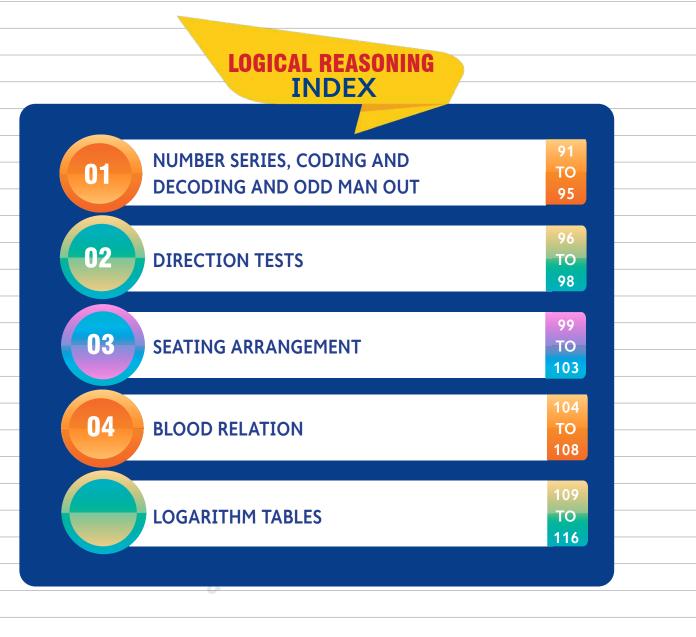


Foundation \rightarrow Intermediate \rightarrow Final CA 7

CA FOUNDATION FAST TRACK **MATHEMATICS AND** LOGICAL REASONING

Head Office

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.


🔟 f /officialjksc 🛛 🎡 jkshahclasses.com

MATHEMATICS INDEX

1A

CA FOUNDATION - MATHEMATICS

RATIO, PROPORTION & PARTNERSHIP

THEORY

Ratio
• A ratio is a fraction (either proper or improper) which compares two or more quantities of
similar kind, which enables us to understand as to how many times one quantity is involved
in the other.
• If A : B ($\frac{A}{B}$) is a ratio, then the numerator A is called "Antecedent" and the denominator B
is called the "Consequent".
• Ratios must be expressed in the simplest possible form and we can calculate ratios only
when the quantities are commensurable (fully quantifiable).
Seg ronse
• Two or more ratios can be bridged in order to have a continuous comparison between more
than two variables.
L d (d l l
Rule for bridging more than two ratios :
 If ,a,b,c,d,e are five Quantities, and
$\frac{a}{b} = \frac{N_1}{D_1}; \frac{b}{c} = \frac{N_2}{D_2}; \frac{c}{d} = \frac{N_3}{D_2}; \frac{d}{e} = \frac{N_4}{D_4}$
b D_1 c D_2 d D_3 e D_4
Then, a:b:c:d:e= $N_1N_2N_3N_4: D_1N_2N_3N_4: D_1D_2N_3N_4: D_1D_2D_3N_4: D_1D_2D_3N_4$
 Let a : b is a ratio, then:
• $\frac{a}{1} > 1$ (Ratio of Greater Inequality)
 $\frac{b}{b}$
 • $\frac{a}{b} < 1$ (Ratio of Lesser Inequality)
b
 • $\frac{a}{L} = 1$ (Ratio of Equality)
 <u>b</u>

$a^2:b^2$ (Duplicate Ratio)

•
$$a^3: b^3$$
 (Triplicate Ratio)

- $\sqrt{a}:\sqrt{b}$ (Sub-Duplicate Ratio) •
- $\sqrt[3]{a} \cdot \sqrt[3]{b}$ (Sub-Triplicate Ratio) •
- $\frac{d}{b} = \frac{c}{d} = \frac{e}{f} = \dots$ If then the value of each ratio can be obtained by mean of any one of the following two operations;
 - Each ratio = $\frac{a+c+e+...}{b+d+f+...}$ (ADDENDO) α. Or
 - Each ratio = $\frac{a-c-e-\dots}{b-d-f-\dots}$ (SUBTRANDENDO) b.

INVERSE RATIO:

- IR of a:b is b : a
- IR of a:b:c is bc : ac : ab •
- IR of a:b:c:d is bcd : acd : abd : abc •

COMPOUND RATIO:

tanda Enterpris The multiplying effect of all ratios given is known as compound ratio. If a:b and c:d are two ratios, then ac : bd is called the compounded ratio of the two.

Proportion

- Proportion is defined as the equality of two or more ratios. If $\frac{a}{b} = \frac{c}{d}$, in such a case the quantities a,b,c,d are said to be proportional, here 'd' is called the fourth proportional.
- If $\frac{a}{b} = \frac{b}{c}$, then a,b,c are said to be in continued proportion, where 'b' is called the mean • proportional and 'c' is called third proportional.

• If
$$\frac{a}{b} = \frac{b}{c}$$
 or $b^2 = ac$ $\therefore b = \sqrt{ac}$

 a verdindd Enterprise								
IF	THEN	PROPERTY						
	ad = bc	PRODUCT OF EXTREMES =						
		PRODUCT OF MEANS						
	$\frac{b}{d} = \frac{d}{d}$	INVERTENDO						
	a c							
 $\frac{a}{b} = \frac{c}{d}$	$\frac{a}{c} = \frac{b}{d}$	ALTERNENDO						
 <i>b d</i>	a+b $c+d$	COMPONENDO						
	b = d							
	$\frac{a-b}{c-d} = \frac{c-d}{c-d}$	DIVIDENDO						
	b d							
	$\frac{a+b}{a-b} = \frac{c+d}{c-d}$	COMPONENDO & DIVIDENDO						
		DIVIDENDO &						
	$\frac{a-b}{a+b} = \frac{c-d}{c+d}$	COMPONENDO						
		/6						
	S Entern Ada Entern	rise						
 	Green	0, .						
	A LA Entr							
 	3							
	-							
	3							

and the second

CLASSWORK SECTION

1.	f x/2 = y/3 = z/3	7, the	n find the	value of (2x	– 5y + 4z	z) / 2y.		
	a) 6/23	b)	23/6	c)	3/2	d)	17/6	
2.	The ratio of the	e numb	er of 50 p	oaise, Re. 1 c	เnd ₹ 5 c	oins with	Mr. Zen is 5 :	2:1. If
	the amount wit	h him	is ₹ 38, th	en the numb	er of Re.	1 coins w	ith him is:	
	a) 4	b)	8	c)	12	d)	16	
3.	If $\frac{a}{b+c} = \frac{b}{c+a}$	$= \frac{c}{a+b}$. Then fir	nd the value	of each r	atio.		
	a. 1	b.	$\frac{1}{2}$	с.	$\frac{1}{20}$	d.	None of the o	above
					20	®		
4.	An employer re	duces t	he numb	er of employ	ees in the	e ratio of :	19 : 16 and in	creases
	their wages in t	the rat	o of 4 : 5	. What is the	e ratio of	the wage	bill of the en	nployer
	initially and no	w?				9		
	a. 20:19	b.	17:16	С.	16:17	d.	19:20	
					2	(12		
Com	pound Ratio			<u>9</u>	nteri			
				90				
5.							-	
	· ·	ratio of	9 : 11, su	ıb-duplicate	ratio of	961:1296	5, sub-triplica	te ratio
	c. 275:11	d.	31:25					
Join	τ Κατιο							
6	If A · D = 2 · 2		/ · F and	$C \cdot D = 2 \cdot 7$	find A · I			
0.			4.5 010					
				· · ·				
	(, 0.12.15.	55		u)	0.10.7			
7	lf a · b = 3 · 5	b : c =	5·4 c·	d = 2 · 3 ar	nd d is 50)% more t	han e find th	e ratio
			J. 1, C.					
			3:4					
	-,	,						
	2. 3. 4. 5.	a) $6/23$ 2. The ratio of the the amount with a and	a) $6/23$ b) 2. The ratio of the numb the amount with him i a) 4 b) 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$ a. 1 b. 4. An employer reduces the their wages in the rationitially and now? a. 20:19 b. Compound Ratio 5. Find the compounded 2:5, triplicate ratio of of 729:1331. a. 1:1 b. c. 275:11 d. Joint Ratio 6. If A : B = 2:3, B : C = a) 4:6:15:35 c) 8:12:15:35 7. If a : b = 3:5, b : c = between a and e. a) 2:3 b)	a) $6/23$ b) $23/6$ 2. The ratio of the number of 50 p the amount with him is ₹ 38, th a) 4 b) 8 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Then finds a. 1 b. $\frac{1}{2}$ 4. An employer reduces the number their wages in the ratio of 4 : 5 initially and now? a. 20 : 19 b. 17 : 16 Compound Ratio 5. Find the compounded ratio of 2 : 5, triplicate ratio of 9 : 11, su of 729 : 1331. a. 1 : 1 b. 1 : 2 c. 275 : 11 d. 31 : 25 Joint Ratio 6. If A : B = 2 : 3, B : C = 4 : 5 and a) 4 : 6 : 15 : 35 c) 8 : 12 : 15 : 35 7. If a : b = 3 : 5, b : c = 5 : 4, c : between a and e. a) 2 : 3 b) 3 : 4	a) $6/23$ b) $23/6$ c) 2. The ratio of the number of 50 paise, Re. 1 c the amount with him is ₹ 38, then the numb a) 4 b) 8 c) 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Then find the value a. 1 b. $\frac{1}{2}$ c. 4. An employer reduces the number of employ their wages in the ratio of 4 : 5. What is the initially and now? a. 20 : 19 b. 17 : 16 c. Compound Ratio 5. Find the compounded ratio of 275 : 31, inv 2 : 5, triplicate ratio of 9 : 11, sub-duplicate of 729 : 1331. a. 1 : 1 b. 1 : 2 c. 275 : 11 d. 31 : 25 Joint Ratio 6. If A : B = 2 : 3, B : C = 4 : 5 and C : D = 3 : 7, a) 4 : 6 : 15 : 35 b) c) 8 : 12 : 15 : 35 d) 7. If a : b = 3 : 5, b : c = 5 : 4, c : d = 2 : 3 and between a and e. a) 2 : 3 b) 3 : 4	a) $6/23$ b) $23/6$ c) $3/2$ 2. The ratio of the number of 50 paise, Re. 1 and $\overline{\$}$ 5 c the amount with him is $\overline{\$}$ 38, then the number of Re. a) 4 b) 8 c) 12 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Then find the value of each r a. 1 b. $\frac{1}{2}$ c. $\frac{1}{20}$ 4. An employer reduces the number of employees in the their wages in the ratio of 4 : 5. What is the ratio of initially and now? a. 20:19 b. 17:16 c. 16:17 Compound Ratio 5. Find the compounded ratio of 275:31, inverse of 2:5, triplicate ratio of 9:11, sub-duplicate ratio of 9 of 729:1331. a. 1:1 b. 1:2 c. 275:11 d. 31:25 Joint Ratio 6. If A : B = 2:3, B : C = 4 : 5 and C : D = 3 : 7, find A : 1 a) 4:6:15:35 b) 4:12:3 c) 8:12:15:35 d) 8:16:37 7. If a : b = 3:5, b : c = 5:4, c : d = 2:3 and d is 50 between a and e. a) 2:3 b) 3:4	a) $6/23$ b) $23/6$ c) $3/2$ d) 2. The ratio of the number of 50 paise, Re. 1 and $\overline{5}$ scoins with the amount with him is $\overline{5}$ 38, then the number of Re. 1 coins w a) 4 b) 8 c) 12 d) 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Then find the value of each ratio. a. 1 b. $\frac{1}{2}$ c. $\frac{1}{20}$ d. 4. An employer reduces the number of employees in the ratio of 1 their wages in the ratio of 4 : 5. What is the ratio of the wage initially and now? a. 20 : 19 b. 17 : 16 c. 16 : 17 d. Compound Ratio 5. Find the compounded ratio of 275 : 31, inverse of 729 : 133 2 : 5, triplicate ratio of 9 : 11, sub-duplicate ratio of 961 : 1296 of 729 : 1331. a. 1 : 1 b. 1 : 2 c. 275 : 11 d. 31 : 25 Joint Ratio 6. If A : B = 2 : 3, B : C = 4 : 5 and C : D = 3 : 7, find A : B : C : D a) 4 : 6 : 15 : 35 b) 4 : 12 : 15 : 35 c) 8 : 12 : 15 : 35 d) 8 : 16 : 25 : 35 7. If a : b = 3 : 5, b : c = 5 : 4, c : d = 2 : 3 and d is 50% more to between a and e. a) 2 : 3 b) 3 : 4	a) $6/23$ b) $23/6$ c) $3/2$ d) $17/6$ 2. The ratio of the number of 50 paise, Re. 1 and ₹ 5 coins with Mr. Zen is 5 : the amount with him is ₹ 38, then the number of Re. 1 coins with him is: a) 4 b) 8 c) 12 d) 16 3. If $\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Then find the value of each ratio. a. 1 b. $\frac{1}{2}$ c. $\frac{1}{20}$ d. None of the c 4. An employer reduces the number of employees in the ratio of 19 : 16 and in their wages in the ratio of 4 : 5. What is the ratio of the wage bill of the en initially and now? a. 20 : 19 b. 17 : 16 c. 16 : 17 d. 19 : 20 Compound Ratio 5. Find the compounded ratio of 275 : 31, inverse of 729 : 1331, duplicate ratio of 729 : 1331. a. 1 : 1 b. 1 : 2 c. 275 : 11 d. 31 : 25 Joint Ratio 6. If A : B = 2 : 3, B : C = 4 : 5 and C : D = 3 : 7, find A : B : C : D a) 4 : 6 : 15 : 35 b) 4 : 12 : 15 : 35 c) 8 : 12 : 15 : 35 d) 8 : 16 : 25 : 35 7. If a : b = 3 : 5, b : c = 5 : 4, c : d = 2 : 3 and d is 50% more than e, find the between a and e. a) 2 : 3 b) 3 : 4

J.K. SHAH C L A S S E S a Veranda Enterprise

8.	A r	ma	ın dis	tribu	ites	his p	property	of₹6,0	0,000 ar	nong his	s three	e sons.	The s	hare	of his	;
	first son is thrice that of the second son's share and the share of the second son is															
	tw	vice	that	t of t	he t	hird	son. Fin	d the ra	tio in wh	ich sons	s share	e the p	ropert	zy.		
	α)	1	:2:	6		b)	3:4:5	5								
	c)	6	:2:	1		d)	2:4:6	5								
9.	Wł	hat	: sho	uld I	be a	ldde	d to eac	h of 3, 3	15, 38 a	nd 134	so the	at the	numb	er be	come	
	pro	оро	ortio	nate	to e	ach	other.									
	α)	3				b)	5		c) 7		(d) 2				
Mixt	ure	s a	nd Al	ligati	ion											
10.	In	wł	nat p	ropo	rtio	n mı	ust rice (∂₹3.10)/kg be n	nixed wi	ith rice	e @ ₹	3.60/k	kg to	make	
				re wo	orth		25/kg?									
			: 5			b.										
 	с.	3	: 7			d.	7:3				9					
							DACT	VEAD			se-					
 							PASI	YEAR	QUEST	IONS						
 	•			1 1 1					EU		FO					
 11.	11. A box contains ₹ 56 in the form of coins of one rupee, 50 paise and 25 paise. The number of 50 paise coin is double the number of 25 paise coins and four times the															
														rtime	es the	
					ie ru		coins. Th	ie numi		-			JOX IS			
	(a)	0	4			(b)	32		(c) 16		(d) 14				

PARTNERSHIP

CLASSWORK SECTION

1.	Simran Started	d a software busines	s by investing Rs.50,	000 . After six months ,						
	Nanda joined her with capital of Rs. 80,000. After three years , they earned a profit									
	of Rs.24,500. What was Simran's share in the profit ?									
	(a) Rs.9423	(b) Rs.10500	(c) Rs.12,500	(d) Rs.14,000						

S orise	
S Enterr	
- diana	
O No.	
V	

1B

CA FOUNDATION - MATHEMATICS

INDICES, SURDS AND LOGARITHMS

THEORY

IIILOKI
 $\alpha^{x} = N$
 a = base
x = Power/Exponent/Index
N = Product
[But,a ≠ 0,1,±∞]
®
Theory of Indices deals with the various changes in power, during various mathematical
operations.
0,0/9
Basic Rules
1. $a^m \times a^n = a^{m+n}$
1. $a^m \times a^n = a^{m+n}$ 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. $(a^m)^n = a^{mn}$; m is added n times
3. $(a^m)^n = a^{mn}$; m is added n times
$(1)^m$ m 1 m
$4. (ab)^m = a^m x b^m$
 Γ (α) ^m α ^m
5. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
6. $a^0 = 1$
a = 1
7. $a^{-n} = \frac{1}{a^n}$
 $\frac{1}{a^n}$
 8. If $a^m = a^n \Rightarrow m = n$; where, $a \neq 0, 1, -1, \pm \infty$
$ - u \rightarrow m - n, \text{ where, } u \neq 0,1, 1, \perp \infty $

a V	eranda Enterprise
9.	For $a^m = b^m$ if $m \neq 0$ then
	(i) $a = b$ (when m is odd)
	(ii) $a = \pm b$ (when m is even)
10.	$a^x = N$
	1
	$\implies a = N^{\frac{1}{x}} = \sqrt[x]{N}$
11.	$(i)0^{a} = 0$
	$(ii)1^a = 1$
	$(iii)a^1 = a$
	$(iv)a^0 = 1$
	$(v)0^{\circ}$ has no meaning
Basio	: Formulae
1.	$(a+b)^2 = a^2 + 2ab + b^2$
2.	$(a-b)^2 = a^2 - 2ab + b^2$
	Senter
3.	$a^2 - b^2 = (a + b)(a - b)$
	, d canto
4.	$(a+b)^{2} + (a-b)^{2} = 2(a^{2}+b^{2})$
	$(a-b)^{2} = a^{2} - 2ab + b^{2}$ $a^{2} - b^{2} = (a+b)(a-b)$ $(a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2})$ $(a+b)^{2} - (a-b)^{2} = 4ab$
5.	$(a+b)^2 - (a-b)^2 = 4ab$
6.	$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab+bc+ca)$
7.	$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = a^{3} + b^{3} + 3ab(a+b)$
8.	$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3} = a^{3} - b^{3} - 3ab(a-b)$
9.	$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$
10.	$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$
11.	If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$

a Veranda Enterprise
12. If $a^3 + b^3 + c^3 = 3abc$, then either $a + b + c = 0$ or $a = b = c$
but both the results cannot hold true simultaneously

Rational Numbers, Irrational Numbers & Surds

- A Rational Number is a number which can be expressed in the form p/q, where $q \neq d$ • 0; p & q are integers and p and q are prime to each other, i.e., there is no common factor between p & q, other than 1.
- Any terminating and recurring decimals are rational numbers. ٠
- Thus any non-recurring and non-terminating decimals are irrational numbers, and • when the irrational numbers are expressed in radical form (root form), it is known as "Surds".
- Thus all the surds are irrational, but all irrational numbers are not surds. •
- The numbers whose perfect root can be evaluated are rational quantities and • numbers for which perfect roots cannot be evaluated are irrational quantities. Veranda

Order of Surds

If $\sqrt[k]{m} = (m)^{\frac{1}{k}}$ is a surd, then, it is said to be a surd of order "k".

Pure Surds and Mixed Surds

In case of pure surds, entire expression is kept within the radical sign. In mixed surds, it is expressed as a product of one rational and one irrational quantity.

Example:

 $\sqrt{7}$ is a pure surd; $\sqrt{12} = \sqrt{4x^3} = 2\sqrt{3}$ is a mixed surd.

Conjugate of a Surd

If $(a + \sqrt{b})$ or $(\sqrt{a} + \sqrt{b})$ are surds, their respective conjugates would be given by,

 $(a-\sqrt{b})$ or $(\sqrt{a}-\sqrt{b})$ and vice-versa.

Rationalization of Surds

Rationalization is a process, where we convert the irrational part of the surd into a rational quantity, with help of its conjugate.

Note: 1

- Rational + Rational = Rational •
- Rational Rational = Rational •
- Rational x Rational = Rational ٠
- Rational ÷ Rational = Rational •

Note: 2

- Irrational + Irrational = Irrational •
- Irrational Irrational = Rational (only when the quantities are equal); otherwise -•
- Irrational Irrational = Irrational
- Irrational x Irrational = May be Rational or Irrational •
- Irrational + Irrational = May be Rational or Irrational • Rational + Irrational = Irrational Rational - Irrational = Irrational Rational × Irrational = Irrational

Note: 3

- •
- •
- •
- •

Square Root of Surds

- The square root of a surd is always a surd. •
- Every answer for square root must contain +ve or -ve sign and in the absence of • +/- sign, "none of these" will be marked as answer.
- If the given surd, whose square root is to be evaluated is in the form $(a \pm \sqrt{b})$, then ٠ the answer will also be in the form $\pm (x \pm \sqrt{y})$.
- Square the options, in order to get the question back. •

INDICES

1.	[{(2) ^{1/2} . (4) ^{3/4} . (8) ^{5/6} .	(16)7	^{7/8} . (32) ^{9/10} } ⁴] ^{3/25} is			
	(a) A fraction	(b)	an integer			
	(c) 1	(d)	none of these			
2.	$lf a^3 - b^3 = (a - b)$ ((a ² +	ab + b²), then th	e simplified fo	orm of	
	[]	m ² +r	<u>mn+n² r r^{l²+ln+r}</u>	2		
	$\begin{bmatrix} x^{\dagger} \\ x^{m} \end{bmatrix}^{l^{2} + lm + m^{2}} \times \begin{bmatrix} x^{m} \\ x^{n} \end{bmatrix}$		$\times \frac{\mathbf{x}^{\prime\prime}}{\mathbf{x}^{\prime}}$			
	(a) 0	(b)	1	(c) ×	(d) none of these	
	<u>1 -1</u>					
3.	$\frac{1}{1} - \frac{1}{3} + 3^{\frac{1}{3}}, \text{ ther}$	ו 3x³	– 9x is			
	(a) 15	(b)	10		9	
	(c) 12	(d)	none of these		: 60	
				9 rp	1/2-	
 4.	If $x^{1/p} = y^{1/q} = z^{1/r}$ ar			alue of p + q	+ r is	
		(b)		0		
	(c) 1/2	(d)	none of these			
		, y	13 V C			
 5.	If $\frac{9^{9}.3^{2}.(3^{-9})^{-1}-27}{3^{3x}.2^{3}}$	- = -	$\frac{1}{27}$ then x – y is g	iven by		
	(a) -1	(b)	1	(c) 0	(d) none	
 6.	lf (5.678) [×] = (0.567	8) ^y =	10 ^z then			
	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1} = 1$		<u>1</u> <u>1</u>	$\frac{1}{z} = 0$		
	(a) x y z		(b) × y	Z		
	$\frac{1}{(c) \times y} - \frac{1}{y} + \frac{1}{z} = -1$					
	(c) x y z		(d) None			
7.	If $ax^{2/3} + bx^{1/3} + c =$				<u> </u>	
	(a) 3abcx	(b)	-3abcx	(c) 3abc	(d) -3abc	

PAST YEAR QUESTIONS

 8.	Value of $(a^{1/8} + a^{-1/8}) (a^{1/8} - a^{-1/8}) (a^{1/4} + a^{-1/4}) (a^{1/2} + a^{-1/2})$ is:
	(a) $a + \frac{1}{a}$ (b) $a - \frac{1}{a}$ (c) $a^2 + \frac{1}{a^2}$ (d) $a^2 - \frac{1}{a^2}$
	× × × × ×
9.	If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ then the value of $\left(\frac{a+b+c}{3}\right)$
	(a) abc (b) 9abc
	(c) $\frac{1}{abc}$ (d) $\frac{1}{9abc}$
	8
	S S S S S S S S S S S S S S S S S S S
	Sorpris
	Senterprise Add Enterprise
 	da
	C Vacan.
 	2

LOGARITHMS

THEORY

If $a^{x}=N$, then $x=\log_{a}N$; * $a \neq 0,1, \pm \alpha$ and for the purpose of log, any negative quantity. * x is called the logarithm of N (product) to the base "a".

Base "a"

- The base "a" of log can be any positive real number except 1.
- The base of log can be clearly divided into two parts:
- 0 < a < 1 (the proper fraction)
- a > 1 (positive integer / mixed fraction)
- Unless otherwise specified, the base of log is always taken to be 10 and this is known as Common Logarithm.
- For theoretical purpose, the base is always taken to be "e", where "e" is a constant and this is known as "Natural Logarithm".
- Common Logarithms are used for numerical calculations and Natural Logarithms
 are used in calculus.

Basic Rules

 $1. \quad \log_a mn = \log_a m + \log_a n$

2.
$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

3.
$$\log_a m^n = n \log_a m$$

4. $\log_a a = 1$

$5. \quad \log_a 1 = 0$

- 6. $\log_a 0 =$ Undefined
- 7. $\log_a ve =$ Undefined

8. $\log_a m = \log_a n \Longrightarrow m = n$

Change of Base in Logarithms

1.
$$\log_{b} a = \frac{\log_{m} a}{\log_{m} b}$$
 (m can be any common base) (m $\neq 0, 1, \pm \alpha$,-ve value)

$$2. \quad \log_a b = \frac{1}{\log_b a}$$

$$3. \quad a^{\log_a x} = x$$

Nature of Log Values

- All the values which are obtained from log tables are irrational numbers provided the numbers are not 10 or in the form of 10ⁿ.
- $\log_b a$ is a rational quantity only when, $\frac{\log a}{\log b}$ is rational.
- If K is a number, then its log value, logK can be divided into two parts: a) Integral
 Part, b) Fractional Part.
- The integral part is called "Characteristics" and the fractional part is called "Mantissa".
- The integral characteristics part can be positive or negative or zero but not a fraction.
- The values of mantissa are always positive fractions.
- The values for mantissa are obtained from log tables.
- Characteristics are to be calculated before we evaluate mantissa from the log table.
- Value of characteristics = number of significant digits before decimal 1

CLASSWORK SECTION

1.	If $\log_{10} [98 + \sqrt{x^2 - 1}]$	12x+36] = 2, then $x =$		
	a) 4			
	b) 8			
	c) 12			
	d) 4,8			
	() X			
2.	$\operatorname{lf}\left(\frac{21}{10}\right)^{*}$ = 2, then	x = ?		
	a) $\frac{\log 2}{\log 3 + \log 7 + 1}$		b) $\frac{\log 2}{\log 3 + \log 7 - 1}$	
			©	
	c) $\frac{\log 2}{\log 7 + \log 3 + 2}$		d) None of the a	ibove
	-10g / + 10g + 2			
			5/9	2
3.	$lf \log(\frac{x+y}{5}) = \frac{1}{2}(\log x)$	$(x + \log y)$, then $\frac{x}{y} + \frac{y}{x} =$		
	a) 20	b) 23	c) 22 prise	d) 21
			- interr	
4.	If log _{0.5} (log _x (log	₄ 32)) = 2, then x =	10 E.	
	α) 5/2	b) 625/16	c) 25/4	d) None of the above
		C Ve		
5.	$\log_2 \log_{\sqrt{2}} \log_3 81$	1 = ?		
	a) 3	b) 2	c) 1	d) 0
6.	$If log_2 x + log_4 x$	+ log ₁₆ x = 21/4, these	e x is equal to	
	(a) 8	(b) 4	(c) 16	(d) none of these
		PAST YEAR	QUESTIONS	
7.	The value of log	$(1^3 + 2^3 + 3^3 + \ldots n^3)$	is equal to:	
	(a) 3 log 1 + 3 lo	og 2 + + 3 log n		
	(b) 2 log n + 2 lo	og (n + 1) – 2 log 2		
	(c) log n + log (r	ר + 1) + log (2n + 1) –	log 6	
	(d) 1			

EQUATIONS

THEORY

Equations

An equation is defined as a mathematical statement of equality.

(5		N	
	1-		I)	
V	IL g	N.	/	

```
Types of Equations
```

- a) Linear equation in one variable.
- b) Linear simultaneous equations in 2 or 3 variables.
- c) Quadratic equations.
- d) Cubic equations.
- e) Bi-quadratic equations.
- f) Exponential equations.

Quadratic Equations

- A quadratic equation is defined as polynomial equation of degree 2.
- A quadratic equation can be expressed in the following general form:

$$ax^{2} + bx + c = 0; (a \neq 0)$$

• A quadratic equation can also be expressed in the factor form as follows:

$$a(x-\alpha)(x-\beta)=0$$

Here, α and β are the roots or solutions of quadratic equations.

• The general solution of the quadratic equation can be obtained as follows:

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$

Product of roots =
$$\alpha\beta = \frac{c}{a}$$

Structure of Quadratic Equations

If Sum (S) (α + β) and Product (P) ($\alpha\beta$) of the roots are known, then the quadratic equation is

$$x^2 - Sx + P = 0$$

Sign of Roots of a Quadratic Equation

- When c=0, one root of the equation must be 0.
- When b and c are 0, then both the roots must be 0.
- If a, b, c all are of same sign, both roots are negative. •
- If a and c are of same sign, opposite to that of b, then both the roots will be positive. •
- If a and c are of opposite signs, one root is positive and another root is negative. •

Nature of Roots

The expression " $b^2 - 4ac$ " is called the "Discriminant (D)" of the quadratic equation.

- When D > 0, Roots are real and distinct. •
- When D = 0, Roots are real and equal.
- When D < 0, Roots are imaginary.
- When $D \ge 0$, Roots are real. •
- When D is a perfect square, Roots are real, rational and unequal.
- When D is not a perfect square, Roots are real, irrational and unequal.
- If roots are equal use $b^2 = 4ac$. •
- If roots are reciprocal of each other, use a = c۲
- If roots are equal but of opposite sign, use b = 0•
- If roots are reciprocal but opposite in sign, use c = -a

Note

Haranda Irrational roots will always appear in conjugate pairs. •

$$\alpha = (a - \sqrt{b})$$
 and $\beta = (a + \sqrt{b})$

Imaginary roots will always appear in conjugate pairs •)

$$\alpha = (a - ib)$$
 and $\beta = (a + ib)$

Cubic Equations

A cubic equation is a polynomial equation of degree 3, and the general form is • represented as follows:

$$ax^{3} + bx^{2} + cx + d = 0; (a \neq 0)$$

The factor form of a cubic equation is given as follows: •

$$a(x-\alpha)(x-\beta)(x-\gamma) = 0$$

Here, α , β , and γ are the roots or solutions of the cubic equation.

- Sum of roots = $\alpha + \beta + \gamma = -b/\alpha$
- **Product of the roots =** $\alpha\beta\gamma$ = -d/a

Bi-Quadratic Equations

• A bi-quadratic equation is a polynomial of degree 4, and the general form is represented as follows:

$$ax^4 + bx^3 + cx^2 + dx + e = 0; (a \neq 0)$$

• The factor form of a cubic equation is given as follows:

$$(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) = 0$$

Ada Enterprist

Here, α , β , γ and δ are the roots or solutions of the bi-quadratic equation.

- Sum of roots = $\alpha + \beta + \gamma + \delta$ = -b/a
- **Product of the roots =** $\alpha\beta\gamma\delta$ **= e/a**

CLASSWORK

Cho	ose the most approp	priate option (a), (b), (c)	or (d).	
1.	Ten years ago, the	age of a father was for	ur times of his son. Ten years	hence, the
 	age of the father v	vill be twice that of his	son. The present ages of the	father and
	the son are.			
	a) (50, 20)	b) (60, 20)		
	c) (55, 25)	d) none of thes	е	
2.	y is older than x by	7 years 15 years back,	x's age was 3/4 of y's age. Th	eir present
	ages are:		8	
	a) (x=36, y=43)	b) (x=50, y=43)		
	c) (x=43, y=50)	d) (x=40, y=47)		
			2/9	
3.	The sides of an equ	ilateral triangle are sho	ortened by 12 units 13 units a	nd 14 units
	respectively and a r	right angle triangle is fo	rmed. The side of the equilate	ral triangle
	is	/9	Entern	
	a) 17 units	b) 16 units c)	15 units d) 18 units	
		didine		
		PAST YEAR QU	ESTIONS	
1.	Number of studen	ts in each section of a	ı school is 36. After admitti	ng 12 new
	students, four new	sections are started. If	total number of students in e	ach section
	now is 30, then nur	mber of section initially	were	
	(a) 6 (b) 1	0 (c) 14	(d) 18	

Hilling

QUADRATIC EQUATIONS

1.	If '-4' is a root of the equation $x^2 + ax - 4 = 0$ and the equation $x^2 + ax + b = 0$ has
	equal roots, the value of 'a' & 'b' are
	(a) $a = 2, b = \frac{5}{4}$ (b) $a = 3, b = \frac{9}{4}$
	4 4 _
	(c) $a = , b = \frac{5}{2}$ (d) none
	_
2.	If the equation $x^2 - (b + 4)x + 2b + 5 = 0$ has equal roots, then the values of 'b'
	(a) -2 (b) 2 (c) ±2 (d) ±1
3.	If p + q + r = 0 and p, q, r are rational nos. the roots of equation
	$(q + r - p)x^{2} + (r + p - q)x + (p + q - r) = 0$
	(a) real and irrational (b) real & equal
	(c) imaginary (d) real & rational
	Storpris
4.	If the sum of the roots of the quadratyic equation $ax^2 + bx + c = 0$ is equal to the
	sum of the squares of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is equal to
	a) 2 b) -2 c) 1 d) -1
	3
	PAST YEARS QUESTIONS
1	If reacts of a runtion $u^2 + u + n = 0$ and $u = 0$ and $u^3 + 0^3 = -0$. Find we have of n
1.	If roots of equation $x^2 + x + r = 0$ are α and β and $\alpha^3 + \beta^3 = -6$. Find value of r
	$\frac{5}{(a)} - \frac{5}{3} \qquad (b) \frac{7}{3} \qquad (c) - \frac{4}{3} \qquad (d) 1$
	(a) 3 (b) 3 (c) 3 (d) 1
2.	If the ratio of the root of the equation $4x^2 - 6x + p = 0$ is 1 : 2 then the value of p is
۷.	(a) 1 (b) 2 (c) -2 (d) -1
3.	If difference between the roots of the equation $x^2 - kx + 8 = 0$ is 4 then the value of
	k is
	(a) 0 (b) ± 4 (c) $\pm 8\sqrt{3}$ (d) $\pm 4\sqrt{3}$

CUBIC EQUATION

Choose the most appropriate option (a), (b), (c) or (d) The roots of the equation $x^3+7x^2-21x-27=0$ are 1. b) (3,-9,-1) a) (-3,-9,-1) d) (3,9,1) e) (-3,9,1) **CONSISTENCY OF EQUATION** The system of equation 4x + 7y = 10 and 10x + (35/2)y = 25 have 2. (a) unique solution (b) infinite solution (c) no solution (d) none Veranda Enterprise

3

LINEAR INEQUALITIES

CLASS WORK

- A car manufacturing company manufactures cars of two types A and B. Model A requires 150 man-hours for assembling, 50 man-hours for painting and 10 man-hours for checking and testing. Model B requires 60 man-hours for assembling, 40 man-hours for painting and 20 man-hours for checking and testing. There are available 30 thousand man-hours for assembling, 13 thousand man-hours for painting and 5 thousand man-hours for testing and checking. Let the company manufacture x units of type A model of car and y units of type B model of the car. Then, the inequalities are:
 - a) $5x + 2y = 1000, 5x + 4y \le 1300, x + 2y \le 500, x \ge 0, y \ge 0$
 - b) $5x + 2y \le 1000, 5x + 4y \le 1300, x + 2y \le 500, x \ge 0, y \ge 0$
 - c) $5x + 2y \le 1000$, 5x + 4y = 1300, x + 2y = 500, $x \ge 0$, $y \ge 0$
 - d) $5x + 2y \le 1000, 5x + 4y \ge 1300, x + 2y \ge 500, x \ge 0, y \ge 0$
- 2. A firm is engaged in breeding pigs. The pigs are fed on various products grown on the farm. In view of the need to ensure certain nutrient constituents, it is necessary to buy two additional products, say A and B. The contents of the various products (per unit) in nutrient constituent (eg., vitamins, proteins, etc.) is given in the following table:

	Nutrient	Nutrient content in product		Minimum amount of Nutrient
		А	В	
-	M1	36	6	108
-	M2	3	12	36
-	M3	20	10	100

The last column of the above table gives the minimum amounts of nutrients constituents M1, M2 and M3 which must be given to the pigs. Express the above situation in terms of linear inequalities.

	a V	eranda Enterprise
		$36x + 6y \ge 108 \qquad \qquad$
		$3x + 12y \ge 36 \qquad \qquad x + 4y \ge 12$
		a) $20x + 10y \ge 100$ b) $x + 0.5y \ge 5$
		$x \ge 0, y \ge 0 \qquad \qquad$
		$36x + 6y \le 108$
		c) $3x + 12y \le 36$ d) (a) & (b) both
_		$20x + 10y \le 100$
_		$x \ge 0, y \ge 0$
_		
_	2	The rules and regulations demand that the employers should employ not more
_	3.	The rules and regulations demand that the employers should employ not more
_		than 5 experienced hands to 1 fresh one and this fact is represented by: (Taking
_		experienced person as x and fresh person as y)
_		a) $y \ge x/5$
_		b) $y \ge x$
_		c) $y \le x/5$
_		d) None of the above
_		(5-2x) = x
_	4.	The solution of the in-equality $\frac{-5}{3} = \frac{-5}{6}$ is:
		a) $x \le 8$ b) $x = 8$ c) $x \ge 8$ d) None of the above
		31
	5.	If $\left x + \frac{1}{4} \right > \frac{7}{4}$, then which of the following is correct?
		a) $x < -\frac{3}{2} \text{ or } x > 2$ b) $x < -2 \text{ or } x > \frac{3}{2}$
		b) $x < -2 \text{ or } x > \frac{5}{2}$
		c) $-2 < x < \frac{3}{2}$
		d) None of the above
	6.	A company produces two types of leather belts, say A and B. Belt A is of superior
		quality and belt B is of lower quality. Each belt of type A requires twice as much
		time as required by a belt of type B. If all belts were of type B, the company could
		produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts
		per day. Belt A requires fancy buckles and only 400 fancy buckles are available per

day. For belt of type B only 700 buckles are available per day.

Constraints can be formulated by assuming that the company produce x units of belt A and y units of belt B as : $2x + y \le 1000$ (b) $2x + y \le 1000$ (c) $2x + y \ge 1000$ (a) $x + y \ge 800$ x + y ≤ 800 x + y ≤ 800 $x \le 400$; $y \le 700$ $x \le 400$; $y \le 700$ $x \le 400$; $y \le 700$ $x \ge 0$; $y \ge 0$ $x \ge 0$; $y \ge 0$ $x \ge 0$; $y \ge 0$ None of these d)

TIME VALUE OF MONEY

Simple Interest

Simple interest is charged on the principal amount and hence it is same for every year.

A = Amount, P = principal, n = number of years, R = interest rate

4

$$SI = \frac{PTR}{100}$$

$$\mathbf{A} = \mathbf{P} + \mathbf{SI} = \mathbf{P} + \frac{PTR}{100} = P\left(1 + \frac{TR}{100}\right)$$

Notes:

- If rate of interest is known, then sum of money will double itself in 100/r years.
- If number of years is known, then sum of money will double itself @ 100/n %.
- A sum of money will become "n" times in $\frac{(n-1) \times 100}{2}$ years.

Example:

In how many years a sum of money @10% p.a. SI will become (a) double, (b) triple,

(c) N times.

(a) Double	(b) Triple	(c) N times	
 $\frac{(2-1) \ge 100}{10} = 10 \text{ years}$	$\frac{(3-1) \ge 100}{10} = 20 \text{ years}$	$\frac{(N-1) \times 100}{10} = 10(N-1) \text{ years}$	

• If the sum of money becomes "n₁" times in T₁ years and "n₂" times in T₂ years, then the ratio of their times is: $\frac{T_1}{T_2} = \frac{n_1 - 1}{n_2 - 1}$.

Compound Interest
 In case of compound interest, the interest is calculated on the amount of the succeeding years, i.e., principal keeps changing every year.
 Here interest on interest is also earned, thus money grow faster when Compounding is done

CLASSES a Veranda Enterprise

If P is the principal, n = number of years for which interest is calculated and "i"
 (R/100) is the rate of interest, then, the amount A after n years will be given by:

A=P(1+i)ⁿ

 In case of depreciation by diminishing balance method (WDV), if C = Cost of the machinery, I = rate of depreciation per annum and n = effective life of the machinery, then the depreciated value D after n years is :

$$D = C (1 - i)$$

D is also known as the scrap value of the machinery.

• Compound Interest thus would be calculated as follows:

$$CI = A - P = P \left| \left(1 + i \right)^n - 1 \right|$$

• Depending upon the compounding style of interest rate, the effective formula for calculating Amount would be as follows:

Half Yearly or Semi Annually	Quarterly	Monthly	
$A = P\left(1 + \frac{i}{2}\right)^{2n}$	$A = P\left(1 + \frac{i}{4}\right)^{4n}$	$A = P\left(1 + \frac{i}{12}\right)^{12n}$	

• When differential interest rates are charged ($i_1, i_2, i_3, \dots, i_n$), then: $A = P(1+i_1)(1+i_2)(1+i_3)\dots(1+i_n)$

• Relationship between CI and SI

a) For the first year, CI = SI, i.e. for the first year difference is zero.

b) For two years, $CI - SI = Pi^2$

c) For three years, CI - SI = Pi²(i + 3)

Notes:

- A sum of money will double itself in approximately 72/r years (known as Rule 72), where r is the rate of interest per annum.
- 2. A sum of money will triple itself in approximately 114/r (known as Rule 114), where r is the rate of interest per annum.
- If a sum of money becomes "n" times in "t" years, then, it will become n^m times in "mt" years.

Example: If sum of money doubles itself in 3 years, then it will be 8 times (2³) in 3x3 = 9 years at CI.

 a Verando	a Enterprise
Concept	of Effective Rate of Interest
 1.	When the compounding is done more than once a year, then, the net annual
	rate of interest is found to be slightly higher than the given annual rate of
	interest.
 2.	This new rate of interest is known as the effective rate of interest and the given
	annual rate is called the nominal rate of interest.
 3.	Effective rate of interest is denoted by E and is given by the formula:
	$E = \left\{ \left(1+i \right)^n - 1 \right\} \ge 100$
	Where "i" is rate of interest, converted monthly, quarterly, half yearly and n is
	the number of conversion period per annum.
 4.	Effective rate of interest are particularly useful in making investment decisions
	when various options are given with differential interest rates.
5.	Amongst various investment options, we shall choose that investment option,
	where effective rate of interest is maximum.
	Add H
Concept	of Present Value
Pres	sent Value is defined as the present worth of the money that would yield an
 ama	ount A after n years at a specified rate of interest i.
	If $A = P\left(1+i\right)^n$
	$\therefore P = PV = \text{Principal} = \frac{A}{(1+i)^n}$
	$or, PV = A\left(1+i\right)^{-n}$

Annuities

- Annuity is defined as a series of payments (usually equal) which are made at regular intervals of time (usually a year).
- The period for which the payment continues is called the status or the term of the annuity.

- Unless otherwise stated, the first payment will fall due at the end of every year. This is known as "Ordinary Annuity".
- When the payment falls due at the beginning of every year, i.e., immediately, it is called "Immediate Annuity".
- When the status or term of the annuity is not fixed, i.e., the payment is to be continued for an indefinite period, these are known as "Perpetual Annuity or Perpetuity".
- Hence forth, we shall maintain the following notation throughout. The regular annual payment i.e., annuity = P, rate of interest = "i" and the period for which payment is made = n (status or term of the annuity).
- The amount of the ordinary annuity is given by:
- The amount of immediate annuity is obtained by multiplying amount obtained for ordinary annuity by (1 + i); hence the formula becomes: $A = \frac{P}{i} \{ (1+i)^n - 1 \} (1+i)$

 $A = \frac{P}{i} \left\{ \left(1 + i\right)^n - 1 \right\}$

- Note:
 - 1. When half yearly or quarterly or monthly payment is "P", in such a case change "i" to i/2 or i/4 or i/12 and change "n" to 2n or 4n or 12n respectively.
 - 2. When half yearly, quarterly or monthly rate of interest is "i", in such a case, change P to P/2, P/4 or P/12 and change n to 2n or 4n or 12n respectively.
- The present value of an annuity payable over a period of n years is defined as the sum of the present value of all the future payments.

• The present value of an ordinary annuity is represented by V and given as follows:

$$V = \frac{P}{i} \{ 1 - (1+i)^{-n} \}$$

 If the term of the annuity is n years, then for evaluating the present value of the immediate annuity, first calculate the present value of the annuity for (n-1) years and then add to it the initial or first payment.

$$v = \frac{P}{i} \{ 1 - (1 + i)^{-n} \} (1 + i)$$

• Present value of the perpetual annuity is given by,

Important concepts related to CA Inter and CA Final

Financial Management

Sinking Fund

1.

It is the fund credited for a specified purpose by way of sequence of periodic payments over a time period at a specified interest rate. Interest is compounded at the end of every period. Size of the sinking fund deposit is computed from A = P.A(n, i) where A is the amount to be saved, P the periodic payment, n the payment period.

nterprise

2. Leasing

Leasing is a financial arrangement under which the owner of the asset (lessor) allows the user of the asset (lessee) to use the asset for a defined period of time(lease period) for a consideration (lease rental) payable over a given period of time. This is a kind of taking an asset on rent.

3. Capital Expenditure (investment decision)

Capital expenditure means purchasing an asset (which results in outflows of money) today in anticipation of benefits (cash inflow) which would flow across the life of the investment. For taking investment decision we compare the present value of cash outflow and present value of cash inflows. If present value of cash inflows is greater than present value of cash outflows decision should be in the favour of investment. a Veranda Enterprise

Valuation of Bond

A bond is a debt security in which the issuer owes the holder a debt and is obliged to repay the principal and interest. Bonds are generally issued for a fixed term longer than one year.

5. Perpetuity

4.

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually. Fixed coupon payments on permanently invested (irredeemable) sums of money are prime examples of perpetuities.

The formula for evaluating perpetuity is relatively straight forward. Two points which are important to understand in this regard are:.

- (a) The value of the perpetuity is finite because receipts that are anticipated far in the future have extremely low present value (today's value of the future cash flows).
- (b) Additionally, because the principal is never repaid, there is no present value for the principal.

Therefore, the price of perpetuity is simply the coupon amount over the appropriate discount rate or yield. iterprise

Calculation of multi period perpetuity:

The formula for determining the present value of multi-period perpetuity is as follows:

$$PVA\infty = \frac{R}{(1+i)^{1}} + \frac{R}{(1+i)^{2}} + \frac{R}{(1+i)^{3}} + \dots + \frac{R}{(1+i)} = \sum_{n=1}^{\infty} \frac{R}{(1+i)^{n}} = \frac{R}{i}$$

Where:

R = the payment or receipt each period

i = the interest rate per payment or receipt period

6. **Calculation of Growing Perpetuity**

A stream of cash flows that grows at a constant rate forever is known as growing perpetuity. The formula for determining the present value of growing perpetuity is as follows:

$$PVA = \frac{R}{(1+i)^{1}} + \frac{R(1+g)}{(1+i)^{2}} + \frac{R(1+g)^{2}}{(1+i)^{3}} + \dots + \frac{R(1+g)^{\infty}}{(1+i)^{\infty}}$$

 $\sum_{n=1}^{\infty} \frac{R(1+g)^{n-1}}{(1+g)^n}$ R i - g

	J.N. SHAH
	a Veranda Enterprise
	7. Net Present Value
•	Net present value = Present value of net cash inflow - Total net initial investment
	Since it might be possible that some additional investment may also be required during
	the life time of the project then appropriate formula shall be:
	Net present value = Present value of cash inflow - Present value of cash outflow
	The steps to calculate net present value are:-
	1. Determine the net cash inflow in each year of the investment.
	2. Select the desired rate of return or discounting rate or Weighted Average Cost of
	Capital.
	3. Find the discount factor for each year based on the desired rate of return selected.
	4. Determine the present values of the net cash flows by multiplying the cash flows by
	respective the discount factors of respective period called Present Value (PV) of Cash
	flows
	5. Total the amounts of all PVs of Cash Flows
	Decision Rule:
	If NPV > 0Accept the Proposal
	If NPV > 0Accept the Proposal If NPV < 0Reject the Proposal
	Ad L
	8. Nominal Rate of Return
	The nominal rate is the stated interest rate. If a bank pays 5% annually on a savings
	account, then 5% is the nominal interest rate. So if you deposit ₹ 100 for 1 year, you will
	receive ₹ 5 in interest.
	However, that Rs. 5 will probably be worth less at the end of the year than it would have
	been at the beginning. This is because inflation lowers the value of money. As goods,
	services, and assets, such as real estate, rise in price.
	The nominal interest rate is conceptually the simplest type of interest rate. It is quite
	simply the stated interest rate of a given bond or loan. It is also defined as a stated

account the compounding periods.

Real Rate of Return: The real interest rate is so named because it states the "real" rate that the lender or investor receives after inflation is factored in; that is, the interest rate that exceeds the inflation rate.

interest rate. This interest works according to the simple interest and does not take into

A comparison of real and nominal interest rates can therefore be summed up in this

equation:

Nominal Rate of Return - Inflation = Real Rate of Return

Nominal Interest Rate = Real Interest Rate + Inflation

9. Compound Annual Growth Rate (CAGR)

Compound Annual Growth Rate (CAGR) is a business and investing specific term for the smoothed annualized gain of an investment over a given time periodit is not an accounting term, but remains widely used, particularly in growth industries or to compare the growth rates of two investments because CAGR dampens the effect of volatility of periodic returns that can render arithmetic means irrelevant. CAGR is often used to describe the growth over a period of time of some element of the business, for example revenue, units delivered, registered users, etc.

$$\mathsf{CAGR}(\mathsf{t}_{0'},\mathsf{t}_{n}) = \left(\frac{\mathsf{V}(\mathsf{t}_{n})}{V(\mathsf{t}_{0})}\right)^{\frac{1}{\mathsf{t}_{n}-\mathsf{t}_{0}}} - 1$$

Where V(t₀) = Beginning Period ; V(t_n) = End Period

CLASSWORK SECTION

SIMPLE INTEREST

PAS 6. 7.	 (a) 28000 ST EXAM QUESTIC The rate of simple the next five year accrued by the (a) ₹ 1,500 	ple inte ars and sum fo (b)	10% p.a. for r a period for ₹ 2,000	the period beyond 8 10 years is ₹ 1,560. (c) ₹ 3,000	(d) 25000 for first 3 years, 8% p.a. for years. If the simple interest The sum is: (d) ₹ 5,000 f years it would treble itself	
6.	 (a) 28000 ST EXAM QUESTIC The rate of simple the next five year accrued by the (a) ₹ 1,500 	DNS ple inte ars and sum fo (b)	rest on a sum 10% p.a. for r a period for ₹ 2,000	of money is 6% p.a. the period beyond 8 10 years is ₹ 1,560. (c) ₹ 3,000	for first 3 years, 8% p.a. for years. If the simple interest The sum is: (d) ₹ 5,000	
	(a) 28000 ST EXAM QUESTIC The rate of simp the next five yes accrued by the	DNS ple inte ars and sum fo	rest on a sum 10% p.a. for r a period for	of money is 6% p.a. the period beyond 8 10 years is ₹ 1,560.	for first 3 years, 8% p.a. for years. If the simple interest The sum is:	
	(a) 28000 ST EXAM QUESTIC The rate of simp the next five yes accrued by the	DNS ple inte ars and sum fo	rest on a sum 10% p.a. for r a period for	of money is 6% p.a. the period beyond 8 10 years is ₹ 1,560.	for first 3 years, 8% p.a. for years. If the simple interest The sum is:	
	(a) 28000 ST EXAM QUESTIC The rate of simp the next five yea	DNS ple inte ars and	rest on a sum 10% p.a. for	of money is 6% p.a. the period beyond 8	for first 3 years, 8% p.a. for years. If the simple interest	
	(a) 28000 ST EXAM QUESTIC The rate of simp	DNS ple inte	rest on a sum	of money is 6% p.a.	for first 3 years, 8% p.a. for	
	(a) 28000 ST EXAM QUESTIC	ONS				
PAS	(a) 28000		26000	(c) 27000	(d) 25000	
		(b)	26000	(c) 27000	(d) 25000	
		(b)	26000	(c) 27000	(d) 25000	
	of the bike.	0				-
	-			0	id is 28200. Find cash price	
5.	A bike is purch	ased by	makina a da	wn payment of 150	00 and balance to be paid	
	(a) 3000	(b)	4000		(u) 000	
	at same rate?	(৮)	4000	(c) 5000	(d) 600	
4.		amoun	ts to 6804 on	20 yrs. What sum w	ill amount to 5200 in 6 yrs	5
,						
	(a) 50,000	(b)	60,000	(c) 80,000	(d) none	
3.				rest of 3600 at 18%	·	
	(a) 2%	(b)	4%	(c) 6%	(d) 8%	
	Find rate of int	per an	num?			
2.	46875 was lent	t out at	SI and at the	end of 1 yr 8 months	s, total amount was 50000.	•
	(a) 10%	(b)	8%	(c) 9%	d 11%	
	5	-				
1.	being Rs. 2000.				is 2100, borrowed amount	

J. C. L. a V	K. SHAH ASSES (dranda Enterprise			CA FO	UNDATION - MATHEMATICS
8.	If a simple intere	st on	a sum of money	at 6% p.a. for 7 y	years is equal to twice of
	simple interest o	n anc	other sum for 9 ye	ars at 5% p.a. The	ratio will be
	(a) 2:15	(b)	7:15	(c) 15 : 7	(d) 1 : 7
9.	A sum of ₹ 44,00)0 is (divided into three	parts such that th	he corresponding interest
	earned after 2 y	′ears,	3 years and 6 y	ears may be equa	al. If the rates of simple
	interest are 6% p	.a., 8	% p.a. and 6% p.a	1. respectively, ther	n the smallest part of the
	sum will be :				
	(a) ₹ 4,000	(b)	₹ 8,000	(c) ₹ 10,000	(d) ₹ 12,000
COM	IPOUND INTEREST				
10.	Find present value	e of 1	0000 due in 2 yrs c	ıt 5% p.a. compour	nd interest paid annually?
	(a) 9050	(b)	9070	(c) 9080	(d) 9090
11.	A machinery wor	th 10	000 is depreciate	d at the rate of 10	0% p.a. for first 3 yrs. 8%
	p.a. for next 2 yrs	s. Fin	d its value after 5		
	(a) 5170.25	(b)	7170.25	(c) 6170.25	(d) 8170.25
			29	Enteri	
PAS	T EXAM QUESTION	S	d		
12.	The difference be	twee	n the simple and	compound interes	st on a certain sum for 3
	year at 5% p.a. i	s ₹ 2	28.75. The compo	ound interest on th	ne sum for 2 years at 5%
	p.a. is				
	(a) ₹3,175	(b)	₹ 3,075	(c) ₹ 3,275	(d)₹2,975
13.	A person deposit	ed ₹	5000 in a bank.	The deposit was l	eft to accumulate at 6%
	compounded qua	ırterly	y for the first five y	ears and at 8% cor	npounded semi-annually
	for the next eight	t year	rs. The compound	amount at the end	d of 13 years is:
	(a) ₹12621.50	(b)	₹ 12613.10	(c) ₹ 13613.10	(d) none
14.	If compound inte	erest	on a sum for 2 y	ears at 4% per ar	nnum is ₹102, then the
	simple interest of	n the	same sum for the	same period at th	ne same rate will be
	(a) ₹99	(b)	₹ 101	(c) ₹ 100	(d) ₹ 95

EFFECTIVE RATE OF INTEREST 15. Which is a better investment? (i) 9% p.a. compounded half yrly. (ii) 9.23% p.a. S.I. (b) (ii) (c) both (d) none (a) (i) ANNUITY (FUTURE VALUE) 16. A company issued 10% cumulative debentures of Rs. 100 each, 5000 cumulative debentures are to be redeemed with 10% of interest for 5 yrs. For this a Sinking Fund is created and invested at 12% rate of C.I. Sum to be transferred every year to sinking fund is (a) 805500 (b) 126834.64 (c) 207382 (d) 126755 17. A machine costing 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by new model at 25% higher cost after 25 years with a scrap value realization of 25000. What amount should be set aside every year if sinking Verando(c) 16050 fund investment at 3.5% C.I p.a.? (b) 16500 (a) 16000 (d) 16005 ANNUITY (PRESENT VALUE) 18. Present value of an annuity which pays 200 at the end of each 3 months for 10 years, assuming money to be worth 5% p.a. converted quarterly. (a) 3809.20 3109.60 (c) 6265.38 (d) none (b) 19. A man purchased house valued at 3,00,000 by making a payment of 2,00,000 at the time of purchase and agreed to pay balance with interest at 12% p.a. compounded half yearly in 20 equal half yearly installments. If first installment is paid after 6 months from the date of purchase then amount of each installment is (a) 8719 (b) 8679 (c) 7719 (d) 8769

PAST YEARS QUESTION

20. A company considering proposal of purchasing a machine either by, making full payment of ₹4000 or by leasing it for four years at an annual rate of ₹1,250. Which course of action is preferable, if the company can borrow money at 14% compounded annually?

