ca foundation

quantitative aptitude

index

Chapter No.	Chapter Name	Category	Page No.
00	Basics of Quantitative Aptitude		01
	PART A: BUSINESS MATHEMATICS		
01	Ratio, Proportions, Indices and Logarithms	Α	03
02	Equations	Α	05
03	Linear Inequalities	В	07
04	Mathematics of Finance	Α	08
05	Permutations and Combinations	В	12
06	Sequence and Series	A	14
0.7	A : Sets, Relations and Functions	В	16
07	B: Basics of Limits and Continuity	В	22
08	Basic Applications of Differential and Integral Calculus	С	24
	PART B : LOGICAL REASONING		
09	Number Series, Coding and Decoding & Odd Man Out	Α	28
10	Direction Tests	Α	28
11	Seating Arrangements	Α	28
12	Blood Relations	A	29
	PART C : STATISTICS	1	
40	A : Statistical Description of Data	Α	30
13	B: Sampling	С	36
	A : Measures of Central Tendency		39
14	B: Measures of Dispersion	Α	42
15	Probability	В	44
16	Theoretical Distributions	С	47
17	Correlation and Regression	Α	50
18	Index Numbers	A	54

"You're much stronger than you think you are. Trust me." -Superman

00. BASICS OF QUANTITATIVE APTITUDE

CONC	CEPT 01: NUMBER THEORY		01
		TYPES OF NUMBERS	
	Type of Numbers		Examples
	Positive Numbers	Numbers > 0	1, 2, 3.14 etc.
	Negative Numbers	Numbers < 0	-1, -2, -3.14 etc.
	Even Numbers	Numbers divisible by 2	2, 4, 6 etc.
	Odd Numbers	Numbers not divisible by 2	1, 3, 5 etc.
	Prime Numbers	Numbers divisible only by 1 & itself	2, 3, 5, 7 etc.
	Composite Numbers	Numbers having > 2 factors	4, 6, 8 etc.
	Rational Numbers	Numbers that can be expressed as fractions, where both Numerator & Denominator are Integers	1, 2, 3, 4 etc.
	Irrational Numbers	Numbers other than Rational Numbers	π
	Integers	All numbers (positive & negative) without fractions	-2, -1, 0, 1, 2 etc.
	Whole Numbers	All positive numbers from 0 to infinity without fractions	0, 1, 2, 3, 4 etc.
	Natural Numbers	All positive whole numbers from 1 till Infinity	1, 2, 3, 4 etc.

BODMAS

В	0	D	M	A	S
Brackets	Orders (Exponents)	Division	Multiplication	Addition	Subtraction

Author's Note

- Division and Multiplication have the same priority. If both appear in an expression, you perform them from left to right.
- Addition and Multiplication have the same priority. If both appear in an expression, you perform them from left to right.

{Master Question}

Q. Solve $10+4\times(6-2)\div2^2$ using BODMAS.

- Sol. B Brackets: (6-2)=4 The expression becomes: 10+4×4÷22
 - O Orders: 22=4 The expression becomes: 10+4×4÷4
 - D Division / M Multiplication (Left to Right):
 - = First, 4×4=16 (Multiplication comes first from left to right) The expression becomes: 10+16÷4
 - = Next, 16÷4=4 (Division) The expression becomes: 10+4
 - A Addition / S Subtraction (Left to Right): Finally, 10+4=14

DIVISIBILITY RULES

- **Divisibility by 2**: If the last digit of a number is 0,2,4,6,8.
- Divisibility by 3: If the sum of the digits is divisible by 3.
- Divisibility by 4: If the last 2 digits of a number are 00 or divisible by 4.
- Divisibility by 5: If the last digit of the number is either 0 or 5
- **Divisibility by 6**: If the number is divisible by 2 and 3 both.
- Divisibility by 7: If the difference between twice the last digit and the number formed by remaining digits is either 0
 or divisible by 7.
- Divisibility by 8: If the last 3 digits are 000 or divisible by 8.
- Divisibility by 9: If the sum of the digits is divisible by 9.

CONCEPT 02: ALGEBRA

PROPERTIES ON QUADRATIC EQUATION

- $(a + b)^2 = a^2 + 2ab + b^2$
- $(a b)^2 = a^2 2ab + b^2$
- $a^2 b^2 = (a + b)(a b)$
- $(x + a)(x + b) = x^2 + (a + b)x + ab$

PROPERTIES ON CUBIC EQUATION

- $a + b^3 = a^3 + b^3 + 3ab(a + b)$
- $(a b)^3 = a^3 b^3 3ab(a b)$
- $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
- $a^3 b^3 = (a b)(a^2 + ab + b^2)$

CONCEPT 03: SIMPLE CALCULATOR TRICKS

Dirty Fractional Power (a^{1/n})

- Press √ 12 times
- Subtract 1
- Divide by 'n'
- Add 1
- Press x= 12 times

Dirty Power (aⁿ)

- Press √ 12 times
- Subtract 1
- Multiply by 'n'
- Add 1
- Press x= 12 times

Common Log (log₁₀ n)

- Press √ 19 times
- Subtract 1
- Multiply by 227695

Antilog

- Divide by 227695
- Add 1
- Press x= 19 times

01. RATIO, PROPORTIONS, INDICES & LOGARITHMS

RATIO

CONCEPT 01: BASICS OF RATIO

- A ratio is a comparison of the sizes of multiple quantities of the same kind by division.
- It is always expressed in the simplest / lowest form. E.g. 25:10 will be expressed as 5:2.

a:b =	а	 Antecedent / First Term
	b	 Consequent / Second Term

CON	CONCEPT 02: TYPES OF RATIO			
	Type of Ratio	Format	Examples	
1	Compounded Ratio	a:b & c:d compounded is ac:bd	3:4, 5:6 & 3:11 compounded is $\frac{3 \times 5 \times 3}{4 \times 6 \times 11} = 15:88$	
2	Inverse Ratio	b : a	Inverse Ratio of 3:4 is 4:3	
3	Duplicate Ratio	a ² : b ²	Duplicate Ratio of 2:3 is 22:32 = 4:9	
4	Sub-Duplicate Ratio	√a : √b	Sub-Duplicate Ratio of 16:25 is $\sqrt{16}$: $\sqrt{25}$ = 4:5	
5	Triplicate Ratio	a ³ : b ³	Triplicate Ratio of 3:4 is 33:43 = 27:64	
6	Sub-Triplicate Ratio	³ √a : ³ √b	Sub-Triplicate Ratio of 125:64 is $\sqrt[3]{125}$: $\sqrt[3]{64}$ = 5:4	
7	Continued Ratio	a:b & b:c continued is a:b:c	 3:4 and 4:5 continued is 3:4:5. 3:4 and 5:6 continued is 3 x 5 / 4 x 5 : 5 x 4 / 6 x 4 = 15:20 & 20:24, which is 15:20:24. 	

PROPORTIONS

CONCEPT 03: BASICS OF PROPORTIONS

- An equality of two ratios is called a Proportion.
 a:b=c:d also written as a:b::c:d
- a, b, c & d are known as terms. a & d are called Extremes while b & c are called Means.
- d is known as Fourth Proportional.
- a, b, c & d must not be of the same kind in Proportions.
 a & b should be of the same kind and c & d should be of the same kind. [Imp.]
- Continued Proportion: If a: b = b: c, then
 - (i) a is called First Proportional.
 - (ii) c is called Third Proportional.
 - (iii) b is called **Mean Proportional** = \sqrt{ac} i.e. $b^2 = ac$
 - (iv) a, b & c should be of the same kind.

ONCEPT 04 : PROPERTIES OF PROPORTION	S	
	If a : b = c : d	
Property 01 {Cross Product Rule} ad = bc	Property 02 {Invertendo} b:a = d:c	Property 03 {Alternendo} a : c = b : d
{Product of Extremes = Product of Means} Property 04 {Componendo} (a + b) : b = (c + d) : d	Property 05 {Dividendo} $(a - b) : b = (c - d) : d$	Property 06 {Componendo & Dividendo} $(a + b) : (a - b) = (c + d) : (c - d)$
If a	: b = c : d = e : f =	
Property 07 {Addendo} (a + c + e +) : (b + d + f +)		Property 08 {Subtrahendo} (a - c - e) : (b - d - f)

INDICES

CONCEPT 05: EXPONENTIAL FORM

- Example: 2³ = 8, where 2 is base, 3 is power / index and 8 is the solution.
- $\sqrt{a} = a^{1/r}$

Example : $\sqrt[3]{8} = 8^{1/3} = 2$

CONCEPT 06: LAWS OF INDICES

00110		
Law		Example
1	$a^m \times a^n = a^{m+n}$	$3^5 \times 3^6 = 3^{5+6} = 3^{11}$
2	$a^m / a^n = a^{m-n}$	$3^5/3^3 = 3^{5-3} = 3^2$
3	$(a^m)^n = a^{mn}$	$(3^5)^3 = 3^{5\times 3} = 3^{15}$
4	$(ab)^n = a^n \times b^n$	$6^3 = (2 \times 3)^3 = 2^3 \times 3^3$
5	$a^0 = 1$	$5^0 = 1$
6	$a^{-m} = 1/a^m$	$3^{-2} = 1/3^2$ or $3^2 = 1/3^{-2}$
7	If a ^m = b ^m , then a=b (a,b ≠ -1, 0, 1)	$a^2 = 3^2$, then $a = 3$
8	If $a^x = a^y$, then $x=y$ (x, y \neq 0, 1)	$a^3 = a^x$, then $x = 3$

Author's Note: For simplifying the problems of Indices, students are advised to learn the following values by ♥

Indice	es of 2	Indice	es of 3
$2^1 = 2$	$2^6 = 64$	$3^1 = 3$	$3^6 = 729$
$2^2 = 4$	$2^7 = 128$	$3^2 = 9$	$3^7 = 2187$
$2^3 = 8$	$2^8 = 256$	$3^3 = 27$	
$2^4 = 16$	$2^9 = 512$	$3^4 = 81$	
$2^5 = 32$	$2^{10} = 1024$	$3^5 = 243$	

LOGARITHMS

CONCEPT 07: LOGARITHMIC FORM

How to read Logarithm?

 $\log_b a = c$

is read as, "log a base b equals c"

 $\log_4 16 = 2$

will be read as log 16 base 4 equals 2

Conversion of Exponential Form into Logarithmic Form

 ${\it Index of Exponential Form becomes Solution of Logarithmic Form}$

 $\log_a c = b$

Base of Exponential Form becomes Base of Logarithmic Form $4^2 = 16$ will be converted as $log_4 16 = 2$

CONCEPT 08: TYPES OF LOGARITHMS

TYPE 01: COMMON LOGARITHM

In Common Log base is always taken as 10.

 $E.g. \log_{10} 16$

TYPE 02: NATURAL LOGARITHM

In Natural Log base is always taken as 'e'.
e = Exponential No. = 2.33 (approx.)

E.g. log_e 16

CONCEPT 09: LAWS OF LOGARITHMS

Law		Examples
1	$\log_a mn = \log_a m + \log_a n$	$log 15 = log (3 \times 5) = log 3 + log 5 \{ log 3 \times log 5 \neq log 3 + log 5 \}$
2	$\log_a m / n = \log_a m - \log_a n$	$\log \frac{3}{5} = \log 3 - \log 5 \{ \log 3 / \log 5 \neq \log 3 - \log 5 \}$
3	$\log_a m^n = n \times \log_a m$	$\log 9 = \log 3^2 = 2 \times \log 3$
4	log _a a = 1	$\log_9 9 = 1$
5	$\log_a 1 = 0$	$\log_9 1 = 0$
6	$\log_b a = \frac{\log a}{\log b} = \frac{1}{\log_a b}$	$\log_2 3 = \frac{\log 3}{\log 2} = \frac{1}{\log_3 2}$
	{Base Changing}	
7	$\log_b a \times \log_a b = 1$	$\log_2 3 \times \log_3 2 = 1$
8	a ^{log} a m = m {Inverse Log}	(i) $3^{\log_3 2} = 2$ (ii) $3^{2 \log_3 x} = 3^{\log_3 x^2} = x^2$
	Note: If Base of Exponent &	& Base of Logarithm are same, then only this property is applicable.

02. EQUATIONS

CONCEPT 01	: BASICS OF EQUATIONS	
Expression	It is a combination of numbers, variables & operations that represents a value. <i>E.g.</i> 5x - 3	
Equation	It is a mathematical statement of equality.	
	 Conditional Equation: If the equality is true for a certain value of variable. 	
	E.g. $x + 1 = 2$ holds true for only $x = 1$. So it is a Conditional Equation.	
	Identity: If the equality is true for all the values of the variable involved.	
	E.g. $\frac{x+2}{3} + \frac{x+3}{2} = \frac{5x+13}{6}$ holds true for all values of x. So it is an Identity.	
Inequality	It is a statement that compares two values or expressions, indicating they are not equal.	
	E.g. $2x + 3 > 7$, $2x + 3 < 10$, $2x + 3 \neq 8$	

TYPES OF EQUATIONS

70,	Degree (Highest Power of Variable)	Roots (Solutions)	
Linear Equation	1	1 (2)	8x + 17(x-3) = 4(4x-9) + 12
Quadratic Equation	2	2	$3x^2 + 5x + 6 = 0$
Cubic Equation	3	3	$4x^3 + 3x^2 + x - 7 = 1$

Note: Two or more Linear Equations involving multiple variables are called **Simultaneous Linear Equations**. E.g. x + 2y = 1, 2x + 3y = 2 are jointly called **Simultaneous Linear Equations**.

CONCEPT 02: SIMPLE EQUATIONS & SIMULTANEOUS LINEAR EQUATIONS

- A simple equation is of the general form ax + b = 0, where $a \ne 0$.
- It has only one root.

Author's Note: Questions from this segment can be solved using Option Approach i.e. Check the values of the variable by putting options in the equation. So, learner should not invest time in learning the subjective methods like Elimination Method, Cross Multiplication Method etc.

CONCEPT 03: QUADRATIC EQUATION

- A quadratic equation is of the general form ax² + bx + c = 0.
 - → When b = 0, it is known as Pure Quadratic Equation.
 - \rightarrow When b \neq 0, it is known as Affected Quadratic Equation.
- It has 2 roots.

QUADRATIC FORMULA

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

E.g. Find the roots of the equation $x^2 - 5x + 6 = 0$.

Sol. Here, a = 1, b = -5 & c = 6. Putting the values in Quadratic Formula, we get,

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 6}}{2 \times 1}$$
= On solving we get,
= 3, 2

Hence, the two roots are x = 3 & x = 2.

OTHER POINTS

(i) Sum of Roots of a Quadratic Equation $(\alpha + \beta) = \frac{-b}{a}$

- (ii) Product of Roots of a Quadratic Equation $(\alpha \times \beta) = \frac{c}{a}$
- (iii) Construction of a Quadratic Equation when Sum & Products are given

 x^2 – (Sum of Roots)x + (Product of Roots) = 0

NATURE OF ROOTS

Discriminant (D) : Since $b^2 - 4ac$ discriminates between the roots of the quadratic equation, it is called Discriminant.		
Case	Case Nature of Roots	
Α	$D (b^2 - 4ac) = 0$	Real & Equal
В	$D(b^2 - 4ac) < 0$	Imaginary
С	$D(b^2 - 4ac) > 0$	
	It is a Perfect Square.	Real, Rational & Unequal (Distinct)
	 It is not a Perfect Square. 	Real, Irrational & Unequal (Distinct)

OTHER POINTS

- (i) If one root is reciprocal of another, then c = a.
- (ii) If one root is equal to another but of opposite sign, then b = 0.
- (iii) Irrational Roots occur in conjugate pairs i.e. if $(m + \sqrt{n})$ is one root, then $(m \sqrt{n})$ will be the other root.

CONCEPT 04: CUBIC EQUATION

- A cubic equation is of the general form $ax^3 + bx^2 + cx + d = 0$.
- It has 3 roots.

Author's Note: Questions from this segment have to be solved using Option Approach i.e. Check the values of the variable by putting options in the equation.

03. LINEAR INEQUALITIES

CONCEPT 01 : BASICS OF LINEAR INEQUALITIES					
Inequality	Statements	Statements where two quantities unequal are but a relationship exists between them.			
Linear		Function (Degree = 1) which involves a	an inequality	y sign (≤, <, >, ≥, ≠) is known as a	
Inequality	Linear Ined	quality.			
Solution Space	The values	of the variables that satisfy an inequali	ty are calle	d the Solution Space (S.S).	
Brackets	[a, b]	Both a & b are included.	[a, b)	a is included but b is excluded.	
	(a, b)	Both a & b are excluded.	(a, b]	a is excluded but b is included.	
	OTHER POINTS				
	 (a) Infinities are always written with an open bracket i.e. (-∞, ∞). (b) Closed Brackets are represented on the Number Line with ●, while Open Brackets are represented with ○. (c) Within the Brackets, a < b. 				
63	Author's Note : If the inequality contains ≤, ≥, use Closed Brackets and when it contains <, >, use Open Brackets.				

