LAST 38	EXAMS	PYQ
01 Number Series		59 MCQs
02 Direction Sense Test		49 MCQs
03 Seating Arrangement		43 MCQs
04 Blood Relations	8-6-1 <mark>-</mark>	43 MCQs
05 Ratio & Proportion	,787 <mark>℃</mark> ,776	65 MCQs
06 Indices	- SS (* 163)	44 MCQs
07 Logarithm		57 MCQs
08 Equations		92 MCQs
09 Inequalities	SCAN OR CLICK ME FOR DISCUSSION	44 MCQs
10 Time Value of Money	VIDEOS	226 MCQs
11 Permutation & Combinatio	on	124 MCQs
12 Arithmetic Progression & 0	Geometric Progression	125 MCQs
13 Set Theory, Relations & Fu	unctions	106 MCQs
14 Differential Calculus		73 MCQs
15 Integral Calculus		69 MCQs
16 Statistical Description of [Data	148 MCQs
17 Measures of Central Tend	ency & Dispersion	246 MCQs
18 Probability		171 MCQs
19 Theoretical Distribution		140 MCQs
20 Correlation Regression		147 MCQs
21 Index Number		130 MCQs

and so the ADVENTURE Begins

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK Number Series, Coding & Decoding, Odd Man Out

TO BUY HARDCOPY OF PYQs

Click here

PYQs - Number Series, Coding Decoding & Odd Man Out

						-
May 2018			Q15. Find the o (a) 5	dd man out 5, 1	0, 17, 27, 37: (c) 27	(d) 10
	RIPPLE is written as 613 is PILLER written in that of		(d) 5	(b) 17	(0) 27	(d) 10
(a) 318826 (b) 31		(d) 338816		the series 4, 16	_ 256, 1024	and the second s
			(a) 32	(b) 48	(c) 64	(d) 46
	e '256' means 'you are		017. SYSTEM is	coded as 13162	5 then TERMS is	code as
	nd '358' means 'good an sents 'and' in that code?		(a) 62251	(b) 62451		(d) 62415
(a) 2 (b) 5	(c) 8	(d) 3			11.20.10.55.0	
			(a) 49	(b) 30	, 14, 30, 49, 55, 9 (c) 55	
	as 1357 and GAIN is co	oded as 2468,	(d) 49	02 (0)	(0) 55	(d) 91
what do figure 82146 (a) NGLAI (b) NG		(d) GNLA	Nov 2020			
			100		6, 10, 17, 28,,	
Nov 2018			(a) 58	(b) 46	(c) 48	(d) 54
	s 8123 and RHYME is co	ded as 49367.	O20. Find the m	nissing value in $\frac{3}{8}$	8 18 7 78	
What will be code of 1 (a) 6217 (b) 61		(d) 6285	(a) $\frac{37}{84}$	(b) $\frac{40}{87}$		(d) $\frac{38}{85}$
		(0) 0205	(a) $\frac{1}{84}$	(D) $\frac{1}{87}$	(C) <u></u> 86	$(u) \frac{1}{85}$
Q5. Find next number	in series 7, 11, 13, 17, 19	9, 23, 25, 29.	O21. Find odd o	one: 6, 9, 15, 21,	24, 26, 30	
(a) 30 (b) 31	(c) 32	(d) 33	(a) 30	(b) 24	(c) 26	(d) 9
OC IS HONEY is said	ad as IODCA which we	ud to anyle an				
VCTIGVU?	ed as JQPGA, which wo	ru is code as	be written in th		BMUI, then how	WIII NORTH
	RAPETS (c)TARGETS	(d) UMBRELU	(a) OPSUI	(b) GSQNM	(c) FRPML	(d) IUPSO
	t of following series 15, 2				J10R, M2OP, P43	
(a) 15 (b) 21	(c) 63	(d) 81	(a) M20P	(b) P43N	(c) J10R	(d) G4T
Q8. Find odd man out	t of following series 7, 9,	13, 17, 19	Q24. Find the n	ext term 1, 5, 21	, 57,	
(a) 7 (b) 9	(c) 19	(d) 13	(a) 105	(b) 138	(c) 121	(d) 101
			Jan 2021			
June 2019	ber in the series: 7, 23,	47 110 167		ext term: $\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{5}{2}$	7	
(a) 211 (b) 22			(a) 9/32		(c) 11/34	(d) 12/35
(0) 211 (0) 22	(0) 207	(0) 515	(u) 5/52	(0) 10/17	(0) 11/0 1	(0) 12/33
	one: 4, 12, 44, 176, 890		108	ext term: P3C, R		
(a) 4 (b) 12	2 (c) 44	(d) 176	(a) Y17O	(b) X17M	(c) X170	(d) X16O
011 If in a Certain lar	nguage, MADRAS is code	ed as NRESRT	Q27. Find out t	he odd man out	8, 25, 64, 125, 23	L6.
How BOMBAY is code			(a) 25	(b) 64	(c) 125	(d) 216
(a) CPNCBX (b) CF	PNCBZ (c) CPOCBZ	(d) None	029 In a cortai	in Code Langua	ge BEAT is writte	
				be Code for MILE		an as tv20,
Q12. Which of the foll (a) CEHL (b) KN		(d) NPSV	(a) ONRW	(b) NOWR	(c) ONWR	(d) NROW
		(u) INFOV	O20 In a contai		writton oc 6122	DO RILLEE Le
Nov 2019				n code RIPPLE is . RIFFLE will be v	written as 6133 vritten as	oz, ol life is
	ries. 4, 16, 36, 64, 100,		(a) 618892	(b) 689912		ł) 629981
(a) 144 (b) 12	21 (c) 49	(d) 120				
014 If MADRAS is NR	ESBT. Now DELHI is code	ed as:	July 2021	niccing form 1 1	, 8, 4, 27,, 6	4.16
(a) EMMJI (b) JIF		(d) CDKGH	(a) 27	(b) 11	, o, 4, 27,, o (c) 9	(d) 125
			Contraction of the local division of the loc	And in case of the local division of the loc		
WHATS	ΑΡΡ ΥΟυ	RDO	UBTS (<u>on 89</u>	99288	310
	2/1 0000111			and the owner of the local division of the l	Davision & Dasa	

© 8888111134 | 8888111034 www.pranavchandak.com

Page 1 Study from the BEST

Revision & Pradice Session 🥎 🔽 CA Pranav Chandak 🧕

PYQs - Number Series, Coding Decoding & Odd Man Out

Q31. If DELHI is (a) JQVSBK	coded as EFMIJ, (b) QVSKBJ	JAIPUR will be of (c) BJQVSK	oded as_ (d) KBJQVS	Q45. Find next 1 (a) 1316	term 9, 27, 31, 1 (b) 1135	55, 161, 1127, (c) 1288	(d) 2254
Q32. If FRAME i (a) 0118091905 (c) 0118190905		0 <mark>11305, ARISE</mark> is (b) 0119091805 (d) 0118091805	5	Q46. Find missi (a) 91.125	ng terms 12, 9, 3 (b) 89.145	13.5, 30.375,, (c) 90.475	341.71875 (d) 92.48
	out: 225, 196, 16 (b) 77			Q47. Find out th (a) 122	he next term 6, 1 (b) 114	13, 28, 59, (c) 113	(d) 112
Q34. If CLOCK MOTEL is coded	is coded as 342 d as:	35 and TIME as	8679, then			as 'OFAPSG'. Tic rritten in this way	
(a) 27894	(b) 72964	(c) 72894	(d) 77684	(a) OFPOMN		(c) OFUMPN (
then how will Y				Q49. Find the o (a) 12756	dd man out: 34, (b) 2123	105, 424, 2123, 1 (c) 424	.2756. (d) 34
(a) 715	(b) 517	(c) 175	(d) 571	OF0 Find missi		F 10 7 41 0	11 100
Dec 2021 036. What com	ies at the last pla	ice in R. U. X. A. I	2 2	(a) 71	ng number 3, 5, (b) 61	5, 19, 7, 41, 9,, (c) 69	(d) 79
(a) E	(b) F	(c) G	(d) H			if TOUR, is writt is written as 908	
Q37 . Missing te (a) 26	rm of the series (b) 28	4, 13,, 49, 7 (c) 30	' <mark>6 is</mark> (d) 32	code for CARE? (a) 1247		(c) 5247	(d) 5847
Q38. Find the o (a) Zebra	dd one from the (b) Giraffe	following: (c) Horse	(d) Tiger	Q52. Find the n (a) 133	ext number 11, (b) 143	17, 39, 85,, 28 (c) 153	1, 447 (d) 163
	n code, MENTION tten in that code		EITNO. How			CHAIR is coded nat will be code fo (b) 214673 (d) 214763	
then how is "ST	tain code "THAN 'UPID" written? (b) DISPUT			June 2023 Q54. Find the n	ext number Q1F	, S2E, U6D, W210	: ?
June 2022				(a) Y66B	(b) Y44B	(c) Y88B	(d) Z66B
Q41. 7, 26, 63, 1 (a) 511	124, 215, 342 (b) 672	(c) 508	(d) <mark>556</mark>	Q55. Find odd n (a) 460	nan out 190, 145 (b) 244	5, 136, 352, 460, 3 (c) 136	24, 631, 244 (d) 324
	coded as 14682 will you code GE		is coded as	Q56. Find missi (a) 342	ng number 7, 26 (b) 443	5, 63, 124, 215, (c) 441	_, <mark>511</mark> (d) 421
(c) 5346893		(d) 5326893		Q57. In a certain is PRESENT cod		N is written as LN	EITNO, how
Q43. 4, 6, 9, 1 (a) 40.50	.3.5,, 30.37 (b) 20.25	′ <mark>5</mark> (c) 40.75	(d) 60.25	(a) QFSFTUM (c) QRESTNO		(b) ONESERP (d) OERESTN	
the word ALIGA	he word TELEPHO TOR be written (b) ROTAGAIL	in that code?	ET, how will (d) None	58. Find the odd (a) 95	d man out: 41, 4 (b) 83	3, 47, 53, 61, 71, (c) 71	83, 95. (d) 53
WHA	TSAPF	YOU	R DO	UBTS (ON 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 2 **Study from the BEST**

Revision & Practice Session -🔽 CA Pranav Chandak 🧕

LAST 38 EXAMS PYQs by capranav chandak Direction Sense Test

TO BUY HARDCOPY OF PYQ ^s

SCAN ME

Click here

PYQs - Direction Sense Test

May 2018

Q11. Manu wants to go to market. He starts from his house towards North & reaches a crossing after 30m. He turns Q1. Laxman went 15 km to North then he turned West and towards East, goes 10m till second crossing & turns again, covered 10 kms. Then he turned South and covered 5 km. moves towards south straight for 30m where marketing Finally turning to East he covered 10 km. In which direction complex exits. In which direction is market from his house? he is from his house. (a) North (b) South (a) East (b) West (c) North (d) South (c) East (d) West June 2019 Q2. A man is facing East, then he turns left and goes 10 meter then turns right and goes 5 meter then goes 5 meter Q12. Sangeeta leaves from her home. She first walks 30 to the South and from there, 5 meter to West. In which meters in northwest direction and then 30 metres in south direction is he from his original place? west direction, next she walks 30 metres in south-east (a) East (b) West (c) North (d) South direction. Finally, she turns towards her house. In which direction is she moving now? Q3. X walks southwords and then turns right, then left and (a) North west (b) North East (c) South east (d) None then right. In which direction is he moving now? (a) South (b) North (c) West (d) East Q13. When a person faces north and walks 25m right then turns left and walks 20m, and again turns right and walks Q4. Raman starts walking in the morning facing the Sun. 25m, and turns right, and walks 25m, and turns right and After sometime, he turned to the left, later again he turned walks 40m, in which direction is he now from his starting to his left. In what direction is Raman moving now? point? (a) East (b) West (c) South (d) North (a) North west (b) North East (c) South east (d) None Q5. I stand with my right hand extended side-ways towards Q14. Madhuri moved a distance of 75 meters toward north. south. Towards which direction will my back be? She then turned to her left & walked for about 25m, turned (a) North (b) West (c) East (d) South left again and walked 80m. Finally, she turned to her right at an angle of 45°. In which direction was she moving now? Q6. You go North, turn right, then right again and then go (a) North west (b) North East (c) South west (d) None to the left. In which direction are you now? (a) South (b) East (c) West (d) North Q15. A person facing North moves 70° in clockwise direction. He again moved 300° in clockwise direction. In Nov 2018 which direction is he facing now? Q7. Six flats on a floor in two rows facing North and South (a) North west (b) South east (c) North east (d) None are allotted to P,Q,R,S,T and U. Q gets a North facing flat and is not next to S. S and U get diagonally opposite flats. Nov 2019 R next to U, gets a South facing flat and T gets a North **Q16.** Mohan started from a point and walked towards west. facing flat. Whose flat is between Q and S? He took left to reach Sohan's house. In which direction (a) T (b) U (c) R (d) P should he move to reach his house? (a) North east (b) South east (c) South west (d) None Q8. Anoop Starts walking towards South. After walking 15 metres, he turns towards North. After walking 20 metres, he Q17. A man stands on a point and starts walking towards turns towards East and walks 10 metres. He then turns north. He then turns left, then turns right, and then left. In towards south and walks 5 metres. In which direction is he which direction he is moving now? from the original position. (a) West (b) North (c) East (d) South (a) North (b) South (c) East (d) West Q18. A man started from a point facing north, turned left, Q9. Rahim started from point X and walked straight 5 km again left & then right. In which direction he is facing now? west, then turned left and walked straight 2 km, then again (a) East (b) West (c) North (d) South turned left and walked straight 7 km. In which direction is he from the point X? Q19. Rohan is driving cycle from his house towards north, (a) North-East (b) South-West (c) South-East (d) None he turns left & then left again. Which direction he is facing? (a) East (b) West (c) North (d) South Q10. A man started to walk East, After moving a distance, he turned to his right. After moving a distance, he turned to his Q20. Sun rises behind the tower and sets behind the railway right again. After moving a little he turned in the end to his station. In which direction is the tower from railway station? left. In which direction was he going now? (a) North (d) West (b) South (c) East (a) East (b) West (c) North (d) South 0

© 8888111134 | 8888111034 www.pranavchandak.com

Page 3 **Study from the BEST**

Revision & Practice Session

🔼 CA Pranav Chandak 🧿

CA PRANAV CHANDAK **PYQs - Direction Sense Test** July 2021 Q21. A dog is taken out by its owner whose house faces east. They walk 200m west, then 500m in the south direction. In Q30. There are four towns P, Q, R and T. Q is to the Southwhich direction is his house from his place? West of P, R is to the East of Q and South-East of P and T is (a) North (b) North-East (c) East (d) South to the North of R in line with QP. In which direction of P is T located? Nov 2020 (a) North (b) North-East (c) East (d) South Q22. Rahim faces north turning to his right walks 25 meters. He then turns to his left & walks 30 meters. Next, he Q31. One morning after Sunrise, Vikram and Shailesh were moves 25 meters to his right. He turns to his right again and standing in a down with their back towards each other. walks 55 meters. Finally, he turns to right & moves 40 metre. Vikram's shadow feli exactly towards left hand side. Which In which direction is he now from starting point? direction was Shailesh facing? (a) South west (b) South east (c) South (d) West (a) South west (b) East-South (c) South (d) West Q23. A man can walk by having long, medium and short Q32. A and B start moving towards each other from two steps. He can cover 60 meters by 100 long steps, 100 meters places 200m apart. After walking 60m, B turns left and goes by 200 medium steps and 80 meters by 200 short steps, he 20m, then he turns right and goes 40 m. He then turns right walks taking 5000 long steps, then he turns left and walk by again and comes back to the road on which he had started taking 6000 medium steps. He then turns right and walk by walking. If A and B walk with the same speed, what is the taking 2500 short steps. How far (in meters) is he away from distance between them now? his starting point? (a) 80 m (b) 70 m (c) 40 m (d) 60 m (a) 5000m (b) 4000m (c) 6000m (d) 7000m Q33. Five Friends A, B, C, D, E are staying in the same locality. Q24. One day, Ram left home and cycled 10 km southward, B's house is to the East of A's house and to the North of C's turned right and cycled 5 km and turned right and cycled 10 house. C's house is to the West of D's house. D's house is in km and turned left and cycled 10 km. How many kilometers which direction with respect to A's house? will he have to cycle to reach his home straight? (a) North east (b) South east (c) North west (d) West (b) 15 (d) 25 (a) 10 (c) 20 Dec 2021 Q25. If you are facing North-east & move 10m forward, turn Q34. A person walks 1 km (kilometre) towards West and left & move 7.5m, then you are in ____ of your initial position then he turns to South and walks 5 km. Again, he turns to (a) North (b) South (c) East West and walks 2 km. After this he turns to North and walks (d) None 9 km. How far is he from his starting point? Q26. A man is facing west. He turns 45° in clockwise (a) 3 km (b) 4 km (c) 5 km (d) 7 km direction & then another 180° in same direction & then 270° in anticlockwise direction. Which direction is he facing now? Q35. Daily in the morning the shadow of a Clock Tower (a) South west (b) North west (c) West (d) South installed on Railway Station falls on high rise Mall and in the evening the shadow of the same Mall falls on the Clock Tower installed on Railway Station exactly. So in which Jan 2021 direction is Clock Tower to Mall? Q27. A man is facing west. He turns 45° in the clockwise (a) East (b) West (c) North (d) South direction and then another 180° in same direction and then 270° in anti-clockwise direction. Which is the facing now? (a) South-West (b) North-West (c) West Q36. R's office is 4 km. in East direction from his home and (d) South club is 4km. in North direction from his home. On midway from office to club, R starts moving towards his home. In Q28. One day Ram left home and bi-cycled 10 km which direction is he facing his back? southwards, turned right and travelled 5km and turned right (a) North east (b) South east (c) North west (d) West and went 10km he turned left and went 10km how many kilometers he has to cycle to reach his home straight? Q37. A man starts from a point, walks 4 miles towards North (a) 10 (b) 15 (c) 20 (d) 25 and turns left and walks 6 miles, turns right and walks for 3 miles and again turns right and walks 4 miles and takes rest Q29. Ms. N walks 10km towards North from there she walks for 30 minutes. He gets up and walks straights miles in the 6km towards South. Then she walks 3km towards East. How same direction and turns right and walks one mile. What is far & in which direction is she from her starting point? the direction he is facing? (a) 4 km West (b) 6 km West (a) North (b) South (c) South-East (d) West (c) 3 km East (d) 5 km North-East

WHATSAPP YOUR DOUBTS ON 8

© 8888111134 | 8888111034 www.pranavchandak.com Page 4 Study from the BEST

Revision & Practice Session 🥣 🏹 CA Pranav Chandak 🧕 CA PRANAV CHANDAK **PYQs - Direction Sense Test** Q35. Hour hand of a clock is in west direction when time is Q42. One morning a boy starts walking in a particular 3'0 clock. What is the direction of minutes hand @ 6:45? direction for 5 Km and then takes a left turn and walks (c) North another 5 Km. thereafter he again takes left turn and walks (b) West (a) East (d) South another 5 Km and at last he takes right turn and walks 5 Km. Now he sees his shadow in front of him. What direction he June 2022 did start initially? Q36. A sign board pointing direction towards north due to (b) North (d) East heavy wind. Points of sign word shows west instead of (a) South (c) West North. If a person moves to same direction of pointer. He moves 100m then turn left & moves 100m then again turn Q43. It is 3'o clock in a watch. If the minute hand points left & move 100m then turn right & moves 100m. In which towards the North-East then the hour hand will point direction he is now? towards the: (c) North (a) West (b) East (d) South (b) South - West (a) South (c) North-West (d) South - East O37. If Ramu faces West and moves 5 km in direction then takes a left turn and moves 10 km then take another left turn Q44. A man is facing West. He turns 45 degree in the and moves 15 km in same direction then moves 10 km in clockwise direction and then another 180 degree in the the north direction and reaches point A. What is the distance same direction and then 270 degree in the anticlockwise b/w starting point & A. Which direction is Ramu facing now? direction. Find which direction he is facing now? (a) 10 km, North (b) 5 km, South (c) 10 km, South (d) None (a) South-East (b) West (c) South (d) South-West Q38. If P x Q means P is to the South of Q; P + Q means P is to the North of Q; P % Q means P is to the East of Q and P -June 2023 Q means P is to the West of Q; then in A% B + C - D; D is in Q45. Sunita walks a distance of 2 km towards East, Turns left which direction with respect to A? and moves 1 km then turn left and moves 2 km and then (a) North-West (b) South-East (c) North-East (d) South. turns left again and moves 1km then halts at what distance Sunita is now from now from the starting point? Q39. One day Ram left home and cycled 10 km southward, (a) 0 km (b) 1 km (c) 2 km (d) 6 km turned right and cycled 5 km and turned right and cycled 10 km and turned left to cycle 10 km. How many kilometers-Q46. Deepika starts walking towards east after walking 65m. will he have to cycle to reach his home? She turns to the left and walk 25m in straight. Again, she (d) 25 (a) 10 (b) 20 (c) 15 turned to left and walks distance of 40m. At what distance and in which direction currently she is from the starting Q40. A, B, C, D, E, F, G, H and I are nine poles. C is 2 km east point. of B. A is 1 km north of B and H is 2 km south of A. G is 1 km (a) 35m in the North-East (b) 35.35 in South-East west of H while D is 3 km east of G and F is 2 km north of G. (c) 25m in North (d) 25m in west I is situated just in middle of B and C while E is just in middle of H and I. Distance between B and I is? Q47. Mr. Kartik puts his timepiece on the table in such a way (a) 1 km (b) 1.41 km (c) 2 km (d) 3 km that at 6pm. Hours hand points to north & Which direction. The minute hard will point at 9.15p.m. Q40. A person facing north moves 70° clockwise. He again (a) South – East (b) East moved 300° anticlockwise. Which direction is he facing now? (d) South-west (c) West (a) North west (b) South east (c) North east (d) None Q48. Srikant is facing east & turns 120° in the clockwise Q42. Puru was driving his car & at a circle there was direction direction and then turn 180° in the anticlockwise direction. pole, which was showing all 4 correct directions. But due to Which direction is Srikant facing long. the wind, it turns such that now North pointer is showing West. Puru went in wrong direction thinking that he was travelling east. In what direction he was actually travelling? (a) East (b) North-East (c) South -West (c) West (a) West (b) East (c) North (d) South Q49. 5 Boys Ajay, Brajmohan, Chandru, Dheeraj and Ehsaan Dec 2022 are sitting in a part in a circle facing the center. Ajay is facing Q41. Radha moves towards South-East a distance of 7 km, south west. Dheeraj is facing South East. Brajmohan and then she moves towards West and travels a distance of 14 Ehsan are right opposite Ajay and Dheeraj respectively and km. From here she moves towards North -West a distance Chandru is equidistant between, Dheeraj and Brijmohan. of 7 km. and finally she moves a distance of 4 km. towards Which direction is Chandru Facing. East. How far is she now from the starting point? (a) west (b) south (c) north (d) East (a) 3 km. (b) 4 km. (c) 10 km (d) 11 km 0 D 0 Page 5 © 8888111134 | 8888111034 Revision & Practice Session

Study from the BEST

🔼 CA Pranav Chandak 🤇

www.pranavchandak.com

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Seating Arrangement

TO BUY HARDCOPY OF PYQs

PYQs - Seating Arrangement

May 2018Q10. Six persons are sitting in a row. B is b/w F &Q1. Five boys A,B,C,D & E are sitting in a row. A is to theA & C. A does not stand next to F or D, C does	D. Fish/w
	not stand
(a) D (b) A (c) E (d) B	
Q2. Five senior citizens are living in a multi-storeyed building. Mr. Manu lives in a flat above Mr. Ashokan, Mr. Lokesh in a flat below Mr. Gaurav, Mr. Ashokan lives in a flat below Mr. Gaurav & Mr. Rakesh lives in a flat below Mr.	reme end.
Lokesh. Who lives in the topmost flat? Q12. Five boys A, B, C, D & E are sitting in a row.	A is to the
(a) Mr. Lokesh (b) Mr. Gaurav (c) Mr. Manu (d) None right of B & E is to the left of B but to the right of the left of D. Who is second from the left end?	
b/w F & D. E is b/w A & C. A does not stand next to F or D.	(d) B
C does not stand next to D. F is b/w which of the following pairs of children?	
(a) B & E (b) B & C (c) B & D (d) B & A is b/w Bablu & Narender; Ashok is b/w Chitra	& Pankaj.
Q4. Five children are sitting in a row. S is sitting next to P but not T. K is sitting next to R, who is sitting on the extreme left Chitra is on the immediate left of Bablu. Who	
& T is not sitting next to K. Who is/are adjacent to S. (a) Parikh (b) Pankaj (c) Narender	(d) Chitra
(a) K+P (b) R+P (c) Only P (d) P & T Q14. C is b/w A & B, E is at the extreme right & I left of E. Who is in the middle?	D is on the
1012010	(d) E
E sits second right to D. H sits fourth left to D. C & F are	(-7 -
immediate neighbours, but C is not immediate neighbour of A. G is not neighbour of E. Only two persons sit b/w A & E. The persons on left end & right end respectively are: (a) $G \& E$ (b) $B \& E$ (c) $H \& E$ (d) $G \& B$ (d) $G \& B$	ther is a right of a man. The
Q6. Six children A, B, C, D, E & F are sitting in a row. B is b/w from left, the author is at which place?	. Counting
	(d) none
(a) B & C (b) E & C (c) B & D (d) None Nov 2020	
Q7. Five students A, B, C, D & E are standing in a row. D is on the right of E, B is on the left of E but on the right of A. D is next to C on his left. The student in middle is (a) BQ16. Five girls G, H, I, J, K are sitting in a row fac not necessarily in the same order H is sitting b/w immediate right to K, J is immediate left to G. Wh (a) J is third to the left of K (b) G is second to the left of I	G & K, I is
(c) H is to the right of K	
allotted to P, Q, R, S, T & U. Q gets a North facing flat & it is	
not next to S. S & U get diagonally opposite flat. R next to U gets a South facing flat & T gets a North facing flat. Whose flat is b/w O & S2	
flat is b/w Q & S? (a) T (b) U (c) R (d) P of J & - second to the right of I; K is sitting b/w I are not sitting opposite to each other. Which is n	& 0; J & M
June 2019 (a) K is sitting third to the right of L	
Q9. Four girls are seated for a photograph. Shikha is to the left of Reena. Manju is to the right of Reena. Reeta is b/w Reena & Manju. Who is the second left in photograph?(b) L & I are sitting opposite to each other (c) I is sitting b/w K & N (d) M is sitting b/w N & L(a) Descent (b) L & I are sitting opposite to each other (c) I is sitting b/w K & N 	
(a) Reena (b) Manju (c) Reeta (d) Shikha	0000
WHATSAPP YOUR DOUBTS ON 8999288	

© 8888111134 | 8888111034 www.pranavchandak.com

Page 6 Study from the BEST Revision & Prailice Section 🧊

PYQs - Seating Arrangement

Q18. A, B, C, D, E & F are sitting around a round table. A is between E and F. E is opposite to D and C is not in either of	Q26. A, B, C, D, E, F & G are sitting in a row facing north. F is to the immediate right of E. E is 4th to the right of G. C is the		
the neighbouring seats of E. Who is opposite to B?	neighbor of B & D. Person who is third to the left of D is at		
(a) F (b) C (c) D (d) E	one of ends. Who are to the right of D?		
	(a) E, F & A (b) G, B & C (c) C, B & E (d) G & B		
Q19. Six persons A, B, C, D, E and F are standing in a circle B			
is between D and C A is between E and C F is to the right of	Q27. Six friends P, Q, R, S, T & U are sitting around the		
D Who is between A and F?	hexagonal table each at one corner & are facing the centre		
(a) B (b) C (c) D (d) E	of the hexagonal. P is second to the left of U.Q is neighbor		
	of R & S. T is second to the left of S. Which one is sitting		
Jan 2021	opposite to S?		
Q20. A, B, C & D are playing cards, A & B are partners. D	(a) R (b) P (c) Q (d) S		
faces towards North. If A faces West, then who faces south?			
(a) C (b) B (c) D (d) None	Dec 2021		
	Q28. Six children, named as P, Q, R, S, T & U, are sitting is a		
Q21. A is seated b/w D & F at a round table. C is seated	row, Q is b/w U & S, T is b/w P & R, P dose not sit next to		
opposite to D. E is round adjust to D. Who sit opposite to B?	either U or S. R does not sit next to S. So, U is setting b/w		
(a) A (b) D (c) C (d) F	the pairs of children.		
	(a) Q & T (b) Q & R (c) Q & S (d) Q & P		
Q22. Four Indian, A, B, C & D & four Chinese E, F, G & H are			
sitting in a circle around a table facing the each other in a	Q29. Five persons A, B, C, D & E are sitting in a row. A sits		
conference. No two Indians or Chinese are sitting side by	left to C & C sits left to B. E sits right to B, D sits in b/w E &		
side, C who is sitting b/w G & E is facing D, F is b/w D & A	B. Who is sitting in the middle?		
& facing G, H is to the left of B. Who is sitting left of A?	(a) B (b) C (c) E (d) D		
(a) E (b) F (c) G (d) H			
	Q30. Four ladies A, B, C & D & four Gentlemen E, F, G & H		
Q23. Five friends A, B, C, D & E are sitting on a bench. A is	are sitting in a circle around a table facing each other:		
sitting next to B; C is sitting next to D, D is not sitting with E;	I. No two ladies or gentleman are sitting side by side.		
E is at the left end of bench. C is on second position from	II. C, who is sitting b/w G & E, is facing D.		
the right; A is on the right side of B who is the right side of	III. F is b/w D & A facing G.		
E. A & C are sitting together. What is the position of B?	IV. H is to the right of B.		
(a) Second from right (b) Centre	Who is immediate neighbour of B?		
(c) Extreme left (d) Second from left	(a) G & H (b) E & F (c) E & G (d) A & B		
Q24. A, B, C, D & E are sitting on the bench. A is sitting next	Q31. Persons M, N, O, P, Q, R, S, & T are sitting on a		
to B, C is sitting next to D, D is not sitting with B who is on the left end of the bench. C is on the second position from	compound wall facing North. O sits fourth left of S; P sits		
the right. A is to the right of B & E. A & C are sitting together	second to the right of S; only two people sit $b/w P \& M$; N		
in which position A is sitting b/w?	& R are immediate neighbours of each other. N is not an		
(a) C & D (b) D & E (c) B & C (d) B & D	immediate neighbour of M; T is not the neighbour of P. How many persons are seated b/w M & Q?		
	(a) One (b) Two (c) Three (d) Four		
July 2021			
Q25. Five girls are sitting on a bench to be photographed.	Q32. In a line, P is sitting 13th from left. Q is sitting 24th		
Seema is to the left of Rani & to the right of Bindu. Mary is	from the right & 3rd left from P. How many people are		
to the right of Rani. Reeta is b/w Rani & Mary. Who is sitting	sitting in the line?		
immediate right to Reeta?	(a) 34 (b) 31 (c) 32 (d) 33		
(a) Seema (b) Rani (c) Bindu (d) Mary			
WHATSAPP YOUR DO	UBTS ON 8999288810		

© 8888111134 | 8888111034 www.pranavchandak.com

Page 7 Study from the BEST Revision & Prailice Session 🦳

PYQs - Seating Arrangement

June 2022

Q33. Six friends Surya, Bhanu, Dinkar, Ravi, Suraj and Dinesh are sitting in a circle and are facing the centre of the circle, Dinesh is between Dinkar and Suraj. Bhanu is between Ravi and Surya. Dinkar and Ravi are opposite to each other. Who are the immediate neighbours of Ravi? (a) Surai and Dinesh (b) Dinkar and Bhanu

(a) Suraj and Dinesh	(b) Dinkar and Bhanu
(c) Surya and Dinesh	(d) Bhanu and Suraj

Q34. Eight persons E, F, G, H, I, J, K and L are seated around a square table, facing table - two on each side. J is between L and F; G is between I and F; H a lady member is second to the left of J; F a male member is seated opposite to E, a lady member There is a lady member between F and I. who among the following is to the immediate left of F? (a) G (b) I (c) J (d) H

Q35. If six person are sitting in a hexagonal table are P, Q, R, S, T, U each facing the centre. P is seated to opposite to Q who is b/w R & S. P is b/w T & U. T is the left of S. Which of them is facing R?

(a) P	(b) Q	(c) U	(d) T

Q36. Five boys A, B, C, D, E, are sitting in a row. A is to the right of B & E is to the left of B, but to the right of C. A is to the left of D. Who is second from the left end? (a) D (b) A (c) E (d) B

(a) D (b) A (c) E

Q37. Five persons are sitting on a bench to be photographed, S is to the left of N and to the right of B. M is to the right of N. R is between N & M. Who is sitting immediate right to R?

(a) B (b) N (c) M (d) S

Dec 2022

Q38. Six persons A, B, C, D, E & F are sitting in two rows with three persons in each row. Both rows are in front of each other. E is not at the end of the any row & D is second left to the F, C is neighbour of E & diagonally opposite to D. If B is neighbour of F who is in front of C then who is sitting diagonally to F?

