

CA Sunil Keswani

CANTERNEDIATE 2024

Marathon Part 2

Cost & Management Accounting

Lecture - 02

TOPICS to be covered

- 1. Service Costing 🗸
- 2. Process Costing 🗸
- 3. Joint & By-Product 🧹
- 4. Marginal Costing 🧹
- 5. Budget & Budgetary Control 🗸
- 6. Standard Costing 🧹

SERVICE COSTING - CONCEPTS

1. Service Costing

It can be internally or externally. Industries will have high fixed cost than variable cost Requires huge investment and comparatively less variable cost

2. Cost Unit

The terms in which costs are expressed.

Single Cost Unit where only one unit is involved e.g. Kg, dozen etc.

Composite/Multiple Cost unit where more than I unit is involved eg: Palsenger- Km, ton-Km etr.

- 3. Cost Unit in case of Toutes / Stries
 - A) Absolute ton-Km = Actual Kms × Actual tons
 - B) Commercial ton-Km = Actual Kms × Average tons

(a) Strike is on obnormal 1088 So Shouldn't be deducted forom above.

Points To Remember (PTRs)
 Petrol, oil and similar charges are always on the basis of actual km travel

Treatment of Depreciation Life based on some voriable base Life Borsed on Yeahs Fixed Volioble (4) Service Cost of la. 2000 ofter every 3000 fm. Actual Knus + Towel D 3500 km No. of Survice - 3500 =1. -. (3) 1 TC = 1 × 2000 = ls.2000 No. of Service = 3500 = 1. _. No. of Service = 8500 = 2.83 @ 2 TC = 2 × 2000 = k. 4000

Treatment of Distance

Mr. X travels 5 20 km dound toils 20 Km tois > 20 % 20 Km I Distonce toovel = 40 km 12 Disto re toovel = 20Fm ł Use when Ques is Silent about the distance

In case of different charges for different categories of service, use the concept of equivalent unit of services.

SERVICE COSTING – QUESTIONS

Question – 1

Mr. S owns a bus which runs according to the following schedule:

(a)	Delhi to Panchkula and back, the same day	And a Kingh	×	Poss. =	P.M-Kn
	Distance covered: 150 kms one way	NO. A FILLS			
	Number of days run each month: 8				
	Seating capacity occupied 90%				
(b)	Delhi to Mathura and back, the same day				
	Distance covered: 120 kms one way				
	Number of days run each month: 10				
	Seating capacity occupied 85%				
(c)	Delhi to Alwar and back, the same day				
	Distance covered: 270 kms one way				
	Number of days run each month: 6				
	Seating capacity occupied 100%				
(d)	Following are the other details:				
	Cost of the bus	₹6,00,000 ✓			
	Salary of the driver	₹2,800 p.m. ✓			
	Salary of the conductor	₹2,200 p.m. ✓			
	Salary of the part-time accountant	₹ 200 p.m. 🛩			
	Insurance of the bus	₹4,800 p.a.	~		
	Diesel consumption 4 kms per litre	 ₹6 per litre	$\left(\frac{1}{1}\right)$	× 8040) × (5=~
	Road tax	₹1,500 <u>p.a</u> .	C4		
	Lubricant oil	₹ 10 per 100 km	IS		
	Permit fee	₹315 p.m. ✓			
	Repairs and maintenance	₹ 1,000 p.m.	•		
	Depreciation of the bus	@ 20%p.a. 🖌	•		
	Seating capacity of the bus	50 persons			

Passenger tax is 20% of the total takings. Calculate the bus fare to be charges from each passenger to earn a profit of 30% on total takings. The fares are to be indicated per passenger for the journeys:(i) Delhi to Panchkula; (ii) Delhi to Mathura; and (iii) Delhi to Alwar

<u>Solution</u>

Calculation of Passenger Kms

No.	х	Kms	×	Passenger	=	Passenger Kms
∽1	×	$150 \times 2 \times 8$	×	50 × 90%	=	1,08,000 - 7
1	×	$120 \times 2 \times 10$	×	$50 \times 85\%$	=	1,02,000
1	×	$270 \times 2 \times 6$	×	$50 \times 100\%$	=	1,62,000
				¥ —	-	
K.	ሉ 1	sover =				
	No. √1 1 1 1	No. × 1 × 1 × 1 × 1 ×	No. × Kms $1 \times 150 \times 2 \times 8$ $1 \times 120 \times 2 \times 10$ $1 \times 270 \times 2 \times 6$	No. \times Kms \times $1 \times 150 \times 2 \times 8 \times$ $1 \times 120 \times 2 \times 10 \times$ $1 \times 270 \times 2 \times 6 \times$	No. \times Kms \times Passenger 1 \times 150 \times 2 \times 8 1 \times 120 \times 2 \times 10 1 \times 270 \times 2 \times 6 \times 50 \times 90% \times 50 \times 85% \times 50 \times 100% \times 50 \times 100%	No. × Kms × Passenger = $1 \times 150 \times 2 \times 8$ $1 \times 120 \times 2 \times 10$ $1 \times 270 \times 2 \times 6$ × $50 \times 90\%$ = $\times 50 \times 85\%$ = $\times 50 \times 100\%$ =

Total

Kms travel = $(1 \times 150 \times 2 \times 8) + (1 \times 120 \times 2 \times 10) + (1 \times 270 \times 2 \times 6) = 8,040$ kms

Statem	ent of	Oner	•ating	Cost	

Particulars	Amount (₹)
Fixed Cost:	
Depreciation $(6,00,000 \times 20\% \times 1/12)$	10,000
Driver salary	2,800 🗸
Conductor Salary	2,200 🗸
Accountant salary	200 🗸
Insurance $(4,800 \times 1/12)$	400
Road Tax $(1,500 \times 1/12)$	125
Permit Fee	315
Total Fixed Cost (A)	16,040
Variable Cost:	
Diesel $[8,040 \times (6/4)]$	✓ 12,060
Lubricating oil $[8,040 \times (10/100)]$	804
Total Variable Cost (B)	12,864
Maintenance Cost:	
Repair & Maintenance	1,000
Total Maintenance Cost (B)	1,000
	⇒ 29,904
(+) Passenger tax $(59,808 \times 20\%)$	11,962
(+) Profit (59,808 × 30%)	17,942
Total Takings (<u>29,904 ÷ 50%</u>)	→ 59,808
Effective Passenger km	3,72,000
Takings per effective passenger km	0.16

Fares per passenger for the journey

Delhi to Panchkula	=	150 × 0.16 = ₹ 24
Delhi to Mathura	=	120 × 0.16 = ₹ 19.20 ✓
Delhi to Alwar	=	270 × 0.16 = ₹ 43.20

<u>Question – 2</u>

SK is a public school having five buses each plying on different directions for the transport of its school students. In view of a large number of students available of the bus service the buses work two shifts daily both in the morning and in afternoon. The buses are garaged in the school. The work load of the students has been so arranged that in the morning the first trip picks up the senior students and the second trip plying an hour later picks up the junior students. Similarly, in the afternoon the first trip picks the junior students and an hour later the second trip takes the senior student home.

= Serier Mooning

Total & rounds in a day = 8x8 = 64 km Distance in a day = 8x8 = 64 km Distance in a month = 64x25= 1600km istonce Dan = 1600 × 9 = 14400 fm

3,72,000

The distance travelled by each bus one way is 8 kms. The school works 25 days in a month and remains closed for the vacation in May, June and December. Bus fee however is payable by the students for all the 12 months of the year.

The details of expenses for a year are as under:

Drivers' salary	ھ	₹450 per month per dr	river	
Cleaners' salary	-7	₹ 350 per month 🦯		
(Salary payable for 12 months and one cleaner emplo	oyed	for all the five buses)		
License fee, taxes etc.		₹ 860 per bus per annu	ım	
Insurance		₹ 1,000 per bus p.a.		
Repairs and maintenance		₹ 3,500 per bus p.a.		
Purchase price of bus (life 12 years)		₹ 1,50,000 each 🛩		
Scrap value		₹30,000 ✓	2 × 14400	=7200
Diesel cost	P	₹2.00 per litre	4	

Each bus gives an average mileage of 4 km per liter of diesel.

Seating capacity of each bus is 50 students. The seating capacity is fully occupied during the whole year. Students picked up and dropped within a range upto 4 km of distance from the school are charged half fare and fifty percent of students travelling in each trip are in this category. Ignore interest since the charges are to be based on average cost.

You are required to:

- (a) Prepare a statement showing the expenses of operating a single bus and the fleet of five buses for a year.
- (b) Work out the average cost per student per month in respect of
 - (i) Students coming from a distance of upto 4 km from the school and
 - (ii) Students coming from a distance of beyond 4 km from the school

Solution

Particulars	1 bus	5 buses
Driver salary	$450 \times 12 = 5,400$	$5,400 \times 5 = 27,000$
Cleaner salary	$4,200 \div 5 = 840$	$350 \times 12 = 4,200$
License etc.	860	$860 \times 5 = 4,300$
Insurance	1,000~	$1,000 \times 5 = 5,000$
Repair & Maintenance	3,500-	$3,500 \times 5 = 17,500$
Depreciation	$(1,50,000 - 30,000) \div 12 = 10,000$	$10,000 \times 5 = 50,000$
Diesel (w.n. – 1)	7,200	$7,200 \times 5 = 36,000$
Total	28,800	1,44,000

(a) Statement of Cost

Working note 1

Number of round trips in a day = 8

Total kms in a day = $8 \times 8 = 64$

Total kms per annum = $64 \times 25 \times 9 = 14,400$ Diesel cost per annum per bus = $14,400 \times (2/4) = ₹7,200$ (b) Number of students from whom bus fee is receivable = 100Half fee students per bus = $100 \times 50\% = 50$ Full fee students per bus = $100 \times 50\% = 50$ Full fee students equivalent to half fee students = $50 \times 2 = 100$ Total equivalent half fee students = 50 + 100 = 150Total cost per bus per annum = ₹28,800 Total cost per bus per month = $28,800 \div 12 = ₹2,400$ Total cost per month per half fee students = $2,400 \div 150 = ₹16$ Total cost per month per full fee students = $16 \times 2 = ₹32$

<u>Question – 3</u>

A company is considering three alternative proposals for conveyance facilities for its sales personnel who have to do considerable travelling, approximately 20,000 kms every year. The proposal are as follows:

- (i) Purchase and maintain its own fleet of cars. The average cost of a car is ₹ 1,00,000
- (ii) Allow the executive use his own car and reimburse expenses at the rate of ₹ 1.60 paise per kilometer and also bear insurance costs.
- (iii) Hire cars from an agency at ₹ 20,000 per year per car. The company will have to bear costs of petrol, taxes and tyres.

The following further details are available:

- → Petrol ₹ 0.60 per km
- → Repairs and maintenance ₹ 0.20 per km
- → Tyre ₹ 0.12 per km
- → Insurance ₹ 1,200 per car per annum;
- → Taxes ₹ 800 per car per annum
- → Life of the car: 5 years with annual mileage of 20,000 kms
- → Resale value: ₹ 20,000 at the end of the fifth year
- Work out the relative costs of three proposals and rank them.

<u>Solution</u>

Particulars	Own car	Executive car	Hire car
Fixed Cost:			
Depreciation [(1,00,000 – 20,000) ÷ 5]	16,000	-	-
Insurance	✓ 1,200	✓ 1,200	-
Taxes	✓ 800	-	✓ 800
Hire charges	-	-	✓ 20,000
Total Fixed cost	18,000	→ 1,200	→ 20,800

Particulars	Own car	Executive car	Hire car
Kms travel	-> 20,000	20,000	20,000
Fixed cost per km (A)	0.90	→ 0.06	(1.04)
Variable Cost per km:			
Petrol	✓ 0.60	-	✓ 0.60
Repair & Maint.	✓ 0.20	-	-
Tyres	0 .12	-	- 0.12
Reimbursement	-	✓1.60	-
Total variable cost per km (B)	0.92	1.60	0.72
Total cost per km (A + B)	1.82	1.66	1.76
Rank	ÎĪ)	Î

Question – 4

Mr. SK now spends ₹ 0.90 per km on taxi for his clients' work. He is considering two other alternatives, the purchase of a new nano car or an old innova car. The estimated cost figures are:

New Nano Car	Old Innova car
35,000	20,000
19,000	12,000
1,000 🛩	1,200 -
1,700 —	700 -
10 km	7 km
3.50	3.50
	New Nano Car 35,000 19,000 1,000 1,700 10 km 3.50

He estimates that he goes 10,000 km annually. Which of the three alternatives will be cheaper? If his practice expands and he has to go 19,000 km per annum, what should be his decision? At how many kms per annum will the cost of the two cars break even and why? Assume petrol only as variable cost. Ignore interest and income tax.

Solution

Fare

	Statement of operating cost								
Particulars	New Nano Car 🖌	Old Innova car 🧹	Taxi 🕻						
Fixed cost:									
Depreciation	$(35,000-19,000) \div 5 = 3,200$	$(20,000-12,000) \div 5 = 1,600$							
Repairs	1,000	- 1,200							
Taxes and	- 1,700	- 700							
Insurance									
Total Fixed cost (A)	5,900	3,500							
Variable Cost:									
Petrol	$10,000 \times (3.50/10) = 3,500$	$10,000 \times (3.50/7) = 5,000$							

Statement of operating cost

500	_	
-	0.90×10,000 =	
	9,000	

-

Total Variable cost (B)	3,500	5,000	9,000
Total cost (A + B)	9,400	5,000	9,000

Statement of operating cost

: Recommended to purchase old Innova car for travel upto 10,000 kms.

Particulars New Nano Car **Old Innova car** Taxi 5,900 ✓ 3,500 Total Fixed cost € Total variable cost 19,000 × 19,000 × $0.90 \times 19,000 =$ (3.50/10) = 6,650(3.50/7) = 9,50017,100 12,550 Total cost 13,000 17,100

: Recommended to purchase new Nano car for travel upto 19,000 kms.

Let at 'y' kms, cost of the two options will become equal.

Total cost of New Nano car = Total cost of Old Innova car

5,900 + (y)(3.5/10) = 3,500 + (y)(3.5/7)

y = 16,000 kms

Question – 5

Navya LMV Pvt. Ltd., operates cab/car rental service in Delhi/NCR. It provides its service to the offices of Noida, Gurugram and Faridabad. At present it operates CNG fueled cars but it is also considering to upgrade these into Electric vehicles (EV). The details related with the owning of CNG & EV propelled cars are as tabulated below:

Particulars	CNG Car	EV Car	
Car purchase price (₹)	✓ 9,20,000	✓ 15,20,000	
Govt. subsidy on purchase of car (₹)	-	✓ 1,50,000	
Life of the car	✓15 years	→ 10 years	
Residual value (₹)	✓ 95,000	✓ 1,70,000	
Mileage	20 km/kg	240 km per charge	0.95
- Electricity consumption per full charged	818 Sil	-> 30 Kwh-	
CNG cost per Kg (₹)	→ 60	-	218
Power cost per Kwh (₹)	-	-9 7.60-	L
Annual Maintenance cost (₹)	~ 8,000	→ 5,200	
Annual insurance cost (₹)	— 7,600	→ 14,600	
Tyre replacement cost in every 5 year (₹)	16,000	16,000	
Battery replacement cost in every 8 years (₹)	12,000	5,40,000	

Apart from the above, the following are the additional information:

Particulars		
Average distance covered by a car in a month	ĥ	1,500 km
Driver's salary (₹)	ر ه	20,000 p.m. 🛩
Garage rent per car (₹)	->	4,500 p.m. 🗸

Share of office and administration cost per car (₹) + 1,500 p.m.

Required to calculate the operating cost of vehicle per month per car for both CNG & EV option. Solution

Working Notes:

1. Calculation of Depreciation per month

	Particulars	CNG Car	EV Car
А	Car Purchase price (₹)	✓ 9,20,000	15,20,000
В	Less: Govt. Subsidy	-	✓ (1,50,000)
С	Less: Residual value (₹)	~ (95,000)	✓ (1,70,000)
D	Depreciation value of cat ($\overline{\mathbf{x}}$) (A – B – C)	8,25,000	→ 12,00,000
E	Life of the car	→ 15 years	→ 10 years
F	Depreciation per month ($\overline{\mathbf{x}}$) [D $(\mathbf{E} \times \underline{12})$]	4,583.33	10,000

2. Fuel/Electricity consumption per month

	Particulars	CNG	Car	EV	Car	
А	Average distance covered in a month	ſ	1,500	1	1,500	
В	Mileage (KM)	1	20	1	240	
С	Quantity of CNG/Full charge required $(A \times B)$	+	75 kg		6.25	
D	Electricity consumption ($C \times 30$ Kwh)		-		187.5	
Е	Cost of CNG per kg (₹)		60		-	
F	Power cost per Kwh (₹)	_	-		7.60	- 06- 150
G	CNG Cost per month ($\overline{\mathbf{T}}$) (C × E) 1500	×3 =	4,500		-)
Н	Power cost per month (\mathfrak{F}) (D × F)		-		1,425	Ľ

3. Amortized cost of Tyre replacement

	Particulars	CNG Car	EV Car
А	Life of vehicle	15 years	10 years
В	Replacement interval	5 years	5 years
С	No. of time replacement required	→ 2 times	→ 1 time
D	Cost of tyres for each replacement (₹)	→ 16,000	16,000
Е	Total replacement cost (\mathfrak{T}) (C × D)	→ 32,000	16,000
F	Cost per month (\mathfrak{F}) [E $\stackrel{1}{\leftarrow}$ (A × 12)]	177.78	133.33

4. Amortized cost of Battery replacement

	Particulars	C	NG Car	EV Car
А	Life of vehicle	→	15 years	→ 10 years
В	Replacement interval		8 years	8 years
С	No. of time replacement required		1 time	1 time

D	Cost of battery for each replacement (₹)	~	12,000	- 5,40,000
Е	Total replacement cost (\mathfrak{T}) (C × D) -	•	12,000	5,40,000
F	Cost per month ($\overline{\mathbf{x}}$) [E $\stackrel{!}{\leftarrow}$ (A × 12)]		66.67	4,500

Statement	of O	nerating	Cost
Statement	UI U	perating	COSt

Particulars	CNG Car (₹)	EV Car (₹)
Fixed Cost:		
Depreciation (working note - 1)	4,583.33	10,000
Driver's Salary	20,000	20,000
Garage rent	4,500	4,500
Total Fixed Cost (A)	30,583.33	36,000
Variable Cost:		
Fuel cost/ power cost (Working note -2)	4,500	1,425
Total Variable Cost (B)	4,500	1,425
Maintenance Cost:		
Annual maintenance cost	666.67	433.33
Annual insurance cost	633.33	1,216.67
Amortized cost of tyres replacement (working note -3)	177.78	133.33
Amortized cost of battery replacement (working note -4)	66.67	4,500
Total Maintenance Cost (C)	1,544.45	62,83.33
Operating cost per month (A + B + C)	36,627.78	43,708.33

Question – 6

SK Transport Ltd. charges ₹ 90 per ton for its 6 tons truck lorry load from city 'A' to city 'B'. The charges for the return journey are ₹ 84 per ton. No concession or reduction in these rates is made for any delivery of goods at intermediate station 'C'. In January, the truck made 12 outward journeys for city 'B' with full load out of which 2 ton were unloaded twice in the way at city 'C'. The truck carried a load of 8 tons in its return journey for 5 times but once caught by police and ₹ 1,200 was paid as fine. For the remaining trips the truck carried full load out of which all the goods on load were unloaded once at city 'C'.

The distance from city 'A' to city 'C' and city 'B' are 140 kms and 300 kms respectively. Annual fixed cost and maintenance charges are \gtrless 60,000 and \gtrless 12,000 respectively. Running charges spent during January, are \gtrless 2,944. You are required to find out the cost per absolute ton-km and the profit for January.

Solution

A to C	2 ×	140	×	6	=	1,680
\longrightarrow C to B	2 ×	160	×	4	=	1,280
\rightarrow B to A	5 ×	300	×	8	=	12,000
B to C	<u>1</u> ×	160	×	6	=	960
C to A	1 ×	140	×	0	=	0
B to A	6 ×	300	×	6	=	10,800
•		·		Total	=	44,720

Statement of operating cost

Particulars		Am	ount (₹)
Fixed charges (60,000 ÷ 12)		1	5,000
Maintenance charges (12,000 ÷ 12)		-	1,000
Running charges		1	2,944
	Total Cost	ſ	8,944
	Ton-Km	ſ	44,720
	Total cost per ton-km		0.20

Statement of Profit

Particulars		Amount (₹)
Revenue:	~ .	
Outward	$- 10 \times 6 \times 90 = 5,400$	
	$2 \times \underline{6} \times \underline{90} = 1,080$	
Return	$5 \times 8 \times 84 = 3,360$	
	$1 \times 6 \times 84 = 504$	
	$6 \times 6 \times 84 = 3,024$	→ 13,368
Less: Total cost		→ (8,944)
Less: Fine & Penalties		(1,200)
	Profit	3,224

Question – 7

A transport company has a fleet of three trucks of 10 tonnes, capacity each plying in different directions for transport of customer goods. The trucks run loaded with goods and return empty. The distance travelled, number trips made and the load carried per day by each truck are as under:

Truck No.	One way	No. of trips	Load carried per trip
	distance (Km)	per day	per day (tonnes)
1	16	4	6
2	40	2	9
3	30	3	8

The analysis of maintenance cost and the total distance traveled during the last two years is as under:

Year	Total distance traveled	Maintenance cost ₹
1	1,60,200	46,050

 2
 1,56,700
 45,175

 The following are the details of expenses for the last year under review:

 Diesel
 : ₹ 10 per litre. Each liter gives 4 km per litre of diesel on average

 Driver Salary
 - : ₹ 2,000 per month

 License and taxes
 - : ₹ 5,000 per annum per truck

Insurance	:	₹ 5,000 per annum for all 3 vehicles
Purchase price per truck	:	₹ 3,00,000, Life 10 years, Scrap value at the end of life
		is ₹ 10,000
Oil and sundries	:	₹ 25 per 100 km run $\frac{25}{180}$
General overhead	:	₹ 11,084 per annum

The vehicles operate 24 days per month on an average

Required:

(a) Prepare an Annual Cost Statement covering the fleet of three vehicles

(b) Calculate the cost per Km run 🗸

(c) Determine the freight rate per tonne km to yield a profit of 10% on freight

Solution

Truck No.	No.	×	Kms	×	Ton	=	Ton Kms	
1	1	×	$16 \times 4 \times 24 \times 12$	×	<u>→ 6</u>	=	1,10,592	
c 1	1	×	$16 \times 4 \times 24 \times 12$	×	0 🛩	=	0	
2	1	×	$40 \times 2 \times 24 \times 12$	×	9	=	2,07,360	
E 2	1	×	$40 \times 2 \times 24 \times 12$	×	0 🖌	=	0	
3	1	×	$30 \times 3 \times 24 \times 12$	×	8	=	2,07,360	
6 3	1	×	$30 \times 3 \times 24 \times 12$	×	0 🛩	=	0	
	L	T		I	Total	=	5,25,312	

Calculation of Ton Kms

Total kms travelled = 1,34,784 kms

Statement of Operating Cost

Particulars	Amount (₹)
Fixed Cost:	
Driver salary $(2,000 \times 12 \times 3)$	~ 72,000
License and tax $(5,000 \times 3)$	✓ 15,000
Insurance	—) 5,000
Depreciation $\left[\frac{(3,00,000-10,000)}{10} \times 3\right]$	~~~ 87,000
General overheads	→ 11,084
Total Fixed Cost (A)	→ 1,90,084
Variable Cost:	

Particulars		A	Amount (₹)
Diesel [1,34,784 × (10/4)])	3,36,960
Oil & Sundries [1,34,784 × (2 <u>5/100</u>)]		/	33,696
	Total Variable Cost (B)	1	3,70,656
Maintenance Cost:			
Maintenance Cost (working note – 1)			39,696
	Total Maintenance Cost (B)	ŀ	• 39,696
	Total Cost $(A + B + C)$		6,00436

Working Note 1

Variable maintenance cost per km = $\frac{Difference in total cost}{Difference in kms}$ = $\frac{46,050-45,175}{1,60,200-1,56,700}$ = ₹ 0.25 Fixed maintenance cost = Total cost - Variable cost = 45,175 - (1,56,700)(0.25) = ₹ 6,000 Maintenance cost = Fixed cost + variable cost = 6,000 + (1,34,784)(0.25) = ₹ 39,696

(b) Total cost per km = $\frac{Total cost}{Kms} = \frac{6,00,436}{1,34,784} = ₹4.45$

(c) Cost per ton-km	$\left(\frac{6,00,436}{1,34,784}\right)$	= 1.143 🛩
(0)	Profit per ton-km	(1.27 × 10%)	= 0.127
(190)	Freight per ton-kn	n(1.143 ÷ 90%)	1.270

Question – 8

SK Hospital runs a Critical Care Unit (CCU) in a hired building. CCU consists of 35 beds and 5 more beds can be added, if required.

Rent per month	-	₹75,000 ∽
Supervisors (2 persons)	-	₹25,000 per month – each
Nurse (4 persons)	-	₹ 20,000 per month – each
Ward Boys (4 persons)	-	₹ 5,000 per month – each

Doctors paid ₹ 2,50,000 per month – paid on the basis of number of patients attended and the time spent by them.

Other expenses for the year are as follows:

- 🕈 81,000
- ₹3,00,000 -
- ₹6,00,000
- ₹7,50,000 -
- ₹10,80,000
- ₹10,00,000 🦳

(35×150) + (80×25) +750 = 8000

It was estimated that for 150 days in a year 35 beds are occupied and for 80 days only 25 beds are occupied.

