

Dividend Decision

1. waiter's model: F	
D + (E-D) x r	
Po = Ke	
Ke	
wnere,	
E : EPJ	
x Payout: x %	
D : DP3	
r : Return on Equity	
ke : cost of Equity	
Po : Current mps	

	"16	
	२	3
E : 20	E : 40	E : 20
x % : x so%	X % : X SOX	x % : x sox
D : 10	D : 10	D : 10
? : 8 %.	ት : ፈን.	r : 4r.
Ke ! 4%	Ke ! 47.	Ke ! 4%
, ,		
8 x(01-04), 01	9 10 1 (1010) x 2	0 - 10 . (20-10) x 4
4 T	Po = 10 + (20-10) x 2 4	10° 47. 4
\\ \\ \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<u>4 %</u>	Чу.
002 + 02 F	750+125	220 + 220
= 750	= 375	. 002
t > Ke	t < Ke	Γ=Ke
-> fayout = 0%	→ Payout=100%	- Parout doesn't
) 12 G G G G G G G G G	, , , , , , , , , , , , , , , , , , , ,	offect mps 30x=60%
E : 40	E : 20	E : 20
×%: -	X%: X100%	×%.: ×60%.
D : -	D : २०	<u> </u>
? : 8 %.	ነ : ፈን	r : 4 y.
Ke ! 4%	Ke ! 47.	Ke ! 4%
.,,,	112	110
Po = 0 + (20-0) × 8	Po = 20 + (20-20) x 2	n 12 . (२०-12) ~ 4
4	4 / 4 / 4	$\rho_0 = \frac{12}{4r} + \frac{(20-12)}{4} \times \frac{4}{4}$
47.	47.	47.
= 1000	= S00	300 + 200
	700	200
	T	<u> </u>

4 min XYZ Ltd. earns ` 10/ share. Capitalization rate

Question 2. (Illustration 2)

XYZ Ltd. earns ₹ 10/ share. Capitalization rate and return on investment are 10% and 12% respectively.

DETERMINE the optimum dividend payout ratio and the price of the share at the payout.

(WNY): Details:

E : 10

x Payout : xo%

D : ~

r: 12%.

Ke : 10%

1. Optimum Dividend Payout:

since +> ke, the optimum dividend payout = 0%.

2. MP5:

$$P_0 = \frac{D + (E-D) \times r}{Ke}$$

Ke

10%

F 120.

The following figures are collected

Question 3. (Illustration 3)

The following figures are collected from the annual report of XYZ Ltd.:

Net Profit	₹ 30 lakhs
Outstanding 12% preference shares	₹ 100 lakhs
No. of equity shares	3 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	16%

COMPUTE the approximate dividend pay-out ratio so as to keep the share price at ₹ 42 by using Walter's model?

(WN-1): Deta	<u>г13 :</u>	(WN-2): EP3	
<u> </u>	: 6	Net Profit	30,00,000
x Payout	: P	- Preference Drydend	(12,00,000)
<u></u>	: P	(100L × 12%)	
~	: २०%	H23 107 9N	1800,000
Ke	: 16%	÷ NO OF ES	÷ 300,000
Po	: 42	EPS	6

1. Payout ratio:

$$P_{0} = \frac{D + (E-D) \times \frac{r}{Ke}}{ke}$$

$$\frac{Ke}{V} = \frac{D + (G-D) \times \frac{20}{16}}{16}$$

$$42 \times 16\%$$
 = D + 7.5-1.25D
 $1.25D - D = 7.5 - 6.72$
 $0.25D = 0.78$
 $D = 3.12$

: Payow Ratio =
$$\frac{DP5}{EP5}$$
 x100 = $\frac{3.12}{6}$ x 100 = $\frac{52\%}{6}$

5 min The following information pertains

Question 9. (Illustration 9)

The following information pertains to M/s XY Ltd.

Earnings of the Company	₹ 5,00,000
Dividend Payout ratio	60%
No. of shares outstanding	1,00,000
Equity capitalization rate	12%
Rate of return on investment	15%

CALCULATE:

- (i) Market value per share as per Walter's model.
- (ii) Optimum dividend payout ratio according to Walter's model and the market value of Company's share at that payout ratio.

