Downloaded From www.castudynotes.com

RATIO

Meaning of Ratio	Division of two quantities a and b of same units. Denoted by a:b		
Inverse Ratio	b:a is inverse ratio of a:b		
Compound Ratio	Compound ratio of a:b and c:d is ac:bd		
Duplicate Ratio	Duplicate ratio of a:b is a ² :b ²		
Sub-duplicate Ratio	Duplicate ratio of a:b is $\sqrt[2]{a}:\sqrt[2]{b}$		
Triplicate Ratio	Triplicate ratio of a:b is a ³ :b ³		
Sub-triplicate Ratio	Triplicate ratio of a:b is $\sqrt[3]{a}$.		
Commensurate	If ratio can be expressed in the form of integers		
Incommensurate	If ratio cannot be expressed in the form of integers		
Continued Ratio	Ratio of three or more quantities e.g. a:b:c		

PROPORTION

Proportion	a,b,c,d are in proportion if a:b = c:d [it is an equality of two ratios]			
Term/ Proportional	first = a, second = b, third =c, fourth = d			
Mean Proportional	In a continued proportion a:b=b:c, b²=ac, b is called mean proportional			
Cross Product Rule	If a:b=c:d, then ad = bc			
Invertendo	If a:b=c:d, then b:a = d:c			
Alternendo	If a:b=c:d, then a:c = b:d			
Componendo	If a:b=c:d, then (a+b):b = (c+d):d			
Dividendo	If a:b=c:d, then $(a-b)$:b = $(c-d)$:d			
Componendo and	If $a:b=c:d$, then $(a+b):(a-b) = (c+d):(c-d)$ or $(a-b):(a+b) = (c-d):(c+d)$			
Dividendo	Angening studgests to Displace incals			
Addendo	If a:b = c:d = e:f = = k, then also (a+c+e+):(b+d+f+) = k			

INDICES

Index / Indices	Here in 4 ² , 4 is base and 2 is power or index. Plural of index is indices				
Basic 1	a^0 = 1, any number raised to power zero equals to 1				
Basic 2	$\sqrt{a} = a^{1/2}, \sqrt[3]{a} = a^{1/3}$				
Law 1	$a^m \times a^n = a^{(m+n)}$				
Law 2	$a^m/a^n = a^{(m-n)}$				
Law 3	$a^{(m)^n} = a^{m \times n} = (a^m)^n$				
Law 4	$(ab)^n = a^n b^n$				

LOG

Basic	If 2^4 =16 [2 is base, 4 is power], then $\log_2 16 = 4$ (i.e log of 16 base 2)			
How to remember?	2 should be raised to what power so that it becomes 16			
	2 ka kitna power karne wo 16 ho jaye, ans is 4			
Standard Result	$\log_a a = 1, \log_a 1 = 0$			
Law 1	$\log_a(mn) = \log_a m + \log_a n$			
Law 2	$\log_a(\frac{m}{n}) = \log_a m - \log_a n$			
Law 3	$\log_a m^n = n \log_a m$			
Change of Base	$\log_b m = \frac{\log_a m}{\log_a b}$			

1 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

EQUATIONS - BASICS

Equation Means	mathematical statement of equality			
Identity Equation	If equality is true for all the values of variable, ex. $2x + 3 = x + x + 3$			
Conditional Equation	If the equality is true for certain value of the variable ex. $2x + 1 = 3$			
Solution or Root	It is the value of variable that satisfies the equation			
Degree	Highest power of variable in equation			

SIMPLE EQUATION

1				
Туре	Linear equation with one unknown	Linear equation with two unknowns	Quadratic Equation	Cubic Equation
Form	ax + b = 0, where a and b are constants	ax + by + c = 0 a,b,c are constants	$ax^{2} + bx + c = 0$ a,b,c are constants with $a \neq 0$	$ax^3 + bx^2 + cx + d = 0$
Degree	1 (One)	1	2	3
Roots	1 (One)	1 each for both	2 (α, β)	3
Remarks	NA	Need minimum two equations to get roots	Trial Error/ Formula based	Trial and Error
Methods for solution	NA	1. Elimination 2. Cross Multiplication	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	NA

LINEAR EQUATIONS WITH TWO UNKNOWNS

Elimination	Eliminate one variable by algebraic operations on given equations, and then calculate the value of variable that remains. Using this value, find out the value of other root.		
Cross Multiplication	$a_1x + b_1y + c_1 = 0, a_2x + b_2y + c_2 = 0$ Solution is given by: $\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$		