CONCEPT 02 : L	INEAR INEQ	UALITIES IN C	ONE VARIABLE				- ON
General Form	ax +	b ≤ 0	$ax + b \ge 0$		\//ho	ro 'a' i	s a non-zero real number.
	ax +	b < 0	ax + b > 0		VVIIC	16, a 1	s a non-zero real number.
Representation on Number Line	x < 1	(-∞, 1)	-8	0	1	2	→ ∞
	x ≤ 1	(-∞, 1]	-8	0	1	2	—————————————————————————————————————
	x > 1	(1, ∞)	-∞	0	1	2	→ ∞
	x ≥ 1	[1, ∞)	-∞	0	1	2	—————————————————————————————————————
Rules for	If same n	o. on both sid	les is	+ve Numb	per		-ve Number
Solving		ed / Subtracted		Doesn't affect the sign			Doesn't affect the sign
. 80	Multi	plied / Divided		Doesn't affect the sign			Reverse the sign
	Aut	hor's Note : L	earners may co	nsider usin	g Optio	nal Ap _l	proach like Equations.

CONCEPT 03 : L	INEAR INEQUALITIE	S IN TWO VARIABLES		Q.
General Form	ax + by ≤ c	ax + by ≥ c	Where, 'a' & 'b' are non-zero real numbers	
	ax + by < c	ax + by > c	VVIIE	ere, a & b are non-zero real numbers.
Representation	Let us consider an ir	nequality 3x + y < 6.		
on Graph	Step 01 : Convert it into an Equation			3: Plot on the Graph
	у	0 2 6 0	(2,0)	
,0	Step 04 : Put (0,0) in the inequality, if it satisfies, then shade towards the origin, otherwise away. If the line passes through origin, then take any point from x axis or y axis.			
2.5		c is +ve		c is -ve
Author's Note:	ax + by < c	Shading Towards Origin		Shading Away from Origin
	ax + by > c	Shading Away from Origin	n	Shading Towards Origin

04. MATHEMATICS OF FINANCE

SIMPLE INTEREST (SI)

Meaning

- It is the interest computed on the principal for the entire period of borrowing.
- It is calculated on the outstanding principal balance & not on interest previously earned.

Computation

$$A = P + SI$$

$$A = P + \frac{P \cdot r \cdot t}{100}$$

$$A = P \left(1 + \frac{r \cdot t}{100}\right)$$

KEY

- A Accumulated Amount (Final Value)
- P Principal (Initial Value)
- r Annual Rate of Interest (aka 'i')
- T Time (in years)

OTHER POINTS

- (a) Simple Interest is calculated on Principal (P) irrespective of the Time. SI (Year 1) = SI (Year 2) = = SI (Year n)
- (b) If the question provides both A & P, then,

Alternative 1: Directly apply the formula A = P $(1 + \frac{r \cdot t}{100})$

Alternative 2: Calculate SI from SI = A - P & then apply the formula of SI.

E.g. Sania deposited 50,000 in a bank for two years with the interest rate of 5.5% p.a. Calculate,

- (a) The interest she would earn.
- (b) The final value of investment.

Sol. (a) Interest earned

⇒ SI = ₹50,000 x
$$\frac{5.5}{100}$$
 x 2 = ₹5,500

(b) Final Value of Investment

$$\Rightarrow$$
 A = P + SI

E.g. If a certain sum becomes ₹575 at the rate of 5% p.a. in the same time when ₹750 becomes ₹840 at the rate of 4% p.a. Calculate the sum.

Sol. Calculation of Time (t)

ALTERNATIVE I

$$\Rightarrow A = P \left(1 + \frac{r \cdot t}{100}\right)$$
$$\Rightarrow 840 = 750 \left(1 + \frac{4 \cdot t}{100}\right)$$

On Solving,
$$\Rightarrow$$
 t = 3 years

ALTERNATIVE II

$$\Rightarrow SI = ₹840 - ₹750 = ₹90$$

$$\Rightarrow \frac{P \cdot r \cdot t}{100} = ₹90$$

$$\Rightarrow \frac{750 \cdot 4 \cdot t}{100} = ₹90$$

On Solving,
$$\Rightarrow$$
 t = 3 years

Calculation of Principal (P)

$$\Rightarrow$$
 A = P $\left(1 + \frac{r \cdot t}{100}\right)$

$$\Rightarrow 575 = P \left(1 + \frac{4 \cdot 3}{100}\right)$$
On Solving,

COMPOUND INTEREST (CI)

	COI	WPOUND INTERES	01 (01)			
Meaning	Compound Interest is the interes from previous periods.	t calculated on the F	Principal as well as on the Accumulated Interest			
Computation	A = P (1 + r) ⁿ CI = A - P = P (1 + r) ⁿ - P = P [(1 + r) ⁿ - 1] Period of Compounding	Conversions	KEY A Accumulated Amount (Final Value) P Principal (Initial Value) r Rate of Interest per Conversion			
	Semi-Annually / Half Yearly	2	=			
	Quarterly	4	No. of Conversions n Total No. of Conversions			
	Monthly	12	= No. of Years x No. of Conversions			
PARI	Daily / Continuously	365	140. Of Todio X 140. Of Conversions			
	Interest will be pa		Interest will be paid 2 times			
	Period 1	Period 2	Period 3 Period 4			
	½ Rate	½ Rate	1/2 Rate 1/2 Rate			
	End of 1st Year					
	Sol. <u>Computation of 'r'</u> i	Compu	utation of 'n'			
	Sol. Computation of 'r' $\Rightarrow \frac{i}{\text{No. of Convers}}$	<u>Сотр</u> ц				

IN CASE OF DEPRECIATION (WDV)

$$A = P (1 - r)^{n}$$

[Pro Tip] 'n' usually comes in decimal form. Refer Chapter 0 to learn how to solve.

KEY

- A Residual Value
- P Cost
- r Rate of Depreciation (WDV)
- n No. of Years

CONTINUOUS COMPOUNDING

 $A = P \cdot e^{rt}$ (e = 2.7183)

Author's Note: ICAI generally provides the value of e^{rt} in question itself.

EFFECTIVE RATE OF INTEREST

Meaning	If interest is compounded more than once in a year, then the equivalent rate of interest compounded annually is known as Effective Rate of Interest.
Computation	$E = (1 + r)^n - 1$
	E.g. Calculate Effective Rate of Interest if the amount is compounded semi-annually @6% p.a. Sol. Here, $r = \frac{i}{\text{No. of Conversions}} = \frac{6\%}{2} = 0.03 \& n = 1 \text{ Year x 2 Conversions} = 2 \text{ Now,}$
	$\Rightarrow E = (1 + r)^n - 1$
	\Rightarrow = $(1 + 0.03)^2 - 1 = 0.0609$ or 6.09%

ANNUITY

Sinking Fund	It is a fund created for : (a) Acquisition of any asset at the end of its useful life (Replacement of Asset); (b) Payment of any Liability in future		et);	Ordinary Annuity + Future Value		е
Net Present	C	OMPUTATION OF NP	V	DECISION RULE		
Value (NPV)	PV of Net (XXX	NPV > 0	Accept the Proposal	
		et Cash Outflow	(xxx)	NPV = 0	Indifferent	
		Net Present Value	XXX	NPV < 0	Reject the Proposal	
	₹55,000, Year Should the con Sol. Computat	2 is ₹80,000 and for Yenpany accept the projection of NPV	ear 3 is ₹15,000. F ct?	urther, the	00 and Net Cash Flows for \ company's cost of capital is	
	Year	Net Cash Flows (₹) (1)) PVIF @10% (2)	Disc	ounted Cash Flows (₹) (3)	
0,0	0	(1,00,000)	1.000		(1,00,000)	0.0
	1	55,000	0.909		49,995	
CAT	2	80,000	0.826		66,080	
	3	15,000	0.751		11,265	
		Net l	resent Value (NPV) 27,340		27,340	
	Recomme	endation: Since, the N	PV is Positive. The	company	should accept the Project.	
Nominal &	NOMI	NAL RATE OF INTER	EST	R	EAL RATE OF INTEREST	
Real Rate	It is the Stated Rate of Interest on a given loan, bond etc. It works as per Simple Interest. **Nominal Interest Rate = Real Interest Rate + Inflation** It is the interest rate the lender or investor gets after factoring in Inflation.			· gets		
Bond	 A bond is a debt security in which the issuer owes & is obliged to repay the principal & interest. They are generally issued for a fixed term (generally longer than a year). Present Value of a Bond = Interest / (1+r)¹ + Interest / (1+r)² + + Interest / (1+r)ⁿ 				est.	
Perpetuity	 It is an annuity in which the periodic payments / receipts begin on a fixed date & continue indefinitely. Present Value of Perpetuity = A (Annuity) r 				definitely.	
CAGR	over a spec	ed Annual Growth Rate ified time period. on of CAGR	(CAGR) calculates	s the mear	annual growth rate of an inv	vestment
	$= \left(\frac{\text{Futu}}{\text{Present}}\right)$	re/End Value $\sqrt{\frac{1}{n}} - 1$			\\\	

05. PERMUTATIONS & COMBINATIONS

CONCEPT 01:	FACTORIAL	8,
Definition	 The factorial 'n' represents the product of all integers from 1 to n. It is denoted as n! or [n. n! = n · (n-1) · (n-2) · 3 · 2 · 1 0! = 1 	Author's Note: Students are advised to learn values from 1! to 7!.

CONCEPT 02:	FUNDAMENTAL PRINCIPLES OF COUNTING	
	ADDITION RULE (OR)	MULTIPLICATION RULE (AND)
Meaning	If there are two alternative jobs which can be done in 'm' ways & in 'n' ways respectively, then either	If a certain thing can be done in 'm' ways, & when it has been done, a second thing can be done in 'n'
	of the two jobs can be done in 'm + n' ways.	ways, then total ways of doing both things = 'mn'
Example	If one wants to go to brief academy by bus where there are 5 buses or by auto where there are 4 autos, then total ways = 5 + 4 = 9	If one wants to go to brief academy by bus where there are 5 buses and come back by auto where there are 4 autos, then total ways = 5*4 = 20

CONCEPT 03:	PERMUTATIONS
Meaning	 Each of the arrangements which can be made by taking some or all of a number of things. It is denoted by ⁿP_r or _nP_r or P_(n,r). ⁿP_r is read as 'r' objects arranged out of 'n' different objects. ⁿP_r = ^{n!}/_{(n-r)!}, 0 ≤ r ≤ n where, n,r ∈ Integers (Z). ⁿP_r = n(n - 1)(n - 2)(n - r + 1) [No. of Factors = 'r'] ⁿP_r = ⁿ⁻¹P_r + r · ⁿ⁻¹P_{r-1}

MASTER SUMMARY

Type 01	No. of Permutations when all the objects are distinct	
	(a) 'n' different objects taken 'r' at a time.	${}^{n}P_{r}$
	(b) 'n' different objects taken all at a time.	ⁿ Pn (n!)
	(c) 'n' different objects taken 'r' at a time but repetition is allowed.	n ^r
Type 02	No. of Permutations when all the objects are not distinct $(p_1 \text{ objects are of one kind, } p_2 \text{ objects are of second kind,}, p_k \text{ objects are of } k^{th} \text{ kind})$	$\frac{n!}{p_1 \cdot p_2 \cdot \cdot p_k}$
Type 03	Permutations with Restrictions	
	(a) 'n' different objects taken 'r' at a time, when a particular object is not included in any arrangement.	n-1P _r
Y	(b) 'n' different objects taken 'r' at a time, when a particular object is always included in all arrangement.	n-1 P r-1
Type 04	<u>Circular Permutations</u>	
	(a) No. of Circular Permutations of 'n' different objects taken all at a time.	(n-1)!
	(b) No. of ways of arranging 'n' persons along a round table so that no person has the same two neighbours.	<u>(n-1)!</u> 2
	(c) No. of necklaces formed with 'n' different beads.	(n-1)! 2

CEDT OA.	

Meaning	Each of the different selections made by taking some or all of a no. of objects, irrespective of their
	arrangements.
	It is denoted as It is denoted by ⁿ C _r or C (n,r), C _{n,r} .

- □ $^{n}C_{r}$ is read as 'r' objects selected out of 'n' different objects. □ $^{n}C_{r} = \frac{n!}{(n-r)! \; r!}$, $0 \le r \le n$ where, $n,r \in Integers$ (Z).

Standard Results		Q.P.
8,4,4		8,
	 If ⁿC_a = ⁿC_b, then either a = b or n = a+b ⁿC_r + ⁿC_{r-1} = ⁿ⁺¹C_r 	

MASTER SUMMARY

Type 01	Total ways to form groups by taking some or all of 'n' things	2 ⁿ – 1
Type 02	Total ways to make groups by takin some or all of 'n', where (n ₁ objects are of one kind, n ₂ objects are of second kind,)	{(n ₁ +1) (n ₂ +1)} -1
Type 03	Geometry based Problems	
	(a) No. of Straight Lines with given 'n' points.	$^{n}C_2$
	(b) No. of Straight Lines with given 'n' points where 'm' points are collinear.	${}^{n}C_{2} - {}^{m}C_{2} + 1$
	(c) No. of Triangles with given 'n' points.	$^{n}C_{3}$
	(d) No. of Triangles with given 'n' points where 'm' points are collinear.	nC ₃ - mC ₃
27	(e) No. of Parallelograms with the given set of 'm' Parallel Lines & another set of 'n' Parallel Lines	ⁿ C ₂ - ^m C ₂
	(f) No. of Diagonals with 'n' sides	${}^{n}C_{2}-n$
	(g) Maximum No. of points of intersection of 'n' circles	n ⋅ (n-1)
Type 04	No. of ways of dividing 'n' different items into 'k' groups of 'h' items each	n!
		k! · (h!) ^k
Type 05	Total No. of handshakes between 'n' different persons	<u>n · (n - 1)</u>
		2

Author's Note: If the question asks the total no. of factors of any number, let's say, 75,600. Then firstly write it in its prime factorisation form = $2^4 \cdot 3^3 \cdot 5^2 \cdot 7^1$. Now, No. of Factors will be given by multiplying exponents after increasing them by 1. In this case, $5 \times 4 \times 3 \times 2 = 120$.

Author's Note: For our learners reference, basic knowledge about a deck of cards is as follows:

Total Cards 52 (No Jokers in a Standard Deck)

Ace Cards (A): 1 in each suit & 4 in deck

Face Cards (K, Q, J): 3 in each suit & 12 in deck

Number Cards (2-10): 9 in each suit & 36 in deck

Colours

Red Cards (26) + Black Cards (26)

Suits

Red Suits [Hearts (13) + Diamonds (13)] + Black Suits [Spades (13) + Clubs(13)]

06. SEQUENCE & SERIES

CONCEPT 01	CONCEPT 01 : BASICS OF SEQUENCE & SERIES				
	SEQUENCE	SERIES			
Meaning	An ordered collection of numbers if arranged in some definite rule or law.	The sum of elements of the Sequence is known as Series. It is denoted by the Greek Letter Σ .			
Examples	 2, 4, 6, 8, 10 {Finite Sequence} 1², 2², 3², 4², {Infinite Sequence} 	 2 + 4 + 6 + 8 + 10 {Finite Series} 1 - 2 + 3 - 4 {Infinite Series} 			
	Author's Note : At CA Foundation Level or	nly two Sequences are discussed i.e. AP & GP.			