	[Given: (1.14) ⁴ = 1.68896]
(a) Leasing is preferable	(b) Should be Purchased
(c) No difference	(d) None of these

Typical Sums related to Important Concepts

21. If the cost of capital be 12% per annum, then the net present value (in nearest *) from the given cash flow is given as

 Year	0	1	2	3
 Operating profit (in lakh *)	(100)	60	40	50

(B) 34185

(A) 31048

85 (C) 21048 (D) 24187

PERMUTATION AND COMBINATION

THEORY

Permutation

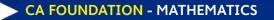
- Permutation is defined as the arrangement of things by taking some or all at a time
- Permutation is order dependent
- Fundamental principle of counting;

5

- If one operation can be performed in 'm' ways and another operation can be performed in
- 'n' ways, then the total number of ways in which both the operation can be performed will
- be given by 'm n' ways
- Definition of Factorial 'n', i.e., n! or n
 Factorial n (n!) is defined as the continued product of first n natural numbers or first n
 positivel integers and is expressed as n! = 1 x 2 x 3 x 4 x n
- $|\underline{n} = \mathbf{n} \times |\underline{n-1} = \mathbf{n} \times (\mathbf{n-1}) |\underline{n-2} = \dots$

•	1! = 1	6! = 720
	2! = 2	7! = 5040
	3! = 6	8! = 40320
	4! = 24	9! = 362880
	5! = 120	10! = 3628800

• Mathematical definition of Permutation (Repetition not allowed):


Total number of arrangements of 'n' different things taking "r" at a time will be given by

nPr or P (n, r) =
$$\frac{12}{|n-r|}$$
, where r \leq n.

Note:

- When r = n, it is known as "all at a time"
- When r < n, it is known as "some at a time"
- r can never exceed n
- n and r must be positive integers

- $^{n}P_{1} = \mathbf{n}$
- ${}^{n}P_{0} = 1$
- $^{n}P_{n}=\mathsf{n}!$
- ${}^{n}P_{n} = {}^{n}P_{(n-1)} = n!$ But ${}^{n}P_{r} \neq {}^{n}P_{(r-1)}$
- Permutation or arrangements of 'n' different things in which few are alike (Repetition • not allowed)

The total number of arrangements of n different things in which p are alike and of one kind, q are alike and a second kind, r are alike and yet of another kind and the rest are n different, will be given by p|q|r

- Permutation when repetitions are allowed • The total number of arrangements of n things taken r at a time when each thing may be repeated once, twice, thrice,to r number of times will be given by n^r
- **Rules for restricted Permutation** ٠
- Whenever the arrangements should begin or end or begin and end with a particular a) letter or object keep the objects fixed at the respective places and arrange the rest.
- When in the arrangement of n things, r things are together, the total arrangements b) will be given by: (n - r + 1)! r!
- **c**) When in the arrangements of n things, r things are together in a specified order, the total arrangement will be given by (n - r + 1)!
- Total number of ways in which out of n things, r things are never together = total **d**) ways – number of ways when they are always together, i.e., n!-(n-r+1)!r!
- When the relative positions of few objects are to be kept unaltered it implies that the **e**) objects can be interchanged or arranged in their respective place only.
- In problems involving re-arrangements always subtract 1 from the total arrangements. **f**)
- g) When in the arrangement of n things, r alike things are together, then total number of arrangements will be given by (n - r + 1)!

Circular Permutation (When the things are arranged in a ring or circle)

- Total ways in which n things can be arranged in a ring or circle is n-1
- Total ways in which n things can be arranged in a ring or circle with respect to any object will be given by <u>n</u>
- When the clockwise or anti clock wise position cannot be disguised (for example: arrangements of different flowers in garland or arrangement of different beads in a necklace etc), in such a case the total number of circular arrangements will be given by (n - 1)! / 2

Arrangements of digits

- There are 10 random digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 💿
- 5 odd digits (1, 3, 5, 7, 9) and
- 5 even digits (0, 2, 4, 6, 8)
- Unless otherwise mentioned no number can start with '0'
- If there are 'n' different digits (0 is included) then the total number of n digit numbers not beginning with 0 will be given by: n n 1
- If there are n different digits (0 is included) and we are to form a number with r different digits then the total number of r digit numbers not beginning with 0 will be given by: ${}^{n}P_{r} - {}^{n-1}P_{r-1}$

CLASSWORK SECTION

Fundamental Principle of Counting

1.	There are 26 stations on a railway line. How many different kinds of tickets of class									
	II must be printed in order that a passenger may go from any one station to another									
	by	purchasing a	ticket.							
	α)	65	b)	240	c)	650	d)	1300		
Forn	nula	Pattern - "P _r								
2.	${}^{n}P_{3}$: ⁿ P ₂ = 3:1, th	en the	value of n is:						
	α)	4	b)	5	c)	6	d)	7		
Alike	e Ite	ms – Repetitio	n not o	Illowed		19)			
						E .ce				
3.	INS	TITUTION				Surorise				
	α)	554499	b)	445588	c)	554400	d)	None of the above		
					2,					
In h	ow n	nany ways the	results	of						
			\mathcal{O}	210.						
4.	In I	now many wa	ys car	n 3 persons enter i	nto	4 hotels if (i) re	epet	ition is allowed, and		
	(ii)	repetition is n	ot all	owed?						
	a)	34,34	b)	4 ³ ,P(4,3)						
	c)	3 ⁴ ,P(4,3)	d)	None of the abov	/e					
Rest	ricte	ed Permutation								
5.	Ho	w many word	ls can	be formed of the	e le	tters in the wo	rd (COSTING, the vowels		
	bei	ng not separc	ited?							
	α)	144	b)	1440	c)	1280	d)	2880		

J.K. SHAH [®]						
CLASSES						
a Veranda Enterprise						

All c	l different words formed by the letters of the word BHARAT:										
6.	In how many different ways can the letters of the word "CONSTITUTION" be arranged?										
	How many of these will have the letter N both at the beginning and at the end?										
	a) 9979200, 151200 b) 9989920, 152150										
	c) 997	9000, 15:	1000		d)	None of the at	oove				
Circ	ular Perm	utation									
7.	In how many ways can 7 persons be arranged at a round table so that 2 particular										
	persons can be together?										
	a) 180		b)	240	c)	360	d) None of the above				
8.	3. In how many ways 8 stones of different colours be arranged on a ring? In how many										
	of these arrangements red and yellow beads being separated?										
	a) 252	0, 900			b)	2520, 1800	\$				
	c) 180	0, 2520			d)	1800, 1260					
				6		V. co					
Prot	olem Invol	ving Digit	s			S rorise					
				/9		nteit					
9.	How mo	any numb	oers c	an be formed wit	h tł	ne digits 1, 2, 3	, 4, 3, 2, 1, so that odd				
	digits a	re at odd	place	es?							
	a) 18		b)	19	c)	20	d) None				
10.	How mo	any four d	igits r	numbers can be fo	rme	ed with the digit	s 3, 4, 5, 6? Find the sum				
	of all th	ne number	rs thu	is formed.							
	a) 24,	1420	b)	24, 1520	c)	24, 4742	d) 24, 119988				
11.	How mo	any even i	numb	ers greater than 3	800	can be formed	with the digits 1, 2, 3, 4				
	and 5 (r	no digit be	eing r	epeated)?							
	a) 121		b)	111	c)	222	d) 124				
Miso	ellaneous	5									
12.	How mo	any ways	can 3	3 boys and 5 girls	be	arranged in ro	w so that no 2 boys are				
	togethe	r?									
	a) 144	00	b)	604800	c)	2880	d) 28800				

J.K. SH

COMBINATION

- Combination is the selection of different items from a given number of items
- Combination is order independent •
- The total number of combinations or selections of r items from n different items will be • given by;

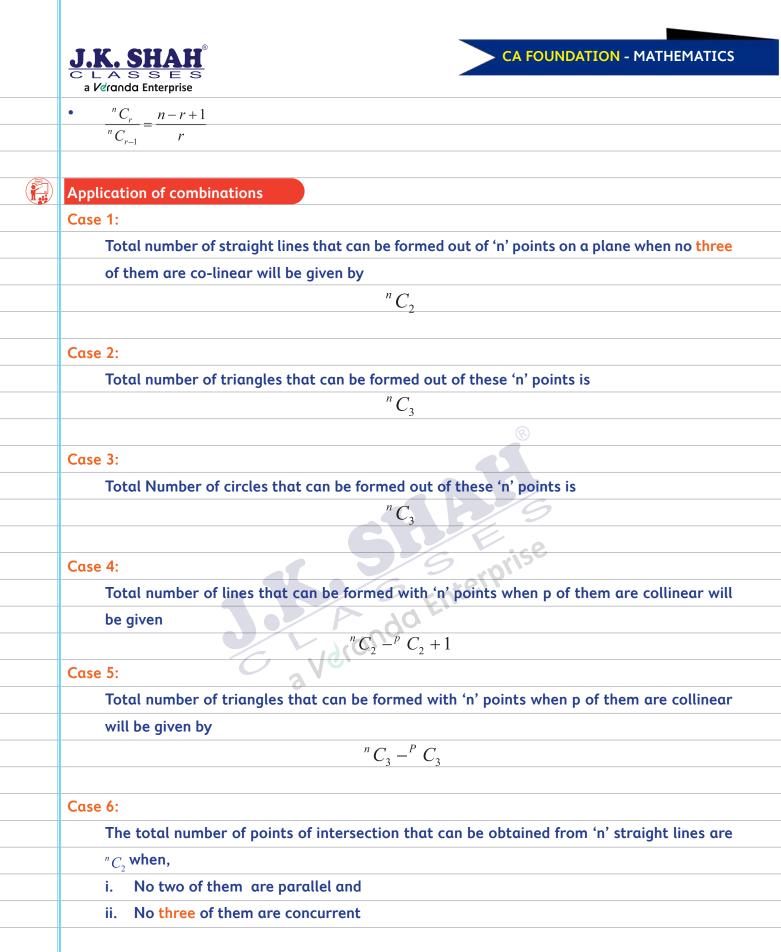
$${}^{n}C_{r}$$
 or C(n, r) = $\frac{\underline{n}}{\underline{r} \times \underline{n-r}}$ where r $\leq n$

- No arrangement (Permutation) is possible without selection (Combination) but selection (Combination) process can take place independently
- Thus ${}^{n}C_{r} < {}^{n}P_{r}$, except when r=0 or 1 •

Ada Enterprise Relation between ${}^{n}P_{r}$ and ${}^{n}C_{r}$ •

• ${}^{n}P_{r} = {}^{n}C_{r} \times \underline{r}$

$$\frac{{}^{n}P_{r}}{{}^{n}Q} = r$$


•
$${}^{n}C_{0} = {}^{n}P_{0} = 1$$

- ${}^nC_1 = {}^nP_1 = n$
- ${}^{n}C_{n}=1, {}^{n}P_{n}=\lfloor n \rfloor$

Complementary Combination

- ${}^{n}C_{r} = {}^{n}C_{n-r}$ (Use this result, when ${}^{r>\frac{n}{2}}$) •
 - If ${}^{n}C_{x} = {}^{n}C_{y}$ then either
 - a. x = y or

- b. x+y=n or
- c. both the results can hold true simultaneously
- ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ •

Case 7:

To find the number of diagonals in a polygon having 'n' sides

No of diagonals = ${}^{n}C_{2} - n$

Where ${}^{n}C_{2}$ = total number of lines by joining 2 vertices in pairs and

'n' number of sides = number of vertices

$$= \frac{n(n-1)}{2} - n = n \left(\frac{n-1}{2} - 1\right) \Longrightarrow n \left(\frac{n-1-2}{2}\right) \Longrightarrow n \left(\frac{n-3}{2}\right)$$

Case 8:

Total number of selections or combinations of 'n' different things taking one or more at a

time (i.e., at least 1) will be given by

 ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} = 2^{n} - 1$

Case 9:

Combinations or selections of things which are alike.

Total number of combinations or selection of p, q, r items (by taking one or more(atleast

one) will be given by, (p+1)(q+1)(r+1)-1

When p are alike and of one kind, q are alike and of a second kind and r are alike and of yet of another kind.

Note:

Total number of selections of p alike, q alike and r different items by taking at least one will be given by (p+1)(q+1)2'-1

Case 10: Division into groups

•	The total number of ways in which (m+n) items can be divided into two distinct groups
	containing m & n items respectively will be given by:

$$m+n$$

|m|n

 Total ways in which m+n+p items can be divided into 3 distinct groups containing m, n & p items respectively will be given by,

|m+n+p|

Case i :

When m = n or m=n=p then 2m or 3m items can be equally distributed into two or

three distinct groups in,

$$\frac{|2m|}{(|m|)^2} \text{ or } \frac{|3m|}{(|m|)^3} ways$$

Case ii:

When the identities of the groups are not distinct i.e, the groups are alike in such a case 2m or 3m items can be distributed equally into 2 or 3 identified groups in

$$\frac{|2m|}{(m)^2} \times \frac{1}{2!} \text{ or } \frac{|3m|}{(m)^3} \times \frac{1}{3!} \text{ ways}$$

CLASSWORK SECTION

			OKK SECTION					
Bas	sic Meaning							
1.	If ${}^{13}C_6 + 2. {}^{13}C_6$	$_{5} + {}^{13}C_{4} = {}^{15}C_{x}$, what is	the value of X?					
	a) 6		b) 9					
	c) Either a) c	or b)	d) Both a) a	ind b)				
	nc	ⁿ c						
2.	$\int \frac{c_{r-1}}{n} = \frac{1}{4} \text{ and } -$	$\frac{r}{r} = \frac{1}{3}$ then find the	e value of n and r?					
	r	r+1						
	a) 35,7	b) 53 <i>,</i> 8	c) 35,8	d) 19,4				
				8				
"n"	different things,	"r" to be selected (r \leq	n) – With Restriction	IS				
3.	The question	paper on Mathemat	tics and Statistics c	contains 10 questions divided				
				ays can an examinee select 6				
		ing at least two ques						
	a. 200	b. 150	9 c. 100	-				
			10 FIL					
"n"	different things,	any number can be sel	lected at a time					
		- C Ver-	·					
4.	In how many	wavs a man can inv	/ite 5 friends to a d	linner so that two or more of				
	them remain	-						
	a. 24	b. 25	c. 26	d. 32				
	u. L7			u. 52				
Λr	man has 5 Germa	an, 4 Spanish and 3 Fre	ach friands. Find:					
		ourt Bonch consists (of five judges. In he	www.many.ways.the.bench.can				
5								
5.		n in majority?						
5.	give a decision	n in majority?	- 21	4 22				
5.		n in majority? b. 15	c. 31	d. 32				
5.	give a decision		c. 31	d. 32				
5.	give a decision		c. 31	d. 32				

_	ar	erand								
	Appl	licat	ion of Combina	tion in	Geometry					
	6.	Fin	d the number	of str	raight lines formed	l by	/ joining 10 diffe	eren	t points on a plane,	
		no	three of them	being	collinear (with the	e ex	ception of 4 poi	ints	which are collinear).	
		α.	41	b.	45	с.	39	d.	40	
	7.	Fin	d the number	of tri	iangles formed by	joi	ning 10 differen	nt po	oints on a plane, no	
		thr	ee of them be	ing co	ollinear (with the e	xce	ption of 4 point	s wl	nich are collinear).	
		α.	120	b.	116	с.	121	d.	126	
_	8.	Αŗ	olygon has 44	4 diag	onals. Find the nu	mb	er of its sides.			
		α.		b.	11		12	d.	14	
_							R			
_	How	/ mc	any selections	can b	e made by taking (anv	letters from th	e wo	ords	
_										
_	9.	Ar	person has in h	is baa	14 notes of Rs. 10) ec	uch. 9 notes of F	Rs. 5	each, 4 notes of Rs.	
_										
_		2 each and 7 notes of Re. 1 each. In how many different ways can he contribute to a charitable fund?								
_			3000	 b)	6000	<u>()</u>	5999	d)	2999	
_		α,	5000	57			5555	α,	2000	
_	Divi	sion	into Groups – e	ither	distinct or alike					
_	2			\mathcal{O}						
_	10.	Div	vide 12 items ir	n two	groups so that ea	ch o	containina 8 an	d 4 i	items.	
_	10.	a)	12!	b)	12!					
_		α,	<u></u>	57	4!8!					
_		c)	8!4!	d)	None of the abov	6				
_		C/	<u>- 8!4!</u> 12!	u)		-				
_	Mixe	d R								
_			-	vs car	the letters of the	\M/O	rd FORFCAST to	ıken	3 at a time and the	
_	± ± •				a time be arrange					
_			62700	b)	67000		68720	d)	67200	
		u)	02100	D)	01000	C)	00120	u)		
	12.	Но	w many differ	ent fa	ctors can 2160 ha	ve?				
_	-		40	b)	39		37	d)	45	
_		,	-	/	-	-1				
_										

SEQUENCE AND SERIES

THEORY

- A sequence is defined as an array of numbers in such a manner so that there is a similarity in a given array, which enables us to determine the term or terms preceding or succeeding to such an array.
- A sequence can be categorized into 3 parts:

6

- a) Arithmetic Progression
- b) Geometric Progression
- c) Harmonic Progression

			-
	Arithmetic Progression	Geometric Progression	
Definition	Series which increases or	Series which increases or	
	decreases by a fixed quantity	decreases by a fixed proportion	
First Term	а	а	
 Constant	Common Difference = d	Common Ratio = r	
Last Term	$l = t_n = a + (n-1)d$	$l = t_n = a r^{n-1}$	
 Sum	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	$S_n = a \cdot \frac{1 - r^n}{1 - r} \text{when } r < 1$	
	$S_n = \frac{n}{2} \left(a + l \right)$	$S_n = a \cdot \frac{r^n - 1}{r - 1} \text{when } r > 1$	

• If three numbers are in G.P., their Logarithms are always in A.P.

Infinite GP Series

 $a + ar + ar^{2} + ar^{3} + \dots \alpha = \frac{a}{1 - r}$ given |r| < 1

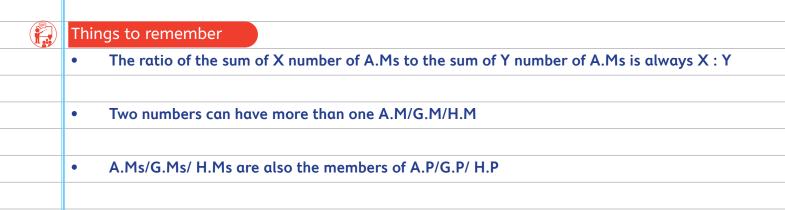
Sum of Natural Numbers:

$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2(n+1)^2}{4}$$

Harmonic Progression(H.P)


- Three numbers are in H.P, If their reciprocals are in A.P
- a,b,c are in H.P , if $\frac{1}{a} \frac{1}{b} \frac{1}{c}$ are in A.P.
- H.P fails when one of the terms of the A. P is Zero.

$$t_n$$
 of HP= $\frac{1}{t_n$ of the crresponding A.P

Concept of A.M , G.M and H.M

If a & b are any unequal real positive numbers then,

	70.			
	A.M(A)	G.M(G)	H.M(H)	
 Definition	$\frac{a+b}{2}$	$+\sqrt{ab}$	$\frac{2ab}{a+b}$	
Relation	i) A >	G >	H	
	ii) A×H	$= G^2$		

CLASSWORK SECTION

ARI	ITHMETIC PROGRESSION									
Cho	hoose the most appropriate option (a), (b), (c) or (d).									
1.	The a th term of an Al	P is b and b th term is	a. Then c th term o	f it is						
	(a) a + b + c		(b) b + a – 2c							
	(c) a + b + c/2		(d) a + b - c							
2.	Third term of an AP	is 8 and the 17th te	rm is 51/2. The 23ı	rd term is						
	(a) 37 (b) 33	(c) 41	(d) 31						
			R							
3.	The n th term of the se	eries whose sum to	n terms 3n ² + 2n is	5						
	(a) 3n - 1 (b) 8n – 2	(c) 11n – 3	(d) none of	f these					
			1/9							
4.	The sum of all numb	oers between 400 ar	nd 900 which are d	ivisible by 1	3 is					
	(a) 22504 (b) 29405	(c) 25402	(d) 25350						
		19	Enteri							
5.	The 4 arithmetic mee	ans between – 2 an	d 23 are							
	(a) 3, 13, 8, 18	- Lidran	(b) 18, 3, 8, 13							
	(c) 3, 8, 13, 18	- 3 V C	(d) none of these	1						
6.	The r th term of AP is	(3r – 1)/6. The sum	of first p terms of t	the series is						
	(a) n(3p + 1)		(b) (p/12) (3p + 1))						
	(c) (p/12)(3p - 1)		(d) none of these							
 PAS	T YEARS QUESTIONS									
 7.	On 1st January eve									
 	exceeding that of his	s last years purchas	se by Rs. 100. Afte	er 10 years	he finds that					
 	the total value of th	e certificates purcho	ased by him is Rs.	54500. Find	the value of					
	certificates purchase	d by him in the first	year							
	(a) 6000 (b) 4000	(c) 5000	(d)	5500					

J.K. SHAH C L A S S E S a Veranda Enterprise

CA FOUNDATION - MATHEMATICS

al	dranda Enterprise				
8.	If in an AP, Tn re	epreser	It nth term $t_7 : t_{10}$	$_{0} = 5 : 7 \text{ then } t_{8} : 7$	t ₁₁ =
	(a) 13:16	(b)	17:23	(c) 14 : 17	(d) 15 : 19
9.	If sum of 3 arit	nmetic	means between	'a' and 22 is 42 t	hen 'a' =
	(a) 14	(b)	11	(c) 10	(d) 6
GEO	METRIC PROGRE	SSION			
10.	lf x, y, z are in C	GP, and	xyz = 27/8. The v	value of y is	
	(a) 3/2	(b)	2/3	(c) 2/5	(d) none of these
11.	A ball is dropp	ed fror	n a height of 48	m and rebound	s two third of the distance
	it falls. It conti	nued to	o fall and rebou	nd in this way, h	ow far will it travel before
	coming to rest				
	(a) 240 m	(b)	260 m	(c) 380 m	(d) none
					9
12.	lf x, y, z are pth	, qth a	nd rth terms of a		ue of x ^{q-r} y ^{r-p} z ^{p-q} is
	(a) 0	(b)	1	(c) -1	(d) none of these
			N /9	Fntein	
13.	If the pth term	of the s	series 16, 8, 4,	$\int_{2}^{1} \frac{1}{17}$. The value	ue of p is
	(a) 25	(b)	22	(c) 23	(d) none of these
			av	1 1 1	
14.	Given x, y, z are	in GP,	$x^p = y^q = z^\sigma \text{ then } -$	=, =, =, = are in	
	(a) AP			(b) GP	
	(c) Both AP and	d GP		(d) none of the	ese
4 -		0.15			· · ·
15.				31 + to infinit	
	(a) 11/8	(b)	8/11	(c) 3/11	(d) none of these
DA CT					
PAST	T YEARS QUESTIC	JN2			
10	If C he man				$\frac{1}{\ln e \text{ of } \frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2} \text{ is}}$
16.		ric med	an between a ar	ia b then the va	$G^{2} - a^{2} - b^{2} - b^{2} $ IS
	equal to	(6)		$(c) + 1/C^{2}$	(4) 2/02
	(a) G ²	(D)	3G ²	(c) 1/G ²	(d) 2/G ²

<u>J.</u>]	K. SHAH [®]				CA FO	UNDATION - MATHEMATICS	
C L a b	_ A S S E S ⁄dranda Enterprise						
17.	A GP (Geometric I	Progr	ession) consists of	2n	terms. If the su	m of the terms occupying	
	the odd places is	S ₁ αι	nd that of the term	ns ir	n even places is	s S ₂ . The common ratio of	
	the progression is	S				C	
	(a) n	(b)	2S ₁	(c	$\frac{S_2}{S_1}$	(d) $\frac{s_1}{s_2}$	
					±	۷	
 SPEC	CIAL SERIES						
 18.	Sum of 'n' terms	whos	se t_n is $n^2 + 2^n$				
 	n(n+1)(2n+1)	0 (0 ^m		//	(n+1)(2n+1)	$2(2^n - 1)$	
	(a) $\frac{n(n+1)(2n+1)}{6}$ +	2(2"	(-1)	(b	$\frac{(n+1)(2n+1)}{6}$ +	$-2(2^{n}-1)$	
	(c) $\frac{n(n+1)^2}{6}$ + 2(2 ⁿ -	_ 1)		(4			
	$(c) - \frac{1}{6} + 2(c) $	- 1)		(a) None		
 ΜΙΧ	ED BAG						
						/	
 19.	If the sum of p te	rms o	of an AP is same as	; the	e sum of its a te	erms, then the sum of the	
	first (p + q) terms		C		10		
	a) 0	b)	p+q	c)	p-q.	d) None of the above	
			/9		nterr		
 20.	300 trees are pl	ante	d in a regular pat	ter	n in rows in th	ne shape of an isosceles	
	triangle, the num	bers	in the successive ro	ows	diminishing by	one from the base to the	
	apex. How many	trees	s are there in the re	ow,	which forms th	ne base of the triangle	
	a) 30	b)	21	c)	27	d) 24	
 21.	If the sums of n,	2n a	nd 3n terms of an	AP	be S_1 , S_2 and S_3	S_3 respectively, then show	
 	that $S_3 = ?$						
	a) $3(S_2 - S_1)$	b)	$(S_2 - S_1)$	c)	$2(S_2 - S_1)$	d) $3(S_2 + S_1)$	
 			500				
 22.	$31^3 + 32^3 + 33^3 +$				2070000	1) 4/00/00	
 	a) 2010000	b)	3025000	C)	2870000	d) 1409400	
 22	The sum of the	firct .	throo torms of a (is to the sum	of the first six terms as	
 23.			nmon ratio of the C				
 	a. 0.40	b.	0.50		0.75	d. 0.60	
 	u. 0.40	υ.	0.50	ι.	0.15	4. 0.00	

J.]		SHAH [®] SSES						N - MATHEMA	TICS
		da Enterprise							
24.							e three successiv		
 					en that	the su	m of the first 28	terms of the	e AP
		10, find its							
	α.	2, 2	b.	2, 3	с.	3, 2	d. – 3,	2	
 			•	<u>a b c</u>					
 25.				$\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$					
 		Geometric	-) and b) above		
	b.	Arithmetic	Progress	sion	d.	None c	of the above		
								-	
26.						neans b	etween a, b and l	b, c respectiv	vely,
 			he follo	wing/s is/are t		1 1	2		
		$\frac{a}{x} + \frac{c}{y} = 2$				$\frac{1}{x} + \frac{1}{y} = \frac{1}{x}$			
	(c)	Both a) and	d b) abo	ve	(d)	Neithe	r a) nor b) is true		
						5/	<u> </u>		
						K	:50		
 						2.01	<i>61,1</i>		
					24	nici			
					<u>90 .</u>				
			<u> </u>	<u> </u>	~				
				3					
				-	4				
				5	4				

7A

SET THEORY RELATION AND FUNCTIONS

SET THEORY RELATIONS

STANDARD	NOTATIONS
1) U	\Rightarrow OR (Union)
2) ∩	\Rightarrow and (Intersection)
3) ⇒	⇒ Implies
4) ∈	\Rightarrow belongs to
5) ∉	\Rightarrow does not belong to
6) ∀x	\Rightarrow for all x
7) :	\Rightarrow such that
8) /	\Rightarrow such that
9) ⊂	⇒ Subset OR Proper Subset.
11) ⊄	\Rightarrow (not a proper subset)
12) ⊃	⇒ (Superset)
13) ~	\Rightarrow (Difference)
14) Ø or { }	\Rightarrow (nullset)
15) U or S	⇒ (Universal set)

2. SET THEORY (Concepts)

- 1. A set is a collection of well-defined and distinct object. The objects are called the elements of the set.
- 2. Sets are denoted by A, B, C, D etc and the elements are kept within brackets.

e.g $A = \{a, b, c, d\}$

A = {1, 2, 3, 4}

3. METHOD OF DESIGNATING A SET

- i. ROSTER METHOD / TABULAR METHOD / ENUMERATION METHOD
- ii. PROPERTY METHOD / SELECTOR METHOD / RULE METHOD/SET BUILDER NOTATION.

1)	Under Roster or Enumeration method the set is defined by listing all the
	elements.
	e.g A = { α , e, i, o, u}
2)	Under Property Method the sets are indicated by their common characteristics
	which an object must possess in order to its elements.
	e.g. A = { x : x is a vowel}

TYPES OF SETS

- A set is said to be finite when the elements can be exhausted by counting. 1) $A = \{4, 5, 6\}$
- 2) A set is said to be infinite when its elements can not be exhausted by counting. Eg. $A = \{1, 2, 3, \dots\}$
- SINGLETON SET : A set which has only 1 element is called Singleton set 3) $e.g A = \{2\}$

3. A FEW STANDARD INFINITE SETS

1. I⁺ = Sets of Positive integers = N = Set of natural numbers idranda

W = Set of whole nos. 2.

 I^{-} = Sets of Negative integers 3.

- I = Set of Integers 4.
 - $= \{0, \pm 1, \pm 2, \pm 3...\}$
- 5. Q = Sets of Rational nos.
- R = Set of real nos6.
- NULL SET / EMPTY SET / VOID SET

It is a set having no element in it. It is denoted by \emptyset or $\{\}$

 $A = \{x : x \text{ is a real no. whose square is negative}\}$

4. EQUAL SETS

Two sets are said to be equal if all the elements of A belong to B and all the elements of B

belong to A

 $A = \{ S, T, R, A, N, D \}$

 $B = \{ S, T, A, N, D, A, R, D \}$

Note : Order of arrangement or repetition of elements does not affect the property of

equality.

5. EQUIVALENT SETS

If the total no. of elements of one set is equal to the total no. of elements of another set,

then the two sets are said to be equivalent. The elements may or may not be same always.

 $A = \{1, 2, 3, 4\}$

 $B = \{b, l, u, e\}$

A _≡ B

6. SUB SET

If each element of set A is an element of set B, then A is said to be a subset of B or A is

contained in B or B is the Superset of A.

Symbolically, $A \subseteq B$

If a set has n elements than the number of subset are 2^n .

e.g. If A = {1, 2, 3}

then the subsets of A are \emptyset , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

Therefore the total number of subsets are $2^3 = 8$

Note 1. : If a set has n elements then

i. TOTAL NUMBER OF SUBSETS = 2ⁿ

ii. TOTAL NUMBER OF NON- EMPTY SUBSETS = 2ⁿ – 1

iii. TOTAL NUMBER OF PROPER SUBSETS = 2ⁿ – 1

iv. TOTAL NUMBER OF NON- EMPTY PROPER SUBSETS = 2ⁿ - 2

Note 2.: i. Every set is a subset of itself

ii. Φ is a subset of every set

iii. In subset element may be equal

iv. If $A \subseteq B$ and $B \subseteq A$ A = B

7. PROPER SUB SET

If each element of set A is an element of set B but there is atleast 1 element in B which is

not in A, in such a case A is said to be proper subset of B and is symbolically denoted by :

 $A \subset B$: for example, $A = \{1, 2, 3\}$

To the above e. g. the proper subsets of A are $\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \& \emptyset$

{1,2,3} is the improper subset because all the element are equal.

8. UNIVERSAL SET (U \ S)

Universal set or the universe is the set which contains all the elements under investigation

in a particular content.

Eq. U = $\{1, 2, 3, 4, 5\}$

 $A = \{2, 3\}$

 $B = \{1, 3, 5\}$

 $C = \{4, 5\}, etc$

Here A, B, C are all subsets of U.

9. POWER SET

It is defined as the set of all possible subsets in a particular investigations. If a set contains

n elements, its power set will contain 2ⁿ elements.

A = {2, 3, 4} Total elements in the Power set will be $2^3 = 8$ (R)

[there are 3 elements in set A]

 $\mathsf{P}(\mathsf{A}) = \{ \varnothing, \{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\} \}$

e.g. The power set of A contains 128 elements. Find the no. of elements in set A Let there Enterprise be n elements in Set A

 $\therefore 2^{n} = 128$

Or $2^n = 2^7$

Or n = 7 : Set A has 7 elements

10. CARDINAL NO. IN A SET: n(A)

If a set A contains "X" no. of elements, then the cardinal no. in set A will be given by:

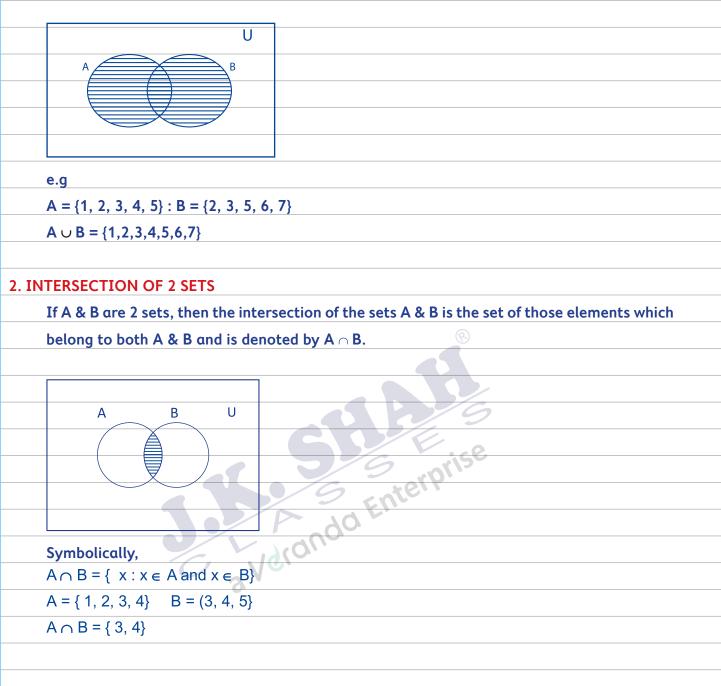
n(A) = x.

e.q. A {2, 3, 4, 5}

n(A) = 4

SET OPERATIONS

1. UNION OR JOIN OF 2 SETS


If A & B are 2 sets then the Union or Join of 2 sets is defined as, the set of all elements

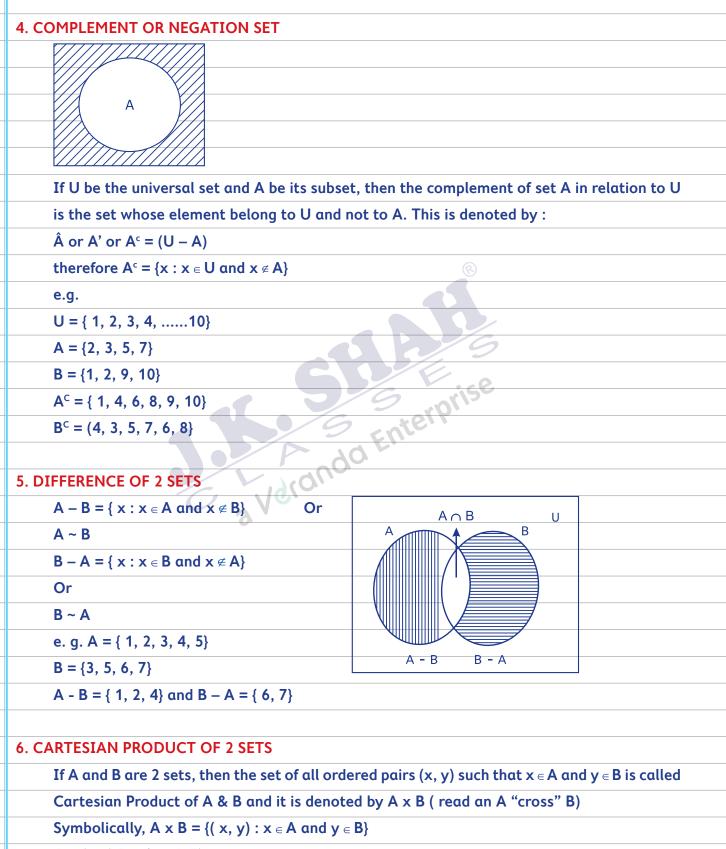
which belong either to A or to B or to both A & B.

Symbolically $A \cup B = \{x : x \in A \text{ or } x \in B\}$

NOTE : Here 'UNION' \Rightarrow or

3. DISJOINT SETS

2 Sets are said to be disjoint when they have no elements in common i.e. their intersection


is a Null Set.

e.g. If A = {1, 3, 5,} B = {2, 4} then A \cap B = ϕ

therefore A & B are disjoints sets.

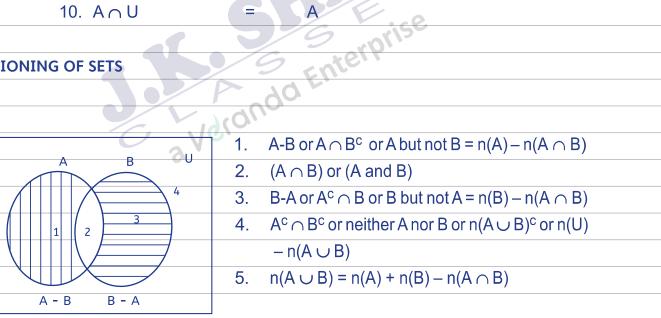
 $A = \{1,2\} B = (3, 4, 7)$

 $A \times B = \{(1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 7)\}$

 $B \times A = \{(3, 1), (3, 2), (4, 1), (4, 2), (7, 1), (7, 2)\}$

 $A \times B \neq B \times A$ but $A \times B \cong B \times A$ since n (A x B)

 $= n (B \times A)$


Note :1. If n(A) = m and n(B) = n then the total number of elements in $A \times B = m \times n$

2. The total number of subsets of $A \times B = 2^{mn}$

Notes :	1.	\$\$ '	=	U
	2.	U′	=	ϕ
	3.	(A ^c) ^c	=	A
	4.	A U A'	=	U
	5.	A∩ A′	=	ø
	6.	$A \subset B$ then $B' \subset A'$		8
	7.	$A \cup \phi$	=	A
	8.	$A \cap \phi$	=	ø
	9.	AUU	=	U /9
	10.	A∩U	=	A

PARTITIONING OF SETS

Case 1

Case 2

use	2		
		1.	$(A \cap B \cap C)$
	U	2.	$n(A \cap B \cap C^{c}) = n(A \cap B) - n(A \cap B \cap C)$
	8	3.	$n(A \cap B^{c} \cap C) = n(A \cap C) - n(A \cap B \cap C)$
	5 2 6	4.	$n(A^{c} \cap B \cap C) = n(B \cap C) - n(A \cap B \cap C)$
		5.	$n(A \cap B^{c} \cap C^{c}) = n(A) - n(A \cap B) -$
	3 4		$n(A \cap C) + n(A \cap B \cap C)$
	7	6.	$n(A^{c} \cap B \cap C^{c}) = n(B) - n(A \cap B) -$
			$n(B \cap C) + n(A \cap B \cap C)$
		7.	$n (A^{c} \cap B^{c} \cap C) = n(C) - n(A \cap C) -$
			$n(B \cap C) + n(A \cap B \cap C)$
		8.	$n (A^{c} \cap B^{c} \cap C^{c}) = n(A \cup B \cup C)^{c} = n(U)$
			$-n(A \cup B \cup C)^{\odot}$
		9.	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap$
			B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)
			2/9

Notes :

- a) (2), (3), (4) are cases where only 2 items of the 3 are taken at a time.
- b) (5), (6), (7) are cases where only 1 item of the 3 is taken at a time
- c) (8) is the case where no item of the 3 are taken.
- d) (1) is the case where all the items are taken i.e. the common part to all the 3.

LAWS

ASSOCIATIVE LAW

- (a) $A \cup (B \cup C) = (A \cup B) \cup C$
- (b) $A \cap (B \cap C) = (A \cap B) \cap C$

DISTRIBUTIVE LAW

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

DEMORGAN'S LAW

- (a) $(A \cup B)^c = A^c \cap B^c$
- (b) $(A \cap B)^c = A^c \cup B^c$

DEMORGAN'S LAW ON DIFFERENCE OF SETS

- (a) $A (B \cup C) = (A-B) \cap (A-C)$
- (b) $A (B \cap C) = (A-B) \cup (A-C)$

CARTESIAN PRODUCT

- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (b) $A \times (B C) = (A \times B) (A \times C)$

RELATIONS

- 1.If A and B are two non empty sets, then any sub-set of A x B is called a relation fromA to B. If R is a relation, then, $R \in A \times B$.
- 2. $A = \{1, 2, 3, 5\} B = \{2, 4\}$ Then, $A \times B = \{(1, 2), (1, 4), (2, 2), (2, 4), (3, 4), (3, 2), (5, 2), (5, 4)\}$
- 3. If we consider the relation 'is less than' then the set of all ordered pairs R in

A x B, where

(i)
$$R = \{(1,2), (1, 4), (2, 4), (3, 4)\} = \{(x, y) : x \in A, Y \in B, X R Y\}$$

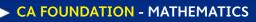
- (ii) Let A = (1, 2, 3, 432) R be the relation "one fourth of A"
 R = { (1, 4), (2,8), (3, 12), (4, 16), (5, 20), (6, 24), (7, 28), (8, 32)}
- 4. Number of Relation

If A and B are 2 sets containing m and n items respectively, then A x B will have mn ordered pairs, Total number of subsets of mn ordered pairs = 2^{mn}

Since each relation is subset of A x B.

:: Total Relation = 2^{mn}

e.g. if n(A) = 4, n(B) = 2


Total relations = $2^8 = 256$.

5. Domain and Range of Relation

If A and B are 2 non-empty sets and R be the relation, then the set of first element in the ordered pair (x, y) is called the Domain of the relation and the set of second elements in the ordered pair is called the Range of the relation.

e.g. : A = { 1, 3, 4, 5, 7}

	ASSES dranda Enterprise
	B = (2, 4, 6, 8)
	And R is the relation 'is one less than' from
	A to B, then
	$R = \{(1, 2), (3, 4), (5, 6), (7, 8)\}$
	Domain of R = { 1, 3, 5, 7}
	Range of R = (2, 4, 6, 8}
	Co-domain of R = (2, 4, 6, 8}
	Range ⊆ Co-domain
ТҮР	ES OF RELATIONS
1.	Note : A relation R in set A is a subset of A x A
2.	A relation R in set A is said to be "Reflexive", if (a, a) \in R, for all a \in A
	where 'a' is the element of set A
	e.g. : A = {2, 4, 7} then the relation R =
	{(2, 2), (4, 4), (7, 7)} is reflexive.
3.	A relation R in set A is called "Symmetric"
	if $(a, b) \in \mathbb{R}$, then $(b, a) \in \mathbb{R}$.
	e.g. A = {2, 4, 7}
	R = {(2,4), (4, 2), (2, 7), (7, 2)} is a
	symmetric relation.
4.	A relative R in Set A is called "Transitive" relation if (a, b), (b, c) \in R, then (a, c) \in R
	e.g. : R = {(2, 4), (4, 7), (2, 7)} is transitive
5.	A relation which is reflexive, symmetric and transitive is called an "Equivalence" relation.

Note :

- 1. Inverse of Equivalence relation is also an Equivalence relation.
- 2. Intersection of two Equivalence relation is also Equivalence relation.

Inverse Relation

Let, R be the relation from set A to B, then the inverse relation of R is denoted by R⁻¹ is a

relation from B to A.

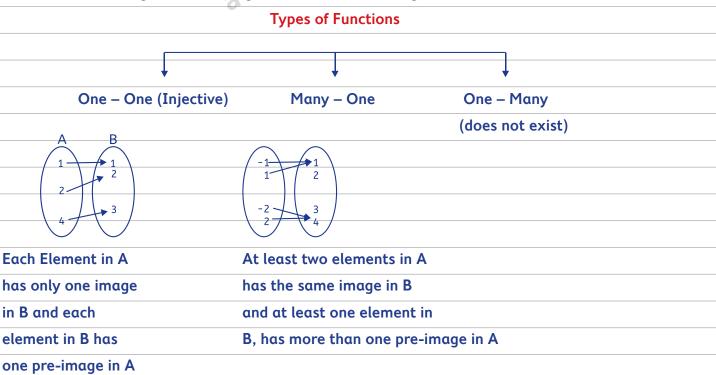
 \therefore If R is a subset of A x B.

R⁻¹ is a subset of B x A which consists of all the ordered pairs which when reversed belongs

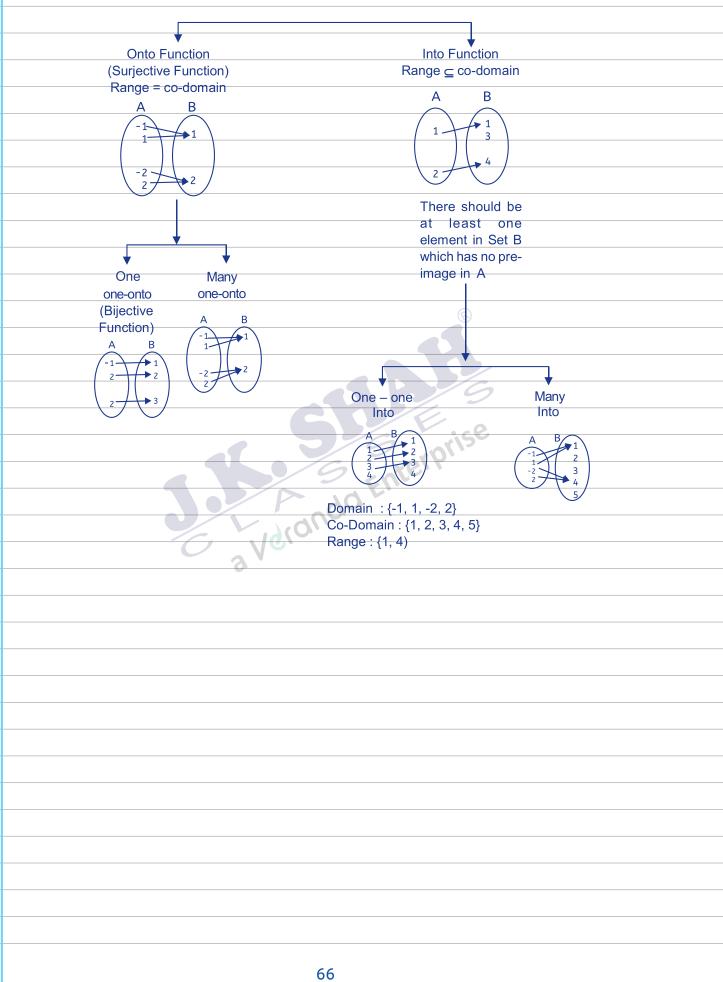
is a subset of b x / which consists of all the ordered pairs which when reversed belongs
to R.
e.g. A = (2, 3, 5, 7), B = (4, 6, 9, 10, 11)
R be the relation "is a divisior of" from A to B
then, R = {(2, 4), (2, 6), (2, 10), (3, 6), (3, 9), (5, 10)}
∴ R ⁻¹ is a relation from B to A will be given by;
R ⁻¹ in this relation "is divisible by"
Domain of R ⁻¹ = {4, 6, 10, 9} = Range of R
Range of R ⁻¹ ={2, 3, 5} = Domain of R
Note :
$D(R^{-1}) = R(R)$

 $R(R^{-1}) = D(R)$

FUNCTIONS


1. If A and B are 2 non-empty sets then, function is a rule or correspondence which associates every element 'X' of A to a unique element of 'Y' in B.

terpri


2. Symbolically we express it as $f : A \rightarrow B$

Note :

- 1. Set from which it is defined is called domain i.e. Set A
- 2. Set to which it is defined is called co-domain i.e. Set B
- 3. The set of images are the ranges of the function, Range \subseteq Co-domain

CLASSWORK SECTION

(For Q. No. 1 to 6)

- If A and B are two sets containing 4 and 7 distinct elements respectively, find the 1. minimum possible number and maximum possible number of elements $A \cup B$. a) 5,10 b) 4, 12 7,11 d) 8,13 c) If A = { 1, 2, 3}, B = {3, 4}, and C = {4, 5, 6} then $(A \times B) \cap (B \times C)$ is equal to : 2.
 - a) { } b) $\{(3, 4)\}$ c) $\{(2, 3), (3, 2), (3, 4)\}$ None of the above d)
- 3. The number of non - empty subsets of the set {8, 9, 10, 11, 15} is : 33
 - a) 32 30 b) 31 c) d)
- 4. Two finite sets have p and q number of elements. The total number of subsets of the first set is eight times the total number of subsets of the second set. Find the value of p - q.
 - 3 (000 c) b) a) 2 c) d) None of the above
- In a class of 65 students, 35 students have taken Mathematics, 40 have taken 5. Statistics. Find the no. of students who have taken both. Find the no. of students who have taken Mathematics but not Statistics. (Assume that every student has to take atleast one of the two subjects.) (a) 10, 25 (b) 10, 10 (c) 10, 20 (d) 10, 30
- In a City, there are three daily newspaper published X, Y, Z. 65% of the people of 6. the city read X, 54% read Y, 45% read Z, 38% read X and Y, 32% read Y and Z, 28% read X and Z. 12% do not read any of the three papers. If 10,00,000 person live in the city. Find the number of persons who read all the three newspaper. (a) 220000 (b) 230000 (c) 120000 (d) 200000

al	dranda Enterprise								
7.	If A = {a, b, c, d} and B= {p, q, r, s} then which of the following are relations from A to B?								
	a) $R1 = \{(a, p), (b, r), (c, s)\}$								
	b) R2 = {(q, b), (c, s), (d, r)}								
	c) R3 = {(a, p), (b, r),(c, r)(s, q)}								
	d) R4 = {(α , p), (b, s),(s, b)(q, α)}								
8.	If A = {1, 3, 5, 7} and B = {2, 4, 6, 8, 10} and R = {(1, 8), (3, 6), (5, 2), (1, 4)} be a								
	relation from A to B, then Dom(R) = ?								
	a) {1, 5} b) { 1, 3, 5} c) (3, 5} d) None of the above								
9.	In the above question, what is the Range (R)?								
	a) {1, 3, 5} b) { 8, 6, 2, 4} c) (2, 4, 6} d) None of the above								
	®								
10.	What can be said about the relation R = {(a, a), (a, b), (a, c),(b, b), (b, c), (c, a), (c, b),								
	(c, c)} defined on Set A = {a, b, c}?								
	a) Reflexive, Symmetric, Transitive								
	b) Non Reflexive, Symmetric, Transitive								
	c) Reflexive, Symmetric, Non Transitive								
	d) Reflexive, Non-Symmetric, Non Transitive								
11.	Find in each case the type of relation:								
	A = {1, 2, 3}								
	$R_1 = \{(1,1), (2,2), (3,3,), (1,2)\}$								
	$R_2 = \{(1,1), (2,2), (1,2,), (2, 1)\}$								
	$R_{_{3}} = \{(1,1),(2,2),(3,3,),(1,2),(2,1),(2,3)(3,2)\}$								
	R ₄ = {(1,1), (2,3), (3,2,)}								

FUNCTIONS

1.	The domain and range of {(x, y) : $y = x^2$ } where x, $y \in R$ is				
	(a) (reals, natural numbers)	(b)	(reals, positive reals including zero)		
	(c) (reals, reals)	(d)	none of these		
2.	If f(x) = 1/1 - x and g(x) = (x - 1)/x, than fog(x) is				
	(a) ×	(b)	1/x		
	(c) -x	(d)	none of these		
3.	The inverse h^{-1} when $h(x) = \log_{10} x$ is	e inverse h ⁻¹ when h(x) = log ₁₀ x is			
	(a) log ₁₀ x	(b)	10× 🕓		
	(c) log ₁₀ (1/x)	(d)	none of these		
			29		
			E.e.		
	A do Enterprise				
 		<u> </u>	nteri		
		0.			
	Lidson.				
	310				

LIMITS & CONTINUITY

Limits (THEORY)

Type I

 $\underbrace{\underset{x \to a}{Lt} f(x) = f(a)}_{x \to a} \quad \underbrace{Lt}_{g(x)} = \frac{f(a)}{g(a)}; if \ g(a) \neq 0$

Type II

> Lt $\frac{f(x)}{g(x)}$ & g(a) = 0, then cancel the common terms from numerator and denominator using algebraic treatments.

