MAGIC MATHS BY CA PRANAV CHANDAK

MATHS TRO	Thandak
Chapter 1: Ratio, Proportion, Indices & Logarithm	1 - 35
CHAPTER 2: EQUATIONS	36 - 57
CHAPTER 3: T IME VALUE OF MONEY	58 - 80
Chapter 4: Permutation & Combination	81 - 116
Chapter 5: AP & GP	117 - 151
	150 177
Chapter 6: Set	172 - 177
CHAPTER 7: Differential Calculus	174 - 223

CHAPTER 1A. RATIO

INTRODUCTION

- A Ratio is a comparison of two or more quantities of the same kind (units) by division.
- ✤ If a & b are two quantities of same kind (same units), then a/b is called ratio of a to b.
- It is written as a: b
- PC Note: Quantities to be compared must be in same units or capable of being converted in same units.

CQ1: Ratio b/w 150 gm & 2 kg = Ratio b/w 150 gm & 2000 gm = $\frac{150}{2000} = \frac{3}{40} = 3:40$.

CQ2: Ratio b/w 25 mins & 45 sec. = Ratio b/w (25×60) sec & 45 sec. = $\frac{1500}{45} = \frac{100}{3} = 100:3$.

CONCEPT 1: ANTECEDENT & CONSEQUENT

☆ 'a' & 'b' are called terms of the ratio.

◆ 'a' is called first term or antecedent & 'b' is called second term or consequent.

CQ3. Find the ratio b/w 3 kg & 5 kg.

<u> </u>	609	• • •		~	6 - 9				T 1	n	Antecedent	3	
Solution:	ŝß	is the	antecedent	8	°5′	IS	the	consequent.	I hus.	Ratio =	: =	= —.	
									,		Consequent	5	

CQ4. Ratio of two of	quantities is 3:4. If ant	ecedent is 15, consequent is	[Ans: 20]
(α) 16	(b) 60	(c) 22	(d) 20

POINTS TO BE NOTED:

- The order of the terms in a ratio is important.
 [Ex: 3:4 is not same as 4:3].
- Ratio must be expressed in lowest form (simplest form). [Ex: 12:16 = $\frac{12}{16} = \frac{3\times4}{4\times4} = \frac{3}{4} = 3:4$]
- If both terms of a ratio are multiplied or divided by any same number (non-zero), ratio remains same.

CQ5: 3:4 is a ratio. Now if we multiply both 3 & 4 by any non-zero number (say Ex. by 4), we will get a new ratio 12:16, which is same as 3:4.

✤ If original quantity increases or decreases in the ratio a:b, then

New Quantity= Original Quantity $\times \frac{b}{a}$ [$\frac{b}{a}$ is called Factor Multiplying Ratio] CQ6. Mr. PC weighs 56.7 kg. If he reduces his weight in the ratio 7: 6, find his new weight. Solution: Original weight of Mr. PC = 56.7 kg; He reduces his weight in the ratio 7:6. His new weight = (56.7 × 6)/7 = 48.6 kg.

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramImage: Material Whatsapp: 8888111134Www.pranavchandak.com

CC	CONCEPT 2: INVERSE RATIO [Ulta Ratio]						
*	Inverse Ratio of a: b = b: a and vice- versa.						
*	Product of the ratio = 1.						
CC	CQ7. Ratio of two quantities is 5:7. If Consequent of its Inverse Ratio is 5, Antecedent is:						
(α)	5 (b) √5	(c) 7	(d) None				

CONCEPT 3: DUPLICATE RATIO

[Multiplication of the Ratio with itself]

- ✤ A ratio multiplied by itself is called its duplicate ratio.
- Duplicate ratio of **a**: **b** = $\frac{a}{b} \times \frac{a}{b} = a^2$: **b**²

Ex: (i) Duplicate ratio of 2:3 = 4: 9;

CONCEPT 4: SUB-DUPLICATE RATIO

- Sub-duplicate ratio of **a**: **b** = \sqrt{a} : \sqrt{b}
- Sub-duplicate ratio of a²: b² = a: b

Ex: (i) Sub-duplicate ratio of 9:25 = $\sqrt{9}$: $\sqrt{25}$ = **3: 5**

CONCEPT 5: TRIPLICATE RATIO

Triplicate ratio of **a**: **b** = **a**³: **b**³

Ex: (i) Triplicate ratio of 2: 3 = 8: 27

CONCEPT 6: SUB-TRIPLICATE RATIO

[Ulta of Triplicate Ratio]

[Ratio of Cubes of Terms]

[Ulta of Duplicate Ratio]

Sub-triplicate ratio of **a**: **b** = $\sqrt[3]{a}$: $\sqrt[3]{b}$

Sub-triplicate ratio of a³: b³ = a: b

Ex: (i) Sub-triplicate ratio of 8:125 = $\sqrt[3]{8}$: $\sqrt[3]{125}$ = **2: 5.**

CONCEPT 7: COMPOUND RATIO	[Multiplication of Two Ratios]
Compound ratio of two ratios a : b & c : d = $\frac{a}{b} \times \frac{c}{d}$:	$=\frac{ac}{bd}=ac$: bd.

Ex: (i) Compound ratio of 3:4 & 5:7 = 15: 28.

Ex: (ii) Compound ratio of 2:3, 5:7 & 4:9 = **40: 189.**

CONTINUED RATIO

Continued Ratio is the relation between three or more quantities of the same kind.

The continued ratio of three similar quantities a, b, c is written as a: b: c.

CQ8. A: B = 2: 3; B: C	= 4: 5; & C: D = 6:	7, then A: B: C: D is	·
(a) 16: 22: 30: 35	(b) 16: 24: 15: 35	(c) 16: 24: 30: 35	(d) 18: 24: 30: 35
CQ9. If A: B = 2: 3, B:	C = 4: 5, C: D = 6:	7 the A: D is	
(α) 35:16	(b) 16:35	(c) 2:7	(d) None of these.

Space for PC Class Note:

1B. PROPORTION

INTRODUCTION

- Equality of two ratios is called a proportion.
- Four quantities a, b, c, d are said to be in proportion if a: b = c: d (a: b :: c: d).
- The quantities a, b, c, d are called terms of the proportion;
- ✤ 1st & 4th terms are called Extremes; 2nd & 3rd terms are called Means (middle terms).

Product of Extremes = Product of Means

Therefore $\frac{a}{b} = \frac{c}{d}$ then ad = bc. [Cross Product Rule]

Ex: If $\frac{3}{5} = \frac{6}{10}$ then LHS = 3 × 10 = 30 & RHS = 6 × 5 = 30

PC NOTE: In a ratio a:b, both quantities must be in same unit but in proportion a: b = c: d, all 4 quantities need not be of the same type. First two quantities should be in same unit & last two quantities should be in same unit.

Ex: Rs. 6: Rs. 8 = 12 toffees: 16 toffees are in a proportion since 1^{st} two quantities are in same unit & last two are in same unit.

CONCEPT 1: CONTINUOUS PROPORTION [Same apply for more than 3 quantities] Three quantities a, b, c (same units) are in continuous proportion if a: b = b: c. 'a' → 1** proportional; 'b' → Mean proportional bet" a & c; 'c' → 3** proportional. If a/b = b/c, then b² = ac; OR b = √ac. CQ1. Find the value of x if 10/3 : x :: 5/2 : 5/4. [Ans: 5/3] CQ2. Find the fourth proportional to 2/3, 3/7, 4. [Ans: 18/7] CQ3. Find the third proportion to 2.4 kg, 9.6 kg. [Ans: 38.4 Kgs] CQ4. Find the mean proportion bet" 1.25 & 1.8. [Ans: 1.5]

CC	ONCEPT 2: PR	OPERTIES OF	PROPORTION \rightarrow If a:b = c:d then		
1	Invertendo	b: a = d: c	Ex: If $\frac{3}{5} = \frac{6}{10}$ then $\frac{5}{3} = \frac{10}{6}$		
2	Alternendo	a: c = b: d	Ex: If $\frac{3}{6} = \frac{5}{10}$ then $\frac{3}{6} = \frac{5}{10}$		
3	Componendo	$\frac{a+b}{b} = \frac{c+d}{d}$	Ex: If $\frac{3}{5} = \frac{6}{10}$ then $\frac{3+5}{5} = \frac{6+10}{10}$ [Check $\frac{8}{5} = \frac{16}{10}$; $8 \times 10 = 5 \times 16$]		
4	Dividendo	$\frac{a-b}{b} = \frac{c-d}{d}$	Ex : If $\frac{5}{3} = \frac{10}{6}$ then $\frac{5-3}{5} = \frac{10-6}{10}$ [Check $\frac{2}{5} = \frac{4}{10}$; 2 × 10 = 5 × 4]		
5	Componendo & Dividendo	$\frac{a+b}{a-b} = \frac{c+d}{c-d}$	Ex : If $\frac{5}{3} = \frac{10}{6}$ then $\frac{5+3}{5-3} = \frac{10+6}{10-6}$ [Check $\frac{8}{2} = \frac{16}{4}$; $8 \times 4 = 2 \times 16$]		
6	6 Addendo If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, each of ratios (Addendo) = $(a + c + e + \dots)$; $(b + d + f + \dots)$ Ex: If $\frac{3}{5} = \frac{6}{10} = \frac{12}{20} = \frac{24}{40} = \dots$, then it comes out as $\frac{3 + 6 + 12 + 24 \dots}{5 + 10 + 20 + 40 \dots}$ CQ5. If a: b = c: d = 2.5:1.5, what are the values of (i) ad: bc & (ii) a+c: b+d? Ans: (i) $\frac{a}{b} = \frac{c}{d} = \frac{5}{3}$; so, ad = bc, thus ad: bc = ad: ad [Substituting ad = bc], Thus ad: bc = 1:1. (ii) $\frac{a}{b} = \frac{c}{d} = \frac{2.5}{15}$; Using the above given principle, we can say that $\frac{a+c}{b+d} = \frac{5}{3}$.				
7	Subtrahendo	$\frac{a}{b} = \frac{c}{d} = \frac{a-c}{b-d}$	Ex: If $\frac{3}{5} = \frac{6}{10} = \frac{12}{20} = \frac{24}{40}$ then, $\frac{3}{5} - \frac{12}{20} = \frac{6}{10} - \frac{24}{40} \to 0$		
PC	Note: Only Ad	dendo and Subt	rahendo are equal to the Original Ratio		

CONCEPT 3: INVERSE PROPORTION

- If 'a' & 'b' are related to each other such that an increase in 'b' results in proportionate increase in 'a', then 'a' & b are said to be directly related or in direct proportion.
- This is expressed as $\mathbf{a} \propto \mathbf{b}$. [a is directly proportional to b]
- If 'a' & 'b' are related to each other such that an increase in 'b' results in proportionate decrease in 'a', then 'a' & b are said to be inversely related or in inverse proportion.
- This is expressed as $\mathbf{a} \propto \frac{1}{b}$. [a is inversely proportional to b]
- When $\mathbf{a} \propto \frac{1}{b}$, we can write $\mathbf{a} = \frac{\mathbf{k}}{\mathbf{b}}$, where k is the constant of probability.

POINTS TO BE NOTED						
• If $a \propto b$ and $b \propto c$, then $a \propto c$.	• If $a \propto b$, then $ax \propto bx$.					
CQ6. X varies inversely as y^2 . Given that $y = 2$ for $x = 1$. Value of x for $y = 6$ will be						
(a) 3 (b) 9 (c)	1/9 (d) - 1/9					

Space for PC Class Note:

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

RATIO & PROPORTION - QUESTION BANK

SN		СНАРТ	ER 1A. RATIO		Ans
Q1	Ratio exists only be	etween quantities of _	kind.		Α
	(a) same	(b) bigger	(c) smaller	(d) None	
Q2	A ratio is a				С
	(a) unit	(b) term	(c) number	(d) function	
Q3	The order of the te	erms in a ratio is impor	°tant.		A
	(a) True	(b) False	(c) Partly True	(d) None	
Q4	A ratio is expresse	d in form.			Α
	(a) simplest	(b) complicated	(c) moderate	(d) functional	
Q5	Ratio has no unit.				Α
	(a) True	(b) Partly True	(c) False	(d) None	
Q6	If a: b = c: d then _	·			С
	(a) ab = cd	(b) ac = bd	(c) ad = bc	(d) ab = ad	
Q7	4 ^{2.5} :2 ³ is same as	·			Α
	(a) 4:1	(b) 2:1	(c) 16:1	(d) 80:1	
Q8	The ratio 3/2: 1/3:	1/8 is same as	·		С
	(α) 36: 3: 8	(b) 3: 8: 36	(c) 36: 8: 3	(d) 3: 36: 8	
Q9	If A: B = 2: 3, B: C=4	4: 5, C: D= 6: 7. the A:	D is		В
	(α) 35:16	(b) 16:35	(c) 2:7	(d) None	
Q10	If A: B = 2: 3; B: C =	4: 5 and C: D = 6: 7, t	hen A: B: C: D is	·	С
	(α) 16:22:30:35	(b) 16:24:15:35	(c) 16:24:30:35	(d) 18:24:30:35	
Q11	The inverse ratio o	f 11:15 is			A
	(α) 15:11	(b) √11: √15	(c) 125:225	(d) None	
Q12	In the ratio 11/3: 13	3/4, antecedent is	·		В
	(α) 13/4	(b) 11/3	(c) Both (a) & (b)	(d) None	
Q13	The Duplicate Ratio	o of 3: 4 is			С
	(α) √3: 2	(b) 4:3	(c) 9: 16	(d) None	
Q14	The Sub Duplicate F	Ratio of 25: 36 is	·		D
	(α) 6:5	(b) 36:25	(c) 50:72	(d) 5:6	
Q15	If p: q is the Sub Du	uplicate Ratio of p - x²	er q - x² then x² is	·	D
	$(\alpha) \frac{p}{n+q}$	(b) $\frac{q}{n+q}$	(c) $\frac{pq}{nq}$	(d) $\frac{pq}{n+q}$	
Q16	If 20. St is the Dual	$\frac{\mu + \gamma}{\mu + \gamma}$	$\frac{\mu q}{2t - p thep}$	<i>μ</i> τ <i>ų</i>	Δ
	$(a) p^2 = 6st$	(b) n = 6st	(c) $2n = 3st$	(d) None	
012	The Triplicate Datis				
GIT		יט וט ט צ גט וט ט. 2 וא			~

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

	(a) 27:8	(b) 6:9	(c) 3:2	(d) 8:27	
Q18	The Triplicate Rati	o of 4: 5 is			С
	(a) 125:64	(b) 16:25	(c) 64:125	(d) 120:46	
Q19	The Sub Triplicate	Ratio of 8: 27 is	·		С
	(a) 27:8	(b) 24:81	(c) 2:3	(d) None	
Q20	If (4x+3): (9x+10) is	the Triplicate Ratio o	of 3: 4, then the value of	of x is	С
	(α) 9	(b) 7	(c) 6	(d) 5	
Q21	Ratio compounded	of Duplicate Ratio of	√5: √6 & Triplicate Ra	tio of 3: 5 is	С
	(a) 4:75	(b) 2:15	(c) 9:50	(d) 3:10	
Q22	The ratio compoun 81: 256 and Sub Tr	ded of Duplicate Ratio iplicate Ratio of 125: 5	o of 4: 5, Triplicate of 512	1: 3, Sub Duplicate Ratio of	D
	(a) 4:512	(b) 3:32	(c) 1:12	(d) 1:120	
Q23	If $5x^2 - 13xy + 6y^2 =$	0, then x: y is			B
	(a) (2:1) only	(b) (3:5) or (2:1)	(c) (5:3) or (1:2)	(d) (3:5)	
Q24	If 2A=3B and 4B=50	C, then A:C is			B
	(a) 4:3	(b) 15:8	(c) 8:15	(d) 3:4	
Q25	P, Q, and R are th that between P an	ree cities. Ratio of a d R is 9:8. Ratio betwo	verage temperature b een average temperat	between P & Q is 11:12 and cure of Q and R is	B
	(a) 22:27	(b) 27:22	(c) 32:33	(d) None	
Q26	A man divides his p his daughter's sha son, then total wor	property so that his so re are both in the ra oth of his property is_	on's share to his wife's tio 3:1. If the daughte 	s share and wife's share to er gets Rs.10,000 less than	A
	(a) Rs. 16,250	(b) Rs. 8,250	(c) Rs. 15,250	(d) Rs.21,250	
Q27	If 40% of a numbe to second number?	r is equal to 2/3 rd of a	nother number, what i	is the ratio of first number	C
	(a) 2:5	(b) 3:7	(c) 5:3	(d) 7:3	
Q28	Two numbers are numbers is	respectively 30% & 4	0% more than a third	number. Ratio of the two	С
	(a) 3:4	(b) 14:14	(c) 13:14	(d) 4:3	
Q29	A recipe for 4 ser recipe is adjusted now be added?	vings requires salt an from 4 to 8 servings, v	d pepper to be added what is the ratio of the	d in the ratio of 2:3. If the e salt and pepper that must	С
	(a) 4:3	(b) 2:6	(c) 2:3	(d) 3:2	
Q30	The ages of two pe 8:13 their present	ersons are in the ratio ages (in years) are	5:7. 18 years ago thei 	r ages were in the ratio of	A
	(a) 50,70	(b) 70,50	(c) 40,56	(d) None	
Q31	A bag contains Rs. Find the number of	187 in the form of 1 rup	bee, 50 paise and 10 pc	uise coins in the ratio 3:4:5.	Α
		cubil type of collis.			
	(a) 102,136,170	(b) 136,102,170	(c) 170,102,136	(d) None	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	The numbers are	·						
	(a) (16,24)	(b) (4,6)	(c) (2,3)	(d) None				
Q33	What quantity must b q)² : (p - q)²?	e added to the terms	of the ratio p+q : p-c	q to make it equal to (p +	С			
	(a) (q+p) / 2p	(b) (q-p) /2p	(c) (q ² - p ²) / 2p	(d) None				
Q34	The ratio between th speed of 1 st train is	ne speeds of two tra 	ins is 7:8. If 2 nd train 1	runs 400 kms in 5 hours,	D			
	(a) 10 km/hr	(b) 50 km/hr	(c) 71 km/hr	(d) 70 km/hr				
Q35	The angles of a trianc (a) (20°,70°,90°)	gle are in ratio 2:7:11. (b) (30°,70°,80°)	The angles are (c) (18°,63°,99°)	 (d) None	С			
Q36	If A, B and C started a business by investing Rs.1,26,000, Rs.84,000 and Rs.2,10,000. If at the end of the year profit is Rs. 2,42,000 then the share of each is							
	(a) Rs.72,600, Rs.48,4	00, Rs.1,21,000	(b) Rs.48,400, Rs.1,21	,000, Rs.72,600				
	(c) Rs.72,000, Rs.49,000, Rs.1,21,000 (d) Rs.48,000, Rs.1,21,400, Rs.72,600							
Q37	The ratio of the number of boys to number of girls in a school of 1,200 Students is 7:5. If 20 boys are newly admitted h the school, find how many new girls may be admitted so that the above ratio may change to 4: 3.							
	(a) 40	(b) 140	(c) 60	(d) 58.				
Q38	Ratio of the number of new girls are admitted the ratio of the numb	of boys to the number ed in the school, find er of boys to the num	of girls in a school of how many new boys s ber of girls may chang	720 students is 3:5. If 18 hall be admitted so that ge to 2:3.	С			
	(d) 40	(D) 40	(C) 42	(d) 50.				
Q39	If a packet containing cannot be	g 12 glasses is droppe	d, ratio of broken gla	sses to unbroken glasses	B			
	(a) 3:1	(b) 6:1	(c) 4:2	(d) 5:7				
Q40	The ages of A and B of present ages are	are in the ratio 3:1. F 	ifteen years hence, th	ne ratio will be 2:1. Their	B			
	(a) 30 years, 10 years	3	(b) 45 years, 15 year	s				
	(c) 21 years, 7 years		(d) 60 years, 20 year	°S				
Q41	The population of a b number of bacteria o that hour is	acteria culture doubl at the end of 1 hour t	es in number every 12 o the number of bact	minutes. The rata of the ceria at the beginning of	С			
	(a) 64:1	(b) 60:1	(c) 32:1	(d) 16:1				
Q42	Rs.1,360 have been di (1/4) of what C gets.	vided among A, B, C s Then B's share is	uch that A gets (2/3) c ·	of what B gets and B gets	С			
	(a) Rs.120	(b) Rs.160	(c) Rs.240	(d) Rs. 320				
Q43	A sum of Rs. 53 is to gets and B gets Rs. 8	be divided among A, more than what C ge	B, C such that A gets ts. The ratio of three	s Rs. 7 more than what B shares is	С			
	(α) 18:25:10	(b) 18:10:25	(c) 25:18:10	(d) None				
Q44	A & B together have does B have?	Rs. 1,210. If $\frac{1}{15}$ of A's	amount is equal to $\frac{2}{5}$	of B's amount, how much	B			

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube

Telegram

	(a) Rs. 460	(b) Rs.484	(c) Rs.550	(d) Rs.664	
Q45	Rs. 1,300 is divided	amongst p, q, r & s suc	ch that $\frac{p \ share}{r \ share} = \frac{q \ share}{r \ share} =$	$=\frac{r share}{r share} = \frac{2}{2}$. Then, P's share	B
	is		q snare – r snare	s snare 3	
	(a) Rs. 140	(b) Rs. 160	(c) Rs.240	(d) Rs. 320	
Q46	Salaries of A, B, C o	are in the ratio 2:3:5.	If increments of 15%,	10% & 20% are given to	С
	them respectively, v	(h) 10:11:20	of their salaries?	(d) Nono	
042				(d) None	~
Q47	the girls are schold scholarship?	arship holders, what p	percentage of the stu	udents does not get the	C
	(α) 56	(b) 70	(c) 78	(d) 80	
Q48	The profits of a Firm whose terms differ J	n are to be distributed by 40 and the measure	d in a suitable ratio. S e of which is 2/7.	uitable Ratio is the ratio	B
	(a) 280:2	(b) 16:56	(c) 80:7	(d) 40:14	
Q49	If (a + b): (b + c): (c	+ a) = 6: 7: 8 and (a + k	o + c) = 14, then the va	lue of c =	Α
	(α) 6	(b) 7	(c) 8	(d) 14	
Q50	If a: b = 3:4, the val	ue of (2a + 3b): (3a + 4	b) =		Α
	(α) 18:25	(b) 8:25	(c) 17:24	(d) None	
Q51	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then $\frac{a+b}{c}$	+ c =			B
	(a) 7	(b) 2	(c) 1/3	(d) 1/5	
Q52	If x: y = 2:3 then (5x:	+2y): (3x-y) =			B
	(a) 19:3	(b) 16:3	(c) 7:2	(d) 7:3	
Q53	If P: Q = 2:3 & X: Y =	4: 5, then 5PX + 3QY:	10PX + 4QY =	·	С
	(a) 71:82	(b) 27:28	(c) 17:28	(d) None	
Q54	If $\frac{5x - 3y}{5y - 3x} = \frac{3}{4}$ then x: y	is			D
	(a) 2:9	(b) 7:2	(c) 7:9	(d) 27:29	
Q55	$If \frac{a}{2} = \frac{b}{5} = \frac{c}{6}$, Then $\frac{a+b}{a+b}$	$\frac{b+c}{b-c} = $			Α
	(a) 13	(b) $\frac{13}{9}$	(c) $\frac{13}{3}$	(d) None	
Q56	If $\frac{a}{k} = \frac{c}{k} = \frac{e}{c} = k$ then	$\frac{pa+qc+re}{dr} = $			Α
	a) k	(b)(p + q + r)k	(c) $\frac{1}{2}$	(d) None	
052		x+b 2ab	, , , , , , , , , , , , , , , , , , ,	(D
Q37	If the value of: $\frac{1}{xa}$ +	$\frac{1}{xb}$, when $x = \frac{1}{a+b}$; $a \neq a$	<i>b</i>		U
	(α) 3	(D) 4	(C) 1	(d) 2	
Q58	Two whole numbers	whose sum is 72 canno	t be in the ratio		С
	(a) 5: <i>†</i>	(D) 3:5	(C) 3:4	(a) 4:5	
Q59	Ratio of two number	es is 7:10 and their diff	erence is 105. The nur	nbers are	С
	(a) (200,305)	(b) (185,290)	(c) (245,350)	(d) (350,240)	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

VouTube <

Whatsapp: 8888111134

Q60	Ratio of numbers is 1:2:3 & sum of their squares is 504, then the numbers are (a) 6,12,18 (b) 3,6,9 (c) 4,8,12 (d) 5,10,15	A
Q61	Three numbers which are in the ratio of 3:4:5 such that sum of their cubes is 1728.(a) 6,8,10(b) 10,8,6(c) 12,8,20(d) None	A
Q62	A person has assets worth Rs. 1,48,200. He wishes to divide it amongst his wife, son & daughter in ratio 3:2:1 respectively. From these assets, share of his son will be(a) Rs. 74,100(b) Rs. 37,050(c) Rs. 49,400(d) Rs. 24,700	С
Q63	Daily earnings of two persons are in the ratio 4:5 and their daily expenses are in the ratio 7:9. If each saves Rs. 50 per day, their daily incomes are	С
	(a) (40,50) (b) (50,40) (c) (400,500) (d) None	
Q64	A person on a tour has Rs. 9600 for his expense. But the tour was extended for another 16 days, so he has to cut down his daily expenses by Rs. 20. The original duration of the tour had been?	С
	(a) 48 days (b) 64 days (c) 80 days (d) 96 days	
Q65	A earns Rs. 150 in 12 hours; B ear ns Rs. 160 in 8 hours. Ratio of their earning is	A
	(a) 5:8 (b) 15: 16 (c) 45:32 (d) None	
Q66	Arun earns Rs. 80 in 7 hours &Varun earns Rs. 90 in 12 hours. Ratio of their earnings is	Α
	(a) 32:21 (b) 23:12 (c) 8:9 (d) None	
Q67	A bag contains 23 number of coins in the form of 1 rupee, 2 rupee and 5 rupee coins. The total sum of the coins is Rs. 43. The ratio between 1 rupee and 2 rupees coins is 3:2. Then the number of 1 rupee coins	A
	(a) 12 (b) 8 (c) 10 (d) 16	
Q68	Find in what ratio will the total wages of the workers of a factory be increased or decreased if there be a reduction in the number of workers in the ratio of 15:11 and an increment in their wages in the ratio of 22:25.	A
	(a) Decrease in the ratio 6:5. (b) Increase in the ratio 6:5	
	(c) Decrease in the ratio 3:5 (d) Increase in the ratio 3:5	
Q69	Ratio in which the total wages of the workers of a factory get increased (or decreased), if there be a reduction of workers in the ratio 7:5 & an increase in their wages in the ratio 2:3 is	A
	(a) 14:15 (b) 15:14 (c) 4:1 (d) 1:4	
Q70	15($2p^2 - q^2$) = 7pq where p, q are positive then p: q	Α
	(a) 5: 6 (b) 5: 7 (c) 3: 5 (d) 3:7	
Q71	If $p^x = q$, $q^y = r$, $r^z = p^6$ then the value of x.y.z is	D
	(a) O (b) 1 (c) 3 (d) 6	
Q72	First, second & third month salaries of a person are in the ratio 2:4:5. The difference between the product of the salaries of first 2 months & last 2 months is 4,80,00,000. Find the salary of the second month	D
	(a) Rs. 4,000 (b) Rs. 6,000 (c) Rs. 12,000 (d) Rs. 8,000	
Q73	The number which when subtracted from each of the terms of the ratio 19:31 reducing it to 1:4 is	A

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(α) 15	(b) 5	(c) 1	(d) None	
Q74	If 2x + 3 : 5x - 38 is	the duplicate ratio of	$\sqrt{5}$: $\sqrt{6}$, then value of	x is	С
	(a) 12	(b) 14	(c) 16	(d) 18	
Q75	The ratio compound	led of (a+b): (a-b) and	a² - b²: (a + b)² is	·	С
	(a) (a+b):1	(b) (a-b):1	(c) 1:1	(d) None	
Q76	The ratio of two nu	mbers is 7:10 and their	difference is 105. The	e numbers are	С
	(a) (200,305)	(b) (185,290)	(c) (245,350)	(d) 350, 245	
Q77	In a school, 10% of boys to girls?	the boys are same in t	number as 1/4 th of the	girls. What is the ratio of	B
	(a) 3:2	(b) 5:2	(c) 2:1	(d) 4:3	
Q78	The sides of a triar the longest side is <u>-</u>	gle are in the ratio $\frac{1}{2}$:	$\frac{1}{3}:\frac{1}{4}$ and its perimete	er is 104 cm. The length of	B
	(a) 52 cm	(b) 48 cm	(c) 32 cm	(d) 26 cm	
Q79	The ratio of the pri the first has increa becomes 11:20. Finc	ces of two types of ca sed by 10% and that o l the original prices of	rs was 16:23. Two yean of the second by Rs. 47 the two types of cars	rs later when the price of 77, the ratio of the prices 5.	Α
	(a) 848 & 1219	(b) 748 & 1319	(c) 948 & 1119	(d) None	
Q80	Rs. 4,850 have been 15, Rs. 10 & Rs. 25 re (a) Rs.1,595	n divided among A, B, (espectively, remainder (b) Rs.1,610	C such that if their sh s are in the ratio 3:4:5 (c) Rs.1,626.66	ares be diminished by Rs. 5. Then B's share is (d) Rs.1,600	B
Q81	A man spends Rs. 6 price of each chair ratio of chairs to to	660 on tables and cha being Rs. 20. If he bu ables purchased?	irs, the price of each uys the maximum numb	n table being Rs. 150, the per of tables, what is the	B
	(α) 4:3	(b) 3:4	(c) 2:5	(d) 2:3	
Q82	If $\frac{x}{2y} = \frac{3}{2}$, then the ve	alue of $\frac{2x+y}{x-2y}$ is			B
	(α) 5	(b) 7	(c) 2	(d) 7.1	
Q83	If $\frac{\sqrt{x+5} + \sqrt{x-16}}{\sqrt{x+5} - \sqrt{x-16}} = \frac{7}{3}$ the	n x equals to			B
	(α) 10	(b) 20	(c) 30	(d) 40	
Q84	If $\frac{a^3 + 3a}{3a^2 + 1} = \frac{91}{37}$ then 'a'	equals to			B
	(α) δ	(b) 7	(c) 6	(d) None	

SN		CHAPTER 1	B. PROPORTION		Ans
Q85	The mean proport	ional between 12x² o	nd 27y² is		Α
	(α) 18χγ	(b) 81xy	(c) 8xy	(d) None	
Q86	If 4, x and 9 are in	n proportional then '	X [°] =		С
	(α) 36	(b) 6.5	(c) 6	(d) 24	
Q87	The fourth propor	tional to 4,6,8 is	·		Α
	(α) 12	(b) 32	(c) 48	(d) None	
Q88	The third proport	ional to 12, 18 is	·		B
	(α) 24	(b) 27	(c) 36	(d) None	
Q89	If 50 is the third p	proportional to 8 and	d X, then the value of	f X is	Α
	(α) 20	(b) 2	(c) 10	(d) 1	
Q90	Mean proportion	petween 24 and 54 is	3		D
	(α) 33	(b) 34	(c) 35	(d) 36	
Q91	If 'b' is the mean	proportional betwee	n a & c, then		Α
	(a) b × b = ac	(b) b = (a + c) / 2	(c) b = a + c	(d) b = (a - c) / 2	
Q92	If a: b = 4:1 then c	1+b/a =			B
	(α) 1	(b) 5/4	(c) 4/5	(d) None	
Q93	If a:b = c:d = 2.5 :	1.5, what are the va	lues of ad : be and a	+c : b+d?	С
	(a) 1: 2 and 5: 3	(b) 1: 3 and 4: 3	(c) 1: 1 and 5: 3	(d) 2: 1 and 3: 5	
Q94	What must be add	led to each number '	10, 18, 22, 38 to make	e them proportional?	B
	(α) 5	(b) 2	(c) 3	(d) 9	
Q95	The numbers 2.4, 3 the product of ex	3.2, 1.5, 2 are in prop tremes.	portion & their produ	ict of means is 4.8, find	A
	(α) 4.8	(b) 2.4	(c) 8.4	(d) None	
Q96	The third proport	ional to (x² - y²) and	(x - y) is		D
	(a) (x + y)	(b) (x - y)	(c) $\frac{x+y}{x-y}$	(d) $\frac{x-y}{x+y}$	
Q97	The fourth propor	tional to 2a, a³, c is	·		D
	(a) ac/2	(b) ac	(c) 2/ac	(d) α²c/2	
Q98	The fourth propor	tional to (a + b), (a +	b)², (a - b) is	·	B
	(a) (a+b)	(b) (a² - b²)	(c) (a-b)	(d) $(a + b)^2$	
Q99	The numbers 14,16 be in proportion i	5,35,42 are not in pro s	portion. The fourth t	erm for which they will	B
	(α) 45	(b) 40	(c) 32	(d) None	
Q100	What least numbe	er must be added t	o each one 6, 14, 18	3, 38 to make them in	B

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube

Telegram

	proportion?				
	(α) 1	(b) 2	(c) 3	(d) 4	
Q101	Ratio of 3 rd propor	tional to 12 and 30 §	& Mean proportiona	l between 9 and 25 is	B
	(a) 2:1	(b) 5:1	(c) 7:15	(d) 9:14	
Q102	Ratio of 3 rd propor	tional to 4 & 6 and	mean proportional	oetween 9 & 25 is	B
	(α) 5:3	(b) 3:5	(c) 8: 5	(d) 5: 8	
Q103	If b is mean propo (b²+c²) is	prtion between a an	d c, then the mean j	proportion bet ⁿ (a^2+b^2) &	A
	(a) b (a + c)	(b) a (b + c)	(c) c (a + b)	(d) abc	
Q104	The number which	has the same ratio	to 26 that 6 has to	13 is	D
	(a) 11	(b) 10	(c) 21	(d) 12	
Q105	If four numbers 1/	2, 1/3, 1/5, 1/x are	proportional then x	is	С
	(a) 6/5	(b) 5/6	(c) 15/2	(d) None	
Q106	Find two numbers	such that their AM	is 18 and third prop	ortional to them is 144.	D
	(a) 9, 36	(b) 29, 56	(c) 18, 72	(d) None	
Q107	A Dealer mixes Te sells the mixture of what proportion of	ea costing Rs. 6.92 it Rs. 8.80 per kg ai loes he mix them?	per kg with Tea co nd earns a profit 17	sting Rs.7.77 per kg and .5% on his Sale Price. In	A
	(α) 3:2	(b) 4:1	(c) 3:4	(d) 5:3	
Q108	60 kg of alloy A is	mixed with 100 kg o	f alloy B. If alloy A h	as lead & tin in ratio 3:2	B
	& alloy B has tin &	copper in the ratio	o 1:4, then amount o	f tin in new alloy is	
	& alloy B has tin & (a) 36 kg	(b) 44 kg	c) 1:4, then amount o (c) 53 kg	(d) 80 kg	
Q109	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is	copper in the ratio (b) 44 kg s mixed with 20 kg a alloy II has Zinc & ti 	(c) 53 kg of Alloy II. If alloy I in in the ratio 2:3 th	(d) 80 kg has Copper and Zinc in hen the amount of Zinc in	A
Q109	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg	copper in the ratio (b) 44 kg s mixed with 20 kg a alloy II has Zinc & ti (b) 52 kg	(c) 53 kg of Alloy II. If alloy I in in the ratio 2:3 th (c) 42 kg	(d) 80 kg has Copper and Zinc in hen the amount of Zinc in (d) None	A
Q109 Q110	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg 15 litres of mixtur be mixed with it, 5	(b) 44 kg (b) 44 kg s mixed with 20 kg o alloy II has Zinc & ti (b) 52 kg e contains 20% alco % of alcohol in the n	(c) 53 kg of Alloy II. If alloy I of Alloy II. If alloy I in in the ratio 2:3 th (c) 42 kg ohol and the rest wo ew mixture would b	(d) 80 kg has Copper and Zinc in hen the amount of Zinc in (d) None ater. If 3 litres of water e	A B
Q109 Q110	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg 15 litres of mixtur be mixed with it, 5 (a) 15%	(b) 44 kg (b) 44 kg s mixed with 20 kg o alloy II has Zinc & ti (b) 52 kg e contains 20% alco % of alcohol in the n (b) 16 ² / ₃ %	(c) 53 kg of Alloy II. If alloy I of Alloy II. If alloy I in in the ratio 2:3 th (c) 42 kg ohol and the rest wo ew mixture would b (c) 17%	(d) 80 kg has Copper and Zinc in hen the amount of Zinc in (d) None ater. If 3 litres of water e (d) 18 ¹ / ₂ %	A B
Q109 Q110 Q111	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg 15 litres of mixtur be mixed with it, 5 (a) 15% Three containers milk & water. The (5:2) respectively. fourth container.	copper in the ratio (b) 44 kg s mixed with 20 kg of alloy II has Zinc & ti (b) 52 kg e contains 20% alco % of alcohol in the n (b) $16\frac{2}{3}$ % have their volumes i mixtures contain m The contents of al The ratio of milk & v	(c) 53 kg of Alloy II. If alloy I of Alloy II. If alloy I in in the ratio 2:3 th (c) 42 kg ohol and the rest wa ew mixture would b (c) 17% n the ratio 3:4:5. Th ilk and water in the l these three conta water in the fourth	tin in new alloy is (d) 80 kg has Copper and Zinc in ten the amount of Zinc in (d) None ater. If 3 litres of water e (d) $18\frac{1}{2}\%$ rey are full of mixtures of te ratio of (4:1), (3:1) and iners are poured into a container is	A B C
Q109 Q110 Q111	& alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg 15 litres of mixtur be mixed with it, 5 (a) 15% Three containers milk & water. The (5:2) respectively. fourth container. (a) 4:1	copper in the ratio (b) 44 kg s mixed with 20 kg of alloy II has Zinc & ti 	 a 1:4, then amount of (c) 53 kg b f Alloy II. If alloy I c and the ratio 2:3 th (c) 42 kg (c) 42 kg (c) 17% and the rest would b (c) 17% and water in the fourth (c) 157:53 	(d) 80 kg has Copper and Zinc in the amount of Zinc in (d) None (d) None (d) None (d) None (d) 18 ¹ / ₂ % rey are full of mixtures of e ratio of (4:1), (3:1) and iners are poured into a container is (d) 5:2	A B C
Q109 Q110 Q111 Q111	 & alloy B has tin & (a) 36 kg 70 kgs of Alloy I is the ratio 3:4 and a the new alloy is (a) 48 kg 15 litres of mixtur be mixed with it, 5 (a) 15% Three containers milk & water. The (5:2) respectively, fourth container. (a) 4:1 What is the value 	copper in the ratio (b) 44 kg s mixed with 20 kg of alloy II has Zinc & the (b) 52 kg e contains 20% alco % of alcohol in the n (b) $16\frac{2}{3}$ % have their volumes in mixtures contain m The contents of al The ratio of milk & v (b) 151: 48 of $\frac{P+Q}{P-Q}$ if $\frac{P}{Q} = 7$	o 1:4, then amount o (c) 53 kg of Alloy II. If alloy I in in the ratio 2:3 th (c) 42 kg ohol and the rest we ew mixture would b (c) 17% n the ratio 3:4:5. Th ilk and water in the l these three conta vater in the fourth (c) 157:53	tin in new alloy is (d) 80 kg has Copper and Zinc in then the amount of Zinc in (d) None ater. If 3 litres of water e (d) $18\frac{1}{2}\%$ rey are full of mixtures of e ratio of (4:1), (3:1) and iners are poured into a container is (d) 5:2	A B C

Q113	If a: b = 4:1 ther	$\int \frac{a}{b} + \int \frac{b}{a}$ is			B
	(a) 1	(b) 5/2	(c) 4/5	(d) None	
Q114	An alloy is to co melted with 24 k	ontain copper and z	zinc in the ratio 9:4 	4. The zinc required to be	A
	(a) 10.67 kg	(b) 10.33 kg	(c) $9\frac{2}{3}$ kg	(d) 9 kg	
Q115	If 1 cup of milk i the 4 cup mixtur	s added to a 3 cup e is milk?	mixture that is 2/5	flour &3/5 milk, what % of	С
	(α) 80%	(b) 75%	(c) 70%	(d) 65%	
Q116	Gold is 19 times what ratio shoul	as heavy as Water d these be mixed to	and Copper is 9 ti o get an alloy 15 tim	mes as heavy as Water. In les as heavy as water?	D
	(a) 1:1	(b) 2:3	(c) 1:2	(d) 3:2	
Q117	20 litres of a m mixture be replo be	ixture contains mil aced by 4 litres of 1	k & water in the ro milk, ratio of milk to	atio 5:3. If 4 litres of this o water in new mixture will	B
	(a) 2:1	(b) 7:3	(c) 8:3	(d) 4:3	
Q118	If one type of ri 15.54. the mixtur which proportio	ce of cost Rs. 13.84 ?e is sold at Rs. 17.6 n the two types of r	is mixed with anoth with a profit of 14. vice mixed?	ner type of rice of cost Rs. .6% on selling price then in	A
	(a) 3: 7	(b) 5: 7	(c) 7: 9	(d) None	
Q119	What must be a proportional?	added to each of t	he numbers 6, 15,	20 and 43 to make them	С
	(α) 5	(b) 4	(c) 3	(d) 2	
Q120	A fraction bears	s the same ratio to	$\frac{1}{27}$ as $\frac{3}{7}$ does to $\frac{5}{9}$.	The fraction is	B
	(a) $\frac{7}{45}$	(b) $\frac{1}{35}$	$(c)\frac{45}{7}$	(d) $\frac{5}{21}$	
Q121	If a: b = c: d the	en			С
	(a) ab = cd	(b) ac = bd	(c) ad = bc	(d) ab = ad	
Q122	If $\frac{1}{r}:\frac{1}{6}=\frac{25}{6}:\frac{1}{r}$ the	en x =			В
	(α) 5:6	(b) 6:5	(c) 5:1	(d) 1:5	
Q123	Find the value o	f x if 10/3: x :: 5/2: {	5/4.		Α
	(α) 5/3	(b) 3/5	(c) 2/5	(d) 1/5	
Q124	If a: b = 3:4, the	value of (2a + 3b):	(3a + 4b) is		Α
	(α) 18:25	(b) 8:25	(c) 17:24	(d) None	
Q125	If a: b=1:2, then	a+b: a-b =	() -	() / -	A
	(a) -3	(b) 1/2	(c) 2	(d) -1/3	
Q126	If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$ the	hen $\frac{pu+qc+re}{pb+qd+rf} = $	·		A

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(a) k	(b) (p + q + r) k	(c) $\frac{1}{k}$	(d) None	
Q127	If A = $\frac{B}{2}$ = $\frac{C}{5}$ then A:	B: C is			D
	(α) 3:5:2	(b) 2:5:3	(c) 2:3:5	(d) 1:2:5	
Q128	If p: q = 2: 3 & x: y	= 4: 5, then 5px + 3c	qy: 10px + 4qy is		С
	(a) 71:82	(b) 27:28	(c) 17:28	(d) None	
Q129	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$ then $\frac{a+b}{6}$	<u>, p+c</u> is equal to	·		B
	(a) 7	(b) 2	(c) 1/3	(d) 1/5	
Q130	If $\frac{a}{2} = \frac{b}{5} = \frac{c}{6}$, Then $\frac{a+b}{6}$	$\frac{-b+c}{-b-c} = $			A
	(α) 13	(b) $\frac{13}{19}$	(c) $\frac{13}{3}$	(d) None	
Q131	If x: y = 3: 4, the vo	alue of $x^2y + xy^2 = x^3 + y^2$	y³ is		B
	(α) 13:12	(b) 12:13	(c) 21:31	(d) None	
Q132	If (a + b): (b + c): (a	c + a) = 6: 7: 8 and (a	a + b + c) = 14, then (c =	С
	(α) 8	(b) 7	(c) 6	(d) None	
Q133	If $24(3x^2 - y^2) = 37x$	y, then x: y is			Α
	$(\alpha) \frac{8}{9} \& \frac{-3}{8}$	(b) $\frac{3}{5}$ & $\frac{3}{7}$	(c) $\frac{3}{7} \& \frac{-2}{5}$	(d) $\frac{2}{5} \& \frac{-3}{5}$	
Q134	Electricity Bill of a number of units of consumed & bill is 1 2,040. In yet anoth (a) Rs. 1,560	certain establishm electricity consume Rs. 1,800. In another her month 500 units (b) Rs. 1,680	ent is partly fixed & ed. When in a certai month, 620 units ar are consumed. Find (c) Rs. 1,840	a partly variable as the in month, 540 units are e consumed & bill is Rs. the bill for that month. (d) Rs. 1,950	B
Q135	24 carat gold is pu gold, ratio of pure (a) 5:8	ure gold; 18 carat g gold in 18 carat gol (b) 9:10	old is (3/4) gold and d to the pure gold ir (c) 15:24	d 20 carat gold is (5/6) n 20 carat gold is (d) 8:5	B
Q136	85 kg of a mixture o is to be added to g (a) 5 kg	contains milk and wa get a new mixture co (b) 6.5 kg	ter in the ratio 27:7 ontaining milk and w (c) 7.25 kg	. How much more water ater in the ratio 3:1? (d) 8 kg	A

1C. INDICES

INTRODUCTION

• **Continued Product:** When two or more numbers are multiplied, it is called continued Product. Each number is called a 'factor'.

Ex: $a \times b \times c \times d$. [Here a, b, c, d are factors]

• If the factor gets repeated in a continued product, it is called a 'power'

Ex: $2 \times 2 \times 2 = 2^3$.

 'Factor' which multiplies is called the "base" & number of times it is multiplied is called the "power" or the "index".
 [Thus 'base' is '2' & 'power' is '3'].

LAWS OF INDICES	
1. $\alpha^m \times \alpha^n = \alpha^{m+n}$	Ex: $3^2 \times 3^1 = 3^{2+1} = 3^3$
2. $\alpha^m \div \alpha^n = \alpha^{m-n}$	Ex: $3^2/3^1 = 3^{2-1} = 3^1$
3. $(\alpha^m)^n = \alpha^{mn}$	Ex: $(3^2)^2 = 3^{2 \times 2} = 3^4$
4. $(ab)^m = a^m \cdot b^m$	Ex: $(3.2)^2 = 3^2.2^2$
5. $(\alpha/b)^m = \alpha^m/b^m$	Ex: $(4/2)^2 = 4^2/2^2$
6. $\alpha^{-m} = \frac{1}{a^m} \& \frac{1}{a^{-m}} = \alpha^m$	Ex: $x^{-1/4} = 1/x^{1/4}$
7. $x^{\alpha} = x^{b}$, then $\alpha = b$	Ex: $3^{x} = 9$; $3^{x} = 3^{2}$; $x = 2$
8. $x^{\alpha} = y^{\alpha}$, then $x = y$	Ex: $\alpha^3 = 27$; $\alpha^3 = 3^3$; $\alpha = 3$
9. α° = 1	Ex: 5° = 1

SOME IMPORTANT RESULTS

- **1)** $a^{1/n} = \sqrt[n]{a}$
- 2) $\alpha^{m/n} = (\alpha^m)^{1/n} = \sqrt[n]{a^m}$

3)
$$\sqrt{a\sqrt{a\sqrt{a\sqrt{a...\infty}}}} = a$$

4)
$$\sqrt{a\sqrt{a\sqrt{a\sqrt{a\dots n times}}}} = a \frac{(2^n - 1)}{2^n}$$

CQ1. Find the value of p from $(\sqrt{4})^{-6} \times (\sqrt{2})^{-4} = 2^{p}$ (b) 8 (a) 16 (c) -8 (d) 4 **CQ2.** If $5^{(x+3)} = (25)^{(3x-4)}$, then the value of x is _____. (b) $\frac{11}{5}$ (a) $\frac{5}{11}$ (d) $\frac{13}{5}$ (c) $\frac{11}{3}$ **CQ3.** $\left(\frac{x^a}{x^b}\right)^{\left(a^2+ab+b^2\right)} \times \left(\frac{x^b}{x^c}\right)^{\left(b^2+bc+c^2\right)} \times \left(\frac{x^c}{x^a}\right)^{\left(c^2+ca+a^2\right)}$ (a) 1 (b) 0 (d) None of these (c) -1 **CQ4.** The value of $\left(\frac{x^a}{x^b}\right)^{a+b}$ \times $\left(\frac{x^b}{x^c}\right)^{b+c}$ \times $\left(\frac{x^c}{x^a}\right)^{c+a}$ (b) 0 (a) 1 (c) 2 (d) None of these

BASIC FORMULAE

$(a + b)^2 = a^2 + 2ab + b^2$	$a^{3} - b^{3} = (a - b) (a^{2} - ab + b^{2})$
$(a - b)^2 = a^2 - 2ab + b^2$	$(a + b)^3 = a^3 + 3ab (a + b) + b^3$
$a^{2} - b^{2} = (a + b) (a - b)$	$(a - b)^3 = a^3 - 3ab (a - b) - b^3$
$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$	$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

USEFUL RESULTS

- **1)** If (a + b + c) = 0, then $a^3 + b^3 + c^3 = 3abc$
- 2) If $a^{1/3} + b^{1/3} + c^{1/3} = 0$, then $(a + b + c)^3 = 27abc$
- **3)** If $a^{x} = k$, then $a = k^{1/x}$
- 4) If $a^x = b^y$, then $a = b^{y/x}$
- **5)** If $a^x = b^x$, then $x = y (a \neq 1)$
- **6)** If $a^x = b^x$, then $a = b (x \neq 0, a, b > 0)$
- 7) If $a^{x}b^{y} = a^{m}b^{n}$, then $x = m \& y = n (a \neq b)$
- 8) If $x = \alpha^{1/3} \alpha^{1/3}$, then $(x^3 + 3x) = (\alpha \alpha^{-1})$
- **9)** If $x = \alpha^{1/3} + \alpha^{1/3}$, then $(x^3 + 3x) = (\alpha + \alpha^{-1})$

Space for PC Class Note:

INDICES - QUESTION BANK

SN		CHAPTE	R 1C. INDICES		Ans
Q137	4x ^{-1/4} is expressed	d as			С
	(a) -4x ^{1/4}	(b) x ⁻¹	(c) 4/x ^{1/4}	(d) None	
Q138	The value of 2 × (32) ^{1/5} is			C
	(α) 2	(b) 10	(c) 4	(d) None	
Q139	The value of 2 × (256) ^{-1/8} is			Α
	(a) 1	(b) 2	(c) 1/2	(d) None	
Q140	$2^{1/2} \times 4^{3/4} = $				B
	(a) A fraction	(b) An Integer	(c) 1	(d) None	
Q141	Simplify $\left(8a^{\frac{3}{2}} \div 27\right)$	$\left(x^{\frac{1}{2}}\right)^{\frac{2}{3}}$			B
	(a) $\frac{4a}{9x}$	(b) $\frac{4a}{9x^{1/3}}$	(c) 4a	(d) 1/3	
Q142	The Value of $\frac{1}{2} \times (2$	216) ^{1/3} is			В
	(α) 2	(b) 3	(c) 2%	(d) None	
Q143	(64/512) ^{1/3} =				Α
	(a) 1/2	(b) 1/4	(c)1/6	(d) None	
Q144	If $2^x = \sqrt[3]{32}$ then x	. =			D
	(α) 5	(b) 3	(c) $\frac{3}{5}$	(d) $\frac{5}{3}$	
Q145	The value of $\frac{1}{(216)^2}$	$\frac{1}{\frac{2}{3}} + \frac{1}{(256)^{\frac{3}{4}}} + \frac{1}{(32)^{\frac{1}{5}}}$ is	·		A
	(a) 102	(b) 105	(c) 107	(d) 109	
Q146	The value of $\sqrt[3]{x^{12}}$	$\frac{1}{2} \times \sqrt[3]{x^6}$ is .			B
	(a) x ⁷	(b) x ⁶	(c) 1	(d) None	
Q147	The value of [(10)	¹⁵⁰ ÷ (10) ¹⁴⁶] is			B
	(α) 1000	(b) 10000	(c) 100000	(d) 10 ⁶	
Q148	The expression $\left(\frac{1}{2}\right)$	$\frac{1}{216}\right)^{-\frac{2}{3}} \div \left(\frac{1}{27}\right)^{-4/3}$ in the	simplified form is	·	С
	$(\alpha)\frac{3}{4}$	(b) $\frac{2}{3}$	$(c)\frac{4}{9}$	(d) $\frac{1}{8}$	
Q149	The value of $5^{1/4}$ >	< (125) ^{0.25} is			B
	(α) √5	(b) 5	(c) ³ √5	(d) 25	
Q150	$(P^{3}Q^{4}Z^{6}/P^{4}R^{100})^{0} =$	·			С
	(α) Ο	(b) 2/3	(c) 1	(d) None	
Q151	Which one is true	?			Α

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

VouTube 🛛 Telegram

	(a) $x^{2/3} = \sqrt[3]{x^2}$	(b) $x^{2/3} = \sqrt{x^3}$	(c) $x^{2/3} > \sqrt[x]{\sqrt{x^2}}$	(d) $x^{2/3} < \sqrt[x]{x^2}$	
Q152	If $10^{x}/10^{y} = 100$, t	hen x =			Α
	(a) y+2	(b) y-2	(c) 2-y	(d) 2y	
Q153	$\sqrt{a^{3/4}b^{2/3}c^4}$ ÷ $\sqrt[3]{a^6b^4}$	$^{-3}c^{6}$			A
	(α) α ^{-13/8} b ^{4/3}	(b) a ^{-1/8} b ^{1/3}	(c) a⁻³b³	(d) 1	
Q154	Find the value of	$(2^{7+2\alpha})/(3^{3\alpha+11})$ for a	= -4.		В
	(α) 2/3	(b) 3/2	(c) 1	(d) -2/3	
Q155	The value of $\left(\frac{x^4}{y^{-8}}\right)$	^{1/4} when x = 2, y = 3	3 is		В
	$(\alpha)\frac{2}{9}$	(b) 18	(c) 2√3	(d) None	
Q156	If 16 x $8^{n+2} = 2^m$, t	hen m =			D
	(a) n + 8	(b) 2n + 10	(c) 3n + 2	(d) 3n + 10	
Q157	If $3^{x} - 3^{x-1} = 162$ th	nen the value of x is	•		Α
	(α) 5	(b) 4	(c) 6	(d) None	
Q158	If $\frac{9^n \times 3^5 \times 27^3}{3 \times (81)^4} = 27$ th	nen n equals to			С
	(α) Ο	(b) 2	(c) 3	(d) 4	
Q159	The value of $(8/2)$	7) ^{-1/3} x (32/243) ^{-1/5} is	·		A
	(a) 9/4	(b) 4/9	(c) 2/3	(d) None	
Q160	$\mathbf{x}_{\alpha-p} \times \mathbf{x}_{p-c} \times \mathbf{x}_{c-\alpha} = -$	·			B
	(a) x	(b) 1	(c) 0	(d) None	
Q161	If the index of an	y power function is	zero, then the valu	ue of that function is	B
			(C) -1	(d) ∞	
Q162	$11^{\circ} 49 \times 49 $	49 = 7", then n equa	IS	(d) 16	C
0163	$T_{\rm L} = \frac{1}{2} \sqrt{-3} \sqrt{-4} = \frac{2}{2} \sqrt{-1} \sqrt{4} \sqrt{3}$		(0) 0		D
GIOO	(a) 2xy	(b) $\frac{xy}{x}$	(c) $2^{\frac{x}{2}}$	(d) None	D
.	(x) = (x+2) $z = (2x-4)$	2 · · · · · · · · · · · · · · · · · · ·	(0) ² y		
Q164	$1f^{5(x+3)} = 25^{(3x-4)}$, then the value of $\frac{1}{2}$	x is	(h 13	B
	$(\alpha) \frac{1}{11}$	(b) $\frac{1}{5}$	(C) ${3}$	(d) $\frac{1}{5}$	
Q165	If $\frac{(243)^{\frac{n}{5}} \times 3^{2n+1}}{9^n \times 3^{n-1}} = X;$	then x equals to			С
	(a) 1	(b) 3	(c) 9	(d) 3 ⁿ	
Q166	If $\frac{3}{4} = \frac{6}{x} = \frac{9}{y}$, then x	x + y =			D
	(α) 4	(b) 8	(c) 12	(d) 20	
Q167	If 4(2 ⁿ) = 256; n =	·			С

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

	(a) 4	(b) 5	(c) 6	(d) None	
Q168	If $2^x - 2^{x-1} = 4$,	then the value of x ^x =	·		B
	(a) 26	(b) 27	(c) 28	(d) 29	
Q169	Solve for x if	$\sqrt{x}^{\sqrt{x}} = 256$			B
	(a) 2	(b) 16	(c) 4	(d) $\sqrt{2}$	
Q170	$3^{3x-4}.2^{x+5} = 3^5.2$	⁸ . Find the value of x.			В
	(a) 1	(b) 3	(c) 1/3	(d) 0	
Q171	Solve for 'z' if	$z^{-1} = 3^{-1} - 4^{-1}$			D
	(α) 5 ⁻¹	(b) 1	(c) 1 / 12	(d) 12	
Q172	On simplificat	$\frac{2^{x+3} \times 3^{2x-y} \times 5^{x+y+3} \times 6^{2x+3}}{6^{x+1} \times 10^{y+3} \times 15^{x}}$	$\frac{y+1}{2} = $		С
	(a) -1	(b) 0	(c) 1	(d) 10	
Q173	What minimun	n integer value of x, e	expression (3 ^x / 243)	will be greater than 1?	D
	(α) 3	(b) 4	(c) 5	(d) 6	
Q174	Solve for "x" i	$f \frac{25^{x+2}}{\sqrt{2}} = \left(\frac{1}{2}\right)^{x-7.5}$			A
	(a) 4/3	(b) - 4/3	(c) 3/4	(d) -3/4	
Q175	Solve for 'b' if	$r^{2b+4} = 3^{3b} \times 4^{b+8}$			С
	(a) -1	(b) 2	(c) 4	(d) -2	
Q176	Solve for x if	$x^{a^3} \cdot x^{b^3} \cdot x^{3ab(a+b)} = (2^5)^{10}$	$(b)^{25}$ and a + b = 5.		Α
	(a) 2	(b) 3	(c) 1	(d) 0	
Q177	If $\frac{9^{y} \cdot 3^{2} (3^{-y})^{-1} - 2}{3^{3^{x}} \cdot 3^{3}}$	^{7y} = 1/27 then x - y =	·		B
	(a) -1	(b) 1	(c) 0	(d) None	
Q178	2 ^{m+1} .3 ^{2m-n} .5 ^{m+n} .6	5 ⁿ =			B
	$6^{m} \cdot 10^{n+2} \cdot 15^{m}$		$(z)^1$		
	$(\alpha) \frac{1}{45}$	(D) $\frac{1}{50}$	(C)-9	(a) None	
Q179	$\left((x^m)^{1-\frac{1}{m}}\right)^{\frac{1}{m-1}}$	=			A
	(a) x	(b) 1	(c) 0	(d) None	
Q180	If 3ª = 729 and	d 2 ^b = 1024, then find	the value of $\frac{4a+6b}{(b-2)}$		С
	(a) 1	(b) 0	(c) 2	(d) 3	
Q181	Simplification	of $\frac{2^{n+3}-10 \times 2^{n+1}}{2^{n+1}}$ gives			A
	(α) -1	(b) 1	(c) 0	(d) None	
Q182	The expression	$\frac{3^{2n+1}+3^{2n-1}}{2n-1}$ simplifie	s to		A
		$3^{2n+3}-3^{2n+2}$ simplifie		(d) Non-	
	$(\alpha) \frac{1}{27}$	((()	(C) ŏ°′′	(a) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Telegram

Whatsapp: 8888111134

Q183	If $a^x = b$; $b^y = c$; c^z	= a then xyz is	·		A
	(α) 1	(b) 2	(c) 3	(d) None	
Q184	The value of $\frac{(6^4)^2(8}{(6^2)^3}$	$\frac{5^{2}(2^{2})^{3}(3^{2})^{2}}{3^{3}(8^{3})^{4}(3^{3})^{2}}$ is	_·		B
	(a) 1/4	(b) 4	(c) 2	(d) None	
Q185	If $9^{2x} = \frac{27}{3^{x+2}}$, then the	ne value of x is	·		В
	$(\alpha)\frac{1}{2}$	(b) $\frac{1}{5}$	(c) 0	(d) None	
Q186	If x, y, z are all po	ositive, find the value	e of xyz if $z^x = x$, $z^{y=}$	$y_{s} y^{y} = x$	B
	(α) 4	(b) 8√2	(c) 1	(d) 2	
Q187	If $a^m a^n = a^{mn}$, then	m(n - 2) + n(m - 2) is	3		С
	(α) 1	(b) -1	(c) 0	(d) None	
Q188	$[1 - {1 - (1 - x^2)^{-1}}]$	$\left\{-1\right\}^{-1} = $			Α
	(a) x	(b) 1/x	(c) 1	(d) None	
Q189	If $\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{y}{a}$	$\frac{z}{(b-c)}$ then (b-c) x + (b-c)	c-a) y + (a-b) z is	·	В
	(a) 1	(b) 0	(c) 5	(d) None	
Q190	If x + y = a and xy	= b then the value c	of 1/x ³ + 1/y ³ is		Α
	(a) (a ³ - 3ab) / b ³	(b) (a ³ - 3a) / b ³	(c) (a³ - 3) / b	(d) (a^3 - 3) / b^2	
Q191	If $x^{1/p} = y^{1/q} = z^{1/r} a$	nd xyz = 1, then the	value of p+q+r is	·	В
	(a) 1	(b) 0	(c) 1/2	(d) None	
Q192	If $a^p = b^q = c^r$ and	b² = ac the value of	q(p+r)/pr given by		С
	(a) 1	(b) -1	(c) 2	(d) None	
Q193	If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{x}$	$\frac{1}{y} + \frac{1}{z} = $			B
	(a) 1	(b) 0	(c) 2	(d) None	
Q194	If (5.678) [×] = (0.567	$(8)^{y} = 10^{z}$ then			В
	(a) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$	(b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$	$(c)\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$	(d) None	
Q195	If $2^{a} = 3^{b} = (12)^{c}$ the	$en \frac{1}{c} - \frac{1}{b} - \frac{2}{a} = $	·		В
	(a) 1	(b) 0	(c) 2	(d) None	
Q196	If $2^{\alpha} = 4^{b} = 8^{\circ}$ and	abc = 288 then the	value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is	s given by	С
	$(\alpha)\frac{1}{8}$	(b) $-\frac{1}{8}$	(c) $\frac{11}{96}$	(d) - $\frac{11}{96}$	
Q197	If $a^p = b^q = c^r = d^s$ ar	nd ab = cd then the	value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s}$	=	С
	(a) $\frac{1}{a}$	(b) $\frac{1}{b}$	(c) 0	(d) 1	
Q198	If $3^{a} = 5^{b} = (75)^{c}$; the second s	hen ab – c (2a + b) :	=		В
	(α) 1	(b) 0	(c) 3	(d) 5	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

P22

ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CMA FOUNDATION

Q199	Using $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$ tick the correct of these when $x = p^{1/3} - p^{-1/3}$ (a) $x^3 + 3x = p + 1/p$ (b) $x^3 + 3x = p - 1/p$ (c) $x^3 + 3x = p + 1$ (d) None				
Q200	If $x = 3^{1/3} + 3^{-1/3}$, then $3x^3 - 9x$ is			B	
	(a) 15 (b) 10	(c) 12	(d) None		
Q201	If $x = 5^{1/3} + 5^{-1/3}$ then the value of	f 5x ³ + 15x is		B	
	(a) 25 (b) 24	(c) 27	(d) 28		
Q202	On simplification $\left[\frac{xa-b}{xa-b}\\ \frac{a}{xa+b} \div \frac{xb-a}{xb-a}\\ \frac{b}{xb+a}\right]^{a+b} =$	·		D	
	(a) 1 (b) -1	(c) 0	(d) None		
Q203	If $a^{b} = b^{a}$ then the value of $\left(\frac{a}{b}\right)^{\frac{a}{b}}$.	$-a^{\frac{a}{b}-1} = $ [Hint: Put a = 4 & b = 2]	С	
	(a) a (b) b	(c) 0	(d) None		
Q204	If x = $\sqrt{2 - \sqrt{2 - \sqrt{2}}} \dots \infty$; X =			B	
	(a) -2 (b) 1	(c) 2	(d) 0		
Q205	If $p + q + r = 0$, $x^{p^2q^{-1}r^{-1}}x^{p^{-1}q^2r^{-1}}x^{q^2}$	$p^{-1}q^{-1}r^2 = $ [Hint: a +	b+ c = 0; $a^{3}+b^{3}+c^{3} = 3abc$]	С	
0206		1		P	
Q200	$\frac{1}{1+x^{(b-a)}+x^{(c-a)}} + \frac{1}{1+x^{(a-b)}+x^{(c-b)}} + \frac{1}{1+x^{(c-b)}+x^{(c-b)}} + \frac{1}$	$\frac{\chi(b-c) + \chi(a-c)}{\chi(c)} = $	(d) None	2	
0203	$(u) x^{1}$ $(b) 1$			^	
Q207	$\left(X^{\frac{b+c}{c-a}}\right)^{a-b} \times \left(X^{\frac{c+a}{a-b}}\right)^{\overline{b-c}} \times \left(X^{\frac{a+b}{b-c}}\right)^{c-a} = -$			^	
	(a) 1 (b) 3	(c) -1	(d) 0		
Q208	Product of $x^{2^{n-1}} + y^{2^{n-1}}$ and x^{2^n}	$^{-1} - y^{2^{n-1}} = $ [Hint: U	se $(a - b) (a + b) = a^2 - b^2$]	Α	
	(a) $x^{2^n} - y^{2^n}$ (b) $x^2 - y^2$	(c) x ^a - y ^b	(d) None		
Q209	If $a^m = b^h x a^n = b^k x a^p$, find the	relationship of 'a' amoi	ng h, k, m, n and p only.	B	
	[Hint: Put a =4, b=2, m=5, n=2, k=	:4, h=6, p= 3]	,		
	(a) $m = \sqrt[n]{hnpk}$	(b) $h(m-p) = k(1)$	m-n)		
	(c) m = $\frac{1}{kp}$	(a) m(n-k) = p(n-k)	n-p)		
Q210	$\left(\frac{x^b}{x^c}\right)^{b+c-a} \times \left(\frac{x^c}{x^a}\right)^{c+a-b} \times \left(\frac{x^a}{x^b}\right)^{a+b-c} =$	·		A	
	(a) 1 (b) 0	(c) -1	(d) None		
Q211	$\left(\frac{x^a}{x^{-b}}\right)^{\left(a^2-ab+b^2\right)} \times \left(\frac{x^b}{x^{-c}}\right)^{\left(b^2-bc+c^2\right)} \times \left(\frac{x^b}{x^{-c}}\right)^{\left(b^2-bc+c$	$\left(\frac{x^c}{x^{-a}}\right)^{(c^2-ca+a^2)}$ equals to	·	С	
	(a) 1 (b) $x^{-2(a^2+b^2)}$	$(c) x^{2(a^3+b^3+c^3)}$	(d) $x^{-2(a^3+b^3+c^3)}$		
Q212	If $x^{b}y = 2x - 3y^{2}$, then find $(1/2)^{b}$	$X \frac{1}{\sqrt{3}}$ [Hint: Put x=2 & y =1]	С	
	(a) 1 (b) 2	(c) 0	(d) -1		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telegram
 Whatsapp: 8888111134

Q213	$(a+b) \sqrt{\frac{xa^2}{b^2}} \times (b+c) \sqrt{\frac{x}{b^2}}$	$\frac{b^2}{c^2} \times \int \frac{x^{c^2}}{a^2} =$	·		Α
	(α) 1	(b) 0	(c) -1	(d) None	
Q214	$\left(\frac{x^b}{c}\right)^{1/bc} \times \left(\frac{x^c}{c}\right)^1$	$\frac{1}{2} \times \left(\frac{x^a}{b}\right)^{1/ab}$ equals	s to		С
	(a) -1	(b) 0	(c) 1	(d) None	
Q215	The value of $\frac{(x)}{x}$	$\frac{(x^{a+b})^2 \cdot (x^{b+c})^2 \cdot (x^{c+a})^2}{(x^a x^b x^c)^4}$ is	·		В
	(a) -1	(b) 1	(c) 0	(d) x	
Q216	If x = 5 + 2√6,	then $\frac{(x-1)}{\sqrt{x}}$ is equal t	.0		B
	(a) √2	(b) 2√2	(c) √3	(d) 2√3	
Q217	$\{(x+y)^{2/3}(x-y)\}$	$\sqrt{x^{3/2}}/\sqrt{x+y} \times \sqrt{(x-x)^{3/2}}$	y) ³ } ⁶ equαls		D
	(a) 1	(b) (x+y) ²	(c) (x-y)	(d) (x+y)	
Q218	If $a = xy^{m-1}$; $b =$	xy^{n-1} ; c = xy^{p-1} , then	η α ^{n-p} × b ^{p-m} × c ^{m-n} =	·	Α
	(a) 1	(b) -1	(c) 0	(d) None	
Q219	$1/(1 + a^{m-n} + a)$	$^{m-p}) + 1/(1 + a^{n-m})$	$(+ a^{n-p}) + 1/(1 + a^{p-m} + a^{p})$	^{p-n}) is equal to	С
	(a) 0	(b) a	(c) 1	(d) 1/a	
Q220	The value of $(\frac{x}{x})$	$\left(\frac{a}{b}\right)^{a+b} \times \left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times \left(\frac{x^{c}}{x^{a}}\right)^{b+c}$) ^{c+a} =		A
	(a) 1	(b)0	(c) 2	(d) None	
Q221	$\left(\frac{x^a}{x^b}\right)^{(a^2+ab+b^2)_{\times}}\left(\frac{x}{x}\right)^{(a^2+ab+b^2)_{\times}}$	$\left(\frac{b}{c}\right)(b^2+bc+c^2)_{\times}\left(\frac{x^c}{x^a}\right)(c^2+c)$	a+a ²) =		Α
	(a) 1	(b) 0	(c) -1	(d) None	
Q222	If $\alpha = x^{q+p}$. y^{b} , b	$\mathbf{b} = \mathbf{X}_{h+p} \cdot \mathbf{A}_{d}^{h} \mathbf{C} = \mathbf{X}_{h+d} \cdot \mathbf{A}_{h}$, then $a^{q-p} \times b^{p-q} \times c^{b-q} = -$	·	B
	(α) Ο	(b) 1	(c) -1	(d) 2	
Q223	If $xy^{p-1} = a, zy^{q-1}$	$a^{-1} = b$, and $xy^{p-1} = c^{-1}$	then $a^{q-r} b^{r-p} c^{p-q} = $	·	Α
	(a) 1	(b) 0	(c) p+q+r-1	(d) None	
Q224	$\left[\frac{x^{ab}}{x^{a^2+b^2}}\right]^{a+b} \times \left[\frac{x}{x^{b}}\right]^{a+b}$	$\left[\frac{x^{bc}}{x^{c+c^2}}\right]^{b+c} \times \left[\frac{x^{ca}}{x^{c^2+a^2}}\right]^{c+a}$	=		С
	$(\alpha) x^{-2a^3}$	(b) x^{2a^3}	(c) $x^{-2(a^3+b^3+c^3)}$	(d) $x^{2(a^3+b^3+c^3)}$	
Q225	If abc=1, $\left(\frac{1}{1+a+1}\right)$	$\frac{1}{b^{-1}} + \frac{1}{1+b+c^{-1}} + \frac{1}{1+c+a}$			В
	(α) Ο	(b) 1	(c) $\frac{1}{ab}$	(d) ab	
Q226	If abc = 2 then	the value of $\frac{1}{1+a+2}$	$\frac{1}{2b^{-1}} + \frac{1}{1 + \frac{b}{2} + c^{-1}} + \frac{1}{1 + a^{-1} + c} = -$	·	Α
	(a)1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$	
Q227	If $xy^{p-1} = \alpha$, xy^{q-1}	$^{1} = b$, and $xy^{r-1} = c$;	then $a^{q-r}b^{r-p}c^{p-q} =$		Α
	(a) 1	(b) 0	(c) p+q+r-1	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

1D. LOGARITHMS

TRANSFORMATION FORMULA

• If $a^x = b$

[Exponential Form]

 $rightarrow then \log_a b = x$

[Logarithmic Form]

PC Note: These are not two different formulae. They are just transformation of each other & should be used to change one form into other form. Following are some examples for better understanding.

CQ	Exponential Form	Logarithmic Form	Read as
1	2 ⁴ = 16	$Log_2 16 = 4$	Log of 16 to the base 2 = 4
2	10 ³ = 1000	Log ₁₀ 1000 = 3	Log of 1000 to the base 10 = 3
3	$3^{-4} = \frac{1}{81}$	$ Log_3 \frac{1}{81} = -4 $	Log of $\frac{1}{81}$ to the base 3 = -4
4	$100^{1/2} = 10$	$Log_{100}10 = 1/2$	Log of 10 to the base 100 is $\frac{1}{2}$

Mentos Zindagi:

- Log apne side me positive logo ko hi rakhte hai [a & b should be +ve].
- Log 'x' ko apne se dur rakhte hai [Therefore 'x' should be on other side of Log]
- If NO BASE is given in the question, it is always taken as 10 [In this chapter]

Some Conditions w.r.t. a, b & x

- ☞ a & b > 0; a ≠ 1
- $rac{}{}$ Base of Log > 1 [If Base = 1, then Value of b will always be 1 (1^x).]
- \bigcirc Number (b) > 0 [Log 0 → Does not Exist.]

FUNDAMENTAL LAWS OF LOGARITHMS1.Log 10 = 1 [Because since base is not given, it is taken as 10]2.Log 1 = 0 [Log of 1 to any Base = 0; (Since $a^0 = 1$, $log_a 1 = 0$)]3.Log M + Log N = Log (M × N) [PC Note: Log M + Log N ≠ Log (M + N)]CQ5: Log 6 + Log 5 = Log 30CQ6: Log X + Log X² = Log X.X² = Log X³4.Log M - Log N = Log (M/N) [PC Note: Log (M - N) ≠ Log M - Log N]

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Lectures & Books,

 Follow on Youtube & Telgram @magan
 Whatsapp: 8888111134
 To Buy Video Lectures & Books,

 VouTube
 Telegram
 @magan
 Whatsapp: 8888111134
 www.pranavchandak.com

	CQ7: Log 32/4 = Log 32 - Log 4
5.	Log (M^N) = N. Log M [PC Note: (LogM) ^N \neq N. Log M]
	CQ8: Log 25 = Log 5 ² = 2. Log 5
6.	$\log_{N}{}^{b} M^{\alpha} = (\alpha \times \frac{1}{b}) \times \log_{N} M$
	 i. Jo Number ka Log nikalna hai uska power "jaisa ka waise" bahar aayega. ii. Base ka power "reciprocal" me bahar aayega.
7.	Log _M M = 1 [Log of any number to same base = 1 (Since $a^1 = a$, $log_a a = 1$)]
8.	Log 1 = 0 [Log of 1 to any Base = 0; (Since $a^0 = 1$, $\log_a 1 = 0$)]
9.	$Log_N M = \frac{Log M}{Log N} $ [Base Changing Rule.]
	CQ9: $\text{Log}_4 \ 8 = \frac{Log_2 \ 8}{Log_2 \ 4} = \frac{3 \ Log_2 \ 2}{2 \ Log_2 \ 2} = \frac{3}{2}$
10.	$Log_{G} A = Log_{B} A \times Log_{G} B$
	LHS \rightarrow Log _c A = $\frac{Log A}{Log C}$
	RHS $\rightarrow \text{Log}_{B} \text{A} \times \text{Log}_{C} \text{B} = \frac{\text{Log } A}{\text{Log } B} \times \frac{\text{Log } B}{\text{Log } C} = \frac{\text{Log } A}{\text{Log } C}$
11.	$Log_{N} M = \frac{1}{Log_{M} N}$
	CQ10: $\text{Log}_5 \ 10 = \frac{1}{\text{Log}_{10}5} = \frac{1}{\text{Log}_{10}\frac{10}{2}} = \frac{1}{\text{Log}_{10}\ 10 - \text{Log}_{10}\ 2} = \frac{1}{1 - 0.3010} = \frac{1}{0.6990} = 1.43$
12.	$a^{\log_a x} = x$ $a^{\log_a x} = x^{\log_a a} = x^1 = x$ [Inverse logarithm Property]
13.	Log 10 = 1 [Because if Nothing is given, base is taken as 10.]

POINTS TO BE NOTED

- If NO BASE is given in the question, it is always taken as 10 in numerical calculations.
- The Domain of Logarithmic function is $(0, \infty)$ i.e $0 < x < \infty$.

