

CHAPTER – 6 : Determination of National Income

UNIT-1 NATIONAL INCOME ACCOUNTING

- > The central statistical organization (CSO) in the ministry of statistics and programme implementation (MoSP & I) is responsible for the compilation of National Income.
- DES's (Directorates of economic and statistics) are responsible for the same at state level.

Usefulness and Significance of National Income Estimates

- (1) It provides a framework for analyzing the short-run performance.
- (2) The distribution pattern of national income helps businesses to forecast future demand.
- (3) Economic welfare depends on magnitude & distribution of national income
- (4) NI shows composition and structure of NI of different sectors & variations in them. Helps to make comparisons of trend and speed of development
- (5) Provides quantitative basis for assessing, choosing & evaluating economic policies
- (6) Shows income distribution and possible inequality in its distribution. Make comparisons of statistics, such as ratios of investment, taxes, to GDP
- (7) Provides guide to make policies for growth and inflation

Concept of GDP

GDPmp- GDP is the Value of all final goods and services produced in a country during a period of time. It includes value of goods produced at market place and these values add together to GDPmp.

Nominal GDP – it is the GDP calculated at current year price level.

Real GDP- it is the GDP calculated at base year price level.

Nominal GDP increases over time because-

- (1) Production of most goods increases over time
- (2) Prices of most goods increases over time

GDP deflator- (imp. Topic)

GDP deflator = $\frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100$

- > GDP deflator is the price index used to convert nominal GDP to Real GDP.
- > It measures the current level of prices relative to the level of prices in base year.
- Since nominal GDP & real GDP must be same in the base year, deflator in the base year = 100 (imp. Fact)
- \blacktriangleright GDP deflator in year 1 = GDP defaltor 1

 \geq GDP deflator in year 2 = GDP defaltor $_2$

Inflation rate in year 2 = $\frac{\text{GDP defaltor}_2 - \text{GDP defaltor}_1}{\text{GDP defaltor}_1} \times 100$

NUMERICAL ILLUSTRATIONS-

Q. Find out GDP deflator and Interpret it.

	Real GDP	Nominal GDP (Cr)
Year 1	400	500
Year 2	450	600

Ans. GDP Deflator = $\frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100$

Year 1	Year 2
$\frac{500}{400} \times 100 = 125$	$\frac{600}{450} \times 100 = 133.33$ (approx)

Interpretation:

- Year 1 GDP deflator is 125, prices have increased by 25% since base. \geq
- \geq Year 2 GDP deflator is 133.33 (approx.), inc. in price since last year.

Q. Find nominal GDP if real GDP = 450, Price index = 120

Ans. Nominal GDP = Real GDP $\times \frac{\text{Price Index}}{100} = 450 \times \frac{120}{100} = 540$

Net Domestic Product (NDP)

Net amount/value of goods and services produced in a country during a given period of time.

$NDP_{MP} = GDP_{MP} - Depreciation$

Gross National Product

- \geq GNP is total value of all goods and services produced by a country's residents both domestically and abroad in a specific period.
- \geq GNP_{MP} = GDP_{MP} + factor income earned by domestic factors of production employed in rest of the world.
- \geq Factor income earned by the factors of production of rest of the world employed in domestic territory.

GNP_{MP} = GDP_{MP} + Net factor from abroad (NFIA)

NFIA = Net compensation of employees + Net income from property and entrepreneurship + Net retained earning.

National = Domestic + NFIA

Net National Product at Market Price (MP)

NNP_{MP} and GNP – Depreciation, representing the next net market value of all final goods and services produced domestically.

 $NNP_{MP} = GNP_{MP} - Depreciation$

 $NNP_{MP} = NDP_{MP} + NFIA$

 $NNP_{MP} = GDP_{MP} + NFIA - Depreciation$

Gross Domestic Product at Factor Cost

 GDP_{FC} is the money value of output produced within a country's domestic limits in a year as received by the factors of production.