The reduced form would be: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$

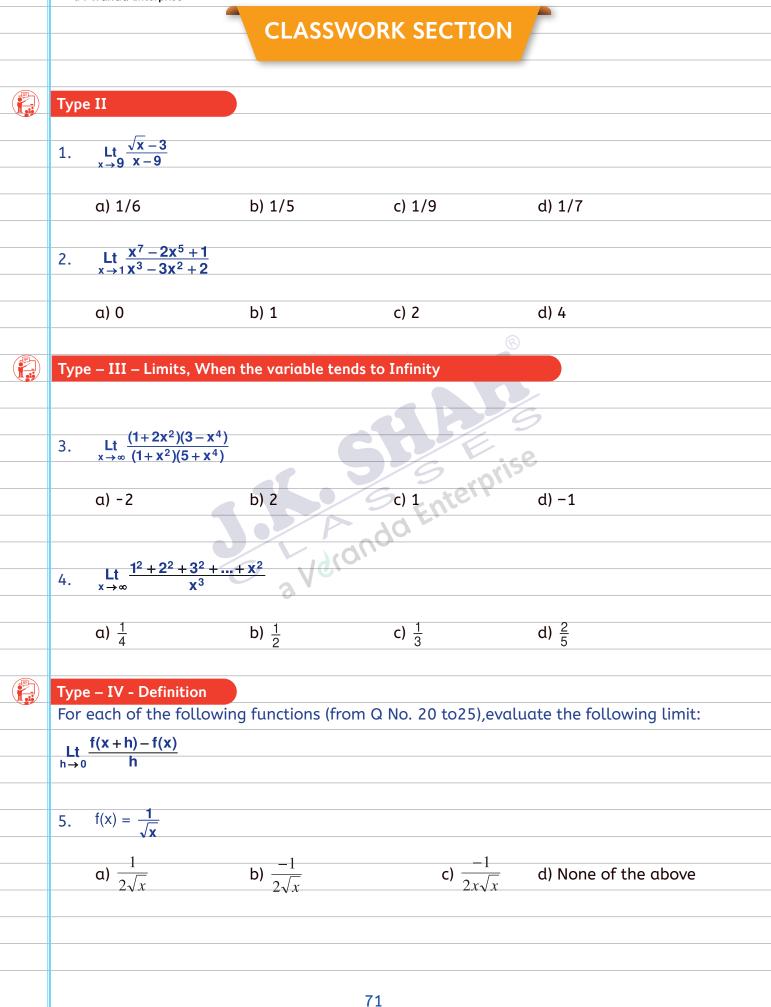
Type III

<u>C Enterpris</u> Lt $\frac{f(x)}{g(x)}$, Divide numerator and denominator by the highest power of x, and then put 1/x = 0.

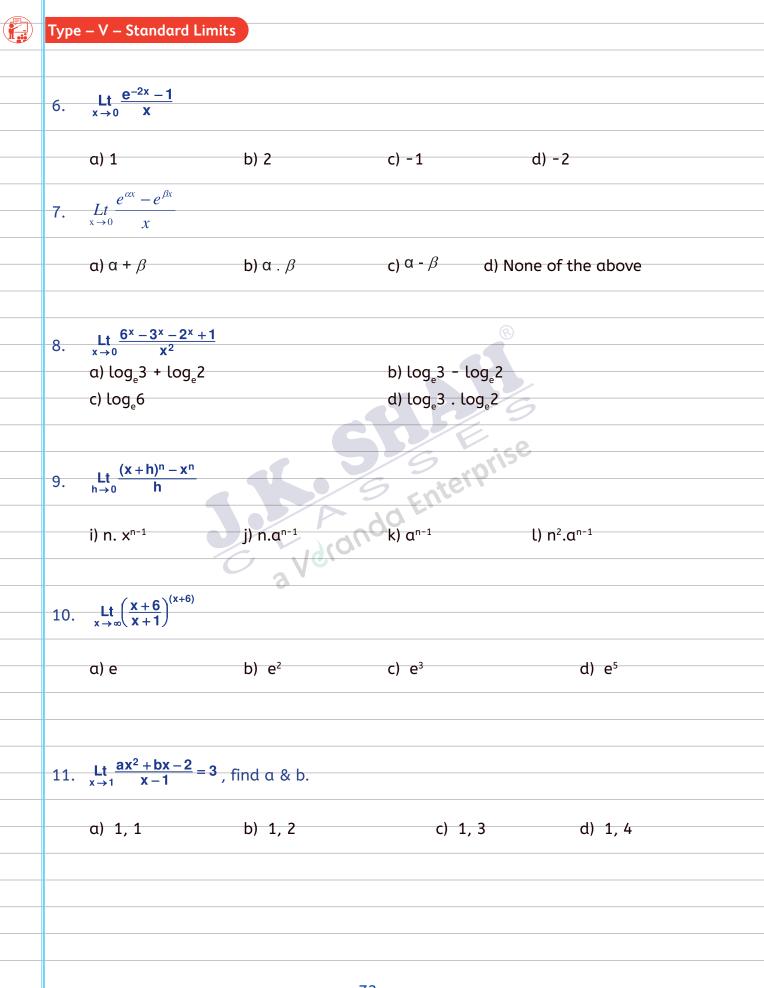
Type IV(Standard Limits)

 $\frac{-Lt}{\sum_{x \to 0} \frac{e^x - 1}{x} = 1} = \frac{Lt}{\sum_{x \to 0} \frac{e^{mx} - 1}{x}} = m - \frac{Lt}{\sum_{x \to 0} \frac{e^{mx} - 1}{mx}} = 1$ •

•
$$Lt_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$
 $Lt_{x\to 0} \frac{a^{mx} - 1}{x} = m \log_e a$ $Lt_{x\to 0} \frac{a^{mx} - 1}{mx} = \log_e a$


•
$$Lt \frac{\log(1+x)}{x} = 1$$
 $Lt \frac{\log(1+mx)}{x} = m$ $Lt \frac{\log(1+mx)}{mx} = 1$

•
$$Lt \frac{x^n - a^n}{x - a} = n.a^{n-1}$$
 $Lt \frac{x^n - a^n}{x^m - a^m} = \frac{n.a^{n-1}}{m.a^{m-1}} = \frac{n}{m}.a^{n-n}$


•
$$Lt_{x\to\infty}\left(1+\frac{1}{x}\right)^x = e Lt_{x\to\infty}\left(1+\frac{a}{x}\right)^x = e^a$$

•
$$Lt_{x\to 0}(1+x)^{\frac{1}{x}} = e; Lt_{x\to\infty}(1+x)^{\frac{a}{x}} = e^{a}; Lt_{x\to0}(1+ax)^{\frac{1}{x}} = e^{a}$$

CONCEPT OF CONTINUITY OF A FUNCTION

A function f (x) is said to be Continuous at a particular point, x = a, if it satisfy the following conditions:

 $\lim_{x \to x^{-1}} f(x) = \lim_{x \to x^{+1}} f(x) = f(a)$

Left hand = Right hand =Functional

Limit (LHL) Limit (RHL) Value

Note1: Equality of RHL and LHL is treated as a condition for existence of limit i.e, limit of a function will exist if LHL=RHL

Note2: For Continuity, equality of the functional value at that point is also necessary.

Note3: For all Continuous functions, limit must exist, but existence of limit, is not a sufficient condition for continuity of a function.

Note4: Sum, difference , product and quotient of all continuous functions are always continuous.

Note5: All polynomials are continuous.

Note6: If a given function is of the form $\frac{f(x)}{g(x)}$, where both f (x) and g(x) are polynomials in x, it will be everywhere continuous except at the points at which it is undefined i.e; points of discontinuity of such functions are the points where g(x) =0.

Example: In each of the following cases, discuss continuity of the functions at x=5

i)
$$f(x) = \frac{x^2 - 25}{x - 5}$$

Solution: LHL= $\lim_{x \to 5^+} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5^+} \frac{2x}{1} = 2 \times 5 = 10$
RHL= $\lim_{x \to 5^+} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5^+} \frac{2x}{1} = 2 \times 5 = 10$

$$f(5) = \frac{25 - 25}{5 - 5} = \frac{0}{0} (undifined)$$

since,LHL = RHL \neq f (5), f (x)is discontinuous atx = 5,although the limit has existed.

ii)
$$f(x) = \frac{x^2 - 25}{x - 5}$$
, when $x \neq 5$

=10, when x=5

Solution: LHL=10=RHL taken from(i)

Given , f (5) =10 since, LHL=RHL= f (5), f (x) is continuous at x = 5

iii)
$$f(x) = \frac{x^2 - 25}{x - 5}$$
, when $x \neq 5$

=2, when x = 5

Solution: LHL=RHL=10 taken from(ii)

Given , f (5) = 2 since, LHL=RHL \neq f (5), f (x) is discontinuous at x = 5

Example 2: Find the points of discontinuity of the function, $f(x) = \frac{(x^2 - 3x + 2)}{(x^2 - 5x + 6)}$

Solution: The given function will be continuous at all points, except at the points at which it is undefined i.e the points at which its denominator is $0.(x^2-5x+6) = 0$

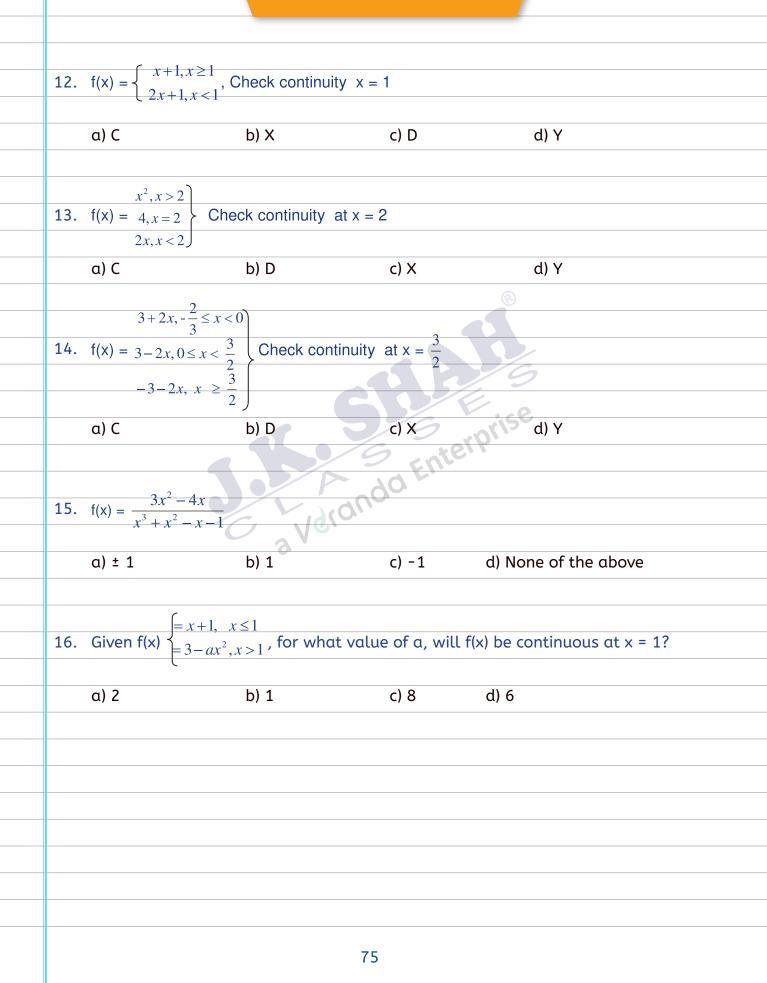
Points of discontinuity are 2 and 3

⇒x=2,3

⇒(x-2) (x-3)=0

WORKING CODES for Q. No. 1 to 18

Mark C : if function is continuous at the given point


Mark D : if function is discontinuous at the given point

Mark X : if nothing can be said about the continuity of the function at the given point

Mark Y : if function is neither continuous nor discontinuous at the given point

CLASSWORK SECTION

8

CA FOUNDATION - MATHEMATICS

BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

DIFFERENTIAL CALCULUS

THEORY

Let y = f(x) be a continuous function. Then, the value of y depends upon the value of x and it changes with a change in the value of x. We use the word increment to denote a small change, i.e., increase or decrease in the values of x and y.

Let Δy be an increment in y corresponding to an increment Δx in x.

Then, $\frac{dy}{dx} = Lt \frac{f(x+h) - f(x)}{h}$. This limit, if it exists finitely, is called the derivative or differential coefficient of y = f(x) with respect to x and is denoted by $\frac{dy}{dx}$ or f'(x) or y_1 . The process of Vecanda Ente finding the derivative is known as differentiation.

Standard Derivatives

$\frac{d}{dx}x^n = n.x^{n-1}$	$\frac{d}{dx}(c) = 0$	$\frac{d}{dx}x = 1$	$\frac{d}{dx}\frac{1}{x^n} = -\frac{n}{x^{n+1}}$	
$\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$	$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$	$\frac{d}{dx}\frac{1}{\sqrt{x}} = -\frac{1}{2x\sqrt{x}}$	$\frac{d}{dx}e^x = e^x$	
$\frac{d}{dx}e^{mx} = m.e^{mx}$	$\frac{d}{dx}a^x = .a^x . \log_e a$	$\frac{d}{dx}a^{mx} = m.a^{mx}.\log_e a$	$\frac{d}{dx}\log_e x = \frac{1}{x}$	

Product and Quotient Rule

$$\frac{d}{dx}u.v = u.\frac{d}{dx}v + v.\frac{d}{dx}u \qquad \qquad \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v.\frac{du}{dx} - u.\frac{dv}{dx}}{v^2}$$

J.K. SHAH [®] CA FOUNDATION - MATHEMATICS
a Veranda Enterprise
Parametric Functions
Sometimes x and y are given as function of another variable t. Then t is called a parameter. Let
 x = f(t) and $y = g(t)$, then:
 $\frac{dy}{dy}$
 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dx}{dt}$
$\sqrt{\frac{1}{dt}}$
Implicit Functions
 When the variables x and y are not explicitly or clearly defined in terms of each other ,the
 function takes an implicit form. We differentiate both sides of the equation term wise, keeping
 in mind that $\frac{d}{dx}2y = 2 \cdot \frac{dy}{dx} \& \frac{d}{dt}m^2 = 2m \cdot \frac{dm}{dt}$ and so on.
Function of a Function – Chain Rule
 If $y = f(t)$ and $t = g(x)$, then $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$, and the rule can be further extended.
Logarithmic Differentiation - Log Rule
 When the given function is a power of some expression or a product of expressions, we take
 logarithm on both sides and differentiate the implicit functions so obtained. If $y = f(x)^{g(x)}$, then; $\log y = g(x) \cdot \log f(x) \cdot \dots$. Then proceed.
 $f(y - f(x))$, then, $\log y - g(x) \log f(x)$ Then proceed.
Slope – Applied Differentiation
For $y = f(x)$, slope at any point (x_1, y_1) is given by $\frac{dy}{dx}$
 $dx_{at x_1, y_1}$
Higher Order Derivatives
Let $y = f(x)$ be a differentiable function of x whose second and higher order derivatives exists.
 The first, second, third, and the nth derivatives of this function are denoted by;
 dy/dx , d^2y/dx^2 , d^3y/dx^3 ,, d^ny/dx^n or $y_1, y_2, y_3,, y_n$ or $f'(x)$, $f''(x)$,

INTEGRAL CALCULUS

THEORY

Fundamental Integrals

$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \frac{dx}{x^n} = \frac{1}{(1-n).x^{n-1}} + C$	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$	$\int dx = x + C$	
$\int \frac{dx}{x} = \log x + C$	$\int e^x dx = e^x + C$	$\int e^{mx} dx = \frac{e^{mx}}{m} + C$	$\int a^x dx = \frac{a^x}{\log_e a} + C$	
$\int a^{mx} dx = \frac{a^{mx}}{m \log_e a} + C$				

Integration by Parts

 $\int u.v. dx = u.\int v dx - \int \left\{ \frac{du}{dx} \int v dx \right\} dx$

Standard Integrals

•
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$
, Given $(|x| > |a|)$
• $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$, Given $(|x| > |a|)$

•
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log\left[(x + \sqrt{x^2 \pm a^2})\right] + C$$

•
$$\int \sqrt{x^2 + a^2} dx = \frac{x\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

•
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

CA FOUNDATION - MATHEMATICS

Definite Integrals:- Important Properties

$$\int_{a}^{b} f(x) dx = \int_{a}^{a} f(z) dz$$

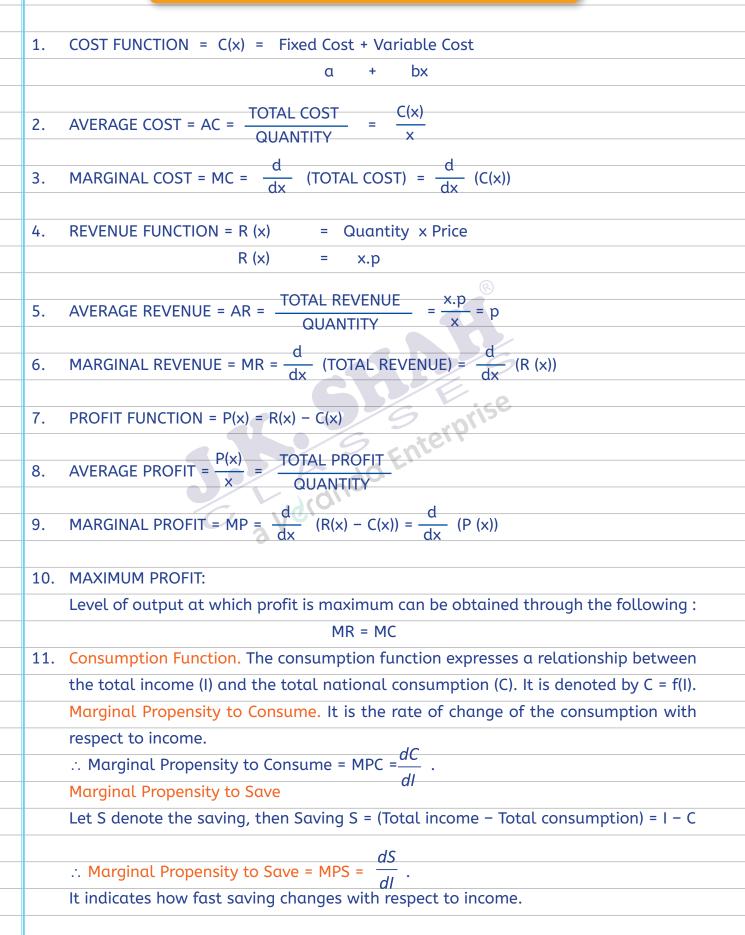
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx (a < c < b)$$

$$\int_{0}^{b} f(x) dx = \int_{a}^{0} f(a - x) dx$$

$$\int_{-a}^{-a} f(x) dx = 0, \text{ if } f(x) \text{ is an odd function.}$$

$$\int_{-a}^{a} f(x) dx = 2\int_{0}^{b} f(x) dx, \text{ if } f(x) \text{ is an even function.}$$


$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$\int_{a}^{b} f(x) dx = \sqrt{b} - \sqrt{a}$$

$$\int_{a}^{b} f(x) dx = \frac{x^{2}}{2} \int_{a}^{a} = \frac{b^{2}}{2} - \frac{a^{2}}{2} = \frac{b^{2} - a^{2}}{2}$$

APPLICATION OF DERIVATIVE & INTEGRATION IN COMMERCE AND ECONOMICS

J.K. SHAH CLASSES a Veranda Enterprise

12.	At Equilibrium, Qd = Qs
	On solving the demand and supply equation, we obtain the equilibrium Price and
	Quantity.
13.	Total Cost = ∫ Marginal Cost dx = ∫ MC dx
	= C(x) + k
	where k = fixed cost
	i). $AC = \int MAC dx$
	•
	ii). VC = $\int MVC dx$
	n ®
14.	Total Cost for 'n' units = \int MC dx
	0
	62/9
 15.	Total Revenue =
	Storis
	$= \int MR dx = R(x)$
	n conservation of the cons
16.	Total Revenue for 'n' units = ∫ MR dx
	0

MAXIMA AND MINIMA (EXTREME VALUE)

Given : y = f(x)Steps for finding Maxima and Minima of a function. Find $\frac{dy}{dx}$ 1. Equate $\frac{dy}{dx} = 0$ to obtain the value/values of x 2. Find $\frac{d^2y}{dx^2}$ and put therein the values of x obtained from Step 2, and observe the 3. result: (i) if $\frac{d^2y}{dx^2} < 0$, then the function attains its Maximum Value, at that point and the maximum value of the function can be obtained by putting the value in the original function. (ii) If $\frac{d^2y}{dx^2} > 0$, the function attains the Minimum Value, at that point and the minimum value of the function can be obtained by putting the value in the Verar original function. (iii) If on putting the value of 'x' $\frac{d^2y}{dx^2} = 0$, but $\frac{d^3y}{dx^3} \neq 0$, then the function will have a Point of Inflexion, at a point. In other words, at Point of Inflexion, the curve changes its Curvature.

CLASS WORK

DIFFERENTIATION

If y = $a^x + x^a + a^a$, then $\frac{dy}{dx}$ = 1.

- (a) $xa^{x-1} + ax^{a-1} + aa^{a-1}$ $a^{x} \log a + ax^{a-1}$ (b) (c) $a^{x} \log a + ax^{a-1} + aa^{a-1}$ (d) none
- If $f(x) = x^2 6x + 5$, then f'(2) f'(5) =2. (a) -3f'(2)(b) (d)
 - (c) 2f⁽2)
- $f(x) = \alpha^{x}x^{k}$, then f'(x)3. (a) $f(x) (a - \log a)$

f(x) (a + log a) (b) 201

3f (2)

4f (2)

(c)
$$f(x)\left(\frac{k}{x} - \log a\right)$$
 (d) $f(x)\left(\frac{k}{x} + \log a\right)$

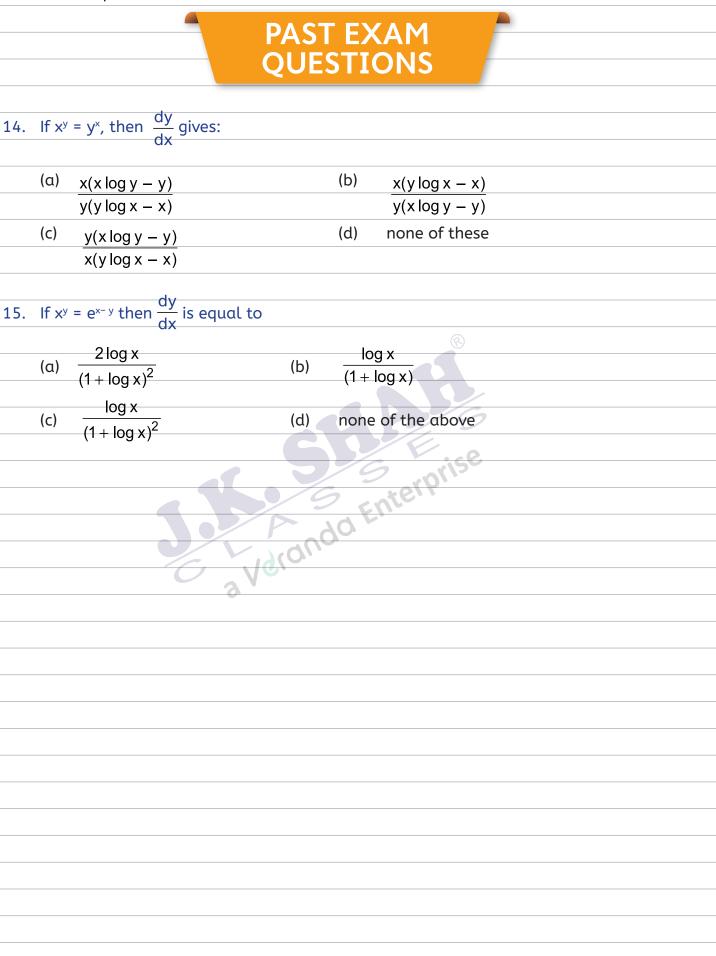
 $f(x) = {}^{x}C_{2}$, then f'(1) =4.

(c) $-\frac{1}{2}$ (d) $\frac{1}{6}$	(a)	1	(b)	$\frac{1}{2}$
	(c)	$-\frac{1}{2}$	(d)	<u>1</u> 6

Derivative of $\sqrt{x^2 + \sqrt{x}}$ 5.

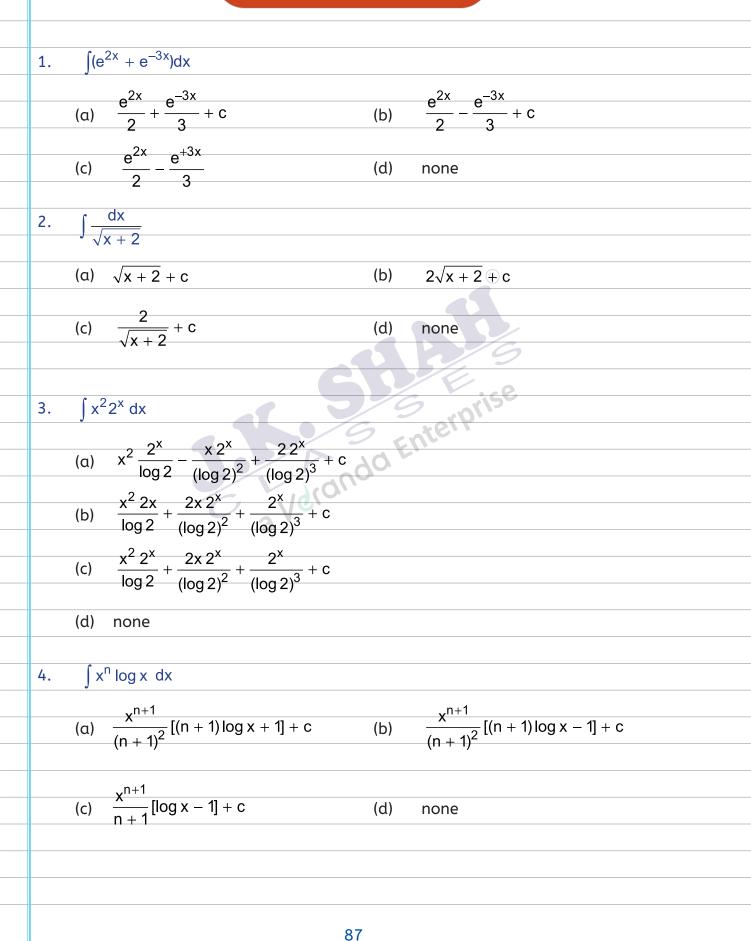
(a)
$$\frac{1}{2\sqrt{x^2 + \sqrt{x}}}$$
 (b)
$$2x + \frac{1}{2\sqrt{x}}$$

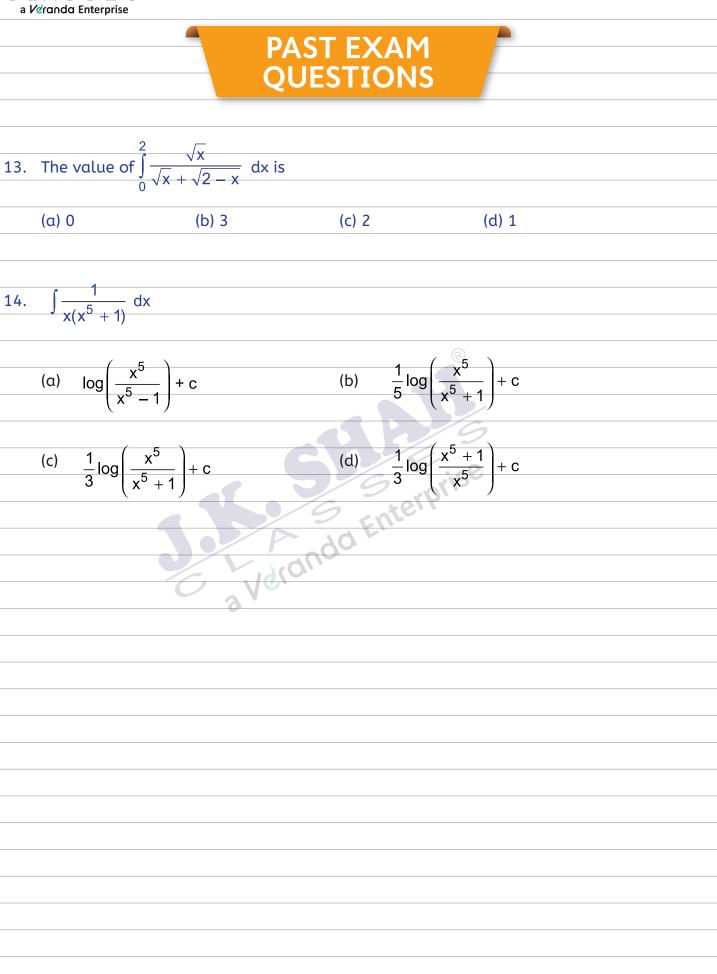
(c)
$$\frac{1}{2\sqrt{x^2 + \sqrt{x}}} \left(2x + \frac{1}{2\sqrt{x}}\right)$$
 (d) none

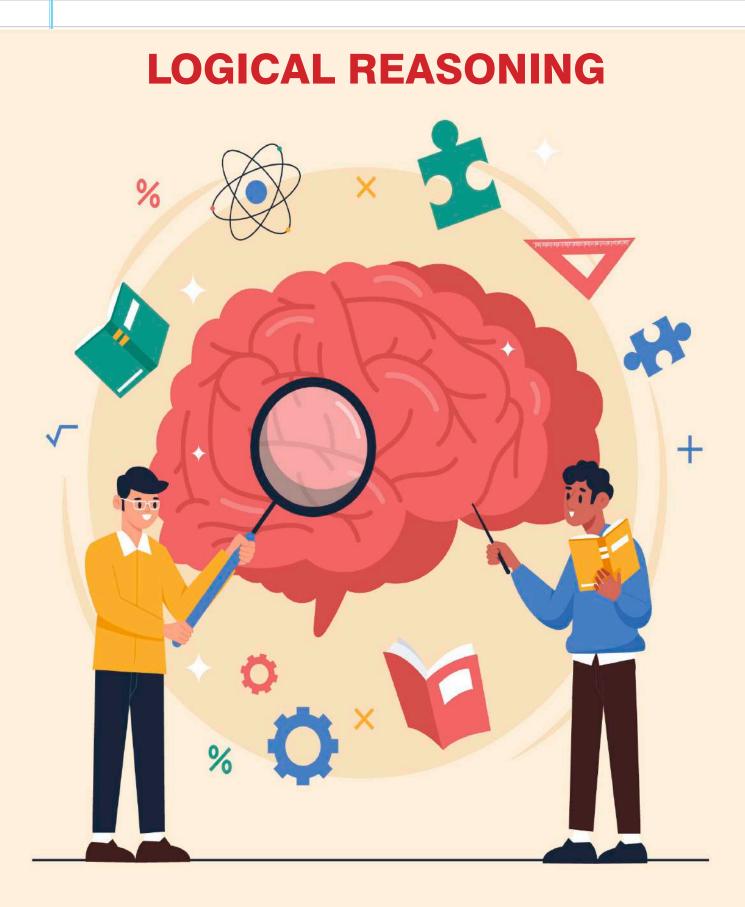


y = $\sqrt{x^2 + a^2}$, then y $\frac{dy}{dx}$ = 6. (a) x (b) 2x (c) y (d) 2y 7. $x^2 + xy + y^2 = 0$, then $\frac{dy}{dx} =$ (a) $-\left(\frac{2x+y}{x+2y}\right)$ (b) $-\left(\frac{2x-y}{x+2y}\right)$ (c) $-\left(\frac{x+2y}{2x+y}\right)$ (d) $\frac{2x + y}{x + 2y}$ $x^{y} = e^{x}$, then $\frac{dy}{dx}$ is 8. $\frac{\log x - 1}{\left(\log x\right)^2}$ (a) $\frac{\log x - 1}{\log x}$ (b) $\frac{\log x + 1}{(\log x)}$ $\frac{\log x + 1}{\log x}$ (d) (c) y = 2at ; x = at², then $\frac{dy}{dx}$ at t = 1 (a) 1 (b) 0 (c) 2 9. (d) a dy 10. $y = x^{\log x}$, then $\frac{dx}{dx} =$ (a) $2x^{-1} \log x$ (b) 2x log x (c) $x^{\log x} \left(\frac{2\log x}{x} \right)$ (d) none

J.K. SHAH CLASSES a Veranda Enterprise


11. $y = (3x + 1)^{\frac{1}{4}}(4x + 1)^{\frac{1}{5}}(5x + 1)^{\frac{1}{6}}$, then $\frac{dy}{dx} =$ $(\alpha) = \frac{3}{4} \left(\frac{1}{3x+1} \right) + \frac{4}{5} \left(\frac{1}{4x+1} \right) + \frac{5}{6} \left(\frac{1}{5x+1} \right)$ (b) $y\left[\frac{3}{4}\left(\frac{1}{3x+1}\right)+\frac{4}{5}\left(\frac{1}{4x+1}\right)+\frac{5}{6}\left(\frac{1}{5x+1}\right)\right]$ (c) $(x-3)^{-1} + \frac{1}{3}(x-4)^{-1} + \frac{1}{4}(x-5)^{-1}$ (d) none 12. $y = e^{k \log x} + e^{x \log k}$, then $\frac{dy}{dx} =$ (a) $x^k + k^x$ (b) kx^{k-1} + k^x log k (c) kx^{k-1} + xk^{x-1} (d) none 13. If $y = (x + \sqrt{x^2 - 4})^m$, then $(x^2 - 4)(\frac{dy}{dx})^2 - m^2y^2 =$ (a) 0 (b) 1 (c) 2 (c) 2 (d) none 85


INTEGRATION


<u>J.K. SHAH</u> **CA FOUNDATION - MATHEMATICS** a Veranda Enterprise $\int \frac{3x+2}{(x-2)(x-3)} dx$ 5. (b) $8 \log |x - 3| - 11 \log |x - 2| + c$ 11 log (x - 3) - 8 log |x - 2| + c (a) (c) $-11 \log |x - 3| + 8 \log |x - 2| + c$ (d) $-8 \log |x - 3| + 11 \log |x - 2| + c$ $\int \frac{7x^2}{(x^3+2)^3} dx$ 6. (a) $\frac{7}{6}(x^3+2)^2 + c$ (b) $-\frac{7}{6}(x^3+2)^2 + c$ (c) $-\frac{7}{6} \left| \frac{1}{(x^3 + 2)^2} \right| + c$ (d) $\frac{7}{6} \frac{1}{(x^3 + 2)^2} + c$ $\int e^{x}(x^{3} + 5x^{2} + 4x) dx$ 7. (a) $e^{x}(x^{3} + x^{2}) + c$ (b) $e^{x}(x^{3}+2x^{2})+c$ (c) $e^{x}(x^{3} + 3x^{2}) + c$ $e^{x}(x^{3} + 4x^{2}) + c$ (d) (1-x) + c $(b) - e^{x}\left(\frac{-1}{1-x}\right) + c$ $(c) - e^{x}\left(\frac{1}{2-x}\right) + c$ $\int e^{x} \left(\frac{2-x}{\left(1-x\right)^{2}} \right) dx$ 8. $e^{x}\left(\frac{-1}{1-x}\right)+c$ $\int \sqrt{x^2 + 4} dx$ 9. (a) $\frac{x}{2}\sqrt{x^2+4} + c$ (b) $\frac{x}{2}\sqrt{x^2+4} + 8\log|x+\sqrt{x^2+4}| + c$ (c) $\frac{x}{2}\sqrt{x^2+4} + 2\log|x+\sqrt{x^2+4}| + c$ (d) $\frac{x}{2}\sqrt{x^2+4} - 2\log|x+\sqrt{x^2+4}| + c$

CLAS	SHAH [®] SSES			CA FOUNDATION - MATHEMATICS
a Verand	la Enterprise			
 5 10. ∫f(4	$\frac{5}{4}f(9 - \frac{5}{4})f(9 - \frac$	- x)dx		
(a)			(b)	1
 (c)	-1		(d)	none
 <u>3</u>				
11. ∫(x _3	³ + x)dx			
(a)	0		(b)	3
(c)	-3		(d)	1
12. Equ	ation of the a	curve which passe	es through t	the point (1, 0) and F1(x) = 2x - 1
 	$y = x^2 - x -$			$y = x^2 - x - 2$
	$y = x^2 - x$		(d)	none
				29
			BD	
			See E	orise
			19 .	nterr
			- YOF	
	(V.)(300-	
		- Ver	<u> </u>	
		Ø		

1

NUMBER SERIES, CODING AND DECODING AND ODD MAN OUT

- Series is a sequential order of numbers, letters or both arranged in some specific rules.
- These Rules can be based on mathematical operations, place of letters in alphabetical order etc.

Different types of Series

- 1. Number Series
- 2. Letter Series
- 3. Alpha-Numeric Series
- 4. Continuous pattern Series

Enterpris Condo NUMBER SERIES

Number series is a logical sequence of more than one elements made of arithmetical digits.

Some Types of number series:

- 1. Same numbers addition or subtraction series.
- 2. Increasing order addition or subtraction series.
- 3. Same number multiplication or division series
- 4. Increasing order multiplication or division series
- 5. Same number multiplication and addition or subtraction series

	6.	Same number multiplication and addition or subtraction in increasing order series
	7.	Increasing order multiplication and same number addition or subtraction series.
	8.	Increasing order multiplication and increasing order addition or subtraction series
	9.	Multiplication and division series.
	10.	Square series
	11.	Cube series
	4.2	
_	12.	Square addition series
	13.	Prime number series
_	15.	Prime number series
_	14.	Digital operation of number series
	14.	Mixed combination series
_	15.	Mixed combination series
_	10.	
		- Lugnas
		C Ver

CLASS WORK SECTION

In the following series replace the question (?) with the suitable option.					
1.	27, 32, 30, 35, 33	3, ?			
	a) 28	b) 31	c) 36	d) 38	
2.	24, 60, 120, 210,	?			
	a) 300	b) 336	c) 420	d) 525	
3.	198, 194, 185, 16	69,?	®		
	a) 92	b) 136	c) 144	d) 112	
				9	
4.	6, 13, 38, ?, 532,	2675	5.79	7	
	a) 129	b) 123	c) 172	d) 164	
			S-rorise	, 	
5.	45, 46, 70,141, ?	, 1061.5 9	Entern		
	a) 353		c) 352.5	d) 352	
		C id(dn			
			AN OUT		
1.	9, 14,19,25, 32, 4	40			
	a) 14	b) 25	c) 32	d) 9	
2.	4, 5, 12, 38, 160	805, 4836			
	a) 12,	b) 160	c) 38	d) 805	
3.	7, 4, 5, 9, 20, 51,				
	a) 4	b) 51	c) 9	d) 20	

LET	TER SERIES, ALPHA	A NUMERIC AND CON	TINUOUS PATTER	RN SERIES		
Lett	Letter series is a sequence of letters taken from English alphabet and such sequence					
follo	follows a certain logical pattern					
1.	РМК, МРК, МКР, К	<mp, ?<="" th=""><th></th><th></th><th></th></mp,>				
	a) PMK	b) KMP	c) MPK	d) KPM		
2.	P3, M8, ?, G24, D	35				
	a) K15	b) J13	c) 13	d) J15		
3.	Which of the follo	owing is odd one: <mark>(J</mark> -	2019)			
	a) CEHL	b) KMPT	c) OQTX	d) NPSV		
				®		
4.	_sr_tr_srs_r_srst_	_				
	a) ttssrr	b) tsrtsr	c) strtrs	d) tstttr		
				9		
		CODING A	ND DECODING	ce.		
Cod	ing-Decoding is pro	ocess of transmitting	g an information	from one place to other usi	ng	
som	ne suitable codes, s	so that it might reac	h to other perso	n safely.		
			9a -			
Diff	erent Types of codi	ing and decoding:				
1.	Coding based on	Rearrangement of L	etters			
2.	Coding based on	replacement of lette	ers			
3.	Opposite letter co	oding				
4.	Coding of Letters	by their Left and Rig	ght Letters			
5.	Number coding					
6.	6. Symbol coding based on Similarity					
7.		ution or word replac	ement			
8.	Fictitious Langua					
9.	Coding by Compa	arison				

CLASS WORK SECTION

1.	In a certain cod	e language, COMPUTR	ONE is written as	S PMOCTUENOR. How is
		tten in that same code?		
	a) ADVANSEGAS	b) ADTANSEAG	c) AVDANTAGES	d) AVDATNSEGA
2.	If in a certain coo	le language SIMILAR is	written as IZORNR	H, how will NATURAL be
	written in that la	nguage?		
	a) OZIFGZM	b) OZIFGMZ	c) OZIFZMG	d) OZIFMZG
3.	In a certain code	RIPPLE is written as 6	13382 and LIFE is	written as 8192. How is
	PILLER written in	that code? (M-2018)		
	a) 318826	b) 318286	c) 618826	d) 338816
			29	2
4.	In a certain lang	uage 'DEW' written as :	1625529 'GET' is w	vritten as 4925400, then
	how will TWO be	written in that languag	ge?	
	a) 400529522	b) 400529225	c) 400925225	d) 400225925
			3 -	
5.	If P = 16 and PUT	= 6720 then PICK?		
	a) 4137	b) 4590	c) 4032	d) 4752
6.	In a certain code	256 means 'you are go	od' 637 means 'we	e are bad' and 358 mens
 	'good and bad'. W	/hich of the following re	epresents 'and' in t	chat code? (M-2018)
	a) 2	b) 5	c) 8	d) 3

DIRECTION TESTS

Direction is a measurement of position of one thing with respect to another thing or a reference point.

A da Enterprise

Types :

- 1. Finding direction only
- 2. Find the distance only
- 3. Finding both the distance and direction.

2

CLASS WORK SECTION

- At sunrise, Amit and Deepak are having conversation standing in front of each other. The shadow of Deepak is formed towards the right hand of Amit. What direction is Deepak facing?

 a) North-East
 b) South
 c) East
 d) North
- 2. Samar wants to go college which is situated in a direction opposite to that of a mall. He starts from his house, which is in the east and comes at four-way place. His left side road goes to the mall and straight in front is the railway station. In which direction is the college located?
 a) North
 b) North-East
 c) South
 d) East
- Laxman went 15kms to North then he turned west and covered 10 kms. Then he turned South and covered 5 kms, finally turning to East he covered 10 kms. In which direction he is now moving? (M-2018)

 a) East
 b) West
 c) North
 d) South
- A man is facing East, then he turns left and goes to 10 meter then turns right and goes 5 meter then goes 5 meter to the south and from their 5 meter to West. In which direction is he from his original place? (M-2018)
 a) East b) West c) North d) South
- 5. Surbhi is facing east, she turns 100degree in the clockwise direction and then 145 degree in the anti-clockwise direction. Which direction is she facing now?
 a) West
 b) North-East
 c) North
 d) South-West
- 6. A train runs 120km in West direction, then 30km in South direction and then 80 km in East direction before reaching the station. In which direction is the station from the train's starting point?

a) South-West b) North-West c) South-East d) South

J.K. SHAH CLASSES a Veranda Enterprise

7.	If X stands on	his head with his fa	ice towards South, to	which direction will his left		
	hand point?					
	a) East	b) West	c) South	d) North		
8.	Vinod Starts fr	rom his house and t	travels 4km in East o	lirection, after that he turns		
	towards left ar	nd moves 4km. Final	lly, he turns towards	left and moves 4km. At what		
	distance and ir	n which direction he	finally stands from	nis starting point?		
	a) North, 4km b) North-East 4km					
c) South 12km d) West 4km						
9. Two buses start from the opposite points of a main road, 150km apart. The first bus						
	runs for 25km	and takes a right tu	ırn and then runs for	15km. It then turns left and		
	runs for anoth	er 25km and takes	the direction back to	reach the main road. In the		
	meantime, due	e to the minor break	down the other bus	has run only 35km along the		
	main road. Wh	nat would be the dis	stance between the t	wo buses at this point?		
	a) 65km	b) 80km	c) 75km	🥝 d) 85km		
				c.e.		
10.	Raghu is at po	int A. He walks 3km	to the North and the	en turns to his left. He walks,		
	4km in this dire	ection. He turns left	again and walks 6 ki	m. If he wishes to reach point		
	A again, in wh	ich direction should	he be walking and v	vhat distance will he have to		
	cover?					
	a) South-East,	5km	b) South-Eas	t, 4 km		
	c) North-East,	5 km	d) North-Eas	t, 4 km.		
10						

SEATING ARRANGEMENT

Sitting arrangement questions are based on the sitting sequence pattern, direction, facing outside or inside etc.

Ada Enterprise

Different types of Questions covered.

3

- 1. Linear arrangement
- 2. Circular arrangement
- 3. Polygonal arrangement

CLASS WORK SECTION

LINEAR ARRANGEMENT

1.	1. 5 friends are sitting on a bench. A is to the left of B but on the right of C. D is to the					
	right of B but on the left of E. Who are at the extremes?					
	a) A, B	b)	A, D	c) B, D	d) C, E	
2.	Five children ar	e sittin	g in a row. S is st	ing next to P but	not T. K is sitting next to R,	
	who is sitting o	n the e	xtreme left and 1	r is not sitting ne	xt to K. Who is/are adjacent	
	to S? (M-2018))				
	a) K and P	b)	R and P	c) only P	d) P and T.	
3.	Five boys are s	tandin	g in a row facing	g East, Pavan is	to the left of Tavan, Vipin,	
	Chavan. Tavan	, Vipin	and Chavan are t	o the left of Nakı	II. Chavan is between Tavan	
	and Vipin. If Vip	oin is fo	ourth from the lef	ft, then how far i	s Tavan from the right?	
	a) First	b)	Second	c) Third	d) Fourth	
			/9	enterr		
4.	Five boys A, B,	C, D an	d E are sitting or	a stair in the fol	llowing way	
	E is above A		, digun			
	D is under B	0	ave			
	B is under A		-			
	D is between B	and C				
	Who is at the la	owest p	position of the sto	air?		
	a) A	b) (c) E	d) B	
5.	Eight persons A	, B, C,	D, E, F, G and H a	ire sitting in a line	e.	
	E is second righ	t to D.				
	H sits fourth lef	ft to D.				
	C and F are imr	nediate	e neighbors, but (C is not immediat	te neighbor of A.	
	G is not neighbo	or of E				
	Only two perso	n sit be	etween A and E.			
	The persons on	left er	ıd and right end ı	respectively are		
	a) G and E	b) E	3 and E	c) H and E	d) G and B	

J.K. SHAH [®]					
CLASSES					
a Veranda Enterprise					

 	-						
	Directions: (Q. no. 6 to 10)						
	Read the following information carefully to answer the given questions.						
	A, B, C, D, E, F, G and H are seated in straight line facing North.						
	C sits fourth to left of G.						
	D sits seconds to right of G.						
	Only two people sit between D and A.						
	B and F are immediate neighbors of each other.						
	B is not an immediate neighbour of A.						
	H is not an immediate neighbour of D.						
6.	Who amongst th	ne following sits	s exactly in the middle of	f the persons who sit fifth			
	from the left and	d the person wh	o sits sixth from the right	t?			
	a) C	b) H	c) E 📀	d) F			
7.	Who amongst the following sits third to the right of C?						
	a) B	b) F	c) A	🤇 d) E			
			GD/E	2			
8.	Which of the fol	lowing represen	nts persons seated at the	e two extreme ends of the			
	line?						
	a) C, D	b) A, B	C) B, G	d) D, H			
		Vids	<i>dli</i> ⁻				
9.	What is the posit	tion of H with re	espect to F?				
	a) Third to the le	؛ft	b) Immediate ri	ight			
	c) Second right		d) Fourth to lef	ť			
10.	How many perso	ons are seated b	petween A and E?				
	a) One	b) Two	c) Three	d) Four			
Circular Arrangement							
1.	Five persons are	sitting facing o	centre of a circle. Pramo	d is sitting to the right of			
	Rajan. Raju is sitting between Brejesh and Naveen. Raju is to the left of Brejesh and						
	Rajan is to right of Brejesh. Who is sitting to the left of Naveen?						
	a) Pramod	b) Raju	c) Brejesh	d) Rajan			

		Directions (Q. no.4 to 6)							
		Read the following information carefully to answer the question that follow:							
		Six girls are sitting in a circle.							
			g opposite to Radhika						
		Poonam is sitting right of Radhika but left of Deepti.							
			ng left of Radhika	· ·					
		Kamini is sittir	ng right of Sonia and	left of Monika					
		Now, Deepti and Kamini, Monika and Radhika mutually exchange their positions.							
	1.	Who will be o	pposite to Sonia?						
		a) Radhika	b) Monika	c) Kamini	d) Sonia				
	2.	Who will be sitting left of Kamini?							
		a) Poonam	b) Deepti	c) Radhika	d) Sonia				
					2				
	3.	Who will be sitting left of Deepti?							
		a) Sonia	b) Monika	c) Radhika	d)Poonam				
				5 roris					
		Polygonal Arrangement							
				<u>do</u> -					
	1.			-	ng the centre. One person				
		is sitting at each corner and at the midpoint of each side of the square. Madhu is							
			5 11	3	Geeta. Ram who is to the				
_				•	e left of Bose. Position of				
			o the right off Madhu	but in front of Prema.	Who is sitting opposite to				
		Bose?	h)Duous s		d) Marala				
		a) Geeta	b)Prema	c) Suma	d) Madhu				
		Directions (O	no 2 to 5						
		Directions (Q. no.2 to 5) Read the following information carefully to answer the question that follow:							
					hexagonal shape. All the				
					adjacent to B or C. D is not				
_									
		adjacent to C or E. B and C are adjacent. F in the middle of D and C.							
	2.	Which of the following is not a correct neighbour pair?							
_		a) A and F b) D and F c) B and E d) C and F							
		·	· .	•	•				

J.K. SHAH C L A S S E S a Veranda Enterprise

3.	3. Who is at the same distance from D as E is from D?						
	a) B	b) C	c) D	d) F			
4.	Which of the following group has the correct order of arrangement?						
	a) A,F, B	b) F, A, E	c) B, C, F	d) D, A, B			
5.	-						
	a) B	b) C	c) E	d) F			
				8			
				6			
				7			
				ise			
			S Enterpr				
			10 Elle				
			NOG.				
		- C Ver					
		· Ø					
			4.00				
			103				

4

BLOOD RELATION

Blood relation between two individuals is defined as a relation between them by the virtue of their birth rather than by their marriage or any other reasons.