LOGARITHMS - QUESTION BANK

SN	CHAPTER 1D. LOGARITHMS					
Q228	Log 0.0001 to	the base 0.1 =	·		В	
	(a) -4	(b) 4	(c) ¼	(d) None		
Q229	Log _{\sqrt2} 64 =				Α	
	(a) 12	(b) 6	(c) 1	(d) None		
Q230	Log (1/81) to t	he base 9 =	·		C	
	(a) 2	(b) 1/2	(c) -2	(d) None		
Q231	Log (1/81) to tl	he base 3 =			С	
	(a) 4	(b) 1/4	(c) -4	(d) None		
Q232	$\log_{3\sqrt{2}} 324 = $	·			С	
	(a) 2	(b) 3	(c) 4	(d) 1		
Q233	Value of (Log ₈ 1	28) x Log ₆ 1/216 is	·		Α	
	(a) -7	(b) 7	(c) 1/7	(d) -2/7		
Q234	Value of (Log _{1/a}	₈₁ 729) x Log ₂ 256 =	·		B	
	(a) 12	(b) -12	(c) 1/12	(d) -1/12		
Q235	Find the base	if Logarithm of 32 is	s 10/3.		С	
	(a) 5/3	(b) 20/9	(c) 	(d) 4		
Q236	If 2Log x = 4Lo	og3, then x =			B	
	(a) 3	(b) 9	(c) 81	(d) 27		
Q237	$\frac{3 + \log_{10} 343}{2 + 1 \log^{(49)} + 1 \log^{(49)}}$	$\frac{1}{(1)} = $			Α	
	$2 + \frac{1}{2} \log(\frac{1}{4}) + \frac{1}{3} \log(\frac{1}{4})$	(h) 3/2	(c)	(d) 1		
0238	Value of Log 2	(0) 072	(0) 2	$(0)^{-1}$	C	
Q200	(a) 1	(b) 2	(c) 1.5482	(d) None	·	
Q239	$\left(\alpha \right)^{2}$	(z) = (z)			R	
Q200	(a) 2	(b) Log 2	(c) Log x	(d) $\log \sqrt{x}$	-	
Q240	$100(\sqrt[3]{2^2} \times \sqrt[2]{h^3})$) =	(0) 209 /	(1) 9 1.	С	
	$(a)^{\frac{3}{2}} \log a + \frac{2}{2}$)	(b) 61 og ab			
	$(a) \frac{1}{2} \log a + \frac{1}{3} \log b$		(d) Nana			
	$(C) - LOG \alpha + - 1$					
Q241	Value of log ₃ 21	og₄3log₅4 log₁₅14	Hog ₁₆ 15 is		D	
	(a) 1/3	(b) ½	(c) 1/5	(d) 1/4		
Q242	Log₃ 5 x log₅ 4	$x \log_2 3 = $			A	
	(a) 2	(b) 5	(c) -2	(d) None		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

Q243	Value of 16 Log	$g\frac{64}{60}$ + 12 Log $\frac{50}{48}$ + 7 Lo	og 81/80+ Log 2 is		B
	(a) O	(b) 1	(c) 2	(d) -1	
Q244	$7 \text{Log}\left(\frac{16}{15}\right) + 5 \text{L}$	$\operatorname{og}\left(\frac{25}{24}\right) + 3\operatorname{Log}\left(\frac{81}{22}\right) = 1$			С
	(a) O	(b) 1	(c) Log 2	(d) Log 3	
Q245	$\log_3 \sqrt[4]{729 \sqrt[3]{9^{-1}}}$. 27 ⁴ / ₃ =			B
	(a) -5/3	(b) 5/3	(c) 3/5	(d) -3/5	
Q246	If $x^{2\alpha-3}y^{2\alpha} = x^{6-\alpha}y^{2\alpha}$	y^{5a} then the value of	a.Log (x/y) is		A
	(a) 3 Log x	(b) Log x	(c) 6 Log x	(d) 5 Log x	
Q247	$Log[1 - {1 - (1 - {1 - (1 - {1 - (1 - {1 - {$	$(-x^2)^{-1}\}^{-1}]^{-1/2}$ can b	oe written as		В
	(a) Log x ²	(b) Log x	(c) Log 1/x	(d) None	
Q248	Log (a - 9) + Lo	og a = 1, the value of	'α' is		B
	(α) Ο	(b) 10	(c) -1	(d) None	
Q249	$If \frac{1}{\log_x 10} + 2 = \frac{1}{\log_x 10}$	$\frac{2}{\log_5 10}$, then the value	of x is		B
	(α) 5	(b) 0.25	(c) 0.5	(d) 25	
Q250	Find the value	of x if $Log(x + \frac{1}{x}) + Log(x + \frac{1}{x})$	og 2 = Log 5		С
	(α) Ο	(b) 3 or $\frac{1}{3}$	(c) $\frac{1}{2}$ or 2	(d) 1	
Q251	If $3 + Log_{10}x = 2$	2Log10y; then value o	f x in terms of y will be	e	D
	(a) (2/3) y	(b) Y ² /10	(c) 10y	(d) Y²/1000	
Q252	If $Log_{10}^{y} = 1 + 2$	2 Log10 x - Log10 z; the	en value of $\frac{yz}{x^2}$ is	·	A
	(α) 10	(b) $\frac{1}{10}$	(c) 100	(d) $\frac{1}{100}$	
Q253	If $\frac{\log x}{2} = \frac{\log y}{2} =$	$\frac{\log z}{r}$, then yz in term	ns of x is		D
	(a) x	(b) x ²	(c) x ³	(d) x ⁴	
Q254	If $\frac{\log_{8} 17}{\log_{2} 23} - \frac{\log_{2\sqrt{2}}}{\log_{2} 2}$	$\frac{17}{3} = $			D
	(α) 1	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) 0	
Q255	If Log _e M + Log	$J_e N = Log_e (M + N), th$	nen find M as a functio	on of N.	D
	(a) 1/N	(b) N ²	(c) N ² x (N - 1)	(d) N/ (N -1)	
Q256	On solving Log	t + Log (t - 3) = 1 we	e get the value of t as	(base 10)	A
	(α) 5	(b) 2	(c) 3	(d) 0	
Q257	On solving the	equation $\log_3[\log_2(\log_2)]$	$\left[\log_3 t \right] = 1$ we get value	oftas	D
	(α) 8	(b) 18	(c) 81	(d) 6,561	
Q258	On solving Log	$_{1/2}[\log_t(\log_4 32)] = 2$ w	ve get the value of t a	s	С

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

	(a) 5/2	(b) 25/4	(c) 625/16	(d) None	
Q259	If $Log\left(\frac{a+b}{2}\right) = \frac{1}{2}$	(Log a + Log b), the	en		B
	(a) a = b/2	(b) a = b	(c) $a = b^2$	(d) $a^2 = b$	
Q260	If $Log(x + y) = 0$	$\log\left(\frac{3x-3y}{2}\right)$, Log x -	Log y =		С
	(a) Log 2	(b) Log 3	(c) Log 5	(d) Log 6	
Q261	If Log ₂ [Log ₃ (Log	g ₂ x)] = 1, then x =	·		С
	(a) 128	(b) 256	(c) 512	(d) None	
Q262	Value of Log ₂ [Lo	og ₂ {Log ₃ (Log ₃ (27 ³))}]	is		B
	(α) 1	(b) 0	(c) 2	(d) 3	
Q263	If Log_e 2. Log_b 6	625 = Log ₁₀ 16. Log _e 10), then b =		В
	(α) 4	(b) 5	(c) 1	(d) e	
Q264	Given that Log1	02 = x and Log10 3 = y	, the value of Log $_{10}$ 60) is expressed as	B
	(a) x - y + 1	(b) x + y + 1	(c) x - y - 1	(d) None	
Q265	Sum of the seri	es $Log_{\alpha} b + Log_{\alpha}^{2} b^{2}$	+ $Log_{\alpha}{}^{3}b^{3}$ + $Log_{\alpha}{}^{n}b$	" is given by	A
	(a) Log _a b ⁿ	(b) Log _a nb ⁿ	(c) n Log ^{an} b ⁿ	(d) None	
Q266	Value of the fo	llowing expression a	l ^{log_ab.log_bc.log_cd.log_dt is g}	iven by	Α
	(a) t	(b) abcdt	(c) (a+b+c+d+t)	(d) None	
Q267	$\frac{1}{1+\log_a(bc)} + \frac{1}{1+\log_a(bc)}$	$\frac{1}{h_b(ca)} + \frac{1}{1 + \log_c(ab)}$ is _	·		B
	(α) Ο	(b) 1	(c) 3	(d) -1	
Q268	Value of Log $\frac{a^n}{b^n}$	+ Log $\frac{b^n}{c^n}$ + Log $\frac{c^n}{a^n}$ is	·		A
	(α) Ο	(b) 1	(c) -1	(d) None	
Q269	If Log $a = \frac{1}{2} Log$	$b = \frac{1}{r} Log c the valu$	e of a⁴b³c⁻² is		B
	(α) Ο 2 0	(b) 1	(c) -1	(d) None	
Q270	If $\log 2 + \frac{1}{2}\log 2$	$a + \frac{1}{2} \log b = \log (a)$	+ b), then		A
	(a) a = b	(b) $a = -b$	(c) $a = 2, b = 0$	(d) a = 10, b = 1	
Q271	$Tf a^3 + b^3 = 0$ +1	en the value of Loc	$(a + b) = \frac{1}{2}(l \circ a + l \circ a)$	(2) = (2, 2) =	Α
G271	[1] (a) (b) = 0, (b)	(b) 1	$\int (u + b) = \frac{1}{2} (c + b)$	بر من	
0020				(u) 0	C
Q272	Log (x - y) - Log	$5 - \frac{1}{2} \log x - \frac{1}{2} \log y$	$y = 0$, then $\frac{1}{y} + \frac{y}{x} = $	·	C
	(α) 25	(b) 26	(c) 27	(d) 28	
Q273	Given that Log	2 = 0.3010, Log 3 =	0.4771, The value of l	_og ₈ 81 is	A
	$(\alpha) \frac{5342}{4515}$	(b) $\frac{5442}{4515}$	$(C)\frac{4513}{9442}$	(d) None	
Q274	Value of $5^{\sqrt{\log_5 7}}$	$-7\sqrt{\log_7 5}$ is	[C	280. Pg 3.18 of SC]	С

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

VouTube Telegram

	(a) Log 2	(b) 1	(c) 0	(d) None	
Q275	If $x = \log_{2\alpha} \alpha$;	$y = \log_{3\alpha} 2\alpha; z = \log_{4\alpha} d\alpha$	3a; xyz + 1 = [Q	109 Pg 3.20 of SC]	B
	(a) 2xy	(b) 2yz	(c) 2zx	(d) None	
Q276	If $Log_{\alpha}b = Log$	bc = Logca, then	·		С
	(a) a> b > c	(b) a < b < c	(c) a = b = c	(d) a < b < c	
Q277	If $Log_{\alpha}(ab) = x$, then Log $_{ m b}({ m ab})$ is			С
	(a) $\frac{1}{x}$	(b) $\frac{x}{x+1}$	$(c)\frac{x}{x-1}$	(d) $\frac{x}{1-x}$	
Q278	Value of $\frac{\text{Log}a}{\text{Log}a}$	$\frac{\log_b a}{\log_b b}$ is			Α
	α) -1	(b) 1	(c) Log _a b	(d) Log _α (αb)	
Q279	If $a = b^2 = c^3 =$	d⁴ then the value of L	.og(abcd)		A
	(a) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$	(b) $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}$	(c) 1 + 2 + 3 + 4	(d) None	
Q280	Find value of (_M + MN + NL - LMN, if	L = 1 + Logabc; M = 1	I Log₀ca; N = 1 + Log₀ab.	A
			0	[Q114 Pg 3.20 of SC]	
	(α) Ο	(b) 1	(c) -1	(d) 3	
Q281	If $a^2 + b^2 = 7ab$	o, then the value of Lo	$\log(\frac{a+b}{3}) - \frac{\log a}{2} - \frac{\log b}{2}$ is	3	Α
	(a) O	(b) 1	(c) -1	(d) 7	
Q282	If $x^2 + y^2 = 11xy$, then 2 Log (x - y) =	·		C
	(a) Log 3 + Log	g x + Logy	(b) 3Log3 + Log	x + Log y	
	(c) 2.Log 3 + L	og x + Log y	(d) None		
Q283	If $a^3 + b^3 = 0$;	then Log (a + b) - $\frac{1}{2}$ (Lo	og a + Log b + Log 3)	=	Α
	[Hint: (a+b) ³ =	a³ + b³ + 3ab(a+b)]			
	(α) Ο	(b) 1	(c) -1	(d) None	
Q284	If $\frac{\log x}{l+m-2n} = \frac{\log x}{m+n}$	$\frac{gy}{n-2l} = \frac{\log z}{n+l-2m}$, then x^2y^2 .	$Z^2 = $		D
	(a) 2	(b) -1	(c) 4	(d) 1	
Q285	If $Log_{\alpha}bc = x$,	Log₀ca = y, Log₀ab = z	$, \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = $	·	D
	(a) O	(b) 3	(c) x+y+z	(d) 1	
Q286	If $\frac{\log x}{q-r} = \frac{\log y}{r-r}$	$=\frac{\log}{n-a}, X^{q+p}Y^{p+p}Z^{p+q}=$			Α
	$(\alpha) x^{p}y^{q}z^{x}$	(b) 1	(c) 0	(d) xyz	
Q287	If Log ₂ (3 ^{2x-2} + 7	€) = 2 + Log ₂ (3 ^{x-1} + 1) th	en x =		D
	(a) 0	(b) 1	(c) 2	(d) 1 or 2	
Q288	Value of Log₅($(1+\frac{1}{5}) + Log_5(1+\frac{1}{5}) + L$	$\log_5(1+\frac{1}{7}) + \log_5(1+\frac{1}{7})$	$\left(\frac{1}{624}\right)$ is	С
	(α) 5	(b) 4	(c) 3	(d) 2	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

0289	1)			С
G 200	$\log\{\log_{ab}a + \frac{\log_{b}ab}{\log_{b}ab}\}$	} =			•
	(a) Log ab	(b) 1	(c) 0	(d) None	
Q290	Log (1 x 2 x 3) =	·			D
	(a) Log2	(b) Log 3	(c) 1	(d) Log1+Log2+Log3	
Q291	Log (3 + 7) =				A
	(α) 1	(b) 3	(c) 0	(d) ∞	
Q292	$Log(1^2 + 2^2 + 3^2) =$	·			B
	(a) Log 2 - Log 7	(b) Log 2 + Log 7	(c) 1	(d) None	
Q293	Log (3 - 2) =				С
	(a) 4	 (b) 3	(c) 0	(d) ∞	
Q294	= 8cnol				С
	(a) 2	(b) 8	(c) 3	(d) None	•
0295	log _1728 -			(С
Q200	$(a) 2\sqrt{2}$	· (b) 2		(d) Nono	•
	$(\alpha) \geq \sqrt{3}$		(0) 0		
Q296	$11^{\circ} \text{Log}_{\alpha} \sqrt{2} = 1/6, 11^{\circ}$	nd the value of 'a'			A
	(a) 8	(d) 4	(C) 3	(d) 1	
Q297	Logarithm of 2195	2 to the base of $2\sqrt{7}$	& 19683 to the base	e of 3√3 are.	A
	(a) Equal	(b) Not equal	(c) Different	(d) None	
Q298	Given Log 2 = 0.03	8010 and Log3 = 0.47	71 the value of Log 6	6 is	С
	(a) 0.9030	(b) 0.9542	(c) 0.7781	(d) None	
Q299	$\frac{1}{2}$ Log ₁₀ 25 - 2 Log ₁₀	3 + Log ₁₀ 18 =			B
	(α) Ο	(b) 1	(c) Log ₁₀ 3	(d) None	
Q300	$Log \frac{75}{2} - 2 Log \frac{5}{2} + l$	$\log \frac{32}{2}$ reduces to			С
	$(a) 2 \log 2$	$(b) 5 \log 2$		(d) 4 l og 2	
0301	(a) = 220 g =	(c) =	(0) 209 2	(a) + cog z	p
0.001	(a) O	$Jg_{a}(c) = $	(c) -1	(d) None	Ð
0.000	$(a) = (a^2 - (a^2 + 10))$				0
G 302	$LOY_{10}(x^2 - 6x + 10)$	= 0; then x =	\cdot	(d) Nono	B
			(0) 4		
Q303	$Log_53. Log_75. Log_9$	$f. \text{ Log}_{11}9. \text{ Log}_{21}11 = _$			A
	(a) LOg ₂₁ 3	(D) LOg ₃ 21	(C) 1	(d) None	
Q304	Value of Log (1+2+	3+ +n) =	•		B
	(a) Log 1 + Log 2 +	+ Log n	(b) Log n + Log (n+	1) - Log 2	
	(c) 0		(d) 1		
Q305	The equivalent for	om of the equation L	og (x-2) + Log (x+3) =	• 0 is	С

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

VouTube 🛛 Telegram

stagram <u>Whatsapp: 8888111134</u>

	(a) $x^2 + x - 5 = 0$	(b) $x^2 - x - 5 = 0$	(c) $x^2 + x - 7 = 0$	(d) None	
Q306	$\frac{1}{\log_{a,b}(abc)} + \frac{1}{\log_{b,c}(abc)}$	$\frac{1}{1} + \frac{1}{\log_{10}(abc)}$ is			С
	(a) O	(b) 1	(c) 2	(d) -1	
Q307	Value of Log $\frac{a^2}{bc}$ + Lo	$\log \frac{b^2}{ca} + \log \frac{c^2}{ab}$ is	·		Α
	(a) O	(b) 1	(c) -1	(d) None	
Q308	If $\frac{\log a}{v-z} = \frac{\log b}{z-x} = \frac{\log b}{x-y}$	$\frac{c}{v}$; value of abc is	·		B
	(a) O	(b) 1	(c) -1	(d) None	
Q309	If $\frac{1}{2}$ Log $\alpha = \frac{1}{3}$ Log k	$b = \frac{1}{5} \text{Log } c; \text{ value of } c$	a ⁴ - bc is		Α
	(α) Ο	(b) 1	(c) -1	(d) None	
Q310	If $\frac{1}{\log_a t} + \frac{1}{\log_b t} + \frac{1}{\log_b t}$	$\frac{1}{\log_2 t} = \frac{1}{\log_2 t}$ then the vo	alue of z is		Α
	(a) abc	(b) a+b+c	(c) a(b+c)	(d) (a+b) c	
Q311	Value of $\frac{1}{\log_{xy}(xyz)}$ +	$-\frac{1}{\log_{yz}(xyz)}+\frac{1}{\log_{zx}(xyz)}$	is		С
	(a) Log xyz	(b) 1	(c) 2	(d) None	
Q312	If $a^2 + b^2 = c^2$, $\frac{1}{\log b^2}$	$\frac{1}{\log a} + \frac{1}{\log a - ba}$ is	·		Α
	(a) 2	(b) 1	(c) Log abc	(d) 0	
Q313	Log 6 +log 5 is exp	oressed as			B
	(a) Log11	(b) Log 30	(c) Log 5/6	(d) None	
Q314	Log 32/4 is equal $\frac{1}{2}$	to		(d) Nora	B
0915	(a) $\log 327 \log 4$	$(D) \log 32 - \log 4$	(c) o		C
0010	(α) 1.3081	(b) 1.1038	(c) 1.3801	(d) 1.8301	Ŭ
Q316	If log ₂ x + log ₄ x + l	$og_{16} x = \frac{21}{4}$, then x ec	guals to		A
	(α) 8	(b) 4	(c) 2	(d) 16	
Q317	The simplified valu	ue of log2. log2 log216	is		С
	(α) Ο	(b) 2	(c) 1	(d) None	
Q318	Find the value of [$\log_{y^{x}} \log_{z^{y}} \log_{x^{z}}]^{3} = $	·		С
	(a) O	(b) — 1	(c) 1	(d) 3	
Q319	$\int \operatorname{If} \frac{1}{\log_{a} t} + \frac{1}{\log_{b} t} + \frac{1}{\log_{c} t}$	$=\frac{1}{\log_2 t}$ then the value	e of z is		A
	(a) abc	(b) a+b+c	(c) a(b+c)	(d) (a+b) c	
Q320	If $\log x = \alpha + b$; $\log \alpha$	$y = a - b$ then $\log \frac{10 x}{y^2}$	=		A
	(a) 1-a+3b	(b) a-1+3b	(c) a+3b+1	(d) 1-b+3a	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

Q321	X = 1+ log _p qr, y = 1+ log _q rp, z = 1+log _r pq then find $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = $				
	(α) Ο	(b) 1	(c) 2	(d) -1	
Q322	If $x = Log_a bc y =$	Log_b ca z = Log_c ab	then value of xyz - >	< - y - z is	D
	(α) Ο	(b) 1	(c) -1	(d) 2	
Q323	If $x = Log_{2\alpha} \alpha, y =$	= Log _{3α} 2α, z = Log _{4α} 3	8a then xyz + 1 =	·	B
	(a) 2 xy	(b) 2yz	(c) 2zx	(d) None	
Q324	If $\frac{1}{\log_q x} + \frac{1}{\log_q x} = \frac{1}{l}$	$\frac{2}{og_h x}$, then a, b, c are	in		Α
	(a) G.P	(b) A.P	(c) H.P	(d) None	
Q325	3.Log x + 3.Log x	³ + 3.Log x ⁵ + + .	3.Log x ²ⁿ⁻¹ =		A
	(α) 3n² Log x	(b) n(n+1) Log a	(c) 3n(n+1)Log a	(d) None	
Q326	If x = 1983! ; the	n value of $\frac{1}{\log_2 x} + \frac{1}{\log_2 x}$	$\frac{1}{r} + \frac{1}{log_{1}r} + \dots + \frac{1}{log_{1}rrr}$, is	B
	(α) Ο	(b) 1	(c) 2	(d) 3	
Q327	Find the number	of digits in 2 ⁶⁴ . [Gi	ven that Log 2 = 0.3	010]	B
	(a) 19	(b) 20	(c) 21	(d) 16.	
Q328	If Log ₄ (x ² + x) -	Log ₄ (x + 1) = 2, then t	he value of x is		D
	(α) 2	(b) 4	(c) 8	(d) 16	
Q329	Log ₁₀ 10 + Log ₁₀ 1	00 + Log ₁₀ 1000 + Log	g ₁₀ 10000 + Log ₁₀ 100	0000 is	Α
	(α) 15	(b) Log ₁₀ 11111	(c) Log ₁₀ 1111	(d) 14 Log ₁₀ 100	
Q330	$\frac{1}{\log_{q/b}(x)} + \frac{1}{\log_{b/c}(x)}$	$+ \frac{1}{\log_{c/a}(x)}$ is			A
	(a) O	(b) 1	(c) 3	(d) -1	
Q331	Log_{b} ($a^{1/2}$) Log_{c} (k	D^{3}) Log _a ($C^{3/2}$) =			D
	(α) Ο	(b) 1	(c) 4/9	(d) 9/4	
Q332	If $\log \frac{m}{n} + \log \frac{n}{m} =$	- Log (m + n), then	·		A
	(a) m + n = 1	(b) $\frac{m}{n}$	(c) m - n = 1	(d) m ² . n ² = 1	
Q333	If Log ₁₀ 2986 = 3	.4751, then Log ₁₀ 0.03	2986 =		B &
	(a) 1.5249	(b) 2.4751	(c) 1.2986	(d) — 1.5249	D
Q334	2Log(a + b) + Log	g(a - b) - Log(a² - b²)	= Log x, then x =	·	A
	(a) (a + b)	(b) a - b	(c) a² - b²	(d) None	
Q335	If $a^2 + b^2 = 0$, an	$da + b \neq 0$ then the	value of Log (a + b)	is	B
	(a) Log a + Log b	o + Log 2	(b) <u>1</u> (Log α + Log	y b + Log 2)	
	(c) Log a + Log b)	(d) None		
Q336	If $Log_{x+2}(x^3 - 3x^2 - 3x^2)$	- 6x + 8) = 3, then x =	=		В
	(a) 2	(b) -2	(c) 1/2	(d) None	

Q337	If $\operatorname{Log} \frac{x+y}{5} = \frac{1}{2}(\operatorname{Log} x)$	x + Log y), then $\frac{x}{y} + \frac{y}{x}$	=		B
	(a) 20	(b) 23	(c) 22	(d) 21	
Q338	If $\log \frac{a+b}{3} = \frac{1}{2}$ (Log	a + Log b) then the	value $\frac{a}{b} + \frac{b}{a}$ is		C
	(a) 2	(b) 5	(c) 7	(d) 3	
Q339	If $\log \frac{x+y}{7} = \frac{1}{2}$ (Log	x + Log y), then	·		C
	$(\alpha) \frac{x}{y} + \frac{y}{x} = 48$	(b) $\frac{x}{y} + \frac{y}{x} = 49$	$(c) \frac{x}{y} + \frac{y}{x} = 47$	(d) None	
Q340	If Log (2a - 3b) = L	.og a - Log b, then a	=		Α
	(a) 3b²/(2b - 1)	(b) 3b/(2b - 1)	(c) $b^2/(2b + 1)$	(d) 3b²(2b + 1)	
Q341	If $\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 5}{z-x}$	$\frac{7}{c}$, then $3^{(x+y)}$. $5^{(y+z)}$. $7^{(z+y)}$	-x) =		С
	(a) 2	(b) 10	(c) 1	(d) 0	
Q342	If Log ₃₀ 3 = a, Log ₃	30 5 = b, then Log30 8	=	[Hint: Find (a + b)]	Α
	(a) 3(1 - a - b)	(b) (a - b + 1)	(c) (a + b)	(d) 1(a - b + 1)	
Q343	If $x = Log_{\alpha}bc$, $y = L$.og _b ca, z = Log _c ab,	then		Α
	(a) $xyz = x + y + z$	+ 2	(b) xyz = x + y + z +	- 1	
	(c) $x + y + z = 1$		(d) xyz = 1		
Q344	If a = Log ₂₄ 12, b =	= Log $_{36}$ 24, and c = Lo	og 48 36, then 1 + abo) =	С
	(a) 1	(b) 2	(c) 2bc	(d) abc	
Q345	If $x = Log_{2\alpha} \alpha$, $y = L$	$\log_{3\alpha} 2\alpha, z = \log_{4\alpha} 3\alpha$	then value of yz (2 -	- x) is	Α
	(a) 1	(b) -1	(c) 2	(d) -2	
Q346	$(bc)^{\log \frac{b}{c}} . (ca)^{\log \frac{c}{a}} . (ab)$	$(D)^{\operatorname{Log}^{\underline{a}}} = \underline{\qquad}.$	[Hint: Equate it as	x & then take log]	B
	(α) Ο	(b) 1	(c) -1	(d) None	
Q347	$X^{18} = y^{21} = z^{28}$, then 3	, $3\log_y x$, $3\log_z y$, $7\log_x z$	are in		Α
	(a) AP	(b) GP	(c) HP	(d) None	

CHAPTER 2. EQUATION

INTRODUCTION

- Meaning of Equation: Equation is defined to be a mathematical statement of equality. (Two algebraic expressions are connected by sign of equality (=), they form an equation).
 Conditional Equation: If the equality is true for some variables, it is conditional equation.
- Identity: If the given equality is true for <u>all variables</u>, it is called an identity.
 [When LHS = RHS for all the values of variables]

Ex: $\frac{x+2}{2} + \frac{x+3}{2} = 3$ is true only for x = 1. So it is a conditional equation.

Identity: $\frac{x+2}{3} + \frac{x+3}{2} = \frac{5x+13}{6}$ is an identity since it satisfy all the values of 'variable x'.

Variable: It is a quantity whose value varies (changes). Generally denoted by x, y, z.

Constant: It is a quantity whose value does not change. Generally denoted by a, b, c.

Solution/Root: Value of variable which satisfies equation. [LHS=RHS when substituted].

SOME IMPORTANT POINTS TO BE KEPT IN MIND WHILE SOLVING THE QUESTIONS:

- Addition/subtraction of same quantity to both sides of an equation does not change equⁿ.
- Multiplication/Division of same non- zero number to both sides of an equation does not change the equation.

TRANSPOSITION RULE: Any term of equation taken to the other side by changing its sign.

Transposition is done to take unknown quantities to one side & known quantities to other side

- A term may be transferred from one side to another side by changing its sign.
 [+ve to -ve or -ve to +ve]
- A Multiplier may be removed from one side by making it divisor on other side of equation.
- A Divisor may be removed from one side by making it multiplier on other side of equation.

CONCEPT 1: LINEAR EQUATION IN ONE VARI	ABLE [Highest Degree = 1]
 An equation in which highest power of the variable is 1 is called a Linear (simple) equation. 	 A simple equation has only one root. It is in the form ax + b = 0; (Where a, b are numbers)

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

CONCEPT 2: SIMULTANEOUS LINEAR EQUATION IN TWO VARIABLES [Highest Degree = 1] • General form \rightarrow **ax** + **by** + **c** = **0**; [a, b \neq 0 & a, b, c \rightarrow Constant]. Methods of solving simultaneous linear equation in two variables: Substitution Method: Any one variable is written in terms of another variable in any one equation & then obtained value is substituted in other equation. **CQ8:** Solve: 6x + 5y - 16 = 0 and 3x - y - 1 = 0 we get values of x, y as and **Solution:** 6x + 5y - 16 = 0 -----(i) 3x - y - 1 = 0 -----(ii) Now from (2), we get y = 3x - 1 -----(iii); Substitute the value of y in (i), 6x + 5(3x - 1) - 16 = 0. 6x + 15x - 5 - 16 = 0;21x - 21 = 0; 21x = 21;x = 1 Now Put x = 1 in (iii); we get y = 3(1) - 1 = 3 - 1 = 2. Thus (x, y) = (1, 2) **PC Note:** Sign of variable with same co-efficient is opposite \rightarrow Add the equations. \bullet Sign of variable with same co-efficient is same \rightarrow Subtract the equations.

TEST OF CONSISTENCY FOR A SYSTEM OF EQUATIONS $[a_1x + b_1y + c_1 = 0 \& a_2x + b_2y + c_2 = 0]$

- ♦ Consistent System → System having at least one Solution.
- ✤ Inconsistent System → System having NO Solution.

No. of Solutions	Condition	System of Equations	Lines intersect at	
Unique Solution	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Consistent	One Point	
No solution	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Inconsistent	Parallel	
Infinite solutions	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Consistent	Coincident	

SIMULTANEOUS LINEAR EQUATION WITH THREE VARIABLES → Solve by Option Method.

Mhatsapp: 8888111134

CONCEPT 3: QUADRATIC EQUATION

- ♦ General form $ax^2 + bx + c = 0$; where $a \neq 0 \& a, b, c \rightarrow Constant$.
- ✤ A quadratic equation has got two roots.

Telegram

YouTube

♦ Pure QE: If b = 0; → Affected QE: When $b \neq 0$

[Not for Exam]

[Highest degree = 2]

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

CONSTRUCTION OF A QUADRATIC EQUATION			
1. We have $ax^2 + bx + c = 0$	3. Take '-' common from b, $x^2 - (-\frac{b}{a}) x + \frac{c}{a} = 0$		
2. Dividing it by 'a', we will get $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$	4. x^2 -(sum of roots)x + Product of roots = 0		

ROOTS OF A QUADRATIC EQUATION

$(1)\frac{-b+\sqrt{b^2-4ac}}{2a} (2)\frac{-b-\sqrt{b^2-4ac}}{2a}$	
Adding (1) & (2), we get (- $\frac{b}{a}$) & Multiplying (1) & (2), we get $\frac{c}{a}$.	$b^2 - 4ac extrm{ \rightarrow Discriminant}$
• PC Note: Sum of roots = (- $\frac{b}{a}$) & Product of roots = $\frac{c}{a}$	

NATURE OF THE ROOTS					
Value of $b^2 - 4ac$	Nature of Roots	Example	Roots		
Zero	Real, Equal & rational	$x^2 - 6x + 9 = 0$	3, 3		
Perfect Square	Real, unequal & rational	$x^2 - 6x - 16 = 0$	8, -2		
Not a Perfect Square	Real, unequal & irrational	$x^2 - 6x + 7 = 0$	$(3 + \sqrt{2}), (3 - \sqrt{2})$		
Negative	Imaginary (Complex No.)	$x^2 - 6x + 7 = 0$	No Solution		

POINTS TO BE NOTED

- Irrational roots occur in conjugate pairs. One root is $(a + \sqrt{b})$, other root will be $(a \sqrt{b})$.
- Roots are equal in magnitude (value) but opposite in sign, Sum of roots = 0 & so $\frac{b}{a}$ = 0 & **b=0**.
- If one root is reciprocal to other root, then their product is 1 & thus $\frac{c}{a} = 1$ i.e. c = a.

CQ10: Examine the nature of the roots of $x^2 - 8x^2 + 16 = 0$	[Real & Equal]
CQ11: Examine the nature of the roots of $3x^2 - 8x + 4 = 0$	[Real, rational & unequal]
CQ12: Examine the nature of the roots of $5x^2 - 4x + 2 = 0$	[Imaginary]
CQ13: Examine the nature of the roots of $2x^2 - 6x - 3 = 0$	[Real, irrational & unequal]

SOME USEFUL RESULTS REQUIRED TO SOLVE QUESTIONS OF ROOTS OF QUADRATIC EQ"

$(a + b)^2 = a^2 + b^2 + 2ab \rightarrow a^2 + b^2 = (a + b)^2 - 2ab$	$\frac{1}{1} + \frac{1}{2} - \frac{a+b}{2}$	$\frac{1}{1}$ + $\frac{1}{1}$ = $a^2 + b^2$	1 1 a - b
$a - b = \sqrt{(a+b)^2 - 4ab}$	$\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{ab}$	$\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{(ab)^2}$	\overline{b} \overline{a} \overline{ab}
$a^2 - b^2 = (a + b) (a - b)$			
$a^{3} + b^{3} = (a + b)^{3} - 3ab (a + b)$	$a^{3} - b^{3} = (a - b^{3})$	b)³ + 3ab (a - b)	

ROOTS OF EQUATION

- If $p + \sqrt{q}$ is the root, then $p \sqrt{q}$ is also a root.
- If p + iq is a root, then p iq is also a root. (Where $i^2 = -1$)
- Sum of the roots = $\alpha + \beta$ = -b/a, Product of the roots = $\alpha\beta$ = c/a.
- An equation with roots $\alpha \& \beta$ is given by $(x \alpha)(x \beta) = 0$, $x^2 (\alpha + \beta)x + \alpha\beta = 0$
- If one root is reciprocal of the other roots (α , 1/ α) their product is also 1. Also a = c
- If roots are equal in magnitude but opposite in sign $(\alpha, -\alpha)$ then b will be 0.
- If a + b + c = 0, then one of the roots = 1, and the other root = c/a [**Ex.** $x^2 + 5x 6$]
- If a b + c, then one root is -1 and other is -c/a [**Ex.** $x^2 + 6x + 5 = 0$]
- If $\alpha \& \beta$ are the roots of $ax^2 + bx + c = 0$, then $1/\alpha$, $1/\beta$ will be roots of $cx^2 + bx + a = 0$

USEFUL FACTORS TO GET SUM & PRODUCT OF ROOTS I.E. ($\alpha + \beta$) & $\alpha\beta$

- 1) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 \alpha\beta$
- 2) $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 2\alpha^2\beta^2$
- 3) $\alpha^3 + \beta^3 = (\alpha + \beta) (\alpha^2 \alpha\beta + \beta^2)$
- 4) $\alpha^3 \beta^3 = (\alpha \beta) (\alpha^2 + \alpha\beta + \beta^2)$

5)
$$(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$

6) $\alpha^2 - \beta^2 = (\alpha + \beta) (\alpha - \beta)$

7)
$$\frac{1}{\alpha} + \frac{1}{\alpha} = \frac{(\alpha + \beta)}{\alpha}$$

- ΄΄ α΄β αβ
- 8) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$

9)	1	_ 1 _	$(\alpha - \beta)$
	β	- α -	αβ

CUBIC EQUATION

[Highest degree = 3]

• Format of Cubic equation $\rightarrow ax^3 + bx^2 + cx + d$ [Where a, b, c, d are number & a $\neq 0$]

PC Note: Solve by Option Method to save time & efforts in Exams.

RELATION BETWEEN ROOTS AND CO-EFFICIENT		
1) $\alpha + \beta + \gamma = \frac{-b}{a}$ 2) $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$ 3) $\alpha\beta\gamma = \frac{-d}{a}$	4) $\alpha^{2} + \beta^{2} + \gamma^{2} = \frac{b^{2} - 2ac}{a^{2}}$ 5) $\alpha^{3} + \beta^{3} + \gamma^{3} = \frac{3abc - b^{3} - 3a^{2}d}{a^{3}}$	

EQUATIONS - QUESTION BANK

SN		CHAPTE	R 2. EQUATION		Ans
Q1	If 2x+y = y+14, then :	< is			B
	$(\alpha)\frac{7}{2}$	(b) 7	(c) 14	(d) 21	
Q2	2 The root of the equation $\frac{x+4}{4} + \frac{x-5}{2} = 11$ is				
	(α) 20	(b) 10	(c) 2	(d) None	
Q3	The root of the equa	ation $\frac{x+24}{5} = 4 + \frac{x}{4}$ is	·		С
	(α) 6	(b) 10	(c) 16	(d) None	
Q4	Pick up the correct	value of x for which $\frac{x}{30}$	$=\frac{2}{45}$		С
	(a) x = 7	(b) x = 5	(c) $x = 4/3$	(d) None	
Q5	For the values of p =	= - 5 and q = 6, the valu	ue of the expression 6	p + 5q is	С
	(a) 2	(b) -1	(c) 0	(d) 1	
Q6	If $\frac{1}{2}x + \frac{1}{4}x + \frac{1}{8}x = 14$,	then x is			D
	(α) 4	(b) 8	(c) 12	(d) 16	
Q7	If 2x+5 = -25 and -3;	/ -6 = 48, then xy is	·		D
	(a) -270	(b) -90	(c) 90	(d) 270	
Q8	The equation $\frac{12x+1}{4} =$	$\frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is true for _			D
	(a) x = 1	(b) x = 2	(c) x = 5	(d) x = 7	
Q9	If $\frac{3}{4} = \frac{6}{x} = \frac{9}{y}$, then x +	У			D
	(α) 4	(b) 8	(c) 12	(d) 20	
Q10	If $\frac{a-b}{b} = \frac{2}{3}$, what is the	e value of $\frac{a}{b}$?			D
	(a) 1/2	(b) 3/5	(c) 3/2	(d) 5/3	
Q11	Solve the equation 1	7 ^{3-6x} = 1 for x =			С
	(a) -3	(b) 3/2	(c) ½	(d) -1/2	
Q12	Pick up the correct	value of x for which $\frac{x}{0.5}$	$-\frac{1}{0.05} + \frac{x}{0.005} - \frac{1}{0.0005} = 0$		С
	(a) x = 0	(b) x =1	(c) x = 10	(d) None	
Q13	Which one is a linea	r equation?			D
	(a) ax + b < 0	(b) ax + b >0	(c) Both (a) or (b)	(d) Not (a) & (b)	
Q14	Solve $2^{x-2} + 2^{3-x} = 3$				С
0.15	(a) $x = 5 \text{ OP } x = 4$	(D) $X = 3 \text{ OP } X = 5$	(C) X = 2 OP X = 3	(d) $X = 1 \text{ OP } X = 2$	
Q15	Solving $\Theta^{-1} = 3^{y} \otimes 5^{x+y+1}$	$= 25^{4}$ we get the follo	owing roots	(d) 1 0	A
	$(u) (1, 2), (\frac{1}{4}, \frac{1}{2})$		(c) 0, 3	(u) I, J.	
Q16	$ \begin{array}{c} \text{If } 2^{2n/2} - 3^2 \cdot 2^n + 1 = 0 \\ \text{(a) } 0 \cdot 1 \end{array} $	(b) 1. 2	 (c) 0. 3	(d) 03	D
		(~) ig L	(0) 0, 0		

YouTube

Telegram

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy Whatsapp: 8888111134

Q17	If $6 = 2x + 4y$, what is the value of $x + 2y$ is		B	
	(a) 2 (b) 3 (c) 6	(d) 8		
Q18	Solve for y in the equation $\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$ and the value of y is			
	(a) -1 (b) 7 (c) 1	$(d) - \frac{1}{7}$		
Q19	The solution of the equation $(p + 2) (p - 3) + (p + 3) (p$	p - 4) = p (2p - 5) is	A	
	(a) 6 (b) 7 (c) 5	(d) None		
Q20	The satisfying values of x for the equation $\frac{1}{x+p+q} = \frac{1}{x}$	$+\frac{1}{p}+\frac{1}{q}$ are	B	
	(a) (p, q) (b) (-p, -q) (c) (p, -c	(d) (-p, q)		
Q21	If $\frac{a}{2} + \frac{b}{2} = 3$, what is the value of 2a+2b?		С	
	(a) 6 (b) 8 (c) 12	(d) 16		
Q22	If $a+b=5$ and $\frac{c}{2}=3$, what is the value of $2a+2b+2c$?		С	
	(a) 14 (b) 16 (c) 22	(d) 20		
Q23	If a-b=p and a+b=k, then a^2-b^2		A	
	(a) pk (b) $p^2 - k^2$ (c) $p + k$	(d) $\frac{p^2}{k^2}$		
Q24	If $b(x+2y) = 60$ and $by = 15$, what is the value of bx ?		С	
	(a) 20 (b) 25 (c) 30	(d) 45		
Q25	If $xy + z = y$, what is x in terms of y and z?		B	
	(a) $\frac{y+z}{y}$ (b) $\frac{y-z}{y}$ (c) 1 - z	(d) $\frac{z-y}{y}$		
Q26	If $\frac{1}{p+q}$ = r and p \neq -q, what is p in terms of r and q?	:	D	
	(a) $\frac{rq-1}{q}$ (b) $\frac{1+rq}{q}$ (c) $\frac{r}{1+rq}$	(d) $\frac{1-rq}{r}$		
Q27	If $\frac{xy}{x+y} = 1$ and $x \neq y$, what is x in terms of y?		С	
	(a) $\frac{y+1}{y-1}$ (b) $\frac{y+1}{y}$ (c) $\frac{y}{y-1}$	(d) $\frac{y}{y+1}$		
Q28	The solution of the set of equations $3x + 4y = 7 \& 4x$	— y = 3 is	B	
	(a) (1, -1) (b) (1, 1) (c) (2, 1)	(d) (1, -2)		
Q29	Solve for x and y: $x - 3y = 20$, $y - 2x = 0$. The values o	f x and y are given as	D	
	(a) $x = 4 y = 12$ (b) $x = 12 y = 4$ (c) $x = 5$	y = 4 (d) None		
Q30	The simultaneous equations $7x - 3y = 31$ and $9x - 5y = 31$	= 41 have solutions given by	С	
	(a) (-4-1) (b) (-14) (c) (4-1)	(d) (3 7)		
Q31	$\frac{x}{p} + \frac{y}{q} = 2$; x + y = (p + q) are satisfied by the values given	ven by the pair	A	
	(a) $(x = p \ y = q)$ (b) $(x = q \ y = p)$ (c) $(x = 1$	y = 1) (d) None		
Q32	The values of x and y satisfying the equations $\frac{x}{2} + \frac{y}{3} = 2$	2; x + 2y = 8 are	C	
	(a) (3, 2) (b) (-2, -3) (c) (2, 3)	(d) None		
Q33	Which of the following sets (x, y) will satisfy the equation of the following sets (x, y) will satisfy the equation of the set of th	ation $23^{xy} = 23^{yx} \& 144^x = 12^y$	C	
	(a) (1,1) (b) (0,1) (c) (1,2)	(d) (2,1)		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

Q34	If $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$ and $\frac{1}{x} - \frac{1}{y} = \frac{3}{4}$, then x is	D
	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) 2	
Q35	$\frac{3}{x+y} + \frac{2}{x-y} = 3$; $\frac{2}{x+y} + \frac{3}{x-y} = 3\frac{2}{3}$. Find the values of x & y which satisfy the equations	D
	(a) (1, 2) (b) (-1, -2) (c) $\left(1, \frac{1}{2}\right)$ (d) (2, 1)	
Q36	When the system is inconsistent, there is solution.	Α
	(a) No (b) Finite (c) Infinite (d) Identical	
Q37	2^{x} . $4^{y} = 32 \& 3^{x} \div 9^{y} = 3$. Find the solution set.	Α
	(a) $x = 3, y = 1$ (b) $x = y = 2$ (c) $x = y = 1$ (d) $x = y = 3$	
Q38	Solve for x and y: $\frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} + \frac{3}{10}$ and $3xy = 10(y - x)$. The value of x and y is	D
	(a) (5, 2) (b) (-2, -5) (c) (2, -5) (d) (2, 5)	
Q39	The pair satisfying the equations x + 5y = $36, \frac{x+y}{x-y} = \frac{5}{3}$ is given by	Α
	(a) (16, 4) (b) (4, 16) (c) (4, 8) (d) None	
Q40	Solve for x, y and z: 2x - y + z = 3; x + 3y - 2z = 11; 3x - 2y + 4z = 1.	B
	(a) x= -5, y=4, z= -2 (b) x = 3, y=2, z = -1	
	(c) x=3, y= -3, z=6 (d) x= -8, y= -5, z= -1	
Q41	Solve for x, y and $z:\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 5; \ \frac{2}{x} - \frac{3}{y} - \frac{4}{z} = -11, \ \frac{3}{x} + \frac{2}{y} - \frac{1}{z} = -6$	Α
	(a) $x = \frac{1}{2}, y = -\frac{1}{3}, z = \frac{1}{6}$ (b) $x = \frac{1}{2}, y = -\frac{3}{5}, z = \frac{2}{5}$	
	(c) $x = \frac{4}{5}, y = -\frac{2}{5}, z = \frac{1}{6}$ (d) $x = -\frac{1}{2}, y = \frac{1}{3}, z = -\frac{1}{6}$	
Q42	Solve for x, y and $z_{x+y} = 70, \frac{xz}{x+z} = 84, \frac{yz}{y+z} = 140$	A
	(a) x = 105, y = 210, z = 420 (b) x=60, y=80, z=140	
	(c) x = 100, y = 200, z = 300 (d) x=120, y=150, z=450	
Q43	Solving $9x + 3y - 4z = 3x + y - z = 0$ and $2x - 5y - 4z = -20$ following roots as obtained	3 C
	(a) 2, 3, 4 (b) 1, 3, 4 (c) 1, 2, 3 (d) None	
Q44	$\frac{x}{4} = \frac{y}{3} = \frac{z}{2}$ 7x + 8y + 5z = 62. Solve	Α
	(a) (4, 3, 2) (b) (2, 3, 4) (c) (3, 4, 2) (d) (4, 2, 3)	
Q45	$\frac{xy}{x+y} = 20, \ \frac{yz}{y+z} = 40, \ \frac{zx}{z+x} = 24.$ Solve	D
	(a) (120, 60, 30) (b) (60, 30, 120) (c) (30, 120, 60) (d) (30, 60, 120)	
Q46	2x + 3y + 4z = 0, x + 27y - 5z = 0, 10x + 16y - 6z = 0 Solve.	Α
	(a) (0, 0, 0) (b) (1, -1, 1) (c) (3, 2, -1) (d) (1, 0, 2)	
Q47	$\frac{xy}{y-x} = 110, \ \frac{yz}{z-y} = 132, \ \frac{zx}{z+x} = \frac{60}{11}.$ Solve	В
	(a) (12, 11, 10) (b) (10, 11, 12) (c) (11, 10, 12) (d) (12, 10, 11)	
Q48	Find values of x, y and z -3x - 4y + 70z - 0, 2x + 3y - 10z = 0, x + 2y + 3z = 13	D
	(a) (1, 3, 7) (b) (1, 7, 3) (c) (2, 4, 3) (d) (-10, 10, 1)	
Q49	If $\alpha \& \beta$ are the roots of $x^2 = x + 1$ then value of $\frac{\alpha^2}{\beta} - \frac{\beta^2}{\alpha}$ is	D

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To
VouTube Telegram Subaran Whatsapp: 8888111134

	(a) 2√5	(b) √ <u>5</u>	(c) 3√ <u>5</u>	(d) -2√5	
Q50	If one roots of $5x^2$ +	13x + p = 0 be recipro	cal of the other then	the value of p is	B
	(a) -5	(b) 5	(c) 1/5	(d) -1/5	
Q51	If one root of equat	ion x ² + 7x + p = 0 be re	eciprocal of the other	then value of p is	A
	(a) 1	(b) -1	(c) 7	(d) -7	
Q52	If one root of the e	quation is 2 - $\sqrt{3}$, form	the equation.		D
	(a) $x^2 - 2x + 2 = 0$	(b) $x^2 - 3x + 1 = 0$	(c) $x^2 - 5x + 5 = 0$	(d) $x^2 - 4x + 1 = 0$	
Q53	Root of the equation	n x ² - 8x + m = 0 exceed	ds the other by 4 then	the value m is	D
	(a) m = 10	(b) m = 11	(c) m = 9	(d) m = 12	
Q54	If the roots of the e	equation $2x^2 + 8x - m^3 =$	0 are equal then valu	e of m is .	D
	(a) -3	(b) -1	(c) 1	(d) -2	
Q55	Equation $\binom{1-m}{r^2}$	$\binom{1+m}{2}$ + m = 0 has got t	wo values of x to satis	fu couption given as	Δ
	Equation $\left(\frac{2}{2}\right)x^{2} = 0$	$\left(\frac{1}{2}\right)x + 11 = 0$ has got t			
	$(a)\left(1,\frac{2m}{1-m}\right)$	(b) $\left(1, \frac{m}{1-m}\right)$	$(c)\left(1,\frac{21}{1-m}\right)$	(d) $\left(1, \frac{1}{1-m}\right)$	
Q56	The values of $4+\frac{1}{4+1}$	1 1			B
	4+	$\frac{1}{4 + \frac{1}{4 + \dots, \infty}}$			
	(a) 1 ±√2	(b) $2 \pm \sqrt{5}$	(c) 2 ±√3	(d) None	
Q57	The condition that c	one of the roots of ax ²	+ bx + c = 0 is twice th	ne other is	A
	(a) $b^2 = 4ca$	(b) $2b^2 = 9(c + a)$	(c) 2b² = 9ca	(d) $2b^2 = 9(c - a)$	
Q58	The roots of the eau	uation $x^2 + kx + 12$ will c	liffer by unity only if		D
	(a) $k = \pm \sqrt{12}$	(b) k = $\pm \sqrt{48}$	(c) k = $\pm \sqrt{47}$	(d) k = ± 7	_
059			, p, , , , , , ,	b^2 .	R
400	If the roots of ax ² +	bx + c = 0 are in the r	atio - then the value o	$\frac{1}{(ca)}$ IS	
	$(\alpha) \frac{(p+q)^2}{(pq)}$	(b) $\frac{(p+q)}{(pq)}$	$(C)\frac{(p-q)^2}{(pq)}$	(d) $\frac{(p-q)}{(pq)}$	
Q60	$x^{-a^2-b^2}$, c^2 -	2 the value of			С
	$IT - \frac{1}{c^2} + \frac{1}{x - a^2 - b^2} =$		•	. h	
	(a) $a^2 + b^2 + c^2$	(b) -a ² - b ² - c ²	(c) $\frac{1}{a^2+b^2+c^2}$	(d) 1	
Q61	Solving equation x^2 -	-(a + b)x + ab = 0 we f	find value(s) of x is		A
	(a) a, b	(b) a	(c) b	(d) None	
Q62	α & β are roots of e	equation $x^2 - 5x + 6 = 0$	the eq n with roots ($lphaeta$	+α+β) & (αβ - α-β) is	A
	(a) $x^2 - 12x + 11 = 0$	(b) 2x ² - 6x + 12 = 0	(c) $x^2 - 12x + 12 = 0$	(d) None	
Q63	If $\alpha \& \beta$ are the root	s of equation $x^2 - 5x +$	6 = 0, then equation	with roots ($\alpha^2+\beta$) & ($\alpha+\beta^2$) is	A
	·				
	$(a) x^2 - 9x + 99 = 0$	(b) $x^2 - 18x - 90 = 0$	(c) $x^2 - 18x + 77 = 0$	(d) None	
Q64	Solving equation z^{10}	$-33z^5 + 32 = 0$ the follo	owing values of z are o	obtained	A
	(a) 1, 2	(b) 2, 3	(c) 2, 4	(d) 1, 2, 3	
Q65	Solve 4 ^x - 3.2 ^{x+2} + 2 ⁵	= 0			A
	(a) x=3 or x=2	(b) x=4 or x=5	(c) x=5 or x=2	(d) x=3 or x=4	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

Q66	Solving $4^{x}.2^{y} = 128$ and $3^{3x+2y} = 9^{xy}$ we get the following roots				
	(a) $\frac{7}{4}, \frac{7}{2}$ (b) 2, 3 (c) Both (a) and (b) (d) 13				
Q67	$4^{x} - 3.2^{x+2} + 2^{5} = 0; x = $	D			
	(a) 4, 8 (b) -2, -3 (c) 2, 6 (d) 2,3				
Q68	If $\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$ the roots of the equation are	Α			
	(a) $a, \frac{b^2}{a}$ (b) $a^2, \frac{b}{a^2}$ (c) a, b ² (d) None				
Q69	If the roots of the equation p (q - r) x^2 + q (r - p) x + r (p - q) = 0 are equal, then $\frac{2}{q}$ =	D			
	(a) $\frac{1}{r} + \frac{1}{p}$ (b) $\frac{1}{rp}$ (c) RP (d) $\frac{1}{r} - \frac{1}{p}$				
Q70	Solving equation $\left(x - \frac{1}{r}\right)^2 - 6\left(x + \frac{1}{r}\right) + 12 = 0$ we get roots as follows (one of them)	В			
	(a) 0 (b) 1 (c) -1 (d) None				
Q71	If $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$ then the values of x are	B			
	(a) 0, (a +b), (a - b) (b) 0, (a+b), $\frac{a^2+b^2}{a+b}$ (c) 0, (a - b), $\frac{a^2+b^2}{a+b}$ (d) None				
Q72	The roots of the equation $x^2 + (2p - 1) x + p^2 = 0$ are real if	D			
	(a) $P \ge 1$ (b) $P \le 4$ (c) $P \ge 1/4$ (d) $P \le 1/4$				
Q73	The condition that one of the roots of $ax^2 + bx + c = 0$ is thrice the other is	A			
034	(d) $3b^2 = 16cd$ (b) $b^2 = 9cd$ (c) $3b^2 = -16cd$ (d) $b^2 = -9cd$	p			
G74	$ \begin{array}{c} 1 & p \neq q \\ and p = -5p = 5 \\ and q = -5q = 5, \\ the equation having roots as -and -p \\ q \\ p \\ $	D			
035	(d) x = 19x + 3 = 0 (b) $3x = 19x - 3 = 0$ (c) $3x = 19x + 3 = 0$ (d) $3x + 19x + 3 = 0$	R			
Gro	$(M+N+L) x^2 + (N+L-M) X + (L+M-N) = 0$	4			
	(a) Real & irrational (b) Real & rational				
	(c) Imaginary & equal (d) Real & equal.				
Q76	Solving equation $x^2 - 24x + 135 = 0$ we find value(s) of x is	В			
	(a) 9, 6 (b) 9, 15 (c) 15, 6 (d) None	_			
Q77	Solving equation $z + \sqrt{z} = \frac{1}{25}$ the value of z works out to	C			
020	(a) $1/5$ (b) $2/5$ (c) $1/25$ (d) $2/25$				
Q <i>1</i> 8	Solution of the quadratic equation $(a + b - 2c) x^2 + (2a - b - c) x + (c + a - 2b) = 0$ is (a) x = 1 (b) x = -1 (c) x = 2 (d) x = -2	B			
Q79	Solving $\frac{x}{y} + \frac{y}{y} - \frac{5}{z} = 0$ &x + y - 5 = 0, we get the roots as under	A			
	(a) 1, 4 (b) 1, 2 (c) 1, 3 (d) 1, 5				
Q80	Solving $x^2 + xy - 21 = 0$ and $xy - 2y^2 + 20 = 0$ we get the roots as under	C			
	(a) ± 1 , ± 2 (b) ± 2 , ± 3 (c) ± 3 , ± 4 (d) None				
Q81	When $\sqrt{2z+1} + \sqrt{3z+4} = 7$ the value of z is given by	D			
	(a) 1 (b) 2 (c) 3 (d) 4				

Q82	Solving $x^2 + xy + y^2 = 37$ and $3xy + 2y^2 = 68$ we get the following roots				
	(a) $\pm 3, \pm 4$ (b) $\pm 4, \pm 5$ (c) $\pm 2, \pm 3$ (d) None				
Q83	Solving x + 2y + 2z = 0, 3x - 4y + z = 0 and x^2 + $3y^2$ + z^2 = 11 following roots are obtained	Α			
	(a) 2, 1, -2 & -2, -1, 2 (b) 2, 1, 2 & -2, -1, -2				
	(c) Only 2, 1, -2 (d) Only -2, -1, 2				
Q84	Solving equation $6\left[\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}}\right] = 13$ following roots are obtained	A			
	(a) $\frac{4}{13}, \frac{9}{13}$ (b) $\frac{-4}{13}, \frac{-9}{13}$ (c) $\frac{4}{13}, \frac{5}{13}$ (d) $\frac{6}{13}, \frac{7}{13}$				
Q85	Solving $\frac{x+\sqrt{12p-x}}{x-\sqrt{12p-x}} = \frac{\sqrt{p}+1}{\sqrt{p}-1}$, following roots are obtained	B			
	(a) 3p (b) Both 3p and -4p (c) Only -4p (d) -3p 4p				
Q86	Solving $\sqrt{y^2 + 4y - 21} + \sqrt{y^2 - y - 6} = \sqrt{6y^2 + 5y - 39}$ following roots are obtained	B			
	(a) 2, 3, $\frac{5}{3}$ (b) 2, 3, $-\frac{5}{3}$ (c) -2, -3, $\frac{5}{3}$ (d) -2, -3, $-\frac{5}{3}$				
Q87	Solving equation $\left(x - \frac{1}{x}\right)^2 - 10\left(x - \frac{1}{x}\right) + 24 = 0$ we get roots as follows	D			
	(a) 0 (b) 1 (c) -1 (d) None				
Q88	Solving $x^3 - 6x^2 + 11x - 6 = 0$ we get the following roots as	С			
	(a) -1, -2, 3 (b) 1, 2, -3 (c) 1, 2, 3 (d) -1, -2, -3				
Q89	Solving $x^3 + 9x^2 - x - 9 = 0$ we get the following roots as	Α			
	(a) ± 1 , -9 (b) ± 1 , ± 9 (c) ± 1 , 9 (d) None				
Q90	Solve $x^3 - 7x + 6 = 0$	В			
	(a) $x = -4, -2, -3$ (b) $x = 1, 2, -3$ (c) $x = 5, 6, -1$ (d) $x = 7, 2, -5$				
Q91	Solve for real x: $x^3 + x + 2 = 0$	С			
	(a) $x = -4$ (b) $x = 4$ (c) $x = -1$ (d) $x = -3$				
Q92	The solution of the equation $x^3 - 5x^2 + 6x = 0$ is	С			
	(a) 2, 3 (b) 0, -2, -3 (c) 0, 2, 3 (d) None				
Q93	The equation y^3 - 7y + 6 = 0 is satisfied by	Α			
	(a) 1, 2, -3 (b) 1, 2, 3 (c) -1, -2, 3 (d) 1, -2, 3				
Q94	The equation $x^3 - x^2 - 12x = 0$ is satisfied by	В			
	(a) 1, 4, -3 (b) 0, 4, -3 (c) 0, -4, 3 (d) None				
Q95	Solve $x^3 - 6x^2 + 5x + 12 = 0$	В			
	(a) 1, 3, 4 (b) -1, 3, 4 (c) 1, 6, 2 (d) 1, -6, -2				
Q96	Solve $x^3 - 5x^2 - 2x + 24 = 0$ given that two of its roots being in the ratio of 3:4.	Α			
	(a) -2, 4, 3 (b) -1, 4, 3 (c) 2, 4, 3 (d) -2, -4, -3				
Q97	The cubic equation $x^3 + 2x^2 - x - 2 = 0$ has 3 roots namely	В			
	(a) (1, -1, 2) (b) (-1, 1, -2) (c) (-1, 2, -2) (d) (1, 2, 2)				
Q98	(x-1), (x^2 + 3x + 2) are the factors of the left - hand side of the equation, then	A			
	(a) $x^3 + 2x^2 - x - 2 = 0$ (b) $x^3 + x^2 - 20x = 0$				
	(c) $x^3 - 3x^2 - 4x + 12 = 0$ (d) $x^3 - 6x^2 + 11x - 6 = 0$				

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

Q99	The equation $3x^3 + 5x^2 = 3x + 5$ has got 3 roots and hence the factors of LHS of $3x^3 + 5x^2 - 3x$	С
	(a) (x-1), (x-2), (x-5/3) (b) (x-1), (x+1) (3x-5)	
	(c) $(x+1), (x-1) (3x+5)$ (d) $(x-1), (x-2)$	
Q100	The roots of $x^3 = x^2 - x - 1$ are .	A
	(a) (-1, -1, 1) (b) (1, 1, -1) (c) (-1, -1, -1) (d) (1, 1, 1)	
Q101	The satisfying value of x ³ + x ² - 20x = 0 are	D
	(a) (1, 4, -5) (b) (2, 4, -5) (c) (0, -4, 5) (d) (0, 4, -5)	
Q102	The roots of the cubic equation $x^3 + 7x^2 - 21x - 27 = 0$ are	B
	(a) (-3, -9, -1) (b) (3, -9 -1) (c) (3, 9, 1) (d) (-3, 9, 1)	
Q103	Solve $x^3 + 3x^2 - x - 3 = 0$ give that the roots are in arithmetical progression	С
	(a) -1, 1, 3 (b) 1, 2, 3 (c) -3, -1, 1 (d) -3, -2, -1	
Q104	Solve $x^3 - 7x^2 + 14x - 8 = 0$ given that the roots are in geometrical progression.	В
	(a) ¹ / ₂ , 1 2 (b) 1, 2, 4 (c) 1/2, -2, 2 (d) -1, 2, -4	
Q105	The rational root of the equation $2x^3 - x^2 - 4x + 2 = 0$ is	Α
	(a) 1/2 (b) -1/2 (c) 2 (d) -2	
Q106	If the sum of a number and the original number increased by 5 is greater than 11, which could be a possible value of the number?	D
	(a) -5 (b) -1 (c) 1 (d) 4	
Q107	The sum of two numbers is 52 and their difference is 2. The numbers are	С
	(a) 17 and 15 (b) 12 and 10 (c) 27 and 25 (d) None	
Q108	The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.	D
	(a) 60 years (b) 52 years (c) 51 years (d) 50 years	
Q109	The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man?	D
	(a) 65 years (b) 25 years (c) 35 years (d) 45 years	
Q110	Average age of a group of eight is same as it was 3 years ago, when a young member is substituted for an old member, incoming member is younger to outgoing nests by	B
	(a) 11 years (b) 24 years (c) 28 years (d) 16 years	<u> </u>
Q111	A school has 20 teachers, one of them retires at the age of 60 years and a new teacher replaces him, this change reduces the average age of the staff by 2 years, the age of new teacher is	С
	(a) 28 years (b) 25 years (c) 20 years (d) 18 years	<u> </u>
Q112	If thrice of A's age 6 years ago be subtracted from twice his present age the result would be equal to his present age. Find A's present age.	B
	(a) 6 years (b) 9 years (c) 12 years (d) 10 years	<u> </u>
Q113	Y is older than X by 7 years. 15 years back, the ratio of their ages was 3:4. Their present ages are (a) $(X = 36 X = 43)$ (b) $(X = 50 X = 43)$ (c) $(X = 42 X = 50)$ (d) $(X = 40 X = 42)$	A
	(u) (x = 30 t = 43) (b) $(x = 30 t = 43)$ (c) $(x = 43 t = 50)$ (d) $(x = 40 t = 47)$	

Q114	If the sum of a nu could be a possible	mber and the origin e value of the numbe	al number increased b r?	y 5 is greater than 11, which	D
	(a) -5	(b) -1	(c) 1	(d) 4	
Q115	If the difference of 4 times the larger	of the squares of two number, then the nu	o numbers is 45, the sq mbers are	uare of the smaller number is	A
	(a) 9, 6 or 9, -6	(b) 5, 6, or 5, 4	(c) 9, 5 or 9, -5	(d) 6, 7 or -7, 6	
Q116	A number betwee digits are reverse	n 10 and 100 is five d, find the number.	times the sum of its d	igits. If 9 be added to it the	С
	(α) 54	(b) 53	(c) 45	(d) 55	
Q117	The sum of the digits of a 2 digit number is 10. If 18 be subtracted from it the digits in the resulting number will be equal. The number is				B
	(a) 37	(b) 73	(c) 64	(d) None	
Q118	Sum of numerator and denominator t	and denominator of hen the fraction bec	a fraction is 8. If 3 is a comes 3/4. Then the fra	added to both the numerator action is	С
	(α) 1/5	(b) 2/5	(c) 3/5	(d) 4/5	
Q119	The denominator of fraction becomes	of a fraction exceeds $\frac{3}{4}$. Find the fraction.	s the numerator by 5 a	und if 3 be added to both the	С
	(a) $\frac{15}{17}$	(b) $\frac{13}{17}$	(c) $\frac{12}{17}$	(d) $\frac{11}{17}$	
Q120	Difference betwee	en a number and its p	positive square root is	12; find the numbers.	С
	(a) 36	(b) 25	(c) 16	(d) 9	
Q121	The ratio betweer digit in the unit pla	n a two digit number ace is 3 more than th	o and the sum of digits ne digit in the tenth pla	of that number is 4:1. If the ce, what is that number?	С
	(α) 24	(b) 63	(c) 36	(d) Data insufficient	
Q122	The sum of two irr multiplied by the s	ational numbers mult maller one is 12; the	iplied by the larger one two numbers are	e is 70 and their difference is	С
	(a) 3√2, 2√3	(b) 5√2, 3√5	(c) $2\sqrt{2}$, $5\sqrt{2}$	(d) None	
Q123	The sum of two nu are	mbers is 45 and the	meal proportional betw	ween them is 18. The numbers	С
	(a) (15, 30)	(b) (32, 13)	(c) (36, 9)	(d) (25, 20)	
Q124	There are two cor The numbers are _	secutive numbers su 	ch that the difference	of their reciprocals is 1/240.	A
	(a) (15, 16)	(b) (17, 18)	(c) (13, 14)	(d) (12, 13)	
Q125	The difference of are	two positive integers	s is 3 and the sum of the	eir squares is 89. The integers	B
	(a) (7, 4)	(b) (5, 8)	(c) (3, 6)	(d) (2, 5)	
Q126	A number consists digits is 9. The nu original number by	of three digits of wh mber formed by inte v 297. Find the numbe	nich the middle one is z rchanging the first and er.	ero and the sum of the other d third digit is more than the	D
	(α) 801	(b) 603	(c) 702	(d) 306	
Q127	A number consists place. If 18 be sub	of two digits. The d tracted from the nu	igit in the ten's Place i mber the digits are rev	s twice the digit in the unit's versed. Find the number.	D

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(a) 96	(b) 62	(c) 38	(d) 42	
Q128	The sum of the d increased by 495 The number is	igits in a three digit r 5 but reversing only of 	number is 12. If the dig f the tens and unit dig	jits are reversed the number is its increases the number by 36.	С
	(a) 327	(b) 372	(c) 237	(d) 273	
Q129	Two numbers are and 1/3 of the sm	e such that thrice the naller and 1/5 of the gr	smaller number excee reater number are tog	eds twice the greater one by 18 ether 21. Numbers are	B
	(a) (45, 36)	(b) (50, 38)	(c) (54, 45)	(d) (55, 41)	
Q130	On two numbers numbers are	1/5 th of the greater is 	s equal to 1/3 rd of the	smaller and their sum is 16. The	A
	(a) (6, 10)	(b) (9, 7)	(c) (12, 4)	(d) (11, 5)	
Q131	A number consis the digits are re	ting of two digits is fo eversed. The number is	ur times the sum of its s	digits and if 27 be added to it	С
	(α) 63	(b) 35	(c) 36	(d) 60	
Q132	Find the fractic increased by 2. I	on which is equal to It is equal to 3/4 whe	½ when both its nur n both are increased b	nerator and denominator are ɔy 12.	A
	(α) 3/8	(b) 5/8	(c) 3/8	(d) 2/3	
Q133	If a number of w (a) 50	hich the half is greate (b) 40	r than 1/5 th of number (c) 80	by 15 then number is (d) None	С
Q134	The fourth part o	of a number exceeds t	the sixth part by 4. Th	e number is	С
	(α) 84	(b) 44	(c) 48	(d) None	
Q135	Rs. 14 is divided the share of 8, t	between A and B suc he share of A is	h that half of the shar 	e of A is equal to two thirds of	D
	(a) Rs.6	(b) Rs.10	(c) Rs.9	(d) Rs.8	
Q136	The number of k number of kilogro to feed 2800 chi	ilograms of corn need ams needed to feed 2, ckens?	ded to feed 5,000 chio 800 chickens. How mar	ckens is 30 less than twice the ny kilograms of corn are needed	С
	(a) 70	(b) 110	(c) 140	(d) 190	
Q137	Divide 50 into tv 	wo parts such that th	e sum of their recipr	ocals is 1/12. The numbers are	D
	(a) (24, 26)	(b) (28, 22)	(c) (27, 23)	(d) (20, 30)	
Q138	A piece of string long as the middl The length of the	g is 40 cms long. It is a le-sized and the short e shortest piece (in cn	cut into three pieces. est pieces are 23 cms n) is	The longest piece is 3 times as shorter than the longest piece.	С
	(a) 27 cm	(b) 5 cm	(c) 4 cm	(d) 9 cm	
Q139	A piece of iron ro more, the cost w	od costs Rs.60. If the r vould remain unchange	od was 2 metre shorte ed. What is the length	er and each metre costs Rs.1.00 of the rod?	A
	(a) 12m	(b) 22m	(c) 20m	(d) 32m	
Q140	A train travels f same distance at distance is	irst 300 kms at an av t an average rate of 6 	erage rate of 30 Km p 0 Km per hour then the	per tar and further travels the eaverage speed over the whole	B

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(a) 35km per hour	(b) 40 Km per hour	(c) 42 Km per hour	(d) 45 Km per hour	
Q141	On a certain map, 3 represent?	3/8 of an inch represe	ents 120 miles. How m	any miles does 13/4 inches	D
	(α) 300	(b) 360	(c) 400	(d) 560	
Q142	If four pens cost Rs Rs. 29.407	.1.96, what is the gree	atest number of pens	that can be purchased for	С
	(a) 11	(b) 14	(c) 15	(d) 16	
Q143	A freight train and a towns that are 500 average rate of spe rate of speed of the the freight train?	a passenger train star miles apart. After 3 eed of the passenger t freight trains, what is	et towards each other hours the trains are rain is 20 miles per ho s the average rate of	at the same time from two still 80 miles apart. If the our faster than the average speed, in miles per hour, of	D
	(α) 40	(b) 45	(c) 50	(d) 60	
Q144	A motor boat travel an hour less time th miles of the lake?	ing at 18 miles per hou an it took when trave	ur traveled the length ling at 12 miles per ho	of a lake in one quarter of our. What was the length in	B
	(α) 6	(b) 9	(c) 12	(d) 15	
Q145	If a car is traveling from 10:40 a.m. to 1: (a) 165	at a constant rate of 00 p.m. of the same do (b) 150	45 miles per hour, ho αγ? (c) 120	w many miles does it travel (d) 105	D
Q146	The total cost curve 18 copies of photogr the photograph is (a) Rs 140	e of the number of cop eaphs are Rs.80 and R (b) Rs 90	oies photograph is line s.106 respectively. The	ear. The total cost of 5 and en the cost for 10 copies of (d) Rs 130	В
Q147	A factory produces respectively. The lin	300 units and 900 ur ear equation of the to	nits at a total cost of	F Rs.6800/- and Rs.10400/-	С
	(a) $y = 6x + 1,000$	(b) y = 5x + 5,000	(c) $y = 6x + 5,000$	(d) None	
Q148	If in Question No. 14 the level of	47, the selling price is 	Rs.8 per unit the bre	eak even point will arise at	С
	(a) 1,500 units	(b) 2,000 units	(c) 2,500 units	(d) 3,000 units	
Q149	If instead in terms production levels ha	of Question No. 147 ve to be elevated to	if a profit of 2000/-	is to be earned sale and	B
	(a) 3,000 units	(b) 3,500 units	(c) 4,000 units	(d) 3,700 units	
Q150	If instead in terms maintain production	of Question No. 147, i level at	f a loss of 3,000/- Is	budgeted the factory may	A
	(a) 1,000 units	(b) 1,500 units	(c) 1,800 units	(d) 2,000 units	
Q151	A factory produces equation of the toto	200 bulbs for a total o Il cost line is	cost of Rs.800/- and 4	00 bulbs for Rs.1200/ The	B
	(a) $2x - y + 100 = 0$	(b) 2x - y + 400 = 0	(c) $1x - y + 400 = 0$	(d) None	
Q152	If in terms of Quest would be	ion No. 151, the facto	ory intends to produce	e 1000 butts the total cost	A
	(a) Rs.2,400	(b) Rs.2,200	(c) Rs.2,300	(d) Rs.2,100	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Lectures & Books,

 YouTube
 Telegram
 Whatsapp:
 8888111134
 Www.pranavchandak.com

Q153	A manufacturer produces 60 T.V. sets at a cost of Rs.2,20,000 and 125 T.V. sets at a Rs.2,87,500. Assuming the cost one to be linear, find the equation of the line and th it to estimate the cost of 95 sets.	cost of nen use	С
	(a) Rs.3,52,500 (b) Rs.1,32,500 (c) Rs.2,42,500 (d) Rs.3,62,500		
Q154	If an investment of Rs.1,000 and 100 yield an income of Rs.90 and Rs.20 respective earning Rs.50, investment required be	ely. For	D
	(a) Less than Rs.500 (b) Rs. Over 500 (c) Rs.485 (d) Rs.486		
Q155	The equation in terms of Question No. 154 is		С
	(a) $7x - 9y + 1100 = 0$ (b) $7x - 90y + 1000 = 0$		
	(c) $7x - 90y + 1100 = 0$ (d) $7x - 90y - 1100 = 0$		
Q156	If an investment of Rs.60,000 and Rs.70,000 respectively yields an income of R Rs.6,500 an investment of Rs.90,000 would yield income of	s.5,750	B
	(a) Rs.7,500 (b) Rs.8,000 (c) Rs.7,750 (d) Rs.7,800		
Q157	In terms of Question No. 156 an Investment Rs.50,000 would yield income of		A
	(a) Exactly Rs.5,000 (b) Little over Rs.5,000		
	(c) Little less than Rs.5,000 (d) At least Rs.6,000		
Q158	The equation in terms of Question No. 157 is	1	B
	(a) $3x + 40y + 25,000 = 0$ (b) $3x - 40y + 50,000 = 0$		
	(c) $3x - 40y + 25,000 = 0$ (d) $3x - 40y - 50,000 = 0$		
Q159	One machine can seal 360 packages per hour & an older machine can seal 140 pa per hour. How many minutes will the two machines working together take to seal a t 700 packages?	ckages total of	С
	(a) 48 (b) 72 (c) 84 (d) 90		
Q160	If x people working together at the same rate can complete a job in H hours, what the same job can one person working along complete in k hours?	part of	A
	(a) $\frac{k}{rH}$ (b) $\frac{H}{rk}$ (c) $\frac{k}{r+H}$ (d) $\frac{kH}{r}$		
Q161	The demand and supply equations for a certain commodity are $4q + 7p = 17$ and p respectively where p is the market price and q is the quantity then the equilibrium p quantity are	$p = \frac{q}{3} + \frac{7}{4}$ price &	A
	(a) $2, \frac{3}{4}$ (b) $3, \frac{1}{2}$ (c) $5, \frac{3}{5}$ (d) None		
Q162	For a certain commodity, the demand equation giving demand 'd' in kg. for a pric rupees per kg. is d=100 (10-p). The supply equation giving the supply 's' in kg. for a p in rupees per kg is s = 75 (p-3). The market price is such at which demand equals Find the market price and quantity that will be bought and sold.	e 'p' in rice 'p' supply.	С
	(a) 7,500, 600 (b) 6,300, 300 (c) 7,300, 300 (d) 7,600, 300		
Q163	The wages of 8 men and 6 boys amount to Rs.33. if 4 men earn Rs.4.50 more than determine the wages of each man and boy.	5 boys	B
	(a) (Rs.1.50, Rs.3) (b) (Rs.3, Rs.1.50) (c) (Rs.2.50, Rs.2) (d) (Rs.2, Rs.2.50)		
Q164	One student is asked to divide a half of a number by 6 and other half by 4 and then the two quantities. Instead of doing so the student divides the given number by 5. answer is 4 short of the correct answer then the actual answer is	to add . If the	С

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(α) 320	(b) 400	(c) 480	(d) None	
Q165	If x+4x-3x+8=0, ther	IХ			A
	(a) -4	(b) -2	(c) 0	(d) 6	
Q166	If 2x+5=-25 and -3y	-6=48, then xy			D
	(a) -270	(b) -90	(c) 90	(d) 270	
Q167	If $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$ and $\frac{1}{x} - \frac{1}{y} = \frac{1}{4}$	$=\frac{3}{4}$, then x			D
	$(\alpha)\frac{1}{4}$	(b) $\frac{1}{2}$	(c) 1	(d) 2	
Q168	A linear equation ho	1S			Α
	(a) 1 root	(b) 2 roots	(c) 3 roots	(d) No roots	
Q169	If $4x + 5y = 83$ and $\frac{3}{2}$	$\frac{x}{y} = \frac{21}{22}$, then y-x =	·		В
	(a) 3	(b) 4	(c) 7	(d) 1	
Q170	The solution of simul	taneous linear equation	ons 2X +3Y = 17, 3X -2Y	′ = 6 is	С
	(a) X =4, Y =4	(b) X =3, Y =4	(c) X =4, Y =3	(d) X =3, Y =3	
Q171	The value of $\frac{16x^{-1}}{4x^{2/3}}$ is				С
	(a) 4x- ^{3/5}	(b) 4x ^{5/3}	(c) 4x- ^{5/3}	(d) None	
Q172	Solving 6x + 5y - 16=	0 and 3x-y-1 = 0 we g	et values of x, y as		B
	(a) 1,1	(b) 1,2	(c) -1,2	(d) 0,2	
Q173	$\frac{x}{p} + \frac{y}{q} = 2, x+y = p+q o$	re satisfied by the va	lues given by the pair	·	Α
	(a) (x = p y = q)	(b) (x-q y-p)	(c) (x = 1 y = 1)	(d) None	
Q174	1.5x + 2.4y = 1.8 2.5(;	x + 1) = 7y have solutio	ns		В
	(a) (0.5, 0.4)	(b) (0.4, 0.5)	(c) $\frac{1}{2}, \frac{2}{5}$	(d) (2, 5)	
Q175	Value of k for which	roots are equal of giv	ven equation 4x ² - 12x -	+ k = 0 is	B
	(a) 144	(b) 9	(c) 5	(d) None	
Q176	Solve $x^2 - 5x + 6 = 0$				B
	(a) 5 and 3	(b) 3 and 2	(c) 4 and 3	(d) 5 and 2	
Q177	$If \frac{x-bc}{b+c} + \frac{x-ca}{c+a} + \frac{x-ab}{a+b} =$	a + b + c the value of x	is		D
	(a) $a^2 + b^2 + c^2$	(b) a (a + b + c)	(c) (a + bXb + c)	(d) ab + be + ca	
Q178	$If \frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{x-3}{x+3} - \frac{x+3}{x-3}$	$\frac{2}{3}$ then the values of x of	are		A
	(α) 0, ±√6	(b) 0, ±√3	(c) 0, ±2√3	(d) None	
Q179	The values of x in th	e equation $7(x + 29)^2 +$	$59^2 = 35xp + 117p^2$ are	·	A
0480	(a) (4p, -3p)	(b) (4p, 3p)	(C) (—4p, 3p)	(a) (-4p, -3p)	_
Q180	The solution of the e	equation $\frac{\partial x}{x+1} + \frac{\partial (x+1)}{x} = 1$	3 are		D
	(a) (2, 3)	(b) (3, -2)	(c) (-2, -3)	(a) (2, -3)	
Q181	I he solution of the e	equation $3x^2 - 17x + 24 =$	= $0 \text{ are } $.	$(d) \left(2^{2}\right)$	С
	(a) (2, 3)	$(D)\left(2,3\frac{-}{3}\right)$	(C) $(3, 2\frac{-}{3})$	(a) $(3, \frac{1}{3})$	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

Q182	The equation $\frac{3(3x^2+1)}{6}$	$\frac{1}{5^{(1)}} + 2x^2 + 9 = \frac{2x^2 + 96}{7} + 6$	6 has got the solution	as	С
	(α) (1, 1)	(b) (1/2, -1)	(c) (1, -1)	(d) (2, -1)	
Q183	Number of roots of	equation $[(x + 2) \times (x - $	- 5)] / [(x - 3) × (x + 6)]	= (x - 2)/(x + 4) is	Α
	(α) 1	(b) 2	(c) 3	(d) No root	
Q184	If $2^{2\times+3} - 3^2 \cdot 2^{\times} + 1 = 0$	then values of x are _	·		D
	(a) (O, 1)	(b) (1, 2)	(c) (0, 3)	(d) (0, -3)	
Q185	Solve $(x - \frac{1}{x})^2 + 2(x - \frac{1}{x})^2$	$+\frac{1}{x} = 7\frac{1}{4}.$			Α
	(a) $x = \frac{-9 \pm \sqrt{65}}{4}$ or $x =$	$2\frac{1}{2}$	(b) $x = \frac{-9 \pm \sqrt{55}}{4}$ or $x =$	$=3\frac{1}{2}$	
	(c) $x = \frac{-9 \pm \sqrt{45}}{2}$ or $x = 1$	$4\frac{1}{2}$	(d) $x = \frac{-9 \pm \sqrt{35}}{5}$ or $x =$	$=2^{\frac{1}{2}}$	
Q186	Solve $2^{x-2} + 2^{3-x} = 3$	2	4	2	С
GIOU	(a) x = 5 or x = 4	(b) x = 3 or x = 5	(c) x = 2 or x = 3	(d) x = 1 or x = 2	
Q187	The solution of the	equation $x = \sqrt{25 - x^2}$	=1 is		D
	(a) x = -3	(b) $x = \pm 5$	(c) $x = 1$	(d) x = 4	
Q188	Determine the value	e of x for the equation	n x ² - 8x + 16 = 0		Α
	(a) 4, -4	(b) -4, -4	(c) 2, 6	(d) 6, 2	
Q189	Solving equation $\frac{6x+1}{x}$	$\frac{1}{x^2} + \frac{2x^2 - 1}{x^2 + 1} = \frac{10x - 1}{1}$ we ge	t roots as		B
	α) ±1	(b) +1	(c) -1	(d) 0	
Q190	Solve for x, 4 [×] - 3.2 [×]	$^{+2} + 2^5 = 0$			D
	(a) 4, 8	(b) -2, -3	(c) 2, 6	(d) 2, 3.	
Q191	Solving 9 [×] = 3 ^y and5 [×]	$x^{+y+1} = 25^{xy}$ we get the f	ollowing roots as	·	Α
	(a) (1, 2), $\left(\frac{-1}{4}, \frac{-1}{2}\right)$	(b) 0, 1, 3	(c) 0, 3	(d) 1, 3	
Q192	Solving $z^2 - 6z + 9 =$	$4\sqrt{z^2-6z+6}$ following	ng roots are obtained		С
	(a) 3 + 2√3, 3 - 2√3	(b) 51	(c) All the above	(d) None	
Q193	Solving equation 2(3	$(x - \frac{1}{x})^2 - 5(x + \frac{1}{x} + 2) +$	18 = 0 we get roots as	s under	D
	(a) O	(b) 1	(c) -1	(d) - 2 ± √3	
Q194	(a) 0 Solving $x^2+y^2-25 = 0$	(b) 1 and x-y-1 = 0 we get t	(c) -1 .he roots as under	(d) - 2 ± √3	A
Q194	(a) 0 Solving x ² +y ² -25 = 0 (a) ± 3, ± 4	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3	(c) -1 .he roots as under (c) 0, 3, 4	(d) - 2 ± √3 	A
Q194 Q195	(a) O Solving $x^2+y^2-25 = 0$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{x^2} - 13 = 0$ and $\frac{1}{x^2}$	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3 $+\frac{1}{x}-5=0$ we get the	(c) -1 .he roots as under (c) 0, 3, 4 e roots as under	(d) - 2 ± √3 	A
Q194 Q195	(a) O Solving $x^2+y^2-25 = 0$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0 \text{ and } \frac{1}{x}$ (a) $\frac{1}{8} / \frac{1}{5}$	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3 $\frac{1}{x} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2} / \frac{1}{3}$	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}$, $\frac{1}{5}$	(d) $-2 \pm \sqrt{3}$ (d) 0, -3 , -4 (d) $\frac{1}{4}, \frac{1}{5}$	AB
Q194 Q195 Q196	(a) O Solving $x^2+y^2-25 = 0$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$ (a) $\frac{1}{8}, \frac{1}{5}$ Examine the nature	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3 $\frac{1}{x} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2} \cdot \frac{1}{3}$ of the roots of x ² - 8x	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}' \frac{1}{5}$ $x^2 + 16 = 0$	(d) $-2 \pm \sqrt{3}$ (d) 0, -3 , -4 (d) $\frac{1}{4}, \frac{1}{5}$	A B A
Q194 Q195 Q196	(a) O Solving $x^2+y^2-25 = O$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$ (a) $\frac{1}{8}, \frac{1}{5}$ Examine the nature (a) Roots are real a	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3 $\frac{1}{x} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2} \cdot \frac{1}{3}$ of the roots of x ² - 8x and equal	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}' \frac{1}{5}$ $x^2 + 16 = 0$ (b) Roots are real,	(d) - 2 ± √3 	A B A
Q194 Q195 Q196	(a) O Solving $x^2+y^2-25 = O$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$ (a) $\frac{1}{8}, \frac{1}{5}$ Examine the nature (a) Roots are real a (c) Roots are imaging	(b) 1 and x-y-1 = 0 we get t (b) $\pm 2, \pm 3$ $\frac{1}{4} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2}'\frac{1}{3}$ of the roots of x ² - 8x and equal hary and unequal	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}$ / $\frac{1}{5}$ x^2 +16 = 0 (b) Roots are real, (d) Roots are real,	(d) - 2 ± √3 	A B A
Q194 Q195 Q196 Q197	(a) O Solving $x^2+y^2-25 = 0$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$ (a) $\frac{1}{8}, \frac{1}{5}$ Examine the nature (a) Roots are real a (c) Roots are imaging Examine the nature	(b) 1 and x-y-1 = 0 we get t (b) ± 2, ± 3 $\frac{1}{x} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2}'\frac{1}{3}$ of the roots of x ² - 8x and equal hary and unequal of the roots of 3x ² - 8	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}' \frac{1}{5}$ t^2 +16 = 0 (b) Roots are real, (d) Roots are real, $t^3x + 4 = 0$	(d) - 2 ± √3 	A B A C
Q194 Q195 Q196 Q197	(a) O Solving $x^2+y^2-25 = 0$ (a) $\pm 3, \pm 4$ $\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$ (a) $\frac{1}{8}, \frac{1}{5}$ Examine the nature (a) Roots are real a (c) Roots are imagin Examine the nature (a) Roots are real a	(b) 1 and x-y-1 = 0 we get t (b) ± 2 , ± 3 $\frac{1}{4} + \frac{1}{y} - 5 = 0$ we get the (b) $\frac{1}{2} \cdot \frac{1}{3}$ of the roots of $x^2 - 8x$ and equal hary and unequal of the roots of $3x^2 - 8$	(c) -1 the roots as under (c) 0, 3, 4 e roots as under (c) $\frac{1}{13}$ $\frac{'1}{5}$ $x^2 + 16 = 0$ (b) Roots are real, (d) Roots are real, bx + 4 = 0 (b) Roots are imag	(d) - 2 ± √3 	A B A C

