

Downloaded From www.castudynotes.com

STATISTICS FORMULAE

By CA Anand V Kaku

No. of class int LCB = LCL -D, UCB=UCL +D/ Mid-point =LC Frequency de Relative frequ	terval × class lengths = Range /2 /2 B+UCB/2 or LCL+UCL/2 nsity of a class interval = frequen tency and percentage frequen	uency of that class interval/corr cy of a class interval =class free	responding class length quency/ total frequency	
	ARITHMETIC MEAN	GEOMETRIC MEAN	HARMONIC MEAN	MODE
Discrete Series	$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$	$GM = (x_1 \times x_2 \times x_3 \dots \times x_n)^{\frac{1}{n}}$ Logarithm of G for a set of observations is the AM of the logarithm of the observations; i.e. $\log GM = \frac{\sum \log x}{n}$ $G.M = Antilog \frac{\sum \log x}{n}$	$H.M = \frac{n}{\Sigma\left(\frac{1}{x_i}\right)}$	the value that occurs the maximum number of times
Frequency Distribution	$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + x_3 f_3 + \dots + x_n f_n}{f_1 + f_2 + f_3 + \dots + f_n}$	GM= $(x_1^{f_1} \times x_2^{f_2} \times x_3^{f_3} \dots \times x_n^{f_n})^{\frac{1}{N}}$	$H.M = \frac{N}{\Sigma\left(\frac{f_i}{x_i}\right)}$	$Mode = l_1 + \left(\frac{f_0 - f_{-1}}{2f_0 - f_1 - f_{-1}}\right) X C$ where, $l_1 = LCB$ of the modal class. i.e. the class containing mode. f_0 = frequency of the modal class f_{-1} = frequency of the pre – modal class f_1 = frequency of the post modal class C = class length of the modal class

By CA Anand V Kaku

	ARITHMETIC MEAN	GEOMETRIC MEAN	HARMONIC MEAN	MODE		
Relationship variables	$\bar{y} = a + b\bar{x}$	if $z = xy$, then GM of $z = (GM \text{ of } x) \times (GM \text{ of } y)$ if $z = x/y$ then GM of $z = (GM \text{ of } x)/(GM \text{ of } y)$	SS	y _{mo} =a+bx _{mo}		
Weighted Mean	Weighted A.M= $\frac{\sum x_i w_i}{\sum w_i}$	Weighted G.M = Antilog $\frac{\sum w_i \log x_i}{\sum w_i}$	Weighted H.M = $\frac{\sum w_i}{\sum \left(\frac{w_i}{x_i}\right)}$	_		
Combined Mean	Combined A. M $\bar{x}_{12} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$	- C	Combined H. M = $\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$	_		
Important points	the algebraic sum of deviations of a set of observations from their AM is zero $\sum (x_i - \bar{x}) = 0$		_	_		
	AM is affected due to a change of origin and/or scale which implies that if the original variable x is changed to another variable y by effecting a change of origin,	Coltr	_	_		
Relation among	For Given two positive numbers $(A.M) \times (H.M) = (G.M)^2$					
111010200	$AM \ge GM \ge HM$ The equality sign occurs, as we have already seen, when all the observations are equal.					
	Mode = 3 Median – 2 Mean					