Ada Enterprise

Different Types of Blood Relation questions

- 1. Blood relation based on Conversation
- 2. Blood relation based on Puzzles
- 3. Symbolically Coded Blood Relationship

CLASS WORK SECTION

Type 1. Blood relation based on Conversation

1.	Vinod introduce	es Vishal as the son of th	e only brother of hi	s father's wife. How is										
	Vinod related t	o Vishal?		(M-2018)										
	a) Cousin	b) Brother	c) Son	d) Uncle										
2.	Pointing to a p	icture, Summit said, she	is the mother of m	ny son's wife's daughter.										
	How is lady rel	ated to the Summit.		(J-2019)										
	a) Uncle	b) Cousin	c) Daughter	d) None										
3.	Pointing to a la	dy Rishi said, "The son of	her brother is the t	prother of my wife". How										
	is this lady rela	ted to Rishi?	/9											
	a) Mother-in Law c) Sister of Father-in Law d) None of the above													
	c) Sister of Father-in Law d) None of the above.													
			enterr											
4.	Pointing toward	ds a girl, Anurag says, "T	his girl is the daug	hter of the only child of										
	my father". Wh	at is the relation of Anur	ag's wife with the g	irl?										
	a) Sister	b) Aunt	c) Daughter	d) Mother										
		Type 2. Blood relation	on based on Puzzle											
Dire	ections (Q. no.1 to	o 3)												
Rec	Id the following i	nformation carefully to c	Inswer the question	that follow:										
The	re are six childre	n playing football, name	ly, P, Q, R, S, T and	U.										
Pα	nd T are brothers	,												
U is	the sister of T.													
R is	the only son of I	P's Paternal uncle,												
Qa	nd S are the dau	ghters of the only brothe	r of R's father.											

a Veranda Enterprise
1. Six persons are seen together in a group. They are A, B, C, D, E and F.
B is brother of D, but D is not brother of B,
F is brother of B.
C and A are married together.
F is son of C, but C is not mother of F.
E is brother of A.
The number of female member in the group is (N-2018)
a)1 b) 2 c) 3 d) 4
2. P's father is Q's son. M is the paternal uncle of P and N is the brother of Q. How is M
related to N?
a) Nephew b) Cousin
c) Data inadequate d) None of these
3. In a family, there are seven persons comprising two married couple. T is the only
son of M and the grandson of K. M is a widower. M and R are brothers and W is the
daughter in law of J, who is the mother of R and the grandmother of D. How is D
related to M?
a) Son b) Son in law c) Nephew or Niece d) Brother
Type 3. Symbolically Coded Blood Relation
Directions (Q. no.1 & 2)
Read the following information carefully to answer the question that follow:
'P x Q' means 'P is sister of Q'.
'P + Q' means 'P is mother of Q'
'P – Q' means 'P is father of Q'
'P ÷ Q' means 'P is brother of Q'
1. If P + Q means P is the mother of Q.
P ÷ Q means p is the father of Q.
P – Q means P is the sister of Q.
Then which of the following relationship shows that M is the daughter of R?
(N-2018)
a) R ÷ M + N b) R + N ÷ M c) R – M ÷ N d) None of these

a Veranda Enterprise
2. S x T means that S is the mother of T
S + T means that S is father of T
S – T means that S is the sister of T
On the basis of this information, you have to select the option which shows that A
is the grandfather of T?
a) A + S + B - T b) A × B + C - T
c) A + B – C × T d) (a) & (c) both
Directions (Q. no.1 to 5)
Read the following information carefully to answer the question that follow:
'A + B' means 'A is the father of B'
'A x B' means 'A is the sister of B'
'A \$ B' means 'A is the wife of B'
'A % B' means 'A is the mother of B'
'A ÷ B' means 'A is the son of B.'
2/9
1. What should come in place of the question mark, to establish that J is the brother
of T in the expression?
J÷P%H?T%L
a) x b) ÷ c) \$ d) Either + or x
L Id Collie
2. Which among the given expression indicate that M is the daughter of D?
a) L % R \$ D + T × M
b) L + R \$ D + M × T
c) L % R % D + T ÷ M
d) L \$ D ÷ R % M ÷ T
3. Which among the following options is true, if the expression 'I + T % J x L ÷ K' is
definitely true?
a) L is the daughter of T
b) K is the son in law of I
c) I is the grandmother of L
d) J is the brother of L

4.	Wh	ich among	the following	expressio	ns is true,	if Y is the	son of X	is defini	tely false	?
	α)		T x Y ÷ X							
	b)	W + L x 1	Γ×Υ÷Χ							
	c)	X + L x T	×Y÷W							
	d)	W \$ X +	L + Y + T							
5.	Wh	at should (come in the pla	ace of the	question	mark, to e	stablish	that T is	s the siste	er
	in lo	aw of Q in	the expression	n						
	R %	δTxP?Q	+ V							
	a) +	+	b) %		c) ×		d) \$			
						B				
							2			
							2			
				6		F.	2			
				2	79	roris				
					2 = 11	en				
				- Aran	70 -					
				12(d())						
			0							
				10	0					
				10	0					

APPENDIX

					Τα	ble	[- L	OGA	RIT	ΉМ										
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38	
						0212	0253	0294	0334	0374	4	8	12	16	20	24	32	36	36	
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	35	
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33	
12	0792	0828	0964	0899	0934						3	7	11	14	18	21	25	28	32	
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31	
13	1139	1173	1208	1239	1271						3	6	10	13	16	19	23	26	29	
						1303	1335	1367	1399	1430	3	7	10	13	16	19	22	25	29	
14	1461	1492	1523								3	6	9	12	15	19	22	25	28	
				1553	1584	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26	
15	1761	1790	1818								3	6	9	11	14	17	20	23	26	
				1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25	
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24	
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23	
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23	
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22	
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19	21	
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	19	21	
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20	
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19	
20	3010	3023	3054	3075	3096	3116	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19	
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10		14		18	
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14		17	
23	3617 3802	3636 3820	3655 3838	3674 3856	3692 3874	3909 3892	3927 3909	3747 3927	3766 3945	3784 3962	2 2	4	6 5	7 7	9 9	11 11	13 12	15 14	17 16	
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	4	5	7	9	10	11	14	10	
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15	
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	12	14	
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	10	12	14	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	11	13	
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13	
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12	

	u	- anad	Enterpri	50																	
	32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12	
	33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12	
	34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11	
	35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11	
_	36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11	
_	37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10	
_	- 38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10	
	39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10	
	40	6021	631	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10	
	41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9	
	42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6235	1	2	3	4	5	6	7	8	9	
	43	6335	6345	6355	6365	6575	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9	
	44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9	
	45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9	
-	46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8	
_	47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8	
_	48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8	
	49	6902	6911	6920	6928	6037	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8	
			0	0																	

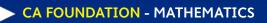
Example:

Log 2 = 0.3010: Log 20 = 1.3010: Log 200 = 2.3010: Log 2,000 = 3.3010 etc. dranda

Log 2 = 0.3010 - 1 - (-) 0.699

Log 0.02 = 0.3010 - 2 - (-) 1.699

a	veranaa	Enterpri	se																	
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8	
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8	
52	7160	7166	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7	
53	7243	7251	7259	7267	7275	7284	7292	7300	7306	7314	1	2	2	3	4	5	6	6	7	
54	7324	7332	7340	7348	7358	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7	
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7	
56	7452	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7	
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7	
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7	
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7	
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7848	1	1	2	3	4	4	5	6	6	
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6	
62	7924	7931	7938	7945	7952	7958	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6	
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6	
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6	
65	8129	8136	8142	8149	8158	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6	
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6	
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6	
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6	
69	8388	8395	8401	8407	8414	8420	8428	8432	8439	8445	1	1	2	2	3	4	4	5	6	
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6	
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5	
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5	
73	8633	8639	8645	8651	8657	8663	8669	8673	8681	8686	1	1	2	2	3	4	4	5	5	
74	8692	8698	8704	8710	8716	8722	8727	8733	8738	8745	1	1	2	2	3	4	4	5	5	
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5	
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5	
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5	
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5	
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5	
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	2	3	4	4	5	
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	2	3	4	4	5	
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	2	3	4	4	5	
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	2	3	4	4	5	
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	2	3	4	4	5	
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5	
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5	
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4	
88	9445	9450	9450	9455	9460	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4	


		- di di i di	Enterpri	50																	
	89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4	
	90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4	
	91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4	
	92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4	
	93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4	
	94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4	
	95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4	
	96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4	
	97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4	
	98	9912	9917	9921	9926	9930	9934	9939	9943	9945	9952	0	1	1	2	2	3	3	4	4	
	99	9958	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4	
_				n			0	n				· · · · ·			· · · · ·						

Veranda Enterprist

Table II - ANTILOGARITHM

						JDIE	11 -	AIN		GAI											
		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
	100	1000	1002	1005	1007	1009	1012	1014	1016	1018	1021	0	0	1	1	1	1	2	2	2	
	101	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2	
	102	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2	
	103	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2	
	104	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2	
	105	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2	
_	106	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2	
	107	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2	
	108	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3	
	109	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3	
	110	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3	
	111	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3	
	112	1381	1321	1324	1327	1330	1334	1337	1340	1342	1348	0	1	1	1	2	2	2	2	3	
	113	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3	
	114	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3	
	115	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3	
	116	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3	
	117	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3	
	118	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3	
	119	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3	
	120	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3	
	121	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3	
	122	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3	
	123	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4	
	124	1738	1742	1746	1750	1754	1758	1762	1768	1770	1774	0	1	1	2	2	2	3	3	4	
	125	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4	
	126	1820	1824	1828	1832	1837	1841	1845	1849	1897	1858	0	1	1	2	2	3	3	3	4	
	127	1862	1866	1871	1875	1879	1884	1888	1892	1941	1901	0	1	1	2	2	3	3	3	4	
	128	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4	
	129	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4	
	130	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4	
	131	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4	
	132	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4	
	133	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4	
	134	2188	2193	2198	2203	2206	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5	
	135	2239	2244	2249	2254	2259	2265	2270	2275	2280	2256	1	1	2	2	3	3	4	4	5	

	136	2291	2286	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5	
	137	2344	2350	2355	2359	2366	2271	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5	
1	138	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5	
1	139	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5	
1	140	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5	
1	141	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5	
╢	142	2630	2636	2642	2649	2655	2661	2667	2673	2679	2624	1	1	2	2	3	4	4	5	6	
╢	143	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6	
╉	144	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6	
╢	145	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6	
╢	146	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6	
	147	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6	
	148	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6	
	149	3090	3097	3105	3112	3118	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6	
																					•

Anda Enterpris

av	eranaa	Enterpris	se																	
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
150	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7	
151	3236	3243	3251	3258	3268	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7	
152	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7	
 153	3388	3396	3404	3412	3420	3428	3436	3442	3451	3459	1	2	2	3	4	5	6	6	7	
 154	3467	3475	3483	3491	3499	3508	3516	3524	3532	2540	1	2	2	3	4	5	6	6	7	
 155	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	6	7	
 156	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8	
157	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8	
158	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8	
159	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	4	5	6	7	8	
160	3981	3990	3999	4009	4018	4027	4036	4046	4055	4065	1	2	3	4	5	6	6	7	8	
161	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9	
 162	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9	
 163	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9	
 164	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9	
 165	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9	
166	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10	
167	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10	
168	4788	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10	
169	4898	4909	4920	4932	4943	4955	4986	4977	4989	5000	1	2	3	5	6	7	8	9	10	
170	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11	
171	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11	
172	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11	
173	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11	
 174	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12	
 175	5632	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12	
 176	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12	
177	5858	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12	
178	6028	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13	
179	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13	
180	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13	
181	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14	
182	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14	
183	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14	
 184	6918	6934	6950	6965	6982	6598	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15	
 185	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15	
186	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15	
187	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16	
188	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16	

	a 🔽	eranaa	Enterpris																		
	189	7762	7780	7796	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16	
T	190	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17	
t	191	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17	
	192	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17	
╉	193	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18	
+	194	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18	
	195	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19	
	196	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19	
	197	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20	
	198	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20	
	199	9772	9795	9817	9840	9836	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20	
_																					

Example:

If Log x = 0.301. then x = Antilog 0.301 = 2

If Log x = 1.301. then x = (Antilog 0.301) \times 10 = 20

If Log x = 2.301. then x = (Antilog 0.301) × 100 = 200

If Log x = (-) 0.699, then we can write Log x = (-1 + 0.301) : Thus x = Antilog (0.301) / 10 = 0.2

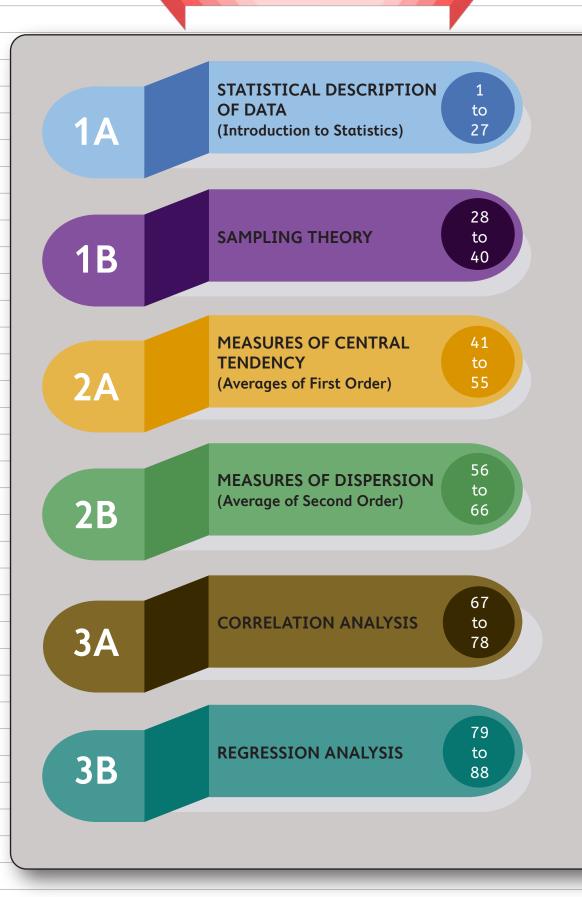
If Log x = (-) 1.699, then we can write Log x = (- 2 + 0.301) : Thus x = Antilog (0.301) / 100 = 0.02

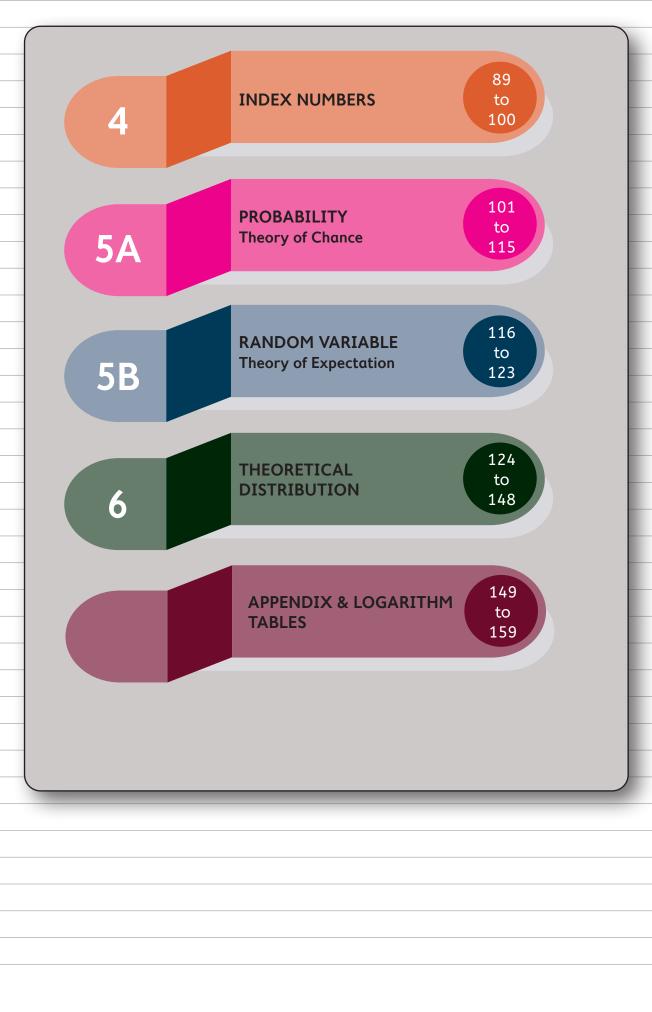
Foundation \rightarrow Intermediate \rightarrow Final CA 7

CA FOUNDATION FAST TRACK STATISTIC

Head Office

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.




🔟 f /officialjksc 🛛 🎡 jkshahclasses.com

INDEX

STATISTICAL DESCRIPTION OF DATA

(Introduction to Statistics)

Introduction:

The word "STATISTICS" has its origin from th
--

- Latin STATUS
- German STATISTIK
- French STATISTIQUE
- Italian STATISTA

f

Statistics in India

- Kautilya recorded birth and death in Arthashastra during Chandragupta Maurya's regime.
- Abul Fazal, during Akbar's regime, recorded agriculture in the book Ain-i-Akbari.

"STATISTICS" DEFINED

	+
IN SINGULAR SENSE	IN PLURAL SENSE
It is defined as the scientific method	By Statistics, we mean aggregate
of collecting, presenting, analyzing	of facts which are known as
the data and drawing inference from	"DATA" (Singular Datum).
the same.	

Features of Statistics:

- a) Statistics deals with masses and not individuals.
- b) Statistics deals with quantitative data . Qualitative data are also to be expressed in quantitative terms.

c) It is aggregate of facts (plural sense).

CA FOUNDATION STATISTICS

d)	It refers to	scientific n	nethods of	analyzina	data.(Singu	ilar Sense)
\sim		Scicilia		anacyzing	aaca.,omge	

e) It is science as well as an art.

f) Data are affected by multiplicity of causes.

g) Data should be collected in a systematic manner and for a pre-determined purpose.

h) Data should be comparable.

i) All Statistics are Numerical Statements but all Numerical Statements are not statistics

Ada Enterprist

APPLICATION OF STATISTICS

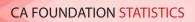
Statistics is used in

a) Mathematics

b) Economics

c) Accountancy

- d) Auditing
- e) Business and industry


f) Social Science

g) Medical Sciences & Biology

h) Different Statistical techniques used in Business, Economics and Industry.

i) Management.

	_ A S S E S Veranda Enterprise
LIM	ITATIONS OF STATISTICS
i.	Statistics does not study qualitative phenomenon directly.
ii.	Statistics does not study individuals.
iii.	Statistical laws are not exact.
 iv.	Statistical data are liable to be misused.
 ۷.	Statistics results are true on the average sense only. They are not exact
FEV	/ TERMS COMMONLY USED IN STATISTICS.
i.	Data : It is a collection of observations, expressed in numerical figures, obtained by
 	measuring or counting.
 ii.	Population : It is used to denote the totality of the set of objects under considering.
 	G J F ise
 iii.	Sample : A sample is a selected no. of individuals each of which is a member of
 	the population. It is examined with a view to assessing the characteristics of the
 	population.
 iv.	Characteristic : A quality possessed by an individual person, object or item of a
 	population is called a characteristic e.g. Height, age, nationality, etc.
 ۷.	Variable & Attribute : Measurable characteristics which are expressed numerically
	in terms of some units are called as variables or variates e.g. age, height, income,
 	etc. Non-measurable characteristics is a qualitative characteristic which is called as
 	attribute e.g. sex, marital status, employment status, etc.
 vi.	Continuous & Discrete Variable : A variable which can assume for its value any real
 	quantity within a specified interval is a continuous variable e.g height, weight etc
 	and the variables which can assume only whole numbers are discrete variables
 	eg : number of members in the family, no of accidents etc.

CLASSWORK SECTION

Relo	ated	MCQ's:					
1.	Whi	ich of the following statement is tru	ue?				
	α)	Statistics is derived from the Fren	ch wo	rd "Statistik".			
b) Statistics is derived from the Italian word "Statista".							
	c)	Statistics is derived from the Latir	n word	l "Statistique".			
	d)	None of these					
 2.	Sta	tistics is considered with:					
	α)	Qualitative information	b)	Quantitative information			
	c)	Both a) and b)	d)	Either a) or b)			
 3.	Whi	ich of the following would you rego	ırd as	discrete variable:			
	α)	height	b)	weight			
	c)	number of persons in a family	d)	wages paid to workers			
			2	nteri			
4.	An	attribute is:	0				
	α)	A measurable characteristics	b)	A quantitative characteristics			
	c)	A qualitative characteristic	d)	All of the above			
 5.		nual income of a person is:					
	a)	An attribute	b)	A continuous variable			
	c)	A discrete variable	d)	Either b) or c)			
 *		TATISTICAL ENQUIRY PASSES THROU	JGH T	HE FOLLOWING PHASES :			
	1.	COLLECTION OF DATA					
 	2.	SCRUTINY OF DATA					
	2						
 	3.	CLASSIFICATION OF DATA					
 	<i>I</i> .						
 	4.	PRESENTATION OF DATA					

LLECTION OF DATA (DATUM IN SINGULAR)

Data : Data are aggregate of facts i.e. Quantitative information about characteristic under study.

under study.	
Types c	of Data
¥	ł
Primary Data	Secondary Data
These data are collected for	1. Secondary Data are numerical
a specific purpose directly	information which have been
from the field of enquiry.	previously collected as primary data
These are original in nature	by some agency for a specific purpose
	but are now complied from that
	source for use in a different
	connection. Sources of Secondary
	Data.
	i. Publications of Central and
6	State Governments, of Foreign
	Governments, and
/9	international bodies like ILO,
P d	UNO, UNESCO, WHO, etc.
	ii. Publications of various
	Chambers of Commerce, Trade
~	Associations, Co-operative
	Societies, etc.
Methods of Collec	ting Primary Data
¥	+ +
Direct Observation Method Maileo	d Questionnaire Method Interview Method
+	+ +
Direct Personal Interview Indi	irect Interview Telephonic Interview

(1) DIRECT OBSERVATION METHOD:

It is the best method of data collection, but time consuming, laborious and covers only a small area.

(2) MAILED QUESTIONNAIRE METHOD:

Under this method, data are collected by means of framing a well drafted and properly sequenced questionnaire covering all the important aspects of the problem under study and sending them to the respondents. (Although a wide area can be covered but non-response is maximum under this method).

(3) INTERVIEW METHOD:

- Direct Personal Interview Method:
 Under this method, the investigator collects information directly from the respondents. In case of natural calamities like earthquake, cyclone or epidemic the data can be collected much more quickly and accurately.
- b. Indirect Interview Method:

It is used when the respondents can't be reached directly and the data is collected from the persons associated with the problems. E.g. in case of accidents this method is used.

Note : The above two methods are more accurate but not suitable for large area.

c. Telephonic Interview Method:

It is quick, less expensive and covers largest area. Under this method, the researcher himself gathers information by contacting the interviewee over the phone. It is less consistent compared to the other two methods. Amount of non –response is maximum under this method.

Related MCQ's:

6. A statistical survey may either be _____ purpose or _____ purpose survey.

a) general, specific

- b) general, without
- c) all, individual
- d) none of the above

CA FOUNDATION STATISTICS

- 7. Data originally collected for an investigation are known as:
 - a) primary data
 - b) secondary data
 - c) both primary and secondary data
 - d) none of the above

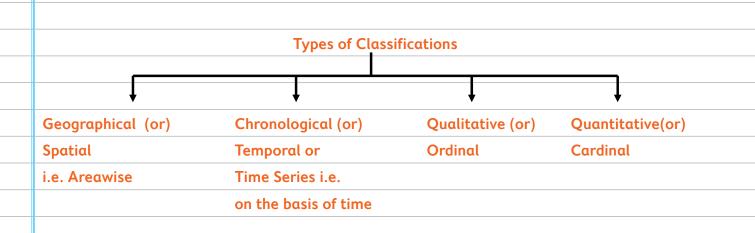
8. Primary data are:

- a) always more reliable compared to secondary data
- b) less reliable compared to secondary data
- c) depends upon the care with which data have been collected
- d) depends upon the agency collecting the data

9. In case of a rail accident, the appropriate method of data collection is by :

- a) Direct interview
- b) Personal interview
- c) Indirect interview
- d) All of the above

SCRUTINY OF DATA

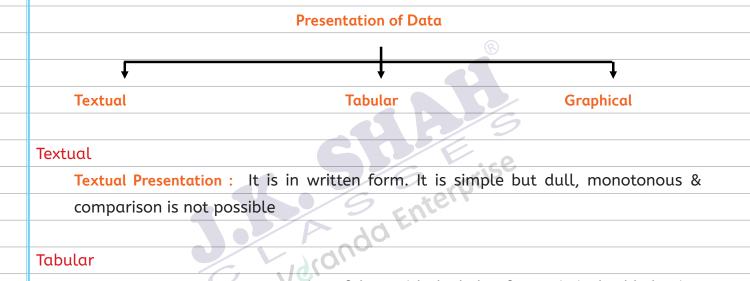

2.

It means checking the data for accuracy & consistency. Intelligence, patience & experience is used by scrutinizing the data.

iterpris

🔁 3. CLASSIFICATION OF DATA

Definitions : When the items / individuals are classified, according to some common non-measurable characteristics processed by them, they are said to form a statistical class, and when they are classified according to some common measureable characteristics processed by them, they are said to form a statistical group.

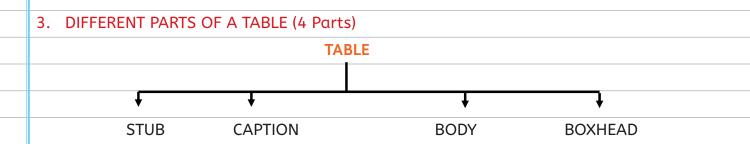


CA FOUNDATION STATISTICS

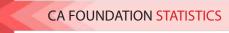
10. The primary rules that should be observed in classification:

- As far as possible, the class should be of equal width. Ι.
- Π. The classes should be exhaustive.
- |||. The classes should be un-ambiguously defined.
 - Only I and II a)
 - b) Only II and III
 - Only I and III c)
 - d) All I, II and III

4. Presentation of Data



Tabular


Tabular Presentation : Presentation of data with the help of a statistical table having rows & columns.

Advantages of Tabulation are as follows:

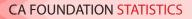
- 1. Complicated data can be represented.
- It is a must for diagrammatic representation. 2.
- 3. Statistical analysis is not possible without tabulation.
- 4. It facilitates comparison between rows & columns.

a Vergoda Enterprise Stub : Stubs are the headings or designations for the horizontal rows. 1 2. Captions : Captions are the headings or designations for vertical columns. Body : The arrangement of the data according to the descriptions given in the captions 3. (columns) and stubs(rows) forms the body of the table. It contains the numerical information which is to be presented to the readers and forms the most important part of the table. Box-head: The entire upper part of the table is known as box-head. 4. Other Parts : 5. Title : Every Table must be given a suitable title, which usually appears at the top of the table (below the table number or next to the table number). A title is meant to describe in brief and concise form the contents of the table and should be selfexplanatory. Veranda Enterprise Table Number : 6. Head Note : 7. Foot Note : 8. 9. Source Note

FORMAT OF A BLANK TABLE

Title

[Head Note or Prefatory Note (if any)]


		1			,				
	Stub Heading								
	¥	Sub-H	Sub-Heads Sub-Heads						
		Column	Column	Column	Column	Column			
		Column Head	Column Head	Column Head	Column Head	Column Head			
						8			
				Body		9			
					5 - 10	(150			
				30	nterr				
	(, jaco	na					
			3						
								-	
	Total								
Foot Note :									
Source Note	:								

Types of Tabulatio							
		Ту	pes of Tabula	tion			
	ţ				Ţ		
	Simple				Com	plex	
S	imple Tabulation : In this t	ype th	e number or	r meas	urement of t	the iter	ns are placed
below the headings showing the characteristics.							
C	Complex Tabulation : In th	is type	e each nume	rical fi	gure in the t	table is	s the value of
t	he measurement having	the cho	aracteristics	shown	both by the	colum	n and the row
h	eadings.						
Relate	ed MCQ's:				®		
	Vhen the accuracy in prese	ntatio	n is more imp	ortant	than the me	thod of	fpresentation
it	t is done through:			5	29		
 0			6	b)	Diagramm		
с) Tabular			d)	Either b) or	^г с)	
			19 E	nte.	Ψ		
	he unit of measurement						
 C	ı) box head	b)	body	c)	caption	d)	stub.
13. F	or tabulation, 'caption' is	5:					
a	ı) the lower part of the	table	•				
b) the main part of the	table.					
с) the upper part of the	e table	•				
d	l) the upper part of a t	able tł	nat describes	s the co	olumn and s	ub-col	umn.
14. 'S	Stub' of a table is the						
d	ı) right part of the tabl	e desc	ribing the co	lumns	•		
b) left part of the table	descri	ibing the col	umns.			
с) right part of the tabl	e desc	ribing the ro	WS			
d	l) left part of the table	descri	ibing the row	/S.			
15. A	table has parts.						
C	ı) Two	b)	Three	c)	Four	d)	Five
			11				

Diagrammatic Representation of Data

- 1. Diagrammatic Representation are mainly done by charts (or graphs) and figures.
- 2. A chart or graph is inferior to a table or numbers as a method of presenting data, since one can get only approximate idea from it, but its advantage is that it emphasizes certain facts and relations more than numbers do.

Advantages :

- 1. It is more attractive and informative to an ordinary person.
- 2. A complex problem can sometimes be clarified easily by a diagram.
- 3. It reveals the hidden facts which are not apparent from the tabular presentation.
- 4. Two or more sets of values can be compared very easily from a diagram.

Agrau

5. It shows the relation of the parts to the whole.

Types of Diagrams

Without Frequency

With Frequency (Frequency Curves)

1.	Line Chart or Line Graph or Line	1.	Histogram or Area Diagram	
	Diagram or Historigram Chart (one		(Two dimensional)	
	dimensional)			
2.	Bar Diagram or Bar Chart	2.	Frequency Polygon	
 	(one dimensional)		(Two dimensional)	
3.	Pie Chart	3.	Frequency Curve	
	(Two dimensional)		(Two dimensional)	
		4.	Cumulative Frequency Polygon or	
			Ogive (Two dimensional)	

Each of the Diagram is described below:

Line Diagram :

It is used for time related data (Time series).

When there is wide range of fluctuations, logarithmic or ratio charts are used.

Multiple Line Chart :

It is used for representing 2 or more related series expressed in same units.

Multiple Axis Chart :

Multiple Axis Chart is used for representing two or more related series expressed in different units.

Semi-Logarithmic Graph or Ratio Chart :

Semi-Logarithmic Graph or Ratio Chart is a line diagram drawn on a special type of graph paper which shows the natural scale in the horizontal direction and the logarithmic or ratio scale in the vertical direction. The semi-log graph is used where ratios of change are more important than absolute amounts of change.

Bar Diagram

1. Vertical Bar Chart (or Colum Chart) :

This is generally used to represent a time series data or a data which is classified by the values of the variable. (Measurable characteristics).

2. Horizontal Bar Chart :

This is used to represent data classified by attributes or data varying over space. (i.e. non-measurable characteristics).

3. Grouped or Multiple or Compound Bar Chart):

These are used to compare related series.

4. Component /Sub divided Bar Chart:

These are used for representing the data divided into different components

5. Percentage Bars :

Percentage Bars are particularly useful in statistical work which requires the portrayal of relative changes.

6. Deviation Bars

Deviation Bars are popularly used for representing net quantities – excess or deficit i.e. net profit, net loss, net exports or imports, etc. Such bars can have both positive and negative values. Positive values are shown above the base line and negative values below it.

7. Broken Bars

In certain series there may be wide variations in values – some value may be very small and others very large. In order to gain space for the smaller bars of the series, larger bars may be broken.

PIE CHART / PIE DIAGRAM / CIRCLED DIAGRAM

This is a very useful diagram to represent data which are divided into a number of categories. The diagram consists of a circle divided into a number of sectors whose areas are proportional to the values they represent. Again the areas of the sectors are proportional to their angles at the centre. Therefore, ultimately the angles of the different sectors are proportional to the values of different components. The total value is represented by the full circle. Comparison among the various components or between a part and the whole of data can be made easily by this diagram.

Example :

Draw a pie chart to represent the following data on the proposed outlay during a Five-year Plan of a Government : Items ₹ (in crores)

Items	₹ (in crores)
Agriculture	12,000
Industry & Minerals	9,000
Irrigation & Power	6,000
Education	8,000
- Communication	5,000

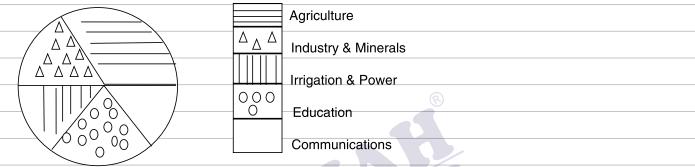
Calculations for the angles of the pie chart

-		
Items	Outlay (in crores ₹)	Angles (in egrees)
Agriculture	12,000	108
Indust <u>ry & Minerals</u>	9,000	81
 Irrigation & Power	6,000	54
 Education	8,000	72
 Communication	5,000	45
 Total	40,000	360

Working Note :

40,000 is represented by 360°

1,000 is represented by
$$\frac{360}{40}$$
 = 9°



- 9,000 is represented by $9 \times 9 = 81^{\circ}$
- 6,000 is represented by $6 \times 9 = 54^{\circ}$
- 8,000 is represented by $8 \times 9 = 72^{\circ}$

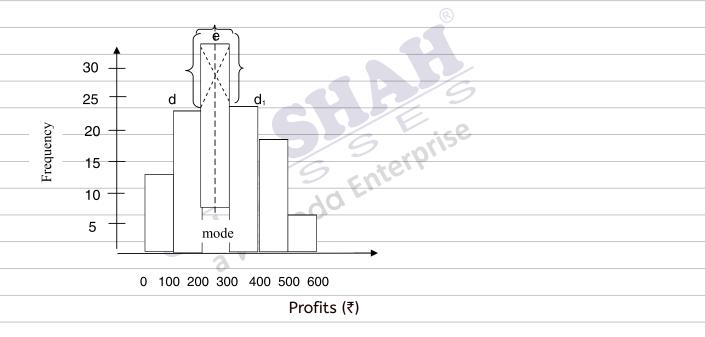
And 5,00

5,000 is represented by $5 \times 9 = 45^{\circ}$

DIAGRAMMATIC/GRAPHICAL REPRESENTATION OF FREQUENCY DISTRIBUTION

1. Histogram or Area Diagram

- i) It consists of a set of adjoining vertical rectangles whose widths represent the class intervals and the heights represent the corresponding frequencies (for equal class width) and frequency densities (for unequal class width).
 Boundaries are plotted along the horizontal axis and the frequencies (or frequency densities) are plotted along the vertical axis
- ii) The area of each rectangle is proportional to the frequency of the corresponding class.
- iii) Mode is calculated graphically from Histogram.
- iv) It helps us to get an idea about the frequency curve and frequency polygon.
- v) Comparison among the frequencies can be made for different class intervals.



Example

The monthly profits in rupees of 100 shops are distributed as follows:									
Profits per Shop	0-100	100-200	200-300	300-400	400-500	500-600			
No. of Shops	12	18	27	20	17	6			

Draw the histogram to the data and hence find the modal value.

In the histogram, the top right corner of the highest rectangle is joined by a straight line to the top right corner of the preceding rectangle. Similarly, top left corner of the highest rectangle is joined to the top left corner of the following rectangle. From the point of intersection of these two lines a perpendicular is drawn on the horizontal axis. The foot of the perpendicular indicates the Mode. This is read from the horizontal scale and the modal value is found to be 256 (in ₹) approximately.

2. Frequency Polygon and Frequency Curve

- i) In this method, the frequency of each class is plotted against the mid-value of the corresponding class. The points thus obtained are joined successively by straight lines. The polygon is then completed by joining two end-points to the mid-values of two empty classes assumed in either side of the frequency distribution.
- ii) Frequency polygon can be obtained from the histogram by joining the successive
 mid-points of the top of the rectangles which constitute the histogram and the
 polygon is completed in the same manner as before.

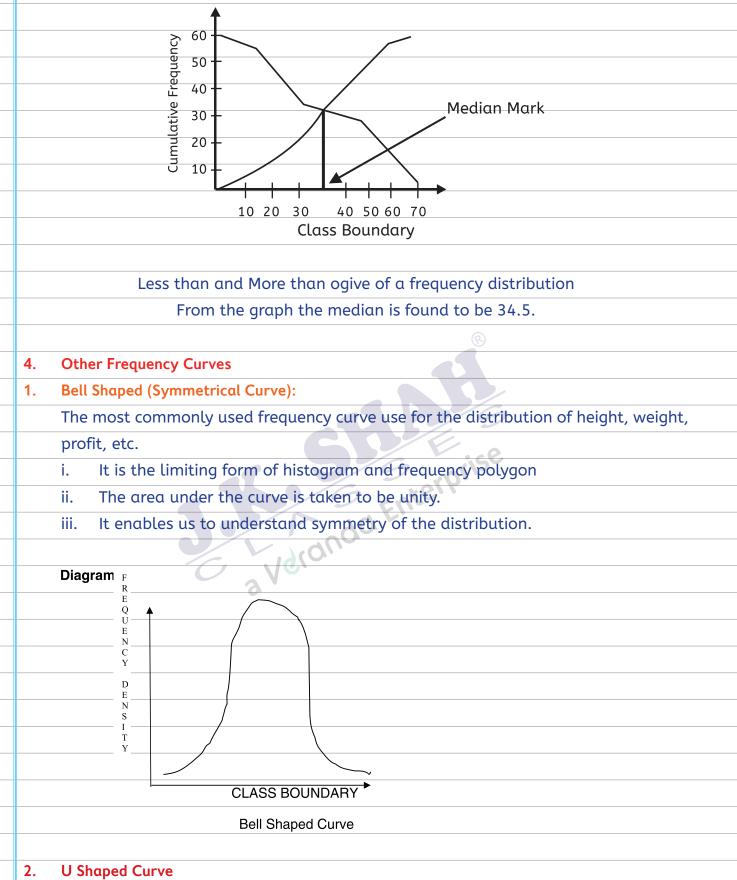
- iii) If in a frequency distribution the widths of the classes are reduced, then the number of classes will increase. As a result the vertices of a frequency polygon will come very close to each other. In that case, if we join the points by smooth free hand line instead of straight lines, a smooth curve is obtained which is known as a Frequency Curve.
- iv) Frequency Curve is a limiting curve case of frequency polygon.

3. Cumulative Frequency Polygon / Ogive Curve

- 1. It is a graphical representation of cumulative frequency distribution.
- 2. Median and all other partition values are calculated from ogives.
- 3. There are two types of ogives (i) Less Than Ogive (ii) More Than Ogive.
- 4. IN LESS THAN OGIVE LESS THAN CUMULATIVE FREQUENCIES ARE USED.
 AND IN CASE OF MORE THAN OGIVE, MORE THAN CUMULATIVE FREQUENCIES
 ARE USED AND THE OGIVE CURVE LOOKS LIKE ELONGATED "S". THESE ARE ALSO
 KNOWN AS "S" CURVE.

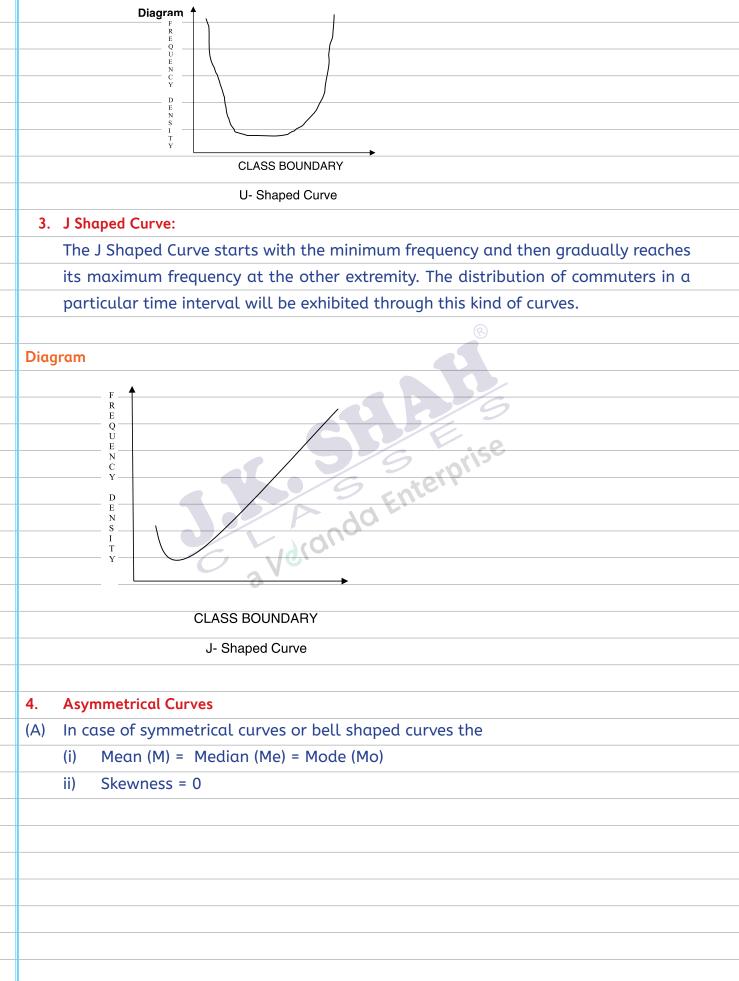
Example

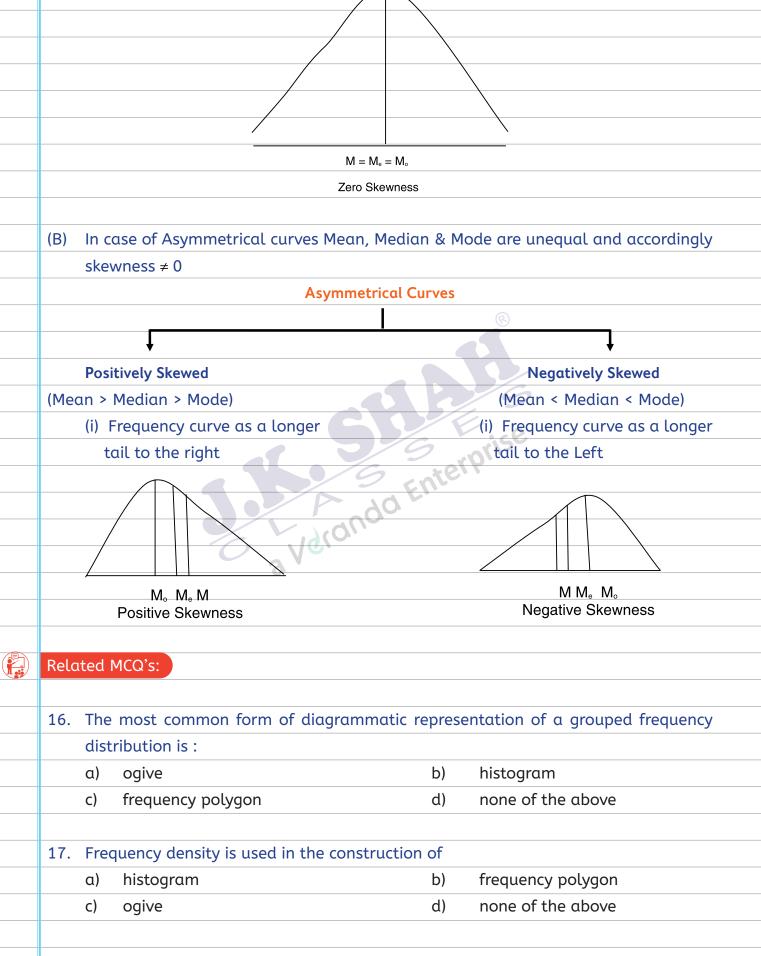
Draw the cumulative frequency diagram (both more-than and less-than ogive) of the following frequency distribution and locate graphically the Median:

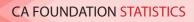

 Marks-Group	0-10	10-20	20-30	30-40	40-50	50-60	60-70	Total	
 No. of Students	4	8	11	15	12	6	3	59	

Calculation for Cumulative Frequencies

Class Boundary	Cumulative Frequency			
	Less than	More than		
0	0	59		
10	4	55		
20	12	47		
30	23	36		
40	38	21		
50	50	9	_	
60	56	3	_	
70	59	0		




In this curve, the frequency is minimum at the central part, and slowly but steadily it reaches to two extremities. The distribution of people travelling on streets will be exhibited through this kind of curves.



aا	⁄drand(a Enterprise		
18.	Whe	en the width of all classes is same, freque	ency po	olygon has not the same area as
	the	Histogram :		
	α)	true	b)	false
	c)	both a) and b) above	d)	none of the above
19.	The	breadth of the rectangle is equal to the	length	of the class-interval in
	α)	ogive	b)	histogram
	c)	both a) and b) above	d)	none of these.
20.	Fror	n which graphical representation, we car	n <mark>calc</mark> u	late partition values?
	α)	Lorenz Curve	b)	Ogive Curve
	c)	Histogram	d)	None of these
				8
21.	Arro	inge the dimensions of Bar Diagram, Cub	e Diag	ram, Pie Diagram in sequence.
	α)	1, 3, 2 b) 2, 1, 3	c)	2, 3, 1 d) 3, 2, 1
				79
		FREQUENCY DISTRI	BUTIC	ÍN
			2	orise
1.	The	e are two types of frequency distribution	ntei	
	i.	For discrete variable it is known as simp	ole or	ungrouped or discrete frequency
		distribution.		
	ii.	For continuous variable it is known	as coi	ntinuous or grouped frequency
		distribution.		
2.	SOM	IE IMPORTANT TERMS		
	i)	Frequency : (Tally Mark)		
		Frequency of a value of variable is the	e numl	per of times it occurs in a given
		series of observations. A Tally Mark (/)	is put	against the value when it occurs
		in the raw data. Having occurred four ti	mes, tł	ne fifth occurrence is represented
		by putting a Cross Tally Mark (\) on the	e first f	four tally marks.
	ii)	Range : Range of a given data is the d	ifferen	ce between the largest measure
		and the smallest measure in a given se	t of ob	servations.
	iii)	Class Interval (or class) : A large number	r of ob	oservations having wide range, is
		usually classified into number of groups.	Each of	these groups is known as a class.

- iv) Class frequency, Total Frequency : The number of observations which is class contains, is known as its class frequency. The total number of observations in the frequency distribution is known as 'Total Frequency'.
- v) Class Limit : The two ends of a class interval are known as class limits of that class. The smaller of the two ends is called LOWER Class Limits and the greater is called Upper Class Limit. These classification are called non-overlapping or mutually inclusive classification.
- vi) Class Boundaries : When we consider a continuous variable, the observation are recorded nearest to a certain unit. For example, let us consider the distribution of weight of a group of persons. If we measure the weight nearest to the pound, then a class interval like (100-109) will include all the observations between 99.5 lb to 109.5 lb. Similarly, all the observations between 109.5 lb to 119.5 lb will be included in the class interval (110-119). For the class interval (100-109), 99.5 is the lower class-boundary and 109.5 is the upper class boundary. For the class (110-119), the lower and upper class boundary respectively 109.5 and 119.5. These classifications are called overlapping or mutually exclusive classification.

Class boundaries can be calculated from the class limits by the following rule:

Lower Class boundary = Lower Class limit - $\frac{1}{2}$ d;

Upper Class boundary = Upper Class limit + $\frac{1}{2}$ d;

where, d is the common difference between the upper limit of a class and the lower limit of the next class. d/2 is called the Correction Factor

vii) Mid-value (or class mark or mid point or class point) :

Mid-value is the mid-Point of the class interval and is given by Class Mark= $\frac{UCL+LCL}{2} = \frac{UCB+LCB}{2}$

viii) Width or Size : This is the length of a class and is obtained by the difference between the upper and lower class boundaries of that class.

Class width / size = Difference between 2 successive LCL's / UCL's

- = Difference between 2 successive LCB's / UCB's
- = Difference between 2 successive mid values if all the class are of the same width.
- = Difference between UCB and LCB
- **Note** : Class width ≠ UCL-LCL

ix) Frequency Density : This is defined as the frequency per unit width of the class.

Frequency Density = Class frequency Class width

It measures the concentration of the frequency of different classes.

- x) Relative Frequency : This is the ratio of the class frequency to the total frequency,
 - i.e. Relative frequency = Class frequency

Total Frequency

• Relative Frequency of any class lies between 0 and 1

xi) Percentage Frequency :

Class frequency Total Frequency x100 = or Relative frequency x 100

CUMULATIVE FREQUENCY DISTRIBUTION

- 1. There is another type of frequency distribution known as Cumulative Frequency Distribution where the frequencies are cumulated.
- 2. This distribution is prepared from the grouped frequency distribution by taking the end values (ie. class boundaries and not class limits)
- Number of observation less than or equal to the class boundaries are called "Less-Than" Type Cumulative Frequency Distribution.
- 4. Number of observation greater than or equal to class boundaries are called "More-Than" Type Cumulative Frequency Distribution.
- 5. It can be made both for discrete series i.e. ungrouped data as well as for grouped data.

Example 2 :

From the following frequency distribution construct the cumulative frequency distribution: Weights of 60 students in a class

Weights of 60 students in a class

Weight (kg)	Frequency	
30-34	3	
35-39	5	
 40-44	12	
 45-49	18	
50-54	14	
55-59	6	
60-64	2	
Total	60	

Cumulative Frequency Distribution of weights of 60 students

Class Boundaries	Cumulative	Frequency	
(Weight in kg)			
	Less Than	More Than	
29.5	0	60	
34.5	3	57	
39.5	8	52	
44.5	20	40	
49.5	38	22	
54.5	52	8	
59.5	58	2	
64.5	60	0	

Otherwise

Cumulative Frequency	Distribution of weights	s of 60 students		
Class Boundaries (Weight in kg)	Cumulativ	Cumulative Frequency		
	Less Than	More Than		
30-34	3	60		
35-39	8	57		
40-44	20	52		
45-49	38	40		
50-54	52	22		
55-59	58	8		
60-64	60	2		

Here the less than cumulative frequency of the second class is 8. This implies that there are 8 students whose weights are less than 39.5 kg (the upper boundary of that class). The more than cumulative frequency of the second class is 57, i.e. there are 57 students whose weights are more than 34.5 kg(the lower boundary of that class).

Note : By Cumulative Frequency we usually mean less than type.

Example 3 :				
(α)	Marks	CF (Less than)	C.I	Frequency
L	ess than 20	5	10-20	5
L	ess than 30	18	20-30	13
L	ess than 40	30	30-40	12
L	ess than 50	35	40-50	5
			19	N= 35 = ♦f

			V.e.		
(b)	Marks	C.I 90	F (more than)	Frequency	
	More than 20	20-30	35	17	
	More than 30	30-40	18	8	
	More than 40	40-50	10	7	
	More than 50	50-60	3	3	
			CF	35	

Related MCQ's:

22.	. For determining the class frequency it is necessary that these classes are:						
	a)	Mutually exclusive	b)	Not mutually exclusive			
	c)	Independent	d)	None of these			

23. Mutually exclusive classification usually meant for					
		α)	an attribute	b)	a continuous variable
		c)	a discrete variable	d)	any of the above

al	dranda Ente	erprise									
24.	The low	ver class	boundo	iry is :							
	a) an	upper l	imit to L	ower Cl	ass Limi	it					
	b) al	ower lir	nit to Lo	wer Cla	lss Limit	•					
	c) bo	th a) an	d b) abo	ve							
	d) no	ne of th	e above								
25.	Relative	e frequer	ncy for a	ı particu	ılar clas	S					
	a) lie	s betwee	en 0 and	ł 1.							
	b) lie	s betwee	en – 1 a	nd 0.							
	c) lie	s betwee	en 0 and	l 1, botł	n inclusi	ve.					
	d) lie	s betwee	en – 1 to	o 1.							
26.	The low	ver extre	me poin	t of a cl	ass is co	alled :		B			
	a) lowe	r class li	imit.			b) lower	class bo	oundary		
	c) both	a) and b) above			C	l) none d	of the al	oove		
								9			
27.	Frequer	-	-	-			erval is t	che ratio	o of:		
	a) Clo	ass Frequ	uency to	the Tot	al Frequ	lency	107	3			
		ass Frequ	-				(e.,				
		ass Leng									
	d) Clo	ass Frequ	uency to	the Cur	nulative	e Freque	ency				
			U	3		_					
				Th	neory /	Answe	ers				
	1	b	7	۵	13	d	19	b	25	a	
	2	С	8	α	14	d	20	b	26	b	
	3	С	9	С	15	d	21	α	27	b	
	4	С	10	d	16	b	22	۵			
	5	b	11	С	17	α	23	b			
	6	a	12	۵	18	b	24	b			

Numerical Problems

In 1995, out of the 2,000 students in a college; 1,400 were for graduation and the rest of Post-Graduation (PG). Out of 1,400 Graduate students 100 were girls, in all there were 600 girls in the college. In 2000, number of graduate students increased to 1,700 out of which 250 were girls, but the number of PG students fall to 500 of which only 50 were boys. In 2005, out of 800 girls 650 were for graduation, whereas the total number of graduates was 2,200. The number of boys and girls in PG classes were equal.

28. When the class intervals are 10 - 19, 20 - 29, 30 - 39, Upper class boundaries
(UCB) and the Upper class limits (UCL) of the 2nd class interval are:
a) 29, 29 b) 20, 29 c) 29.5, 29.5 d) 29.5, 29

Veranda Enterpris

SAMPLING THEORY

1. Population or Universe

Population in statistics means the whole of the information which comes under the purview of statistical investigation. It is the totality of all the observations of a statistical experiment or enquiry.

A population may be finite or infinite according as the number of observations or items in it are finite or infinite. The population of weights of students of class XII in a government school is an example of a finite population. The population of pressure at different points in the atmosphere is an example of an infinite population.

Types of Population:

- a) Finite Population: When the items in the population are fixed and limited.
 Example : No. of students in the class
- b) Infinite Population: If a population consist of infinite no. of items its an infinite population. If a sample is known to have been drawn from a continuous probability distribution, then the population is infinite. Example : Population of all real numbers lying between 5 and 20.
- c) Real Population: A Population consisting of the items which are all present physically is termed as real population.
- d) Hypothetical Population: The Population consists of the results of the repeated trails is named as hypothetical population The tossing of a coin repeatedly results into a hypothetical population of heads and tails.

🔁 2. Sample

A part of the population selected for study is called a sample. In other words, the selection of a group of individuals or items from a population in such a way that this group represents the population, is called a sample.

 Sampling is a process whereby we judge the characteristics or draw inference about the totality or Universe (known as population) on the basis of judging the characteristics of a selected portion taken from that totality (known as sample).

- 2. Sample: Sample is the part of population selected on some basis it is a finite subset of the population.
- 3. Sample Units : Units forming the samples are called Sample Units.
- 4. Sample Frame : A complete list of sampling units is called Sample Frame
- 5. Sample Faction : $\frac{n}{N}$ is called Sampling Fraction where n = Sample Size and N = Population Size.
- 6. Complete enumeration or census : In case of enumeration, information is collected for each and every unit. The aggregate of all the units under consideration is called the 'population' or the 'universe'. The results are more accurate and reliable but it involves lot of time, money and man power

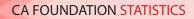
3. Parameter and Statistic

There are various statistical measures in statistics such as mean, median, mode, standard deviation, coefficient of variation etc. These statistical measures can be computed both from population (or universe) data and sample data.

Parameter : Any statistical measure computed from population data is known as parameter.

Statistics : Any statistical measure computed from sample data is known as statistic. Thus a parameter is a statistical measure which relates to the population and is based on population data, whereas a statistic is a statistical measure which relates to the sample and is based on sample data. Thus a population mean, population median, population variance, population coefficient of variation etc., are all parameters. Statistic computed from a Sample such as sample mean, sample variance etc.