CA. Pranav

QUADRATIC EQUATION

Formula	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$				
Sum of Roots	$\alpha + \beta = -\frac{b}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^2}$				
Product of Roots	$\alpha \times \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$				
How to construct a quadratic equation	x^2 – (sum of roots: $\alpha + \beta$) x + Product of Roots: $\alpha \times \beta = 0$				
Nature of Roots	Condition $b^2 - ac = 0$ $b^2 - ac > 0$ $b^2 - ac < 0$ $b^2 - ac$ is a perfect square $b^2 - ac > 0$ but not perfect square	Nature of Roots Real and Equal (α=β) Real and Unequal Imaginary Real, Unequal and Rational Real, Unequal and Irrational			
Irrational Roots	If one root is $(m + \sqrt{n})$, then other root will be $(m - \sqrt{n})$				

2 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

MATRICES

Matrix	A rectangular array of numbers (real/complex) with m rows and n columns				
Order of Matrix	Order is m × n where m= no. of rows and n = no. of columns				
	Matrix naving only one row [1 4 2]				
Column Matrix	Matrix having only one column $\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$				
Zero/ Null Matrix	If all the elements of matrix (any order) are zero $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$				
Square Matrix	If in a matrix, no. of columns = no. of rows $\begin{bmatrix} 1 & 3 \\ 9 & 2 \end{bmatrix}$				
Rectangular Matrix	If in a matrix, no. of columns \neq no. of rows $\begin{bmatrix} 1 & 3 & 2 \\ 9 & 2 & 5 \end{bmatrix}$				
Leading Diagonal	Diagonal elements starting from top left to bottom right				
Diagonal Matrix	A square matrix where all the elements except leading diagonal elements are zero. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} $				
Scalar Matrix	A diagonal square matrix where all the leading elements are equal $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$				
Unit Matrix	A scalar matrix whose leading diagonal elements are equal to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$				
Upper Triangle Matrix	A matrix whose all the elements below the leading diagonal are zero $\begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 9 \\ 0 & 0 & 5 \end{bmatrix}$				
Lower Triangle Matrix	A matrix whose all the elements above the leading diagonal are zero $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ 2 & 8 & 5 \end{bmatrix}$				
Sub Matrix	The matrix obtained by deleting one or more rows or columns or both of a matrix is called its sub matrix.				
Equal Matrices	Two matrices are are equal matrices if order of both is same and corresponding elements are same				
Addition/ Subtraction	All the corresponding elements will be added/ subtracted to make a new matrix. (only possible when both matrix are of same order)				
Properties of Addition/ Subtraction	a . A+B = B+A [Commutative], b . (A+B)+C = A+(B+C) [Associative], c . k(A+B) = kA + kB, k is constant				
Multiplication	Multiplication of two matrices is possible only when no. of columns of first matrix = no. of rows of second matrix. <i>[To understand how to do multiplication – refer page 2.40 Example 3]</i>				
Properties of Multiplication	a. In general, $A \times B \neq B \times A$, b . $(A \times B) \times C = A \times (B \times C)$ if defined, c . $A(B+C) = AB + AC$ also, $(A+B)C = AC+BC$, d . if $AB = AC$ then $B \neq C$ in general, e . $A \times O = O$ [O means null matrix], f . $A \times I = IA = O$ [I means Unit Matrix],				

3 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

Transpose of a Matrix	A matrix obtained by changing rows and columns of a matrix A is called as Transpose Matrix of A . It is denoted by - A ^T or A '					
Properties of Transpose	a. $A = (A')'$ b. $(A+B)' = A' + B'$ c. $(KA)' = K.A'$ d. $(AB)' = B' \times A'$					
Symmetric Matrix	If after transposing also there is no change in matrix. A'=A					
Skew Symmetric	If after transposing a matrix, it becomes its negative. A'=–A					