By CA Anand V Kaku

	MEDIAN	QUARTILES $(Q_1, Q_2 \& Q_3)$	DECILES (D ₁ ,D ₂ ,D ₃ ,, D ₉)	PERCENTILES (P1,P2,P3,,
			0 P	P ₉₉)
Discrete Series /Unclassified Data	Median = Size of $\left(\frac{N+1}{2}\right)^{th}$ item	Q_1 quartile is given by the $\frac{1}{4}(N+1)th$ value	the D ₁ Decile is given by the $\frac{1}{10}(N+1)$ th value	the P ₁ Percentile is given by the $\frac{1}{100}(N+1)th$ value
		the Q_n quartile is given by the $\frac{n}{4}(N+1)th$ value	D _n Decile is given by the $\frac{n}{10}(N+1)th$ value	P _n Percentile is given by the $\frac{n}{100}(N+1)th$ value
Group Frequency Distribution	$Median = l_1 + \left(\frac{\frac{N}{2} - N_l}{N_u - N_l}\right) X C$ $l_1 = \text{lower class boundary of the median class i.e. the class containing median.}$ $N = \text{total frequency.}$ $N_l = \text{less than cumulative frequency corresponding to } l1. (Pre median class)$ $N_u = \text{less than cumulative frequency corresponding to } l2. (Post median class)$ $l_2 = \text{ being the upper class boundary of the median class.}$ $C = l_2 - l_1 = \text{length of the median class.}$ $y_{me} = a + b x_{me}$	$Q_n = l_1 + \left(\frac{N \cdot p - N_l}{N_u - N_l}\right) \times C$ $l_1 = \text{lower class boundary of the Quartile class i.e. the class containing Quartile. N = total frequency. p = \frac{1}{4} \cdot \frac{2}{4} \cdot \frac{3}{4} for Q1, Q2, Q3respectivelyN_l = \text{less than cumulative frequency corresponding to l1.}(Pre Quartile class)N_u = \text{less than cumulative frequency corresponding to l2.}(Post Quartile class)l_2 = \text{ being the upper class boundary of the Quartile class.}C = l_2 \cdot l_1 = \text{length of the Quartile class.}$	$D_n = l_1 + \left(\frac{N \cdot p - N_l}{N_u - N_l}\right) X C$ $l_1 = \text{lower class boundary of the Decile class i.e. the class containing Decile. N = total frequency. p = \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \dots, \frac{9}{10} for D1, D2,D3,, D9 respectivelyN_l = \text{less than cumulative frequency corresponding to } l_1. (Pre Decile class)N_u = \text{less than cumulative frequency corresponding to } l_2. (Post Decile class)l_2 = \text{being the upper class boundary of the Decile class}.C = l_2 - l_1 = \text{length of the Decile class.}$	$P_n = l_1 + \left(\frac{N \cdot p - N_l}{N_u - N_l}\right) X C$ $l_1 = \text{lower class boundary of the Percentile class i.e. the class containing Percentile. N = total frequency. p = \frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \dots, \frac{99}{100} for P1,P2, P3,, P99 respectivelyN_l = \text{less than cumulative frequency corresponding to } l_1. (Pre Percentile class)N_u = \text{less than cumulative frequency corresponding to } l_2. (Post Percentile class)l_2 = \text{being the upper class}boundary of the Percentile class)C = l_2 - l_1 = \text{length of the Percentile class}.$
	$\sum (x_i - A)$ is minimum if we choose A as the median.			

By CA Anand V Kaku

DISPERSIONS

DISPERSIONS						
	Absolute	Relative	If y = a+bx			
RANGE (R)	Range= Laregest (L) – Smallest (S)	Co efficient of Range = $\frac{L-S}{L+S} \times 100$	$R_y = b \times R_x$			
MEAN DEVIATION (M.D) about A	$M.D_A = \frac{1}{n} \sum x - A $	Co efficient of M.D from $A = \frac{M.D \text{ about } A}{A} \times 100$	$M.D_y = b \times M.D_x$			
MEAN DEVIATION (M.D) about A.M (\bar{X})	M.D about Mean $=\frac{1}{n}\sum x_i - \bar{X} $	Co efficient of M.D from A.M = $\frac{M.D \text{ about } \overline{X}}{\overline{X}} \times 100$	$M.D_y = b \times M.D_x$			
MEAN DEVIATION (M.D) about Median	M.D about Median $=\frac{1}{n}\sum x_i - Median $	Co efficient of M.D from Median = $\frac{M.D \text{ about } A}{A} \times 100$	$M.D_y = b \times M.D_x$			
STANDARD DEVIATION (σ)	$\sigma = \sqrt{\frac{\sum (x_i - \overline{X})^2}{n}}$ $\sigma = \sqrt{\frac{\sum x_i^2}{n} - \overline{X}^2}$	Co efficient of Variation = $\frac{\sigma}{\bar{x}} \times 100$	$\sigma_y = b \times \sigma_x$			
	Standard Deviation for Two numbers, $\sigma = \frac{ a-b }{2}$ Standard Deviation for First n Natural numbers , $\sigma = \sqrt{\frac{n^2-1}{12}}$	Combined Standard Deviation, $\sigma_{12} = \sqrt{2}$ Where $d_{1}=\bar{x}_{1}-\bar{x}_{12}$, $d_{2}=\bar{x}_{2}-\bar{x}_{12}$	$\frac{n_1\sigma_1^2 + n_2\sigma_2^2 + n_1d_1^2 + n_2d_2^2}{n_1 + n_2}$			
QUARTILE DEVIATION (Qd)	$Q_{d} = \frac{Q_{3} - Q_{1}}{2}$	Co-efficient of Q.D = $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$ Or Co-efficient of Q.D = $\frac{Q.D}{Median} \times 100$				
VARIANCE (σ^2)	Variance means Square of Standard Deviation					

