

OTM – Only This Much PROBABILITY

MATH, LR & STATS CA FOUNDATION DEC 2023

CA. PRANAV POPAT

SESSION LINK:

https://youtube.com/live/4IRw-KC3mQU?feature=share

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND PDF NOTES:

https://telegram.me/learnwithpranav

Probability | Past Trends

Attempt	Easy	Moderate	Advance Level	Total
May 2018	6	1	0	7
Nov 2018	3	3	0	6
Jun 2019	3	1	1 (Bayes')	5
Nov 2019	4	1	0	5
Nov 2020	3	1	0	4
Jan 2021	5	1	0	6
Jul 2021	4	3	0	7
Dec 2021	4	2	1	7
Jun 2022	5	1	1	7
Dec 2022	6	1	0	7
Jun 2023	5	2	0	8

Probability - Basics

	 first applica 	ation of probability was	made by a group of mathen	naticians in
	Europe			
History	 about three 	e hundred years back		
	 to enhance 	their chances of winnir	ng	
	 in different 	games of gambling	-	
	Subjective Probability			
	 personal judgement 			
	– exp	perience		
Turner	– infl	uenced by the personal	belief, attitude, and bias	
Types	– of t	the person applying it		
	Objective Probability			
	 Based on Rules and Maths 			
	– Thi	s is what we are going t	o discuss	
	Experiment A performance that produces certain results			
Random	Random	An experiment is defir	ned to be random if the resu	lts of the
Experiment	Experiment	experiment depend o	n chance only.	
	Examples	Tossing a coin, throwing	ng a dice, drawing cards froi	m a pack
	The results or outco	omes of a random expe	riment are known as Events	5
	Even	t at its simplest form	Simple Event or	
Events			Elementary Event	
	Even	it that can be sub-	Composite Event or	
	divid	led into further events	Compound Event	

OTM Probability | Math, LR & Stats | CAF DEC 2023

Classical Probabilit	у				
General	 Also called Prior Definition of Probability, this formula is Event (Result) Based. It is given by Bernoulli and Laplace. 				
Formula of	$P(A) = \frac{\text{no. of favorable outcomes}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$				
Probability Formula to	total number of outcomes				
obtain total outcomes	Total number of possible outcomes: p^{q} where, $p = no.$ of events in one trial, $q = no.$ of trials				
Conditions	 Value of Probability: 0≤P(A)≤1 If P(A)=1, A is a sure event If P(A)=0, A is an impossible event 				
Complimentary Probability	 Probability of non-occurrence of an event A is denoted by P(A') or P(Ā) is called as complimentary event of A. P(Ā) = 1-P(A) 				
Odds in Favour	number of favorable events to A				
of an Event A	number of unfavorable events to A				
Odds against an Event A	number of unfavorable events to A number of favorable events to A				
Playing Cards	Suites Spades Hearts Diamond Clubs Symbol ✓ ♦ ✓ ♦ ♦				
Limitations	 Applicable only when events are finite and are equally likely Limited application of this definition like in tossing coin, throwing dice, cards etc. 				
Tw PYQ May 18 Ans: c	vo broad divisions of probability are a. Subjective, Mathematical b. Deductive, Mathematical c. Subjective, Objective d. Deductive, Objective				
PYQ May 18 Th Ans: a	ne term chance and probability are synonyms a. True b. False c. Both d. None				
	vo dices are thrown simultaneously, then the probability that the sum of two Imbers appearing on the top of dice is 9 is a. 8/9 b. 1/9 c. 7/9 d. None				
Ans: b					

