$$= \frac{\text{Minimum Stock Level of } A + \text{Maximum Stock Level of } A}{2}$$

(Refer To Working Note)

$$= \frac{4,000 + 16,250}{2} = 10,125 \text{ Kgs}$$

Working Note:

Maximum Stock of A = ROL + ROQ - (Minimum Consumption x Minimum Re-Order)

Period)

=
$$8,000 + 10,000 - [(175 \times 10) \times 1] = 16,250 \text{ Kgs}$$

PROBLEM - 10:

M/s Tyro tubes trades in four-wheeler tyres and tubes. It stocks a sufficient quantity of tyres for almost every vehicle. In year-end 20x1-x2, the report of sales manager revealed that M/s Tyro tubes experienced stock-out of tyres.

The stock-out data is as follows:

Stock-out of Tyers	No. of times of Stock Out
100	2
80	5
50	10
20	20
10	30
0	33

M/s Tyro tubes loses ₹ 150 per unit due to stock-out and spends ₹ 50 per unit on carrying of inventory.

DETERMINE optimum safest stock level.

SOLUTION:

Computation Of Stock-Out and Inventory Carrying Cost

Safety	Stock- out	Probability	Stock- out	Expected	Inventory	Total
Stock	(units)	(3)	cost (₹)	stock-out cost	carrying	cost (₹)
Level	(2)		$(4) = (2) \times$	(₹)	cost (₹)	(7) = (5)
(units)			₹ 150	$(5) = (3) \times (4)$	$(6) = (1) \times$	+ (6)
(1)					₹ 50	
100	0	0.33	0	0	5,000	5,000
80	20	0.02	3,000	60	4,000	4,060
50	50	0.02	7,500	150		
	30	0.05	4,500	225		
			12,000	375	2,500	2,875
20	80	0.02	12,000	240		
	60	0.05	9,000	450		
	30	0.10	4,500	450		
			25,500	1,140	1,000	2,140
10	90	0.02	13,500	270		
	70	0.05	10,500	525		
	40	0.10	6,000	600		
	10	0.20	1,500	300		
			31,500	1,695	500	2,195
0	100	0.02	15,000	300		2,700
	80	0.05	12,000	600		
	50	0.10	7,500	750		
	20	0.20	3,000	600		
	10	0.30	1,500	450		
			39,000	2,700	0	2,700

At safety stock level of 20 units, total cost is least i.e., ₹ 2,140.

Working Note:

Computation of Probability of Stock-Out

Stock-out (units)	100	80	50	20	10	0	Total
Nos. of times	2	5	10	20	30	33	100
Probability	0.02	0.05	0.10	0.20	0.30	0.33	1.00

PROBLEM - 11:

From the following particulars with respect to a particular item of materials of a manufacturing company, calculate the best quantity to order:

Ordering quantities (Tone's)	Price per Tone
Less than 250	₹ 6.00
250 but less than 800	₹ 5.90
800 but less than 2,000	₹ 5.80
2,000 but less than 4,000	₹ 5.70
4,000 and above	₹ 5.60

The annual demand for the material is 4,000 tonnes.

Stock holding costs are 20% of material cost p.a. The delivery cost per order is ₹ 6.00.

SOLUTION:

Order	No. of	Average	Carrying Cost	Total	Total	Total Per	Total
Qty	Orders	Inventory	Per Unit Per	Ordering	Carrying	Cost	Cost (8)
(1)	(2)	(3)	Annum	Cost	Cost	(7)	5 + 6 +
	$\left[\frac{A}{A}\right]$	$\left[\frac{1}{2} \times OQ\right]$	(4)	(5)	(6)	Α×	7
	[oQ]	$\left[\frac{2}{2} \times OQ\right]$	20% of	2 x ₹ 6	(3) × (4)	Purchase	
			Purchase			Price	
			Price				
200	20	100	₹ 1.2	₹ 120	₹ 120	₹ 24000	₹ 24240
250	16	125	₹ 1.18	₹ 96	₹ 147.50	₹ 23600	₹ 23844
800	5	400	₹ 1.16	₹ 30	₹ 464	₹ 23200	₹ 23694
2000	2	1000	₹ 1.14	₹ 12	₹ 1140	₹ 22800	₹ 23952
4000	1	2000	₹ 1.12	₹6	₹ 2240	₹ 22400	₹ 24646

Since The Total Cost Is Lowest When the Orders Size 800Tones EOQ = 800Tones

PROBLEM - 11A:

EXE Limited has received an offer of quantity discounts on its order of materials as under:

Price per ton (₹)	Ton (Nos.)
1,200	Less than 500
1,180	500 and less than 1,000
1,160	1,000 and less than 2,000
1,140	2,000 and less than 3,000
1,120	3,000 and above.

The annual requirement for the material is 5,000 tons. The ordering cost per order is \mp 1,200 and the stock holding cost is estimated at 20% of material cost per annum.

You are required to

- i. COMPUTE the most economical purchase level.
- ii. WHAT will be your answer to the above question if there are no discounts offered and the price per ton is ₹ 1,500?

SOLUTION:

a)

Total	Order	No	Cost Of	Ordering	Carrying Cost	Total Cost
Annual	Size	Of	Inventory	Cost	Per Tonne	(4 + 5 + 6)
Requirement	(Tonne)	Orders	$A \times Per Tonne$	(A ÷ Q)	Per Annum	(₹)
(A)	(Q)	A ÷ Q	Cost	×	1/2 × Q ×	
			(₹)	₹ 1200	20% Of Cost	
				(₹)	Per Tonne	
					(₹)	
1	2	3	4	5	6	7
5,000	400	12.5	60,00,000	15,600	48,000	60,63,600
		(13) *				
Ton			(5,000 × ₹ 1200)		(200 x ₹ 240)	
	500	10	59,00,000	12,000	59,000	59,71000
			(5,000 × ₹ 1180)		(250 x ₹ 236)	
	1,000	5	58,00,000	6,000	1,16,000	59,22,000
			(5,000 x ₹ 1160)		(500 x ₹ 232)	
	2,000	2.5	57,00,000		2,28,000	
		(3)*				
				3,600		59,31,600
			(5,000 x ₹ 1140)		(1,000 x ₹ 228)	
	3,000	1.666	56,00,000		3,36,000	
		(2)*				
				2,400		
			(5,000 x ₹ 1120)		(1,500 x ₹ 224)	59,38,400

^{*} Since number of orders cannot be in decimals, thus 12.5 orders are taken as 13 orders, 2.5 are taken as 3 order and 1.66 orders are taken as 2 orders.

The above table shows that the total cost of 5,000 units including ordering and carrying cost is minimum (₹ 59,22,000) when the order size is 1,000 units. Hence the most economical purchase level is 1,000 units.

(b) If there will are no discount offer then the purchase quantity should be equal to EOQ. The EOQ is as follows:

$$EOQ = \sqrt{\frac{2AO}{C}}$$

Where A = annual inventory requirement

O = ordering cost per order and

C = carrying cost per unit per annum.

$$= \sqrt{\frac{2 \times 5,000 \text{ units } \times \text{ } 1200}{20\% \times \text{ } 1500}} = 200 \text{ units}$$

PROBLEM - 12:

The following is a summary of the receipts and issues of materials in a factory during a month:

Date	Particulars
1	Opening balance 500 units at ₹ 25 per unit
3	Issue 70 units
4	Issue 100 units
8	Issue 80 units
13	Received 200 units @ ₹ 24.50 per unit
14	Returned to store 15 units @ ₹ 24 per unit
15	Stock Taking
16	Issue 180 units
20	Received 240 units @ ₹ 24.75 per unit.
24	Issue 304 units
25	Received 320 units @ ₹ 24.50 per unit.
26	Issue 112 units
27	Stock Taking
27	Returned to store 12 units @ ₹ 24.50 per unit
28	Received 100 units at ₹ 25 per unit

Work out on the basis of 'FIFO' and 'LIFO' the value of closing stock. It was revealed that on 15^{th} there was a shortage of 5 units and on 27^{th} of 8 units.

SOLUTION:

FIFO Method

Date	Particulars		Budgets			Issue		Balance		
		Qty	Rate	₹	Qty	Rate	₹	Qty	Rate	₹
1	Opening	-	-	-	-	-	-	500	25	12500
	Balance									
3	MRN No	-	-	-	70	25	1750	430	25	10750
4	MRN No	-	-	-	100	25	2500	330	25	8250
8	MRN No	-	-	-	80	25	2000	250	25	6250
13	GRN No	200	24.5	4900				250	25	6250
								200	24.5	4900
14	MR No	15	24	360				250	25	6250
								200	24.5	4900
								15	24	360
15	Stock				5	25	125	245	25	6125
	Taking									
								200	24.5	4900
								15	24	360
16	MRN No.				180	25	4500	65	25	1625
								200	24.5	4900
								15	24	360
20	GRN No	240	24.75	5940				65	25	1625
								200	24.5	4900
								15	24	360
								240	24.75	5940
24	MRN No				65	25	1625			
					200	24.5	4900			
					15	24	360			
					24	24.75	594	216	24.75	5346
25	GRN	320	24.5	7840				216	24.75	5346
								320	24.5	7840
26	MRN				112	24.75	2772	104	24.75	2574
								320	24.5	7840
27	GRN	12	24.5	294						

27	Stock				8	24.75	198	96	24.75	2376
	Taking									
								320	24.75	2574
								12	24.5	294
28	GRN	100	25	2500				96	24.75	2376
								320	24.75	2574
								12	24.5	294
								100	25	2500
								528		13010

LIFO Method

Date	Particulars		Budgets			Issue			Balance		
		Qty	Rate	₹	Qty	Rate	₹	Qty	Rate	₹	
1	Opening	-	-	-	-	-	-	500	25	12500	
	Balance										
3	MRN No	-	-	-	70	25	1750	430	25	10750	
4	MRN No	-	-	-	100	25	2500	330	25	8250	
8	MRN No	-	-	-	80	25	2000	250	25	6250	
13	GRN No	200	24.5	4900	-	-	-	250	25	6250	
								200	24.5	4900	
14	MR No	15	24	360				250	25	6250	
								200	24.5	4900	
								15	24	360	
15	Vide				5	24	120	250	25	6250	
	Shortage										
								200	24.5	4900	
								10	24	240	
16	Vide MRN				10	24	240	250	25	6250	
					170	24.5	4165	30	24.5	735	
20	GRN No	240	24.75	5940				250	25	6250	
								30	24.5	735	
								240	24.75	5940	
24	MRN No				240	24.75	5940				
					30	24.5	735				
					34	25	850	216	25	5400	

25	GRN	320	24.5	7840				216	25	5400
								320	24.5	7840
26	MRN				112	24.5	2744	216	25	5400
								208	24.5	5096
27	GRN	12	24.5	294				216	25	5400
								208	24.5	5096
								12	24.5	294
27	Stock				8	24.75	196	216	25	5400
	Taking									
								208	24.5	5096
								4	24.5	98
28	GRN	100	25	2500	-	-	-	216	25	5400
								208	24.5	5096
								4	24.5	98
								100	25	2500
								528		13094

PROBLEM - 12A:

The following information is provided by Sunrise Industries for the fortnight of April, 2023:

Material Exe:

Stock on 1-4-2023 100 units at ₹ 5 per unit.

Purchases

5-4-2023, 300 units at ₹ 6

8-4-2023, 500 units at ₹ 7

12-4-2023, 600 units at ₹ 8

Issues

6-4-2023, 250 units

10-4-2023, 400 units

14-4-2023, 500 units

Required:

- A. CALCULATE using FIFO and LIFO methods of pricing issues:
 - a. the value of materials consumed during the period
 - b. the value of stock of materials on 15-4-2023.
- B. EXPLAIN why the figures in a. and b. in part A of this question are different under

the two methods of pricing of material issues used. You need not draw up the Stores Ledgers.

SOLUTION:

(a) Value of Material Exe consumed during the period 1-4-2023 to 15-4-2023 by using FIFO method.

Date	Description Units	Qty (Units)	Rate	Amount	
			(₹)	(₹)	
1-4-2023	Opening balance	100	5	500	
5-4-2023	Purchased	300	6	1,800	
6-4-2023	Issued	100	5		
		150	6	1,400	
8-4-2023	Purchased	500	7	3,500	
10-4-2023	Issued	150	6		
		250	7	2,650	
12-4-2023	Purchased	600	8	4,800	
14-4-2023	Issued	250	7		
		250	8	3,750	
15-4-2023	Balance	350	8	2,800	

Total value of material Exe consumed during the period under FIFO method comes to (₹ 1,400 + ₹ 2,650 + ₹ 3,750) ₹ 7,800 and balance on 15-4-2023 is of ₹ 2,800.

Value of material Exe consumed during the period 01-4-2023 to 15-4-2023 by using LIFO method

Date	Description	Qty	Rate	Amount	
		(Units)	(₹)	(₹)	
1-4-2023	Opening balance	100	5	500	
5-4-2023	Purchased	300	6	1,800	
6-4-2023	Issued	250	6	1,500	
8-4-2023	Purchased	500	7	3,500	
10-4-2023	Issued	400	7	2,800	
12-4-2023	Purchased	600	8	4,800	
14-4-2023	Issued	500	8	4,000	
15-4-2023	15-4-2023 Balance		_	2,300*	

Total value of material Exe issued under LIFO method comes to (₹ 1,500 + ₹ 2,800 + ₹ 4,000) ₹ 8,300.

*The balance 350 units on 15-4-2023 of ₹ 2,300, relates to opening balance on 1-4-2023 and purchases made on 5-4-2023, 8-4-2023 and 12-4-2023. (100 units @ ₹ 5, 50 units @ ₹ 6, 100 units @ ₹ 7 and 100 units @ ₹ 8).

(b) As shown in (a) above, the value of stock of materials on 15-4-2023: Under FIFO method ₹ 2,800

Under LIFO method ₹ 2,300

Total value of material Exe issued to production under FIFO and LIFO methods comes to ₹7,800 and ₹8,300 respectively. The value of closing stock of material Exe on 15-4-2023 under FIFO and LIFO methods comes to ₹2,800 and ₹2,300 respectively.

The reasons for the difference of ₹500 (₹8,300 - ₹7,800) as shown by the following table in the value of material Exe, issued to production under FIFO and LIFO is as follows:

Date	Quantity	Value	Total	Value	Total	
	Issued	FIFO		LIFO	_	
	(Units)	(₹)	(₹)	(₹)	(₹)	
6-4-2023	250	1,400		1,500		
10-4-2023	400	2,650		2,800		
14-4-2023	500	3,750	7,800	4,000	8,300	

- 2. On 10-4-2023, 400 units were issued to production. Under FIFO their value comes to \neq 2,650 (150 × \neq 6 + 250 × \neq 7) and under LIFO \neq 2,800 (400 × \neq 7). Hence, \neq 150 more was charged to production under LIFO.
- 3. On 14-4-2023, 500 units were issued to production. Under FIFO their value comes to $\equiv 3,750 \ (250 \times \mp 7 + 250 \times \mp 8)$ and under LIFO $\equiv 4,000 \ (500 \times \mp 8)$. Hence, $\equiv 250 \ \text{more}$ was charged to production under LIFO.

Thus, the total excess amount charged to production under LIFO comes to ₹500. The reasons for the difference of ₹500 (₹2,800 - ₹2,300) in the value of 350 units of Closing Stock of material Exe under FIFO and LIFO are as follows:

- 1. In the case of FIFO, all the 350 units of the closing stock belongs to the purchase of material made on 12-4-2023, whereas under LIFO these units were from opening balance and purchases made on 5-4-2023, 8-4-2023 and 12-4-2023.
- 2. Due to different purchase price paid by the concern on different days of purchase, the value of closing stock differed under FIFO and LIFO. Under FIFO 350 units of closing

stock were valued @ ₹ 8 Per Unit Whereas under LIFO first 100 units were valued @ ₹ 5 Per Unit next 50 units @ ₹ 6 Per Unit next 100 units @ ₹ 7 Per Unit and last 100 units @ ₹ 8 Per Unit

Thus, under FIFO, the value of closing stock increased by ₹500.

PROBLEM - 13:

Prepare a statement showing the pricing of issues, on the basis of

- a. Simple Average Method and
- b. Weighted Average Method

from the following information pertaining to material 'X'.

Date	Particulars
1	Purchased 100 units @ ₹ 10.00 each.
2	Purchased 200 units @ ₹ 10.20 each
5	Issued 250 units to Job A vide MR No. 1
7	Purchased 300 units @ ₹ 10.50 each
10	Purchased 200 units @ ₹ 10.80 each
13	Issued 200 units to Job B vide MR No. 2
18	Issued 200 units to Job C vide MR No. 3
20	Purchased 100 units @ ₹ 11.00 each.
25	Issued 150 units to Job D vide MR No. 4

SOLUTION:

Simple Average Method:

Date	Particulars	1	Receipts			Issue		Balance		
		Qty	Rate	₹	Qty	Rate	₹	Qty	₹	
1	GRN No	100	10	1000	-	-	-	100	1000	
2	GRN No	200	10.2	2040	-	-	-	300	3040	
5	MRN No	-	-	-	250	10.1	2525	50	515	
7	GRN No	300	10.5	3150	-	-	-	350	3665	
10	GRN No	200	10.8	2160	-	-	-	550	5825	
13	MRN				200	10.5	2100	350	3725	
18	MRN				200	10.65	2130	150	1595	
20	GRN	100	11	1100				250	2695	
25	MRN				150	10.9	1635	100	1060	

Weighted Average Method:

Date	Particulars	Receipts				Issue		Balance		
		Qty	Rate	₹	Qty	Rate	₹	Qty	Rate	₹
1	GRN	100	10	1000	-	-	-	100	10	1000
2	GRN	200	10.2	2040	-	-	-	300	10.13	3040
5	MRN-1				250	10.13	2533	50	10.14	507
7	GRN	300	10.5	3150	-	-	-	350	10.45	3657
10	GRN	200	10.8	2160	-			550	10.58	5817
13	MRN				200	10.58	2116	350	10.58	3701
18					200	10.58	2116	150	10.58	1585
20	GRN	100	11	1100	-	-	-	250	10.75	2685
25					150	10.75	1613	100	10.72	1072

PROBLEM - 13A:

The following information is extracted from the Stores Ledger:

Material X

Opening Stock Nil

Purchases:

Jan. 1 100 @ ₹ 1 per unit

Jan. 20 100 @ ₹ 2 per unit

Issues:

Jan. 22 60 for Job W 16

Jan. 23 60 for Job W 17

Complete the receipts and issues valuation by adopting the First-In-First-Out, Last-In-First-Out and the Weighted Average Method. TABULATE the values allocated to Job W 16, Job W 17 and the closing stock under the methods aforesaid and discuss from different points of view which method you would prefer.

SOLUTION:

From the point of view of cost of material charged to each job, it is minimum under FIFO and maximum under LIFO (Refer to Tables). During the period of rising prices, the use of FIFO give rise to high profits and that of LIFO low profits. In the case of weighted average, there is no significant adverse or favourable effect on the cost of material as well as on profits.

From the point of view of valuation of closing stock, it is apparent from the above statement, that it is maximum under FIFO, moderate under weighted average and minimum under LIFO.

It is clear from the tables that the use of weighted average evens out the fluctuations in the prices. Under this method, the cost of materials issued to the jobs and the cost of material in hands reflects greater uniformity than under FIFO and LIFO. Thus, from different points of view, weighted average method is preferred over LIFO and FIFO.

Statement of receipts and issues by adopting First-in-First-Out Method

Particulars			Receipts			Issues			Balance	1
Date		Units	Rate	Value	Units	Rate	Value	Units	Rate	Value
		No.	(₹)	(₹)	No.	(₹)	(₹)	No.	(₹)	(₹)
Jan. 1	Purchase	100	1	100	_	_	_	100	1	100
Jan. 20	Purchase	100	2	200	_	_	_	100	1	100
								100	2	200
Jan. 22	Issue to Job	_	_	_	60	1	60	40	1	40
	W 16							100	2	200
Jan. 23	Issue to Job	_	_	_	40	1	40	80	2	160
	W 17				20	2	40			

Statement of receipts and issues by adopting Last-In-First-Out method

		Receipts				Issues			Balance	2
Date	Particulars	Units	Rate	Value	Units	Rate	Value	Units	Rate	Value
		No.	(₹)	(₹)	No.	(₹)	(₹)	No.	(₹)	(₹)
Jan. 1	Purchase	100	1	100	_	_	_	100	1	100
Jan. 20	Purchase	100	2	200	_	_	_	100	1	100
								100	2	200
Jan. 22	Issue to Job	_	_	_	60	2	120	100	1	100
	W 16							40	2	80
Jan. 23	Issue to Job		_	_	40	2	80	80	1	80
	W 17									
					20	1	20			

Statement of Receipt and Issues by adopting Weighted Average method

Date	Particulars	Receipts			Issues			Balance		
		Units	Units Rate Value		Units	Rate	Value	Units	Rate	Value
		No.	(₹)	(₹)	No.	(₹)	(₹)	No.	(₹)	(₹)
Jan. 1	Purchase	100	1	100	_	_	_	100	1	100
Jan. 20	Purchase	100	2	200	_	_	_	200	1.50	300
Jan.	Issue to Job W	_	_	_	60	1.50	90	140	1.50	210
22	16									

Jan.	Issue to Job W	_	_	_	60	1.50	90	80	1.50	120
23	17									

Statement of Material Values allocated to Job W 16, Job 17 and Closing Stock, under aforesaid methods

	FIFO	LIFO	Weighted Average
	(₹)	(₹)	(₹)
Material for Job W 16	60	120	90
Material for Job W 17	80	100	90
Closing Stock	160	80	120
	300	300	300

PROBLEM - 14:

Imbrios India Ltd. is recently incorporated start-up company back in the year 2019. It is engaged in creating Embedded products and Internet of Things (IoT) solutions for the Industrial market. It is focused on innovation, design, research and development of products and services. One of its embedded products is LogMax, a system on module (SoM) Carrier board for industrial use. It is a small, flexible and embedded computer designed as per industry specifications.

In the beginning of the month of September 2022, company entered into a job agreement of providing 4800 LogMax to NIT, Mandi. Following details w.r.t. issues, receipts, returns of Store Department handling Micro-controller, a component used in the designated assembling process have been extracted for the month of September, 2022:

Sep. 1	Opening stock of 6,000 units @ ₹ 285 per unit
Sep. 8	Issued 4875 units to mechanical division vide material requisition no. Mech
	009/22
Sep. 9	Received 17,500 units @ ₹ 276 per unit vide purchase order no. 159/22
Sep. 10	Issued 12,000 units to technical division vide material requisition no. Tech
	012/22
Sep. 12	Returned to stores 2375 units by technical division against material
	requisition no. Tech 012/22.
Sep. 15	Received 9,000 units @ ₹ 288 per units vide purchase order no. 160/
	2222
Sep. 17	Returned to supplier 700 units out of quantity received vide purchase
	order no. 160/22.
Sep. 20	Issued 9,500 units to technical division vide material requisition no. Tech

165/22

On 25th September, 2022, the stock manager of the company expressed his need to leave for his hometown due to certain contingency and immediately left the job same day. Later, he also switched his phone off.

As the company has the tendency of stock-taking every end of the month to check and report for the loss due to rusting of the components, the new stock manager, on 30th September, 2022, found that 900 units of Micro-controllers were missing which was apparently misappropriated by the former stock manager. He, further, reported loss of 300 units due to rusting of the components.

From the above information you are required to prepare the Stock Ledger account using 'Weighted Average' method of valuing the issues.

SOLUTION:

Store Ledger of Imbrios India Ltd. (Weighted Average Method)

Date		Receipt	's		Issues	}	Вс	alance of	Stock
Sep.	Qty	Rate	Amount	Qty	Rate	Amount	Qty	Rate	Amount
	(kg.)	(₹)	(₹)	(kg.)	(₹)	(₹)	(kg.)	(₹)	(₹)
1	-	-	-	-	-	-	6,000	285.00	17,10,000
8	-	-	-	4,875	285.00	13,89,375	1,125	285.00	3,20,625
9	17,500	276.00	48,30,000	-	-	-	18,625	276.54	51,50,625
10	-	-	-	12,000	276.54	33,18,480	6,625	276.54	18,32,145
12	2,375	276.54	6,56,783	-	-	-	9,000	276.54	24,88,928
15	9,000	288.00	25,92,000	-	-	-	18,000	282.27	50,80,928
17	-	-	-	700	288.00	2,01,600	17,300	282.04	48,79,328
20	-	-	-	9,500	282.04	26,79,380	7,800	282.04	2199948
30	-	-	-	900*	282.04	2,53,836	6,900	282.04	19,46,112
30	-	-	-	300**	-	-	6,600	294.87	19,46,112

^{* 900} units is abnormal loss, hence it will be transferred to Costing Profit & Loss A/c.

PROBLEM - 15:

The following transactions in respect of material Y occurred during the six months ended 30th September, 2022:

Month	Purchase (units)	Price per unit (₹)	Issued Units
April	200	25	Nil
May	300	24	250
June	425	26	300

^{** 300} units is normal loss; hence it will be absorbed by good units.

July	475	23	550
August	500	25	800
September	600	20	400

Required:

- a. The Chief Accountant argues that the value of closing stock remains the same no matter which method of pricing of material issues is used. Do you agree? Why or why not? EXPLAIN. Detailed stores ledgers are not required.
- b. STATE when and why would you recommend the LIFO method of pricing material issues?