DETERMINANTS

Determinants	It is a valuation of a matrix using some rules. It only applies for square matrix				
Denote	It is denoted by det A or A or Δ				
2 × 2 Matrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$				
3 × 3 Matrix	$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$				
Minor	M _{ij} =Minor of the element located in i th row and j th column. It is equal to determinant of sub matrix obtained after i th row and j th column				
Cofactor	$C_{ij} = (-1)^{i+j} M_{ij}$				
3 × 3 Formula using Cofactors	$a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$				
Properties	a. Δ remains unaltered if its rows or columns are interchanged.b. Δ change its sign if two rows or columns interchangesc. If any two rows or columns of a determinant are identical, then $\Delta = 0$ d. If each element of matrix is multiplied 				
Singular Matrix	if det A = 0, then singular matrix otherwise non-singular matrix				
Adjoint Matrix	Adjoint of A Matrix is the transpose of the Cofactor Matrix				
Inverse Matrix	If A is a square matrix, and det A \neq 0 (non-singular), then $A^{-1} = \frac{1}{ A } \times Adj. A$				
Cramer's rule to find solution of linear eq. in 3 variables	$x = \frac{\Delta x}{\Delta}$, $y = \frac{\Delta y}{\Delta}$, $z = \frac{\Delta z}{\Delta}$, provided $\Delta \neq 0$ [Δx means determinant of matrix by replacing first column of matrix with RHS values of equations] See Example				
Properties of Cramer's	a. If $\Delta \neq 0$, the system has unique solutionb. If $\Delta = 0$ and atleast one of Δx , Δy , $\Delta z \neq 0$, then system has no solution and it is inconsistentc. If $\Delta = 0$ and all of Δx , Δy , $\Delta z \neq 0$, then system may or may not have solution,. If it has solution, equations are dependent and there will be infinite no. of solutions. If it doesn't have solution, equations are inconsistent.				

4 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

SEQUENCE AND SERIES

Sequence	An ordered collection of numbers arranged as per some definite rule or pattern. $a_1, a_2, a_3,, a_n$ is a sequence if you are able to identify pattern and there by the value of a_n (n th term)			
Examples of Sequence	Collection 1, 4, 9, 17, 18, 20, 17, 4, 3, 1, 1, 4, 7, 10, 13, 20, 10, 5, 5/2,	Ordered Yes Yes Yes Yes	Rule/ Pattern No No Yes +3 on each term Yes ÷2 on each term	Conclusion Not a sequence Not a sequence Yes Sequence Yes Sequence
Terms	$a_1, a_2, a_3, \dots, a_n$ are respectively	called as	1 st Term, 2 nd Term, 3 rd	Termnth term
General Term	a_n is called as the n th t	term of the	sequence or General Term	
Types of sequence	Finite Sequence – sequence having finite elements $\{a_i\}_{i=1}^n$ Infinite Sequence – sequence having infinite elements $\{a_i\}_{i=1}^\infty$			
Series	Sum of the elements of the sequence is called as Series. $S_n = \sum_{i=1}^n a_i$ $S_n = a_1 + a_2 + a_3 + \dots + a_n$ $S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3$			
Arithmetic Progression (A.P.)	AP is a sequence in which each next term is obtained by adding a constant 'd' to the preceding term. This constant 'd' is called as common difference. Let say $a =$ first term and $d =$ common difference, then AP can be written as $-a, a+d, a+2d, a+3d \dots a+(n-1)d$			
Common Difference 'd'	d = any term – preceding term or $\{t_n - t_{n-1}\}$			
nth term of an AP	$t_n = a + (n - 1)d$			
Insert AMs between two numbers	If there is a problem to find out AMs between two number, consider it as an AP with first number as first term of AP and other number as last term of AP. Number of AMs required = no. of terms between first term and last term Example: If 3 AMs between a and b is asked, form an AP as below: $a, _, _, _, b$			
Sum of first n terms of an AP	$S_n = \frac{n(a+t_n)}{2}$ or $S_n = \frac{n}{2} \{2a + (n-1)d\}$			
Other Useful Formulas	Sum of first n natura Sum of first n odd nu Sum of squares of natural numbers Sum of cubes of first numbers	l numbers imbers of first n t n natural	$ \frac{n(n+1)}{2} \\ \frac{n^2}{n^2} \\ \frac{n(n+1)(2n+1)}{6} \\ \frac{n(n+1)}{2} $	+ 1)