Market Price = Factor cost + Net indirect tax

= FC + Indirect tax – Subsidies

 $GDP_{FC} = GDP_{MP} - Indirect taxes + Subsidies$

= Compensation of employees + Operating surplus (rent + interest + profit + royality) + mixed income of self-employed + Depreciation.

Factor cost - Actual cost of payments to factors of production like labour, capital and land.

Basic price – Excludes tax, on products that producers received from purchases but includes subsides received from the government to lower prices charged to purchases.

Market Prices – Reflect the final price paid by consumers and includes both product and production taxes while subtracting subsidies.

Relationship:

Basic Price = Factor cost + Production tax – Production subsidy.

Market Price = Basic Price + Product tax – Product subsidy.

Net Domestic Product at Factor Cost (NDP_{FC})

- > Total factor income earned by the factors of production.
- Sum of domestic factor incomes / domestic factor incomes net of depreciation.

 $NDP_{FC} = NDP_{MP} - Net indirect tax$

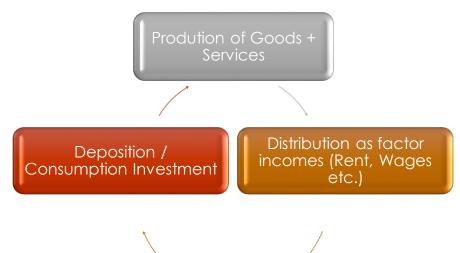
= Compensation of employees + operating surplus (rent + interest + profit) + mixed income of self employed.

Net National Product at Factor cost :

National income is the factor income occurring to normal residents of the country during the year.

NNP_{FC} = National Income = Domestic income + NFIA

If NFIA is +ve, then national income will be greater than domestic national income.



Per Capita Income-

GDP per capita measures a countries output per person, indicating the standard of living.

Per capita income = $\frac{GDP (adjusted for inflation)}{Total population}$

The Circular Flow of Income-

Phase 1- Production

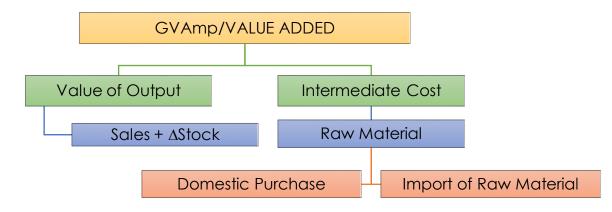
Firm produces goods/services with help of factor services

Phase 2- Income/ Distribution

The flow of factor income in form of rent etc, from firms to households.

Phase 3- Expenditure/ disposition

The income received by different factors of production, is spent on consumption of goods and services.


THERE ARE 3 METHODS OF CALCULATING NATIONAL INCOME

- 1. PRODUCT METHOD
- 2. EXPENDITURE METHOD
- 3. INCOME METHOD

Value Added Method/ Product Method

Through this method , Gross Value Added at mp is calculated

GVAmp = Sales + \triangle **stock - IC**

NVA at FC = GVAmp - Dep - NIT

Estimation of National Income

 $[\Sigma GVA_{MP} - Depreciation = Net value added (NVA_{MP})]$

[NVA_{MP} - Net indirect tax = Net domestic product (NDP_{FC})]

[NDP_{FC} + NFIA = National income (NNP_{FC})]

Income Method

- Total factor incomes generated in the production of goods and services is required for calculation.
- Relative contribution of factor owners is calculated.
- It sums up incomes earned by all factors of production within a country's economy.

NNP_{FC} = Compensation of employees + operating surplus (rent + interest + profit + royalty) + mixed income of self employed + Net factor income from abroad (NFIA)

Profit = Corporate Taxes + Dividend + Retained Earnings

Expenditure Method/Income disposable method

• In this method, national income is the aggregate final expenditure in an economy during an accounting year.

