

CA - FOUNDATION

MATHEMATICS 101

Concept Guide

[Covers Part A - Business Mathematics in just 24 pages!]

CA Rahul Agarwal

Index

01

02

RATIO & PROPORTION INDICES & LOGARITHMS

(01-04)

EQUATIONS

(05-06)

LINEAR INEQUALITIES

(08-10)

(07)

PERMUTATIONS & COMBINATIONS

SEQUENCE & SERIES

(11-16)

SETS, RELATIONS & FUNCTIONS, **LIMITS & CONTINUTITY**

(19-24)

Ratio & Proportion

comparison of ≥ 2 quantities of same kind by division

antecedent

A consequent

NOTES:

- Order of the terms is important and cannot be changed
- O Ratios can be multiplied/divided by a common number but not added/subtracted
- \bigcirc If number is \uparrow / \checkmark in ratio x:y, then [New quantity = y/x x old number]

Types of Ratios Continued Compound Inverse $a:b \Rightarrow b:a$ $a,b,c \Rightarrow a:b:c$ a:b:c => bc:ac:ab Different Duplicate Triplicate Sub Sub duplicate Triplicate Values a:b,c:d a : b a : b a : b a : b $a^2:b^2$ $a^3 : b^3$ ³√a: ³√b $\sqrt{a}:\sqrt{b}$ ac:bd

Exam tips

- \checkmark If 3,000 is to be allocated in a : b =>
- a = 3,000 x a
- $b = 3,000 \times b$

(a+b)

(a+b)

- ✓ If x:y = 3:4, value of any equation can be obtained by taking x=3 and y=4 in equation
- ✓ If ratios are given to arrive at continued ratio:

2 ratios	3 ratios
A : B ₁	A : B ₁
$B_2: C$	$B_2: C_1$
$AB_2:B_2B_1:B_1C$	$C_2: D$

 $AB_2C_2: C_2B_2B_1: C_2C_1B_1: B_1C_1D$

Equality of 2 ratios

(Means)
(A:B::C:D)
extremes

 $\begin{array}{c|c} A & \underline{\hspace{1cm}} & C \\ \hline B & D \\ \hline AD & = BC \\ \end{array}$

NOTES:

- a,b,c,d are called 1st, 2nd, 3rd and 4th proportion respectively
- O Continued proportion: a,b,c => a : b :: b : d.

Note: Continued proportion are always in Geometric progression (GP)

 \bigcirc Mean proportional: In continued proportion, 'b' is mean proportional. i.e., $[b^2 = ac]$

Assu	ıme:
<u>A</u> =	<u>C</u>
В	D

Properties of Proportions

Inu	ert	endo	Alt	ern	endo	Com	pon	endo	Divid	dendo	Coı	np 8	& Divi	Add	dendo	Subtra	hendo
В	=	D	A	_=	В	<u>A</u> +	B =	C + D	<u>A - B</u>	= <u>C - D</u>	<u>A</u> +	<u>B</u> =	<u>C + D</u>	A	+ <u>C</u>	<u>A</u> -	<u>C</u>
A	=	С	С	=	D	В		D	В	D	Α -	B =	C - D	В	+ D	В-	D

Exam tips

If x = y = z, value of any equation can be obtained by taking x=3, y=4 & z = 5 in equation $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$

Indices & logarithms

Indices

representation of numbers in
terms of powers to small base

base

power

-Laws of indices:

$$\circ$$
 $a^m \times a^n = a^{m+n}$

$$\circ$$
 $a^m \div a^n = a^{m-n}$

$$\circ$$
 $(a^m)^n = a^{mxn}$

$$a^0 = 1$$

$$\sqrt[n]{a} = a^{1/n} = a^{-n}$$

$$o$$
 If $a^x = a^y$, then $x = y$

$$o$$
 If $a = b$, then $a^b = b^a$

Algebraic equations:

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$o (a + b) (a - b) = a^2 - b^2$$

$$a (a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

$$o (a - b)^3 = a^3 - b^3 - 3ab (a - b)$$

$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

$$a^3 - b^3 = (a - b)^3 + 3ab (a - b)$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

$$a^3 + b^3 + c^3 = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)$$

+3abc

$$\circ$$
 If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$

$$o$$
 If $x = a^{1/2} + a^{-1/2}$, then $x^2 - 2 = a + 1/a$

$$o$$
 If $x = a^{1/2} - a^{-1/2}$, then $x^2 + 2 = a + 1/a$

$$o If x = a^{1/3} - a^{-1/3}, then x^3 + 3x = a - 1/a$$

$$o If x = a^{1/3} + a^{-1/3}, then x^3 - 3x = a + 1/a$$

Exam tips

- ✓ Questions with complex 'n' powers can be simply solved by substituting 'n' with 1 or 0
- ✓ If powers are given in cyclic order, the resultant answer will always be a⁰ i.e., 1
- If $a^x = b^y = c^z$, any equation containing x, y, z can be solved by equating base to 'k'. i.e., $a = K^{1/x}$, $b = k^{1/y}$, $c = k^{1/z}$ and solving for a x b = c

logarithms

power to which base must be raised to produce the number

 $a^n = x$ $log_a x = n$

NOTES:

- If base to the log is not mentioned, assume the same as 10 [common log]
- In a common log, 'n' can be derived as logarithm table as follow:

Log ₁₀ 4594	= 3	+	0.6623
	Characteristic		Mantissa
	V17		117

A -	Characte V		Mantissa V
Laws of logarithms:	Power require		Derived From
	10 to reach	<u>'n' value</u>	log table
○ log _a 1 = 0	¦ Digits	Power	
o logaa = 1	4	3	
o logam³ = n logam	3	2	
$\log_{a^b} x = 1/b \log_a x$	1	0 ¦	
o logamn = logam + logan	1 decimal	<u> 1</u>	
o logam/n = logam - logan	2 decimals	<u> </u>	
$ \log_a x = 1 \div \log_x a $			
o logam = logbm ÷ logba			
○ a ^{log_a x} = x			
\circ If $\log x = \log y$, then $x = y$			
○ If log _a x = n, then x = antilog	gn		

Exam tips

- In case of multiple logs, i.e., log(log(log m)), compute value from innermost
- Value of log a on calculator => \sqrt{a} (13 times) \rightarrow 1 \rightarrow multiply 3558
- Value of an on calculator
 - If n is whole number => Type a \rightarrow Press x \rightarrow Press = (n times)
 - If n has decimals => \sqrt{a} (12 times) \rightarrow -1 \rightarrow multiply n \rightarrow +1 \rightarrow Press x = (12 times)
- Value of $a^{1/n}$ on calculator => \sqrt{a} (12 times) \rightarrow -1 \rightarrow ÷ n \rightarrow +1 \rightarrow Press x = (12 times)

Equations

mathematical statement of equality. The derivation

(solution) of the unknown in the equation is known as roots.

Types of Equations:

- \circ Simple Equation \rightarrow ax + b = 0, where 'x' is unknown
- o <u>Linear Equation</u> \rightarrow ax + by + c = 0, where 'x' and 'y' are unknown
- \circ Quadratic Equation \rightarrow ax² + bx + c = 0. "x" in this case would have upto 2 roots
- Cubic Equation \rightarrow ax³ + bx² + cx + d = 0, "x" in this case would have upto 3 roots

Solving Linear Equation

Two equations " $a_1x + b_1y + c_1 = 0$ " & " $a_2x + b_2y + c_2 = 0$ " can be solved by any of the ways:

					•	•
Elimination method	!	Cro	oss mu	ıltiplicat	tion me	thod
Step 1: Multiply Eq 1 with a ₂			X	Ч		1
Step 2: Multiply Eq 2 with a1	I I	b1 <	7	c1 <	√ a1	b1
Step 3: Step 1 — Step 2 to arrive at "y"	I I	b2 /		c2 /	a2	b2
Step 4: Solve for "x" by substituting "y"						
in Eq 1 or Eq 2	i.e.,	x	_ =	Ч	=	1
		b ₁ c ₂ - b ₂	 LC ₁	C102 - 0	C2 a 1	a1b2 - a2
Substitution method	I					
Ditch everything and simply substitute	or,	$x = b_1c_2$	- bac	1 &	y = c	:102 - C201
options in equation to check matches!	I	a ₁ b ₂	- azk	<u> </u>	(a1b2 - a2b1

Solving Quadratic Equation

The roots ' α ' & ' β ' of equation "ax² + bx + c = 0" can be identified by any of the ways:

Factorisation method	Formula method
The LCM of [a x c] should be considered	$x = -b \pm \sqrt{b^2 - 4ac}$
such that sum of LCM results in b simplifying	2 a
to the equation $(x - \alpha)(x - \beta) = 0$	

NOTES:

0	Nature of Roots: In a	quadratic equ	iation "b² - 4ac'	'is known as <mark>Discriminant</mark> .
---	-----------------------	---------------	-------------------	--

If Discriminant	Nature of Roots
= 0	Real & Equal
Perfect Square	Real, Unequal & Rational
Not Perfect Square	Real, Unequal & Irrational*
<0	Imaginary (Does not exist)
	, ,

*Irrational roots occur in conjugate pairs i.e., if $\alpha = p + \sqrt{q}$, then $\beta = p - \sqrt{q}$

O Properties of Roots:

$$[\alpha + \beta] = -b/a$$
 $\alpha\beta = c/a$

O Constructing Quadratic equation: Equation of roots ' α ' & ' β ' can be formed by:

$$x^2 - [\alpha + \beta]x + \alpha\beta = 0$$

Solving Cubic Equation

The roots ' α ', ' β ' & ' γ ' of equation " $ax^3 + bx^2 + cx + d = 0$ " can be identified by any of the ways:

Trial & Error method	Properties of roots
Identify first root by substituting x with values	$[\alpha + \beta + \gamma] = -b/a$
that satisfy the equation. With (x - α) as a	$\alpha\beta\gamma = -d/a$
factor, solve for the remaining quadratic	Identify the option which matches
equation to obtain β & γ	the properties with equation

Algebraic equations: $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ In case of infinite series, identify the $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta (\alpha + \beta)$ $\alpha^{3} - \beta^{3} = (\alpha - \beta)((\alpha + \beta)^{2} - \alpha\beta)$ $\alpha^{3} - \beta^{3} = (\alpha - \beta)((\alpha + \beta)^{2} - \alpha\beta)$ $\alpha - \beta = \sqrt{(\alpha + \beta)^{2} - 4\alpha\beta}$ In case of infinite series, identify the $x + \sqrt{x + \sqrt{x + \dots + \infty}}$

Linear Inequalities

Inequalities

statements where 2 quantities are unequal but a relationship exists between them.

Eq: ax + by + c > 0

ab + by + c < 0

 $ax + by + c \ge 0$

 $ax + by + c \leq 0$

NOTES:

- In an inequality, the sign is very important and cannot be reversed unless both sides are multiplied by -ve sign.
- O Range of a variable are expressed by [lower value, upper value]. If a circle bracket "(" is used, it means the value is not included. However, if a square bracket "[" is used, it means, value is included. For eg, [-2, 3) means variable x falls between $-2 \le x < 3$
- \bigcirc Range of sin x and cos x is [-1, 1]

Solving Linear inequalities in two vairables

Step 1: Replace inequality with an equal sign

Step 2: Find co-ordinates of line by taking x = 0 to get y and y = 0 to get x

Step 3: Plot the co-ordinates received to form straight line in graph

Step 4: Shading in graph takes place by following rule:

Scenario	Shading side	
X >	Right	Consider the same only
Χ<	Left	after making
у>	Up	co-efficients of vairables
Ус	Down	as + ve.

Exam tips

✓ In a scenario based question involving, resources, people, work, time etc., an inherent basic condition is also $x \ge 0$, $y \ge 0$

Mathematics of finance

Simple Interest

interest on principal for entire period of borrowing.

No interest is paid on interest

$$A_n = P + SI$$
 OR $A_n = P[1 + NR]$
Amount (Final value)

NOTES:

- R is expressed in absolute numbers (decimals). Not in %
- N should always be taken in years. Months can be converted to years by dividing by 12
- O Amounts in SI are always in Arithmetical Progression (AP). i.e., A_1 , A_2 , A_3 ...

Compound Interest

interest on progressing principal for a defined period of borrowing. Interest is also paid on interest

$$CI = P((1+r)^{n}-1)$$

$$A_n = P[1+r]^n \qquad E$$

Effective rate of interest

 $(1+r)^n - 1$

- NOTES:
 - or and n should be expressed in same conversion period as interest is compounded. Eg: if interest is compounded quarterly, "r" would be taken as Interest rate p.a. / 4 and 1 year would be converted to 4 periods
 - O Amounts in CI are always in Geometric Progression (GP). i.e., A_1 , A_2 , A_3 ...