) N-1): Deta:13:	2. 0) since r>ke,
E : 5 (5 k÷1 k)	optimum dividend payout = 0%
x payout :x60%	
p : 3	b) mps
r : 15%	€ §
Ke : 12%	x Payou x D%
Po : ?	D NIL
l. MP3 (wolke's model)	0+ (50) × 15
D + (E-D) x ~	70 =
Po = Ke	12%
Ke Ke	
	Po = 52.08
3 + (5-3) x 15	
12	

3 + (5-3) x 15	
Po =	
12%	
Po = 45.83%	

2. Gordon's growth model:

$$P_0 = \frac{D_1}{\text{Ke-9}} \times 100 \quad \leftarrow$$

$$Ke = \left(\frac{D_1}{P_0} \times 100\right) + g$$

$$Ke - g = \frac{D_1}{P_0} \times 100$$

$$P_0 = \frac{D_1}{Ke - g} \times 100$$

$$Ke-g = \frac{DI}{Po} \times 100$$

(4 min)

The following information is

Question 11. (Illustration 11)

The following information is given below in case of Aditya Ltd.:

Earnings per share = ₹ 60

Capitalisation rate = 15%

Return on investment = 25%

Dividend payout ratio = 30%

- (i) COMPUTE price per share using Walter's Model.
- (ii) WHAT would be optimum dividend payout ratio per share under Gordon's Model.

(WN4): Derai13:

E : 60

x Payout: x30%

D: 18

? : 25%.

Ke : 15%

Po : ?