CONCEPT 02:	ARITHMETIC PROGRESSION (A.P.) & GEOMETR	IC PROGRESSION (G.P.)	
	ARITHMETIC PROGRESSION (AP)	GEOMETRIC PROGRESSION (GP)	
Definition	Any sequence is said to be an AP if the difference Any sequence is said to be a GP if the rati		e a GP if the ratio
	between the consecutive terms is same.	between the consecutive	terms is same.
General Term	$a_n = a + (n-1)d$	a _n =	ar ⁿ⁻¹
General Form	a, a+d, a+2d, a+3d,a+(n-1)d	a, ar, ar ² , ar ³	,, ar ⁿ⁻¹
n th Term from the end	l – (n-1)d	$I\left(\frac{1}{r}\right)^{n-1}$	
Sum of 'n'	$S_n = \frac{n}{2} [2a + (n-1)d]$	If r > 1	If r < 1
terms	Note : If 1 st & last term are given, $S_n = \frac{n}{2}[a + l]$	$S_n = \frac{a[r^n - 1]}{r - 1}$	$S_n = \frac{a[1 - r^n]}{1 - r}$
	Author's Note : While calculating S _n , if 'n' is no General Term as discussed above.	ot given in question, then	first calculate 'n' using
n th Term if S _n is given	$a_n = S_n - S_{n-1}$		
Sum of ∞ Terms		$S_{\infty} = \frac{a}{1-r}$	
Key	 a = First Term n = No. of Terms d = Common Difference = a₂ - a₁ = a₃ - a₂ = a_n - a_{n-1} a_n = nth Term / Last Term (I) / t_n S_n = Sum of 'n' Terms 	 a = First Term n = No. of Terms d = Common Ratio = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_n}{a_{n-1}}\$ a_n = nth Term / Last Term (I) / t_n S_n = Sum of 'n' Terms 	

CONCEPT 03:	CONCEPT 03 : SUM OF SOME IMPORTANT SERIES				
	Sum of 'n' Consecutive Nos.	Sum of Squares	Sum of Cubes		
Natural Nos.	$\frac{n(n+1)}{2}$	<u>n(n + 1)(2n + 1)</u> 6	$\left[\frac{n(n+1)}{2}\right]^2$		
	{1 + 2 + 3 + + n}	$\{1^2 + 2^2 + 3^2 + \dots + n^2\}$	$\{1^3 + 2^3 + 3^3 + \dots + n^3\}$		
Even Nos.	n(n + 1)	$\frac{2n(n+1)(2n+1)}{3}$	2[n(n+1)] ²		
	{2 + 4+ 6 + + n}	$\{2^2 + 4^2 + 6^2 + \dots + n^2\}$	$\{2^3 + 4^3 + 6^3 + \dots + n^3\}$		
Odd Nos.	n²	<u>n(2n + 1)(2n - 1)</u> 3	n²(2n² – 1)		
	{1 + 3 + 5 + + n}	$\{1^2 + 3^2 + 5^2 + \dots + n^2\}$	$\{1^3 + 3^3 + 5^3 + \dots + n^3\}$		

CONCEPT 04:	ARITHMETIC MEAN (A.M.) & GEOMETRIC MEAN ARITHMETIC MEAN (A.M.)	(G.M.) GEOMETRIC MEAN (G.M.)
6,	Author's Note : For this topic, 'Mean' impli	es terms other than extremes & not average.
Single Mean between two terms (a, b)	a, x, b $x = \frac{a+b}{2}$, where 'x' is mean	a, x, b $x = \sqrt{ab}$, where 'x' is mean
'n' Mean between two terms (a, b)	a,, b • Step 01 : Calculate 'd' [Using $d = \frac{b-a}{n+1}$] • Step 02 : Now, $\Rightarrow 1^{st} A.M. = a + d [2^{nd} \text{ term of AP}]$ $\Rightarrow 2^{nd} A.M. = a + 2d [3^{rd} \text{ term of AP}]$ \vdots $\Rightarrow n^{th} A.M. = a + nd [(n-1)^{th} \text{ term of AP}]$	a,, b • Step 01 : Calculate 'r' [Using $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$] • Step 02 : Now, $\Rightarrow 1^{st} A.M. = ar [2^{nd} \text{ term of GP}]$ $\Rightarrow 2^{nd} A.M. = ar^2 [3^{rd} \text{ term of GP}]$ \vdots $\Rightarrow n^{th} A.M. = ar^n [(n-1)^{th} \text{ term of GP}]$

SOME IMPORTA	ANT RESULTS TO REMEMBER	0.3	
Type 01	If the mth term of an AP is 'n' & nth term is 'm', then rth term of it is m + n - r		
Type 02	If the m th term of an AP is 'n' & n th term is 'm', then (m + n) th term is	0	
Type 03	$x + xx + xxx + \dots$ to n terms , then S_n is given by	$\frac{x}{n} \left[\left\{ \frac{10}{9} \left(10^{n} - 1 \right) \right\} - n \right]$	
Type 04	$0.x + 0.xx + 0.xxx + \dots$ to n terms, then S_n is given by	$\frac{x}{n} \left[\left\{ n - \left(\frac{1 - 0.1^n}{9} \right) \right\} \right]$	
Type 05	■ 0.abc = abc - ab many times as digits outsi	r the bar & 0 will appear as	
	• 0.abcd = $\frac{900}{\text{abcd} - \text{ab}}$	E.g. $0.38\overline{7} = \frac{387 - 38}{900}$	
Type 06	If A be the AM & G be the GM between two terms, then A > G.		
Type 07	If a, b, c are in AP as well as in GP, then (a) they are also in Harmonic Progression (HP); and (b) their reciprocals are also in AP.		

07A. SETS, RELATIONS & FUNCTIONS

SETS

<u> </u>			
	ASICS OF SETS		
Meaning	Collection of well-defined distinct objects (finite/ infinite). Each object is called an element of the set. OTHER POINTS 1. The elements of the two sets may be listed in any order. 2. The repetition of elements in a set is meaningless. 3. A set may contain a Finite or Infinite number of elements. KEY i. 'E' = belongs to ii. ':' or ' ' = such that iii. '\(\in\)' = which implies		
Description of	ROSTER / BRACES { }	SET BUILDER / ALGEBRAIC / RULE / PROPERTY	
Sets	Described by listing elements, separated by commas, within braces { }. E.g. A = {a, e, i, o, u}	Described by a property $P(x)$ of its elements x , such that $\{x : P(x) \text{ holds}\}\$. E.g. $A = \{x : x \text{ is a of vowel in alphabets}\}$	
Subset & Superset	latter & the latter is said to be superset of the for $E.g. P = \{a, b, c\} \& Q = \{a, b, c, d, e\}$, then we can	nother set, the former is said to be the subset of the rmer. an say P is a subset of Q , or $P \subset Q \& Q$ is a superset	
66,	of P, or Q ⊃ P. A set containing 'n' elements has 2 ⁿ subsets and 2 ⁿ – 1 proper subsets. E.g. A set containing 3 elements has 2 ³ subsets and 2 ³ -1 proper subsets.		
Proper Subset	If a set is a Subset of another set, but not equal E.g. {2, 3} is a Proper Subset of {2. 3. 5}, {1, 2} is	·	
Power Set	The collection of all possible subsets of set A. It is denoted by $P(A)$. E.g. $A = \{1,2,3\}$, then $P(A) = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \Phi\}$		
Empty / Null / Void Set	 It contains no elements. It is usually denoted by {} or Φ (phi) A set which has at least 1 element is called non-empty set. 	 It has no Proper Subset. Null set is a subset of every set. E.g. A = {x : x is a Prime No. between 32 & 36} 	
Cardinal No. of a Set			
	Equivalent Set	Equal Set	
	 Two finite sets A & B are said to be equivalent if n(A) = n(B). It is denoted by A ↔ B or A ⇔ B. E.g. A = {1,2,3}. B = {a,b,c}, then A ↔ B 	 Two finite sets A & B are said to be equal if Cardinal No. as well as elements are same. It is denoted by A=B. E.g. A = {1,2,3}. B = {1,2,3}, then A=B 	
No.	All equal sets are equivalent but	t all equivalent sets need not be equal.	
Singleton Set	A set containing a single element is known as S		
Difference of a Set	 A set containing all the elements that are in A but not in B is known as difference of sets A and B. It is denoted by A – B or A ~ B. A – B = {x:x ∈ A & x ∉ B} E.g. A = {1,2,3,4,5}, B = {3,4,5} then A – B = {1,2} 		
Universal Set	A set which contains all sets under consideration		
Complement of a Set	of A set which contains all elements in S but not in A. It is denoted by A ^c or A'. A ^c or A' = S - A = {x:x ∈ S & x ∉ A}.		
	<i>DE MOF</i> (A∪B)' = (A'∩B')	RGAN'S LAWS (A∩B)' = (A'∪B')	
Union of Sets	It is written as A∪B contain all the elements whi		
Intersection of Sets	It is written as A∩B contain those elements which are both in A & B.		
Disjoint Sets	Two sets are said to be disjoint if there is no common element between them. i.e. $A \cap B = \Phi$		

CON	CEPT 03 : PROPERTIES ON CARDINAL NUMBERS	
A.	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$	
В.	$n(A \cup B) = n(A) + n(B) \{A, B \text{ are Disjoint Non-Void Sets}\}$	
C.	$n(A - B) = n(A) - n(A \cap B) = n(A \cup B) - n(B)$	
D.	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) - n(A \cap B \cap C)$	
	Note : If A, B and C are Disjoint Sets, then $n(A \cup B \cup C) = n(A) + n(B) + n(C)$	
E.	$n(A \cap B)' = n(A' \cup B') = n(S) - n(A \cap B)$	
F.	$n(A \cup B)' = n(A' \cap B') = n(S) - n(A \cup B)$	

RELATIONS

CONCEPT 04 : P	CONCEPT 04: PRODUCT OF SETS		
Ordered Pairs	Two elements a & b, listed in a specific order, form an ordered pair, denoted by (a,b).		
Cartesian	If A & B are two non-empty sets, then the set of all the ordered pairs (a,b) such that		
Product	a ∈ A & b ∈ B, is called the Cartesian Product of A & B. It is denoted by A x B.		
	E.g. (a) A = {1, 2, 3} and B = {4, 5}, then A x B = { (1,4), (1,5), (2,4), (2,5), (3,4), (3,5)}		
	(b) If A x B = {(3,2), (3,4), (5,2), (5,4)}, then A = {3, 5} and B = {2, 4}		
	■ n(A x B) = n(A) x n(B)		
N .	E.g. $A = \{1, 2, 3\}$ and $B = \{4, 5\}$, $n(A) = 3$, $n(B) = 2$, then $n(A \times B) = 3 \times 2 = 6$.		

CONCEPT 05 : R	RELATIONS
Meaning	■ Let A & B be two sets. Then a relation R from A to B is a subset of A x B. T
	Thus, R is a relation from A to B \Leftrightarrow R \subseteq A x B .
	If (a,b) ∈ R, then we write aRb, read as a is related to b by the relation R.
	If (a,b) ∉ R, then we write aRb, read as a is not related to b by the relation R.
Total No. of	$n(A) = x$, $n(B) = y$, then Total No. of Relations = 2^{xy}
Relations	E.g. $A = \{1, 2, 3\}$ and $B = \{4, 5\}$, then Total No. of Relations = $2^{3\times2} = 2^6 = 64$
Domain	Let R be a relation from a set A to a set B.
	Set of all first components of the ordered pairs belonging to R : Domain of R
 Set of all second components of the ordered pairs belonging to R : Range of R 	
10	Author's Note : Think of Domain as Input & Range as Output.

Representation	Roster Form	If R is a relation from A = $\{-1, 0, 1\}$ to B = $\{0, 1\}$ by the rule aRb \Leftrightarrow a ² = b.
of Relation		Then, 0R0, -1R1, 1R1.
		So, R in Roster Form will be, R = {(-1,1), (0,0), (1,1)}.
	Set-Builder Form	If A = $\{1, 2, 3\}$ and B = $\{1, 1/2, 1/3\}$ and R is a relation from A to B given by
		$R = \{(1,1), (2, 1/2), (3, 1/3)\}.$
		Then, R in Set-Builder Form will be, $R = \{(a,b) : a \in A, b \in B \text{ and } b = 1/a\}$.
	Arrow Diagram	R = $\{(1,2), (2,4), (3,5), (1,3), (3,4)\}$ from set A = $\{1, 2, 3, 4, 5\}$ to B = $\{2, 3, 4, 5, 6\}$ can be represented by Arrow Diagram as:
	SINGH	1 2 3 4 5 6
		A B
Types of Relations	Inverse Relation	Let A & B be two sets and let R be a relation from A to B, then the Inverse of R, denoted by R^{-1} is a relation from B to A & is defined by $R^{-1} = \{(b,a) : (a,b) \in R\}$.
		E.g. Let A = {1, 2, 3} and B = {a, b, c, d}, R = {(1,a), (1,c), (2,d), (2,c)}, then R ⁻¹ = {(a,1), (c,1), (d,2), (c,2)}.
	Identity Relation	An Identity Relation on set A, denoted by I_A , means every element of A is related to itself only i.e. $I_A = \{(a,a) : a \in A\}$.
	, GIA	E.g. Let $A = \{1, 2, 3\}$, then $I_A = \{(1,1), (2,2), (3,3)\}$ is an Identity Relation but $I_A = \{(1,1), (2,2)\}$, & $I_A = \{(1,1), (2,2)\}$, are not Identity Relation.
	Reflexive Relation	A relation R on a set A is said to be Reflexive every element of A is at least related to itself.
	13	E.g. Let A = {1, 2, 3}, then R = {(1,1), (2,2), (3,3), (1,2), (2,1)} is Reflexive, but R = {(1,1), (3,3), (2,1), (3,2)} is not Reflexive.
		All Identity Relations are Reflexive Relations, but all Reflexive Relations are not Identity Relations.
	Cummotrio	·
	Symmetric Relation	A relation R on a set A is said to be Symmetric, iff $(a,b) \in R \implies (b,a) \in R$.
	Neiauon	E.g. Let $A = \{1, 2, 3\}$, then (a) $B_1 = \{(1, 2), (2, 1), (2, 2), (3, 1), (4, 2)\}$ is a Symmetric Polation
		(a) $R_1 = \{(1,2), (2,1), (2,2), (3,1), (1,3)\}$ is a Symmetric Relation. (b) $R_2 = \{(1,1), (2,2), (3,1)\}$ is not a Symmetric Relation.
	Transitive	Let A be any set. A relation R on set A is said to be transitive iff,
	Relation	$(a,b) \in R, (b,c) \in R \Longrightarrow (a,c) \in R.$
	Equivalence	A relation which is Reflexive, Symmetric and Transitive.
	Relation	E.g. The relation "is parallel to" on the set S of all straight lines in a plane.
	λ.	(a) Reflexive, since a II a for $a \in \mathbb{R}$.
		(b) Symmetric, since a II $b \Rightarrow b$ II a
		(c) Transitive, since a II b, b II c \Rightarrow a II c
		10) Translated, office a field, of the Francisco

FUNCTIONS

	FUNCTIONS								
Meaning	 Let A & B be two non-empty sets. A relation 'f from (a) for each a ∈ A, there exists b ∈ B, such (b) (a,b) ∈ f & (a,c) ∈ f ⇒ b = c 		a Function from A to B, if						
Understanding of Functions	Let A = $\{1, 2, 3, 4\}$ and B = $\{a, b, c, d, e\}$ and let f_1 , f_2 , f_3 & f_4 be relations from A to B as illustrated under:								
		Function?	Explanation						
300	f ₁	No	3 ∈ A which is not associated to any element of B.						
PRAB	f ₂	No 4	€ A is associated to more than 1 elements of B.						
250	f ₃	Yes	Each element of A have a unique image in B.						
PRAD	f ₄	Yes	Each element of A have a unique image in B.						
	Autho	r's Note							
	Multiple elements of A can have same im-	age but they car	nnot have multiple images.						
	(a)								

Domain, Co-Domain & Range

Let $f: A \rightarrow B$

- Set A is known as **Domain.**
- Set B is known as Co-Domain.
- Set of all images of elements of A is known as Range / Image of Set A and is denoted by f(A).

E.g. В

In this example,

Domain $A = \{1, 2, 3, 4\}$ Co-Domain $B = \{a, b, c, d, e\}$ $f(A) = \{b, c, d, e\}$ Range

TYPES OF FUNCTIONS

One-One **Function**

[Injective]

Let $f: A \rightarrow B$

If different elements in A have different images in B.

Onto [Surjective] **Function**

One-One Onto

2 -

3

Α

Let $f: A \rightarrow B$

If every element in B has atleast one pre-image in A.

[Bijective] Function

2 3 d Α

В

С

В

▶ d

Let $f: A \rightarrow B$

A One-One & Onto Function is known as Bijective Function (Every element in B has exactly one preimage in A).

Into Function

Let $f: A \rightarrow B$

There exists even a single element in B having no pre-image in A.

Identity Function

The function that associates each real number to itself is an Identity Function & is denoted by I.

Domain = R, Range = R

Constant Function

Equal Function

Two Functions f & g are said to be equal iff,

- (a) Domain of f = Domain of g
- (b) Co-Domain of f = Co-Domain of g
- (c) f(x) = g(x), for every $x \in to$ their common domain

Inverse Function Let $f: A \to B$, such that f(x) = y. Then, $f^{-1}: B \to A$, will be f(y) = x.

A function is invertible iff, f is one-one onto.

Composite Function

Composite functions are when the output of one function is used as the input of another. If we have a function f and another function g, the function f(x), said as "f of g of x" is the composition of the two functions.

