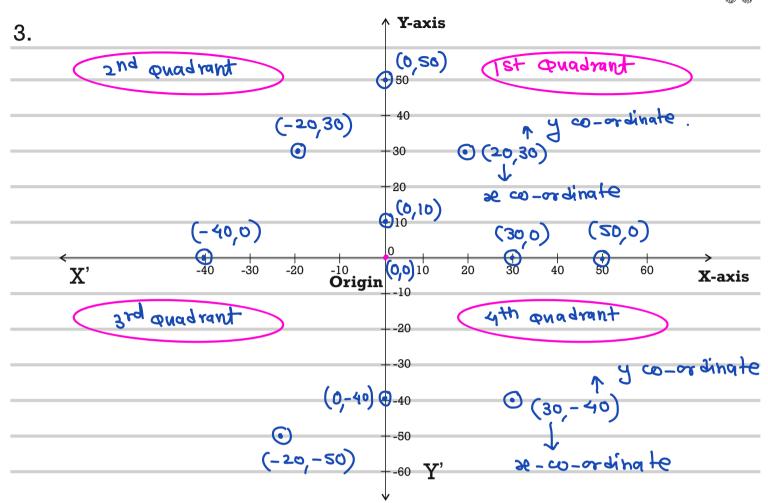


1. The standard format of a linear equation is: qx + by + c = 0

where a,b \$\neq 0 at a time.


OR y=mæ+c where m=slope of the line

2.

Linear Equation	a	b	С
5x + 13y + 8 = 0	5	13	8
133x - 18y + 2k - 18 = 0	133	- 18	2K-18
(2p+3)x - (18ky) + 339 = 93	(5b+3)	-18K	246
2x + 3y = 88	2	3	-88
17kx + 5x - 3y = 18k - 23 (17k + 5) 2 - 3y - 18k + 23 = 0	(17K+5)	-3	-18K +23
2x = 83 i.e. 2x + 0y - 83 = 0	2	0	-83
8y = -2k - 99 (4. 02 + 8y + 2k + 99 = 0	0	8	2k+99
kx - 13y - 25y - 9y + t = 0 $i \cdot 0$. $kx - 47y + t = 0$	k	-47	t
5x + 13y = 27x - 40y + 88 (-e22% + 53y -88 = 0	_ 12	53	- 88
2px-13y+8kx-11py-33 =12mx-18py-11		(-13-11b+18b)	- 22
i.e. (2p+8K-12m) X + (-13-11p +18p);	4-22=0		

<u>ակալարկալիակարկարիակարակալիակարկարկարկարկարկարկարկարկան</u>

4.	Points	Location	Equation / Inequalities	
	(+,+)	1st quadrant	20, y>0	
-				
	(-, +)	2nd quadrant	2e<0, y>0	
	(-, -)	3rd quadrant	æ <0, g <0	
	(+,-)	4th quadrant	æ >0, y<0	
	(<u>+</u> , 0)	X - azús	7	
	(0, <u>+</u>)	Y-azeis	% = O	
	(0,0)	origin	2°, y = 0	

- •Equation of X-axis is 9 = 6
- •Equation of Y-axis is ≈ = ○
- •(0,0) represents origin = Point of intersection of X,Y -axis
- •If x co-ordinate of a point is 0, then that point is on : \leftarrow q \approx is

If y - co-ordinate of a point is 0, then that point is on : X-and S

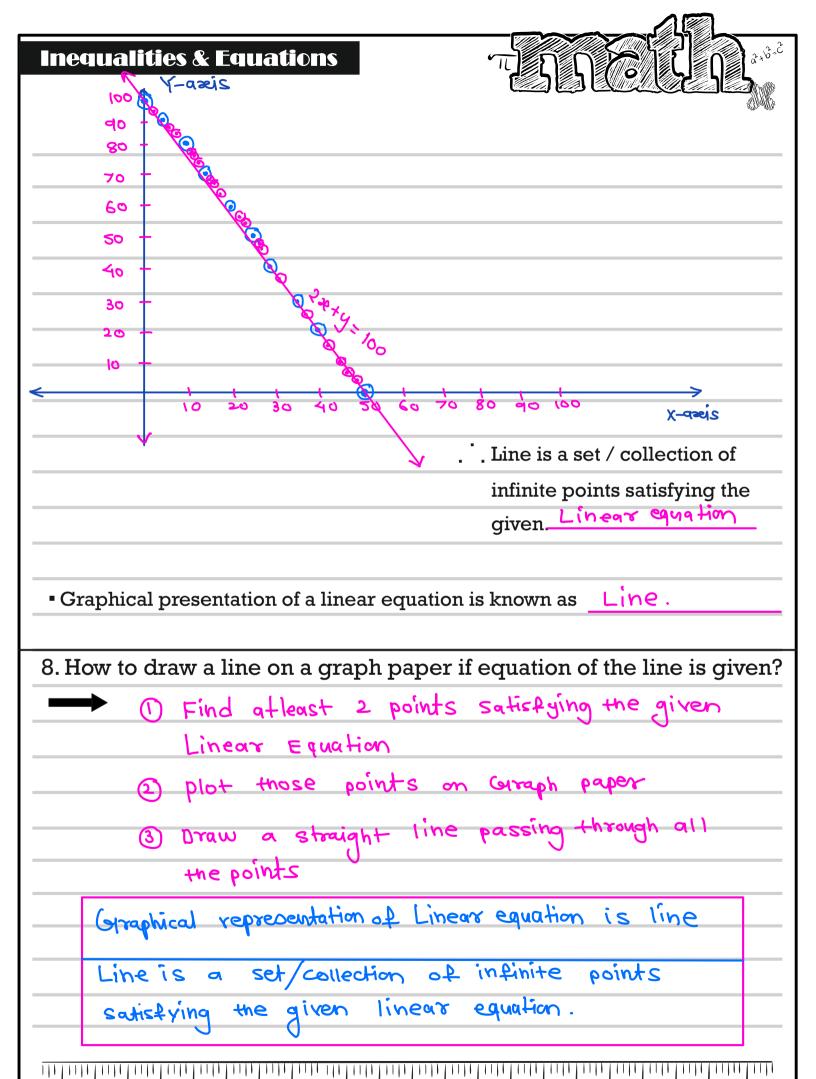
```
examples: (30,0), (20,0), (45,0), (25,0), (-28.80,0), these
```

5. Find points satisfying the linear equation 2x + 3y = 300

If I put x = 150, y = 0 then 2x + 3y = 300 is satisfied

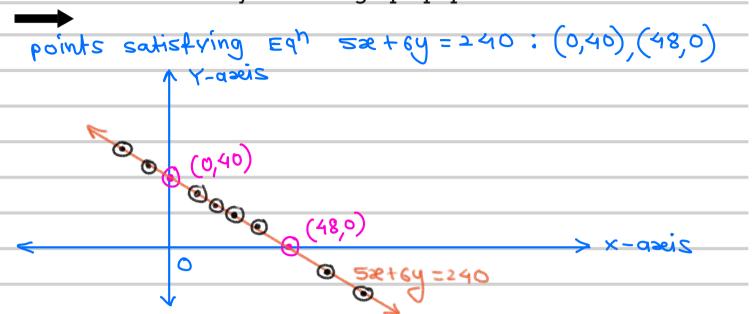
therefore, (150, 0) is one of the point satisfying the

equation 2x + 3y = 300

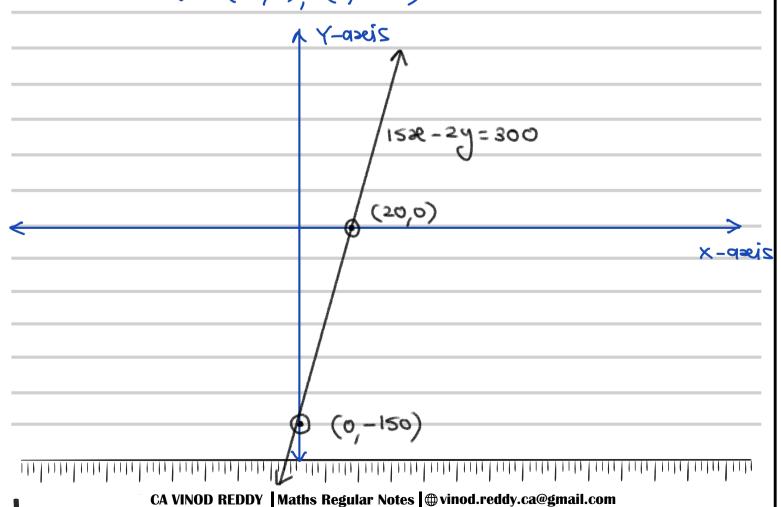

Other points: (0, 100), $(10, \frac{280}{30})$, $(20, \frac{260}{30})$, (15, 90), (300, -100), (60, 60), (75, 50), $(40, \frac{220}{3})$, $(-19, \frac{338}{3})$,

Such infinite points can satisfy this linear equation.

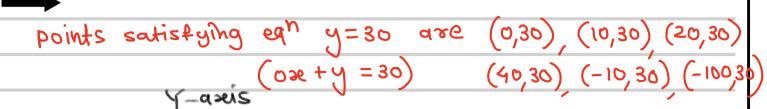
- 6. Find points satisfying the linear equation x + y = 50
- (0,50), (50,0), (30,20), (20,30), (10,40), (25,25), (60,-10), (-20,70) (-100,150), (250,-200), (1.50,48.50), (2.85,47.15), (1,49), (15,35), (45,5),


such infinite points can satisfy this equation.

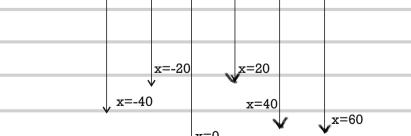
- 7. Find points satisfying the linear equation 2x + y = 100 and plot those points on graph paper?



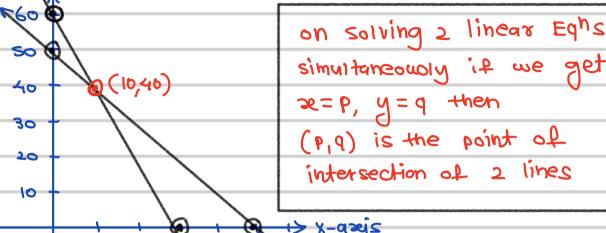
9. Draw the line 5x + 6y = 240 on graph paper


10. Draw the line 15x - 2y = 300 on graph paper

11. Draw the line y = 30 on Graph paper.



- If Eqⁿ of the line is y = constant then that line is $| | to \times a \approx s$
- If Eqⁿ of the line is x = constant then that line is $| | to | \gamma q \approx s$


արկությունի արկությունի արկություն արկությունի արկությունի արկությունի արկությունի արկությունի

13. Draw the lines (x + y = 50) & (2x + y = 60) on graph paper and Find point of intersection of these 2 lines.

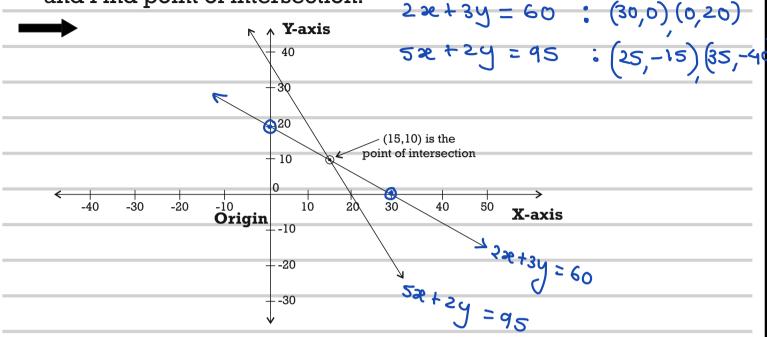
$$(10.40) \text{ is the point of}$$

$$10+y=50$$
intersection.
$$y=40$$

<u>ակավարհակարհակարիա<u>լ</u>աւակարհակարիակարհակարհակարհակարիա</u>

on solving 2 linear egns

simultaneously if we


get z=m, y=n then

(m,n) is the point of intersection of 2 lines.

the Both eghs must be

satisfied

14. Draw the lines 2x + 3y = 60 and 5x + 2y = 95 on graph paper and Find point of intersection.

To get the point of intersection, Let's solve 2 linear equations

simultaneously: 2x + 3y = 60 & 5x + 2y = 95

Let's multiply eqn (by 2 on both sides, eqh (by 3 on both sides

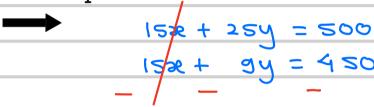
$$\frac{2 = 120}{128 + 64 = 162}$$

$$-118 = -162$$

Let's put x = 15 in one of the equation,

$$2x + 3y = 60$$

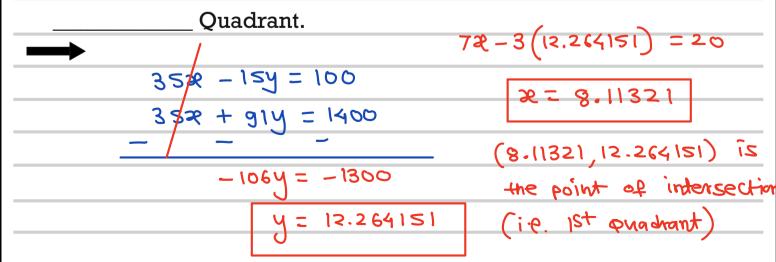
$$2(15) + 3y = 60$$


$$3y = 30$$
 : (15,10) is the point of $y = 10$ intersection of point.

15. Find point of intersection of 3x + 5y = 90 & 2x + 3y = 60

9x + 15y = 270	32 + 59 = 90
102 + 159 = 300	3(30) + Sy = 90
	sy = 0
-2 = -30	9=0
2€ = 30	: (30,0) is the point of
	intersection.