1. MPS (wolfer's model):

15%

2. Irnce >> Ke

optimum dividend paxow = 0%

he following information is supplied to you: Total Earnings	The following information is supplied to you: Total Earnings		30 mip	The follo	owing informatio	n is supplie
Total Earnings 2,00,00 No. of equity shares (of ₹ 100 each) 20,00 Dividend paid 1,50,00 Price/ Earnings ratio 12. APPLY SET TO SET	Total Earnings 2,00,00 No. of equity shares (of ₹ 100 each) 20,00 Dividend paid 1,50,00 Price/ Earnings ratio 12. Poptlying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Realio PERAtio PERAtio PERAtio PERAtio Optional Earning Gordon's CAPRO Approach approach approach approach Realing Realio Realing Realio Realing Realio Realing Realio Realing Realing Realing Realing Real	Question 13. (PP2)				
Total Earnings 2,00,00 No. of equity shares (of ₹ 100 each) 20,000 Dividend paid 1,50,00 Price/ Earnings ratio 12. ANALYSE whether the company is following an optimal dividend policy. i) COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. ii) Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke =	Total Earnings 2,00,00 No. of equity shares (of ₹ 100 each) 20,00 Dividend paid 1,50,00 Price/ Earnings ratio 12. pplying Walter's Model: 1 ANALYSE whether the company is following an optimal dividend policy. 1 COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. 1 Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke =	The following information is suppli	ied to you:)
No. of equity shares (of ₹ 100 each) Dividend paid 1,50,00 Price/ Earnings ratio 12. ANALYSE whether the company is following an optimal dividend policy. OMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Re PERATIO PERATIO PERATIO Approach Appr	No. of equity shares (of ₹ 100 each) Price/ Earnings ratio Price/ Earnings ratio 12. pplying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Readio PERatio PERatio PERatio Approach Appro					
Dividend paid Price/ Earnings ratio Price/ Earnings ratio 12. pplying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Reper Note of the price of the value of the value of the share. PERATIO (Cost of equity) Explanation: PRATIO (Cost of equity) Explanation: All PRATIO (Cost of equity) Explanation: All Price of the value of t	Dividend paid 1,50,00 Price/ Earnings ratio 12. pplying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. ANALYSE whether the company is following an optimal dividend policy. BY I Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Results PE Ratio PE PS PROTOCO Results R					
Price/ Earnings ratio Applying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Reading PE Ratio PE Ratio Cost of equito MPS EPS Dividend Earning Gordon's CAPIN approach approach approach approach approach approach Reading Ke = E1 x 100 Reading Reading Ke = E1 x 100 Reading Reading Ke = E1 x 100 Reading R	Price/ Earnings ratio pplying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = Kloo PE Ratio PE Ratio Cost of equito MPS EPS Dividend Earning Gordon's CAPIN approach approach approach approach approach Re = E1 x 100 Ke = EPS Kloo Re = EPS Xloo Re = PS MPS Too Re = PS Too Re = PS Re = Too Re		h)			
ANALYSE whether the company is following an optimal dividend policy. ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I	poplying Walter's Model: ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke =					
ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke =	ANALYSE whether the company is following an optimal dividend policy. COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I					12.
i) COMPUTE P/E ratio at which the dividend policy will have no effect on the value of the share. ii) Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I	i) COMPUTE P/E ratio at which the dividend policy will have no effect on the value of t share. ii) Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I		no in fall accing an ar	ملائدة المحمدة	ad a alia.	
share. ii) Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I	share. Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke =					value of t
Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I PE Ratio Explanation: PE Ratio Obt of equity MPS EPS Dividend Earning Gordon's CAPR approach approach approach approach Approach Ke = EI Po Ke = EPS MPS TIOO Ke = I MPS EPS	Will your decision change, if the P/E ratio is 8 instead of 12.5? ANALYSE. Ke = I		the dividend policy	witt nave no	o effect off the	vatue or t
Ke = $\frac{1}{PE Ratio}$ Explanation: PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach Ke = $\frac{E1}{Po}$ x 100 Ke = $\frac{EP5}{MP5}$ x 100 Ke = $\frac{1}{MP5}$ x 100 Ke = $\frac{1}{MP5}$ x 100	Ke = $\frac{1}{\text{PE Ratio}}$ Explanation: PE Ratio MP3 EPS Dividend Earning Gordon's CAPM approach approach approach approach Ke = $\frac{E_1}{P_0}$ x 100 Ke = $\frac{E_{PS}}{M_{PS}}$ x 100 Ke = $\frac{1}{M_{PS}}$ x 100	2000 0000 0000 0000 0000 0000 0000 000	the P/F ratio is 8 inst	tead of 12 5?	ΔΝΔΙΥΣΕ	
Explanation: PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{1}{MP3} \times 100$	PE Ratio PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$	iii, Trice your accision enange, ii			7 11 77 121 321	
Explanation: PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{1}{MP3} \times 100$	PE Ratio PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$					
Explanation: PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP_3} \times 100$ $Ke = \frac{1}{MP_3} \times 100$	PE Ratio PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$ $Ke = \frac{E_1}{MP3} \times 100$. 1				
Explanation: PE Ratio MP3 EP3 Dividend Earning Gordon's CAPM approach approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP3}{MP3} \times 100$ $Ke = \frac{E}{MP3} \times 100$	Explanation: PE Ratio MP5 EP5 Dividend Earning Gordon's CAPM approach approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$	K6 = DE BOALO				
PE Ratio MP3 EP5 Dividend Earning Gordon's CAPIT approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$ $Ke = \frac{I}{MP5} \times 100$	PE Ratio MPS EPS Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{I}{MPS} \times 100$	PE NUTO				
PE Ratio MP3 EP5 Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$ $Ke = \frac{1}{MP5} \times 100$	PE Ratio MPS EPS Dividend Earning Gordon's CAPM approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{I}{MPS} \times 100$					
PE Ratio MP3 EP3 Dividend Earning Gordon's CAPIT approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$ $Ke = \frac{1}{MP5} \times 100$	PE Ratio MP5 EP5 Dividend Earning Gordon's CAPT approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EP5}{MP5} \times 100$ $Ke = \frac{1}{MP5} \times 100$	Explanation:				
EPS Dividend Earning Gordon's CAPM approach approach approach approach	The state of the	<u></u>			·lb	
EPS Dividend Earning Gordon's CAPM approach approach approach approach	The state of the	DE POUN			COST OF POI	11°+11
EPS Dividend Earning Gordon's CAPIT approach approach approach approach $Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{I}{MPS} \times 100$ EPS	EPS Dividend Earning Gordon's CAPIT approach approach approach approach				<u> </u>	~ 4
$Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{E_1}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS	$Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{E_1}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS				•	<u> </u>
$Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{I}{MPS} \times 100$ EPS	$Ke = \frac{E_1}{P_0} \times 100$ $Ke = \frac{EPS}{MPS} \times 100$ EPS EPS		Dividend	Earning		
$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$	$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$		a pprooch (a pprooch	a pprooch	a pprooc
$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$	$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$		· 			
$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$	$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS $Ke = \frac{1}{MPS} \times 100$		V	EIXIOA		
$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS	$Ke = \frac{EPS}{MPS} \times 100$ $Ke = \frac{1}{MPS} \times 100$ EPS		1,6 -	Po		
Ke = 1 x100	Ke = 1 x100					
Ke = 1 x100	Ke = 1 x100		Ke =	MP4 KI	00	
Eb?	Eb?		1			
Eb?	Eb?		Ke		- X100	
Ke = 1 ×100	Ke = 1 x100					
Ke = I x100.	Ke = I x100.			EPS		
PE Ranio	Re = PE Ranio			ı		
			K6 =	PF ROL	X100 ,	
				12 1,00		