Other formulas:

- WDV of asset = Original Cost [1 Dep%]ⁿ
- \circ CI₂ SI₂ = PR²
- \circ CI₃ SI₃ = PR² (R + 3)

Annuity

series of constant payments/receipts made over constant period of time.

Present value of Annuity received in Perpetuity (indefinitely)

If no growth

r Annuity

r - g

Present Value & Future Value

Single payment Annuity Regular Annuity Due

[Invest once] [Invest at end of each year] [Invest at start of each year] PV = FV $PV = A \times \sum_{1}^{n} \frac{1}{(1+r)^{n}}$ $PV = A \times \sum_{1}^{n-1} \frac{1}{(1+r)^{n-1}} + A$

FV = PV (1+r)ⁿ FV =
$$A \times \sum_{1}^{n-1} (1+r)^{n-1} + A$$
 FV = $A \times \sum_{1}^{n} (1+r)^{n}$

Exam tips

✓ Value of $\sum_{1}^{n} (1+r)^{n}$ on calculator => $(r + 1) \times 1 \rightarrow \text{Press} = (n + 1) \times 1 \rightarrow \text{Press}$

✓ Value of $\sum_{1}^{n} \frac{1}{(1+r)^{n}}$ on calculator => (r+1) → Press ÷ → Press = (n times) → Press GT

Applications of Time Value of Money

Sinking Fund → Fund created by crediting series of periodic payments in annuity which
is compounded annually.

i.e., Accumulation in Sinking Fund = $\left[A \times \sum_{1}^{n-1} (1+r)^{n-1}\right] + A$

○ Leasing → Decision to lease an asset or purchase the asset

Lessor point of view

(Income perspective)

Lease if: PV of Lease rent > Purchase price

Lessee point of view

(Expense perspective)

PV of Lease rent < Purchase price

○ <u>Investment decision</u> → Decision to invest in an asset/project etc. based on

Net Present Value (NPV)

NPV = PV of Inflows - PV of Outflows

Scenario	Decision
IF NPV is +ve	Accept the Project/Asset
IA NPV is O	Indifference point
If NPV is -ve	Reject the Project/Asset

Note: Where 2 projects are given to compare, accept the project with higher NPV

<u>Valuation of Bond</u> → Price at which bond can be purchased (IP) considering the
interest received p.a. (I), Redemption price (RP) and expected
rate of return (r)

If IP < Actual price	Purchase the Bond
If IP = Actual price	Indifference point
If IP > Actual price	Reject the Bond

 Compound Annual Growth Rate (CAGR) → Growth over period of time of a particular element (revenue, units, users etc.)

PERMUTATION \$ COMBINATION

chapter 5

- Permutation & Combination

ways of selecting things with due due attention to arrangement

NOTES:

Permutation Formulas

- Factorial: multiplication of all integers from 1 to n. For eg 0! = 1, $3! = 1 \times 2 \times 3 = 6$

ways of selecting things where arrangement is not important

NOTES:

Combination Formulas

- In combination there is no regard to the order of arrangement. These are mere cases $(n-r)! \ r!$ cases of selection. $^nC_r = \frac{n!}{(n-r)!} r!$
- Relationship: Combination (selection) x Arrangement = Permutation

$${}^{n}C_{r} \times r! = {}^{n}P_{r}$$

SPECIAL SCENARIOS

Arrangement of words

<u>Simple Arrangement</u> → Assume formed words need not have a meaning.

Eg: Arrange "RAHUL" => 5P5

• Rearrangement -> Question does not require the original word

Eg: Rearrange "RAHUL" => $^5P_5-1$

Eg: Arrange "RAHUL" such that Vowels come together

<u>Letters don't come together</u> → If particular way is restricted consider

Total ways (-) restricted ways

Eq: Arrange "RAHUL" such that Vowels don't come together => ${}^5P_5 - {}^4P_4 \times {}^2P_2$

<u>Restricted places</u>

Conditional Permutation. Draw places and identify letters allowed in restricted place. Remaining places = (No. of letters - 1) in reducing sequence.

Total ways = Multiply all selection

Eg: Arrange "RAHUL" such that R does not appear in the last place

Note: Permutation only works when letters to be placed are \leq the spaces available. Where spaces available are more than letters, switch to the reverse condition. Eg: If vowels in word "DAUGHTER" need to occupy odd places, Permutation cannot be done since there are 3 vowels and 4 odd spaces. Instead, reverse condition for 5 constants to occupy 4 even spaces and 1 odd space.