16. Find point of intersection of lines 3x + 5y = 100 & 5x + 3y = 150



$$16y = 50$$
 $y = 3.125$

$$3 \times + 5 (3.125) = 100$$

$$\times = 28.125 \qquad \left(\frac{225}{8} , \frac{25}{8} \right)$$

17. Point of intersection of 7x - 3y = 20 & 5x + 13y = 200 lie in

CA VINOD REDDY | Maths Regular Notes | # vinod.reddy.ca@gmail.com

18. Point of intersection of lines 5x + 2y = 90, 10x + 9y = 180 lie in

Ouadrant

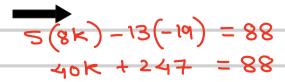
- a. 1st
- b. 2nd

- c. 3rd
- A. None of these

- of intersection. i.e. point of intersection

: (18,0) is the point

is on x-axis


- 52+2(0) = 90
 - æ = 18

19. Find point of intersection of 8x - y = 90 & 3x - 7y = 190

563	æ - 7y = 630
3 %	-7y = 190
53	3z = 440
	2 = 8.301887
8 (8.301887)-y=90
• •	9 = -23.58491

- point of intersection
- is (8.30, -23.58)
- which is in
 - 4th quadrant

20. The point (8k, -19) lie on the line 5x - 13y = 88. Find value of k.

k = -3.975

<u>անկան իրականվան կանվան կանանիան անկան կանկան կանկան կանկան կանկան իրական կանկան կանկան իրական կանկան իրական ի</u>

21. The point $(\frac{-k}{3}, 35)$ lie on the line 10x - 55y = 230. Find value of k.

As point $\left(-\frac{k}{3},35\right)$ lie on the line

102-554=230

then Given egh must be satisfied

$$10\left(-\frac{3}{k}\right) - 22\left(32\right) = 530$$

$$\frac{1}{3} = 2155$$
 : $K = -646.50$

$$K = -646.50$$

22. Find point of intersection of lines 2x + 3y = 800 and

$$8x + 12y = 1000$$

8x+12y=1000

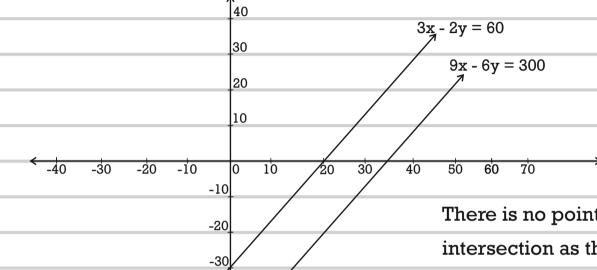
Slope of the line ax + by + c = 0 is -a/bSlope of the line 2x + 3y = 800 is $-\frac{2}{3}$ Slope of the line 8x + 12y = 1000 is -8/12 = -2/3

As the slope of l^{st} line = slope of 2^{nd} line, Lines are $| \cdot |$ to each other.

$$-2/3 = -2/3$$

If m₁ is slope of one line & m₂ is slope of other line then lines are said to be | | to each other if $m_1 = m_2$

23. Draw the lines 3x - 2y = 60 & 9x - 6y = 300 on graph paper.


Find point of intersection.

$$3x - 2y = 60$$
 \longrightarrow $(20, 0), (0, -30)$

-40

-50

$$9x - 6y = 300$$
 \longrightarrow $(0, -50), (30, -5)$

There is no point of

intersection as these lines are

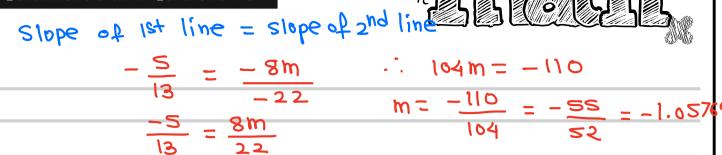
| | to each other

Slope of 1^{st} line = Slope of 2^{nd} line = 3/2

$$-\frac{3}{-2}=-\frac{9}{-6}=\frac{3}{2}$$

24. The lines 5x + 11y = 22 and 8kx - 55y = -980 are | | to each other.

Find value of k.


∴ 88k = - 27S :

25. The lines 5x + 13y = 80 and 8mx - 22y = 810 are | | to each other.

Find value of m.

As these 2 lines are to each other

CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

26.

Eq ⁿ of the line	Slope of the line
ax + by - c = 0	- a/b
3x + 5y + 30 = 0	- 3/5
3x + 5y - 1000 = 0	-3/5
5x - 13y = 88	-9/b = -5/13 = 5/13
8kx - 33py = 8k - p	8 K \33 P
29x - 33y = 5x - 88	$248 - 339 + 88 = 0 : 510Pe = \frac{24}{33} = \frac{8}{11}$
24x - 33y = -88	
13x - 2y = 88x - 130y - y + 2x	
- 8p + 63	S10Pe = 77
i.e. $-77x + 129y = -8p + 63$	•
31x - 2y = 8kx - 55y + 11	210b6 = - (31-8K) - 8K-31
i.e. (31-8k)x +53y = 11	23 23
x = 35	slope = - 1 = Not defined
$i \cdot e \cdot x + 0y - 35 = 0$	0 = un de fined
2x = 101	slope = -2 = undefined
2x + 0y - 101 = 0	0
5y = 33	Slope = -0 = 0 = Zero
0x + 5y = 33	5
o≈ + y = 33	Slope = -0/1 = 0 = Zero
x = 500	i.e. x+0y=500 :, slope =-1/6 = Not defined
px + qy + r = 0	- P/q
33x + py = r	-33/P

27. Find slope of line
$$x = 155$$
 (e. $2+0y = 155$)

Slope = $-1/0 = Not$ defined

28. Find slope of line
$$y = 30$$
 i.e. $0 = 30$

Slope =
$$- \odot / = zero = 0$$

Slope of X-axis and all the lines | | to X-axis is: Zero

Slope of Y-axis and all the lines | | to Y-axis is: Undefined R

A line	Slope	Equation
X - Axis	Zero	7=0
Y - Axis	Not defined	% = ○
to X - Axis	Zero	y = constant
to Y - Axis	Not defined	z= wnstant

29. Standard format of a linear equation is,	slope of the line
ax + by + c = 0	32+5y=88 is -3/5
by = -ax + c	2m + 5U - 22
dividing by b on both sides	32+5y = 88
$\frac{by = -ax + c}{b}$	5y = 88 - 32
$y = \left(\frac{-a}{b}\right)x + constant$	5y = -3x + 88
y = mx + c	$y = \left(-\frac{3}{5}\right)x + \left(\frac{88}{5}\right)$
where, $m = slope$ of the line.	compasing this with
A=8x+13 == M=210b6 = 8	y= m2e+ c
-8x+y-13=0 => slope=-a/b=8	m = -3/5 = slope at line

30. Find slope of the line 3x + 5y = 88

$$3x + 5y - 88 = 0$$

$$3x + 5y = 88$$

comparing this with
$$ax + by + c = 0$$

$$5y = 88 - 3x$$

$$a = 3, b = 5$$

dividing by 5 on both sides

$$:$$
 slope of the line = $-9/b$

$$y = \frac{-3}{5}x + \frac{88}{5}$$

$$=-3/s$$

comparing this with y = mx + c

$$M = -\frac{2}{3}$$
 = slope of the line

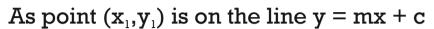
31. Find any 2 points satisfying the equation 7x - 3y = 100

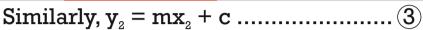
points satisfying the equation 72-34 = 100

32. Find eqⁿ of the line passing through points (100,200) (10,-10)

$$(x_2, y_2)$$

$$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{y} - \mathbf{y}_1} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{x} - \mathbf{x}_1} \quad \dots \quad \mathbf{Eq}^n \text{ of line passing through } (\mathbf{x}_1, \mathbf{y}_1) & (\mathbf{x}_2, \mathbf{y}_2)$$




33. Find equation of the line passing through points (x_1,y_1) , (x_2,y_2)


Let $y = mx + c$ be the eq ⁿ of the line pa	assing through point
$(\mathbf{x}_1,\mathbf{y}_1) \& (\mathbf{x}_2,\mathbf{y}_2)$	7.0
y = mx + c 1	(22, 42) U= m2 +
T ' () ' (1 1')	

$$(x_1,y_1) & (x_2,y_2)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y - y_1}{x - x_1} \dots$$

$$eq^{n}$$
 $\boxed{3} - eq^{n}$

$$y_2 - y_1 = mx_2 + \cancel{c} - mx_1 - \cancel{c}$$

$$\mathbf{y}_2 - \mathbf{y}_1 = \mathbf{m}(\mathbf{x}_2 - \mathbf{x}_1)$$

From eqⁿ (4) & eqⁿ (5)

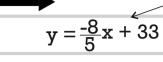
$$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{x} - \mathbf{x}_1}$$

$$\left(\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{y} - \mathbf{y}_1}\right) = \left(\frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{x} - \mathbf{x}_1}\right) - - - - - \Rightarrow$$

This is eqⁿ of the line passing through points $(x_1,y_1), (x_2,y_2)$

34. Find Eqⁿ of the line passing through point (p, q), (m, n)

Egh of line passing through points (2, 4, 4,) & (2, 42


is
$$\left(\frac{y_2 - y_1}{y - y_1}\right) = \left(\frac{x_2 - x_1}{x - x_1}\right)$$

Egh of line passing through points (P,q), (m,n)

is
$$\left(\frac{N-q}{y-q}\right) = \left(\frac{m-p}{\varkappa-p}\right)$$

35. Find slope of the line $y = \frac{-8}{5}x + 33$

Comparing this with y = mx + c

$$m = \frac{-8}{5}$$
 = Slope of the line.

$$y = -\frac{11}{6} \approx -99$$
 ---- slope = $-\frac{11}{6}$

$$112 + 6y + 594 = 0 - 100 = -\frac{9}{6}$$

$$y = \frac{-8}{5}x + 33$$

$$y - 33 = \frac{-8}{5}x$$

$$5y - 165 = -8x$$

$$8x + 5y = 165$$

$$8x + 5y_1 - 165 = 0$$

Comparing this with ax + by + c = 0

$$a = 8, b = 5$$

Slope =
$$\frac{-a}{b} = \frac{-8}{5}$$

36. Slope of the line kx + 15y = 2x - 93 is $\frac{-8}{11}$. Find k.

$$kx + 1sy - 2x + q3 = 0$$

$$(k-2)x + 1sy + q3 = 0$$

comparing this with aze+by+c=0

slope =
$$\frac{-9}{b} = \frac{-(k-2)}{15} = \frac{-8}{11}$$

$$11(K-2) = 120$$

$$K = \left(\frac{142}{11}\right) = 12.90909090$$

37. Slope of the line 19x - 33y + 2ky = 8x - 930 is $\frac{11}{8}$. Find k.

ակարկարկարկարկարկարդակարդուկարկարկարկարկարկարկարկարկարկար

Slope =
$$\frac{-a}{b} = \frac{-11}{2k-33} = \frac{11}{8}$$
 $\frac{...22k=275}{k=(\frac{2.75}{22})}$

$$22k - 363 = -88$$
 k

38. Find Eqⁿ of the line passing through points (8, -12), (18,33)

$$\left(x_1, y_1\right), \left(x_2, y_2\right)$$

$$\frac{y_2 - y_1}{y - y_1} = \frac{x_2 - x_1}{x - x_1}$$

$$452 - 360 = 109 + 120$$

 $452 - 109 = 480$

$$\frac{33 - (-12)}{9 - (-12)} = \frac{18 - 8}{2 - 8}$$

39. Find Eqⁿ of the line passing through points (-30, -20), (-1.50, 80)

$$\frac{80 - (-20)}{9 - (-20)} = \frac{-1.50 - (-30)}{20 - (-30)}$$

<u>արկարդիարկարկանի արկարկարկան արկարկարկարկարկարկարկարկարկանի արկարկարկանի արկարկանի արկարկանի</u>

40. Find Eqⁿ of the line passing through points (2, -5), (-11, 20).

Also find slope of that line

y2-y1 = x2-x1
<u>y-y,</u>
20+5 = -11-2
y+5 2-2
25 x - 50 = -13y -65
252 + 134 + 15 = 0
slope of the line = -25/13
/ 13

slupe of the line passing through points (21, 41) & (2, 4) is

$$\frac{\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)}{\text{Slope at the line}} = \frac{20-(-5)}{-11-2} = \frac{25}{-13}$$

Eqh of the line: 252+13y=25(2)+13(-5) 252+13y+15=0

41. Find Slope, Eqⁿ of the line passing through points (20, 28), (30, 85).

Slope =
$$\frac{85-28}{30-20} = \frac{y_2-y_1}{x_2-x_1}$$
 $\frac{y_2-y_1}{y_2-y_1} = \frac{x_2-x_1}{x_2-x_1}$
= $\left(\frac{57}{10}\right)$ $\frac{85-28}{y-28} = \frac{30-20}{x-20}$
Eqh of the line $\frac{57}{x^2-10y} = \frac{57}{20} = \frac{57}{10}$
 $\frac{57x-10y-860=0}{57x-10y} = \frac{57}{10}$

42. Find Slope, Eq n of the line passing through points (1.50, 18.50), (-27, 35).

Slope =
$$\frac{3s - 18.50}{-27 - 1.50} = \frac{16.50}{-28.50} = \frac{165}{-285} = \frac{33}{-57} = \frac{11}{-19} = \frac{-11}{19}$$

Equation of the line:
$$112 + 19y = 11(-27) + 19(35)$$

 $\therefore 112 + 19y = 368$

43. Find Slope of the line passing through points (a, b) & (c, d)

a.
$$\left(\frac{d-b}{c-a}\right)$$

b.
$$\left(\frac{b-d}{a-c}\right)$$

d. None

44. Slope of the line passing through (2k, 19) & (50, -8) is $\frac{-16}{3}$ Find k.

Slope of the line passing through =
$$\left(\frac{-8-19}{50-2K}\right) = \frac{-16}{3}$$

$$\frac{+27}{50-2k} = \frac{+16}{3}$$

$$800 - 32k = 81$$

$$719 = 32$$
K

$$\frac{1}{100}$$
 $= 22.46875$

45. The line 8x - 3y = 20 & 7kx + 55y = 250 have no solution. Find k

As these 2 lines have No solution, Means point of we can say that these 2 lines have same intersection

slope.

$$\frac{8}{3} = \frac{-7k}{55}$$

$$-21k = 440$$

$$K = \left(\frac{-440}{21}\right) = -20.9523809523$$

<u>ակավարկակարկակարկան ակակակակակակակակակակակակարկան</u>

CA VINOD REDDY \mid Maths Regular Notes \mid \oplus vinod.reddy.ca@gmail.com

46. The lines 5x + 11y = 29 & kx + 33y = 810 have unique solution then

$$a.k = 15$$

$$15. k \neq 15$$

$$c.k = 0$$

d. Wrong qs.