(WN4): Details:	c) mps (After recommendation)
E : 10 (200,000÷20,000)	e 10
x Payout:	xpayour -
D : 7.5 (150,000 +20,000)	۰ ۵
~ : 10% (ωN-3)	
ke : 8% (WN-2)	0 + (10-0) x 10
Po :	Po = 8
	Po = 87.
wn-1): cost of equity:	Po = 156.25
· · · · · · · · · · · · · · · · · · ·	8
Ke = I ROTIO × 100	2. PE Rotro at which dividend
2 1 200	payous does not offed mis
= 13.5	for this, r= Ke
= 8%.	-: Ke = 10%
	•
(ON-3): Return on Egwry	Ke = 1 PE Ratio X 100
r = Forning K100	10.1 210.5
E3C	10 = 1 PE ROFTO K100
200,000 × 100	: PE Ratio = 1 x 100 = 10 trme
= (30,000 k 100)	10 1100 - 100
= 10%	3) PE Ratio: 8
· •	,
1. a) mps	a) Ke = 1 = 12.5
(Before recommendation)	8
D + (E-D) x ~	(10) (13.8)
Po = Ke	b) since r< ke
ke ke	: Dividend parow = 100%.
7.5+ (10-7.5) × 10	
Po =	po = 10 + (10-10) x 10
8%	12.5
Po = 132.81	12.5%
	= 80,
b) Recommendation:	
since r> Ke,	
Optimum Dividend Payow=0%	

MP3 (before recommendation) 7.5 + (10-7.5) x 10	
Po =	
12.5%	
Po = 76.	

	12	min The follow	ing figures are collected
Question 4. (Illustration 4)			
The following figures are colle	cted from the annu	al report of XYZ Ltd.:	
Net Profit			₹ 30 lakhs
Outstanding 12% preference s	shares		₹ 100 lakhs
No. of equity shares			3 lakhs
Return on Investment			20%
Cost of capital i.e. (Ke)			16%
CALCULATE price per share usir	ng Gordon's Model	when dividend pay-c	out is (i) 25%;
(ii) 50% and (iii) 100%.			
(WN4): Detau13:			
New Profix		30,00,000)
(-) Preference Divid	lend (100 L X12)	(12,00,000)
NP FOR ESH	•	1800,000	
* NO OF ES		÷ 300,000	
EP5		6	
• • •	10	<u> </u>	1.
Payout (%):	25%	50%	100%
Drvidend :	1.5	3	6
Growth:	1.4.9		
Retention (%)	75%	S0%	-
Return on Equity (%		x २०%	× २०%
nguiron (quarq (n	15%	10%	-
1 mps as per Gordon			
Po = D1 Ke-9	-×100		
J	U	L	J
Payout 25%	Payou	g S0%	Payout 100%
1.5 ×100	3		
16-15 ×100	16-10	-	6-0 ×100
150	50		37.5

			uim 1	X Ltd. is a no growth company, pays
Question 5. (Illus	tration 5)			, , , , ,
X Ltd. is a no gre	owth company,	pays a div	idend of ₹ 5	per share. If the cost of capital is 10%,
COMPUTE the cui				-
current =		5	50.	
m P3	Ke -	10%		

XYZ is a company having share capital

Question 6. (Illustration 6)

XYZ is a company having share capital of ₹ 10 lakhs of ₹ 10 each. It distributed current dividend of 20% per annum. Annual growth rate in dividend expected is 2%. The expected rate of return on its equity capital is 15%. CALCULATE price of share applying Gordon's growth Model.

$$\frac{D_1}{\text{Ke-g}} \times 100$$

5 mip A firm had paid dividend at `2 per share

Question 7. (Illustration 7)

A firm had paid dividend at ₹ 2 per share last year. The estimated growth of the dividends from the company is estimated to be 5% p.a. DETERMINE the estimated market price of the equity share if the estimated growth rate of dividends (i) rises to 8%, and (ii) falls to 3%. Also FIND OUT the present market price of the share, given that the required rate of return of the equity investors is 15%.