The hospital hired 750 beds at a charge of ₹100 per bed per day, to accommodate the flow of patients. However, this does not exceed more than 5 extra beds over and above the normal capacity of 35 beds on any day.

You are required to:

Contribution per patient day =

Break-even point = $\frac{Fixed cost}{Contribution per patient day}$

8,000 Fixed cost

- (a) Calculate profit per paitent day, if the hospital recovers on an average ₹ 2,000 per day from each patient.
- (b) Find out breakeven point for the hospital.

Solution

(a) Effective bed days = $(150 \times 35) + (80 \times 25) + 750 = (8,000)$

Particulars Amount (₹) Variable Cost: Doctor cost $(2,50,000 \times 12)$ 30,00,000 Food to patients 8,80,000 Other services to patients 3,00,000 Laundry charges 6,00,000 Medicines 7,50,000 Bed Charges (750×100) 75,000 Total Fixed Cost (A) 56,05,000 **Fixed Cost:** -Rent (75,000 × 12) 9,00,000 Supervisor $(25,000 \times 12 \times 2)$ 6,00,000 Nurse $(20,000 \times 12 \times 4)$ 9,60,000 Ward boys $(5,000 \times 12 \times 4)$ 2,40,000 Repair 81,000 Other fixed expenses 10,80,000 Administration expenses 10,00,000 Total Variable Cost (B) 48,61,000 Total Cost (A + B) 1,04,66,000 Revenue $(8,000 \times 2,000)$ 1,60,00,000 Profit 55,34,000 Profit per patient day = $\frac{55,34,000}{8,000} = 691.75$ (b) Contribution = Revenue – Variable cost = ₹ 1,60,00,000 – ₹ 56,05,000 = ₹ 1,03,95,000 1,03,95,000 = ₹ 1,299.375

 $\frac{48,61,000}{1,299.375} = 3,741$ patient days

Statement of Profit

<u>Question – 9</u>

SEZ Ltd. built a 120 km long highway and now operates a toll road to collect tolls. The company has invested ₹ 900 crore to build the road and has estimated that a total of 120 crore vehicles will be using the highway during the 10 years toll collection tenure. The other costs for the month of 'June 2020' are as follows:

(i) Salary"

Collection personnel (3 shifts and 5 persons per shift) - ₹ 200 per day per person. Supervisor (3 shifts and 2 persons per shift) - ₹ 350 per day per person Security personnel (2 shifts and 2 persons per shift) - ₹ 200 per day per person Toll Booth Manager (3 shifts and 1 person per shift) - ₹ 500 per day per person

- (ii) Electricity ₹ 1,50,000 -
- (iii) Telephone ₹ 1,00,000
- (iv) Maintenance cost ₹ 50 lakhs

(v) The company needs 30% profit over total cost.

Required:

- (1) Calculate cost per kilometer
- (2) Calculate the toll rate per vehicle

Solution

(1)

Statement of Cost

Particulars	Amount (₹)
Capital Cost:	
Capital cost share $\left[\frac{900 \ crore}{10} \times \frac{1}{12}\right]$	✓ 7,50,00,000
Total Capital Cost (A)	→ 7,50,00,000
Operating Cost:	
Salary – Collection Personnel $(3 \times 5 \times 30 \times 200)$	90,000
- Supervisor $(3 \times 2 \times 30 \times 350)$	63,000
- Security Personnel ($2 \times 2 \times 30 \times 200$)	24,000
- Toll booth manager $(3 \times 1 \times 30 \times 500)$	45,000
Electricity	1,50,000
Telephone	1,00,000
Total Operating Cost (B)	— 4,72,000
Maintenance Cost:	
Maintenance	→ 50,00,000
Total Maintenance Cost (C)	50,00,000
Total Cost $(A + B + C)$	8,04,72,000
Kms	120
Total cost per km	6,70,600

(2)	Vehicles per month = $\frac{120,00,00}{10}$	$\frac{1}{12}$ \checkmark	=	1,00,00,000
	Total cost per month		,000	
Add	l: Profit (30%×8,04,72,000)	→ = 2,41,41	<u>,600</u>	
	Total Revenue	=10,46,13	3,600	
	Vehicles	= 1,00,00	<u>,000</u> 🛩	
	Toll per vehicle	= 1	<u>0.46</u>	

Question – 10

A lodging home is being run in a small hill station with 50 single rooms. The home offers concessional rates during six off-season months in a year. During this period, half of the full room rent is charged. The management's profit margin is targeted at 20% of the room rent. The following are the cost estimates and other details for the year ending 31st March, (assume a month to be of 30 days):

(a) Occupancy during the season is 80%, while in the off season is 40% only:

(b) Expenses:		₹
(1) Staff Salary (excluding room attendants)	\sim	2,75,000
(2) Repairs to Buildings	~	1,30,500
(3) Laundry & Linen	\smile	40,000
(4) Interior and Tapestry	\checkmark	87,500
(5) Sundry Expenses	5	95,400

- (c) Annual depreciation is to be provided for buildings at 5% and on furniture and equipments at 15% on straight line basis:
- (d) Room attendants are paid ₹ 5 per room day on the basis of occupancy of the rooms in a month
- (e) Monthly lighting charges are ₹ 120 per room, except in four months of winter when it is ₹ 30 per room and this cost is on the basis of full occupancy for a month, and
- (f) Total investment in the home is ₹ 100 lakhs of which ₹ 80 lakhs relate to buildings and balance for furniture and equipments.

You are required to compute the room rent per day both during the season and off season.

(4) Interior Decoration		_ 87,500	
(5) Depreciation			
-Building (5% of 80,00,000)	4,00,000		
-Furniture & equipment (15% of 20,00,000)	<u>3,00,000</u>	7,00,000	
Sundry Expenses		→ 95,400	
(6) Attendant's Salary $(10,800 \times 5)$		> 54,000	
(7) Lighting Charges			
- Season (7,200 days × ₹ 4) [₹ 120 p.m. means ₹	4 per day]	28,800	
- Off-Season			
Winter [3,600 × 4/6] × ₹ 1 [₹ 30 p.m. means Re	.1 per day] (4 mon	ths) 2,400	
Balance $(3,600 \times 2/6) \times \textcircled{3}4$ (2 months)		4,800	
Total Cost		<u> </u>	
Computation of Total Revenue		₹	
Total Cost		14,18,400	
(+) Profit (20% of revenue) (14,18,400 × 20/80) -		3,54,600	
Total Revenue / 14 18 400 ÷ 801,		<u> </u>	
Assume Rent per room per day during Season is ₹ X &	during off season	is₹X/2	
Hence, total annual revenue = $7,200 \text{ X} + 3,600 \text{ [X/2]}$ =	= 9,000 X	1- (es. 1773000 - 98	·So
Now, 9,000 X = ₹ 17,73,000		18000	
X = 197 Hence, Rent per room per day		Season = 98.50x2	
During Season = X = ₹ 197		= 197	
During off-season = [X/2] = ₹ [197/2] = ₹ 98.50			

Question – 11

ABC Bank is having a branch which is engaged in processing of 'Vehicle Loan' and 'Education Loan' applications in addition to other services to customers. 30% of the overhead costs for the branch are estimated to be applicable to the processing of 'Vehicle Loan' applications and 'Education Loan' applications each.

Branch is having four employees at a monthly salary of ₹ 50,000 each, exclusively for processing of Vehicle Loan applications and two employees at a monthly salary of ₹ 70,000 each, exclusively for processing of Education Loan applications.

In addition to above, following expenses are incurred by the Branch:

Branch Manager who supervises all the activities of branch, is paid at ₹ 90,000 per month.

Legal charges, Printing & stationery and advertising expenses are incurred at ₹ 30,000, ₹ 12,000 and ₹ 18,000 respectively for a month.

Other expenses are ₹ 10,000 per month.

You are required to:

- (a) Compute the cost of processing a Vehicle Loan application on the assumption that 496 Vehicle Loan applications are processed each month.
- (b) Find out the number of Education Loan applications if the total processing cost per Education Loan Application is sale as in the Vehicle loan Application as computed in (i) above.

Solution

Particulars	Vehicle Loan	Education Loan	Total (₹)
	Applications (₹)	Applications (₹)	
Employee Cost	$50,000 \times 4 = 2,00,000$	<u>70,000 × 2</u> = 1,40,000	3,40,000
Apportionment of branch manager's salary	27,000	27,000	54,000
Legal charges, printing & stationary and advertising	18,000	18,000	36,000
Other expenses	3,000	3,000	6,000
Total cost	2,48,000	1,88,000	4,36,000

(a) Cost of processing vehicle loan application = $\frac{Total cost}{No.of applications} = \frac{2,48,000}{496} = ₹500$

(b) Cost of processing education loan application = $\frac{Total \ cost}{No.of \ applications}$

$$500 = \frac{1,88,000}{No.of applications}$$

No. of applications = $\frac{1,88,000}{500} = 376$

Service Costing

MCQs						
Q(1). Composite cost unit for a hospital is: A. per patient C. per day	B. per patient-day D. per bed					
Q(2). Cost of diesel and lubricant is an example of: A. operating cost C. semi-variable cost	B. fixed charges - D. none of the above					
Q(3). Cost units used in power sector is: A. Kilo meter (KM) C. Number of electric points	B. Kilowatt-hour (kWh) D. Number of hours					
Q(4). Absolute Tonne-km is an example of: A. Composite unit in power sector C. Composite unit for bus operation	B. Composite unit of transport sector D. Composite unit for oil and natural gas					
Q(5). Depreciation is treated as fixed cost if it is related to: A. Activity level C. Efflux of time	B. Related with machine hoursD. None of the above					
Q(6). Jobs undertaken b IT & ITES organizations are considered . project C. contract	as: B. batch work D. all of the above					
Q(7). In toll <u>Road costing</u> , the repetitive costs include: A: Maintenance cost C. None of the above	B. Annual operating costsD. Both (a) and (b)					
Q(8). BOT approach means: Build, operate and Transfer C. Build, operate and Trash	B. Buy, Operate and Transfer D. Build, Own and Trash					
Q(9). Pre-product development activities in insurance companies. A. Processing of claim # • Provisions of conditions •	include: B. Selling of policy × D. policy application processing					
Q(10). Which of the following costing method is not appropriate A. Batch costing C. Absorption costing	for costing of educational institutes: B. Activity based costing – D. Process costing					

PROCESS COSTING - CONCEPTS

1. Process Costing

It is used in case of industries where output is obtained by passing through multiple process i.e. output of one process becomes the input for subsequent process until finished goods are obtained.

2. Normal Loss

It is a loss which is unavoidable in nature.

Units of such loss are shown on the credit side of process account at scrap value

Draft Normal Loss Account					
Particulars	Units	Amount	Particulars	Units	Amou
		C			nt 🕥
To Process I A/c 🛩	\Box		By Cash A/c (Process – I)*		Ŏ
To Process II A/c 🗸	$\mathbf{\mathbf{\mathcal{O}}}$		By Cash A/c (Process – II)	Ø	\bigcirc
			By Abnormal Gain A/c**	Ē	OS
	-	-		-	-

3. Abnormal Loss

It is a loss which is avoidable in nature.

Units of such loss are shown on the credit side of process account at NCPU.

Draft Abnormal Loss Account

Particulars	Units	Amount	Particulars	Units	Amou	
		NC			nt	_
To Process I A/c	Ο		By Cash A/c (Process – I)*	Θ	Ð	
To Process II A/c	Ð		By Cash A/c (Process – II)	Θ	O	SV.
			By Costing P&L A/c	-	O	12
	-	-	(Balancing Figure)	_	-	

Units will be sold at scrap value only being a damaged unit. *

4. Abnormal Gain

It is unexpected production during normal conditions.

Units of such gain are shown on the debit side of process account at NCPU.

	Di att Abnormat Gam Account				
Particulars	Units	Amount	Particulars	Units	Amou
		0	Source Source		nt
To Normal Loss A/c*		7 Č	By Process I A/c	7-	
To Costing P&L A/c	-	<u> </u>			
(A/E)		P/J			

Draft Abnormal Cain Account

woomal cost for wit

(Total units - Ab. Goin

Balancing Figure)		
	-	

* The abnormal gain units valued at scrap will be shown here since only the actual profit is to be taken to costing P&L account.

5. Process Account

		Draft Pro	ocess Account			
Particulars	Units	Amount	Particulars	Units	Amou	
					nt	
To Previous Process A/c	Ð	Ð	By Normal Loss A/c	0	X	
To Material 🗸 7	Ð	 – 	(weight loss)			0.1
To Labour.		/-	By Normal loss A/c	Ō	G	20
To Factory OHs		~ -	(having scrap value)			
To Toxic Waste A/c (NO.	88 683		By Normal loss A/c	(-)		
To Abnormal Gain A/c	Œ	$\overline{\mathbf{O}}$	(requiring cost to be			
		NC	incurred)			
			By Abnormal loss A/c	$\overline{\mathbf{O}}$	Œ	NC
			By Next Process A/c	ē) Õ	NC
			(Tfd.)			
			By Costing P&L A/c	Θ	Ð	NC
			(sold)			
			By Finished Goods A/c	Ξ	Θ	NC.
(10					
Normal cost per unit NICE	Tota	l cost – Scrap	value of Normal loss			

Total units-Normal loss units

6. Treatment of Royalty

a (Total - No. 1088)

- Debit the amount of royalty on the basis of normal production units
- Dexcess or less payment of royalty will be adjusted in abnormal loss or gain account
- () In Royalty account only final amount on actual units produced will be payable.

7. Process Account with raw material stock

- (a) Opening units of raw material stock along with its value will be debited to the process account.
- (b) Closing units of raw material stock along with its value will be credited to the process account.
- (c) Opening and closing stock of raw material should be adjusted while computing normal cost per unit of the process.

Normal cost per unit =

Total Cost(includes op. raw mat.)-Closing raw mat. cost-Scrap value of Nr. loss units

Total Units(includes op. raw mat.)–Closing raw mat. units–Normal loss units

8. Process Account with finished goods stock

- (a) A separate process account is prepared for each process.
- (b) Opening units of finished goods along with its value will be debited to the process stock account.
- (c) Closing units of finished goods stock along with its value will be credited to the process stock account.
- (d) All the goods produced by the process will be transferred to process stock account.

9. Process Account with WIP stock

- (a) Opening units of WIP along with its value will be debited to the process account.
- (b) Closing units of WIP along with its value will be credited to the process account.

10. Valuation of WIP

A No. of units

- (a) Calculate equivalent units of production for each element of cost i.e. material, labour and overheads by preparing statement of equivalent units.
- (b) Calculate cost per equivalent unit for each element of cost i.e. material, labour and overheads.
- (c) Calculate the value of WIP by multiplying the equivalent units of WIP along with cost per equivalent unit.

Apply A) Ques. Specify to use B) DOC of op. WIP is not given

11. Methods of WIP Stock Valuation

	FIFO Method	W. Average Mtehod
Ist Process -> No. 128	scoop volue - deduct	from Mot. Cost
Opening WIP	Bal. DOC	L (0 0')
Introduced & Complete	100'[.	(<u>180'}</u>
Normal Loss	NIL J	
Abnormal Loss	_ DOC / 100'].	2 Doc / 100'1.
Closing WIP		LAOC
Subsequent Process or _	> No. 108 Scrap Volue	- Deduct from Mot1
Double Material Questions	Mod1, [M-2 6 0H]	M-1, M-2 L OH,
Opening WIP	INIL Bol. DOC	100, FI 100, FI
Introduced & Complete	[100'} [100'}	100°1.
Normal Loss	TWIT? TWIT?	LUIL , NIL ,
Abnormal loss	[100']. 1 _ Loc / 100'[.]	10011-1 LOC (1001)
Closing WIP	1001 Doc	LIGOIN LOC

Under this method. Cost of op. WIP will be added with current Cost while Colculating Cost per Equivalent wit

The case of Ab. Croin, DOC will always be 100% and will be known as deduction in St. of Equivalent units.

12. Inter Process Profit

Transfer goods from one process to other on cost plus profit basis.

PROCESS COSTING – QUESTIONS

Question – 1

SK Ltd. produces a product-X, which passes through three processes, I, II and III. In Process-III a byproduct arises, which after further processing at a cost of ₹85 per unit, product Z is produced. The information related for the month of April 2021 is as follows:

	Process-I	Process-II	Process-III
Normal loss —	> 5%	10%	5%
Materials introduced (7,000 units) -	→ 1,40,000	-	-
Other materials added	62,000	1,36,000	✓ 84,200
Direct wages -	42,000	<u> </u>	<u> </u>
Direct expenses -	14,000	16,000	14,000

Production overhead for the month is ₹2,88,000, which is absorbed as a percentage of direct wages.

The scrapes are sold at ₹ 10 per unit

Product-Z can be sold at ₹ 135 per unit with a selling cost of ₹ 15 per unit

No. of units produced:

Process-I- 6,600; Process-II- 5,200, Process-III- 4,800 and Product-Z- 600

There is not stock at the beginning and end of the month.

You are required to PREPARE accounts for:

- (i) Process-I, II and III
- (ii) By-product process.

<u>Solution</u>

(i)

Particulars	Units	Amount(₹)	Particulars	Units	Amount(₹)		
To Motorial	7.000	1 40 000	By Normal loss	350	-3 500		
	7,000	• 1,40,000	(<u>7,00</u> 0 × 5% × ₹ 10)	~ 330	-3,500		
To Other Material		- 62 000	By Abnormal loss A/c	50	2 5 4 5		
		- 02,000	(50 × ₹ 50.9022)		- 2,343		
To Direct Wages		V 12 000	By Process II A/c	6,600	3 35 055		
10 Direct Wages		42,000	(6,600 × ₹ 50.9022)		5,55,755		
To Direct Exp.		✓14,000					
To Prod. OHs							
(200% ×		✓ 84,000					
₹42,000)							
	7,000	3,42,000		7,000	3,42,000		
Cost per unit = $\frac{3,42,000-3,500}{6,000} = \frac{3,38,500}{6,000} \neq ₹50.9022$							
7,00	10-350	6,650					

Normal loss	× 6 600
000 × 10% × ₹ 10)	• 0,000
Abnormal loss A/c -740	 80 149
<u>0</u> × ₹ <u>108.3089</u>)	• 00,119
Process III A/c 5 200	5 63 206
.00 × ₹ 108.3089)	5,05,200
6,600	6,49,955
	$00 \times 10\% \times \overline{\xi} 10)$ -660 Abnormal loss A/c -740 $x \notin 108.3089)$ -5,200 Process III A/c 5,200 $00 \times \overline{\xi} 108.3089)$ 6,600

Process- II Account

Cost per unit = $\frac{6,49,955-6,600}{6,600-660} = \frac{6,43,355}{5,940} = 108.3089$

Process- III Account

Particulars	Units	Amount(₹)	Particulars	Units	Amount(₹)					
To Process-II A/c	∽ 5 200	√ 5 63 206	By Normal loss	~ 260	- 2 600					
	0,200	5,05,200	(5,200 × 5% × ₹10)	200	2,000					
To Other Material		/ 84.200	By Product X A/c	4.800						
		- 0.,200	(4,800 × ₹ 180.1396)	.,						
To Direct Wages		✓ 48,000	By Product Z A/c	- 600	21,000					
6		-)	$[600 \times (135 - 85 - 15)]$, , , , , , , , , , , , , , , , , , , ,					
To Direct Exp.		14,000								
To Prod. OHs										
(200% ×		✓ 96,000								
₹48,000)										
To Ab. Gain										
(460 ×										
₹ 180.1396)										
	5,660	8,88,270		5,660	8,88,270					
Cost per unit = $\frac{8,05,4}{5}$	06-2,600-2	$\frac{1,000}{1,000} = \frac{7,81,806}{1,000}$	₹ 180.1396							
5,	200-260-60	5,200-260-600 (4,340)								

(ii)

By-Product Process Account

Particulars	Units	Amount(₹)	Particulars	Units	Amount(₹)
To Process-III A/c -	→ 600	→ 21,000	By Product Z A/c	600	81,000
To Processing cost	x6 0 9	∽ 51,000			
To Selling exp. [15×	6007	→ 9,000			

1			. –		
	600	81,000		600	81,000

<u>Question – 2</u>

A Manufacturing unit manufactures a product 'XYZ' which passes through three distinct Processes – X, Y and Z. The following data is given:

	Process X	Process Y	Process Z
Material consumed (in ₹)_) 2,600	✓ 2,250	✓ 2,000
Direct wages (in ₹) -	→ 4,000	3,500	✓3,000

The total production overhead of ₹ 15,750 was recovered @ 150% of direct wages.

15,000 units at ₹2 each were introduced to process 'X'.

The output of each process passes to the next process and finally, 12,000 units were transferred to Finished Stock Account from Process 'Z'.

No stock of materials or work in progress was left at the end.

The following additional information is given:

Process	% of wastage to normal	Value of Scrap per unit (₹)
	output	
X	6%	1.10 🗸
Y	?	2.00 🖌
Z	5%	1.00

You are required to:

- (i) Find out the percentage of wastage in process 'Y', given that the output of process 'Y' is transferred to Process 'Z' at ₹ 4 per unit.
- (ii) Prepare Process accounts for the three processes X, Y and Z.

Solution

(i) Let normal loss units in process Y = \overline{y} Normal cost per unit of Process Y = $\frac{Total Cost-Scrap value of normal loss}{Total units-Normal loss unit}$ $4 = \frac{52,610-2y}{14,100-y}$ 56,400 - 4y = 52,610 - 2y2y = 3,790y = 1,895Thus, Normal loss % of process Y = $\frac{1,895}{14,100} \times 100 = 13.44\%$

(ii)]	Process X A	ccount		
Ī	Particulars	Units	Amount	Particulars	Units	Amount
	To Units Introduced	15,000	30,000	By Normal loss A/c	900	990
	To Material	-	~ 2,600	$(15,000 \times 6\% \times 1.10)$		
	consumed					

	To Labour	-	4 ,000	By Process Y A/c	• 14,100	41,610
	To Overheads	-	∽ 6,000	(141 8 0×2.95105)		
	(4,000 × 150%)	15,000	42,600		15,000	42,600
No	rmal cost per unit = $\frac{42,60}{15,00}$	$\frac{00-990}{00-900} = \frac{42}{14}$	1,610 4,100 ₹ 2.95	5106		

Process Y Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process X A/c	14,100	41,610	By Normal loss A/c	1,895	→ 3,790
To Material consumed	-	▶ 2,250	(Part (i))		
To Labour	-	- 3,500	By Process Z A/c —	• 12,205 -	→ 48,820
To Overheads	-	✓ 5,250			
(3,500 × 150%)	14,100	52,610		14,100	52,610

Process Z Account

Particulars	Units	Amount	Particulars	Units	Amount	
To Process Y A/c	12,205	✓ 48,820	By Normal loss A/c	610	610	
To Material	-	∽2,000	$(12,205 \times 5\% \times 1)$			
consumed						
To Labour	-	▶ 3,000	By Finished Stock A/c	12,000	59,725	
To Overheads	-	4 ,500	(12,000 × 4.97715			
(3,000 × 150%)						
To Abnormal Gain 🗕	→ 405	2,015				
A/c						
(405 × 4.97715)	12,610	60,335		12,610	60,335	
ormal cost per unit = $\frac{58,320-610}{12,205-610} = \frac{57,710}{11,595} = ₹4.97715$						

<u>Ouestion – 3</u>

SK Ltd. processes product Z through two distinct processes – Process I and process II. On completion , it is transferred to finished stock. From the following information for the current year, prepare Process I and Process II and Finished Stock A/c.

Particulars	Process – I	Process - II
Raw materials used —	→ 7,500 units	-
Raw materials cost per unit	> ₹ 60	-
Transfer to next process/finished stock -	• 7,050 units	6,525 units
Normal loss (on inputs)	5%	10%
Direct wages -	• ₹1,35,750	→ ₹,129,250

Direct expenses	ſ	60% of direct wages -	→65% of direct wages					
Manufacturing overheads	J	20% of direct wages -	▶15% of direct wages					
Realisable value of scrap per unit	J	₹12.50 /	₹ 37.50					
$(0.00,, t_{2},, f_{2},, t_{2},, t_{2},, t_{1},, t_{2},, t_{2$								

6,000 units of finished goods were sold at a profit of 15% on cost. Assume that there was no opening or closing stock of work-in-process.