As these 2 lines have unique solution, It means they have a point of intersection

Slope of 1st line
$$\neq$$
 slope of 2nd line
$$\frac{-s}{11} \neq \frac{-k}{33}$$

$$-11k \neq -16s$$

47. If m₁ is slope of one line & m₂ is slope of other line then

Lines are said to be

|| to each other

Oblique

| to each other

when

when

when

$$M_1 = M_2$$

$$m_1 \neq m_2$$

$$M_1 = \frac{1}{m_2}$$

$$m_1 \cdot m_2 = -1$$

48.3x - 19y = 50 & 2kx + 51y = 200 are | to each other.

Find value of k.

As these 2 lines are 1 to each other

slope of 1st line x slope of 2nd line = -1

$$\frac{3}{10} \times \frac{-2k}{51} = -1$$

$$\frac{-6k}{\alpha \alpha} = -1$$

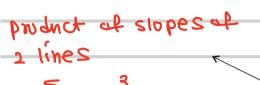
49.	Slope of the line	Slope of its line	Slope of its line
	<u>3</u> 5	3/5	- 5/3
	<u>-8</u> 9	- 8/q	9/8
	8	8	-1/8
	-11	-11	<i>Y</i> 11
	33 8 -p q	33/8	- 8/33
	<u>-</u> p	- P/q	9/P
	<u>p-q</u> r	<u>P-9</u>	<u>8</u> 9-P
	0	0	undefined
	Not defined	Not defined	0
	<u>3</u> 91	3/91	-91/3

50. The lines 18x - my = 20 & 51x - 28y = 290 are \bot to each other. Find the value of m.

As these 2 lines are _____ to each other,
slope of 1st line x slope of 2nd line = -1
$$\frac{18}{18} \times \frac{51}{100} = -1$$

$$m = -\frac{918}{28} = -459/14$$

$$m = -32.7857142857$$



51. Draw the line 3x + 5y = 150 & 5x - 3y = 30 on graph paper

$$3x + 5y = 150 \longrightarrow (50,0) (0,30)$$

$$5x - 3y = 30 \longrightarrow (0, -10), (30, 40)$$

$$\uparrow^{\text{Y-axis}} \qquad 5lope of this line = \frac{5}{3}$$

$$=\frac{5}{3} \times -\frac{3}{5}$$

These lines are to each other as m, x m, = -1

slope of this line = -

52. The lines 8x - 3ky + 21y = 33 & 15x - 28y = 233 are | to each

-60 **Y**'

other. Find k.

$$8x + (-3k + 21)y = 33$$

$$= -8/-3k+21 = (8/3k-2)$$

2 lines are 1 to each these As

$$\frac{8}{3k-21} \times \frac{15}{28} = -1$$

$$K = \frac{-468}{-84} = \frac{117}{21}$$

$$120 = -28(3k-21)$$

$$K = 39/7$$

 $\frac{\mathsf{K} = 3\mathsf{q}/\mathsf{7}}{\mathsf{m}_{\mathsf{l}} \mathsf{m}_{\mathsf{l}} \mathsf{m}_{\mathsf$ CA VINOD REDDY | Maths Regular Notes | # vinod.reddy.ca@gmail.com

Question
$$5x + 2y = 93$$
 and $7kx + 12x - 13y - 98y = 2000$

$$\therefore \left(\frac{1! \text{ libbe of } 124}{2! \text{ libbe of}} \times \frac{5 \text{ libbe of}}{2! \text{ libbe of}}\right) = -1 \qquad \therefore \quad \kappa = \left(\frac{32}{165}\right)$$

$$\frac{+5}{2} \times \frac{7k+12}{|1|} = +1$$

$$35k + 60 = 222$$

53. Find Eqⁿ of line passing through point (8, 20) having slope (-0.60)

(8,20)

Slope =
$$(-0.60/1)$$

Slope =
$$-0.60$$

$$= -3/5$$

$$0.60x + y = 0.60(8) + 20$$

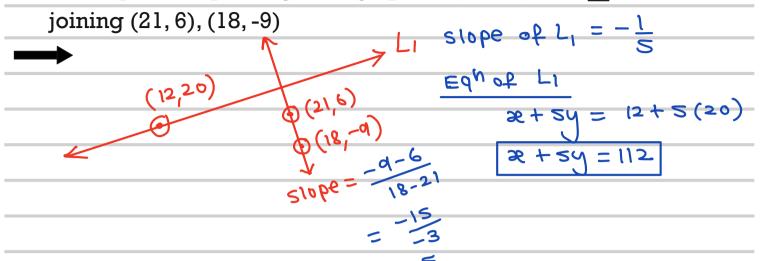
$$0.60x + y = 24.80$$

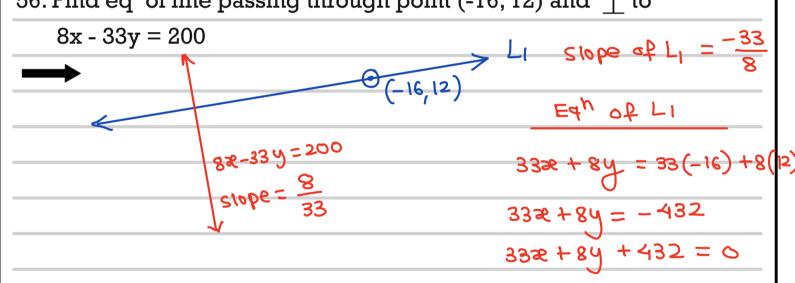
$$3x + 5y = 3(8) + 5(20)$$

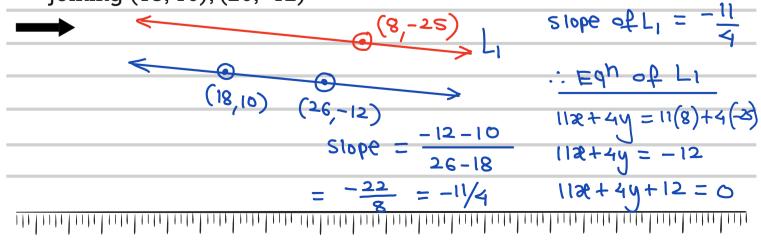
$$6x + 10y = 248$$

$$3x + 5y = 124$$

$$3x + 5y = 124$$


54. Find Eqⁿ of the line passing through point (8, 10) having slope of 0.70.


slope of the line =
$$0.70 = \frac{7}{10}$$


55. Find eqⁿ of line passing through point (12, 20) and \perp to line

56. Find eqⁿ of line passing through point (-16, 12) and | to

57. Find Eqⁿ of the line passing through point (8, -25) & || to line joining (18, 10), (26, -12)

58. Find Eqⁿ of line having slope $\frac{8}{5}$ & passing through points (20, 16)

(20,16) S1066 = 8

Egh of Line: 82-54 = 80

-82+54 = -80

59. Find eqⁿ of line passing through point (0.50, 8.75) and | to

17x - 20y = 88

(0.50,8.75)

: Egh of L1: 202 + 174 = 20(0.50) + 17(8.75)

808+684=632

60. If slope of line is zero then that line can be

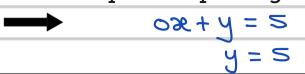
- a. X-Axis
- b. | | to X-Axis c. | to Y-Axis

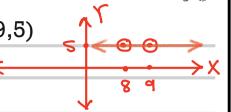
d. All of these

61. If slope of line is Not Defined then that line can be

- a. Y-Axis
- b. | | to Y-Axis c. | to X-Axis

d. All of these


62. The line x = 25/2 is


- a. | | to Y-Axis
- b. | to X-Axis
- **C**Both

d. None

63. Find Eqⁿ of line passing through points (8, 5), (9,5)

64. Find Eqⁿ of line passing through points (6, 0), (19, 0)

65. Find Eqⁿ of line passing through points (0, 18), (18, 0)

$$\Rightarrow$$
 $8+7=18$ $= 106=\frac{18-0}{0-18}=-\frac{18}{18}=-\frac{1}{1}$

66. Find Eqⁿ of line passing through points (0, 19), (5, 19)

67. Slope of line passing through points $(\frac{8}{3}, \frac{7}{5})$, $(\frac{2k}{7}, \frac{19}{3})$ is $\frac{5}{11}$. Find k.

Slope of the line passing

through points
$$\left(\frac{8}{3}, \frac{7}{5}\right) \varphi\left(\frac{2k}{7}, \frac{19}{3}\right) = \frac{2k}{7} \cdot \frac{8}{3}$$

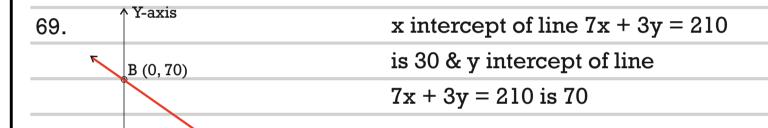
$$\frac{5}{7} \cdot \frac{95-21}{15}$$

$$\frac{6k-56}{21}$$

$$\frac{5}{11} = \frac{74}{15} \times \frac{21}{6k-56}$$

$$6k-56 = \frac{74}{15} \times \frac{21}{1} \times \frac{11}{5}$$

<u>ակավարհակարկարհակարկա ակագիտկակարկարկարկարկարկարկարկարկար</u>



68. The lines 3kx - 22y = 80 & 90x - 47y = 285 are | to each other.

Find k

As these 2 lines are \bot to each other, (slope of 1st line x slope of 2hd line) = -1 $\frac{3k}{x} \times \frac{90}{10} = -1$

$$270 k = -1034$$

 $k = -3.82962962962$

A (30,0)

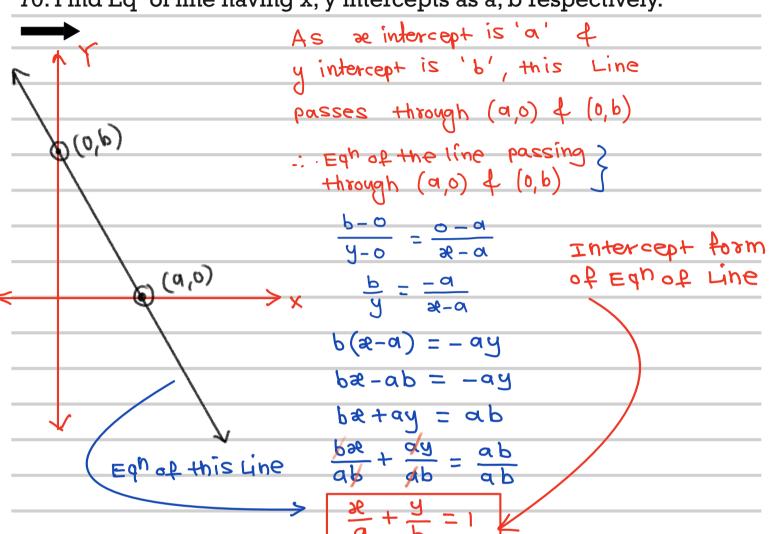
X-axis

7x+3y=210

De intercept of this

Line is 30

y intercept of this


Line is 70

If x intercept of a line is 'm' & y intercept is k then that line passes through (m,0), (0,k)

If x intercept of a line is -20 & y intercept is 35 then that line passes through points: (-20,0) & (0,35)

70. Find Eqⁿ of line having x, y intercepts as a, b respectively.

71. Find Eqⁿ of line passing through points (30, 0), (0, 80)

	<u> </u>	
		$\approx intercept = 30$
(30,0) (0,80)	$2lobe = \frac{80 - 0}{}$	y intercept = 80
80-0 = 0-30	0-50	
y-0 ×-30	<u>- 80</u> -30	$\frac{30}{2} + \frac{80}{3} = 1$
80(2-30) = -304	= -8/3	
80x-5400=-30A	Eduat the live	$\frac{80x+309}{2}=1$
	Educat the mic	2400
802 + 30y = 2400	82+34=240	80x+30y = 2400
8×+34 = 240		82 + 34 = 240
ահահահահահահահա	<u> Inmlamanthurlandan</u>	
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com		

72.

Equation of line	x-intercept	y-intercept
3x + 5y = 90	30	18
5x - 2y = 200	40	-100
13x + 18y = k	<u>k</u> 13	<u>K</u>
20x + 13y = 500	25	<u>73</u> <u>200</u>
2x - 11y = -53	_ <u>53</u>	53
21x - y = 200	200	-200
x - y = 10	10	-10
2x + y = 58	29	58
x = 90	90	No Y- intercept as line is 11 to Y-a>
y = 65	No se intercept	65
kx + my = j	j/k	j/m
2kx + 3my = 93	93/2 K	$93/_{3m} = 31/_{m}$
x + 2y = m	m	ln/2
5x + 3y = 1500	300	500
$x = \frac{90}{7}$	<u>90</u> 7	No Y-intercept

<u>ավառիտիարկարկարկարիա ակարկարկարկարկարկարկարկարկարկարկարկան</u>

73. Find eqⁿ of line having x intercept as 3m & y intercept as 38.

Intercept form of Eqh of line is, $\frac{32}{3} + \frac{y}{5} = 1 \quad \text{where } a = 3e \text{ intercept}$ $\left(\frac{3e}{3m} + \frac{y}{3g}\right) = 1$ $\frac{393e + 3my}{114m} = 1 \quad \therefore 383e + 3my = 114m$

74. Find eqⁿ of line having slope of $\frac{-8}{11}$ and x intercept as 12.

Lines passes through (12,0) SE + 114 = 96

75. Find slope of the line whose y intercept is 4 times of x intercept.

a = se intercept b = y intercept = 4a

 $\frac{3e}{a} + \frac{y}{b} = 1$ $\frac{3e}{a} + \frac{y}{4a} = 1$

42 + y = 1

42 + y = 1

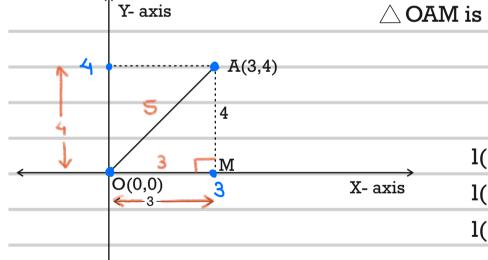
42ety = 49 ----- slope of this line = -4/ = -4

76. Find slope of the line whose x intercept is $(4/5)^{th}$ of y intercept.

 \Rightarrow se intercept = $a = \frac{4}{5}b$ y intercept = b

<u>ավառկառիտիարկարկարկան ակարհակարկարկարկարկարկարկարկարկարիա</u>

se intercept as 'a' of y intercept as (b)


$$\frac{52}{4b} + \frac{4y}{4b} = 1$$

to y intercept.