	Notations		
Statistical Measure	Population	Sample	
Mean	μ	X	
Standard deviation	σ	S	
Proportion	Р	р	
Size	Ν	n	


Related MCQ's:

1.	The aggregate or totality of statistical data forming a subject of investigation is							
	kno	wn as :						
	a)	Sample	b)	Population				
	c)	Both a) and b) above	d)	None of the above				

J.K. SHAH C L A S S E S a Veranda Enterprise

2.	lf a	sample is known to have bee	en drav	vn from a co	ntinuous probability distribution	
	ther	n the population is .				
	α)	Large	b)	Finite		
	c)	Infinite	d)	Nothing car	n be said about the population	
3.	The	possibility of reaching valid	conclu	sions conceri	ning a population by means of a	
	рор	ulation by means of a proper	ly chos	sen sample is	based on which of the following	
	law	s?				
	α)	Law of Inertia		b)	Law of Large Number	
	c)	Law of Statistical Regularit	.y	d)	All of the above	
4.	Whe	en the population is infinite v	we sho	uld use the:		
	α)	Sample Method		b)	Census Method	
	c)	Either Sample or Census Me	ethod	d)	None of the above	
5.	A bo	order patrol checkpoint whic	h stops	s every passe	enger van is utilizing:	
	α)	simple random sampling.	6	b)	systematic sampling	
	c)	systematic sampling.	2	9d)	complete enumeration	
			10	enter		
6.	A po	opulation consisting of all re	al nun	nbers is an e	xample of:	
	α)	an infinite population	0	b)	a finite population	
	c)	an imaginary		d)	none of the above	
4.	Basi	ic principle of Sample Survey				
α)	Law	of Statistical Regularity : It	states	that a reas	onably larger number of items	
	sele	ected at random from a large	e group	o of items, w	ill on the average, represent the	
	cha	racteristics of the group.				
b)	Law	of Inertia of Large Numbers	: This	law states	that other things same, as the	
	sam	nple size increases, the result	s tend	to be more i	reliable and accurate.	
c)	Prin	ciple of Optimization : The p	rinciple	e of optimizo	ation ensures that an optimum	
	leve	el of efficiency at a minimum	n cost d	or the maxim	num efficiency at the given level	
	of c	ost can be achieved with the	select	ion of an ap	propriate sampling design.	
d)	Prin	ciple of Validity : The principle	e of vo	lidity states	that a sampling design is valid	
	only	, if it is possible to obtain	valid e	estimates an	d valid tests about population	
	pare	ameters. Only a probability s	sampli	ng ensures th	nis validity.	

Related MCQ's:

- 7. Law of Statistical Regularity states that:
 - a) A sample of reasonably small size when selected at random, is almost not sure to represent the characteristics of the population
 - A sample of reasonably large size when selected, is almost not sure to represent the characteristics of the population.
 - c) A sample of reasonably large size when selected at random, is almost sure to represent the characteristics of the population, on an average
 - d) None of the above

8. Law of Inertia states that:

- a) Sample of high size show a high degree of stability.
- b) Sample of low size shows a high degree of stability.
- c) Results obtained from sample of high size are expected to be very far.
- d) None of the above.

9. Sampling error increases with an increase in the size of the sample.

- a) The above statement is true.
- b) The above statement is not true.
- c) Sampling error do not depends upon the sample size
- d) None of the above

(2) 5. Sampling and Non sampling Errors

i) Sampling Errors: Sampling Errors have their origin in sampling and arise due to the fact that only a part of the population (i.e. sample) has been used to estimate population parameters and draw inference about them. As such the sampling errors are totally absent in a census enumeration.

Sampling errors can never be completely eliminated but can be minimize by choosing a proper sample of adequate size.

ii) Non Sampling Errors or Bias: As distinct from sampling errors, the non-sampling errors primarily arise at the stages of observation, approximation and processing of the data and are thus present in both the complete enumeration and the sample survey.
 These error usually arise due to faulty planning, defective schedule of questionnaire from non-response from the respondents.

- Sampling error is totally absent in "Complete Enumeration" or "Census" iii) But, Non-Sampling errors are present in both "Complete Enumeration" and "Sample survey"
 - Parameter is a statistical measure on population. Statistic is a statistical • measure on sample.

Related MCQ's:

10.	Bias	; is also known as:		
	α)	Sampling Error	b)	Non-Sampling Error
	c)	Error	d)	None of the above
11.	Sam	npling error are:		®
	α)	Particularly detectfull		
	b)	Can be corrected		
	c)	Arise because the information collected	relates	only to a part of the population.
	d)	All of the above.	E	
			2	orise
12.	_Co	an occur in census.	nte.	
	α)	Standard Error	b)	Sampling Error
	c)	Bias	d)	None of the above
13.	"Sar	mpling errors are present both in census	s as w	ell as a sample survey." -State
	whe	ther the given statement is correct or no	t.	
	a)	Correct	b)	Incorrect
	c)	Nothing cannot be said	d)	None of the above
6.	Sarr	npling Distribution of a Statistic		

Sampling Distribution of a Statistic 6.

From a population of size N, number of samples of size n can be drawn. These samples will give different values of a statistic. E.g. if different samples of size n are drawn from a population, different values of sample mean are obtained. The various values of a statistic thus obtained, can be arranged in the form of a frequency distribution known as Sampling Distribution. Thus we can have sampling distribution of sample mean x , sampling distribution of sample proportion p etc.

Errors in Sampling

Any statistical measure say, mean of the sample, may not be equal to the corresponding statistical measure (mean) of the population from which the sample has been drawn. Thus there can be discrepancies in the statistical measure of population, i.e., parameter and the statistical measures of sample drawn from the same population i.e., statistic. These discrepancies are known as Errors in Sampling.

Standard Error of a Statistic

Standard error is used to measure the variability of the values of a statistic computed from the samples of the same size drawn from the population, whereas standard deviation is used to measure the variability of the observations of the population itself.

The standard deviation of the sample statistics is called standard error of that statistic. E.g. if different samples of the same size n are drawn from a population, we get different values of sample mean \bar{x} . The S.D. of \bar{x} . is called standard error of \bar{x} . It is obvious that the standard error of \bar{x} . will depend upon the size of the sample and the variability of the population.

i)

Standard error of sample mean SE (\bar{x}) = $\frac{\sigma}{\sqrt{n}}$ or $\frac{s}{\sqrt{n}}$

σ=Population S.D and s=Sample S.D

ii) Standard error of proportion SE (p) =
$$\sqrt{\frac{P(1-P)}{n}}$$
 or $\sqrt{\frac{p(1-p)}{n}}$

Where P=Population proportion P=Sample proportion

Population size is Finite and the Sampling Fraction $\frac{n}{N} \ge .05$ lf i)

And ii) Samples are drawn Without Replacement(SRSWOR)

Then , each of the above formula for Standard Error will be multiplied by the factor

$$\sqrt{\frac{N-n}{N-1}}$$
 (Finite Population correction or Finite Population Multiplier)FPC

Formula for standard Error when i) n<30(small sample)

Population S.D σ is unknown in such a case SE (\overline{x})= $\frac{s}{\sqrt{n-1}}$ ii)

The following table will provide us a better understanding of the situations while calculating SE (\bar{x})

Sample Size	Parameter	Formula	
 Large (n ≥ 30)	SD is known	$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	
 Large (n ≥ 30)	SD is unknown	$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$	
 Small (n < 30)	SD is known	$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	
Small (n < 30)	SD is unknown	$SE_{\overline{x}} = \frac{s}{\sqrt{n-1}}$	
 Rule of multip	lying FPC will remain unalte	ered in a cases	

Summary

Concept of Sampling Distribution of Statistic and Standard Error:

- ⇒ Samples can be drawn with or without replacement
- \Rightarrow Probability distribution of a statistic is called sampling of statistic. Example: sampling distribution of (\overline{x})., sampling distribution of (p)
- Standard deviation of the sampling distribution of the sampling is called Standard
 Error of statistic
- As sample size increases standard error decreases proportionately.
- ⇒ Precision of the sample is reciprocal to standard Errors..
- Standard Error measures sampling fluctuations. i.e fluctuations in the value of statistics due to sampling

Related MCQ's:

14.	Values of a particular statistic with their relative frequencies will constitute the of
	the concerned statistic.
	a) Probability Distribution

- b) Sampling Distribution
- c) Theoretical Distribution
- d) None of these

	15.	The	population standard deviation describes	the v	ariation among elements of the	
		univ	verse, whereas, the standard error measu	res the	e:	
		a)	variability in a statistic due to universe			
		b)	variabillity in a statistic due to sampling]		
		c)	variablity in a parameter due to univers	e		
		d)	variablity in a statistic due to paramete	r		
	16.	Star	ndard error can be described as:			
		α)	The error committed in sample survey			
		b)	The error committed in estimating a par	amete	er	
		c)	Standard deviation of a statistic			
		d)	The error committed in sampling.			
					8	
	17.	The	reciprocal of the standard error is:			
		a)	Precision of the sample	b)	Error of the sample	
		c)	Error of the Universe	d)	None of the above	
				K		
	18.	Prec	ision of random sample:	2	orise	
		α)	increases directly with increase in sampl	.e size		
		b)	increases with the increase in sample size	ze		
		c)	increases proportionately with sample s	ize		
		d)	none of these.			
	19.	Sam	npling Fluctuations may be described as :			
		α)	the variation in the values of a statistic.			
		b)	the variation in the values of a sample.			
		c)	the differences in the values of a param	eter.		
		d)	the variation in the values of observatio	ns.		
1221						
	7.	Туре	es of Sampling			
	A sa	Imple	e can be selected from a population in var	rious v	vays. Different situations call for	
		•	methods of sampling. There are three me			
	1.		dom Sampling or Probability Sampling M			
	2.		-Random Sampling or Non-Probability S			
	3.		ed Sampling.		-	

1. Random Sampling or Probability Sampling

Random Sampling: Random or Probability sampling is the scientific technique of drawing samples from (he population according to some laws of chance in which each unit in the universe or population has some definite pre-assigned probability of being selected in the sample. It is of two types.

(a) Simple Random Sampling (SRS):

It is the method of selection of a sample in such a way that each and every member of population or universe has an equal chance or probability of being included in the sample. Random sampling can be carried out in two ways.

- 1. Lottery Method: It is the simplest, most common and important method of obtaining a random sample. Under this method, all the members of the population or universe are serially numbered on small slips of a paper. They are put in a drum and thoroughly mixed by vibrating the drum. After mixing, the numbered slips are drawn out of the drum one by one according to the size of the sample. The numbers of slips so drawn constitute a random sample.
- 2. Random Number Method: In this method, sampling is conducted on the basis of random numbers which are available from the random number tables. The various random number tables available are:
 - a. Trippet's Random Number Series;
 - b. Fisher's and Yales Random Number Series;
 - c. Kendall and Badington Random Number Series;
 - d. Rand Corporation Random Number Series;

One major disadvantage of random sampling is that all the members of the population must be known and be serially numbered. It will entail a lot of difficulties in case the population is of large size and will be impossible in case the population is of infinite size.

- (b) Restricted Random Sampling:
 - It is of three types
 - Stratified Sampling
 - Systematic Sampling
 - Multi-stage Sampling

Stratified Sampling: In stratified random sampling, the population is divided into strata (groups) before the sample is drawn. Strata are so designed that they do not overlap. An elementary unit from each stratum is drawn at random and the units so drawn constitute a sample. Stratified sampling is suitable in those

cases where the population is hetrogeneous but there is homogeneity within each of the groups or strata.

Advantages

- (i) It is a representative sample of the hetrogeneous population.
- (ii) It lessens the possibility of bias of one sidedness.

Disadvantages

- (i) It may be difficult to divide population into homogeneous groups.
- (ii) There may be over lapping of different strata of the population which will provide an unrepresentative Sample.

Systematic Sampling: In this method every elementary unit of the population is arranged in order and the sample units are distributed at equal and regular intervals. In other words, a sample of suitable size is obtained (from the orderly arranged population) by taking every unit say tenth unit of the population. One of the first units in this ordered arrangement is chosen at random and the sample is computed by selecting every tenth unit (say) from the rest of the lot. If the first unit selected is 4, then the other units constituting the sample will be 14, 24, 34, 44, and so on.

Advantages: It is most suitable where the population units are serially numbered or serially arranged.

Disadvantages: It may not provide a desirable result due to large variation in the items selected.

Multi-stage Sampling: In this sampling method, sample of elementary units is selected in stages. Firstly a sample of cluster is selected and from among them a sample of elementary units is selected. It is suitable in those cases where population size is very big and it contains a large number of units.

2. Non-Random Sampling or Non-Probability Sampling Method

A sample of elementary units that is being selected on the basis of personal judgment is called a non-probability sampling. It is of four types.

- Purposive Sampling;
- Quota Sampling;
- Convenience Sampling;
- Sequential Sampling.

Purposive Sampling: Purposive sampling is the method of sampling by which a sample is drawn from a population based entirely on the personal judgement of the investigator. It is also known as Judgement Sampling or Deliberate Sampling. A

randomness finds no place in it and so the sample drawn under this method cannot be subjected to mathematical concepts used in computing sampling error.

Quota Sampling: In quota sampling method, quotas are fixed according to the basic parameters of the population determined earlier and each field investigator is assigned with quotas of number of elementary units to be interviewed.

Convenience Sampling: In convenience sampling, a sample is obtained by selecting convenient population elements from the population.

Sequential Sampling: In sequential sampling a number of sample lots are drawn one after another from the population depending on the results of the earlier samples draw from the same population. Sequential sampling is very useful in Statistical Quality Control. If the first sample is acceptable, then no further sample is drawn. On the other hand if the initial lot is completely unacceptable, it is rejected straightway. But if the initial lot is of doubtful and marginal character falling in the area lying between the acceptance and rejection limits, a second sample is drawn and if need be a third sample of bigger size may be drawn in order to arrive at a decision on the final acceptance or rejection of the lot. Such sampling can be based on any of the random or non-random method of selection.

Advantages of Random (OR Probability) Sampling

- 1. Random sampling is objective and unbiased. As a 'result, it is defensible before the superiors or even before the court of law. 8
- 2. The size of sample depends on demonstrable statistical method and therefore, it has a justification for the expenditure involved.
- 3. Statistical measures, i.e. parameters based on the population can be estimated and evaluated by sample statistic in terms of certain degree of precision required.
- 4. It provides a more accurate method of drawing conclusions about the characteristics of the population as parameters.
- 5. It is used to draw the statistical inferences.
- 6. The samples may be combined and evaluated, even though accomplished by different individuals.
- 7. The results obtained can be assessed in terms of probability, and the sample is accepted or rejected on a consideration of the extent to which it can be considered representative.

3. Mixed Sampling

Cluster Sampling: Cluster Sampling involves arranging elementary items in a population into hetrogeneous subgroups that are representative of the overall population. One such group constitutes a sample for study.

Related MCQ's:

20.	Simple	random	samp	ling	is
-----	--------	--------	------	------	----

(a)	A probabilistic sampling	(b)	A non- probabilistic sampling
(c)	A mixed sampling	(d)	Both (b) and (c).

21. Which sampling provides separate estimates for population means for different segments and also an over all estimate?

- (a) Multistage sampling (b) Stratified sampling
- Simple random sampling (d) Systematic sampling (c)

8. SAMPLING WITH REPLACEMENT (SRSWR)

While selecting the units for a sample, when a unit of sample selected is replaced before the next unit is selected then it is called sampling with replacement. In this case the total number of samples that can be drawn = $(N)^n$

For E.g.: Let Population = {a, b, c} N = 3, let n = 2

Enterprise No. of samples = (N)n = (3)² = 9 No. of samples = {(a, b) $(a, c) (b, c) (b, a) (c, a) (c, b) (a, a) (b, b) (c, c)}$

9. SAMPLING WITHOUT REPLACEMENT (SRSWOR)

While selecting the units for a sample, when a unit of sample is selected but not replaced

before the next unit is selected then it is called Sampling Without Replacement.

In this case the total number of samples that can be drawn =

For E.g.: Let population = {a, b, c}

N = 3, let n = 2

No. of samples = $N_{C_n} = {}^{3}C_2 = {}^{3}C_1 = 3$ No. of samples = $\{(a, b), (a, c), (b, c)\}$

Related MCO's: 22. In simple random sampling with replacement, the total number of possible sample with distinct permutation of member is: (N = Size of Population, n = Sample size) a) N × n b) N ⁿ c) N d) n 23. In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is: (N = Size of Population, n = Sample size) a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above a) A 9 b 15 b 21 b a) A 9 b 15 b 21 b b) A 10 b 16 c 22 b c) A 11 d 17 a 23 c c) A 12 c 18 <th></th> <th>ted l</th> <th></th> <th>orise</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		ted l		orise								
with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N × nb) N ⁿ c) Nd) n23. In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N ⁿ b) P(N, n)c) C(N,n)d) None of the aboveCC C(N,n)d) N ⁿ b) P(N, n)c) C(N,n)d) None of the aboveCC<	22.		MCQ's									
with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N x nb) N ⁿ c) Nd) n23. In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N ⁿ b) P(N, n)c) C(N,n)d) None of the aboveCCC <td>22.</td> <td></td> <td>· .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22.		· .									
(N = Size of Population, n = Sample size) a) N x n b) N ⁿ c) N d) n 23. In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is: $(N = Size of Population, n = Sample size)$ a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above set in the set of the above set in the set of th						-			, the toto	al numbe	er of pos	ssible sample
a)N × nb)N°c)Nd)n23.In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is: (N = Size of Population, n = Sample size) a)N°b)P(N, n)c)C(N,n)d)None of the abovea)N°b)P(N, n)c)C(N,n)d)None of the abovea)N°b)P(N, n)c)C(N,n)d)None of the aboveCTheory AnswersC1b7c13b19aCCTheory AnswersCC13b19a2c8a14b20a3d9b15b21b4a10b16c22b5d11d17a23c6a12c18co	-											
23. In simple random sampling without replacement, the total number of possible sample with distinct permutation of member is: (N = Size of Population, n = Sample size) a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above set to the above set t							nple size					
sample with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N ⁿ b) P(N, n)c) C(N,n)d) None of the aboveCTheory AnswersC1b7c13b19a2c8a14b20a3d9b15b21b4a10b16c22b5d11d17a23c6a12c18c		a)	NX	n	D)	N''		C)	N	d)	n	
sample with distinct permutation of member is:(N = Size of Population, n = Sample size)a) N ⁿ b) P(N, n)c) C(N,n)d) None of the aboveCTheory AnswersC1b7c13b19a2c8a14b20a3d9b15b21b4a10b16c22b5d11d17a23c6a12c18c	22	10.0		- rand		nling u	ithout	roplace	mont t	bo total	numbo	r of possible
(N = Size of Population, n = Sample size)a)N^nb)P(N, n)c)C(N, n)d)None of the above \bigcirc Theory Answers1b7c13b19a2c8a14b20a3d9b15b21b4a10b16c22b5d11d17a23c6a12c18c \frown	23.					_				ne lolui	number	r or possible
a) N ⁿ b) P(N, n) c) C(N,n) d) None of the above R Theory Answers 1 b 7 c 13 b 19 a 2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c									IS:			
1 b 7 c 13 b 19 a 2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c				-			ipte size		C(N p)	d)	Nono	of the above
Theory Answers 1 b 7 c 13 b 19 a 2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c i		a)	N''	D) P(IN	l, n)		C)	C(N,h)	α)	None	of the above
Theory Answers 1 b 7 c 13 b 19 a 2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c i										_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								•		®		
2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c						Ir	leory /	Answ	rers			
2 c 8 a 14 b 20 a 3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c												•
3 d 9 b 15 b 21 b 4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c	_			1	b	7	С	13	b	19	α	
4 a 10 b 16 c 22 b 5 d 11 d 17 a 23 c 6 a 12 c 18 c				2	С	8	α	14	b	20	α	
5 d 11 d 17 a 23 c 6 a 12 c 18 c				3	d	9	b	15	b	21	b	
6 a 12 c 18 c				4	α	10	b	16	с	22	b	
				5	d	11	d	17	a	23	с	
Note : Students shall workout in the class for prof				6	α	12	С	18	С			
Note : Students shall workout in the class for prof						aV						
Image: Sector	Note	e : St	udent	ts shal	l workou	ut in the	class fo	or prof				
	T											
	1											

2A

MEASURES OF CENTRAL TENDENCY (Averages of First Order)

INTRODUCTION:				
• Central tendency is defi	ned as the tenden	cy of the data to cor	centrate towards the cent	ral
or middle most region o	of the distribution.			
• In other words, Central	Tendency indicat	es average.		
• Any average is a repres	entative value of	the entire distribution	on value	
		8		
Average discovers unifo	ormity in variabilit	у.		
• The tendency of the ve	ariables to accum	ulate at the center	of the distribution (data)	is
known as measures of a	entral tendency.		e	
		59 roris		
Measures are popularly	y also known as av	verages.		
		30 -		
	OAve	erage		
+		•	,	
Mathematic	al Avg.	Positio	nal Avg.	
+ +	+	+	¥	
A. M G. M	H. M	Median	Mode	
The criteria for Ideal Measur	es of Central Tend	lency		
1. It should be simple to u	nderstand. (Mean	, Median & Mode ar	e easy to compute)	
2. It should be based on al	l the observations	. (AM,GM,HM are b	ased on all the observatior	is)
3. It should be rigidly defi	ned (except Mode).		

It should not be affected by extreme values (Median & Mode are not affected by 4. extreme values. 5. It should have sampling stability or it should not be affected by sampling fluctuations. (A.M, G.M, H.M. not affected). 6. It should be capable of further algebraic treatment. (AM,GM,HM) **ARITHMETIC MEAN** • It is the best measure of central tendency and most commonly used measure The only drawback of this measure is that it gets highly affected by presence of extreme • values in the distribution. • Calculation of AM For Simple series: A.M. = $\frac{1}{x} = \sum x$ 1. 2. For simple frequency distribution : Let $x_1, x_2, x_3, \dots, x_n$ be a series, occurring with frequency $f_1, f_2, f_3, \dots, f_n$ respectively, then A.M. = $\frac{-1}{x} = \frac{\sum fx}{N} = \frac{\sum fx}{\sum f} = \frac{f_1x_1 + f_2x_2 + \dots + f_nx_n}{f_1 + f_2 + \dots + f_n}$; N = Total Frequency 3. For Grouped Frequency Distribution: **Direct Method** a)

A.M. =
$$\frac{-}{x} = \frac{\sum fx}{N} = \frac{\sum fx}{\sum f} = \frac{f_1x_1 + f_2x_2 + \dots + f_nx_n}{f_1 + f_2 + \dots + f_n}$$

Where, x = mid - values or class marks

b) Method of Assumed Mean using Step Deviation (By changing of origin and scale)

$$A \cdot M = \overline{x} = A + \left(\frac{\sum fd}{\sum f}\right) \cdot i \qquad \bullet \ d = \frac{x - a}{i}$$

Where,

X = mid-values or original values if it is a discreet series

a = Assumed Mean i.e., a value arbitrarily chosen from mid-values or any other

values

I = class width or any arbitrary value

PROPERTIES

- 1. If all values of the variable are constant, then AM is constant.
- 2. $\frac{1}{x} = \frac{\sum x}{n}$; Thus, Sum of the observations = (no. of observations) x (average).

3. Sum of deviations of values from their arithmetic mean is always zero.

- 4. When the values of x are equi-distant, then AM = First value + Last value
- If the frequencies of variable increases or decreases by the same proportion, the value of AM will remain unaltered.

2

6. Weighted AM of first "n" natural numbers, when the values are equal to their corresponding weights, will be given by $\frac{1}{x} = \frac{2n+1}{3}$

7. Sum of squares of deviation is minimum when the deviation is taken from AM.

8. AM is dependent on the change of origin and scale. If $Y = a \pm bx$.

then, $\overline{Y} = a \pm b\overline{x}$

9. Formula for calculating Combined Mean is given by: $\frac{1}{x_c} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$

Where,

 \overline{x}_1 = mean of the first group

 \overline{x}_2 = mean of the second group

 n_1 = number of samples in the first group

 n_2 = number of samples in the second group

GEOMETRIC MEAN (GM)

1.	Let $x_1, x_2, x_3, \dots, x_n$ be a simple series, then G.M. = $\sqrt[n]{x_1, x_2, x_3, \dots, x_n}$ (n th root of the product)
2.	Let $x_1, x_2, x_3, \dots, x_n$ be a series, occuring with frequency $f_1, f_2, f_3, \dots, f_n$ respectively, then
	Let $u_1, u_2, u_3, \ldots, u_n$ be a series, becaming with neededney $j_1, j_2, j_3, \ldots, j_n$ respectively, then
	G.M. = $\sqrt[N]{x_1^{f_1} \cdot x_2^{f_2} \cdot x_3^{f_3} \cdot \dots \cdot x_n^{f_n}}$
3.	$(G.M)^n$ = Product of the observation
э.	(Gall) = Product of the observation
4	It is capable of further algebraic treatment
4.	It is capable of further algebraic treatment.
 F	It is loss affected by compling fluctuations compare to made and modian
5.	It is less affected by sampling fluctuations compare to mode and median.
6.	It is less affected by extreme values compare to AM.
	2/9
7.	GM cannot be calculated if any variable assumes value 0 or negative value.
	S or pris
8.	GM is particularly useful in cases where we have to find out average rates or ratios of
	quantities which are changing at a cumulative rate, i.e., the change is related to the
	immediate preceding data. For example, average rate of depreciation by WDV method or
	average rate of growth of population.
9.	GM is extensively used in the construction of index numbers.
10.	GM is the most difficult average to calculate and understand because it involves the
	knowledge of logarithms.
11.	Logarithm of GM of "n" observations is equal to the AM of the logarithm of these "n"
	observations.
12.	GM is based on all observations

13. If all the observations assumed by a variable constant, say K, then the GM of the observations is also K

J.K. SHAH[®] C L A S S E S a Vergndg Enterprise

CA FOUNDATION STATISTICS

C: I. X is S is E 3

 14. GM of the product of two variables is the product of their GM's i.e.,

 if
$$z = xy$$
,

 then GM of $z = (GM of x) . (GM of y)$

 15. GM of the ratio of two variables is the ratio of GM's of two variables i.e.,

 if $z = x/y$

 then GM of $z = (GM of x) . (GM of y)$

 16. Combined GM: $G_{12} = [G_1^n, G_2^{n_1}]^{\frac{1}{n_1 n_2}} ... \log G_{12} = \frac{n_1 \log G_1 + n_2 \log G_2}{n_1 + n_2}$

 HARMONIC MEAN (HM)

 1. Let $x_1, x_2, x_3, ..., x_n$ be a simple series, then $H.M. = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} + \frac{1}{x_5} + \frac{1}{x_5}$

 2. Let $x_1, x_1, x_3, ..., x_n$ be a series, occuring with frequency $f_1f_1, f_1, ..., f_1$ respectively, then

 HM. $- \frac{N}{f_1 + f_2 + f_3 + f_4 + ..., f_4}$

 3. HM cannot be calculated if any variable assumes value 0, as inverse of 0 is undefined.

 4. HM has a very restricted use, and they are usually used for calculating average speed, average rates of quantities, etc.

 5. It is based on all the values.

 6. It is capable of further algebraic treatment.

 7. It is less affected by extreme values and sampling fluctuations compare to AM and GM.

 8. If $y = ax$ then

 $HM(y) = a HM(x) + GM(y) = a GM(x)$

 9. If all the observations are constant, HM is constant

 10. Combined H.M: $H_{12} = \frac{n_1 + n_2}{n_1 + \frac{n_2}{n_2}}$

RULE FOR USING AM AND HM

When the average to be calculated is of the form a/b, wh	ere a and b are different quantities							
then								
i. Use HM when 'a' is constant								
ii. Use AM when 'b' is constant								
For eg,								
Avg. speed = ? Distance = same (given)	N • •							
Use H. M we k	now that Speed = Distance Time							
Avg. speed = ? Time = same (given)								
Use A. M								
	8							
RELATION BETWEEN AM, GM & HM								
1. If the values are equal,								
AM = GM = HM.	79							
2. If the values are distinct,								
AM > GM > HM.								
2. If the values are distinct, AM > GM > HM. 3. $G^2 = A.M \times H.M.$ $G = \sqrt{A.M. \times H.M.}$								
3. $G^2 = A.M \times H.M.$								
$G = \sqrt{A.M. \times H.M.}$								
MEDIAN:								
1. Median is defined as the positional average and is regar	rded as the second best average							
after arithmetic mean.								
2. Median is suitable when there is a wide range of variation	on in data or distribution pattern							
is to be studied at a varying level.								
3. Median is suitable for qualitative data.								
4. Median is suitable for distributions with open ends.								

5. Median can be located graphically using Cumulative Frequency Polygon or Ogives.

6. The absolute sum of deviations is minimum when the deviations are taken from Median, and this property of Median is known as "Minimal Property". 7. Median is dependent on change of Origin & Scale. If $Y = a \pm bx$ Then, Me (Y) = $a \pm bMe(x)$ Calculation **For Simple Series** Median = value corresponding to (n + 1)/2th term in the distribution Note 1: Arrange the data in the ascending or descending order If the value of (n+1)/2th term is a fraction then the average of the values within which Note 2: it is lying is the median. If n is odd median = simply the middle most value and if n is even median = average Note 3: of 2 mid values For Simple Frequency Distribution: Median = value corresponding to the (N+1)/2th Term in the 'less than' type Cumulative Frequency column where, Ν = Total Frequency For Grouped Frequency Distribution: $Median = l_1 + \left(\frac{\frac{N}{2} - F}{\frac{1}{2}}\right) i$ Lower boundary of the median class i.e., the class where Cumulative Frequency N/2 I, = falls Ν = Total frequency F Cumulative frequency of the pre-median class. = f_m Frequency of the median class = Width of the median class i =

MODE 1. Mode is that value of the distribution which occurs with highest frequency. 2. Mode is a crude method of finding out average and it provides only a Bird's Eye view of the distribution. 3. It is the most unstable average and the quickest method of finding out the average where we need to find out the most common value of the distribution 4. It is not affected by extreme values but it is more affected by sampling fluctuations compare to AM, GM, HM. 5. In case when distribution is Multimodal, mode is ill-defined 6. Mode is dependent on the change of origin and scale 7. If $y = a \pm bx$ then, $Mo(y) = a \pm b Mo(x)$ Mode can be located graphically using Histogram or Area Diagram or Frequency 8. Diagram. 9. Mode does not take into account all of the observations. 10. When the classes are of unequal width, we consider frequency densities instead of class frequency to locate mode, where frequency density = Class Frequency Width of the Class Calculation of Mode for Simple Series: For simple series, there is no mode as all values occur with frequency = 1, i.e., same 1. frequency.

 For simple frequency distribution Mode can be calculated by mere inspection. The variable occurring with the highest frequency is the mode of the distribution. A distribution can be uni-modal or bi-modal, but not multi-modal.

- o If only one value of variable occurs with the highest frequency, then there is only one mode.
- o If two values of variable occurs with the same highest frequency, then there are two modes.
- o If all values of variable occurs with same frequency, then there is no mode.
- o If more than two values of variable occurs with same highest frequency, then also there is no mode.

Calculation of Mode for Grouped Frequency Distribution:

$$Mode = l_1 + \left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right)i$$

- L_1 = Lower boundary of the modal class i.e., the class with highest frequency.
- f_m = Frequency of the modal class
- f₁ = Frequency of the pre-modal class
- f₂ = Frequency of the post-modal class
- i = Class width

CONCEPT OF SYMMETRICAL & ASYMMETRICAL DISTRIBUTION:

- When in a distribution all the measures of central tendencies are equal, the distribution is said to be symmetrical.
- 2. For symmetrical distribution; Mean = Median = Mode.
- 3. Any deviation from this symmetry makes the distribution asymmetrical or skewed.
- 4. For moderately skewed distribution: Mean Mode = 3(Mean Median)

OTHER PARTITION VALUES (FRACTILES)

Partition values divides distribution in equal parts.

• QUARTILES

o There are 3 quartiles (Q_1, Q_2, Q_3) , which divides the distribution in 4 equal parts representing 25%, 50% and 75% of the data respectively.

- o Q_2 is nothing but the median of the data.
- o For symmetrical data, Q_2 is simple average of the extreme quartiles Q_1 (lower quartile) and Q_3 (upper quartile).

• DECILES

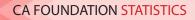
- There are 9 deciles (D₁, D₂,, D₉), which divides the distribution in 10 equal parts representing 10%, 20% 90% of the data respectively.
- o D_s is nothing but the median of the data.

• **PERCENTILES**

- o There are 99 percentiles $(P_1, P_2,, P_{99})$, which divides the distribution in 100 equal parts representing 1%, 2% 99% of the data respectively.
- o P_{50} is nothing but the median of the data

• NOTE

- o All partition values are dependent on the change of Origin and Scale.
- o All partition values can be calculated graphically through Cumulative Frequency Polygon or ogives.



Calculation of Partition Values

Type of Series	Quartiles	Deciles	Percentiles
Simple Series	$Q_i = i \left(\frac{n+1}{4} \right)$	$\boldsymbol{D}_i = \boldsymbol{i} \left(\frac{\boldsymbol{n}+1}{10} \right)$	$P_i = i \left(\frac{n+1}{100}\right)$
Circus I.a	i = 1, 2, 3	$i = 1, 2, 3, \dots, 9$	i = 1, 2, 3,, 99 $P_i = value \text{ correspo-}$
Simple	$Q_i = value \text{ correspo-}$	$D_i = value \text{ correspo-}$	·
Frequency Dist	-nding to CF; $i\left(\frac{N+1}{4}\right)$	-nding to CF; $i\left(\frac{N+1}{10}\right)$	-nding to CF; $i\left(\frac{N+1}{100}\right)$
Group	$\left(\frac{iN}{I}-f\right)$	$\left(\frac{iN}{I}-f\right)$	$\left(\frac{iN}{I}-f\right)$
Frequency Dist	$Q_i = I_1 + \left \frac{4}{f_q} \right ^{\prime} i $	$D_i = l_1 + \left(\frac{\frac{iN}{10} - f}{f_d}\right)i$	$\boldsymbol{P}_i = \boldsymbol{l}_1 + \left \frac{100}{f_p} \right \boldsymbol{i}$

Anda Enterprist

CLASSWORK SECTION

 								- F		
AIR	HTEM	IATIC MEAN								
1.	The	arithmetic mea	n of 8	, 1, 6 w	vith we	eights 3	3, 2, 5	respec	tively	is:
	a)	5	b)	5.6		c)	6		d)	4.6
2.	The	average weight	t of stu	udents	in a cl	lass of	35 stu	idents	is 40	kg. If the weight of
	the	teacher be inclu	ided, t	he ave	rage ri	ses by	(1/2) k	kg; the	weigh	nt of the teacher is :
	α)	40.5 kg	b)	50 kg		c)	41 kg		d)	58 kg
GEC	MET	RIC MEAN						B		
								5 (
3.	The	interest paid or	n the se	ame su	m yiel	ding 3	%, 4%,	and 5	5% соі	mpound interest for
	3 cc	onsecutive year	respec	tively. \	What i	s the c	verage	e yield	perce	nt on the total sum
	inve	ested.			6		K			
	α)	3.83%	b)	4.83%	6	c)	2.83%	6115	d)	3.99%
				59	/0	2	iter			
HAR	NON	IIC MEAN		<u> </u>	~ ~ ~	0 -				
				125	Q(1,2					
4.	Who	at is the HM of 1	1,1/2,	1/3,	••••	1/ı	ו? ר			
	a)	n	b)	2n		c)	(<u>n+1</u>)	I	d)	<u>n(n+1)</u> 2
MEC	DIAN									
5.	Calo	culate median fo	or the	followi	ng dat	ta :				
	No.	of students	6	4	16	7	8	2		
	Mar	ks	20	9	25	50	40	80		
	a)	20	b)	25		c)	35		d)	28
PAR	TITIC	ON VALUE								
6.	The	third decile for	the nu	umbers	15, 10), 20, 2	25, 18,	11, 9,	12 is	
	α)	13	b)	10.70		c)	11		d)	11.50

COMBINED PROPERTIES OF AM, MEDIAN AND MODE If the Mean and Mode of a certain set of numbers be 60.4 and 50.2 respectively, find 7. approximately the value of the Median. a) 55 b) 56 c) 57 d) 58 **MISCELLANEOUS SUM** 8. The mean and mode for the following frequency distribution Class 350-369 370-389 390-409 410-429 430-449 450-469 interval : Frequency: 15 27 31 13 6 19 are 400 and 390 400.58 and 390 a) b) c) 400.58 and 394.50 400 and 394. d) For the following incomplete distribution of marks of 100 pupils, median mark is 9. known to be 32. 30-40 Marks: 0-10 10-20 20-30 40-50 50-60 No. of Students: 10 25 30 10 dror What is the mean mark? 31 32 b) c) 31.30 d) 31.50 a) **THEORETICAL ASPECTS** 10. Measures of central tendency for a given set of observations measures The scatterness of the observations a) The central location of the observations b) Both (a) and (b) c)

d) None of these.

11. While computing the AM from a grouped frequency distribution, we assume that

- a) The classes are of equal length
- b) The classes have equal frequency
- c) All the values of a class are equal to the mid-value of that class
- d) None of these.

12.	Whi	ich of the fol	lowing state	ments is v	wrong?					
	α)	Mean is rig	idly defined							
	b)	Mean is not	t affected du	e to extre	eme values	•				
	c)	Mean has s	ome mather	natical p	roperties					
	d)	All these								
13.	For	open-end cl	assification,	which of	the follow	ing is the	best	measure of central		
	ten	dency?								
	α)	AM b)	GM	c)	Median		d)	Mode		
14.	The	presence of	extreme obs	ervations	does not c	affect				
	α)	AM b)	Median	c)	Mode		d)	(b) and (c) both		
						B				
15.	ln c	ase of an eve	en number of	f observa	tions which	of the fo	llowir	ng is median?		
	α)	Any of the	two middle-	most val	ue					
	b)	The simple	average of t	hese two	middle val	lues	7			
	c)	The weight	ed average o	of these tw	wo middle y	values				
	d)	Any of thes	ie 🖌	2	79	roris				
					2 EUL	5 · ·				
16.	Whi	ich one of the	e following is	s not unic	juely define	ed?				
	a)	Mean b)	Median	(C)	Mode	d)	All of	f these measures		
			av							
17.	Wei	-	ges are consi		en					
	a)		re not classif							
	b)		re put in the				stribu	tion		
	c)		ervations are	e not of e	qual impor	tance				
	d)	Both (a) an	d (c).							
18.					old for a set of distinct positive observations?					
	a)	$AM \ge GM \ge$			<u>≥</u> GM <u>></u> AM					
	c)	AM > GM >	HM d)	GM >	> AM > HM					
19.				-				atical properties?		
	a)	AM	b) GI	М	c) H№	1	d)	All of these		

J.K. SHAH CLASSES a Veranda Enterprise

CA FOUNDATION STATISTICS

21. 7	two vari a) Me The sum value, w a) A.I For 899,	ables? an of the so then the do M 999, 391, median is	b) M quares of eviations a b) H. , 384, 590,	edian deviations Ire taken fr M	of a set c rom their c) G.M	de d	l) All of	f these the small					
21. 22.	a) Mee The sum value, w a) A.I For 899, Rank of	an n of the so rhen the do M 999, 391, median is	quares of eviations a b) H. , 384, 590,	deviations Ire taken fr M	of a set c rom their c) G.M	of observa	itions has	the small					
21.	The sum value, w a) A.I For 899, Rank of	n of the so when the do M 999, 391, median is	quares of eviations a b) H. , 384, 590,	deviations Ire taken fr M	of a set c rom their c) G.M	of observa	itions has	the small					
22.	value, w a) A.I For 899, Rank of	vhen the do M 999, 391, median is	eviations a b) H. , 384, 590,	ire taken fr M	rom their c) G.M								
22.	value, w a) A.I For 899, Rank of	vhen the do M 999, 391, median is	eviations a b) H. , 384, 590,	ire taken fr M	rom their c) G.M								
22.	a) A.I For 899, Rank of	M 999, 391, median is	b) H. , 384, 590,	М	c) G.M	d	l) none						
22.	For 899, Rank of	999, 391, median is	, 384, 590,			d	l) none						
	Rank of	median is		480, 485,	700 111								
	Rank of	median is		480, 485,	700 111								
					160, 111, <i>i</i>	240							
	a) 2.7	5		Rank of median is									
			b) 5.	5	c) 8.25	5 d	l) none						
						R							
			·	Theory ,	Answers								
						16							
		ANSWER	S - SUMS		ANSWERS - THEORITICAL ASPECTS								
(Q. No.	Ans	Q. No.	Ans	Q. No.	Ans	Q. No.	Ans					
	1	b	7	C	13	C	19	d					
	2	d	8	C	14	d	20	d					
	3	d	9	С	15	b	21	a					
	4	С	10	b	16	С	22	b					
	5	b	11	С	17		1						
	6				17	С							

2B

MEASURES OF DISPERSION (Average of Second Order)

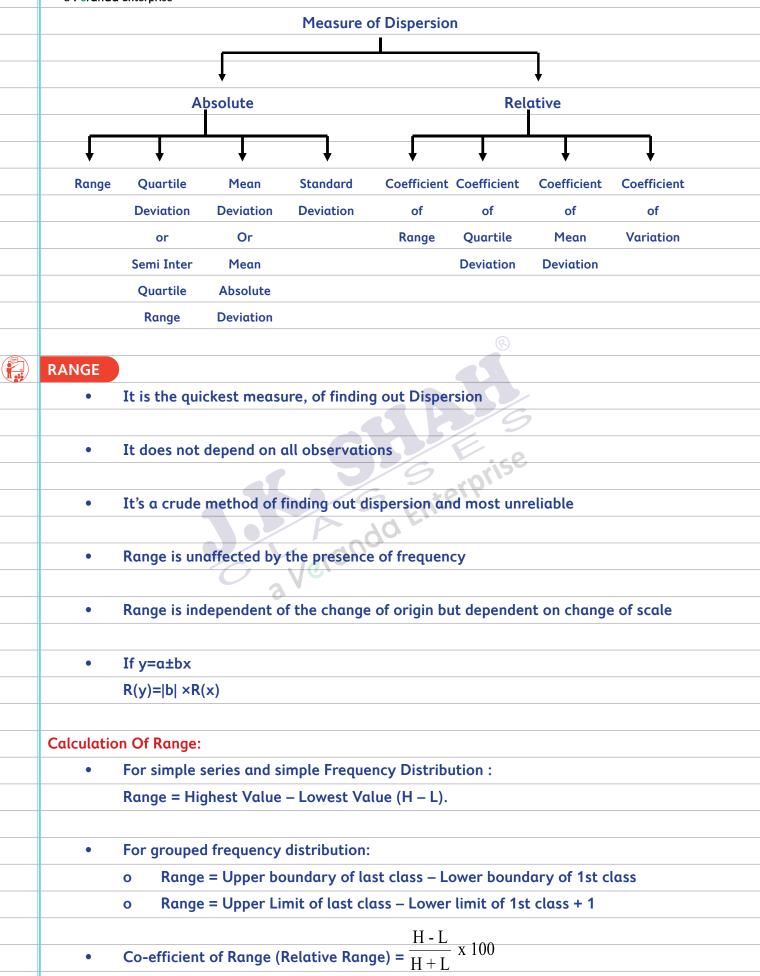
THEORY
Introduction:
• Dispersion is defined as deviation or scattering of values from their central values i.e,
average (Mean, Median or Mode but preferably Mean or Median)
Dispersion discovers variability in uniformity.
8
• In other words, dispersion measures the degree or extent to which the values of a
variable deviate from its average
Dispersion indicates the degree of heterogeneity among observation and as
heterogeneity increases dispersion increases
S enteri
If all values are equal then any measure of dispersion is always zero
All measures of dispersion are positive
• All measures of dispersions are independent of the change of origin but dependent on the
change of scale
• All pre requisites of a good measure of central tendency are equally applicable for good
measure of dispersion
TWO DISTRIBUTIONS MAY HAVE;
i. Same central tendency and same dispersion
ii. Different central tendency but same dispersion
iii. Same central tendency but different dispersion
iv. Different central tendency and different dispersion

Types of Measures of Dispersion

There are two types of measures of dispersion,

 Absolute Measure	Relative Measure	
 a. These measures of dispersion will have	a. These are usually expressed as ratios	
 the same units as those of the variables	or percentages and hence unit free	
 b. Absolute measures are related to the	b. Relative measures are used	
 distribution itself.	i) to compare variability between	
	two or more series.	
	ii) To check the relative accuracy of	
	the data	

MEASURES OF DISPERSION (AVERAGE OF SECOND ORDER)


A good measure of dispersion should obey conditions similar to those for a satisfactory

Enterprist

- average and are as follows :
- i. It should be rigidly defined.
- ii. It should be based on all observations.
- iii. It should be readily comprehensible.
- iv. It should be fairly easily calculated.
- v. It should affected as little as possible by fluctuations of sampling;
- vi. It should readily lend itself to algebraic treatment and
- vii. It should be east affected by the presence by extreme values

CA FOUNDATION STATISTICS

CA FOUNDATION STATISTICS

Quartile Deviation or Semi-inter quartile Range:

- QD is defined as the half of the range between the quartiles
- It is based on the upper and the lower Quartile and covers 50% of the observations.
- It does not depend on all observations
- For distributions with the Open Ends Q.D is the best and only measure of dispersion.
- QD is independent of the change of Origin but dependent on the change of Scale.
- If $y=a\pm bx$ QD(y)=|b| ×QD(x)
- Quartile Deviation (QD) = $\frac{Q_3 Q_1}{2}$, Where Q3 is the upper quartile and Q1 is the lower quartile.
- Co-efficient of QD(Relative Measure) = $\frac{QD}{Median} \times 100 = \frac{Q_3 Q_1}{Q_2} \times 100 = \frac{Q_3 Q_1}{2Q_2} \times 100$
- For symmetrical distribution; $Q_2 = \frac{Q_1 + Q_3}{2}$, i.e., median is the average of two extreme quartiles.
 - extreme quartiles. Thus coefficient of QD for symmetrical distribution = $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100 = \frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$

Mean Deviation / Mean Absolute Deviation

- It is based on all observations and hence it provides much better dispersion than Range and Quartile Deviation
- Mean deviation of a set of values of a variable is defined as the AM of the Absolute Deviation taken about Mean, Median or Mode.(Preferably AM or Median)
- Absolute Deviation implies Deviation without any regard to sign
- If nothing is specified Mean Deviation will imply Deviation about AM only.

- Since sum of Deviations is least when Deviations are taken about Median hence MD • about Median will have the least value.
- MD is the independent of the change of origin but dependent on the change of scale
- If y=a±bx
 - $MD(y)=|b| \times MD(x)$
- Formula to calculate Mean Deviation:

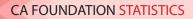
Simple Series	Simple / Grouped	
	Frequency Distribution	
$\mathrm{MD} = \frac{\sum \left \mathbf{x} - \overline{\mathbf{x}} \right }{\mathrm{n}}$	$MD = \frac{\sum f \left x - \overline{x} \right }{\sum f}$	
$\mathrm{MD} = \frac{\sum \mathbf{x} - \boldsymbol{M} }{\mathrm{n}}$	$MD = \frac{\sum f \mathbf{x} - M }{\sum f}$	

Where n = number of observation

 \sum f=N = Total frequency

 $\overline{\mathbf{x}} = \mathbf{A}.\mathbf{M}$

M = Median


<u>Fondo</u> Enterprise X=Either actual values of the variables or mid values if it a group frequency distributions

	MD 100
	X 100
0	Coefficient of MD(Relative Measure) = Mean/Median

Standard Deviation

- It is the best measure and the most commonly used Measure of Dispersion.
- It takes into consideration the magnitude of all the observations and gives the • minimum value of dispersion possible.
- SD has all the pre-requisites of a good measure of dispersion, except the fact • that it gets unduly affected by the presence of extreme values,
- It is also known as Root Mean Square Deviation about mean. •

- It is denoted by σ
- SD² = Variance= σ^2
- If all observations are equal variance =SD=0
- SD is the independent of the change of origin but dependent on the change of scale
- If y=a±bx
 - $SD(y)=|b| \times SD(x)$

 $V(y)=b^2 \times v(x)$

Definition of SD:

- SD of a set of values of a variable is defined as the positive Square Root of the AM of the Square of Deviations of the values from their AM
 - Thus, SD is also known as Root Mean Square Deviations (RMSD)

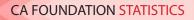
Calculation of SD

•

Simple Series(Without	Simple /Grouped Frequency	
Frequency)	Distribution	
i) $\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$	i) $\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{\sum f}}$	
ii) $\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$	ii) $\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$	
iii) $\sigma_x = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} \times i$	iii) $\sigma_x = \sqrt{\frac{\sum \mathrm{fd}^2}{\sum \mathrm{f}} - \left(\frac{\sum \mathrm{fd}}{\sum \mathrm{f}}\right)^2} \times i$	

roris

• Where, $d = \frac{x - A}{i}$,


x= mid-values if it is a grouped frequency distribution or original values if it is a discrete series

A = Assumed Mean i.e., a value arbitrarily chosen from mid-values or any other value.

i = class width or any arbitrary value

J.K. SHA

a Veranda Enterprise

Note1 : Use form i) when you find that \overline{x} is whole number

Use form ii) when the value of the variable x are small Note2:

Use Form iii) when you find that the values of x are large \overline{x} is not a whole number(Note3 : usually to be used for grouped frequency distribution)

USEFUL RESULTS:

• SD of two numbers is the half of their absolute difference(Range), i.e., if numbers are a and **b**, then SD = $\frac{a-b}{2}$

Variance of first "n" natural numbers (1, 2, 3,, n) is $\frac{n^2-1}{12}$ •

Sum of the squares of observations $\sum x^2 = n(\sigma^2 + x^2)$ •

Formula for combined or composite or pooled S.D. of two groups

			-
	Group I	Group II	
 Numbers	n ₁	n ₂	
 Mean	$\overline{x_1}$	$\overline{x_2}$	
Standard Deviation	$\sigma_{_{1}}$	$\sigma_{_2}$	

• Step 1 – Find Combined Mean:
$$\frac{1}{x} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$$

Step 2 – Find Deviations : $d_1 = \overline{x_1 - x}$ $d_2 = \overline{x_2 - x}$ Step 3 – Use Formula: $\sigma^2 = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{\sigma^2 - n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}$ •

• Step 3 – Use Formula:
$$\sigma^2 = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 \sigma_2^2}{n_1 + n_2}$$

• Coefficient of Variation (C.V)(Relative Measure) =
$$\frac{SD}{Mean} \times 100 = \frac{\sigma}{x} \times 100$$

- C.V is the best relative measure of dispersion
- C.V is used to compare variability or consistency between 2 or more series •
- More C.V implies more variability indicating thereby less stability or consistency and vice • versa.
- Regarding choice of an item always choose that item which has less C.V, because the item with lower C.V is more stable.

CA FOUNDATION STATISTICS

CLASSWORK SECTION

٨	NGE					
A	NGE					
1.	If R, and R, denot	te ranges of x ar	nd v respectiv	velv whe	ere x a	nd v are related t
	3x+2y+10=0,		<u> </u>			
	what would be the	e relation betwee	n x and y?			
	a) $R_x = R_y$	b) 2 R _x = 3 R _y	c) 3	R _x = 2 R _y	d)	$R_x = 2 R_y$
	~ }			<u>, </u>		
2.	If the range of x is	2, what would b	e the range c	of -3x +5	50?	
	a) 2	b) 6	c) –	6 ®	d)	44
QU	ARTILE DEVIATION					
					5	
3.	If x and y are rela	ited as $3x+4y = 20$	0 and the qu	artile de	eviation	of x is 12, then the
	quartile deviation	of y is	/9	roris		
	a) 16	b) 14	9 c) 10	3.,	d)	9.
			90 -			
ME	AN DEVIATION					
		3				
4.	What is the value	of mean deviatio	n about mea	n for the	e follow	/ing numbers?
	5, 8, 6, 3, 4.					
	a) 5.20	b) 7.20	c) 1.	44	d)	2.23
	IC the meteric is here					. teste e ele este este
5.	If the relation bety				iean ae	viation about med
	for x is 12, then the x^{2}		-		4)	10 00
	a) 7.20	b) 6.80	c) 20)	d)	18.80.
6	If two variables y	and y are relate	$d hy 2y \pm 2$	<u>-7 -0</u>	and +	no more and more
5.	If two variables x deviation about m			-		
	deviation of y abo		ia 0.5 respec	uvety, ti		
	deviation of y abo	at its mean is				
	a) -5	b) 12	c) 50)	d)	4.

J.K. SHAH CLASSES a Veranda Enterprise

CA FOUNDATION STATISTICS

a۷	dranda Enterpris	se						·			
7.	What is th	e mean de	viation ab	out medi	an fo	or the f	following	date	a?		_
	X 3 5 7 9 11 13 15										
	F	2	8	9		16	14		7	4	
	a) 2.50	b)	2.46		c)	2.43		d)	2.37		
STA	NDARD DEV	IATION									
8.	What is th	e coefficier	nt of varia	tion of th	e fol	lowing	j numbers	5?			
	53, 52, 61,	, 60, 64.									
	a) 8.09	b)	18.08		c)	20.2	3	d)	20.45		
 9.	If the SD o	f x is 3, wh	at is the v	variance o	of (5-	-2x)?					
 	a) 36	b)	6		c)	1	8	d)	9		
 							5				
 10.								e kno	own to	be 5 and 1	0
 	respectivel	-		nt of vario					• •		
	a) 25	b)	30	6	c)	40		d)	20		
 					2	7 	Q ^r is				
 11.	What is th	e coefficier	nt of varia	tion for th	ne fo	llowin	g distribu	tion	of wag	es?	
)						
 	Daily Wag			0 - 50		- 60	60 - 70	70	0 - 80	80 - 90	
	No. of wo		17	28	2		15		13	6	
 	a) ₹14.73	3 b)	14.73		c)	26.9	3	d)	20.82		
 COM	1BINED STA		VIATION								
 12.	lf two sam	nles of size	s 30 and 2	20 have m	lean	s as 55	and 60 a	indy	ariance	s as 16 an	d
 	25 respect										~
	a) 5.00	b)			c)	5.23		d)	5.35	5120 50.	
 	.,				-/		-				
 COR			D DEVIAT	ION							
 13.	The mean	and SD of	a sample	of 100 o	bser	vation	s were ca	lcul	ated as	40 and 5.	1
 	respectivel		-								
 	by mistake										
 	a) 4.90	b)	5.00		c)	4.88		d)	4.85.		
 	.,	~/			-/						

THEORETICAL ASPECTS

14.	When it comes to	comparing two	or more distributions	we consider

- a) Absolute measures of dispersion
- b) Relative measures of dispersion
- c) Both (a) and (b)
- d) Either (a) or (b).