 $GDP = \Sigma Final expenditure$

- Private expenditure- Spending by households on goods & services for consumption purpose (C)
- Investment expenditure/Gross domestic capital formation- Spending by business on capital goods, to inc. production capacity. (I)
- Government expenditure- Spending by govt. on goods & services (public services, defence etc.) (G)
- Net export- Difference b/w the exports and imports. (NX)

Calculation-

 $GDP_{MP} = C + I + G + NX$

 $NNP_{FC} = GDP_{mp} - Depreciation - NIT + NFIA$

Personal Income-

Income received by the household sector, including non-profit institutions, excluding retained earnings, indirect business taxes and corporate income taxes.

PI = NI + Income received but not earned – Income earned but not received.

PI = NI – undistributed profits – Net interest payments made by households – Corporate tax + transfer payments to households from firms and govt.

Disposable Personal Income-

It's a measure of the amount of money in the hands of the individuals that is available for the consumption/savings.

DI = PI - Personal income taxes - non tax payments

Net National Disposable Income (NNDI)-

NNDI = Net national income + other net current transfers from the rest of the world.

NNDI = NNI + Net taxes on income and wealth receivable from abroad + net social contributions and benefits receivable from abroad.

Gross National Disposable Income-

NNDI + CFC = GNI + Other net current transfers from the rest of the world.

Domestic Income

(Income from domestic product accuring to)

Public Sector

Income from property/ entrepreneurship occurring to govt. administrative department and savings of non-dep. enterprise. Private sector


NDPFC- Income form property/entrepreneurship occurring to govt. administrative dept- savings of non-dep. enterprise.

Private Income

Measure of income which occurs to private sector from all sources within and outside the country.

PI = Factor income from NDP which accures to private sector + Net factor income from abroad + National debt interest + Current transfers from govt. + other net transfers from the rest of the world.

NDPFC	-
Less: Income from Property and Entrepreneurship accruing to Government Administrative	_
Departments (Railways, Post Office etc.)	
Less: Savings of Non-departmental Enterprises.	
Income from Domestic Product Accruing To Private Sector	
Add: NFIA	
Add: National Debt Interest	

Add: Current Transfers from Government	
Add: other Net Current Transfers from rest of the world	
Private Income	-
Private Income	-
Less: Undistributed Profits	(—)
Less: Corporate Tax	(—)
Personal Income	-
Less:Personal Taxation	()
Less: Non-Tax Payment	(—)
Disposable Personal Income	-

System of Regional Accounts in India

- Provides integrated database on the innumerable transactions in original economy.
- Net State domestic Product (NSDP)- Measure in monetary terms, volume of all goods and services produced in a state within a given period of time.

Per Capita State Income = $\frac{Mid-Year Projected income of state}{NSDP}$


- State level estimates are prepared by state income units within state directorates of economics and statistics (DESs), with assistance from the central statistical organization.
- "Supra-regional sectors"- Railways, communication, banking insurance, central government administration etc.
- Estimates of supra regional sector are compiled and then allocated to stats and based on relevant indicators.

GDP AND WELFARE

GDP is often used as an indicator of a welfare of a country.

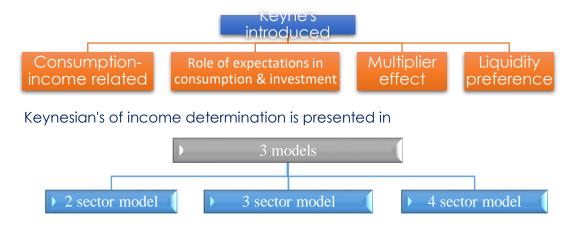
■ LIMITATIONS OF GDP CONCEPT

- 1. Income distribution is not reflected in GDP per capita.
- 2. Technology and managerial improvements are not captures.
- 3. Illegal activities are not accounted for.
- 4. Non-market and non-economical activities (health/education) are not included.
- 5. Increased GDP due to longer working hours aren't accounted for disability of loss of leisure time.
- 6. Economic bads such as crime/pollution aren't deduced from GDP.