Solution

Process I Account											
	Qty.	Amount		Qty.	Amount						
To Raw material	7,50	4,50,000	By Normal Loss	37 5	4.688						
To Direct wages	0	1,35,750	(5%×7,500×12.5								
To Direct expenses		81,450)	75	7,259						
(60% of direct wages)			By Abnormal								
To Manufacturing OHs		27,150	Loss	≽7,050	6,82,403						
(20% of direct wages)			(75 × 96.7947)								
-			By Process II								
	7,50	6,94,350	A/c	7,500	6,94,350						
	0		(7,050 ×								
			96.7947)								

Planned output – Process I = 7,500 - 375 = (7,125 units)

Actual output = 7,050 units

Abnormal loss = (7,125 units - 7,050 units) 75 units. Cost per unit = $\frac{6,94,350-4,688}{7,125}$ = ₹ 96.7947

Process II Account

	Qty.	Amount		Qty.	Amount
To Process I	7,050	6,82,403	By Normal loss - (10%)	→ 705	→ 26,438 -
To Direct wages	-	>1,29,250	(7,050 × 10% × 37.5)		
To Direct Expenses	[→ 84,013	By Finished Stock A/c	6,525	9,13,824
(65% of direct wages)			(6,525 × 140.096		
To Manufacturing OHs-	·	19,387			
To Abnormal gain	→ 180	25,209			
(<u>180 × 140.096</u>)	7,230	9,40,262		7,230	9,40,262

Planned output of Process II = 7,050 - 705 = 6,345 units

Cost per unit = $\frac{9,15,053-26,438}{6,345} = 140.096$ Abnormal gain = Actual output – Planned output = 6,525 – 6,345 = 180 units Finished Stock Account									
		Qty.	Amount		Qty.	Amoun			
	To Process II -	- 6,525	→9,13,824	By Cost of Sales	6,000 •	8,40,298			
				A/c	-> 525	73,526	» <u>913824</u> ×525		
		6,525	9,13,824	By Balance c/d	6,525	9,13,824	6525		
		6,525	9,13,824	A/c By Balance c/d	→ 5256,525	73,526- 9,13,824	9 <u>413844</u> x 525 6525		

Income Statement

	Amount		Amount
To Cost of Sales	8,40,298	By Abnormal Gain –	• 18,459
(6,000 × 140.096)		$[180 \times (140.0496 - 37.5)]$	
To Abnormal loss	<u>∽</u> 6,322	By Sales -	9,66,343
[75 × (96.7947 – 12.50)]		(8,40,298 × 115%)	
To Net Profit	1,38,182		
	9,84,802		9,84,802

<u>Question – 4</u>

Following details are related to the work done in Process-I by ABC Ltd. during the month of May 2019:

		(₹)	
Opening work-in-process (3,000 units)			
Materials	->	1,80,500	0-1900
Labour	->	32,400	-> 202700
Overheads	~	90,000)
Material introduced in Process-I (42,000 units)	> :	36,04,000	
Labour		4,50,000	CI
Overheads .	-	15,18,000	
Units scrapped (Totol) : -> 4,800 units			
Degree of completion:			
Materials : -> 100% 🛩			
Labour & Overheads : 🔿 70% 🧹			
Closing work-in-progress : 4,200 units			
Degree of completion:			
Materials : 100%			
Labour & Overheads : 50%			

Units finished and transferred to Process-II: 36,000 units

Normal loss:

4% of total input including opening work-in-process

Scrapped units fetch ₹ 62.50 per piece

Prepare:

- (iii) Statement of equivalent production
- (iv) Statement of cost per equivalent unit
- (v) Process-I A/c
- (vi) Normal loss account and
- (vii) Abnormal loss account

Solution

(ii)

Statement of Equivalent Production

(i)	Statement of Equivalent Production						
Innut	Innut Output		Material		Labour		rheads
Input	Output	%	Units	%	Units	%	Units
Op. WIP → 3,000	Op. WIP - 3,000	100	3,000	<u>10</u> 0	3,000	100	3,000
Input → 42,000	Introduced & Complete (A)F) 33,000 Transferred \rightarrow 36,000	100	33,000	100	33,000	100	33,000
	Normal Loss 🤿 1,800	\bigcirc	-	\bigcirc	-	Θ	-
	(45,000×4%) Abnormal Loss → 3,000 (4,800 - 1,800)	100	3,000	70	2,100	70	2,100
/	Closing WIP 4,200	100	4,200	50	2,100	50	2,100
45,000	45,000		43,200	· (40,200		40,200

Statement of Cost per Equivalent Unit

Particulars	Material	Labour	Overheads
Current Cost —	→ 36,04,000	4,50,000 🗸	15,18,000 🗸
Add: Cost of Opening WIP	> 1,80,500	32,400	90,000
Less: Normal Scrap $(1,800 \times 62.50)$	→ (1,12,500) -	-	-
Total -	→ 36,72,000	4,82,400	16,08,000
Equivalent Units -	• 43,200	40,200	40,200
Cost per equivalent unit	85	12	40

Statement of apportionment of cost

	Element of	Equivalent	Cost per		
Particulars	Cost	units	unit	Cost	Total Cost
Opening WIP	Material	3,000	85 🦯	2, <u>55,00</u> 0	

	Labour	3,000.	12 🦵	36,000	
	Overheads	3,000	40 🖊	1,20,000	4,11,000
Introduced &					
Comp.	Material	33,000	85	28,05,000	
	Labour	33,000 -	12	3,96,000	
	Overheads	33,000	40	13,20,000	45,21,000
Abnormal Loss	Material	3,000	85	2,55,000	
	Labour	2,100	12	25,200	
	Overheads	2,100	40	84,000	3,64,200
Closing WIP	Material	4,200	85	3,57,000	
	Labour	2,100	12	25,200	
	Overheads	2,100	40	84,000	4,66,200

(iii)			Process I A	Account		
Particulars		Units	Amount	Particulars	Units	Amount
To Opening WIP	_	→ 3,000	3,02,900	By Normal loss A/c	1,800	1,12,500
To Material	~	42,000	36,04,000	By Abnormal loss A/c 🧹	- 3,000	3,64,200
To Labour		-	✓ 4,50,000	By Process -II A/c (bal. fig)	36,000	49,32,000
To Overheads		-	15,18,000	By Closing WIP	4,200	4,66,200
		45,000	58,74,900		45,000	58,74,900

(iv)	Ν	ormal Loss	Account		
	Particulars	Units	Amount	Particulars	Units	Amount
	To Process-I A/c	1,800	~1 ,12,500	By Bank A/c	 ≯ 1,800	1,12,500
		1,800	1,12,500		1,800	1,12,500

(v)	Abnormal Loss Account						
Ī	Particulars	Units	Amount	Particulars	Units	Amount	
	To Process-I A/c	3,000	3,64,200	By Bank A/c	3,000	1,87,500	
				(3,000 × 62.50)			
				By Costing P&L A/c	<	1,76,700	
				(Bal. fig.)			
		3,000	3,64,200		3,000	3,64,200	

<u>Question – 5</u>

From the following data related to Process X, prepare process X account:

(a) Opening work in progress: 800 units valued as under:

Material = ₹3,200

Labour = ₹960 Overhead = ₹320 (b) Input of material = 9200 units (c) Current cost: Material = ₹36,800 Labour = ₹16,740 Overhead = ₹7,930 (d) Normal loss = 8% of total input (e) Scrap realized ₹40 per 10 units (f) Closing work in progress = 900 units (g) Transfer to next process = 7,900 units (h) Degree of completion: Closing Stock

	Closing Stock	Scrap
Material	100%	100%
Labour	70%	80%
Overhead	30%	20%

Solution

Statement of Equivalent Production

Input		Output		Material		Labour		Overheads	
				%	Units	%	Units	%	Units
Op.								Ŕ	
WIP	800	Op. WIP	800	100	800	(100)	800	(100)	800
		Introduced &						\smile	
Input	9,200	Complete	7,100	100	7,100	100	7,100	100	7,100
		Transferred	7,900						
		Normal Loss	800	-	-	-	-	-	-
		(10,000×8%)							
		Abnormal Loss	400	100	400	80	320	20	80
		(Bal. Fig.)							
		Closing WIP	900	100	900	70	630	30	270
	10,00								
	0		10,000		9,200		8,850		8,250

Statement of Cost per Equivalent Unit

Particulars	Material	Labour	Overheads	
Cost	36,800	16,740	7,930	
Add: Cost of Opening WIP	3,200	960	320	
Less: Normal Scrap	(3,200) -		-	
Total	36,800	17,700	8,250	
Equivalent Units	9,200	8,850	8,250	
Cost per equivalent unit	4	2	1	
--------------------------	---	---	---	

Statement of apportionment of cost						
Particulars	Element of Cost	Equivalent units	Cost per unit	Cost	Total Cost	
Opening WIP	Material	800	4	3,200		
	Labour	800	2	1,600		
	Overheads	800	1	800	5,600	
Introduced &						
Complete	Material	7,100	4	28,400		
	Labour	7,100	2	14,200		
	Overheads	7,100	1	7,100	49,700	
Abnormal Loss	Material	400	4	1,600		
	Labour	320	2	640		
	Overheads	80	1	80	2,320	
Closing WIP	Material	900	4	3,600		
	Labour	630	2	1,260		
	Overheads	270	1	270	5,130	

Process X Account

Particulars	Units	Amount	Particulars	Units	Amount
To Opening WIP	800	4,480	By Normal loss A/c	800	3,200
To Material	9,200	36,800	00 By Abnormal loss A/c		2,320
To Labour	-	16,740	By Next Process A/c (bal.	7,900	55,300
			fig)		
To Overheads	-	7,930	By Closing WIP	900	5,130
	10,000	65,950		10,000	65,950

Question – 6

A company produces a component, which passes through two processes. During the month of April, materials for 40,000 components were put into Process I of which 30,000 were completed and transferred to Process II. Those not transferred to Process II were 100% complete as to materials cost and 50% complete as to labour and overheads cost. The Process I cost incurred were as follows:

Direct Materials	→	₹15,000	V
Direct Wages	-	₹18,000	~
Factory Overheads	->	₹12,000	/

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process II. There were 1,800 units, remained unfinished in the process with 100% complete as to materials and 25% complete as regard to wages and overheads.

No further process material costs occur after introduction at the first process until the end of the second process, when protective packing is applied to the completed components. The process and packing costs incurred at the end of the Process II were:

Packing Material	-	₹4,000 ✓
Direct Wages	A	₹3,500 ✓
Factory Overheads	\rightarrow	₹4,500 🥒

Required:

(a) Prepare statement of equivalent production, cost per unit and Process I A/c.

(b) Prepare statement of equivalent production, cost per unit and Process II A/c.

Solution

Statement of Equivalent Production and Cost per Unit for Process I

Input	Output	Material		Labour		Overheads	
		%	Units	%	Units	%	Units
Input 4 0,000	Introduced & 30,000	100	30,000	100	30,000	100	30,000
	Complete)	
	Closing WIP - 10,000	100	10,000	50	5,000	50	5,000
40,000	40,000	, L	40,000-	Ţ	35,000	ľ	35,000
	Cost		15,000 🚤	•	\$8 ,000		12,000
	Cost per unit		∍ 0.375		0.514286		0.342857

Statement of apportionment of cost for Process I

Particulars	Element of	Equivalent	Cost per	Cost	Total Cost
	Cost	units	unit		
Introduced &	Material	30,000	0.375	11,250	
Complete	Labour	30,000	0.514286 🦕	15,429	
	Overheads	30,000 丿	0.342857	10,286	36,965
Closing WIP	Material	10,000 🛩	0.375	3,750	
	Labour	5,000 -	0.514286	2,571	
	Overheads	5,000 🛩	0.342857	1,714	8,035

Process I Account

Particulars	Units	Amount	Particulars	Units	Amount
To Material	40,000	• 15,000	By Process II A/c -	 30,000	36,965
To Labour	-	▶ 18,000	By Closing WIP	10,000	8,035
To Overheads	-	-12,000			
	40,000	45,000		40,000	45,000

Statement of Equivalent Production and cost per unit for Process II

					Ma	terial –					
Inpu	ut	Output	Material - 1			2		Labour		Overheads	
			%	Units	%	Units	%	Units	%	Units	
		Introduced &									
Input	30,000	Complete 28,000	100	28,000	100	28,000	100	28,000	100	28,000	
		Normal Loss → 200	\bigcirc	_	\bigcirc	-	Θ	- 🤇	Ð	-	
		Closing_WIP → 1,800	100	1,800	$\mathbf{\mathbf{O}}$	Ð -	25	450	25	450	
	30,000	30,000	-9	29,800	ſ	28,000	1	28,450	+	28,450	
		Cost	-	36,965		4,000		3,500		4,500	
		Cost per unit		1.2404) (0.1429		0.123		0.1582	

Statement of apportionment of cost for Process II

	Element of	Equivalent	Cost per		
Particulars	Cost	units	unit	Cost	Total Cost
Introduced &					
Complete	Material – 1	28,000	1.2404	34,732	
	Material – 2	28,000	0.1429	4,000	
	Labour	28,000	0.123	3,445	
	Overheads	28,000	0.1582	4,429	46,606
Closing WIP	Material – 1	1,800	1.2404	2,233	
	Material – 2	- /	0.1429	-	
	Labour	450	0.123	55	
	Overheads	450	0.1582	71	2,359

Process II Account

Particulars	Units	Amount	Particulars	Units	Amount
To Process I A/c	30,000	-> 36,965	By Normal loss A/c	- 200	Ō
To Packing Material	-	4,000	By Finished Goods A/c 🔶	28,000	46,606
To Labour	-	3 ,500	By Closing WIP 📃 🚑	1,800	2,359
To Overheads	-	4,500			
	30,000	48,965		30,000	48,965

Question – 7

SK Ltd. manufactures chemical solutions for the food processing industry. The manufacturing takes place in a number of processes and the company uses a FIFO process costing system to value workin-process and finished goods. At the end of the last month, a fire occurred in the factory and destroyed some of the paper files containing records of the process operations for the month.

SK Ltd. needs your help to prepare the process accounts for the month during which the fire occurred. You have been able to gather some information about the month's operating activities but some of the information could not be retrieved due to the damage. The following information was salvaged:

Opening work-in-process at the beginning of the month was 800 litres, 70% complete for labour and 60% complete for overheads. Opening work-in-process was valued at ₹26,640.

Closing work-in-process at the end of the month was 160 litres, 30% complete for labour and 20% complete for overheads.

Normal loss is 10% of input and total losses during the month were 1,800 litres partly due to the fire damage.

Output sent to finished goods warehouse was 4,200 litres.

Losses have a scrap value of ₹ 15 per litre.

Doc = 100%

All raw materials are added at the commencement of the process.

The cost per equivalent unit (litre) is $\overline{\mathbf{x}}$ 39 for the month made up as follows:

	(₹)
Raw Material	23
Labour	7 🗸
Overheads	9
	39

Required:

- (a) Calculate the quantity (in litres) of raw material inputs during the month.
- (b) Calculate the quantity (in litres) of normal loss expected from the process and the quantity (in litres) of abnormal loss/gain experienced in the month.
- (c) Calculate the values of raw material, labour and overheads added to the process during the month.
- (d) Prepare the process account for the month.

Solution

(a) Calculation of Raw Material inputs during the month:					
Quantities Entering Process	Litres	Quantities Entering Process	Litres		
Opening WIP (Liver)	800	Transfer to Finished Goods	→ 4,200		
Raw material input (bal. fig.)	5,360	Process Losses (No. + Ab.) -	▶ 1,800		
		Closing WIP	> 160		
	6,160	<u>c</u> some	6,160		

(b) Calculation of Normal Loss and Abnormal Loss/Gain

Particulars	Litres
Total process losses for month	→ 1,800
Normal Loss (10% input) $\sum 360 \times 10^{10}$	-> 536
Abnormal Loss (balancing figure)	1,264

(c) Calculation of values of Raw Material, Labour and Overheads added to the process:

Particulars	Material	Labour	Overheads
Cost per equivalent unit	₹ 23.00	₹ 7.00	₹9.00
Equivalent units (litre) (refer the working note)	4,824	4,952	5,016
Cost of equivalent units	> ₹1,10,952	₹ 34,664	₹45,144
(Add) Scrap value of normal loss (536 units × ₹ 15) -	→ ₹ 8,040	_	_
Total value added	→ ₹1,18,992 •	₹ 34,664	₹45,144

Workings:

Statement of Equivalent Units (litre):

Input Details	Units	Output details	Units	Equivalent Production					
				Mate	rial	Labo	our	Overhe	ads
				Units	(%)	Units	(%)	Units	(%)
Opening WIP -	> 800	Units completed							
Units introduced-	5,360	- Opening WIP	\$800			240	30	320	40
		- Fresh inputs	3 ,400	3,400	100	3,400	100	3,400	100
		Normal loss	→ 536			—	\bigcirc	—	(
		Abnormal loss	1,264	1,264	100	1,264	100	1,264	100
		Closing WIP	160	160	100	48	30	32	20
	6,160		6,160	4,824	\mathbf{b}	4,952)	5,016	

(d) Process account for month

Particulars	Particulars Litres		Particulars	Litres	Amount (₹)
		(₹)			
To Opening WIP -	> 800	→ 26,640	By Finished goods	→ 4,200	-> 1,63,800
To Raw -	→ 5,360	✓ 1,18,992	By Normal Loss	-> 536	→ 8,040
Materials					
To Wages		- 34,664	By Abnormal loss	-) 1,264	→ 49,296
To Overheads		45,144	By Closing WIP –) 160	 4,304
	6,160	2,25,440		6,160	2,25,440

<u>Question – 8</u>

KT Ltd. produces a product EMM which passes through two processes before it is completed and transferred to finished stock. The following data relate to May 2019.

Particulars	Process A	Process B	Finished Stock
Opening stock	✓ ₹ 5,000	₹ 5,500 -	₹10,000
Direct materials -	9,000	9,500	
Direct wages /	5,000	6,000	
Factory overheads -	4,600	2,030	
Closing stock	2,000	2,490	5,000

Inter process profit included in opening stock

Output of Process A is transferred to Process B at 25% profit on the transfer price and output of Process B is transferred to finished stock at 20% profit on the transfer price. Stock in process is valued at prime cost. Finished stock is valued at the price at which it is received from Process B. Sales during the period are ₹ 75,000.

 $\overline{}$

1,000

4,000

Prepare the process cost accounts and Finished stock account showing the profit element at each stage.

Solution

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total
To Opening stock	5,000	-	~ 5,000	By Process B A/c	28,800	7,200	21,600
To Direct material	9,000	-	9,000				
To Direct wages	5,000	-	- 5,000				
မြိ	19,000	-	19,000				
(-) Closing stock	(2,000)	-	(2,000)				
·	17,000	-	17,000				
To Factory OHs	∽ 4,600	-	→ 4,600				
	2 1,600	_ •	→21,600	6880x25.)			
To Profit	-	7,200	7,200	- +			
	21,600	7,200	28,800-	-> (21600 - 13V)	21,600	7,200	28,800

Process A Account

Process B Account

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total	
To Opening stock 🐱	4,500	1,000	5;500	By F. Stock A/c	41,550	20,125	61,675	
To Process A A/c	21,600	7,200	28,800					
To Direct material	- 9,500	-	~ 9,500					
To Direct wages	6,000	-	∽ 6,000					
(PC)	41,600	8,200	49,800					
(-) Closing stock	(2,080)	~ (410)	(2,490)					
	39,520	7,790	47,310					
To Factory OHs	2,030	-	√ 2,030					
	• 41,550	7,790	49,340	6167572013				
To Profit	-	12,335	12,335	S and is sold				
	41,550	20,125	61,675	~ [49'510 - 0"	41,550	20,125	61,675	
Profit element in closing steels = $\frac{8,200}{2} \times 2.400 - 7.410$								

Profit element in closing stock = $\frac{6,200}{49,800} \times 2,490 = (7410)$

Particulars	Cost	Profit	Total	Particulars	Cost	Profit	Total
To Opening stock -	6 ,000	4,000	10,000	By Costing P&L A/c	44,233	30,767	75,000
To Process B A/c —	4 1,550	20,125	61,675				Liver
P	47,550	24,125	71,675				
(-) Closing stock	(3,317)	(1,683)	(5,000)				
	44,233	22,442	66,675	on fir.			
To Profit (Bal. fig)	-	8,325	8,325	A Cat of			
	44,233	30,767	75,000-	-> Given in Ques-	44,233	30,767	75,000
Drafit alamant in alasi	na stoolz -	24,125	$000 \neq \pm 1$	692			

Finished Stock Account

Profit element in closing stock = $\frac{24,125}{71,675} \times 5,000 \notin 1,683$

Process Costing

MCC	રિક
Q(1). The type of process loss that should not be allowed to affer A. Abnormal loss C. Seasonal loss	ect the cost of good unit is: B. Normal loss D. Standard loss
Q(2). 200 units were introduced in a process in which 20 units i is: A. No abnormal loss Abnormal loss of 30 units	is the <u>normal loss</u> . If the actu <u>al o</u> utput is <u>150</u> units, then there B. No abnormal gain D. Abnormal gain of 30 units
Q(3). 100 units are processed at a total cost of ₹ 160, normal log is 80 units, then the value of abnormal loss is: A. ₹ 2.50	Solution of the output gain of the output $35 \text{ is } 10\%$, & scrap units are sold $@₹ 0.25$ each. If the output B. ₹ 16 D. ₹ 17.75 Ab. 188 = (90 - 80) ×1.75
Q(4). When average method is used in process costing, the oper A. Subtracted from the new costs C. Kept separate from the costs of the new period	D. Averaged with other costs to arrive at total cost
Q(5). Spoilage that occu <u>rs un</u> der inefficient operating conditions A. Normal spoilage C. Normal defectives	s and is ordinarily controllable is called: D. Abnormal spoilage D. None of the above
 Q(6). The cost of normal process loss is: A. Absorbed by good units produced and amount realised by the B. Debited to costing profit and loss account C. Absorbed by good units produced D. Debited to costing profit and loss account and amount realized account. 	e sale of loss units should be debited to the process account ed by the sale of loss units should be credited to the process
 Q(7). The value of abnormal loss is equal to: A. total cost of materials B. Total process cost less realizable value of normal loss C. Total process cost less cost of scrap D. Total process cost less realizable value of normal loss less value value value of normal loss less value valu	ulue of transferred out goods.
 Q(8). Inter-process profit is calculated, because: A. a process is a cost centre B. each process has to report profit C: the efficiency of the process is measured D. the wages of employees are linked to the process profitability 	y
 Q(9). Under Weighted Average (Average) Method: A. The cost to complete the opening WIP is ignored B. The cost to complete the opening WIP and other completed up of the cost of opening work-in-progress and cost of the current output in terms of complete units. D. Closing stock of work in process is valued at current cost. 	inits are calculated separately period are aggregated and the aggregate cost is divided by
Q(10). A process account is debited by abnormal gain, the value A. equal to the value of normal loss D. cost of good units less realizable value of normal loss C. cost of good units less realizable value of actual loss	e is determined as:

D. Equal to the value of good units less closing stock

Q(11). Lean Labs develops 55mm film using a four step process that moves progressively through four departments. The company specialized in overnight service and has the largest drug store chain as its primary customer. Currently, direct labour, direct materials, and overhead are accumulated by departments. The cost accumulation system that best describes the system Lean Labs is using is:

A. Operation costing C. Job-order costing

B. Activity based costing **D**. Process costing

Q(12). When compared with normal spoilage, abnormal spoilage:

A. Arises more frequently from factors that are inherent in the manufacturing process

B. Is given the same accounting treatment as normal spoilage

C. Is generally thought to be more controllable by purchase department than production department

S. Is not typically by the "tightness" of production standards

Q(13). Assume 550 units were worked on during a period in which a total of 500 good units were completed. Normal spoilage consisted of 30 units; abnormal spoilage, 20 units. Total production costs were ₹2,200. The company accounts for abnormal spoilage separately on the income statement as loss due to abnormal spoilage. Normal spoilage is not accounted for separately. What is the cost of the good units produced? MC P.V. - <u>2200 ~ 0</u> = 4.230769 D. ₹ 2,332 Good vints= 4.230769 × 500

A.₹2,080

C.₹2,200

Q(14). IC Limited uses process costing systems and inspects its goods post manufacturing. An engineer noticed on May 31^{st} the following:

Good units completed	-	15,000
Normal spoilage (units)	-P	300
Abnormal spoilage (units)	ſ	100

Unit costs were; Material $\underbrace{\gtrless 2.50}$ and conversion costs (labour & overheads) $\underbrace{\gtrless 6.00}$. The number of units that company would transfer to its finished goods stock and the related cost of these units are:

A. 15,000 units transferred to a cost of ₹ 1,27,500

C. 15,000 units transferred at a cost of ₹ 1,35,000

D. 15,000 units transferred at a cost of ₹ 1,30,050 D. 15,300 units transferred at a cost of ₹ 1,30,050

Total IIP= 15000 +300 +100 = 15400 Mot. = 15400x2,50 = 38500 $CC = 6 \times 15 \times 100$ 92700 - 130 990 TC

NC P.V. = 130900 - 0 = 8.66887

Good units_ 8.66887 × 15000 (15T = B. 130012

JOINT & BY-PRODUCT - CONCEPTS

1. Multiple Output

2. Meaning of Basic Terms

3. Treatment of By-Product (

4. Methods of Apportionment of Joint Cost (JC)

(A) Reverse Cost Method

Particulars	Product A	Product B
Sale value	-	-
Less: Profit	-	-
Total Cost 🖌	-	-
Less: Selling expenses	-	-
Work Cost 🖌	-	-
Less: Further Processing cost	-	-
Share of Joint Cost 🖌	\bigcirc	Ē

If total joint cost is not matching with value given in question then distribute actual joint cost given in question in the share of joint cost calculated from above statement.

If data of profit is given for only one product then prepare above table for one product after that share of JC of other product = Total JC – Share of JC from above table for one product.

(B) Physical Unit Method – Distribute on the basis of physical units produced

(C) Sale value at split off method – Distribute on the basis of sale value at split off of units produced.

(D) Sale value after FPC method – Distribute on the basis of sale value after FPC of units produced.

(E) Net Realizable Value (NRV) Method – Distribute on the basis of NRV NRV = Sale after FPC – Selling Expenses – FPC

(F) Contribution Margin Method

Cont. = Soles - VC

Distributed fixed cost on the basis of units produced Distributed fixed cost on the basis of contribution

If any product has zero or negative contribution than FC will not be distributed for that product.