Downloaded From www.castudynotes.com

STATISTICS FORMULAE

By CA Anand V Kaku

CORRELATION

By CA Anand V Kaku

REGRESSION ANALYSIS						
	Y depends on X	X depends on Y				
Simple Regression Equation	y= a + b _{yx} x	$x = a + b_{xy} y$	Intersection point of these two lines is \bar{x}, \bar{y}			
Normal Equations	$\sum y_i = na + b_{yx} \sum x_i$ $\sum x_i y_i = a \sum x_i + b_{yx} \sum x_i^2$	$\sum x_i = na + b_{xy} \sum y_i$ $\sum x_i y_i = a \sum y_i + b_{xy} \sum y_i^2$				
Regression Co efficient	$b_{yx} = \frac{Cov(x, y)}{\sigma_x^2}$ $b_{yx} = \frac{r \sigma_y}{\sigma_x}$	$b_{xy} = \frac{Cov(x, y)}{\sigma_y^2}$ $b_{xy} = \frac{r \sigma_x}{\sigma_y}$				
	$\mathbf{b}_{yx} = \frac{n \sum x_i y_i - \sum x_i \times \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$	$\mathbf{b}_{xy} = \frac{n \sum x_i y_i - \sum x_i \times \sum y_i}{n \sum y_i^2 - (\sum y_i)^2}$				
$r = \pm \sqrt{b_{yx} \times b_{xy}}$						
$b_{yx} = \frac{q}{p} \times b_{vu}$ where $u = \frac{x-a}{p}$ and $v = \frac{y-c}{q}$						
Coefficient of Determination = r^2						
Coefficient of Non – Determination = $1 - r^2$						

By CA Anand V Kaku

NAME	CONDITION	PROBABILITY MASS FUNCTION	Notation	MEAN	VARINACE	MODE	Remarks
Binomial Distribution	Trials are independent and each trail has only two outcomes Success & Failure.	$P(X=x) = {}^{n}C_{x} p^{x} q^{n-x}$	X ~ B (n,p)	µ=np	σ ² =npq	If $(n+1)p$ is integer then Mode, $\mu_0 = (n+1)p-1$ If $(n+1)p$ is non-integer then	p+q=1
		For x = 0,1,2,,n			~0	Mode,µ0 =Highest Integer in (n+1)p	
Poisson Distribution	Trials are independent and probability of occurrence is very small in given time.	$P(X = x) = \frac{e^{-m} \cdot m^{x}}{x!}$ For x = 0,1,2,,n	X ~ P (m)	μ=m	σ ² =m	If m is Integer Mode,μ ₀ =m-1 If m is non- integer Mode,μ ₀ = Highest Integer in m	e = 2.71828
Normal or Gaussian Distribution	When distribution is symmetric	$P(X = x)$ $= \frac{1}{\sigma\sqrt{2\pi}}e^{-(\bar{x}-\mu)^2/2\sigma^2}$ For $-\infty < x < +\infty$	$X \sim N (\mu, \sigma^2)$ $Z = \frac{x - \mu}{\sigma}$	Mean = Median = Mode =µ	σ ²	μ	Mean Deviation = 0.8σ First Quartile $= \mu - 0.675\sigma$ Third Quartile $= \mu + 0.675\sigma$ Quartile Deviation= 0.675σ Point of Inflexion $x=\mu - \sigma$ and $x=\mu + \sigma$