E.g. f(x) = x + 3, $g(x) = x^2$, then $f(x) = f(x) = f(x^2) = f(x^2) + 3$

07B. LIMITS & CONTINUITY

LIMITS

Meaning	 It is defined as a value that a It is important in calculus an 			
Theorems on Limits			where $f(x) & g(x)$ as	
Liiiito	THEOREMS			$ES \{f(x) = x^2 \& g(x) = x\}$
	1. $\lim_{x \to a} \{f(x) \pm g(x)\} = \lim_{x \to a} f(x) \pm \lim_{x \to a} f(x) = \lim_{x \to a}$		$\lim_{x\to 3} \{f(x)\pm g(x)\} = x^{2}$	
	2. $\lim_{x \to a} \{f(x) \cdot g(x)\} = \lim_{x \to a} f(x) \cdot \int_{x}^{x} f(x) \cdot g(x) dx$	$\lim_{x \to a} g(x) = p \cdot q$	$\lim_{x \to 3} \{ f(x) \cdot g(x) \} = x$	$x^2 \cdot x = 3^2 \cdot 3$
	3. $\lim_{x\to a} \{f(x) / g(x)\} = \lim_{x\to a} f(x) / g(x)$		$\lim_{x\to 3} \{f(x) / g(x)\} = 2$	$x^2 / x = 3^2 / 3$
	4. $\lim_{x\to a} c = c$, where c is a cons	tant	$\lim_{x\to 3} 7 = 7$	
ΛΟ	5. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$		$\lim_{x \to a} 7f(x) = 7 \cdot x^2 =$	7 · 32
60	6. $\lim_{x \to a} F\{f(x)\} = F\{\lim_{x \to a} f(x)\} = F$	(p)		
	7. $\lim_{x\to 0} \frac{1}{x}$ does not exist.			
Methods of		WHICH METI	HOD TO USE?	X.
solving Limits		s Denominator con	nes 0 after Substitu	ition?
	NO NO		YES	
	Direct Substitution [E.g.1]	Factorisation		it till 0/0 form is eliminated by fication [E.g.2]
	[=.g.1]	Rationalisation	Solve i	it till 0/0 form is eliminated by alisation [E.g.3]
	CINO.	Standard Limits Algebraic Limits	Refer 9	Standard Limits given below
	E.g.1 $\lim_{x \to 3} \frac{x^2 + 3}{x} = \frac{3^2 + 3}{3} = 4$			
220	$x \rightarrow 3$ $x \rightarrow 3$ Explanation : Direct Sul	ostitution Method wil	l be followed as Den	oominator≠0.
O.A.O.	E.g.2 $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x+3)(x-3)}{x - 3}$	$\frac{1}{x} = \lim_{x \to 0} (x+3) = 3 + 1$	3 = 6	
81	Explanation : Factorise	x→3 d till Denominator = (O situation is elimina	ted and then x is substituted.
	E.g.3 $\lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}} = \lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$ Explanation : Rationalis			$(\sqrt{x} + \sqrt{3}) = 2\sqrt{3}$ nated and then x is substituted.
Standard Limits	■ $\lim_{x\to 0} \frac{(e^x - 1)}{x} = 1$		■ $\lim_{x\to 0} \frac{(x^n - a^n)}{x} = n$	a ⁿ⁻¹
	$\lim_{x\to 0} \frac{(a^x - 1)}{x} = \log_e a, (a > 0)$		■ $\lim_{x\to 0} \frac{(1-x)^n - 1}{x} = r$	1
		A		$=\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}}{x} = e$
Algebraic Limits till ∞	$= \lim_{X \to \infty} \frac{c}{x^n} = 0, n > 0$	0,3) " -	Co.

CONTINUITY

A function f(x) is said to be continuous at x = a iff,

- (a) f(x) is defined at x = a
- (b) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$
- (c) $\lim_{x \to a} f(x) = f(a)$
- In condition (b), both left handed and right handed limits are equal.
- In condition (c), limiting value of the function must be equal to its function value at x = a.

OTHER POINTS

- (a) The sum, difference & product of two continuous functions is a continuous function. This property holds good for any finite number of functions.
- (b) The quotient of two continuous functions is continuous function provided the denominator $\neq 0$.

08. BASIC CONCEPTS OF DIFFERENTIAL & INTEGRAL CALCULUS

DIFFERENTIAL CALCULUS

Meaning	 Differentiation is the process of finding the derivative of a continuous function. It is defined as the ratio of change in the function corresponding to a small change in the independent variable. It is denoted as dy/dx or f'(x) or y' or y₁, where 'y' is function of x or f(x). 								
Standard Formulas	1. $\frac{d}{dx}(x^n) = nx^{n-1}$	$\frac{d}{dx}(x^7) = 7x^6$							
	$2. \qquad \frac{d}{dx} \left(e^{x} \right) = e^{x}$	511							
230	$3. \qquad \frac{d}{dx} \left(e^{ax} \right) = a e^{ax}$	$\frac{d}{dx}\left(e^{3x}\right) = 3e^{3x}$							
RAD	4. $\frac{d}{dx}(a^x) = a^x \cdot \log_e a$	$\frac{d}{dx}(7^{x}) = 7^{x} \cdot \log_{e} 7$							
Χ.	$5. \qquad \frac{d}{dx} (\log x) = \frac{1}{x}$	$\frac{d}{dx} (\log 5) = \frac{1}{5}$							
	6. $\frac{d}{dx}$ (constant) = 0	$\frac{d}{dx}(7) = 0$							
Laws for Differentiation	a. $\frac{d}{dx} \{f(x) \pm g(x)\} = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$	$\frac{d}{dx}\left(3x^2+x\right) = \frac{d}{dx}3x^2 + \frac{d}{dx}x$							
	b. $\frac{d}{dx} \{f(x) \cdot g(x)\} = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)$	$\frac{d}{dx} \{ e^{x} \cdot x^{2} \} = e^{x} \cdot \frac{d}{dx} x^{2} + x^{2} \cdot \frac{d}{dx} e^{x}$							
270	c. $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)\cdot\frac{d}{dx}f(x)-f(x)\cdot\frac{d}{dx}g(x)}{g(x)^2}$	$\frac{d}{dx}\frac{e^{x}}{x^{2}} = \frac{x^{2} \cdot \frac{d}{dx}e^{x} - e^{x} \cdot \frac{d}{dx}x^{2}}{\left(x^{2}\right)^{2}}$							
PAR	$d. \qquad \frac{d}{dx} c \cdot f(x) = c \cdot \frac{d}{dx} \{f(x)\}$	$\frac{d}{dx}(7x) = 7\frac{d}{dx}(x)$							
Higher Order Derivatives	Let y = f(x) = $x^4 + 5x^3 + 2x^2 + 9$, then, $\frac{dy}{dx} = \frac{d}{dx} f(x) = 4x^3 + 9$	$+ 15x^2 + 4x = f(x)$							
	Since $f(x)$ is a function of x it can be differentiated again.								
	Thus $\frac{d}{dx}(\frac{dy}{dx}) = f''(x) = \frac{d}{dx}(4x^3 + 15x^2 + 4x) = 12x^2 + 30x + 4x$	+ 4							
	■ $\frac{d}{dx} \left(\frac{dy}{dx} \right)$ is written as $\frac{d^2y}{dx^2}$ (read as d two y by dx squa	are) and is called the Second Derivative of y							
	with respect to x [f''(x)] while $\frac{dy}{dx}$ is called the First	Derivative [f'(x)].							
	 Again the second derivative here being a function of 	f x can be differentiated again and							
200	$\frac{d}{dx}(\frac{d^2y}{dx^2}) = f'''(x) = 24x + 30.$	0.3							

Types of Differentiation

FUNCTION OF FUNCTION [CHAIN RULE]

If we differentiate $\log (1 + x^2)$ w.r.t x, then Let $y = \log (1 + x^2)$

$$\frac{dy}{dx} = \frac{d}{dx} (1 + x^2) \cdot \frac{d}{dx} \{ \log (1 + x^2) \}, \text{ using formulae}$$

$$\frac{dy}{dx} = (0 + 2x) \cdot \frac{1}{1 + x^2}$$

$$\frac{dy}{dx} = \frac{2x}{1 + x^2}$$

PARAMETRIC FUNCTION

When both the variables x & y are expressed in terms of a parameter (a third variable), the involved equations are called **Parametric Functions**.

Let us consider,
$$x = at^3 \& y = \frac{a}{t^3}$$

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \qquad \frac{dx}{dt} = 3at^2 \qquad \frac{dy}{dt} = \frac{-3a}{t^4}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-3a}{t^4} \cdot \frac{1}{3at^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-1}{t^6}$$

IMPLICIT FUNCTION

Let us consider $x^2y^2 + y = 0$, where y cannot be directly defined as a function of x.

Now, we'll differentiate both sides w.r.t x

$$\frac{d}{dx}(x^2y^2 + y) = \frac{d}{dx}(0)$$
, [Using Laws (a)&(b)]

$$\Rightarrow x^2 \frac{d}{dx} (y^2) + y^2 \frac{d}{dx} (x^2) + \frac{d}{dx} (y) = 0$$

Differentiate using

$$\Rightarrow x^2 \cdot 2y \frac{dy}{dx} + y^2 \cdot 2x + \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} (2x^2y + 1) = -2xy^2 \Rightarrow \frac{dy}{dx} = \frac{-2xy^2}{2x^2y + 1}$$

LOGARITHMIC FUNCTION

The process of finding out derivative by taking logarithm in the first instance is called **Logarithmic Function**.

Let us consider, $y = x^x$, taking Log both sides

$$\Rightarrow \log y = \log x^x$$

$$\Rightarrow \log y = x \log x$$

Now differentiating w.r.t. x both sides we get,

$$\Rightarrow \frac{d}{dx} (logy) = \frac{d}{dx} x log x [Using Law (b)]$$

$$\Rightarrow \frac{1}{v} \frac{dy}{dx} = 1 + \log x$$

$$\Rightarrow \frac{dy}{dx} = y (1 + \log x) \Rightarrow \frac{dy}{dx} = x^x (1 + \log x)$$

Author's Note : We will take Log only in cases like xx, xy, yy, yx etc.

Application of Derivatives

COST FUNCTION

$$C(x) = V(x) + F(x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$AC = \frac{C(x)}{x} \qquad AVC = \frac{V(x)}{x} \qquad AFC = \frac{F(x)}{x}$$

Marginal Cost (MC) =
$$\frac{d}{dx}$$
 [C(x)]

Key:

- C(x) = Total Cost
- V(x) = Variable Cost
- F(x) = Fixed Cost
- AC = Average Cost
- AVC = Average Variable Cost
- AFC = Average Fixed Cost

REVENUE FUNCTION

$$R(x) = Price(P) \cdot No. of Units(x) = Px$$

- Marginal Revenue (MR) = $\frac{d}{dx}$ [R(x)]
- Profit Function [P(x)] = R(x) C(x)
- Marginal Profit = $\frac{d}{dx} [P(x)]$

MARGINAL PROPENSITY TO CONSUME (MPC)

The rate of Change of Consumption (C) per unit Change in Income (Y) i.e. $\frac{dC}{dV}$.

MARGINAL PROPENSITY TO CONSUME (MPS)

The rate of Change of Saving (S) per unit Change

in Income (Y) i.e.
$$\frac{dS}{dY}$$

INDEFINITE INTEGRATION

Meaning	Integration is the reverse process of Differentiati	on and is denoted by \int .
Standard Formulas	1. $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, where $n \neq -1$	$4. \qquad \int e^{ax} dx = \frac{e^{ax}}{a} + c$
	$2. \qquad \int d\mathbf{x} = \mathbf{x} + \mathbf{c}$	$5. \qquad \int \frac{\mathrm{d}x}{x} = \log x + c$
	$3. \qquad \int e^x dx = e^x + c$	6. $\int \mathbf{a}^{\mathbf{x}} \mathbf{dx} = \frac{\mathbf{a}^{\mathbf{x}}}{\log_{\mathbf{e}} \mathbf{a}} + \mathbf{c}$
	7. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$	9. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$
	8. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log x + \sqrt{x^2 \pm a^2} + c$	10. $\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + c$
	11. $\int \sqrt{\mathbf{x}^2 \pm \mathbf{a}^2} d\mathbf{x} = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \log \mathbf{x} + \frac{a^2}{2} \log $	$\sqrt{x^2 \pm a^2}$ + c
	12. $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$	
5 Kr.	Author's Note: We add 'c' (constant of in constant is always 0.	ntegration) in every sum, since differentiation (
Elementary Rules	A. $\int a f(x) dx = a \int f(x) dx$, where a is consta	nt B. $\int \{f(x) \pm g(x)\} dx = \int f(x) dx \pm \int g(x) dx$
Methods for	SUBSTITUTION METHOD	INTEGRATION BY PARTS
Integration	In this method, any given integral is transformed into a simple form of integral by substituting the independent variable by others. Let us consider, $y = \int (2x + 3)^7 dx$.	$\int u \ v \ dx = u \int v \ dx - \int \left\{ \frac{d(u)}{dx} \int v \ dx \right\} \ dx$ First Term
	\Rightarrow Substituting t = 2x + 3, $\frac{dt}{dx}$ = 2 $\Rightarrow \frac{dt}{2}$ = dx	Let us consider, $y = \int x \log x dx$ On Integrating by Parts,
	$\Rightarrow y = \int t^7 \frac{dt}{2} = \frac{1}{2} \int t^7 dt$	$\Rightarrow y = \log x \int x dx - \int \left\{ \frac{d}{dx} \left(\log x \right) \int x dx \right\} dx$
	$\Rightarrow y = \frac{1}{2} \cdot \frac{t^8}{8} + c = \frac{t^8}{16} + c$	$\Rightarrow y = \frac{x^2}{2} \log x - \int \left[\frac{1}{x} \cdot \frac{x^2}{2} \right] dx$
	$\Rightarrow y = \frac{(2x+3)^8}{16} + c$	$\Rightarrow y = \frac{x^2}{2} \log x - \frac{1}{2} \int x dx$ $\Rightarrow y = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$
	8,	$\Rightarrow y = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$
		 Order of Priority for taking First Term Logarithm (log) Algebra (xⁿ) Trigonometric Ratios [Not in Syllabus] Exponential Term (e^x)
	ΡΔΩΤΙΔ	L FRACTIONS
		< degree of g(x) is called Proper, otherwise Improper
	$\frac{px+q}{(x-a)(x-b)}, a \neq b$ $\frac{A}{y-a} + \frac{B}{y-b}$	$\frac{px^2 + qx + r}{(x-2)(x-b)(x-c)} \qquad \frac{A}{x-3} + \frac{B}{x-b} + \frac{C}{x-c}$
	$\frac{px^{2} + qx + r}{(x - a)(x^{2} + bx + c)} \qquad \frac{A}{x - a} + \frac{Bx + C}{x^{2} + bx + c}$	$\frac{px^{2} + qx + r}{(x - a)(x - b)(x - c)} \qquad \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}$ $\frac{px^{2} + qx + r}{(x - a)^{2}(x - b)} \qquad \frac{A}{x - a} + \frac{B}{(x - a)^{2}} + \frac{C}{x - b}$

DEFINITE INTEGRATION

$\int_a^b f(x) dx = f(b) - f(a)$	Here, 'b' is called the Upper Limit and 'a' the Lower Limit of Ir	ategration
Ja (11) 311 1(10) 1(11)	Tiolo, b to cance the opportunit and a the control children	negration.
3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$	x) dx + $\int_{c}^{b} f(x) dx$, a <c </c b 4. $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$	
5. When $f(x) = f(a +$	• x), then $\int_0^{na} f(x) dx = n \int_0^a f(x) dx$	
6. $\int_a^b f(x) dx =$	$2 \int_0^a f(x) dx , \text{ if } f(-x) = f(x)$	
Author's		
Cost Function	$C(x) = \int MC dx + k$, where $MC = Marginal Cost$, $k = Fixed Cost$	
Revenue Function	$R(x) = \int MR dx + k$. Also Demand Function (p) = $\frac{R(x)}{x}$.	
	ORAP.	PAP
	3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$ 5. When $f(x) = f(a + b)$ 6. $\int_{a}^{b} f(x) dx = \frac{Author's}{a}$ Cost Function	3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, a < c < b $ 4. $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$ 5. When $f(x) = f(a + x)$, then $\int_{0}^{na} f(x) dx = n \int_{0}^{a} f(x) dx$ 6. $\int_{a}^{b} f(x) dx = \frac{2 \int_{0}^{a} f(x) dx}{0, if f(-x) = -f(x)}$ Author's Note: We don't add the constant (c) in Definite Integration. Cost Function $C(x) = \int MC dx + k, \text{ where } MC = \text{Marginal Cost}, k = \text{Fixed Cost}$ $R(x)$

09. NUMBER SERIES, CODING DECODING, ODD MAN OUT

CONCEPT 01: POSITION OF ALPHABETS In Forward Order & Backward Order Α В C D Ε 5 1 26 2 25 3 24 23 22 J G Н 18 10 21 7 20 8 19 9 17 K M N 0 13 15 12 11 16 12 15 13 14 14 P Q S R 17 18 19 20 16 11 10 9 8 24 21 6 22 23 3 25 2 Ζ Trick 01: Backward = 27 - Forward Trick 02: EJOTY are at multiples of 5 26

GENERAL PATTERNS ASKED IN EXAMINATION

- Constant Addition / Subtraction
- Constant Addition / Subtraction of multiples of a certain number
- Constant Addition / Subtraction of Odd / Even multiples of a certain number
- Constant Addition of Prime Numbers
- Constant Addition of Squares / Cubes of Consecutive Numbers
- Constant Multiplication / Division
- In some series, the pattern can be seen after calculating double difference.
- Some series contain two series with alternate numbers which contain different patterns.

10. DIRECTION SENSE TEST

CONCEPT 02 : DIRECTIONS

CONCEPT 03: SHORTEST DISTANCE

To find the shortest distance, we need to know about the Pythagoras Theorem :

Here.

AB = Perpendicular

BC = Base

AC = Hypotenuse

Now, by Pythagora's
Theorem, shortest
distance between Point A & Point C:

$$AC = \sqrt{(AB)^2 + (BC)^2}$$

11. SEATING ARRANGEMENTS

CONCEPT 04 : LINEAR ARRANGEMENTS• When the direction of face is not clear :

When the direction of the face is towards you :

CONCEPT 05: CIRCULAR ARRANGEMENTS

Author's Note: Students are advised to use their imagination & logic to make the diagram where they are sitting & facing away from the centre.