- 7. Volunteer work and unpaid services are not included.
- 8. Externalities (positive/negative) are not considered in GDP.

Limitations and Challenges-National Income Calculation

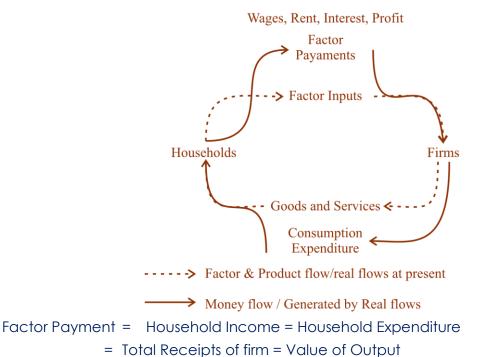
- Lack of agreed definition- national income.
- Accurate distinction of final and intermediate goods. Issue of transfer payments.
- Services of durable goods.
- Difficulty of incorporating distribution of income.
- Valuation of new goods at constant price.
- Valuation of govt. services.


Other challenges related to-

- Inaccurate and unrelatable data.
- Presence of unmonetized sector.
- Production of self-consumption.
- Illiteracy and ignorance leading to unrecorded incomes.
- Lack of proper occupational classification.
- Accurate estimation of consumption of fixed capitals.

UNIT-2 : The Keynesian Theory of Determination of National Income

- The great depression 1930 promoted a revaluation of economic theory and policy.
- Classical economists lacked a comprehensive theory to explain persistent unemployment.
- John Maynard Keyne's General theory of employment, interest and many 1936, revolutionized modern economics (macro).



2 sector model

Circular Flow in a Simple 2-Step Model

- Circular flow model demonstrates how money moves in the society.
- It breaks the economy down into 2 primary players-
- (1) House hold (2) Corporation
- Household owns all factors of production and they sell their factor services to earn factor incomes which are entirely spent to consume final goods/services.
- Business firms produce final goods and services by hiring factors of production from households.
- Businesses do not save.

Basic Concepts and Functions

Aggregate Demand functions-

- It's the total planned expenditure.
- The ex ante AD for the final goods consist of 2 components.
- 1. Ex ante aggregate demand for consumer goods (C)
- 2. Ex ante aggregate demand in investment goods (I)

AD = C + I

I = Constant investment

(Note- we see AD largely depends on the aggregate consumption expenditure)

Consumption function –

It's the functional relationship b/w aggregate consumption expenditure and aggregate disposable income

C = f(Y)

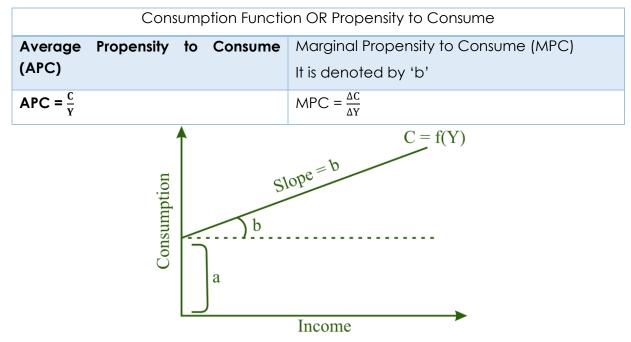
Low Income	Inc. in Income
Household spend > disposable income	This causes more disposable income.
This lead to saving	This leads to smaller inc. in consumption expenditure.

Consumption- Income Relationship

C = a + bY

$$MPC = \frac{C}{v} = b$$

C = aggregate consumption exp.


Y = total disposable income

a = autonomous consumption (occurs at 0 disposable income)

b = marginal propensity to consume.