SOLUTION:

(a) Total number of units purchased = 2,500

Total number of units issued = 2,300

The closing stock at the end of six months' period i.e., on 30th September, 2022 will be 200 units.

Upto the end of August 2022, total purchases coincide with the total issues i.e., 1,900 units. It means that at the end of August 2022, there was no closing stock. In the month of September 2022, 600 units were purchased out of which 400 units were issued. Since there was only one purchase and one issue in the month of September, 2022 and there was no opening stock on 1st September 2022, the Closing Stock of 200 units is to be valued at ₹ 20 per unit.

In the view of this, the argument of the Chief Accountant appears to be correct. Where there is only one purchase and one issue in a month with no opening stock, the method of pricing of material issues becomes irrelevant. Therefore, in the given case one should agree with the argument of the

Chief Accountant that the value of closing stock remains the same no matter which method of pricing the issue is used.

It may, however, be noted that the argument of Chief Accountant would not stand if one finds the value of the Closing Stock at the end of each month.

- (b) LIFO method has an edge over FIFO or any other method of pricing material issues due to the following advantages:
 - (i) The cost of the materials issued will be either nearer or will reflect the current market price. Thus, the cost of goods produced will be related to the trend of the market price of materials. Such a trend in price of materials enables the matching of cost of production with current sales revenues.
 - (ii) The use of the method during the period of rising prices does not reflect undue high

profit in the income statement, as it was under the first-in-first-out or average method. In fact, the profit shown here is relatively lower because the cost of production takes into account the rising trend of material prices.

- (iii) In the case of falling prices, profit tends to rise due to lower material cost, yet the finished products appear to be more competitive and are at market price.
- (iv) During the period of inflation, LIFO will tend to show the correct profit and thus, avoid paying undue taxes to some extent.

PROBLEM - 16:

After inviting tenders, two quotations are received as follows:

Supplier A - ₹ 4.40 per unit

Supplier B - \pm 4.20 per unit + \pm 4,000

You are required to

- i. Calculate the order quantity for which the purchase price per unit will be the same.
- ii. Select the Supplier if the Purchase Department wishes to place an order for 15,000 units.

SOLUTION:

Step 1: Calculation Of Indifference Point:

Indifference point =
$$\frac{\text{Difference in Fixed Cost}}{\text{Difference in Variable Cost}}$$

= 20,000 Units

When The Order Quantity Is 20000 Units Both The Suppliers Are Equally Good Since They Have The Same Cost.

Particulars	A (₹)	B (₹)
Variable Cost	88000	84000
Add: Fixed Cost	0	4000
Total Cost	88000	88000

Step 2: Supplier To Be Selected If Order Quantity 15000 Units

Order Quantity	Supplier	Reason
Less than 20000	Α	No Fixed cost
Equal to 20000	A or B	Indifference point
More than 20000	В	Low Variable Cost Per Unit

PROBLEM - 17:

From the following details, DRAW a plan of ABC selective control:

Item	Units	Unit cost (₹)
1	7,000	5.00
2	24,000	3.00
3	1,500	10.00
4	600	22.00
5	38,000	1.50
6	40,000	0.50
7	60,000	0.20
8	3,000	3.50
9	300	8.00
10	29,000	0.40
11	11,500	7.10
12	4,100	6.20

SOLUTION:

Statement of Total Cost and Ranking

Item	Units	% of Total	Unit cost	Total cost	% of Total	Ranking
		units	(₹)	(₹)	cost	
1	7,000	3.1963	5.00	35,000	9.8378	4
2	24,000	10.9589	3.00	72,000	20.2378	2
3	1,500	0.6849	10.00	15,000	4.2162	7
4	600	0.2740	22.00	13,200	3.7103	8
5	38,000	17.3516	1.50	57,000	16.0216	3
6	40,000	18.2648	0.50	20,000	5.6216	6
7	60,000	27.3973	0.20	12,000	3.3730	9
8	3,000	1.3699	3.50	10,500	2.9513	11
9	300	0.1370	8.00	2,400	0.6746	12
10	29,000	13.2420	0.40	11,600	3.2605	10
11	11,500	5.2512	7.10	81,650	22.9502	1
12	4,100	1.8721	6.20	25,420	7.1451	5
	2,19,000	100		3,55,770	100	

Basis for selective control (Assumed)

₹ 50,000 & above -- 'A' items ₹ 15,000 to 50000 -- 'B' items

Below ₹ 15,000 -- 'C' items

On This Basis, A Plan of A B C Selective Control Is Given Below:

Ranking	Item	% of Total	Cost (₹)	% of Total	Category
	Nos.	units		Cost	
1	11	5.2512	81,650	22.9502	
2	2	10.9589	72,000	20.2378	
3	5	17.3516	57,000	16.0216	
Total	3	33.5617	2,10,650	59.2096	Α
4	1	3.1963	35,000	9.8378	
5	12	1.8721	25,420	7.1451	
6	6	18.2648	20,000	5.6216	
7	3	0.6849	15,000	4.2162	
Total	4	24.0181	95,420	26.8207	В
8	4	0.2740	13,200	3.7103	
9	7	27.3973	12,000	3.3730	
10	10	13.2420	11,600	3.2605	
11	8	1.3699	10,500	2.9513	
12	9	0.1370	2,400	0.6746	
Total	5	42.4202	49,700	13.9697	С
Grand Total	12	100	3,55,770	100	

PROBLEM - 17A:

A factory uses 4,000 varieties of inventory. In terms of inventory holding and inventory usage, the following information is compiled:

No. of varieties of	%	% value of inventory	% of inventory usage
inventory		holding (average)	(in end-product)
3,875	96.875	20	5
110	2.750	30	10
15	0.375	50	85
4,000	100.00	100	100

CLASSIFY the items of inventory as per ABC analysis with reasons.

SOLUTION:

Classification of the items of inventory as per ABC analysis

- 1. 15 number of varieties of inventory items should be classified as 'A' category items because of the following reasons:
 - (i) Constitute 0.375% of total number of varieties of inventory handled by stores of factory, which is minimum as per given classification in the table.
 - (ii) 50% of total use value of inventory holding (average), which is maximum, according to the given table.
 - (iii) Highest in consumption, about 85% of inventory usage (in end-product).
- 2. 110 number of varieties of inventory items should be classified as 'B' category items because of the following reasons:
 - (i) Constitute 2.750% of the total number of varieties of inventory items handled by stores of factory.
 - (ii) Requires moderate investment of about 30% of total use value of inventory holding (average).
 - (iii) Moderate in consumption, about 10% of inventory usage (in end-product).
- 3. 3,875 number of varieties of inventory items should be classified as 'C' category items because of the following reasons:
 - (i) Constitute 96.875% of total varieties of inventory items handled by stores of factory.
 - (ii) Requires about 20% of total use value of inventory holding (average).
 - (iii) Minimum inventory consumption, i.e., about 5% of inventory usage (in end-product).

PROBLEM - 18:

From the following data for the year ended 31st March, 20x2, CALCULATE the inventory turnover ratio of the two items and put forward your comments on them.

Particulars	Material A	Material B
Opening stock 01.04.20×1	₹ 10,000	₹ 9,000
Purchase during the year	₹ 52,000	₹ 27,000
Closing stock 31.03.20x2	₹ 6,000	₹ 11,000

SOLUTION:

First Of All, It Is Necessary to Find Out the Material Consumed:

Cost of materials consumed	Material A	Material B
	(₹)	(₹)
Opening stock	10,000	9,000
Add: Purchases	52,000	27,000
	62,000	36,000
Less: Closing stock	6,000	11,000
Materials consumed	56,000	25,000
Average inventory: (Opening Stock + Closing Stock) ÷ 2	8,000	10,000
Inventory Turnover ratio: (Consumption ÷ Average inventory)	7 times	2.5 times
Inventory Turnover (Number of Days in a year ÷ Inventory Turnover ratio)	52 days	146 days

Comments: Material A is moving faster than Material B.

PROBLEM - 19:

The particulars relating to the import of Sealing Ring made by AB & Co., during December, 20x1 are given below:

- a. Sealing Ring 1,000 pieces invoiced @ \$ 2.00 C.I.F., Bombay Port.
- b. Customs duty was paid @ 100% on Invoice Value (which was converted to Indian currency by adopting an exchange rate of ₹ 17.20 per).
- c. Clearing charges ₹ 1,800 for the entire consignment, and
- d. Freight charges ₹ 1,400 for transporting the consignment from Bombay Port to factory premises.

It was found on inspection that 100 pieces of the above material were broken and, therefore, rejected. There is no scrap value for the rejected part. No refund for the broken material would be admissible as per the terms of the contract. The Management decided to treat 60 pieces as normal loss and the rest 40 pieces as abnormal loss. Assume 700 pieces were consumed and 200 pieces were kept in closing stock.

Calculate:

- a. Total cost of material, and
- b. Unit cost of material issued to production.

Also, state briefly how the value of 100 pieces rejected in inspection will be treated in costs.

SOLUTION:

Step 1: Calculation of Total Material Cost

Purchase Price of Sealing Ring = $1000 \text{ Units } \times 2 \times 17.2$

= ₹34400

(+) 100% of invoice customers = 34400

(+) Freight = ₹ 1400

(+) Clearing = ₹ 1800

Purchase price = ₹ 72000

Step 2: Cost Per Price

Cost Per Price = Purchase Price - Normal Loss Scrap Income
Purchase Quantity - Normal Loss Units

Dr. Stores Ledger Control A/c

Cr.

Particulars	₹	Particulars	₹
To Bank	72000	By Work In Progress	53620
		By Abnormal Loss	3060
		By Balance c/d	15320
	72000		72000

Dr. Abnormal Loss A/c Cr.

Particulars	₹	Particulars	₹
To Stores Ledger Control A/c	3060	By Costing Profit and Loss A/c	3060
	3060		3060

PROBLEM - 20:

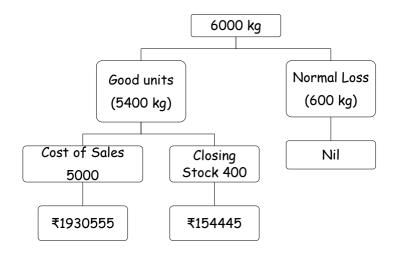
In a certain month, 6,000 kgs of raw material A costing ₹ 150 per kg were processed through Unit No. 3 for the manufacture of solvent X. The total operating cost of Unit No. 3 for the month was ₹12,00,000. Out of the output, 10% was unusable and was disposed of at ₹ 25 per kg. Prepare an account for the month's operation Unit No. 3 assuming that spoilage was:

- i. Part of the normal production process;
- ii. An abnormal loss due to poor quality material.

Additional information: Out of 5400 kgs, 5000 kgs were sold.

SOLUTION:

Part 1: Treating The Loss as Normal Loss:


Raw Material Consumed = (6000 kg \times ₹ 150)

= ₹ 9,00,000

(+) Operating Cost (Given) = ₹ 12,00,000

Total Manufacturing Cost = ₹ 21,00,000

Cost per
$$kg = \frac{\text{Total Cost} - \text{Normal Loss Scrap income}}{\text{Input Quantity} - \text{Normal Loss units}}$$

Dr.

Work In Progress A/c

~	
,	n
L	

Particulars	₹	Particulars	₹
To Stores Ledger Control A/c	9,00,000	By Normal Loss scrap Income	15,000
To Conversion cost	12,00,000	By Finished Goods A/c	2085000
		(Balancing Figure)	
	21,00,000		21,00,000

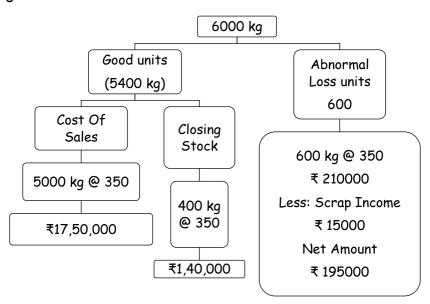
Dr.

Normal Loss Scrap Income A/c

Cr.

Particulars	₹	Particulars	₹
To Work In Progress	15000	By Bank	15000
	15000		15000

Dr.


Finished Goods A/c

Cr.

Particulars	₹	Particulars	₹
To Work In Progress	2085000	By Cost of Sales	1930555
		By Closing Finished Goods	154445
	2085000		2085000

Part II: Treating The Loss as Abnormal Loss:

Cost Per Kg =
$$\frac{\text{Total Cost - Normal Loss Scrap income}}{\text{Input Quantity - Normal Loss Units}}$$

= $\frac{\text{₹ 21,00,000 - 0}}{6000 \text{ kg - 0}}$ = ₹ 350 Per Kg

Dr.

Work In Progress A/c

~	
,	n
L	

Particulars	₹	Particulars	₹
To Stores Ledger Control A/c	9,00,000	By Abnormal Loss	2,10,000
To Conversion cost	12,00,000	By Finished Goods A/c	18,90,000
		(Balancing Figure)	
	21,00,000		21,00,000

Dr.

Finished Goods A/c

Cr.

Particulars	₹	Particulars	₹
To Work In Progress	18,90,000	By Cost of Sales	17,50,000
		By Balance c/d	1,40,000
	18,90,000		18,90,000

Dr.

Abnormal Loss A/c

Cr.

Particulars	₹	Particulars	₹
To Work In Progress	2,10,000	By Bank A/c	15000
		By Costing P & L	1,95,000
	2,10,000		2,10,000

CHAPTER 09: EMPLOYEE COST AND DIRECT

EXPENSES

PROBLEM - 1:

A worker is paid $\stackrel{?}{_{\sim}}$ 10,000 per month and a dearness allowance of $\stackrel{?}{_{\sim}}$ 2,000 p.m. Worker contribution to provident fund is $\stackrel{?}{_{\sim}}$ 10% and the employer also contributes the same amount as the employee. The Employees State Insurance Corporation premium is 6.5% of wages of which 1.75% is paid by the employees. It is the firm's practice to pay 2 months' wages as a bonus each year.

The numbers of working days in a year are 300 of 8 hours each. Out of these, the worker is entitled to 15 days leave on full pay. CALCULATE the wage rate per hour for costing purposes.

SOLUTION:

Particulars	(₹)
Wages paid to worker during the year {(₹ 10,000 + ₹ 2,000) × 12 Months}	1,44,000
Add: Employer Contribution to:	
Provident Fund @ 10% on ₹ 144000	14,400
E.S.I. Premium @ 4.75% (6.5 - 1.75) on ₹ 144000	6,840
Bonus at 2 months' wages (Basic + DA) (₹ 12000 x 2 Months)	24,000
Total	1,89,240

Effective Hours Per Year: 285 Days × 8 Hours = 2,280 Hours

Wage-Rate Per Hour (For Costing Purpose): ₹ 1,89,240 ÷ 2,280 Hours = ₹ 83

PROBLEM - 1A:

'X' an employee of ABC Co. gets the following emoluments and benefits:

a. Basic pay ₹ 10,000 p.m.

b. Dearness allowance ₹ 2,000 p.m.

c. Bonus 20% of salary and D.A.

d. Other allowances ₹ 2,500 p.m.

e. Employer's contribution to P.F. 10% of salary and D.A.

'X' works for 2,400 hours per annum, out of which 400 hours are non-productive and treated as normal idle time. You are required to COMPUTE the effective hourly cost of employee 'X'.

SOLUTION:

Statement Showing Computation of Effective Hourly Cost of Employee 'X'

	Per month (₹)	Per annum (₹)
(A) Earning of Employee 'X':		
Basic Pay	10,000	1,20,000
Dearness Allowance	2,000	24,000
Bonus	2,400	28,800
Employer's Contribution to Provident Fund	1,200	14,400
Other Allowances	2,500	30,000
	18,100	2,17,200
(B) Effective Working Hours (Refer Workings)		2,000 Hours
(C) Effective Hourly Cost {(A) ÷ (B)}		₹ 108.60

Workings:

Calculation Of Effective Working Hours:

Annual Working Hours Less Normal Idle Time = 2,400 Hours - 400 Hours = 2,000 Hours

PROBLEM - 1B:

CALCULATE the Employee hour rate of a worker X from the following data:

Basic pay ₹ 10,000 p.m.

D.A. ₹ 3,000 p.m.

Fringe benefits ₹ 1,000 p.m.

Number of working days in a year 300. 20 days are availed off as holidays on full pay in a year. Assume a day of 8 hours.

SOLUTION:

Total Effective Working Hours (280 Days × 8 Hours)	2,240
Effective Working Days	280 Days
Less: Leave Days On Full Pay	20
(i) Effective Working Days In A Year	300

(ii) Total Wages Paid in A Year

Particulars	Amount (₹)
Basic Pay	1,20,000
Dearness Allowance	36,000
Fringe Benefits	12,000
Total Wages	1,68,000

Hourly Rate: ₹ 1,68,000 ÷ 2,240 Hours ₹ 75.00

PROBLEM - 2:

During one week the workman X manufactured 200 articles. He receives a wage for a guaranteed 44-hour week at the rate of ₹ 15 per hour. The estimated time to produce one article is 15 minutes and under the incentive scheme, the time allowed is increased by 20%. Calculate his gross wages under each of the following methods of remuneration:

- 1. Time rate.
- 2. Piecework with a guaranteed weekly wage.
- 3. Rowan premium bonus.
- 4. Halsey premium bonus, 50% to the workman.

SOLUTION:

Part I: Simple Time Rate System

Wages = Time Taken x Time Rate

Time Taken = 44 Hours

Time Rate = ₹ 15 Per Hour

Wages = 44 Hours $x \neq 15$ Per Hour = $\neq 660$

Part -II: Straight Piece Rate System:

Wages = Unit Produce x Piece Rate

Calculation Of Piece Rate = 1 Hour = ₹ 15

= 1 Hour = 4 Units
$$\left[\frac{60 \text{ Minutes}}{15 \text{ Minutes}} \right]$$

4 Units = ₹ 15

Wages = 200 Units $x \neq 3.75$

= ₹ 750

Note: If This Piece Rate Wage Turns Out to be Less Than 660 Then He Will Get An Guarantee Wages Of ₹ 660.

Part - III & IV: Rowan & Hasley System

Time Taken = 44 Hours

Time Allowed =
$$\left[\frac{15 \text{ Minutes}}{60 \text{ Minutes}}\right] \times 120\% \times 200 \text{ Units}$$

= 60 Hours

Time Saved = 60 Hours - 44 Hours = 16 Hours

$$\textbf{Rowan} \Rightarrow \textbf{Basic Wage}$$

 \downarrow

Time Taken x Time Rate

44 Hours x ₹ 15 = ₹ 660

Bonus =
$$\left[\frac{\text{Time Taken}}{\text{Time Allowed}} \times \text{Time Saved} \times \text{Time Rate}\right] = \frac{44 \text{ Hours}}{60 \text{ Hours}} \times 16 \text{ Hours} \times 15 = 176$$

Total Wage Under Rowan

₹ 836

Hasley = Basic = Time Taken x Time Rate

= 44 Hours \times ₹ 15 = ₹ 660

Bonus = 50% Of Time saved x Time rate = $(16 \text{ Hours } x \neq 15) \times 50\% = \neq 120$

Total Wage under Halsey = ₹ 780

PROBLEM - 2A: (MTP 1 MAY 24)

The following particulars have been compiled in respect of three workers, which are under consideration of the management.

	I	II	III
Actual hours worked	380	100	540
Hourly rate of wages (in ₹)	40	50	60
Productions in units:			
- Product X	210	-	600
- Product Y	360	-	1350
- Product Z	460	250	-
Standard time allowed per unit of each product is:			
	×	У	Z
Minutes	15	20	30

For the purpose of piece rate, each minute is valued at ₹ 1/- You are required to calculate the wages of each worker under:

- a) Guaranteed hourly rate basis
- b) Piece work earning basis, but guaranteed at 75% of basic pay (Guaranteed hourly rate if his earnings are less than 50% of basic pay.)
- c) Premium bonus basis where the worker received bonus based on Rowan scheme.

SOLUTION:

i. Computation Of Wages of Each Worker Under Guaranteed Hourly Rate Basis

Worker	Actual Hours Worked	Hourly Wage Rate	Wages
	(Hours)	(₹)	(₹)
I	380	40	15,200
II	100	50	5,000
III	540	60	32,400

ii. Computation Of Wages Of Each Worker Under Piece Work Earning Basis

Product	Piece rate per unit	Worker-I		Worker-II		Worker-III	
	(₹)	Units	Wages (₹)	Units	Wages (₹)	Units	Wages (₹)
X	15	210	3,150	-	-	600	9,000
У	20	360	7,200	-	-	1,350	27,000
Z	30	460	13,800	250	7,500	-	-
Total			24,150		7,500		36,000

Since each worker's earnings are more than 50% of basic pay. Therefore, worker - I, II and III will be paid the wages as computed i.e. \neq 24,150, \neq 7,500 and \neq 36,000 respectively.

Working Notes:

1. Piece Rate Per Unit

Product	Standard Time Per	Piece Rate Each	Piece Rate Per
	Unit In Minute	Minute (₹)	Unit (₹)
X	15	1	15
У	20	1	20
Z	30	1	30

2. Time Allowed To Each Worker

Worker	Product-X	Product-Y	Product-Z	Total Time (Hours)
I	210 Units ×	360 Units ×	460 Units ×	24,150 ÷ 60
	₹ 15	₹ 20	₹ 30	= ₹ 402.50
	= ₹ 3,150	= ₹ 7,200	= ₹ 13,800	
II	-	-	250 Units ×	7,500 ÷ 60
			₹ 30	= ₹ 125
			= 7,500	

III	600 Units ×	1, 350 Units ×	-	36,000 ÷ 60
	₹ 15	₹ 20		= ₹ 600
	= ₹ 9,000	= ₹ 27,000		

(ii) Computation Of Wages Of Each Worker Under Premium Bonus Basis (Where Each Worker Receives Bonus Based On Rowan Scheme)

Worker	Time	Time	Time	Wage	Earnings	Bonus	Total
	Allowed	Taken	Saved	Rate	(₹)	(₹)*	Earning
	(Hours)	(Hours)	(Hours)	Per			(₹)
				Hour			
				(₹)			
I	402.5	380	22.5	40	15,200	850	16,050
II	125	100	25	50	5,000	1,000	6,000
III	600	540	60	60	32,400	3,240	35,640

Time Taken
Time Allowed *Time Saved *Wage Rate

Worker 1 =
$$\frac{380 \text{ Hours}}{402.5 \text{ Hours}} \times 22.5 \text{ Hours} \times ₹40 = ₹850$$

Worker 2 =
$$\frac{100 \text{ Hours}}{125 \text{ Hours}} \times 25 \text{ Hours} \times ₹50 = ₹1,000$$

Worker 3=
$$\frac{540 \text{ Hours}}{600 \text{ Hours}} \times 60 \text{ Hours} \times ₹60 = ₹3,240$$

PROBLEM - 3:

Two workmen, 'A' and 'B', produce the same product using the same material. Their normal wage rate is also the same. 'A' is paid bonus according to the Rowan system, while 'B' is paid a bonus according to the Halsey system. The time allowed to make the product is 50 hours 'A' takes 30 hours while 'B' takes 40 hours to complete the product. The factory overhead rate is ₹ 5 per man-hour actually worked. The factory cost for the product for 'A' is ₹ 3,490 and for 'B' it is ₹ 3,600.

Required:

- a. COMPUTE the normal rate of wages
- b. COMPUTE the cost of materials cost,
- c. PREPARE a statement comparing the factory cost of the products as made by the two workmen.

SOLUTION:

Step 1: Let X Be The Cost Of Material And Y Be The Normal Rate Of Wages Per Hour.

Step 2: Factory Cost Of Workman 'A'

Particulars	(₹)
A. Material Cost	X
B. Wages (Rowan Plan)	30 Y
C. Bonus = $\frac{30}{50}$ × (50 - 30) × Y	12 Y
D. Overheads (30 x ₹ 5)	150
E. Factory Cost	3,490
Or, X + 42 Y = ₹ 3,490 (Given) - ₹ 150 = ₹ 3,340 Equation	(I)

Step 3: Factory Cost Of Workman 'B'

Particulars	(₹)
A. Material Cost	X
B. Wages (Halsey Plan)	40 Y
C. Bonus = 50% Of (Standard Hours - Actual Hours) x R	5 Y
= 50% Of (50 - 40) x R	
D. Overheads (40 x ₹ 5)	200
E. Factory Cost	3,600
Or, X + 45 Y = ₹ 3,600 (Given) - ₹ 200 = ₹ 3,400 Equation (ii)	

Step 4: Subtracting Equation (i) From Equation (ii)

3У = ₹ 60

Y = ₹60 ÷ 3 = ₹20 Per Hour.

- (A) The Normal Rate Of Wages: ₹ 20 Per Hour
- **(B)** The Cost Of Material: $X + 45 \times 720 = 73,400 \text{ Or}, X = 73,400 = 72,500 = 72,500 = 72,500 = 72,500$

(C) Comparative Statement Of The Factory Cost Of The Product Made By The Two Workmen.

	'A' (₹)	'B' (₹)
Material Cost	2,500	2,500
Direct Wages	600	800
	(30 x ₹ 20)	(40 x ₹ 20)
Bonus	240	100
	(12 x ₹ 20)	(5 x ₹ 20)

Factory Overhead	150	200
Factory Cost	3,490	3,600

PROBLEM - 4:

Wage negotiations are going on with the recognised employees' union, and the management wants you as an executive of the company to formulate an incentive scheme with a view to increasing productivity.

The case of three typical workers A, B and C who produce respectively 180, 120 and 100 units of the company's product in a normal day of 8 hours is taken up for study.