15. Which one is an absolute measure of dispersion?

a) Rangeb) Mean Deviationc) Standard Deviationd) All these measures

16. Which measures of dispersions is not affected by the presence of extreme observations?

a) Rangeb) Mean deviationc) Standard deviationd) Quartile deviation

17. Which measure of dispersion is based on all the observations?

- a) Mean deviation
 b) Standard deviation
 c) Quartile deviation
 d) (a) and (b) but not (c)
- 18. The appropriate measure of dispersion for open-end classification isa) Standard deviationb) Mean deviation
 - c) Quartile deviation d) All these measures.

19. A shift of origin has no impact on

- a) Rangeb) Mean deviationc) Standard deviationd) All these and quartile deviation.
- 20. If all the observations are increased by 10, then
 - a) SD would be increased by 10
 - b) Mean deviation would be increased by 10
 - c) Quartile deviation would be increased by 10
 - d) All these three remain unchanged.

- 21. If all the observations are multiplied by 2, then
 - a) New SD would be also multiplied by 2
 - b) New SD would be half of the previous SD
 - c) New SD would be increased by 2
 - d) New SD would be decreased by 2.

	ANSWERS - SUMS ANSWERS - THEORITICAL						ANSWERS - THEORITICAL ASPECTS					
Q. No.	Ans	Q. No.	Ans	Q. No.	Ans	Q. No.	Ans					
1	с	8	α	14	b	20	d					
2	b	9	α	15	d	21	α					
3	d	10	С	16	d							
4	с	11	b	17	d							
5	α	12	b	18	С							
6	b	13	b	19	d							
7	d											

Ada Enterpris

CORRELATION ANALYSIS

- Correlation is the degree of association between two or more variables
- In other words, correlation measures the degree or extent to which two variables move in sympathy.
- This association or lack of association is measured by means of a coefficient called correlation coefficient.
- It is a pure number without any unit and the value of which lies between -1 and +1
 - a. When correlation coefficient is +1, perfect positive Correlation
 - b. When correlation coefficient is -1, perfect negative Correlation
 - c. When correlation coefficient is 0, no correlation

In the given context we are concerned with,

- i. Correlation between two variables i.e., x and y (Bivariate Correlation).
- ii. Correlation implies Linear correlation only.
- Correlation coefficient is independent of change in Origin and Scale.

Note:

Concept of Spurious or Nonsense correlation:

Sometimes it is found that there is no casual relation between two variables but due to

presence of a third variable a correlation can be observed between the two. This variable

which is responsible for the correlation other two variable is called "Lurking variable".

Methods of calculating correlation coefficient:

1. Karl-Pearson's Coefficient of Correlation or Product-Moment Correlation Coefficient or Correlation Coefficient by Covariance Method (r) **J.K. SHAH**[®] C L A S S E S a Veranda Enterprise

CA FOUNDATION STATISTICS

1.
$$r = \frac{\cos(x, y)}{\sigma_x}$$

Where,
 $\operatorname{Cov}(x, y) = \operatorname{Covariance between x and y}$
 $\operatorname{Cov}(x, y) = \frac{1}{n} \sum (x - i) (y - i) = \frac{\sum xy}{n} - \left(\sum \frac{x}{n}\right) \left(\sum \frac{y}{n}\right)$
ii. Thus, $r = \frac{\sum xy}{\sqrt{n} - \left(\sum \frac{x}{n}\right)^2} \frac{\sum y}{\sqrt{n} - \left(\sum \frac{y}{n}\right)^2}$
iii. When deviations are taken from actual means say x and \overline{y} such that $u = x - \overline{x}$ and $v = y - \overline{y}$ in such a case r will be given by,
 $r = \sqrt{\sum n^2} \frac{n^2}{\sqrt{n^2 - \sum n^2}}$
iv. When deviations are taken from assumed means say 'a' from X and 'b' from Y such that $u = x - \overline{x}$ and $v = y - \overline{y}$ in such a case r will be given by,
 $r = \sqrt{\sum n^2 - \sum n^2}$
iv. When deviations are taken from assumed means say 'a' from X and 'b' from Y such that $u = x - \overline{a}$ and $v = y - \overline{y}$ in such a case r (is given by,
 $r = \frac{2n^2}{\sqrt{2n^2 - \sum n^2}} \frac{2n}{\sqrt{n} - (\frac{\sum n}{n})^2} \sqrt{\frac{2n}{n} - (\frac{\sum n}{n})^2}$
Note 1: Use (i) when you find that $\cos(x, y)$, σ_x and σ_y are provided
Note 2: Use (ii) when you find that \overline{x} and \overline{y} are not whole numbers
Note 4: Use (iv) when you find that \overline{x} and \overline{y} are not whole numbers or the values of x and y are large or the problems specifically directs that the deviations are to be taken from assumed mean only.

CA FOUNDATION STATISTICS

- Rank correlations is used for Qualitative data like beauty, intelligence etc. •
- It is used for measuring correlation between two attributes. •
- It is denoted by 'R' $(-1 \le R \le +1)$ •

Formula for rank correlation,

Case 1: without tie-when all the variables have different ranks

$$R = 1 - \frac{6\sum D^2}{n(n^2 - 1)}$$

Where,

n = Total number of individuals

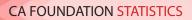
 $D = Rank difference = R_{v} - R_{v}$

Case 2: Tied Ranks

In such cases two or more variables have the same score and accordingly average ranks i. - <u>Enterpris</u> are assigned to the variables which are involved in the tie.

$$R = 1 - \frac{6\left[\sum D^2 + \sum \frac{t^3 - t}{12}\right]}{n(n^2 - 1)}$$

Where.


t = number of variables are involved in tie.

n = total number of variables

 $D = R_{-} - R_{-} = Rank$ difference

- **Concurrent Deviation Method or Coefficient of Concurrent Deviation [r]:** 3.
 - It is the simplest and quickest method of calculating correlation •
 - It is used to know the direction changes between two variables •
 - It is suitable only when the variable includes short term fluctuations
 - It lies between -1 and +1

Let (x_1, y_1) , (x_2, y_2) , ..., (x_{n+1}, y_{n+1}) be a set of (n+1) pairs of values of x and y. Let C_x and C_y denote the direction changes in the values of x and y i.e., C_x and C_y will have positive signs if there is an increase in the values of x and y w.r.t its immediate preceding value and will have negative signs in case of decrease.

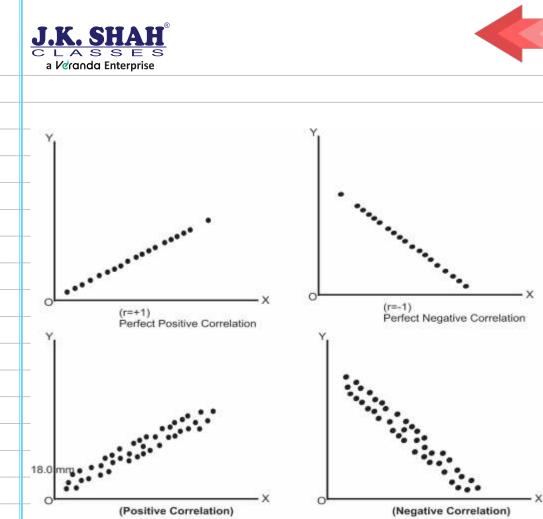
If C denotes the number of concurrent deviations i.e., total number of positive signs in the $C_x \cdot C_y$ column then the coefficient of concurrent deviation is given by,

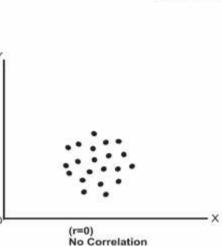
$$r = \pm \sqrt{\pm \left(\frac{2C - n}{n}\right)}$$

Where,

n = pairs of deviations compared

c = number of concurrent deviations


- If $\frac{2C-n}{n}$ is positive, positive sign is to be assigned both inside and outside the square root. i.
- If $\frac{2C-n}{n}$ is negative, negative sign is to be assigned both inside and outside the square ii. Add Enterpr Volanda root.


iv. When
$$C = n, r = r$$

v. When
$$C = \frac{n}{2}$$
, $r = 0$

4. Diagramatic representation of correlation through scatter diagram or scatter plot:

- It the simplest way to represent bivariate data •
- It gives a vague idea about the nature of correlation between two variables •
- It helps us to distinguish between different types of correlation but fails to measure the • extent of relationship between the variables
- Through scatter diagram we can get an idea about the nature of correlation; positive, • negative, zero or curvilinear

CA FOUNDATION STATISTICS

- Coefficient correlation is symmetric i.e., $r_{xy} = r_{yx}$
- If y = a + bx then,
 - i. r = +1 when b>0 and
 - ii. r = -1 when b<0

• correlation coefficient is independent of the change of origin and scale. x - a = y - b

If
$$u = \frac{x-u}{d}$$
 and $v = \frac{y-v}{d}$ then,

a. $r_{uv} = r_{xv}$, if c and d are of the same sign

b.
$$r_{uv} = -r_{xv}$$
, if c and d are of the opposite sign

Miscellaneous Properties:

• Coefficient of determination = r²

$$r^{2} = \frac{ExplainedVariance}{TotalVariance} = 1 - \frac{Un \text{ explainedVariance}}{TotalVariance}$$

• Coefficient of Non - Determination : $1 - r^2 = \frac{UnexplainedVariance}{TotalVariance}$

• Coefficient of alienation = square root of coefficient of non-determination = $\sqrt{1 - r^2}$

CA FOUNDATION STATISTICS

• Percentage of explained variation = $r^2 \times 100$

• Percentage of unexplained variation = (1-r²)×100

• Standard error of r (S.E of r) =
$$\frac{1-r^2}{\sqrt{n}}$$

Probable error of r [P.E (r)] = 0.6745 x SE(r)

- Probable error and standard error both are used for determining the reliability of correlation coefficient. For this purpose the following rule is followed,
 - 1) If $r < P.E. \rightarrow$ there is no significant correlation in population.
 - 2) If r > 6 P.E. \rightarrow there is significant correlation in population and we can rely on the value of r
 - Otherwise, in the intermediate interval → there is no clear idea about the correlation in the population and hence no inference can be drawn about the population correlation coefficient (9).

Using probable Error (P.E.), we can find the probable limits for population correlation

coefficient (9) as follows

Probable limits = r ± P.E

= (r-P.E) to (r+ P.E)

- Let x and y be two correlated variables, then: $V(x \pm y) = V(x) + V(y) \pm 2Cov(x, y)$
- Let x and y are two uncorrelated variables, then Cov(x,y) = 0 and hence,

 $V(x \pm y) = V(x) + V(y)$

BIVARIATE DATA

- When a set of data is collected for two variables simultaneously it is called a
 Bivariate Data
- When a frequency distribution is formed with these bivariate data it is known as Bivariate Frequency Distribution or Joint Frequency Distribution or Two Way Distribution
- The tabular representation of this frequency distribution is known as Two Way
 Frequency Table
- Following is a bivariate table for the data relating to marks in maths and statistics

				2				_
			Marks	in Mathe	matics			<u> </u>
 Marks in		0-4	4-8	8-12	12-16	16-20	Total	<u> </u>
 Stats	0-4	1	1	2	0	0	4	
	4-8	1	4	5	1	1	12	
	8-12	1	2	4	6	1	14	
	12-16	0	1	3	2	5	11	<u> </u>
	16-20	0	0	1	5	3	9	
	Total	3	8	15	14	10	50	<u> </u>

Observations:

- A bivariate frequency distribution having m rows and n columns has m x n cells
- Some of the cell frequencies may be zero

From a bivariate distribution we can have the following two types of Uni-variate distributions

- i. Two Marginal Distributions
- ii. m+n Conditional Distributions

From the above table the two marginal distributions are as follows,

Marks No of students
Marks No of students
0-4 3
4-8 8
8-12 15
12-16 14
16-20 10
Total 50

Similarly, we can have Marginal Distribution for marks in statistics

From the above table, an example a Conditional distribution of marks in Statistics when the mathematics marks lie between <u>8-12</u>

 Marks	No of students	
 0-4	2	
4-8	5	
 8-12	4	
 12-16	3	
16-20	1	
Total	15	

Bivariate Relationship

Between two variables x and y there can exist any of the following three relationship

- Direct or Positive with change in one variable x, the other variable y will also change in the same direction. Eg: Price and quantity supplied: amount of rainfall and crop yield
- Indirect or Inverse or Negative With change in one variable, the other variable will change in the opposite direction. Eg: Price and quantity demanded.
- No relation With change in one variable x, if another variable y doesn't show any specific trend (increasing or decreasing), then we say there exist no relation between x and y.

CA FOUNDATION STATISTICS

CLASSWORK SECTION

Product Moment Method/ Covariance Method

- 1. The Cov (x, y) =15, what restrictions should be put for the standard deviations of x and y?
 - a) No restriction
 - b) The product of the standard deviations should be more than 15
 - c) The product of the standard deviations should be less than 15
 - d) The sum of the standard deviations should be less than 15

2.	2. Find the coefficient of correlation from the following data:						
	X:	1	2	3	4	5	®
	Y:	6	8	11	8	12	
	α)	+ 0.	775		b)	- 0.775	c) + 0.895 d) + 0.956

3. Calculate correlation coefficient from the following data: n = 12, $\sum x = 120$, $\sum y = 130$, $\sum (x-8)^2 = 150$, $\sum (y-10)^2 = 200$, $\sum (x-8)(y-10) = 50$.

a) 0.215	b) - 0.215 c) - 0.317	d) None of the above
	Adar.	

- 4. Find the number of pairs of observation from the following data: r = 0.25, $\sum (x - \overline{x})(y - \overline{y}) = 60, \ \sum (x - \overline{x})^2 = 90, \ SD_y = 4.$
 - a) 30 b) 40 c) 20 d) 10

Rank Correlation Coefficient "R"

5. The coefficient of rank correlation between the marks in Statistics and Mathematics obtained by a certain group of students is 2/3 and the sum of the squares of the differences in ranks is 55. How many students are there in the group?

	a) 10	b) 9	c) 12	d) more than 15
--	-------	------	-------	-----------------

6. From the following data calculate the value of coefficient of Rank correlation: X: 75 88 95 70 60 80 81 50 Y: 120 134 150 115 110 140 142 100 a) 0.93 b) - 0.85 c) 0.85 d) 0.63

Concurrent Deviation Method

7.	What is the	coefficie	nt of co	ncurren	t devia	ions f	or the f	ollowin	g data	•		
	Supply:	68	43 3	8 78	66	83	38	23	83	53	48	
	Demand:	65	60 5	5 61	35	75	45	40	85	80	85	
	a) 0.82	b) 0.85		C	0.89		d) ·	- 0.81			
8.	The coefficie	ent of co	ncurren	t devia	tion for	p pai	rs of ob	servati	on was	s found	d to be	
	$1/\sqrt{3}$. If the r	number	of concu	urrent d	eviatior	is was	found	to be 6,	then t	he val	ue of p	
	a) 10	b) 9		C	8		d)	None o	of these	9	
Cho	ange of Origin a	ind Chan	ge of Sc	ale								
							B					
9.	lf u + 5x = 6									and y	is 0.58	
	then where	would b	e the co	rrelatio	n coeffi	cient t	betweer	n u and	v?			
	a) 0.58	b)) -0.5	8	C	-0.8	4	d) (0.84			
							K	e				
The	eoretical Aspect	ts				2	, 19 <u>7</u> ,					
					9	- nre						
10.			ent is _	0	of the ur							
_	a) Depende	ent		1910			penden	t				
	c) Both		3		d) Non	5					
1.1	ha Cara a C "	•			C1					I		
11.	In Case of "i there is				profit ai	ia the	numbe	er of cu	ums n	ney na	ve pay	
_	a) Positivel		etation.		h) Nego						
	c) No of co	-	<u>ר</u>				e of the	200				
			•		u	, 11011						
12.	Which of the	e followi	na reaa	rdina va	alue of '	ʻr" is T	RUE?					
	a) "r" is a p											
_	b) "r" lies b			+1 both	n inclusi	ve						
	c) Neither (
	d) Both a) a											
-												
-												
_												

a Veranda Enterprise

- 13. For which of the following statements the correlation will be negative?
 - a) Production and price per unit
 - b) Sale of woolen garments and day temperature
 - c) Neither (a) nor (b)
 - d) Both a) and b) above

14. Karl Pearson's correlation coefficient may be defined as:

- The ratio of covariance between the two variables to the product of the a) standard deviations of the two variables.
- The ratio of covariance between the two variables to the product of the variance b) of the two variables.
- The ratio of product of standard deviations of the two variables to the covariance c) between the two variables.
- None of the above. d)

Rank Correlation:

- 15. Rank of beauty contest by two judges are in reverse orders the find the value of spearmen's rank correlation co-efficient
 - a) -1 b) 0 d) 0.75
- 16. Sum of the difference in ranks is always

Properties:

- 17. In case the correlation coefficient between two variables is 1, which of the following
 - would be the relationship between the two variables?
 - b) y = p + qx, q < 0 a) y = p + qx, q > 0d) Both a) and b) above
 - c) y = p + qx, p > 0, q < 0
- 18. If the relationship between two variables x and y is given by 22x + 33y + 84 = 0, then the value of correlation coefficient between x and y will be: a) 1.00 b) 0 c) - 1.00 d) Between 0 and 1.00

	• •							CA FOUNDATION STATISTICS
	J.J C L		SSES					CA FOUNDATION STATISTICS
			da Enterprise	C				
	19.						If x and y	both are multiplied
				co-efficient of co				
		a)	0.6	b) - 0.6	C)	0.6	d)	$1 - (0.6)^2$
	20	1.1			1 6 %	» ·		
	20.			owing regarding		" IS IRUE?		
		a)		ected by change i				
		b)		ected by change (!!!		
		c)		fected by change		na origin.		
		d)	Both a) and	l b) above are tru	le.			
		• •						
	Αρρι	icati	ion of r:					
	24	A	-	1 500				
	21.	A r	elationship r ²	$= 1 - \frac{500}{300}$ is not	possible		B	
		-	Tuura	h) Falaa	-)	Deth	- / -	Nege
		a)	True	b) False	C)	Both	a)	None
	Cast	.				5/-	9	
	Scat	ter L	Diagram:				ise	
	22	\v/b	on the corrol	ation coofficient r	-+1 all +h	o points ir	a scatto	r diagram would be
	22.			ht line directed fr				r diagram would be
		b)		ht line directed fr				
		c)	On a straig		om tower	tert to upp	ber fight	
		d)	Both (a) an					
		u)						
	Bive	riate	e Data:					
	Bivu	inate						
	23.	Fro	m the Bivaria	ate Frequency Di	stribution	we can o	btain whi	ch of the following
			variate distril	. ,				
		a)	Marginal di					
		b)	_	distribution				
		c)	Both a) and					
		d)		or b) above				
_		~/						
_								
_								

REGRESSION ANALYSIS

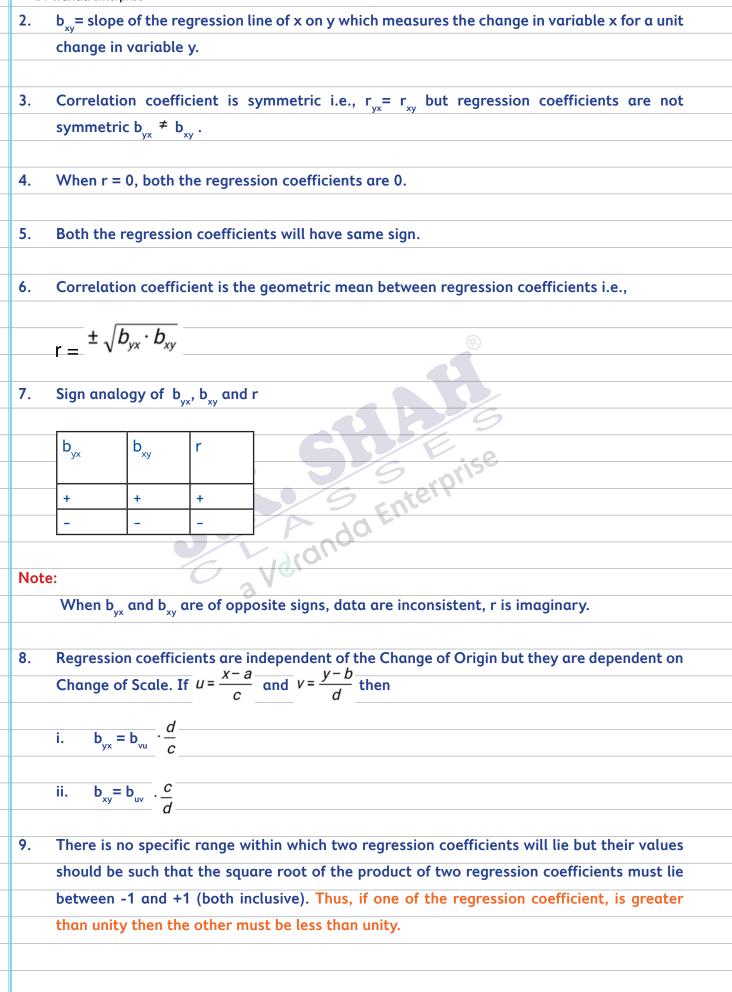
Introduction

- Regression is the average linear relationship between two or more variables.
- The word regression implies "estimation or prediction". In other words through regression equations we can quantify the relationship between two variables and we can predict the average value of one variable corresponding to a specific value of the other.
- It establishes a functional relationship between two variables.
- Regression equation enables us to find the nature and the extent of relationship between two variables. Correlation can measure only the degree of association between the two variables whereas regression quantifies such relationship.
- The two variables are dependent and independent variable. Thus, we try to estimate the average value of dependent variable, for a specified value of independent variable using regression analysis.
- If there are two variables, then the independent variable is called the "Regressor" or "Explaining Variable" and the dependent variable is called the "Regressed" or "Explained Variable".
- Regression analysis is an absolute measure showing a change in the value of y or x for a corresponding unit change in the value of x or y whereas correlation coefficient is a relative measure of linear relationship between x and y.
- This average linear relationship between two variables is expressed by means of two straight line equation known as regression lines or regression equations.
- If there are two variables x and y we can have the following two types of regression lines,
 - i. Regression equation of y on x (y dependent, x independent)
 - ii. Regression equation of x on y (x dependent, y independent)

[I	Regression equation of y on x:	Regression equation of x on y:	
	$(Y-\overline{Y})=b_{yx}(X-\overline{X})$	• $(X - \overline{X}) = b_{xy}(Y - \overline{Y})$	
	 b_{yx} stands for regression coefficient of y on x 	 b_{xy} stands for regression coefficient of x on y 	
-	Here y depends on x	Here x depends on y	
	• Here y is a dependent/explained and x is an independent variable	 Here x is a dependent/explained and x is an independent variable 	
	 This equation will be of the form y = a + bx 	 This equation will be of the form x = a + by 	
	• This equation is used to estimate the value of y given the value of x	 This equation is used to estimate the value of x given the value of y 	
•	• The slope of this equation is byx	• The slope of this equation is bxy	
	• The regression line of y on x is the straight line on the scatter diagram for which the sum of squares of vertical distances of the points is minimum.	by the minimization of horizontal	
	• The principle which is applied for deriving the two lines of regression is known as "Method of Least Squares".	 The principle which is applied for deriving the two lines of regression is known as "Method of Least Squares". 	

CA FOUNDATION STATISTICS

CALCULATION OF REGRESSION COEFFICIENTS


Regression coefficient of y on x (b_y):Regression coefficient of x on y (b_y):1. Using co-variance:
$$\frac{Cov(x, y)}{\sigma_x^2}$$
1. Using co-variance: $\frac{Cov(x, y)}{\sigma_y^2}$ 2. Without any deviations (Directly
from x and Y values)2. Without any deviations (Directly
from x and Y values) $= \frac{x y - \sum x \cdot \sum y}{n - (\sum n)^2}$ 2. Without any deviations (Directly
from x and Y values)3. When deviations are taken from
actual mean i.e., \overline{x} and \overline{y} such that
 $u = x - \overline{x}, v = y - \overline{y}$ 3. When deviations are taken from
actual mean i.e., \overline{x} and \overline{y} such that
 $u = x - \overline{x}, v = y - \overline{y}$ $= \sum (x - \overline{x})(y - \overline{y}) = \sum uv$
 $\sum (x - \overline{x})^2 = \sum u^2$ $= \sum (x - \overline{x})(y - \overline{y})^2$ 4. When deviations are taken from
assumed mean say A & B for x and y,
 $u = x - A, v = y - B$ $= \sum \frac{x u - \sum u \cdot \sum v}{n} - (\sum u) \sum v$
 $\sum u - \sum u \cdot \sum v$ $b_{y_x} = \frac{n - n}{\sum n^2} - (\sum u) \sum v$
 $n - (\sum n)^2$ $= \sum (x - \overline{x})(y - \overline{y}) = \sum (u - \sum u) \sum v$
 $\sum (v - \overline{y})^2$ 5. Using 'r'
 $b_{y_x} = r \cdot \frac{\sigma_x}{\sigma_x}$
 $\sigma_x = SD(x), \sigma_y = SD(y)$
and r = Correlation co-efficient between
x and y $= Correlation co-efficient between$
x and y

PROPERTIES OF REGRESSION COEFFICIENTS

1. $b_{yx} =$ slope of the regression line of y on x which measures the change in variable y for a unit change in variable x.

J.K. SHAH CLASSES a Vergndg Enterprise

CA FOUNDATION STATISTICS

Properties of regression lines:

• Two regression lines always intersect at their mean or average values $((\bar{x}, \bar{y}))$. In other words if we solve two regression equations we get the average values of x and y. When r = 0, then • $b_{xx} = b_{xy} = 0$ i. The two regression lines thus reduces to; $y = \overline{y}$ and $x = \overline{x}$ ii. Nothing can be predicted from the two regression lines since, the variables become iii. independent. The angle between the two regression lines becomes 90° i.e., they are perpendicular to iv. each other. When $r = \pm 1$, then • The two regression lines become identical i.e., they coincide. **i**. C Vdranda $\mathbf{b}_{yx} = \frac{1}{b_{yx}}$ ii. iii. Perfect linear co-relationship is observed and the angle between the two regression lines becomes 0°. iv. For a particular value of x we shall obtain a specific value of y. As the angle between two regression lines numerically decreases from 90° to 0°, the correlation increases from 0 to 1 and the two regression lines comes closer to each other. Angle between two regression lines; if A is the angle between two regression lines then • $\frac{\tan A}{r} = \frac{1 - r^2}{r} \left(\frac{\sigma_x \cdot \sigma_y}{\sigma_x^2 + \sigma_y^2} \right) -$

Miscellaneous Properties:

- In regression analysis, the difference between the Observed value and the Estimated value is known as Residue or Error.
- Proportion of Total Variance explained by regression analysis is r². •
- **Proportion of Total Unexplained Variance is (1- r²).** •
- Standard error of estimate of $y(S_{yx})$ is given by $S_{xy} = \sqrt{\frac{\sum (x \bar{x}_c)^2}{N}}$ or $\sigma_x \sqrt{1 r^2}$ Standard error of estimate of $y(S_{yx})$ is given by $S_{yx} = \sqrt{\frac{\sum (y \bar{y}_c)^2}{N}}$ or $\sigma_y \sqrt{1 r^2}$ •
- •
- When $r^2=1$, then;
 - Explained variance = 1 i. Total variance
 - Explained variance = Total Variance ii.
 - The whole of the total variance is explained by regression. iii.
 - The unexplained variation is zero iv.
 - All the points on the scatter diagram will lie on the regression line v.
 - There is a perfect linear dependence between the variables vi.
 - vii. The two regression lines coincide

viii. For a given value of one variable, we have a fixed value of the other variable

CLASSWORK SECTION

1.	Given the follo	wing data:				
	Variable:	×	У			
	Mean:	80	98			
	Variance:	4	9			
	Coefficient of c	orrelation = (0.6			
	What is the mo	ost likely valu	ie of y whe	en x = 90 ?		
	a) 90	b) 103		c) 104	d) 107	
2.	If $4y - 5x = 1$	5 is the regr	ession line	of y on x and t	he coefficient of correla	tion
	between x and	y is 0.75, wł	nat is the v	alue of the regre	ssion coefficient of x on y	y?
	a) 0.45	b) 0.93	75	c) 0.6	d) none of these	
				5 2/	9	
3.	Regression equ	ation of Y or	n X is 8X –	10Y + 66 = 0 and	d SD(x) = 3, find the valu	le of
	Cov (x, y).		2	79 .nr	50	
	a) 11.25	b) 7.2		c) 2.4	d) None of the abo	ve
			P	10 L.		
Prop	perties of Regress	ion Coefficien	ts			
			Ne.			
4.	lf bxy = - 1.2 a	nd byx = - 0.	3, then the	e coefficient of co	rrelation between x and	y is:
	a) - 0.698	b) – 0.	36	c) - 0.51	d) – 0.6	
5.	Given $b_{xy} = 0.75$	56, b _{yx} = 0.65	9, then th	e value of coeffic	ient of non-determination	on is
	given by:					
	a) 0.402	b) 0.50)2	c) 0.602	d) 0.702	
Cha	nge of Origin and	Change of Sc	ale			
6.	lf u = 2x + 5,	v = -3y + 1	, and the	regression coeffic	cient of y on x is – 1.2,	the
	regression coef	ficient of v o	n u is:			
	a) 1.8	b) – 1.	8	c) 3.26	d) 0.8	

<u>J.</u>	K. SHAH [®] CA FOUNDATION STATISTICS
a	/dranda Enterprise
Ide	ntification Problems
7.	Two random variables have the regression lines 3x+2y=26 and 6x+y=31. The
	coefficient of correlation between x and y is :
	a) -0.25 b) 0.5 c) -0.5 d) 0.25
 8.	The two lines of regression are given by
	8x + 10y = 25 and 16x + 5y = 12 respectively.
	If the variance of x is 25, what is the standard deviation of y?
	a) 16 b) 8 c) 64 d) 4
Theo	oretical Aspects
 9.	The word regression is used to denote of the average value of one variable
 	for a specified value of the other variable.
	a) Estimation b) Prediction
	c) Either a) or b) above d) None of the above
	G J / F :se
10.	Regression methods are meant to determine:
	a) The nature of relationship between the variables.
	b) The functional relationship between the two variables.
	c) Both a) and b) above
	d) Neither a) nor b) above.
11.	The dependent variable in the regression analysis is one:
	a) Which influences the value of the independent variable.
	b) Whose value is to be predicted.
	c) Which can choose its value independently.
	d) None of the above.
12.	The line of regression is:
	a) The line which gives the best estimate to the value of one variable for any
	specified value of the other variable.
	b) The line which gives the best estimate to the value of all variables for any
	arbitrary value of a constant variable.
	c) The line showing the nature of relationship between two or more variables.
	d) None of the above.
	86

13.	Sinc	e Yield of a crop depends upon amount of rainfall, we need to consider:
	α)	The regression equation of yield on rainfall
	b)	The regression equation of rainfall on yield
	c)	Any one of a) or b) above can be considered
	d)	Neither of a) or b) can be considered
Prop	ertie	s:
14.	lf r :	= +1, the two lines of regression become:
	α)	Perpendicular to each other.
	b)	Identical
	c)	Parallel to each other.
	d)	Either a) or c) above.
15.	Corr	relation coefficient is the of the two regression coefficients.
	α)	Harmonic Mean
	b)	Geometric Mean
	c)	Arithmetic Mean
	d)	Both b) and c) above
16.	The	sign analogy of correlation coefficient and two regression coefficients is:
	α)	-, +, + b) -, -, - c) +, +, + d) Both b) and c) above
17.	Whe	en r = 0, the regression lines are:
	α)	Parallel to each other
	b)	Perpendicular to each other
	c)	Coincides
	d)	Either a) or b) above
18.	Whi	ch of the following(s) is/are TRUE regarding regression coefficient?
	α)	If b _{xy} > 0, then r < 0
	b)	If $b_{xy} < 0$, then r > 0
	c)	If the variable X and Y are independent, the regression coefficient is zero.
	d)	The range of regression coefficient is -1 to +1.

av	rana	ia Enterprise
19.	Wh	ich of the following statement/s is/are FALSE regarding the regression
	coe	fficient?
	α)	If one of the regression coefficient is greater than unity the other one is less
		than unity.
	b)	The product of two regression coefficient is equal to the square of the correlation
		coefficient between the two variables.
	c)	The regression coefficient lies between – infinity to + infinity.
	d)	None of the above is FALSE.
20.	Reg	pression Coefficient of y on x=0.8. Regression coefficient of x on y =0.2 coefficient
	of c	correlation = -0.4. Given data is:
	a)	Accurate b) Inaccurate c) True d) None
		8
21.		ne regression coefficient of y on x is $4/3$, then the regression coefficient of x on y is:
		More than 1 b) Less than 1
	c)	Less than zero d) None of the above
		S S S S S S S S S S S S S S S S S S S
		Serprise Add Enterprise
		S Enteri
		da

INDEX NUMBERS

Basic Concepts

- Index Numbers are special kind of averages, expressed in ratio, calculated as percentage and used as numbers.
- Index number is a number which is used as a tool for comparing prices and quantities
 of a particular commodity or a group of commodities in a particular time period
 with respect to other time period or periods.
- Index numbers indicate relative change in price or quantity or value expressed in percentage.
- Index numbers are always unit free.

• The year in which the comparison is made is called the "Current Year" and the year with respect to which the comparison is made is the "Base Year".

- Suppose Price Index in 2011 is 800 based on 1980 prices, then
 - o 1980 means base year with help of which comparison is done.
 - o If nothing is mentioned, base prices are always taken as 100.
 - o 2011 is the current year or present year.
 - o 800 is the index number or price index number.
- Index numbers are of three types:
 - Price Index When the comparison is made in respect of prices it is called price index numbers.
 - Quantity Index When the comparison is made in respect of quantities it is
 called Quantity of Volume Index Numbers.
 - Value Index When comparison is made in respect of values
 (Value = Price x Quantity), it is called Value Index Number.

•

Terminology (Unless otherwise mentioned we shall be using the following notations)

I_{o1} means Index Number for year "1" based on year "0" (Current with respect to base) 0

- I_{10} means Index Number for year "0" based on year "1" (base with respect to current) Ο
- P₁ = Prices prevailing in current year (year 1) 0
- P_0 = Prices prevailing in base year (year 0) 0
- Q₁ = Quantity in current year 0
- $Q_0 = Quantity$ in base year 0
- $P_{0}Q_{0}$ = Price x Quantity of Base Year (Value of the base year) 0
- **P**₁**Q**₁ = Price x Quantity of Current Year (Value of Current Year) 0
- V_{01} = Value Index of current year with respect to base year 0
- V_{10} = Value Index of base year with respect to current year 0

Concept of price Relative (PR) : •

Price relative is defined as the ratio of Current Year's price to the Base Year's price

expressed as percentage Symbolically,

$$I = PR = \frac{P_1}{P_0} \times 100$$

Construction of Price Index Numbers

Method of Aggregates

	X100				
	Po				
struction of Price Index Numbers	S portise				
	Enterr				
of Aggregates					
, diana					
Case: 1	Case: 2				
Simple Aggregate of prices	Weighted Aggregate of prices				
$P_{01} = \frac{\sum P_1}{\sum P_0} \times 100$	$P_{01} = \frac{\sum P_1 w}{\sum P_0 w} \times 100$				

	CALCULATION OF WEIGHTED AGGREGATE OF PRICES UNDER DIFFERENT TYPE OF		
WEIGHTS			
	If $w = Q_0$	If $w = Q_1$	
	Laspeyre's Index	Paasche's Index	
	$L_{01} = \frac{\sum P_1 Q_0}{\sum P_0 Q_0} \times 100$	$P_{01} = \frac{\sum P_1 Q_1}{\sum P_0 Q_1} \times 100$	
_	Fisher's Index	Bowley's Index	
_	GM of L and P	AM of L and P B = $\frac{L+P}{P}$	
	$F_{01} = \sqrt{L \times P}$	$B_{01} = \frac{2 + 7}{2}$	

If w = Q₀ + Q₁
Marshall-Edgeworth Index

$$P_{01} = \frac{\sum P_1 (Q_0 + Q_1)}{\sum P_0 (Q_0 + Q_1)} \times 100 = \frac{\sum P_1 Q_0 + \sum P_1 Q_1}{\sum P_0 Q_0 + \sum P_0 Q_1} \times 100$$

Relative Method

First calculate Price Relative (PR) of each commodity. Price Relative (PR) is defined as the ratio of the current year's price to the base year's price, expressed as percentage and is given by $PR = \frac{P_1}{P_0} \times 100$

Case: 1	Case: 2	
Simple AM of Price Relative	Weighted AM of Price Relative	
$\sum PR$	$\bigotimes \sum PR.w$	
$P_{01} = \frac{2}{n}$	$P_{01} = \frac{\sum PR.w}{\sum w}$	
n=number of Commodities	∑w= Total Weight	

Note :

- GM is the best average in the construction of index numbers but practically we use AM, because G.M is difficult to compute.
- Marshall- Edgeworth's Index number is an approximation to Fisher's index number.
- Methods of Relatives are also known as Arithmetic Mean Method.

• When a series of Index Numbers for different years are expressed in a tabular form to compare the changes in different years, then this tabular representation of numbers is known as "Index Time Series".

Construction of Quantity Index Numbers

All the formula will remain same as in price index numbers, just interchange p and q, i.e., p to q and q to p. For example; if Laspeyer's Price Index is $\frac{\sum P_1 Q_0}{\sum P_0 Q_0} \times 100$, then Laspeyer's Quantity Index we can get by interchanging P to Q and Q to P, and hence it will be $\frac{\sum Q_1 P_0}{\sum Q_0 P_0} \times 100$.

CA FOUNDATION STATISTICS

Construction of Value Index Number

$$V_{01} = \frac{\sum P_1 Q_1}{\sum P_0 Q_0} \times 100$$

Cost of Living Index (CLI)

- CLI is also known as Wholesale Price Index, Consumer Price Index or General Index.
- CLI is defined as the weighted AM of index numbers of few groups of basic necessities. Generally for calculating CLI; food, clothing, house rent, fuel & lightning and miscellaneous groups are taken into consideration.
- $CLI = \frac{\sum Iw}{\sum w}$, where I = Individual Group Index and w = Group weight.

Application of Cost of Living Index

- o It helps to calculate the purchasing power of money and real income of the consumer.
- o Increase in CLI implies increase in price index causing thereby an inflation i.e. reduction in the purchasing power.
- o Purchasing Power of $\neq 1 = \frac{100}{\text{Cost of Living Index}} \times 1$

o Peal Income -	Money or Nominal Income x 100	-	
0	Redi filcome -	Cost of Living Index	

Concept of Equivalent Salary – Calculation of Dearness Allowances(D.A)
Suppose a person was getting a money income of ₹ X₁ in Year 1 (Y₁) when the CLI
was I₁ and in Year 2 (Y₂) the CLI is I₂. If the person wants to maintain his former
standard of living as in Y₁, then Real Income (RI) of Y₁ should be equal to RI of Y₂.

Thus Money Income required in $Y_2 = \frac{\text{CLI of } Y_2}{\text{CLI of } Y_1} \times \text{Salary (Money Income) of } Y_1(\text{Rs. } X_1)$

Let the money income in Y_2 is X_2 . If X_2 is less than or equal to X_1 , then no allowances are required to be given. But if X_2 is greater than X_1 , then amount of Dearness Allowances = $₹ (X_2 - X_1)$

Base Shifting in Index Numbers

- Base Shifting is a process whereby a new series of Index Numbers with a new base year is formed from a given series of Index Numbers with another base year.
- Index Number for any year (with base year shifted) is given by:

Old Index Number for the year

Old Index Number for the New Base Year

Tests of Adequacy of Index Number

 Unit Test – An Index Number is a good index number if it is unit free. All index numbers will satisfy this test except Simple Aggregate of Prices.

- Time Reversal Test (TRT) According to this test I₀₁ × I₁₀ = 1 (ignore 100). This test is satisfied by:
 - o Simple Aggregate of Prices
 - o Weighted GM of Price Relative
 - o Marshall Edgeworth Index
 - o Fisher's Ideal Index
- Factor Reversal Test (FRT) According to this test Price Index x Quantity Index = Value Index. Only Fisher's Ideal Index satisfies this test.
- Circular Test Circular Test is an extension of Time Reversal Test. According to this test I₀₁ × I₁₂ × I₂₃ × × I_(n-1), n × I_{n0} = 1. This test is satisfied by:
 - o Simple Aggregate of Prices (ie. Weighted Aggregate of Prices with Fixed Weights)
 - o Simple GM of Price Relatives

Fixed Base Method – Chain Base Method

- Under Fixed Base Method (FBM), all the index numbers are calculated with respect to a fixed base period.
- Under Chain Base Method (CBM), all the index numbers are calculated with respect to the price of immediate preceding period.
- Under CBM, the index number for the first year will always be 100.
- For the first year, Chain Base Index = Fixed Base Index.

J.K. SHAH [®] CA FOUNDATION STATISTICS
a Véranda Enterprise
Chain Daga Index for the year y Fixed Daga Index for the preceding year
• FBI for any year = Chain Base Index for the year x Fixed Base Index for the preceding year 100
100
Chain Index Numbers
o Chain Index Numbers are calculated from Link Index Numbers or Link Relatives.
o Chain Index for any year = Link Index for the year x Chain Index for the preceding year
100
ρ Link Relative = $\frac{\text{Price Relative of the Current Year}}{x \ 100}$
o Link Relative = $\frac{1}{\text{Price Relative of the preceding Year}} \times 100$
Note: Always start with one year preceding to the given years from which you are to
calculate the chain index numbers. In that year (i.e. the preceding year) take both the link
relative and the chain index to be 100.
Splicing of Index Numbers
• Splicing is a process whereby two or more discontinued series of index numbers with
different base years are merged to form a new continuous series of index numbers
with a new base year.
S Enteri
• The factor which is multiplied for such conversion is called "Conversion Multiplier".
L Idram.
• Let there are two series Y_1 and Y_2 . When the series Y_1 is merged into the series Y_2 ,
it is known as "Forward Splicing" and when series Y_2 is merged into series Y_1 , it is
known as "Backward Splicing".
Stock Market Index:
It represents the entire stock market. It shows the changes taking place in the stock
market. Movement of index is also an indication of average returns received by the
investors. With the help of an index, it is easy for an investor to compare performance as
it can be used as a benchmark, for e.g. a simple comparison of the stock and the index
can be undertaken to find out the feasibility of holding a particular stock.
Each stock exchange has an index. For instance, in India, it is Sensex of BSE and Nifty of
NSE. On the other hand, in outside India, popular indexes are Dow Jones, NASDAQ, FTSE
etc.
(a) Bombay Stock Exchange Limited: It is the oldest stock exchange in Asia and
was established as "The Native Share & Stock Brokers Association" in 1875. The

Securities Contract (Regulation) Act, 1956 gives permanent recognition to Bombay Stock Exchange in 1956. BSE became the first stock exchange in India to obtain such permission from the Government under the Act. One of the Index as BSE Sensex which is basket of 30 constituent stocks. The base year of BSE SENSEX is 1978-79 and the base value is 100 which has grown over the years and quoted at about 592 times of base index as on date. As the oldest Index in the country, it provides the time series data over a fairly long period of time (from 1979 onward).

(b) National Stock Exchange: NSE was incorporated in 1992. It was recognized as a stock exchange by SEBI in April 1993 and commenced operations in 1994.NIFTY50 is a diversified 50 stocks Index of 13 sectors of the economy. The base period of NIFTY 50 Index is 3 November 1995 and base value is 1000 which has grown over years and quoted at 177 times as on date.

Computation of Index

Following steps are involved in calculation of index on a particular date:

- Calculate market capitalization of each individual company comprising the index.
- Calculate the total market capitalization by adding the individual market capitalization of all companies in the index.
- Computing index of next day requires the index value and the total market capitalization of the previous day and is computed as follows:

IndexValue=Index on Previous Day x Total market capitalisation for current day Total market capitalisation for previous day

- It should also be noted that Indices may also be calculated using the price weighted method. Here, the share price of the constituent companies forms the weight. However, almost all equity indices worldwide are calculated using the market capitalization weighted method.
- It is very important to note that constituents' companies does not remain the same.
 Hence, it may be possible the stocks of the company constituting index at the time of index inspection, may not be aprt of index as on date and new companies stock may have replaced them.

CPI- Consumer Price Index/ Cost of living Index or Retail Price Index is the Index which measures the effect of change in prices of basket of goods and services on the purchasing power of specific class of consumer during any current period w.r.t to some base period. WPI- Whole Sale Price Index - The WPI measures the relative changes in prices of commodities traded in wholesale market.

Veranda Enterpris

CLASSWORK SECTION

SIMPLE / UNWEIGHTED INDEX NUMBER :

From the following table by the method of relatives using Arithmetic mean the price 1. Index number is

1					1	1
	Commodity	Wheat	Milk	Fish	Sugar	
	Base Price	5	8	25	6	
	Current Price	7	10	32	12	
	a) 140.35	b) 148.25	5 c) 140	.75 d) N	lone of these.	

2. From the following data

 Commodities	Base year	Current year						
 А	25	55						
 В	30	45						
Then index numbers from G. M. Method is :								

α)	181.66	b) 185.25 c) 181.75	5 d)	None of these.	
		and come			
IGHT		NUMBER :			

WEIGHTED INDEX NUMBER :

From the following data for the 5 groups combined 3.

Group	Weight	Index Number
Food	35	425
Cloth	15	235
Power & Fuel	20	215
Rent & Rates	8	115
Miscellaneous	22	150

a Veranda Enterprise

4.	In calculating a certain cost of living index number the following weights were used.										
	Food 15, Clothing 3, Rent 4, Fuel & Light 2, Miscellaneous 1. Calculate the index for										
	the data when the average percentages rise in prices of items in the various groups										
	over the base period were 32, 54, 47, 78 & 58 respectively.										
	a) 139.76 b) 141.99 c) 141.76 d) 139.87										

BASE SHIFTING

Shift the base period of the following series of index numbers from 1978 to 1985: 5.

Year	1982	1983	1984	1985	1986	1987	1988			
Index No. [Base	120	125	132	140	150	158	175			
1978 =100]										
a) 85.71, 89.29, 100, 94.29, 107.14, 112.86, 125 💿										
b) 85.71, 89.29, 94.29, 100, 107.14, 112.86, 125										

85.71, 89.29, 101.98, 94.29, 107.14, 112.86, 125 c)

85, 89, 94, 100, 107, 112, 125 d)

CHAIN BASED AND FIXED BASED INDEX

From the following data 6.

a, 05,05,54,100,101,112,125									
IN BASED AND FIXED BASED INDEX									
S Enter									
From the follo	owing data	P 30							
		, dans							
Year 1992 1993 1994 1995 1996									
Link Index 100 103 105 112 108									

(Base 1992 = 100) for the years 1993-96.	. The construction of chain index is:
--	---------------------------------------

a)	103, 100.94, 107, 118.72	b)	103, 108.15, 121.13, 130.82
c)	107, 100.25, 104, 118.72	d)	None of these.

DEARNESS ALLOWANCES/ EXTRA ALLOWANCES

Net Monthly income of an employee was ₹ 800 in 1980. The consumer price Index 7. number was 160 in 1980. It is rises to 200 in 1984. If he has to be rightly compensated. The additional dearness allowance to be paid to the employee is : ₹240 a) b) ₹275 c) ₹250 d) 200

_	a r	Clana	a Enterprise								
	MIS	CELL	ANEOUS SUN	15							
	8.	The	price of a c	commodit	y increases	from ₹	5 per ur	nit in 1990) to ₹ 7.50 per uni	t	
		in 1	995 and the	e quantity	consumed	decrea	ses from	120 units	in 1990 to 90 units	5	
		in 1995. The price and quantity in 1995 are 150% and 75% respectively of the									
		corr	esponding p	orice and o	quantity in	1990. T	herefore,	the produ	act of the price ratio	D	
		and	quantity ra	tio is:							
		α)	1.8	b)	1.125	c)	1.75	d)	None of these.		
	THE	ORET	ICAL ASPEC	TS							
	9.								dex numbers.		
		a)	weights	b)	classes	c)	estimat	ions	d) none		
								®			
	10.		r								
_		α)	A.M.	b)	G.M.	c)	H.M.	d)	none		
							5/	9			
_	11.		C	- ·			-	:66			
		a)	H.M.	b)	G.M.	c)	A.M.	d)	none		
_	4.2						nic				
_	12.		tor Reversal		cistied by	90	1				
_		a)	Fisher's Ide		Vero.	b)		es Index			
_		c)	Paasches II	naex	3	d)	none				
_	10	Lac	oouro's form		oot caticfu						
_	13.	a)	peyre's form Factor Reve		lot satisfy	b)	Time Re	eversal Tes			
-		c)	Circular Tes			d)	all the				
-		~/		~~		~,					
-	14.	ç	Sum of all co	ommoditv	prices in th	e curre	nt vear ×	100			
-					ty prices in						
-		(a)	Relative Pr		<i>v</i> 1	(b)	-	Aggregati	ve Price Index		
┥		(c)	both			(d)	none				
	15.	Whe	en the produ	ct of price	index and t	he quar	ntity inde>	k is equal 1	to the corresponding]	
		valı	ue index ther	n the test	that holds i	is	-				
		(a)	Unit Test			(b)	Time Re	eversal Tes	st		
		(c)	Factor Reve	ersal Test		(d)	none ho	olds			

J. CL		SHAH® SSES a Enterprise				•		CA FOUNDA	TION STATISTICS
			Formula for	r calculatin	g index	numbers so	atisfies t	he	tests
	α)	Unit Test			b)	Factor Re			
	c)	both			d)	none			
17.	lf th	ne index nu	mber of pri	ices at a pla	ace in 19	994 is 250 v	with 198	34 as base ye	ar, then
	the	prices have	e increased	on average	e by				
	α)	250%	b)	150%	c)	350%	d)	None of th	iese.
18.	The	oretically,	G.M. is the	best avera	ge in th	e construct	tion of i	ndex number	rs but in
	pra	ctice, most	ly the A.M.	is used					
	α)	false	b)	true	c)	both	d)	none	
19.				resented by	symbol	ically is :	B		
	α)	P ₀₁ × Q ₀₁ =				$I_{01} \times I_{10} =$			
	b)	$I_{01} \times I_{12} \times I_{12}$	₂₃ x I _{(n-1}	$_{n} \times I_{n0} = 1$	d)	None of t	these.		
						5/	9		
							<u>se</u>		
						nterpri			
					2	nte			
					90				
				<u> </u>					
				3					

5A

PROBABILITY

Theory of Chance

Probability

Subjective

Objective

It is influenced by personal belief, bias, attitude, etc and this is used in decision making management.

Definitions

- a) **Experiment or Random Experiment :** When an operation or series of operations are conducted under identical conditions it is called as experiment.
- b) Sample Space : A set of all possible outcomes of a random experiment is called a sample space (S or U). Sample space may be finite or infinite.
- c) **Event:** The outcome of an experiment is called an event.
- d) Elementary and Compound (or Composite) Events: An event is said to be elementary, if it cannot be de-composed into simpler events. A composite event is an aggregate of several elementary events.
- e) Mutually Exclusive Events : Events are said to be mutually exclusive when the
 occurrence of any one event excludes the occurrence of other or otherwise e.g. if a
 coin is tossed occurrence of head and tail are mutually exclusive events because of
 head will automatically exclude the occurrence of tail or vice versa.
- f) Equally likely events: Events are said to be equality likely when they are equiprobable i.e. the event should occur with same chance of occurrence (None can be preferred over the other).

g)

<u>J</u> .				
	possible outcomes. Events will	necessarily occur.		
1- 1	The second second	and the back of a second set of a sec	handhan 10 hanna an ina	
h)	Independent Events: Events are	-		
		of them is not affected by and	l does not affect the	
	happening of any one of others			
		ROACHES TO PROBABILITY		
	Classical or Mathematical or	Empirical or Posteriori or	Axiomatic	
	a Priori	Statistical		
1.	Classical Definition of Probability			
	•	' possible outcomes, which are	-	
		nd "m" of these are favourable	to any event A, then	
	the probability of the event A is	s defined as the ratio m/n, i.e.,		
	P(A) = - = - Favourable Outcomes			
	n Total Outcomes	<u> </u>		
		G Vice		
Note	:1:	9 10113		
		SENTE		
a)	· · · · · · · · · · · · · · · · · · ·	ill always lie between 0 and 1,	both inclusive i.e.,	
	$0 \leq P(A) \leq 1$ and $P(A) \geq 0$.	<u>(0)</u> ,		
	ave			
b)	If P(A) = 0 , it means that event	is impossible.		
c)	P(A) = 1 signifies that event is c	ertain or sure event.		
Note	.2:			
	plementary Probability			
	P(A) be the Probability of occurre			
Ther	$P(\overline{A}) / P(A^{C}) / P(A^{C}) = 1 - P(A) =$	Probability of non-occurrence	of event A.	
Note				
α)	$P(A) + P(A^{C}) = 1$, which implies	that A and A ^c are collectively ex	khaustive.	
b)	$P A \cap A^{C} = 0$, which implies th	at A and A ^c are mutually exclus	sive.	
		102		

Exhaustive events: The events are said to be exhaustive when they include all

CA FOUNDATION STATISTICS

Limitations Of Classical Probability
a. It fails if the no. of outcomes of an experiment. is very large $n \rightarrow infinite (\infty)$.
b. It fails if the outcomes are not equally likely.
c. The definition holds if the possible events are known well in advance.
2. Empirical or posteriori or Statistical definition
If a random exp. is repeated large no. of times say n under identical conditions & let
event A occurs m times then
$P(A) = lt \frac{m}{m}$
$n \rightarrow \infty \mathcal{N}$
3. Axiomatic definition
It is totally dependent on set theory
(i) $P(A) \ge 0$ for all $A \subseteq S$
(ii) P(S) = 1
(iii) If A & B are mutually exclusive events $P(A \cap B) = 0$
$P(A \cup B) = P(A) + P(B).$
Scorist
Total Number of Outcomes

To find the total number of outcomes, when an experiment is conducted "n" times in succession or with "n" objects only once.

Total outcomes = [No of outcomes in one experiment]ⁿ

Where "n" = either number of objects or number of times the experiment gets repeated.