(a) C	(b) E (c) A	(d) D

are partners.		t of 'R'. If 'R' is fa	rom. P, R & S, Q acing West, then (d) West
are sitting tog	gether. R is sittir	ng at South end	ng West. P & Q I & S is sitting at to is sitting the
(a) P	(b) Q	(c) R	(d) S
table facing t b/w B&A. A s	owards the Cer	tre of the circle F&C is fourth t	around a circular e. E is not sitting to the right of A. o right of F? (d) B
at an extreme C. G is not sit	e end. C is sittin ting at an extre	g next to E. B is me end. A is no	a row E is sitting sitting b/w A & ot at an extreme ng in the middle. (d) A
are sitting in (i) Pran is fou (ii) Volter is fo	a row facing No rth to the right orth to the left o	orth of Trilok of Shalu	Baasu & Bolter
komal & Trilo	ok respectively.		are neighbor of
	ntify who are si		is the neighbor
(a) Pran & Bo		(b) Trilok 8	
(c) Trilok & S			l Pran

WHATSAPP YOUR DOUBTS ON 899928881

© 8888111134 | 8888111034 www.pranavchandak.com Page 8 Study from the BEST

Revision & PracTize Session 🥣 🕞 CA Pranav Chandak 🤕

LAST 38 EXAMS PYQs By ca pranav chandak Blood Relations

TO BUY HARDCOPY OF PYQs

SCAN ME

PYQs - Blood Relation

WILLATCADD VOUD DO	LIPTE AN OBBASSOR
(a) Uncle (b) Cousin (c) Daughter (d) None	(a) Cousin (b) Wife (c) Mother (d) Mother
Q10. Pointing to a woman in a picture, Sumit said, she is the mother of my son's wife's daughter. How is lady related to the Sumit?	Q22. Pointing to a lady, A said, "that women is my nephew's maternal grandmother". How is that women related to A's sister who has no sister?
June 2019	(a) Father (b) Uncle (c) Son (d) Brother
of R? (a) $\mathbf{R} \div \mathbf{M} + \mathbf{N}$ (b) $\mathbf{R} + \mathbf{N} \div \mathbf{M}$ (c) $\mathbf{R} - \mathbf{M} \div \mathbf{N}$ (d) None	Q21. A Man said to a lady "your mother's husband's sister is my Aunt. "How is the man related to the lady?
Q9. If $P + Q$ means P is the mother of Q; $P \div Q$ means P is the father of Q; $P - Q$ means P is the sister of Q; then which of the following relationship shows that M is the daughter of P2	Q20. Vicky introduces John as the son of the only brother of his father's wife. How is Vicky related to John?(a) Son(b) Cousin(c) Uncle(d) Brother
Q8. Ram and Mohan are brothers, Shankar is Mohan's father. Chhaya is Shankar's sister. Priya is Shankar's niece. Shubhra is Chhaya's granddaughter. How is Ram related to Shubhra? (a) Brother (b) Uncle (c) Cousin (d) Nephew	mother is the only daughter of your father". How is the woman related to that person? (a) Mother (b) Daughter (c) Sister (d) Wife
	Q19. Pointing towards a person, A man said to woman, "His
C, D, E and F. B is the brother of D, but D is not brother of B. F is the brother of B, C and A are married together. F is son of C, but C is not the mother of F. E is the brother of A. The number of female members in the group is: (a) 1 (b) 2 (c) 3 (d) 4	Q18. Point out a Lady, Sohil said she is the daughter of woman. Who is the mother of the husband of my mother. Who is the lady to Sohil?(a) Sister(b) Aunt(c) Daughter(d) Wife
Q7. Six persons are seen together in a group. They are A, B,	Nov 2020
father of his brother is the only son of my grandfather", howis the woman related to the man in the photograph?(a) Mother(b) Aunty(c) Daughter(d) Sister	Q17. Who is the mother of B? (a) A (b) C (c) F (d) D
Nov 2018 Q6. Pointing to a man in a photograph, a woman said, "the	Q16. How many children does A have? (a) 3 (b) 2 (c) 4 (d) 1
(a) Nephew (b) Son (c) Cousin (d) Uncle	Q15. How is F related to B?(a) Uncle(b) Daughter(c) Son(d) Niece
Q5. A prisoner introduced a boy who came to visit him to the jailor as "Brothers and sisters I have none, he is my father's son's son". Who is the boy?	(a) 1 (b) 2 (c) 3 (d) 4
(a) Uncle (b) Brother (c) Father (d) None	the brother of A. D is the sister of B, E is the son of C. Q14. How many male members are there in the family.
Q4. P and Q are brothers R and S are sisters. P's son is R's brother. How is Q related to R?	Nov 2019[For questions 14-16]A, B, C, D, E and F are members of a family. B is the son of Abut A is not the mother of B, A & C are married couple. F isthe but
 Q3. A reads a book and find the name of the author familiar. The author 'B' is the paternal uncle of C. C is the daughter of A. How is B related to A? (a) Brother (b) Sister (c) Father (d) Uncle 	Q13. Pointing in a photograph, Sonia said, His mother's only daughter is my mother How is Sonia relates to that man? (a) Nephew (b) Sister (c) Wife (d) Niece
Q2. Suresh introduces a man as "he is the son of the woman who is the mother of the husband of my mother". How is Suresh is related to the man?(a) Cousin(b) Son(c) Brother(d) Nephew	Q12. Pointing the old man Kailash said "his son is my son's uncle". How is Kailash is related to old man.(a) Brother(b) Either son or son in law(c) Son(d) Grand Father
May 2018Q1. Vinod introduced Vishal as the son of the only brother of his father's wife. How is Vinod related to Vishal?(a) Cousin(b) Brother(c) Son(d) Uncle	Q11. Pointing to a man in a photograph, a man said "His mother's husband's sister is my aunt". Then what is relation between that man and him?(a) Son(b) Uncle(c) Nephew(d) Brother

WHATSAPP YOUR DOUBTS ON 8999288810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 9 Study from the BEST Revision & Prailice Section 🦷

PYQs - Blood Relation

lan 2021

Jan 2021 Q23. P is the brother of Q and R, S is the mother of R. T is the father of P, Which of the following statement cannot be definitely true?	 Q34. R told to M as, "the girl, I met at the beach, was the youngest daughter of the brother-in-law of my friend's mother". How is the girl related to R's friend? (a) Cousin (b) Daughter (c) Niece (d) Aunt
(a) S is the mother of P (b) P is son of S	
(c) T is husband of S (d) Q is son of T	Q35. P, Q, R, S, T, U are 6 members of a family in which there are two married couples. T, a teacher is married to a doctor
Q24. Pointing to a lady in a photograph, Ram said "Her son's father is the son in law of my mother". How is Ram related to the lady?	who is mother of R and U. Q the lawyer is married to P. P has one son and one grandson. Of the two married ladies one is a housewife. There is also one student and one male
(a) Aunt (b) Cousin (c) Sister (d) Mother	engineer in the family. Which of the following is true about the granddaughter of the family?
Q25. A girl Introduced, a boy as the son of the daughter of father of her uncle. The boy is girl's	(a) She is a lawyer (b) She is an engineer (c) She is a student (d) She is a doctor
(a) Son (b) Brother (c) Son-in-Law (d) Uncle	O26 V and V are brothers. D is the father of V. S is the brother
Q26. Pointing to a lady, Sahil said, "She is the daughter of the woman who is the mother of the husband of my mother". Who is the lady to Sahil?	Q36. X and Y are brothers. R is the father of Y. S is the brotherof T and maternal uncle of X. What is T to R?(a) Mother(b) Wife(c) Sister(d) Brother
(a) Aunt (b) Sister (c) Daughter (d) Mother	June 2022
July 2021 Q27. Shyam's mother said to Shyam "My mother has a son whose son is Ram". Shyam is related to Ram as. (a) Uncle (b) Cousin	Q37. Ravi is son of Aman's father's sister. Ram is son of Divya. Who is the mother of Gaurav and grandmother of Aman. Ashok is father of Tanya and grandfather of Ravi. Divya is wife of Ashok. How is Ravi related to Divya?
(c) Nephew (d) Grandfather	(a) Nephew (b) Grandson (c) Son (d) None
Q28. Amit said "This girl is the wife of the grandson of my mother". How Amit related to the girl?(a) Father-in law(b) Grandson (c) Father(c) Father(d) Son	Q38. $P + Q$ means P is brother of Q, P - Q means P is the mother of Q. P x Q means P is the sister of Q. Which of the following means M is the maternal uncle of R?(a) $M + K + R$ (b) $M - R + K$ (c) $M + K - R$ (d) $M + K \times R$
Q29. A is the son C, C and Q are sister, Z is the mother of Q and P is the son of Z. Which is true? (a) A and P are cousins (b) C and P are sisters (c) P is the material uncle of A (d) A is the material uncle of P	Q39. A women going with a boy is asked by another women about the relationship between them. The women replied, "My maternal uncle and the uncle are his maternal uncle are same", the relationship between the lady & the boy is (a) Maternal grandmother and grandson (b) Mother and son (c) Father & son
Q30. Pointing towards A, "B" said: your mother is the younger sister of my mother. "A" is related to "B" as (a) Uncle (b) Cousin (c) Nephew (d) Father	(d) Paternal grandmother and grandson
Dec 2021 Q31. D is daughter of E. A is son of D. C is a brother of A & B is sister of A. F is the brother of D. How F is related to B? (a) Father (b) Uncle (c) Brother (d) Mother	Q40. If Kamal says, "Ravi's mother is the only daughter of my mother. How is Kamal related to Ravi?(a) Father(b) Grandfather(c) Son(d) Maternal uncle
Q32. Introducing a boy a girl said, "He is the son of daughter of the father of my uncle". Who is the boy to the girl?(a) Brother(b) Nephew(c) Uncle(d) Son	Q41. A is B's sister. C is B's mother. D is C's father. E is D'smother. Then how A is related to D?(a) Grandfather(b) Grandmother(c) Daughter(d) Grand daughter
 Q33. It is given that "A is the mother of B; B is the sister of C; C is the father of D". How is A related to D? (a) Mother (b) Grandmother (c) Aunt (d) Sister 	Q42. If A \$ B means A is father of B. A # B means A is daughter of B. A @ B means A is sister of B. Then how is K related to M H @ K \$ L # M (a) Husband (b) Uncle (c) Father (d) Son
WHATSAPP YOUR DO	UBTS ON 8999288810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 10 **Study from the BEST**

Revision & Practice Session -🔽 CA Pranav Chandak 🧕

PYQs - Blood Relation

Ram's father is Madh	ne wife of Ram. Ram is Ra ur. Sheetal is Ram's g hter -in-law. Rohit is Ran resh?	randmother.	married and A is the brother	e 6 persons A, I is a male membe of A. E is the sist se husband has d	er. D is the only s er of D. B is the	on of C who daughter in
(a) Brother-in-law (c) Brother	(b) Son (d) Nephew		(a) A	(b) E	(c) D	(d) F
Q44. There are six child D, E and F, A & E are b son of A's uncle. B & D father. How D is related (a) Uncle (b) Cou Q45. In a joint family, sons and one unmarried 2 daughters each and o members are there in th	Iren playing football na rothers. F is sister of E, are daughters of the b to A? usin (c) Niece there are father, mothe daughter. Out of the so ne has a son only. How u ne family?	C is the only rother of C's (d) Sister er, 3 married ons, two have many female	are 2 married of is mother of R son & one gra There is also family. Which (a) Lawyer Q52. Pointing son's sister is	, T, V are 6 memb couples. T a teach & U. Q, the lawy ndson. of 2 marri one students and is true about gran (b) Engineer to a photographe s my mother-in- ed to the man is t (b) Brother	er is married to a rer is married to ed ladies one is d one male, eng ndson of the fan (c) Student er, a woman says law". How is ti	a doctor who P. P has one a housewife. jineer in the hily? He is (d) Doctor s" This man's he women's
(a) 3 (b) 6	(c) 9	(d) 5				
brother of my grandfa	'init, she recollected tha ther's son". How is Rar		the father of A	e brother of B, B i . How is C related	d to S?	
Vinit? (a) Aunt (b) Dau	ighter (c) Sister	(d) Niece	(a) Husband	(b) Wife	(c) Son	(d) None
Bhima. Shiva is brothe	er of Satya and Shyam i er of Annanya. If Satya		husband of W. of Y to N?	husband of Y. V . N is a daughter (of Z. What is the	
Shyam. How Bhima is re (a) Son	(b) Cousin		(a) Cousin (c) Daughter		(b) Niece (d) Grandmoth	ner
(c) Brother-in-law	(d) Son-in-law r-in-law of Rakesh and		Q55. Based or the uncle of P	the statements	given below, fin	d out who is
of Rajesh. Ramesh is th	e son of Rakesh and on n of Suman with Ramesh (b) Cousin (d) Wife	ly brother of	(i) K and J are (iii) P & N are (a) K	Brothers	(ii) K's Sister is (iv) N is the da (c) N	
Q49. Pointing to a man man's son's sister is my	in the photograph. Khus mother-in-law." Holw is	the Khushi's	'Your mother Ramlal who is	who is Deepak's -in-law Rekha is s the grandfather	the younger	daughter of
(a) Grandson (c) Son in law	man in the photograph (b) Son (d) Cousin	¢	Deepika? (a) Cousin	(b) Niece	(c) Sister-in-lav	w (d) Aunt
	5					
G						
WHATSA	APP YOU	R DO	UBTS	ON 89	99288	8810
0888811113	/ 100001110	Page Page	o 11		Revision & Prov	tion Comins -

© 8888111134 | 8888111034 www.pranavchandak.com

Page 11 Study from the BEST Revision & Pradlee Session 🦷

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Ratio, Proportion, Indices & Logarithms

TO BUY HARDCOPY OF PYQs

PYQs - Ratio & Proportion

Nov 2006 Q1. Two numbers are in squares is 320. The num		ference of their			re in the ratio 3 If each saves Rs.	
(a) 12,18 (b) 16,2		(d) None	(a) 6,000	(b) 4,500	(c) 3,000	(d) 7,500
Q2. If p:q is sub-duplica (a) $\frac{p}{p+q}$ (b) $\frac{q}{p+q}$		-	glycerine & wa	ater is 3:1. Quai	glycerine & wat ntity of water ad	
Q3. An alloy is to contain required to melt with 24		e ratio 9:4. Zinc	mixture in orde (a) 15 litres	r to make this ra (b) 10 litres		(d) 5 litres
(a) $10\frac{2}{3}$ kg (b) $10\frac{1}{3}$	kg (c) $9\frac{2}{3}$ kg	(d) 9 kg	Q13. Third prop	portional betwee	$en(a^2 - b^2) \& (a + b^2)$	$(-b)^2$ is
Feb 2007 Q4. Two numbers are in them, their ratio become		ded to each of	(a) $\frac{a+b}{a-b}$ June 2008	(b) $\frac{a-b}{a+b}$	(c) $\frac{(a-b)^2}{a+b}$	(d) $\frac{(a+b)^3}{a-b}$
(a) 14,16 (b) 24,2	7 (c) 21,24	(d) 16,18	Q14. In what ra with tea worth F	Rs. 14 per kg, so	vorth Rs. 10 per l that the average	
Q5. A box contains Rs. paise & 25 paise. No. o 25 paise coins & 4 times	f 50 paise coin is dou	uble the no. of	mixture may be (a) 2:1	Rs. 11 per kg? (b) 3:1	(c) 3:2	(d) <mark>4:</mark> 3
50 paise coins in the bo (a) 64 (b) 32		(d) 14			n the ratio 5:7. 1 their present ag (c) 40,56	
May 2007 Q6. 8 people are planni car. If 1 person withdr others share equally ent of the remaining person (a) 1/9 (b) 1/8	aws from the arrang ire cost of the car, the	gement & the	Rs. 84,000 & Rs	s. 2,10,000. If at en share of each 00, 1,21,000	ess by investing the end of the y is: (b) 48,400, 1,21 (d) 48,000, 1,21	ear profit is
Q7. A bag contains Rs. 2 & 10 paise coins in the type of coins: (a) 102,136,170 (b) 136,2	ratio 3:4:5. Find the n	umber of each	June 2009 Q17. If $\frac{p}{q} = -\frac{2}{3}$ th (a) 1	hen the value of (b) -1/7		(d) 7
Aug 2007 Q8. Ratio of earnings o increase by 50% & those of their earning become	of B decrease by 25%	6, the new ratio	Q18. Fourth pro (a) (x+2) June 2010	portional to x, 2 (b) (x-2)	2x, (x+1) is: (c) (2x+2)	(d) (2x-2)
(a) Rs. 21,000 (b) Rs. 2					each term of rati	.o 49: 68, so
Q9. P, Q & R are three between P & Q is 11:12	& that between P &	R is 9:8. Ratio	(a) 3	(b) 5	(c) 8	(d) 9
between the average te (a) 22:27 (b) 27:2		s: (d) None	students left fro	om each class, th	ses are in the rat ne remaining stu r of students in e	dents are in
Nov 2007 Q10. Rs. 407 are to be d			(a) 30, 40	(b) 25, 24	(c) 40, 60	(d) 50,70
shares are in the ratio $\frac{1}{4}$ (a) Rs. 165, Rs. 132, Rs. 1 (c) Rs. 132, Rs. 110, Rs. 1	.10 (b) Rs. 165, F	<mark>C are:</mark> Rs. 110, Rs. 132 Rs. 132, Rs. 165	Dec 2010 Q21. If A : B = 2 (a) 7:4	2:5, then (10A + (b) 7:3	3B):(5A + 2B) is a (c) 6:5	equal to: (d) 7:9
WHATSA	PP YOL	JR DO	UBTS (ON 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 12 Study from the BEST

Revision & Pradice Session 🥣 🕞 CA Pranav Chandak 🧕

PYQs - Ratio & Proportion

June 2011 Q22. In a film shooting, A & B received money in a certai ratio & B & C also received the money in the same ratio.						of a person is in he product of sal	
A gets Rs. 1,60, received by B?	000 & C gets Rs	. 2,50,000. Find 1	the amount	first two month the salary of the	s & last two mo e person for the	nths is Rs. 4,80,0 second month w	0,000; then ill be:
(a) 2 Lacs	(b) 2.5 Lacs	(c) 1 Lac	(d) 1.5 Lac	(a) 4,000	(b) 6,000	(c) 8,000	(d) 12,000
8:15. Then Value	e of 'a' is:	5 & sub-duplica		costing Rs. 15.5	4 & sells mixtur	g Rs. 13.84 per K e at Rs. 17.60 pe	r Kg. So, he
(a) 2	(b) 3	(c) 4	(d) 5		f 14.6% on his s the two qualitie	ale price. The pr	oportion in
	inversely as squ /alue of X for Y =	are of Y & giver = 6 will be:	n that Y = 2	(a) 3:7		(c) 7:9	(d) 9:11
(a) 3	(b) 9	(c) 1/3	(d) 1/9	Q36. 2p ² – q ² = (a) 5:6	7pq. Find p:q. (b) 5:7	(c) 3:5	(d) 3:7
June 2012 O25 Which pur	nbers are not in	proportion?					
		(c) 18, 27, 12, 18	3 (d) All			on of 12,30 to	the mean
		n that mean p		proportion of 9, (a) 2:1	(b) 5:1	(c) 7:15	(d) 3:5
	(b) 8, 32	portional b/w the (c) 7, 28	em ts 144. (d) 6, 24		nber must be ad the numbers in p	ded to each nur proportion?	nber 10,18,
June 2013				(a) 2	(b) 4	(c) 8	(d) None
	portional betwee		(1) 20	June 2016			
	(b) 34 ate ratio of 4:5 is	(c) 35	(d) 36	Q39. X, Y, Z to		ousiness. If X inve two third of what	
	(b) 16:25	(c) 64:125	(d) 120:46		f capitals of X, Y,		
Dec 2013			\mathbf{V}^{-}	(a) 3:9:2	(b) 6:3:2	(c) 3:6:2	(d) 6:2:3
and the second second	numbers in the	ratio 1:2:3, so th	nat the sum	Dec 2016			
of their squares	is equal to 504.					Rs. 1, Rs. 2 & Rs	
	(b) 3,6, 9	(c) 4, 8, 12	(d) 5,10,15	3:2. Then numb	er of coins of Rs		
maximum, then	the numbers are			(a) 12	(b) 5	(c) 10	(d) 14
(a) 25,55	(b) 35,45	(c) 40,40	(d) 15,65	June 2017 041 If a:h = 2:3	$h = 4.5 \ \text{sc} = 0.5 \ sc$	l = 6 : 7, then a:c	ic [,]
higher than tha	t of Q, ratio of th	than Q & salary ie salary of R & F	p will be:	(a) 24:35	(b) 8 :15	(c) 16:35	(d) 7:15
(a) 5:8	(b) 8:5	(c) 5:3	(d) 3:5	Dec 2017			
June 2014	, then (5x+2y):(3	(x - y) = 2				coins & ₹10 coir number of ₹10 cc	
(a) 19:3	(b) 16:3	(c) 7:2	(d) 7:3	(a) 72	(b) 120	(c) 135	(d) 185
		h Rs. 1,48,200.		Q43. If $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}$ &	$\frac{1}{x}$ are in proportion	on, then 'x' will b	e:
		& daughter in the share of his sor (c) 74,100		(a) 15/2	(b) 6/5	(c) 10/3	(d) 5/6
and the second second				I I I I I I I I I I I I I I I I I I I	NON ANAL		- Aller
WHA	ISAPF	YOUI		UBTS (NN 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 13 Study from the BEST

Revision & Pradice Session 🥣 🕞 CA Pranav Chandak 🧕

PYQs - Ratio & Proportion

June 2018 Q44. Mean proportional between 24 & 54 is:	Q56. Ratio of two quantities is 15:17. If consequent of its inverse ratio is 15, then antecedent is;
(a) 33 (b) 34 (c) 35 (d) 36	(a) 15 (b) $\sqrt{15}$ (c) 17 (d) 14
Q45. If $(a+b)$: $(b+c)$: $(c+a) = 7$: 8: 9. Find a: b: c.(a) 5:4:3(b) 3:4:5(c) 4:3:5(d) 4:5:3	June 2021 Q57. The salaries of A, B & C are in the ratio 2:3:5. If increments of 15%, 10% & 20% are allowed respectively to
Q46. If p:q is sub-duplicate ratio of p - x ² : q - x ² , then x ² is : (a) $\frac{p}{p+q}$ (b) $\frac{q}{p+q}$ (c) $\frac{qp}{p-q}$ (d) None	their salary, then what will be the new ratio of their salaries?(a) 3: 3: 10(b) 10: 11: 20(c) 23: 33: 60(d) Cannot be determined
Dec 2018 Q47. $\frac{3x-2}{5x+6}$ is the duplicate ratio of $\frac{2}{3}$ then x= (a) 2 (b) 6 (c) 5 (d) 9	Q58. If A: B = 5: 3, B: C = 6: 7 & C: D = 14: 9 then A:B:C:D is:(a) $20: 14: 12: 9$ (b) $20: 9: 12: 14$ (c) $20: 9: 14: 12$ (d) $20: 12: 14: 9$
Q48. If x: y: $z = 7$: 4: 11 then $\frac{x+y+z}{z}$ is (a) 2 (b) 3 (c) 4 (d) 5	Q59. A vessel contained a solution of acid & water in which water was 64%. Four litres of the solution were taken out of the vessel & the same quantity of water was added. If the resulting solution contains 30% acid, the quantity (in litres)
June 2019Q49. If the ratio of two numbers is 7: 11. If 7 is added to each number then the new ratio will be 2: 3 then the numbers are.(a) 49,77(b) 42,45(c) 43,42(d) 39,40	of the solution, in the beginning in the vessel, was (a) 12 (b) 26 (c) 21 (c) 21
Dec 2019 Q50. The ratio of two numbers are 3:4. The difference of their squares is 28. The greater no. is:	Q60. Incomes of R & S are in ratio 7:9 & their expenses are in ratio 4:5. Their total expenditure is equal to income of R
(a) 8 (b) 12 (c) 24 (d) 64	
Q51. The price of scooter & moped are in the ratio 7:9. The price of moped is $₹1,600$ more than that of scooter. Then the price of moped is:	75 halse coins line ratio of the hilmher of these coins is 4.3
(a) ₹ 7,200 (b) ₹ 5,600 (c) ₹ 800 (d) ₹ 700	(d) 45.25 (D) 41.25 (C) 59.25 (U) 55.25
Nov 2020 Q52. If a: b = 3: 7, then $3a + 2b$: $4a + 5b = ?$ (a) 23: 47 (b) 27: 43 (c) 24: 51 (d) 29: 53	Q62. In a department, number of males & females are in the ratio 3:2. If 2 males & 5 females join the department, then ratio becomes 1:1. Initially, no. of females in department is (a) 9 (b) 6 (c) 3 (d) 8
Q53. If a: b = 9: 4, then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = ?$ (a) 3/2 (b) 2/3 (c) 6/13 (d) 13/6	June 2022 Q63. A box contains 25 paise coins & 10 paise coins & 5 paise coins in ratios 3:2:1 & total money is ₹40. How many
Q54. The ratio of number of boys & the number of girls in a school is found to be $15:32$. How many boys & equal	5 paise coins are there?
number of girls should be added to bring the ratio to 2/3?(a) 19(b) 20(c) 23(d) 27	Q64. If x:y = 4:6 & z:x = 4:16. Find y ? (a) 4 (b) 6 (c) 16 (d) 1
Jan 2021 Q55. In a business A & B received profit in a certain ratio B & C received profits in the same ratio. If A gets ₹1600 & C gets ₹2500 then how much does B get? (a) ₹2,000 (b) ₹2,500 (c) ₹1,000 (d) ₹1,500	5:2:4:3. If C gets ₹1,000 more than D, what is B 's share? (a) 2,000 (b) 1,500 (c) 2,500 (d) 1,000
WHATSADD VOUD DO	LIBTS ON 8999288810

WHATSAPP YOUR DOUBTS ON 8999288810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 14 Study from the BEST Revision & Prailice Section 🧊

PYQs - Indices

Feb 2007				June 2012			
Q1. $(a^{1/8} + a^{-1/8})$	(a ^{1/8} - a ^{-1/8})(a ^{1/4}	+ a ^{-1/4})(a ^{1/2} + a ^{-1/}	²) is:	O14. Value of -	$\frac{(3^{n+1}+3^n)}{(3^{n+3}-3^{n+1})}$ is equ	al to:	
(a) a + $\frac{1}{2}$	(b) $a - \frac{1}{2}$	(c) $a^2 + \frac{1}{a^2}$	(d) $a^2 - \frac{1}{a}$	N N	<u> </u>		(d) 1 (0)
a	a	a²	a²	(a) 1/5	(D) 1/0	(c) 1/4	(d) 1/9
May 2007				Dec 2012			
	on of $\frac{x^{m+3n} \cdot x^{4m}}{x^{6m-6n}}$	^{.9n} ic.			value of x, if x.(x) ¹	$x^{3} = (x^{1/3})^{x}$	
	**		(b) = 0	(a) 3	(b) 4		(d) 6
(a) x ^m	(b) x⁻ ^m	(c) x ⁿ	(d) x ⁻ⁿ			(3) -	(0) 0
Aug 2007				Dec 2013			
	. 1 .	1		016 If $\sqrt[3]{2} + \sqrt[3]{2}$	$\overline{\mathbf{b}} + \sqrt[3]{\mathbf{c}} = 0 = 0, \mathbf{t}$	hen the value of	$\left(\frac{a+b+c}{a+b+c}\right)^3$
	214 14	$\frac{1}{1+Z^{c-a}+Z^{c-b}} = \underline{\qquad}$					
(a) $\frac{1}{Z^{2(a+b+c)}}$	(b) $\frac{1}{Z^{(a+b+c)}}$	(c) 1	(d) 0	(a) abc	(b) 9abc	(c) $\frac{1}{abc}$	(d) $\frac{1}{9abc}$
Nov 2007				June 2014	(DE)50 (1	2	
	20 ^z then z =				$= (25x)^{50}$; then x		
(a) xy	(b) $\frac{x+y}{xy}$	(c) $\frac{1}{xy}$	(d) $\frac{xy}{x+y}$	(a) 5 ³	(b) 5 ⁴	(c) 5 ²	(d) 5
= 5/2	7/2	2		$a a^2 + ab^2$	b^2 b^2 b^2 b^2	$c \sim c^{2} + ac + a2$	
Q5. $\left(\frac{\sqrt{3}}{2}\right)^{3/2}$ $\left(\frac{9}{24}\right)^{3/2}$	$\left(\frac{1}{\sqrt{2}}\right)^{7/2} \times 9 = $			Q18. $\left(\frac{y^a}{v^b}\right)^a$	$(\frac{y^b}{v^c})^{b^2+bc+c^2}$	$\times \left(\frac{y^{c}}{v^{a}}\right)^{c}$	•
(37 (37	37	(c) 3√3	(d) $\frac{3}{9\sqrt{3}}$	(a) y	(b) -1	(c) 1	(d) None
(u) 1	(0) 15	(c) 5 4 5	(G) _{9√3}				15 T
Feb 2008				June 2015			
	• 4 then x ^x =			Q19. If p ^x = q,	q ^y = r & r ² = p ⁶ , t	then xyz =	
(a) 7			(d) 9	(a) 0	(b) 1	(c) 3	(d) 6
	(0) 0	(0) = /			_		
June 2008					$2^{2x-y} = \sqrt{8}$, then re		
	z^{b} and $z = x^{c}$ the set of the set	nen abc =		(a) 1, $\frac{1}{2}$	(b) $\frac{1}{2}$,1	(c) $\frac{1}{2'} \frac{1}{2}$	(d) None
(a) 2	(b) 1		(d) 4		_		
				Dec 2015	[Same	as Q11. Dec 200	9]
June 2009	- 1/2			Q21. Value of	$\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}} =$		
	3 ^{-1/3} then 3x ³ - 9				2 2	(c) 2/3	(d) 1/3
(a) 3	(b) 9	(c) 12	(d) 10				
O9 Find the va	luo of [1]	$(1-x^2)^{-1}$] ⁻¹] ⁻¹	/2	June 2016			
(a) 1/x	(b) x	(1-x) (c) 1	(d) None	Q22. $\int \frac{x^2 - (y-z)^2}{z^2 - (y-z)^2}$	$\frac{x^2}{2} + \frac{y^2 - (x-z)^2}{(x+y)^2 - z^2} + \frac{z^2}{(y-z)^2}$	$\frac{-(x-y)^2}{2}$ =	
				(a) 0	$(x+y)^2 - z^2$ (y (b) 1	(c) -1	(d)2
Dec 2009						(C) - I	
Q10. If 2 ^x × 3 ^y >	× 5 ^z = 360. Then	what is value of	x, y, z.?	Q23. If 3 ^x = 5 ^y	= 75 ^z , then		
(a) 3,2,1	(b) 1,2,3	(c) 2,3,1	(d) 1,3,2	(a) x + y - z = 0		(b) $\frac{2}{x} + \frac{1}{y} = \frac{1}{z}$	
					-	,	
Q11. $\frac{2^n + 2^{n-1}}{2^{n+1} - 2^n}$				(c) $\frac{1}{x} + \frac{2}{y} = \frac{1}{z}$		(d) $\frac{2}{x} + \frac{1}{z} = \frac{1}{y}$	
(a) 1/2	(b) 3/2	(c) 2/3	(d) 1/3				
				Dec 2016			
June 2010	-			Q24. If abc = 2	, then $\frac{1}{1+a+2b^{-1}} +$	$\frac{1}{1+\frac{1}{2}b+c^{-1}}+\frac{1}{1+c+a^{-1}}$	- <u>-</u> is:
Q12. If 2 ^x - 2 ^{x - 1}	= 4 then x ^x is equivalent	qual to:		(a) 1	(b) 2	(c) 3	(d) 1/2
(a) 7	(b) 3	(c) 27	(d) 9		<u></u>	<u>/-/ -</u>	, -, -
Dec 2010				June 2017			
Dec 2010	decimal 2 7777	can be expre	scod as:	Q25. If a = $\frac{\sqrt{6}+\sqrt{6}}{-1}$	$\frac{\sqrt{5}}{\sqrt{5}}$ and b = $\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$	then the value of	$\frac{1}{2} + \frac{1}{2} =$
(a) 24/9	(b) 22/9	(c) 26/9	(d) 25/9	(a) 480	√5 √6+√5 (b) 482	(c) 484	a ² b ² (d) 486
		(0) 20, 5	(0) 20/0				
WHA	TSAP	YOU	R DO	UBTS	ON 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 15 Study from the BEST Revision & Practice Session –

PYQs - Indices

Dec 2017	v		2	July 2021	I	z+y y+z z+	- x
(a) 5	$y = w^{5z} \& u^2 = 0$ (b) 2	vw, then xy + xz (c) 1	- 2yz = (d) 0			$\frac{x+y}{x+y} + \frac{y+z}{1+yz} + \frac{z+z}{1+yz}$ (C) $\frac{1}{x+y+z}$	
June 2018 Q27. $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}} =$ (a) 1/2	(b) 3/2	(c) 2/3	(d) 1/3	Dec 2021 Q36. The value	of $\frac{6^{n+4}+3^{n+3}\times2^{n+3}}{5\times6^{n}+6^{n}}$	is:	
Dec 2018				(a) 232	(b) 242	(c) 252	(d) 262
Q28. $\frac{2^{m+1} \times 3^{2m-r}}{6^{2m+n}}$ (a) 3^{2m-2n}	$(b) 3^{2n-2m}$	(c) 1	(d) None	Q37. If $\left(\frac{3a}{2b}\right)^{2x-4}$ (a) 8	$a = \left(\frac{2b}{3a}\right)^{2x-4}$, then (b) 6	n the value of x is (c) 4	s (d) 2
June 2019 Q29. If $2^{x^2} = 3^y$	$x^{2} = 12^{2^{2}}$ then				of $(1 - \sqrt[3]{0.027})$		(-1) 1
(a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{z^2}$		(b) $\frac{1}{x^2} + \frac{2}{y^2} = \frac{1}{z^2}$			(b) 13/16		(d) 1
(c) $\frac{2}{x^2} + \frac{1}{y^2} = \frac{1}{z^2}$		(d) None		V S	$\frac{\sqrt{3}}{\sqrt{3}}$ and b = $\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ (b) 62	$\frac{3}{3}$ then value of a (c) 60	² + b ² = (d) 254
Q30. If $P = x^{1/3}$ (a) 3	$+ x^{-1/3}$ then P ³	-3P = (b) $\frac{1}{2}(x + \frac{1}{2})$		June 2022			
(c) $\left(x+\frac{1}{x}\right)$		(d) $2\left(x+\frac{1}{x}\right)$			$(\sqrt{3})^{-5} = 3^{z}$. Find (b) -21/2		(d) -2/21
Dec 2019	1			Q41. Find the v	value of $\frac{3.t^{-1}}{t^{1}}$		
Q31. Value of [(a) 9	$9^{n+\frac{1}{4}} \cdot \frac{\sqrt{3.3^{n}}}{3\sqrt{3^{-n}}}]^{\overline{n}}$ (b) 27	(c) 81	(d) 3	(a) $\frac{3}{\frac{2}{t^3}}$	(b) $\frac{3}{\frac{3}{t^2}}$	(C) $\frac{3}{\frac{1}{1^{\frac{3}{3}}}}$	(d) $\frac{3}{t^2}$
	$+\frac{1}{\sqrt{3}}$, then $\left(x-\frac{\sqrt{3}}{\sqrt{3}}\right)$	3			2a ³ b ⁴) ⁵ /(4a ³ b) ² (b) 4a ⁶ b ⁴		(d) 4a ¹⁰ b ²⁰
(a) 5/6	(b) 6/5	(c) 2/3	(d) -3/5				
	$(\sqrt{9})^{-5} \times (\sqrt{3})^{-7}$			Q43. If ∛a + ∛t (a) abc	$\overline{b} + \sqrt[3]{c} = 0$ then (b) 9abc	the value of $\left(\frac{a+b}{3}\right)$ (c) 1/abc	$\left(\frac{+c}{2}\right)^{2} =$ d) 1/9abc
(a) 11	(b) 13	(c) 15	(d) 17	June 2023			
Jan 2021 Q34. Find the v	alue of $\frac{3. t^{-1}}{-t^{1}}$			Q44. If x = y ^a , y (a) 1	$y = z^b, z = x^c$ the (b) 2	n the value of al (c) 3	oc is (d) 4
(a) $\frac{3}{\frac{2}{t^3}}$	(b) $\frac{3}{\frac{3}{t^2}}$	(c) $\frac{3}{\frac{1}{t^3}}$	(d) $\frac{3}{t^2}$				
	X						
C							
WHA	TSAPF	YOU	R DO	UBTS	ON 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com Page 16 Study from the BEST