Assuming that day wages would be guaranteed at ₹ 75 per hour and the piece rate would be based on a standard hourly output of 10 units, CALCULATE the earnings of each of the three workers and the employee cost per 100 pieces under

(i) Day wages, (ii) Piece rate, (iii) Halsey scheme, and (iv) The Rowan scheme Also, CALCULATE under the above schemes the average cost of labour for the company to produce 100 pieces.

SOLUTION:

Calculation Of Earnings Under Different Wage Schemes:

i. Day Wages

Worker	Day Wages (₹)	Actual Output	Labour Cost Per
		(Units)	100 Pieces (₹)
Α	600	180	333.33
В	600	120	500.00
С	600	100	600.00
Total	1,800	400	

Average Labour Cost to Produce 100 Pieces:

ii. Piece Rate

Worker	Actual Output Piece		Wages Earned	Labour Cost Per	
	(Units)	Rate (₹)	(₹)	100 Pieces (₹)	
Α	180	7.50	1,350	750.00	
В	120	7.50	900	750.00	
С	100	7.50	750	750.00	
Total	400		3,000		

Average Cost Of Labour For The Company To Produce 100 Pieces:

$$= \frac{₹3,000}{400 \text{ Units}} \times 100 = ₹750$$

iii. Halsey Scheme

Worker	Actual	Standard	Actual	Time	Bonus	Rate	Total	Labour
	Output	Time	Time	Saved	Hours	Per	Wages	Cost Per
	(Units)	(Hours)	(Hours)	(Hours)	(50%	Hour	(₹)	100 Pieces
					Of	(₹)		(₹)
					Time			
					Saved)			
	Α	В	С	D	Е	F	G	Н
				(B- <i>C</i>)			(F x	(G ÷ A ×
							(<i>C</i> +E))	100)
Α	180	18	8	10	5	75	975	541.67
В	120	12	8	4	2	75	750	625.00
С	100	10	8	2	1	75	675	675.00
Total	400						2,400	

Average Cost Of Labour For The Company To Produce 100 Pieces

$$= \frac{₹2,400}{400 \text{ Units}} \times 100 = ₹600$$

iv. Rowan Scheme:

Worker	Actual	Std	Actual	Time	Bonus	Rate	Total	Labour
	Output	Time	Time	Saved	Hours*	Per	Wages	Cost Per
	(Units)	(Hours)	(Hours)	(Hours)		Hour	Including	100
						(₹)	Bonus (₹)	Pieces (₹)
	Α	В	С	D=B-C	Ε	F	G=F×(C+E)	H = G ÷ A
								× 100
Α	180	18	8	10	4.44	75	933	518.33
В	120	12	8	4	2.67	75	800	666.67
С	100	10	8	2	1.60	75	720	720.00
Total	400						2,453	

^{*} Bonus Hours = $\frac{\text{Time Saved}}{\text{Standard Time}} \times \text{Actual Time}$

Average Cost Of Labour For The Company To Produce 100 Pieces

=
$$\frac{₹2,453}{400 \text{ Units}} \times 100 = ₹613.25$$

PROBLEM - 5:

- a. Bonus paid under the Halsey Plan with a bonus at 50% for the time saved equals the bonus paid under the Rowan System. When will this statement hold good? (Your answer should contain the proof).
- b. The time allowed for a job is 8 hours. The hourly rate is ₹ 8.

PREPARE a statement showing:

- i. The bonus earned
- ii. The total earnings of employee and
- iii. Hourly earnings.

Under the Halsey System with 50% bonus for time saved and Rowan System for each hour saved progressively.

SOLUTION:

(a) Bonus under Halsey Plan =
$$\frac{50}{100}$$
 × (SH - AH) × R (i)

Bonus under Rowan Plan =
$$\frac{AH}{SH} \times (SH - AH) \times R$$
 (ii)

Bonus under Halsey Plan will be equal to the bonus under Rowan Plan when the following condition holds good:

$$\frac{50}{100} \times (SH - AH) \times R = \frac{AH}{SH} \times (SH - AH) \times R$$

$$50 \quad AH$$

Hence, when the actual time taken (AH) is 50% of the time allowed (SH), the bonus under Halsey and Rowan Plans is equal.

Statement of Bonus, total earnings of Employee and hourly earnings under Halsey and Rowan Systems.

SH	AH	Time	Basic	Bonus under	Bonus under	Total	Total	Hourly	Hourly
		saved	wages	Halsey	Rowan	Earnings	Earnings	Earnings	Earnings
			(AH ×	System	system	under	under	under	under
			₹8)	$\left[\frac{50}{100} \times C \times 8\right]$	$\begin{bmatrix} B \\ \times C \times 8 \end{bmatrix}$	Halsey	Rowan	Halsey	Rowan
			(B × ₹8)	[100]	[A]	System	System	System	System
						D+E	D+F	<i>G</i> ÷ B	H ÷ B
Α	В	C =	D	E	F	G	Н	I	J
Hours	Hours	(A-B)	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)	(₹)
		Hours							
8	8	-	64	-	-	64	64	8.00	8.00
8	7	1	56	4	7	60	63	8.57	9.00
8	6	2	48	8	12	56	60	9.33	10.00
8	5	3	40	12	15	52	55	10.40	11.00

8	4	4	32	16	16	48	48	12.00	12.00
8	3	5	24	20	15	44	39	14.67	13.00
8	2	6	16	24	12	40	28	20.00	14.00
8	1	7	8	28	7	36	15	36.00	15.00

PROBLEM - 6:

A skilled worker in XYZ Ltd. is paid a guaranteed wage rate of ₹ 30 per hour. The standard time per unit for a particular product is 4 hours. Mr P, a machine man, has been paid wages under the Rowan Incentive Plan and he had earned an effective hourly rate of ₹ 37.50 on the manufacture of that particular product.

STATE what could have been his total earnings and effective hourly rate, had he been put on Halsey Incentive Scheme (50 %)?

SOLUTION:

Total earnings (under 50% Halsey Scheme) = Hours worked x Rate per hour + $\frac{1}{2}$ x time saved x Rate per hour

= 3 hours
$$\times$$
 ₹ 30 + $\frac{1}{2}$ × 1 hour × ₹ 30

= ₹ 105

Effective Hourly Rate

$$\frac{\text{Total earnings}}{\text{Hours taken}} = \frac{\text{₹ 105}}{\text{3 hours}} = \text{₹ 35}$$

Working Note:

Let T hours be the total time worked in hours by the skilled workers (machine man P), ₹ 30 is the rate per hour; standard time is 4 hours per unit and effective hourly earnings rate is ₹ 37.50 then

Earning (under Rowan plan) = Hours worked \times Rate per Hour + $\frac{\text{Time saved}}{\text{Time allowed}} \times$ Time taken \times Rate per Hour

₹ 37.5 T =
$$T \times ₹ 30 + \frac{(4 - T)}{4} \times T \times ₹ 30$$

(Both Sides Are Divided By T)

 \neq 37.5 = \neq 30 + (4 - T) \times \neq 7.5

₹ 37.5 = ₹ 30 + ₹ 30 - 7.5T

or, $\neq 7.5 \, \text{T}$ = $\neq 60 - \neq 37.5$

or, T = 3 hours.

PROBLEM - 7:

Mr A. is working by employing 10 skilled workers He is considering the introduction of some incentive scheme - either Halsey Scheme (with 50% bonus) or Rowan Scheme - of wage payment for increasing the Employee productivity to cope with the increased demand for the product by 25%. He feels that if the proposed incentive scheme could bring about an average 20% increase over the present earnings of the workers, it could act as a sufficient incentive for them to produce more and he has accordingly given this assurance to the workers.

As a result of the assurance, the increase in productivity has been observed as revealed by the following figures for the current month:

Hourly rate of wages (guaranteed)	₹ 40
Average time for producing 1 piece by one worker at the previous	2 hours
performance (This may be taken as time allowed)	
No. of working days in the month	25 days
No. of working hours per day for each worker	8 working hours
Actual production during the month	1,250 units

Required:

- 1. CALCULATE effective rate of earnings per hour under Halsey Scheme and Rowan Scheme.
- 2. CALCULATE the savings to Mr A in terms of direct labour cost per piece under the schemes.

SOLUTION:

Working Notes:

- 1. Actual Time Taken To Produce 1,250 Pieces
 - = No. Of Working Days In The Month \times No. Of Working Hours Per Day Of Each Worker \times No. Of Workers
 - = 25 Days × 8 Hours × 10 Workers = 2,000 Hours
- 2. Total Time Wages Of 10 Workers Per Month:
 - = No. Of Working Days In The Month \times No. Of Working Hours Per Day Of Each Worker \times Hourly Rate Of Wages \times No. Of Workers
 - = 25 Days × 8 Hours × ₹40 × 10 Workers = ₹ 80,000

3. Time Saved Per Month:

Time Allowed Per Piece To A Worker	2 Hours
No. Of Units Produced During The Month By 10 Workers	1,250 Pieces
Total Time Allowed To Produce 1.250 Pieces (1.250 × 2 Hours)	2.500 Hours

Actual Time Taken To Produce 1,250 Pieces

2,000 Hours

Time Saved (2,500 Hours - 2,000 Hours)

500 Hours

4. Bonus Under Halsey Scheme To Be Paid To 10 Workers:

Bonus = (50% Of Time Saved) × Hourly Rate Of Wages

= $(50 \div 100) \times 500 \text{ Hours} \times \text{ } 40 = \text{ } \text{ } 10,000$

Total Wages To Be Paid To 10 Workers Are (₹ 80,000 + ₹ 10,000) ₹ 90,000, If Mr. A Considers The Introduction Of Halsey Incentive Scheme To Increase The Employee Productivity.

5. Bonus Under Rowan Scheme To Be Paid To 10 Workers:

Bonus = $\frac{\text{Time Taken}}{\text{Time Allowed}} \times \text{Time Saved} \times \text{Hourly Rate}$

=
$$\frac{2000 \text{ Hours}}{2500 \text{ Hours}}$$
 × 500 Hours × ₹ 40 = ₹ 16,000

Total Wages To Be Paid To 10 Workers Are (₹ 80,000 + ₹ 16,000)

₹ 96,000, If Mr. A Considers The Introduction Of Rowan Incentive Scheme To Increase The Employee Productivity.

(i) (A) Effective Hourly Rate Of Earnings Under Halsey Scheme:

(Refer To Working Notes 1, 2, 3 And 4)

Total Time Wages Of 10 Workers + Total Bonus Under Halsey Scheme

Total Hours Worked

$$= \frac{\text{₹ 80,000 + ₹ 10,000 Hours}}{2000 \text{ Hours}} = \text{₹ 45}$$

(B) Effective Hourly Rate Of Earnings Under Rowan Scheme:

(Refer To Working Notes 1, 2, 3 And 5)

Total Time Wages Of 10 Workers + Total Bonus Under Rowan Scheme

Total Hours Worked

$$= \frac{₹80,000 + ₹16,000 Hours}{2000 Hours} = ₹48$$

(ii) (A) Saving In Terms Of Direct Employee Cost Per Piece Under Halsey Scheme:

(Refer To Working Note 4)

Employee Cost Per Piece (Under Time Wage Scheme)

= 2 Hours × ₹ 40 = ₹ 80.

Employee Cost Per Piece (Under Halsey Scheme)

 $= \frac{\text{Total Wages Paid Under The Scheme}}{\text{Total Number Of Units Produced}} = \frac{₹90,000}{1,250} = ₹72$

Saving Per Piece: (₹ 80 - ₹ 72) = ₹ 8

(B) Saving In Terms Of Direct Employee Cost Per Piece Under Rowan Scheme:

(Refer To Working Note 5)

Employee Cost Per Piece Under Rowan Scheme

= ₹ 96,000 ÷ 1,250 Units = ₹ 76.80

Saving Per Piece = ₹80 - ₹76.80 = ₹3.20

PROBLEM - 8:

A company uses an old method of machining. The estimates of operating details for a year are as under:

Number of parts to be manufactured and sold	30,000
Raw materials required per part	10 kg @ ₹ 2 per kg.
Average Wage Rate per worker	₹ 40 per day of 8 hours
Average Labour Efficiency	60%
Standard Time required to manufacture one part	2 Hours
Overhead Rate	₹ 10 per clock hour
Material Handling Expenses	2% of Value of Materials

The company has a suggestion box scheme and an award equivalent to three months savings in labour cost is passed on to the employee whose suggestion is accepted. In response to this scheme, a suggestion has been received from an employee to use a special Jig in the manufacture of the aforesaid part. The cost of the Jig which has a life of one year is ₹ 3,000 and the use of the Jig will reduce the standard time by 12 minutes.

You are required to:

- Determine the amount of award payable to the employee.
- Prepare a comparative statement of costs before and after implementation of the suggested scheme.

SOLUTION:

Step 1: Calculation Of Reward To The Worker:

Particulars	Before Jig	After Jig
A. Units Manufactures	30000	30000
B. Standard Time Per Unit	120 Min	108 Min
C. Actual Time Permit $\left(\frac{\text{Time Allowed}}{\text{Time Taken}}\right) = 60\%$	$\left(\frac{120}{60\%}\right) = 200 \text{ Minutes}$	$\left(\frac{108}{60\%}\right) = 180 \text{ Minutes}$

D. Actual Time Taken	(30000 Units x 200 Minutes)	(30000 Units x 180 Minutes)	
	÷ 60 Minutes = 1,00,000 Hours	÷ 60 Minutes = 90,000 Hours	
E. Wage Rate	₹ 5,00,000	₹ 450000	
$\left(\frac{\text{₹ 40}}{\text{8 Hours}}\right) = \text{₹ 5}$			

Savings in Labour Cost Per Annum

= ₹ 50000 (₹ 5,00,000 - ₹ 4,50,000)

Award = $\pm 50000 \times 3$ Months $\div 12$ Months = ± 12500

Step 2: Competitive Statement Of Cost

Particulars	Before Jig	After Jig
A. Materials	₹ 6,00,000	₹ 6,00,000
(30000 × 10kg × ₹ 2)		
B. Wages	₹ 5,00,000	₹ 4,50,000
C. Reward	-	12500
D. Overheads	₹ 10,00,000	₹ 9,00,000
	(1,00,000 Hours x ₹ 10)	(90,000 Hours x ₹ 10)
E. Material Handling	₹ 12000	₹ 12000
	(6,00,000 x 2%)	(6,00,000 x 2%)
F. Cost Of Jig	-	3000
Total	₹ 21,12,000	₹ 19,77,500

It Is Recommended To Implement The Jig Scheme

PROBLEM - 9: (RTP JAN 25)

AeBee Publishers works for various educational institutes for editing, binding, printing of various books and magazines on job work basis. Currently, the company has employed 30 workers and pays them on hour rate basis for each job assigned. To complete one of the process of binding, the average time allowed to an employee is 8 hours for a 10 pages magazine.

In the month of March, two employees 'Cee' and 'Dee' were given 21 and 30 units of magazines respectively for binding work. The following are the details of the work assigned:

Particulars	'Cee'	'Dee'
Work assigned	21 units	30 units
Time taken	78 hours	114 hours

The existing rate of wages is ₹ 60 per hour along with bonus as per Halsey System.

However, a new wage agreement has been signed between the employees and the company where, employees will be paid ₹ 65 per hour with effect from the April month. But, inadvertently, for the month of March, the accountant of the company paid the wages to these employees considering rate of wages as ₹ 65 per hour.

You are required to CALCULATE the following:

- (i) Amount of loss that the company has incurred due to incorrect rate selection in the month of March.
- (ii) Loss incurred by the company due to incorrect rate selection if it had followed Rowan scheme of bonus payment.
- (iii) Amount that could have been saved if Rowan Scheme of bonus payment were followed.

SOLUTION:

Particulars	'Cee'	'Dee'
No. Of Binding Work Assigned (Units)	21	30
Hour Allowed Per Magazine (Hours)	8	8
Total Hours Allowed (Hours)	168	240
Hours Taken (Hours)	78	114
Hours Saved (Hours)	90	126

(i) Calculation Of Loss Incurred Due To Incorrect Rate Selection

(While Calculating Loss Only Excess Rate Per Hour Has Been Taken)

Particulars	'Cee'	'Dee'	Total
	(₹)	(₹)	(₹)
Basic Wages	390	570	960
	(78 Hours × ₹ 5)	(114 Hours × ₹ 5)	
Bonus (As Per Halsey	225	315	540
Scheme)	(50% Of 90 Hours ×	(50% Of 126 Hours ×	
(50% Of Time Saved ×	₹ 5)	₹ 5)	
Excess Rate)			
Excess Wages Paid	615	885	1,500

(ii) Amount Of Loss If Rowan Scheme Of Bonus Payment Were Followed

Particulars	'Cee'	'Dee'	Total (₹)
	(₹)	(₹)	
Basic Wages	390.00	570.00	960.00
	(78 Hours ×	(114 Hours × ₹ 5)	
	₹ 5)		

Bonus (As Per Rowan Scheme)	208.93	299.25	508.18
$= \frac{\text{Time Taken}}{\text{Time Allowed}} \times \text{Time Saved} \times \text{Excess Rate}$	$=\frac{78}{168}\times90\times₹5$	$= \frac{114}{240} \times 126 \times \$ 5$	
Excess Wages Paid	598.93	869.25	1,468.18

(iii) Calculation Of Amount That Could Have Been Saved If Rowan Scheme Were Followed

Particulars	'Cee'	'Dee'	Total
	(₹)	(₹)	(₹)
Wages Paid Under Halsey Scheme	615.00	885.00	1,500.00
Wages Paid Under Rowan Scheme	598.93	869.25	1,468.18
Difference (Savings)	16.07	15.75	31.82

PROBLEM - 10:

A factory having the latest sophisticated machines wants to introduce an incentive scheme for its workers, keeping in view the following:

- i. The entire gains of improved production should not go to the workers.
- ii. In the name of speed, quality should not suffer.
- iii. The rate setting department being newly established are liable to commit mistakes. You are required to PREPARE a suitable incentive scheme and DEMONSTRATE by an illustrative numerical example how your scheme answers to all the requirements of the management.

SOLUTION:

Rowan Scheme of premium bonus (variable sharing plan) is a suitable incentive scheme for the workers of the factory. If this scheme is adopted, the entire gains due to time saved by a worker will not pass to him.

Another feature of this scheme is that a worker cannot increase his earnings or bonus by merely increasing its work speed. The reason for this is that the bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore, they work at such a speed which helps them to maintain the quality of output too.

Lastly, Rowan System provides a safeguard in the case of any loose fixation of the standards by the rate-setting department. It may be observed from the following illustration that in the Rowan Scheme the bonus paid will be low due to any loose fixation of standards. Workers cannot take undue advantage of such a situation. The above three features of Rowan Plan can be discussed with the help of the following illustration:

(i) Time allowed = 4 hours

Time taken = 3 hours

Time saved = 1 hour

Rate = ₹5 per hour

Bonus = $\frac{\text{Time Taken}}{\text{Time allowed}} \times \text{Time saved } \times \text{Rate}$

 $= \frac{3 \text{ hours}}{4 \text{ hours}} \times 1 \text{ hour } \times \$5 = \$3.75$

In the above illustration time saved is 1 hour and, therefore, total gain is ₹ 5. Out of ₹ 5 according to Rowan Plan only ₹ 3.75 is given to the worker in the form of bonus and the remaining ₹ 1.25 remains with the management. In other words, a worker is entitled for ₹ 5 percent of the time saved in the form of bonus.

(ii) The figures of bonus in the above illustration when the time taken is 2 hours and 1 hour respectively are as below:

Bonus
$$= \frac{\text{Time Taken}}{\text{Time Allowed}} \times \text{Time saved } \times \text{Rate}$$
$$= \frac{2 \text{ hours}}{4 \text{ hours}} \times 2 \text{ hour } \times \$5 = \$5$$
$$= \frac{1 \text{ hour}}{4 \text{ hours}} \times 3 \text{ hours } \times \$5 = \$3.75$$

The above figures of bonus clearly show that when time taken is half of the time allowed, the bonus is maximum. When the time taken is reduced from 2 to 1 hour, the bonus figure fell by \$1.25. Hence, it is quite apparent to workers that it is of no use to increase speed of work. This feature of Rowan Plan thus protects the quality of output.

(iii) If the rate-setting department erroneously sets the time allowed as 10 hours instead of 4 hours, in the above illustration; then the bonus paid will be as follows:

Bonus =
$$\frac{3 \text{ hours}}{10 \text{ hours}} \times 7 \text{ hour } \times 5 = 10.50$$

The bonus paid for saving 7 hours thus is ₹ 10.50 which is approximately equal to the wages of 2 hours. In other words, the bonus paid to the workers is low. Hence workers cannot take undue advantage of any mistake committed by the time setting department of the concern.

PROBLEM - 11:

A company's basic wages rate is ₹ 12 per hour and its overtime rates are -

Evenings: Time and one-third.

Weekends: Double time.

During the previous year the following hours were worked:

Normal time	22,000 clock hours
Time plus one-third	2,000 clock hours
Double time	1,000 clock hours

The following times have been worked on these jobs:

	Job A Clock Hours	Job B Clock Hours	Job C Clock Hours
Normal time	300	500	400
Evening time	30	60	105
Weekend overtime	10	5	30

You are required to calculate the labour cost chargeable to each job in each of the following circumstances:

- a. Where overtime is worked regularly throughout the year as company policy due to labour shortage.
- b. Where overtime is worked irregularly to meet the spasmodic production requirements.
- c. Where overtime is worked specifically at the customer's request to expedite delivery.
- d. Where overtime is due to abnormal reasons.

SOLUTION:

Part A: Overtime Is Regular:

Step 1: Total Wages For The Year Including Over Time Premium

Normal Wages = $(22,000 \text{ Hours } x \neq 12)$ = $\neq 264000$

Evening Wages = $(2000 \text{ Hours } x \neq 16)$ = $\neq 32000$

 $(\mp 12 + \mp 4)$

= ₹ 24000

(₹ 12 + ₹ 12)

Total Annual Wages =

₹ 3,20,000

=
$$\frac{₹ 3,20,000}{25,000 \text{ Hours}}$$
 = ₹ 12.8 Per Hour

Step 3: Wages Chargeable To Jobs

 $A: 340 \text{ Hours } x \neq 12.8 = \neq 4352$

B : 565 Hours x ₹ 12.8 = ₹ 7232

 $C: 535 \text{ Hours } x \neq 12.8 = \neq 6848$

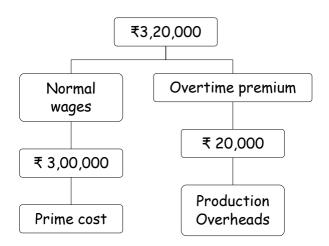
Note: If We Total The Wages Changed To All The Jobs (A, B, C, D, E......) It Will Be

₹ 3,20,000

The Wages Has He Changed As Prime Cost

Part B: Overtime Is Worked Due To Seasonal Production Requirements:

Step 1: Wage Rate Per Hour:


Normal = 22000 Hours $x \neq 12 = \neq 264000$

= 2000 Hours x = 12 = 24000

= $1000 \text{ Hours } x \neq 12 = \neq 12000$

Total Normal Wages = ₹ 3,00,000

Wage Rate Per Hour = $\frac{₹ 3,00,000}{25,000 \text{ Hours}}$ = ₹ 12 Per Hour

Step 2: Wages Charged To Jobs:

 $A: 340 \text{ Hours } x \neq 12 = \neq 4080$

B: 565 Hours $x \neq 12 = \neq 6780$

 $C: 535 \text{ Hours } x \neq 12 = \neq 6420$

Note: If We Total The Wages Charged To All The Jobs (A, B, C, D......) It Will Be ₹ 3,00,000.

The Balance ₹ 20,000 Is Debited To Production Overheads A/c.

Part C: Overtime Is Due To Specific Customer Request:

Job A = (340 Hours x ₹ 12) + (30 x 4) + (10 x 12)

= ₹4080 + ₹120 + ₹120 = ₹4320

Job B = $(565 \text{ Hours } \times \text{ } \text{ } \text{ } 12) + (60 \times 4) + (5 \times 12)$

= ₹6780 + ₹240 + ₹60 = ₹7080

Job C = $(535 \text{ Hours } \times ₹ 12) + (105 \times 4) + (30 \times 12)$

= ₹6420 + ₹420 + ₹360 = ₹7200

Note: When Total The Wages Charged To All The Jobs (A, B, C, D,.....) It Will Total To ₹3,20,000. The Overtime Premium Is Treated As Prime Cost

Part D: Overtime Is Due To Abnormal Reasons:

All The Calculations Are Similar To Part B That Overtime Premium Of $\stackrel{?}{_{\sim}}$ 20,000 Is Charged To The Costing Profit and Loss A/c Instead Of Production Overheads A/c.

PROBLEM - 11A:

In a factory, the basic wage rate is ₹100 per hour and overtime rates are as follows:

Before and after normal working hours	175% of basic wage
Sundays and holidays	225% of basic wage
During the previous year, the following hours were worked	
- Normal time	1,00,000 hours
- Overtime before and after working hours	20,000 hours
Overtime on Sundays and holidays	5,000 hours
Total	1,25,000 hours

The following hours have been worked on job 'Z'

Normal	1,000 hours
Overtime before and after working hours	100 hours
Sundays and holidays	25 hours
Total	1,125 hours

You are required to CALCULATE the labour cost chargeable to job 'Z' and overhead in each of the following instances:

a. Where overtime is worked regularly throughout the year as a policy due to the

workers' shortage.