🕨 YouTube 🛛 🤇

Q198	8 Examine the nature of the roots of $5x^2-4x+2 = 0$			
	(a) Roots are imaginary and unequal (b) Roots are real and unequal			
	(c) Roots are real, rational and unequal (d) Roots are real, irrational and unequal			
Q199	Examine the nature of the roots of $2x^2 - 6x - 3 = 0$	D		
	(a) Roots are real and unequal (b) Roots are imaginary and unequal			
	(c) Roots are real, rational and unequal (d) Roots are real, irrational and unequal			
Q200	The equation $ax^2 + bx + c = 0$ does not have any solution if	B		
	(a) $b^2 - 4ac = 0$ (b) $b^2 - 4ac < 0$ (c) $b^2 - 4ac > 0$ (d) $b^2 + 4ac = 0$			
Q201	The equation $ax^2 + bx + c = 0$ does not have any solution if	В		
	(a) $b^2 - 4ac = 0$ (b) $b^2 - 4ac < 0$ (c) $b^2 - 4ac > 0$ (d) $b^2 + 4ac = 0$			
Q202	In the equation a x^2 + bx + c = 0, the roots are determined from	B		
	(a) $b^2 < 4ac$ (b) $b^2 - 4ac$ (c) $b^2 > 4ac$ (d) $b^2 = 4ac$			
Q203	The roots of a x^2 + bx + c = 0, are real and unequal if	С		
	(a) $b^2 < 4ac$ (b) $b^2 - 4ac$ (c) $b^2 > 4ac$ (d) $b^2 = 4ac$			
Q204	If $b^2 - 4ac = 0$ the roots are	B		
	(a) Real & Unequal (b) Real & Equal			
	(c) Irrational & Unequal (d) Rational & Unequal			
Q205	If a & β be the roots of x ² + 7x +12 = 0, find equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$	B		
	(a) $x^2 - 40x + 49 - 0$ (b) $x^2 - 35x + 39 = 0$			
	(c) $x^2 - 50x + 49 = 0$ (d) $x^2 - 40x - 49 = 0$			
Q206	If α , β be the roots of $2x^2-4x-1 = 0$, find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.	C		
	(a) -42 (b) -22 (c) -32 (d) -52			
Q207	If $\alpha \beta$ are roots of equation $x^2 - 5x + 6 = 0$ the equation with roots $(\alpha^2 + \beta)$ and $(\alpha + \beta^2]$ is	Α		
	(a) $x^2 - 9x + 99 = 0$ (b) $x^2 - 18x + 90 = 0$			
	(c) $x^2 - 18x + 77 = 0$ (d) None			
Q208	If $\alpha \beta$ be the roots of the equation $2x^2 - 4x - 3 = 0$ the value of $\alpha^2 + \beta^2$ is	Α		
	(a) 5 (b) 7 (c) 3 (d) -4			
Q209	If p and q are the roots of $x^2 + x + 1 = 0$ then the values of $p^3 + q^3$ becomes	D		
	(a) 2 (b) -2 (c) 4 (d) -4			
Q210	The roots of the equation $(q - r) \times x^2 + (r - p) \times x + (p - q) = 0$ are	D		
	(a) (r - p) / (q - r), 1 (b) (p - q) / (q - r), 1			
	(c) $(q - r) / (p - q)$, 1 (d) $(r - p) / (p - q)$, 1			
Q211	Roots of equation $ax^2 - bx + c = 0$ are two consecutive integers then $b^2 - 4ac$ is	A		
	(a) 3 (b) -2 (c) -1 (d) 1			
Q212	If α , β be the roots of a quadratic equation if $\alpha + \beta = -2$, $\alpha \beta = -3$ Find quadratic equation	B		
	(a) $x^2 + 2x - 7 = 0$ (b) $x^2 + 2x - 3 = 0$ (c) $x^2 - 2x - 3 = 0$ (d) $x^2 - 2x + 7 = 0$			
Q213	If α , β are the roots of the quadratic equation $2x^2 - 4x = 1$, then the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$	С		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) -11	(b) 22	(c) -22	(d) 11	
Q214	The sum of the digit the resulting number	s of a two digit numbe • will be equal. The nur	er is 10. If 18 be subtr nber is	acted from it the digits in	B
	(a) 37	(b) 73	(c) 75	(d) None	
Q215	The product of two r the smaller is 2. The	numbers is 3200 and th numbers are	he quotient when the l	arger number is divided by	D
	(a) (16, 20)	(b) (60, 20)	(c) (60, 30)	(d) (80, 40)	
Q216	Divide 25 into two p	arts so that sum of the	eir reciprocals is $\frac{1}{6}$.		D
	(a) 12 and 13	(b) 9 and 16	(c) 11 and 14	(d) 10 and 15	
Q217	Divide 56 into two second by 48. The pe	parts such that three arts are	e times the first part	exceeds one-third of the	A
	(a) (20,36)	(b) (25, 31)	(c) (24, 32)	(d) None	
Q218	The hypotenuse of a sides is 4cm. The sid	right-angled triangle les are	is 20 cm. The differe	nce between its other two	B
	(α) (11cm, 15cm)	(b) (12cm, 16cm)	(c) (20cm, 24cm)	(d) None	
Q219	Two squares have s sides of the squares	ides p cm and (p + 5) are	cms. The sum of their	squares is 625 sq.cm. The	С
	(a) (10cm, 30cm)	(b) (12cm, 25cm)	(c) (15cm, 20cm)	(d) None	
Q220	Particular company Rs. 2 more than thria a day then the numb	produces some article ce the number of artic er of articles is	es on a day. The cost c eles and the total cost 	of production per article is of production is Rs. 800 on	A
	(α) 16	(b) 14	(c) 18	(d) 15	
Q221	The satisfying value	of x ³ + x ² - 20x = 0 are	·		В
	(a) (1, 4, -5)	(b) (2, 4, -5)	(c) (0, -4, 5)	(d) (0, 4, -5)	
Q222	If $4x^3 + 8x^2 - x - 2 = 0$) then value of (2x + 3)	is given by		Α
	(a) 4, -1, 2	(b) -4, 2, 1	(c) 2, -4, -1	(d) None	
Q223	ax ³ = c is a				В
	(a) quadratic eq ⁿ	(b) cubic equation	(c) linear equation	(d) None	
Q224	Roots of the cubic e	quation $x^3 - 7x + 6 = 0$	are		С
	(a) 1, 2, 3	(b) 1, -2, 3	(c) 1, 2, -3	(d) 1, -2, -3	
Q225	8 is the solution of t (a) $\frac{x+4}{4} + \frac{x-5}{3} = 11$	he equation (b) $\frac{x+4}{2} + \frac{x+10}{9} = 8$	$(c)\frac{x+24}{5} = 4 + \frac{x}{4}$	$(d)\frac{x-15}{10} + \frac{x+5}{5} = 4$	B
Q226	Solution for the pair	of equations $\frac{1}{100} + \frac{1}{1000}$	$=\frac{9}{20}, \frac{1}{200} - \frac{1}{200} = \frac{4}{45}$ is given	ven by	Α
	$(\alpha)\left(\frac{1}{4},\frac{1}{3}\right)$	(b) $\left(\frac{1}{3}, \frac{1}{4}\right)$	(c) (3, 4)	(d) (4, 3)	
Q227	If 5x+y=19 and x-3y=	7, then x+y			С
	(a) -4	(b) -1	(c) 3	(d) 4	
Q228	Two variables x and (a) 8.80	y are related by 7x + (b) 8.86	7y + 13 = 0 and x = 7, t (c) -8.80	hen y is (d) -8.86	D

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Telegram

Whatsapp: 8888111134

Q229	$\frac{4x}{3} - 1 = \frac{14}{15}x + \frac{19}{5}$. Find	d x =			Α
	(α) 12	(b) 15	(c) 20	(d) 8	
Q230	1.5x + 3.6y = 2.1; 2.5	(x + 1) = 6y			Α
	(α) (0.2, 0.5)	(b) (0.5, 0.2)	(c) (2, 5)	(d) (-2, -5)	
Q231	Solving equation 3x	² - 14x + 8 = 0 we get 1	°oots as		С
	(a) ±4	(b) ±2	(c) 4, 2/3	(d) None	
Q232	If $\alpha\beta$ are the roots of	of equation $x^2 - 5x + 6 =$	= 0 equation with roots	s (α+ β) and (α - β) is	Α
	(a) $x^2 - 6x + 5 = 0$	(b) $2x^2 - 6x + 5 = 0$	(c) $2x^2 - 5x + 6 = 0$	(d) $x^2 - 5x + 6 = 0$	
Q233	If α and β are the r	oots of the equation of	$ax^{2} + bx + c = 0$, then (α+ β)² is	С
	(a) -b ² /a ²	(b) c²/a²	(c) b²/a²	(d) bc / a	
Q234	A quadratic polynor	mial $f(x) = ax^2 + bx + c f$	for all $x \in R$ can be fac	torized into rational factors	D
	over R if & only if _ (a) $b^2 = (1ac > 0)$	·	(b) $b^2 - 4ac - 0$		
	(a) $b^2 - 4ac < 0$		(d) $b^2 - 4ac > 0$, perf	ect square or b²-4ac=0	
Q235	Solving (b - c) $x^2 + (x^2)$	(a - a) x + (a - b) = 0	ots obtained are		Δ
G200	$(a) \frac{a-b}{a-b} = 1$	(b) (a - b) (a - c) 1	(c) $\frac{b-c}{c}$ 1		
	$(a)_{b-c}$		(0) _{<i>a-b</i>} , 1		
Q236	Solving equation 3x	2 - 14x + 16 = 0 we get	roots as		B
	(a) ±1	(b) $(2, \frac{-}{3})$	(c) 0	(d) None	
Q237	Value of $\sqrt{6\sqrt{6}\sqrt{6}\sqrt{6}}$	√6∞ =			B
	(α) 3	(b) 6	(c) $\sqrt{42}$	(d) 3√2	
Q238	12 years after a ma	n will be 4 times as he	e was 12 years ago, his	s present age is	В
	(a) 25 years	(b) 20 years	(c) 28 years	(d) 30 years	
Q239	10 years ago, age o will be twice that o	f the father was 4 tim f his son. Present age	es age of his son.10 ye s of the father and the	ars hence, age of the father e son are	A
	(a) (50, 20)	(b) (60, 20)	(c) (55, 25)	(d) None	
Q240	Ten years ago a fat as old as his son. Th	ther was 12 times as o nen their present ages	old as his son and 10 y s are	ears hence he will be twice	B
	(a) 12 yrs, 24 yrs	(b) 12 yrs, 34 yrs	(c) 24 yrs, 42 yrs	(d) 12 yrs,42 yrs	
Q241	Sum of 2 natural nu	mbers is 8 & sum of th	eir reciprocal is 8/15.	Numbers are	Α
	(a) 3 and 5	(b) 6 and 2	(c) 7 and 1	(d) 4 and 4	
Q242	The sum of two num	bers is 38 and their d	ifference is 2. Find the	em.	A
	(a) 20, 18	(b) 10, 12	(c) 17, 15	(d) None	
Q243	Two numbers are ir are	n the ratio 2:3 and the	e difference of their s	squares is 320. The numbers	B
	(a) 12,18	(b) 16,24	(c) 14,21	(d) None	
Q244	The sum of the two form an equation in	numbers is 8 and the x and hence find the	sum of their squares is numbers. The numbers	s 34. Taking one number as x s are	С
	(a) (7, 10)	(b) (4, 4)	(c) (3, 5)	(d) (2, 6)	

Q245	Five times of a positive whole number is 3 less than twice the square of the number. The number is					
	(a) 3	(b) 4	(c) -3	(d) 2		
Q246	If numerator of numerator is de	' a fraction is increa ceased by 4 & denom	sed by 2 & denominato inator by 2 it becomes	or by 1 it becomes 1. Again, if 1/2. Fraction =	C	
	(a) 3/8	(b) 5/8	(c) 7/8	(d) 1/8		
Q247	A number consis place. If 54 is su	t of two digits. The d Ibtracted from the nu	igits in the ten's place i Imber the digits are rev	s 3 times the digit in the unit's versed. The number is	С	
	(a) 39	(b) 92	(c) 93	(d) 94		
Q248	Denominator of fraction increas	a fraction exceeds r es by unity. The fract	numerator by 2. If 5 be ion is	e added to the numerator the	D	
	(a) 5/7	(b) 1/3	(c) 7/9	(d) 3/5		
Q249	A freight train left a station at 12 noon, going north at a rate of 50 miles per hour. At 1:00 pm, a passenger train left the same station, going south at a rate of 60 miles per hour. At what time were the trains 380 miles apart?					
	(a) 3:00 pm	(b) 4:00 pm	(c) 4:30 pm	(d) 5:00 pm		
Q250	Julie can type a manuscript in 4 hours. Pat takes 6 hours to type the same manuscript. If Julie and Pat begin working together at 12 noon, at what time will they complete the typing of the manuscript?					
	(a) 2:24 pm	(b) 2:30 pm	(c) 2:40 pm	(d) 3:00 pm		
Q251	A firm produces curve to be a st	50 units of a produc raight-line the cost o	t for Rs.320 and 80 unit f producing 110 units to	ts for Rs.380. considering cost be estimated as	С	
	(a) Rs.400	(b) Rs.420	(c) Rs.440	(d) None		

CHAPTER 3. TIME VALUE OF MONEY

Some Important Terms

- Interest: Interest is the price paid by a borrower for use of a lender's money.
- Principal: Principal is the initial amount lent/borrowed.
- **Rate of Interest:** The rate at which the interest is charged for a defined period of time for use of principal (generally on yearly basis) is known as rate of interest. It is usually expressed as percentages.
- Time: It is no. of years for which the principle is borrowed or loaned.
- Accumulated amount (Balance): It is the final value of an investment. [Principal + Interest].

CONCEPT 1: SIMPLE INTEREST

- Simple interest is the interest computed on the principal for the entire period of borrowing.
- Interest is calculated on the original principal and not on interest previously earned.

NO Interest is paid on Interest Earned.

Simple Interest (SI) = Principal (P) × Rate of Interest (R) × Time in years (T).

Accumulated Amount (A) = P + SI = P + PRT = P(1 + RT).

PC NOTE:

YouTube

Sometimes, we are given two different accumulated amounts for two time period & we have to find out interest, principal & Rate of Interest.

Let two accumulated amounts be $A_1 \& A_2 \&$ time period be $T_1 \& T_2$

Interest per year = $\frac{A_2 - A_1}{T_2 - T_1}$;

Rate of Interest = $\frac{A_1 - A_2}{A_1 T_2 - A_2 T_1} \times 100$

How to find <u>Time or Rate</u> to multiply a sum at S.I.

Particular	Sum is 1.5 times	Sum is Doubled	Sum is Trebled	Sum is 4 times
Time Req. (Yrs)	$T = \frac{o.5}{R}$ yps	$T = \frac{1}{R}$ yps	$T = \frac{2}{R}$ yps	$T = \frac{3}{R}$ yps
Rate Req.	$R = \frac{o.5}{T}$	$R = \frac{1}{T}$	$R = \frac{2}{T}$	$R = \frac{3}{T}$

CQ1: A sum of money amount to Rs. 6,200 in 2 years and Rs. 7,400 in 3 years. The principal & rate of interest are:

Instagram Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

(a) Rs. 3,800, 31.57% (b) Rs. 3,000, 20%

(c) Rs. 3,500, 15% (

(d) None

CQ2: Calculate the simple interest on Rs. 50,000 at 12% simple interest for 5 years?

CQ3: Sania Mirza deposited Rs. 50,000 in a bank for 20 years with interest rate of 5.5% p.a. How much interest would she earn? Find the final value of her investment.

CQ4: Find rate of interest if amount owed after 6 months is Rs. 1050 & borrowed amount is Rs. 1000.

CQ5: Katrina gave Rs. 70,000 as loan to Salman Khan @ 6.5% p.a. SI. She received Rs. 85,925 after the end of term. Find out the period for which loan was given by Katrina to Salman Khan.

CQ6: Sharmaji deposited a particular amount in a bank for 7.5 years @ 6% p.a. SI. He received Rs. 1,01,500 at the end of the term. Compute initial deposit of Sharmaji.

CQ7: Rs. 46,875 was lent out at SI & at the end of 1 year & 8 months, total amount was Rs. 50,000. Find R.

CQ8: What amount will produce Rs. 28,600 as an interest in 3 years and 3 months at 2.5% p.a. simple interest?

CQ9: In what time will Rs. 85,000 amount to Rs. 1,57,675 at 4.5 % p.a.?

CQ10: A sum doubles itself in 10 years. Find interest rate.

(a) 10 %	(b) 12 %	(c) 15 %	(d) 20 %
----------	----------	----------	----------

CONCEPT 2: COMPOUND INTEREST

- If the interest of a period is added to the principal & interest for next period is calculated on revised principal [Original Principal + Interest], it is called compound interest.
- In CI, principal does not remain same, i.e Principal goes on changing every year.

Interest is charged on Interest Earned.

CQ11: PC deposited Rs. 1 crore in a nationalized bank for 3 years. If the rate of interest is 7% p.a. Calculate the interest after 3 years if interest is compounded annually. Also calculate the amount at the end of third year.

Conversion Period

The fixed period at the end of which the interest is calculated & added to the principal is called conversion period.

Ex: When the interest is calculated & added to the principal every 6 months, conversion period is six months. In this case number of conversion periods per year (denoted by K) would be two.

Conversion period & frequency	Number of Conversion Period in a Year (K)	Formula to be used
12 Months (Annually)	1	A = P (1 + R) ^T
6 Months (Semi annually)	2	$A = P (1 + \frac{R}{2})^{2T}$
3 Months (Quarterly)	3	$\mathbf{A} = \mathbf{P} \left(1 + \frac{R}{4}\right)^{4T}$
1 Month (Monthly)	12	$A = P (1 + \frac{R}{12})^{12T}$
1 Day (Daily)	365	$\mathbf{A} = \mathbf{P} \left(1 + \frac{R}{365} \right)^{365T}$

Formula to be used: Amount (A) = P $(1 + \frac{R}{K})^{KT}$ where 'K' is no. of conversion per year.

PC Note:

- > If rate of interest is same, CI increases with increase in frequency of compounding.
- > If nothing is mentioned in the problem, the interest is taken as 1 yr.
- > SI & CI. Are equal for the first conversion period on same sum and same rate
- > Amount for CI (P, A_1 , A_2 ,.....) form a GP, where r = (1 + i). Also true for intervals.
- > CI for each period also forms a GP, where $r = (1 + i) [CI_{2nd} CI_{1st} = SI \text{ on } CI_{1st})$
- CI formula can be used in case of uniform periodical increase at fixed rate like population growth. In case of uniform decrease like depreciation (W.D.V basis) i is replaced by -i.

Years required for a <u>Sum to Double</u> at CI with annual compounding

Thumb Rule	R = 10%	R = 11%	R = 12%	R = 13%	R = 14%
$T = 0.35 + \frac{0.69}{R}$	7.25 Yrs.	6.62 Yrs	6.1 Yrs	5.65 Yrs	5.27 Yrs

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

Re

ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CMA FOUNDATION

CQ12: Rs. 10,000 is invested at annual rate of interest of 10%. What is the amount after 2 yea	เทร
if compounded?	

(a) Annually

(b) Semi-annually

(c) Quarterly

(d) Monthly

Points to Remember

- Different Interest Rate for different year (R_1, R_2, R_3) → $A_n = P(1+R_1) (1+R_2) (1+R_3) \dots (1+R_n)$. [Use Calculator as: $A_n = (1+R_1\% + R_2\% + R_3\% + \dots + R_n\%) \times P$
- Time required for a sum to double itself @ 'R' rate of interest (CI) = $[0.35 + \frac{0.69}{P}]$ years.
- CI for 1st year = SI for 1st year. But then 2nd year onwards, CI & SI will be different.

For Annual Compounding only

- CI for 2 years SI for 2 years = PR²
- CI for 3 years SI for 3 years = PR²(R+3)
- $\blacksquare \quad \mathbf{R} = \frac{2 \left(CI_2 SI_2 \right)}{SI_2}$

CONCEPT 3: NOMINAL RATE & EFFECTIVE RATE OF INTEREST

- 1. Nominal Rate: Annual Compound Interest Rate is called N.R. [Compounded annually]
 - It is the stated interest rate. It is the simplest type of interest rate.
 - This rate works according to the simple interest & does not take into account the compounding periods.

CQ13: If a bank pays 5% compounded annually on a savings account, then 5% is the nominal interest rate

2. Effective Rate of Interest (E): If the amount is compounded more than once a year, the actual rate of interest (we got) is called effective rate of interest. If we compound the interest more than once a year, effective interest rate for the year will be more than actual interest rate per annum.

It is the actual equivalent annual rate of interest at which an investment grows in value when interest is credited more often than once a year.

E = $(1 + \frac{R}{\kappa})^{\kappa} - 1$ [E = Effective interest rate; R = Interest rate per annum; K = No. of conversion period]

PC Note: Effective rate of Interest is relevant when the amount is compounded more than one a year. Effective Interest Rate has nothing to do with Principal. It is related to interest rate & frequency of compounding.

CQ14: Rs. 5,000 is invested in Term Deposit Scheme that fetches interest 6% per annum compounded quarterly. What will be the interest after one year? What is effective rate of interest? E = 6.13%.

CQ15: Which is better investment? (i) 3% p.a compounded monthly or (ii) 3.2% p.a SI. [(1+0.0025)¹² =1.0304]

Solution: K = 12 times; E = $(1 + \frac{R}{K})^n - 1$; E = $(1 + \frac{3}{12})^{12} - 1$; = 1.0304 - 1 = 0.0304. Thus, **E = 3.04%**

Answer: Effective rate of interest < 3.2% & thus SI @ 3.2% per year is the better investment.

JUST FOR KNOWLEDGE

Real Rate of Return: It is so named because it states the **'real rate'** that lender or investor receives after taking the effect of inflation. [Interest rate that exceeds the inflation rate]

Real Rate of Return = Nominal Rate of Return – Inflation.

How Banks attract customers?

While charging interest, they advertise the nominal rate, which is lower and does not reflect how much interest the consumer would owe on the balance after a full year of compounding. While paying interest on saving deposit accounts, they generally advertise the effective rate because it looks higher than the nominal rate.

PC NOTE: More the compounding period in a year, more expensive the loan becomes. So choose a loan in which the interest is compounded annually.

CONCEPT 4: ANNUITY

- Annuity can be defined as a sequence of periodic payments (or receipts) regularly over a specified period of time.
- When we pay (or receive) a fixed amount of money periodically over a specified time period we create an annuity.

Ex: Payment of life insurance premium, EMI of a loan, receipt of pension.

Features of Annuity:

YouTube

- > Amount paid (or received) must be constant over the period of annuity &
- > Time interval between two consecutive payments (or receipts) must be the same.

Types of Annuity Based on Mode of Payment.

- > Annuity regular: Payment is made @ end of each period [Preferred when nothing is said in question]
- > Annuity Due/Annuity Immediate: Payment is made @ beginning of each period.

Instagram Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

62

Perpetuity: Annuity where the receipt (or payment) takes place forever. Since the payment is forever we cannot compute a future value of perpetuity. However we can compute the present value of the perpetuity. $P = \frac{A}{i}$

SOME TERMS RELATED TO ANNUITY						
TERMS MEANING OF TERMS						
Periodic Payment	Size of each Payment of Annuity.					
Annual Rent	Sum of all payments made in one year of an annuity					
Payment Period	Time between two successive payments of an annuity.					
Terms	Total time from first payment period to the last period					
Amount	Total worth of all the payments at conclusion of an annity.					
Present Value Sum of the present values of all the payments of an annuity.						
Sinking Fund	Money accumulated at CI by regular & equal payments for replacement of a wasting asset or liquidation of a loan					

CONCEPT 5: FUTURE VALUE OF ANNUITY

• Future value is the cash value of an investment (done today) in the future.

• It is tomorrow's value of today's money compounded at the given rate of interest.

CQ16: Suppose you invest Rs. 1,000 in FD @ 7% p.a. At the end of 1st year, you will have Rs. 1,070. Rs. 1,070 is the future value of Rs. 1,000 invested for one year at 7%.

We can say that Rs. 1000 today is worth Rs. 1070 in one year's time if the interest rate is 7%.

Thus Rs. 1,144.90 is the future value of Rs. 1,000 invested for two years at 7%.

EXPLANATORY TABLE OF Rs. 1 invested for 4 years @ 6%

End of year	Amount Deposit (Rs.)	Future value at the end of 4 th year (Rs)
0	_	
1	Rs. 1	1 (1 + 0.06) ³ = 1.191
2	Rs. 1	1 (1 + 0.06) ² = 1.124
3	Rs. 1	1 (1 + 0.06) ¹ = 1.060
4	Rs. 1	1 (1 + 0.06) ^O = 1

ollow on Youtub	oe & Telgram for	Revision ·	[.] Pranav Chandak Academy	To Buy Video Lectures & Books,
YouTube	Telegram	[] Instagram	Whatsapp: 8888111134	www.pranavchandak.com

Future Value

4.375

A. FUTURE VALUE OF ANNUITY REGULAR [If nothing is given, we consider it "regular"]

 $FV = P\left[\frac{(1+R)^n - 1}{R}\right]$ where, P = Amount deposited, R = Rate of Interest, N = No. of years (conversion).

CQ17: Find FV of an annuity of Rs. 500 made annually for 7 years @ 14%. [(1.14)7 = 2.5023]

B. FUTURE VALUE OF ANNUITY DUE

[FV of annuity regular × (1+R).]

CQ18. Find FV of an annuity of Rs. 500 made annually for 7 years at interest rate of 14%compounded annually. Given that (1.14)7 = 2.5023.[Ans: Rs. 5365.35]

CQ19: Z invests Rs. 10,000 every year starting from today for next 10 yrs. Interest rate is 8% p.a compounded annually. Find FV of annuity. [(1 + 0.08)10 = 2.15892500] [**Ans:** Rs. 1,56,454.875]

CONCEPT 6: PRESENT VALUE OF ANNUITY

- Present value is today's value of tomorrow's money discounted at the interest rate.
- PV of an annuity = Sum of PV of all the periodic payments discounted @ given rate.

PC Note: FV & PV are related to each other in fact they are the reciprocal of each other.

CQ20: You invested Rs. 1000 at 7% & get Rs. 1,070 at the end of the year. If Rs. 1,070 is FV of today's Rs. 1000; then Rs. 1,000 is the PV of tomorrow's Rs. 1,070. If we invest Rs. 1,000 for two years at 7% p.a, we will get Rs. 1,144.90 after 2 years. It means Rs. 1,144.90 is the FV of today's Rs. 1,000 at 7% & Rs. 1,000 is PV of Rs. 1,144.90.

CQ21: PV of Rs. 1 to be received after 2 yrs compounded annually at 10% interest rate is?

[**Ans:** 0.83]

CQ22: Find PV of Rs. 10,000 to be required after 5 years if interest rate = 9%. [(1.09)5=1.5386]

[**Ans:** 6499.42]

A. PRESENT VALUE OF ANNUITY REGULAR

PV of an annuity (A) = Sum of PV of all the periodic payments discounted @ given rate.

$$\mathsf{PV} = \frac{\mathsf{A}}{(1+R)^1} + \frac{\mathsf{A}}{(1+R)^2} + \frac{\mathsf{A}}{(1+R)^3} + \frac{\mathsf{A}}{(1+R)^4} + \dots + \frac{\mathsf{A}}{(1+R)^N}$$

PV = A $\left[\frac{(1+R)^n-1}{R(1+R)^n}\right]$ where, A = Installment Amount, R = Rate of Interest, n = No. of years (conversion).

CQ23: S borrows Rs. 5,00,000 to buy a house. If he pays equal installments for 20 years and 10% interest on outstanding balance what will be the equal annual installment? [**Ans:** 58,730]

CQ24: Rs. 5,000 is paid every year for ten years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually? [**Ans:** 26,080]

B. PRESENT VALUE OF ANNUITY DUE

- > Compute PV of annuity as if it were a annuity regular for one period short.
- > Add initial cash payment/receipt to the step 1 value.

CQ25: Your mom decides to gift you Rs. 10,000 every year starting from today for the next 5 years. You deposit this amount in a bank as and when you receive and get 10% p.a compounded annually. Find PV of this annuity?

Solⁿ: It is an annuity immediate. For calculating value of the annuity immediate following steps will be followed:

Step 1: Present value of the annuity as if it were a regular annuity for one year less i.e. for four years. = Rs. 10,000 × P (4, 0.10); = Rs. 10,000 × 3.16987; = Rs. 31,698.70.

Step 2: Add initial cash deposit to the step 1 value: Rs. (31,698.70+10,000) = **Rs. 41,698.70.**

CONCEPT 7: SINKING FUND

It is the fund credited for a specified purpose by way of sequence of periodic payments.

Size of Sinking Fund Deposit (A) = $P \times \left[\frac{(1+R)^N - 1}{R}\right]$

Where, A = Total amount to be saved (FV)

P = Periodic Payment

CQ26: How much amount is required to be invested every year so as to accumulate Rs. 3,00,000 at the end of 10 years if interest is compounded annually at 10%?

Answer: A = 3,00,000; N = 10; R = 0.1. we know that $\mathbf{A} = \mathbf{P} \times \left[\frac{(1+R)^N - 1}{R}\right]$;

Thus, 3,00,000 = $P \times \left[\frac{(1+0.1)^{10}-1}{0.1}\right]$; 3,00,000 = $P \times 15.9374246$; Therefore P = **Rs. 18,823.6**.

SOME OTHER IMPORTANT APPLICATIONS

- 1. <u>LEASING</u>: Leasing is a financial arrangement under which owner of the asset (lessor) allows the user of the asset (lessee) to use asset for a defined period of time for a consideration (lease rental) payable over a given period of time. It is like taking an asset on rent.
 - > If Cost of asset > PV of lease rental \rightarrow Lease
 - > If Cost of asset < PV of lease rental \rightarrow Buy

CQ27: ABC Ltd. wants to lease out an asset costing Rs. 10 lacs for 5 years. It has fixed a rental of Rs. 3.1 lacs p.a payable annually starting from the end of first year. Suppose rate of interest

O Instagram Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

is 12% p.a compounded annually on which money can be invested by the company. Is this agreement favourable to the company?

Answer: Here we have to compute PV of the annuity of Rs. 3,10,000 for 5 years @ 12%p.a.

PV Factor for 5 years @ 12% = 3.604776. Thus, PV of Lease annuity = 3,10,000 × 3.604776 = Rs. 11,17,480.

Since PV of Lease annuity > initial cost of the asset, Leasing is favourable to the lessor.

CQ28: A company is considering proposal of purchasing a machine either by making full payment of Rs. 4,000 or by leasing it for 4 years at lease rent of Rs. 1,250. Which option is preferable if rate is 14% p.a.? [Lease]

- 2. <u>CAPITAL EXPENDITURE (INVESTMENT DECISION)</u>: Purchasing an asset (Cash outflows) today in anticipation of Future economic benefits (cash inflow).
 - > If PV of cash inflow > PV of cash outflow \rightarrow Invest
 - > If PV of cash inflow < PV of cash outflow \rightarrow Do NOT invest.

CQ29: A machine with useful life of 7 years costs Rs. 10,000 while another machine with useful life of 5 years costs Rs. 8,000. The first machine saves labour expenses of Rs. 1,900 annually & second one saves labour expenses of Rs. 2,200 annually. Determine preferred course of action. Assume cost of borrowing as 10% p.a.

Answer: (i) PV of annual cost savings for 1st machine = Rs. 1,900 × 4.86842 = Rs. 9,250.

Cost of 1st machine = Rs. 10,000 & it saves Rs. 9,250. Thus, it costs Rs. 750 more than labour cost it saves.

(ii) PV of annual cost savings of 2^{nd} machine = Rs. 2,200 × 3.79079 = Rs. 8,339.74.

Cost of 2nd machine = Rs. 8,000 & it saves Rs. 8339.74. Thus, effective savings in labour cost = Rs. 339.74. Hence, the second machine is preferable.

3. <u>VALUATION OF BOND</u>: A bond is a debt security in which issuer owes holder a debt and is obliged to repay the principal and interest. They are generally issued for a fixed term.

Value of Bond = PV of Interest Paid + PV of Maturity Amount.

CQ30: An investor intends purchasing a 3 year Rs. 1,000 par value bond having nominal interest rate of 10%. At what price the bond may be purchased now if it matures at par and the investor requires a return of 14%?

Answer: Interest on bond for every year = Rs. 100. Maturity Amount = Rs. 1,000.

PV of Bond = $\frac{100}{(1.14)^1} + \frac{100}{(1.14)^2} + \frac{100}{(1.14)^3} + \frac{1000}{(1.14)^3} = 87.719 + 76.947 + 67.497 + 674.972 = 907.125.$

Thus, the bond should be purchased @ Rs. 907.125 or less than it.

CONCEPT 8: PERPETUITY

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date & continue indefinitely or perpetually.

Ex: Fixed coupon payments on permanently invested (irredeemable) sums of money.

A. <u>PV of "Multi period perpetuity</u>":

PVA_{∞} = $\frac{P}{R}$ where, P = Payment/Receipt each period; R = Rate of Interest per each period

CQ31: If I want to retire & receive Rs. 30,000 every month & I want my family to receive the same monthly payment after my death. I can earn an interest of 8% p.a. How much will I need to set aside to achieve my perpetuity goal? How much should I invest to get the amount from today itself? [**Ans:** Rs. 45,00,000]

B. <u>PV of "Growing Perpetuity":</u> Perpetuity which grows at constant rate.

PVA = \frac{P}{R-q} where, g = Growth rate

CQ32: I want to receive Rs. 10,000 forever. Interest rate is 8% & the rate at which perpetuity grows is 3%. Advise me the amount to be invested. [Ans: Rs.2,00,000

Answer: $PVA = \frac{P}{R-g} = \frac{10,000}{(8-3)\%} = \frac{10,000}{5\%} = Rs. 2,00,000.$

CONCEPT 9: NET PRESENT VALUE (NPV)

NPV = PV of Cash Inflow – PV of Cash Outflow.

<u>RULES TO MAKE DECISION:</u> If NPV > 0 → Accept; If NPV < 0 → Reject

Mhatsapp: 8888111134

CQ33: Compute NPV for a project with a net investment of Rs. 1,00,000 & net cash inflows for year 1, 2, 3 is Rs. 55,000, Rs. 80,000 & Rs. 15,000 resp. Cost of capital is 10%? [PVIF @ 10% for 3 years: 0.909, 0.826 & 0.751]

Solution: Since NPV of the project is positive, the company should accept the project.

Year	Net Cash Flows	PVIF @ 10%	Discounted Cash Flows
0	(1,00,000)	1.000	(1,00,000)
1	55,000	0.909	49,995
2	80,000	0.826	66,080

Telegram

YouTube

3	15,000	0.751	11,265
Net Pres	ent Value		27,340

COMPOUND ANNUAL GROWTH RATE (CAGR)

- Compounded Annual Growth Rate (CAGR) is a mean annual growth rate of an investment over a specific period of time (generally longer than one year).
- The CAGR calculate is a useful tool when determining an annual growth rate on an investment whose value has fluctuated widely from one period to the next.
- CAGR is often used to describe the growth over a period of time of some element of the business like revenue, units delivered, registered users, etc.

CAGR (t_o, t_n) =
$$\begin{bmatrix} V(t_n) \frac{1}{t_n - t_o} \\ V(t_o) \end{bmatrix}$$
 -

where, t_0 = Starting period & t_n = Ending period

CQ34: Revenues of a company for 4 years, Calculate Compound annual Growth Rate.

Year	2013	2014	2015	2016
Revenues	100	120	160	210

Answer: $t_n - t_0 = 2016 - 2013 = 3$.

CAGR_(0,3) of Revenues = $\left[\frac{210^{\frac{1}{3}}}{100}\right] - 1 = 1.2774 - 1 = 0.2774 = 27.74\%$

Space for PC Class Note:

TIME VALUE OF MONEY - QUESTION BANK

SN	CHAPTER 3. TIME VALUE OF MONEY	Ans
	EXERCISE 3.1 - SIMPLE INTEREST	
Q1	The amount charged for a defined length of time for use of the principal, generally on a yearly basis is known as	D
	(a) Balance (b) Rate of interest (c) Principal (d) Interest	
Q2	The principal remains constant for the whole loan period in interest(a) Simple(b) Compound(c) Effective(d) Annuity	Α
Q3	In the formula A = P + I, A is known as (a) Simple interest (b) Compound interest (c) Balance (d) Principal	С
Q4	Interest computed on the principal for entire period of borrowing is called (a) Simple Interest (b) Compound Interest (c) Balance (d) All	A
Q5	Simple Interest on Rs. 3,500 for 3 years at 12% p.a. is(a) Rs.1,200(b) Rs.1,260(c) Rs.2,260(d) None	B
Q6	P = 5000 R = 15 T = 4 ½ using I = PRT/ 100. I will be (a) Rs. 3,375 (b) Rs. 3,300 (c) Rs. 3,735 (d) None	A
Q7	Find simple interest on Rs.1,025 at 7.5% p.a. for 4.5 years.(a) Rs. 405.59(b) Rs. 375.45(c) Rs. 345.94(d) Rs.354.94	C
Qð	In what time will Rs. 85,000 amount to Rs. 1,57,675 at 4.5% p.a? (a) 20 years (b) 15 years (c) 22 years (d) 19 years	D
Q9	P = Rs. 12,000; A= Rs. 16,500; T = 2.5 years. Interest rate will be (a) 15% (b) 12% (c) 10% (d) None	A
Q10	A person borrowed Rs. 4,000 & after 6 months, amount paid was Rs. 4,050. Find the rate of interest?	С
Q11	(a) 5%(b) 25%(c) 2.5%(d) 20%A Sum of Rs.46,875 was lent out at simple interest and at the end of 1 yr and 8 months, the total amount was Rs.50,000. Find the rate of interest?	A
	(a) 4% (b) 5% (c) 4.5% (d) 6%	
Q12	A sum doubles itself in 10 years. Find interest rate?(a) 10%(b) 12%(c) 15%(d) 20%	A
Q13	Capital required to earn a monthly interest of Rs.800 p.m. at 5 % at SI is(a) Rs.1,87,000(b) Rs.40,000(c) Rs.1,28,000(d) Rs.1,92,000	D
Q14	A sum of money amounts to Rs. 795 in 4 years and Rs. 850 in 5 years. Sum is (a) Rs. 520 (b) Rs. 630 (c) Rs. 575 (d) Rs. 685	С
Q15	A sum of money amount to Rs.6,200 in 2 years and Rs.7,400 in 3 years. The principal	A

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
VouTube Telegram @msagaan <u>Whatsapp: 8888111134</u>

	and rate of interest are				
	(a) Rs.3,800, 31.57% (b) Rs.3,000, 20% (c) Rs.3,500, 15% (d) None				
Q16	Mr. Kapil deposited some amount in a bank for 7.5 years at 6% SI. Mr. Kapil received Rs. 1,01,500 at the end of the term. Compute initial deposit of Kapil.	B			
042		•			
GIF	Rahul invested Rs. 70,000 in a bank at the rate of 6.5% p.a. simple interest rate. He received Rs. 85,925 after the end of the term. Find out the period for which sum was invested by Rahul.				
	(a) 2.5 years (b) 3.5 years (c) 4 years (d) 3 years				
Q18	Simple interest on Rs. 1,500 for 6 years at 5 % p.a. is	С			
	(a) Rs.400 (b) Rs. 300 (c) Rs.450 (d) Rs.500				
Q19	What will be the final value of investment for the principal value of Rs. 80,000 for 4 years @ 10% p.a. rate of interest?				
	(a) Rs.83,200 (b) Rs. 1,12,000 (c) Rs.82,300 (d) None				
Q20	A = Rs. 5,200; R = 5% p.a; T = 6 years. Principal will be	B			
	(a) Rs.2,000 (b) Rs.4,000 (c) Rs.3,000 (d) None				
Q21	Sachin deposited Rs.1,00,000 in his bank for 2 years at simple interest of 6%. How much interest would he earn? How much would be the final value of deposit?	D			
	(d) Rs.15,000, Rs.1,15,000 (c) Rs.11,600, Rs.1,11,600 (d) Rs.12,000, Rs.1,12,000				
Q22	P = Rs.10,000 1= Rs.2,500 R = 12.5% Simple Interest. The number of years T will	B			
	(a) $1^{1/2}$ years (b) 2 years (c) 3 years (d) None				
Q23	The sum required to earn a monthly interest of Rs. 1,200 at 18% p.a. SI is	С			
	(a) Rs. 50,000 (b) Rs. 60,000 (c) Rs. 80,000 (d) None				
Q24	Rs. 3,52,000 will produce Rs. 28,600 interest in - years at 2.5% p.a. simple interest.	B			
	(a) 2 years 2 months (b) 3 years 3 months				
	(c) 4 years 4 months (d) 5 years 5 months				
Q25	Sum of money doubles itself in 10 years. No. of years it would trebles itself is	С			
	(a) 25 years (b) 15 years (c) 20 years (d) None				
Q26	A sum of money that will give Rs. 1, as interest per day at 10% p.a. SI is	С			
	(a) Rs. 3,800 (b) Rs. 3,000 (c) Rs. 3,650 (d) Rs. 3,500				
Q27	Rs. 80,000 is invested to earn a monthly interest of Rs. 1,200 @ — p.a. SI.	D			
	(a) 12% (b) 14% (c) 16% (d) 18%				
Q28	What sum of money produce Rs. 28,600 interest of 3 yrs & 3 mths at 2.5% p.a. SI?	A			
	(a) Rs. 3,52,000 (b) Rs. 3,65,000 (c) Rs. 3,25,000 (d) Rs.3,56,000				
Q29	Interest on a certain sum of money 2.5 years at 3.25 % p.a. is 390. The sum is				
	(a) Rs. 4,800 (b) Rs. 2,100 (c) Rs. 4,700 (d) Rs. 4,900				

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

Q30	If Rs. 1,600 amounts to Rs. 2,100 is 5 years at a certain rate of simple interest. If the rate of interest is increased by 1 % it would amount to how much?				
	(a) Rs. 2,080 (b) Rs. 2,050 (c) Rs. 2,250 (d) Rs. 2,180				
Q31	A sum was put at simple interest, at a certain rate for 3 years. Had it been put at 1 % higher rate it would have fetched Rs. 63 more. The sum is	С			
	(a) Rs. 2,400 (b) Rs. 2,200 (c) Rs. 2,100 (d) Rs. 2,480				
Q32	Two equal amounts of money are deposited in two different banks each at 12% p.a. for 8 years and 3.5 years respectively. If the difference between their Interests is Rs. 540, find each sum.				
	(a) Rs. 1,200 (b) Rs. 1,000 (c) Rs. 1,400 (d) Rs. 1,350				
Q33	A certain principal amounts to Rs. 2,800 in 2 years & to Rs. 3,220 in 5 years. The rate of interest p.a. SI is				
	(a) 6.33 % (b) 5.55 % (c) 2.25% (d) 6.6 %				
Q34	Sum of money doubles itself in 25 years. No. of years it would trebles itself is(a) 50 years.(b) 37.5 years.(c) 75 years.(d) None	Α			
Q35	Number of years a sum takes to become 4 times @ 12% SI is (a) 24 years. (b) 26 years. (c) 25 years. (d) None	С			
Q36	If the interest on Rs. 2,400 be more than the interest on Rs. 2,000 by Rs. 64 in 4 years, rate of interest is (a) 5% (b) 4% (c) 3.5 (d) 6 %	B			
	EXERCISE 3.2 - COMPUND INTEREST				
Q37	Compute the compound interest on Rs. 4,000 for 1 ½ years at 10% p.a. compounded half-yearly.	С			
	(a) Rs. 360.50 (b) Rs. 600 (c) Rs. 630.50 (d) Rs. 625				
Q38	Determine CI on Rs. 1,000 at 6% compounded semi-annually for 6 yrs. Given that (1+3%) ¹² = 1.42576.	A			
	(a) Rs. 425.76 (b) Rs. 445.26 (c) Rs. 520.40 (d) Rs. 260.20				
Q39	On what sum will the compound Interest at 5% p.a. for 2 yrs compounded annually be Rs. 1,640?				
	(a) Rs. 16,000 (b) Rs. 17,000 (c) Rs. 18,000 (d) Rs. 19,000				
Q40	On what sum will the compound Interest at 7% p.a. for 3 yrs compounded annually be Rs. 4725.90?	D			
	(a) Rs. 22,000 (b) Rs. 26,000 (c) Rs. 24,000 (d) Rs. 21,000				
Q41	The C.l. on Rs. 4,000 for 6 months at 12% p.a. payable quarterly is	A			
	(a) Rs. 243.60 (b) Rs. 240 (c) Rs. 243 (d) None				
Q42	Rs. 4,000 is invested @ 10% p.a. The amount after two years if compounding is done monthly, is				
	(a) Rs. 4,881.16 (b) Rs. 4,818.16 (c) Rs. 4,888.16 (d) None				

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video

Q43	If A = Rs. 1000.	n = 2 years, $R = 6$	% p.a. compound intere	st pavable half-vearly.	Α
	then principal (F	P) is		1 / / / /	
	(a) Rs. 890	(b) Rs. 880	(c) Rs. 800	(d) None	
Q44	Find the rate, i compounded hal	f Rs. 2,00,000 amc f-yearly.	ount to Rs. 2,31,525 in 1	½ year interest being	D
	(a) 15%	(b) 11%	(c) 8%	(d) 10%	
Q45	A sum of money respectively. Th	y yields CI of Rs. e rate % is	200 & Rs. 220 at the	end of 1^{st} & 2^{nd} year	С
	(a) 20	(b) 15	(c) 10	(d) 5	
Q46	CI on half-yearly rates on Rs. 10,000, the rate for 1^{st} & 2^{nd} years being 6% & for 3^{rd} year 9% p.a.				
	(a) Rs. 2,290	(b) Rs. 2,287	(c) Rs. 2,285	(d) Rs. 2,283	
Q47	A sum of money years. Find inter	put at CI amount [.] °est % p.a.	to Rs. 2,205 in 2 years o	and to Rs. 2,315.25 in 3	B
	(a) 10%	(b) 5 %	(c) 8 %	(d) 6 %	
Q48	Find the least no be more than do	o. of complete year puble.	s in which the sum of mo	oney put @ 20 % CI will	D
	(a) 1 year	(b) 2 years	(c) 3 years	(d) 4 years	
Q49	In how many yec	ars will a sum of mo	ney double at 5% p.a. c	ompound interest?	B
	(a) 15 years 3 m	onths	(b) 14 years 2 mont	ths	
		antha	(d) 15 years 2 mont	the	
	(c) 14 years 3 m	Shths			
Q50	(c) 14 years 3 m If A = Rs. 10,000	on = 18 yrs R = 4% p	.a C.I, P will be		D
Q50	(c) 14 years 3 m If A = Rs. 10,000 (α) Rs.4,000	n = 18 yrs R = 4% r (b) Rs.4,900	ca C.I, P will be (c) Rs.4,500	(d) None	D
Q50 Q51	(c) 14 years 3 m If A = Rs. 10,000 (a) Rs.4,000 The difference k sum of money inv	n = 18 yrs R = 4% r (b) Rs.4,900 Detween the simple vested for 2 years	c.a C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t	(d) None d interest on a certain he sum is	D B
Q50 Q51	(c) 14 years 3 m If A = Rs. 10,000 (a) Rs.4,000 The difference k sum of money inv (α) 10,000	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000	(d) None d interest on a certain he sum is (d) None	D B
Q50 Q51 Q52	 (c) 14 years 3 model If A = Rs. 10,000 (a) Rs.4,000 The difference between sum of money involution (a) 10,000 If the sum of model Rs. 1,710 in 3 years 	n = 18 yrs R = 4% p (b) Rs.4,900 Detween the simple vested for 2 years (b) 12,000 Deney when compour ars, the Rate of Int	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes F erest is	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and	D B C
Q50 Q51 Q52	 (c) 14 years 3 model If A = Rs. 10,000 (a) Rs.4,000 The difference between sum of money involution (a) 10,000 If the sum of model Rs. 1,710 in 3 years (a) 30% 	on = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40%	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes R erest is (c) 50%	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60%	D B C
Q50 Q51 Q52 Q53	 (c) 14 years 3 model. If A = Rs. 10,000 (a) Rs.4,000 The difference is sum of money involution (a) 10,000 If the sum of model. Rs. 1,710 in 3 years (a) 30% For a 10-year dointerest payable. 	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40% eposit, what inter e quarterly?	c.a C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes F erest is (c) 50% est rate payable annua	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60%	D B C
Q50 Q51 Q52 Q53	 (c) 14 years 3 model. If A = Rs. 10,000 (a) Rs.4,000 The difference is sum of money involution (a) 10,000 If the sum of model. Rs. 1,710 in 3 year (a) 30% For a 10-year distribution (a) 5.1% 	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40% eposit, what inter e quarterly? (b) 4.9%	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes R erest is (c) 50% est rate payable annua (c) 6.0%	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60% Illy is equivalent to 5% (d) None	D B C
Q50 Q51 Q52 Q53 Q54	 (c) 14 years 3 model. If A = Rs. 10,000 (a) Rs.4,000 The difference is sum of money involution (a) 10,000 If the sum of model. Rs. 1,710 in 3 years (a) 30% For a 10-year distribution (a) 5.1% What annual rational rational second (a) 10,000 	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40% eposit, what inter e quarterly? (b) 4.9% te of interest com	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes F erest is (c) 50% est rate payable annua (c) 6.0% pounded annually doub [Give	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60% (d) 60% (d) None (d) None les an investment in 7 n that 2 ^{1/7} =1.104090]	D B C A A
Q50 Q51 Q52 Q53 Q54	 (c) 14 years 3 model. (c) 14 years 3 model. (a) Rs.4,000 The difference is sum of money involution (a) 10,000 If the sum of model. (a) 10,000 If the sum of model. (a) 30% For a 10-year dent of the set of t	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40% eposit, what inter e quarterly? (b) 4.9% te of interest com (b) 11.50%	ca C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes F cerest is (c) 50% est rate payable annua (c) 6.0% ipounded annually doub [Give (c) 9.65%	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60% Illy is equivalent to 5% (d) None les an investment in 7 n that 2 ^{1/7} =1.104090] (d) 10.26%	D B C A A
Q50 Q51 Q52 Q53 Q54 Q55	 (c) 14 years 3 model. (c) 14 years 3 model. If A = Rs. 10,000 (a) Rs.4,000 The difference is sum of money involution (a) 10,000 If the sum of money involution (b) 10,000 If the sum of money involution (c) 10,000 For a 10-year division (c) 10,000 For a 10-year division (c) 10,000 What annual rate (c) 10,41% Rs.16,000 investiged (c) 10,41% 	n = 18 yrs R = 4% p (b) Rs.4,900 between the simple vested for 2 years (b) 12,000 oney when compour ars, the Rate of Int (b) 40% eposit, what inter e quarterly? (b) 4.9% te of interest com (b) 11.50% ed at 10% p.a. co priod of investment	ca) 10 years 2 mon p.a C.I, P will be (c) Rs.4,500 interest and compound 5% p.a. is Rs. 30. Then t (c) 13,000 ided annually becomes F cerest is (c) 50% est rate payable annua (c) 6.0% ipounded annually doub [Give (c) 9.65% mpounded semiannually.	(d) None d interest on a certain he sum is (d) None Rs. 1,140 in 2 years and (d) 60% Illy is equivalent to 5% (d) None les an investment in 7 n that 2 ^{1/7} =1.104090] (d) 10.26% amounts to Rs.18,522.	D B C A A B

Q56	In what time will compound interest on Rs. 320 at 12.5% p.a. compounded annually be Rs. 85?				С
	(a) 4.5 Years (b	o) 2.5 Years	(c) 2 Years	(d) 5 Years	
Q57	In what time will a sur	n of Rs. 800 at 5% p.a. c	compound interest an	nount to Rs. 882?	D
	(a) 1 years (b	o) 5 years	(c) 4 years	(d) 2 years	
Q58	Saina deposited Rs.1, interest is 7% p.a. Ca interest is compounde	00,000 in a nationalize Iculate the interest the ed annually. Also calcul	d bank for three yea It bank has to pay Sa ate amount at the en	rs. If the rate of ina after 3 yrs if d of third year.	B
	(a) Rs.1,23,000 (k	o) Rs.1,22,504.30	(c) Rs.1,20,550.20	(d) Rs.1,35,256	
Q59	In what time will Rs. half-yearly?	8,000 amounts to Rs. 8	820 at 5% p.a. inter	est compounded	D
	(a) 3 years (b	o) 2 years 5 months	(c) 2.5 years	(d) 2 Years	
Q60	At what rate CI does	a sum of money becom	es four fold in 2 year	s?	B
	(a) 150 % (b	o) 100 %	(c) 200 %	(d) 400 %	
Q61	What interest rate co (a) 46.04125 % (b	ompounded annually wh o) 14.142135 %	ich doubles an invest (c) 41.42135 %	ment in 2 years? (d) None	С
Q62	The time by which a s	um of money would tre	ole itself at 8 % p.a.(T is	Δ
GOL	(a) 14.28 years (b) (a)	o) 14 vears	(c) 12 years	(d) 15 vears	7
Q63	The how many years a	sum of money treble at	5% n.a. CI navable a	on half-yearly?	D
	(a) 18 years 7 months	(b) 1	9 vears 6 months	in han yearry.	-
	(c) 20 years 8 months	(d) 2	2 years 3 months		
Q64	In how many years a	sum will double at 10%	p.a. compound intere	st?	B
	(a) 8 years 3 months	(b) 7	years 3 months		
	(c) 7 years 6 months	(d) 8	years 2 months		
Q65	Difference b/w SI & (CI on a sum in 2 years o	ıt 15 % p.a. is Rs. 144	. The sum is	D
	(a) Rs. 6,000 (k	c) Rs. 6,200 (c) R	s. 6,300	(d) Rs. 6,400	
Q66	CI on a certain sum fo	or 2 years is Rs. 41 & S	[is Rs. 40. Find intere	est rate.	B
	(a) 4% (b	o) 5% (c) 6	%	(d) 8%	
Q67	CI on a certain sum fo	or 2 years is Rs. 41.60 8	& SI is Rs. 40. Find the	e sum.	С
	(a) Rs. 500 (b	o) Rs. 400 (c) R	s. 250	(d) Rs. 300	
Q68	Difference between t	he S.I. & the C.I. on Rs.	2,400 for 2 years at 5	5% p.a is	D
	(a) Rs.5 (b	o) Rs.10 (c) R	s.16	(d) None	
Q69	Difference b/w CI & S	SI on a sum for 2 years	at 6% p.a. is Rs. 13.5	0. Find the sum?	A
	(a) Rs.3,750 (b	o) Rs.2,750 (c) R	s.4,750	(d) None	
Q70	Difference b/w CI & S (a) Rs. 625 (b)	SI on a sum for 2 years c) Rs. 630 (c) R	at 4% p.a. is Rs. 1. Th s. 640	e sum is (d) Rs. 635	A

Q71	Difference b/w SI	[& CI on certain su	im for 3 years at 5% pa	is Rs. 76.25. Find sum.	D
	(a) Rs. 5,000	(b) Rs. 8,000	(c) Rs. 9,000	(d) Rs. 10,000	
Q72	Difference b/w S	I and CI on Rs. 1,20	00 for 4 years at 10% p.	a. is	Α
	(a) Rs. 77	(b) Rs. 480	(c) Rs. 80	(d) Rs. 557	
Q73	CI on a certain su	um for 2 years at 10) % p.a. is Rs. 420. Find	SI at the same rate &	A
	(a) Rs. 400	 (b) Rs. 350	(c) Rs. 380	(d) Rs. 375	
Q74	Difference b/w C	I & SI at 5% pa for	4 years on 20,000 is		D
	(a) Rs. 250	(b) Rs. 277	(c) Rs. 300	(d) Rs. 310.	
Q75	At what rate will	a sum double itself	in 7 years if interest is	compounded annually.	С
	(a) 7.0%	(b) 8.0%	(c) 10.38%	(d) 9%	
Q76	The principal goe	s on changing ever	y year in		B
	(a) simple interes	t	(b) compound inter	est	
	(C) effective inte	rest	(d) All of the above		
Q77	P = Rs. 1,000; R =	5% p.a; n = 4. Amoı	unt and Cl are		Α
	(a) Rs.1,215, Rs.21	5	(b) Rs.1,125, Rs.125		
	(c) Rs.2,115, Rs.115	5	(d) None		
Q78	Rs. 10,000 is inve	ested at annual rat	te of interest of 10%.	The amount after two	B
	years at annual C	(b) P_{e} 12 100	 (c) Po. 12 110	(d) Nono	
030		(b) K3. 12,100			-
Q79	Rs.100 will becom	e after 20 years at	t 5% p.a. Calculated CI	annually is	C
	(a) RS. 263.32	(D) RS. 270.50	(C) KS. 265.32	(a) None	
Q80	Rs.7,500 is invest	ed at 5% CI for 2 y	ears. The interest for t	the second year is	D
	(a) Rs.375	(b) Rs.350	(c) Rs.450	(d) Rs.393.75	
Q81	The C.I on Rs.16,C	00 for $1^1/_2$ years at	t 10% p.a. payable half-	-yearly is	B
	(a) Rs.2,222	(b) Rs.2,522	(c) Rs.2,500	(d) None	
Q82	Rs.2,000 is invest	ed at annual rate	of interest of 10% p.a.	The amount after two	Α
	years if compound	ding is done half ye	early, is		
	(a) Rs.2431	(b) Rs.243.10	(c) Rs.2341	(d) None	
Q83	C.I on Rs.40,000 d	at 10% p.a. for 1 ye	ars when interest is pa	yable quarterly is	С
	(a) Rs.4,000	(b) Rs.4,100	(c) Rs.4,152.51	(d) None	
Q84	Rs. 3,000 is investive and the second	ted at annual rate	of interest of 10% $p.a.$	The amount after two	С
	(a) Rs.3.556.20	(b) Rs.3.565	(c) Rs.3.655.20	(d) None	
Q85	C I on Pa 1 000 for	2 10 years at 49 ~	the interport hains as	id quantonly is	C
GOU	(a) Po 786	(h) Po 586	(c) P_{0} 480	(d) Po 186	
	(4) N3.700	(0) N3.000	(0) N3.TUU	(4) NO. 100	1

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

To Buy Video Lectures & Books, www.pranavchandak.com

Q86	Rs. 2,000 is invested at 10% p.a. What is the amount after 2 yrs if compounding is done (a) Annually (b) Semi-Annually (c) Quarterly (d) Monthly.				B
	(a) 2,430; 2,531; 2	2,638; 2,700	(b) 2,420; 2,431; 2,43 ⁻	7; 2,441	
	(c) 2,130; 2,483; 2	2,643; 2,550	(d) 2,420; 2,431; 2,468	8; 2,712	
Q87	A sum of money c be 9 times itself?	it CI amounts to thr	ice itself in 3 years. In h	ow many years will it	D
	(α) 18	(b) 12	(c) 9	(d) 6	
Q88	B A sum of money triples itself in 20 years. The number of years it would double itself. (C.I)				
	(a) 13.2 years	(b) 15.2 years	(c) 10 years	(d) 12.6 years	
Q89	The population c beginning of the population be 40	of a town increases it year. The numbe % is	every year by 2% of the er of years by which th	ne Population at the ne total increase of	С
	(a) 7 years	(b) 10 years	(c) 17 years (approx)	(d) None	
Q90	The annual birth and death rates per 1,000 are 39.4 and 19.4 respectively. The number of years in which the population will be doubled assuming there is no immigration or emigration is				
	(a) 35 yrs	(b) 33 yrs	(c) 25 yrs	(d) None	
	EFFECTIVE RATE OF INTEREST				
Q91	Effective rate of yearly in	interest correspo	nding to a nominal rate .	3% p.a. payable half	С
	(a) 3.2% p.a.	(b) 3.25% p.a	(c) 3.0225 % p.a	(d) None	
Q92	Effective rate of	interest for 3% p.o	ι. compounded monthly is	·	С
	[Given that (1+0.0	0025) ¹² = 1.0304]			
	(a) 3%	(b) 3.02%	(c) 3.04%	(d) 3.01%	
Q93	Effective rate of quarterly is	interest correspon 	ding to a nominal rate of	7% p.a. compounded	С
	(a) 7%	(b) 7.5%	(c) 7.19%	(d) None	
Q94	Find the effectiv	e rate of interest if	^P I = Rs.1,800, P = 18,000,	t = 1 year	Α
	(α) 10%	(b) 9%	(c) 18%	(d) None	
Q95	Find the compou 20,000 is deposit annually.	ind interest and ef ed in a bank for 1 y	fective rate of interest ear at the rate of 8% p.c	if an amount of Rs. a. compounded semi-	B
	(a) Rs. 1426, 7.56	%	(b) Rs. 1632, 8.16%		
	(c) Rs. 1326, 7.35	%	(d) Rs. 1744, 8.55%		
Q96	(a) Rs. 1426, 7.56% (b) Rs. 1632, 8.16% (c) Rs. 1326, 7.35% (d) Rs. 1744, 8.55%				
	Ram is confused SI. [(1 + 0.0075) ¹²	whether to invest of = 1.09380690. He d	at 9% p.a. compounded m ecided to find effective	nonthly or 9.25% p.a. rate of interest.	С

Q97	In how many years will a sum of Rs. 800 amounts to Rs. 926.10 at 10% interest compounded half yearly?					
	(a) 3 years (b) 2 years (c) 3/2 years (d) 4 years					
Q98	Find the sum which invested at 4% p.a. compounded twice a year becomes Rs. 78,030 @ end of 1 st year.	B				
	(a) Rs. 73,000 (b) Rs. 75,000 (c) Rs. 74,225 (d) Rs. 76,000					
	EXERCISE 3.3: PRESENT VALUE & FUTURE VALUE OF ANNUITY					
Q99	Present value of Rs. 1 to be received after 2 yrs compounded annually at 10% is	B				
	(a) Rs. 0.9090 (b) Rs. 0.8264 (c) Rs. 0.7513 (d) Rs. 0.6830					
Q100	Present value of annuity of Rs. 5,000 p.a. for 12 yrs at 4% p.a. C.I. annually is	B				
	(a) Rs. 46,000 (b) Rs. 46,925 (c) Rs. 15,000 (d) None					
Q101	The present value of an annuity of Rs. 3,000 for 15 years at 4.5% p.a CI. is (a) Rs. 23,809.41 (b) Rs. 32,219.41 (c) Rs. 32,912.41 (d) None	B				
Q102	The present value of an annuity of Rs. 80 p.a for 20 years at 5% p.a is(a) Rs. 997 (appx)(b) Rs. 900(c) Rs. 1,000(d) None	A				
Q103	A person invested money in bank paying 6% Compounded semi annually. If the person expects to receive Rs. 8000 in 6 years, what is present value of investment?	С				
	(α) Rs. 5,000 (b) Rs. 4,611.03 (c) Rs. 5,611.03 (d) None					
Q104	Find PV of ordinary annuity of 8 Quarterly payments of Rs. 500, interest = 8% p.a. compound quarterly.	С				
	(a) Rs. 4,292.50 (b) Rs. 4,725.00 (c) Rs. 3,662.50 (d) Rs.3,266.50					
Q105	Company borrows Rs. 10,000 on condition to repay it with CI at 5% p.a. by annual installments of Rs.1,000 each. Number of years by which debt will be clear is	A				
	(a) 14.2 years (b) 10 years (c) 12 years (d) None					
Q106	A loan of Rs. 10,000 is to be paid back in 30 equal installments. The amount of each installation to cover the principal and at 4% p.a. CI is	С				
	(a) Rs. 587.87 (b) Rs. 587 (c) Rs. 578.87 (d) None					
Q107	Raja aged 40 wished his wife Rani to have Rs. 40 Lacs at his death. If his expectation of life is another 30 years & he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?	D				
	(a) Rs. 82,077 (b) Rs. 83,450 (c) Rs. 84,419 (d) Rs. 84,080					
Q108	How much amount is required to be invested every year so as to accumulate Rs. 3,00,000 at the end of 10 years if interest is compounded annually at 10%?	B				
	(a) Ks. 18,222 (b) Ks. 18,823 (c) Rs. 18,725 (d) Rs. 18,955					

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

Q109	9 P Ltd has to make payment of Rs. 20 Lacs in 60 days. The company has decided to invest in CDs of a leading Nationalized Bank at 8% p.a. What money is required to				
	be invested now?				
	(a) Rs. 15,20,912 (b) Rs. 20,26,300				
	(c) Rs. 19,74,040 (d) Rs. 20,63,000				
Q110	The present value of Rs.10,000 due in 2 years at 5% p.a. compound interest when the interest is paid on yearly basis is	A			
	(a) Rs.9,070 (b) Rs.9,059 (c) Rs.9,061 (d) Rs.9,060				
Q111	Find the present value of Rs.10,000 to be required after 5 years if the interest rate be 9%. Given that $(1.09)^5 = 1.5386$.	A			
	(a) Rs.6,499.42 (b) Rs.7,459.33 (c) Rs.6,544.50 (d) Rs.6,994.62				
Q112	A = Rs.1,200 N = 12 yrs I =0.08 V = using the formula v= A/I {1-(1+i) ⁻ⁿ }	D			
	(a) Rs.3,039 (b) Rs.3,990 (c) Rs.9,930 (d) None				
Q113	The present value of an annuity of Rs.3,000 for 15 years at 4.5% p.a Cl is(a) Rs. 23,809.41(b) Rs. 32,809.41(c) Rs. 32,908.41(d) None	B			
Q114	Suppose your mom decides to gift you Rs.10,000 every year starting form today for next 5 years. You deposit this amount in a bank as and when you receive and get 10% p.a. interest rate compounded annually. What is present value of this annuity?	С			
	(α) Rs.40,702.70 (b) Rs.42,533.21				
	(c) Rs.41,698.70 (d) Rs.43,883.33				
Q115	The amount received on an annuity of Rs. 150 for 12 years at 3.5% p.a CI is (a) Rs. 2,190.28 (b) Rs. 1,290.28 (c) Rs. 2,180.28 (d) None	A			
Q116	Amount of an annuity after 25 years at 5 % C.I. is Rs. 50,000, the annuity will be (a) Rs. 1,406.90 (b) Rs. 1,046.90 (c) Rs. 1,146.90 (d) None	B			
Q117	Given annuity of Rs. 100 amounts to Rs. 3,137.12 at 4.5% p.a. C.I. No. of years =	B			
	(a) 25 years (appr) (b) 20 years (appr) (c) 22 years (d) None				
Q118	You invest Rs. 3,000 in a 2-year investment that pays you 12% pa. Calculate FV.	Α			
	(a) Rs. 3,763.20 (b) Rs. 3,360.00				
	(c) Rs. 3,565.60 (d) Rs. 3,663.55				
Q119	Z invests Rs. 10,000 every year starting from today for next 10 years. Suppose interest rate is 8% p.a. compounded annually. Calculate FV. [(1+.08) ¹⁰ =2.15892500]	B			
	(a) ks. 1,50,500 (d) ks. 1,56,454 (c) ks. 1,58,652 (d) ks. 1,56,902				
Q120	A person invests Rs. 500 at the end of each year with a bank which pays interest at 10% p.a. annually. The amount standing to his credit one year after he has made his yearly investment for the 12 th time is	A			
	(a) Rs. 11,761.35 (b) Rs. 10,000 (c) Rs. 12,000 (d) None				

Q121					
	Present value of Rs. 10,000 due in 2 years at 5% p.a. compound interest is (a) Rs. 9,070 (b) Rs. 9,059 (c) Rs. 9,061 (d) Rs. 9,060				
Q122	Find PV of Rs. 500 due after 10 years (R= 10%) is compounded half yearly(a) Rs. 188.40(b) Rs. 193.94(c) Rs. 138.94(d) Rs. 50.00				
Q123	Alibaba borrows Rs. 6 Laths Housing Loan at 6% repayable in 20 annual Installments commencing at the end of the first year. How much annual payment is necessary?	С			
	(a) Rs. 52,420 (b) Rs. 52,419 (c) Rs. 52,310 (d) Rs. 52,320				
Q124	4 Johnson left Rs. 1,00,000 with the direction that it should be divided in such a way that his minor sons Tom Dick and Harry aged 9, 12 and 15 years should each received equally after attaining the age 25 years. The rate of interest being 3.5% how much each son will receive after getting 25 years old?				
	(a) Rs. 50,000 (b) Rs. 51,994 (c) Rs. 52,000 (d) None				
Q125	Find the amount received on annuity if payment of Rs. 7,000 is made annually for 7 years at 6% p.a.	D			
	(a) Rs. 48,756 (b) Rs. 50,857 (c) Rs. 50,363 (d) Rs. 58,756				
Q126	Rs. 200 is invested at the end of each month in an account paying interest 6%p.a compounded monthly. FV of this annuity after 10 th payment? [(1.005) ¹⁰ = 1.0511]	D			
	(a) Rs. 210.22 (b) Rs. 2,050 (c) Rs. 2,025 (d) Rs. 2,044				
	EXERCISE 3.4: SINKING FUND				
Q127	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?	A			
	(a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035				
Q128	(a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035 A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a? (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005	С			
Q128	 (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035 A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a? (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005 	C			
Q128 Q129	 (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035 A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a? (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005 A person bought a house paying Rs. 20,000 cash &Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is 	C C			
Q128 Q129	(a) Rs. 12,006(b) Rs. 12,040(c) Rs. 12,039(d) Rs. 12,035A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?(a) Rs. 16,500(b) Rs. 16,000(a) Rs. 16,500(b) Rs. 16,000(c) Rs. 16,050(d) Rs. 16,005A person bought a house paying Rs. 20,000 cash &Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is(a) Rs. 76,000(c) Rs. 76,392(a) Rs. 75,000(b) Rs. 76,000(c) Rs. 76,392(d) None	C C			
Q128 Q129 Q130	(a) Rs. 12,006(b) Rs. 12,040(c) Rs. 12,039(d) Rs. 12,035A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?(a) Rs. 16,500(b) Rs. 16,000(c) Rs. 16,050(d) Rs. 16,005A person bought a house paying Rs. 20,000 cash &Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is(a) Rs. 75,000(b) Rs. 76,000(c) Rs. 76,392(d) NoneA machine depreciates at 10% of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000 respectively for how many years the machine was put to use?.	C C C			
Q128 Q129 Q130	(a) Rs. 12,006(b) Rs. 12,040(c) Rs. 12,039(d) Rs. 12,035A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?(a) Rs. 16,500(b) Rs. 16,000(a) Rs. 16,500(b) Rs. 16,000(c) Rs. 16,050(d) Rs. 16,005A person bought a house paying Rs. 20,000 cash & Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is(a) Rs. 75,000(b) Rs. 76,000(a) Rs. 75,000(b) Rs. 76,000(c) Rs. 76,392(d) NoneA machine depreciates at 10% of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000 respectively for how many years the machine was put to use?(a) 10 years(a) 7 years(b) 8 years(c) 9 years(d) 10 years	C C C			

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube & Telgram
 Whatsapp: 8888111134

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) 4.5 years	(b) 5.4 years	(c) 5 years	(d) None		
Q132	A machine the usef of depreciation is	ùl life of which is es 10% p.a. The scrap	timated to be 10 yea value at the end of i	rs cost Rs. 10,000. Rate ts life is	Α	
	(a) Rs. 3,483	(b) Rs. 4,383	(c) Rs. 3,400	(d) None		
Q133	Appu receiving a p the rest of his life. yearly. What is equ	ension of Rs. 14,400 His life expectatio uivalent lump sum p	D per year paid in ha n is 13 yrs. Interest@ ension?	lf yearly installment for 0 4% p.a is payable half	С	
	(a) Rs. 1,45,000	(b) Rs. 1,44,900	(c) Rs. 1,44,800	(d) Rs. 1,44,700		
Q134	A man purchased a house valued at Rs. 3 lacs. He paid Rs. 2 lace on purchase &agreed to pay the balance with interest at 12% p.a. compounded half yearly in 20 equal half yearly installments. If 1 st installment is paid after 6 months from purchase then the amount at each installment is					
	(a) Rs. 8,719.66	(b) Rs. 8,769.21	(c) Rs. 7,893.13	(d) None		
Q135	A machine can be p.a. for next 5 yea Decide whether ma	purchased for Rs. ars. Assume borrow achine should be pu	50,000. Machine wil ving cost is 10% p.a. ırchased or not?	l contribute Rs. 12,000 compounded annually.	С	
	(a)Yes, Rs. 55,378.6	65	(b)No, Rs. 48,800.0	00		
	(c) No, Rs. 45,489.4	48	(d)Yes, Rs. 52,366.	71		
Q136	Money market inst mature in 45 days.	rument with face Compute current p	value of Rs. 100 & di rice of instrument & e	scount yield of 6% will effective annual return.	С	
	(a) Rs. 99.05, 6.00%	%	(b) Rs. 99.00, 5.295	%		
	(c) Rs. 99.26, 6.21%		(d) Rs. 99.75, 6.089	%		
Q137	An investor intend interest rate of 10 at par and the inve	s purchasing a 3-ye %. At what price th estor requires a ra	ear Rs. 1,000 par valu ne bond may be purch te of return of 14%?	ue bond having nominal nased now if it matures	С	
	(a) Rs. 1,026.29	(b) Rs. 995.22	(c) Rs. 826.36	(d) Rs. 907.125		
Q138	A person desires t prize of Rs. 300 ev	o create a fund to very year. Using V -	be invested at 10% (A /I find V and V wil	CI p.a. to provide for a l be	С	
	(a) Rs. 2,000	(b) Rs. 2,500	(c) Rs. 3,000	(d) None		
		PRACTICE	QUESTION BANK			
Q139	A sum of money ke years. The sum and	pt in a bank amour d interest carried e	nts to Rs.1,000 in 4 yeevery year are	ears and Rs.1,400 in 12 	B	
	(a) 600,133 ¹ / ₃	(b) 800,50	(c) 750,150	(d) 850,75		
Q140	A sum of money am semiannually, sum i	nounts to Rs. 7,803 Invested is	for one year at the r	ate of 4% compounded	B	
	(a) 7,000	(b) 7,500	(c) 7,750	(d) 8,000		
Q141	Mr. Paul borrows R installments of Rs.	s. 25,000 on condit 3,000 each. The nu	ion to repaid it with (mber of years for deb	C.I. at 7% p.a. in annual off is	D	

	(a) 10 years	(b) 12 years	(c) 11 years	(d) 13 years		
Q142	A 6-year bond of 1 half-yearly. If req	Rs. 1,000 has an an uired rate of retur	nual rate of interest on is 16%, what is the	of 14%. Interest is paid value of the bond?	D	
	(a) Rs. 925	(b) Rs. 952	(c) Rs. 950	(d) Rs. 945		
Q143	A sum of money wi will be tripled itse	II be doubled itself alf?	`in 8 years at S.I. In I	now many years the sum	С	
	(a) 20 years	(b) 12 years	(c) 16 years	(d) None		
Q144	A sum of 44,000 is divided into 3 parts such that the corresponding interest earned after 2 years, 3 years and 6 years may be equal at the rate of simple interest are 6% p.a., 8% p.a., & 6% p.a. respectively. Then the smallest part of sum will be					
	(a) Rs. 4,000	(b) Rs. 8,000	(c) Rs. 10,000	(d) Rs. 12,000		
Q145	A certain sum of r 7% higher, then th (a) Rs. 12,600	noney was invested ne interest have be (b) Rs. 6,800	d at S.I for 3 years. If en 882/- more, then (c) Rs. 4,200	f it has invested at rate the sum is (d) Rs. 2,800	С	
Q146	A machine worth year. When its val	Rs. 4,90,740 is de ue would reduce b	preciated at 15% of y 90%?	its opening value each	B	
	(a) 14 years 6 mon	ths	(b) 14 years 2 mor	nths		
	(c) 14 years 5 mon	ths	(d) None			
Q147	A machine for whi of depreciation is	ch the useful life is 10% p.a. The scra	estimated to be 5 ye o value at the end of	ars cost Rs. 5,000. Rate its life is	A	
	(a) Rs.2,952.45	(b) Rs.2,500.00	(c) Rs.3,000.00	(d) Rs.2,559.50		
Q148	A machine worth year. When its val	Rs. 4,90,740 is de ue would reduce to	preciated at 15% of Rs.2,00,000?	its opening value each	B	
	(a) 4 years 6 mont	hs	(b) 5 years 7 mont	ths (approx.)		
	(c) 4 years 5 mont	hs	(d) None			
Q149	 ABC Ltd wants to lease out an asset costing Rs.3,60,000 for a 5 year period. It has fixed rental of Rs.1,05,000 p.a. payable annually starting from the end of first year. Suppose rate of interest is 14% p.a. compounded annually on which money can be invested by the company. Is this agreement favourable to the company? (a) Favourable, Rs.3,20,022.22 (b) Unfavourable, Rs.2,89,725.22 					
	(c) Unfavourable,	Rs.2,99,376.78	(d) Favourable, Rs	3.3,60,473,40		
Q150	A machine with us useful life of 5 y Rs.1,900 annually Determine the pr compounded p.a. [seful life of 7 years rs costs Rs.8,000. and the second on referred course of Decision, PV of cos	s cost Rs.10,000 while The 1 st machine sav e saves labourexpens f action. Assume cos st savings]	e another machine with ves labour expenses of ses of Rs.2,200 annually. It of borrowing as 10%	B	
	(a) No, Rs.750.36		(b) Yes, Rs.8,339.7	ł4		
	(c) No, Rs.9,250.22	2	(d) Yes, Rs.5,366.6	63		

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

CHAPTER 4A. PERMUTATION

INTRODUCTION OF PERMUTATION & COMBINATION

PERMUTATION:

- Permutation means arrangement of the things (objects) under consideration.
- In permutation, order of the things is important.
- In Permutation (a, b) & b, a) are two different arrangements.

COMBINATION:

- Combination means selection of the things under consideration.
- In combination, order of the things is not important.
- In combination (a, b) & b, a) are same selection.

FUNDAMENTAL PRINCIPLES OF COUNTING

A. Multiplication Rule [AND]

[When two tasks are dependent on each other]

If certain thing may done in 'm' different ways & after finishing it, a second thing can be done in 'n' different ways, total no. of ways of doing both things one after the another = $(m \times n)$ ways.

PC Note: Used when the statements are connected by "AND".

CQ1: If one can go to school by 5 different buses and then come back by 4 different buses then total number of ways of going to and coming back from school [**Ans:** 5 × 4 = 20.]

CQ2: There are 4 routes for going from Dumdum to Sealdah & 5 routes for going from Sealdah to Chandni. In how many different ways can you go from Dumdum to Chandni Via Sealdah?

(a) 9 (b) 1 (c) 20 (d) None

B. Addition Rule [OR]

[When two tasks are independent]

It there are two alternative jobs which can be done in 'm' ways & in 'n' ways respectively then either of two jobs can be done in (m + n) ways.