5. Decision Regarding Further Processing

Compare Incremental Revenue with Incremental Cost If Incremental revenue > Incremental cost -> Yes Foother Process If Incremental revenue < Incremental cost -> Not to foother Process

Incremental revenue = Sale after FPC – Sale at split off Incremental cost = FPC + Increase in any other cost – Decrease in any other cost

JOINT & BY-PRODUCT – QUESTIONS

<u>Question – 1</u>

A Factory is engaged in the production of chemical Bomex and in the course of its manufacture a byproduct Cromex is produced which after further processing has a commercial value. For the month of April 2019 the following are the summarized cost data:

	Joint Expenses	Separate E	xpenses
	₹	Bomex (₹)	Cromex (₹)
Materials	1,00,000	6,000	4,000
Labour	50,000	20,000	18,000
Overheads	30,000	10,000	L 6,000
Selling price per unit		→ 100	4 0
Estimated profit per uni	it	$\overline{\mathbf{x}}$	5
		Units	Units
No. of units produced		 2,000	2,000

The factory uses net realizable value method for apportionment of joint cost to by-products. You are required to prepare statements showing:

(i) the joint cost allocable to Cromex

(ii) the product-wise and overall profitability of the factory for April 2019.

<u>Solution</u>

(i) Statement showing Joint Cost Allocation to 'Cro Particulars	mex' Cromex (₹)	1.802 Loons
Sales (₹ 40 × 2,000 units)	✓ 80,00	00 (Domes 1.38)
Less: Post split off costs (4,000 + 18,000 + 6,000)	✓ (28,00	0) = 12000 ==
Less: Estimated profit (₹ 5 × 2,000)	✓ (10,00	0)
Joint Cost Allocable	42,00	00

(ii) Statement showing product wise and Overall Profitability

Particulars	Bomex (₹)	Cromex (₹)	Total (₹)
Sales -	2,00,000	→ 80,000	2,80,000
Less: Share in Joint Expenses —	9 (1,38,000)*	(42,000)	(1,80,000)
Less: Post split off costs -	> (36,000)	→ (28,000)	(64,000)
Profit	26,000	10,000	36,000

*This is a balancing figure i.e. 1,80,000 – 42,000 = (1,38,000)

Question – 2

A factory producing article P also produces a by-product Q which is further processed into finished product. The joint costs of manufacture are given below:

	₹	
Material	5,000	
Labour	3,000	
Overheads	<u>2,000</u>	
	<u>اار المرامع (10,000</u>	•
Subsequent costs are given below:		
	Р	Q
Material	₹3,000	₹1,500
Labour	1,400	1,000
Overheads	600	_500
	(FPC) <u>5,000</u>	<u>3,000</u>

Selling prices are: $P = \overline{16,000}$ and $Q = \overline{16,000}$

Estimated profits margin on

selling prices are 25% for P and 20% for Q.

Assume that selling and distribution expenses are in proportion of sales prices. Show how you would apportion joint costs of manufacture and prepare a statement showing cost of production of P and Q. Solution

Statement of Cost				
Particulars	I	Product P	Pro	duct Q
Sales	~	16,000	J	8,000
Less: Profit —	- 16	$6,000 \times 25\% = 4,000$	8,000)× <u>20</u> % = 1,600
Total Cost	>	12,000		6,400
Less: Selling expenses (w.n. – 1) [ver	in 16;8	267	~	- 133
Work Cost		11,733		6,267
Less: Further Processing Cost -	?	5,000		3,000
Share of Joint Cost		6,733		3,267

Working Note-1

Total sales = Total Joint Cost + Total Further Processing Cost + Total Selling Expenses + Total Profit

24,000 = 10,000 + 8,000 + Total Selling Expenses + 5,600 Total Selling Expenses €₹ 400 Ratio of sales = 16,000 : 8,000 = 2:1 ✓

Selling expenses of $P = 400 \times (2/3) = ₹267$ Selling expenses of $Q = 400 \times (1/3) = ₹133$

Particulars	Product P	Product Q
Joint Cost:		
Material (5,000 in 6,733:3,267)	3,367	1,633
Labour (3,000 in 6,733:3,267)	2,020	980
Overheads (2.000 in 6,733:3.267)	1,347	653
Further Processing Cost:		
Material	(3,000	(1,500
Labour	1,400	1,000
Overheads	600	500
Cost of Production	11,733	6,267

Statement of Cost of Production

Question – 3

The SK Oil company purchase crude vegetable oil. It does refining of the same. The refining process results in four products at the split off point: M, N, O & P.

Product O is fully processed at the split off point. Product M, N, & P can be individually further refined into 'Super M', 'Super N' and 'Super P'. In the most recent month (October), the output at split off point was:

Product M	3,00,000 gallons)
Product N	1,00,000 gallons	
Product O	✓ 50,000 gallons	p
Product P	50,000 gallons	

The joint cost of the purchasing the crude vegetable oil and Processing it were \gtrless 40,00,000. Sunshine had no beginning or ending inventories. Sales of Product O in October were \gtrless 20,00,000. Total output of products M, N and P was further refined and then sold. Data related to October are as follows:

	Further processing cost	
Product	to m <u>ake super</u> products	Sales 🛩
Super M	₹ 80,00,000 -	₹1,20,00,000
Super N	₹ 32,00,000 ~	₹40,00,000
Super P	₹ 36,00,000 -	₹ 48,00,000

Sunshine had the option of selling products M, N and P at the split off point. This alternative would have yielded the following sales for the October, production:

Product M	₹20,00,000 7
Product N	₹ 12,00,000 🐧
Product P	₹28,00,000

You are required to answer:

(a) How the joint cost of ₹ 40,00,000 would be allocated between each product under the following methods

- (i) Sales value at split off point
- (ii) Physical output (gallon)

Less: Further Processing Cost

Incremental Profit/(Loss)

- (iii) Estimated net realizable value
- (b) Could sunshine have increased its October operating profits by making different decisions about the further refining of product M, N or P? Show the effect of any change you recommend on operating profits.

Solution

(a) (i)	Statement of Cost			(₹ in lakhs)
Particulars	Product M	Product N	Product O	Product P
Sale value at split off	~ 20	- 12	✓ 20	- 28
Share of Joint Cost -	10	6	10	14
(40 in 20:12:20:28)				
(a) (ii)	Statem	ent of Cost		(₹ in lakhs)
Particulars	Product M	Product N	Product O	Product P
Physical Output	- 3	- 1	- 0.50	-0.50
Share of Joint Cost	24	8	4	4
(40 in 3:1:0.5:0.5)				
(a) (iii)	(a) (iii) Statement of Cost (₹ in lakhs)			
Particulars	Product M	Product N	Product O	Product P
Sale value after FPC -	• • 120	40	20	48
Less: Further Processing cost	80	— 32	-	-36
Less: Selling expenses		-	-	-
Net Realizable Value	4 0	8	20	12
Share of Joint Cost	20	4	10	6
(40 in 40:8:20:12)				
(b) Statem	ent of Incremen	tal Profit/(Loss)	(₹ in
lakhs)				
Particulars	Pr	oduct M	Product N	Product P
Sales after FPC		120	40	48
Less: Sale at Split off	_	20	12	28
Incremental Sales		100	28	20

Thus, it is recommended that Product M should be further processed into Super M and Product N & P should be sold at split off point without any further processing. With this suggestion, company's operating profit will rise by ₹ 20,00,000 as the existing losses of ₹ 4,00,000 and ₹ 16,00,000 will get cut down.

80

20

32

(4)

36

(16)

<u>Question – 4</u>

SK Ltd. is engaged in the production of Buttermilk, Butter and Ghee. It purchases processed cream and let it through the process of churning until it separates into buttermilk and butter. For the month of May, 2021, SK Ltd. purchased 50 kilolitre processed cream @ ₹ 100 per 1,000 ml. Conversion cost of ₹ 1,00,000 were incurred up-to the split off point, where tow saleable products were produced i.e. buttermilk and butter. Butter can be further processed into Ghee.

The May, 2021 production and sales information is as follows:

Products	Production (in Kilolitre/tonne)	Sales Quantity (in Kilootire/tonne)	Selling price per litre/kg (₹)
Buttermilk	28	28	30
Butter	20	-	-
Ghee	16	16	480

All 20 tonne of butter were further processed at an incremental cost of ₹ 1,20,000 to yield 16 Kilolitre of Ghee. There was no opening or closing inventories of buttermilk, butter or ghee in May, 2021.

Required:

- (i) Show how joint cost would be apportioned between Buttermilk and Butter under estimated net realizable value method.
- (ii) MP Ltd. offers to purchase 20 tonne of butter in June at ₹ 360 per kg. In case SK Ltd. accepts this offer, no Ghee would be produced in June. Suggest whether SK Ltd. shall accept the offer affecting its operating income or further process butter to make Ghee itself?

Solution

(i) Total Joint Cost = Processed cream cost + conversion cost

$$= (50 \times 1, \underline{000} \times \underline{100}) + 1, 00, 000 = ₹51, 00, 000$$

Statement of Joint Cost

Particulars	Buttermilk Amount (₹)	Butter Amount (₹)
Sales Value —	30×28×1,000 = 8,40,000	16×1,000×480 = 76,80,000
Less: Post split-off cost	-> -	(1,20,000)
Net Realizable Value	▶ 8,40,000	75,60,000
Apportionment of Joint Cost of	5,10,000	45,90,000
₹ 51,00,000 in ratio of 1:9		

(ii) Statement of Incremental Profit or Loss

Particulars	(₹)
Revenue from Ghee —	$16 \times 1,000 \times 480 = 76,80,000$
(-) Revenue from Butter	$20 \times 1,000 \times 360 = 72,00,000$
Incremental Revenue	> 4,80,000

(-) Further processing cost	1,20,000
Incremental Profit	

The operating income of SK Ltd. will be reduced by ₹ 3,60,000 in June if it sells 20 tonne of Butter to MP Ltd., instead of further processing of Butter into Ghee for sale. Thus, SK Ltd. is advised not to accept the offer and further process butter to make Ghee itself.

Question – 5

A Factory produces two products, 'A' and 'B' from a single process. The joint processing costs during a particular month are:

Direct material	~	₹ 30,000	
Direct labour	-	₹9,600	TC
Variable Overheads	->	₹12,000	
Fixed Overheads	– 7	₹ 32,000 _	J

Sales: A – 100 units @ ₹ 600 per unit; B – 120 units @ ₹ 200 per unit.

Apportion joint costs on the basis of:

- (i) Physical Quantity of each product.
- (ii) Contribution Margin method, and
- (iii) Determine Profit or Loss under both the methods.

Solution

(i) Statement showing Joint Cost Apportionment (Physical Quantity Basis)

Particulars	A (₹)	B (₹)
Direct Material (30,000 in 100:120)	13,636	16,364
Direct Labour (9,600 in 100:120)	4,364	5,236
Variable Overheads (12.000 in 100:120)	5,455	6,545
Fixed Overheads (32,000 in 100:120)	14,545	17,455
Joint Cost Allocable	38,000	45,600

(ii) Statement showing Contribution

A (₹)	B (₹)
60,000	24,000
13,636	16,364
4,364	5,236
5,455	6,545
36,545	(4,145)
-	A (₹) 60,000 13,636 4,364 5,455 36,545

Particulars	Α	(₹)	B (₹)
Direct Material (30,000 in 100:120)	ſ	13,636	16,364
Direct Labour (9,600 in 100:120)	-	4,364	5,236
Variable Overheads (12,000 in 100:120)		5,455	6,545
Fixed Overheads	C	32,000	
Joint Cost Allocable	<	55,455	28,145

Statement showing Joint Cost Apportionment (Contribution Margin Method)

(iii) Statement showing Profit or Loss (Under Physical Quantity Basis)

Particulars	A(₹)	B (₹)
Sales (100 × 600) (120 × 200) -	> 60,000	24,000
Less: Joint Cost Allocable	> 38,000	45,600
Profit or (Loss)	22,000	(21,600)

Statement showing Profit or Loss (Under Contribution Margin Method)

Particulars	A (₹)	B (₹)
Sales $(100 \times 600) (120 \times 200)$ -	> 60,000) 24,000
Less: Joint Cost Allocable	55,455	28,145
Profit or (Loss)	4,545	(4,145)

<u>Question – 6</u>

A Company produces two joint products P and Q in 70:30 ratio from basic raw materials in department A. The input output ratio of department A is 100:85. Product P can be sold at the split off stage or can be processed further at department B and sold as product AR. The input output ratio is 100:90 of department B. The department B is created to process product P only and to make it product AR.

The selling prices per kg are as under:

Product P

Product Q

Product AR → ₹115 ✓

The production will be taken up in the next month.

→ ₹85 ✓

→ ₹290 ✓

Raw materials 8,00,000 kgs 7	6 m 0
Purchase price ₹ 80 per kg	rorol

IS OF		
	De <u>ptt. A (₹</u> Lacs)	Deptt. B (₹ Lacs)
Direct materials	✓ 35.00	5.00
Direct labour	30.00	9.00
Variable overhead	45.00	18.00
Fixed overheads	40.00	32.00

Total	150.00	64.00
Selling Expenses	₹ in lacs	
Product P	- 24.60	-
Product Q	✓ 21.60	N'YY
Product AR	16.80 🕶	

Required:

- (i) Prepare a statement showing the apportionment of joint costs if Joint Costs are apportioned in the proportion of NRV at Split-off point.
- (ii) State whether it is advisable to produce product AR or not.

Solution

- (a) Input in Department A = 8,00,000 units
 - Output in Department A = $8,00,000 \times 85\% = 6,80,000$ units Output of Product P = $6,80,000 \times (70/100) = 4,76,000$ units

Output of Product $Q = 6,80,000 \times (30/100) = 2,04,000$ units \checkmark

Statement of Joint Cost

Particulars	Amount (₹ in lakhs)
Raw Material (8,00,000 × 80)	→ 640
Direct materials	35
Direct labour	30
Variable overheads	45
Fixed overheads	40
Total Joint Cost	790

Statement of Apportion	ment of Joint Cost	(₹ in lakhs)

Particulars			Product P		Product Q
Sale at split off	-	•	$4.76 \times 85 = 404.60$		$2.04 \times 290 = 591.60$
Less: Selling expenses	_	ج	24.60 •		21.60
Net realizable value at split off		9	380		570
Share of Joint Cost			316)	474
(790 in 38:57)					\smile

(b) Statement of Evaluation of Proposal

Particulars	Amount (₹	in lakhs)
Sales after further processing cost (w.n1) [476] × 901. × 115		492.66
(-) Sale at split off	~	404.60
Incremental sales	1	88.06
(-) Further processing cost	3	(64)
(+) Savings in selling expenses $(24.60 - 16.80)$		7.80
Net Benefit		31.86

Since there is net benefit, thus it is recommended to further process Product P into Product AR.

<u>Working note – 1</u>

Input in Department B = 4,76,000 units Output in Department B i.e. Product AR = 4,76,000 \times 90% = 4,28,400 units Sale value after further processing cost = 115 \times 4.284 lakhs = ₹ 492.66 lakhs

Joint & By-Product

MCQs

Q(1). In sugar manufacturing industries molasses is also produc compared with the value of sugar and is known as: A. common product C. Joint product	ed along with sugar. Molasses may be of smaller value as B. By-product D. None of them
Q(2). Method of apportioning joint costs on the basis of output of A. Sales value method C. Average cost method	f each joint product at the point of split off is: B. Physical unit method D. Marginal cost and contribution method
 Q(3). In the Net realisable value method, for apportioning joint would be: A. Selling price per unit of each of the joint products B. Selling price multiplied by units sold of each of the join product C. Sales value of each joint product less further processing costs in <i>D</i>. Both (b) and (c) 	t costs over the joint products, the basis of apportionment cts for individual products
Q(4). The main purpose of accounting of joint products and by-pu A. Determine the opportunity cost C. Determine profit or loss on each product line	roducts is to: B. Determine the replacement cost D. None of the above
Q(5). Under net realizable value method of apportioning joint cost A. Added to joint cost C. Deducted from sales value	sts to joint products, the selling & distribution cost is: B. Deducted from further processing cost D. Ignored
Q(6). Which of the following is a co-product A. Diesel and petrol in an oil refinery B. Edible oils and oil cakes C. Cured and butter in a dairy D. Mustard oil and sunflower oil in an oil processing company	
Q(7). Which of the following is an <u>exa</u> mple of by-product. A. Diesel and Petrol in an oil refinery C. Curd and butter in a dairy	D. Edible oils and oil cakes D. Mustard seeds and mustard oil
Q(8). Which of following method can be used when the join consumption: A. Technical estimates, using market value of similar goods C. Physical units method	n products are of unequal quantity and used for captive B. Net Realisable value method D. Market value at split-off method
Q(9). Which of the following statement is not correct in relation to A. Co-products may also have joint products B. Costing for co-products are done according to process costing Co-products do not have any by-products D. Co-products are treated as a separate cost object for costing put	to Co-products: method urpose.
Q(10). When a by-product does not have any realisable value, the A. Transferred to costing Profit & Loss A/c By-product cost is borne by the good units	e cost of by-product is:

C. By-product is ignored D. By-product cost is determined taking value of similar goods

Q(11). SG Ltd. manufactures two products from a joint milling process. The two products developed are Mine support (MS) and commercial building (CB). A standard production run incurs joint costs of ₹1,00,000 and results in 60,000 units of MS and 90,000 units of CB. Each MS sells for ₹ 200 per unit, and each CB sells for ₹ 450 per unit.

Assuming no further processing work is done after the split-off point, the amount of joint cost allocated to commercial building (CB) on a physical quantity allocation basis would be: 10× 90 = 60 000 1.₹60,000 B.₹1,80,000 D.₹1.20,000

C.₹2,25,000

Q(12). Kay company manufactures two hair care lotions, Livi and Sili, out of a joint process. The join (common) costs incurred are ₹ 6,30,000 for a standard production run that generates 1,80,000 gallons of Livi and 1,20,000 gallons of Sili. Livi sells for ₹ 240 per gallon, and Sili sells for ₹ 390 per gallon.

If additional processing costs beyond the split-off point are ₹ 140 per gallon for Livi and ₹ 90 per gallon for Sili, the amoint of joint cost of each production run allocated to Livi on a physical-quantity basis is: 6.30 x 1.80 = 2.72/ A. ₹ 3,40,000 ₿. ₹ 3,78,000 C.₹2,32,000 D.₹5,80,000

Q(13). For the purpose of allocating joint costs to join products, the sales price at point of sale, reduced by cost to complete after split-off, is assumed to be equal to the:

A. Joint costs -

Met sales value at split off

B. Sales price less a normal profit margin at point of sale D. Total costs

MARGINAL COSTING - CONCEPTS

1. Marginal Costing

- 2. Cost Volume Profit (CVP) Analysis
- 3. Contribution = Sales Variable Cost

4. Profit Volume (PV) Ratio or Contribution Ratio

This ratio doesn't change with change in level of output

This ratio changes with change in either selling price per unit or variable cost per unit

 $\frac{\text{PV Ratio}}{\text{PV Ratio}} = \frac{Contribution}{Sales} \times 100 = \frac{Sales - Variable Costs}{Sales} \times 100 = \frac{Fixed cost + Profit}{Sales} \times 100$ $\frac{\text{PV Ratio}}{\text{PV Ratio}} = \frac{Change in Contribution}{Change in Sales} \times 100 = \frac{Change in Profit}{Change in Sales} \times 100$

5. Break-even point (BEP)

It is the level of sales at which there is neither any profit nor any sales In other words, it is the level of sales at which contribution is just able to recovery FC.

Break-even Point (units of sale) = $\frac{Fixed Cost}{Contribution per unit}$ Break-even Point (in sales value) = $\frac{Fixed Cost}{P/V Ratio}$ = Break-even point units × Selling price per unit

6. Cash Break-even Point

It is level of sales at which cash profit or loss is zero. Cash Break-even Point (units of sale) = $\frac{Cash \ Fixed \ Cost}{Contribution \ per \ unit}$

Cash Break-even Point (in sales value) = $\frac{Cash Fixed Cost}{P/V Ratio}$

Level of Soles	Situation
Soles > BES	Probit
Soles = BES	Pf3./168=0
Soles < BES	6885

9. Points to Remember (PTRs)

(A) If fixed cost per unit is given then multiply it with the level of units at which such fixed cost per unit was computed.

(B) Apply price effect of Total FC and never apply on FC per unit

(*) weights will be holes % of each product out of total soles (*) holes mix

15. Make vs Buy Spone capacity Exist Spone capacity Exist Relevant = VC + Addittional Cast FC Relevant Cast vs Riachabe Cast Relevant > Richabe Cast Vs Richabe Cast Vs Richabe Cast 16. Dropping an existing product for new product

Compose blu Existing Propits us New Propits Exist. Pft. > New Profit L Not to drop existing Product Exist. Aft. < New Aft. Doop existing product of include new product

17. Key factor or limiting factor

It is the factor which is limited in its availability

Decision will be taken on the basis of contribution per unit of key factor

Key Factor	Basis of Decision
→ Sales (in units)	> Contribution per unit
Sales (in ₹)	→ P/V Ratio
🚽 Material	- Contribution per unit of material
-> Labour hour	Contribution per labour hour
-> Machine hour	Contribution per machine hour

18. Indifference Level

Level at which cost of two options will be equal

Indifference level =
$$\frac{\text{Difference in Fixed cost}}{\text{Difference in variable cost per unit}}$$

option-) VC, A.v. & FC, option-2) VC₂ A.v. & FC₂
Let at 'y' units both options cost will be equal:
TC & option-1 = TC & option-2
(y)(VC_i) + F(1 = (y)(VC_2) + FC₂
(y)(VC_i) - (y)(VC_2) = FC₂ - FC₁
 $d = \frac{FC_2 - FC_1}{VC_1 - VC_2} = \frac{\text{Aibb. in FC}}{\text{Aibb. in VC P.V}}$

Level	Recommendation
Actual quantity > Indifference level	Select option having variable cost per unit is low
Actual quantity < Indifference level	Select option where fixed cost is low
Actual quantity = Indifference level	Select any option

In case if there are three 3 options, then compute as follows:

- (a) Case 1 & 2 🗸
- (b) Case 2 & 3 🗸
- (c) Case 1 & 3 🗸

19. Income statement under Marginal Costing

Particulars	Amount
Revenue (A)-	<u> </u>
Direct Material 🧹	-
Direct Labour 🖌	-
Direct expenses 🧹	-
Variable manufacturing overheads	-
Variable GFC/NFC/COP	-
Add: Opening stock of finished goods	-
Less: Closing stock of finished goods	-
-> Variable COGS	-
Add: Variable administration overheads	-
Add: Variable selling & distribution overheads	-
Variable COS (B)	-
Contribution (A – B)	-
Less: Fixed manufacturing overheads	-
Less: Fixed administration overheads	-
Less: Fixed selling & distribution overheads J	-
Profit	

20. Income statement under Absorption Costing

Particulars	Amount
Revenue (A)	-
Direct Material 🖌	-
Direct Labour 🥣	-
Direct expenses 🖌	-
Variable manufacturing overheads	-
Fixed manufacturing overheads - on Recovery Rote Basis	-
GFC/NFC/ <u>COP</u>	-
Add: Opening stock of finished goods 7	-
Less: Closing stock of finished goods 🟅	-
COGS	-

Particulars	Amount
Add Fixed & Variable administration overheads	-
Add, Fixed & Variable selling & distribution overheads	-
→ cos	-
Add: Under absorbed fixed manufacturing overheads	-
Less: Over absorbed fixed manufacturing overheads	-
Total Cost (B)	-
Profit/(loss) (A – B)	

MARGINAL COSTING – QUESTIONS

Question – 1

AZ company has prepared its budget for the production of 2,00,000 units. The variable cost per unit is ₹ 16 and fixed cost is ₹ 4 per unit. The company fixes its selling price to fetch a profit of 20% on total cost.

You are required to calculate:

- Present break-even sales (in Rs. and in quantity) (i)
- Present profit-volume ratio (ii)
- (iii) Revised break-even sales in Rs and the revised profit-volume ratio, if it reduces its selling price by 10%.
- (iv) What would be revised sales in quantity and the amount, if a company desires a profit increase of 20% more than the budgeted profit and selling price is reduced by 10% as above in point (iii).