Arrangement of Digits

Simple Arrangement → Assume Digits are not repeating

Eg: Form 4 Digit number using 1 to $5 \Rightarrow {}^5P_4$

Single Place restriction → Conditional Permutation. Draw places and identify Digits allowed in restricted place. Remaining places = (No. of Digits - 1) in reducing sequence.

<u>Multiple Place restrictions</u>

Split restrictions. Fix primary restrictions and apply conditional permutation. Total ways = Sum of all ways

Eg: Form 4 Digit number > 2,300 using 1 to 5

=> Between 2000 - 2999

(+)

=> Above 2999

2 _ _ _

1 x 3 x 3 x 3

3 x 4 x 3 x 2

Note: If O is given as a Digit, it would be considered as a restriction for the first place as that would reduce the Digit formation. Consider Conditional Permutation accordingly

Eg: 4 Digit number using $0, 1, 2, 3, 4, 5 \Rightarrow$

4 x 4 x 3 x 2 (1,2,3,4,5)

Sum of Numbers formed with Digits

<u>No repetitions</u> → Shortcut is [Sum of Digits](n - 1)! x 1111

No. of 1 = No. of digits No. of digit

Eg: Sum of all 4-digit number with 1, 3, 5, $7 \Rightarrow (1+3+5+7) \times 3! \times 1111$

Digits repeating → Divide Sum with (No. of Digits repeating)!

Eq: Sum of all 4-digit number with 1, 3, 3, $5 \Rightarrow (1+3+3+5) \times 3! \times 1111$

2!

Digits contain O → Since O cannot appear in the first place, Compute Sum of all Digits
 (-) Sum of Digits if O occurs in first place

Eg: Sum of all 4-digit numbers with 0, 1, 3, 5

=> (0+1+3+5) x 3! x 1111 (-) (1+3+5) x 2! x 111

Factorisation

<u>o Total Factors</u> → To find the total number of factors of a number, identify the prime factors in the number and report them in indices i.e., $(p)^a(q)^b(r)^c$

Total Ways = (a + 1)(b + 1)(c + 1)

Different Factors → Since the number is a factor of itself, too,

Different Ways = ((a + 1)(b + 1)(c + 1)) - 1

CA FOUNDATION

Repetition

 \circ <u>Undefined repetitions</u> If same object can be repeated any number of times in the placements, Ways = n^r

Eg: Form 4 digit number using any number between 1 to 9. Same number can be used again

 <u>Identified repetitions</u> If certain objects are repeated in a given placement, impact of repetitions would be removed by dividing the No. of ways by (No. of repetitions used)!

Eg: Arrange "AGARWAL" using all letters =>
$$\frac{^{7}P_{7}}{3!}$$
 Repetitions of A

Note: The above only works since all objects given are used in the placement. Where placements given are less than a objects available, given objects will need to be grouped and identified for various possibilities where repetitions may occur/not occur

Eg: Form 4 letter word => 4 letter word can be formed by using the using "AGARWAL" following unique letters: AAA GRWL

Possibilities:	No repetitions	21	letters repeati	ng 3	letters repeati	ng
	⁵ C ₄ x 4!	+	${}^{3}C_{2} \times {}^{4}C_{2} \times 4!$	+	${}^{3}C_{3} \times {}^{4}C_{1} \times 4!$	
	Arrangement	+ 7	2! ←	Repetitions of	A → 3!	

<u>Occurrence</u>

- <u>Item always occurs</u> → Use Combination to fill other available places.
- Arrangement of places = (Total places)!

Eg: Arrange 10 items in 4 places such that 1 item always occurs \Rightarrow ${}^{9}C_{3} \times 4!$

 \circ Item never occurs \to Ignore the item as if it was never part of the list. Can use Permutation directly.

Eg: Arrange 10 items in 4 places such that 1 item never occurs => ${}^{9}P_{4}$

| Circular Permutations

- \circ Arrangement of persons \rightarrow If directions of seating is also relevant, Ways = (n-1)!
 - If directions of seating is not relevant (should not sit with same neighbour twice),

Ways =
$$\frac{1}{2}$$
 x (n-1)!