Downloaded From www.castudynotes.com

	GP is a sequence of terms where each term is a constant multiple of preceding
Geometric	term. This constant multiplier is called as common ratio.
Progression (G.P.)	Let say <i>a</i> = first term and <i>r</i> = common ratio then GP can be written as
	$a, ar, ar^2, ar^3, \dots, ar^{n-1}$
nth term of a GP	$t_n = ar^{(n-1)}$
Common Ratio 'r'	$r = \frac{\text{any term}}{\text{preceding term}} = \frac{t_n}{t_{n-1}}$
Insert GMs between two numbers	If there is a problem to find out GMs between two number, consider it as a GP with first number as first term of GP and other number as last term of GP. Number of GMs required = no. of terms between first term and last term Example: If 3 GMs between a and b is asked, form an GP as below: $a, _, _, _, b$
Sum of first n terms of a GP	$S_n = \frac{a(1-r^n)}{(1-r)}$ when r<1, $\frac{a(r^n-1)}{(r-1)}$ when r>1
Sum of infinite GP	${m S}_{\infty}=rac{a}{(1-r)}$ [only possible when r<1]
	Learn with CA. Pranav

Transforming students to Professionals

Downloaded From www.castudynotes.com

TIME VALUE OF MONEY

Basics	 → The sum of money → Rs. 100 Note give later due to variou Risk Factor Liquidity Preference Inflation Opportunity Cost 	received in future is less valuable than it is today n today is more valuable than Rs. 100 note given a year s reasons:
Partied involved in Financial Transaction	Name of Parties Lender Borrower Investor Investee	Treatment of Interest Income Expense Income Expense
Simple Interest	Formula P Pri r t Accumulated Amount under SI	$S.I. = \frac{P.r.t}{100}$ ncipal means amount of money invested or loan taken Rate of simple interest per annum Time of loan / investment in years Amount under SI = Principal + Simple Interest (amount is also called as Balance)
Compound Interest vs. Simple Interest	Simple Intered → Interest earned is every time it is ea → No re-investment earned in earlier → Amount includes Interest on that P	estCompound Interesta withdrawn arned \rightarrow Interest earned is not withdrawn till maturityc of interest periods \rightarrow Re-investment of interest earned will be donePrincipal and rincipal \rightarrow Amount includes Principal and interest on that Principal and interest on interest earned in the earlier periods
Effective Rate of Interest	Meaning Higher the compoundin for a rate of interest Formula <i>n</i>	The rate of interest stated in question does not always mean that effectively interest charged/ received will be same % when compared at annual level. Effectiveness depends on Compounding.gHigher the effective rate for the year $E = [(1 + i)^n - 1]$ here n means no. of periods in one years considering the compounding

7 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

CA Foundation – MATHEMATICS Revision Notes Important Chapters Author: CA. Pranav Popat			
	Compounding Frequency and Conversion Periods	It means no. of times interest is compounded in a year or no. of conversions in a year. Compounding means calculation of interest by bank. For e.g. Conversion Period Compounding Frequency Yearly 1 Half-yearly 2 Quarterly 4 Monthly 12 Daily 365 While calculating compound interest, we need to adjust interest rate and time period using compounding frequency.	
	Formula for		
	Accumulated Amount of CI	$A = P(1+i)^n$	
	A	Accumulated amount as per CI	
	<u>Р</u>	Principal means amount of money invested or loan taken	
Compound Interest	ELear	Interest rate (adjusted as per compounding) e.g. If rate of interest given is $r=10\%$ and if compounding is half- yearly, $i = \frac{10\%}{2} = 5\% = 0.05$	
	Transformi	It means no. of periods (not necessarily no. of years). It depends on type of compounding. E.g. if compounding is quarterly and $t = 2$ years, it means we will have $2 \times 4 = 8$ no. of periods. $n=8$	
	Shortcut in calculator to	Example: $P=1000$, $i = 10\%$, $n=3$ then Calculator Steps: Write P i.e 1000 then press	
	calculate amount	+10% +10% +10% (three times because n=3)	
	Direct Formula of Amount in	Example: P=1000, $i = 10\% = 0.1$, n=3 then <i>Calculator Steps</i> : $1 + 0.1$ \times \equiv \equiv <i>(first equal will be considered</i> as power 3, second as 2 and as ap \times 1000 (Principal)	
	How to calculate CI?	$A = P + CI \Rightarrow CI = A - P$ $CI = P(1 + i)^{n} - P$ $CI = P[(1 + i)^{n} - 1]$	
Annuity	Definition	 → Sequence of periodic payments (installment) → Same amount > Degrifering 	
	Annuity Regula	→ Regularly → For a specified period of time Installment commencing from the end of the period Installment commencing from the beginning of the period	
Future Value	Future value is the cash value of an investment at some time in the future. It is		
	tomorrow's value of	t today s money compounded at the rate of interest.	
Present Value	Present value is tod	ay's value of tomorrow's money discounted at the interest rate.	