Solution

- Pv Ratio = $\frac{8}{24} \times 100 = 33.333'$. $855 = \frac{81}{23.1333'} = 241$ (i) Present Fixed cost = 4 × 2,00,000 = ₹ 8,00,000 Present Profit = Total cost × 20% = (16+4) × 20% = ₹4 Present Selling price = Cost + Profit = (16 + 4) + 4 = ₹24Contribution = Selling price – Variable cost = 24 - 16 = 78Present Break-even sales units = $\frac{Fixed cost}{Contribution per unit} = \frac{8,00,000}{8} = 1,00,000$ units Present Break-even sales value = $1,00,000 \times 24 = ₹24,00,000$
- Present profit-volume ratio = $\frac{Contribution}{Selling price} \times 100 = \frac{8}{24} \times 100 = \frac{3}{24} \times 33\%$ (ii)
- (iii) New Selling price per unit = 24 10% = 21.60New contribution per unit = 21.60 - 16 = ₹ 5.60Revised PV ratio = $\frac{5.60}{21.60} \times 100 = 25.93\%$ Revised break-even sales = $\frac{8,00,000}{25.93\%}$ = ₹ 30,85,229
- (iv) Required profit = Existing profit × $120\% = (4 \times 2,00,000) \times 120\% = ₹9,60,000$ Required sales quantity = $\frac{Required \ profit+Fixed \ cost}{Contribution \ per \ unit} = \frac{9,60,000+8,00,000}{5.60} = 3,14,286$ units Required sales value = $3,14,286 \times 21.60 = (7,88,578)$

Question – 2

The sales turnover and profit of M/s SK Ltd. during the two years 2017 and 2018 were as follows:

Question – 3

SK Ltd. has furnished the following data for the two years:

		2017	2018
Sales	-)	₹8,00,000	?
Profit/volume ratio (P/V Ratio)	-)	50%	→ 37.5%
Margin of safety sales as % of total sales		9 40%	→ 21.875%

There has been substantial savings in the fixed cost in the year 2018 due to the restructuring process. The company could maintain its sales quantity level of 2017 in 2018 by reducing the selling price. You are required to calculate the following:

(a) Sales for 2018 in ₹

(b) Break-even sales for 2018 in ₹

✓ (c) Fixed cost for 2018

Solution

(a)	<u>Year 2017</u>
	Variable cost ratio = $100 - P/V$ Ratio = $10 - 50\% = 50\%$
	Variable cost = Sales × Variable cost ratio = 8,00,000 × 50% = ₹4,00,000
	<u>Year 2018</u>
$\mathbf{\hat{x}}$	Since there is no change in sales quantity and no information has been provided for change in
T	variable cost per unit.
	∴ Variable cost of Year 2018 = Variable Cost of Year 2017 = ₹4,00,000
	Variable cost ratio = $100 - P/V$ Ratio = $100 - 37.5\% = 62.5\%$
~	$\frac{Variable \ cost}{sales} = 62.5\%$
	Sales = Variable cost \div 62.5%
	Sales = $4,00,000 \div 62.5\% = (26,40,000)$
(b)	Breakeven sales (in %) = $100 - Margin$ of Safety (in %) = $100 - 21.875\% = 78.125\%$
	Breakeven sales = $6,40,000 \times 78.125\% = ₹5,00,000$
(c)	Breakeven sales = $\frac{Fixed Cost}{P/V Ratio}$
	Fixed cost = Breakeven sales × P/V Ratio = 5,00,000 × 37.5% ₹₹1,87,500

Question – 4

A company manufactures two types of herbal product S and K. Its budget shows profit figures after apportioning

the fixed joint cost of ₹15 lacs in proportion of the numbers of units sold. The budget for 2022, indicates:

		S	K
Profit (₹)	Ļ	1,50,000	30,000
Selling price / unit (\mathbf{F})	1	200 🛩	120
P/V Ratio (%)		40 🧹	50

Required:

Compute the best option among the following, if the company expects that the number of units to be sold would be equal.

- (a) Due to exchange in a manufacturing process, the joint fixed cost would be reduced by 15% and the variables would be increase by 7½%.
- ✓ (b) Price of S could be increase by 20% as it is expected that the price elasticity of demand would be unity over the range of price.

 \checkmark (c) Simultaneous introduction of both the option, viz. (a) and (b) above.

<u>Solution</u>

Working Notes:

1) Contribution per unit of S = $200 \times 40\%$ = ₹ 80

:.Variable cost per unit of S = 200 - 80 = ₹ 120

Contribution per unit of K = $120 \times 50\% = ₹60$ \therefore Variable cost per unit of K = 120 - 60 = ₹60

2) Let units sold of S & K = y Contribution = Fixed cost + Profit 80y + 60y = 15,00,000 + 1,50,000 + 30,000 140y = 16,80,000 y = 12,000 ∴Units sold of each product = 12,000

(a) Statement of Profit	
Particulars	Amount (₹)
Contribution of S [$\{200 - (120 + 7.5\%)\} \times 12,000$]	▶ 8,52,000
Contribution of K [$\{120 - (60 + 7.5\%)\} \times 12,000$]	- 6,66,000
Total contribution	15,18,000
Less: Fixed Cost (15,00,000 – 15%)	-> 12,75,000
Profit	2,43,000

(b) Existing total sales of S = $12,000 \times 200 = ₹ 24,00,000$ New Selling price of S = 200 + 20% = ₹ 240New quantity of S = $24,00,000 \div 240 = 10,000$ units

Statement of Profit

Particulars	Amount (₹)
Contribution of S $[(240 - 120) \times 10,000]$	 12,00,000
Contribution of K $[(120 - 60) \times 12,000]$	→ 7,20,000
Total contribution	19,20,000
Less: Fixed Cost	15,00,000
Profit	4,20,000

(c) St	atement of Profit	
Par	ticulars	Amount (₹)
Contribution of S [{240 – (120 + 7	.5%)} × 10,000]	11,10,000
Contribution of K [$\{120 - (60 + 7.)\}$	5%)} × 12,000]	6,66,000
Total contribution		17,76,000
Less: Fixed Cost (15,00,000 – 15%)	12,75,000
Profit		5,01,000

A comparison of increase in profit figures under above three options clearly indicates that the option (c) is the best as it has the highest profit of ₹ 5,01,000.

Question – 5

SK a zero sugar cold drink manufacturing Indian company, is planning to establish a subsidiary company in Nepal to produce coconut flavored juice. Based on the estimated annual sales of 60,000 bottles of the juice, cost studies produced the following estimates for the Nepalese subsidiary:

	Total Annual Costs	Percent of total annual cost which is	
	(₹)	variable	
Material	2,70,000	100%	
Labour	1,97,000	80% + 2، ازمد جار ازمد	
Factory Overheads	1,20,000	60% + 40% fix	
Administration	52,000	35% + 65% fix	
Expenses			

The Nepalese production will be sold by manufacturer's representative who will receive a commission of 9% of the sale price. No portion of the Indian office expenses is to be allocated to the Nepalese subsidiary. You are required to:

- (i) Compute the sale price per bottle to enable the management to realize an estimated 20% profit on sale proceeds in Nepal
- (ii) Calculate the break-even point in rupees value sales and also in number of bottles for the Nepalese subsidiary on the assumption that the sale price is ₹ 14 per bottle.

Solution

(i)

Computation of Sale Price Per Bottle

	(₹)
Variable Cost:	
Material	2 ,70,000
Labour (₹ 1,97,000 × 80%)	 , 1,57,600
Factory Overheads (₹ 1,20,000 × 60%)	→ 72,000
Administrative Overheads (₹ 52,000 × 35%)	→ 18,200
Total	(A) - 5,17,800
Fixed Cost:	
Labour (₹ 1,97,000 × 20%)	39,400
Factory Overheads (₹ 1,20,000 × 40%)	48,000
Administrative Overheads (₹ 52,000 × 65%)	33,800
Total	(B) - 1,21,200 -
Total Cost without commission (A + B)	→ 6,39,000
Add: Commission (9% 0f₹9,00,000)	81,000
Add: Profit (20% of ₹ 9,00,000)	1,80,000
Sales Proceeds (6,39,000 ÷ 71%) (C)	→ 9,00,000
No. of bottles (D)	→ 60,000
Selling price per bottle (C \div D)	15

(ii) Statement of calculation of break-even point

Particulars	Amount (₹)
Sale price per bottle	→ 14.00
(-) Variable cost per bottle $\left(\frac{5,17,800}{60,000}\right)$	- 8.63
(-) commission per bottle ($14 \times 9\%$)	→ 1.26
Contribution per bottle	→ 4.11
Break-even point (in number of bottles)	$\frac{1,21,200}{4.11} = 29,489$
Break-even point (in sales value)	29,4 <u>89 × 1</u> 4 = 4,12,846

<u>Question – 6</u>

SK Ltd. manufacture and sales its product S-9. The following figures have been collected from cost records of last year for the product S-9:

Elements of Cost	Variable Cost Portion	Fix <u>ed Co</u> st
Direct Material 🔿	30% of Cost of Goods Sold	-
Direct Labour ->	15% of Cost of Goods Sold	-
Factory Overheads -	10% of Cost of Goods Sold	₹2,30,000
General & Administration Overheads 🤿	2% of Cost of Goods Sold	₹71,000
Selling & Distribution Overhead 🧈	4% of Cost of Sales	 ₹ 68,000

Last Year 5,000 units were sold at ₹ 185 per unit. From the given data find the followings:

(a) Break-even Sales (in rupees)

(b) Profit earned during last year

(c) Margin of safety (in %)

(d) Profit if the sales were 10% less than the actual sales.

(Assume that administration overheads are related with production activity)

Solution

Working Notes: (i) $COGS = \{(DM - 0.3COGS) + (DL - 0.15COGS) + (FOH - 0.10COGS + ₹ 2,30,000) + (G&AOH - 0.02COGS + ₹ 71,000)\}$ COGS = 0.57 COGS + ₹ 3,01,000 $COGS = \frac{3,01,000}{0.43} = ₹ 7,00,000$ (ii) COS = COGS + (S&DOH - 0.04COS + ₹ 68,000) COS = ₹ 7,00,000 + (0.04 COS + ₹ 68,000) COS = ₹ 7,00,000 + (0.04 COS + ₹ 68,000) $COS = \frac{7,68,000}{0.96} = ₹ 8,00,000$ (iii) Calculation of Variable Costs:

<u>Question – 7</u>

SK Ltd. manufactures and sells a single product X whose selling price is ₹ 100 per unit and the variable cost is ₹ 60 per unit.

- (a) If the Fixed Costs for this year are ₹ 24,00,000 and the annual sales are at 60% margin of safety, Calculate the rate of return on sales, assuming an income tax level of 40%.
- (b) For the next year, it is proposed to add another product line Y whose selling price would be ₹ 150 per unit and the variable cost ₹ 100 per unit. The total fixed costs are estimated at ₹ 28,00,000. The sales mix of X : Y would be 5 : 3. Compute the breakeven sales in units for both the products.

Solution

(a) Contribution per unit = Selling price – Variable cost = ₹ 100 – ₹ 60 € ₹ 40 Break-even point = ₹ $\frac{Fixed Cost}{Contribution per unit} = \frac{24,00,000}{40} = 60,000$ units Break-even sale (in %) = 100 – Margin of safety = 100 - 60% of sales = 40% of sales $\frac{Break-even sales in units}{Actual sales units} = \frac{40}{100}$ $\frac{60,000}{Actual sale units} = 0.40$ Actual sale units = 1,50,000 units

Particulars	₹
Sales Value (1,50,000 × 100)	1,50,00,000
Less: Variable cost $(1,50,000 \times 60)$	90,00,000
Contribution -	▶ 60,00,000
Less: Fixed cost –	2 4,00,000
Profit -	36,00,000
Less: Income tax @ 40%	14,40,000
Net Return –	21,60,000
Rate of net return on sales $\left(\frac{21,60,000}{1,50,00,000} \times 100\right)$	14.40%

(b) Contribution per unit of Product X = 100 - 60 = ₹ 40Contribution per unit of Product Y = 150 - 100 = ₹ 50Overall contribution per unit $= (40 \times \frac{5}{8}) + (50 \times \frac{3}{8}) = ₹ 43.75$ Overall Break-even point $= \frac{Fixed cost}{Overall Contribution per unit} = \frac{28,00,000}{43.75} = 64,000$ units Break-even point of Product $X = 64,000 \times 5/8 = 40,000$ units Break-even point of Product $Y = 64,000 \times 3/8 = 24,000$ units

<u>Question – 8</u>

LR Ltd. is considering two alternative methods to manufacture product it intends to market. The two methods have a maximum output of 50,000 units each and produce identical items with a selling price of ₹25 each. The costs are:

	Method – I	Method – II
	Semi-Automatic	Fully automatic (₹)
	(₹)	
Variable cost per unit.	→ 15	10
Fixed costs	➔ 1,00,000 ∽	3,00,000

You are required to calculate:

(i) Cost Indifference Point in units. Interpret your results.

(ii) The Break-even point of each method in terms of units

Solution

(i) Let cost indifference units = y

Thus, Total cost of Method – I = Total cost of Method – II 1,00,000 + 15y = 3,00,000 + 10y 5y = 2,00,000 y = 40,000At y = 40,000 units, cost of the two methods will be equal.

If quantity produced is more than 40,000 units than option where variable cost per unit is low i.e. Method - II will have greater benefits in term of cost. If quantity produced is less than 40,000 units than option with lowest fixed cost i.e. Method – I will have greater benefits in terms of total cost.

(ii) Sta	tement	t of Break-even j	point
Particulars		Method – I	Method - II
Contribution per unit (A)		25 - 15 = 10	25 - 10 = 15
Fixed cost (B)	-	1,00,000	3,00,000
Break-even point (in units) (B÷.	A) 👝	10,000	20,000

Statement of Broak-even noint

Question – 9

Two manufacturing companies A and B are planning to merge. The details are as follows:

	Α	В
Capacity utilization (%) –		60
Sales (₹) -	→ 63,00,000	48,00,000
Variable Cost (₹) -	→ 39,60,000	22,50,000
Fixed Cost (₹)	• 13,00,000	15,00,000

Assuming that the proposal is implemented, calculate:

Break-Even sales of the merged plant and the capacity utilization at that stage. (i)

Profitability of the merged plant at 80% capacity utilization. (ii)

(iii) Sales Turnover of the merged plant to earn a profit of \gtrless 60,00,000.

(iv) When the merged plant is working at a capacity to earn a profit of ₹ 60,00,000, what percentage of increase in selling price is required to sustain an increase of 5% in fixed overheads.

Solution

(i)

	St	atement of P	rofit	(₹ in lakhs)
Particulars		Plant A	Plant B	Total
Sales -	\$	$63 \div 90\% = 70$	$48 \div \underline{60\%} = 80$	150
(-) Variable Cost	39	$9.6 \div 90\% = 44$	$22.5 \div 60\% = 37.50$	81.50
Contribution		— 26	→ 42.50	-> 68.50
(-) Fixed Cost –)	→ 13	→ 15	28
Profit		(13	27.50	40.50

Overall P\V Ratio =
$$\frac{Contribution}{Sales}$$
 × 100 = $\frac{68,50,000}{1,50,00,000}$ × 100 = $\frac{45.67\%}{61,30,939}$
Overall Break-even point (in $₹$) = $\frac{Fixed Cost}{Overall P \setminus V Ratio}$ = $\frac{28,00,000}{45.67\%}$ = $₹ 61,30,939$
Break-even point capacity = $\frac{Break-even sales}{Total Sales at 100\% level}$ × 100 = $\frac{61,30,939}{1,50,00,000}$ × 100 = 40.87%
(ii) Sales at 80% level = 1,50,00,000 × 80% = ₹ 1,20,00,000
Profit = Contribution - Fixed Cost = (1,20,00,000 × 45.67\%) - 28,00,000 = ₹ 26,80,400

(iii) Desired Sales = $\frac{Fixed \ Cost + Desired \ Profit}{Overall \ P \setminus V \ Ratio} = \frac{28,00,000 + 60,00,000}{45.67\%} € ₹ 1,92,68,867$ (iv) Increase in fixed cost = $28,00,000 \times 5\% = ₹ 1,40,000$, \therefore Percentage increase in selling price = $\frac{1,40,000}{1,92,68,867} \times 100 = 0.726\%$

Question – 10

A dairy product company manufacturing baby food with a shelf life of one year furnishes the following information:

- On 1st January, 2019, the company has an opening stock of 20,000 packets whose variable cost is ₹ 180 per packet.
- (ii) In 2018, production was 1,20,000 packets and the expected production in 2019 is 1,50,000 packets. Expected sales for 2019 is 1,60,000 packets.
- (iii) In 2018, fixed cost per unit was ₹ 60 and it is expected to increase by 10% in 2019. The variable cost is expected to increase by 25%. Selling price for 2019 has been fixed at ₹ 300 per packet.
 You are required to calculate the Break-even volume in units for 2019.

Solution

Total fixed cost for year $2019 = 1,20,000 \times 60 \times 110\% = ₹79,20,000$ Contribution per unit upto first 20,000 units (Opening stock units) = 300 - 180 = ₹120Contribution per unit beyond 20,000 units (After sale of opening stock) = $300 - (180 \times 125\%) = ₹75$ Total contribution on first 20,000 units = $₹20,000 \times 120 = ₹24,00,000$ Thus, fixed cost recovered from initial sale of 20,000 units = ₹24,00,000 Balance fixed cost to be recovered = ₹79,20,000 - ₹24,00,000 = ₹55,20,000 Units to be sold for recovery of additional fixed cost = $\frac{55,20,000}{75} = 73,600$ units Thus, Break-even point = 20,000 + 73,600 = 93,600 units

Question – 11

SK ltd. manufactures automobiles accessories and parts. The following are the total cost of processing 2,00,000 units:

Direct material cost		₹ 375 per unit	485-471 = 14
Direct labour cost	->	₹80 per unit → (17	
Variable factory overhead	->	₹16 per unit	282
Fixed factory overhead	->	₹ 500 lakhs (፲۵৫)	

The purchase price of the component is \gtrless 485. The fixed overhead would continue to be incurred even when the component is bought from outside. Required:

- (a) Should be part be made or bought from outside considering that the present facility when released following a buying decision would remain idle?
- (b) In case the released capacity can be rented out to another manufacturer for ₹ 32,00,000 having good demand. What should be the decision?

Solution

(a) The decision shall be made comparing the marginal cost of making and buying the component. Here the variable cost of making the component is ₹471 as compared to buying cost of ₹485. The component shall be made by suing own production facility as it would save the company ₹14 per unit.

(b) If by releasing the production facility the company can earn a rental income of $\overline{\xi}$ 32,00,000, then the additional cost of buying from outside and the rental income from releasing the capacity shall be compared for making decision.

Additional cost of buying = $₹ 14 \times 2,00,000$ units = ₹ 28,00,000

Rental income to be received = ₹ 32,00,000

Addi<u>tional ben</u>efit = ₹ 4,00,000

The component should be bought from outside as it would save the company ₹ 4,00,000 in fixed cost.

Question – 12

Moon Ltd. produces products 'X', 'Y' and 'Z' and has decided to analyse it's production mix in respect of these three products - 'X', 'Y' and 'Z'.

You have the following information:

		Х	Y	Ζ	_
Direct materials	s (₹) per unit →	160	120	80	•
Variable overhe	eads (₹) per unit 🚽	8	20	12	
Dir <u>ect la</u> bour:					
Departments:	Rate per hour (₹)	Hours per	unit Hours	per unit	Hours per unit
		X	<u> </u>	ł	Z
Department-A	4	6	1	0	5
Department-B	<u> </u>	6	1	5	11
From the curren	nt budget, further deta	ails are as b	elow:		
			V	V	7

	Х	Y	Z
Annual production at present (in units)	▶ 10,000	12,000	20,000
Estimated selling price per unit (₹)	• 312	400	240
Sales department estimate of possible sales in the coming year (in units)	12,000	16,000	24,000

There is a constraint on supply of labour in Department-A and its manpower cannot be increase beyond its present level.

Required:

(i) Identify the best possible product mix of Moon Ltd.

(ii) Calculate the total contribution from the best possible product

Solution

Present supply of labour hours in Department-A = $(10,000 \times 6) + (12,000 \times 10) + (20,000 \times 5) = 2,80,000$ labour hours

Particulars		Χ	Y	Z
Selling price per unit)	312	400	240
(-) Direct material per unit)	160	120	80
(-) Labour cost per unit				
Department A		$4 \times 6 = 24$	$4 \times 10 = 40$	$4 \times 5 = 20$
Department B		$8 \times 6 = 48$	$8 \times 15 = 120$	8×11 = 88
(-) Variable overheads per unit	->	8	20	12
Contribution per unit		72	100	40
Labour hours per unit		- 6	— 10	— 5
Contribution per labour hour		12	(10)	8
Rank		Ĩ	ÍÍ	

Statement of Contribution

Statement of Product Mix and Contribution

Product	Units	Labour hours per unit	Labour Hours consumed	Contribution
X	→ 12,000	→ 6	→ 72,000	72,000×12 = 8,64,000
Y	→ 16,000	→ 10	→ 1,60,000	$1,60,000 \times 10 =$
	•			16,00,000
Z	48,000÷5 =	5	(Bal. fig.) 48,000	$48,000 \times 8 = 3,84,000$
	9,600			
	37,600		2,80,000	28,48,000

Question – 13

The profit for the year of SK Ltd. works out to 12.5% of the capital employed and the relevant figures are as under:

Sales	->	₹5,00,000	12.51×011 410
Direct Materials	->	₹2,50,000	
Direct Labour	\rightarrow	₹ 1,00,000	VE
Variable Overheads	→	₹40,000	
Capital Employed	Ĵ	₹4,00,000	

The new Sales Manager who has joined the company recently estimates for next year a profit of about 23% on capital employed, provided the volume of sales is increased by 10% and simultaneously there is an increase in selling price of 4% and an over cost reduction in all the elements of cost by 2%.

Required:

Find out by computing in details the cost and profit for the next year, whether the proposal of sales manager can be adopted.

Solution

Particulars		Amount
Sales	ر –	5,00,000
(-) Profit $(4,00.000 \times 12.5\%)$		50,000
Total Cost	-+	4,50,000
(-) Direct material		2,50,000
(-) Direct labour VC		1,00,000
(-) Variable overheads	6	40,000
Fixed overheads	E	60,000
Statement of Profit (Proposed Situation)	
Particulars		Amount
Sales $[5,00,000 \times \frac{110}{100} \times \frac{104}{100}]$	~	5,72,000
(-) Variable cost [(2,50,000 + 1,00,000 + 40,000) × $\frac{110}{100}$ × $\frac{98}{100}$]		4,20,420
Contribution P		1,51,580
(-) Fixed Overheads (68,000 $\times \frac{98}{100}$)		58,800
		02 700

Statement of Calculation of Fixed Overheads

mpioyeu 4,00,000 ιP

Since the profit as % of capital employed is increasing, thus it is recommended to accept the proposal.

Question – 14

SK Ltd. manufactures three different products and the following information has been collected form the books of accounts:

	Products		
	S	K	M
Sales Mix	35%	35%	30%
Selling price	→ ₹ 300	₹400	₹200
Variable cost	→ ₹ 150	₹200	₹120
Total Fixed costs			→ ₹18,00,000
Total Sales	→ ₹60,00,00		

The company has currently under discussion, a proposal to discontinue the manufacture of product M and replace it with Product J, when the following results are anticipated:

		Products	
	S	K	J
Sales Mix	> 50%	25%	25%

Selling price	-7	₹300	₹400	₹300
Variable cost	-	₹150	₹200	₹150
Total Fixed costs				₹18,00,000
Total Sales				₹ 64,00,000

Required:

(i) Compute the PV ratio, total contribution, profit and Break-even sales for the existing product mix.

(ii) Compute the PV ratio, total contribution, profit and Break-even sales for the proposed product mix.

Solution

(i) Computation of PV ratio					
		Products			
	S	K	Μ		
Selling price	300	400	200		
Less: Variable cost	150	200	120		
Contribution per unit	150	200	80		
PV ratio	50%	<u>50%</u>	40%		
Overall PV Ratio = Weighted average PV ratio = $(50 \times 0.35) + (50 \times 0.35) + (40 \times 0.30) = 47\%$					
Total Contribution = Sales	× Overall PV Ratio	$= 60,00,000 \times 47\%$	=₹28,20,000		
Total Profit = Contribution – Fixed Cost = $28,20,000 - 18,00,000 = ₹10,20,000$					
Break-even Sales = $\frac{Fixed \ Cost}{Pverall \ PV \ Ratio} = \frac{18,00,000}{47\%} = ₹ 38,29,787$					

(ii) Computation of PV ratio

	Products			
	S	K	J 🖊	
Selling price	300	400	300	
Less: Variable cost	150	200	150	
Contribution per unit	150	200	150	
PV ratio	50%	50%	50%	
Overall PV Ratio = Weighted average PV ratio = $(50 \times 0.50) + (50 \times 0.25) + (50 \times 0.25) = 50\%$				
Total Contribution = Sales × Overall PV Ratio = 64,00,000 × 50% = ₹ 32,00,000				
Total Profit = Contribution – Fixed Cost = 32,00,000 – 18,00,000 = ₹ 14,00,000				
Break-even Sales = $\frac{Fixed Cost}{Pverall PV Ratio} = \frac{18,00,000}{50\%} = ₹ 36,00,000$				

<u>Question – 15</u>

SK Ltd. has a production capacity of 2,00,000 units per year. Normal capacity utilization is reckoned as 90%. Standard variable production costs are \gtrless 11 per unit. The fixed costs are \gtrless 3,60,000

per year. Variable selling costs are ₹3 per unit and fixed selling costs are ₹2,70,000 per year. The unit selling price is ₹20.

In the year just ended on 31^{st} March, 2019, the production was 1,60,000 units and sales were 1,50,000 units. The closing inventory on 31^{st} March was 20,000 units. The actual variable production costs for the year were ₹ 35,000 higher than the standard.