C/ Y = Slope of function

MPC = Marginal propensity to consume

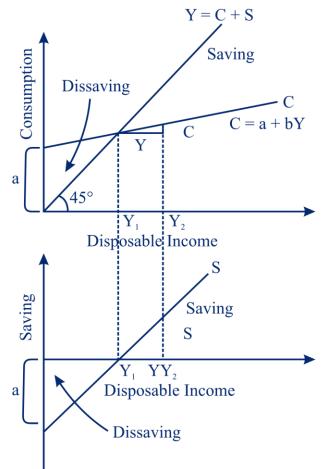
Keynesian assumption-

- Increase in income > Increase in disposable income
- But inc. in consumption < inc. in disposable income. (b/MPC < 1)
- 0 < b < 1

Relationship B/W Income and Consumption :

• Average propensity of consume (APC)

$$APC = \frac{\text{Total Consumption}}{\text{Total Income}}$$


- It indicates proportion of income spent on consumption at different income levels.
- APC dec. with inc. in income.
- Saving- Remainder/part of income not spent on consumption.
 Saving = Income Consumption

Saving is function of disposable income. **S = f (Y)**

Saving Function (Equation) $S = \overline{S} MPS. Y$		
APS	MPS	
$APC = \frac{S}{Y}$	$MPS = \frac{\Delta S}{\Delta Y}$	

- Relationship B/W Income, Consumption and Saving
 - Saving shows a functional relationships b/w national income and savings.

Fig- The consumption and saving function

- At zero income, there is consumption, resulting in dissaving at the same magnitude.
- Slope of saving function = MPS (marginal propensity to save)
- Eg-Increase of one- unit in disposable income, leads to 'b' units dec. in consumption and (1-b) is the inc. in savings

Hence,

- Pw
- MPS = 0 < b < 1
- MPC + MPS = 1
- MPS = 0 < b < 1
- Saving is an increasing factor

```
Average Propensity To Save (APS)
```

```
APS = \frac{\text{Total Saving}}{\text{Total Income}} = \frac{S}{Y}
```

Aggregate Demand (AD) OR Aggregate Expn (AE)-

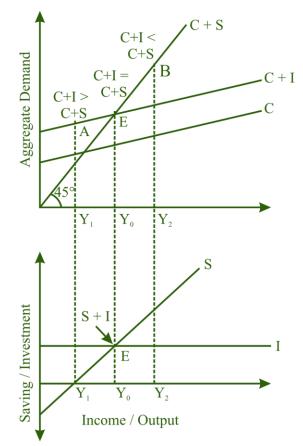
 GDP_{mp} it is sum total of demand of all goods & services by all the buyers during a period of time.

```
Aggregate Supply –
```

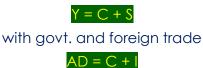
It is the total supply of goods and services which firms in a national economy plan on selling during a specific period.

AS = C + S

TWO – Sector Model of National Income Determination :

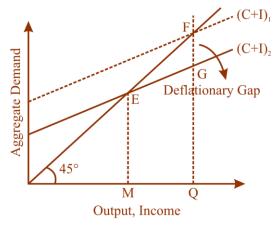

- Its model of determination of equilibrium level of output using AD function and AS function.
- The Kensian function defines equilibrium as a level where AD = ASAD = C + I AS = C + S C + I = C + S

- The AD curve is linear and + vely sloped (National income rises, AD also increases).
- Aggregate expenditure line is flatter than 45° lines as consumption inc. with increase in income.

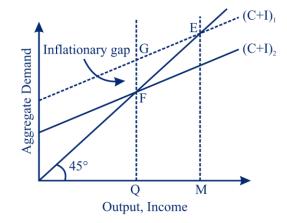

Increase in consumption < Increase in income

Determination of Equilibrium income: 2 sector model

- **45° line:** Planned aggregate expenditure = aggregate output signifying equilibrium income levels.
- **Points below 45° line =** Planned aggregate expenditure > GDP
- **Points above 45° line =** Planned aggregate expenditure < GDP.
- Equilibrium occurs at potential GDP (full employment), AD = Output.
- Keynes assets, AD may not be equal to AS as households saving and consumption plan is producers production plan.
- Equilibrium is achieved when, planned investment = Savings.
- National income accounting reveals Income is either saved or spent


Equilibrium with Unemployment and Inflation :

Keynesian equilibrium may not necessarily occur at full employment, it occurs when planned aggregate expenditure equals output, which may / may not coincide with potential GDP.