Revision & Frantiee Session 🥣

PYQs - Logarithms

							1
Nov 2006				Q11. If log $\left(\frac{a+b}{a}\right)$	$\left(\frac{1}{2}\right) = \frac{1}{2} (\log a + \log a)$	g b) then: $\frac{a}{b} + \frac{b}{a}$	
Q1 . 7 $\log(\frac{16}{15})$ +	$5 \log \left(\frac{25}{24}\right) + 3 \log \left(\frac{25}{24}\right)$	$\log\left(\frac{81}{80}\right)$ is equal	to:	(a) 12	(b) 14	(c) 16	(d) 8
(a) 0	(b) 1	(c) log 2	(d) log 3				
				Q12. log (m + r	n) = log m + log	n, m =	
Feb 2007				(a) $\frac{n}{n-1}$	(b) $\frac{n}{n+1}$	(c) $\frac{n+1}{n}$	(d) $\frac{n+1}{n-1}$
Q2. Value of ex	pression: a ^{log} ab.lo	gb ^{.logc} .logdt		n-r	11+ <u>1</u>	"	y 11-1
(a) t	(b) abcdt	(c) 0	(d) Log t	June 2009			
				Q13. log ₄ (x ² +	x) - $\log_4 (x+1) =$	2. Find x	
Q3. If log10000	$x = \frac{-1}{4}$, then x is	given by:		(a) 16	(b) 0	(c) – 1	(d) None
(a) 1/100	(b) 1/10	(c) 1/20	(d) None				
				Dec 2009			
May 2007						5 - log ₁₀ (2 ³) + log	1. 1. 1. 1.
	3b) = log a - log		- 2	(a) x	(b) 10	(c) 1	(d) None.
(a) $\frac{3b^2}{2b-1}$	(b) $\frac{3b}{2b-1}$	(c) $\frac{b^2}{2b+1}$	(d) $\frac{3b^2}{2b+1}$				
				June 2010			
Aug 2007				Q15. If log _a b +			
Q5. $\frac{1}{\log x (abc)} + \frac{1}{1}$	$\frac{1}{\log_{bc}(abc)} + \frac{1}{\log_{c2}(abc)}$	$\overline{(2)} = ?$		(a) b = c	(b) b =		and a
(a) 0	(b) 1	(c) 2	(d) -1	(c) b = c = 1	(d) b a	nd c are recipro	ocals.
(-/ -	(-) -		(/ -		2		
Q6. Number of	digits in for 2 ⁶⁴ .	[Given log 2 = 0.	.30103]:	Dec 2010	2 2	2	
(a) 18	(b) 19	(c) 20	(d) 21		$2 \log x^2 + 2 \log x$	(³ + + 2 log >	
				(a) $\frac{n(n+1)\log x}{2}$		(b) n(n+1).logx	
Nov 2007				(c) n ² log x		(d) None of the	se.
Q7. The value $\frac{1}{10}$	$\frac{\log_3 8}{\log_2 16, \log_4 10}$ is:						
(a) 3 log ₁₀ 2	8984	(b) 7 log ₁₀ 3		Q17 . Solve: $\left(\frac{\log n}{2}\right)$	$\left(\frac{x^{10}-3}{2}\right) + \left(\frac{11-\log_x}{3}\right)$	$\frac{10}{-}$ = 2	
(c) 3 log _e z		(d) None.		(a) 10 ⁻¹	(b) 10 ²	(c) 10	(d) 10 ³
Feb 2008				June 2011			
Q8. If $x = \frac{e^n - e^{-r}}{e^n - e^{-r}}$	$\frac{1}{n}$, then the value	of n is:				ositive integer >	2) then the
C IC	1			value of: $\frac{1}{\log_2^n} + \frac{1}{\log_2^n}$	$\frac{1}{\log_3^n} + \frac{1}{\log_4^n} + \cdots \dots$	$\dots + \frac{1}{\log_{m}^{n}}$	
(a) $\frac{1}{2} \log_{e} \frac{1+x}{1-x}$		(b) $\log_{e} \frac{1+x}{1-x}$		(a) 1	(b) 0	(c) -1	(d) 2
(c) $\log_{e} \frac{1-x}{1+x}$		(d) $\log_{e} \frac{1-x}{1+x}$					
				Dec 2011			
Feb 2008				Q19. If log ₂ x +	log ₄ x = 6, then V	alue of x is:	
Q9 . log 144 is e				(a) 16	(b) 32	(c) 64	(d) 128
(a) 2 log 4 + 2 l	· · · · · · · · · · · · · · · · · · ·	(b) 4 log 2 + 2 l	-				
(c) 3 log 2+ 4 lo	og 3	(d) 3 log 2 - 4 lo	og 3	June 2012			
t					100 & log ₂ x = 1		
June 2008	1			(a) 2 ¹⁰	(b) 2 ¹⁰⁰	(c) 2 ^{1,000} (d) 2 ^{10,00}	00
201 Barriel Ba	$y_3 (\log_2 x) = 1, th$		(a) Mana				
(a) 128	(b) 256	(c) 512	(d) None.	Dec 2012		1	
				Q21. Which is t	true if $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{c}$	$\frac{1}{a} = \frac{1}{abc}$	
				(a) log (ab + bc	+ ca) = abc	(b) $\log\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{b}\right)$	$\left(\frac{I}{c}\right) = abc$
				(c) $\log(abc) = 0$		(d) $\log(a + b +$	
WHA'	TSAPF	YOUI	R DOI	UBTS (ON 89	99288	810

© 8888111134 | 8888111034 www.pranavchandak.com

Page 17 Study from the BEST Revision & Practice Session – CA Pranav Chandak Q

PYQs - Logarithms

June 2013				Q32. If log ₄ (x ² +	$+ x) - log_4(x + 1)$	= 2, then the val	ue of X is:
Q22. For what w	alue of x, equation	ion $\left(\log_{\sqrt{x}} 2\right)^2 = l$	og _x ² is true?	(a) 2	(b) 3	(c) 16	(d) 8
(a) 16	(b) 32	(c) 8	(d) 4	Q33. Value of $\frac{1}{10}$	$\frac{1}{\log_{2}^{60}} + -\frac{1}{\log_{4}^{60}} + \frac{1}{\log_{4}}$	$\frac{1}{2^{60}}$ is:	
				(a) 0	(b) 1	°(c) 5	(d) 60
Dec 2013					<u>(-7 -</u>		
Q23. The value	of log ₄ 9. log ₃ 2 is	51		Dec 2016			
(a) 3	(b) 9	(c) 2	(d) 1		0.3010 and log 3	= 0.4771, then t	he value of
				log 24 is:			
Q24. The value	of (log _y x.log ₂ y.lo	og _x z) ³ is		(a) 1.0791	(b) 1.7323	(c) 1.3801	(d) 1.8301
(a) 0	(b) -1	(c) 1	(d) 3				
				June 2017			
June 2014				Q35. The value	of log (1 ³ + 2 ³ +	3 ³ +n ³) is e	equal to:
Q25. If x ² + y ² =	= 7xy, then $\log \frac{1}{3}$	(x+y) =			og 2 + + 3	-	
(a) (log x+log y)	(b) $\frac{1}{2}$ (log x + lo	a v)		log (n+1) - 2 log		
1.000 A.000 A.000		4		(c) log n + log ((n+1) + log (2n+	1) - log 6	
(c) $\frac{-}{3}$ (log x / log	i y)	(d) $\frac{1}{3}$ (log x + lo	g y)	(d) 1			
Q26. If $x = \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2$	$_{4}12, y = \log_{36}24$	& $z = \log_{48}36$, t	hen xyz + 1	Dec 2017			
=	(b) 2	(a) = a				nen the value of '	
(a) 2xy	(b) 2xz	(c) 2yz	(d) 2	(a) 4	(b) 8	(c) 16	(d) 32
Dec 2014							
		h there is 10x		Dec 2017			
	a + b, log y = a	- b then log $\frac{10x}{y^2}$:	"	Q37. If $\log\left(\frac{x-y}{2}\right)$	$=\frac{1}{2}(\log x + \log x)$	y y), then $x^2 + y^2$	=
(a) 1 - a + 3b		(b) a -1 + 3b		(a) 2xy	(b) 4xy	(c) $2x^2y^2$	(d) 6xy
(c) a + 3b + 1		(d) 1 - b + 3a					
				June 2017			
		$\log_q rp$ and $z =$	1 + log _r pq	Q38. The value	of the expressio	n: a ^{log} ab·log ^c ·log ^d .log	og _d t
then the value of	of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = $	<u> </u>		(a) t		(b) abcdt	
(a) 0	(b) 1	(c) -1	(d) 3	(c) $(a + b + c + c)$	d + t)	(d) None	
June 2015				June 2018			
Q29 . If log x = 1	m + n & log y =	m - n, then log ($(10x/y^2) =$	Q39. If log _x ∛2 :	= 1/15		
(a) 3n - m + 1		(b) 3m - n + 1		(a) 3	(b) 2	(c) 9	(d) 1
(c) 3n + n + 1		(d) 3m + n + 1					
				Dec 2018			
Dec 2015				Q40. $\log_2 \log_2$	$\log_2 16 = ?$		
Q30. The value	of log ₃ 5 × log ₅ 4	$4 \times \log_2 3.$		(a) 0	(b) 3	(c) 1	(d) 2
(a) 0	(b) 1	(c) 2	(d) $\frac{1}{2}$				
				June 2019			
June 2016				Q41. The value			
		garithm is called	d & the	$\log_5\left(1+\frac{1}{2}\right)+1$	$og_{5}\left(1+\frac{1}{2}\right)+-$	$+\log_5\left(1+\frac{1}{6}\right)$	$\frac{1}{1}$
	a logarithm is c			(a) 2	(b) 3	(c) 5	624/ (d) 0
(a) Mantissa, Ch		(b) Characteristi		(a) 2	(0) 5	(0) 5	
(c) Whole, Deci	mal	(d) None of the	ese.				

WHATSAPP YOUR DOUBTS ON 89

© 8888111134 | 8888111034 www.pranavchandak.com

Page 18 Study from the BEST Revision & Prailice Session 🦳

313134

0

PYQs - Logarithms

	2): $\log_{3\sqrt{2}} 324 =$			June 2022	(2)	(-2)	
(a) 128:81	(b) 2:3	(c) 3:2	(d) None	Q51. log $\left(\frac{p^2}{qr}\right)$ -	$+\log\left(\frac{q^2}{pr}\right) + \log\left(\frac{q^2}{pr}\right)$	$\left(\frac{r^2}{pq}\right)$ is:	
Dec 2019				(a) pqr	(b) 0	(c) 1	(d) None
Q43 . log _{0.01} 10,0	? = 000			050 101 - 10			
(a) 2	(b) -2	(c) 4	(d) -4	Q52. If $\log_a \sqrt{3}$ (a) 27	= 1/6, then 'a' w (b) 36	(c) 15	(d) 1
	og y =log (x+y),			(a) 27	(0) 50	(0) 13	(u) I
(a) x-1	(b) $\frac{x}{1+x}$	(c) $\frac{x}{x-1}$	(d) x+1	Q53. $\log_{\sqrt{2}} 64$	is equal to:		
				(a) 12	(b) 6	(c) 1	(d) 8
Dec 2020	4.76 C-1.1-	- L C I - I					
(a) 9	= 1/6, find the v (b) 81	(c) 27	(d) 3	Dec 2022			
(a) 5	(6) 61	(0) 27	(u) J	Q54. If log ₁₀ log ₁₀ 15 is:	$2 = y$ and \log_1	$_0 3 = x$, then th	e value of
Q46 . log 9 + log	g 5 is expressed	as:		(a) $x - y + 1$		(b) $x + y + 1$	
(a) log 4	(b) log 9/5	(c) log 5/9	(d) log 45	(c) $x - y - 1$		(d) $y - x + 1$	
Jan 2021	- n than 1 C	h) is			$\log_4 \frac{5}{\cdot} \log_5 6 \cdot l$	$\log_6 \frac{7}{2} \cdot \log_7 \frac{8}{2} \cdot \log_7$	g ₈ ⁹ equal
	= x, then \log_b (a)		(d) Nono	to: (a) 3	(b) 2	(c) 1	(d) 0
(a) 1/x	(b) $\frac{x}{1+x}$	(c) $\frac{1}{x-1}$	(d) None	June 2023	(0) 2	(C) 1	(u) U
June 2021					e of $\{\log_6 \{3\log_{10}$	100}}	
	$+\log_{16} x + \log_{64}$	$x + \log_{acc} x =$	$\frac{25}{2}$ then the	(a) 1	(b) 2	(c) 10	(d) 100
value of x is	1 10816 A 1 10864	A 1 108256 A	6				
	(b) 4	(c) 16	(d) 2		2	$+n-1$ & \log_{10}	
				value of log ₁₀	$\left(\frac{100x}{y^2}\right)$ expressed	in terms of m &	n is:
Dec 2021				(a) $1 - m + 3m$	L	(b) m – 1 + 3n	
Q49. If $\log_{10} 3$ $\log_{10} 120$ can b	$3 = x$ and $\log_{10} x$	4 = y, then 1	the value of	(c) m + 3n + 1		(d) $m^2 - n^2$	
	(b) $x + y + 1$	(c) $x + y - 1$	(d) None				
	value of log ((x^6) , if log (x)	$+ 2\log(x^2) +$				
$3\log(x^3) = 14$							
(a) 3	(b) 4	(c) 5	(d) 6				
WHA'	TSAPI	YOU	RDO	UBTS	ON 89	99288	1:10)
	11134 8			e 19		Revision & Prac	tice Session –
www.pr	anavcho	andak.co	om Stu	idy from t	he BEST	CA Prana	Chandak 🤇

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Equations

TO BUY HARDCOPY OF PYQs

Nov 2006			O11 . Value of	$\sqrt{6+\sqrt{6+\sqrt{6+}}}$	∞ is:	
Q1. On solving $\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = 2$	$2\frac{1}{6}$, we get one value	e of x as:	(a) -3 ,	(b) 2	(c) 3	(d) 4
	(c) 2/13 (d					
O2. Find and the other of the		2.1	Nov 2007	a rectangular ga	rden is 8000 so	luare metres
Q2. Find positive value of k f $64=0 \otimes x^2-8x+k=0$ will have read		s: x ² +kx+	Ratio in length	and breadth is	5:4. A path of ui	niform width,
(a) 12 (b) 16	(c) 18 (d	d) 22.	runs all-round 3200 m2, what	the inside of the	garden. If the p	oath occupies
				-is its width: 	(c) 10m	<u>(d) 4m</u>
Q3. Equation of the straight intersection of $x + 2y - 5 = 0$ at						
through the point (1,0) is:		a passing		of k for which th		(5, 5) and (10,
(a) x + 12y = 1 (b) x -12y = 1	(c) $x - 12y = 11$ (c)	d) None		near is: (b) k - 7		(d) k = 1
Feb 2007			(u) k = 5			
Q4. A man sells 6 radios and 4	televisions for Rs.	18,480. If	Feb 2008			
14 radios and 2 televisions are		amount,		ent to Reserve Ba nier to give him		
what is the price of a television (a) 1,848 (b) 840	(c) 1,680 (d) 3 360	return. The ma	n got 175 notes	in all. Find how	
(0) 1,040 (0) 040	(c) 1,000 (c	u) 3,300	The second se	. 10 did he receiv		
Q5. If one root of equation is 2	$+\sqrt{5}$, then equation	is:	(a) (25, 150)	(b) (40, 110)	(c) (150,25)	(d) None.
(a) $x^2 + 4x - 1 = 0$			O15. The centr	oid of the triang	le ABC is at the	point (2, 3). A
(c) $x^2 + 4x + 1 - 0$	(d) $x^2 - 4x + 1 = 0$)		points (5, 6) a		ectively. The
Q6. The equation of a line which	h is perpendicular t	to 5x - 2v		C are: (b) (2,-1)		(d) (23)
= 7 and passes through the mi			(a) (±,=2)	(b) (2,-1)	(c)(1,2)	(u) (2,3)
7) and (-4,1) is: (a) 2x - 5y -18 = 0	(b) 2x + 5x + 10 -		June 2008			
$\frac{(a) 2x - 5y - 18 = 0}{(c) 2x + 5y - 18 = 0}$				owing at the rat		
(c) 2x · 5y 20 = 0	(a) None of these			ice as much time km down. Find r		
Q7. A man starts his job with				(b) 2.5 km/hr		
earns a fixed increment every y after 4 years of service and Rs. 1						
what was his starting salary			Q17. The value	$e \text{ of } 2 + \frac{1}{2 + \frac{1}{$	is	
increment in rupees?	(h) D- 1100 D- F	0		2+2+	∞	
(a) Rs. 1,300, Rs. 50 (c) Rs. 1,500, Rs. 30	(b) Rs. 1,100, Rs. 5 (d) None.	50	(a) $1 \pm \sqrt{2}$	(b) $2 \pm \sqrt{5}$.	(c) 2 ± $\sqrt{3}$	(d) None.
(c) 1(3, 1,500, 1(3, 50	(d) None.		Dec 2008			
May 2007				+ 11x - 6 = 0 the	en find value of	(3x - 4)
Q8. Area of a triangle with ve terms of square units is:	ertices (1,3), (5,6) &	ι (-3,4) in	(a) (1,2,3)	(b) (-1,2,5)	(c) (-1,3, 5)	(d) (2, 3, 5)
	(c) 8(c	d) 13	_			
				is a root of a qu he value of p & o		n x² + px + q
Aug 2007			(a) (41)	(b) (4,1)	ч. (с) (-4,1)	(d) (2,3)
Q9. The line joining (-1,1) and (2) and (2, k) are perpendicu						
following value of k:		- er ene		perimeter of a y, then length of		0 cm ² & 340
(a) 1 (b) 0	<u>(c) -1</u>	d) 3		y, then length of —(b) 120 ——		(d) 200
Q10. The sides of an equilateral	triangle are shorter	ned by 12	¥~8 ~~ ~~		And many a	· · · · · · · · · · · · · · · · · · ·
units, 13 units and 14 units re	espectively & a right	ht-angled	June 2009			
triangle is formed. The side of t		-		t line passes thro e straight line.		3 , 2). Find the
(a) 17 units (b) 16 units	— (c) 15 units — (c	d) None		(b) x + y = 3		(d) None
				~~ \$		
© 8888111134 8	888111034	4 Pag	e 20		Revision & Pra	ctice Serion —
www.pranavch			dy from t	he BEST	CA Prana	
				and the second se		

CA PRANAV CHANDAK	PYQs - Equations
Q22. One root of the equation: $x^2 - 2(5+m)x + 3(7+m) = 0$ is reciprocal of the other. Find the value of M.	Q34 . If roots of equation $x^2 + x + r = 0$ are ' α ' and ' β ' and $\alpha^3 + \beta^3 = -6$. Find the value 'r'?
(a) - 7 (b) 7 (c) 1/7 (d) - 1/7	(a) -5/3 (b) 7/3 (c) -4/3 (d) 1
Q23. A straight line of x = 15 is:	Q35. For all λcR , line $(2 + \lambda)x + (3 - \lambda)y + 5 = 0$ passing
(a) Parallel to Y axis (b) Parallel to X axis	through a fixed point, then fixed point is (a) (1,1) (b) (-1,-1) (c) (1,-1) (d) (-1,1)
(c) A diagonal line. (d) Passes through origin.	(a) (1,1) (b) (-1,-1) (c) (1,-1) (d) (-1,1)
Dec 2009	Dec 2011
Q24. If length of a rectangle is 5 cm more than the breadth	Q36. A straight line "L" is perpendicular to the line $2X + Y = C$
& if the perimeter of the rectangle is 40 cm, then the length	6 = 0 & Cuts the axis at (3,0). Find the distance from the point (2, - 3) to the line "L".
& breadth of the rectangle will be: (a) 7.5 cm, 2.5 cm (b) 10 cm, 5 cm	(a) $1/\sqrt{5}$ (b) 5 (c) $\sqrt{5}$ (d) $2\sqrt{5}$
(c) 12.5 cm, 7.5 cm (d) 15.5 cm, 10.5 cm.	
	Q37. If one root of the Equation $px^2 + qx + r = 0$ is r then
Q25. The point of intersection of the lines $2x - 5y = 6$ and x	other root of the Equation will be:
+ y - 3 is:	(a) $1/q$ (b) $1/r$ (c) $1/p$ (d) $\frac{1}{p+q}$
(a) (0,3) (b) (3, 0) (c) (3, 3) (d) (0, 0)	Q38. If ratio of roots of $4x^2 - 6x + p = 0$ is 1:2, $p = $
Q26. Find equation of the line passing through the point (1,	(a) 1 (b) 2 (c) - 2 (d) -1
1) & parallel to the line $3x + 5y + 17 = 0$	
(a) 3 x + 5y * 8 - 0 (b) 5 x + 3y + 8 - 0	Q39. If p & q are the roots of the Equation x^2 - bx + c = 0,
(c) 5 x + 3y - 8 = 0 (d) 3 x + 5y - 8 = 0	equation whose roots are $(pq + p + q) \otimes (pq - p - q)$ is
	(a) $x^2 - 2cx + C^2 - b^2 = 0$ (b) $x^2 - 2bx + C^2 + b^2 = 0$ (c) $8cx^2 - 2(b + c)x + C^2 = 0$ (d) $x^2 + 2bx - (C^2 - b^2) = 0$
Q27. The graph of straight-line x - 5 will be: (a) Intersecting both the axis (b) Parallel to y- axis	$(c) 8cx^{-} - 2(b + c)x + c^{-} = 0 \qquad (d) x^{-} + 2bx - (c^{-} - b^{-}) = 0$
(c) Parallel to x - axis (d) None of these	June 2012
	Q40. If AM between roots of a QE is 8 & GM between them
Q28. Find the equation of the line joining the point (3,5) with	is 5, the equation is
the point of intersection $2x + 3y - 5 = 0$ and $3x + 5y - 7 = 0$.	(a) $x^2-16x - 25 = 0$ (b) $x^2-16x + 25 = 0$ (c) $x^2-16x + 5 = 0$ (d) None of these.
(a) $6x + y + 23 = 0$ (b) $6x + y - 23 = 0$ (c) $6x + 2y + 14 = 0$ (d) $2x + 5y + 5 = 0$	(c) $x^2-16x + 5 = 0$ (d) None of these.
(c) 6x + 2y + 14 = 0 (d) 2x + 5y + 5 = 0	041. The equation of the straight line passing through the
June 2010	intersection of 4x - 3y -1 -0 and 2x - 5y + 3 - 0 and parallel
Q29. Roots of the equation $3x^2 - 14x + k = 0$ will be reciprocal	to 4x + 5y - 6 is:
of each other if:	(a) 4x + 5y -12 - 0 (b) 4x + 5y -16 - 0 (c) 4x + 5y - 9 - 0 (d) 4x + 5y - 4 - 0
(a) $k = -3$ (b) $k = 0$ (c) $k = 3$ (d) $k = 14$.	$\frac{(c)}{(c)} + \frac{3}{(c)} + \frac{3}{(c)} = 0 \qquad (d) + \frac{3}{(c)} + \frac{3}$
Q30. The lines 3x + 4y + 10 - 0 and 4x - 3y + 5 - 0 are	Q42. Find point which divides the line joining the points (2,
(a) Parallel (b) Perpendicular to each other	- 2) & (-4, 1) in the ratio 5: 2 externally:
(c) Bisect each other (d) Coincide with each other.	(a) (- 5, 8) (b) (- 8, 3) (c) (-5, 4) (d) (-8,5)
	O42 If one of the roots of the equation $y^2 + py + p$ is $\sqrt{2} + 2$
Q31. Positive value of 'k' for which the roots of equation $12x^2 + kx + 5 = 0$ are in ratio 3:2, is:	Q43. If one of the roots of the equation $x^2 + px + a$ is $\sqrt{3}+2$, then the value of 'p' and 'a' is:
	(a) -4,-1 (b) 4,-1 (c) - 4, 1 (d) 4, 1
(a) $5/12$ (b) $12/5$ (c) $\frac{3\sqrt{10}}{2}$ (d) $5\sqrt{10}$	
Q32. If one root of the equation $x^2-3x+k=0$ is 2, then value	Dec 2012
of k will be:	Q44. If $ x - 2 + x - 3 = 7$ then, 'x' =
(a) -10 (b) 0 (c) 2 (d) 10	(a) 6 (b) -1 (c) 6 & -1 (d) None
June 2011	Q45. Roots of equation $2x^2 + 3x + 7 = 0$ are $\alpha \& \beta$. The value
Q33. If ratio of (5x - 3y) & (5y - 3x) is 3:4, then x:y is:	of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is
(a) 27:29 (b) 29:27 (c) 3:4 (d) 4:3	(a) 2 (b) 3/7 (c) 7/2 (d)-19/14
©8888111134 8888111034 Pag	e 21 Revition & Practice Series -

© 8888111134 | 8888111034 Page 21 www.pranavchandak.com Study from the BEST

Revision & Pradice Session . ŝ, 🖸 CA Pranav Chandak 🧕

Q46. If the point $(k, 3)$ is at a dimension of (k') is		Dec 2014		13	
points (2, k), the value of 'k' is (a) 1 (b) 4.		Q60. Equation x			
(a) ± (b) 4.		(a) (4, 8)	(b) (8, 5)	(c) (4,16)	(d) (16,4)
Q47. $x^2 - 2kx + 16 = 0$ will have	equal roots when 'k' = $\$.				
(a) ±1 (b) ± 2	(c) ±3 (d) ± 4	Q61. Equation c			
		(7, 5) and (2, 9)			
June 2013		(a) 7x - 4y + 8 = (c) 5y + 4x + 8 =			
Q48. If $\alpha & \beta$ are the roots of th		$\frac{(c) - 3y + 4x + 0}{(c) - 3y + 4x + 0}$	-0	(u) 3y - 4x + o	
then the equation whose roots		June 2015			
(a) $x^2 - 14x + 49 = 0$		Q62. Number o	f students in ea	ch section of a	school is 36
(c) $x^2 - 50x + 49 = 0$	$(a) x^2 - 19x + 144 = 0$	After admitting			
Q49. State the type of Quadrila	toral formed by the vertices	started. If total			n now is 30,
(1, 1), (4, 4), (4, 8), (1,5):		then number of			
(a) Parallelogram		(a) 6	(b) 10	(c) 14	(d) 18
(c) Rhombus	(d) Rectangle.				
~ >		Q63. If α and β			quation 2x ² -
Q52. If three points (1,3), (-2,1) &	<mark>⅔ (k, -1) are colinear then the</mark>	4x = 1. the value	e of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is _		
value of 'k' is:		(a) -11			(d) 11
(a) 0 (b) 5	(c) -5 (d) 3				
			on a tour has Rs.		
Dec 2013		tour is extended			
Q53. If b ² -4ac is a square but no			20, his original (b) 64 days		
(a) real and equal		(a) 40 uays	(D) 04 uays	(c) 60 uays	(u) 90 days
(c) real, rational & unequal	(d) Imaginary.	065 The prese	nt age of a man	is 8 years more	a than thrice
Q54. A seller makes an offer of	f colling cortain articles that		ages of his two		
can be described by the equation			is age will be 10		
price per unit & 'y' denotes th		sum of the age		ons. The age of	a man when
price of the article is Rs. 10 per		his grandsons w			
that can be offered in a single of		(a) 86 years	(b) 73 years	(c) 68 years	(d) 63 years
(a) 6 (b) 7	(c) 8 (d) 9				
Q55. If kx - 4 = (k - 1)x, then wh	hich of the following is true?	Q66. Roots of c			1.1
(a) $x = -5$ (b) $x = -4$		(a) 1,2 & 3	(D) 1, -2 & 3	(C) 1,2 Q-3 (C	1) 1, -2 Q - 3
		Dec 2015			
Q56. The value of 'K' for which t	he system of equations kx +	Q67. If the roots	s of the equation	$p 4y^2 - 12y + k =$	0 are equal
2y = 5 and $3x + y = 1$ has no so		then the value of		11 4A - 12A 4 K -	o are equal,
(a) 5 (b) $\frac{2}{3}$	(c) 6 (d) $\frac{3}{2}$	(a) -3	(b) 3	(c) -9	(d) 9
	2				
June 2014		Q68. If 3x - y -		nd 2x +y = 3 ar	e concurrent
Q57. Lines 3x-4y+5-0, 7x-8y+	5-0, 4x+5y-45-0 are	lines, then the v			(1) 2
(a) Concurrent	(b) Parallel	(a) -1	- (b) -2		(d) 3
(c) Not Concurrent	(d) None of these	069 The equa	tion of line pa	ssing through t	he point of
		intersection of t			
Q58. Roots of the equation $y^3 + y^3$	y ² -y-1= 0 are:	the 2x - y = 4 is		······	
(a) (1, 1, -1) (b) (-11,1)	(c) (1,1,1) (d) None	(a) 2x - y + 9 =			
		(c) x - 2y + 9 - 1	0	_(d) x + 2y - 9 -	<u>-</u> 0
Q59. The distance from the					
intersection of two straight line & 3x+2y=18 is:	es naving equations 3x-2y-6	Q70. If $\alpha + \beta =$		hen α, β are the	roots of the
(a) 2 units (b) 3 units	(c) 4 units (d) 5 units	equation, which (a) $x^2 - 2x - 3 =$		(b) x ² + 2x - 3	- 0
		(a) $x^2 - 2x - 3 =$ (c) $x^2 + 2x + 3 =$		(d) $x^2 + 2x - 3$ (d) $x^2 - 2x + 3$	
		1		. ,	
© 8888111134 8	888111034 Pag	je 22		Revision & Prai	tice Serier 🦳
www.pranavcho		udy from th	he BEST	CA Prana	v Chandak 🕻
				N	

June 2016			Q81. If $\frac{3}{1} + \frac{2}{1}$	$-=-1 \otimes \frac{1}{1}$	$\frac{1}{-y} = \frac{4}{3}$ then (x, y)	is:
Q71. Let E_1 and E_2 are two linear x and y. (0,1) is a solution of bot	th equations E ₁ a	and E ₂ . (2, -			(c) (-1,2) (d	
1) is a solution of equation E_1 on E_2 only then E_1 & E_2 are	ily and (-2, -1) is	solution of			equation $x^2 + x +$	5 = 0 then
	(b) 2x - y = - 1,	4x + y = 1	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is equal	to	[Same as June 2	2017]
(c) x + y = 1, x - y = - 1	(d) $x + 2y = 2, x$	+ y = 1		(b) 2	(c) 3	(d) 14/5
Q72. If a line passes through segment joining the points(- 3, -	4) and (- 5, 6) a		of the roots of	the equation x^2 -	3x - 1 = 0 are th + $3x - 4 = 0$ then	K =?
is $\frac{4}{5}$, then the equation of the line	e is:		(a) -4	(b) 4	(c) 3	(d) 3
(a) 4X - 5Y + 21 - 0 (c) 5X - 4Y + 21 - 0			Q84. Find K, if t (a) 56		5x ² + kx - 45 =0 (c) -56	are in AP (d) -59
Q73. If difference between the ro + 8 = 0 is 4, then the value of K i	is:		Dec 2018 Q85. Let α and	β be the roots o	$f x^2 + 7x + 12 =$	0. Then the
(a) 0 (b) ±4	(c) $\pm 8\sqrt{3}$ (c)	d) ± 4√3	value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta}{\beta}\right)$	$\left(\frac{y^2}{x}\right)$ will be:		
Dec 2016			(a) $\frac{7}{12} + \frac{12}{7}$ (c) $-\frac{91}{7}$		(b) $\frac{49}{144} + \frac{144}{49}$	
Q74. A cottage industry produpottery articles in a day. It was of that the cost of each article (in 1	bserved on a pa	rticular day	(c) $-\frac{91}{12}$		(d) None of the	above.
that the cost of each article (in F the number of articles produced of production on that day was Rs.	on that day. If th	ne total cost	what will be the	e quadratic equa		u
produced was					(b) $ax^2 - a^2x +$	
(a) 14 (b) 16	(c) 12	(d) 18	(c) $ax^2 - (\alpha^2 + \alpha^2)$	1)x + 1 = 0	(d) None of the	se
Q75. Triangle formed by x + 2y -	= 3, 2x - y =1 &	<u>y = 0 is</u>	June 2019			
(a) Right angled					igits such that di	
(c) Isosceles	(d) None of the	se.		sed. Find the nui	s place. If 36 be mber	added then
June 2017		V	(a) 62	(b) 26	(c) 39	(d) None
Q76. If α , β are the roots of the e	quation $x^2 + x +$	5 = 0 then	Q88. Find the o	condition that or	ne roots is doubl	e the other
$\frac{\alpha^2}{\beta} + \frac{\alpha}{\beta^2}$ is equal to			of $ax^2 + bx + c$	= 0		
10	(c) 3	(d) $\frac{14}{5}$	(a) $2b^2 = 3ac$	(b) $b^2 = 3ac$	(c) $2b^2 = 9ac$	(d) None
			Dec 2019	equation $x^3 + 9x$	2 - x = 0 - 0	
Dec 2017	7-2 21- 27	0		(b) $1, -1, -9$		(d) 1,3,9
Q77. Roots of the equation x^3 + (a) -1,3,9 (b) 1, -3,9					(() -) -) -	(0) 2)0)2
			Q90. $\frac{2x+5}{10} + \frac{3x+3}{15}$			
Q78. Difference b/w roots of equ	- states		(a) 10.58	(b) 9.58	(c) 9.5	(d) None
(a) 7 (b) √85	(c) 9	(d) 2√ <u>85</u>	Q91. Find value	$x^{2} - 10x + 1$	if $x = \frac{1}{5-2\sqrt{6}}$	
Q79. If the sum of two numbers		um of their	(a) 25	(b) 1	(c) 0	(d) 49
squares is 85, then the numbers		(d) 6 7			xx + 5 = 0 if $x = 2$	
(a) 3,10 (b) 5,8	(c) 4,9	(d) 6,7	(a) 17/4	(b) -7/14	(c) 4/17	(d) -4/17
June 2018 Q80. If $\alpha+\beta = -2$ and $\alpha\beta = -3$, the equation, which is:	hen α , β are the β	roots of the	Q93. Find roots (a) 2, 1	of the equation (b) -2, 1	: 4 ^x /8 ^y = 128 & 3 (c) 2, -1	^x /27 ^y = 1/3 (d) 1, 2
(a) $x^2 - 2x - 3 = 0$	(b) $x^2 + 2x - 3$		Dec 2020			
(c) $x^2 + 2x + 3 = 0$	(d) $x^2 - 2x + 3 =$	= 0	Q94. Rational r (a) 2		ion $0 = 2p^3 - p^2$ (c) $\frac{1}{2}$	- 4P + 2 is: (d) -1/2
© 8888111134 88					Revision & Prad	ice Serion –
www.pranavcha	ndak.co	m Stu	dy from t	he BEST	CA Prana	r Chandak 🧿

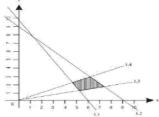
Q95. Roots of $2x^2 - (a + 6)2x + 12a = 0$, (a) 6 & a (b) 4 & a^2 (c) 3 & 2a (d) 6 & 3a	Q110. If the second root of the given equation is reciprocal of first root then value of 'k' in equation $5x^2 + 13x + k = 0$ (a) 3 (b) 2 (c) 1 (d) 5	
Q96. Solving equation $m + \sqrt{m} = 6/25$, the value of $m =$ (a) 1/25 (b) 2/25 (c) 3/25 (d) 1	Q111. A plumber can be paid either ₹ 600 & ₹ 50 per hour	
Q97. Solving equation $3g^2 - 14g + 16 = 0$, (a) 0 (b) 2 & 8/3 (c) 8 & 2/3 (d) ± 5	or ₹ 170 per hour. If the job takes n hours, for what value of n both methods earn equal wages for the worker? (a) 5 (b) 6 (c) 4 (d) 7	
Jan 2021Q98. The value of P for which the difference between the root of equation $x^2 + px + 8 = 01 < 2$ is(a) ± 2 (b) ± 4 (c) ± 6 (d) ± 8	Q112. If a person has cloth of total 91 cm. If he divides it into 3 parts then longest part is twice the shortest & another part is 3 cm more than shortest. What is the shortest one? (a) 25 (b) 44 (c) 22 (d) 46	
Q99. If quadratic equation $x^2 + px + q = 0 \& x^2 + qx + p =$		
0 have a common root then $p + q = ?$	Q113. Find x & y for $(b/a)x + (a/b)y = a^2 + b^2$	
(a) 0 (b) 1 (c) -1 (d) 2	(a) $x = a/b$, $y = b/a$ (b) $x = 3ab$, $y = -ab$ (c) $x = -ab$, $y = 3ab$ (d) $x = ab$, $y = ab$	
Q100. HM of roots of $(5 + \sqrt{2})x^2 - (4 + \sqrt{5})x + (8 + 2\sqrt{5}) = 0$ is (a) 2 (b) 4 (c) 6 (d) 8		
July 2021 Q101. If $\alpha \otimes \beta$ are the roots of equation $2x^2 + 5x + k = 0$, \otimes	Dec 2022 Q114. Roots of $x^2 - px + q = 0$ are in ratio 2:3, then: (a) $p^2 = 25q$ (b) $P^2 = 6q$ (c) $6p^2 = 25q$ (d) None	
$\begin{array}{l} 4(\alpha^2 + \beta^2 + \alpha\beta) = 23, \text{ then which of the following is true?} \\ (a) \ k^2 + 3k - 2 = 0 \\ (b) \ k^2 - 2k + 3 = 0 \\ (c) \ k^2 - 2k - 3 = 0 \\ \end{array} \begin{array}{l} (b) \ k^2 - 2k + 3 = 0 \\ (c) \ k^2 - 3k + 2 = 0 \end{array}$	Q115. If roots of $(k - 4)x^2 - 2kx + (k+5) = 0$ are equal, k = (a) 18 (b) 20 (c) 19 (d) 21	
Q102. Value of 'k' is, if 2 is root of $x^3 - (k + 1)x + k = 0$ (a) 2 (b) 6 (c) 1 (d) 4	Q116. If cost of 3 bags & 4 pens is ₹ 257 whereas the cost of 4 bags & 3 pens is ₹ 324, then the cost of one bag is: (a) 8 (b) 24 (c) 32 (d) 75	
Q103. The cost of 2 oranges and 3 apples is \gtrless 28. If cost of apple is doubled then cost of 3 oranges and 5 apples is \gtrless 75. The original cost of 7 oranges & 4 apples (in (\gtrless)) is:(a) 59(b) 47(c) 71(d) 63	Q117. Solution of $2x - 5y + 4 = 0 & 2x + y - 8 = 0$ will be (a) $(2, -3)$ (b) $(1, -3)$ (c) $(3, 2)$ (d) $(-2, 2)$	
Q104. Sum of square of any real positive quantity & its reciprocal is never less than: (a) 1Q118. A garrison of 400 men had a provision for 31 of After 28 days 280 persons re-enforcement left. Find num of days for which the remaining ration will be sufficient? (a) 3Q118. A garrison of 400 men had a provision for 31 of After 28 days 280 persons re-enforcement left. Find num of days for which the remaining ration will be sufficient?		
Dec 2021 Q105. If one root is half of the other of a quadratic equation and the difference in roots is a, then the equation is (a) $x^2 + ax + 2a^2 = 0$ (b) $x^2 - 3ax - 2a^2 = 0$ (c) $x^2 - 3ax + 2a^2 = 0$ (d) $x^2 + 3ax - 2a^2 = 0$	June 2023 Q119. If $\alpha & \beta$ are roots of $x^2 - 2x - 3 = 0$; then equation whose roots are $\alpha + \beta$ and $\alpha - \beta$ is: (a) $x^2 - 6x - 8 = 0$ (b) $x^2 - 6x + 8 = 0$ (c) $x^2 + 6x + 8 = 0$ (d) $x^2 + 6x - 8 = 0$	
Q106. In a MCQ paper consisting of 100 questions of 1 markeach, a candidate gets 60% marks. If candidate attemptedall questions & there was a penalty of 0.25 marks for wronganswer, number of right answer - wrong answers is:(a) 32(b) 36(c) 40(d) 38	Q120. Largest side of a triangle is 3 times shortest side & third side is 4 cm shorter than largest side. If perimeter of triangle is at least 59 cm, what is the length shortest side? (a) Less than 7 cm (b) Greater than or equal to 7 cm	
Q107. If square of a number exceeds twice of number by 15, then number that satisfies the condition is	(c) Less than 9 cm (d) Greater than equal to 9 cm. Q121. If α and β are roots of the equation $x^2 - (n^2 + 1)x + \beta$	
(a) -5 (b) 3 (c) 5 (d) 15 Q108. Solve $x^3 - 7x + 6 = 0$	$\frac{1}{2}(n^4 + n^2 + 1) = 0.$ Then the value of $\alpha^2 + \beta^2$ is: (a) 2n (b) n^2 (c) $2n^2$ (d) n^3	
(a) 6, 7, -4 (b) -1, -2, -3 (c) 1, 2, -3 (d) 2, 4, 6 June 2022 Q109. Values of x & y for $\frac{3}{x+y} + \frac{2}{x-y} = 3, \frac{2}{x+y} + \frac{3}{x-y} = 3\frac{2}{3}$ (a) (1, 2) (b) (-1, -2) (c) (1, $\frac{1}{2}$) (d) (2, 1)	Q122. The age of a person is four times the sum of the ages of his two sons. After 10 years his age will 2 times of the sum of their ages. Then the present age of the man is (a) 56 years (b) 45 years (c) 60 years (d) 64 years	
Study from the BEST CA Pranav Chandak.com		

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Inequalities

TO BUY HARDCOPY OF PYQ S

SCAN ME



PYQs - Inequalities

Nov 2006

Q1. L1: 5x+3y=30; L2: x+y=9; L3: y=x/3; L4: y=x/2. Common region refers to __.

