

FORMULA STATISTICS

Formula 1	Class Boundary			
	Mutually Exclusive UCB = UCL and LCB = LCL			
	Classification			
	Mutually Inclusive UCB = UCL + 0.5 and LCB = LCL - 0.5			
	Classification			
Formula	Mid-Point / Class Mark of Class Interval: $\frac{LCL+UCL}{2}$ or $\frac{LCB+UCB}{2}$			
2				
Formula	Class Length / Width of Class / Size of Class: UCB-LCB			
3	Cluss Length / Whith of Cluss / Size of Cluss. Ceb Leb			
Formula	Frequency Density of a Class: Frequency of the class			
4	Class length of the class			
	Relative Frequency: Frequency of the class			
Formula	Total Frequency of distribution			
5	Percentage Frequency: Frequency of the class Total Frequency of distribution ×100			
	Total Frequency of distribution			
Formula	AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ in short $\overline{x} = \frac{\sum x_1}{n}$			
6				
	AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$			
Formula				
7	In case of ungrouped distribution x = individual value			
	In case of grouped frequency x = mid-point of class interval			
	distribution			
Formula	AM using assumed mean / step deviation method			
8	$\overline{x} = A + \frac{\sum fd}{N} \times C$ where $d = \frac{x - A}{C}$, A is assumed mean, C is class length			
	The algebraic sum of deviations of a set of observations from their AM is			
Formula	zero			
9	$\sum (x - \overline{x}) = 0$			
Formula				
10	Combined AM: $\overline{x}_{c} = \frac{n_{1}\overline{x}_{1} + n_{2}\overline{x}_{2}}{n_{1} + n_{2}}$			
10	Median in case of discrete distribution			
Formula	If number of observations are Median is middle term			
11	odd			

	If numb	per of observation	ns are ΔM	of two mi	ddle ter	ms
	If number of observations are AM of two middle terms					
	Same formula is used for ungrouped frequency distribution					
	Median in case of grouped frequency distribution					
	Step	Prepare a less th				distribution
	1					
	Step	Calculate $\frac{N}{2}$ and	d check betwe	en which	class bo	undaries it falls
	2	2				
	Stop	and call it as Me		N		C
Formula	Step 3				an af	
12	5	Median Class	Cum Freq. of Median	Cum. Fr Pre-Me	-	Class length of Median
			Class	Clas		Class
	Step	Appy Formula	Cluss	Clu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cluss
	-					
		$Me = I_1 + \left(\frac{\frac{N}{2} - N_1}{N_u - N_1}\right)$	×C			
		$ \mathbf{N}_{u} - \mathbf{N}_{l} $				
Formula	For a cot	of observations	the sum of ah	soluto do	viation	
13		of observations, e deviations are t				
15	when the deviations are taken from the median. $\sum(x - \overline{x}) = 0$ is minimum Quartiles in case of discrete observations:					
Formula	(1) th	$(1, 2)^{\text{th}}$ $(1, 3)^{\text{th}}$			$(3)^{\text{th}}$
14	$Q_1 = ($	$(n+1) \times \frac{-}{4}$ term	Second QuartileThird Quartile $Q_2 = \left((n+1) \times \frac{2}{4}\right)^{\text{th}}$ term $Q_3 = \left((n+1) \times \frac{3}{4}\right)^{\text{th}}$ term			
	Note: above formula gives the term. Final value to be calculated based on					
	the term					
		n case of discrete				
	Fi	rst Decile	Second Decile			inth Decile
Formula	$D_1 = \int (r)$	$(1+1) \times \frac{1}{2}^{\text{th}}$ term	$(-1) \times \frac{1}{2}$ th term $D_{t} = \left((n+1) \times \frac{2}{2} \right)^{th}$ term D_{t}			$(n+1) \times \frac{9}{2}$ term
15	$D_1 = \left((n+1) \times \frac{1}{10} \right)^{\text{th}} \text{term} \qquad D_2 = \left((n+1) \times \frac{2}{10} \right)^{\text{th}} \text{term} \qquad D_9 = \left((n+1) \times \frac{9}{10} \right)^{\text{th}} \text{term}$					
	Note: above formula gives the term. Final value to be calculated based on					
	the term					
		Percentiles in case of discrete observations: First Percentile Second Percentile			99 th Percentile	
Formula						
16	$P_1 = (n \cdot$	$+1) \times \frac{1}{100}$ term	$1) \times \frac{1}{100} \right)^{\text{th}} \text{term} \qquad P_2 = \left((n+1) \times \frac{2}{100} \right)^{\text{th}} \text{term} \qquad P_{99} = \left((n+1) \times \frac{99}{100} \right)^{\text{th}} \text{term}$			
	Note: above formula gives the term. Final value to be calculated based on					
	the term					