$$\frac{2c}{a} + \frac{y}{b} = 1$$

$$\frac{2c}{a} + \frac{y}{a} = 1$$

$$\therefore$$
 sety = $\alpha = b$ \therefore slope of line = $-\frac{1}{2}$

77. If A = (3,4), O = (0,0). Find I(OA) = ?

$$\triangle$$
 OAM is a Right angle triangle

$$OA^2 = OM^2 + AM^2$$

$$OA^2 = O^2 + A^2$$

$$OA^2 = 3^2 + 4^2$$

$$1(OA) = \sqrt{3^2 + 4^2}$$

$$1(OA) = \sqrt{9 + 16}$$

$$1(OA) = \sqrt{25}$$

If
$$0 \equiv (0,0)$$
, $K \equiv (12,-5)$

If
$$O = (0,0)$$
, $A = (m,n)$

then 1 (OA) =
$$\sqrt{m^2 + n^2}$$

$$\Rightarrow l(0k) = \sqrt{12^2 + (-5)^2}$$

$$\theta \equiv (0,0) \ \beta \equiv (8,15)$$

2(AB) = \(82 + 122 = 14.42221 \) units

78. Q(c,d) Q(c,d)

$$b \phi_3 = b M_3 + \phi M_3$$

$$pQ^2 = (c-q)^2 + (d-b)^2$$

$$X-\text{axis} \therefore \mathcal{L}(PQ) = \sqrt{(d-b)^2 + (c-a)^2}$$

$$P = (a,b) \ Q = (c,d)$$

$$\mathcal{L}(PQ) = \sqrt{(d-b)^2 + (c-a)^2}$$

$$P(a,b), Q(c,d)$$

then $l(PQ) = \sqrt{(d-b)^2 + (c-a)^2}$

then

(c -a)

If A =
$$(x_1, y_1)$$
 & B = (x_2, y_2) then
$$l(AB) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

$$= \sqrt{(y_1 - y_2)^2 + (x_1 - x_2)^2}$$

If A =
$$(x_1, y_1)$$
 & B = $(0,0)$ then
$$l(AB) = \sqrt{x_1^2 + y_1^2}$$

79. A = (30,50), B = (80,-90). Find l(AB)

$$2(AB) = \sqrt{(-90-50)^2 + (80-30)^2}$$

$$= \sqrt{(-140)^2 + 50^2} = \sqrt{22100} = 148.66069$$
units

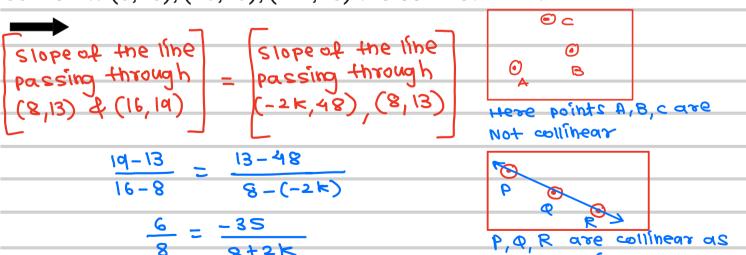
80.
$$P = (m,n), Q = (i,j) \text{ then } l(PQ) =$$

$$= \sqrt{(i-n)^2 + (i-m)^2}$$

$$= \sqrt{(n-j)^2 + (m-i)^2}$$

81. If A = (1.50, 2.875), B = (33,81.93). Find I(AB)

$$\mathcal{L}(AB) = \sqrt{(81.93 - 2.875)^2 + (33 - 1.50)^2}$$


$$= \sqrt{7241.94302S} = 85.09961 \text{ units}$$

82. If A = (0, 0), B = (-8.75, 33.8175). Find I(AB)

$$2(AB) = \sqrt{(33.8175-0)^{2} + (-8.75-0)^{2}}$$

$$= \sqrt{1220.18580625} = 34.9312 \text{ units}$$

83. Points (8,13), (16,19), (-2k,48) are collinear. Find k.

48 + 12k = -28012 k = -328 : k = -27.33333

P. Q. R are collinear as a straight line can pass through all of them.

If a straight line can pass through all the points then points are said to be collinear

If a straight line can Not pass through all the points then points are said to be Non collinear

84. Points A, B, C are said to be collinear if

$$\begin{array}{c}
\text{Slope of the line passing} \\
\text{through points A, B}
\end{array} =
\begin{array}{c}
\text{Slope of the line passing} \\
\text{through C & A or B}
\end{array}$$

85. Points $(16, \frac{-2k}{5})$, (8,11), (19,85) are collinear. Find the value of k.

Slope of the line passing

through
$$\left(16, \frac{-2k}{5}\right) \neq \left(8,11\right)$$

Through $\left(19,85\right) \neq \left(8,11\right)$

$$\frac{11+\frac{1}{5}}{8-16} = \frac{11-85}{8-19} = \frac{...}{5} = \frac{-592}{11}$$

$$\frac{55+2k}{5} = \frac{74}{11}$$

$$-8 = \frac{11-85}{8-19} = \frac{...}{5} = \frac{-592}{11}$$

$$\frac{55+2k}{5} = \frac{-2960}{11}$$

$$\frac{11}{11} = \frac{11}{11}$$

86.

QUADRATIC EQUATION

The standard format of quadratic equation is:

$$ax^2 + bx + c = 0$$
 where $a \neq 0$

and values of x which can satisfy the quadratic equation are known as 'roots' of quadratic equation.

2- 10x + 16 = 0 is a quadratic eqh where a=1, b=-10, c=16

Let's put x=8 82-10(8)+16=0 Now put x=2, 22-10(2)+16=0

... 82 are roots of quad. eqh.

$$x^2-5x-6=0$$
 \longrightarrow For $x=6$, $x=-1$

In this quadratic equation a = 1, b = -5, c = -6

If we put x = 6, $6^2 - 5(6) - 6 = 36 - 30 - 6 = 0$

If we put x = -1, $(-1)^2 - 5(-1) - 6 = 1 + 5 - 6 = 0$

 \therefore 6, -1 are roots of quadratic equation x^2 -5x - 6 = 0

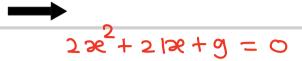
87.	Equation	No. of roots	
	Linear		
	Quadratic	2	
	Cubic	3	

88.

Quadratic Eq ⁿ	a	b	С
$3x^2 + 5x - 8 = 0$	3	5	-8
19x ² - 55mx - 2k - 81= 0	19	-55M	-2K-81
$15x^2 - 21x - 8px + 39x$			
$+88 \text{ k} - 93 = 18x^2$	-3	(-21-87+39)	
$i.e3x^2 + (-21-8p+39)x$		= (18-81)	(88K-33)
+ 88k - 93 = 0			
$10x^2 - 2p + 63 = 0$	10	0	-2P+63
$55x^2 - kx^2 + 8px - 33mx$			
+ 18j = 63	(55-k)	(8p-33 m)	(191-63)
i.e. $(55-k)x^2+(8p-33m)x$	(33-11)	(84-33.11)	(10] = 43)
+ 18j - 63 = 0			
$17x^2 - 3x - 93 = 0$	17	-3	- 93
$x^2 - 25 = 0$	(0	- 25
$x^2 = 58$	1	0	- 58
$(p+q)x^2-p^2q^2x-33m=80$	(P+ 4)	$-p^2q^2$	(- 33 m - 80)

山万南南水水路路一田。

89. Find roots of quadratic equation


	$x^2 - 13x + 36 = 0$	
Formula Method	Short-cut	Super Short-cut
$x^2 - 13x + 36 = 0$	$x^2 - 13x + 36 = 0$	is applicable only when
a = 1, b = -13, c = 36	First find the value of	a = 1
$2 = \frac{b \pm \sqrt{b^2 + 4ac}}{2a}$	ac = 36 & b = -13	2
2 = 2a	Find 2 numbers such	x-13x+36=0
$36 = \frac{-(-13) \pm \sqrt{-13^2 + 4(1)(36)}}{2}$	that their sum is 'b'	Eing I num pers
36 = 5 x 1	& product is 'ac'	such that their
R = 13± \[\lambda \text{169 - 144} \]	2-92-42e+36=0	baoquet is ,c,
₩ = <u>2</u>	æ(x-9)-4(æ-9)=0	(x-9)(x-4)=0
2 = 13±5	(x-9)(x-4)=0	
$x = \frac{13+5}{3}$ or $x = \frac{(3-5)}{2}$	2-9=0 OR 2-4=0	x=9/2=4
$\mathcal{X} = \frac{1}{2} \forall \mathcal{X} = \frac{1}{2}$	2=9 0R 2=4	: 9,4 are the roots
2=9 OR 2=4	: 9,4 are the roots	of guad. egh.
: 9,4 are the roots	of quad. egh	

90. Find roots of quadratic equation $5x^2 - 13x - 18 = 0$

Formula Method	Short-cut
q = 5, $b = -13$, $c = -18$	2×5-13× -18=0
2 = -b ± \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ac = -40, b = -13
$\frac{2a}{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}$	5x - 18x + 5x - 18 = 0
2 X S	x (2x-18) + 1 (2x-18) = 0
$= \frac{13 \pm \sqrt{529}}{10} = \frac{13 + 23}{10} \circ R \frac{13 - 23}{10}$	(5x-18)(x+1)=0
:	-: x=18/s OR x=-1
urluntuntuntuntuntuntaktututak	146 1446 149942 184 1 AND 1 64 N 1 1 1 1

91. Find the roots of quadratic equation $2x^2 + 21x + 9 = 0$

This question can not be solved by short-cut.
Let's use formula

$$\mathcal{H} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-21 \pm \sqrt{21^2 - 4(2)(9)}}{2 \times 2}$$

$$2 = \frac{-21 \pm \sqrt{369}}{4}$$

$$= \frac{-21 \pm \sqrt{369}}{4}$$

$$= \frac{-21 + \sqrt{369}}{4}$$

$$= \frac{-21 - \sqrt{369}}{4}$$

$$= \frac{-40.2093}{4}$$

$$= \frac{-40.2093}{4}$$

$$= \frac{-10.0523}{4}$$

92. Find the roots of $x^2 - 11x - 102 = 0$

	×5-115-105 = 0	$2^2 - 112 - 102 = 0$
2 × 1	2-172 + 62 - 10 2 = 0	(2-17)(2+6)=0
$=$ $\approx = \frac{11\pm 23}{2}$	z(2-17)+6(2-17)=0	æ=17, æ=-6
2 $2 = \frac{11+23}{2}$, $2 = \frac{11-23}{2}$	(2-17)(2+6)=0	
æ= 17, æ= −6	2=17, 2=-6	

93. Find the roots of $10x^2 - x - 24 = 0$

102222-24=0	102-2-24 = 0
1022-1622+1522-24=0	BN Easwala
22 (52 - 8) + 3 (52 - 8) = 0	$= -(-1) \pm \sqrt{(-1)^2 - 4(10)(-24)}$
(5x-8) (2x+3) = 0	2 × 10
$2 = \frac{8}{5} 0 2 = \frac{3}{2}$	$20 = \frac{1 + \sqrt{961}}{20} = \frac{1 + 31}{20} = 0 = \frac{1 - 31}{20}$
Roots are: $\frac{8}{5}$, $-\frac{3}{2}$	$\therefore \approx \frac{32}{20} = \frac{8}{5} \circ R \approx \frac{-30}{20} = \frac{-3}{2}$

94. Find roots of quadratic equation $80x^2 - 138x + 13 = 0$

→	
$80x^2 - 138x + 13 = 0$	$x = \frac{-(-138) \pm \sqrt{19044 - 4(80)(13)}}{2 \times 80}$
$80x^2 - 130x - 8x + 13 = 0$	$\mathbf{x} = \frac{138 \pm \sqrt{14884}}{160} = \frac{138 \pm 122}{160}$
10x(8x - 13) - 1(8x - 13) = 0	
(8x - 13) (10x - 1) = 0	$x = \frac{138 + 122}{160}$ or $x = \frac{138 - 122}{160}$
$x = \frac{13}{8}$ or $x = \frac{1}{10}$	$x = \frac{260}{160}$ or $x = \frac{16}{160}$
Roots are $\frac{13}{8}$, $\frac{1}{10}$	$x = \frac{13}{8}$ or $x = \frac{1}{10}$
(i.e. 1.625, 0.10)	

95. Find roots of quadratic equation $14x^2 + 29x - 15 = 0$

Also find sum of roots, product of roots.

	Sum of roots
1422 + 2928 - 15 = 0	= 1st root + 2nd root
1422+352 -62 -15 = 0	$=\frac{-5}{2}+\frac{3}{7}=\frac{-35+6}{7\times 2}$
72 (22+5) - 3 (22+5) = 0	·
(2x+5)(7x-3)=0	= - 29 14
3	product of roots
$\therefore \mathcal{X} = -\frac{5}{2} \text{or } \mathcal{X} = \frac{3}{7}$	= 1st root x 2nd root
-: Roots are - = = = = = = = = = = = = = = = = = =	$\frac{5}{2} \times \frac{3}{7} = \frac{-15}{14}$

For a Quadratic Eqⁿ Sum of roots Product of roots $= \frac{-b}{a} = -\frac{29}{14} = \frac{c}{a} = \frac{-15}{14}$

96. Find roots of quadratic equation $10x^2 - 59x - 6 = 0$

Also find sum of roots, product of roots.

10x2-20x-6=0	Sum of roots = $-b$
10×2-60×+20-6=0	(-59) 59
1026 (3-6) +1 (36-6) =0	10 10
(x-6)(10x+1)=0	C
20 0 R 20 = -1	product of roots = $\frac{2}{9}$
Roots are: $6, -\frac{1}{10}$	$=\frac{10}{-6}=-\frac{3}{3}$
sum of roots = $6 + \frac{-1}{10} = \frac{60 - 1}{10} = \frac{59}{10}$	
product of $= 6 \times -\frac{1}{10} = \frac{-6}{10} = \frac{-3}{5}$	

97.