Deflatinary GAP

- AD for an output < full employment of output, this causes a deficit demand.
- Deficient demand gives rise to 'deflationary gap' or 'recessionary gap' or 'contractionary gap'.
- This occurs when the economy is in a business cycle or recession.

Inflationary GAP

- AD > AS corresponding to full employment levels of output in the economy.
- It is the excess of anticipated expenditure over the value of full employment output.
- Inflationary gap A gap by which actual AD exceeds the AD required to establish full employment equilibrium.

F = Economy at full employment.

OQ* = Full employment output and income

- If D at Q*G, excess demand resulting in inflationary gap.
- FG = Inflationary gap
- E = Equilibrium point (ME = OM)
- Investment Multiplier (K)

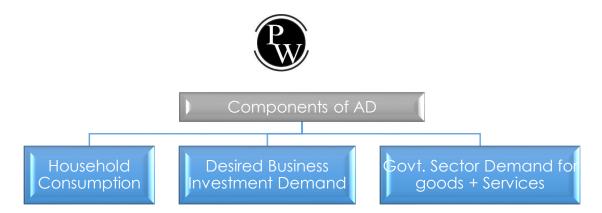
It expresses the relationship b/w an initial agreement in investment & the resulting inc. in aggregate income.

$$K = \frac{Y}{I}$$

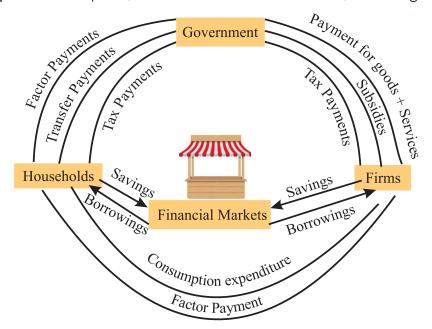
Eg- Additional Investment = ₹ 4,000 Cr.

Additional Income = ₹ 16,000 Cr.

Value of multiplier = 16,000/4,000 = 4


Multiplier and MPC

- Direct relationship b/w multiplier and MPC.
- Inc. in MPC Inc. multiplier (vice versa).
- Concept One person's expenditure is others income.
- Inc. in investment leads to Inc. in income, which is spent in consumption.
- However an amt. spent on consumption depends on the value of MPC.


$$K = \frac{1}{1 - MPC} = \frac{1}{MPS}$$

- Max. value of multiplier = Infinity (when MPC = 1), i.e., the economic consumes whole of its additional income.
- Min. value of multiplier = 1 (when MPC = 0) i.e. economy saves the whole additional income.
- The Keynesian theory explains how shifts in investment triggers changes in both investment and consumption throughout economy.
- Income inc. from initial investment doesn't continue endlessly due to leakages (income not spent on consumption of goods/services).
- Causes of Leakage-
 - 1. Progressive taxation.
 - 2. High liquidity preferences
 - 3. Undistributed profits.
 - 4. Debt repayment.
 - 5. Purchase of existing wealth/govt. securities.
 - 6. Demand met through existing stock / imports etc.
- In underdeveloped countries, MPC is high, multiplier is Low (Structural inadequacies).
- Keynesian model focuses on short term equilibrium and lack dynamic elements with no provisions for analyzing process through time or linking over period to next.

Determination of National Income – 3 Sector Economy :

- At equilibrium, Y = C + I + G
- GDP = National Income (no foreign trade)
- Assumptions- Fixed price, All variables are real variables, All changes are in real terms.