U

	Quartilas in case of Crouned Frequency Distribution: Stone are like				
	Quartiles in case of Grouped Frequency Distribution: Steps are like median with few modifications.				
Formula	Find Q_1 class using Find Q_3 class using				
17	$\frac{N}{4}$ $\frac{3N}{4}$				
	$\mathbf{Q}_{1} = \mathbf{I}_{1} + \left(\frac{\frac{\mathbf{N}}{4} - \mathbf{N}_{1}}{\mathbf{N}_{u} - \mathbf{N}_{1}}\right) \times \mathbf{C} \mathbf{Q}_{3} = \mathbf{I}_{1} + \left(\frac{\frac{3\mathbf{N}}{4} - \mathbf{N}_{1}}{\mathbf{N}_{u} - \mathbf{N}_{1}}\right) \times \mathbf{C}$				
	$\begin{vmatrix} \mathbf{Q}_1 = \mathbf{I}_1 + \begin{vmatrix} \mathbf{N}_u - \mathbf{N}_l \end{vmatrix} \times \mathbf{C} \begin{vmatrix} \mathbf{Q}_3 = \mathbf{I}_1 + \begin{vmatrix} \mathbf{N}_u - \mathbf{N}_l \end{vmatrix} \times \mathbf{C}$				
	Deciles in case of Grouped Frequency Distribution: Steps are like median				
	with few modifications.				
	1 st Decile 9 th Decile				
Fermula	Find D_1 class using Find D_9 class using				
Formula 18	<u>N</u> <u>9N</u>				
10					
	$D_{1} = I_{1} + \left(\frac{\frac{N}{10} - N_{1}}{N_{u} - N_{1}}\right) \times C \qquad D_{9} = I_{1} + \left(\frac{\frac{9N}{10} - N_{1}}{N_{u} - N_{1}}\right) \times C$				
	$D_1 = I_1 + \left \frac{10}{N_1 - N_1} \right \times C$ $D_9 = I_1 + \left \frac{10}{N_1 - N_1} \right \times C$				
	Percentiles in case of Grouped Frequency Distribution: Steps are like				
	median with few modifications.				
	1 st Percentile 99 th Percentile				
	Find P ₁ class using Find P ₉₉ class using				
Formula	<u>N</u> <u>99N</u>				
19	100 10				
	$\left(\frac{N}{122}-N_{1}\right)$ $\left(\frac{99N}{12}-N_{1}\right)$				
	$P_{1} = I_{1} + \left(\frac{N}{100} - N_{1}\right) \times C \qquad P_{99} = I_{1} + \left(\frac{99N}{10} - N_{1}\right) \times C$				
	$\left(\begin{array}{c} \mathbf{N}_{u} - \mathbf{N}_{l} \\ \mathbf{N}_{u} - \mathbf{N}_{l} \end{array}\right) = \left(\begin{array}{c} \mathbf{N}_{u} - \mathbf{N}_{l} \\ \mathbf{N}_{u} - \mathbf{N}_{l} \end{array}\right)$				
	Mode in case of discrete observation: observation repeating for maximum				
Formula	no. of times or observation with highest frequency				
20	Note: There can be multiple modes also. If all observations are having				
	same frequency, then there is no mode.				
	Mode in case of grouped frequency distribution:				
	Find Modal Class (Class with highest frequency) then apply below formula				
Fammenta	$Mo = I_{1} + \left(\frac{f_{0} - f_{-1}}{2f_{0} - f_{-1} - f_{1}}\right) \times C$				
Formula	$V_{10} - I_1 + \left(\frac{2f_0 - f_{-1} - f_1}{2f_0 - f_{-1} - f_1}\right)^{+C}$				
21	where, $I_1 = LCB$ of modal class $f_0 =$ frequency of modal class, $f_{-1} =$ frequency				
	of pre-modal class, f_1 = frequency of post modal class, C = class length of				
	modal class				