8 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

CA Foundation – MATHEMATICS Revision Notes Important Chapters Author: CA. Pranav Popat					
		$PVA = A_I \times [PVAF(n, i)]$ $[(1+i)^n - 1]$			
		$PVA = A_I \left[\frac{(1+i)^n}{i(1+i)^n} \right]$			
Present Value	Formula for PV of Annuity Regular	or			
		$PVA = \frac{A_I}{i} \left[1 - \frac{1}{(1+i)^n} \right]$			
of Annuity		A _I = amount of installment or Annuity			
	Formula for PV of Annuity Due	PVA Regular for one shorter period + Initial Cashflow			
	Calculator Trick of PVAF (Present Value Annuity Factor)	$1+i$ \div \equiv \equiv n times GT			

Downloaded From www.castudynotes.com

	Particulars	Application	Remark	
	Sinking Fund	Future Value of Annuity is the amount which is required in future and annuity amounts are the regular savings required for creation of fund	Sinking fund means a fund created for specific purpose where a big amount of money is required at any specific point in future. An annuity is set aside and invested so that it will mature on that specific date giving the required amount.	
	Leasing	Present Value of Annuity (Lease Rentals) are compared with Asset Cash down price	LessorOwner of Asset, who gives asset on rent. Lease Rentals are income for LessorUser of the asset who has taken asset on rent. Lease Rentals are expense for Lessee	
Applications of Time Value of Money	Capital Expenditure or Investment Decision	Present value of savings and benefits are compared with purchase value of asset, to decide whether asset to purchase or not	Capital ExpenditureExpenditure on capital assets in anticipation of future benefitsFutureContribution from sales and other benefits or savings derived from a capital investment	
P	Valuation of Bond	Present value of interest income and maturity value is compared with the issue price of bond	It is a debt security. Type of loan taken by company from public. Like debenturesValueValue written on the document of bond. This value is used to calculate Interest AmountIssueActual payment made to purchase the bondMaturity valueAmount to be received on redemption or maturity of bond	
	Meaning Formula	An annuity that continues till infinite period of time is called as Perpetuity.		
Perpetuity	PerpetuityPresent VaFormulaPresent VaGrowingPerpetuity		ue of Growing Perpetuity = $\frac{A_I}{(i-g)}$ g is constant growth rate	
Net Present Value	NPV = Pre	esent Value of Cash I l > 0 accept the prop	nflows – Present Value of Cash Outflows losal If NPV < 0 reject the proposal	
Nominal Rate of Return	Real Ra	ate of Return = Nom	inal Rate of Return – Rate of Inflation	
CAGR	Compounded Annual Growth rate is the interest rate we used in Compound Interest. It is used to see returns on investment on yearly basis			
11 YouTube: Learn with CA. Pranay. Instagram: @learnwithpranay				

Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

SET

Set means	Collection of well-defined distinct objects. It is usually denoted by capital letter			
Element	Each object of set is called as element. It is usually denoted by small letter			
Braces Form	When set shown as a list of elements within braces { } e.g. A = {1,3,5,7}			
Descriptive Form	Set can be presented in statement form e.g. A = set of first four odd numbers			
Set-Builder or	Here Set is written in the algebraic form in this format -			
Algebraic form	$\{x: x \text{ satisfies some properties or rule}\}$. The method of writing this form is			
Algebraic for m	called as Property or Rule method			
Dolongoto	It is denoted by ' \in ', $\mathbf{a} \in \mathbf{A}$ means that element \mathbf{a} is one of the element of Set A. \notin			
belongs to	used for do not belongs to.			
<u>.</u>	Set A is a subset of Set B if all the elements of Set A also exist in Set B. It is			
Subset	denoted as - A⊂B			
Proper Subset	A is a proper subset of B if A is a subset of B and $A \neq B$			
Improper Subset	Two equal sets are improper subsets of each other			
Null Set	A set having no elements is called as Null or Empty Set. It is denoted by b			
No. of subsets	Formula: no. of subsets = 2^n , no. of proper subsets = 2^{n-1}			
Intersection	Intersection set of A and B is a set that contains common elements between			
denoted by [A B]	both of the sets			
Union	Inion set of A and B is a set that contains all the elements contained in both the			
denoted by [AUB]	sets without repeating the common elements			
	The set which contains all the elements under consideration in a particular			
Universal Set	problem is called the universal set generally denoted by S			
	A complement set of set P is a set that contains all the elements contained in			
Complement Set	the universe other than elements of P. It is denoted by P' or Pc			
	Λ B is a set that contains elements of Λ other than these which are common in			
Set (A-B)	A and B $[\mathbf{A} - \mathbf{B}] = \mathbf{A} - \mathbf{A} - \mathbf{B}$			
	$\frac{A \operatorname{anu} D}{1} (PUO)' = P'OO'$			
De Morgan's Law	2. $(P \cap \Omega)' = P' \cup \Omega'$			
	S			
	Universal			
	Set			
	Union Set			
	AUB			
V D'				
Venn Diagrams				
	Intersection A B			
	Set AnB			
	Set A-B			
2 sets – Formula	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$			
2 anto Eorraulo	$n(A \cup B \cup C) = n(A) + n(B) + n(C) = n(A \cap B) - n(C \cap A) + n(A \cap B \cap C)$			
3 Sets – Forming	$\pi(A \cap B \cap C) = \pi(A) + \pi(B) + \pi(C) - \pi(A \cap B) - \pi(B \cap C) - \pi(A \cap B) + \pi(A \cap B \cap C)$			