Leakages –

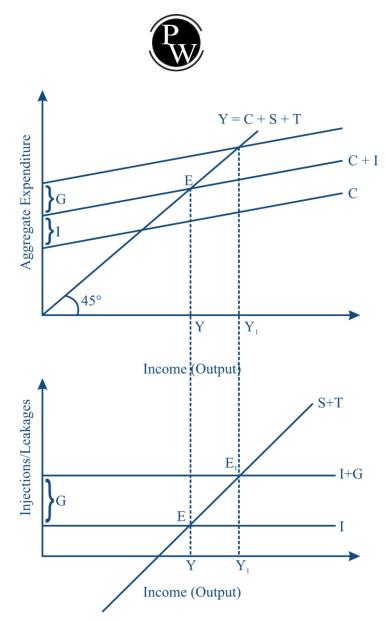
- Saving flow (towards the financial markets).
- Tax flow (towards government).

Injections –

In circular flow, additional demands for output on part of the business sector itself for investment and from the govt. sector.

Investment Injections- Funds flowing from financial markets to Business sector.

• Investment goods purchasers, financed by borrowing are usually business sector firms.


Three sector Keynesian model assumes- govt. purchases are autonomous.

$$AD = C + I + G$$

$$AS = C + S + T$$

$$AD = Y = AS$$

$$C + I + G = C + S + T$$

Variables on vertical axis- Consumption, Investment, Govt. spending.

Exogenous variables (not directly influenced by income) horizontal axis- **Investment govt.** spending.

- C + I + G schedule lies above consumption function by a constant.
- S + T (savings and taxes) sloping upward as saving inc. with income.
- Equilibrium- 45° line intersects C + I + G
- AD = Income (at equilibrium point)
- Points-Below equilibrium: AD > AS

Above equilibrium: AD < AS

• Equilibrium restores within changes in - Total spending, Output, Equilibrium.

The Government Sector and Income Determination :

Government influences level of income (taxes, transfer payments, government purchases etc.)

Income Determination with Lump Sum Taxes :

Lump sum taxes i.e., taxes that do not depend on income, has balanced budget.

G = T

There are no transfer payments.

Consumption function– C = a + bYd

When, Yd = Y – T Y = a + b(Y-T) + I + G Y = $\frac{1}{1-b}$ (a – bT + I + G)

Income Determination with Lump Sum Taxes & Transfer Payments :

Consumption function -C = a + bYd

Yd = Y - T + TR C = a + b (Y - T + TR)a + b (Y - T + TR) + I + G

Y = a + b (Y - T + TR) + I + G [T = Lump sum tax TR autonomous transfer

payments]

Y(1 - b) = a - bT + bTR + I + G $Y = \frac{1}{1 - b} (a - bT + bTR + I + G)$

Income Determination with Tax as a Function of Income

Tax function $T = \overline{T} + tY$

- \overline{T} = Autonomous constant tax
- t = Income tax rate
- T = Total tax.