- b. Where overtime is worked irregularly to meet the requirements of production.
- c. Where overtime is worked at the request of the customer to expedite the job.

SOLUTION:

Workings

Basic Wage Rate: ₹ 100 Per Hour

Overtime Wage Rate Before And After Working Hours: ₹ 100 × 175% = ₹ 175 Per Hour

Overtime Wage Rate For Sundays And Holidays: ₹ 100 × 225% = ₹ 225 Per Hour

Computation Of Average Inflated Wage Rate (Including Overtime Premium):

Particulars	(₹)
Annual Wages For The Previous Year For Normal Time (1,00,000 Hours ×	1,00,00,000
₹ 100)	
Wages For Overtime Before And After Working Hours (20,000 Hours ×	35,00,000
₹ 175)	
Wages For Overtime On Sundays And Holidays (5,000 Hours × ₹ 225)	11,25,000
Total Wages For 1,25,000 Hours	1,46,25,000

Average Inflated Wage Rate = $\frac{₹ 1,46,25,000}{1,25,000 \text{ Hours}}$ = ₹ 117

Where Overtime Is Worked Regularly As A Policy Due To Workers' Shortage:

The Overtime Premium Is Treated As A Part Of Employee Cost And Job Is Charged At An Inflated Wage Rate. Hence, Employee Cost Chargeable To Job Z

= Total Hours × Inflated Wage Rate = 1,125 Hours × ₹ 117 = ₹ 1,31,625

Where Overtime Is Worked Irregularly To Meet The Requirements Of Production:

Basic Wage Rate Is Charged To The Job And Overtime Premium Is Charged To Factory Overheads As Under:

Employee Cost Chargeable To Job Z: 1,125 Hours @ ₹100 Per Hour = ₹ 1,12,500

Factory Overhead: $\{100 \text{ Hours} \times \neq (175 - 100)\} + \{25 \text{ Hours} \times \neq (225 - 100)\}$

 $= \{ \mp 7,500 + \mp 3,125 \} = \mp 10,625$

Where Overtime Is Worked At The Request Of The Customer, Overtime Premium Is Also

Charged To The Job As Under:

Job Z Employee Cost

1,125 Hours @ ₹ 100 = 1,12,500

(₹)

Overtime Premium 100 Hours @ ₹ (175 - 100) = 7,500

25 Hours @ ₹ (225 - 100) = 3,125

Total 1,23,125

PROBLEM - 12:

CALCULATE the earnings of A and B from the following particulars for a month and allocate the employee cost to each job X Y and Z.

PARTICULARS	Α	В
Basic Wages	₹ 10,000	₹ 16,000
Dearness Allowance	50%	50%
Contribution to provident Fund (on basic wages)	8%	8%
Contribution to Employee's State insurance (on basic wages)	2%	2%
Overtime (Hours)	10	•

The normal working hours for the month are 200. Overtime is paid at double the total of normal wages and dearness allowance. Employer's contribution to State Insurance and Provident Fund are at equal rates with employees' contributions. The two workers were employed on jobs X, Y and Z in the following proportions:

JOBS	×	У	Z
Worker A	40%	30%	30%
Worker B	50%	20%	30%

Overtime was done on job Y.

SOLUTION:

Statement showing Earnings of Workers A and B

	A (₹)	B (₹)
Basic wages	10,000	16,000
Dearness Allowance (50% of Basic Wages)	5,000	8,000
Overtime wages (Refer to Working Note 1)	1,500	
Gross wages earned	16,500	24,000
Less: Contribution to Provident fund	(800)	(1,280)
Less: Contribution to ESI	(200)	(320)
Net wages earned	15,500	22,400

Statement of Employee Cost:

	A (₹)	B (₹)
Gross Wages (excluding overtime)	15,000	24,000
Add: Employer's contribution to PF	800	1,280
Add: Employer's contribution to ESI	200	320
Gross wages earned	16,000	25,600
Normal working hours	200	200

Ordinary wages rate per hour	80	128
		1

Statement Showing Allocation of Wages to Jobs

	Total Wages		Jobs	
	(₹)	X (₹)	У (₹)	Z (₹)
Worker A:				
- Ordinary Wages (4: 3:3)	16,000	6,400	4,800	4,800
- Overtime	1,500		1,500	
Worker B:				
- Ordinary Wages (5 : 2 : 3)	25,600	12,800	5,120	7,680
	43,100	19,200	11,420	12,480

Working Notes

1. Normal Wages are considered as basic wages

Over time =
$$\frac{2 \times (Basic wage + DA) \times 10 \text{ hours}}{200}$$

$$(15,000)$$

$$2 \times \left(\frac{₹15,000}{200}\right) \times 10 \text{ hours} = ₹150 \times 10 \text{ hours} = ₹1,500$$

PROBLEM - 13:

It is seen from the job card for repair of the customer's equipment that a total of 154 labour hours have been put in as detailed below:

	Worker 'A'	Worker 'B"	Worker 'C'
	paid at 200	paid at 100	paid at 300
	per day of 8	per day of 8	per day of 8
	hours	hours	hours
Monday (hours)	10.5	8.0	10.5
Tuesday (hours)	8.0	8.0	8.0
Wednesday (hours)	10.5	8.0	10.5
Thursday (hours)	9.5	8.0	9.5
Friday (hours)	10.5	8.0	10.5
Saturday (hours)	-	8.0	8.0
Total (hours)	49.0	48.0	57.0

In terms of an award in employee conciliation, the workers are to be paid dearness allowance on the basis of cost-of-living index figures relating to each month which works out @ ₹ 968 for the relevant month. The dearness allowances is payable to all workers

irrespective of wages rate if they are present or are on leave with wages on all working days.

Sunday is a weekly holiday and each worker has to work for 8 hours on all week days and 4 hours on Saturdays, the workers are however paid full wages for Saturday (8 hours for 4 hours worked).

Overtime is paid twice of ordinary wage rate if a worker works for more than nine hours in a day or forty-eight hours in a week. Excluding holidays, the total number of hours works out to 176 in the relevant month. The company's contribution to Provident Fund and Employees State Insurance Premium are absorbed into overheads.

CALCULATE the wages payable to each worker.

SOLUTION:

1. Calculation Of Hours To Be Paid For Worker A:

	Normal	Extra	Overtime	Equivalent Normal	Total
	Hours	Hours	Hours	Hours For Overtime	Normal
				Worked	Hours
Monday	8	1	11/2	3	12
Tuesday	8				8
Wednesday	8	1	1 1 /2	3	12
Thursday	8	1	<u>1</u>	1	10
Friday	8	1	1 1 /2	3	12
Saturday					
Total	40	4	5	10	54

2. Calculation Of Hours To Be Paid For Worker B:

	Normal	Extra	Overtime	Equivalent Normal	Total
	Hours	Hours	Hours	Hours For Overtime	Normal
				Worked	Hours
Monday	8				8
Tuesday	8				8
Wednesday	8				8
Thursday	8				8
Friday	8				8
Saturday	4	4*			8
Total	44	4			48

^{(*}Worker-B has neither worked more than 9 hours in any day)

3. Calculation Of Hours To Be Paid For Worker C:

	Normal	Extra	Overtime	Equivalent Normal	Total
	Hours	Hours	Hours	Hours For Overtime	Normal
				Worked	Hours
Monday	8	1	11/2	3	12
Tuesday	8				8
Wednesday	8	1	1 1 /2	3	12
Thursday	8	1	<u>1</u> 2	1	10
Friday	8	1	1 1 /2	3	12
Saturday	8*				8
Total	48	4	5	10	62

(*Worker-C will be paid for equivalent 8 hours, though 4 hours of working is required on Saturday. Further, no overtime will be paid for working beyond 4 hours since it is paid for working beyond 9 hours.)

4. Wages payable:

	Α	В	С
Basic Wages Per Hour (₹)	25.00	12.50	37.50
Dearness Allowance Per Hour (₹)	5.50	5.50	5.50
Hourly Rate (₹)	30.50	18.00	43.00
Total Normal Hours	54.00	48.00	62.00
Total Wages Payable (₹)	1,647.00	864.00	2,666.00

PROBLEM - 14:

The management of BR Ltd is worried about their increasing employee turnover in the factory and before analysing the causes and taking remedial steps; it wants to have an idea of the profit foregone as a result of employee turnover in the last year.

Last year sales amounted to ₹ 83,03,300 and P/V ratio was 20 per cent. The total number of actual hours worked by the direct employee force was 4.45 lakhs. The actual direct employee hours included 30,000 hours attributable to training new recruits, out of which half of the hours were unproductive. As a result of the delays by the Personnel Department in filling vacancies due to employee turnover, 1,00,000 potentially productive hours (excluding unproductive training hours) were lost.

The costs incurred consequent on employee turnover revealed, on analysis, the following:

Settlement cost due to leaving	₹ 43,820
Recruitment costs	₹ 26,740
Selection costs	₹ 12,750
Training costs	₹ 30,490

Assuming that the potential production lost as a consequence of employee turnover could have been sold at prevailing prices, FIND the profit foregone last year on account of employee turnover.

SOLUTION:

Workings:

(i) Computation Of Productive Hours

Actual Hours Worked (Given) 4,45,000

Less: Unproductive Training Hours 15,000

Actual Productive Hours 4,30,000

(ii) Productive Hours Lost:

Loss Of Potential Productive Hours + Unproductive Training Hours = 1,00,000 + 15,000 = 1,15,000 Hours

(iii) Loss Of Contribution Due To Unproductive Hours:

= $\frac{\text{Sales Value}}{\text{Actual Productive Hours}}$ × Total Unproductive Hours = $\frac{₹83,03,300}{4,30,000 \text{ Hours}}$ × 1,15,000 Hours = ₹22,20,650

Contribution Lost For 1,15,000 Hours = $\frac{₹22,20,650}{100}$ x 20 = ₹4,44,130

Computation Of Profit Forgone On Account Of Employee Turnover

	(₹)
Contribution Foregone (As Calculated Above)	4,44,130
Settlement Cost Due To Leaving	43,820
Recruitment Cost	26,740
Selection Cost	12,750
Training Costs	30,490
Profit Foregone	5,57,930

PROBLEM - 14A: (PYP MAY24)

Super Ltd, a manufacturing company is facing the problem of high labour turnover in the factory. Before analysing the causes and taking remedial steps, the management of the company wants to ascertain the profit lost for the year 2022-23 on account of labour turnover. For this purpose, it has given you the following information:

- d) Sales for the last year 2022-23 was ₹ 2,16,80,000 and P/V ratio was 15%.
- e) The total number of actual hours worked by the direct labour force was 5,00,000 hours. The actual direct labour hours included 60,000 hours attributable to training new recruits, out of which 40% of the hours were unproductive.
- f) Due to delays by the Personnel Department in filling vacancies on account of labour turnover, 95,000 potential productive hours (excluding unproductive training hours) were lost.
- g) 1,500 units of the output produced during training period were defective. Cost of rectification of defective units was ₹ 40 per unit.
- h) Settlement cost of the workers leaving the organization was ₹ 2,37,880.
- i) Recruitment and Selection cost was ₹ 1,40,000.
- j) Cost of Training and Induction was ₹ 1,61,950.

Assuming that the potential production lost as a consequence of labour turnover could have been sold at prevailing prices, find the profit lost for the year 2022-23 on account of labour turnover.

SOLUTION:

(i) Workings:

Computation Of Productive Hours

Actual Hours Worked (Given) 5,00,000

Less: Unproductive Training Hours <u>24,000</u>

Actual Productive Hours 4,76,000

(ii) Productive Hours Lost:

Loss Of Potential Productive Hours + Unproductive Training Hours = 95,000 + 24,000 = 1,19,000 Hours

(iii) Loss Of Contribution Due To Unproductive Hours:

Sales Value

Actual Productive Hours

₹ 2,16,80,000

4,76,000 Hrs × 119000 Hours = ₹ 54,20,000

Contribution Lost For 1,19,000 Hours = ₹ 54,20,000 X 15% = ₹ 8,13,000

Computation Of Profit Forgone On Account Of Employee Turnover

	(₹)
Contribution Foregone (As Calculated Above)	8,13,000
Settlement Cost Due To Leaving	2,37,880
Recruitment And Selection Cost	1,40,000
Training And Induction Costs	1,61,950
Cost Of Rectification (1500 Units X ₹ 40)	60,000
Profit Foregone	14,12,830

The Above Question Can Also Be Solved In Alternative Way After Taking Proper Assumptions

Workings:

a. Computation Of Productive Hours

Actual Hours Worked (Given) 5,00,000

Less: Unproductive Training Hours 24,000

Actual Productive Hours 4,76,000

b. Productive Hours Lost:

Loss Of Potential Productive Hours

= 95,000 Hours

c. Loss Of Contribution Due To Unproductive Hours :

Sales Value
Actual Productive Hours $\frac{\text{₹ 2,16,80,000}}{4,76,000 \text{ Hrs}} \times \text{₹ 95,000} = \text{₹ 43,26,891}$ Contribution Lost For 95,000 Hours = ₹ 43,26,891 X 15% = ₹ 6,49,034 (Approx.)

Computation Of Profit Forgone On Account Of Employee Turnover

	(₹)
Contribution Foregone (As Calculated Above)	6,49,034
Settlement Cost Due To Leaving	2,37,880
Recruitment And Selection Cost	1,40,000
Training And Induction Costs	1,61,950
Cost Of Rectification (1500 Units X ₹ 40)	60,000
Profit Foregone	12,48,864

PROBLEM - 15:

From the following data of Big-One Ltd, calculate labour turnover.

- Number of workers on the payroll at the beginning of the month: 1800.
- Number of workers on the payroll at the end of the month: 2200
- During the month, 20 workers left, 80 workers were discharged and 500 workers were recruited. Of these, 60 workers were recruited in the vacancies of those separated, while the rest were engaged due to expansion.

SOLUTION:

No. Of Separations =
$$20 + 80 = 100$$

Average No. Of Workers =
$$\frac{1800 + 2200}{2}$$
 = 2000 Workers

Separation Method =
$$\frac{\text{No Of Separations}}{\text{Average No Of Workers}} \times 100$$

=
$$\frac{100}{2000}$$
 × 100 = 5% × 12 Months = 60% Per Annum

Replacement Method =
$$\frac{\text{No Of Replacement}}{\text{Average No Of Workers}}$$

$$=\frac{60}{2000}\times100$$

$$= 3\% \times 12$$
 Months $= 36\%$ Per Annum

Flux Method =
$$\frac{\text{No. Of Separations + No. Of Accessions}}{\text{Average No Of Workers}}$$

$$=\frac{100+500}{2000}\times100$$

$$= 30\% \times 12$$
 Months = 360% Per Annum

PROBLEM - 16:

The Accountant of Y Ltd. has computed employee turnover rates for the quarter ended 31st March, 20x1 as 10%, 5% and 3% respectively under Flux method, Replacement method and Separation method.

If the number of workers replaced during that quarter is 30, FIND OUT the number of workers for the quarter.

- · Recruited and joined and
- · Left and discharged and
- Equivalent employee turnover rates for the year.

SOLUTION:

Working Note:

Average Number Of Workers On Roll (For The Quarter):

Employee Turnover Rate Using Replacement Method

=
$$\frac{\text{No. Of Replacements}}{\text{Average Number Of Workers On Roll}} \times 100$$

$$Or_{r} = \frac{5}{100} = \frac{30}{Average Number Of Workers On Roll}$$

Or, Average Number Of Workers On Roll =
$$\frac{30 \times 100}{5}$$
 = 600

i. Number Of Workers Recruited And Joined:

Employee Turnover Rate (Flux Method)

=
$$\frac{\text{No. Of Separations*}(S) + \text{No. Of Accessions}(A)}{\text{Average Number Of Workers On Roll}} \times 100$$

Or,
$$\frac{10}{100} = \frac{18* + A}{600}$$
 Or, $A = \left[\frac{6000}{100} - 80 \right] = 42$

No. Of Workers Recruited And Joined 42

ii. Number Of Workers Left And Discharged:

$$\frac{\text{No. Of Separations (S)}}{\text{Average Number Of Workers On Roll}} \times 100 = \frac{3}{100} = \frac{5}{600} \text{ Or, S*} = 18$$

Hence, Number Of Workers Left And Discharged Comes To 18

iii. Calculation Of Equivalent Employee Turnover Rates:

= (Employee Turnover Rate For The Quarter(S) + Number of Quarters) × 4 Quarters

Using Flux Method =
$$\frac{10\%}{1}$$
 x 4 = 40%

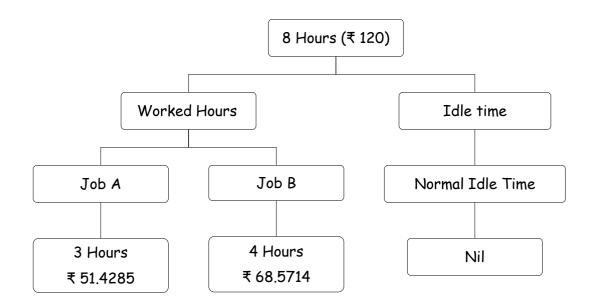
Using Replacement Method =
$$\frac{5\%}{1}$$
 × 4 = 20%

Using Separation Method =
$$\frac{3\%}{1}$$
 x 4 = 12%

PROBLEM - 17:

The normal working hours in a factory are 8 hours per day. An idle time of 1 hour is considered normal due to rest, lunch etc. compute the cost of idle time its treatment in the following circumstance.

- a. Ram, a production worker worked for 7 hours and was paid ₹ 120/- for the full day. Ram spent 3 hrs in job A and 4 hrs job B. Also calculate the Labour cost chargeable to both the jobs.
- b. Raju, an indirect worker, was paid ₹ 20/- as his daily wage.



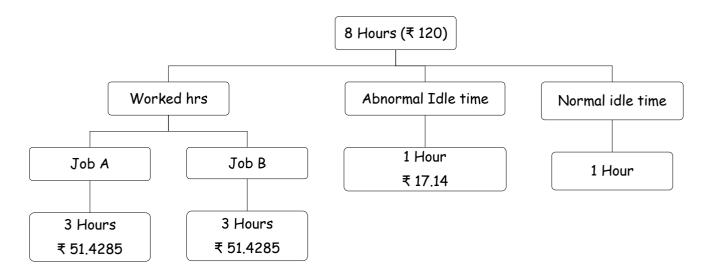
c. Dev, a production worker clocked 6 hours but was paid his full day's wages ₹ 120/-. Due to breakdown of machinery, he could not work for 1 hour during the day. Dev spent 3 hrs in job A and 3 hrs in job B. Also calculate the Labour cost chargeable to both the jobs.

SOLUTION:

Part A = Ram

Cost per Hour =
$$\frac{\text{Total wages}}{\text{Hours paid - Normal idle time}}$$

= $\frac{\text{₹ 120}}{\text{8 Hours - 1 Hours}} = \frac{\text{₹ 120}}{\text{7 Hours}} = \text{₹ 17.14285}$


Part B: Raju

Raju Is An Indirect Worker Have The Entire Wages Paid To Him Is Treated As Production Overheads Irrespective Of Where It Is Working Time Or Idle Time.

Part C: Dev

Cost per Hour =
$$\frac{\text{Total wages}}{\text{Hours Paid - Normal idle time}}$$

= $\frac{\text{₹ 120}}{\text{8 Hours - 1 Hours}} = \frac{\text{₹ 120}}{\text{7 Hours}} = \text{₹ 17.14285}$

PROBLEM - 18:

In a factory working six days in a week and eight hours each day, a worker is paid at the rate of ₹ 100 per day basic plus D.A. @ 120% of basic. He is allowed to take 30 minutes off during his hours shift for meals-break and a 10 minutes recess for rest. During a week, his card showed that his time was chargeable to

Job X 15 Hours

Job Y 12 Hours

Job Z 13 Hours

The time not booked was wasted while waiting for a job. In Cost Accounting, STATE how would you allocate the wages of the workers for the week?

SOLUTION:

Working Notes:

- (i) Total Effective Hours In A Week:
 - [(8 Hours (30 Mts. + 10 Mts.)] × 6 Days = 44 Hours
- (ii) Total Wages For A Week:

- (iii) Wage Rate Per Hour = 1320 ÷ 44 Hours = ₹ 30
- (iv) Time Wasted Waiting For Job (Abnormal Idle Time):
 - = 44 Hours (15 Hours + 12 Hours + 13 Hours) = 4 Hours

Allocation Of Wages In Cost Accounting

	(₹)
Allocated To Job X : 15 Hours × ₹ 30	450
Allocated To Job Y : 12 Hours × ₹ 30	360

Charged To Costing Profit & Loss A/c: 4 Hours ×₹30	120
Total	1.320

PROBLEM - 19:

Aditya Ltd. is an engineering manufacturing company producing job order on the basis of specification given by the customers During the last the month it has completed three job works namely A, B and C.

The following are the items of expenditures which are incurred apart from direct materials and direct employee cost:

- i. Office and administration cost- ₹ 3,00,000.
- ii. Product blueprint cost for job A ₹ 1,40,000
- iii. Hire charges paid for machinery used for job work B- ₹ 40,000
- iv. Salary to office attendants- ₹ 50,000
- v. One time license fee paid for software used to make computerized graphics for job C- ₹50,000.
- vi. Salary paid to marketing manager- ₹ 1,20,000. Required:

CALCULATE direct expenses attributable to each job.

SOLUTION:

Calculation of Direct expenses

Particulars	Job A (₹)	Job B (₹)	Job <i>C</i> (₹)
Product blueprint cost	1,40,000		
Hire charges paid for machinery		40,000	
license fee paid for software			50,000
Total Direct expenses	1,40,000	40,000	50,000

Note:

- (i) Office and administration cost is classified as overheads.
- (ii) Salary paid to office attendants is classified under office and administration cost.
- (iii) Salary paid to marketing manager is classified under selling overheads

PROBLEM - 20:

The following expenditures were incurred in Aditya Ltd. For the month of March 20x3:

		₹
i.	Paid for power & fuel	4,80,200
ii.	Wages paid to factory workers	8,44,000
iii.	Bill paid to job workers	9,66,000
iv.	Royalty paid for production	8,400
٧.	Fee paid to technician hired for the job	96,000
vi.	Administrative overheads	76,000
vii.	Commission paid to sales staffs	1,26,000

You are required to CALCULATE direct expenses for the month.

SOLUTION:

Calculation of Direct Expenses

		(₹)
(i)	Paid for power & fuel	4,80,200
(ii)	Bill paid to job workers	9,66,000
(iii)	Royalty paid for production	8,400
(iv)	Fee paid to the technician	96,000
	Total Direct expenses	15,50,600

Notes:

- (i) Wages paid to factory workers is direct employee cost.
- (ii) Administrative overhead is indirect expense.
- (iii)Commission paid to sales staffs comes under selling expenses.

CHAPTER 10: PROCESS & OPERATION

COSTING

PROBLEM - 1:

Product A is produced after three distinct processes. The following information is obtained from the accounts of a period: -

ITEMS	PR <i>OC</i> ESS			
T CMO	I	II	III	Total
Direct material	₹ 1,800	₹ 300	₹ 100	₹ 2,200
Direct wages	₹ 100	₹ 200	₹ 100	₹ 400
Direct expenses	₹ 300	-	₹ 200	₹ 500

Production overhead incurred is 800 and is covered @ 200% of direct wages.

Production during the period was 100 kg.; there were no opening or closing stocks.

Prepare process cost accounts assuming there is no process loss.

SOLUTION:

Dr. Process I A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Direct Materials	100	1800	By Process II (Transfer)	100	2400
			(100 Units x ₹ 24)		
To wages		100			
To Direct Expenses		300			
To Production overhead		200			
(200% of direct wages)					
	100	2400		100	2400

Cost per kg of process I output = $\frac{\text{Total cost - Normal Loss Scrap Income}}{\text{Input - Normal Loss units}}$

= ₹ 2400 ÷ 100 Units = ₹ 24 Per Kg

Dr. Process II A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process I	100	2400	By Process III	100	3300
			(Transfer)		
			(100 Units x ₹ 33)		

To Direct Materials	-	300		
To wages	-	200		
To Direct Expenses	-	-		
To Production overhead	-	400		
(200% of direct wages)				
	100	3300	100	3300

Cost per kg of process II output = Total cost - Normal Loss Scrap Income

Input - Normal Loss units

= ₹ 3300 ÷ 100 Units = ₹ 33 Per Kg

Dr.

Process III A/c

Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process II	100	3300	By Finished Goods A/c	100	3900
			(100 Units x ₹ 39)		
To Direct Materials	-	100			
To wages	-	100			
To Direct Expenses	-	200			
To Production overhead	-	200			
(200% of direct wages)					
	100	3900		100	3900

Total cost - Normal Loss Scrap Income Cost per kg of process III output = Input - Normal Loss units

= ₹ 3900 ÷ 100 Units = ₹ 39 Per Kg

PROBLEM - 1A: (MTP 2 MAY 24)

The product of a manufacturing concern passes through two processes A and B and then to finished stock. The details of expenses incurred on the two processes during the year were as under:

	Process A (₹)	Process B (₹)
Materials	40,000	
Labour	40,000	56,000
Overheads	16,000	40,000

On completion, the output of Process A is transferred to Process B at a price calculated to give a profit of 20% on the transfer price and the output of Process B is charged to

finished stock at a profit of 25% on the transfer price. The finished stock department realized ₹4,00,000 for the finished goods received from Process B.