PC Note: Used when the statements are connected by "OR"

CQ3: If one wants to go school by bus where there are 5 buses or by auto where there are 4 autos, then total number of ways of going school [**Ans:** 5 + 4 = 9.]

CQ4: A certain Job requires drawing or printing. There are 3 painter & 4 printing machines. The number of ways the job can be completed is:

(a) 12 (b) 1 (c) 10 (d) 2

THE FACTORIAL

- Continuous Product of all integers from 1 to 'n' BOTH Inclusive.
- The factorial 'n' is denoted as n! or <u>n.</u>
- **n**! = 1.2.3.4.5.6.....(n-2) (n-1)n.
- O! = 1.

PC Note: While solving the question, all the factorials in the question shall be reduced upto the lowest factorial given in the question.

0!	1!	2!	3!	4!	5!	6!	7!	8!	9!	10!
		2 × 1	3 × 2!	4 × 3!	5 × 4!	6 × 5!	7 × 6!	8 × 7!	9 × 8!	10 × 9!
1	1	2	6	24	120	720	5040	40320	362880	3828800

CQ5: Find 4! & 6!

Ans: (i) $4! = 1 \times 2 \times 3 \times 4 = 24$; (ii) $6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720$ CQ6: Find (i) $\frac{9!}{6!} = \frac{9.8.7.6!}{6!} = 9.8.7 = 504$; (ii) $\frac{n!}{(n-1)!} = \frac{n(n-1)!}{(n-1)!} = n$; (iii) $\frac{11!}{7!} = 11.10.9.8 = 7920$. CQ7: Find n if (n+1)! = 30(n-1)! [Answer: n = 5] CQ8: Find x if $\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$ Ans: Reducing all factorials to the lowest factorial in the question, we have $\frac{1}{9!} + \frac{1}{10.9!} = \frac{x}{11.10.9!}$; Cancelling $\frac{1}{9!}$ from both sides, we have $1 + \frac{1}{10} = \frac{x}{11.10}$; $\frac{11}{10} = \frac{x}{11.10}$; Cancelling 10 from both sides, we have $11 = \frac{x}{11}$; x = 11.11 = 121.

PERMUTATIONS

YouTube

- **Definition:** The number of ways of arranging all or some of the given things out of given things is called permutations.
- The order in which person (objects) are arranged is important.
- No. of Permutations of 'r' different object out of 'n' different object = $\frac{nP_r}{(n-r)!}$ [0 < r < n]

CQ9: Calculate ⁵P₃; ¹⁰P₂; ¹¹P₅.

Telegram

Solution: ⁵P₃ means out of 5 people (objects), we have to select any 3 people (objects).

(instagram <u>Whatsapp: 8888111134</u>

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 ${}^{5}\mathsf{P}_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5.4.3.2!}{2!} = 5 \times 4 \times 3 = 60; \qquad {}^{10}\mathsf{P}_{2} = \frac{10!}{(10-2)!} = \frac{10!}{8!} = \frac{10.9.8!}{8!} = 10 \times 9 = 90,$ ${}^{11}P_5 = \frac{11!}{(11-5)!} = \frac{11.10.9.8.7.6!}{6!} = 11 \times 10 \times 9 \times 8 \times 7 = 55440.$ **CQ10:** If "P4 = 5040, then the value of 'n' is _____ (a) 8 (b) 9 (c) 10 (d) 6 **CQ11:** If ${}^{n}P_{3}$: ${}^{n}P_{2}$ = 3:1, then n is equal to _____. (b) 4 (a) 7 (c) 5 (d) None of these **CQ12:** If ${}^{x+y}P_2 = 90$ and ${}^{x-y}P_2 = 30$ then _____. (c) x = y(a) x = 4y (b) x = 2(d) 4x = y**CQ13:** If ${}^{56}P_{r+6}$: ${}^{51}P_{r+3}$ = 30800: 1, find 'r'. (b) 41 (c) 51 (a) 31 (d) 21

CQ14: How many 3 letter words can be formed using the letters of the words (a) SQUARE & (b) HEXAGON?

Ans: Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing 3 letters out of six equals ${}^{6}P_{3} = 6 \times 5 \times 4 = 120$.

Since 'HEXAGON' contains 7 different letters, number of permutations is ${}^{7}P_{3} = 7 \times 6 \times 5 = 210$.

CQ15: There are 5 guests in a party & only 3 chairs are there. In how many ways can the guests be seated?

Ans: There are 3 chairs & 5 guests. It is obvious that 2 guest will not occupy same chair.

 1^{st} Chair \rightarrow can be occupied by any 1 of the 5 guests = 5 ways &

 2^{nd} Chair \rightarrow can be occupied by any 1 of the remaining 4 guests = 4 ways &

 3^{rd} chair \rightarrow can be occupied by any 1 of the remaining 3 guests = 3 ways.

Total number of ways = $5 \times 4 \times 3 = 60$ ways.

Chair 1	Chair 2	Chair 3
5 Guests (ways)	4 Guests (ways)	3 Guests (ways)

CQ16: In how many different ways can 3 students be associated with 4 CAs, assuming that each chartered accountant can take at most one student?

Ans: 1st student can be associated with any of the 4 CAs = 4 ways;

2nd student can be associated with any of the remaining 3 CAs = 3 ways;

 3^{rd} student can be associated with any of the remaining 2 CAs = 2 ways; [Ans = 4×3×2 = 24]

Alternate Method: Number of permutations of choosing 3 persons out of 4.

Hence, answer is ${}^{4}P_{3} = 4 \times 3 \times 2 = 24$.

CQ17: When Dr. Ram arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time, find the number of ways, he can schedule his patients (a) if they all want their turn, and (b) if 3 leave in disgust before Dr. Ram gets around to seeing them.

Ans: (a) There are 12 patients and all 12 wait to the see doctor. Therefore number of ways = 12! Ways.

(b) There are 12-3 = 9 patients. They can be seen ${}^{12}P_9 = 79,833,600$ ways.

CQ18: How many 4 digit numbers can be formed from 1, 2, 3, 4, 5. [Repetition not allowed] **Ans:** $5 \times 4 \times 3 \times 2 = 120$ ways.

Ten thousand place	Thousand place	Tens Place	Unit Place
Can be filled in 5	Can be filled in 4	Can be filled in 3	Can be filled in 2 ways
ways	ways	ways	

CQ19: How many 4 digits numbers can be formed by using 1, 2, 3,4,5,6,7,8,9, no digit being repeated in any number?

Ans: We have 9 digits &we have to find the number of permutations of these taken 4 at a time, which is ${}^{9}P_{4}$ =3024 ways.

CONCEPT 1: PERMUTATION OF 'n' THINGS TAKEN ALL AT A TIME

Number of permutations of n different things taken all n things at a time = n!

Here r = n, Thus, ${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$.

CQ20: In how many different ways can five persons stand in a line for a group photograph?

Ans: Here we know that the order is important. Hence, this is the case of number of permutations of five things taken all at a time. Thus 5! = 120 ways.

TABULAR SUMMARY OF DIGITS

Available	Taken at a time	All Possible Arrangements	No. of ways	Formula
1, 2, 3	3 digits	123, 132, 213, 231, 312, 321.	6 ways	^з рз
1, 2, 3	2 digits	25, 27, 52, 72, 75	6 ways	³ p ₂
1, 2, 3	1 digit	2, 5, 7	3 ways	³ p ₁

CONCEPT 2: PERMUTATION OF DIFFERENT THINGS WITH RESTRICTIONS

 No. of permutations of n distinct objects taken 'r' at a time when a particular object is not included in any arrangement = ⁽ⁿ⁻¹⁾P_r

Explanation: If there are 'n' person & we have to select 'r' out of them. But one person is not taken. Thus, we have only (n-1) person (objects) to select 'r' person (objects).

No. of permutations of n distinct objects taken r at a time when a particular object is always included in any arrangement = ⁽ⁿ⁻¹⁾P_(r-1). [Person to be included is fix]

Explanation: If there are 'n' person & we have to select 'r' out of them. But one person is always taken. Thus, we have to arrange only (r-1) persons & we have only (n-1) person (objects) left since 1 person is already taken.

CQ21: How many 4 digits numbers can be formed by using 1,2,3,4,5,6,7,8,9 such a that the numbers will (i) begin with a specified digit

(ii) begin with a specified digit and end with a specified digit?

Ans: (i) No. begin with a specified digit, then to arrange 8 digits out of 3. Thus ${}^{8}P_{3} = 336$.

(ii) Numbers begin with a specified digit & end with another specified digit. Then we have to find the number of permutations of 7 things taken 2 at a time, which is ${}^{3}P_{2} = 42$ ways.

• No. of permutations of 'n' distinct objects taken 'r' at a time when a particular object is always to be included in any arrangement = $P_{(n-1)}P_{(p-1)}$. [Person to be included is not fix].

Explanation: If there are 'n' person & we have to select 'r' out of them. But one person is always to be included which is not fix. So, we can fix any of the 'r' person. Thus, fixing a person can be done in 'r' ways. Now we are left with only (r-1) persons & we have only (n-1) person (objects) left since 1 person is already taken. Thus, we have to arrange (r - 1) persons out of (n - 1) persons.

No. of Permutations when 2 things are always together out of 'n' things = (n-1)! × 2!

Explanation: Suppose we have to arrange n things out of n things, A1 & A2 should always come together. Thus, we have total (n-2) thing out of which we have to arrange (n-2) things. This can be done in (n-2)! ways. The 2 thing can be arranged in 2! ways. [A1 & A2 or A2 & A1]

TWO THINGS ARE NEVER TOGETHER = TOTAL NUMBER OF WAYS — "ALWAYS TOGETHER" WAYS

$= n! - (n-1)! \times 2! \implies (n-1)! (n-2)$

Telegram

YouTube

Explanation: We will subtract the number of ways when things are always together from total number of ways. This will give us the number of ways when 2 things are never together.

CQ22: In how many ways 10 examination papers can be arranged so that best & worst paper never come together?

Ans: (i) Total number of permutations of 10 papers without any restriction is ${}^{10}P_{10} = 10!$

(a) Instagram Whatsapp: 8888111134

(ii) Let us regard the worst and the best papers together as one paper.

Now we have (10 - 1) papers which can be arranged in ${}^{9}P_{9}$ ways = 9! Ways.

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Now these 2 papers (i.e best and worst papers) can be arranged internally in **2! Ways**.

The number of ways the two papers are always together is (9! \times 2!)

(iii) No. of ways that the best and worst paper never come together = Total number of permutations without restrictions - number of ways two papers are always together

 $= 10! - (9! \times 2!) = 9! [10-2] = 9! \times 8.$

CQ23: There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can these be placed on a shelf if the books on same subject are to be together?

Ans: Consider the books on each subject as one unit. Now there are 3 units. They can be arranged in 3! Ways.

6 Economics books can be arranged among themselves internally in 6! ways.

3 Mathematics books can be arranged internally in 3! ways.

2 books on Accountancy can be arranged internally in 2! ways.

Total number of arrangements = $3! \times 6! \times 3! \times 2! = 51,840$.

CQ24: How many different arrangements can be made by using all the letters of word MONDAY? **Ans:** MONDAY has different letters. So, 6 different letters arranged in ${}^{6}P_{6} = 6! = 720$ ways.

CQ25: In Q24, how many of these arrangement being with A? **Ans:** Suppose all words begin with A. Remaining 5 places filled with remaining 5 letters **⁵P**₅

CQ26: In Q24, how many of this arrangement begin with A & end with D? **Ans:** Suppose all words begin with A & end with D. Remaining 4 Places can be filled in ${}^{4}P_{4}$ = 4! Ways = **24 Ways**.

CQ27: In Q24, how many arrangements are there in which vowels A & O occur together?

Ans: The vowels are A & O. Let us take them as one letter, then remaining 5 letters can be arranged in ${}^{5}P_{5}$ = 5! = 120 ways. These two vowels can be arranged amongst themselves internally in 2! = 2 ways. So total numbers of ways = 2*120 = 240 ways.

CQ28: In Q24, how many words can be formed such that consonants occur together? [**Ans:** 144 ways.]

CQ29: In Q24, how many words can be there such that the vowels A, O occupy even places? [**Ans:** 144 ways]

CONCEPT	3: PERMUTATIO	N OF 'r' out of 'n' th	nings WHEN REPETITION IS ALLOWED			
If repetit	If repetition is allowed, Number of ways or arranging 'r' things out of 'n' things = n'.					
СQ30: Но	w many telephon	es connections may b	e allotted with 8 digits from the no. 0 to 9?			
(α) 10 ⁸	(b) 10!	(c) ¹⁰ C ₈	(d) ¹⁰ P ₈			
CONCEPT	4: PERMUTATIO	N OF SIMILAR THIN	NGS TAKEN ALL AT A TIME			
The numbe similar of things are	The number of ways in which 'n' things can be arranged taking all at a time, when 'p' things are similar of one type, 'q' things are similar of 2^{nd} type, 'r' things are similar of 3^{rd} type & remaining things are different = $\frac{n!}{n! \times n! \times n!}$					
CQ31: In l white?	CQ31: In how many ways can 17 billiard balls be arranged, if 7 of them are black, 6 red & 4 white? $[Ans: \frac{17!}{7! \times 6! \times 4!}]$					
CQ32: Ho	CQ32: How many permutations can be made out of the letters of the word?					
(i) MATHE	MATIC	(ii) COMMERCE;	(iii) EXAMINATION?			
Ans: (i) Th	ne word MATHEM	ATICS Contains 11 wo	ords in which, A appears 2 times: T appears	3 2		

Ans: (i) The word MATHEMATICS Contains 11 words in which, A appears 2 times: T appears 2 times: M appears 2 times and the remaining letters H, E, C, and S appear only once. Therefore required number of permutations = 11!/2!2!2!

(ii) Here M appears 2 times. E appears two times and O appears 2 times out of 8 words of COMMERCE.

Therefore required number of permutations= 8!/2!2!2! =5040.

(iii) The word EXAMINATION has 11 words, out which A appears 2 times, I appear 2 times, N appears 2 times.

Therefore required number of permutations=11! /2!*2!*2! = 4989600.

CQ33: The number of arrangements that can be made with the word 'assassination' is

(a) $13! \div [3! \times 4! \times (2!)^2]$ (b) $13! \div [3! \times 4! \times 2!]$ (c) 13! (d) None

CQ34: (i) How many different words can be formed with the letters of the word BHARAT?

(ii) How many of these begin with B and End T?

(iii) In how many of these B and H are never together?

Ans: (i) 6! /2! =360.

(ii) **4! /2! =12.**

(iii) **360 - 120 = 240.**

CONCEPT 5: CIRCULAR PERMUTATIONS

- Arrangement of things along a circle is known as circular permutations.
- abcd, dabc, cdab, bcda are different in a line but they are same in circular permutation as there is no beginning nor ending in the circle.
- Number of circular permutation of 'n' different things taken 'r' at a time = $\frac{nPr}{r}$
- A. Clockwise & anti-clockwise are different arrangements: No. of circular permutations of n different things chosen at a time is (n-1)!

Explanation: In line permutation, no. of ways or arranging n things = n!. Then why do we have (n-1)! in circular permutation. The reason is simple:

Let us assume that we have 6 people and 6 chairs.

The number of ways in which 1st person can sit = 1 way only because for the 1st person, all the arrangements will be same irrespective of the chair he sit at.

2nd person can sit in 5 ways. Because for him, the arrangements won't be same for all chairs because 1 chair is already occupied. 3rd person can sit in 4 ways;

4th person can sit in 3 ways; 5th person in 2 ways & 6th persons in 1 way.

Thus answer = 5.4.3.2.1 = 5! which is equal to (6-1)!

[PC Note: Mostly used in case of "Sitting arrangement of Person" examples]

CQ35: How many ways can 4 persons sit at a round table?

B. Clockwise & anti-clockwise are same arrangements: No. of circular permutations of n different things chosen at a time is $\frac{(n-1)!}{2}$.

[PC Note: Mostly used in case of "Necklace & garlands" examples]

SUM OF ALL Nos FORMED OUT OF 'n' DIGITS

(n-1)! × Sum of digits × (1111....n times)

CQ36: Compute the sum of 4 digits numbers which can be formed with the four digits 1, 3, 5, 7, if each digit is used only once in each arrangement.

Ans: $(n-1)! \times \text{Sum of digits} \times (1111...n \text{ times}) = (4-1)! \times (1 + 3 + 5 + 7) \times 1111 = 6.16.1111 = 106656.$

PC Note: If the digits include 'ZERO', Answer = (i) - (ii)

(ii) Solve by **ignoring** 'O' (i) Solve as per above given formula **including** 'O';

CQ37: Find the sum of all numbers greater than 10,000 formed by using the digits 0, 2, 4, 6, 8.

Ans: (i) 53,33,280 - (ii) 1,33,320. Thus, the required Sum 51,99,960.

[Ans: 3! ways]

SOME EXAMPLES

CQ38: How many 4 digits numbers can be formed out of the digits 1,2,3,5,7,8,9, if no digit is repeated in any number? How many of these will be greater than 3000?

Ans: 7 different digits and 4 digit number is to be formed using any 4 of these digits.

This is same as the permutations of 7 different things taken 4 at a time.

Hence, the number of four-digit numbers that can be formed = ${}^{7}P_{4} = 7 \times 6 \times 5 \times 4 \times = 840$ ways.

Next, there is the restriction that the four-digit numbers so formed must be greater than 3,000. Thus, it will be so if the first digit-that in the thousand's position, is one of the five digits 3, 5, 7, 8, 9. Hence, the first digit can be chosen in 5 different ways; when this is done, the rest of the 3 digits are to be chosen from the rest of the 6 digits without any restriction and this can be done in 6P_3 ways. [Ans: $5 \times {}^6P_3 = 5 \times 6 \times 5 \times 4 = 5 \times 120 = 600.$]

CQ39: Find the total number of numbers greater than 2000 that can be formed with the digits 1, 2, 3, 4, 5 no digit being repeated in any number.

Ans: 5 Digit Numbers: All the 5 digits numbers that can be formed with the given 5 digits are greater than 2000. This can be done in ${}^{5}P_{5}$ ways = **120 ways**.

4 Digit Number: Greater than 2000. Thus, Thousand place can have 2, 3, 4, 5 only.

Thousand Place	Hundred Place	Ten's Place	Unit place
4 ways [cannot have 1]	4 ways [can have 1 also]	3 ways	2 ways

This can be done in $4 \times 4 \times 3 \times 2 = 96$ ways. Total Number of ways = 120 + 96 = 216 ways.

CQ40: There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are Russians. They have to stand in a row for a photograph so that the two Indians are together, the two Americans are together and so also the two Russians. Find the number of ways in which they can do so. [Ans: 48]

CQ41: A family of 4 brothers and 3 sisters is to be arranged for a photograph in one row. In how many ways can they be seated if (i) all the sisters sit together, (ii) no two sisters sit together?

Ans: (i) 5! × 3! ways = 720 ways.

(ii) ${}^{5}P_{3} \times 4! = 60 \times 24 = 1440$ ways.

Telegram

CQ42: 6 boys & 5 girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done.

Ans: 6! × 5!.

YouTube

PERMUTATION OF DISSIMILAR THINGS (ALL DIFFERENT) UNDER RESTRICTION

Sustagram Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

To Buy Video Lectures & Books, www.pranavchandak.com

Cases	Formula	If n = 8, r = 3
A particular thing is NOT INCLUDED	ⁿ⁻¹ P _r	⁷ P ₃
A particular thing is ALWAYS INCLUDED	r(ⁿ⁻¹ P _{r-1})	3(⁷ P ₂)
'm' particular thing ALWAYS TOGETHER	(n — m + 1)! m!	
2 particular ALWAYS TOGETHER	(n — 1)! 2!	7! × 2!
3 particular ALWAYS TOGETHER	(n — 2)! 3!	6! × 3!
4 particular ALWAYS TOGETHER	(n — 3)! 4!	5! × 4!
'm' particular thing NEVER TOGETHER	n! — [(n — m +1)! m!]	
2 particular NEVER TOGETHER	(n − 2) × (n − 1)!	6 × 7!
3 particular NEVER TOGETHER	$(n - 3) \times (n + 2) \times (n - 1)!$	5 × 10 × 6!
NO TWO are together out of 'r' things & no restriction on remaining 'q' things	$q! \times {}^{(q+1)}P_r$	
Forming numbers including ZERO	${}^{n}P_{r} - {}^{n-1}P_{r-1}$	${}^{8}P_{3} - {}^{7}P_{2}$
SUM of ALL no. formed out of 'n' digits	$(n - 1)! \times (Sum of all digits)$	× (111111 n times)

PERMUTATION OF SIMILAR THINGS (2 ALIKE GROUPS) UNDER RESTRICTION

Cases	Formula	n = 8, p = 2, q = 3
'm' particular ALWAYS TOGETHER	[n — m + 1)! m!] / (p! × q!)	
2 particular ALWAYS TOGETHER	[n — 1)! 2!] / (p! × q!)	(7! × 2!) / ((2! × 3!)
3 particular ALWAYS TOGETHER	[n — 2)! 3!] / (p! × q!)	(6! × 3!) / ((2! × 3!)
4 particular ALWAYS TOGETHER	[n — 3)! 4!] / (p! × q!)	(5! × 4!) / ((2! × 3!)
'm' particular NEVER TOGETHER		
2 particular NEVER TOGETHER	[(n — 2) (n — 1)!] / (p! × q!)	(6 × 7!) / ((2! × 3!)
2 particular NEVER TOGETHER	$[(n - 3) (n + 2) (n - 1)!] / (p! \times q!)$	(5 × 10 × 6!) / ((2! × 3!)

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Vic YouTube Telegram (Matsapp: 8888111134) WWW.pre

To Buy Video Lectures & Books, www.pranavchandak.com

PERMUTATION OF DISSIMILAR THINGS IN A CIRCLE UNDER RESTRICTION

Cases	Formula	If n = 8,
'm' particular ALWAYS TOGETHER	[(n — 1) — m + 1)! m!	
2 particular ALWAYS TOGETHER	[(n — 1) — 1)! 2!	6! × 2!
3 particular ALWAYS TOGETHER	[(n — 1) — 2)! 3!	5! × 3!
4 particular ALWAYS TOGETHER	[(n — 1) — 3)! 4!	4! × 4!
'm' particular NEVER TOGETHER		
2 particular NEVER TOGETHER	$[(n - 1) - 2] \times [(n - 1) - 1]!$	5 × 6!
2 particular NEVER TOGETHER	(n — 4) (n +1) (n — 3)!	4 × 9 × 5!
NO TWO are together out of 'r' things & no restriction on remaining 'q' things	(q — 1)! × ^q P _r	

Space for PC Class Note:

PERMUTATION – QUESTION BANK

SN		CHAPTER	4A. PERMUTATION		Ans
	FACTORIAL &	FUNDAMENTAL R	ULE OF COUNTING & "F	P, FORMULA	
Q1	Find n if ${}^{n}P_{3} = 60$				B
	(a) 4	(b) 5	(c) 6	(d) 7	
Q2	Find the value of	n if (n+1)! = 42 (n-1)!			Α
	(α) 6	(b) -7	(c) 7	(d) -6	
Q3	6P_r = 360 then fin	d r?			Α
	(a) 4	(b) 5	(c) 6	(d) None	
Q4	If ${}^{n}P_{4} = (20) {}^{n}P_{2} th$	en the value of n is ₋	·		С
	(α) 5	(b) 6	(c) 7	(d) 8	
Q5	If ${}^{7}P_{n} \div {}^{7}P_{n-3} = 60$	the value of n is	<u> </u>		С
	(α) δ	(b) 4	(c) 5	(d) 2	
Q6	If 5P_r = 60, then t	he value of 'r' is			Α
	(α) 3	(b) 2	(c) 4	(d) None	
Q7	If ${}^{11}P_{r} = {}^{12}P_{r-1}$, then	n the value of 'r' is _			С
	(α) 6	(b) 7	(c) 9	(d) 8	
Q8	There are 10 trai	ns plying between C	alcutta & Delhi. The number	of ways in which	В
	a person can go	from Calcutta to Del	hi & return by a different	train is	
	(0) 99	(0) 90	(0) 80	(d) None	
Q9	$\frac{0.7\times 31}{2!} =$				A
	(α) 60	(b) 0	(c) 120	(d) None	
Q10	In "P _r , n is always	·			С
	(a) An integer	(b) A fraction	(c) A positive integer	(d) None	
Q11	In "P _r , the restric	ction is			B
	(a) n>r	(b) n ≥ r	(c) n ≤ r	(d) None	
Q12	${}^{n}P_{r} \div {}^{n-1}P_{r-1}$ is	·			A
	(a) n	(b) n!	(c) (n-1)!	(d) ⁿ C _n	
Q13	In ⁿ P _r = n.(n -1).(n	-2)(n - r -1), r	number of factor is		D
	(a) n	(b) r- 1	(c) n- r	(d) r	
Q14	$^{(n-1)}P_{r} + r.^{(n-1)}P_{(r-1)} =$	·			С
	(a) ⁿ C _r	(b) $\underline{ n }(\underline{ r } n-r)$	(c) ⁿ P _r	(d) None	
Q15	O! =				B
	(a) O	(b) 1	(C) ∞	(d) -1	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Q16	Compute the valu	e of 8!			D
	(a) 120	(b) 3,62,880	(c) 720	(d) 40,320	
Q17	4P4 is equal to	·			B
	(a) 1	(b) 24	(c) 0	(d) None	
Q18	The value of $^{11}\text{P}_9$ is	s equal to			B
	$(\alpha) \frac{11!}{9! \times 2!}$	(b) $\frac{11!}{2!}$	(c) $\frac{11! \times 2!}{9!}$	(d) None	
Q19	If ${}^{n}P_{4} = 5040$, ther	n the value of 'n' is			C
	(α) 8	(b) 9	(c)10	(d) 6	
Q20	If. ${}^{n}P_{3} : {}^{n}P_{2} = 3:1, t$	hen n is equal to			С
	(a) 7	(b) 4	(c) 5	(d) None	
Q21	If ${}^{56}p_{r+6}$: ${}^{54}p_{r+3} = 306$	800:1, find 'r'.			B
	(a) 31	(b) 41	(c) 51	(d) 21	
Q22	If (n +1)! = 20 (n -1)!, then value of n is	·		С
	(a) 6	(b) 5	(c) 4	(d) None	
Q23	$^{m+n}P_2 = 56, \ ^{m-n}P_2 = 56$	30, then			B
	(a) m = 6, n = 2	(b) m = 7, n = 1	(c) m = 4, n = 4	(d) None	
Q24	If $x+yP_2 = 90 \& x-yP_2$	= 30 then			Α
	(a) x = 4y	(b) x = 2	(c) x = À	(d) 4x = y	
Q25	1.1! + 2. 2! + 3.3! +	4.4! +(n-1) (n-1)!	+ n.n!		B
	(a) n(n+1) (n+1)!	(b) (n+1)! — 1	(c) (n+1)! + 1	(d) (n+1)!	
Q26	Value of $\sum_{r=1}^{10} r.^r P_r$. is			B
	(a) ¹¹ P ₁₁	(b) ¹¹ P ₁₁ -1	(c) ${}^{11}P_{11}+1$	(d) None	
Q27	If ${}^{n+3}P_6 \div {}^{n+2}P_4 = 14$	the value of n is			B
	(α) 8	(b) 4	(c) 5	(d) 2	
Q28	There are 4 route	es for going from Du dni . In how many di	mdum to Sealdah & 5 ro fferent ways can you a	utes for going from	С
	Chandni Via Seala	lah?	noroni wayo can you g		
	(α) 9	(b) 1	(c) 20	(d) None	
Q29	There are 6 route may go from A to routes?	es for journey from s o B & return if for 1	tation A to station B. In [,] eturning you make a cł	how many ways you noice of any of the	С
	(α) 6	(b) 12	(c) 36	(d) 30	
Q30	In Question No.29 number of ways.	9, if you decided to	take the same route ye	ou may do it in —	A
	(α) 6	(b) 12	(c) 36	(d) 3	
Q31	In Question No.29	, if you decided not	take the same route you	may do it in number	D

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

	of ways.				
	(α) 6	(b) 12	(c) 36	(d) 30	
Q32	If six times th seven times th 'n'.	e number permutat he number of permi	ions of n things taken utations of (n-1) things	3 at a time are equal to chosen 3 at a time, find	D
	(a) 18	(b) 9	(c) 36	(d) 21	
Q33	In a group of of arrangeme	boys, the number of nts of 2 boys. The nu	°arrangements of 4 bo umber of boys in the gr	ys is 12 times the number oup is	С
	(a) 10	(b) 8	(c) 6	(d) None	
Q34	A dealer prov How many chc	ides you Maruti Car vices are open to yc	& Van in 2 body patte ou?	rns & 5 different colours.	С
	(a) 2	(b) 7	(c) 20	(d) 10	
	BA	SIC QUESTIONS	WITH SIMPLE REST	RICTIONS	
Q35	How many diff (a) 8!	erent words can be (b) 7!	e formed from letters c (c) 6!	of the word 'TRIANGLE? (d) 2! x 6!	A
Q36	Number of wo (a) 120	rds that can be for (b) 24	med by using all the let (c) 125	ters of the word 'DELHI'. (d) 130	A
Q37	How many arr (a) 6!	angements of the w (b) 5!	ord 'PUBLIC' will begin (c) ⁶ P5	with B? (d) 5	B
Q38	How many 7 le	tter words can be	formed using letters of	the words "SPECIAL"?	A
	(a) 5,040	(b) 6	(c) 840	(d) 450	
Q39	How many arr (a) 120	angements can be r (b) 720	nade by using all the le (c) 41	etters of word "Monday"? (d) 51	B
Q40	Find how many $(\alpha)^{10}P_5$	y five letter words a (b) ¹⁰ C5	can be formed out of t (c) ⁹ C4	he word "LOGARITHMS". (d) None	A
Q41	Three persons number of way	s enter a railway c ys they can seat the	arriage, where there emselves is	are 5 vacant seats. The	A
	(a) 60	(b) 50	(c) 70	(d) 40	
Q42	Mr. X & Mr. Y number of way	′ enter into a railw ys in which they car	vay compartment havi occupy the seats is _	ng six vacant seats. The 	D
	(α) 25	(b) 31	(c) 32	(d) 30	
Q43	The number of particular thin	arrangements of 10 ang always occurs is	O different things taken	n 4 at a time in which one	B
	(a) 2,015	(b) 2,016	(c) 2,014	(d) None	
Q44	The number of particular thin	f permutations of 10 ng never occurs is _) different things taker 	1 4 at a time in which one	С
	(a) 3,020	(b) 3,025	(c) 3,024	(d) None	

Q45	The number of arranged so tha	arrangements ir t the words thu	n which the letters of s formed begin with M	f the word MONDAY be & do not end with N is	B
	(a) 720	(b) 96	(c) 120	(d) None	
Q46	In how many way	s it is possible to	o write the word 'ZENI	TH' in a dictionary?	Α
	(a) ⁶ P ₆	(b) ⁶ C ₆	(c) ⁶ P ₀	(d) None	
Q47	How many teleph 0,1,2,9?	ones connection	s may be allotted with &	3 digits from the numbers	A
	(a) 10 ⁸	(b) 10!	(c) ¹⁰ C ₈	(d) ¹⁰ P ₈	
Q48	Eleven students o can be won?	are participating	g in a race. In how mar	ny ways the first 5 prizes	B
	(a) 44,550	(b) 55,440	(c) 120	(d) 90	
Q49	Total number of the end seats is	sitting arrangen 	nents of 7 persons in a	row if 2 persons occupy	С
	(a) 5!	(b) 6!	(c) 2! x 5!	(d) None	
Q50	Total number of s the middle seat i	sitting arrangem s	ents of 7 persons in a ro	ow if one person occupies	B
	(α) 5!	(b) 6!	(c) 2! x 5!	(d) None	
Q51	The number of di (a) 102	fferent ways in v (b) 120	which 5 girls may be ar (c) 100	ranged in a row is (d) 210	B
Q52	3 persons go into occupy the seats	o a railway carri ?	age having 8 seats. In	how many ways they may	A
	(a) ⁸ P ₃	(b) ⁸ C ₃	(c) ⁸ C ₅	(d) None	
		QUESTION	IS BASED ON DIGITS	3	
Q53	Number of 4-dig digits 3,4,5,6 & 7	it numbers grea (no. digit is rep	iter than 5,000 that co eated).	an be formed out of the	A
	(a) 72	(b) 27	(c) 70	(d) None	
Q54	How many numbe	ers between 1000	0 & 10000 can be forme	ed with 1, 2, 9?	D
	(a) 3024	(b) 60	(c) 78	(d) None	
Q55	How many numb 0,4,4,5,5,5,3?	pers higher the	an a million can be	formed with the digits	D
	(a) 420	(b) 360	(c) 7!	(d) None	
Q56	How many three odd?	-digit numbers c	are there, with distinct	t digits, with each digits	B
	(a) 120	(b) 60	(c) 30	(d) 15	
Q57	The number of nu 1,2,3,4,5,6,7 is	umbers lying bet 	ween 100 & 1,000 can b	be formed with the digits	A
	(a) 210	(b) 200	(c) 110	(d) None	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

To Buy Video Lectures & Books, www.pranavchandak.com

Q58	How many six 9,5,3,1,7,0?	digits numbers c	an be formed with the	e permutation of digits	A
	(α) 600	(b) 720	(c) 120	(d) None	
Q59	In terms of Qu	estion No.58, how 1	many numbers will have	O's in ten's palace?	С
	(a) 600	(b) 720	(c) 120	(d) None	
Q60	How many 3 di	git numbers are th	ere if repetition of digi	ts is not allowed?	A
	(α) 648	(b) 9³	(c) 3 ⁹	(d) ⁹ C ₃	
Q61	The number of without repeti	four digit numbers tion is	s that can be formed us	sing the digits 1, 7, 6 & 9	A
	(α) 24	(b) 46	(c) 64	(d) 90	
Q62	No. of 4 digit r repeated) is _	iumbers that can b 	e formed out of the fig	ures 0,1,2,3,4 (no digit is	С
	(α) 120	(b) 20	(c) 96	(d) None	
Q63	The number of 2,3,4,0,8,9 is _	numbers lying bet 	ween 10 & 1,000 can be	e formed with the digits	D
	(α) 124	(b) 120	(c) 125	(d) None	
Q64	How many six repeated)?	digit numbers can	n be formed out of 4,5	,6,7,8,9 (no digits being	B
	(a) 6! - 5!	(b) 6!	(c) 6! + 5!	(d) None	
Q65	The total numb 9 such that ea	er of numbers less ch digit does not o	than 1,000 & divisible ccur more than once in	by 5 formed with 0, 1, 2, each number is	С
	(α) 150	(b) 152	(c) 154	(d) None	
Q66	How many four (Without repet	digits number can ition of digits)	be formed by using 1, 2	2 7?	A
	(α) ³ P ₄	(b) ⁷ P ₃	(c) ³ C ₄	(d) None	
Q67	How many four (Which are gre	digits numbers ca ater than 3,400)	n be formed by using 1,	2,7?	С
	(α) 500	(b) 550	(c) 560	(d) None	
Q68	The number of 1,2,3,4,5 withou	even numbers grec ut repetition is	ater than 300 that can b 	be formed with the digits	С
	(α) 110	(b) 112	(c) 111	(d) None	
Q69	How many 4 di 5, 7, 8, 9?	git numbers greate	er than 7,000 can be fo	rmed out of the digits 3,	С
	(a) 24	(b) 48	(c) 72	(d) 50	
		ALWAYS TOGET	HER & NEVER TOGE	THER	
Q70	In how many n particular boo	umber of ways can ks are not togethe	n 'n' books be arranged r?	d on a shelf so that two	A

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

	(a) (n-2) (n-1)!	(b) (n-1) n!	(c) (n-2) n!	(d) (n-2) (n-1)	
Q71	10 examination pa never come toget	pers are arrange her. The number	ed in such a way that th of arrangements is	ne best & worst papers 	С
	(a) 9.8 !	(b) 10 !	(c) 8.9 !	(d) None	
Q72	In how many ways books of the same	5 Sanskrit, 3 Eng language togeth	glish & 3 Hindi books be er?	e arranged keeping the	A
	(a) 5! × 3! × 3! × 3!	(b) 5! × 3! × 3!	(c) ⁵ P ₃	(d) None	
Q73	In how many ways come together?	can the word 'S1	RANGE' be arranged so	o that the vowels never	A
	(a) 7! - 6! X 2!	(b) 7! - 6!	(c) ⁷ P ₆	(d) None	
Q74	In how many ways never separated?	s can the word '	strange' be arranged s	so that the vowels are	A
	(a) 6! x 2!	(b) 7!	(c) 7! ÷ 2!	(d) None	
Q75	There are 5 spea always immediate	kers A, B, C, D & & before B is	E. the number of way	s in which A will speak	A
	(α) 24	(b) 120	(c) 15	(d) None	
Q76	Number of ways of English & 4 differe are not separated	of arranging 5 dit ent books on phy d.	ferent books on histor sics on a shelf so that	y, 2 different books on books on same subject	B
	(a) 5,760	(b) 34,560	(c) 120	(d) 11 !	
Q77	How many arrange being separated?	ements can be ma	de out of the word DRA	UGHT, the vowels never	A
	(a) 720	(b) 360	(c) 840	(d) 670	
Q78	In how many ways always next to E _	can the letters	of the word PENCIL be	arranged so that N is	D
	(a) 60	(b) 40	(c) 720	(d) 120	
Q79	The total number together in any or	of sitting arrang der is	ements of 7 persons in	a row if 3 persons sit	B
	(a) 5!	(b) 6!	(c) 2! x 5!	(d) None	
Q80	The number of art are always coming	rangements of th g together is	e letters in the work F 	AILURE, so that vowels	A
	(a) 576	(b) 676	(c) 570	(d) None	
Q81	The number of wa the word 'ANGLE"	ys the letters of will be always pr	the word "TRIANGLE" (esent is	to be arranged so that	С
	(a) 20	(b) 60	(c) 24	(d) 32	
Q82	If 5 books of Engli single row so that	sh, 4 books of Ta books of same lo	mil & 3 books of Hindi o Inguage come together	re to be arranged in a	С
	(α) 1,80,630	(b) 1,60,830	(c) 1,03,680	(d) 1,30,680	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

To Buy Video Lectures & Books, www.pranavchandak.com

Q83	In how many ways the letters of the word 'FAILURE' can be arranged with the condition that the four vowels are always together?				
	(a) (4!) ²	(b) 4!	(c) 7!	(d) None	
Q84	In how many together?	ways the word 'A	RRANGE' be arrange	d such that 2 'r's come	С
	(a) 400	(b) 440	(c) 360	(d) None	
Q85	In how many come togethe	ways the word 'ARR r?	ANGE' be arranged su	ch that the 2 'r's & 2 'a's	A
	(a) 120	(b) 130	(c) 140	(d) None	
Q86	A family of 4 k row. In how m	orothers & three sis any ways can they b	sters is to be arranged be seated if all the sis	d for a photograph in one ters sit together?	A
	(a) 720	(b) 640	(c) 840	(d) 600	
Q87	A family of 4 k row. In how m (a) 840	orothers & three sis any ways can they b (b) 1.440	sters is to be arranged be seated if no two sis (c) 2,210	d for a photograph in one ters sit together? (d) 1.020	B
Q88	There are 6 s British. They k together, the ways such an (a) 48	students of whom 2 have to stand in a rc two Germans are to arrangement can bo (b) 8	are Indians, 2 Germa ow for a photograph sc ogether & so also the t e made is (c) 16	ns & the remaining 2 are that the two Indians are wo British. The number of (d) 24	A
089	5 Rove & (Lair	ls are to be seated	in now If girls occurs	y over places, then no of	D
003	such arrange	nents are	In row. If girls occupy	veven places, then no. of	
	(α) 288	(b) 2808	(c) 2008	(d) 2880	
Q90	The number of ways in which the letters of the word MOBILE be arranged so that consonants always occupy the odd places is			A	
	(α) 36	(b) 63	(c) 30	(d) None	
Q91	In how many ways the words 'failure' can be arranged so that consonants occupy only the odd positions?				B
	(a) 4!	(b) (4!) ²	(c) 7! ÷ 3!	(d) None	
Q92	In how many ways can be letters of the word 'VIOLENT' be arranged so that the vowels occupy even places only?				D
	(a) 1,440	(b) 240	(c) 480	(d) 144	
Q93	The number of ways the letters of the word 'SIGNAL' can be arranged such that the vowels occupy only odd position is				D
	(a) 1,440	(b) 240	(c) 480	(d) 144	
Q94	In how many w only the odd p	vays can the word 'S blaces?	TRANGE' be arranged	so that the vowels occupy	С

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

👩 Instagram

	(α) ⁵ P ₅	(b) ⁵ P ₅ x ⁴ P ₄	(c) ⁵ P ₅ x ⁴ P ₂	(d) None	
Q95	In how many ways places?	s the vowels of the	word "ALLAHABAD" will	occupy the even	B
	(a) 120	(b) 60	(c) 30	(d) None	
Q96	In how many ways occupy even place	the word 'Article' c s?	an be arranged in a row s	o that the vowels	B
	(a) 132	(b) 144	(c) 72	(d) 160	
Q97	Six boys & five girl girls sit together this can be done.	s are to be seated & no two boys sit to	for a photograph in a row ogether. Find the number	such that no two of ways in which	С
	(α) 64,500	(b) 76,800	(c) 86,400	(d) 92,500	
		PERMUTATION O	F SIMILAR THINGS		
Q98	Number of differe (a) 8	nt arrangements of (b) 5 x 2 x 2 x	the letters of the word 'C 2 (c) 5,040	ALCUTTA' is (d) 10,080	С
Q99	If you have 5 copie three books & sin ways?	es of one book, 4 co gle copy of 8 books	pies of each of two books, s you may arrange it how	6 copies each of many number of	A
	(a) $\frac{39!}{5! \times (4!)^2 \times (6!)^3}$	(b) $\frac{39!}{5! \times 8! \times (4!)^2 \times (6!)^3}$	(c) $\frac{39!}{5! \times 8! \times 4! \times (6!)^3}$	(d) $\frac{39!}{5! \times 8! \times 4! \times 6!}$	
Q100	How many differ CALCULUS?	ent permutations	are possible from the	letters of word	B
	(a) 4600	(b) 5040	(c) 5400	(d) 4680	
Q101	How many differer	nt arrangements are	e possible from letters of	"CALCULATOR"?	Α
	(a) 4,53,600	(b) 50,400	(c) 45,360	(d) None	
Q102	No. of permutation	n can be made out t	he letters of word 'COMM	ERCE" is	A
	(a) 5,040	(b) 8!	(c) 6!	(d) None	
Q103	No. of arrangemer (a) 13! ÷ [3!×4!×(2!) ²	nts that can be mad] (b) 13!	e with the word 'assassing (c) 13! ÷ [3! × 4! × 2!]	ation' is (d) None	A
Q104	The number of sub	sets formed from th	ne letters of the word "ALI	_AHABAD".	С
	(a) 128	(b) 16	(c) 32	(d) None	
Q105	The number of per	mutation of the wor	d "ALLAHABAD" is		Α
	(a) 9! ÷ (4! x 2!)	(b) 9! ÷ 4!	(c) 9!	(d) None	
Q106	In how many ways	can the letters of t	he word 'ARRANGE' be arı	°anged?	С
	(a) 1200	(b) 1250	(c) 1260	(d) 1300	
Q107	Number of words the letter C once	that can be formed is	using the letter A thrice,	letter B twice &	D
	(a) 80	(b) 50	(c) 70	(d) 60	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

To Buy Video Lectures & Books, www.pranavchandak.com

CIRCULAR PERMUTATION					
Q108	If 50 different j	ewels can be set t	o form a necklace then	number of ways is	B
	(a) $\frac{1}{2}.50!$	(b) $\frac{1}{2}$.49!	(c) 49 !	(d) None	
Q109	Number of circu	llar permutations c	of n different things ch	osen at a time is	Α
	(a) (n -1)!	(b) (n + 1)!	(c) n!	(d) (n - 2)!	
Q110	In how many wa	ys can 4 persons si	it at a round table for	a group discussion?	С
	(α) 24	(b) 12	(c) 6	(d) 18	
Q111	Number of ways	in which 7 girls for	rm a ring is		С
	(a) 700	(b) 710	(c) 720	(d) None	
Q112	Number of ways	in which 8 differe	nt beads be strung on	a necklace is	B
	(α) 2,500	(b) 2,520	(c) 2,250	(d) None	
Q113	5 persons are si the right-side of	tting in a round tal `the shortest perso	ole in such way that Tal on. The number of such	lest Person is always on arrangements is	A
	(α) 6	(b) 8	(c) 24	(d) None	
Q114	In how many w particular perso	ays can 8 person ons sit together?	is be seated at a ro	und table, such that 2	С
	(α) 840	(b) 1220	(c) 1,440	(d) 1896	
Q115	In how many wo always sit toget	ays 4 men & 3 wor her?	nen are arranged at o	a round table if women	B
	(a) 6 x 6!	(b) 6!	(c) 7!	(d) None	
Q116	In how many wa never sit togeth	ys 4 men & 3 wome er?	en are arranged at a ro	ound table if the women	A
	(a) 6 x 6!	(b) 6!	(c) 7!	(d) None	
Q117	The Chief Ministers of 17 States meet to discuss the hike in oil price at a round table. In how many ways they seat themselves if the Kerala & Bengal chief ministers choose to sit together?			A	
	(a) 15! × 2!	(b) 17! × 2!	(c) 16! × 2!	(d) None	
Q118	In how many ways can 4 Americans & 4 English men be seated at a round table so that no 2 Americans may be together?				A
	(a) 4! × 3!	(b) ⁴ P ₄	(c) 3 × ⁴ P ₄	(d) ⁴ C ₄	
Q119	In how many ways can 6 boys & 6 girls be seated around a table so that no 2 boys are adjacent?				
	(α) 4! × 5!	(b) 5! × 6!	(c) ⁶ P ₆	(d) 5× ⁶ P ₆	
Q120	Six Persons A, B, C, D, E & F to be seated at a circular table. In how many ways can this be done, if A must always have either B or C on his right & B must always have either C or D on his right?				D
	(α) 3	(b) 6	(c) 12	(d) 18	

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramMaisapp: 8888111134www.pranavchandak.com

MISCELLANEOUS QUESTIONS					
Q121	The letters of the words CALCUTTA & AMERICA are arranged in all possible ways. The ratio of the number of these arrangements is				
	(a) 1:2	(b) 2:1	(c) 1:1	(d) 1.5:1	
Q122	How many arrangements of the letters of the word 'BHARAT will not have 'B' & 'H' together"				
	(a) 360	(b) 240	(c) 120	(d) 60	
Q123	How many words o 4 vowels?	of 3 consonants 8	& 2 vowels can be fo	rmed from 6 consonants &	A
	(α) ⁶ P ₃ × ⁴ P ₂	(b) ${}^{6}C_{3} + {}^{4}C_{2}$	(c) ⁶ P ₃ × ⁴ P ₂	(d) <u> 3</u> × <u> 2</u>	
Q124	In how many ways come together?	the word 'ARRA	NGE' be arranged	such that the 2 'r's do not	B
	(a) 1000	(b) 900	(c) 800	(d) None	
Q125	The total number	of 9 digit number	es of different digits	s is	D
	(α) ¹⁰ P ₉	(b) ¹⁰ P ₉	(c) ⁹ P ₉	(d) None	
Q126	How many number	s between 3,000	& 4,000 can be for	med with 1 2 6?	D
	(a) 3,024	(b) 60	(c) 78	(d) None	
Q127	How may number 1,2,3,4,5,6	s between 1,00	0 & 10,000 can b	e formed with the digits	B
	(a) 720	(b) 360	(c) 120	(d) 60	
Q128	Number of 4-digit digit being repeat	numbers that c ed in any numbe	can be formed from r, which are greate	1,2,3,5,7,8,9 such that no r than 3000 are	С
	(a) 120	(b) 480	(c) 600	(d) 840	
Q129	Eight guests have to be seated 4 on each side of a long rectangular table. 2 particular guests desire to sit on one particular side of the table & 3 on the other side. The number of ways in which the sitting arrangements can be made is				B
	(a) 1732	(b) 1728	(c) 1730	(d) 1278	
		ADVAN	CE QUESTIONS		
Q130	How many differe	nt words can be	formed from letters	of the word 'TRIANGLE?	Α
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q131	How many differ 'TRIANGLE?	ent words can	be formed beginn	ing with 'E' of the word	B
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q132	In Question No.13	l, how many of th	em will begin with '1	" & end with 'E'?	С
	(α) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q133	In Question No.13	I, how many of th	em have 'T' & 'E' in t	he end places?	D
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Q134	In Question No.131, how many of them have consonants never together?	A
	(a) $8! - 4! \times 5!$ (b) ${}^{6}P_{3} \times 5!$ (c) $2! \times 5! \times 3!$ (d) ${}^{4}P_{3} \times 5!$	
Q135	In Question No.131, how many of them have arrangements that no two vowels are together?	B
	(a) $8! - 4! \times 5!$ (b) ${}^{6}P_{3} \times 5!$ (c) $2! \times 5! \times 3!$ (d) ${}^{4}P_{3} \times 5!$	
Q136	In Question No.131, how many of them have arrangements that consonants & vowels are always together?	С
	(a) $8! - 4! \times 5!$ (b) ${}^{6}P_{3} \times 5!$ (c) $2! \times 5! \times 3!$ (d) ${}^{4}P_{3} \times 5!$	
Q137	In Question No.131, how many of them have arrangements that vowels occupy odd Places?	D
	(a) $8! - 4! \times 5!$ (b) ${}^{6}P_{3} \times 5!$ (c) $2! \times 5! \times 3!$ (d) ${}^{4}P_{3} \times 5!$	
Q138	Number of 2-digit numbers which are divisible by 6 is	B
	(a) 16 (b) 15 (c) 17 (d) 14	
Q139	How many different signals are possible if we wish to make signals by arranging 3 red, 2 yellow & 2 green flags in one post.	A
	(a) 210 (b) 6,420 (c) 40,320 (d) 96	
Q140	Let S be the collection of eight points in the plane with no three points on the straight line. Find the number of triangles that have points of S as vertices. (a) 52 choices (b) 55 choices (c) (8 choices (d) 56 choices	D
Q141	The number of ways in which 8 sweets of different sizes can be given among 8 persons of different ages so that the largest sweet always goes to be younger assuming that each one of them gets a sweet is	B
	(a) 8! (b) 5,040 (c) 5,039 (d) None	
Q142	Number of ways in which arrangements of 4 letters can be made from the word "MATHEMATICS".	D
	(a) 1,680 (b) 756 (c) 18 (d) 2454	
Q143	Total number of ways in which six '+' & four '-' signs can be arranged in a line such that no two '-' signs occur together is	C
	(a) 7!/3! (b) 6! x (7!/3!) (c) 35 (d) None	
Q144	In how many ways 21 red balls & 19 blue balls can be arranged in a row so that no two blue balls are together.	A
	(a) 1,540 (b) 1,520 (c) 1,560 (d) None	
Q145	Find the number of divisors of 21,600 excluding 1 & the number itself	D
	(a) 72 (b) 142 (c) 35 (d) 70	
Q146	A computer has 5 terminals & each terminal is capable of four distinct positions including the positions of rest what is the total number of signals that can be made?	С
	(a) 20 (b) 1020 (c) 1023 (d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

Q147	In order to pass PCA examination minimum marks have to be secured in each of 7 subjects. In how many ways can a pupil fail?				
	(a) 128	(b) 64	(c) 127	(d) 63	
Q148	In how many we	ays can 9 letters be	posted in 4 letter bo	oxes?	Α
	(α) 4 ⁹	(b) 4 ⁵	(c) ⁹ P ₄	(d) ⁹ C ₄	
Q149	If all the permutations of the letters of the word "CHALK" are written in a dictionary the rank of this word will be				
	(a) 30	(b) 31	(c) 32	(d) None	
Q150	Number of way	s the letters of the v	vord COMPUTER can	be rearranged as	B
	(a) 40,320	(b) 40,319	(c) 40,318	(d) None	
Q151	No. of words w different consc	hich can be formed onants & 3 different v	with 2 different cons vowels. vowel to lie be	onants & 1 vowel out of 7 etween 2 consonants is	A
	(a) 3×7×6	(b) 2×3×7×6	(c) 2×3×7	(d) None	
Q152	If the letter of the word ATTEMPT are written down at random, the chance that all Ts are consecutive is				
	(a) 1/42	(b) 6/7	(c) 1/7	(d) 1	
Q153	There are 50 stations on a railway line how many different kinds of single first class tickets may be printed to enable a passenger to travel from one station to other?				B
	(α) 2,500	(b) 2,450	(c) 2,400	(d) None	
Q154	A letter lock has three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?				
	(a) 1,000	(b) 999	(c) 5040	(d) None	
Q155	In how many different ways 3 rings of a lock can not combine when each ring has digits 0, 1, 29 leading to unsuccessful events?				
	(a) 999	(b) 10 ³	(c) 10!	(d) 997	
Q156	In how many di	fferent ways can 7 p	ersons stand in a line	for a group photograph?	Α
	(a) 7 × 6!	(b) 6!	(c) 7	(d) 24	

CHAPTER 4B. COMBINATION

INTRODUCTION

- **Definition:** The number of ways of **SELECTING** all or some of the given things out of given things is called combination.
- The order in which things are arranged is NOT important.
- Number of Permutations of 'r' different objects out of 'n' different objects = ${}^{n}C_{r} = \frac{n!}{(n-r)! \times r}$

PROPERTIES OF "C,

1) ${}^{n}C_{r} = {}^{n}C_{n-r}$

2) ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow \text{Either } x = y \text{ or } x + y = n$

CQ1: Find 'r' if ${}^{18}C_{p} = {}^{18}C_{p+2}$

Ans: r cannot be equal to r + 2. Therefore r + (r +2) = $18 \Rightarrow 2r + 2 = 18 \Rightarrow 2r = 16 \Rightarrow \mathbf{r} = \mathbf{8}$.

3) ${}^{n}C_{p} + {}^{n}C_{p-1} = {}^{n+1}C_{p}$

CQ2: Find x if
$${}^{12}C_5 + 2{}^{12}C_4 + {}^{12}C_3 = 14C_x$$

Ans: ${}^{12}C_5 + 2$. ${}^{12}C_4 + {}^{12}C_3 \implies {}^{12}C_5 + {}^{12}C_4 + {}^{12}C_3 \implies {}^{13}C_5 + {}^{13}C_4 = {}^{14}C_5$.
Using ${}^{n}C_{r} = {}^{n}C_{n-r_{9}} {}^{14}C_5 = {}^{14}C_{14-5} = {}^{14}C_9$
Thus LHS = ${}^{14}C_5 = {}^{14}C_9 \& RHS = {}^{14}C_x \implies Either x = 5 \text{ or } x = 9$.

4)
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{(n-1)} + {}^{n}C_{n} = 2^{n}$$

CQ3: ${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} =$

(a) 30 (b) 31 (c) 32 (d) 25

5) ⁿC_o = 1.

6) ${}^{n}C_{n} = 1.$ Here r = n, $[{}^{n}C_{n} = \frac{n!}{(n-n)! \times n!} = \frac{n!}{0! \times n!} = 1].$

7)
$${}^{n}C_{p} = \frac{nPr}{r} \Rightarrow {}^{n}P_{p=p} {}^{n}C_{p}$$

CQ4: If ${}^{10}P_{p}$ = 6,04,800 and ${}^{10}C_{p}$ = 120; find the value of r,

[Ans: r = 7]

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

8) ${}^{n}C_{p} = \frac{n}{r} \cdot \frac{(n-1)}{C_{(p-1)}} \Rightarrow {}^{10}C_{3} = \frac{10}{3} \cdot {}^{9}C_{2}$

CQ5: Find no. of different poker hands (5 cards) in a pack of 52 playing cards.

Ans: In cards, order is not important. Thus, out of 52 cards, 5 cards at a time. ${}^{52}C_5 = 2,598,960$.

CQ6: A committee is to be formed of 3 persons out of 12. Find the number of ways of forming such a committee. [Ans: ${}^{12}C_3 = 220$ ways.]

CQ7: A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7 guests such that 5 of them are relatives? [Ans: ${}^{8}C_{5} \times {}^{4}C_{2} = 336$ ways]

CQ8: A building contractor needs 3 helpers & 10 men apply. In how many ways can theseselections take place?[Ans: 10C3 ways]

CQ9: A committee of 7 members is to be chosen from 6 CAs, 4 Economists & 5 Cost Accountants. In how many ways can this be done if in committee, there must be at least one member from each group and at least 3 CAs?

Committee of 7 members					
	C.A.s [Total 6]	Economists [Total 4]	Cost Accountants [Total 5]	Ways	
Method 1	$3 \Rightarrow {}^{6}C_{3}$ ways = 20	$1 \Rightarrow {}^{4}C_{1}$ ways = 4	$3 \Rightarrow {}^{5}C_{3}$ ways = 10	800	
Method 2	$3 \Rightarrow {}^6C_3 ways = 20$	$2 \Rightarrow {}^{4}C_{2}$ ways = 6	$2 \Rightarrow {}^{5}C_{2}$ ways = 10	1200	
Method 3	$3 \Rightarrow {}^{6}C_{3}$ ways = 20	$3 \Rightarrow {}^{4}C_{3}$ ways = 4	$1 \Rightarrow {}^{5}C_{1}$ ways = 5	400	
Method 4	$4 \Rightarrow {}^{6}C_{4}$ ways = 15	$1 \Rightarrow {}^{4}C_{1}$ ways = 4	$2 \Rightarrow {}^{5}C_{2}$ ways = 10	600	
Method 5	$4 \Rightarrow {}^{6}C_{4}$ ways = 15	$2 \Rightarrow {}^{4}C_{2}$ ways = 6	$1 \Rightarrow {}^{5}C_{1}$ ways = 5	450	
Method 6	$5 \Rightarrow {}^6C_5 ways = 6$	$1 \Rightarrow {}^{4}C_{1} ways = 4$	$1 \Rightarrow {}^{5}C_{1}$ ways = 5	120	

Ans: The various methods of selecting the persons from the various groups are shown below:

Therefore, total number of ways = 800 + 1200 + 400 + 600 + 460 + 120 = 3,570

CQ10: A box contains 7 red, 6 white & 4 blue balls. How many selections of 3 balls can be made so that (a) all three are red (b) none is red (c) one is of each colour?

Ans: (a) ${}^{3}C_{3} = 35$ ways. (b) ${}^{10}C_{3} = 120$ ways. (c) ${}^{4}C_{1} = 4$ ways.

Thus, Number of groups of three balls such that one is of each color = $7 \times 6 \times 4 = 168$ ways.

CQ11: Find no. of ways of selecting 4 letters from word `EXAMINATION'. [Ans: 136 ways]

CONCEPT 1: SOME STANDARD RESULTS

Total no. of ways in which it is possible to form groups by taking all of n things = (2ⁿ-1).
 Explanation: We have total 'n' things. Each of 'n' different things may be dealt with in 2 ways
 (i) Selected in group; (ii) Not Selected in group

nth thing = 2 ways;

But this answer of 2^n includes the case when all the things are not selected & thus no group will be formed.

But we have to find the ways of forming the group. Thus, we will have to subtract this case from our answer. & Therefore,

Total number of ways of forming a group by taking all of 'n' different things is $2^n - 1$.

CQ12: An examination paper with 10 questions consists of 6 questions in Algebra & 4 questions in Geometry. At least one question from each section is to be attempted. In how many ways can this be done?

Ans: A student must answer at least one question from each section & he may answer all questions from each section.

Algebra: There are 6 questions and he may answer a question or he may not answer it.

2⁶. But this includes the possibility of none of the question from Algebra being attempted.

Thus, we have to subtract 1 from the answer. Thus $(2^6 - 1)$ ways.

Geometry: There are 4 questions and he may answer a question or he may not answer it.

2^{4.} But this includes the possibility of none of the question from Algebra being attempted.

Thus, we have to subtract 1 from the answer. Thus $(2^4 - 1)$ ways.

Thus, Examination paper can be attempted in $(2^6-1)(2^4-1)$ number of ways.

CQ13: A man has 5 friends. In how many ways can he invite one or more of his friends to dinner?

Ans: As he has to select one or more of his 5 friends, he can do so in 25 - 1 = 31 ways.

Alternate Method: He can invite his friends one by one, in twos, in threes, etc. and hence the number of ways. = ${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} = 5 + 10 + 10 + 5 + 1 = 31$ ways.

ALIKE GROUPS

- 2. Combinations of 'n' things taken some or all at a time when 'p' things are same of one kind, 'q' things are same of another kind, 'r' things are same of a third kind & remaining 's' things are different = [(p+1) (q+1) (r+1) 2^s] -1.
- **3.** The combinations of selecting r_1 things from a set having n_1 objects & r_2 things from a set having n_2 objects where combination of r_1 things, r_2 things are independent = ${}^{n_1}C_{r_1} \times {}^{n_2}C_{r_2}$.

4. Number of Diagonals of a polygon with 'n' sides = $\frac{n(n-3)}{2}$.

- **5.** No. of Triangles from 'n' points if 'm' points are collinear = ${}^{n}C_{3} {}^{m}C_{3}$ [2nd part gets cancelled if no points are collinear].
- 6. No. of lines from 'n' points if 'm' points are collinear = ${}^{n}C_{2} {}^{m}C_{2} + 1$.
- **7.** No. of parallelogram formed from 'm' parallel lines intersecting another 'n' parallel lines = ${}^{m}C_{2} \times {}^{n}C_{2}$.
- 8. If there are '(a + b + c)' things which are to be divided in equal groups having 'a' things, 'b' things & 'c' things respectively, [such that a = b = c], it can be done in $\frac{(a+b+c)!}{a!.b!c!(no.of equal groups)!}$

CQ14: The number of ways in which 12 things can be divided into 3 equal groups = $\frac{9!}{3!3!3!4!}$.

Ans: Each group will have 3 things. Thus, we have 3 equal groups of 4 things each.

Thus no. of equal groups = 34. Thus, answer will be $\frac{9!}{3!3!3!4!}$.

CQ15: If 7 things are to be divided into 3 groups, of 2, 2, 3 things respectively, find the number of ways in which this can be done.

Ans: No. of equal groups = 2 groups [2, 2 ka]. = $\frac{(a+b+c)!}{a!.b!c!(no.of equal groups)!} = \frac{7!}{2!.2!3!2!} = 105.$

CONCEPT 2: FINDING RANK (POSITION) OF A WORD IN DICTIONARY [Shortcut Trick]

Steps:

- 1. Write alphabets in alphabetical order in vertical form & give them numbers starting from O.
- 2. Now find the number given to 1st alphabet in step 1 we want as per the question. Write that number in the answer followed by factorial of remaining alphabets.
- **3.** Eliminate 1st alphabet & re number the vertical alphabets starting from 'O' except the eliminated alphabets & repeat step 2 until you have only last alphabet left.

The value for last alphabets will be O!.

CQ16: Find the rank of 'KNIFE' in the dictionary.

An	swe	er:		
	Ste	ep 1	Step 3	Step 4
	£	0	0	0
	Ŧ	1	1	1
	Ŧ	2	2	2
	¥	3	NA	NA
	₽	*	3	NA
_			\	

Step 1: Done.

(a) 30

Step 2: 1^{st} alphabet is 'K'. So, we find the number given to 'K' in step 1. The number is 3. Remaining alphabets are N, I, F, E = 4. Thus, the required number is 3.4!

Step 3: Eliminate 'K' from vertical form & re – number alphabets starting from 'O' except 'K'.

Now we find the number given to 'N' in vertical form. The number is 3.

Remaining alphabets are I, F, E = 3. Thus, the required number is 3.3!.

Step 4: Eliminate 'N' from vertical form & re–number the alphabets starting from 'O' except K & N. Now we find the number given to 'I' in vertical form. The number is 2.

Remaining alphabets are F, E = 2. Thus, the required number is 2.2!.

Step 5: Eliminate 'I' from vertical form & re–number the alphabets starting from 'O' except K, N & I. Now we find the number given to 'F' in vertical form. The number is 1.

Remaining alphabets are E = 1. Thus, the required number is 1.1!

(b) 31

Step 6: We have only one alphabet left. Thus, the value for it will be O!

Rank of KNIFE = Sum of all values = $3.4! + 3.3! + 2.2! + 1.1! + 0! = 3.24 + 3.6 + 2.2 + 1 + 1 = 96^{th}$ rank.

CQ17: If all permutations of word "CHALK" are written in a dictionary rank of this word will ____.

(c) 32

An	Ans:					
	Ste	ep 1	Step 3	Step 4	Step 5	
	A	Φ	θ	θ	NA	
	Ģ	4	NA	NA	NA	
	Ħ	Q	4	NA	NA	
	Κ	3	2	1	0	
	L	4	3	2	1	

CHALK	<			
С	H	А	L	к
1.4!	+ 1.3!	+ 0.3!	+ 1.1!	+ 0!
= 24	+ 6 + 0	D + 1 + 1	= 32 nd	rank.

(d) None

COMBINATION OF DISSIMILAR THINGS UNDER RESTRICTION (OUT OF 'n' THINGS) Cases Things taken Formula Formula A particular things is NOT ALLOWED R $^{n-1}C_{r}$ A particular things is ALWAYS ALLOWED R $(^{n-1}C_{r-1})$ $({}^{n}C_{r} - {}^{n-1}C_{r})$ Selecting 1 or more out of 'n' things 1 or More 2ⁿ - 1 ALIKE GROUPS 'p' of 1st type, 'q' of 2nd, 'r' of 3rd & 's' different $[(p + 1) (q + 1) (r + 1)2^{s}] -1$ 1 or More

DISTRIBUTION OF DISSIMILAR THINGS INTO GROUPS OR PERSONS (OUT OF 'N' THINGS)

No. of things	Relationship	Distributed to	Formula	Formula
p + q = n	p≠d	Persons/ Groups	$\frac{n!}{p!q!}$	${}^{n}C_{p} \times {}^{q}C_{q}$
p + q = n	p = d	Persons	$\frac{n!}{p! q!}$	${}^{n}C_{p} \times {}^{p}C_{p}$
p + q = n	p = d	Groups	$\frac{n!}{2! \times p! q!}$	
p + q + r = n	b = d = b	Persons	$\frac{n!}{p!q!r!}$	${}^{n}C_{p} \times {}^{q+1}C_{q} \times {}^{r}C_{r}$
p + q + r	p = d = k	Groups	$\frac{n!}{3! \times p! q! r!}$	No. of equal groups ka fraction

COMBINATION - QUESTION BANK

SN		CHAPTER 4	B. COMBINATION		Ans
Q157	${}^{n}P_{r}$ = 720 and ${}^{n}C_{r}$ =	120 Find r?			С
	(α) 6	(b) 4	(c) 3	(d) 2	
Q158	Solve for 'n' if "C4:	$^{n+2}C_n = 5:18$			В
	(a) 5	(b) 7	(c) -8	(d) 7 or 8	
Q159	If ${}^{500}C_{92}$ = ${}^{499}C_{407}$ +	$^{n}C_{r}$ = 56, then n is			D
	(a) 501	(b) 500	(c) 502	(d) 499	
Q160	If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{\times}C_{97}$	C_{901} then the value of	f x will be		А
	(α) 999	(b) 998	(c) 997	(d) None	
Q161	A team of 12 men i	s to be formed out o	f n persons. Then numbe	r of times 2 men "A"	С
	& "B" are together	• is	() = 20		
	(a) "C ₁₂	(b) ¹¹ C ₁₁	(c) ¹¹⁻² C ₁₀	(d) None	
Q162	Every person shak	es hands with each	other in a party and t	he total number of	В
	(α) 11	(b) 12	(c) 13	(d) 14	
0162	Out of 10 differen	(0) 12	different yewels how n	any words can be	P
GIOS	formed each cont	aining 6 consonant a	nd 3 vowels?	iany words can be	D
	(a) ¹⁰ C ₆ x ⁴ C ₃	(b) ¹⁰ C ₆ x ⁴ C ₃ x 9!	(c) ¹⁰ C ₆ x ⁴ C ₃ x 10!	(d) None	
Q164	First, second and 13 exhibits have b	third prizes are to b een entered. In how	be awarded at an engine many ways can the priz	eering fair in which es be awarded?	В
	(a) 1,462	(b) 1,716	(c) 1,876	(d) 1,672	
Q165	You are selecting and 2 wicket-keep exactly 3 bowlers	a cricket team of fi pers. In how many wa and 1 wicket-keeper	rst 11 players out of 16 ays you can do it so that ??	including 4 bowlers the team contains	A
	(α) 960	(b) 840	(c) 420	(d) 252	
Q166	In Question No.168 3 bowlers and at l	ō, would your answei east 1 wicket-keepe	• be different if the tea r?	m contains at least	A
	(a) 2,472	(b) 960	(c) 840	(d) 420	
Q167	A party of 6 is to be formed from 10 men and 7 women as so as to include 3 men and 3 women. In how many ways the partly can be formed if two particular women refuses to join it?			C	
	(a) 4,200	(b) 600	(c) 1,200	(d) None	
Q168	In how many ways word 'LOGARITHM	can a consonant anc ?	a vowel be chosen out o	of the letters of the	A
	(α) 18	(b) 15	(c) 3	(d) None	

Q169	A box contains 7 red, 6 white and 4 blue balls. How many selections of three balls can be made so that (a) all are red (b) none is red (c) one is of each colour?	А		
	(a) 35 ways, 120 ways, 168 ways (b) 35 ways, 140 ways, 168 ways			
	(c) 30 ways, 120 ways, 168 ways (d) 35 ways, 120 ways, 148 ways			
Q170	Five bulbs of which three are defective are to be bled in two bulb points in a dark room. Hunter of trials the room shall be lighted	D		
	(a) 6 (b) 8 (c) 5 (d) 7			
Q171	A candidate is required to answer 6 out of 12 questions which are divided into two groups containing 6 questions in each group. He is not permitted to attempt not more than four from any group. The number of choices are			
	(a) 750 (b) 850 (c) 800 (d) None			
	HOMEWORK QUESTIONS			
Q172	If $c(n, 8) = c(n, 6)$, find $c(n, 2)$	В		
	(a) 14 (b) 91 (c) 19 (d) 41			
Q173	If ${}^{n}C_{r-1} = {}^{n}C_{r+1} = 15$ and ${}^{n}C_{r} = 20$, then the value of ${}^{r}C_{2}$ is	А		
	(a) 3 (b) 3 (c) 4 (d) 12			
Q174	There are 7 men and 3 ladies. Find the number of ways in which a committee of 6 can be formed of them if the committee is to include at least 2 ladies?	С		
	(a) 120 (b) 160 (c) 140 (d) 150			
Q175	In how many ways a committee of 5 people can be formed out of 5 males & 6 females such that there are 3 males and 2 females?			
	(a) 150 (b) 200 (c) 1 (d) 461			
Q176	In Question No.175, how many choices you have to make if there are 2 males?	В		
	(a) 150 (b) 200 (c) 1 (d) 461			
Q177	In Question No.175, how many choices you have to make if there is no female?	С		
	(a) 150 (b) 200 (c) 1 (d) 461			
Q178	In Question No.175, how many choices you have to make if there is at least one female?	D		
	(a) 150 (b) 200 (c) 1 (d) 461			
Q179	In Question No.175, how many choices you have to make if there are not more than 3 males?	D		
	(a) 200 (b) 1 (c) 461 (d) 401			
Q180	A person has 8 friends. The number of ways in which he may invite one or more of them to a dinner is	В		
	(a) 250 (b) 255 (c) 200 (d) None			
Q181	In how many ways can a consonant and a. vowel be chosen out of the letters of the word 'EQUATION?	В		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(α) 18	(b) 15	(c) 3	(d) None	
Q182	A question paper ways an examined	contains 6 questi e can answer one	ions, each having an a or more questions is	lternative. The number of	В
	(a) 720	(b) 728	(c) 729	(d) None	
Q183	There are 12 poir (a) 200	nts in a plane of w (b) 211	hich 5 are collinear. 1 (c) 210	The number of triangles is (d) None	С
Q184	A committee is to 20 students. The	be formed of 2 t number of ways ir	eachers and 3 studer which this can be do	nts out of 10 teachers and one is	A
	(α) ¹⁰ C ₂ x ²⁰ C ₃	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q185	In Question No.18 this can be done	4, if a particular t is	eacher is included th	e number of ways in which	В
	(α) ¹⁰ C ₂ x ²⁰ C ₃	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q186	In Question No.18 this can be done	4, if a particular s is	student is excluded th	e number of ways in which	С
	(α) ¹⁰ C ₂ x ²⁰ C ₃	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q187	A boats crew cor 2 only on the othe	nsists of 8 men 3 o er. The number of	f whom can row only c ways in which the cre	on one particular side and ew can be arranged is	A
	$(a) {}^{6}C_{3} \times (4!)^{2}$	(b) ^o C ₁ x 4!			
Q188	respectively, find	is are to be divid the number of w	ays this can be done.	sting of 2, 2, and 3 things	A
	(α) 105	(b) 210	(c) 100	(d) None	
		PRAC	TICE QUESTION		
Q189	Number of straig being on the sam	ht fines obtained l e fine is	by joining 16 points on	a plane, no twice of them	A
	(α) 120	(b) 110	(c) 210	(d) None	
Q190	The number of pa intersecting anot	rallelograms that her set of three p	can be formed from parallel lines is	a set of four parallel lines 	В
	(α) 6	(b) 18	(c) 12	(d) 9	
Q191	8 points are mark by joining these i	ed on the circumf n pairs is	ference of a circle. N	umber of chords obtained	С
	(α) 25	(b) 27	(c) 28	(d) None	
Q192	There are 12 poi which are colline	nts in a plane no. ar. The number of	.3 of which are collin ? different straight lin	ear except that 6 points les is	С
	(α) 50	(b) 51	(c) 52	(d) None	
Q193	C _r is equal to	·			В
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{r!(n-r)!}$	(c) $\frac{n!r!}{(n-r)!}$	(d) $\frac{n!(n-r)!}{r!}$	
0404	The value of "C.				C

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

👩 Instagram

YouTube

	(a) n	(b) 0	(c) 1	(d) ∞	
Q195	The value of ${}^{n}C_{n}$ is	·			В
	(a) n	(b) 1	(c) 0	(d) ∞	
Q196	${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4}$. + + equals	·		Α
	(α) 2 ⁿ —1	(b) 2 ⁿ	(c) 2 ⁿ +1	(d) None	
Q197	Which one is true?	?			С
	$(\alpha) ^{n}C_{r} < ^{n}C_{n-r}$	(b) ${}^{n}C_{r} > {}^{n}C_{n-r}$	$(C) ^{n}C_{r} = ^{n}C_{n-r}$	(d) ⁿ C _{r ≠} ⁿ C _{n-r}	
Q198	°C _r has a meaning	only when			В
	(a) 0 < r < n	(b) 0 < = r <=n	(c) 0 < r <= n	(d) 0 < = r <n< th=""><th></th></n<>	
Q199	The value of 7C_1 is	·			В
	(α) 1	(b) 7	(c) 6	(d) 8	
Q200	The value of $^{8}C_{3}$ is	·			D
	(α) 48	(b) 65	(c) 24	(d) 56	
Q201	The value of 9C_9 is	·			D
	(α) Ο	(b) 9	(c) 8	(d) 1	
Q202	The value of ${}^{8}C_{4}$ +	⁵ C ₄ is			Α
	(α) 75	(b) 24	(c) 30	(d) 27	
Q203	${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4}$	$_{4}$ + ${}^{5}C_{5}$ is equal to	·		В
	(α) 30	(b) 31	(c) 32	(d) 25	
Q204	If ${}^{18}C_r = {}^{18}C_{r+2}$, the	value of ${}^{r}C_{5}$ is			С
	(α) 55	(b) 50	(c) 56	(d) None	
Q205	If ${}^{n}C_{10} = {}^{n}C_{14}$, then 2	²⁵ C _n is			В
	(α) 24	(b) 25	(c) 1	(d) None	
Q206	If ${}^{n}C_{18} = {}^{n}C_{12}$, then	the value of ${}^{32}C_n$ is _	·		В
	(α) 30	(b) (<u> 32</u> / <u> 6</u>)	(c) [<u> 32</u> / (<u> 26</u> × <u> 6</u>)]	(d) 496	
Q207	Find n if $4 \times {}^{n}C_{2} = {}^{r}$	$^{+2}C_{3}$			D
	(a) 2,6	(b) 3,8	(c) 5,3	(d) 2,7	
Q208	If (n+1)c _{r-1} : n _{c1} : n−1	c _{r-1} = 8:3:1 then find	the value of n?		В
	(α) 14	(b) 15	(c) 16	(d) 17	
Q209	Find n if ${}^{n+2}C_n = 45$				С
	(α) 12	(b) 10	(c) 8	(d) 15	
Q210	If ${}^{18}C_n = {}^{18}C_{n+2}$ then	the value of n is	·		С
	(α) Ο	(b) -2	(c) 8	(d) None	
Q211	If ${}^{n}P_{r} = 336$ and ${}^{n}C$	$_r$ = 56, then n and r v	will be		В
	(a) (3,2)	(b) (8,3)	(c) (7,4)	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

Q212	2 If ${}^{10}P_r = 6,04,800$ and ${}^{10}C_r = 120$; find the value of	fr?	В
	(a) 12 (b) 7 (c) 8	(d) 9	
Q213	3 Find r if ${}^{12}C_5 + 2{}^{12}C_4 + {}^{12}C_3 = 14C_r$		А
	(a) 5,9 (b) 4,9 (c) 5,8	(d) 4,8	
Q214	4 If ${}^{28}C_{2r^*}$ ${}^{24}C_{2r-4}$ = 225: 11, find r?		D
	(a) 9 (b) 6 (c) 8	(d) 7	
Q215	5 If ${}^{n}C_{r-1} = 56$, ${}^{n}C_{r} = 28$ and ${}^{n}C_{r+1} = 8$, then r is equa	l to	В
	(a) 8 (b) 6 (c) 5	(d) None	
Q216	A committee is to be formed of 3 persons out forming such Committee.	of 12. Find the number of ways of	A
	(a) 220 (b) 240 (c) 36	(d) 4	
Q217	Out of 7 gents and 4 ladies a committee of 5 committee such that each committee includes of 5 committee includes of 5 committee such that each committee includes of 5 comm	is to be formed. The number of at least one lady is	С
	(a) 400 (b) 440 (c) 441	(d) None	
Q218	5 letters are written and there are five letter letters can be dropped into the boxes, one in e	r-boxes. The number of ways the each.	В
	(a) 119 (b) 120 (c) 121	(d) None	
Q219	A committee of 7 members is to be chosen f Economist and 6 Cost Accountants. In how man committee, there must be at least one member Chartered Accountants.	rom 6 Chartered Accountants, 4 ny ways can this be done if in the r from each group and at least 3	В
	(a) 3,450 (b) 3,570 (c) 3,69	0 (d) 3,200	
Q220	A committee of 3 ladies and 4 gents is to be for Mrs.X refuses to serve in a committee in which such committees is	ormed out of 8 ladies and 7 gents. Mr.Y is a member. The number of	D
	(a) 1,530 (b) 1,500 (c) 1,52	0 (d) 1,540	
Q221	 Out of 6 members belonging to party "A" and 4 committee of 5 can be selected so that member (a) 180 (b) 186 (c) 185 	to party "B" in how many ways a rs of party "A" are in a majority? (d) 184	В
Q222	2 A person has 10 friends of which 6 of them ar persons so that 3 of them are relatives. In how	e relatives. He wishes to invite 5 many ways he can invites?	С
	(a) 450 (b) 600 (c) 120	(a) 810	
Q223	3 In how many ways 4 members can occupy 9 vac (a) 3204 (b) 3024 (c) 4 ⁹	ant seats in a row? (d) 9 ⁴	В
Q224	4 The number of ways in which a person can chose appliances: T.V, Refrigerator, Washing Machine	one or more of the four electrical and a cooler is	A
	(a) 15 (b) 25 (c) 24	(d) None	
Q225	5 A building contractor needs three helpers and	ten men apply. In how many ways	А

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

👩 Instagram

	can these select	ions take place?			
	(a) 120 ways	(b) 30 ways	(c) 150 ways	(d) 240 ways	
Q226	A company havi Department's He take place?	ng 6 departments eads to Asst. Mana	wishes to simultaneo gers. In how many way	usly promote two of its ys these promotions can	A
	(a) 15 ways	(b) 12 ways	(c) 24 ways	(d) 30 ways	
Q227	Total number of	Hand shakes in a g	roup of 10 persons to	each other are	А
	(α) 45	(b) 54	(c) 90	(d) 10	
Q228	6 seats of article different batche candidate is alw	ed clerks are vacat es of candidates ays selected?	nt in a 'Chartered Acc can be chosen out c	ountant firm'. How many f 10 candidates if one	С
	(α) 124	(b) 125	(c) 126	(d) None	
Q229	In your office 4 candidates can b	posts have fallen v be made if one can	acant. In how many we didate is always includ	ays a selection out of 31 ded?	А
		(D) ⁰⁰ U ₄		(a) °'0 ₄	
Q230	In Q229 would yo	our answer be diffe	erent if one candidate	is always excluded?	В
	(d) ⁶⁶ C ₃	(D) ⁶⁶ U ₄	(C) ^C C ₃	(d) °'U ₄	
Q231	 In your college Union Election you have to choose candidates. Out of 5 candidates 3 are to be elected and you are entitled to vote for any number of candidates but not exceeding the number to be elected. In how ways it can be done? 				A
	(α) 25	(b) 5	(c) 10	(d) None	
Q232	Find the number (a) 140 ways	of ways of selectir (b) 136 ways	ng 4 letters from the w (c) 152 ways	ord EXAMINATION. (d) 128 ways	В
Q233	Find the number word "Mathemat	of ways in which a	a selection of 4 letter	s can be made from the	D
	(α) 130	(b) 132	(c) 134	(d) 136	
Q234	The number of o vowels by taking	different words th 4 consonants and	at can be formed wi 3 vowels in each word	th 12 consonants and 5 is	С
	(a) ${}^{12}C_4 X^5 C_3$	(b) ¹⁷ C ₇	(c) 4950 x <u> 7!</u>	(d) None	
Q235	How many differ 1, 2, 3, 4, 5, no di	ent numbers can b igit being repeated	e formed by using any d in any number?	r three out of five digits	А
	(α) 60	(b) 50	(c) 40	(d) 30	
Q236	How many differ 1, 2, 3, 4, 5, no d with a specified	ent numbers can b igit being repeated digit?	e formed by using any d in any number? How	v three out of five digits many of these will begin	С
	(α) 8	(b) 10	(c) 12	(d) 18	
Q237	How many differ 1, 2, 3, 4, 5, no d	ent numbers can b igit being repeated	e formed by using any d in any number? How	<i>i</i> three out of five digits many of these will begin	С

	with a specified digit and end with another specified digit?	
	(a) 12 (b) 6 (c) 3 (d) 18	
Q238	How many four digit numbers can be formed out of the digits 1, 2, 3, 5, 7, 8, 9, if no digit is repeated in any number? How many of these will be greater than 3,000?	С
	(a) 1,000 (b) 1,200 (c) 600 (d) 400	
Q239	In how many ways 3 scholarships can be awarded to 5 students when each student is eligible for any of the scholarships?	С
	(a) 15 (b) 3^5 (c) 5^3 (d) 5P_3	
Q240	You have to makechoice of 7 questions out of 10 questions set you can do it in(a) ${}^{10}C_7$ (b) ${}^{10}P_7$ (c) $7! \times {}^{10}C_7$ (d) None	A
Q241	You have to make a choice of 4 balls out of one red one blue and ten while balls. The number of ways this can be done to always the red ball is	A
	$(a) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Q242	In Question No.241, the number of ways in which this can be done to include the red ball but exclude the blue ball always is	B
	(a) ${}^{11}C_3$ (b) ${}^{10}C_3$ (c) ${}^{10}C_4$ (d) None	
Q243	In Question No.241, the number of ways in which this can be done to exclude both the red and blues ball is	С
	(a) ${}^{11}C_3$ (b) ${}^{10}C_3$ (c) ${}^{10}C_4$ (d) None	
Q244	Out of 8 different balls taken three at a time without taking same three together more than once for how many number of times you can select a particular ball?	Α
	(a) ${}^{7}C_{2}$ (b) ${}^{8}C_{3}$ (c) ${}^{7}P_{2}$ (d) ${}^{8}P_{3}$	
Q245	In Question no.244, for how many number of times you can select any ball?	В
	(a) ${}^{7}C_{2}$ (b) ${}^{8}C_{3}$ (c) ${}^{7}P_{2}$ (d) ${}^{8}P_{3}$	
Q246	The number of diagonals in a decagon is	В
	(a) 30 (b) 35 (c) 45 (d) None	
Q247	A regular Polygon has 45 diagonals then the no. of sides are	D
	(a) 8 (b) 9 (c) 10 (d) 11	
Q248	No. of ways in which 15 mangoes can be equally divided among 3 students is $_$	D
	(a) $ 15/ (5)^4$ (b) $ 15/ (5)^3$ (c) $ 15/ (5)^2$ (d) None	
Q249	In a school number of students in each section is 36. If 12 new students are added, then the number of sections are increased by 4, and the number of students in each section becomes 30. The original number of sections at first is	D
	(a) 6 (b) 10 (c) 14 (d) 18	
Q250	Raj has 3 books on A/c, 3 books on Economics, 5 on Maths. If these books are to be arranged subjectwise. In how many ways can these can be placed on a shelf.	B
	(a) 23,230 (b) 23,320 (c) 4,230 (a) 4,320	

CHAPTER 5A. ARITHMETIC PROGRESSION

INTRODUCTION

• **SEQUENCE:** A set of numbers arranged in a definite order as per a definite rule or law is called a sequence if we can find out the next unknown term.