OTM Probability | Math, LR & Stats | CAF DEC 2023

PYQ Jun 19	If a coin is tossed 5 alternatively	times, then the pro	bability of getting Tail a	ind Head occurs
	a. 1/8	b. 1/16	c. 1/32	d. 1/64
Ans: b				
PYQ Jun 19		wn simultaneously,	then the probability of	getting at least one 5
PYQ Jan 21 PYQ Jun 22	is a. 11/36	b. 5/36	c. 8/15	d. 1/7
Ans: a				
PYQ Nov 19	-	•	two rupee coins and 10 ility for not selecting a c. 0.25	
Ans: d	u. 0.00	5. 0.20	0.23	u. 0.70
	When 2 fair dice ar	e thrown what is th	e probability of getting	a sum which is
PYQ Nov 20	multiple of 3?			
Ans: d	a. 4/36	b. 13/36	c. 2/36	d. 12/36
	When two coins ar	a tossad simultanad	usly the probability of a	atting at least one
PYQ Nov 20 PYQ Jan 21	tail?		usiy the probability of g	setting at least one
	a. 1	b. 0.75	c. 0.5	d. 0.25
Ans: b				
PYQ Jan 21	An event that can b	pe sub-divided into f	urther events is called	as
	a. Composite	b. Complex	c. Mixed	d. Simple
Ans: a	a. Composite	b. Complex	c. Mixed	d. Simple
	Three identical and number will appear	balanced dice are r r on each of them is	olled. The probability t	hat the same
Ans: a PYQ Jan 21	Three identical and	balanced dice are r	olled. The probability t	
Ans: a	Three identical and number will appear a. 1/6	l balanced dice are r r on each of them is b. 1/18	olled. The probability t c. 1/36	hat the same d. 1/24
Ans: a PYQ Jan 21	Three identical and number will appear a. 1/6	l balanced dice are r r on each of them is b. 1/18	olled. The probability t	hat the same d. 1/24
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21	Three identical and number will appear a. 1/6 If an unbiased coin	l balanced dice are r r on each of them is b. 1/18	olled. The probability t c. 1/36	hat the same d. 1/24
Ans: a PYQ Jan 21 Ans: c	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8	olled. The probability th c. 1/36 es, what is the probabili c. 7/8	hat the same d. 1/24 ty of getting more d. 1/3
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2 A dice is rolled twice	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8 ce. Find the probabil	olled. The probability th c. 1/36 es, what is the probabili c. 7/8 ity of getting numbers	hat the same d. 1/24 ty of getting more d. 1/3 multiple of 3 or 5?
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21 Ans: a	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8	olled. The probability th c. 1/36 es, what is the probabili c. 7/8	hat the same d. 1/24 ty of getting more d. 1/3
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21 Ans: a PYQ Jun 22	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2 A dice is rolled twice a. 1/3	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8 ce. Find the probabil b. 1/4	olled. The probability th c. 1/36 es, what is the probabili c. 7/8 ity of getting numbers	hat the same d. 1/24 ty of getting more d. 1/3 multiple of 3 or 5? d. 1/6
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21 Ans: a PYQ Jun 22	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2 A dice is rolled twice a. 1/3 If two dice are rolled	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8 ce. Find the probabil b. 1/4	olled. The probability th c. 1/36 es, what is the probabili c. 7/8 ity of getting numbers c. 1/2 ce shows 1 at a point th	hat the same d. 1/24 ty of getting more d. 1/3 multiple of 3 or 5? d. 1/6
Ans: a PYQ Jan 21 Ans: c PYQ Jan 21 Ans: a PYQ Jun 22 Ans: c	Three identical and number will appear a. 1/6 If an unbiased coin than one head? a. 1/2 A dice is rolled twice a. 1/3 If two dice are rolled	balanced dice are r r on each of them is b. 1/18 is tossed three time b. 3/8 ce. Find the probabil b. 1/4	olled. The probability th c. 1/36 es, what is the probabili c. 7/8 ity of getting numbers c. 1/2	hat the same d. 1/24 ty of getting more d. 1/3 multiple of 3 or 5? d. 1/6

ULTIMATE CA

PYQ Jun 22	If $\frac{p}{q}$ are odds in a. $\frac{p}{q}$	h favor of an event, the b. $\frac{p}{p+q}$	en probability of that e c. $\frac{q}{p+q}$	event is d. q p
Ans: b				

Usage of Combinations in Probability

Criteria	If only one object is to be selected	No need to use combination
Criteria	If more than one object is to be selected	Use combinations to calculate both favorable outcome and total outcome

PYQ Nov 19	Two letters are chosen from the word HOME. What is the probability that theletters chosen are not vowels.a. 1/2b. 1/6c. 2/3d. 0
Ans: b	
PYQ Nov 19	A basket contains 15 white balls, 25 red balls and 10 blue balls. If a ball is selectedat random, the probability of selecting not a white ball.a. 0.20b. 0.25c. 0.60d. 0.70
Ans: d	
PYQ Jul 21	If there are 16 phones, 10 of them are Android and 6 of them are of Apple IOS,then the probability of 4 randomly selected phones to include 2 Android and 2Apple phone is.a. 0.47b. 0.51c. 0.37d. 0.27
Ans: c	