(a) $5x+3y\leq30$; $x+y\leq9$; $y\leq1/5x$; $y\leq x/2$; $x \ge 0$, $y \ge 0$ (b) $5x+3y \ge 30$; $x+y \le 9$; $y \ge x/3$; $y \le x/2$; $x \ge 0$, $y \ge 0$ (c) 5x+3y≥30; x+y≥9; y≥x/3; y≥x/2; x≥0, y≥0 (d) 5x+3y>30; x+y<9; y≥9; y≤x/2; x≥0, y≥0

Q2. If $|x + \frac{1}{4}| > \frac{7}{4'}$ then _____.

(c) $-2 < x < \frac{3}{2}$

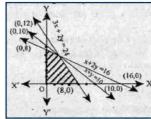
(a) $x < \frac{-3}{2}$ or x > 2 (b) x < -2 or $x > \frac{3}{2}$ (c) $-2 < x < \frac{3}{2}$ (d) None of these (d) None of these.

Feb 2007 Q3. If $\left|\frac{3x-4}{4}\right| \le \frac{5}{12}$, the solution set is: (b) $\left\{ x: \frac{7}{9} \le x \le \frac{17}{9} \right\}$ (a) $\left\{ x: \frac{19}{18} \le x \le \frac{29}{18} \right\}$ (c) $\left\{ x: \frac{-29}{18} \le x \le \frac{-19}{18} \right\}$

(d) None of these.

Q4. Solution of $6x + y \ge 18$, $x + 4y \ge 12$, $2x + y \ge 10$ is ____ (a) (0, 18), (12, 0), (4, 2) & (7, 6) (b) (3, 0), (0, 3), (4, 2), & (7, 6) (c) (5, 0), (0, 10), (4, 2) & (7, 6) (d) (0,18), (12, 0), (4, 2), (0, 0) and (7, 6)

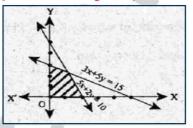
May 2007


Q5. A car manufacturing company manufactures cars of two types A & B. Model A requires 150 man-hours for assembling, 50 manhours for painting & 10 man-hours for checking & testing. Model B requires 60 man-hours for assembling, 40 man-hours for painting & 20 man-hours for checking & testing. There are available 30,000 manhours for assembling, 13,000 man-hours for painting & 5,000 manhours for checking & testing. Then, inequalities are:

(a) $5x+2y \ge 1000$; $5x + 4y \ge 1300$; $x + 2y \le 500$; $x \ge 0$, $y \ge 0$. (b) $5x + 2y \le 1000$; $5x + 4y \le 1300$; $x + 2y \le 500$; $x \ge 0$, $y \ge 0$. (c) $5x + 2y \le 1,000$, $5x + 4y \le 1300$; $x + 2y \ge 500$; $x \ge 0$, $y \ge 0$. (d) 5x + 2y = 1000, $5x + 4y \le 1300$, x + 2y = 500; $x \ge 0$, $y \ge 0$.

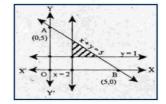
Aug 2007

Q6. Rules demand that employer should employ not more than 5 experienced hands to 1 fresh. Express as _____. (c) Both (a)&(b) (d) $5y \le x$ (a) $y \ge x/5$ (b) 5y ≥ x

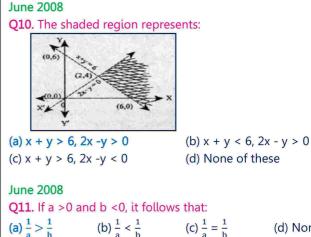

Q7. The shaded region represents:

(a) 3x + 2y < 24, $x + 2y \ge 16$, $x + y \le 10x$, $x \ge 0$, $y \ge 0$ (b) 3x + 2y < 24, $x + 2y \le 16$, $x + y \ge 10$, $x \ge 0$, $y \ge 0$ (c) 3x + 2y < 24, x + 2y < 16, $x + y \le 10$, x > 0, $y \ge 0$ (d) None of these

Nov 2007


Q8. The shaded region represents:

(a) 3x + 5y < 15, $5x + 2y \ge 10$, $x, y \ge 0$ (b) $3x + 5y \le 15$, $5x + 2y \le 10$, $x, y \ge 0$ (c) 3x + 5y≥15, 5x +2y≥10, x, y, ≥0 (d) None of these


Feb 2008

Q9. The shaded region represents:

(a) $x + y \le 5$, $x \ge 2$, y < 1(c) $x + y \ge 5$, $x \ge 2$, $y \ge 1$

(b) $x + y \le 5, x \ge 2, y \ge 1$ (d) None of these.

8888111134 | 8888111034 www.pranavchandak.com Page 25 **Study from the BEST**

(d) None

Revision & Practice Session 🔽 CA Pranav Chandak

PYQs - Inequalities

Dec 2008

Q12. Linear relationship between 2 variables in inequality: (a) $ax + by \le c$ (b) $ax - by \le c$ (c) $xy + by \le c$ (d) None

June 2010

Q13. Solution of inequality $\frac{5-2x}{3} \le \frac{x}{6} - 5$ is (a) $x \ge 8$ (b) $x \le 8$ (c) x = 8 (d) None

Dec 2010

Q14. On average an experienced person does 7 units of work while a fresh one work 5 units of work daily but the employer has to maintain an output of at least 35 units of work per day. Situation can be expressed as:

(a) 7x+5y<35 (b) 7x+5y≤35 (c) 7x+5y≥35 (d) None

June 2011

Q15. Solution space of inequalities $2x+y \le 10 & x-y \le 5$:(i) includes the origin (ii) includes the points (4, 3). Correct is(a) Only (i)(b) Only (ii)(c) Both(d) None

Dec 2011

Q16. Experienced person (x) does 5 units of work while a fresh one (y) does 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as ____.

(a) 5x+3y≤30 (b) 5x+3y≥30 (c) 5x+3y>30 (d) None

June 2012

Q17. Find the range of real values of x satisfying the inequalities 3x - 2 > 7 and 4x - 13 > 15(a) x > 3 (b) x > 7 (c) x < 7 (d) x < 3

Dec 2012 Q18. Same as Q16

June 2013

Q19. Union forbids him to employ less than 2 experienced persons to each fresh person. This can be expressed as _____. (a) $x \le y/2$ (b) $y \le x/2$ (c) $x \ge 2y$ (d) None

Dec 2013

 Q20. Solution of inequality 8x+6<12x14 is:</th>

 (a) (-2,2)
 (b) (0,-2)
 (c) (2, 0)
 (d) (-2,∞)

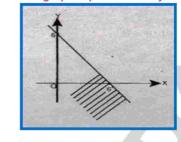
June 2014

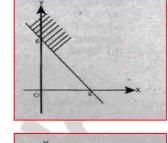
Q21. The graph of linear inequalities $7x+9y \le 63$, $x+y \ge 1,0 \le x \le 6$ & common region of inequalities is:

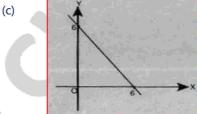
(a) BCDB & DEFD (c) HFGH

© 8888111134 | 8888111034 www.pranavchandak.com

(b) Unbounded

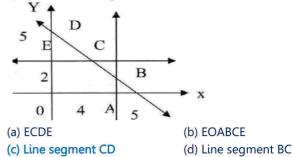

(d) ABDFHKA


Dec 2014


(a)

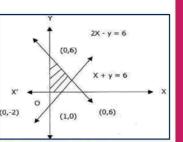
(b)

Q22. Which graph represents $x + y \le 6$ is



(d) None

Q23. Given conditions $x+y \ge 5$, $x+y \le 5$, $0 \le x \le 4 \otimes 0 \le y \ge 2$, then common region under these conditions is


June 2015

Page 26

Q24. Common region in the graph of linear inequalities 2x + y > 18, $x + y \ge 12$ & $3x + 2y \le 34$ is:(a) unbounded(b) infeasible(c) feasible and bounded(d) feasible & unbounded

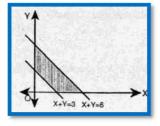
Dec 2015 Q25. By x+y = 6; 2x-y = 2common region refers to (a) $x + y \ge 6$, $2x - y \le 2$ (b) $x + y \le 6$, $2x - y \le 2$ (c) $x + y \le 6$, $2x - y \ge 2$ (d) x + y < 6, 2x - y > 2

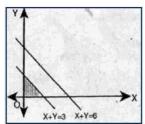
Study from the BEST

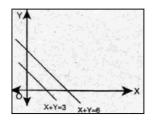
Revision & Practice Session

🔁 CA Pranav Chandak 🕻

PYQs - Inequalities

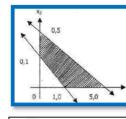

June 2016

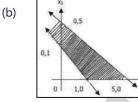

(a)

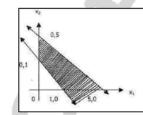

(b)

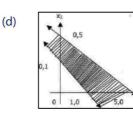
(c)

Q26. Common region of $x+y \le 6$; $x+y \ge 3$; $x \ge 0$; $y \ge 0$ is


(d) None


Dec 2016


(a)


(c)

Q27. $x_1 + 2x_2 \le 5$; $x_1 + x_2 \ge 1$; $x_1 \ge 0$, $x_2 \ge 0$ represents

June 2017

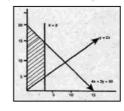
(a)

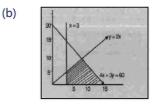
(c)

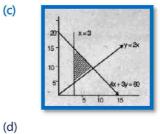
Q28. A dietitian wishes to mix together two kinds of food so that the vitamin content of the mixture is at least 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C &12 units of vitamin D. The vitamin content per Kg. of each food is shown below:

Particulars	A B	C	D
Food I	2 1	1	2
Food II	1 1	2	3

Assuming x units of food I is to be mixed with y units of food II, expressed as


(a) 2x+y≤9; x+ y ≤7; x+2y≤10; 2x+3y≤12; x>0, y>0


(b) 2x+y≥30; x +y ≤7; y+2y≥10; x+3y≥12


(c) $2x+y \ge 9$; $x+y \ge 7$; $y+y \le 10$; $x+3y \ge 12$

(d) $2x+y \ge 9$; $x+y \ge 7$; $y+2y \ge 10$; $2x+3y \ge 12$; $x \ge 0$, $y \ge 0$.

Q29. The common regions by the inequalities $4x + 3y \le 60$; $y \ge 2x; x \ge 3, x \ge 0 \& y \ge 0$ is

None

June 2018

Q30. Linear relationship between 2 variables in inequality: (a) $ax + by \le c$ (b) $ax - by \le c$ (c) $axy + by \le c$ (d) None

© 8888111134 | 8888111034 www.pranavchandak.com

Page 27 **Study from the BEST**

Revision & Practice Session 🔁 CA Pranav Chandak

PYQs - Inequalities

Dec 2018 Q31. $5x + y \le 100, x + y \le 60, x \ge 0, y \ge 0$ solution is (a) (0, 0), (20, 0), (10, 50) & (0, 60) (b) (0,0), (60,0), (10,50) & (0,60) (c) (0,0), (20,0), (0,100) & (10,50) (d) None of these	Q40. The region indicated by the shading in the graph is expressed by the inequalities	
[June 2019] Q32. An employer recruits experienced (x) & fresh workmen (y) for his under condition that he cannot employ more than 11 people. x and y can be related by the inequality. (a) $x + y \neq 11$ (b) $x + y \leq 11, x \geq 0, y \geq 0$ (c) $x + y \geq 11, x \geq 0, y \geq 0$ (d) None of these June 2019 Q33. Solution set of in equations $x + 2 > 0$ & $2x - 6 > 0$ is (a) $(-2, \infty)$ (b) $(3, \infty)$ (c) $(-\infty, -2)$ (d) None	$\begin{array}{c} 2\\ \hline 0 \\ 2 \\ \hline 0 \\ 2 \\ \hline 0 \\ 2 \\ \hline 0 \\ \hline 2 \\ \hline 1 \\ 1 \\$	
Q34. Common region of $L_1 = X_1 + X_2 < 4$; $L_2 = 2X_1 - X_2 > 6$	Q41. A labour can be paid under two methods: I: Rs.600 & Rs. 50 per hour. II: Rs. 170 per hour. If the job takes 'x' hours, for how many values of 'x' does the method II give the labour the better wages? (a) 3 (b) 4 (c) 6 (d) 2 Dec 2022 Q42. If $2x + 5 > 3x + 2$ and $2x - 3 \le 4x - 5$, then 'x' can take which of the following value?	
L2(a) OABC(b) Outside of OAB(c) Δ ABCE(d) Δ ABE	(a) 4 (b) -4 (c) 2 (d) -2 June 2023	
Dec 2019 Q35. Solving $6x + y \ge 18, x + 4y \ge 12, 2x + y \ge 10$, we get (a) (0, 18), (12, 0), (4, 2), & (7, 6) (b) (3, 0), (0, 3), (4, 2) & (7, 6) (c) (5, 0), (0, 10), (4, 2) & (7, 6) (d) (0, 18), (12, 0), (4, 2), (0, 0) & (7, 6)	Q43. In a garment factory an average experienced person does 5 units of work while a fresh one does 3 units of work daily but has to maintain output of at least 30 units of work per is situation can be expressed as: (a) $5x + 3y \le x \ge 30$ (b) $5x + 3y \ge 30$ (c) $5x + 3y \ge 30, x \ge 0, y \ge 0$ (d) $5x + 3y \le 30, x \ge 0, y \ge 0$	
Dec 2020 Q36. Solve for x of Inequalities $2 \le \frac{3x-2}{5} \le 4$ where $x - N$ (a) {5,6,7} (b) {3,4,5,6} (c) {4,5,6} (d) None	Q44. A fertilizer company produces two types of fertilizers called grade I & Grade II. Each of these types is proceed through two critical chemical plant units. The plants has	
Q37. Solution of inequality $\frac{5-2x}{3} \le \frac{x}{6} - 5$ is (a) $x = 8$ (b) $x \le 8$ (c) $x \ge 8$ (d) None Jan 2021 Q38. Common region in graph of inequalities $x + y \le 4, x - y \le 4, x \ge 2$ is	maximum of 180 hours available in a week. Manufacturing one bag of grade I fertilizer requires 4 hours in the plant. Manufacturing one bag of grade II fertilizer required 10 hours in the plant. Express this using linear inequality. (a) $5x_1 + 3x_2 \le 180$ (b) $4x_1 + 5x_2 > 180$ (c) $2x_1 + 5x_2 > 180$ (d) $4x_1 + 5x_2 \le 180$	
(a) Equilateral triangle (b) Isosceles triangle (c) Quadrilateral (d) Square		
Dec 2021 Q39. XYZ Company has a policy for its recruitment as: it should not recruit more than 8 men (x) to 3 women (y). How can this be expressed in inequality? (a) $3y \ge 8x$ (b) $3y \le x/8$ (c) $8y \ge 3x$ (d) $8y \le 3x$		
(a, b) = bx (b, b) = x, b (c, b) = bx (a, b) = bx		

© 8888111134 | 8888111034 www.pranavchandak.com

Revision & Prailies Session 🥎 🔽 CA Pranav Chandak 🧕

LAST 38 EXAMS PYQs By ca pranav chandak T'ime Value of Money

TO BUY HARDCOPY OF PYQs

SCAN ME

Click here

PYQs - Time Value of Money

Nov 2006

Nov 2006	Q11. How long will Rs. 12,000 take to amount to Rs. 14,000				
Q1. Rs. 8,000 becomes Rs. 10,000 in 2 years at SI. Amoun	at 5% p.a. converted quarterly? [Given: $(1.0125)^{12.4} = 1.1666$]				
that will become Rs. 6,875 in 3 years at same rate of interes	(a) 3 years (b) 3.1 years (c) 13.5 years (d) None				
(a) 4,850 (b) 5,000 (c) 5,500 (d) 5,275	012 A company is considering proposal of purchasing a				
	Q12. A company is considering proposal of purchasing a				
Q2. The difference between the simple and compound	machine either by making full payment of Rs. 4,000 or by				
interest on a certain sum for 3 years at 5% p.a. is Rs. 228.75					
The compound interest on the sum for 2 years at 5% p.a. is	course of action is preferable, if company can borrow money				
(a) 3,175 (b) 3,075 (c) 3,275 (d) 2,975.	at 14% compounded annually? [Given: (1.14) ⁴ = 1.68896]				
	(a) Leasing is preferable (b) Should be purchased				
Q3. Mr. X Invests Rs. 10,000 every year starting from today	, (c) No difference (d) None of these				
for next 10 years suppose interest rate is 8% per annun					
compounded annually. Calculate future value of annuity	Q13. Vipul purchases a car for Rs. 5,50,000. He gets a loan				
(Given that (1 + 0.08) ¹⁰ = 2.15892500]	of Rs. 5,00,000 at 15% p.a. from a Bank & balance Rs. 50,000				
(a) 156454.88 (b) 144865.625 (c) 156554.88 (d) None	he pays at time of purchase. He has to pay whole amount of				
	loan in 12 equal monthly instalments with interest starting				
Q4. The present value of an annuity of Rs. 3,000 for 15 year	from the end of the first month. The money he has to pay at				
at 4.5% p.a. C.I. is: [Given that $(1.045)^{15} = 1.935282$]	the end of every month is: [Given $(1.0125)^{22} = 1.16075452$]				
(a) 23,809.67 (b) 32,218.67 (c) 32,908.67 (d) None	(a) 45,130.43 (b) 45,230.43 (c) 45,330.43 (d) None				
Feb 2007	Aug 2007				
	Q14. If Rs. 1,000 be invested at interest rate of 5% & interest				
Q5. The rate of simple interest on a sum of money is 6% p.a for first 3 years, 8% p.a. for the next five years and 10% p.a.	be added to the principal every to years, then number of				
for the period beyond 8 years. If the simple interest accrued					
by the sum for a period for 10 years is Rs. 1,560. The sum is					
(a) 1,500 (b) 2,000 (c) 3,000 (d) 5,000	Q15. Annual birth & death rates per 1000 are 39.4 & 19.4				
	and the second sec				
Q6. A sum of money doubles itself in 10 years. Number o	doubled assuming there is no immigration or emigration is:				
years it would triple itself is:	(a) 35 years (b) 30 years (c) 25 years (d) None				
(a) 25 years (b) 15 years (c) 20 years (d) None.	(a) 55 years (b) 50 years (c) 25 years (d) None				
	Q16. Effective rate equivalent to nominal rate of 6%				
Q7. In what time will 3,90,625 amounts to 4,56,976 at 8%	semnounded mentally is:				
p.a., interest compounded semi-annually? [(1.04) ⁴ = 1.16986]	$(a) \in OE$ (b) $\in IE$ (c) $\in OE$ (d) $\in OT$				
(a) 2 years (b) 4 years (c) 5 years (d) 7 year					
	Q17. A co. establishes a sinking fund to provide for payment				
Q8. A machine can be purchased for Rs. 50,000. Machine will	of Rs 2,00,000 debts maturing in 20 years. Contributions to				
contribute Rs. 12,000 p.a. for the next 5 years. Assume	the fund are to be made at the end of every year. Find				
borrowing cost is 10% p.a. Determine whether machine	amount of each annual deposit if interest is 5% p.a.:				
should be purchased or not:	(a) $6,142$ (b) $6,049$ (c) $6,052$ (d) $6,159$				
(a) Should be purchased (b) Should not be purchased					
(c) Can't say about purchase (d) None of the above	Nov 2007				
Q9. How much amount is required to be invested every yea	Q18. A person borrows Rs. 5,000 for 2 years at 4% p.a. simple				
so as to accumulate Rs. 3,00,000 at end of 10 years, if interes	interest. He immediately lends to another person at $6 - \frac{2}{4}$				
is compounded annually at 10%? [Give $(1.1)^{10} = 2.5937$]	p.a. for 2 years. Find his gain in transaction per year:				
(a) Rs. 18,823.65 (b) Rs. 18,828.65	(a) 112.50 (b) 125 (c) 225 (d) 167.50				
(c) Rs. 18,832.65 (d) Rs. 18,882.65					
	Q19. A person deposited Rs. 5,000 in a bank. Deposit was				
May 2007	left to accumulate at 6% compounded quarterly for first five				
Q10. A certain sum of money amounts to Rs. 6,300 in two	years & at 8% compounded semi-annually for the next eight				
years and Rs. 7,875 in three years nine months at simple	years. The compound amount at the end of 13 years is:				
interest. Find the rate of interest per annum:	(a) Rs. 12621.50 (b) Rs. 12613.10				
(a) 20% (b) 18% (c) 15% (d) 10%	(c) Rs. 13613.10 (d) None				
© 8888111134 8888111034 Pa	ge 29 Revision & Provider Session –				
	udy from the BEST CA Pranav Chandak				
WWW.prundbenunduk.com					

Q20. Raja aged 40 wishes his wife Rani to have Rs. 40 lakhs Q29. Future value of an ordinary annuity: (a) A (n, i) = A $\left[\frac{(1+i)^n - 1}{i}\right]$ (b) A (n, i) = A $\left[\frac{(1+i)^n + 1}{i}\right]$ (c) A (n, i) = A $\left[\frac{1 - (1+i)^n}{i}\right]$ (d) A (n, i) = A $\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right]$ at his death. If his expectation of life is another 30 yrs & he starts making equal annual investments commencing now at 3% CI p.a. How much should he invest annually? (a) 84.077 (b) 81,628 (c) 84,449 (d) 84,247 Q30. Find the numbers of years in which a sum doubles itself Feb 2008 at the rate of 8% per annum. Q21. 2 equal sums of money were lent at SI at 11 % p.a. for (b) $12\frac{1}{2}$ (d) $13\frac{1}{2}$ (a) $11^{\frac{1}{2}}$ (c) $9\frac{1}{2}$ $3\frac{1}{2}$ years & $4\frac{1}{2}$ years respectively. If the difference in interests for two periods was Rs. 412.50, then each sum is: June 2009 (a) 3.250 (b) 3,500 (c) 3,750 (d) 4,350 Q31. In how many years, a sum will become double at 5% p.a. compound interest. Q22. Anshul's father wishes to have Rs. 75,000 in bank (a) 14.0 years (b) 14.3 years (c) 14.2 years (d) None account when his first college expenses begin. How much amount his father should deposit now at 6.5% compounded Q32. The time by which a sum of money is 8 times of itself annually if Anshul is to start college in 8 years from now. if it doubles itself in 15 years. (a) 45,360 (b) 46,360 (c) 55,360 (d) 48,360. (a) 42 years (b) 43 years (c) 45 years (d) None Q23. A company may obtain a machine either by leasing it Q33. What is rate of simple interest if a sum of money for 5 years (useful life) at an annual rent of Rs. 2,000 or by amounts to Rs. 2,784 in 4 years & Rs. 2,688 in 3 years? purchasing machine for Rs. 8,100. If company can borrow (a) 1%p.a. (b) 4%p.a. (c) 5% p.a. (d) 8% p.a. money at 18% p.a., which alternative is preferable? (a) Leasing (b) Purchasing (c) Can't say (d) None Q34. A sum amount to Rs. 1,331 at a principal of Rs. 1,000 at 10% compounded annually. Find the time. June 2008 (a) 3.31 years (b) 4 years (c) 3 years (d) 2 years Q24. In how much time would the simple interest on a certain sum be 0.125 times the principal at 10% p.a.?/ Q35. Paul borrows Rs. 20,000 on condition to repay it with (a) $1\frac{1}{4}$ years (b) $1\frac{3}{4}$ years (c) $2\frac{1}{4}$ years (d) None CI at 5% p.a. in annual instalment of Rs. 2,000 each. Find the number of years in which the debt would be paid off. Q25. Difference between CI & SI on a certain sum for 2 years (a) 10 years (b) 12 years (c) 14 years (d) 15 years @ 10% p.a. is Rs. 10. Find the sum: (a) 1,010 (c) 1,000 (d) 990 Dec 2009 (b) 1,095 Q36. In how many years, a sum of Rs. 1,000 compounded Q26. A machine worth Rs. 4,90,740 is depreciated at 15% on annually @ 10%, will amount to Rs. 1,331? its opening value each year. When its value would reduce to (a) 6 years (b) 5 years (c) 4 years (d) 3 years Rs. 2,00,000: (a) 5 years 6 months (b) 5 years 7 months Q37. The CI for a certain sum @ 5% p.a. for 1st year is Rs. 25. SI for the same money @ 5% p.a. for 2 years will be. (c) 5 years 5 months (d) None. (a) Rs. 40 (b) Rs. 50 (c) Rs. 60 (d) Rs. 70 Q27. A sinking fund is created for redeeming debentures worth Rs. 5 lacs at the end of 25 years. How much provision June 2010 needs to be made out of profits each year provided sinking Q38. At what % rate of CI will a sum of money become 16 fund investments can earn interest at 4% p.a.? times in 4 years, if interest compounded annually: (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) None (a) r = 100%(b) r=10% (c) r = 200%(d) None Dec 2008 Q39. Find present value of an annuity of Rs. 1,000 payables Q28. Difference between SI & CI is Rs. 11 @10% for 2 years, at end of each year for 10 years. If rate of interest is 6% then find the sum. compounding p.a (given $(1.06)^{-10} = 0.5584$): (a) Rs. 1,200 (b) Rs. 1,100 (c) Rs. 1,000 (d) None (a) Rs. 7,360 (b) Rs. 8,360 (c) Rs. 12,000 (d) None

© 8888111134 | 8888111034 | Page 30 www.pranavchandak.com | Study

Revision & Practice Session -

🔼 CA Pranav Chandak 🧕

PYQs - Time Value of Money

www.pranavchandak.com

PYQs - Time Value of Money

Q40. If the simple interest on a sum of money at 12% p.a. for two years is Rs. 3,600. The compound interest on the	June 2012			
same sum for two years at the-same rate is:	Q50. The S.I. on a sum of money is $\frac{4}{9}$ of the principal and the			
(a) 3,816 (b) 3,806 (c) 3,861 (d) 3,860	no. of years is equal to the rate of interest per annum. Find the rate of interest per annum?			
Dec 2010	(a) 5% (b) 20/3% (c) 22/7% (d) 6%			
Q41. The future value of an annuity of Rs. 5,000 is made	OF1 Share Dr. 2000 for 5 months at 100 mg in			
annually for 8 years at interest rate of 9% compounded annually [Given that $(1.09)^8 = 1.99256$] is:	Q51. SI on Rs. 2,000 for 5 months at 16% p.a. is (a) 133.33 (b) 133.26 (c) 134.00 (d) 132.09			
(a) 55,142.22 (b) 65,142.22	Dec 2012			
(c) 65,532.22 (d) 57,425.22	Q52. How much investment is required to yield an Annual			
	income of Rs. 420 at 7% p.a. Simple interest.			
Q42. The effective annual rate of interest corresponding to nominal rate 6% p.a. payable half yearly is.	(a) 6,000 (b) 6,420 (c) 5,580 (d) 5,000			
(a) 6.06% (b) 6.07% (c) 6.08% (d) 6.09%				
	Q53. X invests Rs. 90,500 in post office at 7.5% p.a. SI. While calculating the rate was wrongly taken as 5.7% p.a. The			
Q43. Cost of Machinery is Rs. 1,25,000/- If its useful life is	difference in amounts at maturity is Rs. 9,774. Find the			
estimated to be 20 years & rate of depreciation of is 10%	period for which the sum was invested:			
p.a., then scrap value of the Machinery is [(0.9) ²⁰ = 0.1215] (a) 15,187 (b) 15,400 (c) 15,300 (d) 15,250	(a) 7 years (b) 5.8 years (c) 6 years (d) 8 years			
(a) 15,187 (b) 15,400 (c) 15,300 (d) 15,250				
Q44. Mr. X invests 'P' amount at SI rate 10% & Mr. Y invests	June 2013			
'Q' amount at CI rate 5% compounded annually. At the end	Q54. The difference between CI & SI on a certain sum of money for 2 years at 4% p.a. is Rs. 1. The sum (in Rs.) is:			
of two years both get the same amount of interest, then the relation between two amounts P & Q is given by:	(a) 625 (b) 630 (c) 640 (d) 635			
(a) $P = \frac{41Q}{80}$ (b) $P = \frac{41Q}{40}$ (c) $P = \frac{41Q}{100}$ (d) $P = \frac{41Q}{200}$				
80 40 100 200	Q55. Sum of money compounded annually becomes Rs.			
June 2011	1,140 in 2 years & Rs. 1,710 in 3 years. Find interest p.a.			
Q45. If the difference of S.I & C.I is Rs. 72 at 12% for 2 years.	(a) 30% (b) 40% (c) 50% (d) 60%			
Calculate the amount.	Dec 2013			
(a) 8,000 (b) 6,000 (c) 5,000 (d) 7,750.	Q56. On what sum difference between CI & SI for two years			
Q46. If a SI on a sum of money at 6% p.a. for 7 years is equal	at 7% p.a. interest is Rs. 29.4			
to twice of SI on another sum for 9 years at 5% p.a. Ratio is:	(a) 5,000 (b) 5,500 (c) 6,000 (d) 6,500			
(a) 2:15 (b) 7:15 (c) 15:7 (d) 1:7	Q57. In what time will a sum of money double itself at 6.25%			
Q46. By mistake a clerk, calculated SI on principal for 5	p.a. simple interest?			
months at 6.5% p.a. instead of 6 months at 5.5% p.a. If error	(a) 5 years (b) 8 years (c) 12 years (d) 16 years			
in calculation was Rs. 25.40. Original sum of principal =				
(a) 60,690 (b) 60,960 (c) 90,660 (d) 90,690	Q58. What principal will amount to Rs. 370 in 6 years at 8%			
Dec 2011	p.a. at simple interest? (a) Rs. 210 (b) Rs. 250 (c) Rs.310 (d) Rs. 350			
Dec 2011 Q48. If the Simple Interest on Rs. 1,400 for 3 years is less				
than the simple interest on Rs. 1,400 for 5 years is tess	June 2014			
Rs. 80, then the rate of interest is	Q59. Partners A & B together lent Rs. 3,903 at 4% p.a.			
(a) 5.67% (b) 6.67% (c) 7.20% (d) 5.00%	interest compounded annually. After a span of 7 years, A gets the same amount as B gets after 9 years. Share of A in			
Q49. Nominal rate of interest is 9.9% p.a. If interest is	sum of Rs. 3,903 would have been:			
Compounded monthly, what will be the effective rate of	(a) 1,875 (b) 2,280 (c) 2,028 (d) 2,820			
interest (given $\left(\frac{4033}{4000}\right)^{12} = 1.1036$ (approx))?	O60 If a sum triples in 15 years at simple rate of interact the			
(a) 10.36% (b) 9.36% (c) 11.36% (d) 9.9%	Q60. If a sum triples in 15 years at simple rate of interest, the rate of interest per annum will be:			
	(a) 13.0% (b) 13.3% (c) 13.5% (d) 18.0%			
©8888111134 8888111034 Pag	e 31 - Revision & Prosties Series -			