4. MP3 (Gordon's Growth):

$$P_0 = \frac{D_1}{\text{Ke-9}} \times 100$$

Growth: 5%	Growtn:8%	Growth: 3x
2+5% ×100	2+ 8% × 100	2+3% 15-3 ×100
21	30.86	17.17

With the help of following figures

Question 14. (PP3)

With the help of following figures CALCULATE the market price of a share of a company by using:

- (i) Walter's formula
- (ii) Dividend growth model (Gordon's formula)

	Earnings per share (EPS)	₹ 10
ľ	Dividend per share (DPS)	₹6
-	Cost of capital (Ke)	20%
-	Internal rate of return on investment	25%
	Retention Ratio	40%

(<u>₩ N~1) : Detar13:</u>	(WN2): Growth:
E : 10	Resention (%) x Resen on equity (%)
x Payour:	40% x 25%
b : 6	10%
? : 25%	· · · ·
Ke : 20%	2) MP3 (Gordon's Growth model)
	Po = D1 X100
1) mps (wolter's model):	Po = D1 x100
0 + (E-D) x ~	6 x100
Po = Ke	= 6 ×100
Ke	Po = 60
6 + (10-6) x (5	
Po =	
₹0 <i>%</i>	
:. Po = 55	

8min	The annual report of XYZ Ltd

Question 15. (PP4)

The annual report of XYZ Ltd. provides the following information:

Particulars	Amount (₹)
Net Profit	50 lakhs
Outstanding 15% preference shares	100 lakhs
No. of equity shares	5 lakhs
Return on Investment	20%
Cost of capital i.e. (Ke)	16%

CALCULATE price per share using Gordon's Model when dividend pay-out is:

- (i) 25%;
- (ii) 50%;
- (iii) 100%.

(WN-1): Derais:

Net profit		50,00,000
(-) Preference Dividend (100L XI 5	°%)	(15,00,000)
NP FOT ESH		3500,000
+ NO OF ES	-	500,000
EPS		7
\$	eb	J
Payout (%): 25%	50%	100%
Drvidend: 1.75	3.5	?
Growth:		
Retention (x) 75%	50%	-
Reputa (%) x 20%	X10%	X
157.	10%	_

1. MP3 (Gordon's Growth Model)

Po = Dr x 100				
J	<u>,</u>	L.		
Growth: 15%	Growth =10x	Growth = NIL		
16-15 ×100	3.5 16-10 ×100	7 16-0 ×100		
175	58.33	43.75		

Taking an example of three different

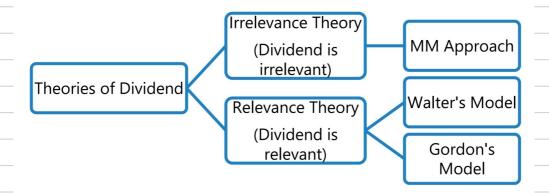
Question 10. (Illustration 10)

Taking an example of three different firms i.e. growth, normal and declining, CALCULATE the share price using Gordon's model.

Sources	Firm	Firm	Firm
	r > K _e	r = K _e	r < K _e
r (rate of return on retained earnings)	15%	10%	8%
K _e (Cost of Capital)	10%	10%	10%
E (Earning Per Share)	₹ 10	₹ 10	₹ 10
b (Retained Earnings)	0.6	0.6	0.6
1- b (Dividend Payout)	0.4	0.4	0.4

(WN-1): Detai13:

		EP3=10	
	Į.	4	t
Poyout (%)	५ ०%	40%	40%
Dryrdend	4	ų	ų
Growth:			
Revention (%)	60).	607.	60%
Return (y.)	<u>አ</u> 15%	x 107,	x 8%
	9%	6 %	4.8%


1. MPS (Gordon's Growth Model):

$$Po = \frac{D_1}{\text{Ke-}g} \times 100$$

J	₹.	L
Growth: 9 x	<u>Growth: 6x</u>	<u>Growtn: 4.8%</u>
10-g × 100	10-6 ×100	4 10-4.8 ×100
400	100	76-92

MODIGLIANI and MILLER (MM) Approach

mm Approach:

$$P_0 = \frac{D_1 + P_1}{1 + Ke}$$

$$\frac{P_0 = \frac{D_1 + P_1}{1 + Ke}}{1 + Ke}$$

$$\frac{Value \text{ of } Frm}{(n + \Delta n) P_1 + E - I}$$

110

Po: current mps n: Existing shares
P1: Expected mps an : New shares

Di : Expected DPS I : Investment

ke : Cost of Equity E ! Forning

Explanation:

£ 100.