Set Based Probability

	Term in Probability	Term in Sets	Explanation
	Sample Space	Universal Set	Set all the possible events for a random experiment
Terms	Sample Points	Elements	Each event of a Random experiment is termed as Sample Point
Terms	Event Set A	Ordinary Set A which is a subset of Universal Set	Event Set A which is under consideration for probability calculations is defined as a non-empty subset of Set S (Sample Space) containing all favorable sample points for A

ULTIMATE CA

_		D(A) —	number of sample points is Set	A	
Formula of	$P(A) = \frac{\text{number of sample points is Set A}}{\text{number of sample points is Sample Space S}}$				
Probability Event A	$P(A) = \frac{n(A)}{n(S)}$				
Event		n(S)		
Why Sets?		•	union, intersection in probability		
-	• To (la for complicated Probability Qu	uestions	
2-Sets Formula			$n(A \cup B) = n(A) + n(B) - n(A \cap B)$		
3-Sets Formula	n(A∪B∪	∠C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n($C \cap A$)+n($A \cap B \cap C$)	
	Mutually	Exclusive or	Events are exclusive if they canr	ot occur	
	· · · · ·	tible Events	simultaneously		
Types of	Exhaust	tive Events	Events are exhaustive if one of t	hem must	
Sets of Events	Equally lil	kabu an Faui	necessarily occur		
	Equally likely or Equi- Probable EventsEvents are equally likely if all of them have sameProbable Eventsprobability (also called mutually symmetric events)				
	Probable Events probability (also called mutually symmetric events)				
	Theorem			Applicable for	
	1	$P(A \cup B) = P(A) + P(B)$		For two mutually exclusive events	
	2	$P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$		For any number	
Addition		. 1 2	3	of mutually	
Theorem of Probability				exclusive events	
Probability	3	Р(А ($\mathcal{P}(B) = P(A) + P(B) - P(A \cap B)$	For any two	
	4		$C) = P(A) + P(B) + P(C) - P(A \cap B)$	events	
	4			For any three events	
		-P(B (C)-	$-P(C \cap A) + P(A \cap B \cap C)$	events	
Expected					
Frequency of occurrence of an	Expe	cted Frequenc	y of Event A = P(A) × N (total num	ber of outcomes)	
event					
		Probability of	Only A P(A−B) P(A∩B') P(A)−P(A∩B)	
Probability of A – B or B – A		Probability of		$B) - P(A \cap B)$	
		i i obuonity of			

PYQ May 18	Sum of all probal a. 0	bilities mutually exc b. 1/2	usive and exhaustive ev c. 1/4	vents is equal to d. 1
Ans: d				
DVO Nev 19	If $P(A) = 1/2$, $P(B)$	= 1/3, P(A∩B) = 1/	4, then P(A \cup B) is	
PYQ Nov 18	a. 11/12	b. 10/12	c. 7/12	d. 1/6
Ans: c				
PYQ Nov 18	The probability t	hat a leap year has s	3 Wednesdays is	
PYQ Jun 22	a. 2/7	b. 3/5	c. 2/3	d. 1/7
Ans: a				

ULTIMATE CA

OTM Probability | Math, LR & Stats | CAF DEC 2023

PYQ Nov 18	If P(A∪B)=0.8 a. 0.3	and P(A∩B)=0.3, the b. 0.5	en P(A')+P(B c. 0.1	
Ans: d				
PYQ Nov 19		P(C), what is P(B)?	ive and exha c. 1/	ustive events such that 6 d. 1/3
Ans: b				

Conditional Probability

Dependent Events	If occurrence of one event is influenced by occurrence of another event, then two events are dependent. Conditional Probability is applicable only for dependent events				
Independent Events	Two events are said to be independent if occurrence of one event do not influence the occurrence of other. Conditional Probability is not applicable				
Formula for Conditional Probability	Conditional Probability event B given that event A has already been occurred $P(B / A) = \frac{P(B \cap A)}{P(A)}$ where $P(A) \neq 0$ Conditional Probability event B given that event A has already been occurred $P(A / B) = \frac{P(A \cap B)}{P(B)}$ where $P(B) \neq 0$				
Compound Theorem for Dependent Events	$P(A \cap B) = P(A / B) \times P(B)$ $P(A \cap B) = P(B / A) \times P(A)$ Joint Probability = Unconditional Probability of one event × Conditional Probability of another event				
Compound Theorem for Independent Events	In case of independent events, Conditional and Unconditional are same $P(A \cap B) = P(A) \times P(B)$ If A and B are independent events, then their complementary events are also independent and same theorem can be applied $P(A' \cap B) = P(A') \times P(B)$ $P(A \cap B') = P(A) \times P(B')$				
De-Morgan's Law Application	$P(A \cup B \cup C) = 1 - P(A \cup B \cup C)'$ $P(A \cup B \cup C) = 1 - P(A' \cap B' \cap C')$ $P(A \cup B \cup C) = 1 - P(A') \times P(B') \times P(C')$				