Quadratic Equation	Sum of Roots	Product of Roots
$ax^2 + bx + c = 0$	-b/a	c/a
$8x^2 - 15x - 33 = 0$	-b/a 15/8	- 33/8
$2x^2 - px + mq + 93 = 0$	P/2	$\frac{mq+q3}{2}$
$x^2 - 40 = 0$	Zero	-40 = -40
$px^2 + qx + r = 0$	- 9/p	8/P
$(3k+3)x^2 - (2p-q)x$	(29-9)	(81+63)
+ 8j + 63 = 0	(3k+3)	(3K+3)

98. In a Quadratic Equation $ax^2 + bx + c = 0$

1. Sum of roots = 1^{st} root + 2^{nd} root

$$= \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) + \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$

$$= \frac{-b + \sqrt{b^2 / 4ac}}{-b - \sqrt{b^2 / 4ac}}$$

$$= -\frac{2b}{2a}$$
$$= \left(-\frac{b}{a}\right)$$

2. Product of roots = 1^{st} root x 2^{nd} root

$$= \left(\frac{-b + \sqrt{b^2 - 4\alpha c}}{2\alpha}\right) \times \left(\frac{-b - \sqrt{b^2 - 4\alpha c}}{2\alpha}\right)$$

$$= \frac{\left(-b + \sqrt{b^2 - 4\alpha c}\right) \times \left(-b - \sqrt{b^2 - 4\alpha c}\right)}{2\alpha \times 2\alpha}$$

$$= \frac{\left(-b\right)^2 - \left(\sqrt{b^2 - 4\alpha c}\right)^2}{2\alpha \times 2\alpha}$$

$$= \frac{2\alpha \times 2\alpha}{2\alpha \times 2\alpha}$$

$$= \frac{b^2 - (b^2 - 49c)}{4 \times 4 \times 4} = \frac{1}{4 \times 4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}$$

99. If α , β are roots of quadratic equation $5x^2 - 3x - 8 = 0$.

Find the value of $(\alpha + \beta)$, $\alpha\beta$, $(\alpha + \beta)^2$, $(\alpha^2 + \beta^2)$

1.
$$\alpha + \beta = \text{sum of roots} = 3/5$$

2.
$$\alpha\beta$$
 = product of roots = $-\frac{8}{5}$

3.
$$(\alpha + \beta)^2 = \left(\frac{3}{5}\right)^2 = 9/25$$

$$4. (\alpha^{2} + \beta^{2}) = (\alpha + \beta)^{2} - 2\alpha\beta = \left(\frac{3}{5}\right)^{2} - 2\left(-\frac{8}{5}\right) = \frac{9}{25} + \frac{80}{25} = \frac{89}{25}$$

$$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta$$
$$(\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$
$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$

Please

remem ber

100. If p, q are roots of quadratic equation $x^2 - 3x + 20 = 0$. Find values of

a.p+q =
$$-(-3)/_1$$
 = 3 = sum of roots

c.
$$(p-q)^2 = (p+q)^2 - 4pq = 3^2 - 4(20) = -71$$

d.
$$(p^2 + q^2) = (p+q)^2 - 2pq = 3^2 - 2(20) = -31$$

e.
$$p^3 + q^3 = (p+q)^3 - 3pq(p+q) = 3^3 - 3 \times 20(3) = 27 - 180 = -153$$

$$f. p^2 q + q^2 p = pq (p+q) = 20 \times 3 = 60$$

<u>ակառիտիարկարկարկարկան տկարկարկարկարկարկարկարկարկարկարկան</u>

101. If α , β are roots of quadratic equation $3x^2 - 5x + 2 = 0$.

Find the values of:

$$1.\alpha + \beta = Sum of roots = (5/3)$$

$$2.\alpha\beta = product of roots = (2/3)$$

3.
$$(\alpha + \beta)^3 = (5/3)^3 = (125/27)$$

$$4. (\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = \frac{25}{9} - 2 \times \frac{2}{3} = \frac{25}{9} - \frac{12}{9} = \frac{13}{9}$$

$$5. (\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

$$= \frac{125}{27} - \left(3 \times \frac{2}{3} \times \frac{5}{3}\right) = \frac{125}{27} - \frac{90}{27} = \left(\frac{35}{27}\right)$$

$$6. (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta$$

$$= \frac{25}{9} - 4\left(\frac{2}{3}\right) = \frac{25}{9} - \frac{24}{9} = \left(\frac{1}{9}\right)$$

$$7. \alpha^2 \beta + \beta^2 \alpha = \alpha \beta (\alpha + \beta)$$

$$=\frac{2}{3}\times\frac{5}{3}=\left(\frac{10}{9}\right)$$

$$8. \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{13/q}{2/3} = \frac{13/q}{6/q} = (13/6)$$

9.
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha \beta} = \frac{35/27}{2/3} = \frac{35/27}{18/27} = (35/18)$$

102. If α , β are roots of quadratic equation $x^2 + 5x + 13 = 0$.

Find the value of:

$$1.\alpha + \beta = -5$$

$$2.\alpha\beta = 13$$

$$\frac{2.\alpha\beta}{3.(\alpha^2+\beta^2)} = (\alpha+\beta)^2 - 2\alpha\beta = (-5) - 2(13) = 25 - 26 = -1$$

4.
$$(\alpha + \beta)^2 = (-5)^2 = 25$$

5.
$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (-5)^2 - 4(13) = -27$$

$$6. \alpha^2 \beta^2 = (\alpha \beta)^2 = 13^2 = 169$$

$$7.\alpha^2\beta + \beta^2\alpha = \alpha\beta(\alpha+\beta) = 13 \times -5 = -65$$

$$8. \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \left(\frac{\alpha^2 + \beta^2}{\alpha \beta}\right) = \frac{-1}{13} = -\left(\frac{1}{13}\right) = \left(\frac{1}{13}\right)$$

$$9. \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha \beta} = \frac{70}{13}$$

$$10.\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = (-5)^{3} - 3(13)(-5)$$

$$= -125 + 195$$

103. The standard format of quadratic equation is

$$ax^2 + bx + c = 0$$

where $a \neq 0$

$$ax^{2} - (-b)x + c = 0$$

dividing by 'a' on both sides

$$\frac{ax^2}{a} - \left(\frac{-b}{a}\right)x + \frac{c}{a} = \frac{0}{a}$$

$$x^2 - \left(\frac{-b}{a}\right)x + \frac{c}{a} = 0$$

$$2^2$$
 (sum of roots) $20 + (product of roots) = 0$

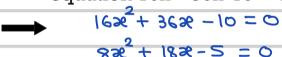
 x^2 - (Sum of roots) x + (Product of roots) = 0

ավարկարկարկարկարկարկար ակարկարկարկարկարկարկարկարկարկարկարկար

104.

Find roots	of quadratic	equation
------------	--------------	----------

$$10x^2 + 11x + 1 = 0$$



$$(x+1) + 1(x+1) = 0$$
 $(x+1) (0x+1) = 0$

$$\approx 28 = -1$$
, $88 = -\frac{10}{7}$

105. Find roots of quadratic

equation
$$16x^2 + 36x - 10 = 0$$

$$(2x+5)(4x-1)=0$$

 $x=-5/2, x=1/4$

106. Find roots of quadratic

equation
$$6x^2+19x-7=0$$

$$6x^{2} + 19x - 7 = 0$$

$$6x^{2} + 21x - 2x - 7 = 0$$

$$3x(2x+7) - 1(2x+7) = 0$$

$$(2x+7)(3x-1) = 0$$

Find the quadratic equation whose roots are -1 ξ $-\frac{1}{10}$

$\frac{2}{2} = \left(\frac{\text{sum of }}{\text{roots}} \right) \approx + \left(\frac{\text{product of }}{\text{roots}} \right) = 0$

$$x^{2} - \left(-1 + \frac{10}{-1}\right)x + \left(-1 \times \frac{10}{-1}\right) = 0$$

$$x^{2} - \left(\frac{-11}{10}\right)x + \frac{1}{10} = 0$$

$$x^2 + \frac{11}{10}x + \frac{1}{10} = 0$$

Find the quadratic equation whose

roots are
$$\frac{1}{4}$$
 $\frac{1}{7}$ $\frac{5}{2}$

$$\frac{2}{2+\cos t} = 0$$

$$2^{2} - \left(\frac{1}{4} + \frac{-5}{2}\right) 2 + \left(\frac{1}{4} \times \frac{-5}{2}\right) = 0$$

$$\frac{2}{8} - \frac{-18}{8} = 0$$

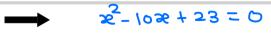
Find the quadratic equation whose

roots are
$$\frac{1}{3} \neq \frac{-7}{2}$$

$2 - \left(\frac{\text{Sum of }}{\text{roots}}\right) \approx + \left(\frac{\text{product of }}{\text{product}}\right) = 0$

$$x^{2} - \left(\frac{1}{3} - \frac{7}{2}\right) \approx + \left(\frac{1}{3} \times \frac{-7}{2}\right) = 0$$

$$x^2 - \frac{-19}{6}x - \frac{7}{6} = 0$$


$$6x^{2} + 19x = 7 = 0$$

Roots are: $\frac{1}{3} f^{-\frac{7}{2}}$ $6x^2 + 19x - 7 = 0$

107. Find roots of quadratic

equation $x^2-10x+23=0$

By Formula,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-10) \pm \sqrt{100-4(1)(23)}}{2 \times 1}$$

$$\frac{10 \pm \sqrt{8}}{2} = \frac{10 \pm \sqrt{4 \times 2}}{2}$$

$$= \frac{10 \pm 2\sqrt{2}}{2} = \frac{\cancel{(5 \pm \sqrt{2})}}{\cancel{2}}$$

= (5± V2) : Roots are: 5+ V24

Find the quadratic equation whose roots are $(5+\sqrt{2})$ & $(5-\sqrt{2})$

→

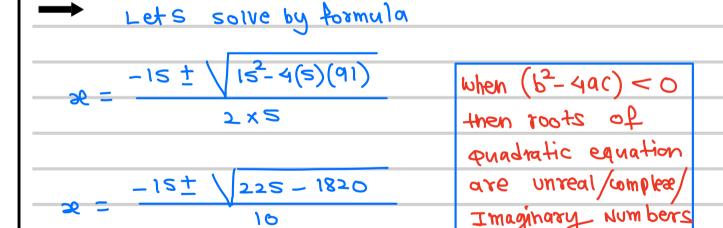
$$2 - \left(\frac{\text{sum of}}{\text{roots}}\right) 2 + \left(\frac{\text{product of}}{\text{product}}\right) = 0$$

$$x^2 - 10x + (5^2 \sqrt{2}^2) = 0$$

$$x^2 - 10x + 23 = 0$$

108.

100.	
Roots of Quadratic Eq ⁿ	Quadratic Equation
5, 10	x ² -15x+50=0
-18, 20	$2^2 - 12 = 360 = 0$
1,-1	$x^2 - 0x - 1 = 0$ (.e. $x^2 - 1 = 0$
15, 18	$2^2 - 332 + 270 = 0$
-16, -20	$2^2 + 36 + 320 = 0$
$-\frac{5}{2}, \frac{9}{2}$	$\varkappa^2 - \left(\frac{q}{2} - \frac{s}{2}\right) \varkappa + \left(\frac{q}{2} \times \frac{-s}{2}\right) = 0$
	$x^2 - 2x - \frac{45}{4} = 0$, $4x^2 - 8x - 45 = 0$
$\frac{9}{7}$, $\frac{8}{13}$	$8^{2} - \left(\frac{9}{7} + \frac{8}{13}\right) \approx + \left(\frac{9}{7} \times \frac{8}{13}\right) = 0$
	$x^{2} - \left(\frac{173}{91}\right)x + \frac{72}{91} = 0 91x^{2} - 173x + 72 = 0$
16,0	2-162 = 0
$(8+\sqrt{3}), (8-\sqrt{3})$	$x^2 - (16)x + (61) = 0$
$(1+\sqrt{30}), (1-\sqrt{30})$	$x^2 - (2)x + (-29) = 0$
	x²-2x-29 = 0



109. Find roots of quadratic equation $4x^2 + 12x + 9 = 0$

4x2+12x+9=0	-12 + 1 12 4(4)(a)
422+620+620+9=0	&= -12 = 1 (2 - 4(4)(4)
$2 \approx (2 \approx +3) + 3(2 \approx +3) = 0$	2×4
(2x+3)(2x+3)=0	$\mathcal{Z} = \frac{-12 \pm 0}{2}$
: 22+3=0 OR 22+3=0	8 -12-0
2e = -3/2 or $2e = -3/2$	$2 = \frac{12+0}{8}$ or $\frac{12-0}{8}$
$\therefore Roots are -\frac{3}{2} + \frac{3}{2}$	2 = -3/2 OR 2 = -3/2

$$b^{2}-4ac = 12^{2}-4(4)(9) = 144-144 = 0$$

When $b^{2}-4ac = 0$ then Roots of quadratic
Equation are equal.

110. Find roots of quadratic equation $5x^2 + 15x + 91 = 0$

111. Find roots of quadratic equation $x^2 - 14x + 46 = 0$

→

Let's use formula

$$2e = \frac{-(-14) \pm \sqrt{(-14)^2 - 4(1)(46)}}{2 \times 1} = \frac{14 \pm \sqrt{196 - 184}}{2}$$

$$2e = \frac{14 \pm \sqrt{12}}{2} = \frac{14 \pm \sqrt{4 \times 3}}{2}$$

$$x = \frac{14 \pm 2\sqrt{3}}{2} = \frac{2(7 \pm \sqrt{3})}{2} = (7 \pm \sqrt{3})$$

we can clearly see that: Roots are Irrational

when $(b^2-40C) > 0$ & Not a perfect square then Roots of quadratic eqⁿ are Irrational

$$2 \times 3 = -(-8) \pm \sqrt{(-8)^2 - 4(3)(-11)} = 8 \pm \sqrt{196}$$

$$= \frac{8+14}{6} \circ R \frac{8-14}{6} = \frac{11}{3} \circ R - 1$$

then Roots of quadratic eqn are Rational

112.