You are asked to SHOW process accounts and total profit, assuming that there was no opening or closing work-in-progress.

SOLUTION:

Dr. Process A A/c Cr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Materials	40,000	By Transfer to Process B	1,20,000
		A/c	
To Labour	40,000		
To Overheads	16,000		
	96,000		
To Profit (20% of transfer price,			
i.e., 25% of cost)	24,000		
	1,20,000		1,20,000

Dr. Process B A/c Cr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Transferred from	1,20,000	By Transfer to Finished Stock	
Process A A/c		A/c	2,88,000
To Labour	56,000		
To Overhead	40,000		
	2,16,000		
To Profit (25% of transfer price i.e., 33.33% of cost)	72,000		
	2,88,000		2,88,000

Statement of Total Profit

Particulars	Amount (₹)
Profit from Process A	24,000
Profit from Process B	72,000
Profit on Sales (₹ 4,00,000 - ₹ 2,88,000)	1,12,000
Total Profit	2,08,000

PROBLEM - 2:

Product B is obtained after it passes through three distinct processes. The following information is obtained from the accounts for the week ending May 12, 20×1 :

ITEMS		TOTAL			
TICMO	I	II	III	IOIAL	
Direct material	₹ 2,600	₹ 1,980	₹ 2,962	₹ 7,542	
Direct wages	₹ 2,000	₹ 3,000	₹ 4,000	₹ 9,000	
Production overhead				₹ 9,000	

^{1,000} units @ ₹ 3 each were introduced to process I.

There was no stock of materials or work-in-process at the beginning or end of the period. The output of each process passes direct to the next process and finally to finished stores. Production overhead is recovered on 100% of direct wages.

The following additional data are obtained:

UNIT	Output during the week	Percentage of normal loss to input	Value of scrap per unit	
Process I	950 units	5%	2	
Process II	840 units	10%	4	
Process III	750 units	15%	5	

Prepare process cost accounts and abnormal gain or loss accounts.

SOLUTION:

Dr. Process I A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Input	1000	3000	By Normal Loss Scrap	50	100
			Income (₹ 2)		
To Direct Materials	-	2600	By Process - II	950	9500
			(950 units $x \neq 10$)		
To Direct Wages	-	2000			
To Production Overhead	-	2000			
(100% of Direct Wages)					
	1000	9600		1000	9600

Actual Loss = 1000 Units - 950 Units = 50 Units

Normal Loss = $1000 \text{ Units } \times 5\% = 50 \text{ Units}$

Cost per kg of process I output = $\frac{\text{Total cost - Normal Loss Scrap Income}}{\text{Input - Normal Loss units}}$

 $\frac{$₹9600 - (50 \text{ Units } x ₹ 2)}{1000 \text{ Units} - 50 \text{ Units}} = $₹10 \text{ Per Unit}$

Dr. Process II A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process I	950	9500	By Normal Loss Scrap	95	380
			Income @ ₹ 4		
To Direct Materials	-	1980	By Process - III	840	16800
			(840 Units ₹ 20)		
To Direct Wages	-	3000	By Abnormal Loss (₹ 20)	15	300
To Production Overhead	-	3000			
(100% of Direct Wages)					
	950	17480		950	17480

Actual Loss = 950 Units - 840 Units = 110 Units

Normal Loss = 950 Units \times 10 % = 95 Units

Abnormal Loss = 110 Units - 95 Units = 15 Units

Cost per kg of process II output = $\frac{\text{Total cost - Normal Loss Scrap Income}}{\text{Input - Normal Loss units}}$

 $\frac{₹ 17480 - (95 \text{ Units } x ₹ 4)}{950 \text{ Units} - 95 \text{ Units}} = ₹ 20 \text{ Per Unit}$

Dr. Process III A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process II	840	16800	By Normal Loss Scrap	126	630
			Income @ ₹ 5		
To Direct Materials		2962	By Finished Goods	750	28500
To Direct Wages		4000			
To Production Overhead		4000			
(100% of Direct Wages)					
To Abnormal Gain	36	1368			
	876	29130		876	29130

Actual Loss = 840 Units - 750 Units = 90 Units

Normal Loss = 840 Units x 15 % = 126 Units

Abnormal Gain = 126 Units - 90 Units = 36 Units

Cost per kg of process III output = $\frac{\text{Total cost - Normal Loss Scrap Income}}{\text{Input - Normal Loss units}}$

 $\frac{₹ 27762 - (126 \text{ Units } x ₹ 5)}{840 \text{ Units } - 126 \text{ Units}} = ₹ 38 \text{ Per Unit}$

Dr.

Normal Loss Scrap Income A/c

Cr.

Particulars	Amount	Particulars	Amount
	(₹)		(₹)
To Process - I	100	By Bank A/c	100
To Process - II	380	By Bank A/c	380
To Process - III	630	By Bank A/c (90 x ₹ 5)	450
(126 Hours x ₹ 5)			
		By Abnormal gain (36 x ₹ 5)	180
	1110		1110

Dr.

Abnormal Loss A/c c

Cr.

Particulars	Amount	Particulars	Amount
	(₹)		(₹)
To Process - II	300	By Bank A/c (15 x ₹ 4)	60
		By Costing Profit and Loss A/c	240
	300		300

Dr.

Abnormal Gain A/c

Cr.

Particulars	Amount	Particulars	Amount
	(₹)		(₹)
To Normal Loss Scrap Income	180	By Process III (36 x ₹ 38)	1368
(36 Units x ₹ 5)			
To Costing Profit and Loss A/c	1188		
	1368		1368

PROBLEM - 2A:

RST Limited processes Product Z through two distinct processes – Process– I and Process– II.

On completion, it is transferred to finished stock. From the following information for the current year, PREPARE Process- I, Process- II and Finished Stock A/c:

Particulars	Process- I	Process- II
Raw materials used	7,500 units	
Raw materials cost per unit	₹ 60	

Transfer to next process/finished	7,050 units	6,525 units
stock		
Normal loss (on inputs)	5%	10%
Direct wages	₹ 1,35,750	₹ 1,29,250
Direct Expenses	60% of Direct wages	65% of Direct wages
Manufacturing overheads	20% of Direct wages	15% of Direct wages
Realizable value of scrap per unit	₹ 12.50	₹ 37.50

6,000 units of finished goods were sold at a profit of 15% on cost. Assume that there was no opening or closing stock of work-in-process.

SOLUTION:

Dr. Process-IA/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Raw material used	7,500	4,50,000	By Normal loss	375	4,688
(₹ 60 × 7,500 units)			(5% of 7,500 units) ×		
To Direct wages		1,35,750	₹ 12.5	7,050	6,82,403
To Direct expenses		81,450	By Process- II A/c		
To Manufacturing			(₹ 96.7947 × 7,050 units)	75	7,259
overhead		27,150	By Abnormal loss		
	7,500	6,94,350	(₹ 96. 7947 × 75 units)	7,500	6,94,350

Cost per unit of completed units and abnormal loss:

Total cost - Realisable value from normal loss
Inputs units - Normal loss units

 $\frac{\text{₹}6,94,350 - \text{₹}4,688}{7,500 \text{ units} - 375 \text{ units}} = \frac{\text{₹}6,89,662}{7,125 \text{ units}} = \text{₹}96.7947$

Dr. Process- II A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process- I A/c	7,050	6,82,403	By Normal loss	705	26,438
			(10% of 7,050 units) ×		
			₹ 37.5		
To Direct wages		1,29,250	By Finished Stock A/c	6,525	9,13,824
			(₹ 140.0496 × 6,525		
			units)		

To Direct expenses		84,013		
To Manufacturing		19,387		
overhead				
To Abnormal gain	180	25,209		
(₹ 140.0496 × 180				
units)				
	7,230	9,40,262	7,230	9,40,262

Cost per unit of completed units and abnormal loss:

Total cost - Realisable value from normal loss

Inputs units - Normal loss units

 $\frac{\text{₹ 9,15,053 - ₹ 26,438}}{\text{7,050 units - 705 units}} = \frac{\text{₹ 8,88,615}}{\text{6,345 units}} = \text{₹ 140.0496}$

Dr.

Finished Goods Stock A/c

Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Process II A/c	6,525	9,13,824	By Cost of Sales (₹ 140.0496 × 6,000 units) By Balance c/d	6,000 525	8,40,298 73,526
	6,525	9,13,824		6,525	9,13,824

Dr.

Income Statement

Cr.

Particulars	Amount	Particulars	Amount
	(₹)		(₹)
To Cost of sales	8,40,298	By Abnormal gain	18,459
(₹ 140.0496 × 6,000 units)		{180 units × (₹ 140.0496 -	
		₹ 37.50)}	
To Abnormal loss	6,322	By Sales (₹ 8,40,298 × 115%)	9,66,343
{75 units × (₹ 96.7947 - ₹ 12.50)}			
To Net Profit	1,38,182		
	9,84,802		9,84,802

PROBLEM - 3:

In Process I, 1,000 units were introduced during January and 200 units, 40% complete in all respects remained as closing work-in-progress at the end of the month. Compute

the equivalent production and obtain the cost of closing work-in-progress if the total process cost during the period were ₹ 1,760.

SOLUTION:

Step 1: Statement Of Equivalent Units

Input		Output		Equivalent units		
Particulars	Units	Particulars	Units	%	Units	
Input	1000	Completed	800	100 %	800	
		WIP	200	40 %	80	
	1000		1000		880	

Step 2: Statement of cost per Equivalent unit

Particulars	Cost (₹)	Equivalent Units	Cost per Equivalent
			Units
Total cost	1760	880	₹ 2 Per Unit

Step 3: Statement of Apportionment of Cost

Units Completed and transferred to Process II:

800 Units x ₹ 2 = ₹ 1600

Closing W I P:

80 Units x ₹ 2 = ₹ 160

Total = ₹ 1760

Step 4:

Dr. Process - I A/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Input	1000	1760	By Process II	800	1600
			By Balance c/d	200	160
	1000	1760		1000	1760

PROBLEM - 3A:

An English willow company who manufactures cricket bat buys wood as its direct material. The Forming department processes the cricket bats and the cricket bats are then transferred to the Finishing department where stickers are applied. The Forming department began manufacturing 10,000 initial bats during the month of December for the first time and their cost is as follows:

Direct material: ₹ 33,000

Conversion costs: ₹ 17,000

Total ₹ 50,000

A total of 8,000 cricket bats were completed and transferred to the Finishing department, the rest 2,000 were still in the Forming process at the end of the month. All of the forming departments direct material were placed, but, on average, only 25% of the conversion costs was applied to the ending work in progress inventory.

CALCULATE:

- i. Equivalent units of production for each cost.
- ii. The Conversion cost per Equivalent units.
- iii. Cost of closing work in process (WIP) and finished products.

SOLUTION:

Calculation Of Equivalent Units Of Production:

Input	Units	Output Particulars	Units	Equivalent Units			
Details				Material		Conver	sion cost
				%	Units	%	Units
Unit	10,000	Finished output	8,000	100	8,000	100	8,000
Introduced							
		Closing W-I-P	2,000	100	2,000	25	500
Total	10,000	Total	10,000		10,000		8,500

Calculation Of Cost Per Equivalent Unit

Particulars	Direct Material	Conversion costs
A. Total cost (₹)	33,000	17,000
B. Equivalent units	10,000	8,500
C (A ÷ B) Cost per equivalent unit (₹)	3.30	2.00

The Cost Of Closing Work In Process (WIP):

Costs	Equivalent Units	Rate (₹)	Total Cost (₹)
A. Direct Material	2,000	3.30	6,600
B. Conversion Costs	500	2.00	1,000
C. (A ÷ B) Total			7,600

The Cost Of Finished Products:

Costs	Equivalent Units	Rate (₹)	Total Cost
			(₹)
A. Direct Material	8,000	3.30	26,400
B. Conversion Costs	8,000	2.00	16,000

C. (A ÷ B) Total	42,400
------------------	--------

PROBLEM - 4

In Process I Opening work-in-progress in February 20x1 was 200 units 40% complete.

1,050 units were introduced during the period, 1,100 completed units were transferred in Process II and 150 units remained as closing work-in-progress 70% complete.

Compute equivalent production and apportion the total process costs of ₹ 2,250 to production and work-in-progress inventories under the FIFO method.

NOTE: The cost of Opening work-in-progress b/f is ₹ 500/-

SOLUTION:

Step 1: Statement of Equivalent units (FIFO Method)

Input		Output	Equivalent units		
Particulars	Units	Particulars	Units	%	Units
Opening W I P	200	Opening W I P completed	200	60%	120
Introduced	1050	Introduced completed	900	100%	900
		Closing W I P	150	70%	105
	1250		1250		1125

Step 2: Statement of cost per Equivalent unit

Particulars	Cost (₹)	Equivalent Units	Cost per Equivalent
			Units
Total cost	2250	1125	₹ 2 Per Unit

Step 3: Statement of Apportionment

A. Completed Units

- (i) Introduced & Completed (900 Units $x \neq 2$) = \neq 1800
- (ii) Opening W I P completed

- Current period cost (120 Units $x \neq 2$) = ₹ 240

- Previous period cost (Given) = ₹ 500

₹ 2540

B. Closing W I P (105 Units $x \neq 2$) = $\neq 210$

Step 4:

Dr. Process-IA/c Cr.

Particulars	Units	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Opening W I P	200	500	By Process II	1100	2540

To Input	1050	2250	By Closing W I P	150	210
	1250	2750		1250	2750

PROBLEM - 5

In process A, there was an opening work-in-progress of 100 units 40% complete and closing work-in-progress was 1,100 units 70% complete. Units introduced during the month of January were 11,000 units and completed units transferred to process B were 8,600 units. The normal loss was 10% of production. Compute equivalent production & apportion the total process costs of ₹ 29,190 to production, abnormal loss and work-in-progress.

Note: Cost of Opening WIP b/f is ₹ 1,000/-

SOLUTION:

- a) Actual Loss (100 Units + 11000 Units 8600 Units 1100 Units) = 1400 Units
- b) Normal Loss (10% of Production) = 10% on (100 Units + 11000 Units 1100 Units) = 1000 Units
- c) Abnormal Loss (a b) = 400 Units

Step 1: Statement of Equivalent units (FIFO)

Input		Output	Equivalent units		
Particulars	Units	Particulars	Units	%	Particulars
Opening W I P	100	Opening WIP completed	100	60%	60
Introduced	11000	Introduced and completed	8500	100%	8500
		Closing WIP	1100	70%	770
		Normal Loss	1000	-	-
		Abnormal Loss	400	100%	400
	11100		11100		9730

Step 2: Statement of cost per Equivalent unit

Particulars	Cost (₹)	Equivalent Units	Cost per Equivalent
			Units
Total cost	29190	9730	₹3 Per Unit

Step 3: Statement of Apportionment

A. Completed Units

- (i) Introduced & Completed (8500 Units $x \neq 3$) = \neq 25500
- (ii) Opening W I P completed
 - Current period cost (60 Units $x \neq 3$) = $\neq 180$

Previous period cost (Given) = ₹ 1000

₹ 26680

B. Closing W I P (770 Units $x \neq 3$) = $\neq 2310$

C. Abnormal Loss (400 Units $x \neq 3$) = $\neq 1200$

Step 4:

Dr. Process-IA/c Cr.

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening	100	1000	By Normal Loss Scrap	1000	-
WIP			Income		
To Input	11000	29190	By Process B	8600	26680
			By Closing W I P	1100	2310
			By Abnormal Loss	400	1200
	11100	30190		11100	30190

PROBLEM - 6

The following data are available in respect to Process I for February 20x1: -

Opening work-in-progress	900 units at ₹ 4,500
Degree of Completion	Materials 100%, Labour 60%, Overhead 60%
Input of materials	9,100 units ₹ 27,300
Direct wages	₹ 8,200
Production overhead	16,400
Units scrapped	1,200 units
Degree of Completion	Material 100%, Labour & Overhead 70%
Closing work-in- progress	1,000 units
Degree of Completion	Materials 100%, Labour 80%, Overhead 80%
Units transferred to next process	7,800 units

Normal process loss is 10% of total input (opening stock plus units put in). The scrap value is ₹ 3 per unit.

You are required to

- a. Compute equivalent production;
- b. Cost per equivalent unit for each element and cost of abnormal losses, closing work-in-progress and units transferred to next process; and
- c. Prepare process accounts.

SOLUTION:

Working Note: Calculation of Normal and Abnormal Loss:

Actual Loss (Given) = 1200 Units

Normal Loss = 10% of Production = 10% (900 Units + 9100 Units) = 1000 Units

Abnormal Loss = 200 Units (Balancing Figure)

Step 1: Statement of equivalent units (FIFO)

				Equivalent units						
Inpu	Input		Output		Materials		Labour		Overheads	
				%	Units	%	Units	%	Units	
Opening	900	Opening W I P	900	0%	0	40%	360	40%	360	
WIP	Units	completed	Units							
Introduced	9100	Introduced	6900	100%	6900	100%	6900	100%	6900	
	Units	completed	Units							
		Closing W I P	1000	100%	1000	80%	800	80%	800	
			Units							
		Normal Loss	1000	-	-	-	-	-	-	
			Units							
		Abnormal Loss 200		100%	200	70%	140	70%	140	
		Units								
	10000		10000		8100		8200		8200	

Step 2: Statement of cost per Equivalent unit

Particulars	Particulars Cost (₹)		Cost per Equivalent
			Units
Material	= 27300 - 3000	8100	₹ 3 Per Unit
	= 24300		
Labour	8200	8200	₹1 Per Unit
Overheads	16400	8200	₹ 2 Per Unit
		Total Cost	₹ 6 Per Unit

Note: Normal Loss Scrap Income - 1000 Units $x \neq 3 = \neq 3000$

Step 3: Statement of Apportionment

A. Completed Units

- (i) Introduced & Completed (6900 Units $x \neq 6$) = $\neq 41400$
- (ii) Opening W I P completed
 - Current period cost

Labour (360 Units $x \neq 1$) = \neq 360

Overheads (360 Units $x \neq 2$) = $\neq 720$

- Previous period cost (Given) = ₹ 4500

₹ 46980

B. Closing WIP

Material (1000 Units x ₹ 3) = ₹ 3000

Labour (800 Units $x \neq 1$) = \neq 800

Overheads (800 Units $x \neq 2$) = \neq 1600

= ₹ 5400

C. Abnormal Loss

Material (200 Units $x \neq 3$) = $\neq 600$

Labour (140 Units $x \neq 1$) = \neq 140

Overheads (140 Units $x \neq 2$) = \neq 280

= ₹ 1020

Step 4:

Dr. Process-IA/c Cr.

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening	900	4500	By Normal Loss Scrap	1000	3000
WIP			Income		
To Material	9100	27300	By Process II	7800	46980
To Labour		8200	By Closing WIP	1000	5400
To Overheads		16400	By Abnormal Loss	200	1020
	10000	56400		10000	56400

PROBLEM - 6A:

A company produces a component, which passes through two processes. During the month of April, materials for 40,000 components were put into Process I of which 30,000 were completed and transferred to Process II. Those not transferred to Process II were 100% complete as to materials cost and 50% complete as to Labour and overheads cost.

The Process I costs incurred were as follows:

Direct material ₹15,000

Direct wages ₹18,000

Factory overheads ₹12,000

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process

II. There were 1,800 units, remained unfinished in the process with 100% complete as to materials and 25% complete as regard to wages and overheads.

No further process material costs occur after introduction at the first process until the end of the second process, when protective packing is applied to the completed components. The process and packing costs incurred at the end of the Process II were:

Packing materials ₹4,000

Direct wages ₹3,500

Factory overheads ₹4,500

Required:

- i. PREPARE Statement of Equivalent Production, Cost per unit and ProcessI A/c.
- ii. PREPARE Statement of Equivalent Production, Cost per unit and ProcessII A/c.

SOLUTION:

(i) Process I - Statement of Equivalent Production

Particulars	Completed		Closing stock of WIP				
	Units	Units	Units % of		Production		
			Completion	Units	units		
	(1)			(2)	(1) + (2)		
Material	30,000	10,000	100%	10,000	40,000		
Wages	30,000	10,000	50%	5,000	35,000		
Overhead	30,000	10,000	50%	5,000	35,000		

Process I

Particulars	Process	Equivalent	Process	WIP stock	Cost of	Transfer
	Cost	Production	Cost Per	Equivalent	WIP	to
	(₹)	(units)	Unit	units	Stock (₹)	Process
			(2) ÷ (3)		$(4) \times (5)$	II
						(2)-(6)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Material	15,000	40,000	0.375	10,000	3,750	11,250
Wages	18,000	35,000	0.514	5,000	2,570	15,430
Overhead	12,000	35,000	0.343	5,000	1,715	10,285
	45,000				8,035	36,965

Dr. Process- I A/c Cr.

Particulars	Unit	Amount	Particulars	Units	Amount
		(₹)			(₹)
To Direct material	40,000	15,000	By Process II A/c	30,000	36,965
To Direct wages		18,000	By Closing W-I-P	10,000	8,035
To Factory overhead		12,000			
	40,000	45,000		40,000	45,000

(ii) Process II - Statement of Equivalent Production

Particulars	Completed		Closing stock of	Equivalent	
	Units	Units	% of	Equivalent	Production units
			Completion	Units	
	(1)			(2)	(1) + (2)
Material	28,000	1,800	100%	1,800	29,800
Wages	28,000	1,800	25%	450	28,450
Overhead	28,000	1,800	25%	450	28,450

Process II

Particulars	Process Cost (₹)	Equivalent Production (units)	Process Cost Per Unit (2)÷(3)	WIP stock Equivalent units	Cost of WIP Stock (₹)	Transfer to Finished Stock (2)-(6)		
(4)	(2)	(2)	(4)	(E)	(4) × (5)	(7)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Material	36,965	29,800	1.240	1,800	2,232	34,733		
Wages	3,500	28,450	0.123	450	55	3,445		
Overhead	4,500	28,450	0.158	450	71	4,429		
	44,965				2,358	42,607		
Add: Packing	4,000							
Cost of Finis	Cost of Finished Stock							

Dr. Process- II A/c Cr.

Particulars		Units	Amount	Particulars	Units	Amount
			(₹)			(₹)
To Proces	s I	30,000	36,965	By Finished Stock	28,000	46,607
To Direct	wages		3,500	By Normal loss	200	
То	Factory		4,500	By WIP stock	1,800	2,358

overhead				
To Packingcharges		4,000		
	30,000	48,965	30,000	48,965

PROBLEM - 7:

From the following information for May 20×1 , prepare the process cost accounts for Process III:

Opening stock in process	500 units at	₹ 7,200
Transfer from Process II	21,300 units	₹ 1,65,400
Direct materials added in Process III		₹ 80,360
Direct wages		₹ 39,620
Production overhead		₹ 19,810
Units scrapped during the period		1,100 units
Transferred to Process IV		18900 units
Closing stock		1,800 units

Degree of completion:

PARTICULARS	OPENING	CLOSING	SCRAP
	STOCK	STOCK	
Material	70%	80%	100%
Labour	50%	60%	80%
Overhead	50%	60%	80%

There was a normal loss of 5% of production and units scrapped were sold at ₹ 3 each.

SOLUTION:

Working Note: Calculation of Normal and Abnormal Loss:

Actual Loss (Given) = 1100 Units

Normal Loss = 5% on (500 Units + 21300 Units - 1800 Units) = 1000 Units

Abnormal Loss = 100 Units

Step 1: Statement Of Equivalent Units (FIFO)

Input	Input Output Equiva			Equivale	ent Units				
				Transfer in Mater		terial	ial Labour and		
				Mat	terial			Overheads	
Particulars	Units	Particulars	Units	%	Units	%	Units	%	Units
Opening	500	Opening	500	0%	0	30%	150	50%	250
WIP		WIP							
		completed							
Introduced	21300	Introduced	18400	100%	18400	100%	18400	100%	18400
		and							
		completed							
		Closing W I P	1800	100%	1800	80%	1440	60%	1080
		Normal Loss	1000	-	-	-	-	-	-
		Abnormal	100	100%	100	100%	100	80%	80
		Loss							
	21800		21800		20300		20090		19810

Step 2: Statement of cost per Equivalent unit

Particulars	Cost (₹)	Equivalent Units	Cost per Equivalent
			Units
Transfer in Material	162400	20300	₹8 Per Unit
Material	80360	20090	₹4 Per Unit
Labour	39620	19810	₹2 Per Unit
Overheads	19810	19810	₹1 Per Unit
		Total Cost	₹ 15 Per Unit

Note: Transfer in Material = Total Cost - Normal Loss Scrap Income

=₹ 165400 $- (1000 \times$ ₹ 3) =₹ 162400

Step 3: Statement of Apportionment

A. Completed Units

(i) Introduced & Completed (18400 Units $x \neq 15$) = $\neq 276000$

(ii) Opening W I P completed

- Current period cost

Material (150 Units $x \neq 4$) = $\neq 600$

Labour (250 Units $x \neq 2$) = $\neq 500$

Overheads (250 Units $x \neq 1$) = \neq 250

- Previous period cost (Given) = ₹ 7200

₹ 284550

B. Closing WIP

Transfer in Material (1800 Units $x \neq 8$) = \neq 14400

Material (1440 Units $x \neq 4$) = $\neq 5760$

Labour (1080 Units $x \neq 2$) = $\neq 2160$

Overheads (1080 Units $x \neq 1$) = $\neq 1080$

= ₹ 23400

C. Abnormal Loss

Transfer in Material (100 Units $x \neq 8$) = $\neq 800$

Material (100 Units $x \neq 4$) = $\neq 400$

Labour (80 Units $x \neq 2$) = $\neq 160$

Overheads (80 Units $x \neq 1$) = \neq 80

= ₹ 1440

Step 4:

Dr. Process- III A/c

Cr.