Study from the BEST

ee Session 🔼 CA Pranav Chandak 🧕

PYQs - Time Value of Money

Q61. How much amount is required to be invested every year as to accumulate Rs. 6,00,000 at the end of 10 years, if	June 2016				
interest is compounded annually $@10\% [(1.1)^{10} = 2.59374]$.	Q70. Mr. X bought an electronic item for Rs. 1,000. What would be future value of same item after 2 years, if value is				
(a) 37,467 (b) 37,476 (c) 37,647 (d) 37,674	compounded semi-annually at 22% p.a?				
D 2014	(a) 1488.40 (b) 1518.07 (c) 2008.07 (d) 2200.00				
Dec 2014 Q62. The future value of an annuity of Rs. 1,000 made	Q71. If an amount is kept at SI, it earns an interest of Rs. 600				
annually for 5 years at the interest of 14% compounded	in first 2 years but when kept at CI it earns an interest of Rs. 660 for same period, then rate of interest & principal				
annually is: (Given $(1.14)^5 = 1.92541$)					
(a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160	amount respectively is: (a) 20%, Rs. 1,200 (b) 10%, Rs. 1,200				
Q63. A sum of money invested of compound interest	(a) 20%, Rs. 1,200 (b) 10%, Rs. 1,200 (c) 20%, Rs. 1,500 (d) 10%, Rs. 1,500				
doubles itself in four years. It becomes 32 times of itself at	(c) 20%, KS. 1,500 (d) 10%, KS. 1,500				
the same rate of compound interest in:	Dec 2016				
(a) 12 years (b) 16 years (c) 20 years (d) 24 years	Q72. The sum invested at 4% p.a. compounded Semi- annually amounts to Rs. 7,803 at the end of one year, is:				
Q64. A certain sum of money was invested at SI for 3 years.	(a) Rs. 7,000 (b) Rs. 7,500				
If the same has been invested at a rate that was 7% higher,	(c) Rs. 7,225 (d) Rs. 8,000				
the interest amount would have been Rs. 882 more. The amount of sum invested is:					
(a) 12,600 (b) 6,800 (c) 4,200 (d) 2,800	Q73. A CI on a sum for 2 years is Rs. 30 more than the SI at the rate of 5% p.a. then the sum is:				
	(a) 11,000 (b) 13,000 (c) 12,000 (d) 15,000				
June 2015					
Q65. A sum of money doubles itself in 8 years at SI. The number of years it would triple itself is	Q74. A person lends Rs. 6,000 for 4 years & Rs. 8,000 for 3				
(a) 20 years (b) 12 years (c) 16 years (d) None	years at SI. If he gets Rs. 2,400 as total interest, r = (a) 5% (b) 4% (c) 6% (d) 7%				
Q66. A sum of Rs. 44,000 is divided into 3 parts such that the corresponding interest earned after 2 years, 3 years & 6	June 2017				
years may be equal. If rates of SI are 6% p.a., 8% p.a. & 6%	Q75. Future value of an annuity of Rs. 1,500 made annually for 5 yrs @10% compounded annually is $((1.1)^5 = 1.61051)$:				
p.a. respectively, then the smallest part of the sum will be:	(a) Rs. 9517.56 (b) Rs. 9157.65				
(a) Rs. 4,000 (b) Rs. 8,000 (c) Rs. 10,000 (d) 12,000	(c) Rs. 9715.56 (d) Rs. 9175.65				
Dec 2015	Q76. The difference between the CI & SI at 10% p.a. for 4				
Q67. Suppose your parent decides to open a PPF account in	years on Rs. 10,000 is Rs				
a bank towards your name with Rs. 10,000 every year starting from today for next 15 years. When you receive &	(a) 650 (b) 640 (c) 641 (d) 600				
get 8.5% p.a. interest rate compounded annually. What is					
the present value of this annuity? (Give answer in Rs. without	Q77. How much amount is required to be invested every year as to accumulate Rs. 7,96,870 at end of 10 years, if				
any fraction.) (Given P (15,0.085) = 8.304236576) (a) 83,042 (b) 90,100 (c) 93,042 (d) 73,042	interest compounded annually @10%, A (10, 0.1) = 15.9374 ?				
(a) 65,042 (b) 50,100 (c) 55,042 (d) 75,042	(a) 40,000 (b) 4,50,000 (c) 48,000 (d) 50,000				
Q68. In how many years will a sum of money become four	Dec 2017				
times at 12% p.a. simple interest?	Q78. If CI on any sum at the rate of 5% for two years is				
(a) 18 years (b) 21 years (c) 25 years (d) 28 years	₹ 512.50 then the sum would be:				
Q69. The simple interest for a certain sum for 2 years at 10%	(a) 3,000 (b) 4,000 (c) 5,000 (d) 6,000				
per annum is Rs. 90. The corresponding CI is (In Rs.):	Q79. The effective rate of interest equivalent to the nominal				
(a) 99 (b) 95.60 (c) 94.50 (d) 108	rate of 7% converted monthly: (a) 7.26% (b) 7.22% (c) 7.02% (d) 7.20%				
	(a) 7.26% (b) 7.22% (c) 7.02% (d) 7.20%				

© 8888111134 | 8888111034 www.pranavchandak.com

Page 32 Study from the BEST

Revision & Practice Session –

🔼 CA Pranav Chandak 🧕

PYQs - Time Value of Money

June 2018

June 2018 Q80. Mr. X invest ₹ 10,000 every year starting from today for	Q90. A bank pays 10% rate of interest compounded annually. A sum of $\gtrless 400$ is deposited in the bank. The amount at the end of 1 year will be				
next: 10 years. suppose interest rate is 8% pa compounded annually. Calculate future value of the annuity.	(a) ₹ 440 (b) ₹ 439 (c) ₹ 441 (d) ₹ 442				
(a) 1, 56, 454. 88 (b) 1, 56, 554.88					
(c) 1,44,865.625 (d) None of these	Q91. A certain money doubles itself in 10 years when deposited on SI. It would triple itself in				
Q81. How much amount is required to be invested every year so as to accumulate ₹ 3,00,000 at the end of 10 years, if interest is compounded annually at 10% ?	(a) 20 years (b) 15 years (c) 25 years (d) 30 years				
(a) 18823.65 (b) 18,000 (c) 18,828.65 (d) 18,882.65	Q92. A man deposited ₹ 8,000 in a bank for 3 years at 5%p.a. CI, after 3 years he will get				
Q82. If ₹ 1,000 be invested at interest rate of 5% and the	(a) ₹ 8,800 (b) ₹ 9,261 (c) ₹ 9,200 (d) ₹ 9,000				
interest be added to the principal every 10 years, then the number of years in which it will amount to \gtrless 2,000 is:	Q93. If in two years' time a principal of ₹ 100 amounts to				
(a) $16\frac{2}{3}$ years (b) $6\frac{1}{4}$ years (c) 16 years (d) $6\frac{2}{3}$ years	₹121 when the interest at the rate of r% is compounded annually, then the value of r will be				
Q83. A person borrows ₹ 5,000 for 2 years at 4% per annual	(a) 10.5% (b) 10 % (c) 15% (d) 14%				
simple interest. He immediately lends to another person at $6\frac{1}{4}$ %. p.a for 2 years find his gain in the transaction for year:	Q94. A certain sum of money Q was deposited for 5 year and 4 months at 4.5% simple interest and amounted to \gtrless 248, then the value of Q is				
(a) 112.50 (b) 225 (c) 125 (d) 107.50	then the value of Q is (a) ₹ 200 (b) ₹ 210 (c) ₹ 220 (d) ₹ 240				
Q84. If an amount is kept at S.I. it earns an interest of ₹ 600 in first two years but when kept at compound interest it earns an interest of ₹ 660 for the same period, then the rate of interest and principal amount respectively are:	Q95. If CI on a sum for 2 years at 4% per annum is ₹ 102, then the simple interest on the same sum for the same period at the same rate will be				
(a) 20%, ₹ 1,200(b) 20%, ₹ 1,500(c) 10%, ₹ 1,200(d) 10%, ₹ 1,500	(a) ₹ 99 (b) ₹ 101 (c) ₹ 100 (d) ₹ 95				
Q85. The future value of an annuity of ₹ 1,000. made annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^5 1.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160	Q96. A man invests an amount of ₹ 15,860 in the names of his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A. B and C is:				
annually for 5 years at the interest of 14% compounded annually is: Given (1.14) ⁵ 1.92541) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^51.92541)$	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is:				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^5 1.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6%	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is				
annually for 5 years at the interest of 14% compounded annually is: Given (1.14) ⁵ 1.92541)(a) 5,610(b) 6,610(c) 6,160(d) 5,160Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10%(a) 10%(b) 12%(c) 11.2%(d) 13.6%Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is	 his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, 				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^5 1.92541$)(a) 5,610(b) 6,610(c) 6,160(d) 5,160Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10%(a) 10%(b) 12%(c) 11.2%(d) 13.6%Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550(a) 187550(b) 187000(c) 185700(d) 187500	 his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6:4:3 (b) 3:4:6 (c) 30:12:5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37,200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? 				
annually for 5 years at the interest of 14% compounded annually is: Given (1.14) ⁵ 1.92541) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account paying interest 6% per compounded monthly, what is the	 his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6:4:3 (b) 3:4:6 (c) 30:12:5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37,200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property 				
annually for 5 years at the interest of 14% compounded annually is: Given (1.14) ⁵ 1.92541) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37, 200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) (a) 1.81 lakh (b) 2.01 lakh (c) 2.00 lakh (d) None				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^5 1.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account paying interest 6% per compounded monthly, what is the future value of this annuity after 10th payment?	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37, 200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) (a) 1.81 lakh (b) 2.01 lakh (c) 2.00 lakh (d) None				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^51.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account paying interest 6% per compounded monthly, what is the future value of this annuity after 10th payment? (a) 20156 (b) 20356 (c) 20256 (d) 20456 Dec 2018 Q89. If \gtrless 10,000 is invested at 8% per year compounded quarterly, then the value of the investment after 2 years is:	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37, 200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) (a) 1.81 lakh (b) 2.01 lakh (c) 2.00 lakh (d) None Q99. The effective rate of interest for one year deposit corresponding to a nominal 7% rate of interest per annum convertible quarterly is (a) 7% (b) 7.5% (c) 7.4% (d) 7.18%				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^5 1.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account paying interest 6% per compounded monthly, what is the future value of this annuity after 10th payment? (a) 20156 (b) 20356 (c) 20256 (d) 20456 Dec 2018 Q89. If \gtrless 10,000 is invested at 8% per year compounded quarterly, then the value of the investment after 2 years is: [given $(1 + 0.02)^8 = 1.171659$]	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37, 200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) (a) 1.81 lakh (b) 2.01 lakh (c) 2.00 lakh (d) None Q99. The effective rate of interest for one year deposit corresponding to a nominal 7% rate of interest per annum convertible quarterly is (a) 7% (b) 7.5% (c) 7.4% (d) 7.18% Q100. How much will ₹ 25,000 amount to in 2 years at CI if				
annually for 5 years at the interest of 14% compounded annually is: Given $(1.14)^{5}1.92541$) (a) 5,610 (b) 6,610 (c) 6,160 (d) 5,160 Q86. In simple interest, a certain sum becomes Rs. 97,920 in 3 years & Rs. 115200 in 5 years, then the rate of interest is: (a) 10% (b) 12% (c) 11.2% (d) 13.6% Q87. Difference between CI & SI for 3 years is Rs. 912 @4% p.a., the principal is (a) 187550 (b) 187000 (c) 185700 (d) 187500 Q88. Rs.2000 is invested at the end of each month in account paying interest 6% per compounded monthly, what is the future value of this annuity after 10th payment? (a) 20156 (b) 20356 (c) 20256 (d) 20456 Dec 2018 Q89. If \gtrless 10,000 is invested at 8% per year compounded quarterly, then the value of the investment after 2 years is:	his three sons A, B and C in such a way that they get the same interest after 2,3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is: (a) 6: 4: 3 (b) 3: 4: 6 (c) 30: 12: 5 (d) None Q97. If the difference between the CI compounded annually & SI on a certain amount at 10% p.a. for two years is ₹ 372, then the principal amount is (a) 37, 200 (b) 37,000 (c) 37,500 (d) None Q98. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) (a) 1.81 lakh (b) 2.01 lakh (c) 2.00 lakh (d) None Q99. The effective rate of interest for one year deposit corresponding to a nominal 7% rate of interest per annum convertible quarterly is (a) 7% (b) 7.5% (c) 7.4% (d) 7.18%				

© 8888111134 | 8888111034 www.pranavchandak.com

Page 33 Study from the BEST

Revision & Practice Session -

🔽 CA Pranav Chandak 🧕

PYQs - Time Value of Money

Q101. ₹ 8,000/- at 10% p.a. interest compounded half yearly	Dec 2019			
will become at the end of one year	Q113. A man invests ₹ 12,000 at 10% p.a. and another sum			
(a) 8,800 (b) 8,820 (c) 8,900 (d) 9,600	of money at 20% p.a. for one year. The total investment			
Q102. The value of furniture depreciates by 10% a year, it	earns at 14% p.a. simple interest the total investment is: (a) 8,000 (b) 20,000 (c) 14,000 (d) 16,000			
the present value of the furniture in an office is $₹ 21,870$,	(a) 8,000 (b) 20,000 (c) 14,000 (d) 10,000			
calculate the value of furniture 3 years ago	Q114. The difference in SI of a sum invested of 1,500 for 3			
(a) 30,000 (b) 35,000 (c) 40,000 (d) 50,000	years is 18. The difference in their rates is:			
huma 2010	(a) 0.4 (b) 0.6 (c) 0.8 (d) 0.10			
June 2019 Q103. The certain sum of money became ₹ 692 in 2 yrs and	Q115. Find effective rate of interest on 10,000 on which			
₹ 800 in 5 yrs then the principle amount is	interest is payable half yearly at 5% p.a.			
(a) ₹ 520 (b) ₹ 620 (c) ₹ 720 (d) ₹ 820	(a) 5.06% (b) 4% (c) 0.4% (d) 3%			
Q104. A sum of money amount to ₹ 6,200 in 2 years & ₹	Q116. Find the effective rate of interest at 10% p.a. when			
7,400 in 3 years as per S.I. then the principal is (a) ₹ 3,000 (b) ₹ 3,500 (c) ₹ 3,800 (d) None	interest is payable quarterly. (a) 10.38 % (b) 5% (c) 5.04% (d) 4%			
$(a) \in 5,000$ (b) $\notin 5,500$ (c) $\notin 5,800$ (d) None	(a) 10.38% (b) 5% (c) 5.04% (d) 4%			
Q105. A sum was invested for 3 years as per CI & rate of	Q117. What will be the population after 3 years when			
interest, for 1^{st} year is 9%, 2^{nd} year is 6% & 3^{rd} year is 3%	present population is 25,000 and population increases at			
p.a. respectively. Find sum if amount in 3 years is ₹ 550?	the rate of 3% in I year, at 4% in II year and at 5% in III year?			
(a) ₹ 250 (b) ₹ 300 (c) ₹ 462.16 (d) ₹ 350	(a) 28,119 (b) 29,118 (c) 27,000 (d) 30,000			
Q106. P = ₹ 5,000R = 15%T = 4 ^{1/2} then I will be	Q118. The value of scooter is 10,000 find its value after 7			
(a) ₹ 3,375 (b) ₹ 3,300 (c) ₹ 3,735 (d) None	years if rate of depreciation is 10% p.a.			
	(a) 4, 782, 96 (b) 4,278.69 (c) 42,079 (d) 42,000			
Q107. The effective rate of interest does not depend upon				
(a) Amount of Principal (b) Amount of Interest	Q119. SI = 0.125P at 10% p.a. Find time.			
(c) Number of Conversion Periods (d) None of these	(a) 1.25 years (b) 25 years (c) 0.25 years (d) None			
Q108. A person wants to lease out a machine costing	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable?	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000 Q121. The difference between CI & SI for 2 years, is 21. If			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable?	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000 Q121. The difference between Cl & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8,400 (b) 4,800 (c) 8,000 (a) 8,400 (b) 4,800 (c) 8,000 (d) 8,200			
 Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded 	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000 Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8,400 (b) 4,800 (c) 8,000 (d) 8,200 Q122. Present value of a scooter is 7,290 if its value			
 Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12th 	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400(b) 4,800(c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years =			
Q108. A person wants to lease out a machine costing₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a.payable annually starting from end of 1 st year. Suppose rateof interest is 10% p.a. compounded annually on whichmoney can be invested. To whom this agreement is favourable?(a) Favour of Lessee(b) Favour of Lessor(c) Not for both(d) Can't be determinedQ109. Let a person invest a fixed sum at the end of eachmonth in an account paying interest 12% p.a. compoundedmonthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000 Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8,400 (b) 4,800 (c) 8,000 (d) 8,200 Q122. Present value of a scooter is 7,290 if its value			
 Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12th 	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8,400(b) 4,800(c) 8,000(c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000(b) 10,500(c) 20,000(d) 20,500			
Q108. A person wants to lease out a machine costing₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a.payable annually starting from end of 1 st year. Suppose rateof interest is 10% p.a. compounded annually on whichmoney can be invested. To whom this agreement is favourable?(a) Favour of Lessee(b) Favour of Lessor(c) Not for both(d) Can't be determinedQ109. Let a person invest a fixed sum at the end of eachmonth in an account paying interest 12% p.a. compoundedmonthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400(b) 4,800(c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years =			
Q108. A person wants to lease out a machine costing₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a.payable annually starting from end of 1 st year. Suppose rateof interest is 10% p.a. compounded annually on whichmoney can be invested. To whom this agreement is favourable?(a) Favour of Lessee(b) Favour of Lessor(c) Not for both(d) Can't be determinedQ109. Let a person invest a fixed sum at the end of eachmonth in an account paying interest 12% p.a. compoundedmonthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is(a) 4,837(b) 4,637(c) 4,337(d) 3,337	Q120. Scrap value of a machine valued at 10,00,000, after10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle(a) 8, 400(b) 4,800(c) 8,000(c) 8,000Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000(b) 10,500(c) 20,000(d) 20,500			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000(b) 3,84,679.45 (c) 4,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000 (b) 10,500 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000(b) 3,84,679.45 (c) 4,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000 (b) 10,500 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000(b) 3,84,679.45 (c) 4,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000 (b) 10,500 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400(b) 4,800(c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000(b) 10,500(c) 20,000(d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33%(b) 4.5%(c) 3%(d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money deposited at 5% p.a. & the remaining at the rate of 6%, then			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is (a) ₹ 45,00,000 (b) ₹ 50,00,000 (c) ₹ 55,00,000 (d) ₹ 60,00,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000 (d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000 (b) 10,500 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money deposited at 5% p.a. & the remaining at the rate of 6%, then total interest gained 730 find deposit amount. (a) 14,000 (b) 21,550 (c) 21,000 (d) 21,280			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is (a) ₹ 45,00,000 (d) ₹ 50,000,000 (c) ₹ 55,00,000 (d) ₹ 60,00,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000 (d) 8,200Q122. Present value of a scooter is 7,290 (a) 10,000 (b) 10,500 (c) 20,000 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money deposited at 5% p.a. & the remaining at the rate of 6%, then total interest gained 730 find deposit amount. (a) 14,000 (b) 21,550 (c) 21,000 (d) 21,280Q125. In what time will a sum of Rs. 800 will amount to Rs.			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is (a) ₹ 45,00,000 (b) ₹ 50,00,000 (c) ₹ 55,00,000 (c) ₹ 50,00,000 Q112. In SI if the principal is ₹ 2,000 & the rate & time are the roots of the equation x ² - 11x + 30 = 0 then SI is:	Q120. Scrap value of a machine valued at 10,00,000, after10 years within depreciation at 10% p.a.:(a) 3, 48, 678. 44(b) 3,84,679.45(c) 4,00,000(d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle(a) 8, 400(b) 4,800(c) 8,000(d) 8,200Q122. Present value of a scooter is 7,290 if its value decreases every year by 10% then its value before 3 years = (a) 10,000(b) 10,500(c) 20,000(c) 20,000(d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33%(a) 3.33%(b) 4.5%(c) 3%(d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money deposited at 5% p.a. & the remaining at the rate of 6%, then total interest gained 730 find deposit amount. (a) 14,000(a) 14,000(b) 21,550(c) 21,000Q125. In what time will a sum of Rs. 800 will amount to Rs. 882 at 5% p.a. compounded annually			
Q108. A person wants to lease out a machine costing ₹ 5,00,000 for 10 years. It has fixed a rental of ₹ 51,272 p.a. payable annually starting from end of 1 st year. Suppose rate of interest is 10% p.a. compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of Lessee (b) Favour of Lessor (c) Not for both (d) Can't be determined Q109. Let a person invest a fixed sum at the end of each month in an account paying interest 12% p.a. compounded monthly. If future value of this annuity after the 12 th payment is ₹ 55,000 then amount invested every month is (a) 4,837 (b) 4,637 (c) 4,337 (d) 3,337 Q110. If Pi ² = ₹ 96, & R = 8% compounded annually, P = (a) 14,000 (b) 15,000 (c) 16,000 (d) 17,000 Q111. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is (a) ₹ 45,00,000 (d) ₹ 50,000,000 (c) ₹ 55,00,000 (d) ₹ 60,00,000	Q120. Scrap value of a machine valued at 10,00,000, after 10 years within depreciation at 10% p.a.: (a) 3, 48, 678. 44 (b) 3,84,679.45 (c) 4,00,000 (d) 3,00,000Q121. The difference between CI & SI for 2 years, is 21. If rate of interest is 5% find principle (a) 8, 400 (b) 4,800 (c) 8,000 (c) 8,000 (d) 8,200Q122. Present value of a scooter is 7,290 (a) 10,000 (b) 10,500 (c) 20,000 (c) 20,000 (d) 20,500Q123. If the interest of money is equal to its one by nine, the rate of interest & time are equal, then find r. (a) 3.33% (b) 4.5% (c) 3% (c) 3% (d) 3.5%Q124. 1/7 of a money is deposited at 4% p.a., ½ of a money deposited at 5% p.a. & the remaining at the rate of 6%, then total interest gained 730 find deposit amount. (a) 14,000 (b) 21,550 (c) 21,000 (d) 21,280Q125. In what time will a sum of Rs. 800 will amount to Rs.			

© 8888111134 | 8888111034 www.pranavchandak.com Page 34 Study from the BEST

Revision & Practice Session –

🖸 CA Pranav Chandak 🧕

PYQs - Time Value of Money

Q126. Find effective rate of interest if an amount of Rs. 100	Q137. A person decides to invest 1,25,000 per year for the						
deposited for 1 year at 10%p.a. compounded semi-annual (a) 10.25% (b) 10.10% (c) 10.20% (d) 10.5%	next five years in an annuity which gives 5% per annum compounded annually. What is the approx future value?						
	(use $1.05^5 = 1.2762$, if needed)						
Q127. If population of a town is 25000 & it grows at the ra							
of 4%, 5% & 8 % in year 1, 2 & 3 respectively. Fir population after 3 years?	nd (c) 5,90,704 (d) 3,59,535						
101 0 0	4 0128 Find the summary distance if an annual of F0.000						
(a) 29,484 (b) 29,844 (c) 29,448 (d) 28,94	Q138. Find the compound interest if an amount of 50,000 is deposited in a bank for one year at the rate of 8% per						
Q128. An amount of Rs. 35000 with the rate of interest 7	annum compounded semiannually.						
p.a., it is compounded on a monthly basis, then tell the effective rate of interest.	(a) 3,080 (b) 4,080 (c) 5,456 (d) 7,856						
(a) 7.22% (b) 7.64% (c) 7.0% (d) 7.5%	Q139. Which of the following statements is True? (assume that the yearly cash flow? Are identical for both annuities)						
Q129. Determine present value of perpetuity Rs. 10 p month for infinite period at effective rate of 14% p.a.	er (a) The present value of an annuity due is greater than the present value of an ordinary annuity						
(a) 857 (b) 657 (c) 957 (d) 757	(b) The present value of an ordinary annuity is greater than						
Q130. Find the future value of an annuity of Rs. 1000 mag							
annually for 7 years at interest rate of 14% compounde	AND DESCRIPTION AND A DESCRIPTION OF A D						
annually. Given that (1.14)7=2.5023.	(d) The future value of an annuity due is equal to future value						
(a) 10731.71 (b) 10631.71 (c) 10831.71 (d) None	of an ordinary annuity.						
Dec 2020	Q140. 2,500 is paid every year for 10 years to pay off a loan.						
Q131. On what sum will the CI at 5% per annum for 2 ye							
compounded annually be 3,280.	compounded annually?						
(a) 32,000 (b) 16,000 (c) 48,000 (d) 64,000	(a) 15,847.90 (b) 13 , 040 .27						
	(c) 14,674.21 (d) 16,345.11						
Q132. An amount becomes 5100.5 & 5203 after 2 nd & 4	ţth						
years respectively at 1% of interest p.a. compounde	ed Q141 . An amount is lent at a nominal rate of 4.5% per						
annually. Thus, values of P & R are:	annum compounded quarterly. What would be the gain in						
(a) 4,000 and 1.5 (b) 5,000 and 1	rupees over when compounded annually?						
(c) 6,000 and 2 (d) 5,500 and 3	(a) 0.56 (b) 0.45 (c) 0.076 (d) 0.85						
Q133. A certain sum invested at 4% per annu							
compounded semi- annually amounts to 1,20,000 at the							
end of one year. Find the sum:	(a) 3,78,000 (b) 5,26,769 (c) 4,22,000 (d) 2,24,000						
(a) 1, 15, 340 (b) 1,10,120 (c) 1,12,812 (d) 1,13,12	Q143. The ratio of principal & CI value for three years						
Q134. Find the future value of annuity of 1,000 mad							
annually for 7 years at interest rate of 14% compounded	(a) 0.1777 (b) 0.1567 (c) 0.1666 (d) 0.1587						
annually. Given that 1.14 ⁷ = 2.5023 (a) 10, 730. 7 (b) 5,365.35 (c) 8,756 (d) 9,892.3	Q144. A stock pays annually an amount of 10 from 6 th year						
	onwards. What is the present value of the perpetuity, if the						
Q135. Find present value of 1,00,000 to be required after years if the interest rate be 9%. Given that $1.09^5 = 1.5386$							
(a) 78,995.98 (b) 64,994.15							
(c) 88,992.43 (d) 93,902.12	Q145. Suppose you deposit Rs. 900 per month into an						
(c) co, , , , , , , , , , , , , , , , , , ,	account that pays 14.8% interest compound monthly. How						
Q136. A five-year annuity due has periodic cash flow of 10							
each year. If the interest rate is 8% the future value of th							
annuity is given by:							
(a) $(100) \times ($ future value at 8% for 5 yrs $) \times (0.08)$	Jan 2021						
(b) (100) × (future value at 8% for 5 yrs) × (108)	Q146. A certain sum amounted to 575 at 5% in a time in						
(c) (100) × (future value at 8% for 5 yrs) × $(1 + 0.08)$	which 750 amounted to 840 at 4%. If rate of interest is						
(d) (100) × (future value at 8% for 5 yrs) × (1/0.08)	simple, find the sum-						
	(a) 525 (b) 550 (c) 515 (d) 500						
© 8888111134 8888111034 P	age 35 Revision & Practice Session -						
	tudy from the BEST CA Pranav Chandak						
a sourpranaoenanaak.com	CA Franav Chandak U						

PYQs - Time Value of Money

Q147. Find the amount of CI, if an amount of 50,000 is deposited in a bank for one year at the rate of 8% p.a.			Q159. Present value of an Annuity immediate is the same a				
compounded semiannually			(a) Annuity regular for $(n - 1)$ year plus the initial receipt in the beginning of the period.				
(a) 3,080 (b) 4,080 (c)	5,456 (d) 7,	,856	(b) Annuity regular for $(n - 1)$ years				
			(c) Annuity regular for $(n + 1)$ years				
Q148. The population of a town increase by 2% of the population at the beginning of the year. The number of year			(d) Annuity regular for $(n + 1)$ years plus the initial receipt				
by which the total increases in population would be 40% is:			in the beginning of the period				
	17 years (d) 19		July 2021				
			Q160. Desired future value after 5 years with 18% interest				
Q149. Find the future value of annuity of 1,000 made annually for 7 years at interest rate of 14% compounded			rate is 1,50,000, then present value=? $((1.18)^5 = 2.2877)$?				
annually (Given that $1.14^7 = 2.5023$			(a) 63,712 (b) 65,568 (c) 53,712 (d) 41,712				
(a) 10 , 730 . 7 (b) 5,365.35 (c)	8,756 (d) 98	92.34	Q161. The effective rate of return for 24% per annum				
O150 Two equal amounts of money	u depected in two l	banka	convertible monthly is given as:				
Q150. Two equal amounts of money each at 15% p.a. fix 3.5 year in the b			(a) 24% (b) 26.82% (c) 18% (d) 24.24%				
either. The difference between the in							
bank in 144. Find sum	000	10	Q162. What is the Cl (in) on a sum of 12,600 for $1^{1/2}$ years at 20% p.a. if the interest is compounded half yearly				
(a) 620 (b) 640 (c)	820 (d) 84	40	(a) 4,271 (b) 4,171 (c) 4,711 (d) 4,117				
Q151. The SI on sum at 4% p.a. for 2	2 years is 80. Find	the Cl					
on the came sum for the same period	od.		Q163. If discount rate is 14% p.a., then how much company				
(a) 81.60 (b) 80.80 (c)	83.20 (d) 82	2.30	has to pay to receive 280 growing at 9% p.a. forever? (a) 5,600 (b) 2,800 (c) 1,400 (d) 4,200				
Q152. Which is a better investmen	nt 9% na compou	Inded					
quarterly or 9.1% p.a. simple interes			Q164. If the nominal rate of growth is 17% & inflation is 9%				
(a) 9% compounded (b)) 9.1% S.T.		for the five years. Let P be the GDP amount at the present year then the projected real GDP after 6 years is:				
(c) Both are same (d)) Cannot be said 🧹		(a) 1.587P (b) 1.921P (c) 1.403P (d) 2.51P				
Q153. Effective rate of interest corr	responding to a no	minal					
rate of 7% p.a. compounded quarter		minut	Q165. A sum of 7,500 amounts to 9,075 at 10% p.a., interest				
(a) 7.5% (b) 7.6% (c)	7.7% (d) 7.	. 18%	being compounded yearly in a certain time. SI on same sum for the same time and the same rate is:				
O154 Assuming that the discount of			(a) 1,000 (b) 1,250 (c) 1,800 (d) 1,500				
Q154. Assuming that the discount rewould pay to receive 200 growing a							
(a) 2,500 (b) 5,000 (c) 7,500 (d) 10,000			Q166. A loan of 1,02,000 is to be paid back in 2 equal annual instalments. If interest is 4% p.a, compounded annually,				
			then total interest charged under this instalment plan is:				
Q155. A man invested 1/3 rd of his c & remainder at 10%. If annual incor	capital at 7% 1/4 ^m a	at 8%	(a) 6,160 (b) 8,120 (c) 5,980 (d) 7,560				
	6,600 (d) 5,						
			Q167. If a person bought a house by paying 45,00,000 down payment & 80,000 at the end of each year till the perpetuity.				
Q156. A sum of money is lent at C.I. Rate 20% p.a. 2 years. It			Assuming the interest as 16% the present value of house =?				
would fetch 482 more if the inter- yearly. The sum is:	est is compounded	u natt	(a) 47,00,000 (b) 45,00,000				
	20,000 (d) 20	0,100	(c) 57,80,000 (d) 50,00,000				
		.	Q168. Let the operating profit of a manufacturer for five				
Q157. 800 is invested at the end account paying interest 5% per year		12 July 10 Jul	years is given as:				
What is the future value of this annu			Years 1 2 3 4 5 6				
	3,491 (d) 8, 15		Operating 90 100 106.4 107.14 120.24 157.34				
			profit (in lacs)				
Q158. What 'i' denote the actual rat and n denote the number of convers			Then the operating profit of Compound Annual Growth Rate				
for computing the effective rate of i			(CAGR) for year 6 with respect to year 2 is given that:				
	$(1+i)^n - 1$		(a) 9% (b) 12 % (c) 11% (d) 13%				
(c) $1 - (1 + i)^n$ (d)	$(1+i)^{-n}$						
S8888111134 888	38111034	e 36 Revision & Practice Session -					
www.pranavchan		udy from the BEST CA Pranav Chandak 🧕					
	and the second						

PYQs - Time Value of Money

Q169. If the cost of capital be 12% p.a., then the net present value (in nearest) from the given cash flow is given as:Q180. A sum of money is put at 20% compound interest rai p.a. At which year the aggregated amount just exceeds the double of the original sum? (a) 6 (b) 5 (c) 4 (d) 3Years0123Operating profit (in 000')(100)604050
Years 0 1 2 3 (a) 6 (b) 5 (c) 4 (d) 3
(a) 31048 (b) 34185 (c) 21048 (d) 24187 Q181. Present value of an annuity of 25,000 to be received after 10 years at 6% p.a. compounded annually is
Q170. A certain sum amounts to 15,748 in 3 years at SI at $(1.06^5 = 1.3382)$
r% p.a. The same sum amounts to 16,510 at $(r + 2)$ % p.a. SI (a) 15 960 (b) 13 960 (c) 11 960 (d) 17 96
In the same time. What is the value of r
(a) 10% (b) 8% (c) 12% (d) 6% Q182. A sum of money in SI doubles itself in 7 years. Number
Q171. What is the difference between the SI & the CI on a (a) 18 (b) 16 (c) 14 (d) 12
sum of 8,000 for $2\frac{2}{5}$ years @10% p.a. compounded yearly? (a) 18 (b) 16 (c) 14 (d) 12
(a) 136.12 (b) 129.50 (c) 151.75 (d) 147.20 Q183. Simple interest on a sum of money is amount to R
59000 in 3 years & Rs. 62000 in 4 years at same rate
Q172. The future value of annuity of 2,000 for 5 years at 5% interest. What is the principal amount & rate of interest? compounded annually is given as:
(a) 51,051 (b) 21,021 (c) 11,051 (d) 61,254 (a) Rs. 30,000, 6% (b) Rs. 45,000, 5.5% (c) Rs. 55,000, 5% (d) Rs. 52,000, 7%
(c) 1(3. 55,000, 578 (u) 1(3. 52,000, 778
Q173. A sum of x amounts to 27,900 in 3 years & to 41,850 Q184. Cost of laptop is Rs. 110000 & its value depreciate
in 6 years at a certain rate p.a., when interest is compounded yearly. The value of x is:
(a) 16,080 (b) 18,600 (c) 18,060 (d) 16,800 (a) 0.44 (b) 0.42 (c) 0.45 (d) 0.48
Q185. If CI earned at 'i' % p.a. in n years is to be earned at
Q174. An investor is saving to pay off an obligation of Rs. % SI rate for n years, then s =
15250 which will be due in Seven years, if the investor is earning 7.5% SI p.a., he must deposit Rs (a) i $(b) \frac{(i+i)^n-1}{n}$ (c) $\frac{1-(i+i)^n}{n}$ (d) $i \frac{1}{n}$
(a) 11,000 (b) 10,000 (c) 9,000 (d) 8,000
(u) 11,000 (b) 10,000 (c) 5,000 (u) 0,000 June 2022
Dec 2021Q186. 2,500 is paid every year for 10 years to pay off a load
Q175. Mr. X wants to accumulate 50,00,000 at end of 10 What is the loan amount if interest rate be 14% per annu
years. Then how much amount is required to be invested compounded annually? every year if interest is compounded annually at 10% ? (a) 15,841.90 (b) 13,040.27
(Given that $P(10,0.10) = 15.9374298$) (c) 14,674.21 (d) 13,911190 (c) 14,674.21
(a) 3,13,726.87 (b) 4,13,726.87
(c) 3,53,726.87 (d) 4,53,726.87 Q187. 800 is invested at the end of each month in a
Q176. Rahul invested 70,000 in a bank @6.5% p.a. SI. He What is the future value of this annuity after 10 th paymen
Q176. Rahul invested 70,000 in a bank @6.5% p.a. SI. He received 85,925 after the end of term. Find out the period (a) 8,176 (b) 12,044 (c) 4,040 (d) 12,000
for which sum was invested by Rahul.
(a) 2 years (b) 3 years (c) 3.5 years (d) 2.5 years Q188. In how much time a sum of amount doubles at simp interest at 12.5% rate?
Q177. Company needs 10,000 in 5 years to replace an (a) 7 year (b) 8 year (c) 9 year (d) 10 ye
equipment. How much should be invested now @8% p.a. in
order to provide for this equipment? Q189. Anshika took a loan of 1,00,000@8% for 5 year. Wh
(a) 6,000 (b) 6,805 (c) 10,000 (d) 11,000 amount will she pay if she wants to pay the whole amount in five equal installments?
Q178. R needs to pay 5,00,000 in 10 years. He invested a (a) 25,045.63 (b) 26,045.68 (c) 28,045.50 (d) None
sum in a scheme @9% compounded half-yearly. How much
amount he invested? $(1.046^{20} = 2.41171)$ Q190. Ankit invests 3,000 at the end of each quart
(a) 3,07,321 (b) 2,70,321 (c) 2, 07, 321 (d) 3,40,321 receiving interest @ 7% p.a. for 5 years. What amount w be received at the end of the period?
Q179. An amount is lent at R% simple interest for R years (a) 71,200.20 (b) 71, 104.83
and the simple interest amount was one-fourth of the (c) 73,204.83 (d) None
principal amount. Then R is
(a) 5 (b) 6 (c) $5^{1/2}$ (d) $6^{1/2}$
© 8888111134 8888111034 Page 37 Revision & Proelice Section

www.pranavchandak.com Study from the BEST

🕞 CA Pranav Chandak 🧿

PYQs - Time Value of Money

Q191. Effective rate of interest corresponding a nominal rate of 7% p.a. convertible quarterly is:	Q201. How much amount is required to be invested every year so as to accumulate 5,00,000 at the end of 12 years if
(a) 7% (b) 7.5% (c) 5% (d) 7.18%	interest is compounded annually at 10%{ Where A(12,0.1) = 21.384284}
Q192. Assuming that the discount rate is 7% p.a. How much would you pay to receive 200, growing at 5% p.a forever?	(a) 23381.65 (b) 24385.85 (c) 26381.65 (d) 28362.75
(a) 2,500 (b) 5,000 (c) 7,500 (d) 10,000	Q202. The effective annual rate of interest corresponding to a normal rate of 6% p.a. payable half yearly is:
Q193. A company establishes a sinking fund to provide for the payment 2,00,000 debt maturing in 20 years.	(a) 6.06%. (b) 6.07% (c) 6.08% (d) 6.09%
Contribution to the fund is to be made at the end of every year. Find amount of each deposit if interest is 10% p.a.?	Q203. 10 years ago the EPS of ABC Ltd. was 5 share. Its EPS for this year is 22. Compute at what rate, EPS of company
(a) 3,592.11 (b) 3,491.92 (c) 3,392.11 (d) None	grow annually? (a) 15.97% (b) 16.77% (c) 18.64% (d) 14.79%
Q194. CAGR of initial value of an investment of 15,000 & final value of 25,000 in 3 years is:	Q204. Raju invests 20,000 every year in a deposit scheme
(a) 19% (b) 18.56% (c) 17.56% (d) 17%	starting from today for next 12 years. Assuming that interest rate on this deposit is 7% p.a. compounded annually. What
Q195. ABC Ltd. wants to lease out an asset costing 3,60,000 for a five-year period. It has a fixed rental of 1,05,000, per	will be the future value of this annuity? Given that $(1 + 0.07)^{12} = 2.25219159$.
annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded	(a) 540,526 (b) 382,813 (c) 643,483 (d) 357,769
annually on which money can be invested by the company. Is this agreement favourable to the company.	Q205. Mr. A invested 10,000 every year for next 3 years at interest rate of 8 percent p.a. compounded annually. What is future value of the annuity?
(a) Yes (b) No (c) Can't Say (d) None	(a) 32,644 (b) 32,464 (c) 34,264 (d) 36,442
Q196. A person invested 15000 in a mutual fund & value of investment at time of redemption was 25000. If CAGR for this investment is 8.88%, Calculate time period for which the	Q206. Mr. Prakash invested money in two schemes 'A' & 'B' offering CI at the rate of 8% & 9% p.a. respectively. If total
amount was invested? (a) 6 (b) 7.7 (c) 5.5 (d) 7	amount of interest accrued through these two schemes together in two years was 4,818.30 & total amount invested was 27,000. What was the amount invested in schemes 'A'?
Q197. Madhu takes a loan of 50,000 from XYZ Bank. The rate of interest is 10% pr annum. The first installment will be paid	(a) 12,000 (b) 12,500 (c) 13,000 (d) 13,500
at the end of year 5. Determine equal installments. If Madhu wishes to repay amount in five installments.	Q207. A sum of money invested of compound interest doubles itself in four years. In how many years it become 32
(a) 19,630 (b) 19,430 (c) 19,310 (d) 19,510	times of itself at the same rate of compound interest?(a) 12 Years(b) 16 Years(c) 20 Years(d) 24 Years
Dec 2022 Q198. Machine worth 4,90,740 is depreciated at 15% on its	Q208. The difference between CI & SI on an amount of
opening value each year. When its value would reduce to 2,00,750 ?	15,000 for 2 years is 96. What is the rate of interest p.a? (a) 9% (b) 8% (c) 11% (d) 10%
(a) 5 years 5 months(b) 5 years 6 months(c) 5 years 7 months(d) 5 years 8 months	Q209. 5,000 is invested every month end in an account
Q199. If 64 amounts to 83.20 in 2 years, what will 86 Amount	paying interest @ 12% per annum compounded monthly. What is the future value of this annuity just after making
to in 4 years at the same rate percent per annum?(a) 127.60(b) 147.60(c) 145.34(d) 117.60	11th. payment? (Given that $(1.01)^{11} = 1.1156$)(a) 57,800(b) 56,100(c) 56,800(d) 57,100
Q200. A farmer borrowed 3,600 at the rate of 15% simple interest per Annum. At the end of 4 years, he cleared this	Q210. A sum of money doubles itself in 4 years at certain CI rate. In how many years this sum will become 8 times at the
account by paying 4,000 and a cow. The cost of the cow is:(a) 1,000(b) 1,200(c) 1,550(d) 1,760	same compound interest rate?(a) 12 Years(b) 14Years(c) 16 Years(d) 18 Years