Real Rational Equal
Unreal/imaginary/wmpleæ
Real, Irrational unequal
Real Rational unequal

	<u> </u>	
	value of b²-4ac	Nature of roots
	38	Real, I roational, unequal
	36	Real, Rational, unequal
	81	Real, Rational, unequal
	90	Real, I roational, unequal
	- 144	Compleæ/1 maginary/unreal
	0	Real, Rational, Equal
	207936	Real, Rational, unequal
	810	Real, I roational, unequal
	-90	Compleæ/1 maginary/un real
	– 3S	Compleæ/1 maginary/unreal
	– 0	Real, Rational, Equal
	905	Real, I trational, unequal
	2625	Real, Rational, unequal
	86	Real, I trational, unequal
	100	Real, Rational, unequal
111		
	CA VINOD RE	DDY Maths Regular Notes @ vinod.reddy.ca@gmail.com

anadratic Equation	b ² -49c	Nature of roots
32-122+1=0	$(-12)^{2} - 4(3)(1)$ = 144-12 = 132	Real, Irrational, Distinct
5x2-12x=0	(-12)2-4(5)(0) =144-0=144	Real, Rational, unequal
42+122+9=0	122-4(4)(9)=144-144=0	Real, Rational, Equal
26 ² −10×+53=0	$(-10)^2 - 4(1)(23)$ = 100 - 92 = 8	Real, Irrational, Distinct
1022-20-9=0	$(-1)^{2}-4(10)(-9)$ = 1 + 360 = 361	Real, Rational, unequal
8×2+11=0	$6^2 - 4(8)(11)$ = -352	complese / imaginary / uneren

113. Find the quadratic equation whose roots are $\frac{3}{2}$, $\frac{-8}{11}$

$$\Rightarrow 2^2 - (sum of roots) \approx + (product of roots) = 0$$

$$x^{2} - \left(\frac{3}{3} + \frac{-8}{11}\right)x + \left(\frac{3}{2} \times \frac{-8}{11}\right) = 0$$

$$x^2 - \left(\frac{17}{22}\right) x + \frac{-24}{22} = 0$$

114. Find the quadratic equation whose roots are $(2 + \sqrt{23})$ & $(2 - \sqrt{23})$

$$\Rightarrow 2^{2} - (2 + \sqrt{23} + 2 - \sqrt{23}) + (2 + \sqrt{23})(2 - \sqrt{23}) = 0$$

115. Find the quadratic equation whose one root is ($15 + \sqrt{41}$)

$$\frac{2}{2} \left(\begin{array}{c} \text{Sum of } \\ \text{roots} \end{array} \right) \times + \left(\begin{array}{c} \text{product of } \\ \text{roots} \end{array} \right) = 0$$

$$\frac{2}{2} - 30 \times + \left(225 - 41 \right) = 0$$

$$\frac{2}{2} - 30 \times + 184 = 0$$

116.

Quadratic Equation	b ² - 4ac	Nature of Roots
$3x^2 - 5x - 8 = 0$	$(-5)^2 - 4(3)(-8)$	Real, Rational, unequal
	= 121	
$8x^2 - 13x + 200 = 0$	(-13)2-4(8)(200) = 169 - 6400	unreal complex Imaginary
	= -6231	, , , , , , , , , , , , , , , , , , ,
$5x^2 + 11x - 3 = 0$	112-4(5)(-3)	Real Irrational, unequal
	= 121 + 60 = 181	
$4x^2 + 12x + 9 = 0$	122-4(4)(9)	Real Rational Equal
	= 0	
$x^2 - 13x + 36 = 0$	(-13)2-4(1)(36)	Real, Rational, unequal
	= 28	
$5x^2 + 12x + 7 = 0$	122-4(5)(7)	Real, Rational, unequal
	= 4	
$4x^2 - 1 = 0$	02-4(4)(-1)	Real, Rational, unequal
	= 16	
$3x^2 + 22x = 0$	222-4(3)(0)	Real, Rational, unequal
	= 484	/
$8x^2 - 2x + 33 = 0$	$(-2)^2 - 4(8)(33)$ = 4 - 1056 = -1052	unreal/complex/Imaginary

<u>ավառկանկանկանիանիանիանիան ականկանկանկանիանիանիանիանիանիանիանիանիանիանի</u>

117.	Value of b ² - 4ac	Nature of Roots
	38	Real, Irrational, unequal
	41	Real, Irrational, unequal
	49	Real, Rational, unequal
	-60	unreal complex Imaginary
	0	Real Rational Equal
	88	Real, Irrational, unequal
	14641	Real, Rational, unequal
	19288	Real, Irrational, unequal
	3364	Real, Rational, unequal
	-0	Real, Rational, Equal
	380	Real, Irrational, unequal
	-100	unreal complex Imaginary

118. Roots of quadratic equation $5x^2 - 33x + 8k + 5 = 0$ are equal. Find k.

989 = 160k

119. Roots of quadratic equation $5kx^2 - 3x^2 + 18x - 21 = 0$ are equal.

Find k.

$$(5k-3)x^2+18x-21=0$$

$$\frac{18^{2}-490}{18^{2}-4(5k-3)(-21)} = 0$$

$$420k = -72$$

$$k = -\frac{72}{470} = -\frac{18}{105}$$

$$324 + 84(5k-3)$$

$$k = -6/35$$

120. Roots of quadratic equation $5mx^2 + 33x - 28 = 0$ are equal. Find m.

- As Roots of quadratic egn are equal
 - 6-4ac = 0

1089 + 560m = 0

 $m = -\frac{1089}{560}$

- 121. Roots of quadratic equation $5kx^2 33x + 8k 19 = 0$ are reciprocals of each other. Find the value of k.
- As Roots of quadratic eqh are reciprocals of each other,

1st root x 2nd root = 1

benguet at soofs = 1

· = a

a = c

5K = 8K-19

19 = 3k

 $\frac{1}{3}$ $K = \frac{19}{3}$

122. Roots of quadratic equation $5x^2 - 8kx + 33x - 8p - 19 = 0$ are equal but opposite in sign. Find the value of k.

As Roots are equal but apposite in sign for

quad. eqh: 522+ (-8K+33) 2 -8p-19=0

$$\frac{-b}{}$$
 = 0

$$(-8K + 33) = 0$$

$$33 = 8k$$

$$: K = 33/8$$

123.	If Roots of quadratic equation are	then
	Equal	$b^2 - 4ac = 0$
	Reciprocal of each other	9 = C
	Equal but opposite in sign	b=0=Zero

124. Roots of quadratic equation $5x^2 + kx^2 - 19x - 33k - 93 = 0$ are reciprocal of each other. Find k.

$$(5+k) x^2 - 19x - 33k - 93 = 0$$

$$q = C$$

$$5+k = -33k - 93$$

$$k = -\frac{98}{34} = -\frac{49}{17}$$

<u>արկանկան կանկանի արկանիանիան անկանկանիանիանիանիանիանիանիանիանիանիանիանի</u>

125. Roots of quadratic equation $5x^2 - 8px + 81x = 93x - 63k + 88$ are equal but opposite in sign. Find p.

$$\Rightarrow 5x^2 + (-8p + 81 - 93)x + 63k - 88 = 0$$

$$-8p + 81 - 93 = 0$$

$$-12 = 8p$$

$$\Rightarrow p = -\frac{12}{8} = -\frac{3}{2}$$

126. If p,q are roots of quadratic equation $x^2 - 11x - 28 = 0$. Find values.

$$2 + \cos 4 \circ m \circ 2 = 11 = p + q.1$$

$$2. pq = -28 = product of soots$$

$$3.p^3+q^3=(p+q)^3-3pq(p+q)=11^3-3(-28)(11)=1331+424$$

$$4. p^{2} + q^{2} = (p+q)^{2} - 2pq = 11^{2} - 2(-28) = 177$$

5.
$$(p-q)^2 = (p+q)^2 - 4pq = 11^2 - 4(-28) = 233$$

6.
$$\frac{p}{q} + \frac{q}{p} = \frac{p^2 + q^2}{pq} = \frac{177}{-28} = -\frac{177}{28}$$

7.
$$\frac{p^2}{q} + \frac{q^2}{p} = \frac{p^3 + q^3}{pq} = \frac{2255}{-28} = -2255/28$$

$$8. p^2 q + q^2 p = pq(p+q) = -28 \times 11 = -308$$

9.
$$(p-q) = \sqrt{(p-q)^2} = \sqrt{233}$$

$$10. p^2 q^2 = (pq)^2 = (-28)^2 = 784$$

<u>արկանկանկանիարկանկանիան արկանկանկանկանկանիանիանկանկանկանկանիանիանիանի</u>

127. If α , β are roots of quadratic equation $5x^2 - 2x + 3 = 0$.

Find quadratic equation whose roots are $(\alpha^2 + \beta^2)$, $(\alpha - \beta)^2$

$$\propto \beta = \frac{3}{5}$$

$$(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = \frac{4}{25} - 2 \times \frac{3}{5} = \frac{4}{25} - \frac{30}{25}$$

$$(\alpha - \beta)_{5} = (\alpha + \beta)_{5} - 4\alpha\beta = \frac{52}{4} - 4x\frac{2}{3} = \frac{52}{4} - \frac{52}{60}$$

$$= -\frac{56}{25} = -2.24$$

> question is:

Find quad. egn whose roots are -1-04 & -2.24

: Answer is:
$$x^2 - (-1.04 + -2.24) \approx + (-1.04 \times -2.24) = 0$$

$$2^{2} + 3.282 + 2.3296 = 0$$

128. If α , β are roots of quadratic equation $x^2 - 12x + 17 = 0$.

Find quadratic equation whose roots are $(\alpha^3 + \beta^3)$, $(\alpha^2 + \beta^2)$

$$x^3 + B^3 = 1728 - (3 \times 17 \times 12) = 1116$$

$$\alpha^2 + \beta^2 = 144 - 2 \times 17 = 110$$

Find and exh whose mosts are 1116 & 110

Answer:
$$x^2 - (1116 + 110) x + (1116 \times 110) = 0$$

$$2^{2} - 12262 + 122760 = 0$$

129. If α , β are roots of quadratic equation $5x^2 - 2x - 11 = 0$.

Find quadratic equation whose roots are $(\alpha + \beta)$, $(\alpha\beta)$

$$\Rightarrow$$
 $x+B=\frac{2}{5}, xB=-\frac{11}{5}$

question is: Find quad. egh whose roots are = = = = = = = = =

$$x^{2} - \left(\frac{2}{5} - \frac{11}{5}\right)x + \left(\frac{2}{5}x - \frac{11}{5}\right) = 0$$

$$x^{2} - \frac{-9}{5}x - \frac{22}{25} = 0$$

130. If a+b = 12, ab = 60. Find $(\frac{1}{a} + \frac{1}{b}) = ?$

$$\frac{1}{a+b} = \frac{a+b}{ab} = \frac{12}{60} = \frac{1}{5}$$

131. Find quadratic equation whose one root is $(11 + \sqrt{13})$

 $ext{Anad. } = ext{Qh} \text{ is : } ext{2} = \left[11 + \sqrt{13} + 11 - \sqrt{13} \right] ext{2} + \left[(11 + \sqrt{13}) \left(11 - \sqrt{13} \right) \right] = 0$

$$8_{5}^{2} - 55\% + (151 - 13) = 0$$

132. Find quadratic equation whose one root is $(7 + \sqrt{230})$

133. Standard format of a quadratic equation is:

$$ax^{2} + bx + c = 0$$
 x^{2} - (sum of roots) x + (product of roots) x = 0
Where $a \neq 0$

134.

Roots of	Factors of	Quadratic Eq ⁿ	
Quadratic Eq ⁿ	Quadratic Eq ⁿ		
3, -13	(x-3), $(x+13)$	≈+10≈-3d=0	
-3 & L	(2x + 3) (8x - 1)	1622 - 22 + 242 - 3 = 0	
<u></u>	(2x-1) & (2x-1)=0 (2x-1) & (2x-1)=0	$4x^2 - 4x + 1 = 0$	
<u>2</u> , <u>9</u> 5,8	(52-2), (82-9)	402-452-162+18=0 402-612+18=0	
- 3 / 1	(5x+3), (11x-7)	552 - 352 + 332 -2 20 552 - 22 - 2 20	
-43/-12	(3x+4), (2x+1)	6x ² +3x+8x+4=0 6x ² +11x+4=0	
<u>7</u> ,- <u>11</u>	(52-7) (82 +11)	4022+558-568-77=0	
0,8	æ _, (æ-8)	x ² -82=0	
1,-1	(æ-1) _, (æ+1)	22-1=0	
<u>5,3</u> 3,5	(32-5) (52-3)	152-92-252+15=0 152-342+15=0	

<u>ակառիտոկառիտիրակառիտուստիությունուկանիստիությունունունունունունունունունունուն</u>

135. Standard format of a cubic eqⁿ ax³ + bx² + cx + d = 0, where a \neq 0 3 values of x can satisfy cubic equation

∴ Cubic equation has 2 700+5

136. Find cubic eqⁿ whose roots are 8, 3, -2.

-	• •
- cubic exh is, OF	$x^3 - (sum of roots)x^2 +$
(x-8)(x-3)(x+2)=0	2 - (3011) 2 +
(x2-11x +24)(x+2) =0	$\left[(1st^{\times} 2nd) + (2nd \times 3nd) + (1st^{\times} 3nd) \right] \Rightarrow e - \left(\begin{array}{c} \text{product} \\ \text{of roots} \end{array} \right) = 0$
-	$x^{3} - (8+3-2)x^{2} + (24-16-6)x - (8x3x) = 0$
	3-92+22+48=0

: x3-9x2+2x+48=0

137. Find cubic eqⁿ whose roots are p, q, r

The cubic Eqh is

$$(x_5 - xd - bx + bd)(x - a) = 0$$

 $(x - b)(x - d)(x - a) = 0$

$$x^3 - x^2x - x^2q + xqx - px^2 + pxx + pqx - pqx = 0$$

$$x_3 - (b+d+s)x_5 + (bd+ds+bs)x - (bds) = 0$$

$$x_3 - x_5 x - x_5 d - x_5 b + bdx + dsx + bsx - bds = 0$$

$$x^{3} - \left(\text{Sum of roots}\right)x^{2} + \left[\left(1\text{st}_{x} 2\text{nd}\right) + \left(2\text{nd}_{x} 3\text{rd}\right) + \left(1\text{st}_{x} 3\text{rd}\right)\right] \Rightarrow e^{-\left(\text{product}\right)} = 0$$

compare this with ax3+bx2+cx+d=0

$$\therefore \quad \text{Sum of roots} = -\frac{1}{2} = -\frac{1}{2}$$

138. 1. Find cubic eqⁿ whose roots are 3, -11, -15.

$$\frac{3}{32} - \left(\frac{\text{Sum of }}{\text{roots}}\right) \frac{2}{8} + \left[\frac{(15+x_{2})\text{rd}}{15+x_{2}\text{rd}}\right] + \left(\frac{15+x_{3}\text{rd}}{15+x_{3}\text{rd}}\right) \frac{2}{8} - \left(\frac{15+x_{2}\text{rd}}{15+x_{2}\text{rd}}\right) \frac{2}{8} - \left(\frac{15+x_{3}\text{rd}}{15+x_{3}\text{rd}}\right) \frac{2}{8} - \left(\frac{15+x_{3}\text{rd}}{15+x$$

2. Find cubic eqⁿ whose roots are m, n, v

$$x^{3}$$
 - $(m+n+v)x^{2}$ + $(mn+nv+mv)x$ - $mnv = 0$

139.