12 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

	A or B , atleast A or B, either A or B	AUB	
Venn Diagram	A and B, Both A and B	A∩B	
related some	Only A means	A–B	
basics	Only B means	В-А	
	Neither A nor B	(A∪B)′	
Cardinal Number	No. of distinct elements contained in a	finite Set A is called Cardinal Number.	
	For Set $A = \{4, 6, 8, 3\}$, cardinal no. $n(A) = 4$		
Equivalent Set	Two sets A and B are equivalent sets if $n(A) = n(B)$		
Power Set	Collection of all possible subsets of a given set A is called Power set of Set A. It		
	is denoted by P(A)		
Ordered Pair	Pair of two elements both taken from different Sets. E.g. if $a \in A$ and $b \in B$ then		
	ordered pair is (a,b) where first element will always from A and second always		
	from B in every pair		
Product of Sets	Also called as Cartesian Product. If A and B are two non-empty sets, then set of		
	all the ordered pairs such that $a \in A$ and $b \in B$ is called as Product Set. It is		
	denoted by A×B. [A×B = {(a:b): a∈A and b∈B}]		
Why Product?	$n(A \times B) = n(A) \times n(B)$ i.e. cardinal no	b. of product set is equal to product of	
	cardinal no. of each set		

FUNCTION

Relation	Any subset of product set is called $A \times B$ is said to define relation from A to B.			
	It's any collection of ordered pairs taken from a product set. OVALS			
Function (set	A relation v	where no ordered pairs have same first elements is called Function.		
based definition)	First eleme	First element of the ordered should not be repeated in the relation set. (a,b) all		
	a should be	unique for different values of b		
Function (non set	A rule whic	h associate all elements of A to B is called function from A to B. It is		
based definition)	denoted by	$f: A \to B \text{ or } f(x) \text{ of } B$		
Image, Pre-image	f(x) is calle	ed the image of x and x is called the pre-image of $f(x)$		
	Pre-image i	s input and Image is output		
Domain, Co-	Let $f: A \to A$	B, then A is called domain of f and B is called the co-domain of f.		
domain, Range	Set of all t	he images (contained in B) of pre-images taken from A is called		
	Range. Don	nain is a set of all pre-images and Range is a set of all images. Also		
	Range is a s	subset of Co-domain.		
Types of	One-One	Let $f \cdot A \rightarrow B$ if different elements in A have different images in B		
Functions	Function	then f is one-one or injective function or one-one mapping		
	Onto	Let $f: A \rightarrow B$, if every element in B has at least one pre-image in		
	Function	A, then <i>f</i> is an onto or surjective function		
	Into	Let $f: A \rightarrow B$, if even a single element in B is not having pre-image		
	Function	in A, then it is said to be into function		
	Bijection	If a function is both one-one and onto it is called as Bijection		
	Function Function			
	Identity If domain and co-domain are same then function is identity			
	Function	function Let $f: A \to A$ and $f(x) = x$		
	Constant	If all pre-images in A will have a single constant value in B then		
	Function	the function is constant function		
Equal Eurotion	Two for the second second to be second for the if both here second demain			
Equal Function	and some renge			
Invorce Function	and same r	alige		
inverse runction	Let $f: A \to f$	<i>B</i> , is a one-one and onto function. Every value of x (preimage)will		
	1			