Ex: 1, 2, 3, 4, 5 \rightarrow Sequence of consecutive natural numbers.

Ex: -1, -27, -125.... → Sequence of cube of odd numbers in negative. [Next term will be -343]

SERIES: All terms of sequence are added/subtracted, it forms a series. [Ex: t₁ + t₂ + t₃....+t_n]
 Ex: 1 + 3 + 5 + 7 + 9

ARITHMETIC PROGRESSION (AP)

- A sequence in which 'difference between two consecutive terms' is "constant (same)".
- This constant difference is denoted by 'd' & is called the common difference of the AP.
- First term of AP is denoted by 'a'.

Ex: (a) 2, 5, 8, 11, 14, 17 is an AP in which d = 3 is the common diference.

Ex: (b) 15, 13, 11, 9, 7, 5, 3, 1, -1 is an AP in which -2 is the common difference.

CQ1. If the terms 2x, (x+10) and (3x+2) be in AP, the value of x is _____

CONCEPT 1: ARITHMETIC MEAN

If a, b, c are in AP, then b - a = c - b; then $b = \frac{a+c}{2}$ which is called Arithmetic Mean. CQ2. Arithmetic mean betⁿ 33 & 77 = $\frac{33+77}{2}$ = 55.

CONCEPT 2: Finding nth term (Tn) of an AP

- In AP, we can find out next term of an AP if we know the first term (a) & 'd'.
- Let T_1 be a, then, $T_2 = T_1 + d = a + d$ $T_3 = T_2 + d = (a + d) + d = a + 2d$ Substituting the value of T_2 from (i) ------ (ii) $T_4 = T_3 + d = (a + 2d) + d = a + 3d;$ $T_5 = T_3 + d = (a + 2d) + d = a + 4d$ $T_6 = \dots = a + 5d;$ $T_7 = \dots = a + 6d$ $T_n = a + (n-1) d$
- We can also use this formula when Sn is known $T_n = S_n S_{n-1}$.

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
VOUTUbe
Telegram
Sustanum Whatsapp: 8888111134

CONCEPT 3: COMMON DIFFERENCE 'd' OF AP

- Diffⁿ betⁿ two consecutive terms is common difference 'd'.
- $d = (T_2 T_1) \text{ or } (T_3 T_2) \text{ or } (T_4 T_3) \dots \text{ or } (T_{n-2} T_{n-3}) \text{ or } (T_n T_{n-1}) \rightarrow$

$$\mathbf{D} = \mathbf{T}_{n} - \mathbf{T}_{n-1}$$

CQ3: Find the nth term of the given AP 4,7,10.....

CONCEPT 4: GENERAL FORM OF Tn

General Form of T_n = An + B; (where A & B are constants which will be given in question)

PC Note: If you are given T_n in An + B format $\rightarrow D = Co$ -efficient of 'n'. [d = A & a = (A+B)]

CQ4: If $T_n = 5n + 1$, find the AP.

PC NOTE:

If 2 non-consecutive terms in AP (say T_m & T_n) & their values are given in question & you are asked to find out AP: $D = \frac{(T_m - T_n)}{T_m}$

CQ9: If 5th & 12th terms of an AP are 14 & 35 respectively, find AP. [Ans: AP is 2, 5, 8, 11.]

[Ans: AP is 6, 11, 16, 21...,]

CONCEPT 5: INSERTION OF 'n' ARITHMETIC MEANS BETWEEN TWO NUMBERS

- Total number of terms in the required AP will be (n+2).
- Take 1st given number as $T_1 \& 2^{nd}$ given number as $T_{n+2} \&$ use the above given note.

CQ10: Two AMs between -7 &14 is ____.

Ans: If we insert 2 AMs between -7 & 14, total number of terms will be $4. \rightarrow -7$, AM₁, AM₂, 14.

Take $T_1 = -7$; & $T_{2+2} = 14$; Thus $T_4 = 14$. Now we will use the above note.

 $(4-1) d = 14 - (-7) \rightarrow 3d = 21 \rightarrow d = 7.$

Now, AM₁ which is 2nd term of AP can be calculated using Tn formula;

 $T_2 = a + d = -7 + 7 = 0$ & AM₂ which will be 3rd term of AP; $T_3 = a + 2d = -7 + 2(7) = 7$.

So, the two arithmetic means between -7 & 14 are **0 & 7**.

CQ11: Insert 4 arithmetic means between 4 & 324. [**Ans:** 68, 132, 196, 260]

[Ans: 3n+1]

CONCEPT 6: SUM OF FIRST 'N' TERM OF AP

$$\begin{split} \mathbf{S}_{n} &= \frac{n}{2} \times (\mathbf{T}_{1} + \mathbf{T}_{n}) \text{ (}T_{n} = \text{Last term \& }T_{1} = 1^{\text{st}} \text{ term \& }n = \text{No. of terms)} \rightarrow \text{Used when }T_{1} \& T_{n} \text{ are given} \\ S_{n} &= \frac{n}{2} \times [\mathbf{T}_{1} + \mathbf{a} + (\mathbf{n} - 1)\mathbf{d}] \quad \rightarrow \text{By substituting value of }T_{n} = \mathbf{a} + (\mathbf{n} - 1) \text{ d in above formula \& }T_{1} = \mathbf{a}. \\ \mathbf{S}_{n} &= \frac{n}{2} \times [2\mathbf{a} + (\mathbf{n} - 1)\mathbf{d}] \quad \rightarrow \text{Used when }T_{1}, \text{ d \& n are given in the question} \\ \end{split}$$

Ans: Sn = $\frac{n}{2} \times [2a + (n-1)d] = \frac{n}{2} \times [2.4 + (n-1)4] = \frac{n}{2} \times [8 + 4n - 4] = \frac{n}{2} \times [4n + 4] = \frac{n}{2} \times 2[2n+2] = 2n^2 + 2n$

CONCEPT 7: GENERAL FORM OF S_n

General Form of S_n = An^2 + Bn; (where A & B are constants)

PC Note: If you are given S_n in $An^2 + Bn$ format $\rightarrow d = 2A \& (a) = (A+B)$

CQ13. The sum of n terms of an AP is $3n^2 + 5n$. Find the series. [Ans:

[Ans: AP is 8, 14, 20, 26....,]

CONCEPT 8: ASSUMPTIONS OF THE TERMS IN AP					
If No. of terms given in question are	Middle Term	Common Difference	Examples of Terms		
ODD No. of terms	α	D	3 terms: (a-d), a, (a+d); 5 terms: (a-2d), (a-d), a, (a+d), (a+2d)		
EVEN No. of terms	(a — d) & (a + d)	2d	2 terms: (a-d) & (a+d); 4 terms: (a-3d), (a-d), (a+d), (a+3d)		
CQ14. 3 numbers are in A.P. whose sum is 69 and the product of first two is 483. Numbers are					
(a) 25, 23, 21 (b) 21, 2	3, 25 (c)) 19, 22, 25	(d) None		
Ans: Since the number of te	erms given in t	he question a	re 3 (ODD), we assume 3 numbers as:		
(a-d), a, (a+d); Thus (a-d) + a	a + (a+d) = 69.	За	α = 69. α = 23.		
$(a-d) \times a = 483;$ (23 - d) = 483/23; (23 - d) = 21 & d = 2.			d = 2.		
Numbers are (23–2), 23, (23+2) = 21, 23, 25					
<u>PC NOTE:</u> But we will go by OPTION METHOD in such type of questions TO SAVE TIME.					

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
VouTube Telegram Sustanan Whatsapp: 8888111134

CONCEPT 9: SOME IMPORTANT SERIES

SUM OF	FORMULA	EXAMPLE
1. 1 st 'n' NATURAL No.	$\sum n = \frac{n(n+1)}{2}$	1 + 2 + 3 +100 = $\frac{n(n+1)}{2} = \frac{100(100+1)}{2}$
2. 1 st *n' ODD natural No.	$\sum (2n-1) = n^2$	1 + 3 + 5 + 7 + 9 = 5 ² = 25
3. 1 st 'n' EVEN Natural No.	$\sum 2n = n(n+1)$	2 + 4 + 6 + 8 + 10 = n(n+1) = 5(6) = 30
4. SQUARE of 1 st 'n' Natural No.	$\frac{\sum n^2}{\frac{n(n+1)(2n+1)}{6}}$	$1^{2}+2^{2}+\dots 100^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{100(100+1)(200+1)}{6}$
5. CUBES of 1 st 'n' Natural No.	$\sum n^3 = \left[\frac{n(n+1)}{2}\right]^2$	$1^{3}+2^{3}+3^{3}\dots100^{3} = \left[\frac{n(n+1)}{2}\right]^{2} = \left[\frac{100(100+1)}{2}\right]^{2}$

PROPERTIES OF AP

Particulars	Examples			
1. If $S_n = S_m \rightarrow S_{(m+n)} = O$	If $S_7 = S_{11} \to S_{18} = O$			
2. $T_p = \frac{1}{q} \& T_q = \frac{1}{p}; \Rightarrow T_{pq} = 1 \& S_{pq} = \frac{pq+1}{2}$	$T_3 = \frac{1}{2} \& T_2 = \frac{1}{3} \Rightarrow T_6 = 1 \& S_6 = \frac{6+1}{2} = \frac{7}{2}$			
3. If $S_p = q \& S_q = p \to S_{(p+q)} = -(p+q)$	If $S_7 = 11 \& S_{11} = 7, \rightarrow S_{18} = -(11+7) = -18$			
4. If $T_p = q \& T_q = p$; then $T_r = (p + q - r)$	5. If $T_p = q \& T_q = p$; then $T_{(p+q)} = 0$.			
6. If ratio of S_n of 2 APs = $\frac{An^2 + Bn}{Cn^2 + Dn} = \frac{An + B}{Cn + D}$; Ratio of their $T_m = \frac{A(m-1) + B}{C(m-1) + D}$. Q. Sum of 'n' terms of 2 APs are in the ratio of $\frac{(5n+2)}{C(m-1)}$. Ratio of their sixth terms is				
7. We add/subtract/multiply/divide all terr	ns of AP by any no. resulting series is AP.			
8. If we form a series from the reciprocal of all the terms of AP, it becomes HP.				
9. If 3 numbers are given in AP, Put 1 st no = 1; 2 nd no = 2; & 3 rd no. = 3; (If necessary).				
10. If a, b, c are in AP \rightarrow Put their value of	s 1, 2, 3 in options & get the answer.			
11. If a^2 , b^2 , c^2 are in AP \rightarrow Put value as 1.	5. 7 in options & get answer [1.25.49 \rightarrow AP]			

ARITHMETIC PROGRESSION - QUESTION BANK

SN		5A. ARTHM	ETIC PROGRESSION		Ans
Q1	Two APs have the	same common differ	ence. If the difference be	tween their 100th	С
	(a) 123	(b) 112233	(c) 111222333	(d) 112333	
Q2	n th term of the sec	ruence 2, 4, 6, 8,	is		А
	(a) 2n	(b) 2n-1	(c) 2n + 1	(d) N	
Q3	Number of terms i	n the series 1+ 3 +5	+7 ++ 61 is		С
	(α) 30	(b) 28	(c) 31	(d) 29	
Q4	If 1 st term of an Af	P is 5 & its 100 th terr	n is -292, then its 51 st tern	n is	D
	(a) -142	(b) -149	(c) 155	(d) -145	
Q5	In a certain arithr term is twice the	netic sequence, if th 	ne 24th term is twice the 1	O th term, then 72 nd	С
	(a) 30 th term	(b) 40 th term	(c) 34 th term	(d) 38 th term	
Q6	If 10th term of an then k =	A.P. is twice the 4th	n term & 23rd term is 'k' ti	mes the 8th term,	A
	(α) 2.5	(b) 3	(c) 3.5	(d) 4	
Q7	The two arithmetic	c means between -6	and 14 is		В
	(α) 2/3, 1/3	(b) 2/3, 22/3	(c) -2/3, -22/3	(d) None	
Qð	The sum of the ser	ies $3\frac{1}{2}$ +7+10 $\frac{1}{2}$ +14+	to 17 terms is		С
	(α) 530	(b) 535	(c) $535\frac{1}{2}$	(d) None	
Q9	The sum of an A.P. Value of n.	whose first term is	- 4 and the last term is 14	6 is 7171. Find the	В
	(α) 99	(b) 101	(c) 100	(d) 102	
Q10	The number of the	terms of the series	10+9 $3\frac{2}{3}$ + $9\frac{1}{3}$ + 9 will amo	ount to 155 is	D
	(α) 30	(b) 31	(c) 32	(d) None	
Q11	a = 14 & sum of fir opposite in sign. T	rst 5 terms & sum o ₃ is	f first 10 terms are equal	is magnitude but	A
	(a) 70/11	(b) 6	(c) 4/11	(d) None	
Q12	The sum of progre (a) $\frac{n}{2}[2a + (n-1)b]$	ssion (a+b), a, (a-b) (b) <u>n</u> [2a + (3 - n) b]	upto n terms is (c) $\frac{n}{2} [2\alpha + (3 - n)]$	(d) <u>n</u> [2a (n -1)]	В
Q13	The maximum sum (a) 220	of the AP series 40, (b) 225	36, 32, 28 is [4	Hint: 2 × 10 × 11] (d) 320	A
Q14	How many terms a	re there in the AP w	hose 1 st & 5 th are -14 & 2 r	espectively & sum	В

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube

Telegram

	of the term is 40?				
	(a) 2 x d	(b) 10	(c) 8	(d) 14	
Q15	P th term of an AP is	$s \frac{3p-1}{6}$. The sum of th	e first n terms of the AP is		В
	(a) n(3n+1)	(b) <u>n</u> (3n+1)	(c) $\frac{n}{12}$ (3n-1)	(d) None	
Q16	Find the sum of firs	st 25 terms of AP se	ries whose n th term is (n/5)) + 2	В
	(α) 105	(b) 115	(c) 125	(d) 135	
Q17	The sum of n terms	of an AP is 2n² +3n.	Find the n th term.		А
	(α) 4n+1	(b) 4n-1	(c) 2n+1	(d) 2n-1	
Q18	Sum of all natural r	numbers from 100 to	300 which are divisible by	4 or 5 is	А
	(α) 10200	(b) 15200	(c) 16200	(d) None	
Q19	The sum of all natu	ral numbers from 10	0 to 300 which are divisibl	e by 5 is	С
	(α) 10200	(b) 30000	(c) 8200	(d) 2200	
Q20	Sum of all natural n	umbers from 100 to 3	300 which are divisible by 4	4 and 5 is	D
	(α) 10200	(b) 30000	(c) 8200	(d) 2200	
Q21	The sum of natural	numbers upto 200 e	excluding those divisible by	5 is	С
	(α) 20100	(b) 4100	(c) 16000	(d) None	
Q22	Find three number	s in AP whose sum is	6 and the product is -24		А
	(a) -2, 2, 6	(b) -1, 1, 3	(c) 1, 3, 5	(d) 1, 4, 7	
Q23	The four numbers i	n AP whose sum is 2	4 and their product is 945	are	А
	(α) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q24	4 numbers in AP wi	th the sum of 2 nd & 3 nd	rd being 22 and the product	of 1 st & 4 th being	С
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q25	Divide 12.50 in 5 p ratio 2:3	arts in AP such that	the first part and the last	t part are in the	А
	(α) 2, 2.25, 2.5, 2.75	ō, 3	(b) -2, -2.25, -2.5, -2.75, -	3	
	(c) 4, 4.5, 5, 5.5, 6		(d) -4, - 4.5, -5, -5.5, -6		
Q26	Find four numbers	in AP with the sum c	of 2 nd & 3 rd is 22 & product	of 1^{st} & 4^{th} is 85.	С
	(α) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None.	
Q27	The sum of the ser	ies 1 + 2 + 3 + 4 +	+ 100 is		А
	(a) $\frac{100(101)}{2}$	(b) $\left[\frac{100(101)}{2}\right]2$	(c) 100 x 101	(d) None	
Q28	The value of 11 ² +12 ³	² ++20 ² is			В
	(α) 3845	(b) 2485	(c) 2870	(d) 3255	
Q29	The value of $\frac{1^{3}+2^{3}+2}{1+2+2}$	<u>+10</u> is			В
	(~) (5	(b) 55	(c) 385	(d) 285	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

YouTube

Whatsapp: 8888111134

Q30	If a, b, c are in	AP then the value of	$\frac{(a^3+4b^3+c^3)}{b(a^2+c^2)}$		С
	(a) 1	(b) 2	(c) 3	(d) None	
Q31	If a, b, c are in	AP then (b+c), (c+a),	(a+b) are in		А
	(a) AP	(b) GP	(c) HP	(d) None	
Q32	If a, b, c are in	the $p^{th}\!,q^{th}$ and r^{th} te	rms of an AP, value of a	(q-r) +b(r-p) +c(p-q) is	А
	(a) O	(b) 1	(c) -1	(d) None	
Q33	If a², b², c² are	in AP then (b+c), (c+c	a), (a+b) are in		С
	(a) AP	(b) GP	(c) HP	(d) None	
Q34	A person pays R first instalment	es.975 by monthly inst is Rs. 100. Time by w	alment each less then t hich the entire amount	he former by Rs.5. The will be paid is <u></u> .	В
	(a) 10 months	(b) 15 months	(c) 14 months	(d) None	
Q35	If n th terms of t	wo A.P's are in the ro	atio (3n+1):(n+4) the rati	io of fourth term is	А
	(a) 2	(b) 3	(c) 4	(d) None	
Q36	10^{th} term from t	he end of the AP 4,9	,14, 254.		С
	(α) 204	(b) -209	(c) 209	(d) 214	
Q37	Find the sum to	<i>n</i> terms of (1 - 1/n) +	(1 - 2/n) + (1 - 3/n) +		А
	(a) 1/2(<i>n</i> -1)	(b) ½(<i>n</i> +1)	(c) (<i>n</i> -1)	(d) (<i>n</i> +1)	
Q38	Sum of <i>n</i> terms	of $(x + y)^2$, $(x^2 + y^2)$, (x - y)²,is		В
	(a) $(x + y)^2 - 2(n - 1)^2$	-1)xy	(b) $n(x + y)^2 - n(n-1)xy$	/	
	(c) both the abo	ove	(d) None		
Q39	Sum of n terms	of (1/n) (n-1), (1/n) (n	-2), (1/n) (n-3) is	•	В
	(α) Ο	(b) (1/2) (n-1)	(c) (1/2) (n+1)	(d) None	
Q40	Value of $n^2 + 2n$	[1+2+3++(n-1)] is	·		A
	(a) n ³	(b) n²	(c) n	(d) None	
Q41	Which term of s	eries 7+11+15	= 403.		В
	(a) 50	(b) 100	(C) 101	(d) 51	
Q42	The sum 1+3+5+3	7+ +99 is equal to .	·		D
	(d) 2499	(D) 2401			
Q43	If Sn the sum of	first n terms in a se	ries is given by 2n ² +3n t	he series is in	A
<u> </u>				(d) None	
Q44	$n^{(1)}$ term of the s	series whose sum to $(b) 100 = 2$	n terms is $5n^2+2n$ is	 (d) None	С
	(a) sn = 10			(a) None	
Q45	$t_1 = n, t_2 = n + 1,$	$t_3 = n + 2$ and so on,	then $t_n = $		В
		(D) 2n - 1	(C) 2n + 1	(a) 2n	
Q46	Sum of all natur	al numbers between	200 and 400 which are	divisible by 7 is	В

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) 7730	(b) 8729	(c) 7729	(d) 8730	
Q47	Sum of all natura	I numbers between 5	00 & 1000 which are 0	divisible by 13 is	А
	(α) 28400	(b) 28405	(c) 28410	(d) None	
Q48	Number of numbe	ers between 74 and 2	25556 divisible by 5 is	·	В
	(α) 5090	(b) 5097	(c) 5095	(d) None	
Q49	Sum $1^2 + 2^2 + 3^2 + 3^2$	4 ² +10 ² is equal t	.0		А
	(α) 385	(b) 386	(c) 384	(d) None	
Q50	Sum of $1^3 + 2^3 + 3$	3 + 4 3 + 10 3 is equa	ıl to		В
	(a) 4410	(b) 3025	(c) 3470	(d) None	
Q51	Sum of <i>n</i> terms c	of the series $2 + 6 + 2$	10 + is		А
	(a) 2n ²	(b) n ²	(c) n²/2	(d) 4n²	
Q52	Unity is added to	o sum of any number	of terms of the AP 3,5	5,7,9, resulting sum is	В
		1			
	(a) 'a' perfect cu	be	(b)'a' perfect squar	°e	
0.50					9
Q53	that resultant is	ch should be added t also AP	to the sum of any num	ber of terms of AP so	С
	(α) -1	(b) 0	(c) 1	(d) None	
Q54	If a, b, c d are ir	AP then	. ,		D
	(a) $a^2 - 3b^2 - 3c^2$	$-d^2 = 0$	(b) $a^2 + 3b^2 + 3c^2 + 6c^2$	$d^2 = 0$	_
	(c) $a^2 + 3b^2 + 3c^2$	$- d^2 = 0$	(d) None		
Q55	If a, b, c be the	sums of p, q, r terms	respectively of an AP	, the value of $\left(\frac{a}{n}\right)(q-r) +$	А
	$(\frac{b}{-})(r-p) + (\frac{c}{-})(p-q)$	is		p	
	q r r r r	(b) 1	(c) -1	(d) None	
Q56	If a b c d e ar	e in AP then			D
	(a) a - b - d + e =	= 0 (b) a - 2c + e = 0	(c) b - 2c + d = 0	(d) All	2
Q57	A person saved i	Rs. 16.500 in 10 years	. In each vear after t	he first vear he saved	С
	Rs. 100 more tha	n he did in the prece	ding year. The amoun	t of money he saved in	
	the 1st year was				
	(a) Rs. 1000	(b) Rs. 1500	(c) Rs. 1200	(d) none	
Q58	The sum of <i>n</i> term	ms of a+b, 2a, 3a-b	.is		D
	(a) n(a-b) +2b	(b) n (a+b)	(c) both the above	(d) None	
Q59	A sum of Rs. 6240 more than the pr	D is paid off in 30 inst ecceding installment.	allments such that ea The value of the 1 st in:	ch installment is Rs. 10 stallment is	D
Q59	A sum of Rs. 6240 more than the pr (a) Rs. 36	D is paid off in 30 inst peceding installment. (b) Rs. 30	callments such that ea The value of the 1 st ins (c) Rs. 60	ch installment is Rs. 10 stallment is (d) None	D

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Telegram

	() 0		(a) 0			
	(a) 2	U) U	(c) -2	(a) -3		
Q61	Determine the	common difference o	of progression 16,	13, 10 25 terms	D	
	(a) 2	(b) -2	(c) 3	(d) -3		
Q62	If a, b, c are in	n A.P., then 2b =			В	
	(a) a - c	(b) a + c	(c) $\frac{a+c}{2}$	(d) $\frac{a-c}{2}$		
Q63	If the terms 2	(x+10) and (3x+2) be	in AP, the value o	f x is	С	
	(a) 7	(b) 10	(c) 6	(d) None		
Q64	The value of x	such that 8x+4.6x-2.2	x+7 will form an A	P is	С	
	(a) 15	(h) 2	$(c) \frac{15}{2}$	(d) None	Ŭ	
			(0) 2			
Q65	Find the 7 th ter	m of the A.P 8, 5, 2, - مار	-1, -4,	. h	В	
	(a) -13	(b) -10	(c) -7	(d) -16		
Q66	20 th term of th	e progression 1, 4, 7,	10 is		А	
	(α) 58	(b) 52	(c) 0	(d) None		
Q67	For A.P 2, 5, 8,	11, 14,, 12th term	is		С	
	(a) 34	(b) 33	(c) 35	(d) 36		
Q68	13th term of se	eries 93, 90, 87 is .			А	
	(a) 57	(b) -54	(c) 50	(d) 54		
Q69	9 n^{th} element of the sequence 1,3,5,7, is					
	(a) n	(b) 2n -1	(c) 2n +1	(d) None		
Q70	n th term of the	sequence 2, 4, 6, 8	is		А	
	(a) 2n	(b) 2n-1	(c) 2n + 1	(d) N		
Q71	m th term of an	A.P is n and n th term i	is m, the r th term o	f it is	D	
	(a) m + r + r	(b) n + m - 2r	(c) m - 2r	(d) m + n - r		
Q72	If the p th term	of an AP is g and g th t	erm is p, the value	e of the (p+q) th term is	. A	
	(a) O	(b) 1	(c) -1	(d) None	-	
Q73	If the 5 th and 1	2 th terms of the A.P a	re 14 and 35 resp	ectively, find the A.P.	D	
	(a) -2, 2, 6, 10,	14	(b) -10, -4, 2, d	8. 14		
	(c) 6, 8, 10, 12,	14,	(d) 2, 5, 8, 11,	14,		
Q74	Which term of	the A P 11, 8, 5, 2	is -109	·	R	
<i>ai i</i>	$(a) 10^{\text{th}}$	(b) 8 th	(c) 12 th	(d) 14 th		
025	Lubiah tanm of	the programation =1 =1	(0) 12		D	
Q73	(a) 21 st	the progression - i, -c	(a) 10 th	(d) Nono	D	
		. 3 4 5 1	7 -		~	
Q76	Which term of	the A.P $\frac{3}{\sqrt{7}}, \frac{4}{\sqrt{7}}, \frac{3}{\sqrt{7}}, \dots$ is	<u>/</u> 7, ?		C	
	(α) 13	(b) 14	(c) 15	(d) 16		

Q77	The last term of th	ne series 5,7,9, t	.o 21 term is		С
	(a) 44	(b) 43	(c) 45	(d) None	
Q78	The last term of th	ne A.P 0.6,1.2,1.8 to 1	3 term is		В
	(a) 8.7	(b) 7.8	(c) 7.7	(d) None	
Q79	Determine the firs	st term of an A.P. wit	h common differenc.	e 3 & 7th term being 11	А
	(a) -7	(b) 7	(c) 6	(d) 5	
Q80	If the 10 th term of 8 th term, then the	' an A.P. is twice the value of 'k' is	4^{th} term, and the 2	3 rd term is 'k' times the	А
	(α) 2.5	(b) 3	(c) 3.5	(d) 4	
Q81	The sum of	between the ac	tual values and the <i>i</i>	A.M is zero.	В
	(a) sums	(b) differences	(c) product	(d) square root	
Q82	AM between a & c	is			В
	(a) ac	(b) $\frac{(a+c)}{2}$	(c) $\frac{ac}{2}$	(d) $\frac{(a-c)}{2}$	
Q83	A. M between 2 &	4 is			С
	(a) 2	(b) 4	(c) 3	(d) 6	
Q84	AM between 8 & 2	O is			С
	(α) 6	(b) 12	(c) 14	(d) 18	
Q85	AM between 5 and	13 is			А
	(α) 9	(b) 10	(c) 8	(d) None	
Q86	AM between 33 ar	nd 77 is			С
	(α) 50	(b) 45	(c) 55	(d) None	
Q87	4 arithmetic mean	s between -2 and 23	are		С
	(α) 3,13,8,18	(b) 18,3,8,13	(c) 3,8,13,18	(d) None	
Q88	If the AM of two n	umbers is 6 and GM	is 6 then find the nu	mbers.	А
	(α) 6,6	(b) 10,8	(c) 10,6	(d) 9, 2	
Q89	Find the numbers	whose GM is 5 and A	M is 7.5.		В
	(a) 12 and 13	(b) 13.09 and 1.91	(c) 14 and 11	(d) 17 and 19	
Q90	Between the two r	numbers whose sum i	is $\frac{13}{6}$, an even number $\frac{13}{6}$	er of A.M is inserted. If	D
	arithmetic means	inserted are	s their number by	unity, then number of	
	(a) 6	(b) 10	(c) 8	(d) 12	
Q91	Three numbers a,b	o,c are in A.P, Find a	-b+ c		С
	(α) α	(b) -b	(c) b	(d) c	
Q92	In an A.P. if the 3r	d term is 18, 7 term i	is 30 then the sum of	first 20 terms is	А
	(α) 810	(b) 520	(c) 180	(d) 250	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Telegram

Whatsapp: 8888111134

Q93	2 nd term of A.P. is	s a2, its common o	difference is'd'. Sum of	its first 'n' terms =	С
	$(a)\frac{\pi}{2}[2a_{2+}(n-1)d]$		$(b)\frac{\pi}{2}[2\alpha_{1+}(n-1)d]$]	
	$(c)\frac{n}{2}[2a_2 + (n-3)d]$]	(d) $\frac{n}{2} [a_{2+}(n-1) d]$		
Q94	The sum of the se	eries 1+2+4+8+	. to 10 term is		В
	(a) 1024	(b) 1023	(c) 1025	(d) None	
Q95	The sum of series	s 8, 4, 0 to	50 terms is		С
	(a) 18900	(b) 9000	(c) -4500	(d) None	
Q96	The sum of all nu	mbers between 2	200 and 300		D
	(a) 11,600	(b) 12,490	(c) 12,500	(d) 24,750	
Q97	The sum 1+2+3+4.	+70 is equ	al to		В
	(α) 2484	(b) 2485	(c) 2845	(d) None	
Q98	The sum of series	s 8, 4, 0 to 5	0 terms is		С
	(a) 18900	(b) 9000	(c) -4500	(d) None	
Q99	In an A.P. if S _n = 3	3n² - n & its comn	non difference is '6', th	en the First term is	А
	(α) 2	(b) 3	(c) 4	(d) 6	
Q100	The sum of $\frac{1}{(x+y)}$	and $\frac{1}{(x-y)}$ is			В
	(a) $\frac{2y}{(x^2-y^2)}$	(b) $\frac{2x}{(x^2-y^2)}$	(c) $\frac{2y}{(x^2+y^2)}$	(d) $-\frac{2x}{(x^2-y^2)}$	
Q101	$\frac{a^2}{a^2 + b^2} + \frac{b^2}{b^2 + c^2} = $				D
	$(\alpha) \alpha - b$	(b) a + b	(c) a ² - b ²	(d) 1	
Q102	8 th term of the pi	rogression 8, 5, 2	2, -1, -4, is		В
	(a) -12	(b) -13	(c) 13	(d) 12	
Q103	Sum of a series i Number of terms	n AP is 72 the fir is .	st term being 17 and t	he common difference -2.	С
	(α) 6	(b) 12	(c) 6 or 12	(d) None	
Q104	Number of term becomes zero	s of series need	ded for sum of the se	eries 50 + 45 + 40 +	В
	(α) 22	(b) 21	(c) 20	(d) None	
Q105	Sum of certain n terms is	umbers of terms	of an AP series -6, -3	3, 0 is 225. Number of	В
	(α) 16	(b) 15	(c) 14	(d) 13	
Q106	The number of te	erms in the A.P. 7	, 13, 19, 97 is		С
	(a) 97	(b) 17	(c) 16	(d) 15	
Q107	The sum of all na	tural numbers fro	om 100 to 300 which ar	e divisible by 4 is	А
	(α) 10200	(b) 30000	(c) 8200	(d) 2200	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

RZ

ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CMA FOUNDATION

Q108	Sum of n terms of 2	APs are in the ratio	o of $\frac{7n-5}{5n+17}$. Then	term of the two series	В
	are equal				
0.400		(D) 6			6
Q109	is .	100 terms common	to the series 17, 21,	25 And 16, 21, 26,	D
	(α) 202200	(b) 100101	(c) 101010	(d) 101100	
Q110	If the p^{th} term of an	h AP is q & the q^{th} te	erm is p the value of	the rth terms is	В
	(a) p-q-r	(b) p + q-r	(c) p + q + r	(d) None	
Q111	The p th term of an A	P is $\frac{1}{q}$ and the q^{th} te	rm is $\frac{1}{p}$. The sum of t	he pq term is	А
	(a) $\frac{1}{2}$ (pq+1)	$(b)^{\frac{1}{2}}(pq-1)$	(c) (pq+1)	(d) (pq-1)	
Q112	Sum of p terms of a	n AP is q and the su	m of q terms is p. Tl	ne sum of p+q terms is	А
	(a) -(P+q)	(b) (P+q)	(c) (p-q) ²	(d) P ² -q ²	
Q113	If S_1 , S_2 , S_3 be respense is	ectively, sum of n, 2r	n, 3n terms of an AP	the value of $S_3 \div (S_2 - S_1)$	С
	(a) 1	(b) 2	(c) 3	(d) None	
Q114	If S_1 , S_2 , S_3 be the su and the respective	ums of n terms of th common difference	ree APs the first te s 1, 2, 3 then $\frac{(S_1+S_3)}{S_2}$ i	rm of each being unity s	В
	(α) 1	(b) 2	(c) -1	(d) None	
Q115	Sum of 'n' terms of t	wo A.Ps are in the r	atio of $\frac{(5n+2)}{(11n-7)}$ the ra	tio of their sixth terms	D
	is				
	(a) 32:59	(b) 1:1	(c) 2:1	(d) 5:11	
Q116	If m, p, q are conse	cutive terms in an A	4.P. then p is	$(\mathbf{m} \mid \mathbf{a})$	D
	(a) $\frac{\ln q}{2}$	(b) $\frac{(m-q)}{2}$	(c) $2(m^2 + q^2)$	$(d)\frac{(m+q)}{2}$	
Q117	The five numbers in	AP with their sum 2	25 and sum of their s	squares 135 are	А
	(a) 3, 4, 5, 6, 7		(b) 3, 3.5, 4, 4.5, 5	_	
	(c) -3, -4, -5, -6, - <i>t</i>		(d) -2, -3.5, -4, -4.5	, -5	
Q118	Numbers are	in A.P. whose sum	is 69 and the produ	ict of first two is 483.	В
	(a) 25, 23, 21	(b) 21,23,25	(c) 19, 22, 25	(d) None	
Q119	Three numbers are numbers are	e in A.P. of whose s	sum is 15 and whose	e product is 105, then	A
	(a) 3,5,7	(b) 2, 5, 8	(c) 0, 5, 10	(d) None	
Q120	Three number in AP	whose sum is 27 and	d the sum of their sc	juares is 341 are	С
	(a) 2, 9, 16	(b) 16, 9, 2	(c) Both (a) and (b)	(d) -2, -9, -16	
Q121	Four numbers in AP	whose sum is 20 and	d the sum of their so	uares is 120 are	В

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q122	Divide 69 into 3 p	arts which are in A	.P and are such the	at product of the 1 st two	Α
	(a) 21,23,25	(b) 23,25,27	(c) 19,21,23	(d) 17,19,21	
Q123	Sum of 3 numbers (a) 3,4,5	in A.P. is 12 and the (b) 1,4,7	sum of their cube is (c) 2,4,6	408. Numbers are (d) None	В
Q124	Five numbers in A	P with the sum 20 ar	nd product of the fi	rst and last 15 are	В
	(α) 3, 4, 5, 6, 7 (c) -3, -4, -5, -6, -	7	(b) 3, 3.5, 4, 4.5, (d) -2, -3 5, -4, -4	5 + 55	
Q125	If sum of first 50 2500, then the sur	natural numbers is ' n of the first 50 eve	1275 and the sum of en numbers is	f first 50 odd numbers is	A
	(α) 2550	(b) 1275	(c) 1725	(d) 2500	
Q126	Sum of three integ	gers in AP is 15 and	their product is 80	. the integers are	D
	(α) 2,5,8	(b) 8,5,2	(c) 2,8,5	(d) Both (a) and (b)	
Q127	Sum of all natural (a) 10200	no. from 100 to 300 (b) 15200	which are exactly d (c) 16200	ivisible by 4 or 5 is (d) None	С
Q128	In an Ashoka Ch sectors, three sm (a) In A.P. (c) In G.P.	akra, central angle all sectors and so or	e made by the sm n are (b) Equal (d) Such that the	allest sector, two small ir summation is 360°	A
Q129	A person employe increase of Rs. 10 and the monthly so (a) 1380000 and 6 (c) 1480000 and 7	ed in a company at 0 per year. Find the alary in the last yea 200 200	Rs. 3000 per mon total amount which r. (b) 930000 and 5 (d) 1570000 and 4	ith and he would get an h he receives in 25 years i400 4800	В
Q130	A person receive received an incre in 10 years (a) Rs. 56,75,000	d the salary for th ment of Rs. 15,000 p (b) Rs. 72,75,000	e 1 st Year is Rs. 5, per year then the su (c) Rs. 63,75,000	00,000 per year and he um of the salary he taken (d) None	A
Q131	The sum of n term	s of an AP is 3n ² + 5	n, which term of AP	9 is 164.	В
	(α) 25	(b) 27	(c) 29	(d) 31	
Q132	Sum of n terms of	$(x+y)^2$, (x^2+y^2) , $(x-y)^2$.			В
	(a) $(x + y)^2 - 2(n -$	1)xy	(b) $n(x + y)^2 - n$ (b)	n - 1) xy	
	(c) $n(x + y)^2 - n(n + y)^2$	+ 1)xy	(d) None		
Q133	Sum of n terms of	(n - 1)/n, (n - 2)/n, (r	n - 3)/n is		В
	(α) Ο	(b) (n-1)/2	(c) (n+1)/2	(d) None	
Q134	The sum of first n	natural number is	·		Α

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

	(a) $(\frac{n}{2})(n+1)$	(b) (<u>*</u>)(n+1)(2n+1)	(c) $\left[\left(\frac{n}{2}\right)(n+1)\right]^2$	(d) None	
Q135	The sum of square	e of first n natural nu	ımber is		В
	(a) $(\frac{n}{2})$ (n+1)	(b) (<u>n</u>) (n+1) (2n+1)	(c) $\left[\left(\frac{n}{2}\right)(n+1)^2\right]$	(d) None	
Q136	The sum of cubes	of first n natural nur	nber is		С
	(a) (<u>n</u>) (n+1)	(b)(ⁿ / ₆)(n+1) (2n+1)	(c) $\left[\left(\frac{n}{2}\right)(n+1)\right]^2$	(d) None	
Q137	The sum of first 'r	n' odd number is	·		В
	(a) $\frac{n(n+1)}{2}$	(b) n ²	(c) $\frac{n}{2}$	(d) $\frac{n(n-1)}{2}$	
Q138	The sum of n term	ns of an AP is 2n² +3n	. Find the nth term?		А
	(a) 4n+1	(b) 4n-1	(c) 2n+1	(d) 2n-1	
Q139	The first three te	erms of sequence whe	en nth term T _n is n²-2	n are	А
	(a) −1, 0, 3	(b) 1, 0, 2	(c) -1, 0, -3	(d) None	
Q140	If Sn the sum of f	irst n terms in a serie	es is given by 2n²+3n	the series is in	А
	(a) AP	(b) GP	(c) HP	(d) None	
Q141	n th term of the se	ries whose sum to n t	terms is 5n²+2n is	·	С
	(a) 3n - 10	(b) 10n - 2	(c) 10n - 3	(d) None	
Q142	$t_1 = n, t_2 = n + 1, t_3$	a = n + 2 and so on, th	en t _n =		В
	(a) n	(b) 2n - 1	(c) 2n + 1	(d) 2n	
Q143	A sum of Rs. 6240 more than the pr	is paid off in 30 inst eceding installment.	allments such that e The value of the 1 st i	ach installment is Rs. 10 nstallment is	D
	(a) Rs. 36	(b) Rs. 30	(c) Rs. 60	(d) None	
Q144	If a, b, c, d, e are	e in AP then			D
	(a) a - b - d + e =	0 (b) a - 2c+	e = 0 (c) b - 2c +	d = 0 (d) All	
Q145	The sum of <i>n</i> term	ns of a+b, 2a, 3a-b	is		D
	(a) n(a-b) +2b	(b) n(a+b)	(c) both the above	e (d) None	
Q146	Find the sum to <i>n</i>	terms of (1-1/n) + (1-	2/n) + (1-3/n) +		А
	(a) ½(n-1)	(b) ½(n+1)	(c) (n-1)	(d) (n+1)	
Q147	Value of n ² + 2n [1	+2+3++(n-1)] is	·		А
	(a) n ³	(b) n ²	(c) n	(d) None	
Q148	Which term of ser	ries 7+11+15 = 4	403.		В
	(a) 50	(b) 100	(c) 101	(d) 51	
Q149	Sum 1+3+5+7+ +	99 is equal to	-·		D
	(a) 2499	(D) 2401	(C) 9801	(d) 2500	
Q150	Sum of all natural	numbers between 20	DO and 400 which ar	e divisible by 7 is	В
	(u) + + 30	(D) 0728	$(C) ffZ\Theta$	(u) 0730	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

Q151	Sum 1 ² + 2 ² + 3 ² +	4 ² +10 ² is eq	ual to		А
	(α) 385	(b) 386	(c) 384	(d) None	
Q152	Sum of 1 ³ + 2 ³ + 3	³ + 4 ³ + 10 ³ is e	equal to		В
	(a) 4410	(b) 3025	(c) 3470	(d) None	
Q153	Sum of <i>n</i> terms of	of the series 2 +	6 + 10 + is		А
	(a) 2n²	(b) n ²	(c) n²/2	(d) 4n²	
Q154	If a, b, c d are in	n AP then			D
	(a) $a^2 - 3b^2 - 3c^2$	$-d^2 = 0$	(b) $a^2 + 3b^2 + 3c^2$	$+ d^2 = 0$	
	(c) $a^2 + 3b^2 + 3c^2$	$- d^2 = 0$	(d) $a^2 - 3b^2 + 3c^2$	$-d^{2} = 0$	
Q155	If a, b, c be the	sums of p, q, r te	rms respectively of an <i>i</i>	AP, the value of	А
	$\left(\frac{a}{p}\right)(q-r) + \left(\frac{b}{q}\right)(r-p)$	+ (^c / _r)(p-q) is			
	(α) Ο	(b) 1	(c) -1	(d) None	
Q156	If 10 th term of Af	P is twice the 4 th	term & 23 rd term is 'k' t	imes the 8 th term, k =	А
	(α) 2.5	(b) 3	(c) 3.5	(d) 4	
Q157	Value of 11 ² +12 ² +.	+20 ² =			В
	(α) 3845	(b) 2485	(c) 2870	(d) 3255	
Q158	Value of $\frac{1^{3}+2^{3}+\cdots+1}{1+2+\cdots+2}$	$\frac{10^3}{10} = $			С
	(a) 45	(b) 55	(c) 385	(d) 285	
Q159	If a, b, c are in A	AP, then value of	$\frac{\left(a^3 + 4b^3 + c^3\right)}{b\left(a^2 + a^2\right)} = \underline{\qquad}.$		С
	(a) 1	(b) 2	(c) 3	(d) None	
Q160	If a. b. c are in A	AP then (b+c). (c+	a), (a+b) are in		А
	(α) AP	(b) GP	(c) HP	(d) None	
Q161	If a, b, c are in p	th , q th & r th terms	of an AP, value of a(q-r)) +b(r-p) +c(p-q) is	А
	(α) Ο	(b) 1	(c) -1	(d) None	
Q162	If a², b², c² are i	n AP then (b+c), (c+a), (a+b) are in		С
	(a) AP	(b) GP	(c) HP	(d) None	

CHAPTER 5B. GEOMETRIC PROGRESSION

INTRODUCTION

- It is a sequence in which 'any term divided by its preceding term' is "same/constant".
- Ratio between two consecutive terms of the series is "constant". Such Ratio is known as Common Ratio & is denoted by 'p'.
- First term of GP is denoted by 'a'.

•
$$\mathbf{p} = \frac{T_2}{T_1} = \frac{T_3}{T_2} = \frac{T_4}{T_3} - \dots - \frac{T_n}{T_{n-1}}$$

• Common Ratio of GP $\frac{r}{r} = \frac{T_n}{T_{n-1}}$

CONCEPT 1: Finding nth TERM OF GP

 If a = 5 & r = 2 		
 T₁ = α; 	$T_2 = \alpha.r;$	
$T_3 = T_2$. $r = \alpha r.r = \alpha r^2$;	$T_4 = T_3$. $P = P^2 P = \alpha P^3$;	
$-\mathbf{T}_{n} = \boldsymbol{\alpha}.\boldsymbol{p}^{n-1}$		
CQ1: Find the 8 th term of series 4	4, 8, 16 is	[Ans: 512]
CQ2: 10 th term of the G.P. $\frac{1}{2}$, 1, 2,	22, is	[Ans: 256]
CQ3: The last term of the series	x², x, 1, to 31 terms is	$[Ans: \frac{1}{x^{28}}]$
CQ4: Which term of the G.P. ser	ies ¼, -1/2, 1is -128?	
CQ5: The number of terms in 6,10	8,54, upto 1458 is	
CQ6: Which term of series 3, $\sqrt{3}$,	1, $\frac{1}{\sqrt{3}}$ is $\frac{1}{243}$?	

CONCEPT 2: GEOMETRIC MEAN

• If a, b, c are in GP, $b/a = c/b = \frac{b^2 = ac}{b}$, b is called GM between a & c.

CQ7: If (k+9), (k-6) & 4 forms three consecutive terms of a G.P, then the value of 'k' is_____.

PC NOTE

If two non-consecutive terms in GP (say $T_m \& T_n$) & their values are given in question & you are asked to find out GP. $\frac{r^{m-n}}{r_n} = \frac{T_m}{T_n}$ CQ8: Find GP where T_3 is 36 & T_5 is 324. Ans: $r^{5-3} = 324/36$; $r^2 = 9$ & thus $r = \pm 3$. $ar^2 = 36$. a.9 = 36. a = 4. GP will be 4, ±12, ±36, ± 108....

CONCEPT 4: SUM OF FIRST 'N' TERM OF GP

 $\mathbf{S}_{n} = \alpha \times \frac{1 - r^{n}}{(1 - r)}$ when $\mathbf{P} < 1$ $\mathbf{S}_{n} = \alpha \times \frac{r^{n} - 1}{(r - 1)}$ when $\mathbf{P} > 1$

CONCEPT 5: SUM OF INFINITE GP (S_w)

- It is denoted by S_{∞}
- $S_{\infty} = \frac{a}{1}$

	CONCEPT 5: ASSUMPTIONS OF THE TERMS IN GP				
	If No. of terms given in question are	Middle Term	Common Difference	Examples of Terms	
	ODD No. of terms	A	p	3 terms: (a/r), a, (ar); 5 terms: (a/ r²), (a/r), a, (ar), (ar²)	
	EVEN No. of terms	(a/r) & (ar)	p²	2 terms: (a/r) & (ar); 4 terms: (a/ r³), (a/r), (ar), (ar³)	
	PC NOTE: But we will go by OPTION METHOD in such type of questions TO SAVE TIME .				
		$\frac{2}{\sqrt{2}}$	e first three ter	² <u>(b)</u>	
($(\alpha) \frac{1}{2}$	(b) _	(c)) – (d) None	

CONCEPT 6: PROPERTIES OF GP

Particulars	Examples
1. If we add/subtract all the terms of GP by	y any number, resulting series is NOT a GP.
2. If we Multiply/divide all the terms of GP	by any number, resulting series is a GP.
3. Reciprocal of all the terms of a GP will be	e in GP (New GP).
4. All the numbers of GP raised to the powe	er k (any number) will also be in GP.
5. If a, b, c OR a^2 , b^2 , c^2 are in GP \rightarrow Put a, b	o, c value as 1, 2, 4 in options & get the answer.
6. Log of all terms of a GP, it will become A	Ρ.
7. If there are 'n' terms in a GP, m th term fr	om the end will be <mark>(m-n+1)thterm from the start.</mark>
Ex: If there are 7 terms in a GP, 2^{nd} term fr	om the end will be (7-2+1) th term from the start.

PROPERTIES OF A.P. & G.P.

- A sequence is both A.P. & G.P., if it is constant sequence, i.e. all the terms are equal (d = 0, r = 1).
- If A.M. & G.M. of 2 no. is known, the two no. are: A.M. $\pm \sqrt{(A.M.)^2 (G.M.)^2}$
- If A.M. & G.M. of 2 no. is in ratio m : n, then no. are in ratio

 $(m + \sqrt{(m)^2 - (n)^2})$: $(m - \sqrt{(m)^2 - (n)^2})$

• If $T_n = An^3 + Bn^2 + Cn + D$, then $S_n = \sum T_n = A \sum n^3 + B \sum n^2 + C \sum n + nD$

HARMONIC MEAN (H.P.)

A sequence of non-zero number a_1, a_2, a_3, \ldots are in H.P. if $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \ldots$ are A.P.

Ex: The sequence 1, 1/3, 1/5, 1/7,..... are in H.P. since 1, 3, 5, 7,..... are in A.P.

- Standard form of a H.P. is: $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$,
- n^{th} term of a H.P. is $t_n = \frac{1}{a + (n-1)d}$
- If 3 terms are in H.P. b = $\frac{2ac}{a+c}$, b is the H.M. between 'a' & 'c'
- For any two distinct positive numbers, A.M. > G.M. > H.M. & (G.M.)² = A.M. × H.M.
- If a, b, c are in G.P. then a + b, 2b, c + d are in H.P. (Ex: 1, 2, 4 = 3, 4, 6)

Space for PC Class Note:

GEOMETRIC PROGRESSION - QUESTION BANK

SN	5B. GEOMETRIC PROGRESSION	Ans
Q163	6^{th} term of series ab, $\alpha^2 b^3$, $\alpha^3 b^5 = $	А
	(a) $a^{6}b^{11}$ (b) $a^{11}b^{30}$ (c) $a^{15}b^{36}$ (d) Cannot say	
Q164	If the fifth term of a G.P. is 3^4 & second term is $3(2)^3$ then the first term is	А
	(a) 2 ⁴ (b) 8 (c) 32 (d) 3.2 ³	
Q165	If n, p, q are in G.P, then the <i>expression for p</i> in terms of n & q is	В
	(a) $\frac{n}{q}$ (b) $(nq)^{1/2}$ (c) q^{2n} (d) Nq	
Q166	n th root of the product of n observations is	А
	(a) G.M (b) H.M (c) Median (d) A.M	
Q167	If an observation in the data set in zero, then its geometric mean is	С
	(a) Positive (b) Negative (c)Zero (d) Indeterminant	
Q168	The AM of two positive numbers is 40 and their GM is 24. The numbers are	А
	(a) (72,8) (b) (70,10) (c) (60,20) (d) None	
Q169	AM is never than GM.	В
	(a) more (b) less (c) maximum (d) minimum	
Q170	If A be the AM of two positive unequal quantities x and y and G be their GM, then	В
	(a) $A < G$ (b) $A > G$ (c) $A \ge G$ (d) $A \le G$	
Q171	1 st term is 1 & 6 th term is 32, find 'r'.	С
	(a) 3 (b) 32/5 (c) 2 (d) 160	
Q172	Four geometric means between 4 and 972 are	С
	(a) 12, 48, 192, 768 (b) 16, 64, 256, 512 (c) 12, 36, 108, 324 (d) None	
Q173	The sum of the series $\frac{1}{\sqrt{3}}$ +1+ $\frac{3}{\sqrt{3}}$ + to 18 terms is	А
	(a) 9841 $\left(1 + \frac{1}{\sqrt{3}}\right)$ (b) 9841 (c) $\frac{9841}{\sqrt{3}}$ (d) None	
Q174	The sum of the series 1+2+4+8+ to n term	А
	(a) 2 ⁿ -1 (b) 2n -1 (c) 1/2 ⁿ -1 (d) None	
Q175	The sum of n terms of a GP is $1\frac{127}{138}$, its first term is 1 and the common ratio is $\frac{1}{2}$. The	В
	value of n is	
	(a) 7 (b) 8 (c) 6 (d) None	
Q176	If $r = 3$ & the last term is 486. If the sum of these terms be 728, then the value of	В
	first term is	
	(a) 4 (b) 2 (c) 9 (d) 1	
Q177	The sum of the first 20 terms of a GP is 244 terms the sum of its first 10 terms. The common ratio is	A

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
VouTube Telegram @msagaan <u>Whatsapp: 8888111134</u>

	(a) ±√3	(b) ±3	(c) √3	(d) None	
Q178	Find the sum to In	finity of the Followin	g series : 1 -1+1-1+1-	1∞	В
	(a) 1	(b) 1/2	(c) 0	(d) None	
Q179	Sum upto ∞ of the	series 8 + $4\sqrt{2}$ + 4	is		А
	(a) $8(2 + \sqrt{2})$	(b) 8(2 - √2)	(c) $4(2 + \sqrt{2})$	(d) 4(2 - √2)	
Q180	The sum of the fir	st two terms of a GF	is $\frac{5}{3}$ and the sum to	infmity of the series is	D
	3. The common ra	tio is	-		
	(α) 1/3	(b) 2/3	(c) - 2/3	(d) Both (b) and (c)	
Q181	The infinite GP se	ries with first term $\frac{1}{4}$	and sum $\frac{1}{3}$ is		D
	$(\alpha) \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \dots$	(b) $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{64}$,	(C) $\frac{1}{4}$, $\frac{1}{18}$, $\frac{1}{16}$	(d) None	
Q182	The sum of 3 numb	ers of a GP is 39 and	l their product is 729	9. The numbers are	C
	(a) 3, 27, 9	(b) 9, 3, 27	(c) 3, 9, 27	(d) None	
Q183	If the sum of thre numbers are	e numbers in GP is	21 and the sum of t	heir squares is 189 the	С
	(α) 3, 6, 12	 (b) 12, 6, 3	(c) Both	(d) None	
Q184	If continued produced is 39. The numbers	uct of three numbers s are .	in GP is 27 & sum of	their products in pairs	C
	(α) 1, 3, 9	(b) 9, 3, 1	(c) Both (a) and (b) (d) None	
Q185	If a, b, c are in Gi	P, then the value of c	$a (b^2 + c^2) - c (a^2 + b^2)$	is	А
	(α) Ο	(b) 1	(c) -1	(d) None	
Q186	If a, b, c, d are in	GP, (a+b), (b+c), (c+	d) are in		В
	(a) AP	(b) GP	(c) HP	(d) None	
Q187	If a, (b-a), (c-a) a	re in GP and a = $\frac{b}{3} = \frac{c}{3}$	then a, b, c are in _	·	А
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q188	If a, b, c are in Af	P and x, y, z in GP, th	ien the value of x^{b-c} .	y ^{c-a} . z ^{a-b} is	В
	(α) Ο	(b) 1	(c) -1	(d) None	
Q189	If a, b, c are the p	\mathbf{p}^{th} , \mathbf{q}^{th} and \mathbf{r}^{th} terms	of a GP, the value of	^c a ^{q-r} b ^{r-p} .c ^{p-q} is	В
	(α) Ο	(b) 1	(c) -1	(d) None	
Q190	If a, b, c are in AF	% a, x, b are in GP 8	& b, y, c are in GP th	en x^2 , b^2 , y^2 are in	А
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q191	Three numbers ar they will be GP. Th	e in AP & their sum is ney are	15. If 8, 6, 4 be adde	ed to them respectively,	С
	(a) 2, 6, 7	(b) 4, 6, 5	(c) 3, 5, 7	(d) None	
Q192	The least value of than 7000 is	n for which the sum c 	of n terms of the seri	es 1+3+3²+ is greater	А

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) 9	(b) 10	(c) 8	(d) 7	
Q193	6^{th} term from the ϵ	end of the geometric	progression 8, 4, 2	, 1, ½, ¼, 1/1024 is	С
	(a) 1/4	(b) 1/16	(c) 1/32	(d) 1/64	
Q194	The numbers x, 8, y	/ are in GP and the n	umbers x, y,-8 are iı	n AP. The value of x and	В
	y are				
	(a) (-8, -8)	(D) (16,4)	(C) (%8)		
Q195	The sum of four nu numbers are	mbers in GP is 60 ar 	nd the AM of 1 st and	the last term is 18. The	A
	(a) 4, 8, 16, 32	(b) 4, 16, 8, 32	(c) 16, 8, 4, 20	(d) None	
Q196	The sum of the ser	ies 1-1+1-1+1-1+ t	o 100 terms is equa	l to	С
	(a) 1	(b) -1	(c) 0	(d) 50	
Q197	Find the sum to n t	erms of the series 3	+33+333+		С
	$(a) \frac{1}{27} (10^{n+1} - 9n - 10)$	D)	(b) $\frac{1}{27}$ (10 ⁿ⁻¹ - 9n - 10	D)	
	(c) $\frac{1}{27}(10^{n-1} + 9n + 10)$))	$(d) \frac{1}{27} (10^{n+1} + 9n + 10)$))	
Q198	The sum upto infini	ty of the series $\frac{2}{3} + \frac{5}{9}$	$\frac{1}{2} + \frac{2}{27} + \frac{5}{81} + \dots$ is		А
	(a) 11/8	(b) 8/11	(c) 3/11	(d) None	
Q199	If $x = \alpha + \frac{a}{r} - \frac{a}{r^2} + \dots \alpha$	$y = b - \frac{b}{r} + \frac{b}{r^2} \alpha$	$z = c + \frac{c}{r} + \frac{c}{r^3} + \dots \alpha t$	then the value of $\frac{xy}{z} - \frac{ab}{c}$	А
	is			2 0	
	(a) O	(b) 1	(c) -1	(d) None	
Q200	Given x, y, z are in	GP and xp = yq =zr,	then $\frac{1}{p}$, $\frac{1}{q}$, $\frac{1}{r}$ are in	·	В
	(α) ΑΡ	(b) GP	(c) Both AP and GF	v (d) None	
Q201	lf a, b, x, y, z are p	ositive numbers suc	h that a, x, b are in ,	AP and a, y, b are in GP	С
	and $z = \frac{(2ab)}{(a+b)}$ then	·			
	(a) x, y, z are in Gf	P (b) x ≥ y ≥ z	(c) Both	(d) None	
Q202	A radioactive sam	ple decays & remair	ing sample at infinit	e time is given by b = 1	А
	$-(\frac{1}{2}+\frac{1}{4}+ \text{ to }\infty), \text{ th}$	en b is			
	(a) O	(b) 1	(c) 1/√2	(d) ½	
Q203	The value of $A^{\frac{1}{2}}$. $A^{\frac{1}{4}}$	$A^{\frac{1}{8}}$ to infinity is	·		В
	(a) Zero	(b) Infinity	(c) 1/2	(d) A	
Q204	The sum upto infini	ty of the series $\frac{4}{7} - \frac{1}{7}$	$\frac{5}{7^2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots$ is		А
	(a) $\frac{23}{48}$	(b) $\frac{25}{48}$	(c) $\frac{1}{2}$	(d) None	
Q205	Sum upto ∞ of the	series $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{2^4}$	$+\frac{1}{2^5}+\frac{1}{3^6}+\dots$ is		А
	(a) 19/24	(b) 24/19	(c) 5/24	(d) None	

Q206	If $1 + \alpha + \alpha^2 + \dots \infty$	= x; 1 + b + b ² +	∞ = y and 1 + ab +	a²b² +∞ is given by -	А
	(a) $\frac{xy}{x+y-1}$	(b) $\frac{xy}{x-y+1}$	(c) $\frac{xy}{x+y+1}$	(d)None	
Q207	If S_1 , S_2 , S_n are the	e sum of Infinite GP	s whose first terms	are 1, 2, 3n & whose	A
	common ratios are	$\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n+1}$ then the	value of $S_1 + S_2 + S_3 +$	S _n , is	
	(a) $\frac{n(n+3)}{2}$	(b) $\frac{n(n+2)}{2}$	(c) $\frac{n(n+1)}{2}$	(d) $\frac{n^2}{n+1}$	
Q208	The least vale of 'r	n' satisfying 1 + 2 + 2 ³	² ++ 2 ⁿ⁻¹ > 300 is _	·	В
	(α) 8	(b) 9	(c) 10	(d) 6	
Q209	Find the sum of n t	erms of the series C	0.7+0.77+0.777+ to	n terms.	В
	(a) ⁷ / ₈₁ {9n + 1+ 10 ⁻ⁿ }	(b) 7/81 {9n - 1+ 10⁻¹}	(c) $\frac{7}{81}$ {9n + 1+ 10 ⁿ }	(d) 7 {9n - 1- 10 ⁿ }	
Q210	Three real number differences=3 and of three numbers i	rs are such that the their decimal parts is 25.4. Find the mide	eir integer parts ar are in G.P. with con dle number	e in A.P. with common nmon ratio = 2, and sum	D
	(a) 6.4	(b) 11.2	(c) 5.2	(d) 8.4	
Q211	If geometrical pro equal, then value o	ogressions 5, 10, 20, of 'p' is	& 1280, 640, 320	have their p th terms	С
	(α) 10	(b) 75	(c) 5	(d) 40	
Q212	In a GP if the (p+q) th terms is m and the	e (p-q)th term is n tl	nen the pth term is	А
	(a) (mn) ^{1/2}	(b) mn	(c) m + n	(d) m — n	
Q213	The Lt $1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3}$	$\frac{1}{3} + \ldots + \frac{1}{3^{n-1}} = n \to \infty$			В
	$(a)\frac{2}{3}$	(b) $\frac{3}{2}$	(c) $\frac{4}{5}$	(d) None	
Q214	The sum of n terms	s of (x+y) ² , (x ² +y ²), (x-	y)²		В
	(a) (x + y) ² - 2(n-1) ху	(b) n (x + y) ² — n (n	— 1) xy	
	(c) Both the above		(d) None		
Q215	The sum of n terms	s of $(n - 1)/n$, $(n - 2)$	/n, (n — 3)/n is	·	В
	(a) O	(b) (n—1)/2	(c) (n + 1)/2	(d) None	
Q216	The sum of n terms	s of the series 1.2 + 2	2.3 + 3.4 + is		А
	(a) $\left(\frac{n}{3}\right)$ (n+1) (n+2)	(b) $\left(\frac{n}{2}\right)$ (n+1) (n+2)	(c) $\left(\frac{n}{3}\right)(n+1)$ (n-2)	(d) None	
Q217	The sum of n terms	s of the series 1.4 + 3	3.7 + 5.10 + is		А
	(a) n (4n² + 5n - 1)/	2	(b) n (5n² + 4n - 1)/	2	
	(c) n (4n² + 5n + 1)/	2	(d) None		
Q218	If a, b, c are in G.1	P. the b ² =			А
	(a) ac	(b) -ac	(c) a+ b	(d) a — c	
Q219	If a, ar, ar², ar³,	be in G.P. Find the	common ratio.		С
	(a) a	(b) ar	(c) r	$(d)\frac{1}{r}$	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

Q220 Suppose x, y, z form a geometric sequence, then value of Y is A (a) $\frac{1}{3}$ (b) 1 (c) $\frac{1}{4}$ (d) Dependent of x, y, z B Q221 The common ratio of the G.P.2,-6, 18, -54 is B (a) 3 (b) -3 (c) 4 (d) -4 Q222 In 5, 15, 45, 135, the common ratio is A (a) 3 (b) 5 (c) 10 (d) 30 Q223 The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is C (a) $\sqrt{2}$ (b) $\sqrt{2}$ (c) Both (d) None D Q224 The number of terms in 6,18,54,						
$ \begin{array}{ c c c c c } & (a) \frac{1}{3} & (b) 1 & (c) \frac{1}{4} & (d) Dependent of x, y, z \\ \hline \\$	Q220	Suppose x, y, z 3z form an ari	form a geometric thmetic sequence,	sequence with commo then value of Y is	on ratio r (0 < r < 1), if x, 2y, 	A
Q221 The common ratio of the G.P. 2, -6, 18, -54 is		$(\alpha) \frac{1}{3}$	(b) 1	(c) $\frac{1}{4}$	(d) Dependent of x, y,	
$ \begin{array}{ c c c c c } (a) 3 & (b) -3 & (c) 4 & (d) -4 \\ \hline \begin{times}{ c c c } \hline \begin{times}{ c c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c c } \hline \begin{times}{ c c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \hline \begin{times}{ c c } \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 30 \\ \hline \begin{times}{ c c } \mbox{ic} 10 & (d) 40 \\ \hline \begin{times}{ c c } \hline \bell 10 & (b) 10 & (c) 11 & (c) 10 & (c) 10 & (c) 10 $	Q221	The common ro	atio of the G.P 2,-6	, 18, -54 is		В
Q222 In 5, 15, 45, 135, the common ratio is A (a) 3 (b) 5 (c) 10 (d) 30 Q223 The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is C (a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) Both (d) None C Q224 The number of terms in 6,18,54,		(α) 3	(b) -3	(c) 4	(d) -4	
(a) 3 (b) 5 (c) 10 (d) 30 Q228 The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is	Q222	In 5, 15, 45, 13	5, the common ra	tio is		А
Q228 The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is C (a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) Both (d) None D Q224 The number of terms in 6,18,54, 1458 is D (a) 5 (b) 7 (c) 8 (d) 6 D Q225 Third term of geometric progression is 4. Then product of the first 6 terms is B (a) 4 ⁶ (b) 4 ^{7,5} (c) 4 ⁵ (d) 4 ¹⁵ D Q226 If the (p + q) th term of a G.P. is X and the (p - q) th term is Y, then p th term is C (a) XY (b) $\frac{(X+Y)}{2}$ (c) \sqrt{XY} (d) $\sqrt{\frac{X^2+Y^2}{2}}$ C Q228 Which term of the progression 1,2,4, 8 is 64 (a) 7 (b) 5 (c) 6 (d) 19 A (a) 13 (b) 14 (c) 15 (d) 12 D C Q229 Which term of the progression is 1, 2, 4, 8 is 256? (a) 10 (b) 9 (c) 12 (d) 13 A Q230 The 4 th term of the series 0.04, 0.2, 1, is (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None A Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is (a) 160 (b) 32 (c) 800 (d) 64 A Q232 The 7 th term of the series 6, 12, 24, is (a) 384 (b) 834 (c) 438 (d) None A Q334 ta of the series 6, 12, 24, is (a) 786 (b) 768 (c) 867 (d		(α) 3	(b) 5	(c) 10	(d) 30	
(a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) Both (d) None Q224 The number of terms in 6,18,54,	Q223	The sum of firs common ratio	t eight terms of GP is	is five times the sum	of the first four terms. The	С
Q224 The number of terms in 6,18,54, 1458 is		(α) √2	(b) -√2	(c) Both	(d) None	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q224	The number of	terms in 6,18,54,	1458 is		D
Q225 Third term of geometric progression is 4. Then product of the first 6 terms is		(α) 5	(b) 7	(c) 8	(d) 6	
(a) 4^6 (b) 4^{15} (c) 4^5 (d) 4^{15} Q226 If the (p + q) th term of a G.P. is X and the (p - q) th term is Y, then p th term is C (a) XY (b) $\frac{(X+Y)}{2}$ (c) \sqrt{XY} (d) $\sqrt{\frac{X^2+Y^2}{2}}$ Q227 Which term of the progression 1,2,4, 8 is 64 A (a) 7 (b) 5 (c) 6 (d) 9 Q228 Which term of series 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$ is $\frac{1}{243}$? A (a) 13 (b) 14 (c) 15 (d) 12 Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04,0.2,1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is	Q225	Third term of is	geometric progre	ession is 4. Then pro	oduct of the first 6 terms	В
Q226 If the (p + q) th term of a G.P. is X and the (p - q) th term is Y, then p th term is C (a) XY (b) $\frac{(X+Y)}{2}$ (c) \sqrt{XY} (d) $\sqrt{\frac{X^2+Y^2}{2}}$ A Q227 Which term of the progression 1,2,4, 8 is 64 A (a) 7 (b) 5 (c) 6 (d) 9 A Q228 Which term of series 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$ is $\frac{1}{243}$? A (a) 13 (b) 14 (c) 15 (d) 12 Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04, 0.2, 1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is		(α) 4 ⁶	(b) 4 ^{7.5}	(c) 4 ⁵	(d) 4 ¹⁵	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q226	If the $(p + q)^{th}$	term of a G.P. is X	and the (p - q) th term i	is Y, then p th term is	С
Q227 Which term of the progression 1,2,4, 8 is 64 (a) 7 A (a) 7 (b) 5 (c) 6 (d) 9 Q228 Which term of series 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$ is $\frac{1}{243}$? A (a) 13 (b) 14 (c) 15 (d) 12 Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04, 0.2, 1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 Q233 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None Q233 t_s of the series 6, 12, 24, is B B (a) 786 (b) 768 (c) 867 (d) None Q234 t_12 of the series -128, 64, -32, is C (a) $\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None		(a) XY	$(b)\frac{(X+Y)}{2}$	(c) \sqrt{XY}	(d) $\sqrt{\frac{X^2+Y^2}{2}}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q227	Which term of	the progression 1,2	2,4, 8 is 64		А
Q228 Which term of series 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$ is $\frac{1}{243}$? A (a) 13 (b) 14 (c) 15 (d) 12 Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04,0.2,1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None A Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 A Q232 The 7 th term of the series 6, 12, 24, is A A (a) 384 (b) 834 (c) 438 (d) None B Q233 t_0 of the series 6, 12, 24, is B B (a) 384 (b) 768 (c) 867 (d) None B Q234 t_12 of the series 6, 12, 24, is C C (a) 786 (b) 768 (c) 867 (d) None C Q234 t_12 of the series -128, 64, -32, is C C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$		(a) 7	(b) 5	(c) 6	(d) 9	
(a) 13 (b) 14 (c) 15 (d) 12 Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04, 0.2, 1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None Q233 t ₈ of the series 6, 12, 24, is B (a) 786 (b) 768 (c) 867 (d) None Q234 t ₁₂ of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None	Q228	Which term of	series 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$	is $\frac{1}{243}$?		А
Q229 Which term of the progression is 1, 2, 4, 8, is 256? B (a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04,0.2,1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None Q233 t_6 of the series 6, 12, 24, is B (a) 786 (b) 768 (c) 867 (d) None Q234 t_12 of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None		(α) 13	(b) 14	(c) 15	(d) 12	
(a) 10 (b) 9 (c) 12 (d) 13 Q230 The 4 th term of the series 0.04,0.2,1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None C Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 A Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None B Q233 t_8 of the series 6, 12, 24, is B B C (a) 786 (b) 768 (c) 867 (d) None C Q234 t_12 of the series -128, 64, -32, is C C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None C	Q229	Which term of	the progression is	1, 2, 4, 8, is 256?		В
Q230 The 4 th term of the series 0.04,0.2,1, is C (a) 0.5 (b) $\frac{1}{2}$ (c) 5 (d) None A Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 A Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None B Q233 t ₈ of the series 6, 12, 24, is B B (a) 786 (b) 768 (c) 867 (d) None C Q234 t ₁₂ of the series -128, 64, -32, is C C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None C		(a) 10	(b) 9	(c) 12	(d) 13	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q230	The 4 th term of	the series 0.04,0.	2,1, is		С
Q231 The sixth term of a G.P with common ratio as 2 and first term being 5 is A (a) 160 (b) 32 (c) 800 (d) 64 A Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None A Q233 t_8 of the series 6, 12, 24, is B (a) 786 (b) 768 (c) 867 (d) None C Q234 t_12 of the series -128, 64, -32, is C C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None C		(α) 0.5	(b) $\frac{1}{2}$	(c) 5	(d) None	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q231	The sixth term	of a G.P with comr	non ratio as 2 and fir	st term being 5 is	А
Q232 The 7 th term of the series 6, 12, 24, is A (a) 384 (b) 834 (c) 438 (d) None A Q233 t_{δ} of the series 6, 12, 24, is B B B (a) 786 (b) 768 (c) 867 (d) None C Q234 t_{12} of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None		(α) 160	(b) 32	(c) 800	(d) 64	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q232	The 7 th term of	the series 6, 12, 2	4, is		A
Q233 t_8 of the series 6, 12, 24, is B (a) 786 (b) 768 (c) 867 (d) None Q234 t_{12} of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None		(α) 384	(b) 834	(c) 438	(d) None	
(a) 786 (b) 768 (c) 867 (d) None Q234 t_{12} of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None	Q233	t_{\circ} of the series	s 6, 12, 24, is			В
Q234 t_{12} of the series -128, 64, -32, is C (a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None		(a) 786	(b) 768	(c) 867	(d) None	
(a) $-\frac{1}{16}$ (b) 16 (c) $\frac{1}{16}$ (d) None	Q234	t_{12} of the serie	s -128, 64,-32, is	·		С
•••		$(\alpha) - \frac{1}{16}$	(b) 16	(c) $\frac{1}{16}$	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

Whatsapp: 8888111134

Q235	In a GP series, the	product of the firs	t three $rac{27}{8}$. The mide	lle term is	А
	(a) $\frac{3}{2}$	(b) $\frac{2}{3}$	(c) $\frac{2}{5}$	(d) None	
Q236	In a GP, the 6^{th} ter	rm is 729 and the co	ommon ratio is 3, the	n the 1 st term is	В
	(α) 2	(b) 3	(c) 4	(d) 7	
Q237	In a GP series the	product of first thr	ee term is $\frac{729}{8}$. The r	niddle term is	В
	$(\alpha)\frac{3}{2}$	(b) $\frac{9}{2}$	(c) $\frac{2}{9}$	(d) None	
Q238	The last term of th	e series 1,2,4 to	o 10 terms is		А
	(α) 512	(b) 256	(c) 1024	(d) None	
Q239	The last term of th	e series 1-3,9,-27,uj	oto 7 terms is		В
	(a) 297	(b) 729	(c) 927	(d) None	
Q240	The last term of th	e series x², x,1, to	31 terms is		С
	(a) x ²⁸	(b) $\frac{1}{x}$	(c) $\frac{1}{x^{28}}$	(d) None	
Q241	The nth element of	the sequence -1, 2	-4, 8 is		А
	(a) (-1) ⁿ 2 ⁿ⁻¹	(b) 2 ⁿ⁻¹	(c) 2 ⁿ	(d) None	
Q242	The second terms	of a GP is 24 and fif	`th term is 81. The se	ries is	С
	(α) 16, 36, 24, 54	(b) 24, 36, 53	(c) 16, 24, 36, 54	(d) None	
Q243	The sum of the ser	ies 1-1+1-1+1-1+	. to 101 terms is equ	al to	А
	(α) 1	(b) -1	(c) 0	(d) 100	
Q244	Product of 3 num	bers in GP is 729	and Sum of square	es is 819. the numbers	С
	(a) 9,3,27	(b) 27, 3, 9	(c) 3,9,27	(d) None	
Q245	Sum of three numbe	ers in GP is 35 and th	neir product is 1000 t	the numbers are	С
	(α) 20 10 5	(b) 5 10 20	(c) Both	(d) None	
Q246	The numbers in GP	with their sum 130	and their product 2 ⁻	7000 are	С
	(a) 10 30 90	(b) 90 30 10	(c) Both	(d) None	
Q247	Three numbers in (GP with their sum $\frac{13}{3}$	and sum of their sq	uares	С
	$(\alpha) \frac{1}{3}, 1, 3$	(b) 3,1, ¹ / ₃	(c) Both	(d) None	
Q248	Find five numbers 108.	in GP such that the	ir product is 32 and	l product of last two is	A
	$(\alpha)\frac{2}{9},\frac{2}{3},2,6,18$	(b) 18,6,2, ² / ₃ , ² / ₉	(c) Both	(d) None	
Q249	Find three number 624.	es in G.P whose sum	is 52 and Sum of the	neir product in pairs is	A
	(a) 4, 12, 36	(b) 10, 16, 26	(c) 5, 17, 30	(d) None	
Q250	Numbers a,X,c are	in AP if X=25 & a,Y,	c are in GP if Y=7, th	en value of (a, c) are	С

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

	(α) 5,7	(b) 25,7	(c) 1,49	(d) 39, 11	
Q251	The G.M betwee	n 2 and 8 is			А
	(α) 4	(b) 10	(c) 6	(d) 8	
Q252	The geometric m	nean between 6 a	ınd 96 is		А
	(α) 24	(b) 4	(c) 2	(d) 16	
Q253	Let S be the sum a G.P. then P²R¹:	n, P be the produc	ct and R be the sum o	f reciprocals of n terms of	С
	(α) S ²ⁿ	(b) S ⁻ⁿ	(c) S ⁿ	(d) S ⁻²ⁿ	
Q254	The A.M and G.M	of two positive r	numbers is 10. The nun	nbers are	А
	(a) (10,10)	(b) (15,5)	(c) (5,15)	(d) (20,0)	
Q255	A.M. and G.M. c are	of 2 observations	s are 5 & 4 respecti	ively, then 2 observations	A
	(α) 8,2	(b) 7, 3	(c) 6, 4	(d) 5, 5	
Q256	If x, y, z are in G	FP., then			А
	(a) $x(y^2+z^2) = z(x^2)$	+y²)	(b) $y(z^2+x^2) = x(z^2+x^2)$	z²+y²)	
	(c) $z(x^2+y^2) = y(z^2)$	+x ²)	(d) None		
Q257	If a, b, c are in	the $p^{\text{th}}\text{,}~q^{\text{th}}$ and	r th terms of an AP va	lue of a(q-r)+b(r-p)+c(p-q)	А
	is				
		(d)	(C) -1		•
Q258	If a, b, c be the	sums of p, q, r te	erms respectively of a	In AP, the value of $\left(\frac{a}{p}\right)(q-r)$	A
	$+\left(\frac{b}{q}\right)(r-p)+\left(\frac{c}{r}\right)(p-q)$	q) is			
	(α) Ο	(b) 1	(c) -1	(d) None	
Q259	If a, b, c are in ,	AP then the value	e of $\frac{(a^2 + 4ac + c^2)}{(ab + be + ca)}$ is	·	В
	(α) 1	(b) 2	(c) 3	(d) None	
Q260	If a, b, c are in ,	AP then (b + c), (c	c + a), (a + b) are in	·	А
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q261	If a, b, c are in ,	AP then $\left(\frac{a}{bc}\right)(b+c)$	$(c), \left(\frac{b}{ca}\right)(c+a), \left(\frac{c}{ab}\right)(a+b)$	o) are in	А
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q262	If a, b, c are in ,	AP then the value	e of $\frac{(a^3 + 4b^3 + c^3)}{b(a^2 + c^2)}$ is		С
	(a) 1	(b) 2	(c) 3	(d) None	
Q263	If $(b + c)^{-1}, (c + a)$)⁻¹,(a + b)⁻¹ are in ,	AP the a²,b²,c² are in_	·	А
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q264	If a^2,b^2,c^2 are in	AP then $(b + c)$,(c	c + a),(a + b) are in		С
	(α) ΑΡ	(b) GP	(c) HP	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telegram
 Whatsapp: 8888111134