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening	500	7200	By Normal Loss Scrap	1000	3000
WIP			Income		
To Process II	21300	165400	By Process IV	18900	284550
To Material		80360	By Closing WIP	1800	23400
To Labour		39620	By Abnormal Loss	100	1440
To Overheads		19810			
	21800	312390		21800	312390

Dr.

Abnormal Loss A/c

Cr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Process III	1440	By Bank	300
		By Costing Profit and Loss, A/c	1140
	1440		1440

PROBLEM - 8

From the following information during a period prepare process cost accounts for Process

Opening WIP in Process III	800 units at	₹ 10,300
Transfer from process II	21200 units at	₹ 1,64,600
Transferred to Process IV	19200 units	
Closing WIP of process III	2000 units	
Units scrapped	800 units	
Direct material added in Process III	79,040	
Direct wages	₹ 39,040	
Production overhead	19,520	

Degree of completion:

PARTICULARS	OPENING STOCK	CLOSING STOCK	SCRAP
Material	80%	70%	100%
Labour	60%	50%	70%
Overhead	60%	50%	70%

The normal loss in the process was 5% of the production and scrap was sold @ ₹ 3 per unit.

SOLUTION:

Working Note: Calculation of Normal Loss and Abnormal Gain:

Actual Loss (Given) = 800 Units

Normal Loss = 5% on (800 Units + 21200 Units - 2000 Units) = 1000 Units

Abnormal Gain = 200 Units

Step 1: Statement of Equivalent units (FIFO)

Input	•	Output	•	Equivalent Units			3		
				Trans	sfer in	Material		Labo	ur and
				Mat	Material			Over	heads
Particulars	Units	Particulars	Units	%	Units	%	Units	%	Units
Opening	800	Opening	800	0%	0	20%	160	40%	320
WIP		WIP							
		completed							
Introduced	21200	Introduced	18400	100%	18400	100%	18400	100%	18400
		completed							
		Closing W I P	2000	100%	2000	70%	1400	50%	1000

	Normal Loss	1000	-	-	-	-	-	-
	Abnormal	(200)	100%	(200)	100%	(200)	100%	(200)
	Gain							
220	000	22000		20200		19760		19520

Step 2: Statement of cost per Equivalent unit

Particulars	Cost (₹)	Equivalent Units	Cost per Equivalent
			Units
Transfer in Material	161600	20200	₹8 Per Unit
Material	79040	19760	₹4 Per Unit
Labour	39040	19520	₹2 Per Unit
Overheads	19520	19520	₹1 Per Unit
		Total Cost	₹ 15 Per Unit

Note: Transfer in Material = Total Cost - Normal Loss Scrap Income

=₹ 164600 - (1000 \times ₹ 3) = ₹ 161600

Step 3: Statement of Apportionment

A. Completed Units

- (i) Introduced & Completed (18400 Units $x \neq 15$) = $\neq 276000$
- (ii) Opening W I P completed
 - Current period cost

Material (160 Units $x \neq 4$) = $\neq 640$

Labour (320 Units $x \neq 2$) = $\neq 640$

Overheads (320 Units $x \neq 1$) = \neq 320

- Previous period cost (Given) = ₹ 10300

₹ 287900

B. Closing WIP

Transfer in Material (2000 Units $x \neq 8$) = \neq 16000

Material (1400 Units $x \neq 4$) = $\neq 5600$

Labour (1000 Units $x \neq 2$) = \neq 2000

Overheads (1000 Units $x \notin 1$) = \notin 1000

= ₹ 24600

D. Abnormal Gain (200 Units $x \neq 15$) = $\neq 3000$

Step 4:

Dr. Process III Cr.

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening	800	10300	By Normal Loss Scrap	1000	3000
WIP			Income		
To Process II	21200	164600	By Process IV	19200	287900
To Material		79040	By Closing WIP	2000	24600
To Labour		39040			
To Overheads		19520			
To Abnormal Gain	200	3000			
	22200	315500		22200	315500

Dr. Normal Loss Scrap Income A/c Cr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Process III	3000	By Bank (800 Units x ₹ 3)	2400
		By Abnormal Gain	600
	3000		3000

Dr. Abnormal Gain A/c Cr.

Particulars	Amount (₹)	Particulars	Amount (₹)
To Normal Loss Scrap	600	By Process III	3000
Income (200 x ₹ 3)			
To Costing Profit and	2400		
Loss A/c			
	3000		3000

PROBLEM - 8A: (RTP MAY 24)

The following data are available in respect of Process-I for January 2024:

- a) Opening stock of work in process: 600 units at a total cost of ₹ 4,200.
- b) Degree of completion of opening work in process:

Material 100%

Labour 60% Overheads 60%

- c) Input of materials at a total cost of ₹ 55,200 for 9,200 units.
- d) Direct wages incurred ₹ 18,600
- e) Overheads ₹ 8,630.

f) Units scrapped 200 units. The stage of completion of these units was:

Materials 100%

Labour 80%

Overheads 80%

g) Closing work in process; 700 units. The stage of completion of these units was:

Material 100% Labour 70% Overheads 70%

- h) 8,900 units were completed and transferred to the next process.
- i) Normal loss is 4% of the total input (opening stock plus units put in)
- j) Scrap value is ₹ 6 per unit. You are required to:
- i) PREPARE using FIFO method, Statement of equivalent production,
- ii) PREPARE Statement of cost,
- iii) CALCULATE cost of closing WIP,
- iv) CALCULATE the cost of the units to be transferred to the next process.

SOLUTION:

Statement of Equivalent Production (FIFO Method)

Input		Output		Equivalent Production					
				Materials		Lo	abour Over		rheads
Details	Units	Details	Units	%	Units	%	Units	%	Units
Opening	600	Finished goods							
Stock		Transferred to next process:							
		-From opening stock	600	-	-	40	240	40	240
		-From fresh materials	8,300	100	8,300	100	8,300	100	8,300
Fresh inputs	9,200	Closing W-I-P	700	100	700	70	490	70	490
		Normal loss	392	-	-	-	-	-	-
			9,992		9,000		9,030		9,030
			(192)	100	(192)	100	(192)	100	(192)
	9,800	Less: Abnormal Gain	9,800		8,808		8,838		8,838

Statement of Cost per equivalent units

Elements	(₹)	Cost	Equivalent	Cost per
		(₹)	units	equivalent
				Unit
				(₹)
Material Cost	55,200			
Less: Scrap realisation	2,352	52,848	8,808	6
392 units @ ₹ 6 Per Unit.				
Labour cost		18,600	8,838	2.10
Overheads		8,630	8,838	0.98
Total Cost		80,078		9.08

Cost of Abnormal Gain - 192 Units

Particulars	(₹)	(₹)
Material cost of 192 units @ ₹ 6.00 Per Unit	1,152.00	
Labour cost of 192 units @ ₹ 2.10 Per Unit	403.20	
Overheads of 192 units @ ₹ 0.98 Per Unit	188.16	1,743.36

Cost of closing WIP - 700 Units

Material cost of 700 equivalent units @ ₹ 6.00 Per Unit	4,200.00	
Labour cost of 490 equivalent units @ ₹2.10 Per Unit	1,029.00	
Overheads of 490 equivalent @ ₹ 0.98 Per Unit	480.20	5709.20

Calculation of cost of 8,900 units transferred to next process

(₹)

(i) Cost of opening W-I-P Stock Balance Figure - 600 units 4,200.00

(ii) Cost incurred on opening W-I-P stock

Material cost —

Labour cost 240 equivalent units @ ₹ 2.10 Per Unit 504.00

Overheads 240 equivalent units @ ₹ 0.98 Per Unit 235.20

739.20

(iii) Cost of 8,300 completed units

8,300 units @ ₹ 9.08 Per Unit 75,364.00

Total cost [(i) + (ii) + (iii)] 80,303.20

PROBLEM - 9

From the following information during a period prepare process cost account for Process I by Average method:

	20,000 units	
Opening WIP:	Material	₹ 4,500
Opening WIT.	Wages	₹ 1,300
	Overhead	₹ 800
	80,000 units	
Units introduced:	Material	₹ 18,500
Omis introduced.	Wages	₹ 9,200
	Overhead	₹ 6,200

During the period 60,000 units were completed and transferred to Process II.

	40,000 units	Degree completion
Closing WIP:	Materials	100%
	Wages and overhead	25%

SOLUTION:

Step 1: Statement of Equivalent units

Inpu	Input		ut	Equivalent units			
Particulars	Units	Particulars	Units	Materials		Labour and	
						Over	heads
				%	Units	%	Units
Opening	20000	Completed	60000	100%	60000	100%	60000
WIP		and					
		transferred					
Introduced	80000	Closing	40000	100%	40000	25%	10000
		WIP					
	100000		100000		100000		70000

Step 2: Statement of cost per Equivalent unit

Particulars		Cost (₹)		Equivalent	Cost per
	Previous Period (₹)	Current Period (₹)	Total (₹)	Units	Equivalent Units
Material	4500	18500	23000	100000	₹ 0.23 Per Unit
Labour	1300	9200	10500	70000	₹ 0.15 Per Unit
Overheads	800	6200	7000	70000	₹ 0.10 Per Unit
				Total Cost	₹ 0.48 Per Unit

Step 3: Statement of Apportionment

A. Completed Units

(i) Introduced & Completed (60000 Units $x \neq 0.48$) = $\neq 28800$

B. Closing WIP

Material (40000 Units $x \neq 0.23$) = ₹ 9200

Labour (10000 Units $x \neq 0.15$) = $\neq 1500$

Overheads (10000 Units $x \neq 0.10$) = $\neq 1000$

= ₹ 11700

Step 4:

Dr. Process I A/c Cr.

Particulars	Units	Amount (₹)	Particulars	Units	Amount (₹)
To Opening WIP	20000	6600	By Process II	60000	28800
To Materials	80000	18500	By Closing WIP	40000	11700
To Labour	-	9200			
To Overheads	-	6200			
	100000	40500		100000	40500

PROBLEM - 9A:

Following details are related to the work done in Process-I by XYZ Company during the month of March:

	(₹)
Opening work-in process (2,000 units)	
Materials	80,000
Labour	15,000
Overheads	45,000
Materials introduced in Process-I (38,000 units)	14,80,000
Direct Labour	3,59,000
Overheads	10,77,000
Units scrapped: 3,000 units	
Degree of completion:	
Materials	100%
Labour and overheads	80%
Closing work-in process: 2,000 units	
Degree of completion:	
Materials	100%
Labour and overheads	80%

Units finished and transferred to Process-II: 35,000 units

Normal Loss:

5% of total input including opening work-in-process. Scrapped units fetch ₹ 20 per piece.

You are required to PREPARE using average method:

- i. Statement of equivalent production
- ii. Statement of cost
- iii. Statement of distribution cost, and
- iv. Process-I Account, Normal Loss Account and Abnormal Loss Account.

SOLUTION:

(i) Statement of Equivalent Production

Particulars	Input	Particulars	Output		Equivalent Production		
	Units		Units	Mo	Material		bour &
						Ove	rheads
				%	Units	%	Units
Opening WIP	2,000	Completed and transferred to Process-II	35,000	100	35,000	100	35,000
Units introduced	38,000	Normal Loss (5% of 40,000)	2,000				
		Abnormal loss (Balancing figure)	1,000	100	1,000	80	800
		Closing WIP	2,000	100	2,000	80	1,600
	40,000		40,000		38,000		37,400

Statement showing cost for each element

Particulars	Materials	Labour	Overhead	Total
	(₹)	(₹)	(₹)	(₹)
Cost of opening work-in-process	80,000	15,000	45,000	1,40,000
Cost incurred duringthe month	14,80,000	3,59,000	10,77,000	29,16,000
Less: Realisable Valueof normal scrap	(40,000)			(40,000)
(₹ 20 × 2,000 units)				
Total cost: (A)	15,20,000	3,74,000	11,22,000	30,16,000
Equivalent units: (B)	38,000	37,400	37,400	
Cost per equivalent unit: $(C) = (A \div B)$	40.00	10.00	30.00	80.00

Statement of Distribution of cost

	Amount (₹)	Amount (₹)
1. Value of units completed andtransferred		28,00,000
(35,000 units × ₹ 80)		
2. Value of Abnormal Loss:		
- Materials (1,000 units × ₹ 40)	40,000	
- Labour (800 units × ₹ 10)	8,000	
- Overheads (800 units × ₹ 30)	24,000	72,000
3. Value of Closing W-I-P:		

- Materials (2,000 units × ₹ 40)	80,000	
- Labour (1,600 units × ₹ 10)	16,000	
- Overheads (1,600 units × ₹ 30)	48,000	1,44,000

Dr. Process I A/c Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Opening W.I.P:			By Normal Loss	2,000	40,000
			(₹20 × 2,000		
			units)		
- Materials	2,000	80,000	By Abnormal	1,000	72,000
			loss		
- Labour		15,000	By Process-I A/c	35,000	28,00,000
- Overheads		45,000	By Closing WIP	2,000	1,44,000
To Materials	38,000	14,80,000			
introduced					
To Direct Labour		3,59,000			
To Overheads		10,77,000			
	40,000	30,56,000		40,000	30,56,000

Dr. Normal Loss A/c Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-I A/c	2,000	40,000	By Cost Ledger Control	2,000	40,000
	2,000	40,000		2,000	40,000

Dr. Abnormal Loss A/c Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-IA/c	1,000	72,000	By Cost Ledger Control A/c	1,000	20,000
			By Costing Profit &Loss		52,000
	1,000	72,000		1,000	72,000

PROBLEM - 9B:

'Healthy Sweets' is engaged in the manufacturing of jaggery. Its process involve sugarcane crushing for juice extraction, then filtration and boiling of juice along with some chemicals and then letting it cool to cut solidified jaggery blocks.

The main process of juice extraction (Process - I) is done in conventional crusher, which is then filtered and boiled (Process - II) in iron pots. The solidified jaggery blocks are then cut, packed and dispatched. For manufacturing 10 kg of jaggery, 100 kg of sugarcane is required, which extracts only 45 litre of juice.

Following information regarding Process - I has been obtained from the manufacturing department of Healthy Sweets for the month of January:

	(₹)
Opening work-in process (4,500litre)	
Sugarcane	50,000
Labour	15,000
Overheads	45,000
Sugarcane introduced for juice extraction (1,00,000 kg)	5,00,000
Direct Labour	2,00,000
Overheads	6,00,000
Abnormal Loss: 1,000 kg	1
Degree of completion:	
Sugarcane	100%
Labour and overheads	80%
Closing work-in process: 9,000litre	
Degree of completion:	
Sugarcane	100%
Labour and overheads	80%

Extracted juice transferred for filtering and boiling: 39,500litre (Consider mass of litre of juice equivalent to 1 kg)

You are required to PREPARE using average method:

- i. Statement of equivalent production,
- ii. Statement of cost,
- iii. Statement of distribution cost, and
- iv. Process-I Account.

SOLUTION:

Statement of Equivalent Production

	Input	Particulars	Output	Equivalen		Produ	ıction
Particulars	Units		Units	Sugarcane		Labour &	
						Ove	erheads
				%	Units	%	Units
Opening WIP	4,500	Completed and	39,500	100	39,500	100	39,500
		transferred to					
		Process					
		- II					
Units	1,00,000	Normal Loss (55%*	55,000				
introduced		of 1,00,000)					
		Abnormalloss	1,000	100	1,000	80	800
		ClosingWIP	9,000	100	9,000	80	7,200
	1,04,500		1,04,500		49,500		47,500

^{* 100} kg of sugarcane extracts only 45 litre of juice. Thus, normal loss = 100 - 45 = 55%

Statement showing cost for each element

Particulars	Sugarcane	Labour	Overhead	Total
	(₹)	(₹)	(₹)	(₹)
Cost of opening work-in-process	50,000	15,000	45,000	1,10,000
Cost incurred during themonth	5,00,000	2,00,000	6,00,000	13,00,000
Total cost: (A)	5,50,000	2,15,000	6,45,000	14,10,000
Equivalent units: (B)	49,500	47,500	47,500	
Cost per equivalent unit:	11.111	4.526	13.579	29.216
$(C) = (A \div B)$				

Statement of Distribution of cost

		Amount	Amount
		(₹)	(₹)
1.	Value of units completed and transferred		11,54,032
	(39,500 units × ₹ 29.216)		
2.	Value of Abnormal Loss:		
	- Sugarcane (1,000 units × ₹ 11.111)	11,111	
	- Labour (800 units × ₹ 4.526)	3,621	
	- Overheads (800 units × ₹ 13.579)	10,863	25,595

3.	Value of Closing W-I-P:		
	- Sugarcane (9,000 units × ₹ 11.111)	99,999	
	- Labour (7,200 units × ₹ 4.526)	32,587	
	- Overheads (7,200 units × ₹ 13.579)	97,769	2,30,355

Dr. Process-I A/c Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Opening			By NormalLoss	55,000	
W.I.P:					
- Sugarcane	4,500	50,000	By Abnormalloss	1,000	25,613
			₹ 25,595 + ₹ 18		
			(difference due to		
			approximation)		
- Labour		15,000	By Process-IIA/c	39,500	11,54,032
- Overheads		45,000	By Closing WIP	9,000	2,30,355
To Sugarcane	100,000	5,00,000			
introduced					
To Direct Labour		2,00,000			
To Overheads		6,00,000			
	104,500	14,10,000		104,500	14,10,000

PROBLEM - 9C: (MTP 2 SEP 24)

As demand for LED light increases, more entrepreneurs are coming into its manufacturing process. eLED Pvt. Ltd. is also one of the recently formed company whose main business is related to LED lights.

The company has extended its hand into various LED products like COB (Chip On Board) LEDs, SMD (Surface Mounted Device) LEDs, RGB LEDs, Flashing LEDs, Miniature LEDs, OLEDs, Filament Bulbs, etc.

However, at the beginning stage, the company has decided to only assemble the products and enter into manufacturing stage at later yea?

The details relating to the first process of mounting for the month of August are given below:

Opening Work-in-Process:	31,000 units
Material	₹12,40,000
Labour	₹2,32,500

Overheads	₹6,97,500
Introduction during the process:	5,89,000 units
Material	₹2,29,40,000
Labour	₹55,64,500
Overheads	₹1,66,93,500

The process involve some wastage as well. The management estimated a normal loss of 5% of total input including opening work-in-process which can be sold out for ₹20 per unit. However, the workers reported 46,500 units as scrapped in which 100% material was used along with 80% of Labour and overheads.

5,42,500 units were transferred for next process of soldering.

Some units were still in process and thus, shifted for the next month process of mounting. With 100% material used along with 80% labour and overheads, 31,000 units were shifted.

Following the average method of inventory, you are required to PREPARE:

- (i) Statement of cost showing cost per equivalent unit
- (ii) Statement of distribution cost
- (iii)Process Account (Mounting)
- (iv)Normal Loss Account and Abnormal Loss Account.

SOLUTION:

Statement of Equivalent Production

Particulars	Input	Particulars	Output	Equivalent Material		Produ	uction
	Units		Units			Labour & Overheads	
				%	Units	%	Units
Opening	31,000	Completed and	5,42,500	100	5,42,500	100	5,42,500
WIP		transferred to					
		Process (Soldering)					
Units	5,89,000	Normal Loss (5%	31,000				
introduced		of 6,20,000)					
		Abnormal loss	15,500	100	15,500	80	12,400
		(Balancing figure)					
		Closing WIP	31,000	100	31,000	80	24,800
	6,20,000		6,20,000		5,89,000		5,79,700

Statement showing cost for each element

Particulars	Materials	Labour	Overhead	Total
	(₹)	(₹)	(₹)	(₹)
Cost of opening work-in- process	12,40,000	2,32,500	6,97,500	21,70,000
Cost incurred during the month	2,29,40,000	55,64,500	1,66,93,500	4,51,98,000
Less: Realisable Value of normal				
scrap (₹ 20 × 31,000 units)	(6,20,000)			(6,20,000)
Total cost: (A)	2,35,60,000	57,97,000	1,73,91,000	4,67,48,000
Equivalent units: (B)	5,89,000	5,79,700	5,79,700	
Cost per equivalent unit:	40.00	10.00	30.00	80.00
$(C) = (A \div B)$				

Statement of Distribution of cost

		Amount (₹)	Amount (₹)
1.	Value of units completed and transferred		4,34,00,000
	(5,42,500 units × ₹ 80)		
2.	Value of Abnormal Loss:		
	- Materials (15,500 units × ₹ 40)	6,20,000	
	- Labour (12,400 units × ₹ 10)	1,24,000	
	- Overheads (12,400 units × ₹ 30)	3,72,000	11,16,000
3.	Value of Closing W-I-P:		
	- Materials (31,000 units × ₹ 40)	12,40,000	
	- Labour (24,800 units × ₹ 10)	2,48,000	
	- Overheads (24,800 units × ₹ 30)	7,44,000	22,32,000
Total	al		4,67,48,000

Dr. Process Account (Mounting)

Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Opening			By Normal Loss	31,000	6,20,000
W.I.P:			(₹20 × 31,000		
			units)		
- Materials	31,000	12,40,000	By Abnormal	15,500	11,16,000
			loss		
- Labour		2,32,500	By Process A/c	5,42,500	4,34,00,000
			(Soldering)		
- Overheads		6,97,500	By Closing WIP	31,000	22,32,000

To Materials	5,89,000	2,29,40,000		
introduced				
To Direct Labour		55,64,500		
To Overheads		1,66,93,500		
	6,20,000	4,73,68,000	6,20,000	4,73,68,000

Dr. Normal Loss A/c Cr.

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process	To Process 31,000 6,20,000 By Cost Ledger		By Cost Ledger	31,000	6,20,000
Account			Control A/c		
(Mounting)					
	31,000	6,20,000		31,000	6,20,000

Dr. Abnormal Loss A/c Cr.

Particulars	Units	(₹)	Particulars		Units	(₹)	
To Process Account	15,500	11,16,000	Ву	Cost	Ledger	15,500	3,10,000
(Mounting)			Control A/c				
			Ву	Costing	Profit &		8,06,000
			Loss A/c				
	15,500	11,16,000				15,500	11,16,000

PROBLEM - 10:

In a manufacturing unit, raw material passes through four processes I, II, III and IV and the output of each process is the input of the subsequent process. The loss in the four processes I, II, III, and IV are respectively 25%, 20%, 20% and 16 2/3% of the input. If the end product at the end of process IV is 40,000 kg., what is the quantity of raw material required to be fed at the beginning of Process I and the cost of same at ₹ 5 per kg.?

Find out also the effect of increase or decrease in the material cost of the end product for variation of every rupee in the cost of the raw material.

SOLUTION:

Part A: Calculation of process I input if process IV output is 40000 kg

Particulars	P1	P2	Р3	P4
Input	100	75	60	48
Output	75	60	48	40
	(100 × 75%)	(75 × 80%)	(60 × 80%)	(48 × 83.33%)

Input Output

100 Kgs 40 Kgs

1,00,000 kg (Balance Figure) 40000 kg

The Co should input 1,00,000 kg of raw materials to get 40000 kg as output

Cost of RM = 1,00,000 \times 5 = ₹ 5,00,000

Part B: Variability of end product due to raw materials cost variability:

RM cost per kg of output =
$$\frac{\text{Raw material Consumed}}{\text{Output}} \times \text{Raw Material Cost Per Kg}$$

$$= \frac{\text{Raw material cost per kg}}{40000 \text{ Kgs}} \times 100000 \text{ Kgs}$$

= Raw Material Cost Per Kg \times 2.5

For every \neq 1 Change in Raw Material Cost the finished goods cost changes by \neq 2.5.

Variability = Input ÷ Output = 100000 ÷ 40000 = 2.5

PROBLEM - 11:

A Ltd. produces product 'AXE' which passes through two processes before it is completed and transferred to finished stock. The following data relate to October 20x1:

			Finished
Particulars	Process- I	Process - II	Stock
Opening stock	₹ 7,500	₹ 9,000	₹ 22,500
Direct materials	₹ 15,000	₹ 15,750	
Direct wages	₹ 11,200	₹ 11,250	
Factory overheads	₹ 10,500	₹ 4,500	
Closing stock	₹ 3,700	₹ 4,500	₹ 11,250
Inter-process profit included in opening			
stock		₹ 1,500	₹ 8,250

Output of Process- I is transferred to Process- II at 25% profit on the transfer price.

Output of Process- II is transferred to finished stock at 20% profit on the transfer price. Stock in processes is valued at prime cost. Finished stock is valued at the price at which it is received from process II. Sales during the period are ₹ 1,40,000.

PREPARE Process cost accounts and finished goods account showing the profit element at each stage.

SOLUTION:

Dr. Process-IA/c Cr.

Particulars	Total	Cost	Profit	Particulars	Total	Cost	Profit
	(₹)	(₹)	(₹)		(₹)	(₹)	(₹)
Opening	7,500	7,500		Process- II	54,000	40,500	13,500
stock				A/c*			
Direct	15,000	15,000		Closing Stock	3,700	3,700	
materials							
Direct wages	11,200	11,200					
Prime Cost	33,700	33,700					
Overheads	10,500	10,500					
Total Cost	44,200	44,200					
Profit**	13,500		13,500				
	57,700	44,200	13,500		57,700	44,200	13,500

^{*}Transfer price = $\frac{\text{Total cost} - C \text{losing stock}}{75\%} = \frac{44,200 - 3,700}{75\%} = ₹54,000$

Dr. Process- II A/c Cr.