	Cubic Equation	Quadratic Equation
Standard Format	$9x^3 + 6x^2 + 6x + d = 0$	$ax^{2} + bx + c = 0$
	where a to	where a \neq 0
Sum of roots	-b/q	- b/a
		,
Product of roots	- d/a	c/a
		·

Find sum of roots of product of roots for

$$8x^3 - 3x^2 - 11kx^2 + 3px^3 - 22x + 18kx - 13mx - 2k + 18 = 0$$

: sum of roots =
$$-\frac{1}{2} = \frac{8+3p}{3+11k}$$

$$\frac{p w dw dx}{|x|^{2}} = -\frac{1}{4} = \frac{2k - 18}{8 + 3p}$$

140. Find cubic eqⁿ whose roots are $(\frac{5}{2}, \frac{9}{2}, \frac{-11}{2})$

$$x^{3} - \left(\frac{3}{2}\right)x^{2} + \left(-\frac{109}{4}\right)x + \left(\frac{495}{8}\right) = 0$$

$$(2x-5)(2x-9)(2x+11)=0$$

$$(22-5)(42^2+42-99)=0$$

141. Find quadratic eqⁿ whose roots are $(\frac{5}{2},0)$

$$2^{2} - (sum of roots) & + (product of soots) = 0$$

$$x_5 - \frac{5}{2}x + 0 = 0$$

$$2(2x-5) = 0$$
 i.e. $2x^2 - 5x = 0$

142. Find quadratic eqⁿ whose roots are (10, -10)

$$(2-10)(2+10)$$
 are Factors : $(2-10)(2+10)=0$

143. Find quadratic eqⁿ whose roots are $\left(\frac{8}{9}, \frac{9}{8}\right)$

$$2^2 - (sum of roots) x + (product of soots) = 0$$

$$x^2 - \left(\frac{8}{4} + \frac{4}{8}\right)x + \left(\frac{4}{8} \times \frac{4}{4}\right) = 0$$

$$x^{2} - \frac{145}{72}x + 1 = 0$$
 $\therefore 72x^{2} - 145x + 72 = 0$

<u>ակավարկականիակարկան ակակարկակարկակարկակարկանիակարկանիա</u>

144. The point (-3p, 28) lie on the line 7x + 12y = 820. Find p.

The we put x=-3p fy=28, 7x+12y=820 must be satisfied

$$7(-3p) + 12(28) = 820$$

$$-21p = 484$$

$$p = \left(-\frac{484}{21}\right) = -23.047619$$

145. The point of intersection of lines 7x + 3y = 90 & 8x + 7y = 210

lie in ____ Quadrant.

- a. 1st b. 2nd
- c. 4th

d. None of these

5672 + 24y = 720 5672 + 499 = 1470

-259= -750

(0,30) is the

roibszrotni to tricos

Ziesp-Y no zi +I

2 = 0 .. 2e = 0

146. The lines 2x + 3y = 90 & 4x + 6y = 180 have _____

- a. No solution
- 22+ 3y=90
- b. Unique Solution

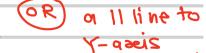
4x+ 6y = 180 }-

Infinite No. of solutions 42 + 69 = 180 These 2

d. None of these

i.e. every point is point of intersection

147. Slope of the line $8x = \frac{81}{11}$ is


a. Zero

18= \$88

b. $\frac{81}{88}$

- C. $\frac{81}{-88}$
- A. Not defined

slope = -a/b = -88/0 = Not defined

148. Find equation of line having slope of $(\frac{8}{11})$ passing through

$$\left(\frac{3}{5},\frac{8}{5}\right)$$

$$\rightarrow$$
 Slope = $\frac{8}{11}$

$$Ed_{N} \text{ of line } 856-117 = 8\left(\frac{2}{3}\right)-11\left(\frac{2}{8}\right)$$

149. Find equation of line having x,y intercept as $\frac{8}{3}$, $\frac{11}{9}$ respectively.

Intercept form is
$$\frac{2}{a} + \frac{y}{b} = 1$$

$$\left(\frac{2}{8} + \frac{4}{11}\right) = 1$$

$$6 = 3 \text{ intercept}$$

$$6 = 3 \text{ intercept}$$

$$\frac{3x}{8} + \frac{9y}{11} = 1$$

$$\frac{33x + 72y}{88} = 1 \quad \therefore \quad 33x + 72y = 88$$

150. Find nature of roots of $3x^2 - 14x - 31 = 0$

$$b^2 - 4ac = (-14)^2 - 4(3)(-31)$$

perfect square

ակարկարկարկարկարկարկար ակարկարկարկարկարկարկարկարկարկարկարի

151. If α , β are roots of quadratic equation $x^2 - 5x + 9 = 0$ then Find quadratic equation whose roots are $(2\alpha + 3\beta)$ & $(3\alpha + 2\beta)$

$$\rightarrow$$
 $\alpha+\beta=5, \alpha\beta=9$

$$x_5^-$$
 (som of roots) $x + (bunguet et soots) = 0$

$$2^{2} - \left[2\alpha + 3\beta + 3\alpha + 2\beta\right] \approx + \left[(2\alpha + 3\beta)(3\alpha + 2\beta)\right] = 0$$

$$x^2 - (5\alpha + 5\beta)x + \left[6\alpha^2 + 4\alpha\beta + 9\alpha\beta + 6\beta^2\right] = 0$$

$$x^2 - 5(\alpha + \beta)x + \left[13\alpha\beta + 6(\alpha^2 + \beta^2)\right] = 0$$

$$x^{2} - (5 \times 5) x + [13 \times 9 + 6(5^{2} - 2 \times 9)] = 0$$

$$2^{2} - 252 + (117 + 6x7) = 0$$

$$2^2 - 252 + (117 + 42) = 0$$

152. One root of quadratic equation $3kx^2 + 18px - 19p + 21 = 0$ is 'zero'. Find value of 'p'.

$$3k(0)^{2} + 18p(0) - 19p + 21 = 0$$

$$\therefore p = \frac{21}{19}$$

<u>ակտվագիտկարկարկարկան ակտվասկարկարկարկարկարկարկարկարկարկարկան</u>

153. If α , β are roots of quadratic equation $5x^2 - 11x + 29 = 0$, Find quadratic equation whose roots are $(\alpha + 1)$ & $(\beta + 1)$

$$\Rightarrow$$
 $x+B=\frac{11}{5}, xB=\frac{29}{5}$

and. Eqh whose roots are (x+1) & (B+1) is

$$x^2 - \left[\alpha + 1 + \beta + 1 \right] x + \left[(\alpha + 1)(\beta + 1) \right] = 0$$

$$2^{2} - (\alpha + \beta + 2) \approx + (\alpha \beta + \alpha + \beta + 1) = 0$$

$$x^{2} - \left(\frac{11}{5} + 2\right)x + \left(\frac{2q}{5} + \frac{11}{5} + \frac{5}{5}\right) = 0$$

$$x^{2} - \left(\frac{21}{5}\right)x + \left(\frac{45}{5}\right) = 0$$

$$5x^{2} - 21x + 45 = 0$$

154. The points (16, (-2k/9)), (18,0), (19,-23) are collinear. Find 'k'

Slope of the like
$$=$$
 Slope of the like passing through points $=$ passing through points $=$ $(16, \frac{-2k}{9})$ \neq $(18,0)$ $=$ $(18,0)$ \neq $(19,-23)$

$$\frac{0 + \frac{2k}{9}}{18 - 16} = \frac{-23 - 0}{19 - 18}$$

$$\frac{2k}{9} = \frac{-23}{1}$$

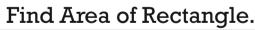
$$2K = -414$$

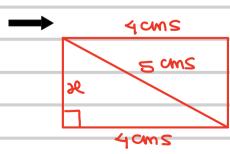
$$K = -207$$

<u>ակառկարկարկարկարկարկար ակարհակարկարկարկարկարկարկարկարկարկար</u>

155.
$$\frac{x+24}{5} = 4 + \frac{x}{4}$$
 Find x.

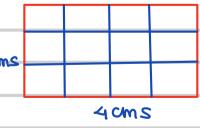
$$\frac{2+24}{5} = 4 + \frac{2}{4}$$


156.
$$x + 5y = 36, \frac{x + y}{x - y} = \frac{5}{3}$$
 then $(x, y) = ?$



$$\frac{36-59+9}{36-59-9}=\frac{5}{3}$$

= 16


157. Diagonal of a rectangle is 5 cms and one of the side is 4 cms then

$$5^2 = 4^2 + 2^2$$

 $2^2 = 9$

<u>տեստեստեստեստեստեստեստ տեստեստեստեստեստեստեստեստեստեստեստեստես</u>

158. If one root of quadratic equation exceeds the other by 4 in

$$x^{2} - 8x + m = 0$$
. Find m.

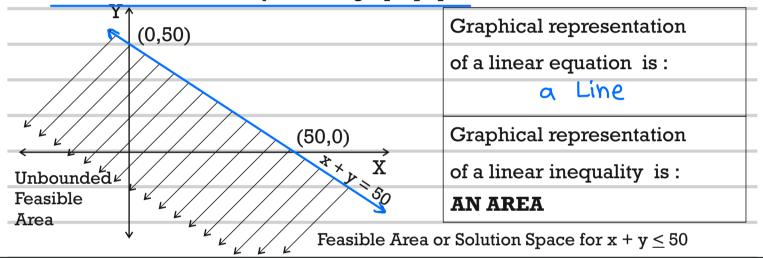
$$x^{2} - (2+6)x + (2\times6) = 0$$

159.
$$x + y = 50, \frac{1}{x} + \frac{1}{y} = \frac{1}{8}$$
 then $(x,y) = ?$

$$2x+y=50$$

$$\frac{2}{x}+\frac{1}{y}=\frac{1}{8}$$

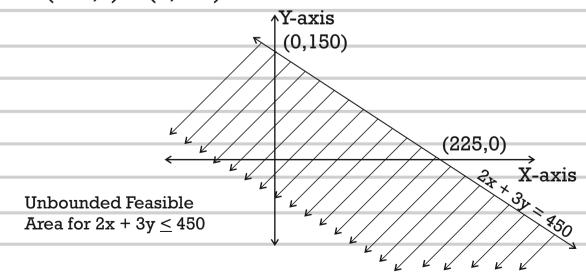
<u>արտարարիարիարիարիան արտարարիարիարիարիարիարիարիարիարիարիարիարիա</u>



160. Find feasible area for x + y < 50

x + y = 50	Linear	$x + y \le 50$	Linear
2x + 3y = 90	Equation Or	$2x + 3y \ge 90$	Inequations Or
3x - 5y = 60	Linear	5x - 18y < 35	Linear
x = 35	Equality	x <u><</u> 48	Inequality
		y ≥ 90 I	

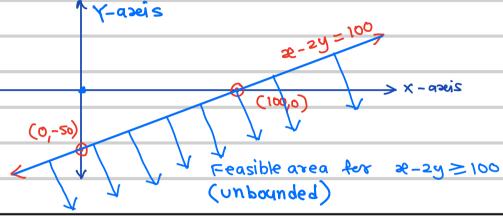
 $x + y \le 50$ is a linear inequality.


Let's draw the line x + y = 50 on graph paper.

161. Find feasible area for $2x + 3y \le 450$

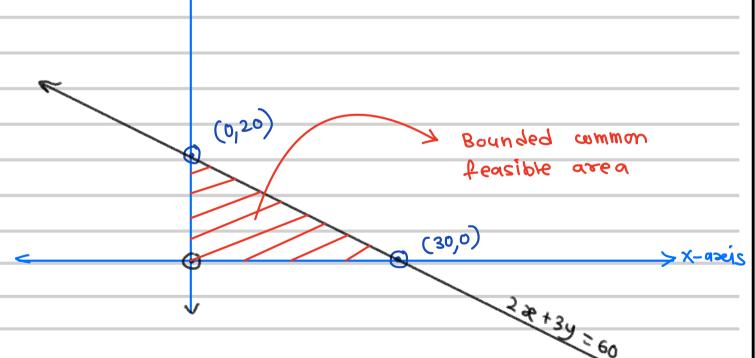
 \longrightarrow To find feasible area for $2x + 3y \le 450$

Let's draw the line 2x + 3y = 450 by joining the points (225,0) & (0,150)



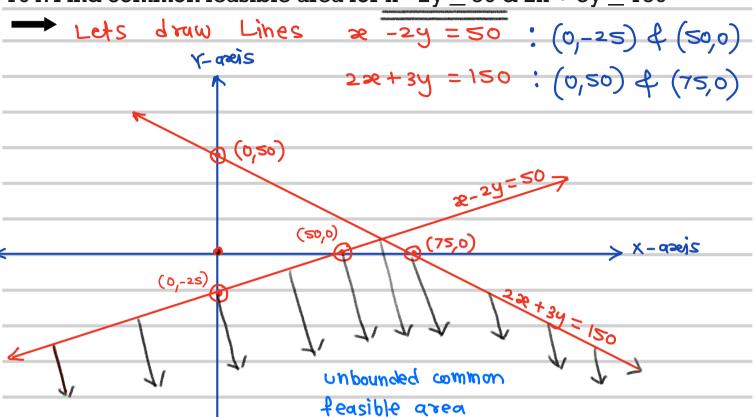
<u>ակարհարհակարհարհակարհարտիակարհակարհարհարհարհարհարհարհարհար</u>

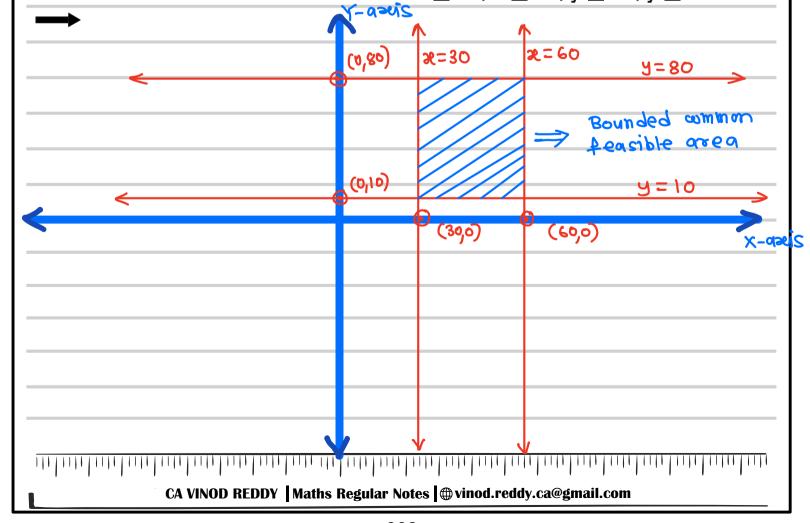
162. Find feasible area for $x - 2y \ge 100$