AB Engineering Ltd. belongs

Question 1. (Illustration 1)

AB Engineering Ltd. belongs to a risk class for which the capitalization rate is 10%. It currently has outstanding 10,000 shares selling at ₹ 100 each. The firm is contemplating the declaration of a dividend of ₹ 5 share at the end of the current financial year. It expects to have a net income of ₹ 1,00,000 and has a proposal for making new investments of ₹ 2,00,000. CALCULATE the value of the firm when dividends (i) are not paid (ii) are paid.

FN(W)): De	taris	<u>} :</u>
-------	-------	-------	------------

Pa	:	current	mps	:	100
' 0	•	CULLETIA	11/1/2	•	''

Pathicalors

Drvrdend	bon.q	Dividend	not	pard
	•			-

1. Expected MP3 (P1):

$$P_0 = \frac{P_1 + D_1}{1 + Ke}$$
 $100 = \frac{P_1 + 5}{1 + 10\%}$
 $100 = \frac{P_1 + 0}{1 + 10\%}$

$$100 \times 101 = P_1 + 5$$
 $100 \times 101 = P_1$
 $P_1 = 105$ $P_1 = 110$

?. New shares (4n)

.	-	•
a) Investment	a) 200,000	200,000

b) Revained Earning

Earund	1 <i>0</i> 0,000	100,000
- prividend pourd (npi)	(50,000)	-
	(5×10,000)	

b)	50,000	100,000

c) Funds Required (a-b)	150,000	100,000
d) Expected mild	-105	÷ 110

(a) (a) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	e) New Shares	1428.57	909.09
--	---------------	---------	--------

A		niidad aard	Nividend DAL Bard
EXHIQ:		<u>Dividend pard</u>	Dividend not pard
	<u> </u>	10,000	10,000 909 . 09
	<u> </u>	14२8.57	
	•	11428.57	10909.09
	<u>19 x</u>	x 105	X 110
(Ciosing)	yalue of fir	m 1300,000	1200,000
farticu io) [3	<u>Drvrdend pard</u>	<u>Dividend not pard</u>
A value of fri	rm		<u>'</u>
n Po = (n+an) 1	P1+E-1	(10,000+1428.57) x 105	011x(90.000+000,01)
1+Ke		4 100,000 - 200,000 +	+100,000-200,000
		1+10%	1+10%
	2	10,00,000	10,00,000 .

Derivotion

a) Funds required:

b New shares:

$$\Delta n = \frac{z - (E - n D_1)}{P_1}$$

e) current mps:

$$P_0 = \frac{D_1 + P_1}{1 + Ke}$$

(multiply n)

$$nP_0 = \frac{nD_1 + nP_1 + \Delta nP_1}{1 + \kappa e} - \Delta nP_1 = I - E + nD_1$$

$$nP_0 = \frac{nD_1 + P_1 (n+\Delta n) - I + E - nD_1}{x}$$

M Ltd. belongs to a risk class for

Question 12. (PP1)

M Ltd. belongs to a risk class for which the capitalization rate is 10%. It has 25,000 outstanding shares and the current market price is ₹ 100. It expects a net profit of ₹ 2,50,000 for the year and the Board is considering dividend of ₹ 5 per share.

M Ltd. requires to raise ₹ 5,00,000 for an approved investment expenditure. ILLUSTRATE, how the MM approach affects the value of M Ltd. if dividends are paid or not paid.

(WN4): Deta113:

Particulars

Drvrdend	bon.q	Dividend not 1	boud
	•		

1. Expected MPs (P1):

$$P_0 = \frac{P_1 + D_1}{1 + Ke}$$
 $100 = \frac{P_1 + 5}{1 + 10\%}$
 $100 \times 1 = P_1 + 5$
 $100 \times 1 = P_1$