PYQ May 18	The theorem of compound probability states that for any two events A and B is a. $P(A \cap B) = P(A / B) \times P(B)$ b. $P(A \cup B) = P(A / B) \times P(B)$ c. $P(A \cap B) = P(A) \times P(B)$ d. None
Ans: a	

OTM Probability | Math, LR & Stats | CAF DEC 2023

PYQ Jun 23	 For any two events 'A' and 'B' it is known that P(A) = 2/3, P(B) = 3/8 and P(A ∩ B) = 1/4 then the events A and B are: a. Mutually exclusive and Independent b. Mutually not exclusive and Independent c. Mutually exclusive but not independent d. None 							
Ans: b								
PYQ Nov 18	Ram is known to hit a target in 2 out of 3 shots whereas Shyam is known to hit the same target in 5 out of 11 shots. What is the probability that target would hit if they both try? a. 9/11 b. 3/11 c. 10/33 d. 6/11							
Ans: a								
PYQ Nov 20	If A speaks 75% truth and B speaks 80% truth. In what % both are likely contradicteach other in narrating the same question?a. 0.60b. 0.45c. 0.65d. 0.35							
Ans: b								
PYQ Jul 21	The probability that a football team losing a match at Kolkata is 3/5 and winning a match at Bengaluru is 6/7, the probability of the team winning at least one match is							

Ans: c

Random Variable | Probability Distribution

Random	It is a variable defined on Sample Space of a random experiment that can take						
Variable	any value (Real Number)						
	It is defined as the statement/ table that shows						
Probability	 no. of different value taken by Random Variable and 						
Distribution	 their corresponding probabilities 						
	Sum of all probabilities of distribution will always be equal to 1						
	It is also mean of probability distribution.						
Expected Value	$\mu = E(X) = \sum PX$						
	$\sigma^2 = E(X^2) - \big[E(X)\big]^2$						
Variance	$\sigma^2 = \sum PX^2 - \left[\sum PX\right]^2$						

PYQ May 18	Variance of a random	n variable x is given by		
	a. $E(X-\mu)^2$	b. $E[X-E(X)]^2$	c. $E(X^2 - \mu)$	d. a or b

Ans: d

	What is t	What is the probability of occurring 4 or more than 4 accidents.							
PYQ Nov 19	No.	0	1	2	3	4	5	6	7
	Freq.	36	27	33	29	24	27	18	9
	a. 24		b. 69		c. 78		d. 80		
Ans: c									

	The velue	. f. l. f		اميد: ا: ما مما م		of V is			
PYQ Jul 21	X	0	1 1	obability d	3	4	5	6	
		-	-	_	-	•	-	-	
	P(X)	5k	3k	4k	6k	7k	9k	11k	
	a. 39	a. 39 b. 1/40			c. 1/49	c. 1/49 d. 1/45			
Ans: d									
PYQ Dec 21	Assume that a probability for rain in a day is 0.4. An umbrella salesman can earn ₹400 per day in case of rain on that day and will lose ₹100 per day if there is no rain. The expected earnings in ₹ per day of the salesman is a. 400 b. 200 c. 100 d. 0								
Ans: c									
PYQ Jun 23	On a commodity exchange when booking trades with provision for stop-losses, a trader can make a profit of \gtrless 50,000 or incur a loss of \gtrless 20,000. The probabilities of making profit and incurring loss, from the past experience, are known to be 0.75 and 0.25 respectively. The expected profit to be made by trader should be a. 32500 b. 35000 c. 30000 d. 40000								
Ans: a									
	Find SD for probability distribution given below:								
PYQ Dec 21		X	1	2	4	5	6		
		Р	0.15	0.25	0.2	0.3	0.1		
	a. 1.4	19	b. 1.56		c. 1.69)	d. 1.	72	
Ans: c									