13 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

	give unique image $f(x)$ using f . If there is a function that takes value of images as input and gives pre-images as output, such function is called inverse	
	function. It is denoted as $f^{-1}: B \to A$.	
Composite	A function of function is called composite function. Example: if	
Function	<i>f</i> and <i>g</i> are functions, then $f[g(x)]$ and $g[f(x)]$ are composite functions. Also	
	called as fog or gof	

RELATION

Relations	Any subset of product set is called $A \times B$ is said to define relation from A to B.		
	It's any collec	tion of ordered pairs taken from a product set.	
Domain and	If R is a relat	ion from A to B, then set of all first elements of ordered pairs is	
Range	domain and s	et of all second elements of ordered pairs is range.	
	Reflexive	If S is a universal set, $S = \{a,b,c\}$ then R is a relation from S to S. If this R contains all the ordered pairs in the form (a,a) in S×S, then it is a reflexive relation	
Types of Relation	Symmetric Transitive	If $(a,b) \in R$, then if $(b,a) \in R$ then R is called Symmetric If $(a,b) \in R$ and also $(b,c) \in R$, then if $(a,c) \in R$ such relation is Transitive. [if in a relation only (a,b) is present but (b,c) is not present we will consider it as transitive relation]	
Equivalence Relation	If a relation is Reflexive, Transitive and Symmetric as well, then it is called as Equivalence Relation		
Finansforming students to Professionals			

Downloaded From www.castudynotes.com

Permutations and Combinations

Fundamental Principles of	Multiplication Rule AND → Multiply	If one thing can been done, anot ways then the to things simultan	be done in 'm' ways and when it has ther thing can be done in 'n' different that number of ways of doing both the neously = $m \times n$
Counting	Addition Rule OR \rightarrow Add	re jobs can be done in 'm' and 'n' way n either of the two jobs can be done	
Factorial	It is written as n! or n] 0! = 1, 1! = 1, 2! = 2×1,	= n(n-1)(n-2) 3! = 3×2×1, 4! = 4) $3 \times 2 \times 1$ × $3 \times 2 \times 1$
Permutations means	It is the ways of arran regard being paid to o	ging or selecting rder of the arran	g things from a group of things with due gement or selection.
Basic Example 1	Arranging three person ACB, BAC, BCA, CAB, CI	ons A,B,C for a g BA}, thus total no	roup photograph can be done as {ABC, . of ways is 6
Basic Example 2	Selecting two persor participants P,Q,R,S ca SR}, thus total no. of w winner and second is r	ns as Winner ar n be done as {PQ rays is 12 (here ir runner up)	nd Runner-up for a contest having 4), PR, PS, QP, QR, QS, RP, RQ, RS, SP, SQ, 1 the set of arrangement first element is
Theorem for Permutations	The number of permutations of n things chosen r at a time is given by ${}^{n}P_{r} = \frac{n!}{n-r!} \text{ or } n(n-1)(n-2) \dots (n-r+1)$		
Basic Example 3	${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 5 \times 4 \times 3 = 60$ Or simply here r = 3, so do reverse multiplication of 5 up to three terms so it will be $5 \times 4 \times 3 = 60$		
Use of Theorem	We are able to find no. of ways manually also (as done in Basic Example 1 and 2) but that is easy for lower values of n and r. When there is a higher value of n, manually creating the set of arrangements will be tedious which requires the need of this theorem. Check Basic Example 1 and Example 2 using theorem		
Why 0! = 1	${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!}$	also, ${}^nP_n = n!$,	thus $\frac{n!}{0!} = n!$, $0! = \frac{n!}{n!} = 1$
Special Formula	$(n + 1)! - n! = n \cdot n!$ (for proof – refer Example 10 Study Mat Page 5.6)		
	Type Calculate No. of wor of a particular word Group Photograph	ds using letters	RemarkSimple ${}^{n}P_{r}$ Note: Meaning of wordshas no relevance ${}^{n}P$
Question Patterns	Rank Awards first, se	cond, third etc.	$n = \frac{n}{n}$
with remarks	Theorem based calculation of n or r data	questions, with the given	Directly apply theorem
	Selection of diff designations/ positio of persons	erent unique ns from a group	${}^{n}P_{r}$ here r is no. of unique designations/positions