Examples:

- a) 2 coins are tossed. Total outcomes = $2^2 = 4$
- b) A coin is tossed five times. Total outcomes = 2⁵ = 32
- 2 dice are rolled together. Total outcomes = 6^2 = 36 c)

Concepts of 'At least', 'At most' and 'At least one'

- At least •
 - Let x = 0, 1, 2, 3, ..., n

Then, x is at least k, implies $x \ge k$, which implies that x = k, (k+1), (k+2), n

J.K. SHAH)								CA FC		rion <mark>st/</mark>	ATISTICS
a Veranda Enterprise												
At most												
x is at most k	implies	$\mathbf{x} \leq \mathbf{k}$,	which	n meai	ns x	= 0, 1, 2	2,,	k				
• At least One												
x is at least c	ne impl	ies thc	at $x \ge 1$	1, i.e.,	x =	1, 2, 3,	,	n				
Hence, P(at le	east 1) =	1 – P	(none)	= 1 -	P(0)							
Facts about Card												
• A well shuffle	ed deck	of 52 d	ards	are bi•	-colo	ored -26	5 red	and 26	6 black	•		
• There are 4 s	uits or c	ategor	ries									
Clubs -13	3 5	Spades	5 -13									
Hearts -13	3 [Diamoi	nds-1	3								
In each categ	ory , the	ere is 1	. king	, 1 Qu	een							
1Jack or knav	ve and 1	Ace(A	Ace im	plies	1)							
Therefore,					5			9				
King =4	King, Q	ueen o	and Jo	ick tog	jethe	er are co	alled	Face co	ards.			
Queen =4	King Qu	Jeen J	ack ar	nd Ace	are	togethe	er cal	led Ho	nour co	ards.		
Jack =4	Total fo	ace Ca	rds=4	+4+4=	12	nter	N.					
Ace =4	Honou	Cards	5 = 4 + 4	+4+4(κ <i>,</i> Q,	J,A)						
			120	300								
Rolling of Dice	\mathcal{O}	3										
• If a die is roll	ed outco	omes o	are 1,	2, 3, 4	×, 5,	6						
 It two unbias 	ed dice	are rol	led, o	utcom	nes =	6 ² = 36).					
			S	ample	e Spo	ace						
1,1	2,	1		3,1		4,1		5,	,1		6,1	_
1,2	2,		1	3,2		4,2			,2	1	6,2	_
1,3	2,			3,3,		4,3			,3		5,3	_
1,4	2,		1	3,4		4,4			,4	i	5,4	_
1,5	2,		1	3,5		4,5			,5	i	6,5	
1,6	2,	6		3,6		4,6		5,	,6		6,6	
Observations:												
A. Sum of faces or				1	<u> </u>		<u> </u>				1	I
Sum	2	3	4	5	6	7	8	9	10	11	12	
No. of ways	1	2	3	4	5	6	5	4	3	2	1	

B. Distribution of sample space

Face	F = S	F > S	F < S	F Face on the First die	
Cases	6	15	15	S Face on the Second die	

No. of Children in a family

It treated same as in case of tossing of a coin.

For instance, if there are 3 children in a family, then outcomes = $2^3 = 8$

(BBB) (BBG) (BGB) (BGG) (GBB) (GBG) (GGB) (GGG)

• Leap Year

A leap year contains 52 weeks and 2 extra days. These two extra days can be

either of the following out-comes:

(M, T) (T, W) (W, Th) (Th, F) (F, Sat) (Sat, Sun) (Sun, M) 🛞

• Simple drawing of Balls from Bag – Using Combination Techniques

A Bag contains m Red Balls and n Black Balls. Then if r balls are drawn, then it can be done in ${}^{m+n}C_r$ ways.

Similarly use combination techniques to choose the required number of objects from the total objects given.

THEORM OF TOTAL PROBABILITY (Rule of Addition)

Statement: if A and B are two events, not mutually exclusive, then the probability


of occurrence of at least any of the two events, A and B will be given by;

P (A \cup B) or P (A+B) = P (A) + P (B) - P (A \cap B) or P (AB)

Note 1: Union (\cup) implies "OR" \Rightarrow Addition (+)

Note 2: Intersection (\cap) implies "AND" \Rightarrow Multiplication (\times)

Partitioning of events

J.K. SHAH

a Veranda Enterprise

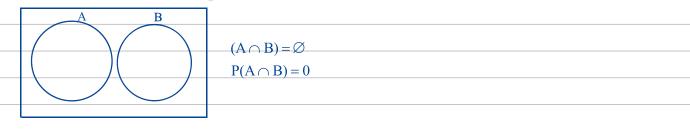
- 1. A and $B \Rightarrow (A \cap B)$ or AB
- 2. A and not $B \Rightarrow A$ but not $B \Rightarrow A \cap B^c \Rightarrow A (A \cap B)$
- 3. B but not A \Rightarrow B and not A \Rightarrow B \cap A^c \Rightarrow B (A \cap B)
- 4. Neither A nor $B \Rightarrow A$ "not" and B "not" $\Rightarrow A^c \cap B^c$
- 5. $A^c = (3) + (4)$
- 6. $B^c = (1) + (4)$
- 7. $A^{c} \cup B^{c} = (1) + (3) + (4) = [2]^{c} = (A \cap B)^{c}$
- 8. $A^{c} \cap B^{c} = [4] = [1 + 2 + 3]^{c} = (A \cup B)^{c}$

Proof of P ($A \cup B$):

 $P(A \cup B) = P(1) + P(2) + P(3)$

- $= P(A \cap B^{C}) + P(A \cap B) + P(A^{C} \cap B)$
- $= P(A) P(A \cap B) + P(A \cap B) + P(B) P(A \cap B)$
- $= P(A) + P(B) P(A \cap B)$

Hence proved


Note 1:

For 3 events, A, B and C, not mutually exclusive, +

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$

Note 2:

When A and B are mutually exclusive, the two sets are disjoint and accordingly $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$

Note 3:

When 3 events A, B and C are mutually exclusive then $P(A \cap B) = P(B \cap C) = P(A \cap C) = P(A \cap B \cap C) = 0$ and accordingly

 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

Note 4:

When 3 events A, B and C are mutually exclusive and collectively exhaustive then, $P(A \cup B \cup C) = P(A) + P(B) + P(C) = 1$

Note 5:
Working Rules:
i. $P(A \cap B^c) = P(A) - P(A \cap B)$
ii. $P(A^c \cap B) = P(B) - P(A \cap B)$
iii. $P(A^c \cup B^c) = P(A \cap B)^c = 1 - P(A \cap B)$
iv. $P(A^{c} \cap B^{c}) = P(A \cup B)^{c} = 1 - P(A \cup B)$
v. $P(A^{c} \cup B) = P(A^{c}) + P(B) - P(A^{c} \cap B)$
vi. $P(A \cup B^{c}) = P(A) + P(B^{c}) - P(A \cap B^{c})$
8
CONCEPT OF 'ODDS IN FAVOR' AND 'ODDS AGAINST'
Odds in favor of an event is defined as 'the ratio of the favorable to the
unfavorable cases and is denoted by u : v
Where, U = favorable cases and
U = favorable cases and
$\therefore P(A) = \frac{u}{u+v} \text{ and } P(A^{C}) = \frac{v}{u+v}$
$\frac{1}{u+v} = \frac{1}{u+v} = \frac{1}{u+v}$
Odds against an event A is defined as 'the ratio of the unfavorable to the
favorable cases and is given by v : u
Where,
U = favorable cases
V = Unfavorable cases
$\therefore P(A) = \frac{u}{u+v} \text{ and } P(A^{C}) = \frac{v}{u+v}$
$\begin{array}{c} \dots & \dots & \dots & \dots & \dots & \dots \\ u + v & u + v & u + v \end{array}$

THEOREM OF COMPOUND PROBABILITY (RULE OF MULTIPLICATION)

Statement:

If A and B are two events, not mutually independent, then the probability of joint or simultaneous occurrence of the two events A and B would be given by the product of the probability of event A and the conditional probability of event B assuming that, A has already occurred,

Symbolically, the fact is expressed as, $P(A \cap B) = P(A) \times P\left(\frac{B}{A}\right)$

Similarly product of the probability B and the conditional probability of event A assuming that, B has already occurred, is given by

$$P(A \cap B) = P(B) \times P\left(\frac{A}{B}\right)$$

Note 1:

•
$$P(A \cap B) = P(A) \times P\left(\frac{B}{A}\right)$$

 $\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$

Where, $P(A) \neq 0$ i.e, P(A) should not be an impossible event

$$P(A \cap B) = P(B) \times P\left(\frac{A}{B}\right)$$
$$\therefore P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{B}$$

(B) P(B)

Where, $P(B) \neq 0$ i.e, P(B) should not be an impossible event

•
$$P\left(\frac{A}{B^{C}}\right) = \frac{P(A \cap B^{C})}{P(B^{C})}$$

 $P\left(\frac{A}{B^{C}}\right) = \frac{P(A) - P(A \cap B)}{1 - P(B)}$

 (B°) Where,

 $P(B) \neq 1$ i.e, P(B) is not a sure event

$$P\left(\frac{A^{C}}{B^{C}}\right) = \frac{P(A^{C} \cap B^{C})}{P(B^{C})} = \frac{P(A \cup B)^{C}}{1 - P(B)} = \frac{1 - P(A \cup B)}{1 - P(B)}$$
$$P\left(\frac{A^{C}}{B}\right) = \frac{P(A^{C} \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)}$$

•
$$P\left(\frac{B^{C}}{A^{C}}\right) = \frac{P(B^{C} \cap A^{C})}{P(A^{C})} = \frac{P(A \cup B)^{C}}{1 - P(A)} = \frac{1 - P(A \cup B)}{1 - P(A)}$$

Note 2:

When the events A and B are independent, in such a case $P(A \cap B) = P(A) \times P(B)$

Note 3: When the events A and B are independent, then, α. $\mathbf{P}\left(\frac{B}{A}\right) = P(B)$ Proof: $P\left(\frac{B}{A}\right) = P(B)$ $\Rightarrow \mathbb{P}\left(\frac{A \cap B}{P(A)}\right) = P(B)$ $\Rightarrow P(A \cap B) = P(A) \times P(B)$ Hence, proved When the events A and B are independent, then, b. Ada Enterprise $P\left(\frac{A}{B}\right) = P(A)$ Proof: $P\left(\frac{A}{B}\right) = P(A)$ $\Rightarrow \frac{P(A \cap B)}{P(B)} = P(A)$ $\Rightarrow P(A \cap B) = P(A) \times P(B)$ Hence, proved Note 4: For three events, A, B and C which are not independent, $P(A \cap B \cap C) = P(A) \times P\left(\frac{B}{A}\right) \times P\left(\frac{C}{A \cap B}\right)$ Note 5: When 3 events, A and B and C are independent, $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$

Note 6:

Two events A and B are,

- i. Mutually exclusive, if $P(A \cap B) = 0$
- ii. Independent, if $P(A \cap B) = P(A) \times P(B)$
- iii. Equally likely, if P(A) = P(B)
- iv. Exhaustive, if $P(A \cup B) = 1$
- v. Mutually exclusive and exhaustive e, if $P(A \cup B) = P(A) + P(B) = 1$

Note 7:

Two events with non-zero probability cannot be simultaneously mutually exclusive and independent.

Note 8:

If two events A and B are independent, then

- i. A^c and B^c are independent $\Rightarrow P(A^{c} \cap B^{c}) = P(A^{c}) \times P(B^{c})$
- ii. A and B^c are independent $\Rightarrow P(A \cap B^{C}) = P(A) \times P(B^{C})$
- iii. A^c and B are independent $\Rightarrow P(A^{c} \cap B) = P(A^{c}) \times P(B)$

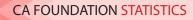
Note 9:

If $A_1, A_2, A_3, \dots, A_n$ are n events, then the number of conditions to be satisfied for proving their mutual independence are $2^n - (n+1)$

CA FOUNDATION STATISTICS

CLASSWORK SECTION

Chil	ldren	n in a Family						
In d	ı farr	nily of three chi	ldren	there is at least o	one	girl. Find the pr	obo	ability that;
1.	The	ere are at least	two	girls.				
	α)	4/7	b)	2/7	c)	2/8	d)	1/7
2.	The	ere is exactly 1	boy.					
	α)	1/8	b)	2/7	c)	3/7	d)	1/7
Dra	wing	g of Balls from	Bag			B		
 Fro	m a l	bag containing	7 wh	ite and 5 red balls	5, 4	balls are drawr	at	random. What is the
 cha	nce	that;						
						2/9		
 3.	All	are red.		6		V.ce		
	α)	5/495	b)	1/495	c)	3/495	d)	None of these
				/9	Ç	nteri		
4.	Thr	ree white and a	one re		<u>, (</u>			
	α)	165/495	b)	185/495	c)	175/495	d)	195/495
				3 V S				
Ad	ditio	n Theorem						
 A n	umb	er is selected o	at ra	ndom from a set	of	first 120 naturo	l n	umbers. What is the
 pro	babi	lity that it is div	visibl	e by:				
 5.	5 c	or 6						
	α)	1/3	b)	1/4	c)	2/12	d)	None of the above
	mulc							
 lf P	(A) =	1/4 , P(B) = 2/	5, P(A	$A \cup B$) = 1/2 . Find:	•			
 6.		A ∩B ^c)						
	α)	3/20	b)	1/10	c)	1/4	d)	1/2
				111				


<u>J.</u>]	<u>K.</u>	SHAH [®]					CA FOUNDATION STATISTICS
 al		da Enterprise					
7.	P(A	A ^c ∩ B ^c)					
	α)	3/20	b)	1/10	c)	1/4	d) ½
 8.	P(A	Ac/Bc)					
 	a)	4/10	b)	5/10	c)	6/10	d) None of the above
 			•		•	-	· · ·
Inde	eper	ident Events					
 9.							P(A) = 2/5, what is P(B)?
 	α)	4/15	b)	4/9	c)	5/9	d) 7/15
Ар	obl	em in Statistic	s is gi	ven to three stud	dents	A, B and C who	ose respective chances of
solv	ing	are 1/3, 1/4,	1/5. Fi	nd the probabil	ity th	at:	
							¢
 10.	lt i	s solved by at	least	2 of them.		79	2
	α)	2/6	b)	1/6	c)	5/6	d) None of these
 						Sincise	
Odd	ls in	Favour / Odd	s Aaai	inst 🤇	5	rert	
					0		
 11.	Th	e odds that c	book	will be favorab	ly rev	viewed by three	e independent critics are
 					-		ility that majority of the
 				<u> </u>	VVIIC		staty that majority of the
 				ok favorably?		201 / / 00	N (20 (0/0
 	α)	225 / 343	b)	209 / 343	C)	391 / 400	d) 420 / 840
Bag	s ar	id Balls – Imp	ortan	t Cases			
Case	e: 2	– Two bags a	re give	en, a bag is chos	en at	random, then	ball(s) is/are drawn
A bo	ag co	ontains 5 red	and 3	black balls and	anoth	ner bag contains	s 4 red and 5 black balls.
 A bo	ag is	selected at r	andon	n and a ball is s	electe	ed. Find the cho	Ince that:
12.	lt i	s red.					
	a)	77 / 177	b)	87 / 144	c)	97 / 854	d) 77 / 144
 			/		-/		· · · · ·
				112	2		

CA FOUNDATION STATISTICS

al	/drand	a Enterprise							
Case	e: 3 -	- Two bags ai	re give	n, 1 ball is	chosen from I	Bag 1 and	transferred t	o Bag 2. Nov	W
a bo	all is	drawn from	Bag 2						
The	re ar	e two bags.	The f	rst contain	s 2 red and	1 white bo	Ill, whereas	the 2nd ba	ıg
cont	tains	1 red and 3	white	balls. One	ball is taken o	out at rand	om from the	e 1st bag an	d
put	into	second bag.	Then o	a ball is cho	osen at rando	m from the	e second bag	<mark>g. What is t</mark> h	ie
 prot	babil	ity that;							
 13.	The	last ball is r	ed.						
 	α)	1/2	b)	1/3	c) ¼		d) 1/5		
Miso	cella	neous Cases							
 						8			
 14.		5 1		· · ·	0% and 50%			<u> </u>	
 					spectively. If a		-		
 			babilit	y that he	passed in Phy	sics if it is	known that	t he failed i	in
 		emistry?			5/	K ist			
 	α)	1/2	b)	1/3	c) 1/	4	d) 1/6		
					En		C II I		
 15.		_			ted at randor				at
 					r so formed, v				
 	α)	1/2	D)	1/5	c) 1/	4	d) 1/3		
The	1 *								
ine	oreti	cal Aspects							
 16	۸n	ovporimont is	know	n to bo ran	dom if the rea	sulta of the	ovporimont		
 16.		Can not be p			idom if the res	sulls of the	experiment		
 	a) b)	Can be predi		eu					
 	c)	Can be split		urther expe	rimonts				
 	d)	Can be selec							
 	u)	cun de selec							
 17.	\//h	ich of the foll	owing	pairs of ev	ents are mut	ally exclusion	sive?		
 					ool. B : He stu				
 	b)				He is a fine E				
 	c)				She is a good	-			
 	•		-		age. B : Peter	-	of Kolkata.		
 	- 1			J	5				
					112				

аИ	′dran	da Enterprise		· · · · · · · · · · · · · · · · · · ·						
18.	If F	P(A \cap B) = 0, then the two events A an	d E	3 are						
	α)	Mutually exclusive	b)	Exhaustive						
	c)	Equally likely	d)	Independent.						
19.	lf f	for two events A and B, P(AUB) = 1, the	en A	A and B are						
	α)	Mutually exclusive events	b)	Equally likely events						
	c)	Exhaustive events	d)	Dependent events.						
20.	lf c	an unbiased coin is tossed once, then t	he	two events Head and Tail are						
	α)	Mutually exclusive	b)	Exhaustive						
	c)	Equally likely	d)	All these (a), (b) and (c).						
21.	lf F	P(A/B) = P(A), then		®						
	α)	A is independent of B	b)	B is independent of A						
	c)	B is dependent of A	d)	Both (a) and (b).						
				2/9						
22.	lf t	wo events A and B are independent, t	her							
	α)	A and the complement of B are indep	pen	dent of Sector						
b) B and the complement of A are independent										
	c)	Complements of A and B are indepen	nde	nt						
	d)	All of these (a), (b) and (c).								
23.	lf t	wo events A and B are mutually exclu	siv	e, then						
	α)	They are always independent	b)	They may be independent						
	c)	They can not be independent	d)	They can not be equally likely.						
24.	lf o	a coin is tossed twice, then the events	5 '0	ccurrence of one head', 'occurrence of 2						
	he	ads' and 'occurrence of no head' are								
	α)	Independent	b)	Equally likely						
	c)	Not equally likely	d)	Both (a) and (b).						
25.	P(E	3/A) is defined only when								
	α)	A is a sure event	b)	B is a sure event						
	c)	A is not an impossible event	d)	B is an impossible event.						

26	For two event	A and B		= P(A) +	P(B) only	when
20.			, I (AU)			

- a) A and B are equally likely events
- b) A and B are exhaustive events
- c) A and B are mutually independent
- d) A and B are mutually exclusive.

27. For any two events A and B,

a)	P(A) + P(B) > P(A ∩ B)	b) P(A) + P(B) < P(A ∩ B)

c) $P(A) + P(B) \ge P(A \cap B)$ d) $P(A) \times P(B) \le P(A \cap B)$

28. According to the statistical definition of probability, the probability of an event A is the

- a) limiting value of the ratio of the no. of times the event A occurs to the number of times the experiment is repeated
- b) the ratio of the frequency of the occurrences of A to the total frequency
- c) the ratio of the frequency of the occurrences of A to the non-occurrence of A
- d) the ratio of the favourable elementary events to A to the total number of elementary events.

29. If P(A-B) = P(B-A), then the two events A and B satisfy the condition

Agran

- a) P(A) = P(B).
- c) $P(A \cap B) = 0$

(b) P(A) + P(B) = 1

d) P(A ∩ B) = 1

RANDOM VARIABLE

Theory of Expectation)

RANDOM VARIABLES

Α.

Definition of Random Variables or Stochastic Variable

- A variable whose value is determined by the outcome of a random experiment is called a random variable.
- 2. In other words, a random variable "x" is a real valued function defined on a sample space "S" of a random experiment such that for each point 'x' on the sample space f(x) = probability of the occurrence of the event represented by x.
- 3. Random Variables are also known as Chance Variables

e.g. If we toss 3 coins then S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

If 'X' denotes the number of heads obtained then 'x' assumes the following values with the corresponding probabilities.

	X	0	1	2	3	
-	P(x)	1/8	3/8	3/8	1/8	

These values of 'x' {0,1,2,3} are called the values of the random variables which are the outcomes of a random experiment.

- 4. Random Variables can be divided into the following two categories. They are
 - a. Discrete Random Variable
 - b. Continuous Random Variable

 a rerunu	a Enterprise
Α.	Discrete Random Variable
	Definition : If a variable can assume only discrete set of values i.e. a finite
	set of values or countably infinite set of values then it is called a Discrete
	Random Variable. In other words, discrete random variable can assume only
	whole numbers. (0, 1, 2, 3) e.g. In a roll of a die the random variable x
	assumes values {1, 2, 3, 4, 5, 6}, these are discrete random variables.
В.	Continuous Random Variables
	Definition : If a random variable can assume an uncountably infinite number
	of values or all real numbers in a given interval is called Continuous Random
	Variable. E.g. height or weight of a person is an example of continuous random
	variable.
	®
5. Con	cept of Probability Function of a Random Variable
Α.	For a discrete random variable, the probability function $f(x) = P(X = x_i)$ is called
 	Probability Mass Function (p. m. f.) of a discrete random variable 'x' which
	satisfies the following two conditions (i) $f(x) \ge 0$ (ii) $\sum f(x) = 1$
	S S ronse
В.	If 'x' is a continuous random variable the probability function f(x) is called
	Probability Density Function (p. d. f.) which has the following two properties
	(i) $f(x) \ge 0$
	(ii) $\int_{a}^{b} f(x) dx = 1$ where $a \le x \le b$ is the range of 'x'. Since the continuous random
	variable can assume any real value, therefore Random Variable can be
 	any real number.
 С.	For a Continuous Random Variable, the probability of occurrence of any specific
	value is 0 because for a continuous variable, probability are associated only
	with intervals of numbers.
B. MA	THEMATICAL EXPECTATION OR EXPECTED VALUE OR MEAN
 	Definition of Mathematical Expectation or Expected value or Expectation of
 	Random Variable "X"
	Let x ₁ , x ₂ , x ₃ x _n be a set of n values of a variable "X" with the corresponding
	probabilities of occurrences p_1, p_2, p_3, \dots pn then the mathematical expectation
	or Expectation or Expected value of random variable "X" is given by
	$E(x) = x_1 p_1 + x_2 p_2 + \dots + x_n p_n = \sum_{i=1}^n x_i p_i$
	117

E.g. Calculation of Expectation of 'x' (where 'x' are the random variables generated as a result of throwing an unbiased die)

_[2	ND.	1
	X	Р	XP	-
ļ	1 (x ₁)	1/6 (p ₁)	1/6 (x ₁ p ₁)	
	2 (x ₂)	1/6 (p ₂)	2/6 (x ₂ p ₂)	
_	3 (x ₃)	1/6 (p ₃)	3/6 (x ₃ p ₃)	
	4 (× ₄)	1/6 (p ₄)	4/6 (x ₄ p ₄)	
_	5 (x ₅)	1/6 (p ₅)	5/6 (x ₅ p ₅)	
_	6 (x ₆)	1/6 (p ₆)	6/6 (x ₆ p ₆)]
			$\sum xp = 21/6 = (x_1p_1 + x_2p_2 + \dots +$	
			$X_6 p_6)$	
1			-1-7	J

Therefore E(x) =
$$\sum xp$$
 = 21/6 = 3.5 i.e. $\sum_{i=1}^{6} x_i p_i$

$$\sum_{i=1}^{6} \mathbf{x}_{i} \mathbf{p}_{i}$$

Properties of Mathematical Expectation

- $E(x) = \overline{x}$ = mean of random variable 'x'. 1.
- E(x) can assume any real number since 'x' can assume any real value. 2.
- If all the value of the random variable 'x' are equal then E(x) will be equal to 3. constant. i.e. E(c) = c
- 4. $E(x \pm y) = E(x) \pm E(y)$
- 5. E(xy) = E(x) E(y) provided x and y are independent
- E(cx) = c. E(x) e.g. E(5x) = 5 E(x)6.

 $E(a \pm bx) = a \pm bE(x)$ 7.

e.g. given that E(x) = 5 find E(2 - 3x)?

E(2 - 3x) = 2 - 3 E(x)

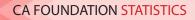
J.K. SHAH [®] CA FOUNDATION STATISTICS
a Veranda Enterprise
8. $E(ax \pm by) = aE(x) \pm bE(y)$
e.g. given that E(x) = 3 and E(y) = 4 find E(7x + 9y)?
E(7x + 9y) = 7E(x) + 9E(y) = 7(3) + 9(4) = 21 + 36 = 57
9. $E(x - \bar{x}) = 0$
Proof
$E(x - \overline{x}) = E(x) - E(\overline{x}) = \overline{x} - \overline{x}$ (since $E(x) = \overline{x} = mean$ is constant) = 0
10. Variance and Standard Deviation of a Random Variable X
A. Definition : Variance of a random variable X is defined as the Arithmetic Mean
of the Square of Deviations taken about Arithmetic Mean i.e.
B. Symbolically $\sigma^2 = \frac{\Sigma(x-x)^2}{n}$
$\Rightarrow \sigma^2 = A. M \text{ of } (x - \overline{x})^2$
$\Rightarrow \sigma^2$ = expectation of $(x - \overline{x})^2$ [Since expectation = A. M]
$\Rightarrow \sigma^2 = E (x - \overline{x})^2 \text{ or } E(x - \mu)^2 \text{ or } E(X - \{E(x)\}]^2$
Where $\overline{x} = \mu = E(X) = Mean of the random variable X$
Senteri
C. σ^2 or variance of x is also denoted by Var (X) or V(X) and V(X) = E(x - \overline{x}) ² = E(x ²)
- [E(x)] ²
Proof: $E(x - \bar{x})^2 = E(X^2 - 2\bar{x} + \bar{x}^2) = E(x^2) - \bar{x} E(X) + E(\bar{x}^2)$
$= \mathbf{E}(\mathbf{x}^2) - 2\overline{x} \cdot \overline{x} + \overline{x}^2 \qquad (\because \text{ i. } \mathbf{E}(\mathbf{X}) = \overline{x} \text{ and})$
(1. E(x) = x = constant)
$= E(x^2) - 2\bar{x}^2 + \bar{x}^2$
$= E(x^{2}) - \overline{x}^{2} = E(x^{2}) - [E(x))]^{2}$ - (Proved)

Thus V(X) =
$$E(x^2) - [E(x)]^2 = \sum x^2 p - (\sum x p)^2$$

D.

E. Standard Deviation of x i.e. S.D. (X) =
$$\sqrt{\operatorname{var}(x)} = \sqrt{\operatorname{E}(X^2) - \operatorname{[E}(X)]^2} = \sqrt{\operatorname{Ex}^2 p - (\Sigma x p)^2}$$

a Veran	da Enterprise
11. Pro	operties of Variance and Standard Deviation
1.	When all the value of the variable are equal :
	Variance = 0 and S.D. = 0 i.e. V(C) = 0 where C is any constant.
	e.g. V(2) = 0
2.	$Var(aX) = a^2 V(X)$
	e.g. Given V(X) = 3
	Calculate V(3X)
	Solution :
	V(3X) = 9V(X) = 9(3) = 27
3.	$Var(a \pm bx) = b^2 V(X) \qquad [\because Var(a) = 0]$
	e.g. Given V(X) = 2
	Find : (i) V(3 + 2x), (ii) V(2 - 3x)
	Solution : (i) (3 + 2x) = 4V(X) = 4 (2) = 8, (ii) V(2 - 3x) = 9V(X) = 9 (2) = 18
4.	Var $(aX \pm bY) = a^2 V(X) + b^2 V(Y)$
	e.g. Given V(X) = 4 and V(Y) = 9 Find
	e.g. Given $V(X) = 4$ and $V(Y) = 9$ Find Find : (i) $V(7X + 4Y)$, (ii) $V(2X + 3Y)$
	Solution:
	(i) $V(7X - 4Y) = 49V(X) + 16V(Y)$ (ii) $V(2X + 3Y) = 4V(X) + 9V(Y)$
	$= 49 \times 4 + 16 \times 9 = 4 \times 4 + 9 \times 9$
	= 196 + 144 = 340 = 16 + 81 = 97
CONCE	PT OF UNIFORM DISTRIBUTION (DISCRETE VARIABLE)
1. lf	a discrete random variable 'x' assumes n possible values namely $x_1 x_2,, x_n$
wi	ch equal probabilities, then the probability of its taking any particular value is
alı	vays constant and is equal to (1/n). The p.m.f (Probability Mass Function) of such
dis	tribution is given by $f(x) = 1/n$ where $x = x_1 x_2, \dots x_n$. These distributions are known
as	Uniform Distribution because the probability is uniform for all values of x.


. SHAH[®]

<u>J.</u>

e.g.	Prob	babil	ity D	istributi	ion of	the no	. of points in a throw of a die.
×	1	2	3	4	5	6	
р	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

2. Mean of Uniform Distribution is : $\frac{n+1}{2}$ and variance of uniform distribution is $\frac{n^2-1}{12}$

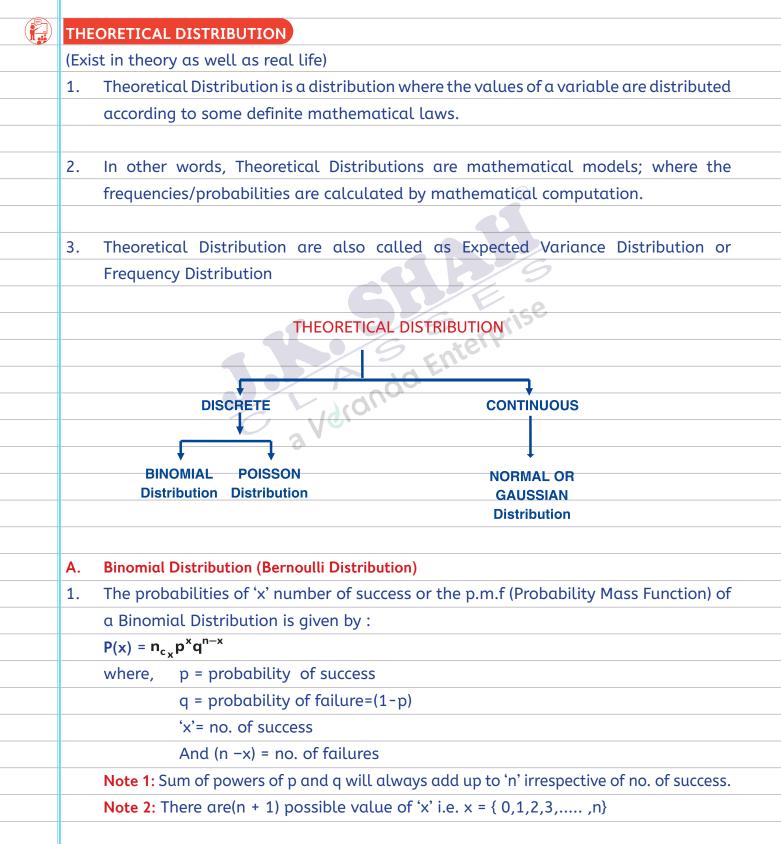
CLASSWORK SECTION

The	oretio	cal Aspect		
1.	Wh	en X is α continuous function, f(X) is	s calle	d:
	α)	Probability mass function		
	b)	Probability density function		
	c)	Both a) and b)		
	d)	None of the above		
2.	lf P	(a) = 0, P(b) = 1/3, P(c) = 2/3, then s	s = a, I	o, c is a probability space.
	α)	True	b)	False 🛞
	c)	Both true and false	d)	None of the above
3.	For	a probability distribution,	is ex	xpected value of x.
	α)	Median	b)	Mean
	c)	Mode	d)	None of the above
			2 5	nterr
Prob	abili	ty Mass Function (P.M.F)	0'	
4.	Let	X be a random variable assuming	values	s -3, 6 and 9 with probabilities $1/6$, $\frac{1}{2}$
	anc	1/3 respectively. Then find the val	ue of I	E(X), E(X ²) and E(2X+1) ²
	α)	5.5, 46.5, 209	b)	6.5, 45.5, 207
	c)	6, 40, 200	d)	None of these
5.	Аp	layer tosses three fair coins. He wir	ns Rs.	12 if three tails occur, Rs. 7 if two tails
	осс	ur and Rs. 2 if only one tail occurs.	If the	game is fair, how much should he win
	or l	ose in case no tail occurs?		
	α)	Loss of Rs. 39	b)	Income of Rs. 39
	c)	Neither Income nor Loss	d)	None of the above
6.	An	nan draws 2 balls from a bag co	ntainir	ng 3 white and 6 black balls. If he is
	to ı	receive Rs. 14 for every white ball	and I	Rs. 7 for every black ball; what is his

expectation? α)

18.67 b) 19.25 c) 20.25 d) 25.19

<u>J.</u>]	<u>K. S</u>	HAH	ľ								CA FOUNDATION STA	TISTICS
C L a b			5									
7.	A nu	umber is	chose	n at ra	ndon	n from	the set	1, 2,	3,,	100 ai	nd another numbe	r
	prod	luct?										
	α)	5151		b)	515	1/4	c)	5151	/2	d)	None of the abov	e
A ra	ndom	variable	x has	the follc	wing	probabi	lity dist	ributio	n:			
	X:	0	1	2	3	4	5	6	7			
	P(x):	0	2k	3k	k	2k	k ²	7k ²	2k ² +	k		
8.	Wha	it is the	value	of k?								
	α)	1/2	b)	1/8		c)	1/9		d)	1/1	0	
9.	Wha	it is the	value	of P(x <	6)?				B			
	α)	0.19	b)	0.80		c)	0.81		d)	0.91		
10.					X < 5			5/		2		
	α)	0.19	b)	0.29		c)	0.80	E	d)	20.91		
								201	b_{l,r_2}			
					rando	om vario	ible x is	given	as:			
							30					
	= 0,	elsew	nere j	6	10	, O.						
1 1	The		ما بر ما بر					incod	dicai			
11.	ine	expecte				Joints C		nused	uice l	5.		
	a)	$\frac{3n}{2}$				b)	$\frac{5n}{2}$					
	u)	~				U)						
	c)	$\frac{7n}{2}$				d)	$\frac{8n}{3}$					
	-/	-				~,						
UNI	FORM	DISTRI	BUTIO	N								
12.	The	probabi	lity dis	tributic	n wh	ose fre	quency	functi	on f(x)) = 1/n,		
	a)						b)	Poiss	on dis	tributic	on	
	c)	Norma	l distri	bution			d)	Unifo	orm dis	stributi	on	
	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	a Veranda 7. A nu is ch proce a) X: P(x): 8. What a) 8. What a) a) 9. What a) a) 10. What a) a) 11. The f(x) = k, x a) a) a) a)	a Veranda Enterprise7.A number is is chosen at product?a)5151A random variable X:0X:0P(x):08.What is the a)1 / 29.What is the a)0.1910.What is the a)0.1911.The expected a)3n af(x) = k, x = 1, 2, 3, 4 = 0,elsew11.The expected a12.The probability mass a12.The probability mass ax = x ₁ , x ₂ ,, a)Binomi	7. A number is chose is chosen at rando product? a) 5151 A random variable x has to X: 0 1 P(x): 0 2k 8. What is the value of a) 1 / 2 b) 9. What is the value of a) 0.19 b) 10. What is the value of a) 0.19 b) 10. What is the value of a) 0.19 b) A probability mass function f(x) = k, x = 1, 2, 3, 4, 5, 6 = 0, elsewhere 11. The expected value $\frac{3n}{2}$ 11. The probability dist $x = x_1, x_2,, x_n$ is k a) Binomial dist	a Véranda Enterprise 7. A number is chosen at random from product? a) 5151 b) a) 5151 b) A random variable x has the follor X: 0 1 2 P(x): 0 2k 3k 8. What is the value of k? a) 1 / 2 b) 1 / 8 9. What is the value of P(x < a) 0.19 b) 0.80 10. What is the value of P(0 < a) 0.19 b) 0.29 A probability mass function for a $f(x) = k, x = 1, 2, 3, 4, 5, 6$ = 0, elsewhere 11. The expected value of sur $\frac{3n}{2}$	a Véranda Enterprise 7. A number is chosen at random is chosen at random from the second room the second ro	a Véranda Enterprise7. A number is chosen at random from the set 1, 2 product?a) 5151b) 5151/4a) 5151b) 5151/4A random variable x has the following probabi X: 0 1 2 3 4 P(x): 0 2k 3k k 2k8. What is the value of k? a) 1 / 2 b) 1 / 8 c)9. What is the value of P(x < 6)? a) 0.19 b) 0.80 c)9. What is the value of P(0 < x < 5)? a) 0.19 b) 0.29 c)A probability mass function for a random variationfr(x) = k, x = 1, 2, 3, 4, 5, 6 = 0, elsewhere11. The expected value of sum of points of a) $\frac{3n}{2}$ b)11. The expected value of sum of points of a) $\frac{3n}{2}$ b)UNIFORM DISTRIBUTIONUNIFORM DISTRIBUTION12. The probability distribution whose free $x = x_1, x_2,, x_n$ is known as: a) Binomial distribution	a Véranda Enterprise7. A number is chosen at random from the set 1, 2, 3, 5 product?a) 5151b) 5151/4c)a) 5151b) 5151/4c)A random variable × has the following probability distr X:01234p(x):02k3kk2kk²8. What is the value of k?	a Véranda Enterprise 7. A number is chosen at random from the set 1, 2, 3, 50. Wh product? a) 5151 b) 5151/4 c) 5151 A random variable x has the following probability distribution X: 0 1 2 3 4 5 6 P(x): 0 2k 3k k 2k k ² 7k ² 8. What is the value of k? a) 1 / 2 b) 1 / 8 c) 1 / 9 9. What is the value of P(x < 6)? a) 0.19 b) 0.80 c) 0.81 10. What is the value of P(0 < x < 5)? a) 0.19 b) 0.29 c) 0.80 A probability mass function for a random variable x is given f(x) = k, x = 1, 2, 3, 4, 5, 6 = 0, elsewhere 11. The expected value of sum of points on <i>n</i> unbiased $\frac{3n}{2}$ b) $\frac{5n}{2}$ 11. The expected value of sum of points on <i>n</i> unbiased $\frac{3n}{2}$ b) $\frac{5n}{2}$ 12. The probability distribution whose frequency function $x = x_1, x_2,, x_n$ is known as: a) Binomial distribution b) Poiss	a Véranda Enterprise 7. A number is chosen at random from the set 1, 2, 3,, is chosen at random from the set 1, 2, 3,, 50. What is the product? a) 5151 b) 5151/4 c) 5151/2 A random variable x has the following probability distribution: X: 0 1 2 3 4 5 6 7 P(x): 0 2k 3k k 2k k ² 7k ² 2k ² + 8. What is the value of k? a) 1 / 2 b) 1 / 8 c) 1 / 9 d) 9. What is the value of P(x < 6)? a) 0.19 b) 0.80 c) 0.81 d) 10. What is the value of P(0 < x < 5)? a) 0.19 b) 0.29 c) 0.80 d) 4. Probability mass function for a random variable x is given as: f(x) = k, x = 1, 2, 3, 4, 5, 6 = 0, elsewhere 11. The expected value of sum of points on <i>n</i> unbiased dice is a single of the sum o	a Véranda Enterprise Site 7. A number is chosen at random from the set 1, 2, 3,, 100 ar is chosen at random from the set 1, 2, 3,, 50. What is the exp a) 5151 b) 5151/4 c) 5151/2 d) A random variable x has the following probability distribution: X: 0 1 2 3 4 5 6 7 P(x): 0 2k 3k k 2k k² 7k² 2k²+k 8. What is the value of k? Image: state of the set 1, 2, 3,, 100 a) 1 / 1 9. What is the value of P(x < 6)? Image: state of the set 1, 2, 3,, 10 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1, 2, 3, 4, 5, 6 Image: state of the set 1,	CALL STREET a Wranda Enterprise 7. A number is chosen at random from the set 1, 2, 3,, 100 and another number is chosen at random from the set 1, 2, 3,, 50. What is the expected value of their product? a) 5151 b) 5151/4 c) 5151/2 d) None of the abover the set 1, 2, 3,, 50. What is the expected value of their product? a) 5151 b) 5151/4 c) 5151/2 d) None of the abover the set 1, 2, 3,, 50. What is the expected value of their product? A random variable x has the following probability distribution: X: 0 1 2 3 4 5 6 7 P(x): 0 1 2 3 4 5 6 7 8. What is the value of k?



13.	lf a	discrete	e rando	m varial	ble x f	ollow	's unifor	rm dis	stributi	ion and	assum	es only	' the	
	valu	ies 8, 9,	, 11, 15	, 18, 20.	Then	find F	P(x - 14	+ < 5)						
	α)	1	b)	1/2		c)	2/3		d)	1/3				
									®					
								5/	2					
 									.:58					
 						X	Er	*eť	6,					
 							OEN							
 						and	<u>,</u>							
				9	490	0.								
				3										

THEORETICAL DISTRIBUTION

J.K. SHAH CLASSES a Veranda Enterprise

- 2. This distribution is a discrete probability Distribution where the variable 'x' can assume only discrete values i.e. x = 0, 1, 2, 3,..... n
- 3. This distribution is derived from a special type of random experiment known as Bernoulli Experiment or Bernoulli Trials, which has the following characteristics
 - (i) Each trial must be associated with two mutually exclusive & exhaustive outcomes SUCCESS and FAILURE. Usually the probability of success is denoted by 'p' and that of the failure by 'q' where q = 1-p and therefore p + q = 1.
 - (ii) The trials must be independent under identical conditions.
 - (iii) The number of trial must be finite (countably finite).
 - (iv) Probability of success and failure remains unchanged throughout the process.
- Note 1: A 'trial' is an attempt to produce outcomes which is neither sure nor impossible in nature.
- Note 2 : The conditions mentioned may also be treated as the conditions for Binomial Distributions.
- 4. Characteristics or Properties of Binomial Distribution
 - (i) It is a bi parametric distribution i.e. it has two parameters n & p where
 - n = no. of trials
 - p = probability of success.
 - (ii) Mean of distribution is np.
 - (iii) Variance = npq
 - (iv) Mean is greater than variance always i.e. np > npq.
 - (v) SD = \sqrt{npq}
 - (vi) Maximum variance is equal to (n/4)

(vii) Binomial Distribution may be Symmetrical or Asymmetrical (i.e. skewed) where
 q > p; i.e. P > ¹/₂ its positively skewed and when q ¹/₂ its negatively
 skewed.

When q = p = 0.5 skewness is equal to zero. In such a case, the distribution is said to be symmetrical.

	(viii)	Binomial Distribution may be Uni-Modal or Bi-Modal depending on the values
		of the parameters n & p.
	Case	I: When (n + 1).p is not an integer the distribution is uni-modal and the
		greatest integer contained in (n+1) p is the value of the mode.
		E.g. n = 6; p = 1/3; find modal value.
	Solut	ion: $(n + 1)p = (6 + 1) \times 0.3$
		= 7×0.3 = 2.1 which is not an integer. Hence the given distribution is
		unimodal and the value of mode is equal to 2 (Greatest integer integral
		value in 2.1)
		®
	Case	II: When (n + 1)p is an integer; the distribution is bi-modal and the modal
		values are (n+1)p and (n+1)p – 1 respectively.
		E.g. n = 7 and p = 0.5; find mode or modes.
		S DE E : ce
	Solut	ion: $(n + 1)p = (7 + 1)p$
		tion: $(n + 1)p = (7 + 1)p$ = 8(0.5)
		= 4. Which is an integer.
		Hence the two modes are :4 & (4 -1) =3
	(ix)	Additive Property of Binomial Distribution: If 'x' and 'y' are two independent
		binomial variates with parameters(n_1 ,p) and (n_2 ,p) respectively,then x + y will
		also follow a binomial distribution with parameters {($n_1 + n_2$), p} Symbolically
		the fact is expressed as follows:
		X ~ B (n ₁ ,p)
		$Y \sim B(n_2, p)$
		$X + Y \sim B(n_1 + n_2, p)$
	(x)	The method applied for fitting a binomial distribution to a given set of data is
		called "Method of Moments".
5.	The	distribution is called Binomial as the probabilities can be obtain by deferent
	term	s of the expansion of Binomial series (q+p) ⁿ

CLASSES a Veranda Enterprise

Ĥ

CLASSWORK SECTION

	1.				ution mean 20; S.[
		a)	1/5	b)	2/5	c)	3/5	d) 4/5
				_				
	2.	Me	an =10, SD= √3	5, Mo	de=			
		α)	10	b)	12	c)	9	d) 8
	3.	Xi	s binomial var	iable	with n = 20, who	ıt is	the mean of 3	X if it is known that x is
		syr	nmetric?					
		α)	5	b)	10	c)	2	d) 8
	4.	Wł	nat is the prob	abilit	y of making 3 corr	ect o	guesses in 5 T	rue – False answer type
		qu	estions?					<i>.</i>
		a)	0.3125	b)	0.5676	c)	0.6875	d) 0.4325
					6		· · · ·	
	6 со	ins	are tossed. Find	d the	probability of get	ting	2 orise	
					/9	21	nterr	
	5.	The	e probability th	at a :	student is not a sw	imm	er is 4/5, ther	n the probability that out
		of	five students fo	our a	re swimmers is			
			<i>.</i>	\mathcal{O}	- Ve			
		a)	$\left(\frac{4}{4}\right)^4$	b) 5	$C_1\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^4$	c)	${}^{5}C_{4}\left(\frac{4}{\pi}\right)^{1}\left(\frac{1}{\pi}\right)^{4}$	d) None of these
			(5)		$-\frac{1}{5}(5)(5)$		(5)(5)	
	6.	At	least 3 success	ses.				
		a)	80 / 243	b)	192 / 243	d)	77 / 243	d) None of the above
	Am	an t	akes a step for	ward	with a probability	0.6 0	and a step bad	kward with a probability
			· · · ·		that at the end of			
							1.7	
	7.	lf ×	and v are 2 in	ndepe	ndent binomial vo	ıriab	le with paran	neters 6 and $\frac{1}{2}$, 4 and $\frac{1}{2}$
			pectively, what		$P(x + y \ge 1)?$			
			1023/1024		j = -i	b)	1056/1923	
			1234/2678			d)	None of the	above
_		C) .	1237/2010			u)		

		SHAH [®] SSES da Enterprise							CA FOUN	NDATION STATISTICS	
 8.		suming that	one-t	hird of	the popu	latio	n is teo	a drinker	s and ead	ch of 1000	
 		umerators tak									
 drinkers or not, how many enumerators are expected to report that five or more people are tea drinkers?											
		100	b)	95		c)	88	(b	90		
	α,	100		00		C/		۵,			
 Calc	ulat	ion of Paramet	ers								
 Cuic	arac										
 9.	Ał	oinomial rando	om vo	iriable x	satisfies (he r	elation 9	9P(x = 4)	= P(x =2) \	when n = 6.	
 		d the value of							- (= / .		
		1 / 2	b)			c)	1/4	d)	1/5		
	α,	1, L	57	175		C/	1/4	α,	175		
 Theo	oreti	cal Aspect						R			
 10.	Bir	nomial distribu	ution i	s a:		(
		Discrete Prob			ution			15			
	b)			-							
	c)			-		6	2 .0	rise			
	d)	Neither a) no	or b) a	bove	19		nterp				
						35					
 11.	The	e important ch	naract	eristic(s)	of Berno	ulli t	rials is:				
	a)	Trials are inc	lepen	dent							
	b)	Each trial is o	associ	iated wit	h just two	o pos	sible ou	tcomes.			
	c)	Trials are inf	inite								
	d)	Both a) and l	b) aba	ove							
12.	The	e mean of bind	omial	distribut	tion is :						
	α)	Always more	than	its varia	nce						
	b)	Always equa	l to it	s standa	rd deviati	on					
	c)	Always less t	than i	ts varian	се						
	d)	Always equa	l to it	s variano	e						
13.	The	e maximum v	alue	of the v	ariance o	faE	Binomial	. distribut	ion with	parameters	
	an	d pis :									
		<i>n</i>		n			n		n		
	a)	<u></u>	b)	<u></u>		c)	4	d)	$\frac{n}{2}$		
					128						
					120						

CL	7. 21	IAH	mial distribution, there may be ode b) two mode c) zero mode d) (a) or (b) pendent trials in Binomial distribution, the sum of the powers of p and q n,whatever be the number of successes. b) False f a) and b) above d) None of the above mial distribution if variance = mean/2, then the values of n and p will be								
a 🗸	AS: randa Er	SES nterprise									
14.	For a	binomial c	listribut	tion, there	may be						
	a) or	ie mode	b)	two mode	(z) zer	o mode	d)	(a) or (b)		
15.	For n	independe	nt trial	s in Binom	ial distri	bution,	the sum	of the	powers of	[;] p and q	
	is alw	ays n,wha	tever b	e the numb	per of su	ccesses	•				
	a) Tr	ue			I	o) Fal	se				
	c) bo	oth of a) ar	nd b) al	bove	(d) No	ne of the	above			
16.											
	a) 1	and 1/2	b)	2 and 1/2	(:) 3 αn	d 1⁄2	d) A	ny value a	ind 1/2	
				11	neory Ar	iswer K	ey 🛞				
	10		11		12		12		1/	d	
	10				12	u	15		14	u	
			10	<u> </u>							
					2/	6	rprise				
					9	EUre					
			50			Ente					
				- ACC	anda	Ente					
			6	a var	inda	Ente					
			6		inda	Ente					
			2	a var	inda	Ente					
					inda	Ente					
					inda	Ente					
				a Vere	inda	Ente					
					inda	Ente					
					inda	Ente					
					inda	Ente					
					jnd0						

B. POISSON DISTRIBUTION

 The probability of 'x' no. of success or the p.m.f (Probability Mass Function) of a Poisson Distribution is given by

$$P(x) = e^{-m} \cdot \frac{m^{x}}{x!} \text{ or } e^{-\lambda} \cdot \frac{\lambda^{x}}{x!} \quad (\lambda = m)$$

where x = desired no. of success.

 $e \cong 2.71828$

Note1: (λ = m) Mean = variance = parameter of the distribution

Note2: e^{-m} or $e^{-\lambda}$ is a constant and the value of which can be obtained from the table.

Note3: When the parameter 'm' is not provided but n and p are provided we shall

use m = np for evaluating the parameter.

- 2. It is a discrete probability distribution where the variable 'x' can assume values 'x'=
 - 0, 1, 2, 3,....∞.
- 3. This distribution is a limiting case of Binomial Distribution when

(i) $n \rightarrow \infty$ (i.e. no. of trials become very large)

- (ii) $p \rightarrow 0$, (i.e. probability of success is very small)
- (iii) $q \rightarrow 1$, (i.e. probability of failure is very high)
- (iv) np is finite and constant which is denoted by 'm' i.e. np = m or λ
- 4. Some examples of Poisson Distribution:
 - (i) No. of telephones calls per minute at a switch board
 - (ii) The no. of printing mistake per page in a large text.
 - (iii) The no. of cars passing a certain point in 1 minute
 - (iv) The emission of radio active (alpha) particles.
- The conditions under which the Poisson Distribution is used or the condition for Poisson Model are as follows:
 - (i) The probability of having success in a very small time interval (t, t + dt) is K. dt
 (where k > 0 and is constant)
 - In other words, probability of success in a very small time interval is directly proportional to time internal dt.
 - (ii) The probability of having more than one success in this time interval is very low.
 - (iii) Statistical independence is assumed i.e. the probability of having success in this time interval is independent of time 't' as well as of the earlier success.

 Poisson Distribution is also known as "Distribution of Improbable Events" or "Distribution of Rare Events".

7. Characteristic or Properties of Poisson Distribution.

- (i) Poisson Distribution is uniparametric i.e. it has only one parameter 'm' or ' λ '
- (ii) Mean of distribution = m
- (iii) Variance = m
- (iv) In poisson distribution mean = variance and hence they are always positive
- (v) SD = \sqrt{m}
- (vi) Since 'm' is always positive Poisson Distribution is always positively skewed.
- (vii) The distribution can be either unimodal or bimodal depending on values of m.

Case I : When 'm' is not an integer then the distribution is uni-modal and the value of the mode will be highest integral value contained in 'm'.