$$Y = C + I + G$$

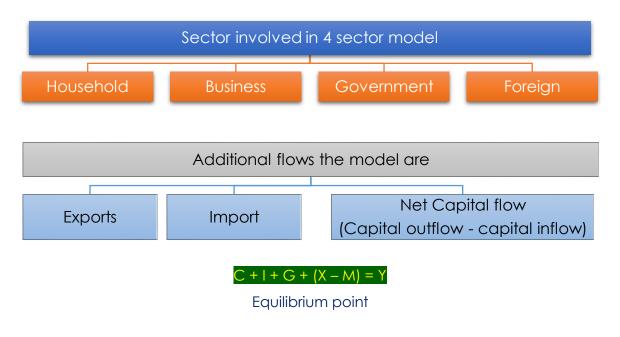
$$Y = a + bYd + I + G$$

$$Y = a + b(Y - \overline{T} - tY) + I + G$$

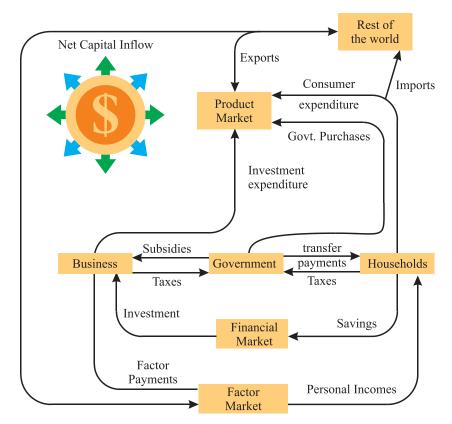
$$Y = a + bY - b\overline{T} - btY + I + G$$

$$Y - bY + btY = a - b\overline{T} + I + G$$

$$Y(1 - b - bt) = a - b\overline{T} + I + G$$


$$Y = \frac{1}{1 - b(1 - t)} (a - b\overline{T} + I + G)$$

Investment multiplier


Income Determination with Taxes f(Y), Govt. Expenditure and Transfer Paymeents

 $C = a + b(Y - \overline{T} - tY + TR)$ $Y = a + b(Y - \overline{T} - tY + TR) + I + G$ $Y = \frac{1}{1 - b(1 - t)} (a - b\overline{T} + bTR + I + G)$

Determination of Equilibrium Income – 4 Sector Model :

- C + I + G + (X M) line indicates Total planned expenditure of consumers, investors, governments and foreigners at each income level.
- Exports are the injections of national income; Imports are leakages of National Income.

Demand for exports-

- 1. Depends on foreign income.
- 2. Exogenously determined.
- 3. Autonomous.

Imports demand-

Depends on marginal propensity to import, i.e., increase in import demand per unit increase in GDP.

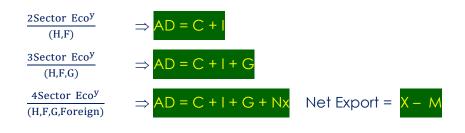
- \overline{M} = Autonomous import.
- m = marginal propensity to import.
- Y = Income

Equilibrium condition -

Y = C + I + G + (X - M)

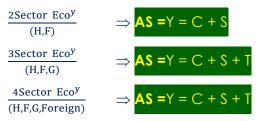
$$C = a + b(Y = \overline{I})$$

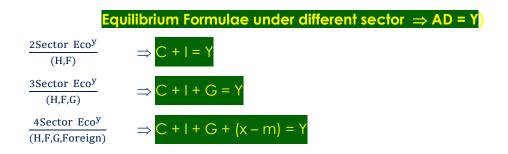
 $M = \overline{M} + mY$


Equilibrium level of National Income-

Y = C + I + G + (X - M) $Y = a + b(Y - T) + I + G + X = \overline{M}$ $Y = \frac{1}{1 - b + m} (a - bT + I + G + X - \overline{M})$ Income (Output) S + T + M I + G + X Income (Output)

Leakages = S + T + M; Injections = I + G + X


INJECTIONS	LEAKAGES
X > M	X < M
Exports are positive	Net withdrawal
Income increases	Income decreases


Lets revise in very short AD FORMULAE UNDER DIFFERENT SECTORS

AS FORMULA'S UNDER DIFFERENT SECTORS

LEAKAGE & INJECTIONS IN DIFFERENT SECTORS

- Leakage- It is referred to as an outflow of income from the circular flow model. Leakages are that part of the income which is not used to purchase goods or what households withdraws.
 - In 2 sector Model: Leakages = Savings
 - In 3 sector Model: Leakages = Savings + Taxes
 - In 4 sector Model: Leakages = Savings + Taxes + Imports
- Injection- It is an inflow of income to the circular flow. Due to injection, the volume of income increases.
 - In 2 sector Model: Injection = Investment
 - In 3 sector Model: Injection = Investment + Govt. Exp.
 - In 4 sector Model: Injection = Investment + Govt. Exp. + Exports