Q265	265 If a, b, c are in AP a x b are in GP and b y c are in GP then x^2 , b^2 , y^2 are in				
	(a) AP (b) GP (c) HP (d) None				
Q266	If a, b, c are in GP a^2+b^2 , $ab + bc$, b^2+c^2 are in	В			
	(a) AP (b) GP (c) HP (d) None				
Q267	If a, b, c are in GP then value of $(a - b + c)(a + b + c)^2 - (a + b + c)(a^2 + b^2 + c^2)$	А			
	(a) 0 (b) 1 (c) -1 (d) None				
Q268	If a, b, c are in GP then value of $a^2b^2c^2(a^{-3} + b^{-3} + c^{-3}) - (a^3 + b^3 + c^3)$ is given by	А			
	(α) 0 (b) 1 (c) -1 (d) None				
Q269	If a, b, c d are in AP then	Α			
	(a) $a^2 - 3b^2 + 3c^2 - d^2 = 0$ (b) $a^2 + 3b^2 + 3c^2 + d^2 = 0$				
	(c) $a^2 + 3b^2 + 3c^2 - d^2 = 0$ (d) None				
Q270	If a, b, c, d, e are in AP then	D			
	(a) $a-b-d + e = 0$ (b) $a-2c + e = 0$ (c) $b - 2c + d = 0$ (d) All				
Q271	If a, b, c, d are in GP. Then the value of $b(ab - cd) - (c + a)(b^2 - c^2)$ is	А			
	(a) 0 (b) 1 (c) -1 (d) None				
Q272	If a, b, c, d are in GP then $(a-b)^2$, $(b-c)^2$ $(c-d)^2$ are in	В			
	(a) AP (b) GP (c) HP (d) None				
Q273	If a, b, c, d are in GP then value of $(b - c)^2 + (c - a)^2 + (d - b)^2 - (a - d)^2$ is	А			
	(a) 0 (b) 1 (c) -1 (d) None				
Q274	If $(a - b)$, $(b - c)$, $(c - a)$ are in GP then value of $(a + b + c +)^2 - 3(ab + bc + ca)$ is	А			
	(a) 0 (b) 1 (c) -1 (d) None				
Q275	Numbers x, 8, y are in GP and numbers x, y,-8 are in AP. Value of x and y are	В			
	(a) (-8-8) (b) (16,4) (c) (8,8) (d) None				
Q276	The sum of 3 numbers in AP is 15. If 1,4 and 19 be added to them respectively, the results are is GP. The numbers are	А			
	(a) 26, 5, -16 (b) 2, 5, 8 (c) 5, 8, 2 (d) Both (a) and (b)				
Q277	The sum of three numbers in GP is 70. If the two extremes be multiplied each by 4 and the mean by 5, the products are in AP. The numbers are	В			
	(a) 12, 18, 40 (b) 10, 20, 40 (c) 40, 20, 10 (d) Both (b) and (c)				
Q278	A person borrows Rs. 8000 at 2.76% simple interest per annum. The principal and the interest are to be paid in 10 monthly installments. If each installment is double the preceding one, find the value of the first and the last installment.	D			
	(a) 12 and 6048 (b) 6 and 3036 (c) 4 and 2024 (d) 8 and 4096				
Q279	A sum of Rs. 6240 is paid off in 30 installments such that each instalment is Rs. 10 more than the preceding instalment. The value of the 1 st instalment is	D			

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) Rs. 36	(b) Rs. 30	(c) Rs. 60	(d) None	
Q280	10% CL p.a sum of is	money accumulate	to Rs. 8650 in 5 yr.	. Sum invested initially	D
	(a) Rs. 5976.37	(b) Rs. 5970	(c) Rs. 5975	(d) None	
Q281	The population of a the population in the	a country was 55 cro he year 2015 is estir	ores in 2005 and is g nated as	growing at 2% p.a. C.I.	D
	(a) 5705	(b) 6005	(c) 6700	(d) None	
Q282	If you save 1 paise or, then your total	today, 2 paise the r savings in two week	ext day 4 paise the is will be	succeeding day and so	С
	(a) Rs. 163	(b) Rs. 18	(c) Rs. 163.83	(d) None	
Q283	In the series 2 + 8	+ 32 + commor	ratio is		С
	(α) 24	(b) 6	(c) 4	(d) 10	
Q284	The sum of 1 + 2 + 4	+ + 8 + to 8 terr	ns is		A
	(α) 255	(b) 252	(c) 254	(d) 256	
Q285	The sum of the seri	ies -2,6-18, to 7 te	erms is		А
	(a) -1094	(b) 1094	(c) -1049	(d) None	
Q286	Find the sum of pro	pgression 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$,	10 terms		С
	(a) 1.9	(b) 1.989	(c) 1.998	(d) 1.89	
Q287	The sum of 1.03+(1.0	03) ² +(1.03) ³ + to n t	erms is		В
	(α) 103{(1.03) ⁿ -1}	(b) $\frac{103}{3}$ {(1.03) ⁿ - 1}	(c) (1.03) ⁿ⁻¹	(d) None	
Q288	Sum of the series 1	+3+9+27 is 364.	The number of term	s is	В
	(α) 5	(b) 6	(c) 11	(d) None	
Q289	How many terms of	the GP 1 4 16 Ar	e to be taken to hav	ve their sum 341?	В
	(α) δ	(b) 5	(c) 3	(d) None	
Q290	Sum of all natural is	numbers from 100 to	o 300 which are exc	actly divisible by 4 & 5	А
	(α) 2200	(b) 2000	(c) 2220	(d) None	
Q291	The GP series who	se 3^{rd} and 6^{th} terms of	are 1, - $\frac{1}{8}$ respectivel	y is	А
	(a) 4, -2, 1	(b) 4, 2, 1	(c) 4, -1, $\frac{1}{4}$	(d) None	
Q292	Sum of n terms of is	a GP with last term	n 128 & common ra	tio 2 is 255 value of n	А
	(α) 8	(b) 5	(c) 3	(d) None	
Q293	The nth term of the	e series 16,8,4, is	$s\frac{1}{2^{17}}$. The value of n is	S	С
	(a) 20	(b) 21	(c) 22	(d) None	
		of the conice 102+1	$0.3^2 + 1.0.3^3 + is$		٨

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

	$(a) \left(\frac{103}{3}\right) (1.03^n - 1)$)	(b) $\left(\frac{103}{3}\right)(1.03^{n}+1)$.)	
	(c) $\left(\frac{103}{3}\right) (1.03^{n+1} -$	- 1)	(d) None		
Q295	Sum of n terms of	the series 4+44+44	4 + is		В
	$(\alpha) \frac{4}{9} \left(\frac{10}{9} (10^n - 1) - \right)$	- n)	(b) $\frac{10}{9}(10^n - 1) - n$	1	
	(c) $\frac{4}{9}(10^n - 1) - n$		(d) None		
Q296	-5 + 25 -125 + 625	, can be written o	lS		А
	(a) $\sum_{k=1}^{\infty} (-5)^k$	(b) $\sum_{k=1}^{\infty} 5^k$	(c) $\sum_{k=1}^{\infty} - 5^k$	(d) None	
Q297	The sum of the se	ries 1, $\frac{1}{3}$, $\frac{1}{3^2}$, $\frac{1}{3^3}$ t	o∞is		А
	$(\alpha)\frac{4}{3}$	(b) $\frac{3}{2}$	(c) $\frac{1}{3}$	(d) None	
Q298	The sum of the inf	finite GP 14 - 2 + $\frac{2}{7}$ -	$\frac{2}{49}$ + is		D
	(a) $4\frac{1}{12}$	(b) 12 ¹ / ₄	(c) 12	(d) None	
Q299	The sum of the inf	finite GP 0.171-0.114	+0.076 is		В
	(α) 0.1226	(b) 0.1020	(c) 0.1026	(d) None	
Q300	If S = 1 + (1.04) ⁻¹ +	$\frac{1}{(1.04)^2}$ + (1.04) ⁻³ + t	o infinity, then the v	alue of 'S' is	С
	(α) 25	(b) 26	(c) 2.74	(d) 27.4	
Q301	The sum upto infir	nity of the series 0.4	′++0.8+0.16+ is		А
	(α) 5	(b) 10	(c) 8	(d) None	
Q302	The sum upto infir	nity of the series (1+	$(2^{-2}) + (2^{-1} + 2^{-4}) + (2^{-2})$	+ 2 ⁻⁶) + is	А
	$(\alpha)\frac{7}{3}$	(b) $\frac{3}{7}$	(c) $\frac{4}{7}$	(d) None	
Q303	The sum of an infi	nite GP is 15 and the	e sum of their square	es is 45. Series is	А
	(α) 5,10,20	(b) $5 + \frac{5}{3} + \frac{5}{9} + \dots$	(c) $5 + \frac{10}{3} + \frac{20}{9} + \cdots$	(d) None	
Q304	If the first term of 50 the series is	of a GP exceeds the	e second term by 2 c	and the sum to infinity is	А
	(a) 10 8 ³² / ₅	(b) 108 ⁵ / ₂	(c) 10 $\frac{10}{3} \frac{10}{9} \dots$	(d) None	
Q305	1^{st} term is 1 & 6^{th}	term is 32, find 'r'.			С
	(α) 3	(b) 32/5	(c) 2	(d) 160	
Q306	If r = 3 & last ter	m is 486. If sum of tl	hese terms be 728, t	hen first term is	В
	(α) 6	(b) 2	(c) 18	(d) 162	
Q307	If sum of three nu	mbers in GP is 21 & s	sum of their squares	is 189, numbers are	С
	(α) 3, 6, 12	(b) 12, 6, 3	(c) Both	(d) None	
Q308	If a, b, c are in A	P & a, x, b are in GF	and b, y, c are in G	P then x², b², y² are in	A
1	(α) ΑΡ	(b) GP	(c) HP	(d) None	

Q309	$6^{ ext{th}}$ term from the e	end of GP 8, 4, 2, 1, !	/2, 1⁄4,1/1024 is _	·	С
	(α) 1/4	(b) 1/16	(c) 1/32	(d) 1/64	
Q310	Given x, y, z are in	GP and xp = yq =zr	, then $\frac{1}{p}$, $\frac{1}{q}$, $\frac{1}{r}$ are in .	·	В
	(a) AP	(b) GP	(c) Both AP and GF	v (d) None	
Q311	Sum upto infinity o	f the series $\frac{4}{7} - \frac{5}{7^2} + \frac{5}{7}$	⁴ / _{7³} − ⁵ / _{7⁴} + is		А
	$(\alpha) \frac{23}{48}$	(b) $\frac{25}{48}$	(c) $\frac{1}{2}$	(d) None	
Q312	The geometric med	an between 6 & 96 i	s		А
	(α) 24	(b) 4	(c) 2	(d) 16	
Q313	If the A.M. and G.I observations are _	M. of two observatio	ons are 5 and 4 resp	pectively, then the two	A
	(α) 8, 2	(b) 7, 3	(c) 6.4	(d) 5, 5	
Q314	The AM & GM of tw	o positive numbers	is 10. The numbers o	ire	А
1					

SPECIAL SERIES ON AP & GP

SN	6C. SPECIAL SERIES ON AP & GP	Ans
Q315	Find the sum to infinity of the series $\frac{1}{4.7} + \frac{1}{7.10} + \frac{1}{10.13} + \dots$	Α
	(a) $\left(\frac{n}{4}\right)(3n+4)^{-1}$ (b) $\left(\frac{n}{4}\right)(3n-4)^{-1}$ (c) $\left(\frac{n}{2}\right)(3n+4)^{-1}$ (d) None	
Q316	The sum of n terms of the series 4 + 6 + 9 + 13 is	Α
	(a) $\left(\frac{n}{6}\right)$ (n ² + 3n + 20) (b) $\left(\frac{n}{6}\right)$ (n + 1) (n + 2)	
	(c) $\left(\frac{n}{2}\right)$ (n+1) (n+2) (d) None	
Q317	The sum of n terms of 1, (1+2), (1+2+3) is	A
	(a) $\left(\frac{n}{6}\right)$ (n + 1) (n + 2) (b) $\left(\frac{n}{3}\right)$ (n + 1) (n + 2)	
	(c) $n(n + 1)(n + 2)$ (d) None	
Q318	The sum of n terms of the series $\frac{1}{(4.9)} + \frac{1}{(9.14)} + \frac{1}{(14.19)} + \frac{1}{(19.24)} + \dots$ is	Α
	(a) $\binom{n}{4}$ (5n + 4) ⁻¹ (b) $\binom{n}{3}$ (5n + 4) (c) $\binom{n}{2}$ (5n - 4) ⁻¹ (d) None	
Q319	The sum of n terms of the series $1^2+(1^2+2^2) + (1^2+2^2+3^2) +$ is	Α
	(a) $\binom{n}{12}(n+1)^2(n+2)$ (b) $\binom{n}{12}(n-1)^2(n+2)$	
	(c) $\left(\frac{n}{12}\right)$ (n ² -1) (n+2) (d) None	
Q320	The sum of n terms of the series $1+(1+\frac{1}{3}) + (1+\frac{1}{3}+\frac{1}{3^2})+$ is	B
	(a) $\left(\frac{3}{2}\right)$ (1-3 ⁻ⁿ) (b) $\left(\frac{3}{2}\right)$ [n-(1/2) (1 - 3 ⁻ⁿ)]	
	(c) Both (d) None	
Q321	The sum of n terms of the series $\frac{1^2}{1} + \frac{(1^1+2^2)}{(1+2)} + \frac{(1^2+2^2+3^2)}{(1+2+3)} + \dots$ is	Α
	(a) n (n + 2)/3 (b) n (n + 1)/3 (c) n (n + 3)/3 (d) None	
Q322	The sum of n terms of the series $\frac{1^3}{1} + \frac{(1^3+2^3)}{2} + \frac{(1^3+2^3+3^3)}{3} + \dots$ is	A
	(a) $\left(\frac{n}{48}\right)$ (n + 1) (n + 2) (3n + 5) (b) $\left(\frac{n}{3}\right)$ (n + 1) (n + 2) (3n + 5)	
	(c) $\left(\frac{n}{2}\right)(n + 1)(n + 2)(5n + 3)$ (d) None	
Q323	Three numbers whose sum is 15 are in AP. If they are added by 1, 4, 19, they are in GP. The numbers are	С
	(a) 2, 5, 8 (b) 26, 5, -16 (c) Both (d) None	
Q324	Three numbers in GP with their sum $\frac{13}{3}$ and sum of their squares $\frac{91}{9}$ are	С
	(a) $\frac{1}{3}$, 1, 3 (b) 3, 1, $\frac{1}{3}$ (c) Both (d) None	
Q325	The number of terms to be taken so that 1+2+4+8+ will be 8191 is	B
	(a) 10 (b) 13 (c) 12 (d) None	

Q326	If you save 1 paise today, 2 paise next day, 4 paise succeeding day & so on, then total savings in two weeks =				
	(a) Rs. 163	(b) Rs. 18	(c) Rs. 163.83	(d) None	
Q327	The sum of the se	ries 1, $\frac{1}{3}$, $\frac{1}{3^2}$, $\frac{1}{3^3}$,, to	o∞is		B
	(a) 4/3	(b) 3/2	(c) 1/3	(d) None	
Q328	The sum of the inf	inite GP 14 -2 + $\frac{2}{7}$ - $\frac{2}{49}$	<u>-</u> +is		B
	(a) 9/2	(b) 49/4	(c) 42/4	(d) None	
Q329	Sum of n terms of	a GP with last term	128 & common ratio	2 is 255 value of n is	Α
	(α) 8	(b) 5	(c) 3	(d) None	
Q330	If a, b, c are in Gl	P, (a²+b²), (ab+bc), (k	o ² +c ²) are in		B
	(a) AP	(b) GP	(c) HP	(d) None	
Q331	The sum upto infin	ity of the series (1+2	2^{-2}) + (2^{-1} + 2^{-4}) + (2^{-2} + 2^{-1}	⁶) + is	A
	(a) 7/3	(b) 3/7	(c) 4/7	(d) None	
Q332	The sum of n term	s of the series 1.03+	-1.03 ² +1.03 ³ + is	·	Α
	(a) $\left(\frac{103}{3}\right)(1.03^{n}-1)$	(b) $\left(\frac{103}{3}\right)(1.03^{n}+1)$	(c) $\left(\frac{103}{3}\right)(1.03^{n+1}-1)$	(d) None	
Q333	The sum of n term	s of the series 1.2.3	+ 2.3.4 + 3.4.5 + is	·	Α
	(a) n (n+1) (n+2) (n-	+3)/4	(b) n (n+1) (n+2) (n-	+3)/3	
	(c) n (n+1) (n+2) (n-	+3)/2	(d) None		
Q334	Evaluate (a+b)+(a ²	² +2b)+ to 4 terms	s if a=3, b=-7	(), (2)	B
	(a) 190	(b) 50	(c) 110	(d) 170	
Q335	The average of 15 then the 8 th numbe	numbers is 18. The er is	average of first 8 is	19 and that last 8 is 17,	С
	(α) 15	(b) 16	(c) 18	(d) 20	
Q336	$t_1 = n, t_2 = n + 1, t_3$	= n + 2 and so on, th	nen t _n =		B
	(a) n	(b) 2n — 1	(c) 2n + 1	(d) 2n	
Q337	In the sequence v	vhose t _n = $\frac{3n-2}{4}$;n ∉ N	I the first term of the	e sequence is	A
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) ½	(d) 1	
Q338	The weighted me	an of first n natura	l numbers whose we	eights are equal to the	B
	squares of corres	[3n(n+1)]	(n+1)(2n+1)	(1) n(n+1)	
	$(a) \frac{1}{2}$	(D) $\frac{1}{[2(2n+1)]}$	(C) <u>6</u>	(a) $\frac{1}{2}$	
Q339	If nth term of a se	quence be 2 ³ⁿ (-5) ⁿ , t	hen the common rati	o of sequence is	A
	(a) -40	(b) 40	(c) 80	(d) -80	
Q340	The mean of the c	ubes of the first n n	atural numbers is	·	B
	$(a)\frac{n^2(n+1)^2}{4}$	$(b)\frac{n(n+1)^2}{4}$	(c) $\frac{[n \times (n+1) \times (n+2)]}{8}$	(d) n ² + n + 1	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

Q341	1 The mean of the squares of the first n natural number is		
	(a) n ² + 1 (b) (n ⁴ + 1)	(c) $\frac{[(n+1)(2n+1)]}{6}$ (d) $\frac{n(n-1)}{2}$	
Q342	The sum of n terms of the series 1+3	3+5+ is	Α
	(a) n ² (b) 2n ²	(c) $\frac{n^2}{2}$ (d) None	
Q343	The value of 11 ² +12 ² + +20 ² is	·	B
	(a) 3845 (b) 2485	(c) 2870 (d) 3255	
Q344	If $1^2 + 2^2 + + 10^2 = 385$, then $2^2 + 4^2$	+ 6 ² ++ 20 ² is	С
	(a) 770 (b) 1150	(c) 1540 (d) 385 × 385	
Q345	Find the sum of n terms of $\left(1-\frac{1}{n}\right)+$	$\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\cdots$	A
	(a) $\frac{1}{2}$ (n-1) (b) $\frac{1}{2}$ (n+1)	(c) (n-1) (d) (n+1)	
Q346	The sum to n terms of the series 11,	23, 59, 167 is	A
	(a) $3^{n+1} + 5n - 3$ (b) $3^{n+1} + 5n + 3$	(c) 3 ⁿ + 5n – 3 (d) None	
Q347	Find the sum to n terms of 6+27+128	+629+	Α
	(a) $\left\{\frac{5(5^n-1)}{4}\right\} + \left\{\frac{n(n+1)}{2}\right\}$	(b) $\left\{\frac{5(5^n-1)}{4}\right\} - \left\{\frac{n(n+1)}{2}\right\}$	
	(c) $\left\{\frac{5(5^n-1)}{4}\right\} - \left\{\frac{n(n+1)}{2}\right\}$	(d) $\left\{\frac{5(5^{n}+1)}{4}\right\} + \left\{\frac{n(n+1)}{4}\right\}$	
Q348	1+3-5+7+9-11+13 3n terms		С
	(a) $2n^2 + 3$ (b) $5n^2 + 3$	(c) 3n ² - 4n (d) 3n ²	
Q349	The sum of n terms of $(x + y)^2$, $(x^2 + y^2)$	x^{2} , $(x - y)^{2}$, is	В
	(a) $(x + y)^2 - 2(n-1)xy$	(b) $n(x + y)^2 - n(n - 1)xy$	
	(c) Both the above	(d) None	
Q350	Find the sum to infinity of the series	$S \frac{1}{4.7} + \frac{1}{7.10} + \frac{1}{10.13} + \dots$	A
	(a) $(\frac{n}{4})(3n+4)^{-1}$	(b) $(\frac{n}{4})(3n-4)^{-1}$	
	(c) $\left(\frac{n}{2}\right)(3n+4)^{-1}$	(d) None	
Q351	The sum of n terms of the series 1.3	² +4.4 ² +7.5 ² +10.6 ² + is	A
	$(\alpha) \left(\frac{\pi}{l_2}\right) (n+1)(9n^2+49n+44) - 8n$	(b) $\left(\frac{n}{l_2}\right)(n+1)(9n^2+49n+44)+8n$	
	(c) $\left(\frac{n}{6}\right)(2n+1)(9n^2+49n+44)-8n$	(d) None	
Q352	The sum of n terms of the series 1.2	+2.3+3.4+ is	Α
	$(\alpha)\left(\frac{n}{3}\right)(n+1)(n+2)$	(b) $\binom{n}{2}(n+1)(n+2)$	
	$(c)\left(\frac{n}{3}\right)(n+1)(n-2)$	(d) None	
Q353	The sum of n terms of the series 1.4	+3.7+5.10+ is	Α
	(a) $(\frac{n}{2})(4n^2 + 5n - 1)$	(b) $\left(\frac{n}{2}\right)(5n^2 + 4n - 1)$	
	(c) $\left(\frac{n}{2}\right)(4n^2 + 5n + 1)$	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

Q354	The sum of n term	s of the series $\frac{1}{(4.7)}$ +	$+\frac{1}{(7.10)}+\frac{1}{(10.13)}+\cdots$ is	·	Α
	$(a) \left(\frac{1}{3}\right) [(3n+1)^{-1} -$	$-(3n+4)^{-1}]$	(b) $\left(\frac{1}{3}\right)(3n-1)^{-1}$	$-(3n+4)^{-1}]$	
	(c) $\left(\frac{1}{3}\right) [(3n+1)^{-1} -$	$-(3n-4)^{-1}]$	(d) None		
Q355	The sum of n term	s of $\left(\frac{1}{n}\right)(n-1), \left(\frac{1}{n}\right)(n-1)$	$(n-2), \left(\frac{1}{n}\right)(n-3), \dots$ is	·	B
	(α) Ο	(b) $(\frac{1}{2})(n-1)$	(c) $\left(\frac{1}{2}\right)$ (n+1)	(d) None	
Q356	The value of $\frac{1^3+2^3+1}{2}$	$\frac{2}{100000000000000000000000000000000000$	L		B
	(a) 45	(b) 55	(c) 385	(d) 285	
Q357	The value of 1 ³ +2 ³ -	+3³+ m³ is equal to	·		С
	(a) $\left[\frac{m(m+1)}{2}\right]^3$	(b) $\frac{m(m+1)(2m+1)}{6}$	(c) $\left[\frac{m(m+1)}{2}\right]^2$	(d) None	
Q358	The sum of m term	ns of the series is 1+	-11+111+ is equa	al to	A
	(α) ¹ / ₈₁ [10 ^{m+1} -9m -10	C]	(b) <u>1</u> [10 ^{m+1} -9m -1	10]	
	(c) [10 ^{m+1} -9m-10]		(d) None		
Q359	1+11+111+ n	terms			С
	(a) [10n+1 - 9n - 10)]	(b) [10n+1 - 9n - 1	0]	
	(c) [10n+1 - 9n - 10)]	(d) None		
Q360	Sum of first n terr	ns of an A.P is 6n2+6	6n. Then find 4th ter	rm of series.	С
	(α) 120	(b) 72	(c) 48	(d) 24	
Q361	In an A.P. If S _n =n²µ	o and S _m = m²p, (m≠n) the S_p =		В
	(α) P ³	(b) P ²	(c) 2p ³	(d) P ⁴	
Q362	If the numbers x,y	v,z are in G.P then t	he numbers x²+y², xy	+yz, y²+z² are in	. B
	(a) A.P	(b) G.P	(c) H.P	(d) None	
Q363	2.353535 =				Α
	$(\alpha) \frac{233}{99}$	(b) $\frac{234}{99}$	(c) $\frac{232}{99}$	(d) $\frac{235}{99}$	
Q364	Sum of n terms of	the series 1.2 + 2.3	+ 3.4 + is		A
	(a) $\left(\frac{n}{3}\right)(n+1)$ (n+2)	(b) $\left(\frac{n}{2}\right)(n+1)$ (n+2)	(c) $\left(\frac{n}{3}\right)(n+1)$ (n-2)	(d) None	
Q365	Sum of n terms of	the series 1.4+3.7+5	5.10+ is		A
	(a) n (4n² + 5n - 1)/	/2	(b) n (5n² + 4n - 1)	/2	
	(c) n (4n² + 5n + 1),	/2	(d) None		
Q366	The sum of n term	s of the series 1+5+	12+22+is		A
	(a) n²(n+1)/2	(b) n²(n +1)	(c) n² (n+2)/2	(d) None	
Q367	The sum of n term	s of the series 4 + 1	4 + 30 + 52 + 80 +	is	Α
	(a) n (n+1) ²	(b) n (n-1)²	(c) n (n²-1)	(d) None	

Q368	The sum of n terms of the series 1+(1+3	3) + (1+3+5) + is	A
	$(\alpha) \left(\frac{n}{6}\right)(n+1) (2n+1)$	(b) $\left(\frac{n}{6}\right)(n + 1)(n + 2)$	
	(c) $\left(\frac{n}{3}\right)(n+1)(2n+1)$	(d) None	
Q369	The sum of n terms of the series 2.3 ² +5	5.4 ² +8.5 ² + is	A
	(a) $\binom{n}{12}$ (9n ³ + 62n ² + 123n + 22)	(b) $\left(\frac{n}{12}\right)$ (9n ³ - 62n ² + 123n + 22)	
	(c) $\left(\frac{n}{6}\right)(9n^3 + 62n^2 + 123n + 22)$	(d) None	
Q370	The sum of n terms of 1^2 , 3^2 , 5^2 , 7^2 , is		Α
	(a) n $(4n^2 - 1)/3$ (b) (n) $(4n^2 - 1)$	(c) n (4n² + 1)/3 (d) None	
Q371	The sum of n terms of the series $2^2+5^2+5^2+5^2+5^2+5^2+5^2+5^2+5^2+5^2+$	-8²+ is	Α
	(a) n (6n² + 3n — 1)	(b) n (6n² — 3n — 1)/2	
	(c) n (6n ² + 3n + 1)	(d) None	
Q372	The sum of n terms of the series 2.4.6+	4.6.8+6.8.10+ is	Α
	(α) 2n (n³+6n²+11n+6)	(b) 2n (n³-6n²+11n -6)	
	(c) n (n ³ +6n ² +11n+6)	(d) n (n³ - 6n²+11n - 6)	
Q373	The sum of n terms of the series $\frac{1}{(3.8)}$ +	$\frac{1}{(8.13)} + \frac{1}{(13.18)} + \dots $ is	Α
	(a) $\left(\frac{n}{3}\right)$ (5n + 3) ⁻¹ (b) (n) (5n + 3) ⁻¹	(c) $\left(\frac{n}{2}\right)$ (5n + 3) ⁻¹ (d) None	
Q374	The sum of n terms of the series $\frac{1}{1} + \frac{1}{(1+1)}$	$\frac{1}{(1+2+3)} + \frac{1}{(1+2+3)} + \dots $ is	Α
	(a) $2n(n+1)^{-1}$ (b) $n(n+1)^{-1}$	(c) 2n (n - 1) ⁻¹ (d) None	

CHAPTER 6. SET

INTRODUCTION

• Sets: A set is a well-defined collection of objects. [If we can clearly say whether a given object belongs to it or not].

Ex: The collection of all English Alphabets is a set [Say Set A].

• **Element:** Each object in a set is called an element of the set.

Ex: A = {a, b, c, d, e,...., x, y, z}

• A set is denoted by 'capital letters' & their elements are denoted by 'small letters'.

Example: A = { α , e, i, o, u},

'a' is an element and we write $\mathbf{a} \in \mathbf{A}$ & read as 'a' belongs to 'A'. But 3 is not an element of B = {2, 4, 6, 8, 10} & we write b ∉B & read as '3' does not belong to 'B'.

METHODS OF WRITING A SET

- Roster or Braces Method: All elements of the set are listed and put it within braces { }.
 Ex: A = {a, b, c, d, e,...., x, y, z}.
- Set Builder Method: In this method, Rules or properties to write down a set is given.
 Ex: A = {x: x is a set of all English Alphabets}.

CQ1: Represent the following sets in set notations:-

- (i) Set of all alphabets in English language.
- (ii) Set of all odd integers less than 25.
- (iii) Set of all odd integers.

```
(iv) Set of positive integers 'x' satisfying' the equation x^2 + 5x + 7 = 0.
```

Ans:

- (a) A = {x: x is an alphabet in English}; {x:x is an odd integer > 25}; {2 4 6 8...}; {x: $x^2 + 5x + 7 = 0$ }
- (b) A= {x: x is an alphabet in English}; {x:x is an odd integer < 25}; {1 3 5 7....}; {x: x² +5x+7=0}
- (c) A= {x: x is an alphabet in English}; {x:x is an odd integer ≤ 25 }; {1 3 5 7....}; (x:x² +5x+7=0}
- (d) None
 - > **Repetition** of elements in a set is **MEANINGLESS**.
 - > Order of the elements in a set is NOT RELEVANT.

CONCEPT 1	: TYPES OF SETS						
Universal	A set containing all the possible elements of a particular situation.						
Set	Ex: A = {x: x is the set of All English Alphabets}						
Null Set	Set having NO element is called Null set (Empty set/void set). [{ } or Ø]						
	Ex: A = {x: x is odd no. divisible by 2} = { } or \emptyset ;						
Singleton Set	A set having only one element is called singleton set. Ex: A = {1}						
Equal Set	If every element of A is in B & every element of B is in A, A & B are equal sets.						
	Ex: If $A = \{2, 4, 6\}$ and $B = \{6, 2, 4\}$ then $A = B$. [Order of element is NOT relevant]						
Equivalent	If number of elements in Set A & Set B are SAME, they are equivalent sets.						
Set:	Ex: A = {a, b, c} & B = {1, 2, 3}; $n(A) = 3 & n(B) = 3$, A & B are equivalent sets.						
Subset	If all the elements of set A are present in Set B, A is a subset of B. [$A \subseteq B$].						
	Ex: A = $\{1, 2\}$ & B = $\{1, 2, 3\}$ then A is subset of B. [B is said to be a superset of A]						
	PC Note: In subset, there exist an equal set & null set also. Ex: {1,2,3}						
	<u>Number of Subsets of a set = 2</u> ⁿ [where 'n' = Number of elements]						
Proper	Set A is a proper subset of B if Set A is a subset of Set B but not equal set.						
Subset	$A \subseteq B \& A \neq B.$						
	Ex: A = {1, 2, 3}; Proper Subset of A includes {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} & { }.						
	PC Note: Proper Subset does not include Equal set of the given set.						
	A Null set does not have a Proper subset.						
	<u>Number of Subsets of a set = 2ⁿ - 1</u> [where 'n' = Number of elements]						
	Ex: Set containing 3 elements has $(2^3 - 1) = 7$ Proper subsets						
Power	The set of all subsets of a set is called Power set.						
Set:	Ex: A = {1, 2, 3}; Subset of A include {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} & { }.						
	Power set of $A = \{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}, \{\}\}\}.$						
Disjoint	If Set A & Set B has NO Common element, they are disjoint Sets. $[A \cap B = \emptyset]$						
0000	Ex: A = $\{a, b, c\}$ & B = $\{1, 2, 3\}$; A & B are disjoint sets (no common element.)						

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

CONCEPT 2: OPERATION	S ON SETS			
Let A = {1, 2, 3, 6, 8, 9} & F	8 = {2, 4, 6, 8, 10}			
Union Of Sets (A∪B)	It contains all elements which are EITHER in Set A OR in Set B.			
	Ex: (AUB) = {1, 2, 3, 4, 6, 8, 9, 10}.			
Intersection Of Sets	It contains all the elements which are in Set A AND Set B.			
(A ∩ B)	Ex: (A∩B) = {2, 6 8}.			
Difference Of Sets	Set of elements which are in Set A but not in Set B			
(A-B)	(B - A): Set of elements which are in Set B but not in Set A.			
	Ex: If $A = \{1, 2, 3, 5, 7\} \& B = \{1, 3, 6, 7, 15\},\$			
	$A - B = \{2, 5\}$ & $B - A = \{6, 15\}$.			
	CQ2: U = {1, 2, 3, 4, 5}; A = {1, 2, 5}; A' = {3, 4}.			
	A = B = A = B $A = B$ $A =$			
Complimentary Set (A')	Set of <u>elements</u> which are in <u>Universal</u> set but not in Set A are called complementary set of A			
	CQ3: U = {1, 2, 3, 4, 5, 6, 7, 8, 9}; P = {2, 4, 6, 8}; Q = {1, 2, 3, 4, 5}.			
	Ans:			
	(i) (PUQ) = {1, 2, 3, 4, 5, 6, 8}; (ii) (PUQ)' = {7, 9};			
	(iii) $(P \cap Q) = \{2, 4\};$ (iv) $(P \cap Q)' = \{1, 3, 5, 6, 7, 8, 9\};$			
	(v) $P' = \{1, 3, 5, 7, 9\};$ (vi) $Q' = \{0, 6, 7, 8, 9\};$			
	(vii) $P - Q = \{6, 8\};$ (viii) $Q - P = \{1, 3, 5\}.$			
	CQ4: If U = {x: x is a positive integer < 25}, A = {2,6,8,14,22},			
	$B = \{4,8,10,14\}$ then			
	(a) $(A \cup B)' = A' \cup B'$ (b) $(A \cap B)' = A' \cup B'$			
	(c) $(A' \cap B)' = \phi$ (d) None			

CONCEPT 3:	ALGEBRA OF SETS				
AUB = BUA	(AUB)UC = AU(BUC)	$A\cap(B\cup C) = (A\cap B) \cup (A\cap C)$	(A∪B)' = A' ∩ B'	A ∩ A' = Ø	
A∩B = B∩A	(A∩B)∩C = A∩(B∩C)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	(A∩B)' = A' ∪ B'	A U A' = U	
$A \cap A = A$	A U A = A	A U Ø = A	A ∩ U =	A	
CQ5: If A = {a, b, c, d, e, f} & B = {a, e, i, o, u} & C = {m, n, o, p, q, r, s, t, u} then					
(i) A ∪ B =					
(a) {a, b, c, d,	, e, f, i, o, u}	(b) {a, b, c, s, t,	u}		
(c) {d, e, f, p,	q, r}	(d) None			
(ii) A ∪ C =					
(a) {a, b, c, d,	, e, f, m, n, o, p, q, r, s a r}	, t, u} (b) {a, b, c, s, t,	u}		
(iii) R C -	۲۰۱				
(a) {a, e, i, o,	 u, m, n, p, q, r, s, t}	(b) {a, e, i, r, s, t	}		
(c) {i, o, u, p,	q, r}	(d) None			
(iv) A - B =					
(a) {b, c, d, f}	(b) {a, e, i, o}	(c) {m, n, p, q}	(d) None		
(v) A ∩ B =	·				
(a) {a, e}	(b) {i, o}	(c) {o, u}	(d) None	•	
(vi) B ∩ C = _					
(a) {a, e}	(b) {1, 0}	(C) {O, U}	(d) None		
$(\mathbf{vii}) \mathbf{A} \cup (\mathbf{B} - \mathbf{c})$	C) =	(b) (a b c d e	fol		
(c) {a, b, c, d,	, e, f}	(d) None	, .,		
(viii) A ∪ B ∪	C =				
(a) {a, b, c, d,	, e, f, i, o, u, m, n, p, q	, r, s, t} (b) {a, b, c, r, s,	t}		
(c) {d, e, f, p,	q}	(d) None			
(ix) $A \cap B \cap C$	C =				
(a)	(b) {ae}	(c) {m n}	(d) None		

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

CONCEPT 4: APPLICATIONS OF SET THEORY

•	$n(A\cup B) = n(A) + n(B) - n(A\cap B)$	•	n(B) = n(B-A) + n(A∩B).
	$n(\Lambda) = n(\Lambda - R) + n(\Lambda - R)$		$p(A \cup R) = p(A - R) + p(R - A) + p(A \cap R)$

- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A) + n(A \cap B \cap C).$
- $n(A \triangle B) = No.$ of elements which belongs to **exactly one** of A or $B = n(A) + n(B) 2n(A \cap B)$.
- No. of elements in **exactly two** of the sets A, B, C = $n(A \cap B) + n(B \cap C) + n(C \cap A) 3n(A \cap B \cap C)$.
- No. of elements in exactly one of the sets

A, B, C = $n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(C \cap A) + 3n(A \cap B \cap C)$.

SOLVED EXAMPLES

CQ6: Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both Mathematics and Chemistry. How many teach Chemistry and Physics? How many teach only Physics?

Ans: Let x be the no. of teachers who teach both Physics & Chemistry.

Thus, 9 - 4 - x + 6 + 7 - x + 4 + x = 20; 22 - x = 20; x = 2.

Hence, 2 teachers teach both Physics and Chemistry &

3 (9 - 4 - 2) teachers teach only Physics.

CQ7: 74% of the Indians like grapes, whereas 68% like bananas. What % of Indians like both grapes & bananas?

Ans: Let P & Q denote the sets of Indians who like grapes and bananas respectively.

Thus, n(P) = 74, n(Q) = 68 & n(PUQ) = 100.

We know that $n(P \cap Q) = n(P) + n(Q) - n(P \cup Q) = 74 + 68 - 100 = 42$

Hence, 42% of the Indians like both grapes and bananas.

CQ8: In a class of 60 students, 40 students like Maths, 36 like Science, and 24 like both the subjects. Find the number of students who like

(i) Maths only. (ii) Science only. (iii) Maths or Science. (iv) Not Maths & Science. **Ans:** Let M = students who like Maths & S = students who like Science; $n(M) = 40, n(S) = 36 \& n(M \cap S) = 24.$ (i) $n(M) - n(M \cap S) = 40 - 24 = 16.$ (ii) $n(S) - n(M \cap S) = 36 - 24 = 12.$ (iii) $n(M \cup S) = n(M) + n(S) - n(M \cap S) = 40 + 36 - 24 = 52.$ (iv) $n(M \cup S)^{C} = 60 - n(M \cup S) = 60 - 52 = 8.$

CONCEPT 5: PRODUCT SET

ORDERED PAIR:- Two elements 'a' & 'b', listed in a specific order, form an ordered pair. It is denoted by (a, b).

Here 'a' is called '1st element' or 1st co-ordinate & 'b' is called 2nd element or 2nd co-ordinate.

Note: $(a, b) \neq \{a, b\}.$

If $a \neq b$, then $(a, b) \neq \{b, a\}$. Thus if (a, b) = (c, d), it means that a = c & b = d.

- In set theory, repetition of elements is meaningless & thus if we have set A = {5, 5}, it means we have only one element in the set.
- But for ordered pairs, (5, 5) means 5 belongs in both the sets under consideration.

CARTESIAN PRODUCT OF SETS: Set of all ordered pairs (a, b) such that $a \in A \& b \in B$, is called Cartesian product of A & B. It is denoted by $A \times B$. Thus, $A \times B = \{(a, b): a \in A \& b \in B\}$.

Cardinal Number:

- Number of elements in a set is known as its cardinal number.
- Cardinal number of set A is denoted as n(A).

Number of Elements of $n(A \times B) = n(A) \times n(B)$.

CQ9: If P = {1, 3, 6} & Q {3, 5}. Find P × Q & Q × P.

Ans:

 $P \times Q = \{(1, 3), (1, 5), (3, 3), (3, 5), (6, 3), (6, 5)\};\$ $Q \times P = \{(3, 1), (3, 3), (3, 6), (5, 1), (5, 3), (5, 6)\}$ It is noted that ordered pairs (3, 5) & (5, 3) are not equal. So, $P \times Q \neq Q \times P$; but n ($P \times Q$) = n($Q \times P$).

CQ10: If $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$, find A and B.
 [**Ans:** $A = \{3, 5\} \& B = \{2, 4\}$]

 CQ11: $A = \{1, 2, 3\}$, $B = \{4, 5\}$. Find $A \times B \& n(A \times B)$.
 [**Ans:** 6]

 CQ12: If the set P has 3 elements, Q has 4, & R has 2, then the set P x Q x R contains ______.
 (a) 9 elements

 (b) 20 elements
 (c) 24 elements
 (d) None.

 CQ13: If A = (1, 2, 3, 5, 7) and B = (1, 3, 6, 10, 15) then cardinal number of A - B is _____.

(a) 3 (b) -4 (c) 6 (d) None of these

SETS - QUESTION BANK

SN		СНАРТ	TER 6. SETS		Ans
Q1	If A = {a, b, c}, the	en n(p(A)) is			B
	(α) 3	(b) 8	(c) 6	(d) 1	
Q2	The set {2 ^x : x is an	y positive rational n	umber} is		Α
	(a) Infinite set	(b) Null set	(c) Finite set	(d) None	
Q3	$\left\{\frac{n(n+1)}{2}\right\}$: n is a posit	ive integer} is			B
	(a) A finite set	(b) An infinite set	(c) Is an empty set	(d) None	
Q4	State whether the	following sets are fi	inite, infinite or emp	ty	Α
	(i) X= {1, 2, 3	3, 500}	(ii) Y = {y: y = α²; α	is an integer)	
	(iii) A = {x: x	is a positive intege	r multiple of 2}		
	(iv) B = {x: x	is an integer which	is a perfect root of a	26 < x < 3.5}	
	(a) Finite, Infinite,	Infinite, Empty	(b)Infinite, Infinite,	, Finite, Empty	
	(c) Infinite, Finite,	Infinite, Empty	(d) None		
Q5	If E = {1, 2, 3, 4, 5,	6, 7, 8, 9}, the subse	et of E satisfying 5 + :	x >10 is	B
	(a) {5,6,7,8,9}	(b) {6,7,8,9}	(c) {7,8,9}	(d) None	
Q6	If A = {1 29};	B = {2 4 6 8};	C = {1 3 5 7 9};	D = {3 4 5}; E = {3 5}	
	(i) What is the set	S if it is also given t	hat S \subset D and S $\not\subset$ A		Α
	(α) {3 5}	(b) {2 4}	(c) {7 9}	(d) None	
	(ii) What is set S if	f it is also given that	$S{\subset}B \text{ and } S \not\subset C$		B
	(a) {3 5}	(b) {2 4}	(c) {5 6 7 8 9}	(d) {57 9}	
Q7	Following set nota	tions represent: A \sub	$B; x \not\in A; A \supset B; \{0\};$	A⊄B	Α
	(a) A is a proper s an only element ze	ubset of B; x is not a ero: A is not containe	n element of A; A co ed in B.	ntains B; singleton with	
	(b) A is a proper s	subset of B; x is an el	lement of A; A conta	ins B; singleton with an	
	(c) Δ is a proper si	, A is contained in b. ubset of B. x is not el	ement of A. A does r	oct contains B. contains	
	elements other the	an zero; A is not con	tained in B.		
	(d) None				
Q8	If P = {1,2,3,4}; Q =	= {2,4,6} then P \cup Q =	·		С
	(a) {1,2,3,6}	(b) {1,4,6}	(c) {1,2,3,4,6}	(d) None	
Q9	A = {2, 3, 5, 7} & B	= {4, 6, 8, 10} then A	\cap B can be written	as	Α
	(a) {}	(b) {ø}	(c) (A ∪B)'	(d) None	
Q10	If $A \bigtriangleup B = (A-B) \cup (A-B)$	(B-A) and A = {1,2,3,4	}, B = {3,5,7} then A .	∆ B is	Α
	(a) {1,2,4,5,7}	(b) {3}	(c) {1,2,3,4,5,7}	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

RA

Q11	Identify the elements of P if set Q = $\{1, (5, 3), (6, 1), (6, 2), (6, 3)\}$	2, 3} and PxQ = {(4,1); (4,2); (4,3); (5,1); (5,2);	B
	(a) {3 ,4,5} (b) {4 ,5 ,6}	(c) {5 ,6 ,7}	(d) None	
Q12	If A = {2,3}; B = {4, 5}; C= {5, 6} then			
	(i) A x (B∪ C)			Α
	(a) {(2 ,4) ;(2 ,5) ;(2 ,6) ;(3 ,4); (3 ,5); (3 ,	6)}	(b) {(2 ,5); (3 ,5)}	
	(c) {(2,4); (2,5); (3,4); (3,5); (4,5); (4,	6); (5 ,5); (5 ,6)}	(d) None	
	(ii)The set A x (B \cap C) is			B
	(a) {(2, 4); (2, 5); (2, 6); (3, 4); (3, 5); (3,	6)}	(b) {(2 ,5); (3, 5)}	
	(c) {(2 ,4); (2,5) ;(3 ,4); (3 ,5) ;(4,5); (4 ,6); (5, 5); (5, 6)}	(d) None	
	(iii) The set (A x B) \cup (B x C) is			С
		6)}	(b) {(2, 5); (3, S)}	
	$(c) \{(2, 4); (2, 5); (3, 4); (3, 5); (4, 5); (4, 6)\}$	(5, 5); (5, 6)		
Q13	$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P = \{0, 2, 4\}$	$4, 6, 8$, and $Q = \{1, (b) (1, 2, 4, 5, 6)$	2, 3, 4, 5}, then Q' is	A
	(a) $\{0, 0, 7, 0, 9\}$ (c) $\{1, 3, 5, 7, 9\}$	(d) $\{0, 2, 4, 5, 8\}$		
Q14	If $A = \{(1 \ 2 \ 3 \ 4) \ B = \{2 \ 3 \ 7 \ 9\} \text{ and } C = \{1 \ 4 \ 4$	479}then .		A
	$(\alpha) A \cap B \neq \phi, B \cap C \neq \phi, A \cap B \cap C = \phi$	(b) $A \cap B = \phi B \cap C = \phi$	o A∩B∩C = φ	
	(c) A∩B ≠φA∩C≠ A∩B∩C=φ	(d) None		
Q15	N is the set of natural numbers and I is	s the set of positive	integers, then	Α
	(a) N = I (b) N⊂ I	(c) N⊃ I	(d) None	
Q16	R is the set of positive rational number	and E is the set of	real numbers then	B
	(a) $R \subset E$ (b) $R \subseteq E$	(c) E ⊇ R	(d) None	
Q17	E is a set of positive even no. & O is a s	et of positive odd n	o., then E \cup O is	B
	(a) Set of whole numbers	(b) N		
	(c) A set of rational number	(d) None		
Q18	In a group of 20 children, 8 drink tea of children drinking coffee but not tea	but not coffee and is	13 like tea. The number	D
	(a) 6 (b) 7	(c) 1	(d) None	
Q19	If A has 32 elements, B has 42 element elements in A \cap B =	ts & A \cup B has 62 e	elements, the number of	A
	(a) 12 (b) 74	(c) 10	(d) None	
Q20	In a group of 40 children 16 like wick number of children like movie but not c	et but not movie a pricket are	nd 26 like cricket. The	D
	(a) 12 (b) 24	(c) 2	(d) None	
Q21	Sample of income group of 1,172 famil groups <rs.6000 -="" rs.1098<="" rs.6000="" th="" to=""><th>lies was surveyed o 99/-, Rs.11000/- to R</th><th>and noticed for income s.15999/-, Rs.16000 and</th><th></th></rs.6000>	lies was surveyed o 99/-, Rs.11000/- to R	and noticed for income s.15999/-, Rs.16000 and	

	above, no TV set 308, 114, 46 famil	is available to 70 ies, and two or mo	, 50, 20, 50 families, pre sets are available	one set is available to 152, e to 10, 174, 84, 94 families.	
	A = {x x is a far	mily owning two o	r more sets}		
	B = {x x is a far	mily with one set}			
	C = {x x is a fai	mily with income l	ess than Rs.6000/-}		
	D = {x x is a far	mily with income F	s.6000/- to Rs.10999	9/-}	
	E = {x x is a far	nily with income R	s.11000/- to Rs.15998	9/-}	
	(i) Find the numbe	er of families in e	ach of the following s	sets (i) C \cap B (ii) A \cup E	Α
	(α) 152, 580	(b) 152 20	(c) 152 50	(d) None	
	(ii) Find the numb	per of families in e	each of the followina	sets	Α
	(1) $(\mathbf{A} \cup \mathbf{B}^{\prime}) \cap \mathbf{E}$	& (2)(CUE	$\Theta \cup E) \cap (A \cup B)^{\circ}$		
	(α) 20, 50	(b) 152, 20	(c) 152, 50	(d) None	
	(iii) Express the f	Collowing sets in se	et notation		С
	(1) $\{x x \text{ is a family}\}$	with one set and	income of less than 1	Rs.11000/-)	-
	(2) $\{x x \in a \text{ family}\}$	with no set and i	ncome over Rs.16000)/-)	
	(a) (C \cup D) \cap B		(b) (A ∪B)' ∩ (C	・・	
	(c) both		(d) None	,	
	(iv) Express the f	ollowing sets in se	at notation		С
	(i) {x x is a family	with two or more	sets or income of Ps	11000/-1 o Rs 15999/-}	Ŭ
	(ii) {x x is a family	with no set }		. 11000/ 10 K3. 10000/ j	
	(a) $(A \cup F)$	(b) (A U B)'	(c) Both	(d) None	
022	Out of 60 student	s 25 failed in pape	(1) 2/(1) n n n n n n n n n n n n n n n n n n n	32 paper in (3) Q in paper	
GZZ	(1) alone, 6 in pap	per(2) alone, 5 in p	papers (2) and (3), an	d 3 in papers (1) and (2).	
	(i)Find how may f	ailed in all the thr	ree papers.		Α
	(α) 10	(b) 60	(c) 50	(d) None	
	(ii)How many pas	sed in all the thre	e papers?		Α
	(α) 10	(b) 60	(c) 50	(d) None	
Q23	At a certain conf	ference of 100 pe	ople there are 29 Ir	dian women and 23 Indian	С
	men. Out of these	e Indian people 4	are doctors and 24	are either men or doctors.	-
	There are no fo	preign doctors. T	he number of wom	en doctors attending the	
	conference is				
	(α) 2	(b) 4	(c) 1	(d) None	
Q24	On a survey of 10	00 boys it was fou	nd that 50 used whit	e shirt 40 red and 30 blue.	B
	20 were habituat	ed in using both w	white and red shirts	15 both red and blue shirts	
		(h) 25	(c) 30	(d) None	
005					
Q25	both Accounts or	stuaents 45 passe ad Maths 32 in bo	a in Accounts, 50 in oth Maths and Costin	maths, 30 in Costing, 30 in a. 35 in both Accounts and	R
above, no TV set is available to 70, 50, 20, 50 families, one set is available to 152, 308, 114, 46 families, and two or more sets are available to 10, 174, 84, 94 families. A = {xlx is a family owing two or more sets} B = {xlx is a family with income less than Rs.6000/-1 D = {xlx is a family with income Rs.6000/- to Rs.10999/-] E = {xlx is a family with income Rs.1000/- to Rs.15999/-] (I) Find the number of families in each of the following sets (i) C \cap B (ii) A \cup E (a) 152, 580 (b) 152 20 (c) 152 50 (d) None (ii) Find the number of families in each of the following sets (1) (A \cup B') \cap E & (2) (C \cup D \cup E) \cap (A \cup B' (a) 20, 50 (b) 152, 20 (c) 152, 50 (d) None (iii) Express the following sets in set notation (1) $(xlx is a family with one set and income of less than Rs.11000/-) (2) (xlx is a family with one set and income over Rs.16000/-) (a) (C \cup D) \cap B (b) (A \cup B') \cap (C \cup D \cup E')(c) both (d) None(iv) Express the following sets in set notation(i) (xlx is a family with no set)(a) (A \cup E) (b) (A \cup B') (c) Both (d) None(iv) Express the following sets in set notation(i) (xlx is a family with no set)(a) (A \cup E) (b) (A \cup B') (c) Both (d) None(ii) A \cup E) (b) (A \cup B') (c) Both (d) None(iii) (xlx is a family with no set)(a) (A \cup E) (b) (A \cup B') (c) Both (d) None(iii) How many failed in all the three papers.(a) 10 (b) 60 (c) 50 (d) None(iii) How many failed in all the three papers?(a) 10 (b) 60 (c) 50 (d) None(iii) How many passed in all the three papers?(a) 10 (b) 60 (c) 50 (d) None(iii) How many passed in all the three papers?(a) 10 (b) 60 (c) 1 (d) None(22Out of footal t50 students 25 failed in paper 10 and 23 Indianmen. Out of these Indian people 4 are doctors and 24 are either men or doctors.There are no foreign doctors. The number of women doctors attending theconference is$					

	Costing. 25 students passed in all the three subjects. Find th at least in any one of the subjects.	e number who passed		
	(a) 63 (b) 53 (c) 73 (d) None		
Q26	If four members a, b, c, d of a decision making body are ir resolution where rule of majority prevails. Given that a, b, 15%, 15% shares each.	n a meeting to pass a c, d owns 50%, 20%,		
	 (i) List the winning conditions. (a) {a, b}; {a, c}; {a, d}; {a, b, c}; {a, b, d}; {a, b, c, d} 	b) {b, c, d}; {a}	A	
		a) None		
	(ii) List the blocking conditions. (a) $\{a b\} \{a c\} \{a d\} \{a b c\} \{a b d\} \{a b c d\}$ ((c) $\{b c\} \{b d\} \{c d\} \{b\} \{c\} \{d\} \phi$ (b) {b c d}, {a} d) None	В	
	(iii) List the losing conditions.		С	
	(a) $\{a b\} \{a c\} \{a d\} \{a b c\} \{a b d\} \{a b c d\}$ (a) $\{a b\} \{a c\} \{a b c\} \{a c\} \{a$	b) {b c d}, {a} d) None		
Q27	Q27 Out of 1000 students 658 failed in the aggregate 16 in the aggregate and in group-II 434 in aggregate and in group-II 372 in group-I 590 in group-II and 126 in the groups.			
	 (i) Find out how many failed in all the three (a) 106 (b) 224 (c) 206 	(d) 464	A	
	(ii)How many failed in the aggregate but not in group-II?	(d) 464	B	
	(iii) How many failed in group-T but not in the aggregate		С	
	(a) 106 (b) 224 (c) 206	(d) 464	Ŭ	
	(iv) How many failed in group-II but not in group-I?		D	
	(a) 106 (b) 224 (c) 206	(d) 464		
	(v) How many failed in the aggregate or group-II but not in ((a) 206 (b) 464 (c) 628	group-I? (d) 164	С	
	(vi) How many failed in the aggregate but not in group-I and	group-II?	D	
	(α) 206 (b) 464 (c) 628	(d) 164		
Q28	If A = {2, 5, 6, 8}, then n (A) is (a) 2 (b) 4 (c) 5 ((d) 1	B	
Q29	If A= (a, b, c, d) list the element of power set P(A)		D	
	 (a) {φ}, {a}, {b}, {c}, {d}, {a b}, {a c}, {a d}, {b c}, {b d}, {c d} (b) {a b c} {a b d} {a c d} {b c d} (c) {a b c d} 			

	(d) All the above elements are in P(A)	
Q30	The set of cubes of the natural number is	B
	(a) A finite set (b) An infinite set (c) A null set (d) None	
Q31	The set of squares of positive integers is	С
	(a) A finite set (b) Null set (c) Infinite set (d) None	
Q32	Equal sets are	Α
	(a) Equivalent (b) Null (c) Disjoint (d) None	
Q33	If cardinal number of two finite sets is same, then the sets are	Α
	(a) Equivalent (b) Equal (c) Null (d) Singleton	
Q34	The range set of a constant function is a	B
	(a) Disjoint set (b) Singleton set (c) Void set (d) Infinite set	
Q35	Let A = {a, b}. Set of subsets of A is called power set of A denoted by P(A). Now $n(P(A))$ is	J B
	(a) 2 (b) 4 (c) 3 (d) None	
Q36	The number of subsets of the set {2, 3, 5} is	B
	(a) 3 (b) 8 (c) 6 (d) None	
Q37	A∪A is equal to	Α
	(α) A (b) E (c) φ (d) None	
Q38	$A \cup A'$ is equal to	В
	(α) A (b) E (c) φ (d) None	
Q39	$A \cup E$ is equal to	В
	(α) A (b) E (c) φ (d) None	
Q40	A∩A is equal to	Α
	(α) φ (b) A (c) E (d) None	
Q41	A $\cap \phi$ is equal to	С
	(a) A (b) E (c) φ (d) None	
Q42	A∩A' is equal to	В
	(a) E (b) φ (c) A (d) None	
Q43	If A = {1,2,3,4} and B = {2,4} then A \cap B can be written as	С
	(a) ϕ (b) {1,3} (c) {2,4} (d) {0}	
Q44	If A = {1, 2, 3, 4}, B = {5, 6, 7} then cardinal number of the set A x B is	С
	(a) 7 (b) 1 (c) 12 (d) None	
Q45	If A = {1, 2, 3}, B = {4, 5}, then A x B is	Α
	(a) {(1,4), (1,5), (2,4), (2,5), (3, 4), (3, 5)}	
	(b) {(1,2), (2,3), (3, 4), (4, 5), (5,1), (5,2)}	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

Per

ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CMA FOUNDATION

	(c) $\{(4,1), (4,2), (5, 1), (5, 2), (3,1), (3,2)\}$ (d) $\{(1,2), (2,3), (3,4), (4,5)\}$	
<u> </u>		-
Q46	$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P = \{0, 2, 4, 6, 8\}, and Q = \{1, 2, 3, 4, 5\}, then P' is$ (a) $\{0, 6, 7, 8, 9\}$ (b) $\{1, 2, 4, 5, 6\}$ (c) $\{1, 3, 5, 7, 9\}$ (d) $\{0, 2, 4, 6, 8\}$	C
Q47	S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, P = {0, 2, 4, 6, 8}, and Q = {1, 2, 3, 4, 5}, then P' \cap Q' is .	D
	$(a) \{7,6\} (b) \{2,4\} (c) \{5,9\} (d) \{7,9\}$	
Q48	S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, P = {0, 2, 4, 6, 8}, and Q = {1, 2, 3, 4, 5}, then $P' \cup Q'$ is .	A
	(a) $\{0, 1, 3, 5, 6, 7, 8, 9\}$ (b) $\{1, 2, 4, 5, 6, 7, 8, 9\}$ (c) $\{0, 1, 2, 3, 5, 7, 9\}$ (d) $\{0, 2, 4, 6, 8\}$	
Q49	If A = {3, 4, 5, 6}; B = {3, 7, 9, 5} &C = {6, 8, 10, 12, 7} & U = {3, 4,11, 12, 13} then	
	(i) A' is (a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 7 9 11 13} (d) None	A
	(ii) The set B' is (a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 9 11 13} (d) None	B
	(iii) The set C' is	С
	(a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 9 11 13} (d) None	
	(iv) The set (A')' is (a) $\{3,4,5,6\}$ (b) $\{3,7,9,5\}$ (c) $\{8,10,11,12,13\}$ (d) None	A
	(a) [b]	P
	(a) {3 4 5 6} (b) {3 7 9 5} (c) {8 10 11 12 13} (d) None	D
	(vi) The set (A \cup B)' is	С
	(a) {3 4 5 6} (b) {3 7 9 5} (c) {8 10 11 12 13} (d) None	
	(vii) The set (A ∩ B)' is (α) {8 10 11 12 13} (b) {4 6 7 13} (c) {3 4 5 7 8 13} (d) None	B
	(viii) The set A' ∪ C' is (a) {8 10 11 12 13} (b) {4 6 713} (c) {3 4 5 7 813} (d) None	С
Q50	A has 70 elements, B has 32 elements and A \cap B has 22 elements then A \cup B is (a) 60 (b) 124 (c) 80 (d) None	С
Q51	If $n(P) = 3$ and $n(Q) = 4$, then $n(PxQ)$ is (a) 3 (b) 4 (c) 12 (d) 1	С
Q52	When 5x < 24 & x belongs to set of natural numbers then the solution set is (a) {1, 2, 3, 4, 5} (b) {1, 2, 3, 4} (c) {1, 2, 3} (d) {0, 1, 2, 3, 4}	B
Q53	If V= {x: x+2 = 0} R = {x: $x^2+2x = 0$ } and S = {x: $x^2+x-2=0$ } then V, R, S are equal for which value of x?	С

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(α) Ο	(b) -1	(c) -2	(d) None	
Q54 Q55 Q56 Q57 Q58 Q59 Q60	For 3x + 1 ≤ 16 8	x belongs to set of	natural number, the s	solution set is	B
	(a) {1, 2, 3, 4}	(b) {1, 2, 3, 4, 5]	} (c) {1, 2, 3}	(d) {1, 2, 3, 4, 5, 6}	
Q55	If $A = \{1, 2, 3, 5, 7\}$, and B = $\{x^2 : X \in A\}$			Α
	(a) n(b) = n(A)	(b) n(B) > n(A)	(c) n(A) ≠ n(B)	(d) n(A) < n(B)	
Q56	If A = {1, 2} and	$B = \{2,3\}$ then $A \times B$	is equal to		Α
	(a) {(1,2), (1,3), (1	2,2), (2,3)}	(b) {(2,1), (2,2), (3	,1), (3,2)}	
	(c) {(1,1), (1,2), (2	2,2), (2,1)}	(d) {(3,1), (2,1), (3,	.3), (2,3)}	
Q57	A survey shows percentage like	that 68% of women both?	n like apples, 74% of v	women like orange. What	D
	(α) 12%	(b) 6%	(c) 21%	(d) 42%	
Q58	A survey shows What % of India	that 74% of the In Ins like both grapes	ndians like grapes, wh and bananas?	ereas 68% like bananas.	С
	(α) 32%	(b) 26%	(c) 42%	(d) 50%	
Q59	359 In a class 30 students, 20 students like maths, 18 like science and 12 like both the subject. Find the number of student who likes no subject.				
	(α) 4	(b)5	(c) 8	(d) None	
Q60	Complaints about works canteen had been about Mess(M) Food(F) and Services(S). Total complaints 173 were received as follows - n(M) = 110; n(F) = 55; n(S) = 67; n(M $\cap F \cap S'$)=20; n(M $\cap S \cap F'$) =1;n(F $\cap S \cap M'$) =16.				
	(i) Determine th	ne complaints about	all the three.		Α
	(α) 6	(b) 43	(c) 35	(d) None	
	(ii) Determine t	he complaints about	t two or more than tw	0.	B
	(α) 6	(b) 53	(c) 35	(d) None	
Q61	After qualifying and 160 joined service 40 in assistantship. T	out of 400 profess as paid assistants. both practice and here were 12 who d	ionals 112 joined indus There were 32 who we l assistantship and 2 id all the three.	try 120 started practice ere in both practice and 10 in both industry and	
	(i) Find how mar	ny could not get any	of these		Α
	(α) 88	(b) 244	(c) 122	(d) None	
	(ii) Find how ma	ny of them did only	one of these		Α
	(α) 88	(b) 244	(c) 122	(d) None	
Q62	The number of s	ubsets of the sets {	6, 8,11} is		С
	(α) 9	(b) 6	(c) 8	(d) None	1
		()	(0) 0		
Q63	If A = {1, 3, 5}, E	$B = \{0, 2\}$ then $A \cup B$	is		A
Q63	If A = {1, 3, 5}, E (α) {0, 1, 2, 3, 5)	3 = {0, 2} then A ∪ B (b) 0	is (c) {1,3,5,7,9,13}	(d) None	A

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(α) φ (b) {0,	2,3,4,5,6, 7} (c) {0}	(d) None			
Q65	If A = {1, 3, 5, 7, 9}, D = {2,	, 4, 6, 8, 10} then A \cup B	is	B		
	(a) {0}	(b) {1,2,3	,4,5,6,7,8,9,10}			
	(c) φ	(d) None				
Q66	If P = {1, 2, 3, 5, 7} & Q = {	1, 3, 6, 10, 15}				
	(i) The cardinal number of	$P \cap Q$ is		В		
	(a) 3 (b) 2	(c) 0	(d) None			
	(ii) The cardinal number o	f P \cup Q is		В		
	(a) 10 (b) 9	(c) 8	(d) None			
Q67	If P = {3, 4, 5, 6} then care	dinal number of P is		С		
	(a) 3 (b) 5	(c) 4	(d) 6			
Q68	The null set is represented	d by		С		
	(a) {Φ} (b) {0]	(c) Φ	(d) None			
Q69	If A = {1, 2, 3}, then P (A) i	S		В		
	(a) 3 (b) $\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}, \Phi\}$					
	(c) $\{1,2,3\}$ (d) $\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}\}$					
Q70	The number of subsets of	a set containing n elem	nents is	Α		
	(a) 2 ⁿ (b) 2 ⁻ⁿ	(c) n	(d) None			
Q71	A set containing 4 elemen	ts have		В		
	(a) 15 subsets (b) 16	subsets (c) 14 sul	osets (d) 13 subsets			
Q72	What is the relationship b	etween the following s	ets?	Α		
	A = {x:x is a letter in the v	vord flower} B = {x:x i	s a letter in the world flow}			
	C = {x:x is a letter in the v	vorld wolf} D = {x:x i	s a leter in the word follow}			
	(a) $B = C = D$ and all these	are subsets of the set				
	$(D) B = C \neq D$	(C) B ≠ C ≠ D	(d) None			
Q73	If $P = \{1, 2, 3, 4\}$: $Q = \{2, 4, 6\}$	then $P \cup Q$		C		
	(a) {1,2,3,6} (b) {1,	4,6} (C) {1,2,3	,4,6} (d) None			
Q74	If P is a set of natural nun	nber then $P \cap P'$ is		A		
	(α) φ (b) Sa	mple Space. (c) 0	(d) (P U P')'			
Q75	$(A \cup B)'$ is equal to			С		
	(α) (A∩B)' (b) A∪	B' (c) A'∩ B	(d) None			
Q76	$(A \cap B)$ ' is equal to			Α		
	(a) (A'∪B') (b) A∪	B' (c) A'∩ B	' (d) None			
Q77	If $A = \{a b c d e f\} B = \{a e f\}$	elou} and C = {m n o p	oqrstu}then			
	(i) A ∪ B is			Α		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

	(a) {a b c d e f i o	u}	(b) {a b c s t u}		
	(c) {d e f p q r}		(d) None		
	(ii) A U C is				Α
	(a) {a b c d e f m n	opqrstu}	(b) {a b c s t u}		
	(c) {d e f p q r}		(d) None		
	(iii) B U C is				Α
	(a) {a e I o u m n p	qrst}	(b) {a e i r s t}		
	(c) {i o u p q r}		(d) None		
	(iv) A - B is	<u>.</u> .			Α
	(a) {b c d f}	(b) {a e i o}	(c) {m n p q}	(d) None	
	(v) A ∩ B is				Α
	(a) {a e}	(b) {i o}	(c) {o u}	(d) None	
	(vi) B ∩ C is				С
	(a) {a e}	(b) {i o}	(c) {o u}	(d) None	
	(vii) A ∪ (B - C) is				A
	(a) {a b c d e f i}	(b) {a b c d e f o}	(c) {abcdefu}	(d) None	
	(viii) AUBUC is				Δ
	(a) {a b c d e f i o	umnparst}	(b) {abcrst}		
	(c) {d e f n p q}		(d) None		
					A
	(α) φ	(b) {a e}	(c) {m n}	(d) None	
Q78	If the set P has 3 e	elements, Q four and	R two then the set	P×Q×R contains	С
	(a) 9 elements	(b) 20 elements	(c) 24 elements	(d) None	
Q79	If the set P has 6.	Q has 5 and R has 2	elements then the s	set P×Q×R contains	С
	(α) 13	(b) 9	(c) 60	(d) None	
Q80	If $A \times B = \{(3, 2), (3, 3)\}$	3, 4), (5, 2), (5, 4)}, th	en find A and B.		A
	(a) A = {3, 5} and E	8 = {2, 4}	(b) $A = \{3, 4\}$ and E	3 = {2, 5}	
	(c) A = {3, 2} and B	8 = {5, 4}	(d) A = {5, 4} and E	3 = {2, 3}	
Q81	If A = (1,2,3,5,7) ar	nd B= (1,3,6,10,15) the	en cardinal number o	of A - B is .	Α
	(α) 3	(b) -4	(c) 6	(d) None	
Q82	If V = {0 1 29} X	(= {0 2 4 6 8} Y = {3	5 7} and Z = {3 7} th	en	
	(i) Y ∪ Z, (V ∪ Y) ∩	X. $(X \cup Z) \cup V$ are res	spectively		A
	(α) {3 5 7} {0 2 4 6	8} {0 1 29}	(b) {2 4 6} {0 2 4 6	8} {0 1 29}	
	(c) {2 4 6} {0 1 2	.9} {0 2 4 6 8}	(d) None		
	(ii) (X ∪ Y) ∩ Z and	(Φ∪V)∩Φare res	pectively		B
		, , , , , , , , , , , , , , , , , , , ,	1 7		_

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(α) {Ο 2 4 6 8} Φ	(b) {3 7} Φ	(c) {3 5 7} Φ	(d) None	
Q83	$\{1-(-1)^x\}$ for all inte	gral x is the set is _	·		С
	(a) {0}	(b) {2}	(c) {0,2}	(d) None	
Q84	The set {x 0 <x<5} r<="" th=""><th>epresents the set v</th><th>vhen x may take ii</th><th>ntegral values only</th><th>B</th></x<5}>	epresents the set v	vhen x may take ii	ntegral values only	B
	(a) {0,1,2,3,4,5}	(b) {1,2,3,4}	(c) {1,2,3,4,5}	(d) None	
Q85	If the universal se C = {2 5 6} are sub	t is X = {x: x ∈ N l≤x: osets of X	≤12} and A {1 9 10}	B ={3 4 6 11 12} and	
	(i) The set A U(B \cap	C) is			B
	(a) {3 4 6 12}	(b) {16 9 10}	(c) {2 5 6 11}	(d) None	
	(ii) The set (A∪B) ∩	1 (AUC) is			B
	(a) {3 4 6 12}	(b) {16 9 10}	(c) {2 5 6 11}	(d) None	
Q86	Universal set E = { then	x x is a positive in	teger < 25}, A = {	2,6,8,14,22}, B = {4,8,10,14}	B
	(a) (A U B)'=A' U B'	(b) (A ∩ B)'=A' U B'	(c) (A'∩B)'= Φ	(d) None	
Q87	Represent the follo set of all odd integ x satisfying the eq (a) A = {x:x is an al {x:x ² +5x+7=0} (b) A = {x:x is an al {x:x ² +5x+7=0} (c) A = {x:x is an al {x:x ² +5x+7=0} (d) None	owing sets in set nor gers less than 25 se uation x ² + 5x + 7 = phabet in English} phabet in English}	tation set of all al t of all odd intege o - = {x:x is an odd in = {x:x is an odd in = {x:x is an odd in	bhabets in English language ers set of positive integers teger > 25} = {2 4 6 8} = teger < 25} = {1 3 5 7} = teger < 25} = {1 3 5 7} =	B
Q88	Re-write the following sets in a set builder form A={a e o u} B={1 2 3 4} C is a set of integers between - 15 and 15. (a) A = {x:x is a constant} B = {x:x is an irrational number} C= {x:-15 <x<15^x a="" fraction}<br="" is="">(b) A = {x:x is a vowel} B = {x:x is a natural number} C= {x:-15>x>15^x is a whole number} (c) A = {x:x is a vowel} B = {x:x is a natural number} C= {x:-15<x<15^x a="" is="" number}<br="" whole="">(d) None</x<15^x></x<15^x>				C
Q89	Comment on the co	prrectness or other	wise of the follow	ving statements	Α
	(i) {a b c} = {c b a}	(ii) {	acadcd}⊃{ac	c d}	
	(iii) {b} ∉ {{b}}	(iv) {	b}⊂ {{b}}and Φ⊂{	(b}}	
	(a) Only (iv) is inco	rrect (b)() (ii) are incorrec	t	
	(c) (ii) (iii) are inco	rrect (d) A	ll are incorrect		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Lectures & Books,

 YouTube
 Telegram
 Whatsapp:
 8888111134
 Www.pranavchandak.com

Q90	If A = {a b c} B = {a b} c = {a b d} D = {c d} m E = {d} state which of the following statements are correct (i) BC A (ii) D = C (iii) C = C (iv) D = E (v) D = C (vi) D = A	A
	$(i) \ b \in A \qquad (ii) \ b \neq C \qquad (iii) \ b \in A \qquad (iii) \ b \in A \qquad (iv) \ b \in B \qquad (v) \ b \in B \ (v) \ $	
	(b) (ii) (iii) (iv) (x) (xiii) (xiii) only are correct (c) (i) (ii) (iv) (ix) (xiii) only are correct (d) None	
Q91	Let $A = \{0\} B = \{0 \ 1\} C = \Phi D = \{\Phi\} E = \{x x \text{ is a human being 300 years old}\} F = \{x x \in A \text{ and } x \in B\}$ state which of the following statements are true (i) $A \subset B$ (ii) $B = F$ (iii) $C \subset D$ (iv) $C = E$ (v) $A = F$ (vi) $F = 1$ (vii) $E = C = D$ (a) (iii) (iv) and (v) only are true (b) (i) (ii) (iii) and (iv) only are true (c) (i) (ii) (iii) and (vi) only are true (d) None	B
Q92	If A = {0 1} state which of the following statements are true (i) {1} \subset A (ii) {1} \in A (iii) $\Phi \in$ A (iv) $\Theta \in$ A (v) 1 \subset A (vi) {0} \subset A (vii) $\Phi \subset$ A (a) (i) (iv) and (vii) only are true (b) (i), (iv) and (vi) only are true (c) (ii), (iii) and (vi) only are true (d) None	A
Q93	Out 2000 staff 48% preferred coffee 54% tea and 64% cocoa. Of the total 28% used coffee and tea 32% tea and cocoa and 30% coffee and cocoa. Only 6% did none of these.	
	(i) Find the number having all the three. (a) 360 (b) 280 (c) 160 (d) None	A
	 (ii) Find the number having tea and cocoa but not coffee. (a) 360 (b) 280 (c) 160 (d) None 	B
	(iii) Find the number having only coffee.(a) 360(b) 280(c) 160(d) None	С
Q94	Out of 1000 students 658 failed in the aggregate 16 in the aggregate and in group-I 434 in aggregate and in group-II 372 in group-I 590 in group-II and 126 in both the groups.	
	(i) Find out how many failed in all the three(a) 106(b) 224(c) 206(d) 464	A

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

	(ii) How many failed in	the aggregate	e but not i	n group-	II?	B
	(a) 106 (b)	224	(c) 206		(d) 464	
	(iii) How many failed ir	group-I but r	not in the c	aggregat	te.	С
	(a) 106 (b)	224	(c) 206		(d) 464	
	(iv) How many failed in	group-II but	not in grou	.p-I?		D
	(a) 106 (b)	224	(c) 206		(d) 464	
	(v) How many failed in	the aggregate	e or group	-II but n	ot in group-I?	С
	(a) 206 (b)	464	(c) 628	•	(d) 164	
	(vi) How many failed in	the aggregat	e but not i	in group [.]	-I and group-II?	D
	(a) 206 (b)	464	(c) 628		(d) 164	
Q95	Asked if you will cast y	our vote for a	ı party the	followin	g feed back is obtained	
			Yes	No	Don't know	
	Adult Male)	10	20	5	
	Adult Fema	e	20	15	5	
	Youth over 18 y	/ears	10	5	10	
	If A = set of Adult Mal opinion, N = set of neg	es, C =Commo ative opinion t	on set of h then	lomen ar	nd Youth Y= set of positive	
	(i) n(A') is					Α
	(a) 25 (b)	40	(c) 20		(d) None	
	(ii) The set n (A \cap C) is	·				B
	(a) 25 (b)	40	(c) 20		(d) None	
	(iii) The set n (Y ∪ N)' i	s				С
	(a) 25 (b)	40	(c) 20		(d) None	
	(iv) The set n (A \cap (Y \cap	N)' is				С
	(a) 25 (b)	40	(c) 20		(d) None	
Q96						
	A survey of 1000 custor of different grades:	ners revealed	the follow	ing in re	spect of their buying habits	
	A survey of 1000 custor of different grades: A grade only	ners revealed	the follow	ing in re	spect of their buying habits 180	
	A survey of 1000 custor of different grades: A grade only A and C grades	ners revealed	the follow	ing in re	spect of their buying habits 180 80	
	A survey of 1000 custor of different grades: A grade only A and C grades C grades	ners revealed	the follow	ing in re	spect of their buying habits 180 80 480	
	A survey of 1000 custor of different grades: A grade only A and C grades C grades A grade but not B gro	ners revealed	the follow	ing in re	spect of their buying habits 180 80 480 230	
	A survey of 1000 custor of different grades: A grade only A and C grades C grades A grade but not B gro A grade	ners revealed	the follow	ing in re	spect of their buying habits 180 80 480 230 280	
	A survey of 1000 custor of different grades: A grade only A and C grades C grades A grade but not B gro A grade C and B grades	ners revealed	the follow	ing in re	spect of their buying habits 180 80 480 230 280 80	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

	(i) How many buy B grade	?				B
	(a) 280 (b) 18	0	(c) 50	(d) none		
	(ii) How many buy C grade if any only if they do not buy B grade?					B
	(a) 280 (b) 40	00	(c) 50	(d) none		
	(iii) How many buy C and	B grades b	ut not the A gra	de?		С
	(a) 280 (b) 40	00	(c) 50	(d) none		
Q97	A marketing research team interviews 100 people about their drinking habits of tea coffee or milk or A B C respectively. Following data is obtained but the Manager is not sure whether these are consistent.					A
	C	ategory		N	lo.	
		ABC			3	
		AB			7	
		BC		,	13	
		AC			18	
		А			í+2	
		В			17	
		27		27		
	(α) Inconsistent since 42+17+27-7-13-18+3 ≠ 50 (b) Consistent					
	(c) Cannot determine due	to data in	sufficiency	(d) None		
Q98	In a market survey you have obtained the following data which you like to examine regarding its correctness			A		
	% did not use the B	rand	Percent	tage answering "\	'es"	
	April	59	May &	June	33	
	Μαγ	62	April 8	& June	31	
	June	62	April, M	ay, June	22	
	April & May	35				
	(a) Inconsistent since 59+	62+62-35-3	33- 31+22≠ 100	(b) Consis	stent	
	(c) Cannot determine due	to data in	sufficiency	(d) None		
Q99	In his report an Inspector of an assembly line showed in respect of 100 units the following which you are require to examine.			A		
	Defect			No. of pieces		
	Strength (S)			35		
	Flexibility (F)		40			
	Padius (P)			18		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	S and F			7	
	S and R			11	
	F and R			12	
	SFR			3	
	Is the report consistent and be	ε αςςε	epted?		
	(a) No. of pieces with radius de	efect o	lone was -2 which wa	as impossible. The report	
	is inconsistent.				
	(b) Report may be accepted	بہ ا			
	(c) Cannot be determined due	to aat	a insufficiency		
0100	(0, 1000) A = $(2, 2)$ B = $(4, 5)$ C = $(5, 6)$ + b	on Av(P
Groo	(a) $\{(5,2), (5,3)\}$ (b) $\{(2,5), (3,3)\}$	3.5)}	$(c) \{(2,4), (5,3)\}$	(d) {(3.5), (2.6)}	B
Q101	Number of subsets of the set {	1234	} ie		С
	(a) 13 (b) 12	1,2,0,1	(c) 16	(d) 15	
Q102	Number of subsets of the set A	x = {1,2	,3,4,5,6,7,8} is	•	С
	(a) 36 (b) 128		(c) 256	- (d) None	
Q103	If A = {1, 3, 5, 7,}, B = {2, 4,	6, 8,	} then A \cap B is equ	ual to	B
	(a) Set of all integers (b) Set of all positive integers				
	(c) ϕ (d) None of these				
Q104	If A = {1, 2, 3, 4, 5} & B = {6, 7,	8} the	n cardinal number of	AxB is	A
	(a) 15 (b) 5		(c) 3	(d) 8	
Q105	$x \mid 0 < x < 6, x \text{ take integral value}$	lues} r	represents the set _		В
	(a) {0, 1, 2, 3, 4, 5} (b) {1,2,3,4	,5}	(c) {1,2,3,4,5,6}	(d) {1,2,3,4}	
Q106	If U = {1, 2,9} be the universe	al set /	A = {1, 2, 3,4} & B = {	2 ,4, 6, 8}	
	(i) Then the set A U B is	·			A
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}		(c) {5, 6 ,7 ,8,9}	(d} {1 ,3,5,6 ,7 ,9}	
	(ii) Set $A \cap B$ is				B
	(a) {1 ,2 ,3 ,4 ,6 ,8} (b) {2, 4}		(c) {5 ,6, 7 ,8, 9}	(d) {1,3,5,6, 7 ,9}	
	(iii) The set A' is				С
	(a) {1,2 ,3 ,4 ,6 ,8} (b) {2 ,4}		(c) {5 ,6 ,7, 8, 9}	(d) {1 ,3 ,5 ,6 ,7, 9}	
	(iv) The set $(A \cup B)'$ is				С
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}		(c) {5, 7, 9}	(d) {6, 8, 9}	
	(v) The set $(A \cap B)'$ is				D
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}		(C) {5, 6 , / ,8 ,9}	(a) {1,3,5,6,7,8,9}	
Q107	Let P = $(1, 2, x)$; Q = (α, x, y) ; R =	= (x, y,	z) then		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube** Telegram

	(i) P x Q is	Α
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) (1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x). (2y); (xx), (xy)}	
	(ii) The set P x R is	B
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xz)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(iii)The set Q x R is	С
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(iv) The set (P x Q) \cap (P x R) is	D
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(v) The set (R x Q) \cap (R x P) is	С
	(a) {(ax), (ay), (az), (xx), (xy), (xz), (yx), (yy), (yz)}	
	(b) {(1x), (1y), (2x), (2y)}	
	(c) {(xx), (yx), (zx)}	
	(d) {(1a), (1x), (1y), (2a), (2x), (2y), (xa), (xy), (x1), (x2), (y1), (y2), (yx), (z1), (z2), (zx)}	
	(vi) The set (P x Q) \cup (R x P) is	D
	(a) {(ax), (ay), (az), (xx), (xy), (xz), (yx), (yy), (yz)}	
	(b) {(1x), (1y), (2x), (2y), (xx), (yx), (zx)	
	(c) {(x), (yx), (zx)}	
	(d){(1a), (1x), (1y), (2a), (2x), (2y), (xa), (xx), (xy), (x1), (x2), (y1), (y2), (yx), (z1), (z2), (zx)}	
Q108	Out of 2000 staff, 48% preferred coffee, 54% tea and 64% cocoa. Of the total 28% used coffee and tea; 32% tea and cocoa; 30% coffee and cocoa. Only 6% did none of these.	
	(i) Find the number having all the three.	A
	(a) 360 (b) 280 (c) 160 (d) None	
	(ii) Find the number having tea and cocoa but not coffee.	B

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

	(a) 360	(b) 280	(c) 160	(d) N	lone	
	(iii)Find the number having only coffee.					С
	(α) 360	(b) 280	(c) 160	(d) N	lone	
Q109	A town has a total population of 50,000. Out of it, 28,000 read the newspaper X, 23000 read Y while 4000 read both the papers. The number of persons not reading X and Y both is					B
	(α) 2000	(b) 3000	(c) 4000	(d) N	lone	
Q110	Consider the follo	owing data				
	Worker	Skilled	Unskilled	Skilled	Unskilled	
		direct	Direct	Indirect	mairect	
	Short	6	8	10	20	
	Medium	7	10	16	9	
	Long	3	2	8	0	
	 (i) If S, M, L, T, I denote short medium long terms skilled and Indirect workers respectively find the number of workers in set M. (a) 42 (b) 8 (c) 10 (d) 43 					A
	(ii) Find the number of workers in set L \cap I.					B
	(a) 42	(b) 8	(c) 10	(d) 4	.3	
	(iii) Find the numb	per of workers	s in set S \cap T \cap I.			С
	(a) 42	(b) 8	(c) 10	(d) 4	.3	
	(iv) Find the number of workers in set (M U L) \cap (T U I).					D
	(a) 42	(b) 8	(c) 10	(d) 4	3	
	(v) Find the number of workers in set S' U (S' \cap I)'.					D
	(a) 42	(b) 44	(c) 43	(d) 9	9	
	(vi) Find the set c	of pair has mor	re workers as its r	nasters. Pair is	(S U M)' or L	С
	(a) (S U M)' > L	(b) (S U M)' <	< L (c) (S U M)' = L (d) N	lone	

CHAPTER 7A. DIFFERENTIAL CALCULUS

INTRODUCTION

Ex: Let us consider a function $y = f(x) = 3x^2 + 5x + 2$.The value of f(x) i.e 'y' will depend on value of 'x'.[Note: x can take any value]Thus, we can say that 'y' is a dependent variable & 'x' is an independent variable.If x = 1, $y = 3(1)^2 + 5(1) + 2 = 10$;If x = 2, $y = 3(2)^2 + 5(2) + 2 = 24$.Thus, we can say that if we change the value of x from 1 to 2, value of y changes from 10 to 24.Now let's jump on to the definition of derivative.