	Deletienship between Mean Medien and M			
Formula	Relationship between Mean, Median and Mode in case of Symmetrical			
22	Distribution: Mean = Median = Mode			
	Relationship between Mean, Median and Mode in case of moderately			
Formula	•	•		
23	skewed distribution: Mean – Mode = 3 (M	-		
	Mode = 3 Median – 2 Mean			
Formula	Geometric Mean in case of discrete positive	observations:		
24	$\mathbf{G} = \left(\mathbf{x}_1 \times \mathbf{x}_2 \times \ldots \times \mathbf{x}_n\right)^{1/n}$			
Formula	Geometric Mean in case of frequency distribution:			
25	$G = \left(x_{1}^{f_{1}} \times x_{2}^{f_{2}} \times \times x_{n}^{f_{n}} \right)^{1/N}$			
Formula	Harmonic Mean in case of discrete observati	ions: $H = \frac{n}{1}$		
26		$\Sigma(\frac{1}{x})$		
Formula	Harmonic Mean in case of frequency distribution	ution: $H = \frac{N}{m}$		
27	namone mean in case of mequeiney disting	$\Sigma(\frac{f}{x})$		
		X		
Formula	Combined HM = $\frac{n_1 + n_2}{n_1 - n_2}$			
28	Combined HM = $\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$			
	Relationship between AM, GM and HM			
	Situation	Relationship		
	When all the observations are identical /	AM=GM=HM		
Formula	same			
29	When all the observations are distinct /	AM>GM>HM		
	different			
	In General	AM≥GM≥HM		
Formula	Range in case of discrete observations: L – S	1		
30	where L = Largest Observation, S = Smallest	Observation		
Formula	Range in case of Grouped Frequency Distribu			
31	L = UCB of last class interval, S = LCB of first-class interval			
Formula				
32	Coefficient of Range $\frac{L-S}{L+S} \times 100$			
Formula	Mean Deviation in case of discrete observations			
33	$MD_{A} = \frac{1}{n}\Sigma x-A $ where A is any appropriate central tendency (as given)			
	Mean Deviation (in case of grouped frequency distributions)			
Formula				
34	$MD_A = \frac{1}{N} \Sigma f x - A $ where A is any appropriate central tendency (as given)			
Formula	Coefficient of Mean Deviation: $\frac{\text{Mean Deviation about A}}{4} \times 100$			
Tornata	Coefficient of Mean Deviation: Mean Deviation	$\frac{1}{1}$ about A $\times 100$		

Formula	Standard Deviation in case of discrete observations:			
36	$\sigma_x = SD_x = \sqrt{\frac{\sum(x - \overline{x})^2}{n}}$ or shorter formula $\sigma_x = SD_x = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2}$			
Formula	Standard Deviation in case of grouped frequency observations			
37	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{N}}$ or shorter formula $\sigma_{x} = SD_{x} = \sqrt{\frac{\sum fx^{2}}{N} - (\overline{x})^{2}}$			
	$V_x - SD_x - V_N$ N N (X)			
Formula	Coefficient of Variation: $\frac{SD_x}{T} \times 100$			
38	X			
Formula	If there are only two observations, then SD is half of range			
39	$SD = \frac{ a-b }{2}$			
Formula				
40	Standard Deviation of first n natural numbers: $s = \sqrt{\frac{n^2 - 1}{12}}$			
	$n s^{2} + n s^{2} + n d^{2} + n d^{2}$			
Formula	Combined SD: $SD_c = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$			
41	$d_1 = \overline{x}_c - \overline{x}_1$ and $d_2 = \overline{x}_c - \overline{x}_2$			
Formula				
42	If all the observations are constant, then SD/ MD/ Range is ZERO			
F	Change of Origin and Scale: No effect of change of origin but affected by			
Formula	change of scale in the magnitude (ignore sign) $SD_y = b SD_x$			
43	Note: same thing will apply to all the measures of dispersion			
Formula	Quartile Deviation: $QD_x = \frac{Q_3 - Q_1}{2}$			
44	Z			
Formula	Coefficient of Quartile Deviation: $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$			
45				
Formula	Relationship between SD, MD and QD			
46 Formula	4SD = 5MD = 6QD or SD:MD:QD = 15:12:10			
47	Basic Formula of Probability: $P(A) = \frac{No. of favorable events to A}{Total no. of events}$			
Formula				
48	Odds in favour of Event A: no. of favorable events no. of unfavorable events			
Formula	Odds against an Event A: no. of unfavorable events			
49	no. of favorable events			
Formula	Number of total outcomes of a random experiment:			
50	If an experiment results in p outcomes and if it is repeated q times, then			
50	Total number of outcomes is p ^q			
Formula	Relative Frequency Probability			
51	no. of times the event occurred during experimental trials $= \frac{f_A}{f_A}$			
	total no. of trials n			