(a) Calculate the profit for the year

Actual = Std. + 35000 V-C VC

- (i) By absorption costing method and
- (ii) By marginal costing method
- (b) Explain the difference in the profits

Solution

Working Note

Particulars	Year 2019
Opening stock	(Bal. fig.) 10,000
(+) Production	1,60,000
(-) Sales	1,50,000
Closing Stock	20,000

(a)

Income Statement under Absorption Costing

Particulars	Amount
Sales (A)	1,50,000×20 = 30,00,000
Variable Production Cost	\rightarrow 1,60,000×11 = 17,60,000
Under Recovered Variable Prod. Cost	35,000
Fixed Production	$\underbrace{\frac{3,60,000}{2,00,000\times90\%}}_{2,00,000\times90\%} \times 1,60,000 = \underline{3,20,000}$
GFC/NFC/COP	→ 21,15,000 →
(+) Op. Stock FG	$10,000 \times (11 + 2) = 1,30,000$
(-) Cl. Stock FG	$21,15,000 \\ - 20,000 \\ - 20,000 \\ - 2,64,375 $
COGS	→ 19,80,625
(+) Variable Selling Cost	\rightarrow 1,50,000×3 = 4,50,000
(+) Fixed Selling Cost	- 2,70,000
COS	-> 27,00,625
(+) Under Recovered Fixed Prod. Cost	3,60,000 - 3,20,000 = 40,000
Total Cost (B)	
Profit (A – B)	2,59,375

Income Statement under Marginal Costing

Particulars	Year 2019	
Sales (A)	▶ 1,50,000×20 = 30,00,000	
Variable Production Cost	$1,60,000 \times 11 = 17,60,000$	7
Under recovered variable Prod. Cost	35,000	۲

Variable GFC/NFC/COP	17,95,000
(+) Op. Stock FG	$10,000 \times 11 = 1,10,000$
(-) Cl. Stock FG	$\frac{17,95,000}{1,60,000} \times 20,000 = 2,24,375$
Variable COGS (B)	16,80,625
(+) Variable Selling cost	$1,50,000 \times 3 = 4,50,000$
Variable COS (B)	→ 21,30,625
Contribution (A – B)	-> 8,69,375
(-) Fixed Production Cost	→ 3,60,000
(-) Fixed Selling Cost	> 2,70,000
Profit	2,39,375

(b) The difference in profit is due to the valuation of stock in both methods.

Reconciliation St.	
Pft. at ber Absorption	2,59,375
(+) proce valued ob. St. in obs.	20,000
(-) Over volued (l. St. in obs.	(40.000)
Pft. as per Marginal	2,39.37 5

Marginal Costing

	MCQs		
	Q(1). Under marginal costing the cost of product includes: A. Prime cost only C. prime cost and fixed overheads	D. Prime cost and variable over D. Prime cost and factory overh	neads eads
•	 Q(2). Reporting under marginal costing is accomplished by: A. Treating all costs as period costs B. Eliminating the work-in-progress inventory account C. Matching variable costs against revenue and treating fixed c D. including only variable costs in income statement 	ost as period costs	
	Q(3). Period costs are: A. Variable costs C. Prime costs	 D. Overhead costs 	
L	Q(4). When sales and production (in units) are same then profin A. Marginal costing is higher than that of absorption costing B. Marginal costing is lower than that of absorption costing C. Marginal costing is equal to that of absorption costing D. None of the above	t under:	
•	Q(5). When sales exceed production (in units) then profit under A. Marginal costing is higher than that of absorption costing B. Marginal costing is lower than that of absorption costing C. Marginal costing is equal to that of absorption costing D. None of the above	r:	
	Q(6). The difference between marginal costing and absorption A. Prime cost• C. Direct materials •	costing is regarding the treatment of: Fixed overheads D. Variable overheads	:
c	Q(7). Under profit volume ratio, the term profit A. Means the sales proceeds in excess of total costs B. Means the same thing as is generally understood C. It is a misnomer, it in fact refers to contribution i.e. (sales re D. None of the above	evenue – variable costs)	
	Q(8). Factors which can change the break-even point: A. Change in fixed costs C. Change in the selling price	B. Change in variable costs D . All of the above	
•	Q(9). If PV ratio is <u>40% of sales then what about the remaining</u> A. Profit C. Variable cost	<u>g 60% of s</u> ales: B. Fixed cost D. Margin of safety	
	Q(10). The PV ratio of a product is 0.6 and profit is ₹ 9,000. Th A. ₹ 5,400 C. ₹ 22,500	the margin of safety is: $MOS = PF$ PS. ₹ 15,000 D. ₹ 3,600 = 9000 - OS = PF	: 1595

BUDGET & BUDGETARY CONTROL - CONCEPTS

1. Types of budget

(A) Master Budget -> Summaby Budget of entite Org.

(B) Period – Wise Budget

Long term budget – Beyond 3 years Short term budget – 1 to 3 years Current budget – Upto 1 year

(C) Fixed Budget – Doesn't change with change in units or output

(D) Flexible Budget – Can be changed with change in units or output

(E) Function wise Budget

- →Sales Budget
- → Production Budget
- → Material Consumption Budget
- → Material Purchase Budget
- → Labour Budget
- → Overheads Budget
- Capital budget
- →Cash Budget
- → Plant Utilization Budget
- → Research & Development Cost Budget

- 3. Total Cost = No. of units × Cost per unit,
- 4. Quantity & Price Effect

	Total Variable Cost	Total Fixed Cost
Quantity Effect	785	NO
Price Effect	Yes	Yes

5. Points to Remember (PTRs)

Duless otherwise provided, following assumptions are to be taken:-

- VC per unit will remain same
- Total Fixed cost will remain same
- All direct cost are assumed to be variable
- All overheads are assumed to be fixed

BUDGET & BUDGETARY CONTROL – QUESTIONS

Question – 1

PJ Ltd. manufactures hockey sticks. It sells the products at ₹ 500 each and makes a profit of ₹ 125 on each stick. The Company is producing 5,000 stocks annually by using 50% of its machinery capacity. The cost of each stick is as under:

Direct material	->	₹150
Direct wages	~	₹50 × = 0 × 500 = ×
Work Overheads	_ î	₹ 125 (50% fixed) = 60%
Selling Expenses	>	₹ 50 (25 <u>% var</u> iable)
The anticipation for the next year is that cos	t will g	go up as under:
Fixed charges	~	10% 7 Pairs
Direct wages	~	20%
Direct material	-	5%)

There will not be any change in selling price There is an additional order for 2,000 sticks in the next year. Calculate the lowest price that can be quoted so that the Company can earn the same profit as it earned in the current year?

Solution

Statement of calculation of self	ing price
Particulars	Amount (₹)
Direct Material $[(150 + 5\%) \times 7,000]$	11,02,500
Direct Wages $[(50 + 20\%) \times 7,000]$	4,20,000
Variable Works Overhead $[125 \times 50\% \times 7,000]$	4,37,500
Fixed Works Overhead [125 × 50% × 5,000 × 110%]	3,43,750
Variable Selling Expenses $[50 \times 25\% \times 7,000]$	87,500
Fixed Selling Expenses [50 × 75% × 5,000 × 110%]	2,06,250
Total Cost	25,97,500
Add: Desired Profit $(125 \times 7,000)$	8,75,000
Total Sales Value	→ 34,72,500
Less: Existing Sales from 5,000 units $[5,000 \times 500]$	→ 25,00,000
Sales value to be obtained from remaining 2,000 units (A)	→ 9,72,500 -
Sale units (B)	> 2,000
Selling price per unit $(A \div B)$	486.25

G4

<u>Question – 2</u>

SK Limited has prepared its expense budget for 50,000 units in its factory for the year 2021-22 as detailed below:

	₹ per unit
Direct materials -> V	125
Direct labour 🔺 🗸	50
Variable overhead	40
Direct expenses -> 🔨	15
Selling expenses (20% fixed)	25 🗸
Factory expenses (100% fixed)	15
Administration expenses (100% fixed)	8
Distribution expenses (85% variable)	_20
Total	<u> 298</u>

Prepare an expense budget for the production of 35,000 units and 70,000 units.

	Expenses Budget	
Particulars	35,000 units	70,000 units
Direct material	$35,000 \times 125 = 43,75,000$	$70.000 \times 125 = 87,50,000$
Direct labour	$35,000 \times 50 = 17,50,000$	$70,000 \times 50 = 35,00,000$
Variable overheads	$35,000 \times 40 = 14,00,000$	$70,000 \times 40 = 28,00,000$
Direct expenses	$35,000 \times 15 = 5,25,000$	$70,000 \times 15 = 10,50,000$
Selling expenses – variable	$35,000 \times 25 \times 80\% =$	$70,000 \times 25 \times 80\% =$
	7,00,000	14,00,000
Selling expenses – fixed	<u>50.000</u> × 25 × 20% =	50,000 × 25 × 20% =
	2,50,000	2,50,000
Factory expenses – fixed	$50,000 \times 15 = 7,50,000$	$50,000 \times 15 = 7,50,000$
Administration expenses -	$50.000 \times 8 = 4,00,000$	$50,000 \times 8 = 4,00,000$
fixed		
Distribution expenses –	$35,000 \times 20 \times 85\% =$	$70,000 \times 20 \times 85\% =$
variable	5,95,000	11,90,000
Distribution expenses – fixed	$50,000 \times 20 \times 15\% =$	$50,000 \times 20 \times 15\% =$
	1,50,000	1,50,000
Total	1,08,95,000	2,02,40,000

<u>Solution</u>

<u>Question – 3</u>

SK Ltd. company, requires you to prepare the master budget for the next year from the following information:

Sales:

Acrylic finish wooden sheets	→ ₹ 70,00,00 <mark>0</mark>
Lacquer finish wooden sheets	→ ₹30,00,000
Direct material cost 🕜	→ 65% of sales
Direct wages 🕢	25 workers @ ₹ 1,500 per month
Factory overheads:	
Indirect labour-	
Work manager 🧭	→ ₹5,500 per month ✓
Foreman 🕑 _	₹ 4,500 per month
Stores and spares 🚺	→ 2.5% on sales
Depreciation on machinery	→ ₹1,26,000 ∽
Light and power (fixed)	→ ₹30,000
Repairs and maintenance	~ ₹ 80,000
Other sundries	10% on direct wages
Administration, selling and distribution exp	enses → ₹ 3,99,000 p.a.

<u>Solution</u>

	Master	Budget	for	the	year	ending
--	--------	--------	-----	-----	------	--------

Particulars	(₹)	(₹)	(₹)
Sales:			
Acrylic finish wooden sheets			§ 70,00,000
Lacquer finish wooden sheets			2 30,00,000
Total Sales		_	1 ,00,00,000
Less: Cost of production:			
Direct materials (65% of ₹ 1,00,00,000)		65,00,000	
Direct wages (25 workers × ₹ 1,500 × 12 months)		4,50,000	
Prime Cost	_	69,50,000	
Fixed Factory Overhead:			
Works manager's salary $(5,500 \times 12 \text{ months})$	66,000		
Foreman's salary $(4,500 \times 12 \text{ months})$	54,000		
Depreciation -	1,26,000		
Light and power	30,000	-3 2,76,000	
Variable Factory Overhead:		•	
Stores and spares (2.5% of ₹ 1,00,00,000)	2,50,000		
Repairs and maintenance	80,000		
Sundry expenses	45,000	3,75,000	
Works Cost			76,01,000
Gross Profit (Sales – Works cost)			23,99,000

Question – 4

The Accountant of KPMR Ltd. has prepared the following budget for the coming year 2022 for its two products 'AYE' and 'ZYE':

Particulars	Product 'AYE'	Product 'ZYE'
Production and Sales (in Units)	-> <u>4,00</u> 0	3,000
	Amount (in ₹)	Amount (in ₹)
Selling price per unit	200 -	180
Direct material per unit 🕜	80 🦵	70
Direct labour per unit 🕅	40 -	35
Variable overhead per unit	20 🖛	25
Fixed overhead per unit	10 -	10

After reviewing the above budget, the management has called the marketing team for suggesting some measures for increasing the sales. The marketing team has suggested that by promoting the products on social media, the sales quantity of both the products can be increased by 5%. Also, the selling price per unit will go up by 10%. But this will result in increase in expenditure on variable overhead and fixed overhead by 20% and 5% respectively for both the products.

You are required to prepare flexible budget for both the products:

- (i) Before promotion on social media
- (ii) After promotion on social media

Solution

(i) Flexible Budget (Before promotion)

Particulars	Product AYE	Product ZYE	Total
Sales	$4,000 \times 200 = 8,00,000$	$3,000 \times 180 = 5,40,000$	13,40,000
Less: Direct	$4,000 \times 80 = 2,40,000$	$3,000 \times 70 = 2,10,000$	4,50,000
Material		4	
Less: Direct labour	$4,000 \times 40 = 1,60,000$	3,000 × 35 = 1,05,000	2,65,000
Less: Variable OHs	$4,000 \times 20 = 80,000$	$3,000 \times 25 = 75,000$	1,55,000
Less: Fixed OHs	4,000 × 10 € 40,000	3,000 × 10 = 30,000	70,000
Profit	2,80,000	1,20,000	4,00,000

(ii) Flexible Budget (After promotion)

Particulars	Product AYE	Product ZYE	Total
Sales	$4.200 \times 220 = 9,24,000$	$3,150 \times 198 = 6,23,700$	15,47,700
Less: Direct	$4,200 \times 80 = 3,36,000$	$3,150 \times 70 = 2,20,500$	5,56,500
Material	_	-	
Less: Direct labour	$4,200 \times 40 = 1,68,000$	$3,150 \times 35 = 1,05,000$	2,73,000
Less: Variable OHs	$4,200 \times 24 = 1,00,800$	$3,150 \times 20 = 1,10,250$	2,11,05 0
<u></u>	· · · · · · · · · · · · · · · · · · ·	CASIN T	

94500 195300

Less: Fixed OHs	40,000 + 5% = 42,000	30,000 + 5% = 31,500	73,500
Profit	2,77,200	1 ,56,45 0	4,33,650
	·	172 200	449400

Question – 5

PSV Ltd. manufactures and sells a single product and estimated the following related information for the period November, 2020 to March, 2021.

Particulars	November,	December,	January,	February,	March,	
	2020	2020	<u>_2021</u>	<u>202</u> 1	2021	
Opening Stock of Finished goods (in Units)	7,500	3,000	9,000	8,000	6,000	
Sales (in Units) -	3 0,000	35,000	38,000	25,000	40,000	
Selling Price per unit (in₹)-) 10	12	15	15	20	

Additional information:

Closing stock of finished goods at the end of march, 2021 is 10,000 units

Each unit of finished output requires 2kg of Raw Material 'A' and 3kg of Raw Material 'B'.

You are required to prepare the following budgets for the period November, 2020 to March 2021 on monthly basis:

Sales budget (in ₹) ✓ (i)

- Production Budget (in units) and (ii)
- (iii) Raw material budget for raw material 'A' and 'B' separately (in units)

Solution

(•)

(i)	Sales 1	Budget				
Particulars	November, 2020	December, 2020	January, 2021	February, 2021	March, 2021	
Sales (in Units)	30,000	35,000	38,000	25,000	40,000	
Selling Price per unit (in ₹)	10	12	15	15	20	
Sales Value	3,00,000	4,20,000	5,70,000	3,75,000	8,00,000	

(ii)

Production Budget

	Particulars	November, 2020	December, 2020	January, 2021	February, 2021	March, 2021
	Sales Units	→ 30,000	35,000	38,000	25,000	40,000
-	Add: Closing Stock Units	3,000	9,000	8,000	6,000	10,000 🗸
-	Less: Opening Stock Units	• (7,500)	(3,000)	(9,000)	(8,000)	(6,000)
	Production Units	25,500	41,000	37,000	23,000	44,000

(iii)	Raw Material 'A' Budget						
Particulars	November, 2020	December, 2020	January, 2021	February, 2021	March, 2021		
Production Units	25,500	41,000	37,000	23,000	44,000		
Raw material consumption per-	2	2	2	2	2		
Raw Material Consumption	51,000	82,000	74,000	46,000	88,000		

Raw Material 'B' Budget

Particulars	November,	December,	January,	February,	March,	
	2020	2020	2021	2021	2021	
Production Units	25,500	41,000	37,000	23,000	44,000	
Raw material consumption per-	→ 3	3	3	3	3	
unit						
Raw Material Consumption	76,500	1,23,000	1,11,000	69,000	1,32,000	

Question – 6

AB manufacturing Company manufactures two products A and B. Both Products use a common Raw Material 'C'. The Raw Material 'C' is purchased at the rate of ₹45 per kg from the Market. The Company has made estimates for the year ended 31st March, 2018 (the budget period) as under:

	Product A	Product B
Sales in Units	→ 36,000	16,700
Finished goods stock increase by year-end (in Ur	nits) 🤧 860	
Post-production Rejection Rate (%)	-> 31,	5%
Material 'C' per completed Unit, net of wastage	→ 4 kg 🗸	5 kg -
Material 'C' wastage in %	-> <u>5</u>	4

Additional information available is as under:

Usage of Raw Material 'C' is expected to be at a constant rate over the period. Annual cost of holding one unit of Raw Material 'C' in Stock is 9% of the Material Cost. The cost of placing an order is ₹ 250 per order.

You are required to:

- Prepare Functional Budgets for the year ended 31st March, 2018 under the following categories: (i)
 - a) Production Budget for Products A and B in Units
 - b) Purchase Budget for Raw Material 'C' in kg and value.
- (ii) Calculate the Economic Order Quantity (EOQ) in kg for Raw Material 'C'.

Solution

(i) **Production Budget (in units) for the year ended 31st March 2018**

Particulars		Product A	Product B	
Budgeted sales (units)	>	36,000	16,700	
Add: Increase in closing stock	->	860	400	
No. of good units to be produced	->	36,860	17,100-	s Crod uni
Post production rejection rate	->	3%	5%	
Post production good units rate		100% - 3% = 97%	100% - 5% = 95%	
No. of units to be produced		$36.860 \div 97\% =$	$17,100 \div 95\% =$	
		38,000	18,000	

(ii) Purchase budget (in kgs and value) for Material C

Particulars	Product A	Product B
No. of units to be produced	38,000	18,000
Usage of Material C per unit of production	→ 4 kg	→ 5 kg
Material needed for production –	• 1,52,000 kg	90,000 kg
Wastage % of Material C	~ 5%	→ 4%
Good usage % of Material C	100% - 5% = 95%	100% - 4% = 96%
Material to be purchased (in kg)	1,52,000÷95% = 1,60,000	90,000÷96% = 93,750
Rate per kg of Material C	→ ₹45	~ ₹45
Total Purchase cost	1,60,000×45 €72,00,000	93,750×45 € 42,18,750

Total purchase cost = 72,00,000 + 42,18,750 = ₹ 1,14,18,750

(iii)
$$A = 1,60,000 + 93,750 = 2,53,750 \text{ kg}$$

 $O = ₹ 250$
 $C = ₹ 45 \times 9\% = ₹ 4.05$
 $EOQ = \sqrt{\frac{2 \times A \times O}{C}} = \sqrt{\frac{2 \times 2,53,750 \times 250}{4.05}} = 5,597 \text{ kg}$

<u>Question – 7</u>

SK Ltd. manufactures and sells a single product and has estimated sales revenue of ₹ 302.40 lakh during the year based on 20% profit on selling price. Each unit of product requires 6 kg of material a and 3 kg of material B and processing time of 4 hours in machine shop and 2 hours in assembly shop. Factory overheads are absorbed at a blanket rate of 20% of direct labour. Variable selling & distribution overheads are ₹ 60 per unit sold and fixed selling & distribution overheads are estimated to be ₹ 69,12,000.

The other relevant details are as under:

Purchase Price:	Material A 💛	₹ 160 per kg
	Material B 🚽	₹ 100 per kg
Labour Rate:	Machine shop 🔶	₹ 140 per hour
	Assembly Shop	₹ 70 per hour

		Finished Stock	Material A 🤛	Material B 🖟
Opening Stock	ſ	2,500 units 🗸	7,500 kg	4,000 kg
Closing Stock	J	3,000 units 🦊	8,000 kg	5,500 kg

Required:

(i) Calculate number of units of product proposed to be sold and selling price per unit

(ii) Prepare production budget in units

(iii)Prepare material purchase budget in units

Solution

Working Note:

Statement showing Total Variable Cost

Particulars		Amount (₹)	
Estimated sales Revenue	1	3,02,40,000	
Less: Desired Profit margin on sales @ 20% -	•	60,48,000	
Total cost -)	2,41,92,000	
Less: fixed selling and distribution overheads -	->	2 ,41,92,00 0	69,12,000
Total Variable cost –	γ	1,72,80,000	

Statement showing variable cost per unit

Particulars	Amount (₹)
Direct materials:	
A: 6kg × ₹ 160	- 960
B: 3kg × ₹ 1 <u>00</u>	300
Labour cost	
Machine shop: 4 hours × ₹ 140	, 560
Assembly shop: <u>2 h</u> ours × ₹ <u>70</u>	- 140
Factory overheads: $[20\% \times (560 + 140)]$	140
Variable selling and distribution expenses	60
Total variable cost per unit	2,160

(\mathbf{i})	Number of units sold -	Total Variable C	ost	1,72,80,000 _ o		0 unita	
(1)	Number of units sold –	Variable Cost per unit		2,160	- 8,00	- 0,000 units	
	Selling price per unit =	Sales		40,000	₹ 3 780		
	Sening price per unit –	Number of units	8,0	000	\$ 3,700		
			•				

(ii) **Production Budget (units)**

Particulars	Units
Budgeted Sales	8,000
Add: closing stock	3,000
Less: opening stock	(2,500)
Required Production	8,500

(iii) Materials Purchase Budget (Kg)

Particulars	Material A	Material B
Requirement for production -	$8,500 \times 6$ kg = 51,000	$8,500 \times 3$ kg = 25,500
Add: Desired closing Stock	-1 8,000	5,500
Less: Opening Stock	• (7,500)	(4,000)
Quantity to be purchased	51,500	27,000

<u>Question – 8</u>

An electronic gadget manufacturer has prepared sales budget for the next few months. In this respect, following figures are available:

Month	Electronic gadgets' sales
January	5,000 units
February	5,000 units
March	7,000 units
April	7,500 units
May	8,000 units

To manufacture an electronic gadget, a standard cost of ₹ 1,500 is incurred and it is sold through dealers at an uniform price of ₹ 2,000 per gadget to customers. Dealers are given a discount of 15% on selling price.

Apart from other materials, two units of batteries are required to manufacture a gadget. The company wants to hold stock of batteries at the end of each month to cover 30% of next month's production and to hold stock of manufactured gadgets to cover 25% of the next month's sale. 3,250 units of batteries and 1,200 units of manufactured gadgets were in stock on 1st January.

Required:

- (i) Prepare production budget (in units) for the month of January, February, March and April
- (ii) Prepare purchase budget for batteries (in units) for the month of January, February and March and calculate profit for the quarter ending on March.

Solution

) Production Budget								
Particulars	January	February	March	April				
Budgeted Sales ->	5,000	25 6,000	5 ,000	7,500	154			
Add: Closing Stock	1,500	1,750	1,875	2,0004	May sole			
Less: Opening Stock	(1,200)	(1,500)	(1,750)	(1,875)				
Production	5,300	6,250	7,125	7,625				

Working Notes:

(1) Closing stock of January = 25% × 6,000 = 1,500 Closing stock of February = 25% × 7,000 = 1,750 Closing stock of March = 25% ×7,500 = 1,875 Closing stock of April = 25% × 8,000 = 2,000

(2) Opening stock of February, March and April are taken as equal to closing stock of respective previous month.

ii) Material Purchase	Budget			
Particulars	Material A			
T at ticulars	January	February	March	
Raw material consumption @ 2 per gadget -	10,600	301 12,500	14,250	~
Add: Closing Stock	> 3,750	4,275	4,575	-
Less: Opening Stock	(3,250)	(3,750)	(4,275)	
Raw Material Purchase	53,500	53,000	44,000	

Working Notes:

- (1) Closing stock of material of January = $30\% \times 12,500 = 3,750$ Closing stock of material of February = $30\% \times 14,250 = 4,275$
- (2) Raw Material consumption of Material for Month of April = $7,625 \times 2 = 15,250$ Closing stock of material of March of Material = $30\% \times 15,250 = 4,575$

(3) Opening stock for material for month of February and March are taken as equal to closing stock of respective previous month.

Particulars	January	February	March	Total
Sales (A) (0445) -	> 5,000	6,000	7,000	18,000
Selling price per unit	* ₹2,000	₹2,000	₹2,000	₹2,000
Less: Discount @15% of selling price -	→ ₹300	₹300	₹ 300	₹300
Less: Standard cost of manufacturing	→ ₹1,500	₹1,500	₹1,500	₹1,500
Profit (B) -	→ ₹200	₹200	₹200	₹200
Total Profit (A \times B)	₹10,00,000	₹12,00,000	₹14,00,000	₹36,00,000

Statement Showing Profit

Question – 9

SK Ltd. Produces and sells a single product. Sales budget for the calendar year 2019 by quarter is as under:

Quarter	Ν	No. of units to be sold		
Ι		12,000	(ALE)	
II		15,000	61200	
III		16,500		
IV		18,000		

The year is expected to open with an inventory of 4,000 units of finished product and close with an inventory of 6,500 units.

Production is customarily scheduled to provide for two-thirds of the current quarter's sales demand plus one third of the following quarter's demand. Thus, production anticipates sales volume by about one month.

The standard cost details for one unit of the product is as follows:

Direct materials 10 lbs. @ 50 paise per lb.

Direct labour 1 hour 30 minutes @ ₹ 4 per hour.

Variable overheads 1 hour 30 minutes @ ₹1 per hour.

Fixed overheads 1 hour 30 minutes @ ₹2 per hour based on a budgeted volume of 90,000 direct labour hour for the year.

(i) Prepare a production budget for 2019, by quarters, showing the number of units to be produced, and the total costs of direct labour, variable overheads and fixed overheads.

1.802 P.a.

(ii) If the budgeted selling price per unit is ₹ 17, what would be the budgeted profit for the year as a whole?

Production Budget

(iii) In which quarter of the year is the company expected to breakeven?