MEANING OF DERIVATIVE [DIFFERENTIATION]

- It is a process of finding "change in dependent variable" w.r.t "change in independent variable".
- It measures the rate at which the changes are taking place.
- Change in 'x' is denoted by $\Delta x \&$ Change in 'y' is denoted by Δy . [Called as 'delta' x]
- It involves a very small change in dependent variable (i.e y) w.r.t a very small change in independent variable (i.e x). Thus, it studies "Instantaneous rate of change of a function".

Differentiation is the process of finding "change in value of y" w.r.t "change in value of x".

- ☞ Change in 'x' is so small that it tends to Zero. $[\Delta x \rightarrow 0]$ & thus we say that it studies "instantaneous rate of change of a function".
- It is defined as the limiting value of the ratio of change (increment) in the function corresponding to a small change (increment) in independent variable as the later tends to zero.
- The derivative of f(x) is also known as differential coefficient of f(x) with respect to x.
- This is denoted as $\frac{dy}{dx}$ or f'(x)

[Derivative of 'y' w.r.t 'x']

PC NOTE: To differentiate a function, we have to differentiate it w.r.t independent variable only.

Note: (i) $\frac{d}{dx}f(x) \neq \frac{d}{dx} \times f(x)$. (ii) $\frac{dy}{dx} \neq dy \div dx$.

(iii) $\frac{dy}{dx}$ represents **slope of tangent** to the curve y = f(x) & is known as "**gradient**" of the curve.

SOME STANDARD RESULTS BASED ON FIRST PRINCIPLE				
Function f(x)	Derivative	When to apply the formula		
(i) x ⁿ	n.x ⁽ⁿ⁻¹⁾	When we have a constant number in power. [n → denotes a constant number (+ve/–ve)].		
(ii) e ^x	e×	When we have 'e' in base. [Value of 'e' = 2.71828 is irrelevant]		
(iii) α [×]	a [×] .log a	When we have a number in base. [a → denotes a constant number (a > 0 & a ≠ 1)]		
(iv) Log x	(1/x)	When we have 'log'.		
(v) Constant (C)	ZERO	Derivative of a "constant" is "Zero". [Note: eⁿ & a ª are constants].		
(vi)C. f(x)	C. f°(x)	Take 'C' outside; differentiate f(x) & then multiply f'(x) by C.		

FORMULAE WITH EXAMPLE		
Formula	Function	Derivatives of Function
$\frac{d}{dr} \mathbf{x}^{n} = \mathbf{n} \cdot \mathbf{x}^{(n-1)}$	x ⁵	$\frac{dy}{dx} = 5.x^{(5-1)} = 5.x^4$
un	\sqrt{X} ;	Y = $\chi^{1/2}$, $\frac{dy}{dx} = (\frac{1}{2})$. $\chi^{(\frac{1}{2} - 1)} = (\frac{1}{2})\chi^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
	×√x	Y = $\chi^{3/2}$, $\frac{dy}{dx} = \frac{3}{2} \cdot \chi^{(\frac{3}{2} - 1)} = \frac{3}{2} \cdot \chi^{\frac{1}{2}} = \frac{3}{2\sqrt{x}}$
	$\frac{1}{x}$	Y = x $\overset{(-1)}{,} \frac{dy}{dx} = (-1). x^{(-1-1)} = (-1)x^{-2} = -\frac{1}{x^2}$
	$\frac{1}{\sqrt{x}}$	Y = $\chi^{-1/2}$, $\frac{dy}{dx} = (-1/2)$, $\chi^{(-\frac{1}{2}-1)} = (-1/2)\chi^{-\frac{3}{2}} = -\frac{1}{2.x\sqrt{x}}$
	x ^{-7/3} ;	$\frac{dy}{dx} = -\frac{7}{3} \cdot \left(x^{-\frac{7}{3}-1}\right) = -\frac{7}{3} \cdot x^{-\frac{10}{3}}.$
	x	Y = x ¹ ; $\frac{dy}{dx}$ = 1.x ⁽¹⁻¹⁾ = 1.x ⁰ = 1.1 = 1
Class work:		

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

RA

$\frac{d}{dx}(e^{x}) = e^{x}$	e ^x	$\frac{dy}{dx} = e^{x}$
ux	e²	$\frac{dy}{dx}$ = Zero since e^2 is a constant.
$\frac{d}{dx}(\alpha^{x}) = \alpha^{x}.\log \alpha$	a×	$\frac{dy}{dx} = \alpha^{\times}. \log \alpha$
ur	2×	$\frac{dy}{dx} = 2^{x} \cdot \log 2$
$\frac{d}{dx}\log x = \frac{1}{x}$	Log x	$\frac{dy}{dx} = \frac{1}{x}$
ux x	2 [×]	$\frac{dy}{dx} = 2^{x} \cdot \log 2$
$\frac{d}{dx}C. f(x) = C. f'(x)$	12x⁵	$\frac{dy}{dx} = 12. \frac{d}{dx}(x^5) = 12. 5x^4 = 60. x^4$
ux	ax ³	$\alpha. \frac{d}{dx}(x^3) = \alpha. \ 3x^2 = 3\alpha x^2.$
	(-3)x ⁻²	$(-3). \frac{d}{dx}(x^{-2}) = (-3). (-2). x^{(-2-1)} = 6x^{-3}.$
	$\frac{x^5}{2}$	$(\frac{1}{2}). \frac{d}{dx}(x^5) = (\frac{1}{2}).5x^4 = \frac{5}{2}x^4$

BASIC LAWS FOR DIFFERENTIATION
SUM/DIFFERENCE RULE: $\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$
Ex: $\frac{d}{dx} [\alpha x^2 + bx + c] = \frac{d}{dx} (\alpha x^2) + \frac{d}{dx} (bx) + \frac{d}{dx} (c) = \alpha \cdot \frac{d}{dx} (x^2) + b \cdot \frac{d}{dx} (x) + \frac{d}{dx} (c) = \alpha \cdot 2x + b \cdot 1 + o = 2\alpha x + b x + o$
Ex: $\frac{d}{dx}[3x^2 + 5x - 2] = \frac{d}{dx}(3x^2) + \frac{d}{dx}(5x) - \frac{d}{dx}(2) = 3$. $\frac{d}{dx}(x^2) + 5$. $\frac{d}{dx}(x) - \frac{d}{dx}(2) = 3.2x + 5.1 - 0 = 6x + 5$.
Ex: $\frac{d}{dx} \left[\alpha^{x} + x^{\alpha} + \alpha^{\alpha} \right] = \frac{d}{dx} (\alpha^{x}) + \frac{d}{dx} (x^{\alpha}) + \frac{d}{dx} (\alpha^{\alpha}) = \alpha^{x}$. log $\alpha + \alpha \cdot x^{(\alpha-1)} + 0$.
Let $f(x) = U \& g(x) = V$; PRODUCT RULE: $\frac{d}{dx} [\mathbf{U} \times \mathbf{V}] = \mathbf{U} \cdot \frac{d}{dx} [\mathbf{V}] + \mathbf{V} \cdot \frac{d}{dx} [\mathbf{U}]$
Ex: $\frac{d}{dx}(2^{x}.x^{5}) = 2^{x}.\frac{d}{dx}(x^{5}) + x^{5}.\frac{d}{dx}(2^{x}) = 2^{x}.(5x^{4}) + x^{5}.(2^{x}.\log 2) = 2^{x}.x^{4}[5 + x.\log 2]$
Ex: $\frac{d}{dx}(2^{x}.\log x) = 2^{x}.\frac{d}{dx}(\log x) + \log x.\frac{d}{dx}(2^{x}) = 2^{x}.(\frac{1}{x}) + \log x (2^{x}.\log 2) = 2^{x}.[(\frac{1}{x}) + \log x .\log 2]$
Ex: $\frac{d}{dx}(x^2 \cdot \log x) = x^2 \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(x^2) = x^2 \cdot (\frac{1}{x}) + \log x \cdot (2x) = x + 2x \cdot \log x = x (1 + 2 \cdot \log x)$

$$\begin{aligned} & \textbf{QUOTIENT RULE: } \frac{d}{dx} \left[\frac{V}{y} \right] = \frac{V \frac{d}{dx} \left[U \right]}{V^2} \\ & \textbf{Ex: } \frac{d}{dx} \frac{e^x}{\log x} = \frac{\log x \cdot \frac{d}{dx} (e^x) - e^x \frac{d}{dx} (\log x)}{(\log x)^2} = \frac{\log x \cdot (e^x) - e^x \frac{1}{x}}{(\log x)^2} = \frac{e^x [\log x - \frac{1}{x}]}{(\log x)^2} \\ & \textbf{Ex: } \frac{d}{dx} \frac{e^x}{e^x} \right] = \frac{e^x \frac{d}{dx} (x^2) - x^2 \frac{d}{dx} (e^x)}{(e^x)^2} = \frac{e^x 2x - x^2 \cdot (e^x)}{(e^x)^2} = \frac{x e^x [2 - x]}{(e^x)^2} = \frac{x [2 - x]}{e^x} \\ & \textbf{Ex: } \frac{d}{dx} \frac{3 - 5x}{e^x} = \frac{(3 + 5x) \frac{d}{dx} (3 - 5x) - (3 - 5x) \frac{d}{dx} (3 + 5x)}{(3 + 5x)^2} = \frac{(3 + 5x)(-5) - (3 - 5x)(5)}{(3 + 5x)^2} \\ & = \frac{(-15 - 25x) - (15 - 25x) \frac{1}{(3 + 5x)^2}}{(3 + 5x)^2} = \frac{(-15 - 25x) - (15 - 25x) \frac{1}{(3 + 5x)^2}}{(3 + 5x)^2} \\ & = \frac{(-15 - 25x) - (15 - 25x) \frac{1}{(3 + 5x)^2}}{(3 + 5x)^2} = \frac{-30}{(3 + 5x)^2} \end{aligned}$$

$$\begin{aligned} \textbf{TDERIVATIVE OF ONE FUNCTION''' WITH RESPECT TO "ANOTHER FUNCTION'''. \\ & \text{Let } f(x) be one function & g(x) be another function, then Derivative of $f(x) w.r.t g(x) = \frac{d}{dx} \frac{f(x)}{\frac{d}{dx} g(x)} \\ & \text{Ex: Differentiate 'log x' w.r.t (x^2) \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{e^x}{a^2} = \frac{1}{2x} = \frac{1}{2x^2}. \\ & \text{Ex: Differentiate } (x^2) w.r.t e^x. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{e^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ex: Differentiate } (x^3) w.r.t \log x. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{2x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^2} = \frac{x}{e^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^x} = \frac{x}{a^x}. \\ & \textbf{Ans: } \frac{f'(x)}{g'(x)} = \frac{d}{dx} \frac{a^x}{a^x} = \frac{x}{a^x}. \\ & \textbf{A$$$

CHAIN RULE

We have studied the following formulae earlier:

f(x)	Derivative
(x) ⁿ	n.x ⁽ⁿ⁻¹⁾
e×	e×
α×	α [×] .log α
Log x	$\frac{1}{x}$.
\sqrt{X}	$\frac{1}{2\sqrt{x}}$
x	1

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,YouTubeTelegramWhatsapp: 8888111134www.pranavchandak.com

PC NOTE: \Rightarrow If there is anything other than 'x' in the above formulae; Take it as 'y' & use the same rule (replace x with 'y' in the formula & multiply it with additional dy/dx.

So, the above formulae will look like this:

f(x)	Derivative
(y) ⁿ	$n.y^{(n-1)}.\frac{dy}{dx}$
e ^y	$e^{\gamma} \cdot \frac{dy}{dx}$
α ^y	a^{y} .log a. $\frac{dy}{dx}$
Log y	$\frac{1}{y} \cdot \frac{dy}{dx}$
\sqrt{y}	$\frac{1}{2\sqrt{y}}, \frac{\mathrm{d}y}{\mathrm{d}x}$
У	$1. \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x}$

SOLVED EXAMPLES	HOMEWORK QUESTIONS
CQ1: Find $\frac{d}{dx} (3x^3 - 5x^2 + 8)^3$.	1) $\frac{d}{dx} [(\log x)^2]$
Ans: Referring formula 1, we see that $y = (3x^3 - 5x^2 + 8)$; $\frac{dy}{dx} = 9x^2 - 10x$.	2) $\frac{d}{dx} [(6x^5 - 7x^3 + 9)^{-1/3}]$
Thus $\frac{d}{dx} (3x^3 - 5x^2 + 8)^3 = 3(3x^3 - 5x^2 + 8)^2(9x^2 - 10x).$	
CQ2: $\frac{d}{dx} [e^{ax^2 + bx + c}]$	3) $\frac{d}{dx} [e^{(2\log x)}]$
Ans: Referring formula 2, we see that $y = (ax^2 + bx + c)$; $\frac{dy}{dx} = (2ax+b)$	4) $\frac{d}{dx} e^{(x-y)}$
Thus $\frac{d}{dx} e^{ax^2 + bx + c} = e^{ax^2 + bx + c}$. (2ax+b)	5) $\frac{d}{dx} [e^{(xy)}]$
CQ3: $\frac{d}{dx}[a^{\log x}]$	$6) \frac{d}{dx} a^{x^2}$
Ans: Referring formula 3, we see that $y = (\log x)$; $\frac{dy}{dx} = \frac{1}{x}$	7) $\frac{d}{dx} 5^{(3x+2)}$
Thus $\frac{d}{dx}[a^{\log x}] = [a^{\log x}]$. log α . $\frac{1}{x}$	
CQ4: $\frac{d}{dx} [\log (1+x^2)]$	8) $\frac{d}{dx}$ [log (5x)]
Ans: Referring formula 4, we see that $y = (1 + x^2)$; $\frac{dy}{dx} = 2x$.	9) $\frac{d}{dx} [\log (x.e^{x})]$
Thus $\frac{d}{dx} [\log (1+x^2)] = \frac{1}{1+x^2} \cdot 2x = \frac{2x}{1+x^2}$	

CQ5: Find
$$\frac{d}{dx}\sqrt{x + \sqrt{x}}$$
.**10)** $\frac{d}{dx}[\sqrt{(1 + x^2)}]$ **Ans:** Referring formula 5. We see that $y = x + \sqrt{x}$; & $\frac{dy}{dx} = 1 + \frac{1}{2\sqrt{x}}$ **11)** $\frac{d}{dx}\sqrt{(\log x)}$ Thus $\frac{d(\sqrt{x + \sqrt{x}})}{dx} = \frac{1}{2\sqrt{y}}$. $\frac{dy}{dx} = \frac{1}{2\sqrt{x + \sqrt{x}}}$. $[1 + \frac{1}{2\sqrt{x}}]$ **10)** $\frac{d}{dx}[\sqrt{(1 + x^2)}]$

IMPLICIT FUNCTIONS

- A function in the form f(x, y) = 0.
- In Implicit function, y cannot be directly defined as a function of x.

Ex: $5x^2y^2 + x^2y + xy^2 + x + y = 0$

PC Note: In Implicit function, x & y are related in such a way that neither 'x' nor 'y' cannot be expressed in terms of each other.

STEPS TO DIFFERENTIATE IMPLICIT FUNCTION

- 1. Differentiate both sides w.r.t 'x'. [If RHS = 0, Its derivative will also be 0]
- 2. All the terms having $\frac{dy}{dx}$ shall be brought to one side & all other terms (not having $\frac{dy}{dx}$) shall be taken to another side.
- **3.** Take $\frac{dy}{dx}$ common from all the terms having $\frac{dy}{dx}$ & remainder shall be sent to another side (division)

CQ6: If $x^3 - 2x^2y^2 + 5x + y + 5 = 0$, find $\frac{dy}{dx}$.

Ans: Differentiating both sides w.r.t x, we get

$\Rightarrow 3x^2 - 2 \times \frac{d}{dx} \left[x^2 \times y^2 \right] + 5 + \frac{dy}{dx} + 0 = 0;$	$\Rightarrow 3x^{2} - 2\left[x^{2} \cdot \frac{d}{dx}(y^{2}) + y^{2} \cdot \frac{d}{dx}(x^{2})\right] + 5 + \frac{dy}{dx} = 0$
$\Rightarrow 3x^2 - 2\left[x^2 \cdot 2y\frac{dy}{dx} + y^2 \cdot 2x\right] + 5 + \frac{dy}{dx} = 0$	$\Rightarrow 3x^2 - 4x^2 \ \gamma \cdot \frac{dy}{dx} - 4xy^2 + 5 + \frac{dy}{dx} = 0$

Taking all the terms containing $\frac{dy}{dx}$ to one side & other terms on another side,

 $\Rightarrow 3x^{2} - 4xy^{2} + 5 = 4x^{2}y \cdot \frac{dy}{dx} - \frac{dy}{dx} \Rightarrow \frac{dy}{dx} (4x^{2}y - 1) = 3x^{2} - 4xy^{2} + 5: \qquad \frac{dy}{dx} = \frac{3x^{2} - 4xy^{2} + 5}{(4x^{2}y - 1)}$

PARAMETRIC FUNCTIONS

In parametric function, both 'x' & 'y' are expressed in terms of a third variable (generally t).

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x}$

Follow on Youtub	oe & Telgram for	Revision -	- Pranav Chandak Academy	To Buy Video Lectures & Books,	
NouTube	Telegram	[] Instagram	Whatsapp: 8888111134	www.pranavchandak.com	

PC Note: While calculating $\frac{dy}{dx}$, replace 't' with 'x' & use the normal rule & then again replace 'x' with 't'.

 $\frac{dy}{dx} = \frac{"\text{ Derivative of y" after applying the above note}}{"\text{ Derivative of x" after applying the above note}}$

Ex: Given x = 2t +5; y = $t^2 - 2$, find $\frac{dy}{dx}$.	Ex: Given $x = at^2$; $y = 2at$; find $\frac{dy}{dx}$.
Ans: $x^{\circ} = 2$; $y^{\circ} = 2t$; $\frac{dy}{dx} = \frac{\text{Derivative of } y}{\text{Derivative of } x} = \frac{2t}{2} = t$.	Ans: $x^{\circ} = 2\alpha t$; $y^{\circ} = 2\alpha$; $\frac{dy}{dx} = \frac{\text{Derivative of } y}{\text{Derivative of } x} = \frac{2\alpha}{2\alpha t} = \frac{1}{t}$.
Ex: If $u = (x^3 + 1)^5$ and $y = (x^3 + 7)$ then $\frac{du}{dy} =$	Ex: If $x = 3t^2 - 1$, $y = t^3$, then $\frac{dy}{dx} =$
Ans: $u^{\circ} = 5(x^{3} + 1)^{4}$. $3x^{2}$; $y^{\circ} = 3x^{2}$;	Ans: $\frac{dy}{dt} = 3t^2$; $\frac{dx}{dt} = 6t$; $\frac{dt}{dx} = \frac{1}{6t}$
$\frac{du}{dy} = \frac{\text{Derivative of u}}{\text{Derivative of y}} = \frac{5(x^3 + 1)^4 \cdot 3x^2}{3x^2} = 5(x^3 + 1)^4.$	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}, = \Im t^{2} \times \frac{1}{6t} = \frac{t}{2}$
HW. $x = \alpha t^3$; $y = \frac{a}{t^3}$; find $\frac{dy}{dx}$.	[Ans: $\frac{-1}{t^6}$]
HW. If $x = \frac{1-t^2}{1+t^2}$; $y = \frac{2t}{1+t^2}$ then $\frac{dy}{dx}$ @ t = 1 is	$[Ans: \frac{dy}{dx} = \frac{t^2 - 1}{2t} = O]$

LOGARITHMIC DIFFERENTIATION

The process of finding derivative by taking logarithm of both sides & then applying antilog is called logarithmic differentiation.

When to use Logarithmic Differentiation:

- **1.** The given function involves function in its power. [**Ex:** x^x since neither xⁿ nor a^x formula is applicable in this case].
- **2.** The given function is the product of number of functions. $[Ex: x^{y} + y^{x}]$
- 3. If using basic formulae will consume more time. [Depends on judgment of the student].

CQ7: Differentiate x^x w.r.t 'x'.

Ans: Let $y = x^x$; Taking log of both sides, we get Log $y = \log x^x$

 \Rightarrow Log y = x.logx [using log $m^n = n.logm$]

Differentiating w.r.t x we get $\frac{1}{y} \times \frac{dy}{dx} = x \times \frac{1}{x} + \log x \times 1$

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Le

$$\Rightarrow \frac{dy}{dx} = y [1 + \log x] \& \qquad \qquad \frac{dy}{dx} = x^{x} [1 + \log x]$$

SOME ADVANCED QUESTIONS

CQ8: Differentiate x^{xx}w.r.t 'x'. **Ans:** Let $y = x^{x^x}$; Taking log of both sides, we get Log $y = \log x^{x^x}$ $\log y = x^x \cdot \log x$ [Using $\log m^n = n \cdot \log m$] Differentiating w.r.t x we get $\frac{1}{y} \times \frac{dy}{dx} = x^x \times \frac{1}{x} + \log \left[x^x \left(1 + \log x \right) \right];$ $\Rightarrow \frac{dy}{dx} = y \left[x^x \left\{ \frac{1}{x} + \log x \cdot (1 + \log x) \right\} \right] \& \text{ thus } \frac{dy}{dx} = x^{x^x} \times x^x \left[\frac{1}{x} + \log x \cdot (1 + \log x) \right]$ **CQ9:** If x^m . $y^n = (x + y)^{m+n}$, find $\frac{dy}{dx}$ **Ans:** Taking log of Both Sides, log $(x^m.y^n) = \log (x + y)^{m+n}$ $\Rightarrow \log x^m + \log y^n = \log (x + y)^{m+n}$ [Using log mn = log m + log n] \Rightarrow m. log x + n. log y = (m + n). log (x + y) [using log $m^n = n \cdot \log m$] Differentiating both sides w.r.t 'x' we get $\Rightarrow m. \frac{1}{x} + n. \frac{1}{y} \cdot \frac{dy}{dx} = (m+n) \times \frac{1}{(x+y)} \left[1 + \frac{dy}{dx} \right]; \qquad \Rightarrow \frac{m}{x} + \frac{n}{y} \cdot \frac{dx}{dy} = \frac{m+n}{x+y} + \frac{m+n}{x+y} \cdot \frac{dy}{dx}$ $\Rightarrow \frac{n}{y} \cdot \frac{dx}{dy} - \left(\frac{m+n}{x+y}\right) \times \frac{dy}{dx} = \frac{(m+n)}{x+y} - \frac{m}{x};$ $\Rightarrow \frac{dy}{dx} \left[\frac{n}{y} - \frac{m+n}{x+y} \right] = \frac{(m+n)}{x+y} - \frac{m}{x}$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{mx + nx - mx - my}{x}}{\frac{nx + ny - my - ny}{y}} = \frac{\frac{nx - my}{x}}{\frac{nx - my}{y}}$ $\Rightarrow \frac{dy}{dx} \left[\frac{n \left(x+y \right) - \left(m+n \right) y}{\left(x+y \right) \left(y \right)} \right] = \frac{(m+n)x - m(x+y)}{x \left(x+y \right)};$ & thus, $\frac{dy}{dx} = \frac{y}{x}$. **CQ10:** If $y = \sqrt{\frac{1-x}{1+x}}$ show that $(1 - x^2) \frac{dy}{dx} + y = 0$ **Ans:** Taking log of both sides we get, log $y = \frac{1}{2} [\log (1-x) - \log (1+x)]$ Differentiating both sides w.r.t 'x', we have, $\frac{1}{y}\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}\left[\log(1-x) - \log(1+x)\right] = \frac{1}{2}\left(\frac{-1}{1-x} - \frac{1}{1+x}\right) = -\frac{1}{1-x^2}$ By cross – multiplication $(1 - x^2) \frac{dy}{dx} = -y$; $(1 - x^2) \frac{dy}{dx} + y = 0$.

CQ11: If $x^y = e^{x-y}$ prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$ **Ans:** Taking log of both sides, we have y. log x = (x - y) log e [Log e = 1] \Rightarrow y. log x = x - y; \Rightarrow y. log x + y = x; \Rightarrow y (log x + 1) = x \Rightarrow y = $\frac{x}{(\log x+1)}$ \Rightarrow Differentiating w.r.t x we get $\frac{dy}{dx} = \frac{(\log x + 1)[1-(x [1/x])}{(\log x + 1)^2};$ $\Rightarrow \frac{dy}{dx} = \frac{(\log x + 1-1)}{(\log x + 1)^2} = \frac{\log x}{(1+\log x)^2}$ **CQ12:** $\frac{d}{dx} [\log (x + \sqrt{x^2 + a^2})]$ **Ans:** Let y = $(x + \sqrt{x^2 + a^2})$ Thus $\frac{dy}{dx} = [1 + \frac{1}{2\sqrt{x^2 + a^2}}, \frac{d}{dx}(x^2 + a^2)] = [1 + \frac{1}{2\sqrt{x^2 + a^2}}, 2x] = [1 + \frac{x}{\sqrt{x^2 + a^2}}] = \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} = \frac{y}{\sqrt{x^2 + a^2}}$ Thus $\frac{dy}{dx} = \frac{y}{\sqrt{x^2 + a^2}}$ Now, $\frac{d}{dx} [\log y] = \frac{1}{y} \times \frac{dy}{dx}; = \frac{1}{y} \times \frac{y}{\sqrt{x^2 + a^2}} = \frac{1}{\sqrt{x^2 + a^2}}$

HIGHER ORDER DERIVATIVE

- $\frac{dy}{dx}$ is known as first order derivative of 'y' w.r.t 'x'.
- If we differentiate $\frac{dy}{dx}$ again w.r.t 'x', we will get 2nd order derivative of 'y' w.r.t. 'x', written as $\frac{d^2y}{dx^2}$.

CQ13: If
$$y = ae^{mx} + be^{-mx}$$
 prove that $\frac{d^2y}{dx^2} = m^2y$.
Ans: $\frac{dy}{dx} = \frac{d}{dx}(ae^{mx} + be^{-mx}) = ame^{mx} - bme^{-mx}$
 $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(ame^{mx} - bme^{-mx})$
 $= am^2e^{mx} + bm^2e^{-mx} = m^2(ae^{mx} + be^{-mx}) = m^2y$.
CQ14: Find third order derivative of log $[(3x + 4)^{1/2}]$
Ans: $y^2 = \frac{1}{2} \cdot \frac{1}{(3x+4)}$. $3 = \frac{3}{2(3x+4)}$

$$\mathbf{y}^{**} = \frac{3}{2} \cdot \frac{d}{dx} \left[\frac{1}{(3x+4)} \right] = \frac{3}{2} \cdot (-1) \frac{3}{(3x+4)^2} = -\frac{3}{2} \cdot \frac{3}{(3x+4)^2} = -\frac{9}{2} \cdot \frac{1}{(3x+4)^2}$$
$$\mathbf{y}^{***} = -\frac{9}{2} \cdot \frac{d}{dx} \left[\frac{1}{(3x+4)^2} \right] = -\frac{9}{2} \cdot (-2) \cdot \left[\frac{3}{(3x+4)^3} \right] = \frac{27}{(3x+4)^3}$$

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Lectures & Books,

 YouTube
 Telegram
 Whatsapp: 8888111134
 Www.pranavchandak.com

APPLICATIONS OF DIFFERENTIAL CALCULUS

• Gradient (slope) of the curve is given by $\frac{dy}{dy}$.

CQ18: Find the gradient of the curve $y = 3x^2 - 5x + 4$ at the point (1, 2).

Ans: $\frac{dy}{dx} = 6x - 5 = 6(1) - 5 = 1$. Thus, gradient of the curve at (1, 2) is 1.

✤ To find out Minima & Maxima of the function.

Steps to find out Minima & Maxima of the function:

- 1. Find f '(x).
- 2. Put f'(x) = 0 & obtain the values of 'x' from the equation formed.
- 3. Find f "(x).

YouTube

- 4. Put the values of 'x' obtained in step 2 in f "(x).
 - If result > 0, then that value of 'x' is Minima.
 - If result < 0, then that value of 'x' is Maxima.</p>
 - If Result = 0, it means 2nd order derivative test failed.

We will use 1st order derivative test. If it also fails, then such point is neither minima nor maxima.

Unstagram <u>Whatsapp: 8888111134</u>

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

Such point is called "Point of Inflexion".

PC Note: By Putting Minima in f(x), we will get the **minimum value** of the function. By Putting Maxima in f(x), we will get the **maximum value** of the function.

Q19. Find the minimum & maximum value of $f(x) = x^3 + 2x^2 - 4x + 6$. **Ans:** Step 1: $f'(x) = 3x^2 + 4x - 4$. Step 2: $3x^2 + 4x - 4 = 0 \Rightarrow x = -2, \frac{2}{3}$ Step 3: f''(x) = 6x + 4. Step 4: Putting x = -2 in $f''(x) \Rightarrow 6(-2) + 4 = -12 + 4 = -8$ which is less than 0. Thus x = -2 is Minima. Putting $x = \frac{2}{3}$ in $f''(x) \Rightarrow 6(\frac{2}{3}) + 4 = 4 + 4 = 8$ which is greater than 0. Thus $x = \frac{2}{3}$ is Maxima \Rightarrow Minimum value of function $= (-2)^3 + 2(-2)^2 - 4(-2) + 6 = -8 + 8 + 8 + 6 = 14$. \Rightarrow Maximum value of function $= (\frac{2}{3})^3 + 2(\frac{2}{3})^2 - 4(\frac{2}{3}) + 6 = \frac{8}{27} + \frac{8}{9} - \frac{8}{3} + 6 = \frac{122}{27}$.

Total Cost Function C(x): Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost. Variable cost depends upon the number of units produced (i.e value of x) whereas fixed cost

is independent of the level of output x.

> Total Cost C(x) = VC + FC = V(x) + F(x)

> Average cost = $\frac{\text{Total Cost}}{\text{No.of units}} = \frac{C(x)}{x}$.

* Total Revenue Function R(x): It is the amount received by selling 'x' units @ Rs. 'p' per unit.

- > Total Revenue $R(x) = p \times x$.
- > Average Revenue = $\frac{\text{Total Revenue}}{\text{No.of units}} = \frac{\text{R}(x)}{x}$
- ✤ Profit Function P(x): Revenue Function Cost Function = R(x) C(x).
- * Break Even Point (BEP): It is the point at which revenue = cost.[@ BEP: R(x) = C(x)].* Marginal Cost (MC): Cost of producing an additional unit.MC = $\frac{d}{dx}[C(x)]$.* Marginal Revenue (MR): Revenue from selling an additional unit.MR = $\frac{d}{dx}[R(x)]$.* Marginal Profit (MP): Profit from selling an additional unit.MP = $\frac{d}{dx}[P(x)]$

* Marginal Propensity to Consume (MPC): The consumption function C = F(Y) expresses the relationship between the total consumption and total Income (Y), then the marginal propensity to consume is defined as the rate of Change consumption per unit change in Income i.e. $\frac{dC}{dY}$.

By consumption we mean expenditure incurred in on Consumption.

* Marginal Propensity to save (MPS): Saving (S) is the difference between income (I) & consumption (c) given by $\frac{dS}{dy}$.

CQ20: Total cost of producing 20 items of a commodity is Rs. 205, while total cost of producing 10 items is Rs. 135. Assuming that the cost function is a linear function, find the cost function and marginal cost function.

Ans: Let cost function be C(x) = ax + b [x being no. of items and a, b being constants] - (i) Given, C(x) = 205 for x = 20 and C(x) = 135 for x = 10.

Putting these values in (i), 205 = 20a+b - (ii) & 135 = 10a+b - (iii)

(ii) - (iii) gives, 70 = 10a or, a = 7

From (iii), b = 135 - 10a = 135 - 70 = 65

Required cost function is given by C(x) = 7x + 65. Marginal cost function = $\frac{d}{dx}C(x) = 7$.

- **CQ21:** A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is Rs. 9 lacs. The additional cost for producing each clock is Rs. 300. Each clock is sold at Rs. 750. During the first month, 1,500 clocks are produced and sold.
 - (i) What profit or loss company incurs during the first month, when all the 1,500 clocks are sold?
 - (ii) Determine the break-even point.

Ans: Cost function C(x) for 'x' clocks = 9,00,000 (FC) + 300x (VC).

Revenue function R(x) from 'x' clocks = $p \times x = 750 \times x = 750x$.

(i) Profit function P(x) = R(x) - C(x) = 750x - [9,00,000 + 300x] = 450x - 9,00,000.

Thus, when all 1500 clocks are sold = $450 \times 1500 - 9,00,000 = - Rs. 2,25,000 = Loss of Rs. 2,25,000$ (ii) At BEP, C(x) = R(x);

 \Rightarrow 9,00,000 + 300x = 750x; \Rightarrow 450x = 9,00,000 \Rightarrow x = 2,000 units. Hence, 2000 clocks have to be sold to achieve the break-even point.

CQ22: A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend Rs. 2 lakhs for the technical informations. The cost of setting up the machine is Rs. 88,000 and the cost of producing each unit is Rs. 30, while each floppy could be sold at Rs. 45. Find:

(i) Total cost function for producing x floppies; & (ii) Break- Even point. **Ans: (i)** Total Cost function C(x) = FC + VC = 2,88,000 + 30x. Revenue function $R(x) = p \times x = 45x$. (ii) At BEP, C(x) = R(x); $\Rightarrow 2,88,000 + 30x = 45x$; $\Rightarrow 15x = 2,88,000$ $\Rightarrow x = 19,200$ units.

Hence, 19,200 units have to be sold to achieve the break-even point.

CQ23: The total cost function of a firm is $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10$, where C is the total cost and x is output. A tax at Rs. 2 per unit of output is imposed and the producer adds it to his cost. If the market demand function is given by p = 2530 - 5x, where p is price p.u of output, find (i) Profit maximizing output & (ii) Price for maximum profit. **Ans:**

After imposition of tax of Rs. 2 per unit, the total new cost is $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10 + 2x$; Revenue Function $R(x) = p \times x = (2530 - 5x) \times x = 2530x - 5x^2$;

(i) $P(x) = R(x) - C(x) = [2530x - 5x^2] - [\frac{x^3}{3} - 5x^2 + 28x + 10 + 2x] = -\frac{x^3}{3} + 2500x - 10.$

We know that P(x) = profit per unit & P'(x) is change in profit for additional unit.

We want profit maximizing output [i.e output at which profit is maximum] & $P^{*}(x) = 0$.

$$P'(x) = \frac{-3x^2}{3} + 2500 = -x^2 + 2500.$$

Putting P'(x) = 0, we get 'x' = ± 50. Since output cannot be negative, we consider x = 50. P ''(x) = -2x.

Putting the value of 'x' = 50 in P''(x), we get -2.50 = -100 which is less than '0'.

Thus x = 50 is maxima. Thus, the profit is maximum at x = 50.

(ii) Putting x = 50 in demand function, the corresponding price is $p = 2530 - 5 \times 50 = Rs. 2280$. Price for maximum profit = Rs. 2280.

CQ24: The cost function of a company is given by: $C(x) = 100x - 8x^{2+\frac{x^{3}}{3}}$

Find the level of output at which: (i) Marginal cost is minimum& (ii) Average cost is minimum.

Ans: Average Cost A(x) = $\frac{C(x)}{x} = [100x - 8x^{2} + \frac{x^{3}}{3}]/x = 100 - 8x + \frac{x^{2}}{3}$. A'(x) = $-8 + \frac{2x}{3}$; & A''(x) = $\frac{2}{3}$; Marginal Cost M(x) = C'(x) = $\frac{d}{dx}[100x - 8x^{2} + \frac{x^{3}}{3}] = 100 - 16x + x^{2}$ M'(x) = -16 + 2x; & M''(x) = 2. (i) Marginal Cost M(x) is Minimum or Maximum when M'(x) = 0. $-16 + 2x = 0 \Rightarrow x = 8$. Putting x = 2 in M''(x), we get '2' which is greater than 0, thus x = 2 is Minima. Thus, Marginal cost is minimum at x = 8. (ii) Average Cost A(x) is Minimum or Maximum when A'(x) = 0. $-8 + \frac{2x}{3} = 0 \Rightarrow x = 12$. Putting x = 12 in A''(x), we get $\frac{2}{3}$ which is greater than 0, thus x = 12 is Minima. Thus, Average cost is minimum at x = 12. Minimum Average Cost = $100 - 8(12) + \frac{(12)^{2}}{3} = 100 - 96 + 144/3 = 52$.

Space for PC Class Note:

DIFFERENTIAL CALCULUS - QUESTION BANK

SN		7A. DIFFERENCIAL	CALCULAS		Ans
Q1	D _{XY} represents				A
	(a) dy/dx	(b) dx/dy	(c) f(x)	(d) f(y)	
Q2	If y = $5x^2$ then $\frac{dy}{dx}$ is	3			A
	(a) 10x	(b) 5x	(c) 2x	(d) None	
Q3	If $y = x^3$ then $\frac{dy}{dx}$ is				С
	$(\alpha) \frac{x^4}{4}$	(b) $-\frac{x^4}{4}$	(c) 3x ²	(d) -3x ²	
Q4	The derivative of	$\frac{x^3}{2}(x > 0)$ is			B
	(a) $2 \frac{x^2}{3}$	(b) $3\frac{x^2}{2}$	(c) 5 ^{2x/5}	(d) 5 ^{5x/2}	
Q5	Find $\frac{dy}{dx}$, when y = 10	Ох ⁸			A
	(a) 80x ⁷	(b) 10x ⁷	(c) 80x ⁸	(d) None	
Q6	If $f(x) = x^k$ and $f'(1)$) =10 the value of k i	s		A
	(a) 10	(b) -10	(c) 1/10	(d) None	
Q7	If y = $-3x^{-7/3}$ then $\frac{dy}{dt}$	<u>y</u> is			Α
	(α) 7x ^{-10/3}	(b) -7x ^{-10/3}	(c) $-\frac{7}{3}x^{-10'3}$	(d) None	
Qð	If 1 st order deriva	tive of $f(x) = 3x^2 + 2$	and f(0) = 0 then f(2)) is	A
	(a) 12	(b) 21	(c) 10	(d) 1	
Q9	If $y = 2x + x^2$ then	^{dy} is			Α
	(a) 2(x+1)	(b) 2(x-1)	(c) x+1	(d) x-1	
Q10	If $y = 4x^3 - 7x^4$ then	$\frac{dy}{dx}$ is			A
	(a) 2x(-14x ² + 6x)	(b) 2x(14x ² + 6x)	(c) 2x(14x ² -6x)	(d) None	
Q11	If $f(x) = x^3 + 5x^2 - 8$	the value of 1st deriv	vative of f(x) when x	=2 is	Α
	(a) 32	(b) 33	(c) 23	(d) 34	
Q12	Differentiate 3x ² -	- 5x - 2 with respect	to x.		B
	(α) 6	(b) 6x + 5	(c) 3x ² + 5	(d) 5	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

Q13	$\frac{d}{dx}(x - 1)(x - 2)$ is each	qual to			A
	(a) 2x-3	(b) 3x-2	(c) 1	(d) None	
Q14	If y = ×(x-1) (x-2) th	en dy/dx is			A
	(a) 3x ² -6x + 2	(b) - 6x ² + 2	(c) 3x ² + 2	(d) 3x ³ + 5	
Q15	The derivative of ^x	$\frac{x^2-1}{x}$ is			A
	(a) $1 + \frac{1}{x^2}$	(b) $1 - \frac{1}{x^2}$	(c) $\frac{1}{x^2}$	(d) None	
Q16	The differential co	efficients of $\frac{x^2 - 1}{x}$ is			B
	(a) $1 + \frac{1}{x^2}$	(b) $1 - \frac{1}{x^2}$	(c) $\frac{1}{x^2}$	(d) None	
Q17	If $y = \left[\frac{(1-x)}{x}\right]^2$ then $\frac{d}{dx}$	^{ly} is			B
	$(\alpha) 2(x^{-3} + x^{-2})$	(b) 2(-x ⁻³ + x ⁻²)	(c) 2(x ⁻³ -x ⁻²)	(d) None	
Q18	$y = 9x^4 - 7x^3 + 8x^2 - \frac{8}{x}$	+ $\frac{10}{x^3}$ then $\frac{dy}{dx}$ is			A
	(a) 36x ³ -21x ² +16x+8	0X ⁻² -30X ⁻⁴	(b) 36x ³ -21x ² +16x- 8	3x ⁻² +30x ⁻⁴	
	(c) 36x ³ +21x ² +16x+8	3x ⁻² +30x ⁻⁴	(d) None		
Q19	If $y = (3x^2 + 1)(x^3 +$	- 2x) then ^{dy} is	·		A
	(a) 15x ⁴ +21x ² +2	(b) 15x ³ +21x ² +2	(c) 15x ³ +21x+2	(d) None	
Q20	Differentiate y w.r	.t. x when y = (x² - 2>	<) (x ² +1)		С
	(a) 4x ³ + 6x ² - 2x+2	(b) 4x ³ -6x + 2	(c) $4x^3 - 6x^2 + 2x - 2$	2 (d) None	
Q21	If $f(x) = x^2 - 6x + 8$ th	nen f'(5)-f'(8) is equa	l to		B
	(a) f' (2)	(b) 3f' (2)	(c) 2 f' (2)	(d) None	
Q22	If $x^2 - y^2 + 3x - 5y = 0$ the second sec	nen 3)			A
	(a) (2x + 3) (2Y+5) ⁻¹	(b) (2x + 3) (2y-5) ⁻¹	(c) (2x-3) (2y-5) ⁻¹	(d) None	
Q23	If $x^2 + y^2 - 2x = 0$ th	en ^{dy} is			A
	(a) $\frac{(1-x)}{y}$	(b) $\frac{(1+x)}{y}$	(c) $\frac{(\times -1)}{y}$	(d) None	
Q24	If $y = ax^3 + bx^2 + cx$	$x + d$ then $\frac{dy}{dx}$ is equal	to		A
	(a) $3ax^2 + 2bx + c$	(b) $\frac{ax^2}{4} + \frac{bx^3}{3} + \frac{\alpha^2}{2} + dx$	x (c) 0	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telgram
 Whatsapp: 8888111134

 YouTube
 Telegram
 Whatsapp: 8888111134

Q25	If $y = (x - x^{-1})^2$	then ^{dy} is			Α		
	(a) 2x - 2x ⁻³	(b) 2x + 2x ⁻³	(c) 2x + 2x ³	(d) 2x - 2x ³			
Q26	If $y = (x^{1/3} - x^{-1/3})$ th	nen <u>dy</u> is			Α		
	(α) 1-x ⁻² +x ^{-2/3} -x	-4/3	(b) 1 + x ⁻² + x ^{-2/3}	³ - x ^{-4/3}			
	(c) 1 + x^{-2} + $x^{-2/3}$ +	- X ^{-4/3}	(d) None				
Q27	$y = 2x^{3/2}(x^{1/2}+2(x^{1/2}+2))^{1/2}$	^{/2} -1) then dy/dx is	·		Α		
	(α) 4x+5x(x-6) ^{1/2} x	(1/2	(b) 4x+5x(x-3) ^{1/}	^{/2} X ^{1/2}			
	(c) 4x+5x(x-2) ^{1/2} x	1/2	(d) None				
Q28	Find $\frac{dy}{dx}$ of $\left(\frac{x^2}{a^2} + \frac{y}{b}\right)$	Find $\frac{dy}{dx}$ of $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\right)$					
	(a) $-b^2x/a^2y$	(b) $-b^2y/a^2x$	(c) $-b^{2}/a^{2}$	(d) None			
Q29	The gradient of	the curve y = 2x ³ -3	$x^2 - 12x + 8$ at $x = 0$	is	Α		
	(a) -12	(b) 12	(c) 0	(d) 1			
Q30	The gradient of	the curve y = 2x ³ - 5	5x ² - 3x at x = 0 is		B		
	(α) 3	(b) -3	(c) 1/3	(d) -1			
Q31	If $x^{3}-2x^{2}y^{2} + 5x +$	y- 5 = 0 then $\frac{dy}{dx}$ at >	< =1 y =1 is equals to	0	A		
	(a) 4/3	(b) -4/3	(c) ³ ⁄4	(d) None			
Q32	$If \frac{x^2}{a^2} - \frac{y^2}{a^2} = 1; \frac{dy}{dx} \in C$	can be expressed as	S		D		
	$(a) \frac{x}{a}$	(b) $\frac{x}{\sqrt{x^2 - a^2}}$	(c) $\frac{1}{\sqrt{r^2}}$	(d) $\frac{x}{y}$			
	u	va u	$\sqrt{\frac{x}{a^2}} - 1$	<i>y</i>			
Q33	If $y = 1 + x + \frac{x^2}{2!}$	$+\frac{x^3}{3!}+\ldots+\frac{x^n}{n}+\cdots\infty$ the	$ en \frac{dy}{dx} - y \text{ is } \underline{\qquad}. $		C		
	(a) 1	(b) -1	(c) 0	(d) None			
Q34	The derivative c	of e° is			A		
	(α) Ο	(b) 1	(c) e	(d) ∞			
Q35	If $f(x) = e^{ax^2 + bx + ax^2}$	then f '(x) is			B		
	(a) e^{ax^2+bx+c}		(b) e^{ax^2+bx+c} (2c	ax + b)			
	(c) 2ax + b		(d) a+b				
Q36	If $y = e^x + e^x$ the	$ en \frac{dy}{dx} - \sqrt{y^2 - 4} $ is eq	ual to		C		

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

	(α) 1	(b) -1	(c) 0	(d) None	
Q37	If $y = e^{\sqrt{2x}} \frac{dy}{dx}$ is call	culated as			Α
	$(\alpha) \frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	(b) $e^{\sqrt{2x}}$	(c) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	(d) None	
Q38	$\frac{d}{dx}e^{2logx}$ is equal to	·			B
	(a) 2	(b) 2x	(c) x ²	(d) 0	
Q39	If x ^y y ^x = M, M is cor	stant then $\frac{dy}{dx}$ is equ	al to		B
	$(\alpha) \frac{-y}{x}$	(b) $\frac{-y(y+x\log y)}{x(y\log x+x)}$	(c) $\frac{y + x \log y}{y \log x + x}$	(d) None	
Q40	If $f(x) = 5x^{\alpha} + 10\alpha^{x} + 10\alpha^{x}$	$3a^{\alpha}$ then $\frac{dy}{dx}$ equals	to		B
	(a) 5ax ^{a-1} + 10xa ^{x-1} +	3a.a ^{a-1}	(b) 5ax ^{a-1} +10a×loga		
	(c) 5xªlogx+10xa ^{x-1}		(d) None		
Q41	The derivative of y	$x = \sqrt{x + 1}$ is			С
	(a) $1/\sqrt{x + 1}$	(b) $-1/\sqrt{x + 1}$	(c) $1/2\sqrt{x+1}$	(d) None	
Q42	If $y = \frac{1}{\sqrt{x}}$ then $\frac{dy}{dx}$ is	equal to			С
	(a) $\frac{1}{2x\sqrt{x}}$	(b) $\frac{-1}{x\sqrt{x}}$	(c) $-\frac{1}{2x\sqrt{x}}$	(d) 2 <i>x</i>	
Q43	If $y = x^{-1/2}$ then $\frac{dy}{dx}$	is			A
	(a) $(-1/2)x^{-3/2}$	(b) $(1/2)x^{-3/2}$	(c) $(1/2)x^{3/2}$	(d) None	
Q44	The derivation of t	he function $\sqrt{x + \sqrt{x}}$	ā is		С
	(a) $\frac{1}{2\sqrt{x+\sqrt{x}}}$	(b) $1 + \frac{1}{2\sqrt{x}}$	(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$	(d) None	
Q45	Differentiate $\sqrt{1}$ +	x^2 w.r.t.x, we get _	·		B
	$(\alpha) \frac{2x}{\sqrt{1-x^2}}$	(b) $\frac{x}{\sqrt{1+x^2}}$	(c) $\frac{x^2}{\sqrt{1+x^2}}$	(d) None	
Q46	Let $f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$) ² . <i>f</i> ′(2) will be	·		A
	(a) ³ /4	(b) ½	(c) 0	(d) None	
Q47	Find the first deriv	vative of $y = \log_e x$			A
	(a) $\frac{1}{x}$	(b) e.log x	(c) $\frac{1}{x}e$	(d) None	
Q48	If y = log 5x then $\frac{dy}{dy}$; is			A

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) x ^{-1A}	(b) x	(c) 5x ⁻¹	(d) 5x	
Q49	Differentiate a [×] + >	$k^{\alpha} + \alpha^{\alpha}$ with respect	to x.		A
	(α) α [×] loga + αx ³⁻¹	(b) a [×] loga + ax ^a	(c) a [×]	(d) $a^{x} + ax^{a-1}$	
Q50	$\frac{d}{d}\sqrt{logx}$				Α
	$\frac{dx}{(a)} \frac{1}{\frac{1}{2x\sqrt{\log x}}}$	(b) $2x.\sqrt{logx}$	(c) $\frac{1}{\sqrt{logx}}$	(d) $\frac{1}{x}$	
Q51	If $y = x^{10} + 5log3x$	+ $6e^{2x}$ + 10 then $\frac{dy}{dx}$ is	S		B
	$(-) 10^{-9} \cdot 15^{-1} \cdot 10^{-2}$	$dx = \frac{5}{2}$	(-) 1 0 ⁹ . ⁵ . 0 - ²		
	(d) 10x°+15x+ 12e ² ^	(b) $10x^{\circ} + \frac{-+}{x} + 12e^{-x}$	(c) $10x^{\circ} + \frac{-}{x} + 6e^{2x}$	(d) None	
Q52	$\frac{d}{dx} \Big(log \big(\sqrt{x-1} + \sqrt{x} \big) \Big)$	$\overline{(+1)}$			A
	$(\alpha) \frac{1}{2\sqrt{x^2-1}}$	(b) $\frac{1}{2\sqrt{x^2+1}}$	(c) $\frac{1}{\sqrt{x-1}+\sqrt{x+1}}$	(d) None	
Q53	Differentiate 2×x ⁵ v	with respect to x.			A
	(α) x ⁵ 2×log _e 2 + 5.2×x	4	(b) x ⁵ 2 ^x logx + 2 ^x logx		
	(c) 2 ^x logx + x ⁵		(d) x ⁴ log _e x + 2 ^x		
Q54	Differentiate 2×.loc	gx with respect to x.			С
	(a) 2 [×] logx + 22	(b) $\frac{2}{x}\log x + x\log x x$	(c) $\frac{2^x}{x}$ + 2 ^x log2logx	(d) $\log_{2x} + \frac{1}{x}$	
Q55	$\frac{d}{dx}$ (x log x) is equal	to			A
	(a) (1+ log x)	(b) $\frac{1}{\log x}$	(c) log x	(d) $\frac{x}{\log x}$	
Q56	The derivative of x	² log x is			B
	(a) 1+2log x	(b) x (1 + 2 log x)	(c) 2 log x	(d) None	
Q57	Differentiate e [×] log	gx with respect to x.			С
	(a) $\frac{e^x}{x}$	(b) $\frac{e^x}{x} logx$	(c) $\frac{e^x}{x}(1 + x \log x)$	(d) e ^{log x}	
Q58	If xy = 1 then $y^2 + \frac{d}{d}$	$\frac{y}{x}$ is equal to			B
	(α) 1	(b) 0	(c) -1	(d) 2	
Q59	Given e ^{xy} - 4xy = 0;	$\frac{dy}{dx}$ can be proved to	o be		A
	(a) -y/x	(b) y/x	(c) x/y	(d) None	
Q60	If $x^{3}-x\gamma^{2}+y^{2}+2 = 0$ the the second secon	hen $\frac{dy}{dx}$ is			A

	$(x)(y^2-3x^2)$	$(y^2 - 3x^2)$	$(x^2)^{(y^2-3x^2)}$	$(y^2 - 3x^2)$	
	$(\mathbf{d}) \frac{1}{2y(3-x)}$	(D) $\overline{2y(x-3)}$	(C) $\overline{2y(3+x)}$	(d) ${(3-x)}$	
Q61	If $f(xy) = x^3 + y^3 - 3$	$axy = 0 \frac{dy}{dx} can be fo$	und out as		B
	(a) $\frac{ay-x^2}{y^2+ax}$	(b) $\frac{ay - x^2}{y^2 - ax}$	(c) $\frac{ay+x^2}{y^2+ax}$	(d) None	
Q62	Find $\frac{dy}{dx}$ for $x^2y^2 + 3z^2$	xy + y = 0			B
	$(\alpha) \frac{(2xy+y)}{(x+2x)}$	(b) $-\frac{(2xy^2+3y)}{(2x^2y+3x+1)}$	(c) $\frac{x^2y^2-2y}{2xy}$	(d) $-\frac{(2x^2y-3y)}{(x^2y+3x)}$	
Q63	If $x(1 + y)^{1/2} + y(1 + y)^{1/2}$	$(x)^{1/2} = 0$ then $\frac{dy}{dx}$ is			A
	(a) -(1 + x ²) ⁻¹	(b) (1 + x ²) ⁻¹	(c) $-(1 + x^2)^{-2}$	(d) $(1 + x^2)^{-2}$	
Q64	If ax²+ 2hxy+by²+2¢	$gx+2fy + c = O \frac{dy}{dx}$ is _			A
	(a) $-\frac{(ax+hy+g)}{(hx+by+f)}$	(b) $\frac{(ax+hy+g)}{(hx+by+f)}$	(c) $\frac{(ax-hy+g)}{(hx-by+f)}$	(d) $\frac{h(ax-y+g)}{(x-by+f)}$	
Q65	If $x^2 + 3xy + y^2 - 4 =$	= 0 then $\frac{dy}{dx}$ is			A
	$(\alpha) - \frac{(2x+3y)}{(3x+2y)}$	(b) $\frac{(2x+3y)}{(3x+2y)}$	(c) $-\frac{(3x+3y)}{(2x+3y)}$	(d) $\frac{(3x+3y)}{(2x+3y)}$	
Q66	If $x^2e^y + 4\log x = 0$ t	hen ^{dy} is			С
	$(\alpha) \frac{e^{y}2x^2+4+8x}{x^3 e^{y}}$	(b) $\frac{e^{y}2x^2-4}{x^3e^{y}}$	(c) $\frac{-e^{y}2x^2-4}{x^3e^{y}}$	(d) None	
Q67	$F(x) = \log_e\left(\frac{x-1}{x+1}\right)\alpha$	nd $f'(x) = 1$ then the	e value of x =		A
	(α) 1	(b) 0	(c) $\pm\sqrt{3}$	(d) $\pm \sqrt{2}$	
Q68	Let $p = x^3 \log x$, so	what is the value of	$\frac{d^2p}{dx^2}$?		A
	(a) 5x + 6x log x	(b) 5x ² + logx ²	(c) 5x² + 6x logx	(d) None	
Q69	Differentiate $\frac{x^2}{e^x}$ wi	th respect to x.			B
	(a) $e^x + \frac{2}{x}$	(b) $\frac{x(2-x)}{e^x}$	(c) e [×] logx	(d) e^{2x}	
Q70	The derivative of	$\frac{3-5x}{3+5x}$ is			С
	(a) 30(3+ 5x) ⁻²	(b) 1 / (3+5x) ²	(c) $-\frac{30}{(3+5x)^2}$	(d) None	
Q71	If $f(x) = \frac{x^2 + 1}{x^2 - 1}$ then	f'(x) is			A
	$(\alpha) - \frac{4x}{(x^2-1)^2}$	(b) $4x(x^2-1)^2$	(c) $\frac{x}{(x^2-1)^2}$	(d) 4 × +1	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

Q72	x^2-1 dy				Α
	If $y = \frac{x}{x^2+1}$ then $\frac{dy}{dx}$ if	S			
	(α) 4x(x ² +1) ⁻²	(b) 4x(x ² +1) ²	(c) 4x(x ² -l) ⁻²	(d) None	
Q73	Find value of $\frac{dy}{dx}$ if	y = x [×]			D
	(a) $x^{x}(1 + \log x)$	(b) 1+log x	(c) y. log x	(d) None	
Q74	If $y = f(x) = \frac{ax+b}{ax-a}$	then f'(y) is			A
	(a) -x	(b) 2x	(c) x	(d) None	
Q75	If $y = \frac{x^{1/2} + 2}{x^{1/2}}$ then $\frac{d}{dx}$	^{ly} / _x is			A
	$(\alpha) - x^{-3/2}$	(b) 3x	(c) x	(d) None	
Q76	If $y = \frac{x^{1/2}(5-2x)^{2/3}}{(4-3x)^{3/4}(7-4x)^{3/4}}$	$\frac{3}{9^{4/5}}$ then the value	of $\frac{dy/dx}{y}$ is		A
	(a) $\frac{1}{2x} - \frac{4}{3(5-2x)} + \frac{4}{4(4x)}$	$\frac{9}{4-3x)} + \frac{16}{5(7-4x)}$	(b) $\frac{1}{2x} - \frac{3}{4(5-2x)} + \frac{3}{4(5-2x)}$	$-\frac{4}{9(4+3x)}+\frac{16}{(7+4x)}$	
	(c) $\frac{1}{x} - \frac{3}{4(5-2x)} + \frac{3}{9(4-x)^2}$	$\frac{4}{-3x)} + \frac{16}{5(7-4x)}$	(d) None		
Q77	If $y = \frac{(x+a)(x+b)(x+c)(x+d)}{(x-a)(x-b)(x-c)(x-d)}$ frien value al $\frac{dy/dx}{y}$ is				A
	(a) $(x + a)^{-1} + (x + b)^{-1}$	$(x + c)^{-1} + (x + c)^{-1} + (x + c)^{-1}$	d)-1 - (x - α)-1 - (x - b))⁻¹ - (x - c)⁻¹ - (x - d)⁻¹	
	(b) (x + α) ⁻¹ - (x + b	$(x + c)^{-1} + (x + c)^{-1} - (x + c)^{-1}$	d)-1 - (x - α)-1 - (x - b) ⁻¹ + (x - c) ⁻¹ - (x - d) ⁻¹	
	(c) (x - a) ⁻¹ + (x - b	$)^{-1} + (x - c)^{-1} + (x - c)^{-1}$	l) -1 - (x + α)-1 - (x + b) ⁻¹ - (x + c) ⁻¹ - (x + d) ⁻¹	
	(d) None				
Q78	If $y = \frac{(x+1)(2x-1)}{(x-3)}$ the	en $\frac{dy}{dx}$ is			A
	(a) $\frac{2(x^2-6\times-1)}{(x-3)^2}$	(b) $\frac{2(x^2+6x-1)}{(x-3)^2}$	(c) $\frac{2(x^2+6x+1)}{(x-3)^2}$	(d) None	
Q79	If $y = \frac{5x^4 - 6x^2 - 7x + 8}{5x - 6}$	then $\frac{dy}{dx}$ is			A
	(a) $(75x^4 - 120x^3 - 120x^3$	$30x^2 + 72x + 2)(5x -$	6) ⁻²		
	(b) $\frac{(75x^4 - 120x^3 + 30x^2)}{5x - 6}$	-72x+2)			
	(c) $\frac{(75x^4 - 120x^3 - 30x^2 - (5x - 61))}{(5x - 61)}$	+72x-2)			
	(d) None				
Q80	Differentiate $\frac{e^x}{logx}$	with respect to <i>x</i> .			В
	(a) $\frac{e^{x}(x \log -1)}{x(\log x)}$	(b) $\frac{e^{x}(x \log x - 1)}{x(\log x)^2}$	(c) e ^x logx	(d) None	

Q81	If $y = \frac{e^x + 1}{e^x - 1}$ then $\frac{dy}{dx}$ i	s equal to			A
	$(\alpha) \frac{-2e^x}{(e^x - 1)^2}$	(b) $2e^{x}(e^{x}-1)^{2}$	(c) $2(e^x - 1)^2$	(d) None	
Q82	Given $x = 2t + 5; y = 2t + 5$	$=t^2-2\frac{dy}{dx}$ is calculat	ed as		A
	(a) t	(b) -1/t	(c) 1/t	(d) None	
Q83	If $x = 3t^2 - 1$, $y = t^3 t$	hen $\frac{dy}{dx}$ is equal to			A
	(a) $\frac{3t^2}{6t}$ (b) $3t^2$ -1	(c) 3t + 1	(d) None		
Q84	Given $x = \alpha t^2$; $y = 2$	at $\frac{dy}{dx}$ is			С
	(a) t	(b) -1/t	(c) 1/t	(d) None	
Q85	If $x = at^2$; $y = 2at$; $\frac{d}{dt}$	$\frac{dy}{dx}_{t=2}$ is equal to			A
	(a) 1/2	(b) -2	(c) -1/2	(d) None	
Q86	If $x = \frac{1-t^2}{1+t^2}$; $y = \frac{2t}{1+t^2}$	then $\frac{dy}{dx}$ at $t = 1$ is			С
	(a) ½	(b) 1	(c) 0	(d) None	
Q87	If $u = (x^3 + 1)^5$ and	$y = (x^3 + 5x + 7)$ the	en		D
	$(\alpha) \frac{15x^2(x^3+1)^4}{3x^2+5}$	(b) $\frac{10(x^2+1)^4}{3x^2+5}$	(c) $5x(x^2+1)^4$	(d) None	
Q88	If $y = x^{2x}$ then $\frac{dy}{dx}$ is_	·			A
	(a) $2x^{2x}(1 + \log x)$	(b) 2(1 + logx)	(c) $x^{2x}(1 + \log x)$	(d) None	
Q89	If $y = (3x^2 - 7)^{1/2}$ t	hen			A
	(a) $3x(3x^2-7)^{-1/2}$	(b) $6x(3x^2 - 7)^{-1/2}$	(c) $3x(3x^2+7)^{-1/2}$	(d) None	
Q90	If $y = (6x^5 - 7x^3 + 6)^{-1}$	9) ^{-1/3} then $\frac{dy}{dx}$ is	·		A
	$(\alpha)\left(-\frac{1}{3}\right)(6x^5-7x^3)$	$(+9)^{-4/3}(30x^4 - 21x^2)$)(b) $\left(\frac{1}{3}\right) (6x^5 - 7x^3 + 9)$	$(30x^4 - 21x^2)$	
	(c) $\left(-\frac{1}{3}\right) (6x^5 - 7x^3)$	$(+ 9)^{4/3}(30x^{4\prime} - 21x^2)$	(d) None		
Q91	If $y = 5x^x$, then $\frac{dy}{dx}$ is	s equal to			С
	(a) 5x×(1 - logx)	(b) 5x ^{x-1}	(c) 5x ^x (1 + logx)	(d) None	
Q92	Let $y = \sqrt{2x} + 3^{2x}$ th	en $\frac{dy}{dx}$ is equal to			A

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telegram
 Whatsapp: 8888111134

	(a) $\frac{1}{\sqrt{2x}}$ + 2.3 ^{2x} log e ³ (b) $\frac{1}{\sqrt{2x}}$	(c) 2. $3^{2x} \log e^3$ (d) None	
Q93	Let $f(y) = x^{x^3}$ then $f'(y)$ is		B
	(a) $x^3[x^2 + 3x.\log x]$	(b) $x^{x^3}[x^2 + 3x^2.\log x]$	
	(c) $x^{x^3}[x^2 - 3x.\log x]$	(d) None	
Q94	If $x^y = e^{x-y}$ then $\frac{dy}{dx}$ is		В
	(a) $\frac{\log x}{(1 - \log x)^2}$ (b) $\frac{\log x}{(1 + \log x)^2}$	(c) $\frac{\log x}{(1 - \log x)}$ (d) $\frac{\log x}{(1 + \log x)}$	
Q95	If $y = (1 + x)^{2x}$ then the value of $\frac{1}{y} \times \frac{dy}{dx}$	is	A
	(a) $2[x(x+1)^{-1}+\log(x+1)]$	(b) x(x+1) ⁻¹ +log(x+1)	
	(c) 2[x(x+1) ⁻¹ -log(x+1)]	(d) None	
Q96	If $y = x^{\alpha} + \alpha^{x} + x^{x} + \alpha^{\alpha}$ then the value of	$\frac{1}{y} \times \frac{dy}{dx} \times $ is	A
	(a) x ⁻² (1 - logx) (b) × ² (1 - logx)	(c) x²(1 + logx) (d) None	
Q97	If y = x^{x^x} then the value of $\frac{dy}{dx}$ is	<u>-</u> .	Α
	(a) $x^{x^{x}} [x^{x-1} + \log x \cdot x^{x} (1 + \log x)]$	(b) $x^{x^x} [x^{x-1} + \log x.(1 + \log x)]$	
	(c) x ^{x^x} [x ^{x-1} + logx.x ^x (1 - logx)]	(d) x ^{x^x} [x ^{x-1} - logx.x ^x (1 - logx)]	
Q98	If $y = \sqrt{x}^{\sqrt{x}}$ then $\frac{dy}{dx}$ is equal to		B
	(a) $\frac{y^2}{2-y \log x}$ (b) $\frac{y^2}{x(2-y \log x)}$	(c) y logx (d) $\frac{y(\log x+2)}{4\sqrt{x}}$	
Q99	If $y = x^{\log x}$ then $\frac{dy}{dx}$ is		Α
	(a) $x^2 - y^2 + 3x - 5y = 0$	(b) $(2x + 3)(2y + 5)^{-1}$	
	(c) $2 \times^{\log x - 1} . \log x$	(d) None	
Q100	If $y = x^{x^{xx}}$ then $\frac{dy}{dx}$ is		A
	(a) $\frac{y^2}{[x(1-y\log x)]}$ (b) $\frac{y}{[(1-y\log x)]}$	(c) $\frac{y}{[x(1+y\log x)]}$ (d) $\frac{y^2}{[(1+y\log x)]}$	
Q101	The derivative of log x.e ^x is		Α
	(a) $\frac{e^x}{x} + e^x(logx)$ (b) $e^x\left(\frac{1}{x} - logx\right)$	(c) $e^{x}(1 + \log x)$ (d) None	
Q102	If $y = (3x^3 - 5x^2 + 8)^3$ then $\frac{dy}{dx}$ is		Α
	(a) 3(3x ³ -5x ² + 8) ² (9x ² -10x)	(b) 3(3x ³ -5x ² +8) ² (9x ² +10x)	
	(c) $3(3x^3-5x^2+8)^2(10x^2-9x)$	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak AcademyTo Buy Video Lectures & Books,VouTubeTelegramMatsapp: 8888111134www.pranavchandak.com

Q103	Differentiate log(x	$(x + \sqrt{x^2 + a^2})$ with res	spect to x.		С
	(a) $\frac{1}{\sqrt{x}}$	(b) $\frac{1}{\sqrt{x^2 - a^2}}$	(c) $\frac{1}{\sqrt{x^2+a^2}}$	(d) $\frac{x}{\sqrt{x^2-a}}$	
Q104	Differentiate $log($	$\sqrt{x-a} + \sqrt{x-b}$) with	respect to x .		B
	$(\alpha) \frac{1}{2(x-a)(x-b)}$	(b) $\frac{1}{2\sqrt{x-a}\sqrt{x-b}}$	(c) $\frac{1}{2(\sqrt{x-ab)}}$	(d) $\frac{1}{\sqrt{x-a}+\sqrt{x-b}}$	
Q105	If $y = log [(x - 1)^{1/2}]$	$(x+1)^{1/2}$] then $\frac{dy}{dx}$			A
	(a) $\left(\frac{1}{2}\right)(x^2-1)^{-1/2}$	(b) $\left(-\frac{1}{2}\right)(x^2-)^{-1/2}$	(c) $\left(\frac{1}{2}\right)(x^2-1)^{1/2}$	(d) None	
Q106	If $y = log \left[e^x \frac{(x-2)}{(x+3)} \right]^3$	^{/4} then $\frac{dy}{dx}$ is			A
	(a) $1 + \left(\frac{3}{4}\right)(x-2)^{-1}$	$-\left(\frac{3}{4}\right)(x+3)^{-1}$	(b) $1 - \left(\frac{3}{4}\right)(x-2)^{-1}$	$x + \left(\frac{3}{4}\right)(x+3)^{-1}$	
	(c) $1 + \left(\frac{3}{4}\right)(x-2)^{-1}$	$+\left(\frac{3}{4}\right)(x+3)^{-1}$	(d) None		
Q107	If $f(x) = x^3 - 2x$ then	2nd order derivative	e of f(x) is		B
	(α) 6	(b) 6x	(c) 3x ² - 2	(d) 3x	
Q108	If f(x) = x4then 3rd	order derivative of	f(x) when x = 3 is		A
	(a) 72	(b) 108	(c) 27	(d) 81	
Q109	If $x = at^2$ and $y = 2$	at then $\frac{d^2y}{dx^2}$ is			B
	(a) $\frac{1}{2at^3}$	(b) $-\frac{1}{2at^3}$	(c) 2 <i>at</i> ³	(d) None	
Q110	If $x = \frac{1-t}{1+t}$ and $t = \frac{2}{1+t}$	$\frac{d^2y}{dx^2}$ is			A
	(α) Ο	(b) 1	(c) -1	(d) None	
Q111	$y = e^t$ and $x = \log t_s$, then $\frac{dy}{dx}$ =			B
	(a) $\frac{1}{t}$	(b) <i>t</i> . <i>e</i> ^{<i>t</i>}	(c) $-\frac{1}{t^2}$	(d) None	
Q112	Find the second di	fferential coefficien	t of $y = x^2 \log x$		B
	(a) x + 2x log x	(b) 3 + 2 log x	(c) 3 log x	(d) 2x log x	
Q113	If $y = ae^{mx} + be^{-mx} t$	hen $\frac{d^2y}{dx^2}$ is			A
	(a) m²y	(b) my	(c) -m²y	(d) -my	
Q114	If y = x ^m e ^{nx} then $\frac{d^2y}{dx^2}$	[/] ₂ is			D
	(a) m(m + 1)x ^{m-2} e ^{nx} +	$-2x^{m-1}e^{nx} + n^2x^m$	(b) m(1 - m)x ^{m-2} + 2r	$mnx^{m-1}e^{nx} + x^me^{nx}$	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

	(c) m(1 - m)x ^{m-2} + 2r	$mnx^{m-1}e^{nx} + e^{nx}$	(d) m(m - 1) x ^{m-2} e ^{n×} ·	+ 2mnx ^{m-1} e ^{nx} + n ² x ^m e ^{nx}	
Q115	Find the fourth de	rivative of log[(3x +	4) ^{1/2}]		A
	(a) -243(3x + 4) ⁻⁴	(b) 243(3x + 4) ⁻⁴	(c) -243(4x + 3) ⁻⁴	(d) None	
Q116	If $y = \sqrt{x^2 + m^2}$ the	en y y1 (Where y1 = $\frac{d}{d}$	^{ly}) is equal to	-	B
	(a) - <i>x</i>	(b) <i>x</i>	(c) 1/ <i>x</i>	(d) None	
Q117	If $y = (x + \sqrt{x^2 + m})$	$(\overline{2})^n$ then $\frac{dy}{dx}$ equals to)		B
	(a) ny	(b) $\frac{ny}{\sqrt{x^2+m^2}}$	(c) $-\frac{ny}{\sqrt{x^2+m^2}}$	(d) None	
Q118	If $(x+y)^{m+n} - x^m y$	$d^n = 0$ then $\frac{dy}{dx}$ is			A
	(a) $\frac{y}{x}$	(b) $-\frac{y}{x}$	(c) $-x/y$	(d) None	
Q119	If $y = \sqrt{\frac{x}{m}} + \sqrt{\frac{m}{x}}$ the	$en \ 2xy\frac{dy}{dx} - \frac{x}{m} + \frac{m}{x} \text{ is eq}$	qual to		A
	(α) Ο	(b) 1	(c) -1	(d) None	
Q120	If $y = (x + \sqrt{x^2 - 1})$	m, then the value of	$(x^2 - 1)(\frac{dy}{dx})^2 - m^2 y^2$		C
	(a) -1	(b) 1	(c) 0	(d) None	
Q121	If $y = ae^{2x} + bxe^{2x}$	where a & b are co	nstants, value of exp	pression $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y$ is	A
	(a) O	(b) 1	(c) -1	(d) None	
Q122	If $y = (x+1)^{1/2} - (x+1)^{1/2}$	$(x-1)^{1/2}$ value of exp	pression $(x^2 - 1) \frac{d^2 y}{dx^2}$	$+s\frac{dy}{dx}-\frac{y}{4}$ is given by	A
	(a) O	(b) 1	(c) -1	(d) None	
Q123	If $y = log[x + (1 + x)]$	$(x^2)^{1/2}$] the value of t	he expression $(x^2 + x^2)$	$1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} \text{ is } \underline{\qquad}.$	A
	(a) O	(b) 1	(c) -1	(d) None	
Q124	If $x^2 + y^2 = \alpha^2$, then	$\frac{dy}{dx}$ at (-2, 2) is			С
	(a) 2	(b) 2	(c) 1	(d) 3	
Q125	If $f(x) = 2x^3 - 9x^2 +$	12x + 5, then 1st ord	er derivative of f(x)	equal to zero implies	B
	(a) x = 1 and x = 2		(b) x = 2 and x = - 1	I	
	(c) x = 1 and x = 1		(d) x = 2 and x = 2		
Q126	If $y = 2x^2 + 3x + 10^{-1}$	then $\frac{dy}{dx}$ at (0,0) is			С
	(α) 10	(b) 0	(c) 3	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telegram
 Whatsapp: 8888111134

Q127	The slope of the tangent to the curve $X = \frac{(t-1)}{(t+1)}$, $Y = \frac{(t+1)}{(t-1)}$ at the point $t = 2$ is				С
	(α) 9	(b) $\frac{1}{9}$	(c) -9	$(d) - \frac{1}{9}$	
Q128	Find slope of tangent of curve $Y = \frac{x-1}{x+2}$ at $x = 2$.				
	(α) 3/16	(b) 5/17	(c) 9/11	(d) None	
Q129	The curve 4y = ux So the values of u	κ² + ν passes throug ι and ν are	h the point p at (2,	3) and $\frac{dy}{dx}$ = 4 this point 'p'.	С
	(a) u = 2, v = 2	(b) u = -4, v = -4	(c) u = 4, v = 4	(d) None	
Q130	The gradient of t	he curve y=-2x³ + 3x	+ 5 at x = 2 is	·	D
	(a) -20	(b) 27	(c) -16	(d) -21	
Q131	The gradient of c	curve $y = x^3 - x^2$ at (O	, O)		B
	(a) 1	(b) 0	(c) -1	(d) None	
Q132	The gradient of the curve y = xy + 2px + 3qy at the point (3, 2) is $\frac{-2}{3}$. The values of p and q are				
	$(\alpha)\left(\frac{1}{2},\frac{1}{2}\right)$	(b) (2, 2)	(c) $\left(-\frac{1}{2},-\frac{1}{6}\right)$	(d) (0,0)	
Q133	The slope of the tangent to the curve $y = \sqrt{4x^2}$ at the point where the ordinate and the abscissa are equal is				A
	(a) -1	(b) 1	(c) 0	(d) None	
Q134	The slope of tang	ent at the point (2 -2	2) to curve x ² + xy + y	² - 4 = 0 is given by	B
	(α) Ο	(b) 1	(c) -1	(d) None	
Q135	The slope of the t the curve in the f	angent to the curve 1 st quadrant is	e y = x² -x at the poir 	nt where the line y = 2 cuts	B
	(a) 2	(b) 3	(c) -3	(d) None	
Q136	The curve y= -e ^{-x}	is			D
	(a) Concave upward for $x > 0$. (b) Concave downward for $x > 0$.				
	(c) Everywhere concave upward. (d) Everywhere concave downward.				
Q137	A function f(x) is maximum at x = c if				
	(a) (2nd order derivative of $f(x)$ when $x = c$) > 0				
	(b) (2nd order de	rivative of f(x) wher	n x =c) < 0		
	(c) (2nd order de	rivative of f(x) wher	n x =c) = 0		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube & Telgram Omegan
 Whatsapp: 8888111134

 YouTube
 Telegram
 Whatsapp: 8888111134

198

	(d) (2nd order derivative of $f(x)$ when $x \ge f(c)$)				
Q138	A function $f(x)$ is minimum at $x = b$ if				A
	(a) (2nd order der	ivative of f(x) when :	x =b) > 0		
	(b) (2nd order der	ivative of f(x) when :	x =b) < 0		
	(c) (2nd order der	ivative of f(x) when :	x = b) = 0		
	(d) (2nd order der	ivative of f(x) when :	x ≥ f(b))		
Q139	Find the maximum	and minimum value c	of $y = x^3 - 2x^2 - 4x - 1$		A
	(a) $ax \frac{13}{27}$, $min - 9$		(b) Max $\frac{1}{2}$, min – 9		
	(c) Max 9, $min - \frac{13}{27}$		(d) Max 9, $min - \frac{1}{2}$		
Q140	Find the maximum	and minimum value c	of $y = 2x^3 - 15x^2 + 36x$	+ 12	A
	(a) Max 40, Min39		(b) Max 39, Min38		
	(c) Max 41, Min 40		(d) None		
Q141	In guestion above, at which values of x maximum and minimum occur respectively?				A
	(a) 2, 3	(b) 3, 2	(c) -2, -3	(d) -3, -2	
Q142	Find the maximum and minimum value of y = $\frac{x^3}{2 + x^2 - 2x}$				
	(a) -5	(b) 5	(c) 5	(d) -5	
Q143	In question above	, at which values of :	x maximum and minir	num occur respectively?	A
	(α) -3, 1	(b) -3, -1	(c) 3, 1	(d) 3, -1	
Q144	The point of inflex	ion of the curve y=x4	' is at		D
	(a) x = 0	(b) x = 3	(c) x = 12	(d) No where	
Q145	At which values of x maximum and minimum occur respectively in respect of $y = x^5 - 5x^4 + 5x^3 - 12$				С
	(a) 1 3	(b) 0 3	(c) Both	(d) None	
Q146	At x = 3, y = $(x-2)^{6}$	x-3)⁵ is			С
	(a) A maxima	(b) A minima	(c) A point of infle	xion (d) None	
Q147	$y = x^3 - 3x^2 + 3x + 7$ has				
	(a) A maxima	(b) A minima	(c) Both	(d) None	
Q148	$y = x^2 - 6x + 1.3 has$				B
	(a) A maxima	(b) A minima	(c) Both	(d) None	
	(a) A maxima	(b) A minima	(c) Both	(d) None	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy **YouTube**

Telegram

Q149	In question above,	the extreme value	of y is		A
	(a) 4	(b) 3	(c) -4	(d) -3	
Q150	$U=5t^4+4t^3+2t^2+$	t +4 at t=-1 find du/	dt		A
	(a) -11	(b) 11	(c) -16	(d) 16	
Q151	If $e^{xy} - 4^{xy} = 4$ the	$n \frac{dx}{dy}$:			B
	(a) $\frac{y}{x}$	(b) $\frac{-y}{x}$	(c) $\frac{x}{y}$	(d) $\frac{-x}{y}$	
Q152	If x^p . $y^q = (x + y)^{p+q}$ then $\frac{dx}{dy}$:				
	(a) $\frac{y}{x}$	(b) $\frac{-y}{x}$	(c) $\frac{p}{q}$	(d) $\frac{-p}{q}$	
Q153	If $= 1 + \frac{x}{1^1} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots + \infty$, then $\frac{dx}{dy}y = $				
	(α) 1	(b) 0	(c) -1	(d) None	
Q154	$\int_{0}^{2} 1 - x dx = \underline{\qquad}.$				
	(a) 23	(b) 21	(c) 0	(d) 1	

CHAPTER 7B. INTEGRAL CALCULUS

INTRODUCTION

BASIC FORMULAE

DIFFERENTIATION	INTEGRATION	Examples
1. $\frac{d}{dx} \left[\frac{x^{n+1}}{n+1} \right] = x^n; (n \neq -1)$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C; (n \neq -1)$	$\int \mathbf{x^3} = \frac{\mathbf{x^{3+1}}}{3+1} + \mathbf{C} = \frac{\mathbf{x^4}}{4} + \mathbf{C}$
$2. \frac{\mathrm{d}}{\mathrm{dx}} (\mathrm{x}) = 1$	$\int 1.\mathrm{dx} = x + C$	$\int \sqrt{\mathbf{x}} = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{2(x^{\frac{3}{2}})}{3} + C$
$3. \frac{d}{dx} [Log x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \text{Log } x + C$	$\int \frac{1}{\sqrt{x}} = \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C = \frac{2(x^{\frac{1}{2}})}{1} = 2\sqrt{x}$
$4. \frac{d}{dx} e^x = e^x$	$\int e^{x} dx = e^{x} + C$	$\int \mathbf{x}\sqrt{\mathbf{x}} = \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + \mathbf{C} = \frac{2(x^{\frac{5}{2}})}{5} + \mathbf{C}$
5. $\frac{d}{dx}a^x = a^x$. Log α	$\int a^{x} dx = \frac{a^{x}}{\log a} + C$	$\int 3^{\mathbf{x}} = \frac{3^{\mathbf{x}}}{\log 3} + \mathbf{C}$

CONSTANT OF INTEGRATION (C)

• In integration of every function, we add "+c" (constant of integration) since $\frac{d}{dx}$ (Constant) = 0.