E.g. m = 5.6 then modal value is 5 (greatest integer contained in 5.6)

Case II: When 'm' is an integer; the distribution is bimodal and the modal values are m, m – 1

> E.g. if 'm' = 4 (an integer, hence the distribution is bimodal and the modes are 4 and 4 - 1 i.e. 4 and 3)

(viii) Additive Property of Poisson Distribution: If 'x' and 'y' are two independent Poisson Variates with parameters(m1) and (m₂) respectively then (x + y) will also follow a Poisson Distribution with parameter (m₁ + m₂). Symbolically the fact is expressed as follows: X ~ P (m₁), Y ~ P (m₂)

X + Y ~ $P(m_1 + m_2)$ provided x and y are independent

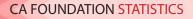
CLASSWORK SECTION

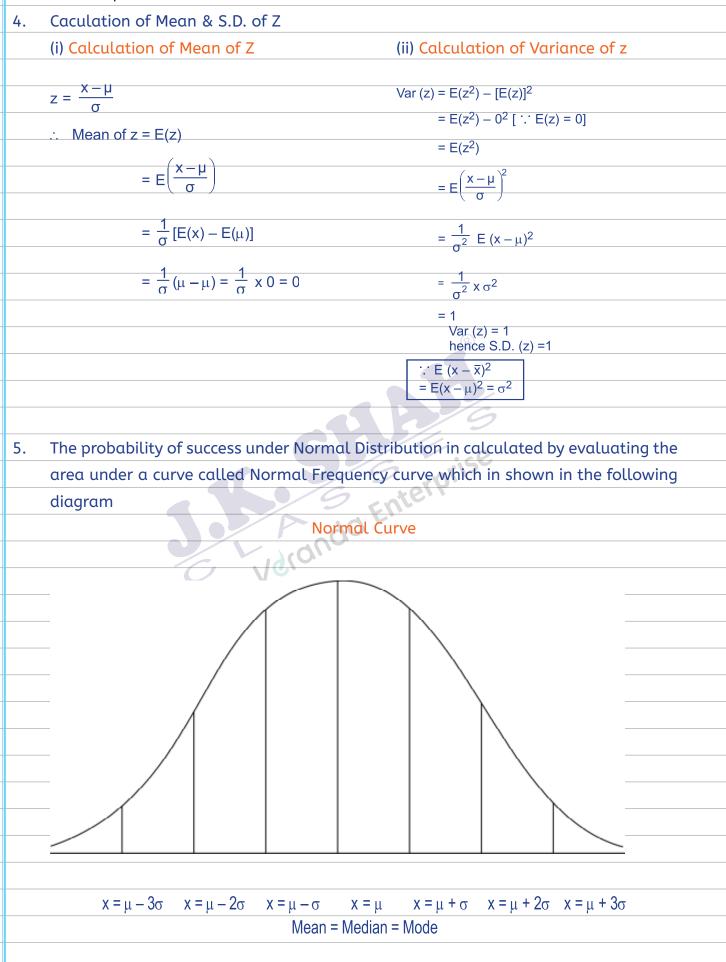
			_				_		
1.	In c	a Poisson Distr		P(X = 0) = P(X = 0)		-	ue of "k"	is:	
	a)	1	b)	<u> </u>	c)	e^2	d)	$\frac{1}{\sqrt{e}}$	
2.	lf>	k is Poisson va	riety	with a parameter	4 fin	d the Moo	le of the	Distribution?	
	α)	4,2	b)	4,3	c)	4,4	d)	None	
Bet	weer	n 4 and 5 PM,	the	average number o	of ph	one calls	per min	ute coming into the	
swit	tchbo	pard of the cor	npan	y is 3. Find the pro	babi	lity that ir	n one pai	rticular minute there	
will	be:	(Given e ⁻³ = 0.0	0498)				®		
3.	Exc	ictly 2 phone o	alls						
	α)	0.1422	b)	0.2214	b)	0.2251	9 d)	0.2241	
				6			e.		
lt is	four	nd that the nur	mber	of accidents occur	ring	in a factor	y follows	Poisson distribution	
witł	nαn	nean of 2 accid	dents	per week. (Given e	e ⁻² =	0.1353)			
					3				
4.	A r	adioactive sou	irce e	mits on the average	ge 2	.5 particle	es per se	cond. Calculate that	
	2 o	r more particl	es wi	ll be emitted in an	inte	erval of 4 s	seconds.		
	α)	$11e^{-10}$	b)	$1 - 10e^{-10}$	c)	$1 - 11e^{-10}$	d)	None of the above	
5.	A r	enowned hosp	ital u	isually admits 200) pat	ients ever	y day. Oı	ne per cent patients,	
	on	an average, r	equire	e special room fac	cilitie	es. On one	e particu	lars morning, it was	
		-		·			is the p	robability that more	
		· ·		require special ro	om f				
	a)	0.1428	b)	0.1732	c)	0.2235	d)	0.3450	
Binc	omial	Approximation	n to Po	oisson Distribution					
				-				ights suffer a minor	
equ	ipme	ent failure in	an ai	ircraft. Estimate t	he p	probability	/ that th	e number of minor	
 equ	ipme	ent failures in t	the n	ext 50 flights will	be(e ⁻	1=.3679)			

J.]	K. SHAH [°]		CA FOUNDATION STATISTICS
C L a l	ASSES Veranda Enterprise		
6.	In a company manufacturing toys, it i	is four	nd that 1 in 500 is defective. Find the
	probability that there will be at the mo	ost tw	o defectives in a sample of 2000 units.
	[Given <i>e</i> ⁻⁴ = 0.0183]		· · · · · · · · · · · · · · · · · · ·
	a) 0.2597 b) 0.3549	c)	0.2549 d) 0.2379
Misc	cellaneous Problems		
7.	A car hire firm has 2 cars which is hire	d out	every day. The number of demand per
	day for a car follows Poisson distribution	on witl	h mean 1.20. What is the proportion of
	days on which some demand is refused	1?	
	(Given $e^{1.20}$ = 3.32)		
	a) 0.25 b) 0.3012	c)	0.12 d) 0.03
			8
Theo	oretical Aspects		
8.	Which one is uni-parametric distribution	on?	2/9
	a) Normal Distribution	b)	Poisson Distribution
	c) Hypergeometric Distribution	d)	Binomial Distribution
		2 51	nterr
9.	Distribution is a limiting a	ase of	f Binomial distribution.
	a) Normal Distribution	b)	Poisson Distribution
	c) Chi-Square Distribution	d)	(a) & (b) both
10.	Poisson distribution may be		
	a) Bimodal	b)	Uni modal
	c) Multi Modal	d)	Either a) or b) above and not c)
11.	For a Poisson distribution		
	a) Standard Deviation and Variance a	re equ	ual.
	b) Mean and Variance are equal.		
	c) Mean and Standard Deviation are a	equal.	
	d) Both a) and b) above		
12.	In Poisson Distribution, probability of s		•
	a) 1 b) 0.8	c)	0 d) None of the above

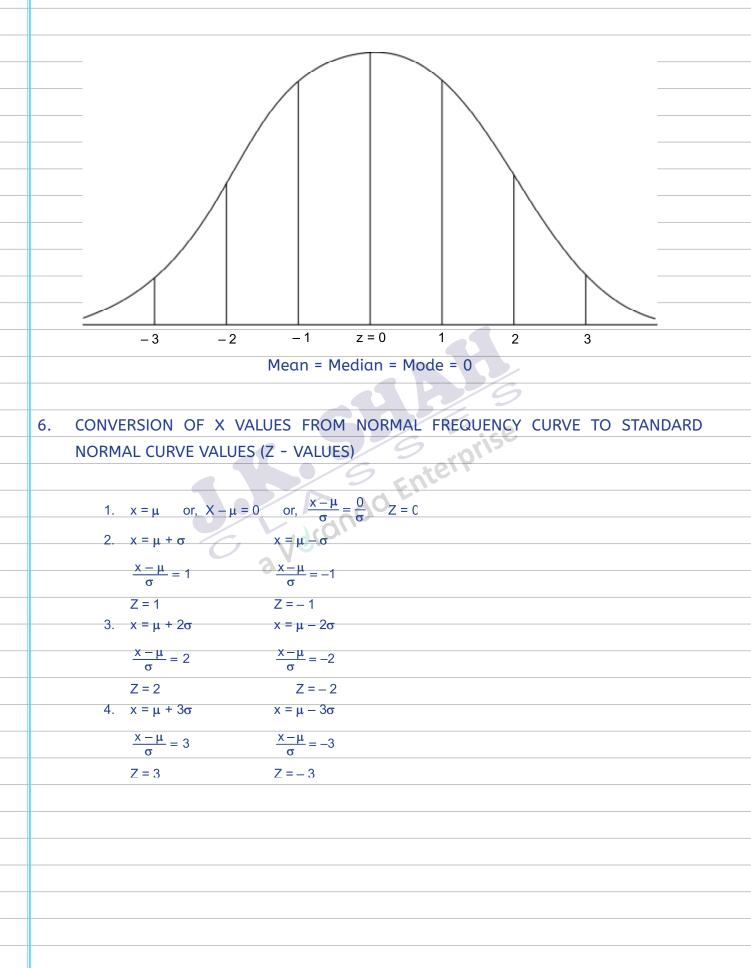
- 13. Poisson distribution is
 - a) Always negatively skewed
- b) Always positively skewed
- c) Always symmetric
- d) Symmetric only when m = 2

Theoretical Aspect Answer Key


8	В	9	D	10	D	
11	В	12	С	13	В	

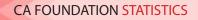

®
Scorise
S enteri

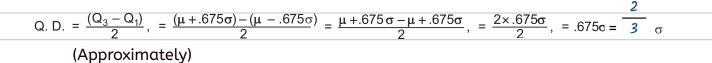
C. NORMAL OR GAUSSIAN DISTRIBUTION
1. It is a continuos probability distribution where the variable 'X' can assume any value
between -
$$\infty$$
 to + ∞ .
2. The Probability Density Function of a Normal Distribution is given by
 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, (-\infty < x < \infty)$
where μ = mean
 σ = Standard Division
Note 1 : μ and σ are the two parameters of Normal Distribution and hence it is
bi-parametric in nature.
Note 2 : π = 3.1416 and e = 2.71828 which are constant.
3. Replacing $\frac{X-\mu}{\sigma}$ by 'z' we obtain another distribution called Standard Normal
Distribution with mean 0 and S.D. 1 and is given by the density function
 $f(z) = -\frac{1}{\sqrt{2\pi}}e^{-\frac{z'}{\sigma}}(-\infty < z < \infty)$
Note1 : N(μ , σ^2) implies Normal Distribution with μ (mean) and σ^2 (variance)
Note3 : 'z' is called Standard Normal Variate or Variable.



CA FOUNDATION STATISTICS

Standard Normal Curve




PROPERTIES OF NORMAL CURVE AND NORMAL DISTRIBUTION

- 1. It is a bell shaped curve symmetrical about the line $x = \mu$ and assymptotic to the horizontal axis (x = axis)
- 2. The two tails extend upto infinity at both the ends.
- As the distance from the mean increases, The curve comes closer to the horizontal axis
 (x = axis)
- 4. The curve has a single peak at $x = \mu$.
- 5. The two points of inflection of the normal curve are at $x = \mu \sigma$ and $x = \mu + \sigma$ respectively where the normal curve changes its curvature.
- 6. The same points of inflection under standard normal curve are at z = -1 and z = 1.
- 7. It is a continous prob. distribution where $-\infty < \chi < \infty$
- 8. The distribution has two parameters μ and σ . Where μ = mean σ = standard deviation. Hence normal is bi-parametric distribution.
- 9. The normal curve has a single peak. Hence it is unimodal and mean. Median and mode coincide. at $x = \mu$.
- 10. The maximum ordinate (i.e. y) lies at $x = \mu$.
- 11. The distribution being symmetrical,
 - i) Mean = Median = Mode
 - ii) Skewness = 0
- 12. The two Quartiles are $Q_1 = \mu .675\sigma$ (Lower Quartile)
 - And $Q_3 = \mu + .675\sigma$ (Upper Quartile)

14. Mean Deviation (M. D.) =
$$0.8\sigma = \frac{4}{5}\sigma$$
 (Approximately)

15. QD : MD : SD = 10 : 12 : 15

16. (i) The total area under the Normal or Standard Normal Curve = 1 (∵ Total Probability = 1), Symbolically,

(i)
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
 or (ii) $\int_{-\infty}^{+\infty} f(z)dz = 1$

(ii) $f(x) \ge 0$ for all X

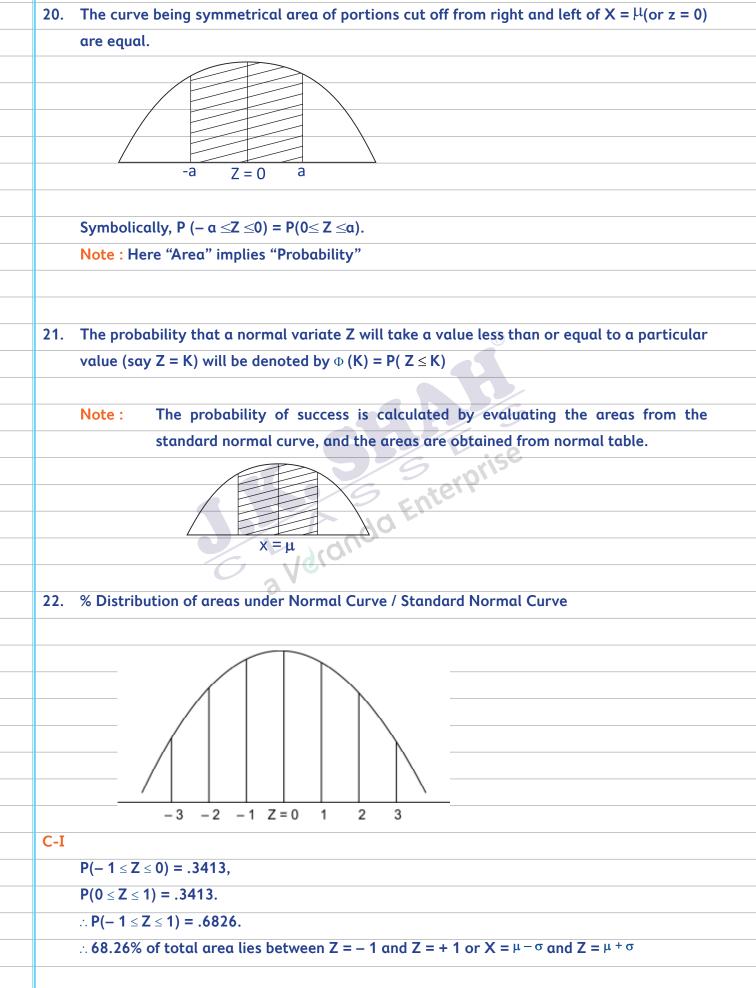
17. The curve being Symmetrical, $x = \mu$ divides curve into two equal halvessuch that (Area between $-\infty$ to μ)= (Area between μ to $+\infty$) = 0.5

18. Similarly, under standard normal curve,
(area between $-\infty$ to z = 0)
= (area between z = 0 to $z = +\infty$) = 0.5.5.5.5

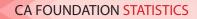
.roris

.5

 $X = \mu$


.5

19. Symbilically


i)
$$P(-\infty < X \le \mu) = P(\mu \le X < +\infty) = 0.5$$

ii)
$$P(-\infty < Z \le 0) = P(0 \le Z < +\infty) = 0.5$$

C-II

 $P(-2 \le Z \le 0) = .4772.$

 $P(0 \le Z \le 2) = .4772.$

- $\therefore P(-2 \le Z \le 2) = .9544.$
- \therefore 95.44% of total area lies between Z = 2 and Z = + 2 or X = μ 2σ and X = μ + 2σ

C-III

 $P(-3 \le Z \le 0) = .4987.$ $P(0 \le Z \le 3) = .4987.$

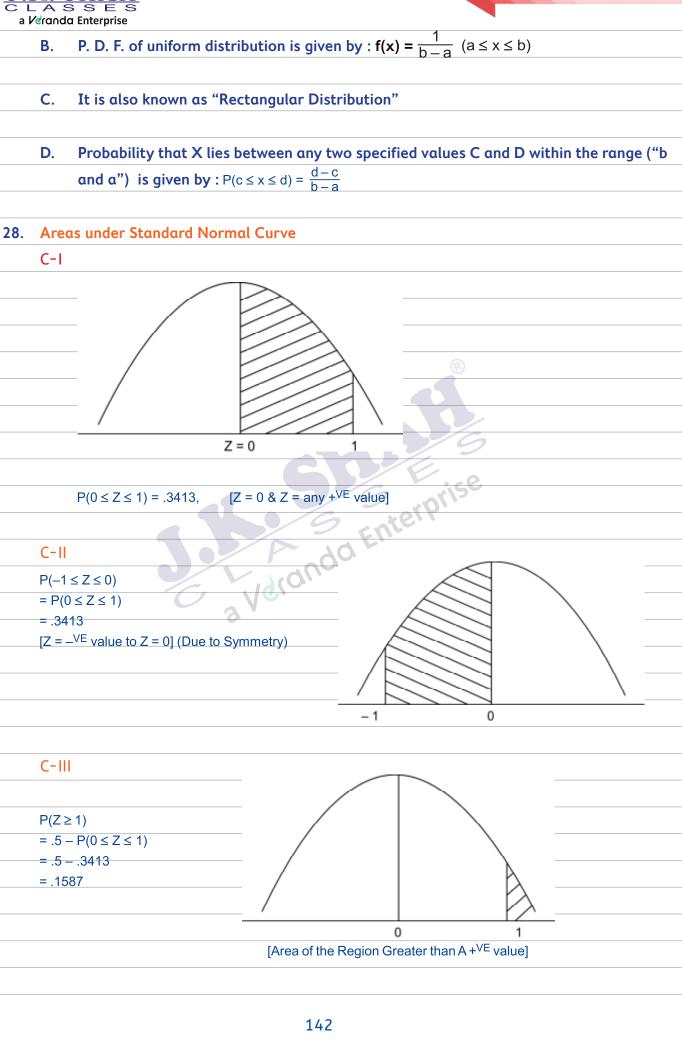
∴ $P(-3 \le Z \le 3) = .9974.$

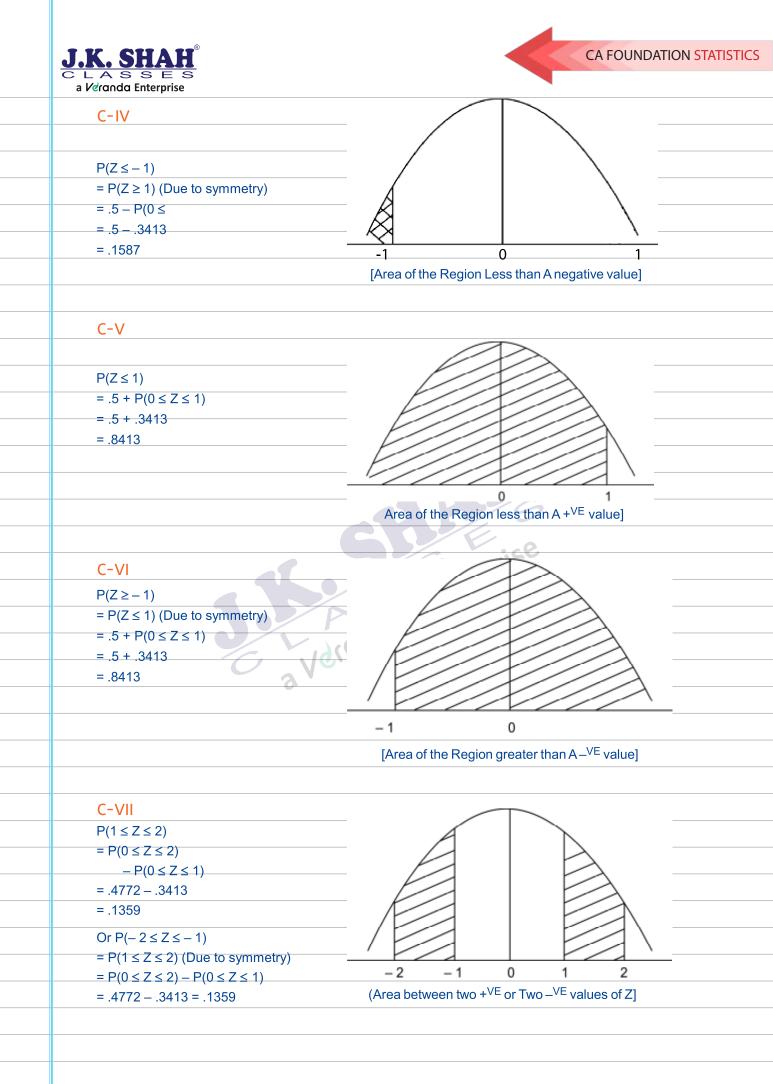
:: 99.74% of total area lies between Z = - 3 and Z = + 3 or X = μ - 3σ and X = μ + 3σ

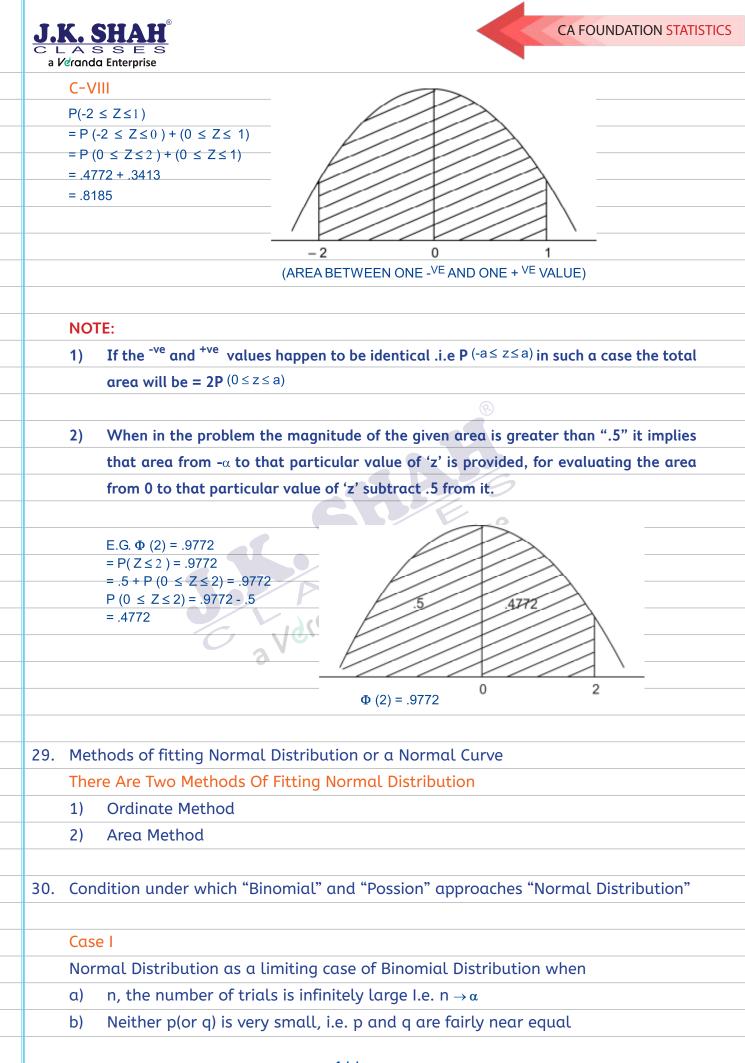
23. Additive Property of Normal Distribution

If X & Y are independent normal variates with means $\mu 1 \& \mu_2$ and standard deviation $\sigma 1 \& \sigma_2$ respectively, then Z = X + Y will also follow a Normal Distribution with mean = ($\mu_1 + \mu_2$) and S.D. = $\sqrt{\sigma_1^2 + \sigma_2^2}$

symbolically, $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, $Z = X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$


- 24. In continuous probability Distribution, Probability is to be assigned to intervals and not to individual values and accordingly the Probability that a Random Variable X will take any specific value will be "0" i.e. P(X = C) = 0 when Distribution is continuous.
- 25. Concept of Cumulative Distribution Function (C. D. F.)
 Cumulative Distribution Function (C. D. F.) is defined as the Probability that a Random
 Variable X takes a value less than or equal to A specified value x and is denoted by F(X)
 ∴ F(x) = P (X ≤ x)
 - \therefore F(X) represents Probability; $0 \le F(X) \le 1$


26. $F(X) = P(X \le C)$ will imply the area under the probability curve to the left of vertical line at C.


27. Uniform Distribution (Continuous)

 A. A continuous Random Variable is said to follow uniform distribution if the probabilities associated with intervals of same width are always equal at all parts and for any range of values.

- In other words, if neither p nor q is very small but n is sufficiently large Binomial
 Distribution approaches Normal Distribution.
- d) In such a case, the Standard Normal Variate is given by $Z = \sqrt{\frac{x-np}{\sqrt{npq}}}$

Case II

Poission Distribution tends to Normal Distribution with standardised Variable

 $Z = \frac{x - m}{\sqrt{m}}$

Where m = Mean = μ = Variance

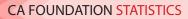
 \sqrt{m} = S.d = σ as n increases indefinitely (i.e. as $n \rightarrow \alpha$)

Veranda Enterpris

				CLASSWOR	RK SE			
1.	If the	mean devia [.]	tion o	of a normal vari	able is	16. what is it	s aua	rtile deviation?
	a) 10		b)	15	c)	13.5	d)	12.05
			•					
2.	If the	quartile dev	viatio	n of a normal cu	urve is	4.05, then its	mear	n deviation is:
	a) 5.	26	b)	6.24	c)	4.24	d)	4.80
3.	If the	two quartil	es of	normal distribu	ition a	re 14.6 and 2	25.4 re	espectively, what is
	the st	andard devi	ation	n of the distributi	ion?			
	a) 6		b)	8	c)	9	d)	10
						®		
4.	What	is the first q	Juarti	ile of x having th	e follo	owing probabi	lity de	ensity function?
			()	(-10) ²	(
	f($x) = \frac{1}{\sqrt{72}}$	_e	$\frac{(-10)^2}{72}$ for $-\infty < x < 0$	<∞	9/9	2	
		√/∠ Ⅰ.				F OF SE		6.75
	a) 4		b)	5	c)	25.95	d)	6.75
-	الج ب مع		dana				10 00	d 12 and CD 2 and
5.		-						d 12 and SD 3 and nean and SD
	4 1656	ectivety, the		+ y/ is uso u ii	onnat		WILLI I	
	a) 22	-· 2, 7	b)	22, 25	c)	22, 5	d)	22, 49
	u) 22	., 1	D)	<i>LL, LJ</i>	C/	<i>LL</i> , J	α,	<i>LL</i> , 4J
Arec	ı under	Normal / S	tand	ard Normal Curv	/e			
						for the follow	wing	values of standard
	nal var						5	
6.	If the s	standard nor	rmal	curve between z	= 0 to	z =1 is 0.3413,	, then	the value of ϕ (1) is:
	a) 0.	5000	b)	0.8413	c)	- 0.5000	d) 1	
7.	For ce	rtain norma	ıl var	iate x, the mean	is 12	and S.D is 4 fi	nd P()	X≥20):
	[Area	under the n	ormo	al curve from z=0) to z=	2 is 0.4772]		
	a) 0.	5238	b)	0.0472	c)	0.7272	d) 0	.0228

J.I	K.	SHAH®					CA FOUNDATION STATISTICS
	A Verano	SSES da Enterprise					
8.	lf t	he weekly wag	ges o	f 5000 workers in	a fa	ctory follows no	ormal distribution with
	me	ean and SD as 🕏	₹700	and ₹50 respective	ly, w	hat is the expec	ted number of workers
	wit	th wages betw	een ₹	660 and ₹ 720?			
	α)	2050	b)	2200	c)	2218 c	ł) 2300
9.	50	per cent of a c	ertaiı	n product have wei	ght 6	50kg or more wh	ereas 10 per cent gave
				On assumption of r	norm	ality, what is th	e variance of weight?
 		/en	.90.				
	a)	15.21	b)	9.00	c)	16.00 c	1) 22.68
Theo	oreti	cal Aspects					
 10.				ion, P(X $\geq \mu$) =			
	a)	0	b)	1	c)	0.5 c	1) 0.6826
 11.					Stand	dard Normal Dis	tribution and is defined
	by	the probability	/ den	sity function:		V:se	
 		$f(x) = \frac{1}{\sqrt{2\pi}}e;$	<i>−∞</i> <	<i>x</i> < ∞	9	$f(x) = \frac{1}{\sqrt{2}} e^{-x^2}$; $-\infty < x < \infty$
	α)	• • •			b)	$\sqrt{2\pi}$	
		$f(z) = \frac{1}{z} e^{-z}$	$\frac{z^2}{2}; -c$	x < z < x	<u>ط</u> ا	$f(z) = \frac{1}{z^2} e^{-z^2}$; $-\infty < z < \infty$
	C)	$\sqrt{2\pi}$	6	<u> </u>	α)	$\sqrt{2\pi}$	·
 12	IF (a random vari	ablo	ic pormally distrib	utod	with mean // a	nd standard deviation
 12.					uteu		
		then $z = \frac{x - \mu}{\sigma}$ Normal Varia		tteu.	b)	Standard Norm	pal Variate
		Chi-square Vo			d)	Uniform Variat	
	-			-	α,		
 13.	Th	e curve of whic	h of	the following distr	ibuti	on is uni-moda	l and bell shaped with
 		e highest point					
		Poisson	b)	Binomial	c)	Normal c	1) All of the above
	,		~7		-/		.,
14.	In	Normal distrib	ution	as the distance fro	om tł	ne incre	eases, the curve comes
				e horizontal axis.			·
		Standard Dev			b)	Mean	
	c)	Both a) and b) aba	ove	d)	Neither a) nor	b) above

J. C a	K. S LAS Verando	SHAH SSES I Enterprise					•		CA FOUN	IDATION S	TATISTICS
15.	For S	Standard	Normal	distribut	ion, whic	h of t	ne followir	ng is corr	rect?		
	a) I	Mean = 1;	S.D. = 1			b)	Mean = 1	, S.D. = ()		
	c) l	Mean = 0,	S.D. = 1			d)	Mean = 0	, S.D. = ().		
 16.	The	mean dev	iation al	pout me	dian of a	ı Stand	dard Norm	al Varia	te is:		
	a) ().675 σ	b)	0.675		c)	0.80σ	d) (0.80		
 17.		interval (µ									
	- 1	96% area									
	•	95% area									
	•	99% area									
 	d) /	All but 0.2	27% area	a of a no	ormal dis	tributi					
 								3			
 18.					area of s		rd normal				
 	a) () to a	b)	a to ∞		c)	- ∞ to a	d) ·	-∞ to ∞		
							5/	9			
 19.					een Qua	rtile d	leviation ((D) and	Standar	d Deviat	ion
 		of norma					191	<u> </u>			
 	•	5 QD = 4 S				b)	4 QD = 5	SD			
 	C)	2 QD = 35	SD		P d	Od)	3 QD = 2	SD			
 20	T I						4 QD = 5 3 QD = 2		L	-11-1-11-1-1	•
 20.			-	assumes	a specifi	iea vai	ue in conti	nues pro	σασιτιτγ	aistribut	ION
 		································	•			۴)	0				
 	a) :					b)	0				
 	c) ·	-1				d)	None				
 					Theory A		Kov				
					Theory A	IISWEI	Key				
 - [10	с	11	с	12	b	13	с	14	b	
 	15	c c	16	d	17	d	18	α	19	d	
 	20		10	ŭ	17	ŭ	10	ŭ	15	ŭ	
 <u> </u>	20	b									
					148						



APPENDIX

	Table I Area Under Standard Normal Curve												
	-	(Pro	oportion	of area	under s	tandard	normal	curve b	etween	the			
				ordinate	es at z =	0 and g	iven val	ues of z)					
	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
	0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359		
	0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753		
	0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141		
	0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517		
	0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879		
	0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224		
_	0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549		
_	0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852		
_	0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133		
	0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389		
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621		
	1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830		
	1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015		
	1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177		
	1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319		
	1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441		
	1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545		
	1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633		
	1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706		
	1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767		
	2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817		
	2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857		
	2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890		
	2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916		
	2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936		
	2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	4951	.4952		
	2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964		
	2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974		
												-	

a Veran	da Enterpris	e								
2.8	.4974	.4975	.4976	.4977	.4977	.4973	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998

Veranda Enterpris

Table II Values of e^{-m}

			values of e			
m	e ^{-m}	m	e ^{-m}	m	e ^{-m}	
0.0	1.0000	1.5	0.2231	3.0	0.0498	
0.1	0.9048	1.6	.2019	3.2	.0408	
0.2	.8187	1.7	.1827	3.4	.0334	
0.3	.7408	1.8	.1653	3.6	.0273	
0.4	.6703	1.9	.4497	3.8	.0224	
0.5	.6065	2.0	.1353	4.0	.0183	
0.6	.5488	2.1	.1225	4.2	.0150	
0.7	.4966	2.2	.1108	4.4	.0123	
0.8	.4493	2.3	.1003	4.6	.0100	
0.9	.4066	2.4	.0907	4.8	.00823	
1.0	.3679	2.5	.0821	5.0	.00674	
1.1	.3329	2.6	.0743	5.5	.00409	
1.2	.3012	2.7	.0672	6.0	.00248	
1.3	.2725	2.8	.0608	6.5	.00150	
1.4	.2466	2.9	.0550	7.0	.00091	
		Vd(0	S Enterp	ise		
		<u>v</u>				

Table III - LOGARITHM

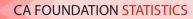
						DIE I														
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38	
						0212	0253	0294	0334	0374	4	8	12	16	20	24	32	36	36	
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	35	
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33	
12	0792	0828	0964	0899	0934						3	7	11	14	18	21	25	28	32	
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31	
13	1139	1173	1208	1239	1271						3	6	10	13	16	19	23	26	29	<u> </u>
						1303	1335	1367	1399	1430	3	7	10	13	16	19	22	25	29	
14	1461	1492	1523								3	6	9	12	15	19	22	25	28	
				1553	1584	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26	
15	1761	1790	1818								3	6	9	11	14	17	20	23	26	<u> </u>
				1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25	
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24	
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23	
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23	ĺ
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22	
18	2553	2577	2601	2625	2648		ĺ				2	5	7	9	12	14	17	19	21	
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	19	21	
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20	
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19	
20	3010	3023	3054	3075	3096	3116	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19	
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18	
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17	
23	3617	3636	3655	3674	3692	3909	3927	3747	3766	3784	2	4	6	7	9	11	13	15	17	
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16	
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	11	13	15	-
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15	
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	12	14	
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	10	12	14	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	11	13	-
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13	-
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12	_
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12	
33	5185	5198	5211	5224	5237	5250	5263	5276	5289 E/16	5302	1	3	4	5	6	8	9	10	12	
34 35	5315 5441	5328 5453	5340 5465	5353 5478	5366 5490	5378 5502	5391 5514	5403 5527	5416 5539	5428	1	3	4	5	6	8	9	10	11	
22	J441	5455	5405	J410	5430	3202	5514	3271	7222	5551	1	2	4	5	6	1	9	10	11]

	a	e anaa	Linterpri	30																	
I	36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11	
T	37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10	
t	38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10	
╢	39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10	
╢	40	6021	631	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10	
╢	41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9	
	42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6235	1	2	3	4	5	6	7	8	9	
	43	6335	6345	6355	6365	6575	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9	
	44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9	
	45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9	
I	46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8	
I	47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8	
t	48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8	
╢	49	6902	6911	6920	6928	6037	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8	
												/									

Example:

Log 2 = 0.3010: Log 20 = 1.3010: Log 200 = 2.3010: Log 2,000 = 3.3010 etc.

Log 2 = 0.3010 - 1 - (-) 0.699


Veranda Enterprise Log 0.02 = 0.3010 - 2 - (-) 1.699

11 7100 7110 7120 7230 7230 7230 7230 7300 7381 730 732 3 4 5 6 7 7 53 7243 7251 7250 7267 7273 7300 7381 7361 1 2 2 3 4 5 6 7 54 7404 7427 7430 7433 7451 7452 740 747 743 747 1 2 2 3 4 5 6 7 55 7404 7427 7433 7427 743 1 1 2 3 4 5 6 7 57 7566 7567 7607 7767 7777 1 1 1 2 3 4 5 <th></th> <th>50</th> <th>6990</th> <th>6998</th> <th>7007</th> <th>7016</th> <th>7024</th> <th>7033</th> <th>7042</th> <th>7050</th> <th>7059</th> <th>7067</th> <th>1</th> <th>2</th> <th>3</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th></th>		50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8	
53 7243 7251 7267 7275 7284 7292 7300 7306 7314 1 2 2 3 4 5 6 6 7 54 7322 7330 7348 7358 7364 7372 7380 7388 7386 7387 755 1 2 2 3 4 5 5 6 7 56 7574 7582 7589 7597 7604 7612 7619 7677 1 1 2 3 4 5 6 6 6 7 759 7566 7577 7580 7667 7647 7774 1 1 2 3 4 5 6 6 6 6 7 793 7900 7807 7910 7917 1 1 2		51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8	
54 7324 7320 7340 7348 7358 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7368 7366 7411 1 2 2 3 4 5 5 6 7 56 7452 7490 7497 7505 7513 7528 7536 7543 7551 1 2 2 3 4 5 6 7 57 7559 7566 7574 7582 7567 7664 7672 7677 7687 7687 7664 7672 7677 7714 1 1 2 3 4 4 5 6 6 6 6 7 7 7714 1 1 2 3 4 4 5 6 6 6 6 6 6 7 7 7 7 1<1		52	7160	7166	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7	
55 7404 7412 7419 7427 7435 7445 7450 7466 7474 1 2 2 3 4 5 5 6 7 56 7452 7490 7497 7505 7513 7520 7528 7536 7543 7551 1 2 2 3 4 5 5 6 7 57 7556 7564 7574 7582 7589 7797 7686 7694 7701 1 1 2 3 4 4 5 6 7 59 7709 7716 7731 7738 7745 7760 7767 7717 1 1 2 3 4 4 5 6	-	53	7243	7251	7259	7267	7275	7284	7292	7300	7306	7314	1	2	2	3	4	5	6	6	7	
56 7452 7490 7497 7505 7513 7528 7536 7543 7551 1 2 2 3 4 5 6 7 57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 1 2 2 3 4 5 6 7 58 7634 7642 7649 7657 7664 7677 7686 7670 7767 7777 1 1 2 3 4 4 5 6 7 60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7848 1 1 2 3 4 4 5 6	-	54	7324	7332	7340	7348	7358	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7	
57 7559 7566 7574 7582 7589 7597 7604 7612 7627 1 2 2 3 4 5 6 7 58 7634 7642 7649 7657 7664 7672 7767 7711 1 1 1 2 3 4 4 5 6 7 59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 6 61 7853 7860 7868 7875 7882 7889 7890 7910 711 1 1 2 3 4 5 5 6 6 633 7993 8000 8007 8014 8028 8035 8041 8048 8055 1 1 2 3 4 5 5 6 6 6 6 8052 8038 8014 8048 8054 8122 1 1	-	55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7	
58 7634 7642 7649 7657 7664 7672 7767 7701 1 1 1 2 3 4 4 5 6 7 59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 7 60 7782 7780 7760 7803 7810 7818 7825 7832 7830 7848 1 1 2 3 4 4 5 6 6 61 7853 7860 7867 7857 7827 7987 7917 1 1 2 3 4 4 5 6 6 6 6 6 6 7937 7900 7817 1 1 2 3 3 4 5 5 6 6 6 6 6 8075 8028 8038 8041 8048 8055 1 1 2 3 3 4 </td <td>_</td> <td>56</td> <td>7452</td> <td>7490</td> <td>7497</td> <td>7505</td> <td>7513</td> <td>7520</td> <td>7528</td> <td>7536</td> <td>7543</td> <td>7551</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>5</td> <td>6</td> <td>7</td> <td></td>	_	56	7452	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7	
59 7709 7716 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 60 7782 7789 7796 7803 7810 7818 7825 7839 7848 1 1 2 3 4 4 5 6 6 60 7782 7780 7786 7863 7815 7882 7889 7896 7903 7910 7917 1 1 2 3 4 4 5 6 6 62 7924 7931 7938 7945 7952 7958 7966 7973 7980 7980 71 1 2 3 4 5 5 6 64 8062 8009 8075 8028 8082 8098 8096 8102 8102 1 1 2 3 4 5 5 6 65 8128 8136 8174 8162 8169 8176 8128 <		57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7	
60 7782 7789 7796 7803 7810 7818 7825 7833 7838 1 1 2 3 4 4 5 6 61 7853 7860 7868 7875 7882 7889 7906 7910 7917 1 1 2 3 4 4 5 6 6 62 7924 7931 7938 7945 7952 7958 7966 7973 7980 7987 1 1 2 3 4 5 5 6 63 7993 8000 8007 8014 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 64 8062 8069 8075 8022 8228 8235 8241 8248 8182 8182 8182 811 1 2 3 3 4 5 5 6 6 6 8325 8331 8338 8344 8351 8375 83		58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7	
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7911 1 1 2 3 4 5 6 6 62 7924 7931 7938 7945 7952 7958 7966 7973 7980 7987 1 1 2 3 3 4 5 6 6 63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 64 8062 8069 8075 8082 8089 806 8102 8109 8116 8122 1 1 2 3 3 4 5 5 6 65 8129 8136 8142 8149 8158 8169 8376 8312 8311 1 1 2 3 4 5 6 6 6 6 8325 8311 8318 8344 851 8513 </td <td></td> <td>59</td> <td>7709</td> <td>7716</td> <td>7723</td> <td>7731</td> <td>7738</td> <td>7745</td> <td>7752</td> <td>7760</td> <td>7767</td> <td>7774</td> <td>1</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td></td>		59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7	
62 7924 7931 7938 7945 7952 7958 7966 7973 7980 7987 1 1 2 3 3 4 5 6 6 63 7993 8000 8007 8014 8024 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 64 8062 8069 8075 8082 8088 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 5 6 65 8129 8136 8142 8149 8158 8122 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 6 66 8195 8202 8209 8203 8293 8293 8308 8312 8319 1 1 2 3 4 5 6 6 68 8325 8331 8334 8347 8		60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7848	1	1	2	3	4	4	5	6	6	
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 5 6 65 8129 8136 8142 8149 8158 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6 66 8195 8202 8209 8215 8221 8228 8235 8241 8248 8254 1 1 2 3 4 5 6 67 8261 8267 8274 8280 8287 8293 8306 8312 8312 1 1 2 3 4 4 5 6 68 8325 8331 8337 84483 8439 8450 <		61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6	
64 8062 8069 8075 8082 8089 8096 8102 8106 8116 8122 1 1 2 3 3 4 5 5 6 65 8129 8136 8142 8149 8158 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6 66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 4 5 5 6 67 8261 8267 8274 8280 8287 8293 8306 8312 8311 1 1 2 3 4 4 5 6 68 8325 8331 8338 8441 8420 8428 8432 8439 8451 1 2 3 4 4 5 5 7 70 8451 8457 8463 8470 8476 8482 8488 <t< td=""><td></td><td>62</td><td>7924</td><td>7931</td><td>7938</td><td>7945</td><td>7952</td><td>7958</td><td>7966</td><td>7973</td><td>7980</td><td>7987</td><td>1</td><td>1</td><td>2</td><td>3</td><td>3</td><td>4</td><td>5</td><td>6</td><td>6</td><td></td></t<>		62	7924	7931	7938	7945	7952	7958	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6	
65 8129 8136 8142 8149 8158 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6 66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 5 6 66 8195 8207 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6 68 8325 8331 8338 8444 8451 8442 8448 8449 8506 1 1 2 3 4 4 5 5 70 8451 8457 8463 8470 8468 8494 8500 8506 1 1 2 2 3 4 4 5 5 7 71 8513 8579 8553 8591 8577 8603 <td>-</td> <td>63</td> <td>7993</td> <td>8000</td> <td>8007</td> <td>8014</td> <td>8021</td> <td>8028</td> <td>8035</td> <td>8041</td> <td>8048</td> <td>8055</td> <td>1</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>5</td> <td>5</td> <td>6</td> <td></td>	-	63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6	
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 5 6 67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6 68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 4 4 5 6 69 8388 8395 8401 8407 8447 8420 8428 8432 8439 84451 1 1 2 3 4 4 5 6 70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 5 72 8573 8579 8585 8591	-	64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6	
67 8261 8267 8274 8280 8287 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6 68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 4 4 5 6 69 8388 8395 8401 8407 8414 8420 8428 8432 8439 84451 1 1 2 2 3 4 4 5 6 70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 5 71 8513 8519 8527 8531 8557 8663 8609 8615 8621 1 1 2 2 3 4 4 5 5 7 73 8633 8639 8645 8657	-	65	8129	8136	8142	8149	8158	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6	
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 4 4 5 6 69 8388 8395 8401 8407 8414 8420 8428 8439 8445 1 1 2 2 3 4 4 5 6 70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 6 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5 73 8633 8639 8645 8651 8657 8663 8661 8617 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8728 <td>_</td> <td>66</td> <td>8195</td> <td>8202</td> <td>8209</td> <td>8215</td> <td>8222</td> <td>8228</td> <td>8235</td> <td>8241</td> <td>8248</td> <td>8254</td> <td>1</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>5</td> <td>5</td> <td>6</td> <td></td>	_	66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6	
69 8388 8395 8401 8407 8414 8420 8428 8432 8439 8445 1 1 2 2 3 4 4 5 6 70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 6 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5 72 8573 8579 8585 8591 8577 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5 73 8633 8639 8645 8617 8776 8762 8768 8774 8779 8733 8738 8745 1 1 2 2 3 3 4 5 5 77 865 8871 <td></td> <td>67</td> <td>8261</td> <td>8267</td> <td>8274</td> <td>8280</td> <td>8287</td> <td>8293</td> <td>8299</td> <td>8306</td> <td>8312</td> <td>8319</td> <td>1</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>5</td> <td>5</td> <td>6</td> <td></td>		67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6	
70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 6 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5 72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5 73 8633 8639 8645 8651 8657 8663 8669 8673 8681 8686 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8722 8727 8733 8738 8745 1 1 2 2 3 3 4 4 5 5 75 8751 8768		68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6	
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5 72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5 73 8633 8639 8645 8651 8657 8663 8669 8673 8681 8666 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8722 8727 8733 8738 8745 1 1 2 2 3 4 4 5 5 75 8751 8756 8762 8768 8774 879 8842 8848 8854 8859 1 1 2 2 3 3 4 4 5 5 76 8808 8811		69	8388	8395	8401	8407	8414	8420	8428	8432	8439	8445	1	1	2	2	3	4	4	5	6	
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5 73 8633 8639 8645 8651 8657 8663 8669 8673 8681 8686 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8722 8727 8733 8738 8745 1 1 2 2 3 4 4 5 5 75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 4 5 77 8865 8871 876 <td></td> <td>70</td> <td>8451</td> <td>8457</td> <td>8463</td> <td>8470</td> <td>8476</td> <td>8482</td> <td>8488</td> <td>8494</td> <td>8500</td> <td>8506</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>4</td> <td>4</td> <td>5</td> <td>6</td> <td></td>		70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6	
73 8633 8639 8645 8651 8657 8663 8669 8673 8681 8686 1 1 2 2 3 4 4 5 5 74 8692 8698 8704 8710 8716 8722 8727 8733 8738 8745 1 1 2 2 3 4 4 5 5 75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 4 5 76 8805 8871 8876 8822 8887 8893 8994 8904 8910 8915 1 1 2 2 3 3 4 4 5 78 8921 8927 8938 <td></td> <td>71</td> <td>8513</td> <td>8519</td> <td>8525</td> <td>8531</td> <td>8537</td> <td>8543</td> <td>8549</td> <td>8555</td> <td>8561</td> <td>8567</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>4</td> <td>4</td> <td>5</td> <td>5</td> <td></td>		71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5	
74 8692 8698 8704 8710 8716 8722 8727 8733 8738 8745 1 1 2 2 3 4 4 5 5 75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8859 1 1 2 2 3 3 4 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8859 1 1 2 2 3 3 4 4 5 77 8865 8871 8876 8882 8887 893 8949 8944 8960 8965 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987		72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5	
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 76 8808 8814 8820 8825 8831 8837 8842 8848 8859 1 1 2 2 3 3 4 5 5 77 8865 8871 8876 8882 8887 8893 8899 8904 8915 1 1 2 2 3 3 4 4 5 78 8921 8927 8932 8938 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 4 4 5 80 9031 9036 9042 9047 9053 9058 9063		73	8633	8639	8645	8651	8657	8663	8669	8673	8681	8686	1	1	2	2	3	4	4	5	5	
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 5 5 77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 5 78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 80 9031 9036 9047 9053 9058 9063 9074 9079 1 1 2 2 3 4 4 5 81 9085 9090 9090 9101 9106 9117	-	74	8692	8698	8704	8710	8716	8722	8727	8733	8738	8745	1	1	2	2	3	4	4	5	5	
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 5 78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 4 4 5 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 3 4 4 5 82 9138 9143 9149 9154 9		75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5	
78 8921 8927 8932 8938 8943 8949 8954 8960 8955 8971 1 1 2 2 3 3 4 4 5 79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 4 4 5 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 2 3 4 4 5 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 2 3 4 4 5 83 9191 9196 9201 9206		76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5	
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 2 3 4 4 5 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 2 3 4 4 5 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 2 3 4 4 5 83 9191 9196 9201 9206 9212 9217 9222 9227 9238 1 1 2 2 2 3 4 4 5 84 9243 9248 9253 9258 <td>_</td> <td>77</td> <td>8865</td> <td>8871</td> <td>8876</td> <td>8882</td> <td>8887</td> <td>8893</td> <td>8899</td> <td>8904</td> <td>8910</td> <td>8915</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>4</td> <td>5</td> <td></td>	_	77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5	
80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 2 3 4 4 5 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 2 3 4 4 5 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 2 3 4 4 5 83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 2 3 4 4 5 84 9243 9248 9253 9258 9263 9274 9279 9284 9289 1 1 2 2 3 4 4 5 85 9294 9299 9304 9309 9315		78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5	
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 2 3 4 4 5 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 2 3 4 4 5 83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 2 3 4 4 5 84 9243 9248 9253 9258 9263 9274 9279 9284 9289 1 1 2 2 2 3 4 4 5 85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 <td></td> <td>79</td> <td>8976</td> <td>8982</td> <td>8987</td> <td>8993</td> <td>8998</td> <td>9004</td> <td>9009</td> <td>9015</td> <td>9020</td> <td>9025</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>4</td> <td>5</td> <td></td>		79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5	
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 2 3 4 4 5 83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 2 3 4 4 5 84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 2 3 4 4 5 85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5		80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	2	3	4	4	5	
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 2 3 4 4 5 84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 2 3 4 4 5 85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5		81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	2	3	4	4	5	
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 2 3 4 4 5 85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5		82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	2	3	4	4	5	
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5 86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5		83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	2	3	4	4	5	
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5		84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	2	3	4	4	5	
		85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5	
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 0 1 1 2 2 3 3 4 4		86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5	
		87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4	

CA FOUNDATION STATISTICS

	a	veranaa	Enterpri	se																	
	88	9445	9450	9450	9455	9460	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4	
1	89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4	
1	90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4	
	91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4	
╢	92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4	
	93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4	
	94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4	
	95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4	
	96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4	
	97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4	
	98	9912	9917	9921	9926	9930	9934	9939	9943	9945	9952	0	1	1	2	2	3	3	4	4	
1	99	9958	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4	
_	-	•	•			•	•	•	•		•										

Veranda Enterprit

						IDIE	TA -	AN	IILC	JGA	KI I F	1 *									
		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
	100	1000	1002	1005	1007	1009	1012	1014	1016	1018	1021	0	0	1	1	1	1	2	2	2	
	101	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2	
	102	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2	
	103	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2	
	104	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2	
	105	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2	
	106	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2	
	107	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2	
	108	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3	
	109	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3	
	110	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3	
	111	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3	
	112	1381	1321	1324	1327	1330	1334	1337	1340	1342	1348	0	1	1	1	2	2	2	2	3	
	113	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3	
	114	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3	
	115	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3	
	116	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3	
	117	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3	
	118	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3	
_	119	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3	
	120	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3	
	121	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3	
	122	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3	
	123	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4	
	124	1738	1742	1746	1750	1754	1758	1762	1768	1770	1774	0	1	1	2	2	2	3	3	4	
	125	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4	
	126	1820	1824	1828	1832	1837	1841	1845	1849	1897	1858	0	1	1	2	2	3	3	3	4	
	127	1862	1866	1871	1875	1879	1884	1888	1892	1941	1901	0	1	1	2	2	3	3	3	4	
	128	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4	
	129	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4	
	130	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4	
	131	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4	
-	132	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4	
-	133	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4	
-	134	2188	2193	2198	2203	2206	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5	
$- \ $	135	2239	2244	2249	2254	2259	2265	2270	2275	2280	2256	1	1	2	2	3	3	4	4	5	
	·																				


		anaa	Enterpris																		
I	136	2291	2286	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5	
I	137	2344	2350	2355	2359	2366	2271	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5	
t	138	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5	
t	139	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5	
t	140	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5	
t	141	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5	
t	142	2630	2636	2642	2649	2655	2661	2667	2673	2679	2624	1	1	2	2	3	4	4	5	6	
╞	143	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6	
╉	144	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6	
╉	145	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6	
$\left \right $	146	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6	
$\left \right $	147	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6	
╞	148	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6	
	149	3090	3097	3105	3112	3118	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6	

Ada Enterpris

		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
	150	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7	
	151	3236	3243	3251	3258	3268	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7	
	152	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7	
+	153	3388	3396	3404	3412	3420	3428	3436	3442	3451	3459	1	2	2	3	4	5	6	6	7	
	154	3467	3475	3483	3491	3499	3508	3516	3524	3532	2540	1	2	2	3	4	5	6	6	7	
╉	155	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	6	7	
-	156	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8	
4	157	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8	
	158	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8	
	159	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	4	5	6	7	8	
	160	3981	3990	3999	4009	4018	4027	4036	4046	4055	4065	1	2	3	4	5	6	6	7	8	
	161	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9	
1	162	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9	
+	163	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9	
╢	164	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9	
╢	165	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9	
-	166	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10	
4	167	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10	
	168	4788	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10	
	169	4898	4909	4920	4932	4943	4955	4986	4977	4989	5000	1	2	3	5	6	7	8	9	10	
	170	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11	
	171	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11	
	172	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11	
1	173	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11	
╢	174	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12	
	175	5632	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12	
+	176	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12	
	177	5858	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12	
4	178	6028	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13	
	179	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13	
	180	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13	
	181	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14	
	182	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14	
1	183	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14	
╢	184	6918	6934	6950	6965	6982	6598	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15	
╢	185	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15	
╢	186	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15	
+	187	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16	

	av	eranaa	Enterpris	se																
I	188	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
1	189	7762	7780	7796	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
1	190	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
╢	191	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
╢	192	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
╢	193	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
	194	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
	195	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
	196	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
	197	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
I	198	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
1	199	9772	9795	9817	9840	9836	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

Example:

If Log x = 0.301. then x = Antilog 0.301 = 2

If Log x = 1.301. then x = (Antilog 0.301) × 10 = 20

If Log x = 2.301. then x = (Antilog 0.301) × 100 = 200

If Log x = (-) 0.699, then we can write Log x = (-1 + 0.301) : Thus x = Antilog (0.301) / 10 = 0.2

If Log x = (-) 1.699, then we can write Log x = (-2 + 0.301) : Thus x = Antilog (0.301) / 100 = 0.02