2. New shares (4n)

a) Investment	<u>a)</u> \$60,000	500,000
U) LII VESTINI ETT	<u>u) </u>	300,000

b) Revained Earning

Earnina	450,000	250,000
- Dividend pard (nDi)	(000211)	_
	(2x0002k)	

b)	132000	420,000	

c) Funds Required	(q~b)	375000	250,000
C/ : 4:755 13 15 15 15 15 15 15			

Particulars		Drvrdenc	l pard	<u>Dividend not pourd</u>		
3. Value of from nPo = (n+an) Pi+E-1		/1000012501422W		(10000 1 0200 502 502		
1+Ke		(15000+3571.43) x +150,000-500,00		X (87.5755+00026) 		
, , , , , ,	_	1 + 10%		1+10%		
		1110%		. , , , , , , , , , , , , , , , , , , ,		
	a	2500000.		~00000×		
		(- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 300,000		

RST Ltd. has a capital of ` 10,00,000

112

Question 8. (Illustration 8)

RST Ltd. has a capital of ₹ 10,00,000 in equity shares of ₹ 100 each. The shares are currently quoted at par. The company proposes to declare a dividend of ₹ 10 per share at the end of the current financial year. The capitalization rate for the risk class of which the company belongs is 12%. COMPUTE market price of the share at the end of the year, if

- (i) dividend is not declared
- (ii) dividend is declared

Assuming that the company pays the dividend and has net profits of ₹ 5,00,000 and makes new investments of ₹ 10,00,000 during the period, CALCULATE number of new shares to be issued? Use the MM model.

(WN4): Deta113:

- Po: current mps : 100
- Pr : Expected mps :
- D1 : Expected DP5 : 10
- Ke: Cost of Equity ! 12%
- n : Existing shares : 10,000 (101-100)
- an: New shores:
 - 1 : Investment : 10,00,000
 - E ! Earning : 500,000

Patriculars <u>Dividend paid</u> <u>Dividend not paid</u>

1. Expected MP3 (P1):

Po = P1 + D1	$100 = \frac{P_1 + 10}{1 + 12\%}$	$100 = \frac{P_1 + 0}{1 + 12 \%}$
	100 X1.12 = P1+10	100×1.12=P1

102

2. New shares (4n)

- a) Investment a) 10,00,000
 - b) Retained Earning

Earthing	200000
~ Divrdend pard (nDi)	(100,000)
· · · · · · · · · · · · · · · · · · ·	(10,000x10)

- b) 400,000
- c) Funds Required (a-b) 600,000
- d) Expected mps + 102
- e) New shores 5882.35 or 5883 shores.

Aakash Ltd. has 10 lakh equity shares

Dividend not bourd

Question 18. (PP7)

Aakash Ltd. has 10 lakh equity shares outstanding at the start of the accounting year. The existing market price per share is 150. Expected dividend is 8 per share. The rate of capitalization appropriate to the risk class to which the company belongs is 10%.

- (i) CALCULATE the market price per share when expected dividends are: (a) declared, and (b) not declared, based on the Miller Modigliani approach.
- (ii) CALCULATE number of shares to be issued by the company at the end of the accounting year on the assumption that the net income for the year is 3 crore, investment budget is 6 crores, when (a) Dividends are declared, and (b) Dividends are not declared.
- (iii) PROOF that the market value of the shares at the end of the accounting year will remain unchanged irrespective of whether (a) Dividends are declared, or (ii) Dividends are not declared.

(WN4): Deta113:

Po: current mps	: 150	n : Existing shares	: 10,00,000
Pr : Expected mps	: ?	an: New shores	; ?
DI : Expected DPS	: 8	1: Investment	: 6 cr.
ke: Cost of Eawitu	: 10%	E : Earning	: 3 cr.

Drvidend paud

1. Expected MP3 (P1):		,
	150= P1+8	150 = P1 +0
Po = P1+ D1	1+10%	1+10%
	150×1.1=P1+8	150×1.1 = P,
	P1=157	P1 = 165

2. New shares (4n)

Particulors

600.00	300G
	00,00,000

b) Revarined Earning Earning 300,00,000 300,000 - Dividend pard (nD1) (80,00,000 - (10,00,000) - (10,00,000) 300,00,000

c) Funds Required (a-b)	380,00,000	300,00,000	
d) Expected mps	+ 157	÷ 165	
e) New shores	२ ५२०३४.२२	1818181	

Particulars	<u>Drvrdend pard</u>	Dividend not pourd
3. Yalue of frrm (E	END)	
n Po = (n+an) Pi	(10,00,000 + 2 42038.22)	(81.81814000,000)
	x 157	x 165
	= 1950,00,000	= 19,50,00,000.
		,
extro: Question is	osking value of firm	
	& not begining.	
	Ų J	
Hence, it is proved that	t the total market value of shares remai	ns
unchanged irrespective	of whether dividends are declared, or r	not declared.