○ Arrangement of beads in necklace → Directions does not matter. Ways = $\frac{1}{2}$ x (n-1)!

l <u>Seating arrangement</u>

Alternate seating

Place the persons with higher quantity first. The remaining spots if
fixed will be used by the persons with lower quantity.

Eg: Place 6 boys and 5 girls in row such that no 2 girls or 2 boys sit together

Note: If spaces for lower quantity is not fixed, consider spaces before and after higher quantity as options available as well.

Eg: Place 5 girls and 6 boys such that no 2 girls sit together

=> No restriction on placement of boys

Distribution

<u>Identical items</u> → Placement of identical items do not hold relevance as there is no differentiation. Hence, No. of Ways will be divided by (Identical items)!

○ Grouping → Distributing items in group will follow same principle as above with the exception that if there are identical groups, then ways would be divided by (No. of Identical group)!

Eg: Split 12 students into 3 groups =>	12!	
	4! 4! 4! 3!	

Open Selection	
<u>Different things</u>	Alike things
 ○ Zero or more selections → If zero or more 	
different things can be selected,	alike things can be selected,
Ways = 2 ⁿ	Ways = (n+1)
○ One or more selections → If atleast one	One or more selections → If atleast one
different things needs to be selected,	alike things needs to be selected,
Ways = 2 ⁿ - 1	Ways = n
 Multiple different things → Multiplication 	
of all ways i.e.,	all alike ways i.e.,
Zero or more = $2^{n_1} \times 2^{n_2}$	Zero or more = $(n_1 + 1)(n_2 + 1)$
Atleast one = $(2^{n_1}-1)(2^{n_2}-1)$	Atleast one = $[(n_1 + 1)(n_2 + 1) - 1]$

Note: 2 is considered here on the assumption that there is only 2 choices: Select or leave. If there are more choices, increase 2 by such additional choices.

■ <u>Geometry</u> |

- \circ Straight Line \rightarrow A line can be created by joining any 2 points. Ways = Total Points C_2
- Triangle → A triangle can be formed by joining any 3 points. Ways = Total Points C₃
 Note: A triangle cannot be formed if all 3 points are collinear (in straight line). In such a case, remove the ways in which such collinear points can be selected for triangle.
 - Eg: Form triangle using 15 points where 8 of them are collinear => $^{15}C_3$ 8C_3
 - o <u>Diagonals</u> \rightarrow While selecting points in a shape to form a line, the sides of the shape also get selected. Hence, Ways = Total Points C₂ (-) no. of sides in the shape
 - Parallelogram \rightarrow To form a ligm, one needs 2 lines on x axis and 2 lines on y axis

 Ways = $^{lines on \times axis} C_2 \times ^{lines on y axis} C_2$

Sequence & Series

Ordered Collection of numbers formed	Sum of elements of a sequence
by definitive rule is called as Sequence	to n terms is called Series
Eg: 2,4,6,8n	Eg: 2 + 4 + 6 + 8 + + n

Arithmetic Progression

Sequence in which next term is obtained by adding a common difference "d"

Eg: 1, 2, 3, 4, 5,

To find nth term in AP

 $a_n = a + (n-1) d$

First term common difference

To find Sum of n terms in AP

 $S_n = n(a + 1)/2$

nth term

ÓR

 $S_n = n [2a + (n-1) d]$

Sum of series (formulas):

- 1st n natural numbers (1 + 2 + 3 + 4 + + n) = n(n + 1)/2
- \circ 1st n odd number (1 + 3 + 5 + 7 + + (2n 1) = n²
- Squares of 1st n natural number $(1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2) = n(n + 1)(2n + 1)/6$
- Cubes of 1st n natural number $(1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3) = [n(n + 1)/2]^2$

Geometric Progression

Sequence in which next term is obtained by multiplying by a constant multiplier "r"

Eg: 2, 4, 6, 8, 10,

To find constant multiplier

To find Sum of n terms in GP

$r = a_n / a_{(n-1)}$	

 $S_n = \underline{a (1 - r^n)}$

OR 5

 $S_n = \underline{a(r^n - 1)}$

To find nth term in GP

To find Sum of ∞ terms in GP

a_n = a r ⁽ⁿ⁻¹⁾

First term constant multiplier

 $S_{\infty} = \underbrace{a}_{(1-r)}$

Geometric Mean	
Value in between 2 terms of an GP.	
i.e., 'b' is the GM between 'a' and 'c'	
in a GP of a, b, c where	
$b^2 = ac$	