© 8888111134 | 8888111034 www.pranavchandak.com

Page 38 Study from the BEST

Revision & Practice Session -

🔼 CA Pranav Chandak 🧕

PYQs - Time Value of Money

Q211. Sinking fund factor is reciprocal of:	Q219. Suppose you have decided to make a SIP in a mutual				
(a) Present value interest factor of a single cash flow	fund with 1,00,000 p.a. from today for next 10 years @10%				
(b) Present value interest factor of an annuity	p.a. compounded annually. What is the future value of this appuits? Given $1.1^{10} = 2.50274$				
(c) Future value interest factor of an annuity	annuity? Given $1.1^{10} = 2.59374$				
(d) Future value interest factor of a single cash flow.	(a) 17,35,114 (b) 17,53,411				
	(c) 17,35,411 (d) 17,53,114				
Q212. A company creates a sinking fund of Rs. 2,00,000 in a	Q220. A machine depreciates at 10% of its value at				
bank for 15 years. Bank offers interest rate at 6% p.a. the	beginning of a year. The cost & scrap value realized at the				
yearly payment to be made by company is (a) 8945 (b) 8145 (c) 9345 (d) 9645	time of sale being 23,240 & 9,000 respectively. For how				
(a) 8945 (b) 8145 (c) 9345 (d) 9645	many years the machine was put to use?				
June 2023	(a) 7 (b) 8 (c) 9 (d) 10				
Q213. The Nominal rate of interest is 10% per annum. The					
interest is compounded quarterly. The effective rate of	Q221. Mr. Ram invested a total of 1 lakh in two bags for the				
interest per annum will be.	fixed parcel. the first bank fields @9% p.a. & 2 nd bank field 11% p.a. If the total interest at the end of one year is 9.75%				
(a) 10% (b) 10.40% (c) 10.25% (d) 10.38%	p.a., then the amount invested in these bank respectively?				
washing the many second of	(a) 52,500, 47,500 (b) 62,500, 37,500				
Q214. A car is available for 4,98,200 cash payment on 60,000 cash down payment followed by 3 equal annual	(c) 57,500, 42,500 (d) 67,500, 32,500				
instalments of the rate of interest charged is 14% p.a.					
compounded yearly. Total interest changed is instalment	Q222. A company wants to replace its existing warm out				
plans is (Given P (3,0.14) = 2.32163)	machinery in 10 years the expected cost of machine would				
(a) 1,46,314 (b) 1,46,137 (c) 1,28,040 (d) 1,58,040	be 10 Lakh. If the management create a sinking fund. How much provision needs to be made each year. Which can care				
	@10% compound annually. (Given $A(10,0.1) = 15.937425$				
Q215. If the discount rate is 10% per annum. How much	(a) 74,625 (b) 72,514 (c) 62,745 (d) 67,245				
amount would you pay to receive 2,500 growing at 8% annually forever?					
(a) 1,25,000 (b) 2,50,000 (c) 1,50,000 (d) 2,00,000	Q223. The difference between compound interest and				
	simple interest on a certain sum of money invest for three				
Q216. The compound interest on 15,625 for 9 months at	years at 6% p.a. is 11016. The principal is.				
16% per annum compounded quarterly is	(a) 3,000 (b) 3,700 (c) 12,000 (d) 10,000				
(a) 1,851 (b) 1,941 (c) 1,951 (d) 1,961	Q224. The population of a town increases every year by 2%				
	of the population of the beginning of the year. The				
Q217. Mr. Sharad got his retirement benefit amounting to 50,00,000. He wants to receiver a fixed monthly sum of	approximate no. of years by which the total increase of				
amount for his rest of life, starting after 1 month & there	population will be 40% is:				
after he want to pass on same to future generation. He	(a) 15 years (b) 17 years (c) 19 years (d) 20 years				
expects to earn an interest of 9% compounded annually.	0225 Covindels method desides to sife him. 50,000 metro				
Determine how much perpetuity amount he will receive	Q225. Govinda's mother decides to gift him 50,000 every year starting from today for the next 5 year. Govinda				
every month?	deposits this amount in a bank. As & when he receives &				
(a) 9,500 (b) 38,500 (c) 37,500 (d) 36,600	gets 10% p.a. interest rate compounded annually. What is				
Q218. Jonny wants to have 2,00,000 in his saving account	the present value of this annuity? Given $P(4,0.10) = 3.16987$				
after three years. Rate of interest offered by bank is 8% p.a.	(a) 2,80,493.5 (b) 2,08,993.5				
compounded annually. How much should he invest today to	(c) 2,08,943.5 (d) 2,58,493.5				
achieve his target amount?	Q226. Mr. Paul invested 1,00,000 in a mutual fund scheme.				
(a) 1,47,489.10 (b) 1,58,766.44	She got a dividend of 10,000 for first year 12,000 for second				
(c) 1,71,035.59 (d) 1,84,417.96	year, 16,000 for third year, 18,000 for fourth year & 21,000				
	for fifth year. What is CAGR on dividend return?				
	(a) 20.38 % (b) 18.59% (c) 16.36% (d) 15.89%				
	1				

© 8888111134 | 8888111034 www.pranavchandak.com

Page 39 Study from the BEST Revision & Prodice Session J

LAST 38 EXAMS PYQs By capranav chandak Permutation & Combination

TO BUY HARDCOPY OF PYQs

SCAN ME

PYQs - Permutation & Combination

Nov 2006	Q14. How many words can be formed with the letters of the
Q1. N0. of triangles that can be formed by choosing ver from 12 points, 7 of which lie on same straight line, is:	tices word 'ORIENTAL so that A and E always occupy odd places: (a) 540 (b) 8640 (c) 8460 (d) 8450
(a) 185 (b) 175 (c) 115 (d) 10	
	Nov 2007
Q2. A code word is to consist of two English alpha	abets Q15. If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{\times}C_{901}$, find x:
followed by two distinct numbers between 1 & 9. How r	many (a) 999 (b) 998 (c) 997 (d) 1000
such code words are there?	
(a) 6,15,800 (b) 46,800 (c) 7,19,500 (d) 4,10	Q10. Now many numbers greater than a mutton can be
Q3. A boy has 3 library tickets & 8 books of his intere	formed with the digits 4, 5, 5, 0, 4, 5, 3?
library of these 8, he does not want to borrow Mathem	
part-ll unless Mathematics part-1 is also borrowed? In	
many ways can he choose the three books to be borrow	017 A building contractor peods 2 beloars out of ten men
(a) 41 (b) 51 (c) 61 (d) 71	supply. In how many ways can these selections take place?
Feb 2007	(a) 36 (b) 15 (c) 150 (d) 120
Q4. An examination paper consists of 12 questions div	/ided
into two parts A and B. Part A contains 7 questions and	
B contains 5 questions. A candidate is required to atten	
questions selecting at least 3 from each part. In how r maximum ways can the candidate select the questions	
(a) 35 (b) 175 (c) 210 (d) 42	
	2:3, determine value of n & r:
Q5. Supreme Court Bench consists of 5 judges. How r	many (a) (14, 4) (b) (12,4) (c) (14,6) (d) None.
ways, bench can give majority decision?	
(a) 10 (b) 5 (c) 15 (d) 16	
Q6. P(7, k) = 60 P(7, k-3), then K =	Q20. Six seats of articled clerks are vacant in a 'CA Firm'. How
(a) 9 (b) 8 (c) 5 (d) 0	many different batches of candidates can be chosen out of 10 candidates?
	(a) 216 (b) 210 (c) 220 (d) None
Q7. Number of ways in which n books can be arranged	on a
shelf so that two particular books are not together is: (a) $(n - 2) \times (n - 1)!$ (b) $(n - 2) \times (n + 1)!$	Q21. Six persons A, B, C, D, E and F are to be seated at a
(a) $(n - 2) \times (n + 1)$; (b) $(n - 2) \times (n + 1)$; (c) $(n - 1) \times (n + 1)$! (d) $(n - 2) \times (n + 2)$!	circular table. In how many ways can this be done, if A must
	always have either B or C on his right and B must always have either C or D on his right?
May 2007	(a) 3 (b) 6 (c) 12 (d) 18
Q8. In how many ways can the letters of word FAILUR	E be
arranged so that consonants occupy only odd position (a) 576 (b) 476 (c) 376 (d) 27	
(a) 576 (b) 476 (c) 576 (d) 27	Q22. If " $P_r = "P_{r+1} \otimes "C_r = "C_{r+1}$ then 'n' =?
Q9. Five bulbs-of which three are defective are to be tri	ed in (a) 2 (b) 3 (c) 4 (d) 5
two lights-points in a dark-room. In how many trials	s the
room shall be lighted?	Q23. How many six-digit telephone numbers can be formed by using 10 distinct digits?
(a) 10 (b) 7 (c) 3 (d) No	(a) 10^6 (b) 6^{10} (c) ${}^{10}C_6$ (d) ${}^{10}P_6$
Q10. In how many ways can a party of 4 men & 4 wome	
seated at a circular table, so that no 2 women are adjace	cent? Q24. In how many ways a committee of 6 members can be
(a) 164 (b) 174 (c) 144 (d) 15	
O11 The value of $\Sigma^5 = 50$ is:	girls in the committee.
Q11. The value of $\sum_{r=1}^{5} {}^{5}C_{r}$ is: (a) 29 (b) 31 (c) 35 (d) 26	(a) 731 (b) 137 (c) 371 (d) 351
	June 2009
Q12. If ${}^{6}P_{r} = 24.{}^{6}C_{r}$, then find f:	Q25. Number of ways of painting a face of a cube by 6
(a) 4 (b) 6 (c) 2 (d) 1	colours is
Aug 2007	(a) 36 (b) 6 (c) 24 (d) 1
Q13. Find the number of combinations of the letters of	f the loos is 18c - 18c - C-17c
word COLLEGE taken four together:	$Q_2 Q_2 H_2 = C_r^2 + 2 H H H C_2$
(a) 18 (b) 16 (c) 20 (d) 26	(a) 55 (b) 50 (c) 56 (d) None
©8888111134 8888111034	Page 40 Revision & Practice Series -
	Charles from the DECE
www.pranavchandak.com	Study from the BEST CA Pranav Chandak ()

PYQs - Permutation & Combination

	re to be. arrange			Dec 2011			
particular books are always at first and last place. Final the number of arrangements.			Q39. In how many ways 3 prizes out of 5 can be distributed				
(a) 60	(b) 120	(c) 240	(d) 480	amongst 3 brot (a) 10	(b) 45	(c) 60	(d) 120
(a) 00	(b) 120	(0) 240	(u) 400	(a) 10	(b) 45		(u) 120
Q28. Find number of arrangements in which the letters of the word 'MONDAY' be arranged so that the words thus			Q40. There are 12 questions to be Answered to be Yes or				
	NDAY' be arrang vith 'M' & do no		words thus		ways can these		
(a) 720	(b) 120	(c) 96	(d) None.	(a) 1024	(b) 2048	(c) 4096	(d) None
				June 2012			
	any ways can 17 .ck, 6 red & 4 wh		arranged if 7			ENT' are arrange	
(a) 4084080	(b) 1	(c) 8048040	(d) None			No. of permuta	
((-) -	(-)	()	(a) 144	(b) 120	(c) 24	(d) 72
Dec 2009	20 (1) (1			Q42. If ⁿ P ₄ = 20	0 (ⁿ P ₂) then value	e of 'n' is	
Q30. (n + 1)! = (a) 6	20 (n - 1)!, find r (b) 5		(d) 10	(a) -2	(b) 7	(c) - 2 & 7 bot	h (d) None
(a) 0	(0) 5	(0) 4	(u) 10	Dec 2012			
	ents & 6 ladies,			Dec 2012 043 A man ha	as 3 sons and 6	schools within	his reach. In
	s the committee t least 2 gents			how many way	s, he can send t	them to school,	
should be doub			Ser of taates		d in the same sc		(1) 20
(a) 9 <mark>4</mark>	(b) 132 (c) 136	(d) 104	1	(a) ⁶ P ₂	(b) ⁶ P ₃	(c) 63	(d) 36
June 2010				Q44. How mar	ny permutations	can be formed	from letters
	are on a circle. N	lumber of quadr	ilaterals that			wels may not be	
can be formed				(a) 720	(b) 1,440	(c) 140	(d) 1,000
(a) 30	(b) 360	(c) 15	(d) None	Q45. If ¹³ C ₆ + 2	${}^{13}C_{S} + {}^{13}C_{4} = {}^{15}C_{4}$	C _x then, x = .	
Q33. The numb	er of ways of ar	ranging 6 boys a	and 4 girls in	(a) 6	(b) 7		(d) 9
a row so that a	ll 4 girls are toge	ether is:					
(a) 6!4!	(b) 2 (7!4!)	(c) 7!.4!	(d)2. (6!4!)	June 2013	n has 44 diago	nals then the n	umber of its
O34. How man	y numbers not e	xceeding 1000 d	an be made	sides are:	n nas 44 diagon		
from digits 1,2,	3, 4, 5, 6, 7, 8, 9	if repetition is n	ot allowed.	(a) 8	(b) 9	(c) 10	(d) 11
(a) 364	(b) 585	(c) 728	(d) 819	047 Number o	furerele that can	be formed out	of the letters
Dec 2010						h be formed out vowels occupy e	
	having 6 tall tree				(b) 144		(d) 754
5 children stand pose for a phot	d, one in a gap b	etween the tree	s in order to	O40 Northern	- (teres les ender ter en	
(a) 24	(b) 120 (c) 720	(d) 30			of ways of shak g hands to each	ing hands in a other are	group of 10
				(a) 45	(b) 54	(c) 90	(d) 10
Q36. $^{15}C_3 + 15}C_1$							
(a) 16 _{C3}	(b) 30 _{C16}	(c) 15 _{C16}	(d) 15 _{C15}	Dec 2013	⁵ C _{r+3} , then 'r' is e		
Q37. How man	y ways a team of	11 players can l	be made out	(a) 2	(b) 3	(c) 4	(d) 5
of 15 players if	1 particular play	er is not to be s	elected.				
(a) 364	(b) 728	(c) 1,001	(d) 1,234			ds can be form	ed with the
June 2011				letters of the wo	(b) 5040	(c) 5400	(d) 4500
Q38. Find no. o	of arrangements					1-, -, -, -, -, -, -, -, -, -, -, -, -, -	
	1 particular thi					mily consist of t	nree children
(a) 39,000	(b) 37,600	(c) 39,600	(d) 36,000	here different b (a) ³⁶⁵ C ₃	oirthdays in a lea	b) ^{366°} C ₃	
				(c) 366 × 365 ×	364	(d) ${}^{366}C_3$	
				l			
88881	11134 8	8881110	34 Pag	e 41 👘		Revision & Pra	etice Session —

www.pranavchandak.com

Study from the BEST

Revision & Fradice Session J CA Pranav Chandak Q

PYQs - Permutation & Combination

June 2014	June 2016
Q52. If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$, then x =	Q63. In how many ways can a selection of 6 out of 4 teachers
(a) 999 (b) 998 (c) 997 (d) None	& 8 students be done so as to include atleast 2 teachers.
	(a) 220 (b) 672 (c) 896 (d) 968
Q53. If 6 times the number of permutations of 'n' items	
taken 3 at a time is equal to seven times the number of	Q64. There are 10 students in a class including 3 girls. The
permutations of (n - 1) items taken 3 at a time, then the	number of ways to arrange them in a row when any two girls
value of 'n' will be:	out of three never comes together
(a) 7 (b) 9 (c) 13 (d) 21	(a) ⁸ P ₃ <u>7</u> (b) ³ P ₃ <u>7</u> (c) ⁸ P ₃ <u>10</u> (d)None
Dec 2014	Q65. Maximum number of points of intersection of 10 circles
Q54. If ${}^{6}P_{r} = 360$, then the value of 'r' is:	will be:
(a) 5 (b) 3 (c) 4 (d) None	(a) 2 (b) 20 (c) 90 (d) 180
Q55. There are 5 books on English, 4 Books on Tamil & 3	Dec 2016
books on Hindi. In how many ways can these books be	Q66. If ${}^{n+1}C_{r+1}$: ${}^{n}C_{r}$: ${}^{n-1}C_{r-1}$ = 8:3:1, then n =:
placed on a shelf if the books on the same subjects are to	(a) 20 (b) 16 (c) 10 (d) 15
be together?	
(a) 1,36,800 (b) 1,83,600 (c) 1,03,680 (d) 1,63,800	Q67. Number of numbers between 1,000 & 10,000, which
	can be formed by digits 1,2,3, 4, 5, 6 without repetition is:
Q56. 5 Men and 4 Women to sit in a row in such a manner	(a) 720 (b) 180 (c) 360 (d) 540
that the woman always occupy the even places. The number	
of such arrangement will be:	O69 The number of ways in which 4 percents can accurate 0
(a) 126 (b) 1056 (c) 2080 (d) 2880	Q68. The number of ways in which 4 persons can occupy 9
(d) 120 (b) 1050 (c) 2000 (d) 2000	vacant seats is:
June 2015	(a) 6048 (b) 3024 (c) 1512 (d) 4536
a set of the set of th	
Q57. The four-digit numbers that can be formed out of seven digits 1,2, 3, 5, 7, 8, 9 such that no digit is repeated in	June 2017
any number & are greater than 3000 are:	Q69. If ${}^{10}C_3 + 2$. ${}^{10}C_4 + {}^{10}C_5 = {}^{n}C_5$ then $n = $:
	(a) 10 (b) 11 (c) 12 (d) 13
(a) 120 (b) 480 (c) 600 (d) 840	
OF9 A person has ten friends of whom six are relatives. If he	Q70. Number of parallelograms, formed from a set of six
Q58. A person has ten friends of whom six are relatives. If he	parallel lines intersecting another set of four parallel lines is:
invites five guests such that three of them are his relatives, then the total number of ways in which he can invite them	(a) 360 (b) 90 (c) 180 (d) 45
are:	
(a) 30 (b) 60 (c) 120 (d) 75	Q71. The number of words which can be formed by letters
	of the word 'ALLAHABAD' is:
O59. A student has three books on computer, three books	(a) 7560 (b) 3780 (c) 30240 (d) 15120
on Economics and five books on Computer, three books	
are to be arranged subject wise, then these can be placed	Dec 2017
on a shelf in the number of ways:	Q72. If ${}^{n}P_{13}$: ${}^{n+1}P_{12} = 3:4$, then 'n' will be:
(a) 25290 (b) 25920 (c) 4230 (d) 4320	(a) 13 (b) 15 (c) 18 (d) 31
(a) 23230 (b) 23320 (c) 4230 (d) 4320 Dec 2015	
	Q73. If 3 books on computer, 3 books on commerce, & 5
Q60. An examination paper with 10 questions consists of 6 guestions in mathe 81.4 guestions in state part. At least one	books on economics are arranged in such away that the
questions in maths & 4 questions in stats part. At least one	books of same subject are kept together, then the number
question from each part is to be attempted in how many	of ways in which this can be done are:
ways can this be done?	(a) 4320 (b) 35820 (c) 35920 (d) 25920
(a) 1024 (b) 945 (c) 1005 (d) 1022	
061 np = 720 % nc = 120 Find *	June 2018
Q61. $^{n}P_{r} = 720 \& ^{n}C_{r} = 120$, Find r.	Q74. Number of triangles that can be formed by choosing
(a) 6 (b) 4 (c) 3 (d) 2	the vertices from a set of 12 points, seven of which lie on the
	same straight line, is:
Q62. There are 6 men and 4 women in a group, then the	(a) 185 (b) 175 (c) 115 (d) 105
number of ways in which a committee of 5 persons can be	
formed of them, if the committee is to include at least 2	Q75. If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$, find x:
women are:	(a) 999 (b) 998 (c) 997 (d) 1,000
(a) 180 (b) 186 (c) 120 (d) 105	
	I I
© 8888111134 8888111034 Pag	je 42 Restrice & Practice Session -

WWW.pranavchandak.com Study from the BEST

Kertim & fractice Settion J

PYQs - Permutation & Combination

Dec 2018				Dec 2020			
	ntains 4 red, 3 b				pasket contains		
	alls can be draw one black ball?	n from this bag :	so that they	mangoes. How that all 3 are ap	many selections oples?	s of 3 fruits car	i be made so
(a) 64	(b) 46	(c) <mark>85</mark>	(d) None	(a) 35 ways	(b) 120 ways	(c) 165 ways (d) 70 ways
Q77. Number o	of words from let	ters of the word	BHARAT, in	Q90. Out of 7 b	poys and 4 girls,	a team of a deb	pate club of 5
which B & H wi	ll never come to	gether, is			n. The number of	teams such th	at each team
(a) 360	(b) 240	(c) 120	(d) None	includes at leas		() (10	1.5.4.4
		Ν		(a) 439	(b) 429	(c) 419	(d) 441
	of N in $\frac{1}{7!} + \frac{1}{8!} = \frac{1}{7!}$			O91 If $n_{n_1} = 2$	$20^{n}p_{2}$, then n=?		
(a) 81	(b) 78	(c) 89	(d) 64	(a) 4	(b) 2	(c) 5	(d) 7
070 / 10 7	20 and 10 12	O there is			(-/-		
	20 and ${}^{n}C_{r} = 12$ (b) 4		(d) 6	Q92. From a gr	roup of 8 men &	4 women, 4 p	ersons are to
(a) 3	(b) 4	(C) 5	(u) 0		form a committe		
June 2019					mmittee. In how		
	correct stateme	nt.		(a) 168	(b) 201	(c) 202	(d) 220
(a) ${}^{n}p_{n} = {}^{n}p_{n-1}$	1	(b) ${}^{n}p_{n} = {}^{2n}p_{n}$	-2	Jan 2021			
(c) ${}^{n}p_{n} = {}^{3n}p_{n}$	-3	(b) ${}^{n}p_{n} = {}^{2n}p_{n}$ (d) ${}^{n}p_{n} = {}^{n \cdot (n-1)}$	$^{1)}p_{n-1}$		irs are numbered	from 1 to 8. T	wo women &
					e seated by allow		
	re 40 guests in a			women choose	the chairs from	the chairs num	nbered 1 to 4
	h all remaining g				select the chair		maining. The
(a) 780	(b) 840	(c) 1,560	(d) 1,600		sible arrangemer		(-1) 1440
082 If $^{11}C =$	${}^{11}C_{2x-4} \& x \neq 4,$	then $^{7}C =$		(a) 120	(b) 288	(c) 32	(d) 1440
	(b) 21		(d) 23	094 'n' locks 8	k 'n' correspondi	ng keys are ava	ilable but the
(0) = 0	(-)	(-) ==	(0) ==		tion is not know		
Q83. In how ma	any ways can cre	w of an eight oa	red boat be		assigns keys to t		
arranged so that	at 3 of crew can			(a) $(n - 1)C_2$		(b) $(n + 1)C_2$	
2 row on the ot		()	1.0.00	(c) $\sum_{k=2}^{n} (k-1)$)	(d) $\sum_{k=2}^{n} k$	
(a) 1,728	(b) 256	(c) 164	(d) 126				
Dec 2019		-			10 flights operation 10 flights operation 10 flights operation 10 flights and the second seco		
	boys are to be	seated in a row	so that no 2		n by different fli		
	er. Total no. of w			(a) 90	(b) 95	(c) 80	(d) 78
	(b) 120						
					y four-digit odd	numbers can be	e formed with
	y numbers can			digits 0,1,2,3, 4			
	h are not divisibl		t it is a five-	(a) 150	(b) 300	(c) 120	(d) 210
(a) 600	gits are not repe (b) 400	(c) 1200	(d) 1400	007 la how m	any different way	c lattars of wor	
(a) 000		(0) 1200	(0) 1400		any different way at vowels occupy		
Q86. How many	y different group	s of 3 people car	n be formed	(a) 32	(b) 36	(c) 48	(d) 60
from a group o							
(a) 5	(b) 6	(c) 10	(d) 9	Q98. ${}^{n}C_{p} + 2^{n}$	$C_{P-1} + {}^{n}C_{P-2} = 1$?	
				(a) $^{n+}C_p$	$C_{P-1} + {}^{n}C_{P-2} = C_{p}$ (b) ${}^{n+2}C_{p}$	(c) $^{n+1}C_{P+1}$	(d) $^{n+2}C_{p-1}$
	ny ways can 5 p						
(a) 120	4 girls if there ar (b) 360	e to be exactly 2 (c) 92	girls? (d) 480		s houses wishes		
(a) 120	(0) 500	(C) 5Z	(u) 1 00		heads. In how ma	ny ways can the	ese elevations
Q88. ${}^{n}P_{5}$: ${}^{n}P_{3} =$	= 2: 1. Find n.			take place? (a) 12	(b) 3	(c) 6	(d) 15
(a) 5	(b) 7/2	(c) 5	(d) 2/7	(0) 12	(0) 5		(0) 15
				July 2021			
				Q100. If ${}^{n}p_{6} =$	20 ⁿ p ₄ n =?		
				(a) $n = 5$		(c) n = 9	(d) n = 8
						-	
88881	11134 8	8881110	34 Pag	e 43		Revision & Pra	atice Session -

www.pranavchandak.com Study from the BEST

🔽 CA Pranav Chandak 🧿

PYQs - Permutation & Combination

Q101. How many number can be formed from the orepeated are not divisible	digits 3,4,5,6,7,8,9 r		Q113. 8 people are seated in a row in a meeting among them president & vice president are to be seated always in the center. What is the arrangement?
		3890	(a) 6! 2! (b) 7! 2 (c) 6! (d) 1!
Q102. A person can go fr modes of transport but is mode other than the one ways in which journey can	s allowed to return e earlier. The numb	to "A" by any	Q114. There are 5 questions each have 4 options. Then in how many different ways can we answer the questions?(a) 20(b) 120(c) 1024(d) 60
(a) 110 (b) 10 ¹⁰	(c) 9 ⁵	(d) 10 ⁹	Q115. If there are 6 points in a line & 4 points in another line. Find number of parallelograms formed?
Q103. Number of ways 5 round table, so no two bo		be seated at a	(a) 80 (b) 70 (c) 90 (d) 100
(a) 2,550 (b) 2,880		(d) 2,476	Q116. If ${}^{11}C_x = {}^{11}C_{2x-4} & x \neq 4, {}^{7}C_x$ (a) 20 (b) 21 (c) 22 (d) 23
Q104. The number of four the letters of the word DIC		e formed using	Dec 2022
(a) 5040 (b) 720	(c) 30240	(d) 90	Q117. There are 20 points in plane area. How many triangles can be formed by these points if 5 points are collinear?
Q105. The number of wo letters of the "PETROL" su in the first position, is			(a) 550 (b) 560 (c) 1130 (d) 1140
(a) 720 (b) 120	(c) 600	(d) 540	Q118. The number of ways 4 boys and 3 girls can be seatedin a row so that they are alternate is:(a) 12(b) 288(c) 144(d) 256
Q106. If ${}^{n}p_{2} = 12$, then the function of the product o			(a) 12 (b) 288 (c) 144 (d) 256
(a) 2 (b) 3	(c) 4	(d) 6	Q119. If ${}^{n}P_{r} = 3024 \& {}^{n}C_{r} = 126$, find n & r?
Q107. The number of difference of the second part	in such a way that		(a) 9,4 (b) 10,3 (c) 12,4 (d) 11,4
occupy only the odd posit (a) 32 (b) 36	(c) 48	(d) 60	Q120. How many 3-digit odd numbers can be formed usingthe digits 5,6,7,8,9, if digits can be repeated?(a) 55(b) 75(c) 65(d) 85
Q108. Six boys and five photograph in a row such no two boys sit together.	that no two girls si	t together and	June 2023
this can be done.			Q121. In the next world cup these will be 12 teams, divided equally into two equal groups. Team of each group will play
(a) 74,200 (b) 96,900		(d) 86,400	a match against other. From each group 3 top teams will qualify for next round. In this round each team will play
Q109. Man travels place ways can he come back by		by how many	against each other. Four top teams of his round will qualify for the semi-final round, when each team will play against
(a) 94 (b) 110	(c) 90	(d) 99	the others once. Two top teams of this round will go to final round, where they will play the best of three matches. The
Q110. If four letter words a from the word 'LOGARITH words will be formed?			minimum number of matches in the next world cup will be:(a) 56(b) 53(c) 37(d) 43
(a) 5040 (b) 2520	(c) 3024	(d) 40320	Q122. A committee of 3 women and 4 men is to be formed out of 8 women and 7 men. Mrs. Kajal refuses to serve in a
Q111. If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$ fir	id 'n'.		committee in which Mr. Yash is a member. The number of such committee can be.
(a) 4 (b) 5	(c) 6	(d) 7	(a) 1530 (b) 1500 (c) 1520 (d) 1540
Q112 . Out of 7 boys and 4 and each team should har teams that can be formed	ve atleast one girl.		Q123. ${}^{6}P_{2r} = 12 \times {}^{6}Pr$, then r is equal to (a) 1 (b) 2 (c) 3 (d) 4
(a) 429 (b) 439	(c) 419	(d) 441	Q124. Find the number of ways in which the letters of the word SOFTWARE be arranged such that all the vowels are
			always together?(a) 720(b) 1,440(c) 2,880(d) 4,320
© 8888111134	8888111	034 Pag	je 44 Rentrin & Proelice Serier

www.pranavchandak.com Study from the BEST

CA Pranav Chandak Q

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Arithmetic Progression & Geometric Progression

TO BUY HARDCOPY OF PYQs

PYQs - APGP

Nov 2006 Q1. The sum of all natural num which are multiple of 5 is:	bers between 100 and	d 1000	Q14. A certain ba to 4/5 th of the hei a height of 100 m	ight from whi	ch it falls; it is d	ropped from
(a) 98,450 (b) 96,450	(c) 97,450 (d) 95,4	450	finally coming to r (a) 600m (b	<mark>rest:</mark> o) 700m	(c) 900m	(d) 200m
Q2. Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ n	hav he GM between a	& b [.]		the state of the s		Ath a second to up
	(c) -1/2 (d) 0		Q15. In a G.P if th then the p th term	is:		
Q3. The sum of an A P, whose f		st term		o) √mn	(c) m ²	(d) n ²
is 146 is 7171. Find the value of (a) 99 (b) 100	n. (c) 101 (d) 1	102	Nov 2007 Q16. The sum of t			
Q4. If the first term of a G.P example. and the sum to infinity is 50, the		n by 2	(a) $\frac{5n}{9} + \frac{5}{9} [1 - (0.1)]$ (c) $\frac{5n}{9} + \frac{5}{81} [1 - (0.1)]$		U.L.	
(a) 10,8, $\frac{32}{5}$,	(b) 10, 8, $\frac{5}{2}$,					
(c) 10, $\frac{10}{3}, \frac{10}{9}, \dots$	(d) None		Q17. A contracto certain specified t	time is compe	lled to forfeit R	s. 200 for the
Feb 2007 Q5. Σn^2 is defined as			first day of extra amount is increas 9,450, for how ma	ed by Rs. 25	for every day. It	f he loses Rs.
(a) $\frac{n(n+1)(2n+1)}{6}$ (b) $\frac{n(n+1)}{2}$	(c) $\left[\frac{n(n+1)}{2}\right]^2$ (d) N	None	(a) 19 days (k	b) 21 days	(c) 23 days	(d) 25 days
Q6. Divide 30 into five parts in		st and	Q18. The 1 st , 2 nd & difference is 2, the			the common
last parts are in the ratio 2:3:		scana		o) 2	(c) 3/2	(d) 1/2
(a) $\frac{24}{5}, \frac{27}{5}, 6, \frac{33}{5}, \frac{36}{5}$	(b) 6, $\frac{36}{5}$, $\frac{33}{5}$, $\frac{24}{5}$, $\frac{27}{5}$	_	Feb 2008			
(c) $\frac{27}{5}, \frac{24}{4}, \frac{36}{5}, \frac{33}{5}, 6$	(d) $6, \frac{24}{5}, \frac{27}{5}, \frac{33}{5}, \frac{36}{5}$		Q19. A man emplo Rs. 3,000 every mo			
Q7. If $a^{1/x} = b^{1/y} = c^{1/z} \& a, b, c a$			Rs. 1,000 in his m	onthly salary	every succeeding	ng year. How
(a) AP (b) GP	(c) Both (a) & (b) (d)None	much does the ma (a) Rs. 30,00,000	an earn from	the company in (b) Rs. 27,50,0	
Q8. Sum of the series: 7 + 77 +	777 + to n term	ns:	(c) Rs. 19,10,000		(d) Rs. 7,90,00	
(a) $\frac{7}{9}$ (10 ⁿ⁺¹ - 10) $-\frac{7n}{9}$	(b) $\frac{7}{9}$ (10 ⁿ⁺¹ - 10) + $\frac{7n}{9}$	<u>1</u>			and in C D w(b-c)	(c-a)(a-b)
(c) $\frac{7}{81}$ (10n+1 - 10) $-\frac{7n}{9}$	(d) $\frac{7}{81}(10^{n+1} - 10) + \frac{7}{31}$	<u>'n</u> 9	Q20. If a, b, c are i (a) 1 (b)	un AP & x, y, z c) 0	(c) b(c - a)	(d) None
May 2007			Q21. Insert 4 A.M.	's between 3	and 18:	
Q9. Find the sum of all natura 1,000 which are exactly divisible		250 &	(a) 12, 15,9,6 (k	b) 6,9, 12, 15	(c) 9,6,12,15	(d) 15,12,9,6
(a) 1,56,375 (b) 1,56,357		6 <mark>5</mark> ,357	Q22. If $x = 1 + \frac{1}{3} + \frac{1}{3}$	$+\frac{1}{3^2} + \infty y =$	$= 1 + \frac{1}{4} + \frac{1}{4^2} + \dots$	∞ Find xy.
Q10. If p^{th} term of a GP is x & q			(a) 2 (k	o) 1	(c) 8/9	(d) ½
(a) $\left[\frac{x^{(n-q)}}{y^{(n-p)}}\right]$ (b) $\left[\frac{x^{(n-q)}}{y^{(n-p)}}\right]^{(p-q)}$	(c) 1 (d) $\left[\frac{x^{(n-q)}}{y^{(n-p)}}\right]^{\overline{p-q}}$	ī	June 2008 Q23. On 1 st Janu	uary everv ve	ar a person h	uys National
Q11. A person pays Rs. 975 in instalment is less than forme instalment is Rs. 100. In what tir (a) 26 months (b) 15 months	r by Rs. 5. Amount ne will full amount be	of 1 st paid?	Saving Certificates purchase by Rs. 1 value of the certifi the value of certifi	s of value exc .00. After 10 y icates purchas	eeding that of I years, he finds t sed by him is Rs	his last year's that the total . 54,500. Find
Aug 2007 Q12. If the sum of n terms of common difference is 6, then its (a) 3 (b) 2			Q24. Find three nu the sum of their se (a) 5, 7, 9 (b)			um is 21, and (d) 4, 8, 9
Q13. Find the sum of the series: (a) 8970 (b) 8870	2 + 7 + 12+ 2 (c) 7630 (d) 98	875		th term of the o) $31\sqrt{2}$	series: $\sqrt{2}$, $5\sqrt{2}$ (c) $33\sqrt{2}$, 9 <u>√2,</u> (d) 52√2
© 8888111134 8		Pag		19-1	Revision & Pra	ctice Session 🤸
www.pranavcho	indak.com	Stu	dy from the	BEST	D CA Prana	av Chandak 🧕