Let us understand this concept.

Telegram

YouTube

 $\frac{d}{dx}(x^2) = 2x \& \frac{d}{dx}(x^2 + 5) = 2x.$ Because derivative of a constant is always 'Zero.

$$\int 2x dx = x^2$$
. & $\int (2x + 5) dx = x^2$.

There may be cases when the constant was there in f(x) but it doesn't appear in f'(x) because of its derivative being 'Zero. So we always have to add a constant in integration. Such constant is "Constant of Integration".

Ognatagram <u>Whatsapp: 8888111134</u>

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

ELEMENT OF INTEGRATION

- 'dx' is called element of integration. It indicates the variable w.r.t which f(x) is to be integrated.
- In differentiation we use to write $\frac{d}{dx^3}$ & in Integration we write 'dx'.

In $\int x^5 dx$; dx indicates that x^5 is to be integrated w.r.t 'x'

CHAIN RULE [Here we have to DIVIDE by $\frac{dy}{dx}$]

Basic Rules	Chain Rule	Example
$\int x^n dx = \frac{x^{n+1}}{n+1} + C;$	$\int y^{n}.dx = \frac{y^{n+1}}{(n+1)} \div \frac{dy}{dx}$	$\int (4x+5)^6 dx = \frac{(4x+5)^{6+1}}{(6+1).4} = \frac{(4x+5)^7}{28} + C$
$\int \frac{1}{x} dx = \text{Log } x + C$	$\int \frac{1}{y} dx = \text{Log } y \div \frac{dy}{dx}$	$\int \frac{1}{(2x+5)} dx = \frac{\log(2x+5)}{2} + C$
$\int e^{x} dx = e^{x} + C$	$\int e^{y} dx = e^{y} \div \frac{dy}{dx}$	$\int e^{-3x} = \frac{e^{-3x}}{-3} = -\frac{1}{3 \cdot e^{3x}} + C$
$\int a^x dx = \frac{a^x}{\log a} + C$	$\int a^{y} dx = \frac{a^{y}}{\log a} \div \frac{dy}{dx}$	$\int 5^{(3x+5)} = \frac{5^{(3x+5)}}{(\log 5).3} + C$

RULES FOR INTEGRATION

Rules	Examples
1. $\int C. f(x) = C. \int f(x)$	$\int [7x^5] dx = 7. \int x^5 dx = 7. \frac{x^{5+1}}{5+1} = 7. \frac{x^6}{6} = \frac{7}{6} x^6 + C$
2. $\int [f(x) \pm g(x)] = \int f(x) \pm \int g(x)$	$\int [5x^4 + 3x^3 - 2] dx = 5 \int x^4 dx + 3 \int x^2 dx - 2 \int 1 dx$ $= 5 \cdot \frac{x^5}{5} + 3 \cdot \frac{x^3}{3} - 2x = x^5 + x^3 - 2x + C$

SOME SOLVED EXAMPLES

1)
$$\int (x + \frac{1}{x})^2 dx = \int x^2 dx + 2 \int dx + \int \frac{1}{x^2} dx$$

i. $= \frac{x^3}{3} + 2x + \frac{x^{-2+1}}{-2+1}$ $= \frac{x^3}{3} + 2x - \frac{1}{x} + c$
2) $\int \sqrt{x} (x^3 + 2x - 3) dx = \int x^{7/2} dx + 2 \int x^{3/2} dx - 2 \int x^{1/2} dx$
i. $= \frac{x^{7/2+1}}{7/2+1} + \frac{2x^{3/2+1}}{3/2+1} - \frac{3x^{1/2+1}}{1/2+1}$ $= \frac{2x^{9/2}}{9} + \frac{4x^{5/2}}{5} - 2x^{3/2} + c$
3) $\int (e^{2x} + e^{-4x}) dx = \int e^{2x} dx + \int e^{-4x} dx$ $= \frac{e^{2x}}{2} + \frac{e^{-4x}}{-4} = \frac{e^{2x}}{2} - \frac{1}{4e^{4x}} + c$

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 YouTube
 Telegram
 Whatsapp: 8888111134

4)
$$\int \frac{x^2}{x+1} dx = \int \frac{x^2 - 1 + 1}{x+1} dx$$

= $\int (x - 1) dx + \int \frac{dx}{x+1}$
= $\int \frac{x^2}{x+1} dx + \int \frac{dx}{x+1}$
= $\frac{x^2}{2} - x + \log(x + 1) + c$

METHOD OF SUBSTITUTION

- Sometimes, integration of a given function becomes simple by substitution of a new variable (say t) in place of the given variable 'x'.
- Element of integration (dx) is also changed to 'dt' after proper adjustments.

PC Note: Generally (not always), term (variable) on complex side is taken as 't'.

SOME SOLVED EXAMPLES

CQ1: $\int \frac{x^3}{(x^2+1)^3} dx.$

Ans: $t = (x^2 + 1)$ -----(i)

Now we have to replace 'dx' with 'dt'. SO we find relation between 'dx' & 'dt'.

Differentiating B.S w.r.t 'x', we get $\frac{dt}{dx} = 2x$;

If we observe the question carefully, we have 'x.dx' in the numerator. So we will find its value in terms of dt.

We get **x.dx** = $\frac{dt}{2}$ -----(ii); \Rightarrow we have $x^2 = (t - 1)$ from (i)-----(iii) Thus $\int \frac{x^2 \cdot x \cdot dx}{(x^2+1)^3}$ $\Rightarrow \int \frac{(t-1).dt}{2t^3}$ ---Substituting value of x² & x.dx from (ii) & (iii) $\Rightarrow \frac{1}{2} \left[\int \frac{(t)}{t^3} dt - \frac{1}{t^3} dt \right]$ $\Rightarrow \frac{1}{2} \left[\int \frac{(1)}{t^2} dt - \int \frac{1}{t^3} dt \right]$ $\Rightarrow \frac{1}{2} \left[\frac{t^{-2+1}}{-2+1} - \frac{t^{-3+1}}{-3+1} \right]$ $\Rightarrow \frac{1}{2} \left[\frac{t^{-1}}{-1} - \frac{t^{-2}}{-2} \right]$ $\Rightarrow \frac{1}{4t^2} - \frac{1}{2t} + C \qquad \Rightarrow \frac{1}{4(x^2 + 1)^2} - \frac{1}{2(x^2 + 1)} + C$ $\Rightarrow \frac{1}{2} \left[-\frac{1}{t} + \frac{1}{2t^2} \right]$ **CQ2:** $\int \frac{x-1}{\sqrt{x+4}} dx$ **Ans:** $t = \sqrt{(x+4)}$ & thus $t^2 = x + 4$ -----(i) Now we have to replace 'dx' with 'dt'. SO we find relation between 'dx' & 'dt'. Differentiating B.S w.r.t 'x', we get $2t \cdot \frac{dt}{dx} = 1$; If we observe the question carefully, we have 'dx' in the numerator. So we will find its value in terms of dt.

We get
$$dx = 2t.dt$$
.
 $\Rightarrow \int \frac{(t^2 - 4) - 1).2tdt}{t}$
 $\Rightarrow 2 \int (t^2 - 5)$

$\Rightarrow 2 \left[\int t^2 dt - \int 5 dt\right]$	$\Rightarrow \int \frac{1}{t} dt - \int 5 dt$	
$\Rightarrow 2\left[\frac{t^3}{3} - 5t\right] + C$	$\Rightarrow \frac{2.t^3}{3}$ - 10t + C	
$\Rightarrow \frac{2.(x+4)^{3/2}}{3} - 10\sqrt{(x+4)} + C$		
CQ3: $\int \frac{dx}{x(x^3+1)} = \int \frac{x^2 dx}{x^3(x^3+1)}$		
Ans: Let $t = x^3$; $\frac{dt}{dx} = 3x^2$	$\Rightarrow \frac{dt}{3} = x^2. dx \qquad = \int \frac{dt}{3.t(t+1)}$	$=\frac{1}{3}\int(\frac{1}{t}-\frac{1}{t+1}).dt$
$=\frac{1}{3}[\log t - \log (t - 1)]$	$=\frac{1}{3}\log(\frac{x^3}{x^3-1})+C$	

INTEGRATION BY PARTS

Let
$$f(x) = u \& g(x) = v$$
, $\int (u, v) = u \int v - \int \{\frac{du}{dx} \int v\}$

How to find 'u' & 'v':

Sequence shall be LAE:

L	A	E
Logarithmic function	Algebraic functions [Involving x]	Exponential function [Involving x]

Different Cases: [Note: Sequence of the functions given in the question is NOT RELEVANT]

Question Consists of	u	v
1. Logarithmic function & Algebraic function	Logarithmic function	Algebraic function
2. Logarithmic function & Exponential function	Logarithmic function	Exponential function
3. Algebraic function & Exponential function	Algebraic function	Exponential function

SOME SOLVED EXAMPLES

(i) $\int xe^x dx$

Ans: $x \rightarrow$ Algebraic Function & $e^x \rightarrow$ Exponential Function; Thus $u = {}^{\circ}x^{\circ} \otimes v = e^x$.

$$= x \int e^{x} dx - \int \left\{ \frac{d}{dx}(x) \int e^{x} dx \right\} dx$$
$$= xe^{x} - \int 1 \cdot e^{x} \cdot dx = xe^{x} - e^{x} + c$$

(ii) $\int x \log x \, dx$ Ans: x \rightarrow Algebraic Function & Log x \rightarrow Logarithmic Function; Thus u = 'log x' & v = 'x'.

 Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
 To Buy Video Lectures & Books,

 VouTube
 Telegram
 Whatsapp: 8888111134
 Www.pranavchandak.com

$$= \log x \int x \, dx - \int \left\{ \frac{d}{dx} (\log x) \int x \, dx \right\} dx$$

$$= \log x \cdot \frac{x^2}{2} - \int \left[\frac{1}{x} \cdot \frac{x^2}{2} \right] dx \qquad = \frac{x^2}{2} \log x - \frac{1}{2} \int x \cdot dx$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \cdot \frac{x^2}{2} + c \qquad = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$$
(iii) $\int x^2 e^x \, dx$;
Ans: $x^2 \to \text{Algebraic Function & } e^x \to \text{Exponential Function; Thus u = 'x^2' & v = 'e^x'.$

$$= x^2 \int e^x \, dx - \int \left[\left(\frac{d}{dx} x^2 \right) \cdot \int e^x \cdot dx \right] \\= x^2 e^x - \int (2x \cdot e^x) \qquad = x^2 e^x - 2 \int (xe^x) dx$$
We will have to integrate $\int (xe^x) \text{ again. Thus } u = 'x' & v = e^x'.$

$$= x^2 e^x - 2[x \cdot \int e^x \cdot dx - \left[\int \left[\frac{dx}{dx} \right] \int e^x \, dx \right] \qquad = x^2 e^x - 2[xe^x - \int 1 \cdot e^x \cdot dx] \\= x^2 e^x - 2[xe^x - e^x] \qquad = x^2 e^x - 2xe^x + 2e^x$$

$$= e^x[x^2 - 2x + 2] + C$$
(iv) $\int x^2 e^{ax} \, dx$
Ans: $x^2 \to \text{Algebraic Function & } e^{ax} \to \text{Exponential Function; Thus u = 'x^{2*} & v = 'e^{ax'}.$

$$= x^2 \int e^{ax} \, dx - \int \left\{ \frac{d}{dx} (x^2) \int e^{ax} \, dx \right\} \, dx$$

$$= x^2 \cdot \frac{e^{ax}}{a} - \int 2x \cdot \frac{e^{ax}}{a} \, dx \qquad = \frac{x^2}{a} e^{ax} - \frac{2}{a} \int x \cdot e^{ax} \, dx$$
We will have to integrate $\int (xe^{ax}) \text{ again. Thus } u = 'x' & v = 'e^{ax} :$

$$= \frac{x^2}{a} e^{ax} - \frac{2}{a} \left\{ x \cdot \int e^{ax} \, dx - \int \left[\frac{d}{dx} (x) \int e^{ax} \, dx \right] = \frac{x^2}{a} e^{ax} - \frac{2}{a} \left[x \cdot \frac{e^{ax}}{a} - 1 \cdot \frac{e^{ax}}{a} \, dx \right]$$

$$= \frac{x^2}{a} e^{ax} - \frac{2}{a} \left[x \cdot \frac{e^{ax}}{a} - \frac{2}{a} \left[x \cdot \frac{e^{ax}}{a} + c \right]$$

IMPORTANT STANDARD FORMULAE		
1. $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$	2. $\int e^{x} [f(x) + f^{*}(x)] dx = e^{x} f(x) + c$	
3. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$	4. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$	
5. $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log x + \sqrt{x^2 + a^2} + c$	6. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$	
7. $\int \sqrt{x^2 + a^2} dx = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$	8. $\int \sqrt{x^2 - a^2} dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$	

a²

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy To Buy Video Lectures & Books, YouTube www.pranavchandak.com Telegram Whatsapp: 8888111134

Example

(a)
$$\int \frac{e^x}{e^{2x}-4} dx = \int \frac{dz}{z^2-2^2}$$
 where $z = e^x dz = e^x dx$
 $= \frac{1}{4} \log \left(\frac{e^x-2}{e^x+2}\right) + c$
(b) $\int \frac{1}{x+\sqrt{x^2-1}} dx = \int \frac{x-\sqrt{x^2-1}}{(x+\sqrt{x^2-1})(x-\sqrt{x^2-1})} dx = \int (x-\sqrt{x^2-1}) dx$
 $= \frac{x^2}{2} - \frac{x}{2}\sqrt{x^2-1} + \frac{1}{2} \log (x+\sqrt{x^2-1}) + c$
(c) $\int e^x (x^3 + 3x^2) dx = \int e^x \{f(x) + f^*(x)\} dx$, where $f(x) = x^2$
[by (e) above] $= e^x x^3 + c$

INTEGRATION BY PARTIAL FRACTION

- If f(x) & g(x) are polynomials in x, then $\frac{f(X)}{g(x)}$ is called a rational function.
- If degree of f(x) < degree of g(x), it is a proper rational function. [Ex: $\frac{8x+1}{5x^3+7}$ i.e $\frac{Degree 1}{Degree 3}$.]
- If degree of f(x) > degree of g(x), it is an improper rational function. [**Ex**: $\frac{5x^3 + 7}{8x + 1}$ i.e $\frac{Degree 3}{Degree 1}$.]

An improper rational function can be written as a sum of a polynomial & a proper rational function by dividing f(x) by g(x).

If we break any fraction into parts, then the fractions into which the original fraction is broken up are called partial fractions. $[\mathbf{Ex:} \frac{4}{x-3} \& \frac{-3}{x-2}]$ are the partial fractions of $\frac{x+1}{x^2-5x+6}]$

STEPS TO BREAK $\frac{f(X)}{g(x)}$ INTO PARTIAL FRACTION

- If $\frac{f(X)}{g(x)}$ is not a proper function, then reduce it to a sum of a polynomial & a proper function by dividing the numerator by the denominator as stated above.
- ✤ Resolve the denominator into simple factors (linear/quadratic) as far as possible.

The factors of the denominator g(x) may consist of the following forms:

Case 1: When denominator has all distict linear factors [say (ax + b), (cx + d)]:

• For every distinct linear factor, there exists a single partial fraction of the form, $\frac{A}{ax+b}$, $\frac{B}{cx+d}$ where A & B are constants to be determined.

Ex.
$$\int \frac{(3x+2)dx}{(x-2)(x-3)}$$

Ans: [Degree of numerator must be < degree of denominator; denominator contains non-repeated linear factor]

Let $\frac{(3x+2)}{(x-2)(x-3)} = \frac{A}{(x-2)} + \frac{B}{(x-3)} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)}$ $\Rightarrow 3x + 2 = A(x - 3) + B(x - 2)$ -----(i) \Rightarrow We have to find the values of A & B; Thus we will put such value of 'x' which will make coefficient of either 'A' or 'B' = 0 & we can get the value of other term. If we put x = 2 in (i); it will make 'B' = 0 & thus we can get 'A'. \Rightarrow 3.2 + 2 = A (2-3) + B (2-2) \Rightarrow A = -8. If we put x = 3 in (i); it will make 'A' = 0 & thus we can get 'B'. \Rightarrow 3.3 + 2 = A (3-3) + B (3-2) \Rightarrow **B** = 11. $\int \frac{(3x+2)dx}{(x-2)(x-3)} = \int \frac{-8}{(x-2)} dx + \int \frac{11}{(x-3)} dx$ \Rightarrow - 8. log(x-2) + 11.log (x-3) + c Case 2: When denominator has repeated linear factors, (say ax + b, occurs n times): • To every repetition n times, there corresponds sum of n partial fractions of form, $\frac{A_1}{2x+b}$ + $\frac{A_2}{(ax+b)^2}$ +...+ $\frac{A_n}{(ax+b)^n}$ where A_1 , A_2 A_n are constants to be determined. $\mathbf{Ex:} \int \frac{(3x+2)}{(x-2)^2 (x-3)} dx$ **Ans:** Let $\frac{(3x+2)dx}{(x-2)^2(x-3)} = \frac{A}{(x-2)} + \frac{B}{(x-2)^2} + \frac{C}{(x-3)} =$ $3x + 2 = A(x - 2) (x - 3) + B (x - 3) + C (x - 2)^{2}$ Comparing coefficients of x^2 , x and the constant terms of both sides, we find A + C = 0 ------ (i); -5A + B - 4C = 3 -----(ii); 6A - 3B + 4C = 2 -----(iii) By (i) – (iv) \Rightarrow 2B + C = -5 -----(v) By (ii) + (iii) \Rightarrow A - 2B = 5 -----(iv) From (v) \Rightarrow C = -5 - 2B From (iv) \Rightarrow A = 5 + 2B: From (ii) \Rightarrow -5 (5 + 2B) + B - 4 (-5 - 2B) = 3 \Rightarrow -25 -10B + B + 20 + 8B = 3 $\Rightarrow -B - 5 = 3$ \Rightarrow B = - 8 \Rightarrow **A** = 5 - 16 = - 11 from (iv) ⇒ C = - A = 11 Therefore $\int \frac{(3x+2)dx}{(x-2)^2(x-3)}$ can be written as: $= \int \frac{-11}{(x-2)^2} dx + \frac{-8}{(x-2)^2} dx + \int \frac{11}{(x-3)} dx$ $= -11 \int \frac{dx}{(x-2)} - 8 \frac{dx}{(x-2)^2} + 11 \int \frac{dx}{(x-3)^2}$ $= -11.\log(x-2) + \frac{8}{(x-2)} + 11.\log(x-3)$ $= 11 \log \frac{(x-3)}{(x-2)} + \frac{8}{(x-2)} + c$ Case 3: When denominator has a quadratic factors, [say $(ax^2 + bx + c)$]: • To every quadratic factor, there corresponds a partial fraction of the form, $\frac{Ax+B}{ax^2+bx+c}$ where A & B are constants to be determined. **Ex:** $\int \frac{(3x^2-2x+5)}{(x-1)^2(x^2+5)} dx$

Ans: Let $\frac{(3x^2-2x+5)}{(x-1)^2(x^2+5)} = \frac{A}{x-1} + \frac{Bx+C}{(X^2+5)}$				
Thus $3x^2 - 2x + 5 = A(x + 5)$	$(x^{2} + 5) + (Bx + C)(x - 1)$			
Equating the coeffici	ents of x^2 ,x and the cons	tant terms from both side	es we get,	
A + B = 3(i);	C — B = - 2(i	i); 5A - C = 5	(iii)	
From (i) + (ii): A + C =	1 (iv);	From (iii) + (iv) 6A = 6	(v)	
\Rightarrow A = 1	$\Rightarrow A = 1 \qquad \Rightarrow B = 3 - 1 = 2 \& \qquad \Rightarrow C = 0$			
Thus $\int \frac{(3x^2-2x+5)}{(x-1)^2 (x^2+5)} dx$	$=\int \frac{1}{x-1} .$	$dx + \frac{2x+0}{x^2+5} dx$		
$= \log(x - 1) + \log(x^2 +$	- 5) = log ($(x - 1)(x^2 + 5) + c$		
SUMMARY TABLE FOR PARTIAL FRACTION				
Rational Form	$\frac{px+q}{(x-a)(x-b)}$	$\frac{px+q}{(x-a)^2}$	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$	
Partial Form $\frac{A}{(x-a)} + \frac{B}{(x-b)}$		$\frac{A}{(x-a)} + \frac{B}{(x-a)^2}$	$\frac{A}{(x-a)} + \frac{Bx+c}{x^2+bx+c}$	

SOME SOLVED EXAMPLES:

CQ4: $\int e^{\sqrt{x}} dx$ **Ans:** Let $t = \sqrt{x}$; Differentiating both sides w.r.t $\frac{dt}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2t}$; dx = 2t.dt $\Rightarrow \int e^{\sqrt{x}}.dx$ $\Rightarrow \int e^{t}.2t.dt.$ $\Rightarrow 2\int (e^{t}.t).dt;$ Apply u.v rule, $u = {}^{*}t^{*} \& v = {}^{*}e^{t}$, $\Rightarrow 2[t.\int e^{t} - \int \frac{dt}{dt}.e^{t}]$ $\Rightarrow 2[t.e^{t} - e^{t}] = 2[\sqrt{x}.e^{\sqrt{x}} - e^{\sqrt{x}}] + c.$ **CQ5:** Find equation of the curve where slope at (x,y) is 9x and which passes through the origin. **Ans:** We are given that slope is 9x & slope means $\frac{dy}{dx}$. We know that integration of the derivative of a function is that function itself. Thus $\int \frac{dy}{dx} = Y \Rightarrow \frac{9x^{2}}{2} + C$ Since it passes through the origin, C = 0; Thus the required equation is $9x^{2} = 2y$.

DEFINITE INTEGRATION

- Let a function be f (x).
- As 'x' changes from 'a' to 'b', value of the integral changes from f(a) to f(b). This is as

 $\int_{a}^{b} f(x) = f(b) - f(a)$ 'b' is called the upper limit & 'a' the lower limit of integration.

• No need to add "constant of integration" in definite integration.

How To Solve Definite Integration:

• We shall first find out the integration & then find f(a) & f(b). Answer = f(b) - f(a).

CQ6:
$$\int_0^2 x^5 dx$$

Ans: Firstly, we will integrate the function. $\int x^5 dx = \frac{x^6}{6}$.

Now we will put the upper limit & lower limit respectively.

$$f(2) = \frac{x^6}{6} = \frac{2^6}{6} = \frac{64}{6} = \frac{32}{3} \qquad \& f(0) = \frac{0^6}{6} = 0.$$

$$f(2) - f(0) = \frac{32}{3} - 0 = \frac{32}{3}.$$

CQ7: $\int_{1}^{2} (x^2 - 5x + 2) dx$

Ans: Firstly, we will integrate the function. $\int (x^2 - 5x + 2) dx = \frac{x^3}{3} - \frac{5x^2}{2} + 2x$ Now we will put the upper limit & lower limit respectively.

 $f(2) = \frac{(2)^3}{3} - \frac{5(2)^2}{2} + 2(2) = \frac{8}{3} - 10 + 4 = -\frac{10}{3} \qquad \& f(1) = \frac{(1)^3}{3} - \frac{5(1)^2}{2} + 2(1) = \frac{1}{3} - \frac{5}{2} + 2 = -\frac{1}{6}$ $f(2) - f(1) = -\frac{10}{3} - [-\frac{1}{6}] = -\frac{19}{6}$

IMPORTANT PROPERTIES OF DEFINITE INTEGRAL			
1. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$	2. $\int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx$		
3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \ [\alpha < c < b].$	4. $\int_0^a f(x) dx = \int_0^a f(a - x) dx$		
5. $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(a) dx$ if $f(-x) = f(x)$	[i.e If even Function]		
= 0 if $f(-x) = -f(x)$	[i.e If odd Function]		
6. When $f(x) = f(\alpha + x) \implies \int_0^{na} f(x) dx = n$. $\int_0^a f(x) dx$.			

$$\begin{aligned} & \textbf{CO8: } \int_{0}^{2} \frac{x^{2} dx}{x^{2} + (2-x)^{2}} \\ & \textbf{Ans: Let I} = \int_{0}^{2} \frac{x^{2} dx}{x^{2} + (2-x)^{2}} & \textbf{& by Property IV; I} = \int_{0}^{2} \frac{(2-x)^{2} dx}{(2-x)^{2} + x^{2}} \\ & I + I = 2I = \int_{0}^{2} \frac{x^{2} dx}{x^{2} + (2-x)^{2}} + \int_{0}^{2} \frac{(2-x)^{2} dx}{(2-x)^{2} + x^{2}} \\ & 2I = \int_{0}^{2} \frac{x^{2} + (2-x)^{2}}{x^{2} + (2-x)^{2}} dx \\ & 2I = \int_{0}^{2} dx = [x]_{0}^{2} = 2 - 0 = 2 \\ & 2I = 2 & \textbf{thus I = 1.} \end{aligned}$$

$$\begin{aligned} & \textbf{CQ9: Evaluate } \int_{-2}^{2} \frac{x^{4} dx}{a^{10} - x^{10}} (a > 2) \\ & \textbf{Ans: } \frac{x^{4} dx}{a^{10} - x^{10}} = \frac{x^{4} dx}{(a^{5})^{2} - (x^{5})^{2}} - \cdots \\ & (i) \end{aligned}$$

$$\begin{aligned} & Let t = x^{5}; \text{ Differentiating both sides w.r.t 't', we get } \frac{dt}{dx} = 5x^{4} \implies x^{4} . dx = \frac{dt}{5} \\ & = \frac{1}{5} \int \frac{dt}{(a^{5})^{2} - t^{2}} & [\text{Substituting the value of } x^{4} . dx = \frac{dt}{5} \\ & i (i)] \end{aligned}$$

$$\begin{aligned} & = \frac{1}{5} \cdot \frac{1}{2a^{5}} \log \frac{a^{5} + x^{5}}{a^{5} - x^{5}} & [\text{Using the formula } \int \frac{dx}{a^{2} - x^{2}} = \frac{1}{2a} \log \frac{a + x}{a - x} + c] \end{aligned}$$

$$\begin{aligned} & \textbf{Therefore, } \int_{-2}^{2} \frac{x^{4} dx}{a^{10} - x^{10}} & \textbf{e 2} \int_{0}^{2} \frac{x^{4} dx}{a^{10} - x^{10}} & [\textbf{Using Property V] \end{aligned}$$

INDEFIITE INTEGRAL - QUESTION BANK

SN		7B. INDEFINITE	INTEGRALS CALCULU	IS	Ans
Q155	Integrate (x + a) ⁿ				Α
	(a) $\frac{(x+a)^{n+1}}{n+1}$	(b) $\frac{(x+a)^n}{n}$	(c) $\frac{(x+a)^{n-1}}{n-l}$	(d) None	
Q156	Evaluate $\int 5 x^2 dx$ and the answer will be				A
	$(a) \frac{5}{3}x^3 + k$	(b) $\frac{5x^3}{3}$	(c) $\frac{5}{x^{-3}}$	(d) None	
Q157	Integration of 3 - 2	2x - x4 will become _	·		C
	$(\alpha) - x^2 - \frac{x^5}{5}$	(b) $3x - x^2 - \frac{x^5}{5}$	(c) $3x - x^2 - \frac{x^5}{5} + k$	(d) None	
Q158	Evaluate result of	$\int (x^2 - 1)^2 dx$ is	·		A
	(a) $\frac{x^5}{5} - \frac{2}{3}x^3 + x + k$	(b) $\frac{x^5}{5} - \frac{2}{3}x^3 + k$	(c) 2x	(d) None	
Q159	Find ∫√ <i>x</i> dx				Α
	(a) $\frac{2x^{\frac{3}{2}}}{3} + c$	(b) $\frac{2x}{3} + c$	(c) $-\frac{2x^{\frac{1}{2}}}{5}+c$	(d) $\frac{2}{x^2} + c$	
Q160	Find $\int \frac{1}{\sqrt{x}} dx$.				C
	(a) $2x + c$	(b) $\frac{\sqrt{x}}{2} + c$	(c) $2\sqrt{x} + c$	(d) $\frac{\sqrt{x}+c}{2}$	
Q161	Integrate, $x^{-1/2}$				Α
	(a) $2x^{1/2}$	(b) $\frac{1}{2}x^{1/2}$	(c) $-\frac{3}{2}x^{-3/2}$	(d) None	
Q162	Find $\int x\sqrt{x} \mathrm{dx}$.				Α
	$(\alpha) \frac{2}{5}x^{\frac{5}{2}} + c$	(b) $\frac{3}{5}x^{\frac{3}{2}} + c$	(c) $\frac{2}{3}x^{\frac{1}{2}} + c$	(d) $x^2 + c$	
Q163	Evaluate $\int (x + \frac{1}{x})^2 dx$	x			С
	(a) $\frac{x^3}{2} + 2x + c$	(b) $\frac{3x}{2} - \frac{1}{x} + c$	(c) $\frac{x^3}{3} + 2x - $	$\frac{1}{x} + c$ (d) $\frac{x^2}{3} - \frac{2}{x} + c$	
Q164	Evaluate $\int \sqrt{x} (x3 +$	2x - 3) dx.			B
	$\left (a) \frac{x^{\frac{7}{2}}}{5} + \frac{3x^{2}}{7} - 8x + c (b) \frac{2x^{\frac{9}{2}}}{9} + \frac{4x^{\frac{5}{2}}}{5} - 2x^{\frac{3}{2}} + c(c) \frac{3x^{\frac{7}{2}}}{7} + \frac{x^{\frac{3}{2}}}{5} - 2x^{\frac{3}{2}} + c(d) \frac{2x^{\frac{5}{2}}}{7} - \frac{x^{\frac{3}{2}}}{9} - 2x^{\frac{5}{2}} + c(d) \frac{2x^{\frac{5}{2}}}{7} - \frac{x^{\frac{5}{2}}}{9} - 2x^{\frac{5}{2}} + c(d) \frac{2x^{\frac{5}{2}}}{7} - \frac{x^{\frac{5}{2}}}{9} - 2x^{\frac{5}{2}} + c(d) \frac{2x^{\frac{5}{2}}}{7} - \frac{x^{\frac{5}{2}}}{9} - \frac{x^{\frac{5}{2}}$				
Q165	$\int (7x^2 - 3x + 8 - x^{-1})^2 dx = -x^{-1}$	$x^{/2} + x^{-1} + x^{-2}) dx$			A
	$(\alpha)\frac{7}{3}x^3 - \frac{3}{2}x^2 + 8x -$	$2x^{1/2} + \log x - x - 1$	(b) $\frac{3}{7}x^3 - \frac{2}{3}x^2 + 8x - \frac{2}{3}x^2$	$\frac{1}{2}x^{1/2} + \log x + x^{-1}$	

	(c) $\frac{7}{3}x^3 + \frac{3}{2}x^2 + 8x -$	$-2x^{1/2} + \log x + x - 1$	(d) None		
Q166	Integrate $\frac{(ax^3+bx^2+cx+d)}{x}$				A
	(a) $\frac{1}{2}ax^3 + \frac{1}{2}bx^2 + cx + d\log x$		(b) $3ax^3 + 2bx^2 + cx + d\log x$		
	(c) $2ax + b - dx^{-2}$		(d) None		
Q167	Integrate $\frac{(4x^6+3x^5+x^5)}{(4x^6+3x^5+x^5)}$	$2x^4 + x^3 + x^2 + 1)$			A
	(a) $x^4 + x^3 + x^2 + x$	x^3 + logx- $\frac{1}{2x^2}$	(b) $x^4 + x^3 + x^2 + x + logx + (1/2)x^{-2}$		
	(c) $x^4 + x^3 + x^2 + x$	$+ \log x + 2x^{-2}$	(d) None		
Q168	Integrate 4x ³ + 3x ²	² - 2x + 5			A
	(a) $X^4 + X^3 - X^2 + 5X$	(b) x ⁴ -x ³ + x ² -5x	(c) x ⁴ +x ³ + x ² - 5	(d) None	
Q169	The integral of $px^3 + qx^2 + rk + \frac{w}{r}$ is				D
	(a) $px^2 + qx + r + k$		(b) $\frac{px^3}{3} + \frac{qx^2}{2} + rx$		
	(c) $3px + 2q - \frac{w}{r^2}$		(d), $\frac{px^4}{4} + \frac{qx^3}{3} + wlogx + rkx$		
Q170	Integrate $(x^4 + 1)/$	′x ²			A
	$(\alpha)\frac{x^3}{3} - \frac{1}{x}$	(b) $\frac{1}{x} - \frac{x^3}{3}$	(c) $\frac{x^3}{3} + \frac{1}{x}$	(d) None	
Q171	Integrate (4x + 5) ⁶				A
	$(\alpha) \frac{1}{128} (4x + 5)^{7}$	(b) $\frac{1}{7}(4x + 5)^{7}$	(C) $\frac{7}{(4x+5)^{-7}}$	(d) None	
Q172	$\int \frac{1}{\sqrt{2}}$ is equal to _				С
	$(\alpha) \frac{2}{(1+x)^{1/2}}$	(b) $(1+x)^{1/2}$	(c) $2(1+x)^{1/2}$	(d) None	
Q173	$\int e^{ax} dx$				B
	(a) e^x	(b) $\frac{e^{ax}}{a}$	(c) logx	(d) $\frac{1}{e^{-ax}}$	
Q174	$\int e^{3x+5} dx$ is equal	to			Α
	$(a)\frac{e^{3x+5}}{3}+c$	(b) $\frac{e^{3x}}{5} + c$	(c) $\frac{-e^{3x+5}}{3} + c$	(d) None	
Q175	The value of $\int (6x^5 + 3e^{2x} + 5) dx$ is equal to				Α
	(a) $x^6 + \frac{3}{2}e^{2x} + 5x +$	k	(b) $30x^4 + 6e^{2x}$		
	(c) $x^6 + \frac{3}{2}e^{2x}$		(d) None		

Q176	Find $\int e^{-3x} dx$.		Α
	(a) $-(1/3)e^{-3x} + c$ (b) $e^{-3x} + c$	(c) $(1/3)e^{-x} + c$ (d) $(1/3)e^{x} + c$	
Q177	Evaluate $\int \frac{e^{3x}+e^{-3x}}{a^x} dx.$		B
	(a) $\frac{e^{3x}}{3} - \frac{1}{2x} + c$ (b) $\frac{e^{2x}}{2} - \frac{1}{4e^{4x}}$	+ c (c) $\frac{e^{3x}}{2} + \frac{1}{3e^{2x}} + c$ (d) $-\frac{e^{2x}}{2} - \frac{1}{3e^{2x}} + $	
Q178	Find ∫ 3 ^x dx.		С
	(a) $log_e 3 + c$ (b) $\frac{e^x}{3} log 3 + c$	(c) $\frac{3^x}{\log_e 3} + c$ (d) $3^x + c$	
Q179	Integrate $\sqrt{x} - \frac{x}{2} + \frac{2}{\sqrt{x}}$		A
	(a) $\frac{2}{3}x\sqrt{x} - \frac{1}{4}x^2 + 4\sqrt{x} + c$	(b) $\frac{3}{2}\sqrt{x} - \frac{1}{4}x^2 + \sqrt{x} + c$	
	(c) $\frac{2}{3}\sqrt{x} - \frac{1}{2}x^2 - \frac{1}{2}\sqrt{x} + c$	(d) None	
Q180	Integrate $\frac{3}{x}$ + 4x ² - 3x + 8		B
	(a) $3Iogx - \frac{4}{3}x^3 + \frac{3}{2}x^2 - 8x + c$	(b) $3Iogx + \frac{4}{3}x^3 - \frac{3}{2}x^2 + 8x + c$	
	(c) $3logx + \frac{4}{3}x^3 + \frac{3}{2}x^2 + 8x + c$	(d) None	
Q181	Integrate $\left(ax + \frac{b}{x^3} + \frac{c}{x^7}\right)x^2$		A
	(a) $\frac{1}{4}ax^4 + b\log x - \frac{1}{4}cx^{-4} + k$	(b) $4ax^4 + b \log x - 4cx^{-4} + k$	
	(c) $\frac{1}{4}ax^4 + b\log x + \frac{1}{4}cx^{-4} + k$	(d) None	
Q182	Integrate $[2^{x} + \frac{1}{2}e^{-x} + \frac{4}{x} - x^{-1/3}]$		A
	(a) $\frac{2^x}{\log 2} - \frac{1}{2}e^{-x} + 4Iogx - \frac{3}{2}x^{2/3} + k$	(b) $\frac{2^x}{\log 2} + \frac{1}{2}e^{-x} + 4Iogx + \frac{3}{2}x^{2/3} + k$	
	(c) $\frac{2^{x}}{\log 2} - 2e^{-x} + 4 \log x - \frac{2}{3}x^{2/3} + k$	(d) None	
Q183	$\int \left(x^4 + \frac{3}{x}\right) dx$ is equal to		A
	(a) $\frac{x^5}{5} + 3log x $ (b) $\frac{1}{5}x^5 + 3log x + 3log x $	$k (c) \frac{1}{5}x^5 + k$ (d) None	
Q184	Evaluate the integral $\int \frac{(1-x)^3}{x} dx$		D
	(a) $\log x - 3x + \frac{3}{2}x^2 + k$	(b) $\log x - 2 + 3x^2 + k$	
	(c) $\log x + 3x^2 + k$	(d) $log x - \frac{x^3}{3} - 3x + \frac{3x^2}{2} + k$	

Q185	Integrate $\frac{x^2}{(x^3+2)^{1/4}}$		A
	(a) $(4/9) (x^3 + 2)^{\frac{3}{4}} + k$	(b) (9/4) $(x^3 + 2)^{3/4} + k$	
	(c) $(3/4) (x^3 + 2)^{3/4} + k$	(d) None	
Q186	Evaluate $\int \frac{x^2}{x+1} dx$.		С
	(a) $\frac{3x^2}{4} + x - log(x+1) + c$	(b) $\frac{x^2}{2} - x + log(2x - 1) + c$	
	(c) $\frac{x^2}{2} - x + Iog(x+1) + c$	(d) None	
Q187	Evaluate $\int \frac{x^3+5x^2-3}{(x+2)} dx.$		D
	$(a)\frac{x^3}{3} + \frac{2x^2}{5} + 4x + 6\log(x+3) + c$	(b) $\frac{x^3}{5} + \frac{7x^2}{2} - 5x - 9Iog(x - 8) + c$	
	(c) $\frac{x^3}{2} - \frac{7x^2}{9} - 6x - 9Iog(x-4) + c$	(d) $\frac{x^3}{3} + \frac{3x^2}{2} - 6x + 9Iog(x+2) + c$	
Q188	$\int \frac{8x^2}{(x^3+2)^3} dx$ is equal to		B
	(a) $(-4/3)(x^3+2)^2$ (b) $\frac{-4}{3(x^3+2)^2} + k$	(c) $\frac{4}{3}(x^3+2)^2 + k$ (d) None	
Q189	Evaluate $\int x(x^2+4)^5 dx$		B
	(a) $(x^2 + 4)^6 + k$ (b) $\frac{1}{12}(x^2 + 4)^6 + k$	(c) $\frac{(x^2+4)^6}{k}$ (d) None	
Q190	Evaluate $\int \frac{x^3}{(x^2+1)^3} dx$.		A
	$(\alpha) \frac{1}{4} \cdot \frac{1}{(x^2+1)^2} - \frac{1}{2} \cdot \frac{1}{x^2+1} + c$	(b) $\frac{3}{4} \cdot \frac{1}{(x^3+1)^2} - \frac{3}{2} \cdot \frac{1}{x^2-1} + c$	
	(c) $\frac{5}{4} \cdot \frac{1}{(x^2-1)^2} - \frac{3}{2} \cdot \frac{1}{x^2+1} + c$	(d) $\frac{7}{4} \cdot \frac{1}{(x^2+1)^2} + \frac{1}{2} \cdot \frac{1}{x^2+1} + c$	
Q191	Evaluate $\int \frac{dx}{x(x^3+1)}$		D
	(a) $log(x/x + 1) + c$ (b) (1/3) $log \frac{x^3}{x^3 + 1} + c$	c (c) (1/3) $\log \frac{x}{x^{3}+1} + c$ (d) $\frac{1}{3} \log \frac{x^{3}}{x^{3}-1} + c$	
Q192	Integrate $(x^2 + 2)^{-3}x^3$		A
	(a) $-\frac{2x^2+3}{2(x^2+2)^2}$ (b) $\frac{1}{2}\frac{(2x^2+3)}{(x^2+1)^2}$	(c) $-\frac{1}{4}\frac{(2x^2+1)}{x^2+1}$ (d) $\frac{1}{4}\frac{(2x^2+1)}{x^2+1}$	
Q193	Integrate $x(x^2+3)^{-2}$		A
	(a) $-\frac{1}{2(x^2+3)}$ (b) $\frac{1}{2(x^2+3)}$	(c) $\frac{2}{x^{2}+3}$ (d) None	
Q194	Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx$ and the value is		A

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

	(a) $\frac{e^x}{1-x} + k$	(b) $e^{x} + k$	(c) $1 - x + k$	(d) None	
Q195	Evaluate $\int \left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)$	dx and the value is _			B
	(a) $log_e e^x + e^{-x} $		(b) $Iog_e e^x + e^{-x} +$	· k	
	(c) $log_e e^x - e^{-x} +$	k	(d) None		
Q196	Integrate $(x^3 + 2)^2$	3 <i>x</i> ²			A
	(a) $\frac{1}{3}(x^3+2)^3 + c$	(b) $3(x^3+2)^3 + c$	(c) $3x^2(x^3+2)^3 + c$	(d) $9x^2(x^3+2)^3 + c$	
Q197	Integrate $(x^3 + 2)^1$	$^{/2}x^{2}$			Α
	$(\alpha)\frac{2}{9}(x^3+2)^{3/2}+c$	(b) $\frac{2}{3}(x^3+2)^{3/2} + c$	(c) $\left(\frac{9}{2}\right)(x^3+2)^{3/2}$ +	- c (d) None	
Q198	The integral of $\frac{x^3}{x^2+1}$	is equal to			D
	(a) $\frac{1+2x^2}{4(x^2+1)^2} + c$	(b) $\frac{1-2x^2}{4(x^2+1)^2} + c$	(c) $\frac{-(1+2x^2)}{4(x^2+1)} + c$	(d) None	
Q199	Integrate $\frac{3x}{(x^2+1)^n}$				A
	(a) $\frac{3}{2} \frac{(x^2+l)^{1-n}}{1-n}$	(b) $\frac{3}{2} \frac{(x^2+l)^{n-1}}{1-n}$	(c) $\frac{2}{3} \frac{(x^2+l)^{1-n}}{1-n}$	(d) None	
Q200	$\int \frac{dx}{e^{x}+1}$ is equal to				A
	(a) -log $(1 + e^{-x}) +$	<i>K</i> (b) $(e^x + 1)^{-2} + K$	(c) $\frac{1}{1+e^x} + K$	(d) None	
Q201	$\int_{0}^{5} \frac{x^{2}}{x^{2} + (5-x)^{2}} dx \text{ is equ}$	ual to			B
	(α) 5	(b) 5/2	(c) 1	(d) None	
Q202	If $f(x) = \sqrt{1 + x^2}$ th	en∫ <i>f</i> (x) dx is	·		B
	$(\alpha) \frac{2}{3} (1+x^2)^{\frac{3}{2}} + k^2/3$	$3(1+x^2)^{\frac{3}{2}}+k$	(b) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log x$	$\left(x + \sqrt{x^2 + 1}\right)$	
	(c) $\frac{2}{3}x(1+x^2)^{\frac{3}{2}}+k$		(d) None		
Q203	Value of $\int \frac{dx}{16-9x^2}$				Α
	$(\alpha) \frac{1}{24} log \left \frac{4+3x}{4-3x} \right + c$		(b) $\frac{16}{9} log \left \frac{4+x}{4-x} \right + c$		
	(c) $\frac{1}{4} log \left \frac{3x}{4} \right + c$		(d) $\log \left \frac{4+3x}{4-3x} \right + c$		
Q204	The integral of $\int \frac{d}{r^2}$	$\frac{dx}{-a^2}$ will be			A
	(a) $\frac{1}{2a} log \frac{(x-a)}{(x+a)}$	(b) $\frac{1}{2a} \log \frac{(x+a)}{(x-a)}$	(c) $\frac{1}{2a} \log \frac{x}{(x+a)}$	(d) None	

Q205	$\int \sqrt{x^2 + a^2} dx$ is equal to		A
	(a) $\frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\log x^2 + \sqrt{x^2 + a^2} $	(b) $\frac{x}{2}\sqrt{x^2-a^2} + \frac{a^2}{2}\log x^2-\sqrt{x^2-a^2} $	
	(c) $\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log x^2+\sqrt{x^2+a^2} $	(d) None	
Q206	Evaluate $\int \frac{(3x+2)dx}{(x-2)(x-3)}$.		A
	(a) - log(x - 2) + 11log(x - 3) + c	(b) $log(x-2)(x-3) + c$	
	(c) $log(3x + 2) + c$	(d) $-log(x-2) + log(x-3) + c$	
Q207	Evaluate $\int \frac{(3x+2)dx}{(x-2)^2(x-3)}$		A
	(a) $11 \log \frac{(x-3)}{(x-2)} + \frac{8}{(x-2)} + c$	(b) $Iog(x-2) + Iog(x-3) + c$	
	(c) $\log \frac{(x-3)}{(x-2)} + \log(3x+2) + c$	(d) $Iog(3x + 2) + c$	
Q208	Evaluate $\int \frac{(3x^2-2x-5)}{(x-1)(x^2+5)} dx.$		B
	(a) $\log(3x^2 - 2x - 5) + c$	(b) $\log(x^2 + 5)(x - 1) + c$	
	(c) log(3x - 5) + c	(d) $\log(x - 1)^2 + c$	
Q209	$\int \frac{xe^x}{(x+1)^2} dx$ is equal to		A
	(a) $\frac{e^x}{x+1} + k$ (b) $\frac{e^x}{x} + k$	(c) $e^x + k$ (d) None	
Q210	Integrate $\frac{1}{x^2-a^2}$ is		С
	(a) $\log \left \frac{x-a}{x+a} \right + k$	(b) $log(x - a) - log(x + a)$	
	(c) $\frac{1}{2a} \log \left \frac{x-a}{x+a} \right + k$	(d) $\frac{1}{2} log \left \frac{x+a}{x-a} \right + k$	
Q211	Evaluate $\int \frac{e^x}{e^{2x}-4} dx$		С
	$(\alpha) \frac{3}{4} \log\left(\frac{e^{x}+2}{e^{x}-2}\right) + c$	(b) $-\frac{5}{4} log\left(\frac{e^{x}-2}{e^{x}+2}\right) + c$	
	(c) $\frac{1}{4} log\left(\frac{e^{x}-2}{e^{x}+2}\right) + c$	(d) $\frac{7}{4} log\left(\frac{e^{x}+2}{e^{x}-2}\right) + c$	
Q212	Evaluate $\int \frac{x+5}{(x+1)(x+2)^2} dx$		A
	(a) $4 \log(x+1) - 4\log(x+2) + \frac{3}{x+2} + k4$	(b) $4Iog(x+2) - \frac{3}{x+2} + k$	
	(c) $4 \log (x + 1) - 4 \log (x + 2)$	(d) None	
Q213	Evaluate $\int \frac{x^2 - 1}{x^4 + x^2 + 1} dx$		B

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube & Telgram
 Whatsapp: 8888111134

 YouTube
 Telegram
 Whatsapp: 8888111134

	(a) $\frac{1}{4} log \left \frac{x^2 - x + 1}{x^2 + x + 1} \right $ (b) $\frac{1}{2} log \left \frac{x^2 - x + 1}{x^2 + x + 1} \right $	$\frac{1}{1} \qquad \text{(c)} \ \frac{1}{3} \log \left \frac{x^2 - x + 1}{x^2 + x + 1} \right \qquad \text{(d)} \ \frac{1}{3} \log \left \frac{x^2 + x + 1}{x^2 - x + 1} \right $	
Q214	Integrate $\frac{1}{x-x^3}$		A
	(a) $\frac{1}{2} log[x^2/(1-x^2)]$	(b) $\frac{1}{2} log[x^2/(1-x)^2]$	
	(c) $\frac{1}{2} log[x^2/(1+x)^2]$	(d) $\frac{1}{2} log[x^2/(1+x^2)]$	
Q215	The value of $\int \frac{dx}{r(r^2-1)}$ is equal to		B
	(a) $\frac{1}{2} log \left(1 + \frac{1}{x^2}\right)$ (b) $\frac{1}{2} log \left(1 - \frac{1}{x^2}\right)$	$\left(\frac{1}{2}\right) + k$ (c) $log\left(1 - \frac{1}{x^2}\right)$ (d) None	
Q216	Evaluate the integral of $\int x \cdot e^x dx$		D
	(a) $e^{x}(x^{2}+1) + c$ (b) $e^{x}(x+1) + c$	- c (c) $e^x(2x+1) + c$ (d) $e^x(x-1) + c$	
Q217	The value of $\int (5x.e^x + 10) dx$ is equ	ual to	B
	(a) $5xe^x - 5e^x + 10x + c$	(b) $5xe^x + 5e^x + 10x + c$	
	(c) $xe^x - 5e^x + 10x + c$	(d) None	
Q218	Integrate logx		A
	(a) x(logx -1) (b) x(log x +1)	(c) log x -1 (d) logx + 1	
Q219	$\int \frac{\log(\log x)}{x} dx dx$ is		С
	(a) log(logx - 1) + k	(b) logx — 1 + k	
	(c) [log(log x - 1)]log x + k	(d) None	
Q220	$\int_{1}^{e} \frac{e^{x} (\times \log_{e} x + 1)}{x} \mathrm{d}x = \underline{\qquad}.$		B
	(a) $e^{e} - 1$ (b) e^{e}	(c) <i>e</i> - 1 (d) none	
Q221	$\int (log x)^2 x dx$ is equal to		A
	(a) $\frac{x^2}{2}[(logx)^2 - logx + \frac{1}{2}] + c$	(b) $(\log x)^2 - Iogx + \frac{1}{2} + k$	
	(c) $\frac{x^2}{2}[(logx)^2 + 1/2] + k$	(d) None	
Q222	Integrate x ³ logx		B
	(a) $x^4/16 + k$	(b) $x^4/16(4log x - 1) + k$	
	(c) $4Iogx - 1 + k$	(d) None	
Q223	Evaluate $\int x^3 e^x dx$		Α
	(a) $(x^3 - 3x^2 + 6x - 6)e^x + c$	(b) $(x^3 + 3x^2 + 6x - 6)e^x + c$	
	(c) $(x^3 - 3x^2 - 6x - 6)e^x + c$	(d) $(x^3 + 3x^2 + 6x + 6)e^x + c$	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy
To Buy Video Lectures & Books,
Whatsapp: 8888111134
www.pranavchandak.com

Q224	Evaluate $\int x \log x dx$	κ.			С
	(a) $x \log x + c$	(b) xlog $x - \frac{x}{3} + c$	(c) $\frac{x^2}{2} log x - \frac{x^2}{4} + c$	(d) $\frac{1}{x \log x} + c$	
Q225	Evaluate $\int x^2 e^{ax} dx$	x.			A
	$(\alpha) \frac{x^2 e^{ax}}{a} - \frac{2x e^{ax}}{a^2} + \frac{2}{a^3}$	$e^{ax} + c$	(b) $2xe^{ax} + c$		
	(c) $\frac{x^2}{a} - \frac{2}{a^2}e^{ax} + xe^x$	$-\frac{x}{a}+c$	(d) $e^{ax} + c$		
Q226	$\int (Iogx)^2 dx$ and the	results is			D
	(a) $x(logx)^2 - 2x \log x$	y x + 2x	(b) $x(log x)^2 - 2x$		
	(c) $2x \log x - 2x$		(d) $x(log x)^2 - 2x log$	g x + 2x + k	
Q227	$\int log x^2 dx$ is equal	to			B
	(a) $x(log x - 1) + k$		(b) $2x(log x - 1) + k$		
	(c) $2(log x - 1) + k$		(d) None		
Q228	Integrate $\frac{l}{xlogxlog(lastic}$	\overline{ggx}			A
	(a) log [log(logx)]	(b) log(log x)	(c) <i>logx</i>	(d) 1/x	
Q229	Integrate $\frac{1}{x(\log x)^2}$				A
	$(\alpha) \frac{-1}{\log x}$	(b) $\frac{1}{logx}$	(c) <i>logx</i>	(d) None	
Q230	Integrate $x^2 e^x$				A
	(a) $e^x(x^2 - 2x + 2)$	(b) $e^x(x^2 + 2x + 2)$	(c) $e^x(x+2)^2$	(d) None	
Q231	Integrate $x^2 e^{3x}$				A
	(a) $\frac{1}{3}(x^2e^{3x}) - \frac{2}{9}(xe^{3x})$	$(x^{x}) + \frac{2}{27}e^{3x}$	(b) $\frac{1}{3}(x^2e^{3x}) + \frac{2}{9}(xe^{3x})$	$(3x) + \frac{2}{27}e^{3x}$	
	$(c) \frac{1}{3}(x^2 e^{3x}) - \frac{1}{9}(x e^{3x})$	$(x) + \frac{2}{27}e^{3x}$	(d) None		
Q232	Integrate x ⁿ log x				D
	(a) $\frac{x^{n+1}}{n+1} \left[log x - \frac{1}{n+1} \right]$		(b) $\frac{x^{n-1}}{n-1} \left[log x - \frac{1}{n-1} \right]$		
	(c) $\frac{x^{n+1}}{n+1} \left[log x + \frac{1}{n+1} \right]$		(d) None		
Q233	Integrate $\frac{xe^x}{(x+1)^2}$				A
	(a) $\frac{e^x}{x+1}$	(b) $\frac{e^x}{(x+1)^2}$	(c) $\frac{xe^x}{x+1}$	(d) None	
Q234	Integrate xlog x				A

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Telegram

YouTube

	(a) $\frac{1}{4}x^2 \log(x^2/e)$	(b) $\frac{1}{2}x^2 log(x^2/e)$	(c) $\frac{1}{4}x^2 \log(x/e)$	(d) None	
Q235	Integrate $\frac{e^{x}(1+x)}{(x+2)^{2}}$				A
	$(\alpha) \frac{e^x}{x+2}$	(b) $\frac{-e^x}{2+x}$	(c) $\frac{e^x}{2(2+x)}$	(d) None	
Q236	Evaluate $\int e^x (x^3 +$	$(3x^2)dx$			С
	(a) $e^x + 3x + c$	(b) $e^{3x} + 3x + c$	(c) $e^{x} \cdot x^{3} + c$	(d) $e^{3x} + 3x + x^3 + c$	
Q237	$\int \frac{\log x}{x} dx$ is equal to	D			B
	(a) $\frac{1}{2}logx + k$	(b) $\frac{1}{2}(logx)^2 + k$	(c) $\frac{1}{2}x^2 + k$	(d) None	
Q238	Integrate $e^{x} \frac{(1+x \log x)}{x}$	<i>y x</i>)			A
	(a) e ^x logx	(b) $-e^x \log x$	(c) $e^{x}x^{-1}$	(d) None	
Q239	$\int \frac{\log(\log x)}{x} dx$ is equivided by $\int \frac{\log(\log x)}{x} dx$	al to			С
	(a) $log(logx) - 1 + i$	k	(b) log(log x)+k		
	(c) log x[log(log x) -	-1] +k	(d) None		
Q240	The value of the in	tegral $\int \frac{1}{x \log x} dx$ is	·		С
	$(\alpha)\frac{1}{(X\log x)^2}+c$	(b) $\log (x \log x) + c$	(c) $\log(\log x) + c$	(d) None	
Q241	Evaluate $\int \frac{\log x}{(1+\log x)^2}$	dx			С
	(a) $x \log (x + 1) + c$	(b) $log(x + 1) + c$	(c) $\frac{x}{(\log x+1)} + c$	(d) $log x + c$	
Q242	Evaluate $\int e^{x} \left(\frac{1}{r} - \frac{1}{r}\right)$	$\left(\frac{1}{2}\right) dx$			A
	(a) $\frac{e^x}{x} + c$	(b) $\frac{e^{x}}{x^{2}} + c$	(c) $\frac{e^x}{x-x^2} + c$	(d) $e^{x} + c$	
Q243	Evaluate $\int e^x \frac{x}{(x+1)^2}$	dx			С
	$(\alpha) \frac{e^x}{(x+1)^2} + c$	(b) $\frac{e^x}{x 1} + c$	(c) $\frac{e^x}{x+1} + c$	(d) $\frac{e^x}{(x+1)^{\frac{1}{2}}} + c$	
Q244	$\int (x-1)\frac{e^x}{x^2} \mathrm{d}x \text{ is equ}$	ual to			A
	(a) $\frac{e^x}{x} + k$	(b) $\frac{e^{-x}}{x} + k$	(c) $\frac{-e^x}{x} + k$	(d) None	
Q245	$\int \frac{e^{x}(x \log + 1)}{x} dx$ is equ	ial to			A
	(a) $e^x log x + k$	(b) $e^{x} + k$	(c) $log x + k$	(d) None	

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

 Follow on Youtube
 Telegram
 Whatsapp: 8888111134

Q246	Evaluate $\int \frac{1}{x\{6(logx)^2-1\}}$	$\frac{1}{1+7\log x+2}dx$			B
	(a) $\log \left \frac{2 \log x - 1}{3 \log x - 2} \right + c$		(b) $\log \left \frac{2 \log x + 1}{3 \log x + 2} \right + c$		
	$t(c) \log \left \frac{3 \log x + 1}{2 \log x + 2} \right + c$	2	(d) $\log \left \frac{3 \log x + 1}{2 \log x + 2} \right + c$		
Q247	$\int \frac{(x^2+1)}{\sqrt{x^2+2}}$ is equal to _	·			D
	(a) $2\sqrt{x^2+2} + k$	(b) $\sqrt{x^2 + 2} + k$	(c) $(x^2 + 2)^{3/2} + k$	(d) None	
Q248	$\int (e^x + e^{-x})^2 (e^x - e^{-x})^2 (e$	-x)dx is			Α
	(a) $\frac{1}{3}(e^x + e^{-x})^3 + k$		(b) $\frac{1}{2}(e^x - e^{-x})^2 + k$		
	(c) $e^{x} + k$		(d) None		
Q249	$\int \frac{1/2}{0} \frac{1}{\sqrt{3-2x}} dx$ is equal	al to			С
	(α) 1	(b) $1 - \frac{\sqrt{3}}{2}$	(c) $\sqrt{3} - \sqrt{2}$	(d) 2- $\sqrt{3}$	
Q250	$\int_0^1 x e^{x^2} dx:$				D
	(α) 1	(b) e- 1	(c) $\frac{e}{2} - 1$	(d) $\frac{1}{2}$ (e—1)	
Q251	The equation of the 4x-3 at any point (>	e curve which passe < y)	es through the point	(1, 3) and has the slope	B
	(a) $y = 2x^3 - 3x + 4$	(b) $y = 2x^2 - 3x + 4$	(c) x = $2y^2 - 3y + 4$	(d) None	
Q252	The equation of the (1 0) and f(x)=2x-1 i	e curve in the form y s	y = f(x) if the curve p	passes through the point	A
	(a) $y = x^2 - x$	(b) x = y ² - y	(c) $y = x^2$	(d) None	

DEFINITE INTEGRAL - QUESTION BANK

Q258 $\int_{0}^{a} [f(x) + f(-x)]dx \text{ is equal to } ___}.$ (a) $\int_{0}^{a} 2f(x)dx$ (b) $\int_{-a}^{a} f(x)dx$ (c) 0 (d) $\int_{-a}^{a} - f(-x)dx$ Q254 Evaluate $\int_{2}^{b} (3x - 2)^{2}dx$ and the value is $___$. (a) 104 (b) 100 (c) 10 (d) None Q255 Evaluate $\int_{0}^{1} (2x^{2} - x^{3})dx$ and the value is $___$. (a) 4/3 (b) 5/12 (c) -4/3 (d) None Q256 $\int_{0}^{2} 3x^{2}dx$ is $___$. (a) 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_{0}^{1} (2x + 5)dx$ and the value is $___$. (a) 3 (b) 10 (c) 30 (d) None Q258 Evaluate $\int_{0}^{1} (2x + 5)dx$ is $___$. (a) 3 (b) 10 (c) 30 (d) None Q256 The value of $\int_{0}^{1} (2x + 5)dx$ is $___$. (a) 54 (b) 6 (c) 19 (d) None Q256 $\int_{0}^{a} 3x^{2}4x$ is equal to $___$. (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_{0}^{1} 10x^{5}dx$ is equal to $___$. (a) $\frac{5}{a}$ (c) $\frac{5}{a}$ (d) None Q261 Evaluate $\int_{0}^{1} (2x^{2} - x^{3})dx$ and the value is $___$. (a) $\frac{5}{a} \times 6$ (b) $\frac{3}{a}$ (c) $\frac{5}{a}$ (d) None Q262 $\int_{0}^{1} 10x^{5}dx$ is equal to $___$. (a) $\frac{5}{a} \times 6$ (b) $\frac{3}{a}$ (c) $\frac{5}{a}$ (d) None Q264 Evaluate $\int_{0}^{1} 2x^{2} - x^{3} dx$ and the value is $___$. (a) $\frac{5}{a} \times 6$ (b) $\frac{3}{a} \times 6$ (c) $-4/3$ (d) None Q264 Evaluate $\int_{0}^{3} 1x \sqrt{8 - x^{2}} dx$ (a) -1 (b) 1 (c) 0 (d) None Q26	Ans
(a) $\int_{0}^{a} 2f(x)dx$ (b) $\int_{-a}^{a} f(x)dx$ (c) 0 (d) $\int_{-a}^{a} -f(-x)dx$ Q254 Evaluate $\int_{2}^{a}(3x-2)^{2}dx$ and the value is	B
Q254 Evaluate $\int_2^4 (3x - 2)^2 dx$ and the value is (a) 104 (b) 100 (c) 10 (d) None Q255 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) 4/3 (b) 5/12 (c) -4/3 (d) None Q256 $\int_0^2 3x^2 dx$ is (a) 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_1^4 (2x + 5) dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 Evaluate $\int_0^1 (2x + 5) dx$ and the value is (a) 54 (b) 6 (c) 19 (d) None Q258 The value of $\int_0^1 (2x + 5) dx$ is (a) 54 (b) 6 (c) 19 (d) None Q258 $\int_0^4 \sqrt{3x + 4} dx$ is equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q259 $\int_0^1 10 x^8 dx$ is equal to (a) $\frac{5}{3}$ (b) $\frac{5}{3}$ (c) $\frac{5}{3}$ (d) None Q260 $\int_0^1 10 x^8 dx$ is equal to (a) $\frac{5}{3} x^6$ (b) $\frac{5}{3}$ (c) $-4/3$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{5}{3} x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) $-4/3$ (d) None	
(a) 104 (b) 100 (c) 10 (d) None Q255 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) 4/3 (b) 5/12 (c) -4/3 (d) None Q256 $\int_0^2 3x^2 dx$ is (a) 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_1^4 (2x + 5) dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_0^1 (2x + 5) dx$ ls (a) 54 (b) 6 (c) 19 (d) None Q258 The value of $\int_0^1 (2x + 5) dx$ ls (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_0^4 \sqrt{3x + 4} dx$ ls equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q259 $\int_0^4 \sqrt{3x + 4} dx$ ls equal to (a) $\frac{3}{5}x^6$ (b) $\frac{3}{5}x^5$ (c) $\frac{5}{3}x^7$ (d) None Q260 $\int_0^1 10x^5 dx$ is equal to (a) $\frac{3}{5}x^6$ (b) $\frac{3}{5}x^7$ (c) $\frac{1}{(c)}x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q261 Evaluate $\int_0^1 2x^2 - x^3 dx$ and the value is (a) -1 (b) 1 (c) 0 (d) None (d) None	A
Q255 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $4/3$ (b) $5/12$ (c) $-4/3$ (d) None Q256 $\int_0^2 3x^2 dx$ is (a) 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_1^4 (2x + 5) dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_0^1 (2x + 5) dx$ ls (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_0^4 \sqrt{3x + 4} dx$ ls equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_0^1 10 x^5 dx$ is equal to (a) $\frac{3}{5} x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q261 Evaluate $\int_0^1 2x^2 - x^3 dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 [x^2 + 2x - 3] dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evalu	
(a) 4/3 (b) 5/12 (c) -4/3 (d) None Q256 $\int_0^2 3x^2 dx$ is	B
Q256 $\int_0^2 3x^2 dx$ is (a) 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_1^4 (2x+5) dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_0^1 (2x+5) dx$ Is (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_0^4 \sqrt{3x+4} dx$ Is equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_0^1 10 x^5 dx$ is equal to (a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x + x = 3 x x = 3 x x $ (b) $ x = 3 x x = 3 x x $ (c) $ x = 3 x x = 3 x x = 3 x x = 3 x x = 3 x x = 3 x x = 3 $	
$a)$ 7 (b) -8 (c) 8 (d) None Q257 Evaluate $\int_{1}^{4}(2x+5)dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_{0}^{1}(2x+5)dx$ is (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_{0}^{4}\sqrt{3x+4} dx$ is equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_{0}^{1}10 x^5 dx$ is equal to (a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_{0}^{1}(2x^2 - x^3)dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_{3}^{3}x\sqrt{8-x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_{3}^{3} x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_{3}^{3} x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2	С
Q257 Evaluate $\int_{1}^{4} (2x + 5) dx$ and the value is (a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_{0}^{1} (2x + 5) dx$ ls (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_{0}^{4} \sqrt{3x + 4} dx$ ls equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_{0}^{1} 10 x^5 dx$ is equal to (a) $\frac{5}{3} x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_{0}^{1} (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_{3}^{3} x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_{3}^{3} x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_{3}^{4} x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2	
(a) 3 (b) 10 (c) 30 (d) None Q258 The value of $\int_0^1 (2x+5) dx$ Is (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_0^4 \sqrt{3x+4} dx$ Is equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_0^1 10 x^5 dx$ is equal to (a) $\frac{5}{3} x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2	С
Q258 The value of $\int_0^1 (2x+5)dx$ ls (a) 54 (b) 6 (c) 19 (d) None Q259 $\int_0^4 \sqrt{3x+4} dx$ ls equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_0^1 10 x^5 dx$ is equal to (a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3)dx$ and the value is (a) $\frac{4}{3} + k$ (b) 5/12 (c) -4/3 (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2	
(a) 54 (b) 6 (c) 19 (d) None Q259 $\int_{0}^{4} \sqrt{3x + 4} dx$ is equal to (a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_{0}^{1} 10 x^{5} dx$ is equal to (a) $\frac{5}{3} x^{6}$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_{0}^{1} (2x^{2} - x^{3}) dx$ and the value is (a) $\frac{4}{3} + k$ (b) 5/12 (c) -4/3 (d) None Q262 Find the Value of $\int_{3}^{3} x \sqrt{8 - x^{2}} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_{3}^{3} x^{2} + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_{3}^{4} x - 1 + x - 2 + x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2	B
$ \begin{array}{ c c c c c c } \hline \mathbf{Q259} & \int_{0}^{4} \sqrt{3x+4} dx \text{ is equal to } \underline{\qquad} \\ \hline (a) & 9/112 & (b) & 125/9 & (c) & 11/9 & (d) \text{ None} \end{array} \\ \hline \mathbf{Q260} & \int_{0}^{1} 10 x^{5} dx \text{ is equal to } \underline{\qquad} \\ \hline (a) & \frac{5}{3} x^{6} & (b) & \frac{3}{5} & (c) & \frac{5}{3} & (d) \text{ None} \end{array} \\ \hline \mathbf{Q261} & \text{Evaluate } \int_{0}^{1} (2x^{2} - x^{3}) dx \text{ and the value is } \underline{\qquad} \\ \hline (a) & \frac{4}{3} + k & (b) & 5/12 & (c) & -4/3 & (d) \text{ None} \end{array} \\ \hline \mathbf{Q262} & \text{Find the Value of } \int_{3}^{3} x \sqrt{8 - x^{2}} dx & \\ \hline (a) & -1 & (b) & 1 & (c) & 0 & (d) \text{ None} \end{array} \\ \hline \mathbf{Q263} & \text{Evaluate } \int_{3}^{3} x^{2} + 2x - 3 dx & \\ \hline (a) & 1 & (b) & -6 & (c) & 4 & (d) & 2 \end{array} $	
(a) 9/112 (b) 125/9 (c) 11/9 (d) None Q260 $\int_0^1 10 x^5 dx$ is equal to . . (a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is . (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$. . (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$. . (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x^2 + 1 + x = 2 + x = 2 -2 -2 -2 -2 -2 -2 -2$	B
Q260 $\int_0^1 10 x^5 dx$ is equal to (a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_4^4 (x_1 - 4 + x_2 - 3) dx$ (c) 4 (d) 2	
(a) $\frac{5}{3}x^6$ (b) $\frac{3}{5}$ (c) $\frac{5}{3}$ (d) None Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is . (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$. (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$. (a) 1 (b) -6 (c) 4 (d) 2	С
Q261 Evaluate $\int_0^1 (2x^2 - x^3) dx$ and the value is (a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x^2 + x - 3 dx$ (c) 4 (d) 2	
(a) $\frac{4}{3} + k$ (b) $5/12$ (c) $-4/3$ (d) None Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x^2 + 2x - 3 dx$ (c) 4 (d) 2	B
Q262 Find the Value of $\int_3^3 x \sqrt{8 - x^2} dx$ (a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x^2 + 2x - 3 dx$	
(a) -1 (b) 1 (c) 0 (d) None Q263 Evaluate $\int_3^3 x^2 + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_3^4 x^2 + 2x - 3 dx$ (c) 4 (d) 2	С
Q263 Evaluate $\int_{3}^{3} x^{2} + 2x - 3 dx$ (a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\int_{3}^{4} x - 3 + x - 3 dx$	
(a) 1 (b) -6 (c) 4 (d) 2 Q264 Evaluate $\binom{4}{4} (lx - 1) + lx - 2l + lx - 2l) dx$	С
Q264 Evaluate $\int_{-\infty}^{4} \left(\frac{1}{2} + \frac{1}$	
$\int E valuate J_1(x-1 + x-2 + x-3) dx$	С
(a) 17/2 (b) 15/2 (c) 19/2 (d) 7	
Q265 Evaluate $\int_{0}^{5} \frac{\sqrt[4]{x+4}}{\sqrt[4]{x+4} + \sqrt[4]{9-x}} dx$	B

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

YouTube

Telegram

maintagram

Whatsapp: 8

	(a) $\frac{7}{2}$	(b) $\frac{5}{2}$	(c) $\frac{3}{2}$	(d) 2	
Q266	Evaluate $\int_{-3}^{3} (x^3 \cdot$	(+ x)dx			Α
	(α) Ο	(b) 3	(c) -3	(d) 1	
Q267	Evaluate $\int_{2}^{4} (3x -$	- 2) ² dx and the valu	ıe is		Α
	(a) 104 (k	o) 100 (c) 10	(d) No	one	
Q268	Evaluate $\int_0^1 x e^x dx$	lx and the value is .	·		D
	(a) -1	(b) 10	(c) 10/9	(d) None	
Q269	Evaluate $\int_{1}^{4} (2x +$	+ 5) dx and the value	e is		С
	(a) 3	(b) 10	(c) 30	(d) None	
Q270	$\int_{1}^{2} \frac{2x}{1+x^2} dx$ is equal	ıl to			Α
	$(a) \frac{\log_e 5}{2} \qquad (k$	b) $log_e 5 - log_e 2 + k$	(c) <i>Iog_e2/</i> 5	(d) None	
Q271	$\int_{1}^{2} \frac{x+2}{2} dx$ is				B
	$\int_{0}^{1} \int_{x+1}^{x+1} dx dx = \frac{1}{2}$	(b) $2 + Ioa_{2}3$	(c) $I_0 q_2 3$	(d) None	
Q272	(a) 2 + i b g 2 $(b) 2 + i b g g 3$ $(b) i b g g 3$ $(a) i v b i c$				
	Evaluate $\int_{1}^{1} dx/$	$x(1 + ogx)^2$ and the	e value is		
0000	$(a) -\frac{1}{2}$	(D) $\frac{1}{3}$	(C) $\frac{1}{3}$	(a) None	
Q273	$\int_{0}^{1} \frac{(x+1)(x-4)}{\sqrt{x}} dx$ is	equal to			~
	$(a) - \frac{48}{5}$ (k	o) 48/5	(c) 48	(d) None	
Q274	The value of $\int_2^3 f$	$f(5-x)dx - \int_2^3 f(x)dx$	dx is		B
	(a) 1	(b) 0	(c) -1	(d) None	
Q275	$\int_{1}^{2} x \log x dx$ is equivalent or $\int_{1}^{2} x \log x dx$	qual to			C
	(a) 2 log2	(b) -3/4	(c) 2 <i>log</i> 2 – 3	/4 (d) None	
Q276	Evaluate $\int_{1}^{2} \frac{(x^2 - x^2)^2}{x^2 e^{x+1}}$	$\frac{1}{1/x} dx$ and value is _	·		Α
	(a) $e^2 \lfloor \sqrt{e-1} \rfloor$ (k	b) $e^2\left[\sqrt{e-1}\right] + k$	(c) $e^{2\sqrt{e}}$ (d) No	one	
Q277	The value of \int^1 -	$\frac{\sqrt{x}}{\sqrt{x}}$ dx is			Α
	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 0	
Q278	$\Gamma_{\rm eventual transformula}$. ,			Α
	Evaluate $\int_0 \frac{1}{\sqrt[3]{x+\sqrt[3]{x}}}}}}}}}}}}}}}}}}}}}}$	$\frac{1}{\sqrt{7-x}}ax$	2 × 3		
	(a) $\frac{1}{2}$	(b) $\frac{-}{2}$	(C) $\frac{1}{2}$	(d) 2	

Whatsapp: 8888111134

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy YouTube Telegram

Q279	The value of $\int_{2}^{3} \frac{x+3}{x+1}$	dx			A
	(a) $1 + 2\log\frac{4}{3}$	(b) 1— 2 <i>log</i> (4/3)	(c) $1 + \log \frac{3}{4}$	(d) None	
Q280	$\int_{2}^{e} I og x dx$ is equa	l to			B
	(a) <i>log</i> 2 – 1	(b) - (2 log2 - 2)	(c) 2 log2 — 1	(d) 0	
Q281	The value of $\int_0^1 x$ (1)	$(-x)^n dx$ is equal to	·		С
	(α) 0	(b) 1	(c) $\frac{1}{(n+1)(n+2)}$	(d) $(n+1)(n+2)$	
Q282	Evaluate $\int_{-3}^{3} (x^3 + x)$	x)dx			A
	(a) 0	(b) 3	(c) -3	(d) 1	
Q283	Evaluate the value	e of $\int_0^3 (3x^2 + 5x + 2) dx$			С
	(a) 55	(b) 57	(c) 55.5	(d) 56	
Q284	∫xe ^x dx with upper	limit 1 and lower limit	0 is		C
	(a) -1	(b) 0	(c) 1	(d) ∞	
Q285	$\int_3^4 \frac{1}{25-x^2} dx$				B
	(a) (3/4)log(1/5)	(b) (1/5)log(3/4)	(c) (1/5)log(4/3)	(d) (3/4)log5	
Q286	Integrate $\int_{3}^{11} (2x +$	$(-3)^{1/2} dx$			С
	(α) 33	(b) 100/3	(c) 98/3	(d) None	
Q287	If $\int_0^1 (3x^2 + 2x + k)dx$	dx = 0, find k.			С
	(α) 0	(b) –1	(c) -2	(d) 1	
Q288	If $\int_a^b x^3 dx = 0$ and	if $\int_a^b x^2 dx = \frac{2}{3}$, find a and	b,		С
	(a) 0 and 1	(b) 1 and –1	(c) –1 and 1	(d) 0 and –1	
Q289	Evaluate $\int_{1}^{2} \frac{\log x}{x^{2}} dx$				B
	(a) $\log(e^2/2)$	(b) (1/2) log(e/2)	(c) log ₂ e	(d) log 2 ^e	
Q290	Evaluate $\int_0^4 \frac{1}{x+\sqrt{x}} dx$				C
	(a) log6 (b)	log3 (c) 2 log3	(d) 2 loge		