Solving Sequence	& Series			
Sequence is	given. Find	Find sequence by using		
n th Formula Sum Formula		AP/GP Formula	Sum Formula	
Substitute $n = 1, 2, 3$ Find S_1, S_2, S_3 from		Substitute n = 1, 2, 3	Substitute $n = 1, 2, 3$	
in options. Find option sequence. Substitute		in formula and arrive	in formula and arrive	
matching sequence	n = 1, 2, 3 in options.	at sequence.	at S1, S2, S3	
	Find option matching		$a_1 = S_1, a_2 = S_2 - S_1$	
	with the sums	I I	$a_3 = S_3 - S_2$	

seque	ence using first formula and substitute in second formula to ve	erify.
		.0

Sets, Relations & Functions

collection of well-defined distinct objects

Roster form

Set builder form

 $A = \{a, e, i, o, u\}$

A = set of vowels

Properties of sets

- o Null set: Empty set containing no elements. Represented by { } or φ
- Singleton set: Set containing only 1 element. Eg: { 1 }
- \circ Equal set: Set containing only 1 element. Eg: If A = set of natural numbers, B = set of +ve integers, then A = B
- o Subsets: The number of sub-sets of a set is 2^n . If $A = \{1, 2, 3\}$, subset = $2^3 = 8$

φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

Subset are denoted by \subset or \subseteq . i.e., $\{1, 2\} \subset \{1, 2, 3\}$

 \sim Proper Subsets: Sub-sets does not include the main set. => 2^n - 1, i.e., 2^3 - 1 = 7

φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}

Power Set: Collection of all subset

 $P(A) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

Relation between sets

For the given sets, $A = \{1, 2, 3\}$, $B = \{1, 3, 5, 7, 9\}$ and $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

of A & B

 $\begin{array}{c} -Rules of Set \\ \circ A \cap S = A \end{array}$

 $_{\circ}$ A $_{\cap}$ B => A intersection B contains all common elements in

 \circ A \cup S = S

both sets i.e., {1, 3}

 $\circ (A \cup B)' = A' \cap B'$

 \circ A \cup B => A union B contains all unique elements in both sets

 \circ (A \cap B)' = A' \cup B'

- i.e., {1, 2, 3, 5, 7, 9}
- A B => Contains all unique elements in A which are not present in B i.e., {2}
- B A => Contains all unique elements in B which are not present in A i.e., {5, 7, 9}
- $A' \Rightarrow A \text{ complement refers to all elements of } S \text{ which is not present in } A \text{ i.e.,}$ {4, 5, 6, 7, 8, 9, 10}

A x B => Cartesian Product of A & B refers to all pairs of (a, b) where "a" belong to Set A and "b" belongs to set B i.e., { (1,1), (1,3), (1,5), (1,7), (1,9), (2,1), (2,3), (2,5), (2,7), (2,9), (3,1), (3,3), (3,5), (3,7), (3,9) }

<u>Euler - Venn Diagram</u>

- $\circ \mathsf{n}(\mathsf{A} \cup \mathsf{B}) \Rightarrow \mathsf{n}(\mathsf{A}) + \mathsf{n}(\mathsf{B}) \mathsf{n}(\mathsf{A} \cap \mathsf{B})$
- \circ n(A \cup B \cup C) => n(A) + n(B) n(A \cap B) n(B \cap C)
 - $n(A \cap C) + n(A \cap B \cap C)$
- o $n(Only B \& C) \Rightarrow n(B \cap C) n(A \cap B \cap C)$
- o $n(Only C) \Rightarrow n(C) n(A \cap C) n(B \cap C) + n(A \cap B \cap C)$

Relations

instance where atleast 1 element of Set A has a mapping to Set B

A	1	(a)	В
	2	3	
	3	4	

Types of Relations

Reflexive	Symmetric	Transitive	Equivalence
If Element a is	If a is related to b,	If a is related to b	If a relation is
related to itself	then b is related to a	& b is related to c, re	Flexive, symmetric
Eg: a is equal to a	Eg: If a knows b,	then a is related to c	& transitive
	then b knows a	Eg: If a b & b c	Eg: x = y
		then, a c	

a relation where all elements of Set A are mapped to any 1 element of Set B.

domain co-domain

NOTES:

○ It is not necessary for elements in Set A to have a unique element in Set B.