12. BLOOD RELATIONS

CONCEPT 06: BASIC RELATIONS

	Father	Grandfather
	Mother	Grandmother
Father / Mother's	Brother	Uncle
rather / Wother S	Sister	Aunt
	Son	Brother / Self
	Daughter	Sister / Self
	Spouse's Brother	Brother-in-Law
9	Spouse's Sister	Sister-in-Law
You	Son's Wife	Daughter-in-Law
i ou	Daughter's Husband	Son-in-Law
	Brother's Wife	Sister-in-Law
	Sister's Husband	Brother-in-Law
Uncle / Aunt's	Son / Daughter	Cousin
Brother / Sister's	Son	Nephew
Diotilei / Sistel 3	Daughter	Niece

OTHER POINTS

- Paternal means relations from Father's Side.
- Maternal means relations from Mother's Side.

13A. STATISTICAL DESCRIPTION OF DATA

CONCEPT 01:	INTRODUCTION TO STA	ATISTICS AT A TISTICS			
Definition	Singular Noun	The scientific method that is employed for collecting, analysing & presenting data, leading finally to drawing statistical inferences about important characteristics. It is Science of Counting or Science of Averages .			
	Plural Noun	Data, qualitative as well as quantitative, that are collected, usually with a view of having statistical analysis.			
History of	 Origin of the word S 	Statistics: This is a debatable topic but various theories are as follows:			
Statistics	"(C),	(a) Latin Word : Status(b) Italian Word : Statista(c) German Word : Statistik(d) French Word : Statistique			
	 The first census was conducted by Pharaoh in Egypt during 300BC to 2000BC. Kautilya (Chanakya) kept a record of births & deaths and some other precious information in his book 'Arthashastra' during Chandragupta Maurya's reign in 4th Century BC. Statistical records on Agriculture are also found in Ain-i-Akbari by Abul Fazl in 16th Century AD. 				
Application	Economics	Econometrics: Branch of Economics that interacts with Statistics			
Application	Leonomics	 Time Series Analysis, Index Numbers, Regression Analysis, Demand Analysis etc. are some overlapping areas. 			
	Business	Statistical Decision Theory focuses on the analysis of complicated business			
	Management	strategies with a list of alternatives.			
	Commerce & Industry	Data on previous sales, raw materials, wages etc. are collected, analysed & experts are consulted in order to maximise profits.			
Limitations	(b) It is concerned with quantitative data by (c) Future projections violated, projections (d) The theory of stati	egates. An individual has no significance. th quantitative data. However, qualitative data can also be converted into a assigning a numerical value. It is are possible under specific set of conditions. If any of these conditions are are likely to be incorrect. In istical inferences is built upon random sampling. If the rules of random rictly adhered to, the conclusion drawn based on these unrepresentative terroneous.			

CONCEPT 02: COLLECTION OF DATA What is Data is a quantitative information about some particular characteristic(s) under consideration. Data? A Variable is a measurable quantity i.e. quantitative information. Discrete Variable If it can assume only finite or countably infinite no. of isolated values. Examples: (a) No. of Petals in a Flower (b) No. of Misprints in a Book (c) No. of Road Accidents in a Locality (d) Annual Income of a Person (e) Marks of a Student (f) Distribution of Shares (g) Salary of a Person **Continuous Variable** If it can assume any value from a given interval. Examples: (a) Height, Weight, Age of a Person (b) Sales / Turnover of a Company (c) Distribution of Profits of a Company An Attribute is a qualitative characteristic. Examples: (a) Gender of a Baby, (c) Colour of a Person, (b) Nationality of a Person (d) Drinking Habit of a Person, etc.

Classification	PRIMAR	Y DATA	SECONDARY DATA			
of Data	The data which is collected		Data, already collected, used by a different			
O' Butu	investigator or an agency	•	person or agency.			
Methods of	investigator or an agency		EW METHOD			
Collecting	Personal Interview • The investigator meets the respondents directly & collects the requi					
Primary Data	1 or oon ar miles view	information then & the	· · · · · · · · · · · · · · · · · · ·			
			Calamity, this method can be quick & accurate.			
	Indirect Interview	The investigator colle	cts necessary information from the persons			
		associated with the p				
	70,	(like in a rail acciden	ctical problems in reaching the respondents directly it), then this method can be used.			
270	Telephonic Interview	 The information can be interviewee over the part of t	be gathered by researcher by contacting the phone.			
			xpensive way to collect data.			
			method, but has a wide coverage.			
		Non-Responses are	maximum in this method.			
		[B] QUESTIONI	NAIRE METHOD			
	Mailed Questionnaire	ire It involves framing of a well-drafted & soundly-sequenced questionnaire				
		covering all the important aspects of the problem & sending them to the				
X		respondents with pre-paid stamp & necessary guidelines.				
		It has a wide coverage but non responses are maximum in this method				
	0 (method.				
	Questionnaire by Enumerator	 Enumerators collect information directly by interviewing the persons having information by explaining the questions. 				
	Enumerator	 It is used for larger enquiries from persons who are being surveyed. 				
	[C] OBSERVATION METHOD					
	■ In this method data is collected by direct observation or using an instrument (like height or weight of					
	a group of students).					
	 It is time consuming & laborious method having small coverage. 					
	It is the best method for data collection.					
Sources of	1. International Source	es: WHO, ILO, IMF, World	d Bank etc.			
Secondary	2. Government Source	es: Statistical Abstract by	CSO, Indian Agricultural Statistics etc.			
Data		vt. Sources: ISI, ICAR, N				
		es of various research inst				
Scrutiny of			the basis of data, it is necessary to check whether			
Data	the data under consideration are accurate as well as consistent.					
	■ No hard & fast rules can be recommended for scrutiny of data. One must apply his intelligence,					
	patience & experience while scrutinising the given information.					
	If two or more series of related data are given, they may be checked for Internal Consistency. Fig. If data for Population, Area & Donaity for some places are given, then we may verify that they					
	E.g. If data for Population, Area & Density for some places are given, then we may verify that they are internally consistent by examining whether the relation, Density = Population / Area holds.					
	•		e returns submitted by some enumerators are			
	_		ack of seriousness on the part of enumerators.			
	• • • • • • • • • • • • • • • • • • • •		d by the returns submitted by him.			
			ed by asking the enumerator(s) to collect the data of			
	disputed cases, once	again.	GN CONTRACTOR OF THE CONTRACTO			

Definition Definition		ta on the basis of the characteristic up to the similarities of the observations						
	Characteristic	Type of Data	Example					
		NON-FREQUENCY DATA						
	Time Points / Intervals	Chronological / Temporal / Time Series Data	No. of students appeared in CA Foundation in last 20 years.					
	Region	Spatial Series / Geographical Data	No. of students appeared in CA Foundation in 2025 in accordance with different states.					
		FREQUENCY DATA						
	Variable	Quantitative / Cardinal Data	Height, Weight, Profits					
	Attribute	Qualitative / Ordinal Data	Gender, Nationality					
Advantages	(a) It puts data in a neat, precise and condensed form so that it is easily understood & interpreted.(b) It makes comparison possible between various characteristics.							
00	•	possible only for the classified data.						
	(d) It eliminates unneces	sary details & makes data more read	lily understandable.					

CONCEPT 04 : PRESENTATION OF DATA

4.1 TEXTUAL PRESENTATION OF DATA

Definition	 This method comprises presenting data with the help of a paragraph(s). The official reports of enquiry commissions are usually made through this method. 							
Example	"In 2024, out of a total of five thousand workers of Roy Enamel Factory, four thousand and two hundred were members of a trade union. The total number of female workers was eight hundred & six per cent of total members were members of the Trade Union.							
	In 2025, the number of workers belonging to the trade union was increased by twenty per cent as compared to 2024 of which four thousand and two hundred were male. The number of workers not belonging to trade union was nine hundred and fifty of which four hundred and fifty were females."							
Advantages	 Simplicity Observations with exact magnitude can be presented First step towards other modes of presentation Disadvantages Dull & Monotonous Comparison is not posentation Cannot be recommend for manifold classificat 							

4.2 TABULAR PRESENTATION / TABULATION

Definition	A systematic presentation of data with the help of statistical table having a number of rows & columns & complete with reference number, title, description of rows as well as columns and foot notes, if any.								
Guidelines for			Table N Tit						
Tabulation	Chul		Caption (Col	umn Heading)					
	Stub	Sub-	Head	Sub-	Head	Total (Rows)			
	(Row Heading)	Column Head	Column Head	Column Head	Column Head	, ,			
2ABJ	Stub Entries (Row Entries)		В	ody					
	Total(Columns)		2.3						
	Source : Footnotes :								

PRINT	 Serial Number with a Self-Explanatory Title Table should be divided into Caption, Box-Head (Entire Upper Part), Stub & Body. Table should be well-balanced in length & breadth. Data must be arranged in such a way that comparisons are facilitated. Row Totals, Column Totals, Units of Measurement must be shown. Data should be arranged intelligently and appealing to the eyes as far as possible. Source of Data and Footnotes should be shown (if any). TERMINOLOGY									
	 (a) Box Head: The entire upper portion of the table which includes columns & sub-column numbers, unit(s) of measurement & caption. (b) Caption: Upper Portion of the table describing columns & sub-columns. (c) Stub: Left Portion of the table providing description of the rows. 									
Example					Tahla	13.1				
	Status	of the wo	rkers of F	Roy Ename	l Factory		sis of the	ir trade un	ion memb	pership
2.3	Status		Member		N	on-Memb	er		Total	0
	Year	М	F	T	M	F	T	М	F	T
	2024	3900	300	4200	300	500	800	4200	800	5000
	2025	4200	840	5040	500	450	950	4700	1290	5990
X	Source: Footnote: M stands for Male, F stands for Female & T stands for Total.									
Advantages	Facilita	ates compa	rison betv	veen rows	& columns) .				
	Compl	icated data	can also	be represe	ented using	g tabulatior	١.			
	■ Itis a r	nust for d	iagramma	atic repres	entation.					
	■ Itis a r	nust for s	tatistical	analysis.						
	■ It is the	e most acc	curate & b	est metho	od of prese	entation of	data.			

4.3 DIAGRAMMATIC PRESENTATION

Basics	 This can be used for both educated & uneducated section of society, unlike the previous two.
	Any hidden trend can be noticed only in this mode of presentation.
	If there is a priority for accuracy, recommend tabulation. It is less accurate than tabulation.
	It is the most attractive method of presentation of data.
Line Diagram	It is used for Time Series Data.
/Historiagram	(a) <u>If wide range of Fluctuations</u>
	Logarithmic / Ratio Chart
	(b) Multiple Time Series Data
	■ Same Unit : Multiple Line Chart
	Distinct Unit : Multiple Axis Chart
Bar Diagram	(a) Time Series Data / Quantitative Data
	Vertical Bar Diagram
	(b) Spatial Data / Qualitative Data
	Horizontal Bar Diagram
	(c) For Comparing Related Series
	Multiple / Grouped Bar Diagram
	(d) For Representing Data into Parts
	Component / Sub-Divided Bar Diagram
	(e) For Comparing Different Components or Relating the Components to the Whole
	Divided / Percentage Bar Diagram
Pie Chart	■ For Circular Presentation of Data & For Comparing Different Components or Relating the
0,0	Components to the Whole.
	■ <u>Segment Angle</u>
	Segment Value / Total Value x 360°

CONCEPT 05:	FREQUENCY DIS	TRIBUTION				by a		
Frequency	No. of times a particular observation / class occurs.							
Frequency	It is a statistical ta	ble that distribute	s the total freque	ency to a num	ber of classes.			
Distribution	TYPES OF FREQUENCY DISTRIBUTION							
	DISCRETE /				GROUPED F.D.			
	DISCRETE / UNGROUPED / SIMPLE F.D. When tabulation is done in respect of a Discrete							
		e & frequency is a			S Variable & frequency			
	each one of ther				llues & not individual			
				• .	Grouped Classification			
					Overlapping / Mutuall			
		(b) Overlapping / Mutually Exclusive						
Mutually	Class Interv	al x	Muti	ually	Class Interval	X		
nclusive	01 – 10	ai X		usive	01 – 10	X		
Classification	11 – 20		Clas	sification	10 – 20			
	21 – 30				20 – 30	0		
and	Cl includes	Upper Class Lin	nit	'	CI excludes Uppe	or Class I imit		
		counted in 01-10			(10 will be counted			
Basic	Class Limit (CL)	The Minimu	ım Value (Lower	Class Limit)	& Maximum Value (U			
Terminology			of a Class Interval (CI).					
	Class Boundary • Mutually Exclusive Classification : Class Boundary = Class Limits.							
	(CB)		Mutually Inclusive Classification: Class Bayerdam will be calculated as fallows:					
		Class Boundary will be calculated as follows:						
		LCB = LCL - D/2						
		LCB = 10 - ½ = 9.5						
		9.5, 19.5, 29.5, 39.5 etc. 19.5, 29.5, 39.5 etc.						
			*D = Difference between UCL of given CI & LCL of next CI.					
	Class Length	Class Leng	Class Length / Width / Size = UCB - LCB					
	Class Mark	Mid-Point /	Mid-Point / Mid-Value = $\frac{LCL + UCL}{}$ = $\frac{LCB + UCB}{}$					
	Eroguanov Dono	ity – Eroguono	y of a CI / Class	2 Longth	2			
	Frequency Dens Relative Frequer				ey add up to 1 (Unity)	1		
	% Frequency							
	<pre>% Frequency = Class Frequency / Total Frequency x 100 [They add up to 100%] Note: If question asks to calculate No. of Class Intervals, then follow these steps:</pre>							
	Step 01 : Calculate Range (Largest Observation – Smallest Observation).							
	Step 02 : No. of CI = Divide Range by Class Length required (Rounded Up).							
	(Question might give 1+3.322logN as an option. Learn this if asked again.)							
Cumulative Frequency		<u>TY/</u>	PES OF CUMUL	ATIVE FREC	QUENCY			
	Class Interval	Frequency (f)	Less than	CF	More than	CF		
	10 – 15	20	Less than 15	20	More than 10	100 (80 + 20)		
	15 – 20	32	Less than 20	52 (20 + 3		80 (48 + 32)		
	20 – 25	18	Less than 25	70 (52 + 1	· -	48 (30 + 18)		
	25 – 30	30	Less than 30	100 (70 +	30) More than 25	30		
		$\sum f = 100$						
	For any Class Boundary, Less than CF+ More than CF = \sum f							

CONCEPT 06: GRAPHICAL REPRESENTATION OF FREQUENCY DISTRIBUTION Histogram It is a very convenient way to represent frequency distribution. (Area Comparison among different Cl's is possible. It is used to calculate Mode. Diagram) MODE Frequency It is usually meant for Simple / Ungrouped Frequency Distribution. But it can also be used for Grouped Frequency Distribution, provided the width of the Class **Polygon** Intervals remains the same (Use Mid-Points). • We can also obtain a Frequency Polygon starting with a Histogram, by adding the mid-points of the upper sides of the rectangles successively & then completing the figure by joining the two ends. By plotting cumulative frequency against the respective class boundary, we get ogives. **Ogives** By plotting less than cumulative frequency, we get Less than type Ogive. By plotting more than cumulative frequency, we get More than type Ogive. They can be considered for obtaining Quartiles graphically. • If a perpendicular is drawn from the point of intersection of the two ogives on the horizontal axis, then the x-value of this point gives us the value of **Median**. They can also be used for making short term projections. It is a limiting form of a Histogram or Frequency Polygon. **Frequency** It can be obtained by drawing a smooth & free hand curve through the mid points of the upper sides Curve of the rectangles forming Histogram. Total Area is taken to be 1 (Unity). ■ X – Axis : Class Boundary & Y – Axis = Frequency Density

TYPES OF FREQUENCY CURVE

Bell Shaped Curve	U-Shaped Curve	J-Shaped Curve	Mixed Curve	
Frequency is maximum near central part & minimum near extremities. It is the most commonly used curve.	the central part & maximum	Starts with minimum frequency & reaches maximum at other extremity.	Combination of different curves.	
Class Boundary	Against Country Class Boundary	Frequency Density Class Boundary	Class Boundary	

13B. SAMPLING

CONCEPT 01	: INTRODUCTION TO SAM				
Population (Universe)	 It can be defined as the aggregate of all the units under consideration. E.g. Population of students enrolled for CA Foundation. The No. of Units belonging to a population is known as Population Size (N). The study of every element of population is called Census. 				
		<u>TYPES OF POPULATION</u>			
	Туре		Example		
	Finite Population	Population containing finite no. of units.	Population of students enrolled for CA Foundation		
	Infinite Population	Population containing infinite or uncountable no. of units.	Population of Stars, Mosquitos, Flowers, Insects		
	Existent Population	Population consisting of real objects	Population of a town		
	Imaginary Population	Population that exists hypothetically	Population of heads of a coin tossed infinitely.		
Sample	characteristics. The units forming sample A detailed & complete	part of population so selected with a view to ole are known as Sampling Units . ist of all the Sampling Units is known as Sample Size .	PRI		
Parameter	 It can be defined as a characteristic of a population based on all the units of the population. Statistical Inferences are drawn about population parameters based on the sample observations drawn from that population. 				
Statistic (T)		statistical measure of sample observatio	n & it is a function of sample		

CONCEPT 02:	SAMPLE SURVEY			
Meaning	It is the study of the unknown	own population on the basis of a proper representative sample drawn from it.		
Principles of	Law of Statistical	If a sample of fairly large size is drawn from the population at random, then on		
Sample	Regularity an average the sample would possess the characteristics of the			
Survey	Principle of Inertia	The results are more reliable, accurate & precise as the sample size		
00		increases, provided other factors are kept constant.		
	Principle of	An optimum level of efficiency at a minimum cost or the maximum efficiency		
	Optimisation	at a given level of cost can be achieved with the selection of an appropriate		
		sampling design.		
	Principle of Validity	A sampling design is valid only if it is possible to obtain valid estimates &		
		valid tests about population parameters (Only Probability Sampling).		
Errors / Bias		eviation between the value of population parameter as obtained from a sample		
in Sample	& its observed value.			
Survey				
		TYPES OF ERRORS		
	MI CAMPI NO EDDODO			
	[1] SAMPLING ERRORS			
		t of the population is investigated in a sampling, every sampling design is		
	subject to this ty Factors	pe of effors.		
		efective Sampling Design		
	` ,	bestitution (of a Sampling Unit)		
0,0	` ,	ulty Demarcation of Units		
	` '	ong choice of Statistic		
O.V	` ,	in Population		

[2] NON-SAMPLING ERROR

- This type of error happens in both Sampling & Complete Enumeration.
- Factors: Lapse of Memory, Preference for certain digits, ignorance, psychological factors like vanity, non-response on part of interviewees, wrong measurement of sampling units. communication gap, incomplete coverage.