Particulars	Total (₹)	Cost	Profit	Particulars	Total	Cost	Profit
		(₹)	(₹)		(₹)	(₹)	(₹)
Openingstock	9,000	7,500	1,500	Finished	1,12,500	75,750	36,750
				Stock A/c**			
Transferred	54,000	40,500	13,500	Closing	4,500	3,750	750
from Process-				stock*			
I							
Direct	15,750	15,750					
materials							
Direct wages	11,250	11,250					
Prime cost	90,000	75,000	15,000				
Overheads	4,500	4,500					
Total cost	94,500	79,500	15,000				
Profit***	22,500		22,500				
	1,17,000	79,500	37,500		1,17,000	79,500	37,500

^{*}Cost of Closing stock = $\frac{₹75,000}{₹90,000}$ x ₹4,500 = ₹3,750

^{**}Profit on transfer = 54,000 × 25% = ₹ 13,500

Cr.

**Transfer price =
$$\frac{\text{Total cost - Closing stock}}{80\%}$$
 = $\frac{94,500 - 4,500}{80\%}$ = ₹1,12,500

***Profit on transfer = 1,12,500 × 20% = ₹ 22,500

Dr. Finished Stock A/c

Particulars	Total	Cost	Profit	Particu	lars	Total	Cost	Profit
	(₹)	(₹)	(₹)			(₹)	(₹)	(₹)
Opening	22,500	14,250	8,250	Costing	P&L	1,40,000	82,425	57,575
stock				A/c				
Process- II	1,12,500	75,750	36,750	Closing		11,250	7,575	3,675
				stock*				
Profit	16,250		16,250					
	1,51,250	90,000	61,250			1,51,250	90,000	61,250

^{*} Cost of Closing Stock =

 $\frac{\textit{Cost per transfer from Process - II}}{\textit{Transfer price from Process - II}} \times \textit{Value of closing stock}$

(As per instruction given in the question)

$$\frac{₹75,750}{₹1,12,500} \times ₹11,250 = ₹7,575$$

CHAPTER 11: JOINT PRODUCTS AND BY

PRODUCTS

PROBLEM - 1:

From a joint process, three joint products emerge, namely A, B and C. The joint cost incurred in manufacturing the joint products is ₹ 5,00,000. The output details and the Selling price of the joint products are given in the table below. Apportion the joint cost on the basis of Physical units and prepare a product wise profitability statement. Also, comment on the effectiveness of the Physical unit's method as a method of joint cost apportionment.

PRODUCTS	UNITS PRODUCED	SELLING PRICE
Α	30,000	₹ 7.50
В	20,000	₹ 25.00
С	50,000	₹ 3.00

SOLUTION:

Step 1: Apportionment of Joint cost using physical units method:

Products	Units	Proportion	Share Of Joint Cost
			(₹)
Α	30000	0.3	1,50,000
В	20000	0.2	1,00,000
С	50000	0.5	2,50,000
	1,00,000	1	5,00,000

Step 2: Profitability of the products:

Products	Sales (₹)	Share Of Joint Cost	Profit (₹)
		(₹)	
Α	225000	150000	75000
В	500000	100000	4,00,000
С	150000	250000	(1,00,000)
	875000	5,00,000	375000

Comments: In physical units method we ignore the "Ability to Pay" principle while appropriating the joint cost. And hence it is not that effective.

PROBLEM - 1A:

A coke manufacturing company produces the following products by using 5,000 tonnes of coal @ ₹1,100 per tonne into a common process.

Coke 3,500 tonnes

Tar 1200 tonnes

Sulphate of ammonia 52 tonnes

Benzol 48 tonnes

PREPARE a statement apportioning the joint cost amongst the products on the basis of the physical unit method.

SOLUTION:

		Products				
	Coke	Tar	Sulphate Of	Benzole	Wastage	Total
			Ammonia			
Output (In	3,500	1,200	52	48	200	5,000
Tonne)						
Wastage (In	146	50	2	2	(200)	
Tonne)						
(Refer Note-1)						
Input (In	3,646	1,250	54	50	-	5,000
Tonne)						
Share Of Joint	40,10,600	13,75,000	59,400	55,000	-	55,00,000
Cost @ ₹ 1,100						
Per Tonne						
(In ₹)						

Note-1: Apportionment Of Wastage Of 200 Tonnes Over The Four Products On The Basis Of Physical Weights (3,500:1,200:52:48) Is As Follows:

Coke: $\frac{200}{4,800} \times 3,500 \text{ Tonnes} = 146 \text{ Tonnes}$

Tar: $\frac{200}{4,800} \times 1,200 \text{ Tonnes} = 50 \text{ Tonnes}$

Sulphate Of Ammonia: $\frac{200}{4.800} \times 52$ Tonnes = 2 Tonnes

Benzole: $\frac{200}{4,800} \times 48$ Tonnes = 2 Tonnes

PROBLEM - 2:

FIND OUT the cost of joint products A, B and C using average unit cost method from the following data:

Pre-separation Joint Cost ₹ 60,000

Production data:

Products	Units produced
Α	500
В	200
С	300
	1000

SOLUTION:

Average Cost Per Unit =
$$\frac{\text{Total Joint Costs}}{\text{Units Produced}} = \frac{\text{₹ 60000}}{1,000 \text{ Units}} = \text{₹ 60}$$

The Joint Costs Apportioned @ ₹ 60 Are As Follows:

Products	Units	Cost Per Unit (₹)	Value (₹)
Α	500	60	30,000
В	200	60	12,000
С	300	60	18,000
			60,000

PROBLEM - 3

From a joint process, three joint products emerge, namely A, B and C. The joint cost incurred in manufacturing the joint products is ₹ 5,00,000. The output details, the selling price and further processing cost of the joint products are given in the table below.

PRODUCTS	UNITS PRODU <i>C</i> ED	SELLING PRICE AT SPLIT OFF	SELLING PRICE AFTER FURTHER PROCESSING	FURTHER PROCESSING COST
A	30,000	₹ 7.5	₹ 10	₹ 30,000
В	20,000	₹ 25	₹ 30	₹ 80,000
С	50,000	₹ 3	₹ 5	₹ 50,000

Apportion the joint cost on the basis of the following methods and also calculate the gross margin % under each of the methods.

- Sales value at split of point method
- Final sales value method [sales value after further processing]
- Net Realisable value method.

SOLUTION:

Part I: Sales Value @ Split Off Point Method:

Step 1: Apportionment Of Joint Cost:

Product	Sales Value @ Split	Proportion	Share Of Joint Cost
	Off Point (₹)		(₹)
Α	2,25,000	0.2571	128571
В	5,00,000	0.5714	285714
С	1,50,000	0.1715	85715
	8,75,000	1	500000

Step 2: Gross Margin %:

Product	Sales (₹)	Share Of	Further	Profit (₹)	Gross Margin
1	2	Joint Cost	Processing	(2 - 3 - 4)	%
		(₹)	Cost (₹)		
		3	4		
Α	300000	(128571)	(30000)	141429	47.143%
В	600000	(285714)	(80000)	234286	39.047%
С	250000	(85715)	(50000)	114285	45.714%
	1150000	500000	160000	490000	42.608%

Part II: Sales Value After Further Processing Method:

Step 1: Apportionment Of Joint Cost

Product	Sales Value After	Proportion	Shares Of Joint
1	Further Processing	3	Cost (₹)
	(₹)		4
	2		
Α	3,00,000	0.2608	130435
В	6,00,000	0.5217	260870
С	2,50,000	0.21739	108695
	11,50,000	1	5,00,000

Step 2: Gross Margin %

Product	Sales Value	Share Of	Further	Profit (₹)	Gross Margin
1	(₹)	Joint Cost	Processing	(2 - 3 - 4)	6
	2	(₹)	Cost (₹)		
		3	4		
Α	3,00,000	(1,30,435)	(30000)	139565	46.52%
В	6,00,000	(2,60,870)	(80000)	259130	43.19%
С	2,50,000	(1,08,695)	(50000)	91305	36.52%
	1150000	5,00,000	160000	490000	42.608%

Part III: Net Realisable Value:

Step 1: C alculation of NRV

Product	Sale value after	Further processing	NRV
1	further processing	cost	(₹)
	(₹)	3	4
	2		
Α	300000	30000	270000
В	600000	80000	520000
С	250000	50000	200000
	1150000	160000	990000

Step 2: Apportionment Of Joint Cost

Product	NRV	Proportion	Shares Of Joint
1	(₹)	3	Cost (₹)
	2		4
Α	270000	0.2727	136364
В	520000	0.5252	262626
С	200000	0.2020	101010
	990000	1	5,00,000

Step 3: Gross Margin %

Product	Sales Value	Share Of	Further	Profit (₹)	Gross Margin
1	(₹)	Joint Cost	Processing	(2 - 3 - 4)	6
	2	(₹)	Cost (₹)		
		3	4		
Α	3,00,000	(136364)	(30000)	133636	44.55%
В	6,00,000	(262626)	(80000)	257374	42.90%

C	2,50,000	(101010)	(50000)	98990	39.60%
	1150000	(5,00,000)	(160000)		42.608%

PROBLEM -3A: (MTP 1 JAN 25)

Petro Ltd. is a petroleum refining company which uses cracking process for producing gasoline, diesel and Heavy fuel oil (HFO). All three final products are extracted simultaneously at one common split-off point.

Gasoline and diesel are immediately available for sale upon separation, requiring no further processing. In contrast, heavy fuel oil (HFO) undergoes additional processing before it can be sold, as there is no market for it at the split-off point.

Throughout the year, the selling prices and total quantities sold for each item were as follows:

Product	Quantity sold	Selling Price per
	(Gallons)	gallon (₹)
Gasoline	1,674	400
Diesel	4,743	300
Heavy fuel oil (HFO)	6,624	200

The selling prices listed above are projected to remain unchanged in the upcoming year.

The total joint manufacturing costs for the year amounted to ₹ 15,00,000, with an additional cost of ₹ 7,44,000 incurred for finishing Heavy fuel oil (HFO).

There were no opening inventories of gasoline, diesel and Heavy fuel oil (HFO). Though, at the end of the period, the following inventories of complete units were available: 1,620 gallons of gasoline, 540 gallons of diesel, and 225 gallons of Heavy fuel oil (HFO).

You are required to COMPUTE the following for gasoline, diesel and Heavy fuel oil (HFO)-

- (i) joint cost allocated, and
- (ii) cost of goods sold using Net Realisable Value Method of joint cost allocation.

SOLUTION:

(I) Statement Of Joint Cost Allocation Of Inventories Of Gasoline, Diesel And Heavy Fuel Oil (HFO)

(By Using Net Realisable Value Method) Products				
	Gasoline	Diesel	Heavy Fuel	Total
			Oil (HFO)	
	(₹)	(₹)	(₹)	(₹)
Final Sales Value Of Total	13,17,600	15,84,900	13,69,800	42,72,300
Production (Working Note 1)	(3,294 ×	(5,283 ×	(6,849 ×	
	₹ 400)	₹ 300)	₹ 200)	
Less: Additional Cost	-	-	(7,44,000)	(7,44,000)
Net Realisable Value (At	13,17,600	15,84,900	6,25,800	35,28,300
Split-Off Point)				
Joint Cost Allocated	5,60,156	6,73,795	2,66,049	15,00,000
(Working Note 2)				

(II) Cost Of Goods Sold

(By Using Net Realisable Value Method)

		Products		
	Gasoline	Diesel	Heavy Fuel Oil	Total
			(HFO)	
	(₹)	(₹)	(₹)	(₹)
Allocated Joint Cost	5,60,156	6,73,795	2,66,049	15,00,000
(From (I))				
Additional Costs			7,44,000	7,44,000
Cost Of Goods Available	5,60,156	6,73,795	10,10,049	22,44,000
For Sale (CGAS)				
Less: Cost Of Ending	2,75,485	68,862	33,231	3,77,578
Inventory	(CGAS ×	(CGAS ×	(CGAS × 3.29%)	
(Working Note 1)	49.18%)	10.22%)		
Cost Of Goods Sold	2,84,671	6,04,933	9,76,818	18,66,422

Working Notes

1. Total Production Of Three Products For The Year

Products	Quantity	Quantity Of	Total	Ending
	Sold	Ending Inventory	Production	Inventory
	(In Gallon)	(In Gallon)		Percentage (%)
(1)	(2)	(3)	(4) = [(2) + (3)}	(5) = (3) ÷ (4)
Gasoline	1,674	1,620	3,294	49.18
Diesel	4,743	540	5,283	10.22
Heavy Fuel Oil (HFO)	6,624	225	6,849	3.29

2. Joint Cost Apportioned To Each Product

 $\frac{\text{Total Joint Cost}}{\text{Net Realisable Value Of Each Product}} \times \text{Total Net Realisable Value}$

Total Cost Of Gasoline	₹ 15,00,000 ₹ 35,28,300 × ₹ 13,17,600	₹ 5,60,156
Total Cost Of Diesel	₹ 15,00,000 ₹ 35,28,300 × ₹ 15,84,900	₹ 6,73,795
Total Cost Of Heavy Fuel Oil (HFO)	₹ 15,00,000 ₹ 35,28,300 × ₹ 6,25,800	₹ 2,66,049

PROBLEM - 4:

From the following information apportion marginal cost and fixed cost on a suitable basis and obtain profit/loss for each of the joint products -

Sales: A 100 kg @ ₹ 60 per kg and B 120 kg @ ₹ 30 per kg.

Total cost: Marginal cost ₹ 4,400 and Fixed cost ₹ 3,900.

SOLUTION:

The marginal cost (variable cost) of ₹ 4,400 is apportioned over the joint products A and B in the ratio of their physical quantity i.e. 100:120

Marginal cost for Product A: ₹ 4,400 × $\frac{100}{220}$ = ₹ 2,000

Marginal cost for Product B : ₹ 4,400 × $\frac{120}{220}$ = ₹ 2,400

The fixed cost of \pm 3,900 is apportioned over the joint products A and B in the ratio of their contribution margin i.e. 40:12

(Refer to working note)

Product A : ₹ 3,900 × 40 ÷ 52 = ₹ 3,000

Product B : ₹ 3,900 × 12 ÷ 52 = ₹ 900

Working Note:

Computation of contribution margin ratio

Products	Sales revenue	Marginal cost	Contribution
	(₹)	(₹)	(₹)
Α	6,000	2,000	4,000
В	3,600	2,400	1,200
		(Refer to above)	

Contribution ratio is 40: 12

PROBLEM - 5:

A factory produces three products from joint process namely Joint products A & B and by-product C. Joint cost incurred in the joint process is ₹ 5,25,000.

Other details are as follows:

A	30,000 kg
В	20,000 kg
С	5,000 kg

The by-product is further processed at a cost of ₹ 5,000 and sold for ₹ 6 per kg. Apportion the joint cost on the basis of physical units.

SOLUTION:

Step 1: Calculation By Product Income:

Sales Value = $(5000 \text{ Kg} \times \text{₹} 6)$ = ₹ 30,000 (-) Further Processing Cost = ₹ (5000)Net Realisable Value of By Product = ₹ 25000

Step 2: Apportionable Joint Cost

Joint Cost = ₹5,25,000(-) Net Realisable Value of By Product = ₹(25000)Apportionable Joint Cost = ₹5,00,000

Step 3: Apportionment Of Joint Cost

Product	Units	Proportion	Share Of Joint Cost
			(₹)
Α	30000	0.6	3,00,000
В	20000	0.4	2,00,000
	50000	1	5,00,000

Dr. Joint Process A/c Cr.

Particulars	Units	₹	Particulars	Units	₹
To Total Cost	55000	525000	By By - Product	5000	25000
			By Product A	30000	300000
			By Product B	20000	200000
	55000	525000		55000	525000

Dr. By Product Income A/c Cr.

Particulars	₹	Particulars	₹
To Further Processing Cost	5000	By Bank A/c	30000
A/c			
To Joint Process A/c	25000		
	30000		30000

PROBLEM - 6:

JP Ltd. uses joint production process that produces three products at the split -off point. Joint production costs during the month of July, 20x2 were ₹ 33,60,000.

Product information for the month of July is as follows:

Particulars	Product A	Product B	Product C
Units produced	3,000	6,000	9,000
Sales prices:			
At the split-off	₹ 200		
After further processing	₹ 300	₹ 350	₹ 100
Costs to process after split-off	6,00,000	6,00,000	6,00,000

Other information is as follows:

Product C is a by-product and the company accounts for the by-product at net realizable value as a reduction of joint cost. Further, Product B & C must be processed further before they can be sold. FIND OUT the joint cost allocated to Product A in the month of July if joint cost allocation is based on Net Realizable Value.

SOLUTION:

Product A

As the question says that "Products B and C must be processed further before they can be sold", it means Product A can be sold at the split-off point.

Cost to process Product A after the split-off point

Additional revenue to be earned by processing further

= ₹6,00,000

= ₹3,00,000

(% 100 increase in selling price per

unit \times 3,000 units)

Therefore, Product A will not be processed further, and the sales value at split-off for A will be used for allocating the joint costs.

Sales value at the split-off for A

= ₹6,00,000

 $(\pm 200 \times 3,000 \text{ units})$

Product B

Since Product B must be processed further, we use its net realizable value for the joint cost allocation.

Net realizable value of Product B

= ₹15,00,000

 $[(\pm 350 \times 6,000 \text{ units}) - \pm 6,00,000]$

[further processing costs]

Product C

Product C, the by-product, must also be processed further to be sold.

Net realizable value of Product C

= ₹3,00,000

 $[(₹ 100 \times 9,000 \text{ units}) - ₹ 6,00,000]$

[further processing costs]

Joint Cost Allocation

Joint production cost

= ₹33,60,000

Since, by-product C is accounted for as a reduction to the joint costs, the joint costs to be allocated

= ₹30,60,000

 $(\mp 33,60.000 - \mp 3,00,000 \text{ NRV of Product } C)$

Allocation of joint costs between Product A and B will be on the basis of

₹ 6.00,000 : ₹ 15,00,000

Joint Cost allocated to Product A = ₹ 30,60,000 × $\frac{₹6,00,000}{₹21,00,000}$ = ₹ 8,74,286

PROBLEM - 6A:

Smile company produces two main products and a by-product out of a joint process. The ratio of output quantities to input quantities of direct material used in the joint process remains consistent on yearly basis. Company has employed the physical volume method to allocate joint production costs to the main products. The net realizable value

of the by-product is used to reduce the joint production costs before the joint costs are allocated to the main products. Details of company's operation are given in the table below. During the month, company incurred joint production costs of ₹ 10,00,000/- The main products are not marketable at the split off point and thus have to be processed further.

Particulars	Product-A	Product-B	By product
Monthly output in kg.	60,000	1,20,000	50,000
Selling price per kg.	₹ 50	₹ 30	₹ 5
Process costs	₹ 2,00,000	₹ 3,00,000	

FIND OUT the amount of joint product cost that Smile company would allocate to the product-B by using the physical volume method to allocate joint production costs?

SOLUTION:

Calculation Of Net Joint Costs To Be Allocated:

Particulars	Amount (₹)
Joint Costs	10,00,000
Less: Net Realizable Value Of By-Product (50,000 × 5)	2,50,000
Net Joint Costs To Be Allocated	7,50,000

Therefore, Amount Of Joint Product Cost That Smile Company Would Allocate To The

Product-B By Using The Physical Volume Method To Allocate Joint Production Costs:

 $\frac{\text{Physical Quantity of Product-B}}{\text{Total Quantity}} \times \text{Net Joint Costs To Be Allocated}$

PROBLEM - 6B: (RTP Sept 24)

Three products X, Y and Z along with a byproduct B are obtained again in a crude state which require further processing at a cost of ₹5 for X; ₹4 for Y; and ₹2.50 for Z per unit before sale. The byproduct is however saleable as such to a nearby factory. The selling prices for the three main products and byproduct, assuming they should yield a net margin of 25 percent of cost, are fixed at ₹13.75 ₹8.75 and ₹7.50 and ₹1.00 respectively – all per unit quantity sold.

During a period, the joint input cost including the material cost was ₹ 90,800 and the respective outputs were:

X	8,000 units
У	6,000 units
Z	4,000 units
В	1,000 units

By product should be credited to the joint cost and only the net joint costs are to be allocated to the main products.

CALCULATE the joint cost per unit of each product and the margin available as a percentage on cost.

SOLUTION:

Working Notes:

(i) Computation of Allocation Ratio for Joint Costs

	Products		
	X	У	Z.
	₹	₹	₹
Selling Price	13.75	8.75	7.50
Less: anticipated margin @ 25% on cost of 20% on sales	2.75	1.75	1.50
Cost of sales	11.00	7.00	6.00
Less: post split off cost	5.00	4.00	2.50
Joint cost per unit	6.00	3.00	3.50
Output (units)	8,000	6,000	4,000
Total output cost	48,000	18,000	14,000
Allocation ratio for joint costs	24	9	7

(ii) Computation Of Net Allocable Joint Costs

	₹	₹
Joint Input Cost Including Material Cost		90,800
Less: Credit For Realization From By-Product B:		
Sales Revenue (1,000 × ₹ 1)	1,000	
Less: Profit @ 25% On Cost Or 20% On Sales	200	800
Net Joint Costs To Be Allocated		90,000

Determination Of Joint Cost Per Unit Of Each Product

Product	Net Joint Costs	Output (Units)	Joint Cost Per
	Allocation	₹	Unit
	₹		₹
X	54,000 (Note: 1)	8,000	6.75
У	20,250	6,000	3.38
Z	15,750	4,000	3.94
	90,000		

Profit Margin Available On Each Product As A Percentage On Cost

Product	Joint	Post Spilt-	Total Cost	Selling	Margin	Margin
	Cost	Off	₹	Price		% On Cost
	₹	Cost		₹		₹
		₹			₹	
X	6.75	5.00	11.75	13.75	2.00	17.02
У	3.38	4.00	7.38	8.75	1.37	18.56
Z	3.94	2.50	6.44	7.50	1.06	16.46

Note: 1

$$X = \frac{24}{40} \times 90,000 = 54,000$$

$$Y = \frac{\$ 9}{\$ 40} \times \$ 90,000 = \$ 20,250$$

$$Z = \frac{\text{₹ 7}}{\text{₹ 40}} \times \text{₹ 90,000} = \text{₹ 15,750}$$

₹ 90,000

Problem - 7:

From a joint process, two products A and B emerge. The joint cost incurred in the joint process is ₹ 1,00,000. Other details are as follows:

PRODUCTS	UNITS	SP AT SPLIT OFF	SP AFTER FURTHER PROCESSING	FURTHER PROCESSING COST
A	50,000	₹ 10	₹ 12	₹ 1,50,000
В	50,000	₹ 10	₹ 15	₹ 1,50,000

Advise the stage of production at which the joint products should be sold.

SOLUTION:

Further Process Or Not Decision:

Product	Sales Value After Further Process (₹)	Sales Value At Split Off Profit (₹)	Incremental Sales (₹) (A)	Further Processing Cost (B)	Net Benefit (A -B)
Α	600000	5,00,000	1,00,000	(1,50,000)	(50,000)
В	750000	5,00,000	2,50,000	(1,50,000)	1,00,000

Since Product A Has A Negative Net Benefit It Should Be Sold @ Split Off Point.

Product B Has A Positive Net Benefit And Hence Should Be Sold After Further Processing.

Note: For Further Process Or Not Decision The Joint Cost Is Irrelevant.

Problem - 7A:

'Buttery Butter' is engaged in the production of Buttermilk, Butter and Ghee. It purchases processed cream and let it through the process of churning until it separates into buttermilk and butter. For the month of January, 'Buttery Butter' purchased 50 Kilolitre processed cream @ ₹ 100 per 1000 ml. Conversion cost of ₹ 1,00,000 were incurred up-to the split off point, where two saleable products were produced i.e. buttermilk and butter. Butter can be further processed into Ghee.

The January production and sales information is as follows:

Products	Production (in Kiloliter/tonne)	Sales Quantity (in Kiloliter/tonne)	Selling price per Litre/Kg (₹)	
Buttermilk	28	28	30	
Butter	20	_	_	
Ghee	16	16	480	

All 20 tonne of butter were further processed at an incremental cost of $\not\equiv 1,20,000$ to yield 16 Kiloliter of Ghee. There was no opening or closing inventories of buttermilk, butter or ghee in the month of January.

Required:

- i. SHOW how joint cost would be apportioned between Buttermilk and Butter under Estimated Net Realizable Value method.
- ii. 'Healthy Bones' offers to purchase 20 tonne of butter in February at ₹ 360 per kg. In case 'Buttery Butter' accepts this offer, no Ghee would be produced in

February. SUGGEST whether 'Buttery Butter' shall accept the offer affecting its operating income or further process butter to make Ghee itself?