Formula	Set Based Probability: $P(A) = \frac{\text{no.of sample points in A}}{\text{no.of sample points in S}} = \frac{n(A)}{n(S)}$		
52			
	here A is Event Set and S is Sample Space		
Formula	Addition Theorem 1: In case of two mutually exclusive events A and B		
53	$P(A\cup B) = P(A+B) = P(A \text{ or } B) = P(A) + P(B)$		
Formula	Addition Theorem 2: In case of two or more mutually exclusive events		
54	$P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$		
Formula	Addition Theorem 3: For any two events		
55	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
Formula	Addition Theorem 4: In case of any three events		
56	$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$		
Formula	Conditional Probability of Event B when Event A is already occurred		
57	$P(B/A) = \frac{P(B \cap A)}{P(A)} \text{ provided } P(A) \neq 0$		
Formula	Conditional Probability of Event A when Event B is already occurred $P(B = A)$		
58	$P(A / B) = \frac{P(B \cap A)}{P(B)} \text{ provided } P(B) \neq 0$		
Formula	. (-)		
Formula 59	Compound Theorem: In case of two dependent events $P(A \cap B) = P(B) + P(A \cap B) = P(A \cap B) = P(B \cap A)$		
	$P(A \cap B) = P(B) \times P(A/B) \text{ or } P(A \cap B) = P(A) \times P(B/A)$		
Formula	Compound Theorem: In case of two independent events		
60	$P(A \cap B) = P(A) \times P(B)$		
Formula	Expected value of a Probability Distribution: $E(x) = \sum p_i x_i$		
61	Also, $E(x) = \mu$ (here μ means mean of probability distribution)		
Formula	Variance of Probability Distribution: $V(x) = E(x - \mu)^2 = E(x^2) - [E(x)]^2$		
62			
Formula	Probability Mass Function in case of Binomial Distribution:		
63	$f(x) = P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$		
Formula	Mean of Binomial Distribution: $\mu = np$		
64	Variance of Binomial Distribution: $\sigma^2 = npq$		
	Mode in case of Binomial Distribution:		
	Step 1 Calculate (n+1)p		
Formula	Step If (n+1)p is an integer, there will be two modes:		
65	2A $\mu_0 = (n+1)p \& [(n+1)p-1]$		
	Step 2B If (n+1)p is a non-integer, there will be only one mode:		
	μ_0 = largest integer contained in (n+1)p		
Formula	Probability Mass Function in case of Poisson Distribution:		
66	$f(x) = P(X = x) = \frac{e^{-m}m^{x}}{x!}$		
	x, x!		

Formula	Mean of Poisson Distribution: $\mu = m$				
67	Variance of Poisson Distribution: $\sigma^2 = m$				
	SD of Poisson Distribution: $\sigma = \sqrt{m}$				
	Mode in case of Pois	son Distribution:			
Formula	If m is an integer t	eger there will be two modes: $\mu_0 = m\&m-1$			
68	If m is a non- t	there will be only one mode: largest integer			
	integer d	contained in m			
Formula	Probability Density F	unction in case of	Norm	al Distribution	
69	$(\frac{x-\mu}{\sigma})^2 \frac{1}{2}$				
09	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{2}}$				
Formula	Mean Deviation in ca	ase of Normal Dist	ributi	on: MD=0.8σ	
70 Formula					
Formula 71	Quartiles in case of N	Normal Distributio	n: Q ₁	$=\mu - 0.675\sigma \& Q_3 = \mu + 0.675\sigma$	
Formula 72	Quartile Deviation in	n case of Normal D	istrib	ution: QD=0.675 σ	
Formula					
73	Points of Inflex of No	ormal Curve: $\mu - \sigma$	& μ+σ		
Formula 74	In case of Normal Distribution, Ratio between QD: MD: SD = 10:12:15				
Formula 75	Conditions of Standard Normal Distribution: Mean = 0, SD = 1				
Formula	Z Score: $z = \frac{(x - \mu)}{2}$				
76	σ				
	Area under Normal C)	
	From To Area under Normal Curve				
Formula		Probability			
77	μ $\mu+\sigma$	34.135%			
	$\mu + \sigma \mu + 2\sigma$	13.59%			
	$\mu + 2\sigma \mu + 3\sigma$	2.14%			
	$\mu + 3\sigma + \infty$ 0.135%				
Formula	For a p×q bivariate frequency distribution				
Formula	Number of cells		pq		
78	Number of margina				
	Number of conditio		p+q	Coofficient	
Formula	Karl Pearson's Product Moment Correlation Coefficient:				
79	$r_{xy} = \frac{Cov(x, y)}{(\sigma_x \times \sigma_y)}$				
	$(\mathbf{U}_{\mathbf{x}} \wedge \mathbf{U}_{\mathbf{y}})$				