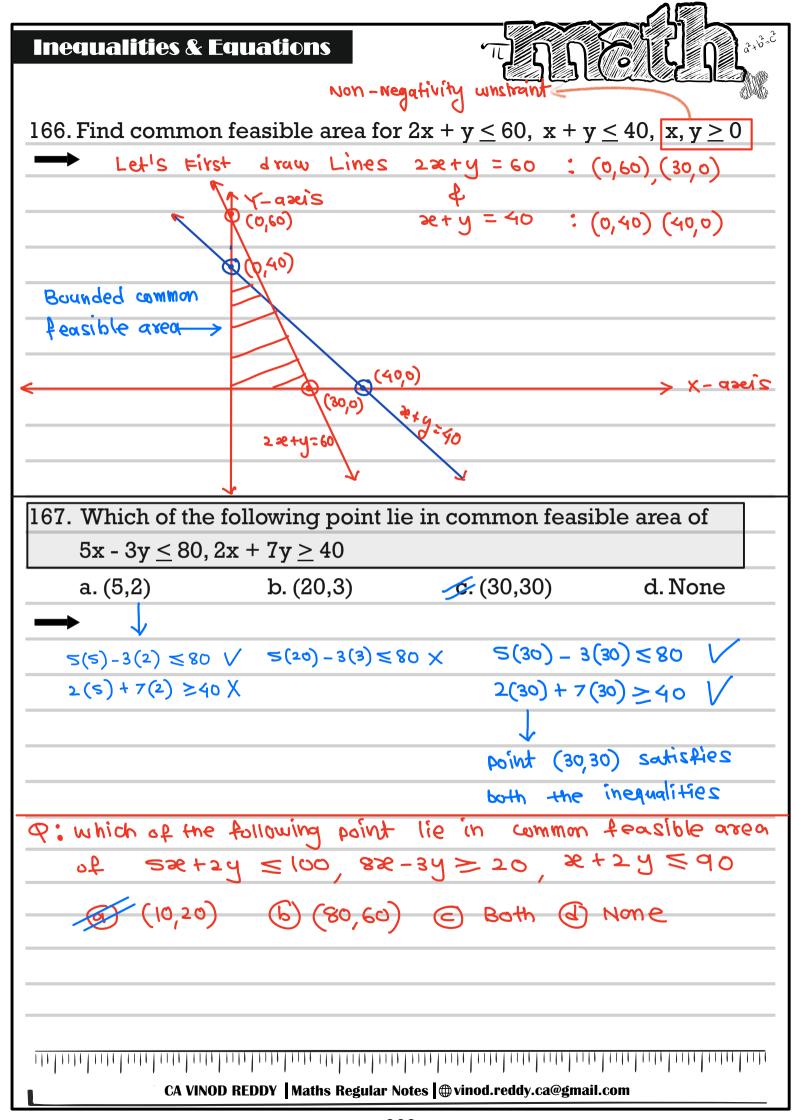

To Find Feasible area for $x-2y \ge 100$, Let's draw x-2y=100 by joining points (100,0) $\{(0,-50)\}$

163. Find common feasible area for $2x + 3y \le 60 \& x, y \ge 0$

Y-azis


Let's First draw 22+3y=60 by joining (0,20) & (30,0)


2, y>0 is known as Non-Negativity
constraint which restricts feasible area in 1st quadrant.

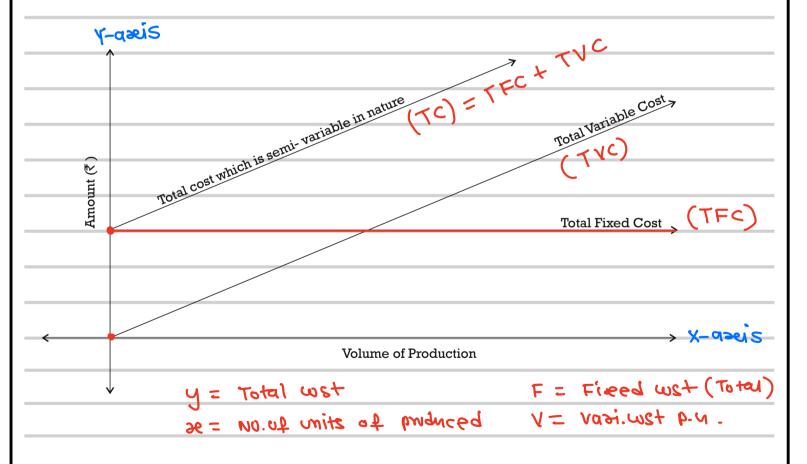


164. Find common feasible area for $x - 2y \ge 50 \& 2x + 3y \le 150$

165. Find common feasible area for $x \ge 30$, $x \le 60$, $y \ge 10$, $y \le 80$

168. Total cost = Fixed cost + Variable cost

Fixed cost: The cost which does not change with change in volume of production is known as Fixed Cost.


Variable cost: The cost which changes in same proportion with change in volume of production is known as

Variable Cost.

Semi - Variable cost: If portion of the cost is fixed and portion is

variable then cost is said to be semi-variable or

semi-fixed cost.

CA VINOD REDDY | Maths Regular Notes | #winod.reddy.ca@gmail.com

169. If b^2 - 4ab = 0 then roots of quadratic equation are

a. Equal

- b. Equal but opposite in sign

Roots are equal when
$$b^2-4ac = 0$$

170. Sum of 2 numbers is 88 and diff bet first number and half of second number is 10. Find the numbers.

- a. 32,56
- b. 44,44
- 2.36,52
- d. 30,58

$$8 - \frac{3}{3} = 10$$

$$x - \frac{y}{2} = 10 \quad 176 - 2y - y = 20$$

2(88-y)-y=20

171. If p, q are roots of $3x^2 - 3x - 1 = 0$. Find value of $(p^3 + q^3)$, $(p^2 + q^2)$

- 0 + q = 1
 - 2) P9 = -1/2

(a)
$$(p^3+q^3) = (p+q)^3 - 3pq(p+q)$$

$$= 1^3 - 3(-\frac{1}{3})(1) = 1 + 1 = 2$$

$$(4)(p^2+q^2) = (p+q)^2 - 2pq = 1^2 - 2x - \frac{1}{3} = 1 + \frac{2}{3} = \frac{5}{3}$$

(e)
$$(p-q)^2 = (p+q)^2 - 4pq = 1^2 - 4x - \frac{1}{3} = 1 + \frac{4}{3} = \frac{7}{3}$$

(a)
$$p^2q + q^2p = pq(p+q) = -\frac{3}{4} \times 1 = -\frac{1}{3}$$

(8)
$$\frac{p^2}{q} + \frac{q^2}{p} = \frac{p^3 + q^3}{pq} = \frac{2}{-\frac{1}{3}} = -6$$

<u>արկարդիարկարկանիանիարկարկան արկարկարկարկարկարկարկարկանիանիանիարկարկանիանիանիանիանիանիանիանիանիանիանիանի</u>

CA VINOD REDDY | Maths Regular Notes | #vinod.reddy.ca@gmail.com

172. If p, q are roots of $3x^2 - 19x - 1 = 0$, whose roots are $\frac{p}{q} \& \frac{q}{p}$.

Find quadratic equation.

$$pq = -\frac{1}{3}$$

and egn whose roots are p & q is,

$$\frac{2}{x^2 - \left(\frac{p}{q} + \frac{q}{p}\right)x + \left(\frac{p}{q} \times \frac{q}{p}\right) = 0}{x^2 + \left(\frac{361}{q} + \frac{6}{q}\right)x + 1 = 0}$$

$$x^2 - \left(\frac{p^2 + q^2}{pq}\right)x + 1 = 0$$

$$x^{2} - \left(\frac{361}{9} - 2\left(-\frac{1}{3}\right) - \frac{1}{3}\right)x + 1 = 0$$

$$\left| \frac{2}{2} + \left(\frac{361}{9} + \frac{6}{9} \right) \right| + 1 = 0$$

$$3e^2 + \frac{367}{3} + 1 = 0$$

$$3x^2 + 367x + 3 = 0$$

$$x^{2} - (m+n+q)x^{2} + (mn+nq+mq)x - mnq = 0$$

174. If x = No. of units produced

Fixed Cost = ₹3,80,000; Variable Cost p.u. = ₹28

then y = Total Cost =

CA VINOD REDDY | Maths Regular Notes | # vinod.reddy.ca@gmail.com

175. If
$$(p+2)(p-3) + (p+3)(p-4) = p(2p-5)$$
, then $p = ?$

$$b_{5}^{-3}b + 5b - 6 + b_{5}^{-4}b + 3b - 15 = 5b_{5}^{-2}b$$

$$(b+5)(b-3) + (b+3)(b-4) = b(5b-2)$$

$$3b = 18$$

$$5b_{2} - 5b - 18 - 5b_{3} + 2b = 0$$

$$5b_{2} - 5b - 18 = 5b_{2} - 2b$$

$$5b_{2} - 5b - 6 - 6 - b - 15 = 5b_{2} - 2b$$

176.15x + 23y = -10 & 3x + 4y = -2then 3x + 2y + 2 = ?

Let's put
$$y=0$$
 in $15x+23y=-10$
 $15x+23(0)=-10$

$$15 = -10$$

 $2 = -\frac{10}{15} = -\frac{2}{3}$

<u>անկան իրականվան կանվան կանանիան անկան կանկան կանկան կանկան կանկան իրական կանկան կանկան իրական կանկան իրական ի</u>

177. Find value of k, if $9x^2 - 24x + k = 0$ has equal roots.

Roots are equal	b-49c=0	
Roots are reciprocals	a=C	
of each other		
Roots are equal	h = 0	
· ·	3 – 0	
	Roots are reciprocals	Roots are reciprocals at each other Roots are equal 6=0

178. Calculate the number such that it is equal to 3 times of its

diff from 56.	98e 2too9	62-4ac	
Let that number be se	Real, irrational,	b2-490 >0	
≈ = 3 × (56-≈)	unequa)	2 Not a perfect square	
≈ = 168 - 3≈	Real, Rational,	b^2 400 = 0	
420 = 168	E q ual		
- 2e = 42	Real, Rational	62-4ac >04	
2 - 72	unequal	perfect square	
	complex/imagi.	6-4ac < 0	
	/ 0		

179.2x + 3y = 5 & 3x - 4y = 2then 5xy = ?

2 toos to tonbors

CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

180.
$$a^2 + b^2 = 45$$
 then $\frac{1}{a} + \frac{1}{b} = ?$

$$ab = 18$$

$$\longrightarrow (a+b)^2 = (a^2 + b^2) + 2ab$$

$$= 45 + 2(18)$$

$$(a+b)^{2} = 81$$

$$(a+p)_{2} = 81$$

$$(a+b) = 9$$

$$\frac{1}{1} + \frac{1}{1}$$

$$=\left(\frac{a+b}{ab}\right)$$

$$=\frac{9}{10}=\frac{1}{2}$$

181. If roots of quadratic equation are (2m) & (-2n) then factors are:

182. If roots of quadratic equation are $(\frac{3}{5})$ & $(\frac{-8}{11})$ then factors are :

Roots of quad. egn	quad. egh
8,3	22-1120 +24 = 0
11, 9	x ² -20x +99=0
- 6, 88	x ₅ 85% - 258 = 0
10,0	×2-10% = 0
2+120, 2-120	x2-42e-16=0
8+111, 8-111	×5-16×+23 = 0
0.50, 2.50	2-32+1.25=0,42-122+5=0
-6,-9	x2+15x+54=0
28,-28	$2^{2}-026-784=0$

CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

183. If quadratic equation x^2 - (p+4)x + 2p + 5 = 0 has equal roots.

Find p

$$\rightarrow$$
 As Roots are equal, $b^2 - 4ac = 0$

$$[-(p+4)]^{2} - 4(1)(2p+5) = 0$$

$$p^2 + 8p + 16 - 8p - 50 = 0$$

$$\rho^{2} - 4 = 0$$
 $\rho^{2} = 4$

184. If
$$4x^3 + 8x^2 - x - 2 = 0$$
 then $(2x + 3) = ?$

$$c. 2, -4, -1$$

$$(2+2)(42-1)=0$$

$$(2+2)[(2x)^2-1^2]=0$$

$$(x+2)(2x-1)(2x+1)=0$$

$$8 = -2$$
 $8 = \frac{7}{7}$ $8 = -\frac{7}{7}$

$$(2x+3)$$
: $2(-2)+3$ $2x\frac{1}{2}+3$ $2x-\frac{1}{2}+3$
=-1 = 4 = 2

ուկությունը արտարանի արտարանիան ուկությունը արտարանի արտարանի արտարանի արտարանի արտարանի արտարանի արտարանի արտ

CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

185. Sum of 2 numbers is 15 & their product is 50 then sum of their reciprocal is :

$$\Rightarrow x + y = 15$$

$$= \frac{x}{x} + \frac{1}{y}$$

$$= \frac{15}{50} = \frac{3}{10} = 0.30$$

186. Out of 3 numbers, sum of first and second is 24, sum of 2^{nd} & 3^{rd} is 30, sum of first & third is 26. The smallest number is :

- a. 18
- b. 14
- c. 16
- **A**. 10

$$2x + y = 24$$

$$y + z = 30$$

$$2x + 30 - z = 24$$

$$2x + z = 26$$

$$2x + 30 - (26 - 26) = 24$$

Inequalities & Equations FORGET THE MISTAKE REMEMBER THE LESSON!

CA VINOD REDDY | Maths Regular Notes | #winod.reddy.ca@gmail.com

Inequalities & Equations	
CA VINOD REDDY Maths Regular Notes	

Inequalities & Equations	
CA VINOD REDDY Maths Regular Notes	

Inequalities & Equations	
CA VINOD REDDY Maths Regular Notes	

Inequalities & Equations	
CA VINOD REDDY Maths Regular Notes	

Inequalities & Equations	
CA VINOD REDDY Maths Regular Notes	