SOLUTION:

Estimated Net Realisable Value Method:

	Buttermilk Amount (₹)	Butter Amount (₹)
Sales Value	8,40,000	76,80,000
	(₹ 30 × 28 × 1000)	(₹ 480 × 16 × 1000)
Less: Post split-off cost		
(Further processing cost)	-	(1,20,000)
Net Realisable Value	8,40,000	75,60,000
Apportionment of Joint Cost of	5,10,000	45,90,000
₹ 51,00,000* in ratio of 1:9		

^{* [(₹ 100 × 50 × 1000) + ₹ 1,00,000] = ₹ 51,00,000}

(ii) Incremental revenue from further processing of Butter into Ghee

(₹ 480 × 16 × 1000 - ₹ 360 × 20 × 1000) ₹ 4,80,000

Less: Incremental cost of further processing of Butter into Ghee $\pm 1,20,000$

Incremental operating income from further processing ₹ 3,60,000

The Operating Income Of 'Buttery Butter' Will Be Reduced By ₹ 3,60,000 In February If It Sells 20 Tonne of Butter To 'Healthy Bones', Instead of Further Processing of Butter into Ghee for Sale. Thus, 'Buttery Butter' Is Advised Not to Accept the Offer and Further Process Butter to Make Ghee Itself.

Problem - 7B:

RST Limited produces three joint products X, Y and Z. The products are processed further. Pre-separation costs are apportioned on the basis of weight of output of each joint product. The following data are provided for a particular month:

Cost incurred up to separation point: ₹ 10,000

Output (in Litre)	Product X 100	Product Y70	Product Z80
	₹	₹	₹
Cost incurred after separation point	2,000	1,200	800
Selling Price per Litre:			
After further processing	50	80	60
At pre-separation point (estimated)	25	70	45

You are required to:

- i. Prepare a statement showing profit or loss made by each product after further processing using the presently adopted method of apportionment of pre-separation cost.
- ii. Advise the management whether, on purely financial consideration, the three products are to be processed further or not.

SOLUTION:

(I) Statement Showing Profit/Loss By Each Product After Further Processing Products

	Product X	Product Y	Product Z
	(In ₹)	(In ₹)	(In ₹)
Sales Value After Further Processing	5,000	5,600	4,800
Less: Further Processing Cost	2,000	1,200	800
Less: Joint Cost* (As Apportioned)	4,000	2,800	3,200
Profit/(Loss)	(1,000)	1,600	800

^{*} Statement Showing Apportionment Of Joint Cost On The Basis Of PhysicalUnits

	Product X	Product Y	Product Z	Total
	(In ₹)	(In ₹)	(In ₹)	(₹)
Output (In Litre)	100	70	80	250
Weight	0.4	0.28	0.32	
	(100 ÷ 250)	(70 ÷ 250)	(80 ÷ 250)	
Joint Cost Apportioned	4,000	2,800	3,200	

(II) Decision Whether To Process Further Or Not

	Product X	Product Y	Product Z	
	(In ₹)	(In ₹)	(In ₹)	
Incremental Revenue	2,500	700	1,200	
	[(50 - 25) × 100]	[(80 - 70) × 70]	[(60 - 45) × 80]	
Less: Further Processing	2,000	1,200	800	
Cost				
Incremental Profit /(Loss)	500	(500)	400	

	Product X	Product Y	Product Z	Total
	(I n ₹)	(In ₹)	(In ₹)	
Sales	2500	4900	3600	11000
Pre Separation Costs	4000	2800	3200	10000
Profit/(Loss)	(1500)	2100	400	1000

It Is Advisable to Further Process Only Product X And Z And to Sale Producty At The Point Of Separation.

Problem - 7C:

OPR Ltd. purchases crude vegetable oil. It does refining of the same. The refining process results in four products at the spilt-off point - S, P, N and A. Product 'A' is fully processed at the split-off point. Product S, P and N can be individually further refined into SK, PM, and NL respectively. The joint cost of purchasing the crude vegetable oil and processing it were ₹ 40,000 which is apportioned on the basis of Sales Value at split-off point. Other details are as follows:

Product	Further processing costs	Sales at split-	Sales after further
	(₹)	off point (₹)	processing (₹)
5	80,000	20,000	1,20,000
Р	32,000	12,000	40,000
N	36,000	28,000	48,000
A	-	20,000	-

You are required to identify the products which can be further processed for maximizing profits and make suitable suggestions.

SOLUTION:

Statement Of Comparison Of Profits Before And After Further Processing

	5	Р	N	A	Total
	(₹)	(₹)	(₹)	(₹)	(₹)
A. Sales At Split Off Point	20,000	12,000	28,000	20,000	80,000
B. Apportioned Joint Costs	10,000	6,000	14,000	10,000	40,000
(Refer Working Note)					
C. Profit At Split-Off Point	10,000	6,000	14,000	10,000	40,000
D. Sales After Processing Further	1,20,000	40,000	48,000	-	2,08,000

E. Further Processing Cost	80,000	32,000	36,000	-	1,48,000
F. Apportioned Joint Costs	10,000	6,000	14,000	-	-
(Refer Working Note)					
G. Profit If Further Processing	30000	2,000	(-)2,000	-	-
(D - E + F)					
H. Increase/ Decrease In Profit	20,000	- 4000	- 16,000	-	-
After Further Processing (G - C)					

Suggested Product To Be Further Processed For Maximising Profits:

On Comparing The Figures Of "Profit If No Further Processing" And "ProfitsIf Further Processing", One Observes That OPR Ltd. Is Earning More After Further Processing Of Product S Only that is ₹ 20,000. Hence, For Maximizing Profits, Only Product S Should Be Further Processed And Product P, N AndA Should Be Sold At Split-Off Point.

Working Note:

Apportionment Of Joint Costs On The Basis Of Sales Value At Split-Off Point

Apportioned Joint Cost = $\frac{\text{Total Joint Cost}}{\text{Total Sales Value At Split - Off Point}} \times \text{Sales Value Of Each Product}$

Where,

Total Joint Cost = ₹ 40,000

Total Sales at Split Off Point (S, P, N And A) = ₹ 20,000 + ₹ 12,000 + ₹ 28,000 +

₹ 20,000 = ₹ 80,000

Share Of S In Joint Cost =
$$\frac{₹40,000}{₹80,000}$$
 x ₹ 20,000 = ₹10,000

Share Of P In Joint Cost =
$$\frac{₹40,000}{₹80,000} \times ₹12,000 = ₹6,000$$

Share Of N In Joint Cost =
$$\frac{₹40,000}{₹80,000}$$
 x ₹ 28,000 = ₹14,000

Share Of A In Joint Cost =
$$\frac{₹40,000}{₹80,000}$$
 x ₹ 20,000 = ₹ 10,000

PROBLEM - 8:

Inorganic Chemicals purchases salt and processes it into more refined products such as Caustic Soda, Chlorine and PVC. In the month of July, Inorganic Chemicals purchased Salt for ₹ 40,000. Conversion cost of ₹ 60,000 were incurred up to the split off point, at which time two sealable products were produced. Chlorine can be further processed into PVC.

The July production and sales information is as follows:

	Production	Sales Quantity	Selling price per
	(in tonne)	(in tonne)	tonne (₹)
Caustic Soda	1,200	1,200	50
Chlorine	800	_	_
PVC	500	500	200

All 800 tonnes of Chlorine were further processed, at an incremental cost of ₹ 20,000 to yield 500 tonnes of PVC. There was no beginning or ending inventories of Caustic Soda, Chlorine or PVC in July.

There is active market for Chlorine. Inorganic Chemicals could have sold all its July production of Chlorine at ₹ 75 per tonne.

Required:

- 1. SHOW how joint cost of ₹ 1,00,000 would be apportioned between Caustic Soda and Chlorine under each of following methods:
 - a. sales value at split- off point;
 - b. physical unit method, and
 - c. estimated net realisable value.
- 2. Lifetime Swimming Pool Products offers to purchase 800 tonnes of Chlorine in August at ₹ 75 per tonne. This sale of Chlorine would mean that no PVC would be produced in August. EXPLAIN how the acceptance of this offer for the month of August would affect operating income?

SOLUTION:

1.

a. Sales Value At Split- Off Point Method

Products	Sales	Selling Price	Sales	Joint Cost
	(In Tonne)	Per Tonne (₹)	Revenue	Apportioned (₹)
			(₹)	
Caustic Soda	1,200	50	60,000	50,000
Chlorine	800	75	60,000	50,000
			1,20,000	1,00,000

Apportionment Of Joint Cost

Total Joint Cost Total Sale Value × Sale Revenue Of Each Product

Joint Cost Apportioned To Caustic Soda = $\frac{\text{₹}1,00,000}{\text{₹}1.20,000} \times \text{₹}60,000 = \text{₹}50,000$

Joint Cost Apportioned To Chlorine =
$$\frac{₹ 1,00,000}{₹ 1,20,000} × ₹ 60,000 = ₹ 50,000$$

b. Physical Measure Method

Products	Sales (In Tonne)	Joint Cost Apportioned (₹)
Caustic Soda	1,200	60,000
Chlorine	800	40,000
		1,00,000

Apportionment Of Joint Cost

Total Joint Cost Total Physical Value × Physical Units Of Each Product

Joint Cost Apportioned To Caustic Soda = $\frac{₹1,00,000}{2,000 \text{ Tonnes}} \times 1,200 \text{ Tonnes} = ₹60,000$

Joint Cost Apportioned To Chlorine = $\frac{₹1,00,000}{2,000 \text{ Tonnes}} \times 800 \text{ Tonnes} = ₹40,000$

c. Estimated Net Realisable Value Method:

	Caustic Soda Amount	Chlorine Amount
	(₹)	(₹)
Sales Value	60,000	1,00,000
	(₹ 50 × 1,200	(₹ 200 × 500
	Tonnes)	Tonnes)
Less: Post Split-Off Cost		
(Further Processing Cost)	-	(20,000)
Net Realisable Value	60,000	80,000
Apportionment Of Joint Cost Of	42,857	57,143
₹1,00,000 In Ratio Of 3:4		

2. Incremental Revenue From Further Processing Of Chlorine Into PVC

(500 Tonnes $\times \neq 200$ - 800 Tonnes $\times \neq 75$)

₹ 40,000

Less: Incremental Cost Of Further Processing

Of Chlorine Into PVC

₹ 20,000

Incremental Operating Income From Further Processing

₹ 20,000

The Operating Income Of Inorganic Chemicals Will Be Reduced By ₹20,000 In August If It Sells 800 Tonnes Of Chlorine To Lifetime Swimming Pool Products, Instead Of Further Processing Of Chlorine Into PVC For Sale.

PROBLEM - 8A: (PYP MAY 24)

A company produces two products, A and B, through a joint production process. The total joint production cost incurred is as under:

Material	₹ 20,000
Labour	₹ 10,000
Variable overheads	₹ 6,000
Fixed Overheads	₹ 24,000

Product A and B can be sold for $\stackrel{?}{_{\sim}}$ 20 per unit and $\stackrel{?}{_{\sim}}$ 15 per unit respectively at split off point. The produced quantities are Product A-2,000 units and Product B - 4,000 units.

- (i) You are required to calculate the joint production cost allocation for each product using the:
 - (a) Physical unit method.
 - (b) Contribution margin method.
- (ii) Product B can be further processed by incurring expenditure of ₹ 12,000. Loss in further processing is 2%. It can be sold ② ₹ 18 per unit. Explain the impact on profitability if Product B is further processed.

SOLUTION:

Working

Calculation Of Joint Cost

Description	Amount (₹)
Material	20,000
Labour	10,000
Variable Overheads	6,000
Total Variable Cost	36,000
Fixed Overheads	24,000
Total Joint Cost	60,000

(i)

(A) Allocation Of Joint Cost Using Physical Unit Method:

Product A = ₹60,000 × 2,000 ÷ 6,000 = ₹20,000

Product B = ₹ 60,000 × 4,000 ÷ 6,000 = ₹ 40,000

(B) Allocation Of Joint Cost Using Contribution Margin Method:

	Description	Product-A	Product-B
	Units Produced	2,000	4,000
	Selling Price Per Unit (₹)	20	15
A	Sales Value (₹)	40,000	60,000

В	Allocation Of Joint Variable Cost On The		
	Basis Of Physical Unit		
	₹ 36,000 × 2,000 ÷ 6,000	(12,000)	
	₹ 36,000 × 4,000 ÷ 6,000		(24,000)
С	Contribution	28,000	36,000
(A - B)			
D	Allocation Of Fixed Joint Cost On The Basis		
	Of Contribution Margin		
	₹ 24,000 × 28,000 ÷ 64,000	(10,500)	
	₹ 24,000 × 36,000 ÷ 64,000		(13,500)
C - D	Profit At Split Off Point	17,500	22,500

Allocation Of Joint Cost On The Basis Of Contribution Margin Method:

Particulars	Product A	Product B
Allocation Of Variable Cost	₹ 12,000	₹ 24,000
Allocation Of Fixed Cost	₹ 10,500	₹ 13,500
Total Joint Cost	₹ 22,500	₹ 37,500

(ii) Profitability After Further Processing Of Product B

Description	Amount (₹)
Units Produced And Sold 98% Of 4,000 Units	3,920
Selling Price Per Unit (₹)	18
Sales Value (₹)	70,560
Joint Cost Upto Split Off Point	(37,500)
Further Processing Cost	(12,000)
Profit After Further Processing	21,060

Calculation Of The Profitability After Further Processing Of Product B Can Also Be Done In The Following Manner:

Profitability After Further Processing Of Product B

Description	Amount
	(₹)
Incremental Revenue On Further Processing	10,560
(3,920 x ₹ 18) - (4,000 x ₹ 15)	
Further Processing Cost	(12,000)
Incremental Loss After Further Processing	1,440

Impact On Profitability On Product B

If Product B Is Sold At Split Off Point It Earns Profit Of ₹ 22,500, But After Further Processing The Profit Is Reduced To ₹ 21,060 that is an Opportunity Loss Of ₹ 1,440/-.

PROBLEM - 9:

Sun-moon Ltd. produces and sells the following products:

Products	Units	Selling price at split-off	Selling price after further
		point (₹)	processing (₹)
A	2,00,000	17	25
В	30,000	13	17
С	25,000	8	12
D	20,000	10	-
E	75,000	14	20

Raw material costs ₹ 35,90,000 and other manufacturing expenses cost ₹ 5,47,000 in the manufacturing process which are absorbed on the products on the basis of their 'Net realizable value'. The further processing costs of A, B, C and E are ₹ 12,50,000; ₹ 1,50,000; ₹ 50,000 and ₹ 1,50,000 respectively. Fixed costs are ₹ 4,73,000.

You are required to PREPARE the following in respect of the coming year:

- 1. Statement showing income forecast of the company assuming that none of its products are to be further processed.
- 2. Statement showing income forecast of the company assuming that products A, B, C and E are to be processed further.
- 3. Can you suggest any other production plan whereby the company can maximise its profits? If yes, then submit a statement showing income forecast arising out of adoption of that plan.

SOLUTION:

Working Note:

Apportionment of joint costs on the basis of Net Realisable Value method

Products	Sales Value (₹)	Post	Net	Apportioned
		separation	Realisable	Cost (₹)
		Cost (₹)	Value (₹)	
Α	50,00,000	12,50,000	37,50,000	26,25,000
	(2,00,000 units × ₹ 25)			
В	5,10,000	1,50,000	3,60,000	2,52,000
	(30,000 units × ₹ 17)			

С	3,00,000	50,000	2,50,000	1,75,000
	(25,000 units × ₹ 12)			
D	2,00,000	_	2,00,000	1,40,000
	(20,000 units × ₹ 10)			
Е	15,00,000	1,50,000	13,50,000	9,45,000
	(75,000 units × ₹ 20)			
			59,10,000	41,37,000

Total joint cost = Raw material costs + Manufacturing expenses

= ₹ 35,90,000 + ₹ 5,47,000 = ₹ 41,37,000

Apportioned Joint Cost

= $\frac{\text{Total Joint Cost}}{\text{Total Net Realisable Value}} \times \text{Net Realisable Value Of Each Product}$

Apportioned Joint Cost For Product A

$$= \frac{41,37,000}{59,10,000} \times 437,50,000 = 26,25,000$$

Similarly, The Apportioned Joint Cost For Products B, C, D And E Are $\stackrel{?}{=}$ 2,52,000, $\stackrel{?}{=}$ 1,75,000, $\stackrel{?}{=}$ 1,40,000 And $\stackrel{?}{=}$ 9,45,000 Respectively.

A) Statement Showing Income Forecast Of The Company Assuming That None Of Its Products Are Further Processed

	Products					
	A (₹)	B (₹)	C (₹)	D (₹)	E (₹)	Total (₹)
Sales Revenue	34,00,000	3,90,000	2,00,000	2,00,000	10,50,000	52,40,000
	(₹ 17 ×	(₹ 13 ×	(₹8×	(₹ 10 ×	(₹ 14 ×	
	2,00,000)	30,000)	25,000)	20,000)	75,000)	
Less:						
Apportioned						
Costs	26,25,000	2,52,000	1,75,000	1,40,000	9,45,000	41,37,000
(Refer						
Working						
Note)						
	7,75,000	1,38,000	25,000	60,000	1,05,000	11,03,000
Less: Fixed						4,73,000
Cost						
Profit						6,30,000

B) Statement Showing Income Forecast Of The Company: Assuming That Products A, B, C And E Are Further Processed (Refer To Working Note)

		Products				Total (₹)
	A (₹)	B (₹)	C (₹)	D (₹)	E (₹)	
A. Sales Revenue	50,00,000	5,10,000	3,00,000	2,00,000	15,00,000	75,10,000
B. Apportioned Costs	26,25,000	2,52,000	1,75,000	1,40,000	9,45,000	41,37,000
C. FurtherProcessing Cost	12,50,000	1,50,000	50,000	-	1,50,000	16,00,000
D. Total Processing Cost (B + C)	38,75,000	4,02,000	2,25,000	1,40,000	10,95,000	57,37,000
E. Excess Of Sales Revenue(A - D)	11,25,000	1,08,000	75,000	60,000	4,05,000	17,73,000
F. Fixed Cost						4,73,000
G. Profit (E - F)						13,00,000

Suggested Production Plan For Maximising Profits:

On Comparing The Figures Of Excess Of Revenue Over Cost Of ManufacturingIn The Above Statements One Observes That The Concern Is Earning More After Further Processing Of A, C And E Products But Is Loosing A Sum Of ₹ 30,000 In The Case Of Product B (If It Is Processed Further). Hence The Best Production Plan Will Be To Sell A, C And E After Further Processing AndB And D At The Point Of Split Off. The Profit Statement Based On This Suggested Production Plan Is As Below:

Profit Statement Based On Suggested Production Plan

		Products				
	A (₹)	B (₹)	C (₹)	D (₹)	E (₹)	Total (₹)
A. Sales Revenue	50,00,000	3,90,000	3,00,000	2,00,000	15,00,000	73,90,000
B. Apportioned Costs	26,25,000	2,52,000	1,75,000	1,40,000	9,45,000	41,37,000
C. Further Processing Cost	12,50,000	-	50,000	-	1,50,000	14,50,000
D. Total Processing Cost(B+ C)	38,75,000	2,52,000	2,25,000	1,40,000	10,95,000	55,87,000
E. Excess Of Sales Revenue (A-D)	11,25,000	1,38,000	75,000	60,000	4,05,000	18,03,000

F. Fixed Cost			4,73,000
G. Profit (E - F)			13,30,000

Hence The Profit Of The Company Has Increased By ₹ 30,000.

PROBLEM - 9A: (MTP 1 SEP 24)

A company manufactures one main product (MN) and two by-products AB and PQ. For the month of January 2024, following details are available:

Total Cost upto separation Point ₹ 2,12,400

	WN	AB	PQ
Cost after separation	-	₹ 35,000	₹ 24,000
No. of units produced	4,000	1,800	3,000
Selling price per unit	₹ 100	₹ 40	₹ 30
Estimated net profit as percentage to sales	-	20%	30%
value			
Estimated selling expenses as percentage to	30%	15%	15%
sales value			

There are no beginning or closing inventories. PREPARE statement showing:

- (i) Allocation of joint cost; and
- (ii) Product-wise and overall profitability of the company for January 2024. (6 Marks)

SOLUTION:

i) Statement Showing Allocation Of Joint Cost

Particulars	AB	PQ
No. Of Units Produced	1,800	3,000
Selling Price Per Unit (₹)	40	30
Sales Value (₹)	72,000	90,000
Less: Estimated Profit (AB -20% & PQ - 30%)	(14,400)	(27,000)
Cost Of Sales	57,600	63,000
Less: Estimated Selling Expenses (AB -15% & PQ -15%)	(10,800)	(13,500)
Cost Of Production	46,800	49,500
Less: Cost After Separation	(35,000)	(24,000)
Joint Cost Allocated	11,800	25,500

ii) Statement Of Profitability

Particulars	MA (₹)	AB (₹)	PQ (₹)
Sales Value (A)	4,00,000	72,000	90,000
	(4,000 x ₹ 100)		
Less:- Joint Cost	1,75,100	11,800	25,500
	(2,12,400 - 11,800 - 25,500)		
Cost After Separation	-	35,000	24,000
Selling Expenses	1,20,000	10,800	13,500
(MA- 30%, AB-15% &			
PQ-15%)			
(B)	2,95,100	57,600	63,000
Profit (A -B)	1,04,900	14,400	27,000
Overall Profit = ₹ 1,04,900 +	₹ 14,400 + ₹ 27,000 = ₹ 1,46,30	00	1

PROBLEM - 9B: (RTP JAN 25)

JPBP Ltd. manufactures two joint products A and B simultaneously from the same process. The process produces another product C which is recovered incidentally from the material used in the manufacture of A and B.

The expenditures incurred up to the point of separation i.e. split-off point are ₹ 14,82,000. As the joint products are capable of being measured in the same units, joint costs are allocated on the basis of physical unit.

Though the joint products A and B are saleable at split-off point, these can also be further processed and sold at a higher market price, with some sales promotion efforts. However, product C can be sold only after further processing.

The management is of the view that, as the net realisable value of the product C at split off point is too small, the value may be deducted from the joint production cost.

The relevant details of the products are as follows:

Particulars	Product	Product	Product
	A	В	С
Output (kg.)	16,250	8,125	1,625
Selling price at the split-off point (per kg.) (₹)	72	80	-
Further processing cost (per kg.) (₹)	16	20	8
Further marketing cost (per kg.) (₹)	8	8	4

Selling price after further processing (per kg.)	112	104	24
(₹)			

You are required the following:

- (i) DETERMINE the profit/ (loss) of each joint product if these are sold without further processing.
- (ii) WHETHER joint products be processed further? Decide on the basis of incremental profit/ (loss).

SOLUTION:

Workings -

1. Product C Is Produced Incidentally From The Material Used In The Manufacture Of A And B, Thus, Product C Is A By-Product.

	Per Unit
	(₹)
Selling Price After Further Processing (Per Kg.) (₹)	24
Less: Further Processing Cost (Per Kg)	8
Further Marketing Cost (Per Kg)	4
	12

Calculation Of Joint Cost To Be Borne By By-Product C

Joint Costs To Be Borne By By-Product
$$C$$
 = Output (Kg.) \times ₹ 12 = 1,625 Kg. \times ₹ 12 = ₹ 19.500

2. Allocation Of Joint Cost Among Joint Products (On The Basis Of Physical Units) (Given)

Product A:
$$(₹ 14,82,000 - ₹ 19,500) \times \left(\frac{16,250}{24,375}\right) = ₹ 9,75,000$$

Product B: (₹ 14,82,000 - ₹ 19,500) ×
$$\left(\frac{8,125}{24,375}\right)$$
 = ₹ 4,87,500

i) Statement Of Profit/ (Loss) If Joint Products Are Sold Without Processing

Particulars	Product	Product	Total
	A	В	
(A) Output (Kg.)	16,250	8,125	
(B) Selling Price At The Split-Off Point			
(Per Kg.) (₹)	72	80	
(C) Sales Value (A) \times (B)	11,70,000	6,50,000	18,20,000
(D) Allocation Of Joint Costs	9,75,000	4,87,500	14,62,500
(E) Profit At The Point Of Separation (C)-(D)	1,95,000	1,62,500	3,57,500

(ii) Further Processing Decision

Particulars	Product A	Product B	
	(₹)	(₹)	
(A) Selling Price At Split Off	72	80	
(B) Selling Price After Further Processing	112	104	
(C) Incremental Revenue (B)-(A)	40	24	
(D) Further Processing Cost	16	20	
(E) Further Marketing Cost	8	8	
(F) Incremental Cost (D)+(E)	24	28	
(G) Incremental Profit/ (Loss) Per Kg	16	(4)	
(C) - (F)			
(H) Total Incremental Profit/(Loss)	₹ 16 × 16,250 Kg	(₹ 4) × 8,125 Kg	
	₹ 2,60,000	(₹ 32,500)	

Therefore, Product A Should Be Processed Further As They Give Incremental Profit. On The Other Hand, Product B Should Be Sold At Split-Off Point As They Suffer Incremental Losses After Further Processing.

I've put my heart into crafting this material to guide you, but your dedication is what will truly bring it to life. Success is a team effort, and together, we can conquer Costing and crack this exam. You bring the determination, and I'll provide the direction— together, let's make it happen!"

Remember, a perfect 100/100 in Costing is soon a reality for you.

With **W** Ganesh

Know your Faculty

CA Ganesh Bharadwaj is a highly regarded faculty for Costing and Financial Management in CA & CMA courses, known for his engaging and studentfriendly teaching style.

He has been recognized as one of the top performers in India in the subjects Costing & FM for an impressive score of 94% in his CA exams.

He has been on a mission to teach Costing & FM in simple English with crystal clear explanations and real-life examples, aiming for both exam success and conceptual understanding.

A firm believer in Conceptual Learning, his teaching philosophy aligns with his powerful quote: "Stop Mugging Up. Start Learning."