dim y

Mr H is currently holding 1,00,000

Question 19. (PP8)

Mr H is currently holding 1,00,000 shares of HM ltd, and currently the share of HM ltd is trading on Bombay Stock Exchange at ₹ 50 per share. Mr A have a policy to re-invest the amount of any dividend received into the shared back again of HM ltd. If HM ltd has declared a dividend of ₹ 10 per share, please determine the no of shares that Mr A would hold after he re-invests dividend in shares of HM ltd.

Dividend Lecelined (100,000 ? pare? x 10)	10,00,000
marker raine ex-girideng (20-10)	
New shares	25000
Existing shores	100,000
· ,	000251

	Following information is given
Question 20. (PP9)	r onowing information is given
Following information is given pertaining to DG ltd,	
No of shares outstanding	1 lakh shares
Earnings Per share	25 per share
P/E Ratio	20
Book Value per share	400 per share
If company decides to repurchase 5,000 shares, at	the prevailing market price, what is the
resulting book value per share after repurchasing.	
(DN-1): MPS:	
PE ROPTO = MP5	
E PS	
20 = <u>mps</u>	
শ >	
mps = 20 x 25 = 500	
Book value before re-purchase	400,00,000
(004x000,001)	
- Re-purchase (25000 x 500)	(1,25,00,000)
12 70.01/032	<u>,</u>
No of shares (100,000 - 45000)	27500,000 , 75004
	÷ 75000
BOOK value per share after re-purch	ase . 366.67

In the month of May of the current

Question 17. (PP6)

In the month of May of the current Financial Year, shares of RT Ltd. was sold for ₹ 1,460 per share. A long term earnings growth rate of 7.5% is anticipated. RT Ltd. is expected to pay dividend of ₹ 20 per share.

- (i) CALCULATE rate of return an investor can expect to earn assuming that dividends are expected to grow along with earnings at 7.5% per year in perpetuity?
- (ii) It is expected that RT Ltd. will earn about 10% on retained earnings and shall retain 60% of earnings. In this case, STATE whether, there would be any change in growth rate and cost of Equity?

1. Return expected by Investor I ke:

$$Ke = \left(\frac{D_1}{P_6} \times 100\right) + 9$$

$$= \left(\frac{20}{1460} \times 100\right) + 7.5$$

$$= 8.87\%$$

2. a) Rexised Growth Rate:

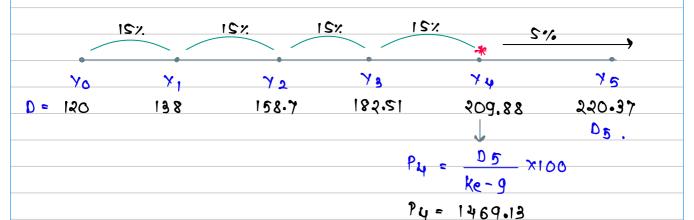
Retention (%) x Return (%)

60% × 10%.

b) old Retention %

CI)	\$	ov.	746	2	Dry	rde	nd:
-4/			1 2 6		TO IX		\mathbf{u}

x Payout x 40% (100-60)


$$Ke = \left(\frac{32}{1460} \times 100\right) + 6$$
= 8.19%

A&R Ltd. is a large-cap multinational

Question 16. (PP5)

A&R Ltd. is a large-cap multinational company listed in BSE in India with a face value of ₹ 100 per share. The company is expected to grow @ 15% p.a. for next four years then 5% for an indefinite period. The shareholders expect 20% return on their share investments. Company paid ₹ 120 as dividend per share for the current Financial Year. The shares of the company traded at an average price of ₹ 3,122 on last day. FIND out the intrinsic value per share and state whether shares are overpriced or underpriced.

(WN4): MPS at Year 4 (end):

calculation of Intrinsic value | Present Value:

Year	COSH FLOW	PVF @ 20%.	PY
1	138	0.833	115
ર	158.7	0.694	110
3	184.51	0.579	106
ų	1679.01	0.482	806
(209.88+1469.13)			
Intrinsic voice		1140	
CULIENT WAS		3122	
:. Share are overvalued by			1987 .
		, ,	