CONCEPT 03: TYPES OF SAMPLING					
Types	PROBABILITY SAMPLING	NON PROBABILITY SAMPLING	MIXED SAMPLING		
	Simple Random Sampling Stratified Sampling Multi-Stage Sampling	Purposive / Judgment Sampling	Systematic Sampling		
Probability	In this there is always a fixed, pre-assigned probability for each member of the population to be a part of				
Sampling	the cample taken from that population				

Sampling

the sample taken from that population.

Simple Random Sampling

- Each unit of sample has an equal chance of being selected.
- It is very simple & effective method provided :
 - (a) The population is not very large.
 - (b) The sample size is not very small.
 - (c) The population under consideration is not heterogeneous.
- It is completely free from Sampler's Bias.
- All the tests of significance are based on the concept of Simple Random Sampling.

Stratified Sampling

- If the population is large & heterogeneous, we divide them into a number of sub-populations (strata) in such a way that there should be little variations among units in a stratum & maximum difference among different strata.
- If Simple Random Sampling is applied for drawing units from all strata, it is known as Stratified Random Sampling.
- Purpose of Stratified Sampling are :
 - (a) To make representation of all the sub-populations
 - (b) To provide an estimate of parameter not only for all the strata but also an overall estimate
 - (c) Reduction in variability and thereby an increase in precision

Types of Allocation of Sample Size

1. Bowley's Allocation (Proportional Allocation)

When there is prior information that there is not much variation between the strata variances, we use Bowley's Allocation, where the sample sizes for different strata are taken proportional to the population sizes i.e. n_iµN_i.

2. Neyman's Allocation

When the strata variances differ significantly among themselves, we use Neyman's Allocation, where sample size vary jointly with population size & population standard deviation i.e. n_iµN_iS_i.

Here.

- → n_i = Sample Size for ith stratum,
- \rightarrow N_i = Population Size
- → S_i = Population Standard Deviation
- It is not advisable if:
 - (a) Population is not large.
 - (b) Some prior information is not available.
 - (c) There is not much heterogeneity among the units of population.

Multi Stage Sampling

- In this type of sampling design, sampling is carried out through stages.
 - → Firstly, only a number of first stage units are selected.

PRIA	 → For each of the selected first stage sampling units, a number of second stage sampling units are selected. → The process is carried on until we select the ultimate sampling units. ■ The coverage is very large. ■ It also saves computational labour and is cost effective. ■ It also adds flexibility in sampling process which is lacking in other sampling schemes. ■ It is less accurate than stratified sampling.
Non- Probability Sampling	No Probability is attached to the member of the population and as such it is based entirely on the judgment of the sampler. Purposive / Judgment Sampling It is dependent solely on the discretion of the sampler & he applies his own judgment based on his beliefs, prejudice, whims, and interest to select the sample. It is purely subjective & no statistical hypothesis can be tested on the basis of this.
Mixed Sampling	It is based partly on some probabilistic law & partly on some pre-decided rule. Systematic Sampling It refers to a sampling scheme where the sampling units are selected at regular interval after selecting the first unit at random (with equal probability). Linear Systematic Sampling: If N is a multiple of 'n', then N = nk, where 0 < k < n, then we are selecting first unit at random from the first k units & thereby selecting every kth unit till the complete, adequate & updated sampling frame comprising all the members of the population is exhausted. k = Sample Interval. Circular Systematic Sampling: If N is not a multiple of 'n', then N = nk + p, p <k &="" a="" about="" an="" are="" as="" at="" available.="" be="" biased="" can="" compared="" complete="" consuming,="" convenient="" cyclic="" drawn="" every="" expensive="" first="" frame="" from="" get="" going="" if="" in="" inference="" interval="" is="" it="" k="" kth="" less="" method="" methods="" most="" multiple="" no="" not="" of="" order.="" other="" parameter.<="" period,="" periodicity="" population="" probability="" random="" sample.="" sampling="" sampling,="" sampling.="" select="" selecting="" simple="" since,="" statistical="" td="" that="" the="" then="" there="" thereafter="" time="" to="" undetected="" unit="" units="" unknown="" updated="" very="" we="" where=""></k>

CONCEPT 04:	SAMPLING FLUCTUATION & SAMPLING DISTRIBUTION
Sampling Fluctuation	The variation in value of a statistic computed from different samples.
Sampling Distribution	 The Probability Distribution of a given statistic is known as Sampling Distribution. The Mean of a Statistic, as obtained from its Sampling Distribution, is known as Expectation. The Standard Deviation of the Statistic is known as the Standard Error (SE). Standard Error (SE) can be regarded as a measure of precision achieved by sampling.
	 Standard Error (SE) is inversely proportional to the √Sample Size (n). Starting with a population of N units, we can draw many a sample of a fixed size 'n'. (a) Total No. of Samples (With Replacement) = Nⁿ (b) Total No. of Samples (Without Replacement) = NCn

14A. MEASURES OF CENTRAL TENDENCY

CONCEPT 01 : BASICS OF MEASURES OF CENTRAL TENDENCY					
Meaning	 It is the tendency of a given set of observations to cluster around a single central (middle) value. The single value that represents the given set of observations is described as Measure of Central Tendency. 				
Different	MEAN PARTITION VALUES MODE				
Measures	(a) Arithmetic Mean (AM)	(a) Median			
	(b) Geometric Mean (GM)	(b) Quartiles			
	(c) Harmonic Mean (HM)	(c) Deciles			
		(d) Percentiles			

	(c) Harmonic Mean (HM)	(d) Percentiles		
CONCEPT 02 : ME	AN			
	Discrete Observations	Simple Frequency Distribution	Grouped Frequency Distribution	
Arithmetic Mean (x̄)	$\frac{\sum x_i}{n}$	$\frac{\sum f_i x_i}{N}$ where, $N = \sum f_i$	$\frac{\sum f_i x_i}{N}$ where, x_i = Mid-Point of Class Interval & N = $\sum f_i$	
01,	Author's Note : Learners can	ignore Assumed Mean Method i	n case of Grouped Distribution.	
	(b) The sum of deviations of $\sum (x_i - \bar{x}) = 0$ (for unclass	e constant (say, 'k'), then AM = corf a set of observations from their Alsified data) & $\sum f_i(x_i - \bar{x}) = 0$ (for grange in Origin & Change in Scale	M is '0' for unclassified data i.e. ouped data).	
Geometric Mean (GM)	$(x_1 \cdot x_2 \cdot x_3 \cdot \cdot x_n)^{1/n}$ $(x_1^{f_1} \cdot x_2^{f_2} \cdot x_3^{f_3} \cdot \cdot x_n^{f_n})^{1/N}$ where, $N = \sum f_i$			
PRABO	Properties of GM (a) If all the observations and (b) GM of xy = GM of x \cdot G (c) GM of $\frac{x}{y} = \frac{GM \text{ of } x}{GM \text{ of } y}$ (d) $\log G = \frac{1}{n} \sum \log x$	re constant (say, 'k'), then GM = co	onstant (k).	
Harmonic Mean (HM)	$\frac{n}{\sum 1/x_i}$	$\frac{N}{\Sigma^{f_{i}}/x_{i}}$ who	ere, N = ∑ f _i	
	Properties of HM			
	(a) If all the observations are constant (say, 'k'), then HM = constant (k).			
	(c) HM of 2 numbers = $\frac{2xy}{x+1}$		INA)	
.0	(e) Combined HM	peed, calculate Harmonic Mean (F	ivi).	

Author's Note: If the question provides weight instead of frequency, replace frequency with weights in formula.

CONCEPT 03 : PARTITION VALUES / FRACTILES					
Meaning	 The values dividing a given set of observations into a no. of equal parts are called Partition Values. Median is the middle-most value when the observations are arranged either in ascending or descending order of magnitude. It is also known as Positional Average. 				
Types		No. of Equal Parts	No. of Partition Values	Symbol	
	Median	2	1	Me (̄µ)	
	Quartile	4	3	Q_1, Q_2, Q_3	
	Decile	10	9	$D_1, D_2, D_3,, D_9$	
	Percentile	100	99	$P_1, P_2, P_3,, P_{99}$	

	Percentile	100	99		P ₁ , P ₂ , P ₃ ,, P ₉₉	
	Discrete Observations	· ·	requency bution		iped Frequency Distribution	
Median (M)	Note: In all three cases, series has to be arranged in ascending / descending order of many					
0610	$\frac{\text{If n is Odd}}{\left(\frac{n+1}{2}\right)^{\text{th}}} \text{ observation}$	1) Calculate Cur Frequency (C 2) Calculate $\frac{N+}{2}$	F).	Éxclusiv	te N = $\sum f_i$.	
b _k ,	$\frac{\text{If n is Even}}{\binom{n}{1}^{\text{th}} + \binom{n}{1} + 1}^{\text{th}}$	3) Check C.F. w greater than - 4) Median = Val	$\frac{N+1}{2}$.	4) Find CF & its co Median	F just greater than N/2 rresponding class is Class (MC)	
	$\frac{\left(\frac{n}{2}\right)^{th} + \left(\frac{n}{2} + 1\right)^{th}}{2}$ observatio	n corresponding		5) Apply fo	ormula :	
	.GN			+	$-\left[\frac{\frac{N}{2}-CF}{f}\cdot h\right]$	
	SIM			■ h = W	wer Limit of MC idth of MC equency of MC	
20		270		■ CF = 0	CF of Class ding MC	
PRAL	 Properties of Median (a) The sum of absolute deviations (∑ x_i - A) is minimum when the deviations are taken from Median. (b) AM is affected by both Change in Origin & Change in Scale. 					
Other Portition	If $y = a + bx$, then y_{me}		N - 77 f			
Other Partition Values	/ 4> 1-	1) Calculate 2) Apply forn				
	(n + 1)p th value		l + [pN	- CF f · h		
	where, $p = \frac{1}{4}, \frac{2}{4}, \frac{3}{4} \text{ for } Q_1, Q_2, Q_3, Q_4, Q_4, Q_5, Q_6, Q_6, Q_6, Q_6, Q_6, Q_6, Q_6, Q_6$	Q ₃ or D ₁ , D ₂ , D ₃ ,, D ₉				
.830		99 100 for P ₁ , P ₂ , P ₃ ,,	P ₉₉		.63	

CONCEPT 04 : MODE					
ORY	Discrete Observations	Simple Frequency Distribution	Grouped Frequency Distribution		
Mode	By Observation: The value occurring maximum no. of times.	By Observation: 'x' corresponding to the highest frequency.	1) Make sure the series is Exclusive. 2) The Class Interval with highest frequency is Modal Class (MC). 3) Apply formula: $I + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \cdot h\right]$ where, $I = Lower Limit of MC$ $I = Lower Limit of MC$ $I = Frequency of Class Interval$ $I = Frequency of Class$ $I = Frequency of MC$ $I = Frequency of MC$ $I = Frequency of Class$		
	If $y = a + bx$, then $y_{mo} = a$ (b) If all observations have ed (c) If multiple observations have	oth Change in Origin & Change in Scale. $a + bx_{mo}$.			

	(II 2 IIIodes, It is known as bi-modal bistribation)	
CONCEPT 05 : SO	ME IMPORTANT RESULTS	
Result 01	Relationship between AM, GM & HM (a) All the observations are distinct (b) All the observations are same (c) Nothing is mentioned in Question (d) For two positive observations 'a' & 'b'	$AM > GM > HM$ $AM = GM = HM$ $AM \ge GM \ge HM$ $GM^2 = AM \times HM$
Result 02	Relationship between Mean, Median & Mode (a) For Symmetric Data (b) For Moderately Skewed Data [Empirical Relationship]	(a) Mean = Median = Mode (b) Mode = 3 Median-2 Mean; Mean-Mode = 3(Mean - Median)
Result 03	Best Measure (a) Overall (b) Open End Classification	Arithmetic Mean Median
Result 04	Which measure is based on all observations?	AM, GM, HM
Result 05	Which measure is based on 50% values?	Median
Result 06	Which measure is least affected by Extreme Values & Sampling Fluctuations?	Median
Result 07	Which measure is Rigidly Defined & easy to comprehend?	AM, GM, HM, Median
Result 08	Which measure is not based on all observations & has no Mathematical Property?	Mode

14B. MEASURES OF DISPERSION

CONCEPT 01 : E	ASICS OF DISPERSION	δ.	
Meaning	Dispersion of a given set of observations is defined as the amount of deviation of the observations, usually, from appropriate Measure of Central Tendency.		
Types of	ABSOLUTE MEASURES	RELATIVE MEASURES	
Measures of Dispersions	 They is dependent on the unit of the variable. They are not useful for comparing two or more distributions. It includes: (a) Range (b) Mean Deviation (c) Standard Deviation (d) Quartile Deviation 	 They is independent of the unit. They are useful for comparing two or more distributions. It includes: (a) Coefficient of Range (b) Coefficient of Mean Deviation (c) Coefficient of Variation (d) Coefficient of Quartile Deviation 	

CONCEPT 02 : RANGE & COEFFICIENT OF RANGE		
0.0	RANGE	COEFFICIENT OF RANGE
Unclassified	L-S	1.0
Data	where, L = Largest Observation; & S = Smallest Observation	$\frac{L-S}{L+S} \times 100$
Grouped	UCB – LCB	•
Frequency Distribution	where, UCB = Uppermost Class Boundary; & LCB = Lowermost Class Boundary Note: Make sure the data is Exclusive.	UCB - LCB UCB + LCB x 100

CONCEPT 03: MEAN DEVIATION & COEFFICIENT OF MEAN DEVIATION			
	MEAN DEVIATION	COEFFICIENT OF MEAN DEVIATION	
Meaning	 It is defined as the AM of absolute deviations of the observations from an appropriate Measure of Central Tendency. It takes its Minimum Value when deviations are taken from Median. 	relief	
Unclassified Data	$\frac{1}{n}\sum x_i - A $ where, A is taken as Mean / Median accordingly	Mean Deviation about A	
Grouped Frequency Distribution	$\frac{1}{N}\sum f_i x_i-A $ where, N = $\sum f_i$	——————————————————————————————————————	

CONCEPT 04: STANDARD DEVIATION & COEFFICIENT OF VARIATION			
	STANDARD DEVIATION (σ)	COEFFICIENT OF VARIATION	
Meaning	 It is defined as the root mean square deviation when deviations are taken from AM. It is denoted as S.D. or σ. The square of SD is known as Variance (σ²). 	NGIA -	
Unclassified Data	$\sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} OR \sqrt{\frac{\sum x_i^2}{n} - \bar{x}^2}$	SD 400	
Grouped Frequency Distribution	$\sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{N}} OR \sqrt{\frac{\sum f_i x_i^2}{N} - \bar{x}^2}$	SD AM x 100	

Important Results	■ SD of any two numbers = Range 2	RAL
Χ.	■ SD of first 'n' Natural Numbers = $\sqrt{\frac{n^2 - 1}{12}}$	Α,
	■ Combined SD	
	$n_1s_1^2 + n_2s_2^2 + n_1d_1^2 + n_2d_2^2$	
	$\sqrt{n_1+n_2}$	λ

CONCEPT 05 : QUARTILE DEVIATION & COEFFICIENT OF QUARTILE DEVIATION			
	QUARTILE DEVIATION	COEFFICIENT OF QUARTILE DEVIATION	
Formula	Q ₃ - Q ₁	C	
	2	$\frac{Q_3 - Q_1}{Q_2 + Q_2} \times 100 \text{ OR } \frac{Q_D}{Madian} \times 100$	
Ó	Inter Quartile Range = Q ₃ - Q ₁	$\frac{23}{Q_3 + Q_1}$ x 100 OR $\frac{40}{Median}$ x 100	
	Hence, Q _D = Semi-Inter Quartile Range		

CONCEPT 06:	SOME IMPORTANT RESULTS	~6)
Result 01	If all the observations are constant, then Range = MD = SD = QD =	0
Result 02	Effect of Change of Origin on Range, MD, SD & QD	No Effect
Result 03	Effect of Change of Scale on Range, MD, SD & QD	N i
	If for any two constants a & b, two variables x and y are given by $y = a + bx$, then	In the Same Ratio
Result 04	Relationship between SD, MD & QD Note: SD:MD:QD = 15:12:10	4SD = 5MD = 6QD
Result 05	Best Measures (a) Overall (b) For Open End Class	SD QD
Result 06	Which measure is quickest to compute?	Range
Result 07	Which measure is not Based on all observations?	Range
Result 08	Which measure is difficult to comprehend & less mathematical?	MD
Result 09	Which measure is easy to comprehend & rigidly defined?	MD, SD & QD
Result 10	Which measure is less affected by Extreme Observations & Sampling Fluctuations?	QD

15. PROBABILITY

CONCEPT 01 : II	NTRODUCTION TO PROBABILITY	
Meaning	Probability means Possibility.	
	It is a branch of mathematics that deals with the occurrence of a random event.	
Divisions of	SUBJECTIVE PROBABILITY	OBJECTIVE PROBABILITY
Probability	It is dependent on personal judgment and	It is based on data, calculations & logical
	experience.	deductions.
	It is influenced by the personal belief, attitude	It is independent of personal opinions &
	& bias of the person applying it.	beliefs.