Downloaded From www.castudynotes.com

Circular Permutations	Above discussion was relevant for things that are arranged in a row. However when the things are arranged in a circle, the permutation is termed as circular.		
Theorem: Circular Permutations	The number of circular permutations of n different things chosen all at a time is (n-1) !		
Standard Results	number of ways of arranging n persons along a round table so that no person has the same two neighbors is $\frac{1}{2}(n-1)!$ the number of necklaces formed with n beads of different colors $\frac{1}{2}(n-1)!$		
Permutation with Restrictions Note: These two theorems are useful for formula based questions. For practical questions we will use logic. (explained in example)	Theorem 1Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is $(n-1)P_r$ Theorem 2Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement is $(n-1)P_{(r-1)}$		
Some tips useful while solving problems having restrictions	Requirement of Que.TipsCalculate permutationIn that case consider that group of objects aswhen two or more0 object for the purpose of ${}^{n}P_{r}$ formula,objects are always1 object for the purpose of ${}^{n}P_{r}$ formula,togetherthen multiply factorial of no. of objects incalculate permutationStep 1: Calculate the no. of ways withoutwhen two or moreobjects will nevercome togetherStep 1: Calculate Permutation of 2 or morething always together (as per above point)Step 3: Result of Step 1 - Result of Step 2When there are twoIn that case, that particular group of objectstypes of objects andask is to calculate theways in which no twoobject of other categoryobjects of one thecategory will betogetheruse for the category will betogetheruse for the category will be		
Standard Results	Permutations when some of the things are alike, taken all at a time $p = \frac{n!}{n_1! \times n_2! \times n_3!}$ Permutations when each thing may be repeated once, twice, upto r times in any arrangement. n^r		

16 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512

Downloaded From www.castudynotes.com

Combinations	The number of ways in which smaller or equal number of things are arranged or selected from a collection of things where the order of selection or arrangement is not important , are called combinations. It is just a GROUPING	
Basic Example 1	Grouping of two persons out of three persons A,B,C for a group photograph can be done as {AB, BC, AC}, thus total no. of ways is 3. Here AB and BA are same group and will be counted once only, even though the sequence is not same. Sequence has no relevance while finding combinations.	
Basic Example 2	Selection of persons for a committee of 2 out of total 4 applicants P,Q,R,S can be done in {PQ, QR, RS, PS, PR, QS} – total 6 ways. Here we used combinations because in the committee of two there is no designations all are same so sequence of selection does not matter.	
Theorem of Combinations	${}^{n}C_{r} = \frac{n!}{r!(n-r)!} \text{ or } {}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$	
Standard Results	${}^{n}C_{0}=1$, ${}^{n}C_{n}=1$	
Complimentary Combinations	${}^{n}C_{r} = {}^{n}C_{(n-r)}$ example: ${}^{5}C_{3} = {}^{5}C_{2}$	
Special Formulas	$n+1C_r = {}^{n}C_r + {}^{n}C_{r-1}$ <u>Memorize:</u> Combination of (n+1) things when one thing is always included [${}^{n}C_r$]+ Combination of (n+1) things when one thing is always excluded [${}^{n}C_{r-1}$]	
Permutation Special formula	${}^{n}P_{r} = {}^{n-1}P_{r} + r. {}^{n-1}P_{r-1}$ Memorize in the same way as above	
Standard Results	Combinations of n different things taking some or all of n things at a time $2^n - 1$ [1 is subtracted because we are removing all rejection case]	
Question Patterns with remarks	TypeDifferent pocker hands in a pack of cardsFormation of triangles when vertices (corner points) are givenNo. of ways of invitationSelection of color balls from boxNo. of ways of forming words from n letter taking few letters and the letter are not unique	RemarkWhen we play Poker, Teen Patti etc. only group of 5 cards, sequence in which it is picked does not matter hence we take combinationsWe need three vertices to make a triangle. Now with group of three points to make a triangle and sequence of points does not matter, hence will use combination. Example: Using eight points how many triangle can be formed - ${}^{8}C_{3} = 56$ Here also sequence does not matter, hence will use combinationHere combination is used assuming that balls are of identical colorRefer Example 6 – Page 5.25 Study Mat
	Number of diagonals of a polygon	" $C_2 - n$, here n means no. of side of polygon (refer Q.10 Exercise 5C)

17 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: @pranavpopat, Twitter: @pranav_2512