PYQs - APGP

Q26. Sum of how many terms o (a) 8 (b) 9	f 256, 128, 64, (c) 7	<mark>is 511</mark> . (d) None	Q40. Insert 2 AMs between 68 & 260 (a) 132,196 (b) 130,194 (c) 70, 258 (d) None
Q27. (x + 1), 3x, (4x + 2) are in A (a) 2 (b) 3	A.P. Find the valu (c) 4	e of x (d) 5	Q41. GM of P, P ² , P ³ , P ⁿ will be: (a) P ^{n + 1} (b) P ^{$\frac{1+n}{2}$} (c) P ^{$\frac{n(n+1)}{2}$} (d) None
Q28. Find two numbers whose a (a) [10,10] . (b) [16,4]		M. <mark>is 8.</mark> d) [14,6]	Dec 2011 Q42. Find the numbers whose AM is 12.5 & GM is 10. (a) 20 & 5 (b) 10 & 5 (c) 5 & 4 (d) None
June 2009 Q29. $\sum n^2$ defines: (a) $\frac{n(n+1)(2n+1)}{6}$	(Same as Q5 Fe (b) $\frac{n(n+1)}{2}$	eb 2007)	Q43. If sum of 3 AMs between "a" & 22 is 42, then "a" = (a) 14 (b) 11 (c) 10 (d) 6
(c) $\left[\frac{n(n+1)}{2}\right]^2$	(d) None		Q44. If each month Rs. 100 increases in any sum then find
Q30. The sum of terms of an in of the squares of the term is 45. (a) 3/2 (b) 1			Chr. If each month is. 100 the eases in any sum then much total sum after 10 months, if sum of 1 st month is Rs. 2,000. (a) Rs. 24,500 (b) Rs. 24,000 (c) Rs. 50,000 (d) Rs. 60,000
Q31. If in an A.P., Th represents $t_8 : t_{11} = $	th term. If t_7 : t_{10}	= 5 : 7 then	Q45. The sum of all two Digit odd numbers is (a) 2475 (b) 2575 (c) 4950 (d) 5049
(a) 13: 16 (b) 17:23 Dec 2009	(c) 14:17	(d) <mark>15</mark> :19	Q46. If 5 th term of a G.P. is $3\sqrt{3}$, then product of 1^{st} nine terms(a) 8(b) 27(c) 243(d) 9
Q32. The sum of an A P, whose is 146 is 7171. Find the value of			Q47. The sum of the third and ninth term of an A.P. is 8. Find the sum of first 11 terms of progression.
(a) 99 (b) 100	(c) 101	(d) 102	(a) 44 (b) 22 (c) 19 (d) 11
Q33. Find sum to infinity of: $1 - (a) 1$ (b) ∞	1 + 1 - 1 + 1 - 1 (c) $\frac{1}{2}$ (d) Doe		June 2012 Q48. If 8 th term of an A.P is 15, then sum of its 15 terms is: (a) 15 (b) 0 (c) 225 (d) 225/2
Q34. If a ₁ , a ₂ , a ₃ represents 1 st respectively, 1 st term is 2 & (a ₁ - common difference is equal to			Q49. Find sum of the infinite terms 2, $\frac{4}{y'}$, $\frac{8}{y^{2'}}$, $\frac{16}{y^3}$,; if y > 2 (a) $\frac{2y}{y-2}$ (b) $\frac{4y}{y-2}$ (c) $\frac{3y}{y-2}$ (d) None
(a) 5/2 (b) -5/2 (c) 2/5 Q35. Divide 144 into three part that the largest is twice the sm numbers will be:		AP and such	Q50. The 4 th term of an A.P. is three times the first and the 7 th term exceeds twice the third term by 1. Find the first term 'a' and common difference 'd'.
(a) 48 (b) 36	(c) 13	(d) 32	(a) $a = 3, d = 2$ (b) $a = 4, d = 3$ (c) $a = 5, d = 4$ (d) $a = 6, d = 5$
O36 Sum of series $1 + \frac{4}{7} + \frac{7}{7}$	¹⁰ + m is		
Q36. Sum of series $1 + \frac{4}{5} + \frac{7}{5^2} +$ (a) 15/36 (b) 35/36	(c) 35/16	(d) <mark>15/16</mark>	Dec 2012 Q51. In an A.P., if common difference is 2, Sum of. n terms is 49, 7 th term is 13 then n =
Dec 2010 Q37. If G be Geometric Mean b		nbers a and	(a) 0 (b) 5 (c) 7 (d) 13
b, then the value of $\frac{1}{G^2-a^2} + \frac{1}{G^2-b^2}$ (a) G ² (b) 3 G ²	$\frac{1}{2}$ is equal to (c) 1/G ²	(d) 2/G ²	Q52. The first term of a G.P. where second term is 2 and sum of infinite term is 8 will be:
		(0) 2/0	(a) 6 (b) 3 (c) 4 (d) 1
June 2011 Q38. If Sum (S _n) of 'n'- terms o the difference of its 10 th and 1 st	term?		Q53. If sum of n terms of AP be $2n^2 + 5n$, its 'n th ' term is: (a) $4n - 2$ (b) $3n - 4$ (c) $4n + 3$ (d) $3n + 4$
(a) 207 (b) 36	(c) 90	(d) 63	June 2013
Q39. Find the product of: (243) (a) 1,024 (b) 27	, (243) ^{1/6} , (243) ^{1/3} (c) 729	³⁶ ,∞ (d) 246	Q54. If the sum of n terms of an A.P be $3n^2$ -n & its commondifference is 6, then its first term is:(a) 2(b) 3(c) 4(d) 5
© 8888111134 8	8881110	34 Pag	e 46 Revision & Practice Section –
www.pranavcho			Idy from the BEST

PYQs - APGP

a

Q67. If S be sum, P the product & R is the sum of reciprocals of n-terms in G.P then $P^2R^n = $ (a) S^{2n} (b) S^n (c) S^{-2n} (d) S^{-n} Q68. Same as June 2014 Q60.	1 st 10 terms of same GP then common ratio is: (a) $\sqrt{2}$ (b) 2 (c) $2\sqrt{2}$ (d) $1/2$ Q81. If a, - 3, b, 5, c are in A.P., c=? (a) -7 (b) 1 (c) 13 (d) 9
Q67. If S be sum, P the product & R is the sum of reciprocals of n-terms in G.P then $P^2R^n = $	
	1 st 10 terms of same GP then common ratio is:
June 2015	Q80. Sum of 1 st 20 terms of a GP is 1025 times the sum of
(a) 120 (b) 72 (c) 48 (d) 24	5
Q66. If the sum of first 'n' terms of an A.P. is $6n^2 + 6n$, then the fourth term of the series:	
(c) $\frac{1}{6}(2n-1)(4n+1)$ (d) $\frac{1}{6}(2n+1)(4n+1)$	June 2017 Q79. Sum of n terms of 1 + (1 + 3) + (1 + 3 + 5) + is
(a) $\frac{1}{6}(2n + 1)(4n - 1)$ (b) $\frac{1}{6}(2n - 1)(4n - 1)$ (c) $\frac{1}{6}(2n - 1)(4n + 1)$ (d) $\frac{1}{6}(2n + 1)(4n + 1)$	(a) $\frac{235}{99}$ (b) $\frac{234}{99}$ (c) $\frac{230}{99}$ (d) $\frac{233}{99}$
Q65. The AMs of the square of first 2n natural numbers is:	Q78. The number 2.353535 in $\frac{p}{q}$ form is: (a) $\frac{235}{99}$ (b) $\frac{234}{99}$ (c) $\frac{230}{99}$ (d) $\frac{233}{99}$
then $S_P =$ (a) p^2 (b) p^3 (c) $2p^3$ (d) p^4	
Q64. If $S_n = n^2 p \& S_m = m^2 p (m \neq n)$ is the sum of an A.P., then $S_n =$	the number of terms is:
(a) AP (b) GP (c) HP (d) None	Q77. If the Sum 50 + 45 + 40 + 35 + is zero, then
Q63. If x, y, z are the terms in G.P. then the terms $x^2 + y^2$, xy + yz, $y^2 + z^2$ are in:	(a) Rs. 56,75,000 (b) Rs. 72,50,000 (c) Rs. 15,67,500 (d) None of these
Dec 2014	first year & he receives an increase of Rs. 15,000 per year for next 10 years. Total amount he receives in 10 years is:
(c) $\begin{bmatrix} \frac{m(m+1)}{2} \end{bmatrix}^2$ (d) None of these.	Dec 2016 Q76. The income of a person is Rs. 5,00,000 in the firm in the
Q62. Value of $1^3 + 2^3 + 3^3 + 4^3 + + m^3$ is equal to: (a) $\left[\frac{m(m+1)}{2}\right]^3$ (b) $\frac{m(m+1)(2m+1)}{6}$	(a) AP (b) GP (c) Both AP & GP (d) None
	Q75. If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in AP then a^2 , b^2 , c^2 , are in
Q61. Sum of infinite G.P. $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ is equal to: (a) 1.95 (b) 1.5 (c) 1.75 (d) None	(a) n (b) $2S_1$ (c) $\frac{S_2}{S_1}$ (d) $\frac{S_1}{S_2}$
(c) $10^{m+1} - 9m - 10$ (d) None	occupying the odd places is S_1 and that of terms in the even places is S_2 , the common ratio of the progression is:
(a) $\frac{1}{81}(10^{m+1} - 9m - 10)$ (b) $\frac{1}{27}(10^{m+1} - 9m - 10)$	Q74. A GP consists of 2n terms. If the sum of the terms
June 2014 Q60. The sum of 1+11+111+ upto m terms, is equal to:	(c) $\frac{n}{2} \left[n \log \left(\frac{x}{y} \right) - \log xy \right]$ (d) $\frac{n}{2} \left[n \log \left(\frac{x}{y} \right) + \log xy \right]$
(a) 1/3 (b) 3 (c) 81 (d) 1/81	(a) $\frac{n}{2} \left[2n \log \left(\frac{x}{y} \right) + \log xy \right]$ (b) $\frac{n}{2} \left[n \log xy + \log \left(\frac{x}{y} \right) \right]$
Q59. If GM of a, b, c, d is 3, then G.M. of $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$ will be:	Q73. Sum of n terms of log x + log $\frac{x^2}{y}$ + tog $\frac{x^2}{y^2}$ + is
(a) 4 (b) 7 (c) 9 (d) 2	June 2016
Q58. An AP has 13 terms whose sum is 143. The third term is 5 so the first term is:	Q72. Find the two numbers whose GM is 5 & AM in 7.5. (a) 10 & 5 (b) 13.09 & 1.91 (c) 12 & 3 (d) None
Dec 2013	(a) a (b) -b (c) b (d) c
Q57. In a GP, $T_6 = 729 \& d = 3$, then first term of G.P. is: (a) 2 (b) 3 (c) 4 (d) 7	Q71. If a, b, c are in AP, then the value of $a - b + c$ is:
	(a) 27 (b) 28 (c) 24 (d) 26
then 'n' is equal to: (a) 15 (b) 16 (c) 17 (d) 18	Q70. If the sum of 'n' terms of an AP is $3x^2 + 5x$ & its m th term is 164, then the value of m is:
Q56. If 'n' AMs are inserted between 7 & 71 & 5 th AM is 27,	Dec 2015
is 8, what is the sum of the first 15 terms of the progression? (a) 60 (b) 120 (c) 110 (d) 150	respectively, then sum of first twenty terms will be:(a) 540(b) 610(c) 740(d) 810
Q55. If the sum of the 4 th term and the 12 th term of an A.P.	

PYQs - APGP

Dec 2017 Q82. The sum of all numbers b	petween 100 and 100	00 which	Q95. If y = 1 +	$x + x^2 + \infty t$:hen x =	
are divisible by 11 will be: (a) 44550 (b) 66770	(c) 55440 (d) 3	33440	(a) $\frac{y-1}{y}$	(b) $\frac{y+1}{y}$	(c) $\frac{y}{y+1}$	(d) $\frac{y}{y-1}$
June 2018 Q83. If pth, qth, rth terms of a GF (q-r)log a + (r-p)log b + (p-q)log (a) 1 (b) 0	og c =	ely, then I) None	Dec 2019 Q96. If $\frac{(b+c-a)}{a}$, (a) AP	<u>c+a−b)</u> , <u>(a+b−c)</u> ar (b) GP	e in AP then a, b, (c) HP	c are in: (d) None
Q84. If a, b, c, d are in GP then (a) (a-b) ² (b) (a-d) ²	$(b-c)^2 + (c-a)^2 + (d-b)^2$ (c) (c-d) ² (d		Q97. Sum of. $\frac{1}{2}$ (a) 19/24	$+\frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{2^3}$ (b) 24/19		(d) None
Q85. Tn = $3^n - 2^n$, then $S_n = ?$ (a) $\frac{3}{2}(3^n-1)-1(n+1)$ (c) $\frac{3}{2}(3^n-1)+1(n+1)$	(b) $\frac{3}{2}(3^{n}+1)-1(n+1)$ (d) $\frac{3}{2}(3^{n}+1)-1(n-1)$		Q98. Sum the s (a) $\frac{1}{4} \Big[1 - \Big(\frac{1}{5} \Big)^n \Big]$ (c) both	eries $\frac{1}{5}, \frac{1}{5^2}, \frac{1}{5^3}, \dots$	$ \begin{array}{c} \frac{1}{5^{n}} \\ \text{(b)} \frac{1}{5} \left[1 - \left(\frac{1}{4} \right)^{n} \right] \\ \text{(d) None} \end{array} $	
Q86. If the sum of n terms o common difference is 6, then it (a) 3 (b) 2	ts first term is:) and its) 1	Q99. No. of terr (a) 6	ms of series 25, (b) 7	5, 1 ¹ / ₃₁₂₅ (c) 8	(d) 9
Q87 . Insert two AMs between 6 (a) 132,196 (b) 130,194		l) None	Q100. If the su (a) 35	m of 5 terms of (b) 30	AP is 75. Find 3 rd (c) 15	term (d) 20
Dec 2018 Q88. If P th term of an AP is 'q' term is	& q th term is 'p', the	en its r th	(a) 3 & 2	(b) 9 & 4	oers is 6.5 & 6 the (c) 81 & 16	(d) None
(a) $p + q - r$ (c) $p - q - r$	(b) p + q + r (d) p - q		Q102. If AM & F GM will be: (a) 20	IM for two numl (b) 16	oers are 5 & 3.2, r (c) 4	espectively. (d) 5
Q89. The 3 rd term of a G.P. is $\frac{2}{3}$ 1 st term is (a) 6 (b) $\frac{1}{3}$		then the	Dec 2020 Q103. Three nu product 27,000		vith their Sum 13	0 and their
Q90. The sum of the series –8, - number of terms n is	—6, —4,n terms i	s 52. The	(a) 10,30,90 (c) (a) and (b) b	oth	(b) 90,30,10 (d) 10,20,30	
(a) 11 (b) 12 Q91 . Value of K, for which the)) 10 5,2K + 10	term is 66.		hose 6 th term is	
are in A.P., is (a) 13 (b) -13		l) -23	(a) 118 O105 . Divide 69	(b) 136) into 3 parts whi	(c) 178 ich are in A.P. & a	(d) 210 re such that
June 2019 Q92. If ratio of sum of n terms of then the ratio of their m^{th} term (a) $(m + 1)$: 2m			the product of (a) 20, 23, 26 (c) 19,23,27			
(c) $(2m - 1)$: $(m + 1)$	(d) m: (m - 1)		Jan 2021 Q106. n th term	s of series 3 + 7	+ 13 + 21 + 31 +	is
Q93. In a G.P. If the fourth term seven terms is (a) 3 ⁵ (b) 3 ⁷		ct of first I) 3 ⁸	(a) $4n - 1$ (c) $n^2 + n + 1$		(b) $n^2 + 2n$ (d) $n^3 + 2$	
Q94. If 2 + 6 + 10 + 14 + 18 + (a) 78 (b) 80		x=? I) 86	Q107 . The nun neither divisible (a) 67		s from 1 to 100 nor by 7 is (c) 55) which are (d) 33
© 8888111134 8 www.pranavch			e 48 . dy from t l	he BEST	Revision & Prad	· · · · · · · · · · · · · · · · · · ·

PYQs - APGP

© 888811113	4 88881110	34 Pag	e 49	Revision & Practice Session –
Q120 . The 1 st & last term terms is 45,955. The num (a) 99 (b) 101		5, sum of the (d) 102		
Q119. In a GP, 2 nd term is (a) 3072 (b) 6144		F <mark>ind 11th term</mark> (d) 12288		
the first 4 terms. Find co (a) $\pm \sqrt{2}$ (b) 16		(d) 4		
(a) 7 (b) 8 Q118. The sum of 1 st 8 t	(c) 9	(d) 10		
June 2022 Q117. n th term of series the n th term?	9,7,5, & 15,12,9, a	re same. Find		
(a) 9 (b) 6	(c) 7	(d) 8		
Q116. Largest value of n	for which $\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2}$			
(c) 22,68,114,	(d) 8,14,28,44			
Q115. Sum of first n tern (a) 8, 14, 20, 26,	ns an AP is 3n ² + 5n. T (b) 8,22,42,68			
(a) 1071 (b) 971	(c) 1171	(d) 1271		
Q114. Sum of 7 + 14 + 2		(-1) 1 071		
(a) 6 (b) 4	(c) 8	(d) 16		
respectively, then 4 th ter	rm of the series is			
Dec 2021 Q113. If sum & product	of three numbers in 0	5.P. are 7 & 8		
	(-,)	7-7		
Q112. Sum of 'n' terms of (a) 20 (b) 50	of an AP is 2n ² , 5 th tern (c) 18	n is (d) 25	(c) $q^2 = pr$	(d) pqr + pq + 1 = 0
			(a) $p^2 = q^2 + 2^r$	(b) $p^2 = qr$
(a) 1 (b) 2	(c) 3	(d) 4	Q125. If 4 th , 7 th & 10 th terr respectively, then:	ms of a GP are p, q & r,
Q111. The sum of square reciprocal is never less the		uantities & its		
(a) 20 (b) 10	(c) 15	(d) 25	Q124. How many no. between 7 (a) 5090 (b) 5097	4 & 25,556 are divisible by '5' (c) 5095 (d) 5075
Q110. The number of t must be taken so that th	ne sum may be 480.		(a) 78 (b) 79	(c) 80 (d) 81
			then its 20 th term is:	
respectively, then the re the sum of squares of or (a) 510 (b) 456		(d) 336	June 2023 Q123. If 9 th & 19 th term of an	AP are 35 & 75 respectively
1 are subtracted from	the 1 st , 2 nd & the	3 rd numbers	(a) 729 (b) 6561	(c) 2187 (d) 19683
July 2021 Q109. The sum of three	numbers in a GP is 28.	When 7, 2 &	Q122. In GP 5 th term is 27 & 8 th	term is 729. Find 11 th term?
2	4 (0) + CC ₂	(u) + cc ₄	(a) 0 (b) 1 (c) p +	
a & r are respectively. (a) 4 & $\frac{1}{2}$ (b) 4 & $\frac{1}{2}$	$\frac{-1}{4}$ (c) 4 & $\frac{-1}{2}$	(d) $4 \frac{8}{1}$	Q121. If p^{th} term of an AP is q will be the value of $(p + q)^{th}$ te	
Q108. In a GP 3rd & 6th	terms are respectively	1 & -1/8. The	Dec 2022	

© 8888111134 | 8888111034 Page 49 www.pranavchandak.com Study f

Study from the BEST

🔁 CA Pranav Chandak 🧕

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK Set Functions & Relations

TO BUY HARDCOPY OF PYQ ^s

PYQs - Set Theory, Functions & Relations

Nov 2006	June 2008
Q1. Out of 20 members in a family, 11 like to take tea & 14	Q10. If $f(x) = \frac{2+x}{2-x'}$, then f ⁻¹ (x):
like coffee. Assume that each one likes at least one of the	
two drinks. Find how many like both coffee & tea:	(a) $\frac{2(x-1)}{x+1}$ (b) $\frac{2(x+1)}{x-1}$ (c) $\frac{x+1}{x-1}$ (d) $\frac{x-1}{x+1}$
(a) 2 (b) 3 (c) 4 (d) 5	
	Dec 2008
Feb 2007	Q11. If $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$, $f(1) = 2$, $f(2) = 4$, $f(3)$
Q2. In a group of 70 people, 45 speak Hindi, 33 speak	= 6 & f (4) = 8, & f: A \rightarrow B then f ⁻¹ is:
English & 10 speak neither Hindi nor English. Find how many	(a) $\{(2,1), (4,2), (6,3), (8,4)\}$ (b) $\{(1,2), (2,4), (3,6), (4,8)\}$
can speak both English as well as Hindi.	(c) {(1,4), (2,2), (3,6), (4,8)} (d) None of these
(a) 13 (b) 19 (c) 18 (d) 28	
	Q12. If $f(x) = x^2 + x - 1 & 4f(x) = f(2x)$ then find 'x'.
Q3. Let R is the set of real numbers, such that the function f:	(a) 4/3 (b) 3/2 (c) - ³ / ₄ (d) None
$R \rightarrow R \& g: R \rightarrow R$ are defined by $f(x) = x^2 + 3x + 1 \& g(x) = 2x$	
- 3. Find (fog):	Q13. If A = {p, q, r, s}, B = {q, s, t}, C = {m,q,n}, Find C-(A ∧ B)
(a) $4x^2 + 6x + 1$ (b) $x^2 + 6x + 1$	(a) {m, n} (b) {p, q} (c) {r, s} (d) {p, r}
(c) $4x^2 - 6x + 1$ (d) $x^2 - 6x + 1$	
	Dec 2009
May 2007	Q14. X = {x, y, w, z}, y = {1,2,3,4}, H = {(x, 1), (y, 2), (y, 3), (z,
Q4. Out of 300 companies, number of companies using	4), (x, 4)}
different media - Newspapers (N), Radio (R) & Television (T)	(a) H is a function from X to Y
are as follows: n(N) = 200, n(R) = 100, n(T) = 40, n(N∩R) = 50, n(R∩T) = 20, n(N∩T) = 25 & n(N∩R∩T) = 5. Find the	(b) H is not a function from X to Y
numbers, of companies using none of these media:	(c) H is a relation from Y to X
(a) 20 (b) 250 (c) 30 (d) 50	(d) None
Q5. If R is the set of real numbers such that the function f: R	Q15. $f(x) = (2x + 3)$, then $f(2x) - 2f(x) + 3 =$
\rightarrow R is defined by f(x) = (x + 1) ² , then find (fof):	(a) 3 (b) 2 (c) 1 (d) 0
(a) $(x+1)^2 + 1$ (b) x^2+1 (c) $\{(x+1)^2 + 1\}^2$ (d) None	
	Q16. If $f(x) = 2x + h$ then find $f(x+h) - 2f(x)$
Aug 2007	(a) h - 2x (b) 2x - h (c) 2x + h (d) None
Q6. If f: $R \rightarrow R$, f(x) = 2x + 7, then inverse of f is	
(a) $f^{-1}(x) = (x - 7)/2$ (b) $f^{-1}(x) = (x + 7)/2$	June 2010
(c) $f^{-1}(x) = (x - 3)/2$ (d) None	Q17. If A = {x : $x^2 - 3x + 2 = 0$ }, B = {x : $x^2 + 4x - 12 = 0$ }, then,
	B - A =
Nov 2007	(a) {- 6} (b) {1} (c) {1,2} (d) {2,-6}
Q7. In a town of 20,000 families, 40% families buy	
newspaper A, 20% families buy newspaper B & 10% families	Q18. If F: A \rightarrow R is a real valued f(x) = $\frac{1}{2}$, then, A =
buy newspaper C, 5% families buy A & B, 3% buy B & C &	(a) R (b) R-{1} (c) R-{0} (d) R-N
4% buy A & C. If 2% families buy all three newspapers,	
number of families which buy A only is:	Q19. In set N of all natural numbers the relation R defined
(a) 6600 (b) 6300 (c) 5600 (d) 600.	by a R b "if & only if, a divide b", then the relation R is:
	(a) Partial order relation (b) Equivalence relation
Q8. Let f: $R \rightarrow R$ be such that f (x) = 2 ^x , then f (x + y) =	(c) Symmetric relation (d) None of these.
(a) $f(x) + f(y)$ (b) $f(x).f(y)$ (c) $f(x) \div f(y)$ (d) None	
Fab 2000	Dec 2010
Feb 2008	Q20. For any two sets A & B, A \cap (A' UB) =, where A'
Q9. Out of 150 students, 45 passed in Accounts, 30 in Eco & 50 in Maths, 30 in both Accounts & Maths, 32 in both Maths	represent the compliment of the set A
& Eco, 35 in both Accounts & Eco, 25 students passed in all	(a) A∩B (b) A∪B (c) A'∪B (d) None
the three subjects. Find the numbers who passed at least in	
any one of the subjects:	Q21. $f(x) = x + 1 \& g(x) = x^2 + 1$, then fog(-2) =
(a) 63 (b) 53 (c) 73 (d) None.	(a) 6 (b) 5 (c) -2 (d) None

© 8888111134 | 8888111034 www.pranavchandak.com Page 50 Study from the BEST

Revision & Practice Session –

🔼 CA Pranav Chandak 🧕

PYQs - Set Theory, Functions & Relations

Dec 2010	Q33. For a group of 200 persons, 100 are interested in music,
Q22. If $A \subset B$, then which one is true	70 in photography & 40 in swimming, Furthermore 40 are interested in both music & photography, 30 in both music
(a) $A \cap B = B$ (b) $A \cup B = B$ (c) $A \cap B = A^1$ (d) $A \cap B = \phi$	& swimming, 20 in photography & swimming & 10 in all the three. How many are interested in photography but not in
Q23. If $f(x-1) = x^2 - 4x + 8$, then $f(x+1) =$	music & swimming?
(a) x^2+8 (b) x^2+7 (c) x^2+4 (d) x^2-4x	(a) 30 (b) 15 (c) 25 (d) 20
June 2011	Dec 2012
Q24. There are 40 students, 30 of them passed in English, 25	Q34. If f: $R \rightarrow R$ is a function, defined by f (x) = 10x - 7, if g(x)
of them passed in Maths & 15 of them passed in both.	= $f^{-1}(x)$, then g(x) is equal to
Assuming that every Student has passed at least in one subject. How many students passed in English only but not	(a) $\frac{1}{10x-7}$ (b) $\frac{1}{10x+7}$ (c) $\frac{x+7}{10}$ (d) $\frac{x-7}{10}$
in Maths.	
(a) 15 (b) 20 (c) 10 (d) 25	Q35. Number of elements in range of constant function is
	(a) One (b) Zero (c) Infinite (d) 2
Q25. If A = {± 2, ± 3}, B = {1,4,9} & F = {(2, 4), (-2, 4), (3, 9), (-	
3, 4)} then 'F' is defined as:	June 2013
(a) One to one function from A into B.	Q36. Let $A = \{1, 2, 3\}$, then the relation $R = \{1, 1\}, (2, 3), (2, 2), (2, 3), (2, 2), (2, 3), (2, 3), (3$
(b) One to one function from A onto B.	(3, 3), (1,2)} is: (a) Symmetric (b) Transitive (c) Reflexive (d) None
(c) Many to one function from A onto B.	(a) symmetric (b) mansitive (c) renexive (d) None
(d) Many to one function from A into B.	Q37. If $f(x) = x + 2$, $g(x) = 7^{x}$, then g o $f(x) = $
	(a) 7^{x} . x + 2.7 ^x (b) 7^{x} + 2 (c) 49 (7^{x}) (d) None
Q26. If $f(x) = \frac{x}{\sqrt{1+x^2}} \& g(x) = \frac{x}{\sqrt{1-x^2}}$ Find fog?	
(a) x (b) $\frac{1}{x}$ (c) $\frac{x}{\sqrt{1-x^2}}$ (d) $x\sqrt{1-x^2}$	Q38. If $f(x) = log(\frac{1+x}{1-x})$, then $f(\frac{2x}{1+x^2})$ is equal to:
	(a) $f(x)$ (b) $2f(x)$ (c) $3f(x)$ (d) $-f(x)$
Dec 2011	
Q27. f(x) = 3+x, for - 3 < x < 0 & 3 - 2x for 0 < x < 3, f(2) =	Dec 2013
(a) – 1 (b) 1 (c) 3 (d) 5	Q39. If $f(x) = (a - x^n)^{1/n}$, $a > 0 & 'n'$ is a positive integer, then
	f(f(x)) =
Q28. If A = (1, 2, 3, 4, 5), B = (2, 4) & C = (1,3, 5) then (A - C) × B is	(a) x (b) a (c) x ^{1/n} (d) a ^{1/n}
(a) {(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), {5, 4)}	Q40. Of the 200 candidates who were interviewed for a
(b) {(1,2), (1,4), (3, 2), (3, 4), (5, 2); (5, 4)}	position at call centre, 100 had a two-wheeler, 70 had a
(c) {(2, 2), (4, 2), (4, 4), (4, 5)}	credit card & 140 had a mobile phone, 40 of them had both a two-wheeler & a credit card, 30 had both a credit card &
(d) {(2, 2), (2, 4), (4, 2), (4, 4)}	a mobile phone, 60 had both a two-wheeler & a mobile
	phone, & 10 had all three. How many candidates had none
Q29. For any two sets A & B the set (AUB')' is Equal to (where' denotes compliment of the set)	of the three?
(a) B-A (b) A-B (c) A'-B' (d) B'-A'	(a) 0 (b) 20 (c) 10 (d) 18
	x ² -25
June 2012	Q41. If $f(x) = \frac{x^2 - 25}{x - 5}$, then f(5) is
Q30. No. of proper sub-set of the set {3, 4, 5, 6, 7} is	(a) 0 (b) 1 (c) 10 (d) not defined
(a) 32 (b) 31 (c) 30 (d) 25	
	June 2014
Q31. On set of lines, being perpendicular is a _ relation. (a)	Q42. Let A = {1,2,3} & B = {6,4,7}. Then, the relation R = {(2,4), (3,6)} will be:
Reflexive (b) Symmetric (c) Transitive (d) None	(a) Function from A to B (b) Function from B to A
	(c) Both A & B (d) Not a function
Q32. Range of function f: N-N; $f(x)=(-1)^{x-1}$, is	
(a) $\{0,-1\}$ (b) $\{1,-1\}$ (c) $\{1,0\}$ (d) $\{1,0,-1\}$	Q43. In class of 50 students, 35 opted for Mathematics & 37
	opted for Commerce. Number of such students who opted
	for both Maths & Commerce are
	(a) 13 (b) 15 (c) 22 (d) 28
©8888111134 8888111034 Pag	e 51 - Reaction & Practice Section -
©8888111134 8888111034 Pag	Nantan & Luastee Person