Solution

(i)

				Quarter –	Total	
Particulars	Quarter - 1	Quarter – 2	Quarter – 3	4		
Sales units -	1 2,000	15,000	16,500	18,000	61,500	
Production	23	13 143	13 43	13/ 143		
2/3 of current month	8,000	10,000	11,000	12,000	41,000	
1/3 of next month	5,000	5,500	6,000	6,500*	23,000	
Production	13,000	15,500	17,000	18,500	64,000	
This value of 6 500 units is computed as balancing figure						

*This value of 6,500 units is computed as balancing figure.

Working Note -

Annual total production = Sales + closing stock – Opening stock = 61,500 + 6,500 - 4,000 = 64,000

Production for Quarter - 4 = Total production – production of first three quarters

= 64,000 - 13,000 - 15,500 - 17,000 = 18,500

Statement of Cost						
Particulars –	Quarter - 1	Quarter – 2	Quarter – 3	Quarter – 4	Total	
Production units —	> 13,000	15,500	17,000	18,500	64,000	
Direct material $(10 \times 0.5 = 5 \text{ p.u.})$	65,000	77,500	85,000	92,500	3,20,000	
Direct labour $(1.5 \times 4 = 6 \text{ p.u.})$	78,000	93,000	1,02,000	1,11,000	3,84,000	
Variable Ohs $(1.5 \times 1 = 1.5 \text{ p.u.})$	19,500	23,250	25,500	27,750	96,000	
Fixed overheads	45,000	45,000	45,000	45,000	1,80,000 (90,000×2)	

Statement of Cost

(ii)

Statement of profit

Particulars		Amount
Sales (17 × 61,500)	--	10,45,500
Less: Variable cost $\left[\frac{(3,20,000+3,84,000+96,000)}{64,000} \times 61,500\right]$	~	7,68,750
Contribution	ſ	2,76,750
Less: Fixed costs		1,80,000
Profit		96,750
(iii) Breakeven point = $\frac{Fixed Cost}{Contribution per unit} = \frac{1,80,000}{\left(\frac{2,76,750}{61,500}\right)} = 40,000 \text{ units}$	•	
Particulars Ouarter - 1 Ouarter - 2 Ouarter	-3	Ouarter – 4

Particulars	Quarter - I	Quarter – 2	Quarter – 3	Quarter – 4
Sales units	1 2,000	→ 15,000	→ 16,500	18,000
Cumulative Sales units	12,000	27,000	43,500	61,500
D		~ ~ ~		

 \therefore Breakeven will be achieved in quarter 3.

Question – 10

SR Ltd. is a manufacturer of Garments. For the first three months of financial year 2022-23 commencing on 1st April, 2022, production will be constrained by direct labour. It is estimated that only 12,000 hours of direct labour hours will be available in each month.

For market reasons, production of either of the two garments must be at least 25% of the production of the other. Estimated cost and revenue per garment are as follows:

			Shirt (₹)	<u>Short (₹</u>)
Sales price	_	•	60	44
Raw materials				
Fabric @12 per metre	-	⋺	24	12
Dyes and cotton	+	Ş	6	4
Direct labour @8 per hour	-	ə	8	4
Fixed Overhead @4 per hour	-	•	4	2
Profit	-	>	18	22

From the month of July 2022 direct labour will no longer be a constraint. The company expects to be able to sell 15,000 shirts and 20,000 shorts in July 2022. There will be no opening stock at the beginning of July 2022.

Sales volumes are expected to grow at 10% per month cumulatively thereafter throughout the year. Following additional information is available:

The company intends to carry stock of finished garments sufficient to meet 40% of the next month's sale from July 2022 onwards.

The estimated selling price will be same as above.

Required:

- (i) Calculate the number of shirts and shorts to be produced per month in the first quarter of financial year 2022-23 to maximize company's profit.
- (ii) Prepare the following budgets on a monthly basis for July, August and September 2022:
 - (a) Sales budget showing sales units and sales revenue for each product.
 - (b) Production budget (in units) for each product.

Solution

(i) Statement of contribution per unit

(i) Statement of contribution per		
Particulars	Shirt (₹)	Short (₹)
Selling price per unit (A)	- 60	44
Fabric cost per unit	24	12
Dyes & Cotton per unit	6	4
Direct labour per unit	8	4
Variable cost per unit (B)	38	20
Contribution per unit $(A - B = C)$	-> 22	24
Labour hours per unit	$\int \frac{8}{8} = 1$	$\frac{4}{8} = 0.5$
Contribution per labour hour	22	$\frac{24}{0.5} \neq 48$

Since contribution per labour hour is higher in case of short, thus it is advisable to produce it first.

Let number of shorts to be produced = yLabour hours required used to produce shorts = 0.5yLabour hours available for shirts = 12,000 - (0.5y)Number of shirts that can be produced $= \frac{12,000 - 0.5y}{1} = 12,000 - 0.5y$ As per condition of 25% given in question, Production of shirt = 25% of production of short $12,000 - 0.5y = 25\% \times y$ 12,000 - 0.5y = 0.25y12,000 = 0.75yy = 16,000Thus, number of shorts to be produced = y = 16,000and, number of shirts to be produced = 12,000 - 0.5(16,000) = 4,000

(ii) (a)	Sales	budget				
Dautiaulaur		Shirt		Short		
1 al ticulai s	July 🔒	August	September	July	August	September
Sale units 🚽	15,000	> 16,500	18,150	20,000	22,000 -	→ 24,200
S.P. per unit	> 60	60	60	44	44	44
Total Sales ->	9,00,000	9,90,000	10,89,000	8,80,000	9,68,000	10,64,800
(ii) (b)	Produ	iction Budge	t			

Particulars		Shirt		Short		
1 al ticulai s	July	August	September	July	August	September
Sale units 🚽	15,000 🛰	16,500 Ч	> 18,150	20,000	22,000	24,200
(+) Closing Stock	6,600 🖉	7,260 🗲	7,986*	8,800	9,680	10,468*
(40% of next						
month sale)		くく				
(-) Opening stock	0	(6,600)	(7,260)	-	(8,800)	(9,680)
Total Production	21,600	17,160	18,876	28,800	22,880	24,988

*Closing stock for September

Closing stock of shirts = Sales of October $\times 10\% = (18,150 \times 110\%) \times 40\% = 7,986$ Closing stock of shorts = Sales of October $\times 10\% = (24,200 \times 110\%) \times 40\% = 10,468$

Budget & Budgetary Control

MCC	રેટ
Q(1). If a company wishes to establish a factory overhead budg from estimates of activity levels, it should prepare a: A. Master budget Flexible budget	get system in which estimated costs can be derived directly B. Cash budget D. Fixed budget
Q(2). The classificat <u>ion</u> of fixed and variable cost <u>is u</u> seful for th A. Master budget C. Cash budget	ne preparation of: B. Flexible budget D. Capital budget
Q(3). Budget manual is a document: A. Which contains different type of budgets to be formulated on B. Which contains the details about standard cost of the products <i>C</i> . Setting out the budget organization and procedures for prepar and records required for the purpose of preparing a budget and f D. None of the above	ly s to be made ing a budget including fixation of responsibilities, formats or exercising budgetary control system.
Q(4). The budget control organization is usually headed by a top A. General manager C. Accountant of the organization	 executive who is known as: Budget director/ budget controller D. None of the above
 Q(5). "A favourable budget variance is always an indication of eta. A favourable variance indicates, saving on the part of the org organization. B. Under all situations, a favourable variance of an organization. C. A favourable variance does not necessarily indicate efficient parrived at by not carrying out the expenses mentioned in the bud D. None of the above 	efficient performance." Do your agree, give reason? anization hence it indicates efficient performance of the speaks about its efficient performance. performance, because such a variance might have been get
Q(6). A budget report is prepared on the principle of exception a A. Only favourable variances should be shown Both favourable and unfavourable variances should be shown	B. Only favourable variance should be shown D. None <u>of th</u> e above
Q(7). Purchase budget and materials budget are same: A. Purchase budget is a budget which includes only the details of B. Purchases budget is a wider concept and thus includes not on C. Purchases budget is different from materials budget; it includ D. None of the above	f all materials purchased ly purchases of materials but also other item's as well es purchases of other items only
Q(8). Efficiency ratio is: A. The extent of actual working days avoided during the budget D. Activity ratio/ capacity ratio C. Whether the actual activity is more or less than budgeted activ D. None of the above	period vity
Q(9). Activity ratio depicts: A. Whether actual capacity utilized exceeds or falls short of the B. Whether the actual hours used for actual production were mo	budgeted capacity re or less than the standard hours apacity

D. None of the above

Q(10). Which of the following is usually a short-term budget:

A. Capital expenditure budget

Cash budget

B. Research and development budget

D. Sales budget

- 2. Always calculate standard data on the basis of actual output
- 3. Variances $\neg (F)$ $\neg ve$, Advense $\Rightarrow (F)$
- 4. Material Variance

MCN = SC - AC

- 5. Material Cost Variance (MCV) MCV = Standard cost – Actual Cost
- 6. Material Price Variance (MPV) $MPV = (SP - AP) \times Actual quantity$
- 7. Material Usage Variance (MUV) $MUV = (SQ - AQ) \times SP$
- 8. Material Mix Variance (MMV) $MMV = (RSQ - AQ) \times SP$
- 9. Material Yield Variance (MYV) MYV = (SQ - RSQ) × SP MYV = (AY - SY) × Standard cost per unit of output
- 10. Actual Quantity

All Consume All Consume All Cons = Op. + Richardes -Stock AQ Purchase

- (3) If op. Stock date is not given then Consider it at Std. poice
- The Unless otherwise provided, FIFO method is used

11. Total Hours paid

- **13.** Labour Cost Variance (LCV) LCV = Standard cost – Actual cost
- 14. Labour Rate Variance (LRV) $LRV = (SR - AR) \times Actual hours paid$
- **15.** Labour Efficiency Variance (LEV) LEV = (SH – Actual hours worked) × SR
- 16. Labour Idle Time Variance -Idle time variance = Idle hours × SR

- 17. Labour Mix Variance (LMV) $LMV = (RSH - AH worked) \times SR$
- 18. Labour Yield Variance (LYV)
 LYV = (SH RSH) × SR
 LYV = (AY SY) × Standard cost per unit of output

- 20. Variable OH Cost Variance (VOCV) ✓ VOCV = Recovered OHs – Actual OHs
- 21. Variable OH Expenditure Variance (VOEV) // VOEV = (Recover Rate Actual Rate) × Actual horus worked
- 22. Variable OH Efficiency Variance (VOEFV) VOEFV = (SH – Actual hours worked) × Recovery Rate

23. Fixed OHs Variance

- This is based on hours paid
- Fixed OHs are estimated in advance
- Based on estimated OHs, recovery rate is computed
- Based on Recovery rate, OHs are recovered
- Actual OHs are paid

HUND HAS abouty

- 24. Fixed OH Cost Variance (FOCV) FOCV = Recovered OHs – Actual OHs
- **25.** Fixed OH Expenditure Variance (FOEV) FOEV = Budgeted OHs – Actual OHs
- **26.** Fixed OH Volume Variance (FOVV) FOVV = Recovered OHs – Budgeted OHs
- **27.** Fixed OH Efficiency Variance (FOEFV) FOEFV = (Standard hours – Actual Hours) × Recovery Rate
- **28.** Fixed OH Capacity Variance (FOCPV) FOCPV = (Actual Hours – Revised budgeted hours) × Recovery Rate
- **29.** Fixed OH Calendar Variance (FOCLV) FOCLV = (Revised budgeted hours – Budgeted hours) × Recovery Rate

30. Budget Ratios Courtoo Lotios	
Efficiency Ratio = $\frac{Standard hours}{Actual hours} \times 100$	
Activity Ratio = $\frac{Standard hours}{Budgeted hours} \times 100$	
Calendar Ratio = $\frac{Actual working days}{Budgeted Working Days} \times 100 = \frac{Revised budgeted hours}{Budgeted hours}$	<u>s</u> × 100
Actual usage of Budgeted Capacity Ratio = $\frac{Actual hours}{Budgeted hours} \times 100$	•
Standard Capacity Ratio = $\frac{Budgeted hours}{Maximum possible hours in budget} \times 100$	
Actual Capacity Usage Ratio = $\frac{Actual hours}{Maximum possible working hours} \times 100$	

Eff. Ratio x Cop. Ratio = Activity hatio

STANDARD COSTING – QUESTIONS

<u>Question – 1</u>

The standard cost of a chemical mixture is as follows:

- <60% of Material <u>A @₹5</u>0 per kg
- ✓40% of Material B @ ₹60 per kg

A standard loss of 25% on output is expected in production. The cost records for a period has shown the following usage.

- ✓ 540 kg of Material A @ ₹ 60 per kg
- ✓ 260 kg of Material B @₹50 per kg

The quantity processed was 680 kilograms of good product.

From the above given information, calculate:

- (i) Material cost variance
- (ii) Material price variance
- (iii) Material usage variance
- (iv) Material mix variance
- (v) Material yield variance

<u>Solution</u>

Basic Calculation

		Standard			Actual			Revised
	Particulars	Quantity	Rate	Amount	Quantity	Rate	Amount	Std. Quantity
	Material A	$850 \times 60\%$ $= 510$	50	25,500	540	60	32,400	$800 \times \underline{60\%}$ $= 480$
	Material B	$850 \times 40\%$ $= 340$	60	20,400	260	50	13,000	$800 \times 40\%$ $= 320$
in)	Input	850		45,900	800		45,400	800
IJ	(-) Loss	$\frac{680 \times 25\%}{= 170}$			120 🗸			
GS	Output	680		0	680			

Calculation of Variances

1

(i) Material Cost Variance = Standard Cost – Actual cost

	$B = (60 - 50) \times 260$	=₹	<u>2,600 (F)</u>
		MPV <u>=</u> ₹	2,800 (A)
2.	Material Usage (or Quantity) Variance = (SQ -	$AQ) \times SP$	
	$A = (510 - 540) \times 50$	=₹	1,500 (A) 👅
	$B = (340 - 260) \times 60$	=₹	<u>4,800 (F)</u>
		MUV <u>=</u> ₹	3,300 (F)
3.	Material Mix Variance = $(RSQ - AQ) \times SP$		
	$A = (480 - 540) \times 50$	=₹	3,000 (A)
	$B = (320 - 260) \times 60$	=₹	3,600 (F)
		MMV <u>=</u> ₹	600 (F)
4.	Material Yield Variance = $(SQ - RSQ) \times SP$		
	$A = (510 - 480) \times 50$	=₹	1,500 (F)
	$B = (340 - 320) \times 60$	_=₹	1,200 (F)
		MYV <u>=₹</u>	2,700 (F)
	OR Material Yield Variance (MYV)		7
	= (Actual yield – St. yield) \times St. cost per unit of	f output	
	$= \left[680 - \left(\frac{680}{850} \times 800 \right) \right] \times \left(\frac{45,900}{680} \right) = ₹ 2,700 \text{ (F}$		

<u>Question – 2</u>

SK Ltd. manufactures SK by mixing three raw materials. For each batch of 100 kg of SK, 125 kg of raw material are used. In June 60 batches are prepared to produce an output of 5600 kg of SK. The standard and actual particulars for June are as follows:

Raw	Standard		Actual		Quant <u>ity of raw ma</u> terial	
materials	Mix %	Price per kg (₹)	Mix %	Price per kg (₹)	purchased	
Х	50	20	60 🛩	21 -	5000 🛩	
Y	30 🥌	10 🦟	20 🖊	8 🧲	2000 🦟	
Ζ	20 🛩	5	20	6 –	1200 -	

Calculate all variances.

Solution

Particulars	Sta	ndard		Actual			Revised Std. Quantity
	Quantity	Rate	Amount	Quantity	Rate	Amount	
Material X	$7,000 \times 50\%$ = 3,500	20	70,000	$7,500 \times 60\%$ = 4,500	21	94,500	$7,500 \times 50\%$ = 3,750

Basic Calculation
Material Y	$7,000 \times 30\%$ = 2,100	10	21,000	$7,500 \times 20\%$ = 1,500	8	12,000	$7,500 \times 30\%$ = 2,250
Material Z	$7,000 \times 20\%$ = 1,400	5	7,000	$7,500 \times 20\%$ = 1,500	ک	9,000	7,500 × 20% = 1,500
Input	7,000	ſ	98,000	60×125 = 7,500		1,15,500	7,500
(-) Loss	$5,600 \times (1/4)$ = 1,400			1,900 (B)			1500
Output	5,600 🧲	S	ملاسري	5,600			(600) SI

1. Material Cost Variance = Standard Cost – Actual cost

X = 70,000 - 94,500	=₹	24,500 (A)
Y = 21,000 - 12,000	=₹	9,000 (F)
Z = 7,000 - 9,000	=₹	2,000 (A)
	MCV=₹	17 500 (A)

2. Material Price Variance = $(SP - AP) \times AQ$ Cond. (on (onderset)) $X = (20 - 21) \times 4,500$ = ₹ 4,500 (A) $Y = (10 - 8) \times 1,500$ = ₹ 3,000 (F) $Z = (5 - 6) \times 1,500$ = ₹ 1,500 (A) MPV = ₹ 3,000 (A)

Material Price Variance = $(SP - AP) \times AQ$

(On purchase qty.)	$X = (20 - 21) \times 5,000$	=₹	5,000 (A)
	$Y = (10 - 8) \times 2,000$	=₹	4,000 (F)
	$Z = (5-6) \times 1,200$	_=₹	1,200 (A)
		MPV =₹	2,200 (A)

3. Material Usage (or Quantity) Variance = $(SQ - AQ) \times SP$

$X = (3,500 - 4,500) \times 20$	=₹	20,000 (A)
$Y = (2,100 - 1,500) \times 10$	=₹	6,000 (F)
$Z = (1,400 - 1,500) \times 5$	_=₹	500 (A)
	MUV =₹	14.500 (A)

		MUV <u>=₹</u>	<u>14,500 (A)</u>
4.	Material Mix Variance = $(RSQ - AQ) \times SP$		
	$X = (3,750 - 4,500) \times 20$	=₹	15,000 (A)
	$Y = (2,250 - 1,500) \times 10$	=₹	7,500 (F)
	$Z = (1,500 - 1,500) \times 5$	_=₹	NIL
		MMV <u>=</u> ₹	7,500 (A)

5. Material Yield Variance = $(SQ - RSQ) \times SP$

$X = (3,500 - 3,750) \times 20$	=₹	5,000 (A)
$Y = (2,100 - 2,250) \times 10$	=₹	1,500 (A)
$Z = (1,400 - 1,500) \times 5$	=₹	500 (A)
	MYV =₹	7 000 (A)

OR Material Yield Variance (MYV)

= (Actual yield – St. yield) × St. cost per unit of output

$$= \left[5,600 - \left(\frac{100}{125} \times 7,500 \right) \right] \times \left(\frac{98,000}{5,600} \right) \notin \mathbf{7},000 \text{ (A)}$$

<u>Question – 3</u>

Following data is extracted from the books of SK Ltd. for the month of May, 2021:

(i) Estimation-

Particulars	Quantity (kg)	Price(₹)	Amount (₹)
Material – A	- 800	?	-
Material – B	✓ 600	- 30.00	_ 18,000
			-

Normal loss was expected to be 10% of total input materials.

(ii) Actuals-

1,480 kg of output produced

Particulars	Quantity (kg)	Price(₹)	Amount (₹)
Material – A	900 🛩	?	<u> </u>
Material – B	?	32.50	
			59,825

(iii) Other information-

Material cost variance =₹3,625 (F) -

Material price variance =₹ 175 (F) ✓

A. IP= 1480 = 164444

You are required to calculate:

- (i) Standard price of Material-A
- (ii) Actual quantity of Material–B \checkmark
- (iii) Actual price of Material-A
- (iv) Revised standard quantity of Material-A and Material-B; and
- (v) Material Mix Variance

Solution

(i) Material cost variance = Standard cost – Actual cost

3,625 (F) = Standard cost - 59,825

3,625 =Standard cost - 59,825

Standard cost = 63,450

Total standard input required for actual output = $\frac{1,480}{90\%}$ = 1,645 kg Standard quantity of material A = $\frac{800}{(800+600)}$ × 1,645 = 940 kg Standard quantity of material B = $\frac{600}{(800+600)}$ × 1,645 = 705 kg

Standard cost of Material A + Standard cost of Material B = 63,450 $(SQ_A \times SP_A) + (SQ_B \times SP_B) = 63,450$ $(940 \times SP_A) + (705 \times 30) = 63,450$ $SP_A = \frac{42,300}{940}$ Standard price of material A = ₹ 45

- (ii) Material price variance = $(AQ \times SP) (AQ \times AP)$ $175 (F) = (AQ \times SP) - 59,825$ $175 = (AQ \times SP) - 59,825$ $AQ \times SP = 60,000$ $(AQ_A \times SP_A) + (AQ_B \times SP_B) = 60,000$ $(900 \times 45) + (AQ_B \times 30) = 60,000$ $AQ_B = \frac{19,500}{30}$ Actual quantity of material B = 650 kg
- (iii) Given, AQ × AP = 59,825 (AQ_A × AP_A) + (AQ_B × AP_B) = 59,825 (900 × AP_A) + (650 × 32.50) = 59,825 AP_A = $\frac{38,700}{900}$ Actual price of material A = ₹43
- (iv) Total actual input quantity = 900 + 650 = 1,550 kg Revised standard quantity of material A = $\frac{800}{(800+600)} \times 1,550 = 886$ kg Revised standard quantity of material A = $\frac{600}{(800+600)} \times 1,550 = 664$ kg
- (v) Material Mix Variance = $(RSQ AQ) \times SP$ Material A = $(886 - 900) \times 45$ = ₹ 630 (A) Material B = $(664 - 650) \times 30$ = ₹ 420 (F) ₹ 210 (A)

Question – 4

A gang of workers normally consists of 30 skilled workers, 15 semi-skilled workers and 10 unskilled workers. They are paid at standard rate per hour as under:

Skilled	₹70 `}
Semi-skilled	₹65
Unskilled	₹50

In a normal working week of 40 hours, the gang is expected to produce 2,000 units of output. During the week ended 31^{st} March, 2019, the gang consisted of 40 skilled, 10 semi-skilled and 5 unskilled workers. The acutal wages paid were at the rate of ₹ 75, ₹ 60 and ₹ 52 per hour respectively. Four hours were lost due to machine breakdown and 1,600 units were produced.

Calculate the following variances showing clearly adverse (A) or favorable (F)

(i) Labour Cost Variance

- (ii) Labour Rate Variance
- (iii) Labour Efficiency Variance
- (iv) Labour Mix Variance
- (v) Labour Idle Time variance

Solution

Basic Calculation

		<u> </u>					
Dortioulors	Standard (1,600 units)			Actual (1,600 units)			Revised
1 al ticulai s	Quantity	Rate	Amount	Quantity	Rate	Amount	Std. Qty.
Skilled	$\frac{40\times30}{2,000}\times1600 =$	70	67,200	40×40 = 1,600	75 -	1,20,000	$\frac{960}{1,760} \times 1980$ = 1,080
Semi-skilled	$\frac{40 \times 15}{2,000} \times 1600 =$ 480	65	31,200	$40 \times 10 = 400$	60	24,000	$\frac{480}{1,760} \times 1980$ = 540
Unskilled	$\frac{40 \times 10}{2,000} \times 1600 =$ 320	50	16,000	40×5 = 200	52	10,400	$\frac{320}{1,760} \times 1980$ = 360
Total	1,760	(1,14,400	2,200	(1,54,400	1,980

Particulars	Hours Paid	Idle Hours	Hours Worked 🛩
Skilled	$40 \times 40 = 1,600$	$40 \times 4 = 160$	1,600 - 160 = 1,440
Semi-skilled	$40 \times 10 = 400$	$10 \times 4 = 40$	400 - 40 = 360
Unskilled	$40 \times 5 = 200$	$5 \times 4 = 20$	200 - 20 = 180
Total	22,00	220	- 1,980

Calculation of Variances

(i) Labour Cost Variance = Standard Cost – Actual cost

Skilled = $67,200 - 1,20,000$	=₹	52,800 (A)
Semi-skilled = 31,200 – 24,000	=₹	7,200 (F)
Unskilled $= 16,000 - 10,400$	_=₹	5,600 (F)
	LCV <u>=₹</u>	40,000 (A)

(ii) Labour Rate Variance = $(SR - AR) \times AH$ paid		
Skilled = $(70 - 75) \times 1,600$	=₹	8,000 (A)
Semi-Skilled = $(65-60) \times 400$	=₹	2,000 (F)
Unskilled = $(50 - 52) \times 200$	=₹	400 (A)
	LRV <u>=₹</u>	6,400 (A)
(iii) Labour Efficiency Variance = (SH – AH worked)	\times SR	
Skilled = $(960 - 1,440) \times 70$	=₹	33,600 (A)
Semi-Skilled = $(480 - 360) \times 65$	=₹	7,800 (F)
Unskilled $= (320 - 180) \times 50$	=₹	7,000 (F)
	LEV <u>=₹</u>	18,800 (A)
(iv) Labour Mix Variance = $(RSH - AH worked) \times SR$		
Skilled = $(1,080 - 1,440) \times 70$	=₹	25,200 (A)
Semi-Skilled = $(540 - 360) \times 65$	=₹	11,700 (F)
Unskilled $= (360 - 180) \times 50$	=₹	9,000 (F)
	LMV <u>=₹</u>	4,500 (A)
(v) Idle Time Variance = Idle Hours \times SR		
Skilled = 160×70	=₹	11,200 (A)
Semi-Skilled = 40×65	=₹	2,600 (A)
Unskilled = 20×50	=₹	1,000 (A)
Idle time varia	nce <u>=₹</u>	14,800 (A)

<u>Question – 5</u>

The standard output of product 'DJ' is 25 units per hour in manufacturing department of a company employing 100 workers. In a 40 hours week, the department produced 960 units of product 'DJ' despite 5% of the time paid was lost due to an abnormal reason. The hourly wage rates actually paid were $\overline{\mathbf{0}}_{..., \mathbf{0}} \in 6.20$, $\overline{\mathbf{0}}_{..., \mathbf{0}} \in 5.70$ respectively to group 'A' consisting 10 workers, Group 'B' consisting 30 workers and Group 'C' consisting 60 workers. The standard wage rate per labour is same for all the workers. Labour Efficiency Variance is given $\overline{\mathbf{0}}_{..., \mathbf{0}} = 240$ (F).