	Coverience hotware two verichlass
Formula	Covariance between two variables:
80	$\operatorname{Cov}(x,y) = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{n} \operatorname{or} \frac{\Sigma x y}{n} - \overline{x}.\overline{y}$
	Spearman's Rank Correlation Coefficient:
Formula	
81	$r_{R} = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ here d means difference in ranks of both variables
	Spearman's Rank Correlation Coefficient (in case of tied values)
Formula	$r_{R} = 1 - \frac{6(\Sigma d^{2} + A)}{n(n^{2} - 1)}$ here A is adjustment value
82	$n(n^2-1)$ here A is august here value
02	$\Sigma(t^3-t)$
	$A = \frac{\Sigma(t^3 - t)}{12}$ where t = tie length (calculate t value for each of the ties)
	Coefficient of Concurrent Deviations
Formula	$r_{c} = \pm \sqrt{\pm \left(\frac{2c-m}{m}\right)}$
83	$r_c - 1$ $\sqrt{1}$ m
00	where c is number of concurrent deviations (same direction)
	m is number of pairs compared (equals to n-1)
	Regression Coefficients:
Formula	Y on X: $b_{yx} = r.\frac{SD_y}{SD_y}$ or $b_{yx} = \frac{cov(x, y)}{(SD_y)^2}$
84	x ((x))
04	X on Y: $b_{xy} = r \cdot \frac{SD_x}{SD_y}$ or $b_{xy} = \frac{cov(x, y)}{(SD_y)^2}$
	γ SD_y $(SD_y)^2$
Formula	Correlation Coefficient is the GM of regression coefficients:
Formula 85	$r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$
65	Note: r_{xy} , b_{xy} , b_{yx} all will have same sign
	Change of Origin/ Scale for Regression Coefficients: Origin no impact,
	Scale impact of both magnitude and sign.
Formula	$b_{yu} = b_{yx} \times \frac{\text{change of scale of } y}{\text{change of scale of } x}$
86	
	$b_{uv} = b_{xy} \times \frac{\text{change of scale of } x}{\text{change of scale of } y}$
Formula	
87	Two regression lines (if not identical) will intersect at the point (\bar{x}, \bar{y})
Formula	Coefficient of Determination/ Explained Variance/ Accounted Variance:
88	$\left(r_{xy}\right)^2$
	Coefficient of Non-determination/ Un-explained Variance/ Un-accounted
Formula	Variance:
89	$1 - (r_{xy})^2$
	(xy <i>j</i>

Formula 90	Probable Error in correlation: 0.6745× $\frac{1-r^2}{\sqrt{N}}$
Formula 91	Error Limits of Population Correlation Coefficient: $r\pm PE$
Formula 92	Price Relatives: $\frac{P_n}{P_0}$, Quantity Relatives: $\frac{Q_n}{Q_0}$, Value Relatives: $\frac{V_n}{V_0}$
Formula 93	Simple Aggregative Index: $\frac{\Sigma P_n}{\Sigma P_0} \times 100$
Formula 94	Simple Average of Relatives – Method Index: $\frac{\Sigma \frac{P_n}{P_0}}{n}$
Formula 95	Laspeyres Index (weight – base year quantity weight) $\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0} \times 100$
Formula 96	Paasche's Index (weight – current year quantity weight) $\frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$
Formula 97	Marshall-Edgeworth Index (weight – sum of both current and base quantity) $\frac{\Sigma P_n (Q_0 + Q_n)}{\Sigma P_0 (Q_0 + Q_n)} \times 100$
Formula 98	Fisher's Ideal Index: GM of Laspeyres Index and Paasche's Index $\sqrt{\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$
Formula 99	Bowley's Index: AM of Laspeyres Index and Paasche's Index $\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0} + \frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 8+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se ♥)
- Taught lakhs of students in last 6 years
- He teaches subjects of QA Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 4) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Ab mushkil nahi kuch bhi, nahi kuch bhi!!!

With Lots of Love

CA. Pranav Popat (P^2 SIR)