	11.5			
CONCEPT 02 : R	ANDOM EXPERIMENT	. 40		
Experiment	It is described as a performance that produces	It is described as a performance that produces certain results.		
Random	An experiment is defined to be random if the re	sults of the experiment depend on chance only i.e.		
Experiment	cannot be predicted in advance.			
200	E.g.: Tossing a coin, Rolling a dice, Drawing items from a box containing both defective & non-defective items, Drawings cards from a pack of well-shuffled 52 cards etc.			
Sample Space	The set containing all elementary events of a random experiment. It is denoted by S or Ω .			
Events	 The results / outcomes of a random experiment are known as events. It can be defined as the non-empty subset of S. Types of Events 			
	SIMPLE / ELEMENTARY EVENTS	COMPOSITE / COMPOUND EVENT		
	It cannot be decomposed into further	It is one which can be decomposed into		
	events.	two or more events.		
	E.g. Tossing a coin gives us two simple	E.g. Tossing a coin twice can be split into		
	events, H & T.	events HT & TH.		

CONCEPT 03:0	CLASSICAL DEFINITION OF PROBABILITY [P	RIORI DEFINITION]	
Formula	This is based on Event Based.	No. of Favourable Outcomes	
	 This is given by Bernoulli & Laplace. 	$P(A) = \frac{1}{\text{Total No. of Possible Outcomes}}$	
	Note: If we consider only mutually exclusive, exhaustive & equally likely events, then		
	$P(A) = \frac{\text{No. of Mutually Exclusive, Exhaustive & Equally Likely Events Favourable to A}}{\text{Total No. of Mutually Exclusive, Exhaustive & Equally Likely Events Favourable to A}}$		
	Total No. of Mutually Exc	lusive, Exhaustive & Equally Likely Events	
Imp. Results	 (a) The probability of an event lies between 0 & 1 i.e. 0 ≤ P(A) ≤ 1. If Probability of occurrence of an event is 0, it is known as Impossible Event. E.g. Getting number 7 on a single roll of dice. If Probability of occurrence of an event is 1, it is known as Sure Event. E.g. Getting a number < 7 on a single roll of dice. (b) 		
	Odds in Favour of Event A	Odds Against Event A	
	No. of Favourable Events to A	No. of Unfavourable Events to A	
	No. of Unfavourable Events to A	No. of Favourable Events to A	
	N (5) 177 5 5 (4	No. of Unfavourable Events to A	
	Note: Probability of an Event $A = \frac{1}{100}$ No. of Favourable Events + No. of Unfavourable Events		
Limitations	· ·		

CONCEPT 04: N	IUTUALLY EXCLUSIVE / INCOMPATIBLE EVENTS	J
Meaning	 A set of events are known to be Mutually Exclusive, if their simultaneous occurrence is not 	
	possible. It means occurrence of one event implies non-occurrence of other events $(A \cap B = \Phi)$.	

CA FOUNDATION I	PROBABILITY
Example	Once a coin is tossed, we get two mutually exclusive events Heads & Tails.
CONCEPT 05 : E	EXHAUSTIVE EVENTS
Meaning	 A set of events are known to be Exhaustive, if one of them must necessarily occur. A∪B = S
Example	Once a coin is tossed, the two events Heads & Tails are Exhaustive as no other event can occur.
Imp. Results	 Two events are Exhaustive if, P(A∪B) = 1. Three events are Exhaustive if, P(A∪B∪C) = 1.
CONCEPT 06 : E	EQUALLY LIKELY / MUTUALLY SYMMETRIC / EQUI-PROBABLE EVENTS
Meaning	A set of events are known to be Equally Likely / Mutually Symmetric / Equi-Probable when all of them have same probability of occurrence.
Example	Once a fair coin is tossed, the two events Heads & Tails are Equally Likely.
Imp. Results	Three Events are Equally Likely if $P(A) = P(B) = P(C)$. Note : If the Events A, B & C are Mutually Exclusive & Exhaustive Events, then $P(A) = P(B) = P(C) = 1$.
CONCEPT 07 : C	COMPLIMENTARY EVENT
Meaning	 Probability of Non-Occurrence of an Event A is called Complimentary Event of A. It is denoted by P(A') or P(A^c) or P(\(\overline{A}\)).
Imp. Results	1. $P(A) + P(A') = 1$.
	2. Probability that only Event A occurs
	$P(A - B) = P(A \cap B') = P(A) - P(A \cap B)$
	3. Probability that only Event B occurs
	$P(B - A) = P(B \cap A') = P(B) - P(A \cap B)$
CONCEPT 08 : A	AXIOMATIC (MODERN) DEFINITION OF PROBABILITY
Definition	A real valued function P defined on S is known as a probability measure & P(A) is defined as the probability of A, if P satisfies the three axioms.
Axioms	 P(A) ≥ 0 for every A ⊆ S P(S) = 1
	3. For Mutually Exclusive Events, P(AUBUC) = P(A) + P(B) + P(C)
CONCEPT 09: T	THEOREMS ON TOTAL PROBABILITY [ADDITION THEOREMS]
Theorem 01	 For any two Events A & B, P(A∪B) = P(A) + P(B) – P(A∩B).
	■ In case A & B are Mutually Exclusive Events, P(A + B) = P(A∪B) = P(A) + P(B).
	Note : This can be generalised as, $P(A \cup B \cup C) = P(A) + P(B) + P(C)$
Theorem 02	For any three events A, B & C, P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(B∩C) - P(A∩C) - P(A∩B∩C)
CONCEPT 10 : C	CONDITIONAL PROBABILITY AND COMPOUND / JOINT PROBABILITY
Meaning	The probability of occurrence of two events simultaneously is known as Compound / Joint Probability. It is denoted by P(A∩B).
Dependent	• If the occurrence of one event, say B, is influenced by the occurrence of another event A.
Events	■ It is denoted as P(B/A).
(Conditional Probability)	$ P(B/A) = \frac{P(A \cap B)}{P(A)} $
1 Tobability)	
	$P(A \cap B) = P(A) \cdot P(B/A)$ $P(A \cap B \cap C) = P(A) \cdot P(B/A) \cdot P(C/A \cap B)$
Independent	 P(A∩B∩C) = P(A) · P(B/A) · P(C/A∩B) If the occurrence of one event, say B, is not influenced by the occurrence of another event A.
Event	 It is known as Independent if the following conditions hold true:
	(i) $P(A \cap B) = P(A) \cdot P(B)$ (iii) $P(B \cap C) = P(B) \cdot P(C)$
	(ii) $P(A \cap C) = P(A) \cdot P(C)$ (iv) $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

PRA	 P(B/A) = P(B) If A & B are independent, then the following pairs of events are also independent: (a) A and B' (b) A' and B (c) A' and B' 	PRA

8 '	(a) A and B'		8,			
	(b) A' and B (c) A' and B'		·			
CONCERT 44 · F		-				
Meaning	RANDOM / STOCHASTIC VARIABI		ciated with a random experiment assuming any			
g	value from R and assigning a experiment. ■ It is always denoted by a Cap	■ It is always denoted by a Capital Letter.				
	 assume either finite or countably infinite number of values. If it is defined on a Continuous Sample Space, it is known as Continuous Random Variable assume uncountably infinite number of values. 					
Example	If a coin is tossed three times & if Sample Space is given by S = {Hi	X denotes the num HH, HHT, HTH, HT	ber of heads, then X is a random variable. The T, THH, THT, TTH, TTT} and X = {0, 1, 2, 3}.			
Probability	From above example, the Probab	ility Distribution of X	K would look like :			
Distribution	ХР		O.V			
8	0 1/8 1 3/8 2 3/8		IMPORTANT RESULTS (i) $p_i \ge 0$ for every i.			
	3 1/8 1		(ii) $\sum p_i = 1$ (over all i)			
Expected	EXPECTED VALUE	E(x)	$\sum p_i x_i$			
Value	VARIANCE	$V(x)$ or σ^2	$E(x - \mu)^2$ or $E(x^2) - \mu^2$			
	STANDARD DEVIATION	σ	$\sqrt{V(x)}$			
.0	 Note: If y = a + bx, then the ■ Mean (Expected Value) of y is given by μ_y = a + bμ_x; and ■ Standard Deviation of y is given by σ_v = b σ_x 					
Properties of Expected Value	 (a) E(k) = k, for any constant k. (b) E(x + y) = E(x) + E(y) for any two random variables x and y. (c) E(kx) = k·E(x) for any constant k. (d) E(xy) = E(x) · E(y) for any two random variables x and y. 					
Probability as	DISCRETE RANDOM VA		CONTINUOUS RANDOM VARIABLE			
a Function of X	Probability Mass Fund		Probability Density Function			
	Conditions (a) $f(X) \ge 0$ for every X. (b) $\sum f(X) = 1$ (over all i) where, $f(X) = P(X = x)$		Conditions (a) $f(X) \ge 0$ for every $x \in [\alpha, \beta]$. (b) $\int_{\alpha}^{\beta} f(x) dx = 1$ (over all i) where, $f(X) = P(X = x)$			
	Expected Value (μ) = $\sum xf(x)$		Expected Value (μ) = $\int_{-\infty}^{\infty} xf(x) dx$			
	Variance $(\sigma^2) = E(x^2) - \mu^2$,	Variance $(\sigma^2) = E(x^2) - \mu^2$ where, $E(x^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$			
,0	Note : The probability that x lies by $\int_a^b f(x) dx$.		ed values a and b, where $\alpha \le a < b \le \beta$, is given			

16. THEORETICAL DISTRIBUTIONS

CONCEPT 01 : B	ASICS OF THEORETICAL DISTRIBUTION	Α,		
Need of Theoretical Distributions	 In our previous chapter, we answered questions like, "If I draw one card from a shuffled deck, what is the probability it is a King?" or "If I roll two dice, what is the probability the sum is 7?" Our approach was largely <i>empirical</i> or <i>classical</i>; we counted favourable outcomes and divided by the total number of possible outcomes. Now, we ask a more profound question: Can we create a universal mathematical model that describes the probabilistic behaviour of a system for all its possible outcomes? 			
Types of	DISCRETE PROBABILITY DISTRIBUTIONS	CONTINUOUS PROBABILITY DISTRIBUTIONS		
Theoretical Distributions	Binomial DistributionPoisson Distribution	Normal Distribution		

Distributions	- FUISSUIT DISU	ibulion					
CONCEPT 02 : D	SCRETE PROBA	BILITY DISTRI	BUTIONS				
		MIAL DISTRIBL		POIS	POISSON DISTRIBUTION		
Introduction	It is derived from Bernoulli's Trials.			It applies when the total number of events is very large but the occurrence is very small.			
S	 Characteristics of the Trials (a) Mutually Exclusive & Exhaustive Outcomes (b) Independent of Each Other (c) Probability of Success (p) & Failure (q = 1 - p), remain unchanged. (d) No. of trials is a finite positive integer. 			time interv constant. (b) Probability (c) Probability	of finding suc al (t, t+dt) is k of >1 succes of having suc	•	
Notation	A discrete random variable 'x' is defined to follow Binomial Distribution with parameters 'n' & 'p', x ~ B (n,p) Bi-Parametric Discrete Prob. Distribution			Poisson Distribu	ition is denote P(m) , where	•	
Probability Mass Function	f(x) = p(X = x)	$= {}^{n}C_{x} \cdot p^{x}q^{n-x},$	for x ∈ W	f(x) = p(X = x)	$=\frac{e^{-m}\cdot m^{X}}{x!}$	for x ∈ W	
		= 0,	otherwise		= 0,	otherwise	
Mean (µ)		np			m		
Variance (σ^2)		npq			m		
	OTHER POINTS						
			e is always less	Poisson's Approximation to Binomial			
	than its mear		n	If 'n' tends to infinity & 'p' tends to 0, then $m = np$ is finite, and $B(n,p) \cong P(m)$.			
	It obtains its	maximum value	$\frac{11}{4}$ at p=q=0.5.				
	{It is symmet	ric if p=q=0.5 or	nly}				
Mode (µ ₀)		(n + 1)p			m		
·	It is an Integ	er It is i	not an Integer	It is an Inte	ger It	t is not an Integer	
	Bi-Modal (n+1)p & (n+1)p		Jni-Modal (Rounded Down)	Bi-Moda m & m - 1		Uni-Modal n (Rounded Down)	
Additive	If x & y are two in	dependent varia	ables such that	If x & y are two i	ndependent v	ariables such that	
Property	$x \sim B(n_1, p) \& y \sim$		$x+y \sim B(n_1+n_2, p).$	$x \sim P(m_1) \& y \sim$			
Applications		Experiments	. (Printing Mist			
	Sampling Ins	•			ents per minut		
	■ Genetic Experiments etc.		 Radio-active elements per minute 				
				No. of demands per minute			

CONCEPT 03 : N	IORMAL / GAUSSIAN DISTRIBUTION	N
Meaning	 It is the most widely known & used of all distrib In case of a continuous random variable like he probability among different mass points because an infinite no. of values. 	eight or weight, it is impossible to distribute the total se between any two unequal values, there remains
Notation Properties of	A continuous random variable 'x' is defined to follow Normal Distribution with parameters 'μ' & 'σ²' to be denoted by, x ~ N(μ, σ²) Bi-Parametric Continuous Prob. Distribution Bell Shaped Curve (aka Probability Curve)	Probability Density Function $f(x) = \frac{1}{\mu \sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ where, $\bullet e = 2.71828 \qquad \bullet \mu = \text{Mean of } x$ $\bullet x = \text{A random variable,} \qquad \bullet \sigma = \text{Standard Deviation of } x$ Normal (z) Curve
Normal Curve	 The line drawn through x = μ divides the curve into two equal parts. The curve is Symmetric (i.e. Skewness = 0) at x = μ. The two tales of the Normal Curve extends indefinitely on both sides & never touch the horizontal axis. Total Area of Normal Curve = 1 (Unity), hence, (i) Area from -∞ to μ = 0.5 (ii) Area from μ to ∞ = 0.5 	-∞ μ ∞
Statistical Results	 Mean = Median = Mode = μ {Symmetric Distribution} Variance (σ²) is generally given in question → Standard Deviation = σ → Mean Deviation = 0.8σ → Quartile Deviation = 0.675σ → Quartiles	Points of Inflexion $\mu - \sigma \qquad \mu + \sigma$ Points of Inflexion
Sums of Independent Normal Variables	If x & y are independent normal variables with Means & Standard Deviations as μ_1 , μ_2 & σ_1 , σ_2 respectively, then z = x + y also follow Normal Distribution with, • Mean = $\mu_1 + \mu_2$ • S.D. = $\sqrt{\sigma_1^2 + \sigma_2^2}$	Area under Normal Curve 99.72% 95.44% 68.26%
Applications	These approach Normal Distribution in certain cases: (a) 'n' is Large & 'p' is moderate in Binomial. (b) 'm' is Large in Poisson Distribution. (c) Probability Distributions of t, chi-square and F also tends to Normal Distribution. (d) Sample Statistic Approach for large sample.	2.14% 13.59% 34.13% 13.59% 2.14%

CONCEPT 04 : S	TANDARD NORMAL DISTRIBUTION	
Meaning	If $\mu = 0 \& \sigma = 1$, $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{-z^2}{2}}, \text{ for } -\infty < z < \infty$ $z = \frac{x - \mu}{\sigma}$	
Statistical	The random variable 'z' is known as Standard Normal Variate / Deviate . • Mean = Median = Mode = 0	-3 -2 -1 0 1 2 3
Results	{Symmetric Distribution} Variance = SD = 1 Points of Inflextion = -1 & 1 Mean Deviation = 0.8 Quartile Deviation = 0.675	Author's Note : ■ Φ(n) means -∞ to n. ■ z = n means 0 to n.