Function

NOT a function.

NOT a function.

Set A has 1 image each in B

2 is not mapped

3 is mapped twice

- O Domain: All Elements of Set A
- Oco-Domain: All Elements of Set B (whether mapped or not)
- Range: Elements of Set B which are mapped to Set A

Eg: In Case A, Domain = {1, 2, 3}, Co-domain = {2, 4, 6}, Range = {2, 4}

Note: If the elements are not finite, express them using circle or square bracket

[Refer Linear Inequality Page 7]

In graphical terms, a relation becomes a function if a parallel line drawn to y axis intersects with the equation at only one point.

Composite function Where 2 functions are involved such that f(A) = B and g(B) = C, then it can be said that g(f(A)) = C. This can be written as g(A)

Here, f(1) = 2, g(2) = 4Therefore, gof(1) or g[f(1)] = 4and fog(4) or f[g(4)] = 1

Inverse function If f is a one-one and Onto function, such that f(x) = y, then inverse function $f^{-1}(y) = x$. For eg: if f(1) = 2, then $f^{-1}(2) = 1$.

- Steps to find inverse function of f(x) [say f(x) = 2x]
- Step 1: Write the given equation in terms of y i.e., y = 2x
- Step 2: Derive the equation of x in terms of y i.e., x = y/2
- Step 3: Replace x with y and y with x in all places i.e., y = x/2

$$=>f^{-1}=x/2$$

CA FOUNDATION

chapter 7

Limits & Continuity

value that a function approaches the output for the given input values

value x tends to $x \rightarrow a$ function

Steps to solving limits

Step 1: Determine whether the limit exists.

A limit for a function only exists when Left hand limit = Right hand limit

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x)$$

Step 2: Substitute "a" in f(x) to check if the value is determinate or undefined

Undefined	Defined	
\underline{a} , $\underline{\infty}$, ∞ - ∞ , 1^{∞} , $\sqrt{-a}$, 0^{∞} , 0^{0} , ∞^{0}	$\underline{0} = 0, \underline{a} = 0, \infty + \infty = \infty$	
0 ∞	a ∞	

Step 3: If f(x) is determinate, compute value of limit substituting a in f(x)

Step 4: If value is undefined, using any of the following methods, to make f(x) determinate.

Factorisation method	Differentiate method	Rationalisation method
(applicable in case of fraction	(applicable in case value	(applicable if f(x) has
with quadratic equations)	of $f(x)$ is O/O or ∞/∞)	irrational equations)
Factorise equations to eliminate	Differentiate Nr & Dr until	Multiple Nr and Dr with
common factor in Nr and Dr to	f(x) becomes determinate	conjugate pairs. Eliminate
remove the undefined form	Note: $\frac{dy}{dx} x^n = n(x)^{n-1}, \frac{dy}{dx} a = 0$	undefined form

Calculator trick

(applicable only in case of above four and not when standard functions are used)

If $x \rightarrow a$, substitute the x in the equation with marginally high number, eg. 0 becomes 0.01

If $x \to \infty$, substitute the x in the equation with 100

The nearest option resembling with value arrived in the calculator is the answer

Standard functions of limits:

$$\lim_{x \to 0} \frac{e^{f(x)} - 1}{f(x)} = 1 \qquad \lim_{x \to 0} \frac{a^{f(x)} - 1}{f(x)} = \log a \qquad \lim_{x \to 0} \frac{\log[1 + f(x)]}{f(x)} = 1$$

$$\lim_{x \to a} \frac{f(x)^n - a^n}{f(x) - a} = n(a)^{n-1} \qquad \lim_{x \to \infty} f(x)^x = e^{x[f(x) - 1]}$$

continuity

a function which at a given interval has no break in the graph of the function in the entire interval range

A function is said to be continuous only if the following condition is satisfied:

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a} f(x) = \lim_{x\to a^{+}} f(x)$$
OR
$$f(a^{-}) = f(a) = f(a^{+})$$

Modulus Function

Modulus function (or absolute value function) means reporting only +ve value of the function as the output. For eg, |2| = 2 and |-2| is also 2

In case of a modulus function i.e., |f(x)|, the limit of the functions can be arrived as follows:

$$f(x) = \begin{cases} f(x) & \text{for } f(x) \ge 0 \\ -f(x) & \text{for } f(x) < 0 \end{cases}$$