You are required to calculate:

- (i) Total Labour Cost Variance
- (ii) Total Labour rate Variance
- (iii) Total Labour Gang Variance
- (iv) Total Labour Yield Variance, and
- (v) Total Labour Idle Time Variance

Solution

SR =₹6

Labour Efficiency Variance = (SH – AH worked) × SR $\frac{240 \text{ (F)} = \left[\left(960 \times \frac{100}{25} \right) - \left\{ (10 + 30 + 60) \times (40 - 5\%) \right\} \right] \times SR$ $240 = (3,840 - 3,800) \times SR$

 $dSunite \longrightarrow 1\times100$ with Mas.1 unit $\longrightarrow \frac{100}{25} = 4$ with Mas.

Particulars	Standard (960 units)				
	Quantity	Rate	Amount		
Labour	$960 \times \frac{100}{25} = 3,840$	6	23,040		

	Actual data (960 units)									
68.	No. of workers	Hours paid	Wage rate	Wages	Idle hours	Hours worked				
A	- 10	$10 \times 40 = 400$	6.20	2,480	$400 \times 5\% = 20$	400 - 20 = 380				
B	~ 30	30×40 = 1,200	6	7,200	$1,200 \times 5\% = 60$	1,200-60=1,140				
۲	- 60	$60 \times 40 = 2,400$	5.70	13,480	2,400× <u>5</u> % =	2,400 - 120 = 2,280				
			1		120					
	Total	4,000		23,360	200	3,800				

(i) Labour Cost Variance	= Standard Cost – Actual cost
	= 23,040 - 23,360 = ₹ 320 (A)
(ii) Labour Rate Variance	= (<u>SR - AR</u>) × AH paid
	$= [(\underline{6-6.20}) \times 400] + [(\underline{6-6}) \times 1,200] + [(\underline{6-5.70}) \times 2,400] = \texttt{\textbf{ξ}} 640 \text{ (F)}$
(iii) Labour Gang Variance	$=$ (<u>RSH – AH worked</u>) × SR \checkmark
	$= (3,800 - 3,800) \times 6 = $ Nil
(iv) Labour Yield Variance	= (Actual yield – St. yield) × St. cost per unit of output
	$= \left[960 - \left(\frac{960}{3,840} \times 3,800\right)\right] \times \left(\frac{23,040}{960}\right) = ₹ 240 \text{ (F)}$
(v) Idle Time Variance	= Idle Hours \times SR γ
	= 200 × 6 = ₹ 1,200 (A)

<u>Question – 6</u>

SK Ltd. had prepared the following estimation for the month of January:

	Quantity	Rate (₹)	Amount (₹)	
Material – A	\$ 800 kg	90.00	72,000	
Material – B	600 kg	60.00	36,000	
Skilled Labour	1,000 hours	75.00	75,000	
Unskilled Labour	800 hours	44.00	35,200	
Normal loss was expected to be 10% of total input materials and an idle labour time of 5% of expected				
labour hours was also estim	ated.		No. 108	

At the end of the month the following information has been collected from the cost accounting

department:					
The company has produced 1,480 kg finished product by using the followings:					
	Quantity	Rate (₹)	Amount (₹)		
Material – A	✓ 900 kg	- 86.00			
Material – B	✓ 650 kg	- 65.00	42,250		
Skilled Labour	1,200 hours 🔑	71.00	85,200		
Unskilled Labour	860 hours 🖊	46.00	39,560		

You are required to calculate:

- (a) Material cost variance
- (b) Material price variance
- (c) Material mix variance
- (d) Material yield variance
- (e) Labour cost variance
- (f) Labour efficiency variance

(g) Labour yield variance

Solution

Basic Calculation for material

Particulars	Standa	ard			Actual		Revised Std. Oty.
	Quantity	Rate	Amount	Quantity	Rate	Amount	
Material A	$\frac{8}{14} \times 1,644 = 939$	90	84,510	900	86	77,400	$\frac{8}{14} \times 1,550 = 886$
Material B	$\frac{6}{14} \times 1,644 = 705$	<u>60</u>	42,300	650	65	42,250	$\frac{6}{14} \times 1,550 = 664$
Input	$1,480 \div 90\% =$ $1,644 \checkmark$	(1,26,810	1,550		1,19,650	1,550
(-) Loss	164 -			70 (B	IF)		155
Output	1,480			1,480			(1395)-51

Basic Calculation for labour

Particulars	Standard			Actual		Revised	
i ai ticulai s	Quantity	Rate	Amount	Quantity	Std. Qty.		
Skilled	$\frac{1,000}{1,800} \times 2,008 = 1,115$	75	83,625	1,200	71	85,200	$\frac{1,115}{2,008} \times 2,060$ = 1,144
Unskilled	$\frac{800}{1,800}$ × 2,008 = 893	44	38,852	860	46	39,560	$\frac{893}{2,008}$ × 2,060 = 916
Total	$ \begin{array}{r} 1800 \times 0.95 \times 1,480 \\ 1,400 \times 0.90 \\ = 2,008 \end{array} $		1,22,477	2,060		1,24,760	2,060
	Std. Mrs. Std. 0]f	<mark></mark>	x Actual	4(0			

(a) Material Cost Variance = Standard Cost – Actual cost

	A = 84,510 - 77,400	=₹	7,110 (F)
	B = 42,300 - 42,250	_=₹	50 (F)
		MCV <u>=₹</u>	7,160 (F)
(b) Material Price Varian	$ace = (SP - AP) \times AQ$		
	$A = \overline{(90 - 86) \times 900}$	=₹	3,600 (F)
	$B = (60 - 65) \times 650$	_=₹	3,250 (A)
		MPV <u>=</u> ₹	350 (F)
(c) Material Mix Variand	$e = (RSQ - AQ) \times SP$		
	$A = (886 - 900) \times 90$	=₹	1,260 (A)
	$B = (664 - 650) \times 60$	=₹	840 (F)
		MMV <u>=</u> ₹	420 (A)
(d) Material Yield Varian	$nce = (SQ - RSQ) \times SP$		
	$A = (939 - 886) \times 90$	=₹	4,770 (F)
	$B = (705 - 664) \times 60$	=₹	2,460 (F)
		MYV <u>=₹</u>	7,230 (F)
OR Material Yield V	Variance (MYV)		
= (Actual yield – St.	yield) × St. cost per unit of	of output	
$=\left[1,480-\left(\frac{1,480}{1,644}\right)\right]$	$(1,550)] \times (\frac{1,26,810}{1,480}) = ₹7$	7,251 (F)	
(e) Labour Cost Variance	e = Standard Cost – Actua	l cost	
Skille	ed = $83,625 - 85,200$	=₹	1,575 (A)
Unskille	ed = $38,852 - 39,560$	=₹	708 (A)
		ICV=₹	$2283(\Delta)$

6,376 (A)
1,452 (F)
4,924 (A)
2,176 (A)
1,012 (A)
<u>3,188 (A)</u>

OR Labour Yield Variance (LYV)

= (Actual yield – St. yield) \times St. cost per unit of output

 $= \left[1,480 - \left(\frac{1,480}{2,008} \times 2,060\right)\right] \times \left(\frac{1,22,477}{1,480}\right) = ₹3,171 \text{ (A)}$

Question – 7

A company operates a standard costing system and showed the following data for the month of March:

	Actual	Budgeted
No. of working days	→ 22	20
Man-hours		4,000 🛩
Overhead rate per hour		₹ 0.50 PL
Hours per unit of output	-	10 -
Fixed overhead incurred	→ ₹1,800	-
No. of units produced	- 425	-
Calculate:		
(a) Overhead cost variance	(b) Budget variance	
(c) Volume variance	(d) Capacity variance	
(e) Calendar variance	(f) Efficiency variance	

Solution

Basic Calculations:

	Budgeted Hours	Recovery Rate	Budgeted Overheads
(A)	4,000	0.50	7 4,000×0.50 = 2,000 €
Revised Budgeted	Actual Hours		Actual Overheads 🧹
Hours			Vol.
$\frac{4,000}{20} \times 22 = 4,400$	4,300	.	1,800
	Standard Hours	Recovery Rate	Recovered Overheads
Corp-	10 × 425 = (4,250)	0.50	2,125

Calculation of Variances

(a) F. O. Cost Variance	= Recovered overhead – Actual overhead	
	= 2,125 – 1,800 = ₹ 325 (F)	
(b) Budget Variance	= Budgeted overhead – Actual overhead	
	= 2,000 – 1,800 = ₹ 200 (F)	
(c) Volume Variance	= Recovered overhead – Budgeted overhead	
	= 2,125 - 2,000 = ₹ 125 (F)	
(d) Capacity Variance	= (Actual Hrs. – Revised Budgeted Hrs.) \times Recovery Rate	
	$=(4,300-4,400) \times 0.50 = ₹50 (A)$	
(e) Calendar Variance	= (Revised Budgeted Hrs. – Budgeted Hours) × Recovery Rate	
	= $(4,400 - 4,000) \times 0.50 = ₹200$ (F)	
(f) Efficiency Variance	= (Std. Hrs. – Actual Hrs.) × Recovery Rate	
	= $(4,250 - 4,300) \times 0.50 = ₹ 25$ (A)	

Question – 8

A manufacturing concern has provided following information related to fixed overheads:

			Standard		Actu	ıal	
Out	put in a month	Ĵ	5,000 units	4,80	00 units 🗸		
Wor	rking days in a month	-	25 days 🛩	23 0	lays 🥓		
Fixe	ed overheads	~	₹ 5,00,000 ✓	₹4,	90,000		
Com	pute:		Bud.		PP	B. OH	1
(i)	Fixed overhead varian	nce	5000		5 = 100	252	84
(ii)	Fixed overhead exper	nditu	are variance Achel	6.		<u>H. on</u>	
(iii)	Fixed overhead volum	ne v	ariance 48 00			Va. 4,909	
(iv)	Fixed overhead effici	ency	variance	٩١,	<u>44</u>	Rec.	Case
Solut	tion		Y800		10-0	~ Las.r 1	,

Solution

Basic Calculations:

Budgeted Days	Recovery Rate	Budgeted Overheads
<u>25</u> C	$5,00,000 \div 25 = 20,000$	5,00,000
Actual Days		Actual Overheads
		V-1· 4,90,000
Standard Days	Recovery Rate	Recovered Overheads
$\frac{25}{5,000} \times 4,800 = 24$	20,000	4,80,000

Calculation of Variances

(a) F. O. Cost Variance	= Recovered overhead – Actual overhead
	= 4,80,000 - 4,90,000 = ₹ 10,00 (A)
(b) Expenditure Variance	= Budgeted overhead – Actual overhead
	= 5,00,000 - 4,90,000 = ₹ 10,000 (F)
(c) Volume Variance	= Recovered overhead – Budgeted overhead
	= 4,80,000 - 5,00,000 = ₹ 20,000 (A)
(d) Efficiency Variance	= (Std. days – Actual days) × Recovery Rate
	= (24 – 23) × 20,000 = ₹ 20,000 (F)

Question – 9

In a manufacturing company the standard units of production of the year were fixed at 1,20,000 units and overhead expenditures were estimated to be:

Semi-variable → ₹ 19,200 Semi-variable charges are considered to include 60 per cent expenses of fixed nature and 40 per cent of variable character.

Calculate the following:

- (a) Overhead cost variance
- (b) Fixed overhead cost variance
- (c) Variable overhead cost variance
- (d) Fixed overhead volume variance
- (e) Fixed overhead expenditure variance
- (f) Calendar variance

Rest. Rest. Rest. Rest. Rest. NOR Rest. Rest. Rest. Rest. Rest.

Solution

Basic Calculations:

(1) Fixed overheads out of semi-variable overheads = $1,80,000 \times 60\% = ₹ 1,08,000$ \therefore Total Fixed overheads p.a. = 12,00,000 + 1,08,000 = ₹ 13,08,000Total Fixed overheads per month = $13,08,000 \div 12 = ₹ 1,09,000$ Fixed overheads per unit = $\frac{1,09,000}{1,20,000 \div 12} = ₹ 10.90$

- (2) Variable overheads out of semi-variable overheads = 1,80,000 × 40% = ₹ 72,000
 ∴ Total variable overheads p.a. = 6,00,000 + 72,000 = ₹ 6,72,000
 Total variable overheads per month = 6,72,000 ÷ 12 € \$56,000
 Variable overheads per unit = \$56,000
 √1,20,000÷12 € \$5.60
- (3) Variable overheads recovered = $8,000 \times 5.60 = ₹ 44,800$
- (4) Total actual fixed overheads = 1,10,000 + (19,200 × 60%) = ₹ 1,21,520
 Total actual variable overheads = 48,000 + (19,200 × 40%) = ₹ 55,680
- (5) For Fixed Overheads

· ·	Budgeted Units	Recovery Rate	Budgeted OHs]
	10,000	10.90	1,09,000	5+2
Revised Bud. Units	Actual Units		Actual OHs 🗸	
$\frac{10,000}{20} \times 19 = 9,500$	8,000		1,21,520	2+
	Standard Units	Recovery Rate	Recovered OHs	
Cop-	8,000	10.90	87,200	

(a)	Overhead Cost Variance	= Recovered Overheads – Actual Overheads
		= (87,200 + 44,800) - (1,21,520 + 55,680) = ₹45,200 (A)
(b)	Fixed OHs Cost Variance	= Recovered Fixed OHs – Actual Fixed OHs
		= 87,200 - 1,21,520 = ₹ 34,320 (A)
(c)	Variable OHs Cost Variance	= Recovered Variable OHs – Actual Variable OHs
		= 44,800 - 55,680 = ₹ 10,880 (A)
(d)	Fixed OHs Volume Variance	= Recovered Fixed OHs – Budgeted Fixed OHs
		= 87,200 - 1,09,000 = ₹ 21,800 (A)
(e)	Fixed OHs Expenditure Variance	= Budgeted overhead – Actual overhead
		= 1,09,000 - 1,21,520 = ₹ 12,520 (A)
(f)	Calendar Variance	= (Revised Bud. units – Budget units) × Recovery rate
		= (9,500 – 10,000) × 10.90 = ₹ 5,450 (A)

Question – 10

ABC Ltd. has furnished the following information regarding the overheads for the month of June 2020:

- Fixed overhead cost variance (i)
- Fixed overhead volume variance (ii)
- (iii) Budgeted Hours for June, 2020
- (iv) Budgeted Overheads for June, 2020
- Actual rate of recovery of overheads (v)
- From the above given information calculate:
- Fixed overhead expenditure variance (i)
- (ii) Actual overheads incurred
- (iii) Actual hours for actual production
- (iv) Fixed overhead capacity variance
- Standard hours for actual production (v)
- (vi) Fixed overhead efficiency variance

Solution

Computation of required variances for February 2019:

1. Overheads expenditure variance = Overhead Cost Variance – Overheads Volume variance =₹2,800(A) - ₹2,000(A) = -₹2,800 - (-₹2,000) = -₹800 = ₹800 (A) 2. Actual Overheads incurred = Budgeted Overhead - Overhead Expenditure Variance = ₹ 12,000 - ₹ 800(A) = ₹ 12,000 - (-₹ 800) = ₹ 12,000 + ₹ 800 € ₹ 12,800 Actual Overheads Incurred Actual Rate of Recovery Overhead Per Hour 3. Actual hours for actual production = -= 1.600 hours 4. Overheads Capacity Variance = Std rate of OH rate (Actual hrs for actual production – Budgeted hours)

 $₹5 \times (1,600 - 2,400) = ₹5 \times (-800) = ₹4,000$ Adverse

- ₹2,800 (Adverse) ₹2,000 (Adverse) 2,400 hours
- ₹12,000 •
- ₹8 per hour

* Standard rate of Overhead recovery = $\frac{Budgetary \ Overheads}{Budgeted \ hours} = \frac{12,000}{2,400 \ hours} = ₹5 \ per \ hour$

- 5. Volume Variance = Std. rate of OHs recovery (Standard hours for actual production Budgeted hours)
 - or, ₹ 2,000(A) = ₹ 5 [Std. hrs. -2,400 hours]
 - or, Std. hrs. -2,400 hours = $-\frac{2,000}{5}$
 - or, Std. hrs. -2,400 hours = -400 hours
 - or, Std. hrs. = 2,400 hours 400 hours

Standard hours for actual production (2,000 hours)

6. Fixed overhead efficiency variance = $(Std. hours for AO - Actual Hrs.) \times SR$

$$= (2,000 - 1,600) \times 5 = 2,000 \text{ (F)}$$

Or

Fixed overhead efficiency variance = Volume variance – Capacity Variance

$$= \mathbf{\overline{\xi}} 2,000(A) - \mathbf{\overline{\xi}} 4,000(A) = - \mathbf{\overline{\xi}} 2,000 - (-\mathbf{\overline{\xi}} 4,000) = - \mathbf{\overline{\xi}} 2,000 + \mathbf{\overline{\xi}} 4,000 = \mathbf{\overline{\xi}} 2,000 (F)$$

Question – 11

SK Ltd. manufactures a commercial product for which the standard cost per unit is as follows:

Material:	5 kg. @ ₹ 4 per kg.	20.00
Labour:	3 hours @ ₹ 10 per hour	30.00
Variable Overhead:	3 hours @ ₹ 1	3.00
Fixed Overhead:	3 hours @ ₹ 0.50 -	1.50
Total		54.50

During May 2021 600 units of the product were manufactured at the cost shown below:

			₹
Materials purchased:	5,000 kg. @ ₹4.10 per kg		20,500
Materials used:	3,500 kg		
Direct Labour:	1 <u>,700 h</u> ours @₹9		15,300
Variable overhead	·	\rightarrow	1,900 🖌
Fixed overhead		も	900
Total		ſ	38,600

The flexible budget required 1,800 direct labour hours for operation at the monthly activity level used to set the fixed overhead rate.

Calculate:

(a) Material price variance

- (c) Labour rate variance
- (e) Variable overhead expenditure variance
- (g) Fixed overhead expenditure variance
- (i) Fixed overhead capacity variance

- (b) Material Usage variance
- (d) Labour efficiency variance
- (f) Variable overhead efficiency variance
- (h) Fixed overhead volume variance
- (j) Fixed overhead efficiency variance

	SHI.	(0)P= 600		Ac	200) (0/P	- 600)	
<u>lert</u>	8	R	A	Ø	R	А	
Mot.	600×5 = 3000	ч	12000	3500	4.10	14350	
							_
Lobour	600x3=1800	10	18000	1700	٩	15300	
			1980	190	0		
V. OHS	990×2 = 18N2	(1800	1700 170	= 1.1176	1900	

Solution

(a)	Material price variance	= (Standar	d price – Actual Price) × Actual quantity
		=(₹4-₹4	$(4.10) \times 5,000 = ₹500(A)$
(b)	Material usage variance	= (Std. qua	ntity for actual output – Actual qty.) × Std. price
		$=(600 \times 5)$	$(-3,500) \times 4 = ₹2,000(A)$
(c)	Labour Rate Variance	= (Standar	d rate – Actual rate) × Actual hours
		=(₹10-₹	$(\underline{9}) \times 1,700 = ₹ 1,700(F)$
(d)	Labour Efficiency Variance	= (Standar	d hrs for actual output – Actual hrs) × Standard rate
		$=(600 \times 3)$	$(-1,700) \times ₹ 10 = ₹ 1,000(F)$
(e)	Variable OHs Expenditure Va	ariance	= (Actual Hrs x Standard Rate) – Actual Overhead
			= $(1700 \text{ x ₹ 1}) - ₹ 1900 = ₹ 200(\text{A})$
(f)	Variable Overhead Efficiency	Variance	= Std. hrs for actual output – Actual hrs) \times Std. rate
			= $(600 \times 3 - 1,700) \times ₹ 1 = ₹ 100(F)$
(g)	Fixed Overhead Expenditure	Variance	= (Budgeted overhead – Actual overhead)
			$=(1,800 \times 0.50 - 900) =$ Nil
(h)	Fixed Overhead Volume Var	iance	= (Std. hrs for actual output – Bud. hrs.) \times Std. rate
			$= (600 \times 3 - 1,800) \times \gtrless 0.50 = \text{Nil}$
(i)	Fixed Overhead Capacity Var	riance	= (Budgeted hours – Actual Hours) \times Standard rate
			= $(1,800 - 1,700) \times ₹ 0.50 = ₹ 50(A)$
(j)	Fixed Overhead Efficiency V	ariance	= (Std. hrs. for actual output – Actual hrs.) \times Std rate
			= $(600 \times 3 - 1,700) \times ₹ 0.50 = ₹ 50(F)$

<u>Question – 12</u>

Following data is available for ABC Ltd.:	
Standard working hours —	8 hours per day of 5 days per week
Maximum capacity ->	60 employees
Actual working	50 employees
Actual hours expected to be worked per four week	8,000 hours
Standard hours expected to be earned per four week	9,600 hours
Actual hours worked in the four week period	7,500 hours
Standard hours earned in the four week period	8,800 hours - SP
The related period is of four weeks. Calculate the following	Ratios:
	-

- (i) Efficiency ratio
- (ii) Activity ratio
- (iii) Standard capacity usage ratio
- (iv) Actual capacity usage ratio
- (v) Actual usage of Budgeted capacity ratio

Solution

Working Notes:

- (1) Max. capacity in a budget period = $\underline{60}$ employees $\times \underline{8}$ hrs. $\times \underline{5}$ days $\times \underline{4}$ weeks = 9,600 hrs.
- (2) Budgeted hours = 50 employees \times 8 hrs. \times 5 days \times 4 weeks = 8,000 hrs.
- (3) Actual hours = 7,500 hrs. (given)
- (4) Standard hours for actual output = 8,800 hours

Calculation of ratios:

(i) Efficiency ratio =
$$\frac{Standard Hours}{Actual Hours} \times 100 = \frac{8,800}{7,500} \times 100 = 117.33\%$$

(ii) Activity ratio =
$$\frac{Standard Hours}{Budgeted Hours} \times 100 = \frac{8,800}{8,000} \times 100 = 10\%$$

(iii) Standard Capacity Usage ratio =
$$\frac{Budgeted Hours}{Max. \ possible \ hours \ in \ budget \ period} \times 100 = \frac{8,000}{9,600} \times 100 = 83.33\%$$

(iv) Actual capacity usage ratio =
$$\frac{Actual \ Hours}{Max. \ possible \ working \ hours \ in \ period} \times 100 = \frac{7,500}{9,600} \times 100 = 78.125\%$$

(v) Actual usage of budgeted capacity ratio =
$$\frac{Actual \ hours}{Budgeted \ Days} \times 100 = \frac{7,500}{8,000} \times 100 = 93.75\%$$

Standard Costing

MC	રિક		
Q(1). Under standard cost system the cost of the product determ A. Direct cost C. Historical cost	nined at the beginning of production is its: Pre-determined cost D. Actual cost		
Q(2). The deviations between actual and standard cost is known A. Multiple analysis	Las: B. Variable cost analysis D. Linear trend analysis		
Q(3). The standard which is attainable under favourable conditi C. Normal standard	ons is: B. Expected standard D. Basic standard		
Q(4). The standard most suitable from cost control point of view A. Nor mal standard Expected standard	w is: B. Theoretical standard D. Basic standard		
 Q(5). Overhead cost variance is: A. The difference between overheads recovered on actual output – actual overheads incurred B. The difference between budgeted overhead cost and actual overhead cost. C. Obtained by multiplying standard overhead absorption rate with the difference between standard hours for actual output and actual hours worked. D. None of the above 			
Q(6). Which of the following variance arises when more than on A. Material price variance C. Material yield variance	ne material is used in the manufac <u>ture of a pr</u> oduct: B. Material usage variance D. Material mix variance		
Q(7). If standard hours for 100 units of output are 400 @ ₹2p labour rate variance is: •••• ₹ 95 (adverse) C. ₹ 25 (favourable)	er hour and actual hours take are 380 @ ₹2.25 per, then theB. ₹ 100 (adverse) $(a - a \cdot 2s) \times 380$ D. ₹ 120 (adverse) $= -95 = 95$ (fr)		
Q(8). Controllable variances are best disposed-off by transferrin A. Cost of goods sold C. Inventories of work-in-progress and finished goods	ng to: B. Cost of goods sold and inventories D. Costing profit & loss account		
 Q(9). Idle time variance is obtained by multiplying: A. The difference between standard and actual hours by the actual B. The difference between actual labour hours paid and actual E. The difference between standard and actual hours by the star D. None of the above 	ual rate of labour pe hour abour hours worked by the standard rate andard rate of labour per hour		
Q(10). Basic standards are: A. Those standards, which require high degree of efficiency and B. Average standards and are useful in long term planning C. Standards, which can be attained or achieved P. Assuming to remain unchanged for a long time.	<u>l per</u> formance		