17. CORRELATION & REGRESSION

IVARIATE D	ATA	Y					
 When data are collected on two variables simultaneously, they are known as Bivariate Data. The frequency distribution derived is known as Bivariate Frequency Distribution. 							
			1	VARIABLE A	4		
ш	X Y	a - b	c - d	e - f	g - h	i-j	Total
BLI	a - b						
B B A	c - d						
\blacksquare							
	Total						
IMPORTAN	T RESULTS						
(a) Tota	l No. of Cells	= m (Class	Intervals of X) · n (Class I	ntervals of Y)		
(b) No. of Marginal Distributions = 2							
(c) No.	of Conditiona	l Distributio	ons = m + n				
	When de The free The free Mark Mark Mark Mark Mark Mark Mark Mark	The frequency distribution A STATE OF THE S	When data are collected on two values The frequency distribution derived X Y A-b a-b c-d e-f Total IMPORTANT RESULTS (a) Total No. of Cells = m (Class (b) No. of Marginal Distributions	When data are collected on two variables simular The frequency distribution derived is known as Y	When data are collected on two variables simultaneously, the The frequency distribution derived is known as Bivariate Free VARIABLE A X Y a - b c - d e - f a - b c - d e - f Total IMPORTANT RESULTS (a) Total No. of Cells = m (Class Intervals of X) · n · n · n · n · n · n · n · n · n ·	When data are collected on two variables simultaneously, they are known. The frequency distribution derived is known as Bivariate Frequency Distribution. VARIABLE A X Y a - b c - d e - f g - h a - b c - d e - f Total IMPORTANT RESULTS (a) Total No. of Cells = m (Class Intervals of X) · n (Class Intervals of Y) (b) No. of Marginal Distributions = 2	When data are collected on two variables simultaneously, they are known as Bivariate The frequency distribution derived is known as Bivariate Frequency Distribution. VARIABLE A X Y a - b c - d e - f g - h i - j a - b c - d e - f Total IMPORTANT RESULTS (a) Total No. of Cells = m (Class Intervals of X) · n (Class Intervals of Y) (b) No. of Marginal Distributions = 2

Meaning	is change in one v	ariable reciprocated	by a corresponding (change in other variable?
64	YE		,	NO
	Associated A	/ Correlated		
	Is the Direction o	of Change same?	Diagonosiatad	/ Uncorrelated / Indonesident
	YES	NO		/ Uncorrelated / Independent noe-Size & Intelligence
	Positive Correlation	Negative Correlatio	n <i>L.y. 31</i>	ioe-oize & intelligence
	E.g. Yield & Rainfall	E.g. Price & Deman	d	
Notation	 It is denoted by 'r'. -1 ≤ r ≤ 1 	Negative (-1 < r < 0)		sitive r < 1)
	-1		0	+1
870	Perfect Negative (r = -1)	No Correlation (r = 0)		Perfect Positive (r = +1)
Measures of Correlation	 Scatter Diagram Karl Pearson's Produ Spearman's Rank Co Coefficient of Concur 	orrelation Coefficient	n Coefficient	PRA

OULIGE: 1 OU LOU	ATTENDIAGINAM					
Meaning	 It is a simple diagrammatic method to establish correlation between a pair of variables. It can be applied for any type of correlation, linear as well as curvilinear. It can distinguish between different types of correlation. It fails to measure the extent of relationship between the variables. 					
Perfect Negative	e Negative	No Correlation	Positive	Perfect Positive		
(r = -1)	(-1 < r < 0)	(r=0)	(0 < r < 1)	(r = +1)		
(1 1)	(-1 < 1 < 0)	(1 – 0)	(0 1 1 1)	(1 - 1 1)		

CONCEPT 04 : K	ARL PEARSON'S PRODUCT MOMENT CORRELATION COEFFICIENT
Meaning	 It can be defined as the ratio of covariance between the two variables to the product of standard deviations of the two variables. It is the best method for finding correlation between two variables provided the relationship
	between them is Linear.
Computation	$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n} = \frac{\sum x_i y_i}{n} - \overline{x}\overline{y}$
	$r = r_{xy} = \frac{Cov(x, y)}{S_x \cdot S_y}$
(B)0	$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} = \sqrt{\frac{\sum x_i^2}{n}} - \overline{x}^2$ $\sqrt{\frac{\sum (y_i - \overline{y})^2}{n}} = \sqrt{\frac{\sum y_i^2}{n}} - \overline{y}^2$
PRI	A single formula can be given as, $ r = \frac{n \sum x_i y_{i^-} \sum x_i \cdot \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \cdot \sqrt{n \sum y_i^2 - (\sum y_i)^2}} $
Properties	 (a) The Coefficient of Correlation is a Unit-Free Measure. (b) The Coefficient of Correlation always lies between -1 & 1 i.e1 ≤ r ≤ 1 (c) If two variables are related by a Linear Equation, then Correlation Coefficient will be :
	y = a + bx If $b > 0$ $r = -1$ If $b < 0$ $r = 1$ Author's Note: In $y = a + bx$, a is known as Slope.
ABJO	 (d) The Coefficient of Correlation is not affected by Change of Origin. (e) The Coefficient of Correlation is not affected by value of Change of Scale, but is affected by the sign. If sign of Change of Scale in both variables are same: r_{uv} = r_{xy} If sign of Change of Scale in both variables are different: r_{uv} = - r_{xy}
6k.	If x & y, two variables, are changed to a pair of new variables u & v, such that, $u = \frac{x-a}{b}$ & $v = \frac{y-c}{d}$, then, $\mathbf{r}_{xy} = \frac{\mathbf{bd}}{ \mathbf{b} \mathbf{d} } \mathbf{r}_{uv}$.

CONCEPT 05 : S	PEARMAN'S RANK CORRELATION COEFFICIENT METHOD
Meaning	 When we need to find correlation between two qualitative characteristics, say, beauty & intelligence, we use this method. It can also be applied to find the level of agreement (/ disagreement) between two judges so far as assessing a qualitative characteristic is concerned.
Computation	$r_R = 1 - \frac{6 \sum d_i^2}{n(n^2-1)}$ where,

Tied Rank	In case 'u' individuals receive the same rank, we describe it as a tied rank of length 'u'.	
6 _{kv}	$r_R = 1 - \frac{6\left[\sum d_i^2 + \sum \frac{(t_j^3 - t_j)}{12}\right]}{n(n^2 - 1)}$	bk.
	where,	
	 t_j = jth tie length ∑(t_j³-t_j) extends over the length of all the ties for both the series 	

CONCEPT 06 : C	OEFFICIENT OF CONCURRENT DEVIATIONS
Meaning	It is a very simple & casual method of finding correlation when we are not very serious about the
	magnitude of the two variables.
Computation	Step 01 : Attach a positive sign, if the value is more than the previous value & attach a negative sign if the value is less than the previous value.
.(0	Step 02 : The deviation in x value & corresponding y value is known to be concurrent if both
0.0	deviations have the same sign.
O.V.	$r_C = \pm \sqrt{\pm \frac{(2c - m)}{m}}$
? `	•
	where,
	c = No. of Concurrent Deviations (Deviations having same sign)
	■ m = No. of Pairs compared (n) - 1

	III 110: Of Fallo Comparca (II)		
CONCEPT 07 : R	EGRESSION ANALYSIS		
Meaning		stimation of one variable for a given value of another	
_	variable(s) on the basis of an average mathematical relationship between the two (or more) variable		
Simple Linear	ESTIMATION OF Y WHEN X IS GIVEN	ESTIMATION OF X WHEN Y IS GIVEN	
Regression	y = Dependent Variable / Regression /	x = Dependent Variable / Regression /	
	Explained Variable	Explained Variable	
	x = Independent Variable / Predictor /	y = Independent Variable / Predictor /	
	Explanator	Explanator	
10	y = a + bx	x = a + by	
0,0	where,	where,	
	a & b are constants [Regression Parameters]	a & b are constants [Regression Parameters]	
	b is known as Regression Coefficient of y on	b is known as Regression Coefficient of x on	
	x i.e. b _{yx} .	y i.e. b _{xy} .	
	<u>Using Method of Least Squares Regression</u>	<u>Using Method of Least Squares Regression</u>	
	Line of y on x	Line of x on y	
	$y - \overline{y} = b_{yx} (x - \overline{x})$	$x - \overline{x} = b_{xy} (y - \overline{y})$	
	$b_{yx} = \frac{Cov(x, y)}{Variance \text{ of } x} = r \cdot \frac{\sigma_y}{\sigma_x}$	$b_{xy} = \frac{Cov(x, y)}{Variance \text{ of } y} = r \cdot \frac{\sigma_x}{\sigma_y}$	
	$D_{yx} = \frac{1}{Variance of x} = \frac{1}{\sigma_x}$	$D_{xy} = \frac{1}{Variance \text{ of } y} = \frac{1}{\sigma_y}$	
Properties	Scale.	ue to Change of Origin but change due to a Shift of	
	Change of Scale of y	hange of Scale of x	
	$b_{uv} = b_{yx} \cdot \frac{\text{Change of Scale of y}}{\text{Change of Scale of x}} \& b_{uv} = b_{xy} \cdot \frac{\text{Change of Scale of x}}{\text{Change of Scale of y}}$		
	(b) The two lines of regression intersect at the point (\bar{x}, \bar{y}) i.e. Mean, which is also the solution of the		
	simultaneous equations in x & y.		
	(c) $r = \pm \sqrt{b_{yx} \cdot b_{xy}}$		
	[If both are negative, r would be negative & if	both are positive, r would be positive]	
	(d) Product of the regression coefficients must be		
		· · · · · · · · · · · · · · · · · · ·	

(e) Regression can be applied, unlike Correlation, for both Linear & Curvilinear Relationships.
(f) The two lines of Regression coincide (become identical) when r = -1 or +1.
(g) The two lines of Regression are perpendicular to each other when $r = 0$.

Meaning	Correlation Coefficient measuring a linear relationship between the two variables indicates the am of variation of one variable accounted for by another variable. r ²
Computation	Note : Coefficient of Non-Determination / Unexplained Variance / Unaccounted Variance is given by $1 - r^2$.

18. INDEX NUMBERS

		IO. IIIL	LA NOND	LIVO		
CONCEPT 01 : BA	SICS OF INDEX NUM	MBERS (21		01	
Meaning	 It is a ratio of two value at the bas They are conver place to place. An Index Time index number en 	ratio of two or more time periods are involved, one of which is the base time period. The e at the base time period serves as the standard point of comparison. <i>E.g. NSE, BSE etc.</i> are convenient devices for measuring relative changes of differences from time to time or e to place. Idex Time Series is a list of index numbers for two or more periods of time, where each a number employs the same base year. Number for the Base Year is always taken as 100.		etc. ime or		
Issues Involved	Selection of Data	 It is necessary to <u>understand the purpose</u> for which the index is used. It is necessary to ensure that the <u>sample is representative</u>. It is necessary to <u>ensure comparability</u> of data. 				
	Base Period	It shouldIt should	d be a <u>normal per</u> d be <u>relatively rec</u>	<u>ent</u> .	<u>bility</u> (i.e. not of war, famir	
	Selection of Weights	on the inde	х.	•	ould have a reasonable in	
b _k ,	Use of Averages	Arithmetic N	Mean is used bec	ause of its simplic		
Relatives	They are derived because absolute numbers measured in some appropriate unit, are often of little importance and meaningless in themselves. FOR INDIVIDUAL COMMODITY					
	PRICE RELA	TIVE	QUANTITY	RELATIVE	VALUE RELATIV	Έ
	$\frac{P_n}{P_0} \times 100$)	$\frac{Q_n}{Q_0}$	100	$\frac{V_n}{V_0} \times 100 = \frac{P_n Q_n}{P_0 Q_0} \times$	100
Link Relatives	When successive possible called Link Relative	When successive prices / quantities are taken, the relatives are called Link Relative.		$\frac{V_0 - P_0 Q_0}{\frac{P_1}{P_0}, \frac{P_2}{P_1}, \frac{P_3}{P_2}, \frac{P_n}{P_{n-1}}}$		
Chain Relatives	When the above relatives are in respect to a fixed base period these are also called : Chain Relatives with respect to this base; or Relatives chained to a fixed base			$\frac{P_1}{P_0}$, $\frac{P_2}{P_0}$, $\frac{P_3}{P_0}$, $\frac{P_n}{P_0}$		
Methods		INDEX NUM		WEIGHTED INDEX NUMBER		
P.P.	Aggregative MRelative Method			eyres' Index sche's Index shall Edgeworth Index er's Index		
CONCEPT 02 : SIN	IPLE INDEX NUMBE			011171 5 4	VED 4 0 5 0 5 0 5 1 4 7 1 V / 5	
Formula	SIMPLE AGO		METHOD	SIMPLE A	VERAGE OF RELATIVE	:5
Formula	where,	■ Pn = Current Year Prices		SING	$\frac{\sum \left[\frac{P_n}{P_0} \cdot 100\right]}{N}$	
Merits	Easy	to understan	d		umbers. Hence, Price Ind ed from relatives will rem	

same even if units are changed.

Demerits	 Commodities with higher prices exert greater 	It gives equal importance to each of the
	influence.	relatives. This can be remedied by introduction
	Index Number changes if units are changed.	of appropriate weighing system.

CONCEPT 04 : CH	AIN INDEX NUMBERS	
Meaning	 So far we concentrated on a fixed base, but it does not suit when conditions change quite fast. Under this method, the relatives of each year are first related to the preceding year called link relatives & then they are chained together by successive multiplication to form a chain index. 	
Computation	Link Relative of Current Year x Chain Index of Previous Year 100	

CONCEPT 05 : QU	ANTITY INDEX NUMBERS	
Simple Quantity	SIMPLE AGGREGATE OF QUANTITY	SIMPLE AVG. OF QUANTITY RELATIVES
Index Nos.	$\sum \frac{Q_n}{Q_0} \times 100$	$\frac{\sum \left[\frac{Q_n}{Q_0} \cdot 100\right]}{N}$
Weighted Qty.	WEIGHTED AGGREGATE QUANTITY	WEIGHTED AVERAGE OF QTY. RELATIVES
Index Nos.	Laspeyres' Index $\sum \frac{Q_n P_0}{Q_0 P_0} \times 100$ Paasche's Index $\sum \frac{Q_n P_n}{Q_0 P_n} \times 100$	$\sum \frac{Q_n P_0}{Q_0 P_0} \times 100$
aBJO ^T	Fisher's Ideal Price Index GM of Laspeyres' & Paasche's Index. $\sqrt{\sum \frac{P_n Q_0}{P_0 Q_0}} \cdot \sum \frac{P_n Q_n}{P_0 Q_n} \times 100$	{Same as Laspeyres' Index}

CONCEPT 06: VA	LUE INDICES	DV.
Formula	$\sum \frac{V_n}{V_0} = \sum \frac{P_n Q_n}{P_0 Q_0}$	6 Pri
CONCEDT 07 - DE	THATING TIME CEDIES HEING INDEX NUMBERS	

CONCEPT 07 : DE	FLATING TIME SERIES USING INDEX NUMBERS
Formula	 ■ Deflated Value = Current Value / Price Index of Current Year = Current Value x P₀ / P_n ■ Real Wages = Actual Wages / Cost of Living Index x 100

CONCEPT 08 : SHIFTING & SPLICING OF INDEX NUMBERS		
Shifting of Index	Original Price Index	
Numbers	Shifted Price Index = Price Index for the year on which it has to be shifted	
Splicing of Index	Two Index Numbers covering different bases may be combined into a single series by splicing. It is	
Numbers	usually required when there is a major change in quantity weights.	

CONCEPT 00 - TE	CT OF ADECUACY
Unit Test	ST OF ADEQUACY
Unit rest	 This test requires that the formula should be independent of the unit in which or for which price & quantities are quoted.
	 All formulae satisfy this test. [Exception : Simple (Unweighted) Aggregative Index]
Time Reversal	 It is a test to determine whether a given method will work both ways in time, forward &
Test	backward.
1000	 It provides that the formula for calculating the index number should be such that two ratios, the current on the base & the base on the current should multiply into unity. In other words, the two indices should be reciprocals of each other.
	$P_{01} \times P_{10} = 1$
	 Laspeyre's & Paasche's Formula doesn't satisfy this test, but Fisher's does.
Factor Reversal Test	This holds when the product of the Price Index & the Quantity Index should be equal to the corresponding Value Index.
	$P_{01} \times Q_{01} = V_{01}$
	Fisher's Index satisfies this.
	Because, Fisher's Index satisfies both Time Reversal & Factor Reversal Tests, it is called, FISHER'S IDEAL INDEX NUMBER
	Note: While selecting an appropriate index formula, the Time Reversal Test & Factor Reversal Test are considered necessary in testing the consistency.
Circular Test	 It is concerned with the measurement of price changes over a period of years, when it is desirable to shift the base. This property therefore enables us to adjust the index values from period to period without referring each time to the original base. This test of shiftability of base is called the Circular Test.
	$P_{01} \times P_{12} \times P_{20} = 1$
	■ This test is not met by Laspeyre's, Paasche's or Fisher's Index.
	Simple GM of Price Relatives & Weighted Aggregative with Fixed Weights meet this test
	, SIM
	56
	56