www.pranavchandak.com Study from the BEST

CA Pranav Chandak Q

PYQs - Set Theory, Functions & Relations

Q44. The range of {(1,0), (2,0), (3	5,0), (4,0), (0,0)} is:	Q55. Domain & rang	ge of the func	tion $f(x) = 2 - x $	(+ 1 is
(a) {1,2,3,4,0} (b) {0}	(c) {1,2,3,4} (d) None	(a) D = Real number	rs, R = (2, ∞)		
		(b) D = Integers, R =	= (0, 2)		
Dec 2014		(c) D = Integers, R =			
Q45. Let N be the set of all-Natu		(d) D = Real number	rs, R = (- ∞, 2))	
all even natural numbers then that f (x) = $2x + x \in N$ is:	The function, T: $N \rightarrow E$ defined				
(a) One-one into	(b) One-one onto	Dec 2016			7
(c) Many-one into	(d) Many-one onto	Q56. If R is the set of		nbers, then the	function f:
		$R \rightarrow R$ defined by f(x) (a) one-one onto		(b) one-one into	
Q46. If A = {2, 3}, B = {4, 5}, C = -		(c) many-one into		d) many-one o	
	(b) {(2, 5), {3, 5)}			(d) many-one o	nto
(c) {(2, 4), (3, 5)}	(d) {(3, 5), (2, 6)}	Q57. The inverse fun	nction f^{-1} of $f(x)$	x) = 100x is	
Q47. If S = {1, 2, 3} then the rel	ation $J(1, 1)$ (2, 2) (1, 2) (2		$\frac{1}{100x}$ ((d) None
1)} is symmetric &		100	100x	x	(u) None
(a) Reflexive but not transitive		Q58. No. of subsets	of cot formor	d by word ALLA	
(b) Reflexive as well as transitive				(c) 32	(d) 64
(c) Transitive but not reflexive			10 ((0) 52	(u) 0+
(d) Neither transitive nor reflexiv	/e	June 2017			
f(x/v)		Q59. Range of funct	ion $f(x) = \frac{x}{x}$	- is:	[IMP]
Q48. If $f(x) = \text{then } \frac{x}{x-1}$, then $\frac{f(x/y)}{f(y/x)}$				-	
(a) x/y (b) y/x	(c) -x/y (d) -y/x	(a) $\left\{ x: \frac{-1}{2} < x < \frac{1}{2} \right\}$			
huma 2015		(c) $\left\{ \times : \frac{-1}{2} \le X \le \frac{1}{2} \right\}$	((d) $\left\{ x: x > \frac{1}{2} \text{ or } x \right\}$	$<\frac{-1}{2}$
June 2015 Q49. If N be the set of all-natura	al numbers & F be the set of				
all even natural numbers then		Q60. In a group of st			
that $f(x) = 2x$ for all $X \in N$ is		English & 40 can sp	eak English &	t Hindi both, th	en number
(a) one-one onto	(b) one-one into	of students is:	140 /	(-) 190	
(c) many-one onto	(d) constant	(a) 100 (b) 1	140 ((c) 180	(d) 60
	المراجع والمراجع والمراجع والمراجع	O61 If $f(y) = \frac{x-1}{y} g_{y}$	$r(u) = \frac{1}{tho}$	on (foot) (v) is on	ual to:
Q50. If $A = \{x, y, z\}$, $B = \{a, b, c, d\}$, relation from the set A to set B i		Q61. If $f(x) = \frac{x-1}{x} \& g(x)$			
(a) {(x, a), (x, b), (y, c), (z, d)}		(a) x - 1 (b) x	× ()	(c) 1 - x	(d) – x
	(d) {a, z), (b, y), (c, z), (d, x)}	Dec 2017			
			c(c(1))		
Dec 2015		Q62. If $f(x) = \frac{x+1}{x+2}$, the			5
Q51. In a class of 80 students, 3 cricket, 45% students can play		(a) $\frac{2x+3}{3x+5}$ (b) $\frac{2}{3x+5}$	$\frac{2x+5}{3x+2}$ ((c) $\frac{3x+2}{5x+3}$	(d) $\frac{5x+2}{2x+3}$
remaining students can play b					
many students can play cricket?		Q63. In a class of 3			
(a) 55 (b) 44	(c) 36 (d) 28	like to play football.			
	the second s	one of the two game cricket & football?	es. How many	succents like to	
Q52. If $f(x) = 2x + 2 \& g(x) = x^2$, (a) 18 (b) 22		(a) 5 (b) 1	11 ((c) 19	(d) 8
(a) 18 (b) 22	(c) 34 (d) 128		,		``
June 2016		June 2018			
Q53. If set A = $\left\{ x: \frac{x}{2} \in z, 0 \le x \le x \right\}$	≤ 10 , B = {x: x is one-digit	Q64. Let N be the se			
prime number} & C = $\left\{ x: \frac{x}{3} \in \mathbb{N}, \right\}$		all even natural num		function; F: N =	⇒ E defined
	A	as $f(x) = 2x - Vx \in \mathbb{N}$		(b) Many and in	to
(a) ф (b) Set A	(c) Set B (d) Set C	(a) One-one-into (c) One-one onto		(b) Many-one-ir (d) Many-one-o	
Q54. Let A be the set of square	es of natural numbers & let		(a) many-one-o	
xEA, yEA then					
(a) X + YEA (b) X-YEA	(c) $\frac{x}{y} \in A$ (d) $xy \in A$				
	1				
		e 52		ი	
8888111134 8	388111034 Pay			Revision & Pract	ice Jession -

www.pranavchandak.com Study from the BEST

CA Pranav Chandak

PYQs - Set Theory, Functions & Relations

Q65. In a town of 20,000 far	nilies, it was four	nd that 40%	Dec 2019			
families buy newspaper. A, 20			Q76. $(A^{T})^{T} = ?$			
10% families buy newspaper			(a) A $(A = 1)^{-1}$	(b) A ^T	(c) $A^{T} \cdot A^{T}$	(d) A ^{2T}
buy B & C & 4% buy A & C	if 2% families b	buy all the 3	(a) A	$(\mathbf{D})\mathbf{A}$		(U) A
newspapers, then the no. of fa	milies which buy	A only is:	077 (1) (1)			
(a) 6600 (b) 6300	(c) 5600	(d) 6000		(n-1) + f(n-2)) when $n = 2,2$	3,4
			f(0) = 0, f(1) =			
Q66. No. of proper sub set of	set {3 4 5 6 7} is		(a) 3	(b) 5	(c) 8	(d) 13
(a) 32 (b) 31	(c) 30	(d) 25				
	(C) 50	(u) 25	Q78. $f(x) = \frac{x+1}{x}$	find $f^{-1}(x)$		
			20			
Dec 2018			(a) $1/(x-1)$	(b) 1/(y − 1)	(c) $\frac{-1}{y}$	(d) x
Q67. A is {1,2,3,4} & B is {						
defined from set A to B where		-	Dec 2020			
(a) {1,2,3,4}	(b) {1, 4, 9, 16}			sets respectivel	v have x & v no	of elements
(c) {1,4,9,16,25}	(d) None			osets of the 1 st i		
				e 2 nd . The value		
Q68. If $A = \{1,2\}$ & $B = \{3,4\}$). Determine the	number of	(a) 6 & 3	(b) 4 & 2		(d) 3 & 6
relations from A & B:	,		(4) 0 4 0	(5) 1 4 2		(u) 5 c 0
(a) 3 (b) 16	(c) 5	(d) 6	OPO Number	fitame in cat A :	a 40 in cat Dia	22. in cat C is
		(0) 0		f items in set A i B is 4, in both A		
O60 If $A = (1,2,2,4,7,6,7)$ Str	(2460) Card	inal number		How many are		
Q69. If $A = \{1, 2, 3, 4, 5, 6, 7\}$ & E of $A - B$ is:	$0 = \{2, 4, 0, 0\}$. Caru	inat number				
	(-) 0		(a) 110	(b) 65	(c) 108	(d) 84
(a) 4 (b) 3	(c) 9	(d) 7		,		
				cubes of the na	tural number is:	
Q70. Identity the function from	n the following:		(a) A null set		(b) A finite set	
(a) {(1,1), (1,2), (1,3)}	(b) {(1,1), (2,1)), (2,3)}	(c) An infinite s	et	(d) None	
(c) $\{(1,2), (2,2), (3,2), (4,2)\}$	(d) None of the	ese				
		Address .				
			O82. The invers	e function f ⁻¹ o	f(v) = 3v is:	
June 2019				e function f^{-1} o (b) v/3	100 0	(d) 1/v
June 2019 O71 If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$	$3 - \{1, 3, 4, 5, 7, 8\}$		Q82. The invers (a) 1/3y	e function f ⁻¹ o (b) y/3	f(y) = 3y is: (c) -3y	(d) 1/y
Q71. If A = {1,2,3,4,5,6,7,8,9} I			(a) 1/3y	(b) y/3	(c) -3y	(d) 1/y
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H C = {2,6,8} then find (A – B) U	C	(d) None	(a) 1/3y Jan 2021 (Same	(b) y/3 as Q81 Dec 202	(c) -3y 20)	(d) 1/y
Q71. If A = {1,2,3,4,5,6,7,8,9} I	C	(d) None	(a) 1/3y Jan 2021 (Same <mark>Q83.</mark> The set of	(b) y/3	(c) -3y 20) I number is	
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H C = $\{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$	(c) {2, 6, 8, 9}		(a) 1/3y Jan 2021 (Same <mark>Q83. The set of</mark> (a) Null set	(b) y/3 as Q81 Dec 202 cubes of natura	(c) -3y 20) I number is (b) A finite set	
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H C = $\{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots 1\}$	0 C (c) {2, 6, 8, 9} 0} relation on A	$A, R = \{(x, y) / (x, y) \}$	(a) 1/3y Jan 2021 (Same <mark>Q83.</mark> The set of	(b) y/3 as Q81 Dec 202 cubes of natura	(c) -3y 20) I number is	
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y$	0 C (c) {2, 6, 8, 9} 0} relation on A then domain of 1	$A, R = \{(x, y) / (x, y) \}$	(a) 1/3y Jan 2021 (Same <mark>Q83. The set of</mark> (a) Null set	(b) y/3 as Q81 Dec 202 cubes of natura	(c) -3y 20) I number is (b) A finite set	
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots \dots 1 \\ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1,2,3,4,5\}$	 C (c) {2, 6, 8, 9} 0} relation on A then domain of I (b) {0,3,5,7,9} 	$A, R = \{(x, y) / (x, y) \}$	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set	(b) y/3 as Q81 Dec 202 cubes of natura	(c) -3y 20) I number is (b) A finite set (d) Singleton S	Set
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y$	0 C (c) {2, 6, 8, 9} 0} relation on A then domain of 1	$A, R = \{(x, y) / (x, y) \}$	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li	(c) -3y 20) I number is (b) A finite set (d) Singleton S	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots \dots 1 \\ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1,2,3,4,5\}$	 C (c) {2, 6, 8, 9} 0} relation on A then domain of I (b) {0,3,5,7,9} 	$A, R = \{(x, y) / (x, y) \}$	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots \dots 1 \\ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1,2,3,4,5\}$	 (c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None 	$A, R = \{(x, y) / (x, y) \}$	 (a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (a) Parallel to an (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots .1 \ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1, 2, 3, 4, 5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the	 (c) {2, 6, 8, 9} (d) relation on A then domain of I (b) {0,3,5,7,9} (d) None (c) {3,4,5} is 	$x, R = \{(x, y) / R^{-1} is.$	 (a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul 	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation	Set
Q71. If A = $\{1,2,3,4,5,6,7,8,9\}$ H C = $\{2,6,8\}$ then find (A – B) ((a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. A = $\{1 \ 2 \ 3 \ 4 \ \dots \dots 1 \ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1,2,3,4,5\}$ (c) $\{1,2,4,5,6,7\}$	 (c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None 	$A, R = \{(x, y) / (x, y) \}$	 (a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul 	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation	Set
Q71. If A = $\{1,2,3,4,5,6,7,8,9\}$ H C = $\{2,6,8\}$ then find (A – B) U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. A = $\{1 \ 2 \ 3 \ 4 \ \dots .1 \ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1,2,3,4,5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the (a) 4 (b) 8	 (c) {2, 6, 8, 9} (d) relation on A (e) {0,3,5,7,9} (f) None (f) Set {3,4,5} is (g) 16 	$x, R = \{(x, y) / R^{-1} is.$	 (a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul 	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation	Set
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y}$ (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = $x^2 \& g(x) = \sqrt{x}$	 C (c) {2, 6, 8, 9} 0} relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	 (a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a 	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is a nequiv reflexive relatio	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots , 1 \ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1, 2, 3, 4, 5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If $f(x) = x^2 \& g(x) = \sqrt{x} + \frac{1}{3}$ (a) $gof(3) = 3$	<pre>(c) {2, 6, 8, 9} () relation on A then domain of I (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = 9</pre>	$x, R = \{(x, y) / R^{-1} \text{ is.} \}$ (d) 32	(a) $1/3y$ Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to a (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y}$ (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = $x^2 \& g(x) = \sqrt{x}$	 C (c) {2, 6, 8, 9} 0} relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 	$x, R = \{(x, y) / R^{-1} \text{ is.} \}$ (d) 32	(a) $1/3y$ Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to a (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots .1 \\ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1, 2, 3, 4, 5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If $f(x) = x^2 \& g(x) = \sqrt{x} + \frac{1}{x}$ (a) $gof(3) = 3$ (c) $gof(9) = 3$	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = (d) gof(-9) = (d)</pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) $1/3y$ Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to a (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots .1 \\ x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1, 2, 3, 4, 5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If $f(x) = x^2 \& g(x) = \sqrt{x} + \frac{1}{x}$ (a) $gof(3) = 3$ (c) $gof(9) = 3$ Q75. If $A = \{a, b, c, d\}; B = \{p, r\}$	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 chen (b) gof(-3) = (d) gof(-9) = g,r,s} which of the set {2} </pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow f(x) = $\begin{cases} 2x \text{ for } 1\\ x^2 \text{ for } 1\\ 3x \text{ for } \end{cases}$	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If $A = \{1,2,3,4,5,6,7,8,9\}$ H $C = \{2,6,8\}$ then find $(A - B)$ U (a) $\{2,6\}$ (b) $\{2,6,8\}$ Q72. $A = \{1 \ 2 \ 3 \ 4 \ \dots , 1$ $x + y = 10, x \in A, Y \in A, x \ge Y\}$ (a) $\{1, 2, 3, 4, 5\}$ (c) $\{1,2,4,5,6,7\}$ Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If $f(x) = x^2 \& g(x) = \sqrt{x} + \frac{1}{x}$ (c) $gof(3) = 3$ (c) $gof(9) = 3$ Q75. If $A = \{a, b, c, d\}; B = \{p, r\}$ relation is a function from A to	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 chen (b) gof(-3) = (d) gof(-9) = g,r,s} which of the set {2} </pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow f(x) = $\begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is a nequiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4)	(c) -3y 20) I number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set which of the
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y$ (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)}	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 chen (b) gof(-3) = (d) gof(-9) = g,r,s} which of the set {2} </pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow f(x) = $\begin{cases} 2x \text{ for } 1\\ x^2 \text{ for } 1\\ 3x \text{ for } \end{cases}$	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 x + y = 10, x \in A, Y \in A, x \geq Y} (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)} (b) R ₂ = {(p, a), (b, r), (d, s)}	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 chen (b) gof(-3) = (d) gof(-9) = g,r,s} which of the set {2} </pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) $1/3y$ Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow $f(x) = \begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14	(c) -3y 20) Il number is (b) A finite set (d) Singleton S nes on a plane elation etric relation alence relation n	Set which of the (d) 6
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 $x + y = 10, x \in A, Y \in A, x \ge Y$ (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)}	<pre>(c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) {2, 6, 8, 9} (c) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 chen (b) gof(-3) = (d) gof(-9) = g,r,s} which of the set {2} </pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow f(x) = $\begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14 er of integers fro	 (c) -3y 20) I number is (b) A finite set (d) Singleton S (d) Singleton S (etric relation (c) 5 (c) 5 	Set which of the (d) 6
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 x + y = 10, x \in A, Y \in A, x \geq Y} (a) {1, 2, 3, 4, 5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)} (b) R ₂ = {(p, a), (b, r), (d, s)} (c) R ₃ = {(b, p), (c, s), (b, r)}	<pre>(c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = 0 (d) gof(-9) = g,r,s} which of the b B</pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow $f(x) = \begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$ Devalue of f(- (a) 9 Q86. The numb divisible by 3 m	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14 er of integers fro or by 5 nor by 7	 (c) -3y 20) 1 number is (b) A finite set (d) Singleton S (d) Singleton S (e) Singleton S (f) Singleton S (c) 5 (c) 5 (c) 5 	Set which of the (d) 6 ch are neither
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 x + y = 10, x \in A, Y \in A, x \geq Y} (a) {1,2,3,4,5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)} (b) R ₂ = {(p, a), (b, r), (d, s)}	<pre>(c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = 0 (d) gof(-9) = g,r,s} which of the b B</pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow f(x) = $\begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$	(b) y/3 e as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14 er of integers fro	 (c) -3y 20) I number is (b) A finite set (d) Singleton S (d) Singleton S (etric relation (c) 5 (c) 5 	Set which of the (d) 6
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 x + y = 10, x \in A, Y \in A, x \geq Y} (a) {1, 2, 3, 4, 5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)} (b) R ₂ = {(p, a), (b, r), (d, s)} (c) R ₃ = {(b, p), (c, s), (b, r)}	<pre>(c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = 0 (d) gof(-9) = g,r,s} which of the b B</pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow $f(x) = \begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$ Devalue of f(- (a) 9 Q86. The numb divisible by 3 m	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14 er of integers fro or by 5 nor by 7	 (c) -3y 20) 1 number is (b) A finite set (d) Singleton S (d) Singleton S (e) Singleton S (f) Singleton S (c) 5 (c) 5 (c) 5 	Set which of the (d) 6 ch are neither
Q71. If A = {1,2,3,4,5,6,7,8,9} H C = {2,6,8} then find (A - B) U (a) {2,6} (b) {2,6,8} Q72. A = {1 2 3 41 x + y = 10, x \in A, Y \in A, x \geq Y} (a) {1, 2, 3, 4, 5} (c) {1,2,4,5,6,7} Q73. The no. of subsets of the (a) 4 (b) 8 Q74. If f(x) = x ² & g(x) = \sqrt{x} f (a) gof(3) = 3 (c) gof(9) = 3 Q75. If A = {a, b, c, d}; B = {p, p, relation is a function from A to (a) R ₁ = {(a, p), (b, q), (c, s)} (b) R ₂ = {(p, a), (b, r), (d, s)} (c) R ₃ = {(b, p), (c, s), (b, r)}	<pre>(c) {2, 6, 8, 9} (d) relation on A then domain of J (b) {0,3,5,7,9} (d) None set {3,4,5} is (c) 16 then (b) gof(-3) = 0 (d) gof(-9) = g,r,s} which of the b B</pre>	$x, R = \{(x, y) / R^{-1} is.$ (d) 32	(a) 1/3y Jan 2021 (Same Q83. The set of (a) Null set (c) An infinite set following is No (a) Parallel to an (b) Perpendicul (c) Perpendicul (d) Parallel to a Q85. Let F: R \Rightarrow $f(x) = \begin{cases} 2x \text{ for } 1\\ 3x \text{ for } 1\\ 3x \text{ for } 1 \end{cases}$ Devalue of f(- (a) 9 Q86. The numb divisible by 3 m	(b) y/3 as Q81 Dec 202 cubes of natura et of all straight li t 'TRUE'? n equivalence re ar to is a symme ar to is an equiv reflexive relatio R be defined by x > 3 $< x \le 3$ $x \le 1$ -1) + f(2) + f(4) (b) 14 er of integers fro or by 5 nor by 7	 (c) -3y 20) 1 number is (b) A finite set (d) Singleton S (d) Singleton S (e) Singleton S (f) Singleton S (c) 5 (c) 5 (c) 5 	Set which of the (d) 6 ch are neither

© 8888111134 | 8888111034 www.pranavchandak.com

Page 53 Study from the BEST

Revision & Practice Session –

🔼 CA Pranav Chandak 🧕

PYQs - Set Theory, Functions & Relations

July 2021				Q97. A = {2,3}, B = {4,5}, C = {5	(6) A × (B ∩ C) =		
Q87. Range of f	unction F define	ed by $f(x) = \sqrt{16}$	$-x^2$ is	(a) {(2,5), (3,5)}	(b) {(5,2), (5,3)}		
(a) [-4,0]	(b) [-4,4]	(c) [0,4]	(d) [+4,4]	(c) {(2,3), (5,5)}	(d) None		
55 par					. .		
Q88. Let $A = R + f(x) = \frac{x-2}{x-3}$, then		{1}. Let $f(x) \rightarrow B$	defined by	Q98. If universal set $E = \{x: x \text{ is } \{2,6,8,14, 22\}, B = \{4,8,10,14\}$			
	((c) 1	(d) -1	(a) $(\mathbf{A} \cap \mathbf{B})' = \mathbf{A}' \cup \mathbf{B}'$ (c) $(\mathbf{A}' \cap \mathbf{B}') = \varphi$	(b) $(A \cap B)' = A'$ (d) none of these		
000 16 76 3	2 1 0 ()		(0)				
(-3) = ?		2x + 3 , then F ∘	a	Dec 2022 Q99. If A = {1,2,3,4,5,7,8,9} & B	= {2 4 6 7 9} then	how many	
(a) 71	(b) 61	(c) 41	(d) 51	proper subsets of $A \cap B$ can be		now many	
If $n(U) = 650$,	n(A) = 310, n(A)	A & B are the su A \cap B) = 95 & 1	n(B) = 190,	(a) 16 (b) 15 Q100. Let $A = \{1,2,3\}$ & co	(c) 32	(d) 31 $R = \{(1, 1)\}$	
then $n(A \cap B)$ is B respectively):	; equal to (A & B	are the compler	nent of A &	(2,2), (3,3), (1,2), (2,3), (1,3)}.Th		$K = \{(1,1),$	
(a) 400	(b) 200	(c) 300	(d) 245	(a) Symmetric & transitive (b) Reflexive but not transitive			
Dec 2021				(c) Reflexive but not symmetric			
		chers in a schoo		(d) Neither symmetric, nor transitive			
Mathematics & Chemistry. How	Physics but non many teach Che	ι 7 teach Chemis e teach both Mat emistry & Physics	thematics &	Q101. The number of subsets o (a) 2 (b) 4		} is (d) 16	
teach only Phys		0.45					
(a) 2,3	(b) 3,2	(c) 4,6	(d) 6,4	June 2023			
	ted to b if & only . This relation is	y if the difference	e in a & b is	Q102. Given the relation $R = \{(1,2), (2,3)\}$ on the set $A = \{1,2,3\}$, minimum number of ordered parts which when added to R make it Equivalence relation is:			
	eflexive but not			(a) 5 (b) 6	(c) 7	(d) 8	
	ransitive but not			e			
(c) transitive, ref (d) equivalence	flexive but not sy relation	ymmetric		Q103. A survey shows that 74% like bananas. What % of Indian if everybody likes either fruit?			
Q93. If $u(x) = \frac{1}{1}$	$\frac{1}{-x'}$ then $u^{-1}(x)$ is	Q93. If $u(x) = \frac{1}{1-x'}$ then $u^{-1}(x)$ is:					
(a) $\frac{1}{x-1}$		and the second		(a) 42% (b) 26% (c) 58%	6 (d) 62%		
		(b) 1 – x				mbors as "	
(c) $1 - \frac{1}{x}$				Q104. If R be a relation defined xRy $- (x - y)$ is divisible by 5" \forall	on set of Real nu		
(c) $1 - \frac{1}{x}$		(b) 1 – x		Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence	on set of Real nu		
(c) $1 - \frac{1}{x}$ June 2022		(b) $1 - x$ (d) $\frac{1}{x} - 1$		Q104. If R be a relation defined xRy – (x – y) is divisible by 5"♥ (a) Equivalence (b) Anti symmetric	on set of Real nu ⟨x, y, ∈ R then relat		
(c) $1 - \frac{1}{x}$ June 2022 Q94. f(x) = {(2, set A = {2,3,4,5,	,6} It is a:	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a		Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence	on set of Real nu ⟨x, y, ∈ R then relat		
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive &	Symmetric	Q104. If R be a relation defined xRy – (x – y) is divisible by 5"♥ (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive	on set of Real nu $(x, y) \in \mathbb{R}$ then related the set of the set	tion R is:	
(c) $1 - \frac{1}{x}$ June 2022 Q94. f(x) = {(2, set A = {2,3,4,5,	,6} It is a: Transitive	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a	Symmetric	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, c} B) × (B \cap C) is equal to	on set of Real nu $(x, y) \in \mathbb{R}$ then related d,} & C = {a, d, c},	tion R is: then (A –	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive &	Symmetric	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, b} B) × (B \cap C) is equal to (a) {(a, d), (c, d)}	on set of Real nu /x, y, ∈ R then relat d,} & C = {a, d, c), (b) {(a, c), (a, d)}	tion R is: then (A –	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly $\frac{-1}{y}$, find f ⁻¹ (x).	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence	Symmetric relation	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, c} B) × (B \cap C) is equal to	on set of Real nu $(x, y) \in \mathbb{R}$ then related d,} & C = {a, d, c},	tion R is: then (A –	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly $\frac{-1}{y}$, find f ⁻¹ (x).	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive &	Symmetric relation	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, b} B) × (B ∩ C) is equal to (a) {(a, d), (c, d)} (c) {(c, a), (d, a)} Q106. If f(x): N - R is a funct	on set of Real nu $(x, y) \in \mathbb{R}$ then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then (A — (b, d)}	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (2, y), (2, y), (3, y), ($,6} It is a: Transitive ly $\frac{-1}{x}$, find f ⁻¹ (x). (b) y ts have x & y nu of 1 st is 56 more	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, c} B) × (B ∩ C) is equal to (a) {(a, d), (c, d)} (c) {(c, a), (d, a)}	on set of Real nu $(x, y) \in \mathbb{R}$ then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then (A – (b, d)} '(x) = 4x +	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly $\frac{1}{2}$, find f ⁻¹ (x). (b) y ts have x & y nu of 1 st is 56 more e of x & y is:	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence (c) $\frac{y}{y-1}$ (c) $\frac{y}{y-1}$	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total b. of subsets	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If $A = \{a, b, c\}, B = \{b, c, d\}$ $B \times (B \cap C)$ is equal to (a) $\{(a, d), (c, d)\}$ (c) $\{(c, a), (d, a)\}$ Q106. If $f(x): N - R$ is a funct $3, \forall x \in N$, then $f^{-1}(x)$ is	on set of Real nu $(x, y) \in \mathbb{R}$ then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then (A – (b, d)} '(x) = 4x +	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly $\frac{-1}{x}$, find f ⁻¹ (x). (b) y ts have x & y nu of 1 st is 56 more	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence (c) $\frac{y}{y-1}$ umber of element	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If $A = \{a, b, c\}, B = \{b, c, d\}$ $B \times (B \cap C)$ is equal to (a) $\{(a, d), (c, d)\}$ (c) $\{(c, a), (d, a)\}$ Q106. If $f(x): N - R$ is a funct $3, \forall x \in N$, then $f^{-1}(x)$ is	on set of Real nu $(x, y) \in \mathbb{R}$ then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then (A – (b, d)} '(x) = 4x +	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$,6} It is a: Transitive ly $\frac{1}{7}$, find f ⁻¹ (x). (b) y ts have x & y nu of 1 st is 56 more e of x & y is:	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence (c) $\frac{y}{y-1}$ (c) $\frac{y}{y-1}$	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total b. of subsets	Q104. If R be a relation defined $xRy - (x - y)$ is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If $A = \{a, b, c\}, B = \{b, c, d\}$ $B \times (B \cap C)$ is equal to (a) $\{(a, d), (c, d)\}$ (c) $\{(c, a), (d, a)\}$ Q106. If $f(x): N - R$ is a funct $3, \forall x \in N$, then $f^{-1}(x)$ is	on set of Real nu $(x, y) \in \mathbb{R}$ then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then (A – (b, d)} '(x) = 4x +	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x) \in A = \{2, 3, 4, 5, (x) \in A = \{2, 3$,6} It is a: Transitive ly $\frac{-1}{y}$, find f ⁻¹ (x). (b) y ts have x & y nu of 1 st is 56 more e of x & y is: (b) 4 & 2	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence (c) $\frac{y}{y-1}$ mber of element than the total no (c) 2 & 4	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total b. of subsets (d) 3 & 4	Q104. If R be a relation defined xRy – (x – y) is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, c} B) × (B ∩ C) is equal to (a) {(a, d), (c, d)} (c) {(c, a), (d, a)} Q106. If f(x): N – R is a funct 3, $\forall x \in N$, then f ⁻¹ (x) is (a) 4 + $\frac{x+3}{4}$ (b) $\frac{x+3}{4}$	on set of Real nu (x, y, \in R then related d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	tion R is: then $(A - (b, d))$ $f(x) = 4x + (d) \frac{3x+3}{4}$	
(c) $1 - \frac{1}{x}$ June 2022 Q94. $f(x) = \{(2, x), (x), (x), (x), (x), (x), (x), (x),$	(6) It is a: Transitive ly $\frac{-1}{y}$, find $f^{-1}(x)$. (b) y ts have x & y nu of 1 st is 56 more e of x & y is: (b) 4 & 2 11134 8	(b) $1 - x$ (d) $\frac{1}{x} - 1$ (5,5); (6,6)} be a (b) Reflexive & (d) Equivalence (c) $\frac{y}{y-1}$ (c) $\frac{y}{y-1}$	Symmetric relation (d) $\frac{y}{1-y}$ ts. The total b. of subsets (d) 3 & 4 34 Pag	Q104. If R be a relation defined xRy – (x – y) is divisible by 5" \forall (a) Equivalence (b) Anti symmetric (c) Symmetric but not transitive (d) Symmetric but not reflexive Q105. If A = {a, b, c}, B = {b, c, c} B) × (B ∩ C) is equal to (a) {(a, d), (c, d)} (c) {(c, a), (d, a)} Q106. If f(x): N – R is a funct 3, $\forall x \in N$, then f ⁻¹ (x) is (a) 4 + $\frac{x+3}{4}$ (b) $\frac{x+3}{4}$	on set of Real nu $(x, y) \in \mathbb{R}$ then relative d, $\& C = \{a, d, c\}, (b) \{(a, c), (a, d)\}$ (d) $\{(a, c), (a, d), (c), (c), (c), (c), (c), (c), (c), (c$	then $(A - (b, d))$ $(x) = 4x + (d) \frac{3x+3}{4}$	

LAST 38 EXAMS PYQs By capranav chandak Differential Calculus

TO BUY HARDCOPY OF PYQs

SCAN ME

Differential Calculus - PYQs

Nov 2006			O12. If y = 1 +	$\chi + \frac{x^2}{2!} + \frac{x^3}{2!} + \dots$	$+\frac{x^{n}}{2}+$ the	$en v. \frac{dy}{dt} =$
Q1. The slope of the	e tangent at the point (2	2, -2) to the curve	(a) 1	(b) 1	(c) 0	(d) None
$x^2 + xy + y^2 - 4 = 0$ is					(0) 0	
(a) 0 (b)	1 (c) -1	(d) None	Feb 2008			
No. 10. 10. 10. 10. 10.				e of the tangent t	r_{0} the curve $v = r_{0}$	$\sqrt{4-x^2}$ at
Q2. The derivative of				re the ordinate a		
(a) 1+2 log x	(b) 2 log x		(a) -1	(b) 1	(c) 0	(d) None
(c) x (1 + 2 log x)	(d) None d	of these				
Feb 2007			June 2008			
	then dy :		Q14. Differenti	ate e ^(x^x) :		
Q3. If $x = y \log (xy)$,			(a) (1 + log x)		(b) x ^x (1 + log >	<)
(a) $\frac{x+y}{x(1+\log xy)}$	(b) $\frac{x-y}{x(1+\log x)}$	(xy)	(c) $e^{(x^x)}$ (1 + lo	g x)x×	(d) e ^(x^x) (1 + lo	g x)
(c) $\frac{x+y}{x(\log x + \log y)}$	(d) $\frac{x-y}{x(\log x + y)}$					
x (10gx + 10gy)	x (logx +	logy)	Q15. If x ^m y ⁿ =	$(x + y)^{m + n}$, then	find $\frac{dy}{dx}$:	
O If y = 2y = ⁴ the	d^2y , y dy	_		(b) $\frac{y}{x}$	(c) xy	(d) None
A	en x ² $\frac{d^2y}{dx^2}$ + X $\frac{dy}{dx}$ - y yields		y y	(b) x	(0) //y	
(a) 3 (b)	1 (c) 0	(d) 4	Dec 2008			
Mar. 2007				n× xª then find f '(V)	
May 2007	' (1) = 10, then the valu	o of kic :				1
(a) 10 (b)		(d) None	(a) f (x) [a + log		(b) f (x) $\left[\frac{a}{x} - \log \right]$	ga
	-10 (C) 1/10	(d) None	(c) f (x) $\left[\frac{a}{x} - lo\right]$	g a	(d) f (x) [a + x l	og a]
00.0	dy.					
	$5;y = t^2 - 2$, then $\frac{dy}{dx}$ is ca		June 2009			
(a) t (b)	1/t (c) 1/t	(d) None	Q17. If $x^3y^2 =$	$(x - y)^5$. Find $\frac{dy}{dx}$	at (1,2).	
			(a) -7/9	(b) 7/9	(c) 9/7	(d) -9/7
Aug 2007	V					
Q7. If $x^y = y^x$, then $\frac{d}{d}$	**		Dec 2009			
(a) $\frac{x (x \log y - y)}{y (y \log x - x)}$	(b) $\frac{x (y \log x)}{y (x \log y)}$	$\frac{-\mathbf{x}}{-\mathbf{y}}$	Q18. $x = 2t + 5$	5 and $y = t^2 - 5$,	then $\frac{dy}{dy} = ?$	
(c) $\frac{y(x \log y - y)}{x(y \log x - x)}$	(d) None d		(a) t		(c) 1/t	(d) 0
$(y \log x - x)$						
	dv.		Q19. $x = at^2 y$	$= 2 \text{ at}, \frac{dy}{dt} = ?$		
	$x + y = 5$, then $\frac{dy}{dx}$ at x=1		(a) 1/t	(b) -1/t	(c) t	(d) None
(a) 4/3 (b)	-5/4 (c) 4/5	(d) -4/3			(0) 0	
			O20. Find the s	second derivative	e of $y = \sqrt{x+1}$	
Nov 2007			(a) $\frac{1}{2}(x+1)^{-1}$		(b) $-1/4(x+1)$	$)^{-3/2}$
Q9. If $y = (x + \sqrt{x^2})$	$(+ m^2)^n$ then $\frac{dy}{dx} =:$		(c) $1/4(x+1)^{-1}$		(d) None of the	0.
(a) $\frac{ny}{\sqrt{x^2+m^2}}$	(b) n y		15 1			
$\frac{\sqrt{x^2 + m^2}}{\sqrt{x^2 + m^2}}$	(d) None		June 2010			
$\sqrt{x^2+m^2}$			Q21. If $x^2 + y^2$	= 4 then		
	a dy		(a) $y \frac{d^2 y}{dx^2} - (2 \frac{dy}{dx^2})$	$\left(\frac{1}{2}\right)^{2} + 1 = 0$	(b) $y \frac{d^2 y}{dx^2} + (\frac{dy}{dx})^2$	$^{2} + 1 = 0$
Q10. If $xy (x - y) = 0$	CATE		ux ux		ux (ux)	-
(a) $\frac{y(2x-y)}{x(2y-x)}$	(b) $\frac{x(2x-y)}{y(2y-x)}$	<u>)</u>	(c) $y \frac{1}{dx^2} - \left(\frac{1}{dx}\right)$	$^{2}-1=0$	(a) $y \frac{1}{dx^2} + 2 \left(\frac{3}{dx}\right)$	() + 1 = 0
(c) $\frac{y(2y-x)}{x(2x-y)}$	(d) None d		Designation			
x (2x - y)			Dec 2010	function for the	production of	v upite of -
	0			function for the given by $C(x) = 2$		
Q11. If $y = \sqrt{x}^{vx}$	then $\frac{dy}{dx}$ is equal to:			e minimum wher		
(a) $\frac{y^2}{\log x}$ (b)	$\frac{y^2}{2-y\log x}$ (c) $\frac{y^2}{x(2-y\log x)}$	(d) None	(a) 3	(b) 2	(c) 1	(d) 4
logx	2-ylogx x(2-ylog	x) (,				
Dagagette		Dog Dog	e 55		D 0 D	ta
	134 888811	ay ay			Revision & Prac	auce ression -

www.pranavchandak.com

Study from the BEST

Revision & Practice Session 🥆

🔼 CA Pranav Chandak 🧕

Differential Calculus - PYQs

June 2011		1	O33 If $x = \log t$	$t, y = e^t, then \frac{dy}{dx}$		
Q23. If $f(x) = {}^{x}C_{3}$; then $f'(1) =$?			(b) t.e ^t	(c) - 1/t2	(d) None
(a) $\frac{1}{6}$ (b) $\frac{-1}{6}$			(a) 1/t	(b) i.e.	(C) - 1/12	(d) None
6	6 6		June 2014			
Q24. If $f'(x) = 3x^2 - \frac{2}{x^3}$, $f(1) = 0$	& f(x) =		Q34. If $y = ae^{nx}$	+ be ^{-nx} , then $\frac{d^2}{dx}$	$\frac{y}{y^2} = $	5
(a) $\frac{x^3}{2} - x^2 - 2$	(b) $x^3 + x^2 + 2$		(a) n ² y	(b) -n ² y	(c) ny	(d) None
(c) $x^3 + x^{-2} - 2$ (d) Nor	ne of these.					
			Dec 2014	23		
Dec 2011			Q35. If y = 1 + x	$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	$+\frac{x^{-}}{n}$ then $\frac{dy}{dx}$ -	y =
Q25. $\frac{d}{dx} [2^{\log_2 x}] =$			(a) 1	(b) 0	(c) 2	(d) -1
(a) 1 (b) 0 (c)	$1/2$ (d) $2^{x} \cdot \log_{2}$	x	June 2015			
d ² V				$(x + y)^{p+q}$, then $\frac{1}{2}$	^{1y} is equal to	
Q26. If $Y = X^x$ then $\frac{d^2Y}{dx^2} =$					40	
(a) $\frac{dy}{dx}(1 + \log x) + y\frac{d}{dx}(1 + \log x)$	x)		(a) $\frac{q}{p}$	(b) $\frac{x}{y}$	(C) - x	(d) <u>p</u>
(b) $\frac{dy}{dx}(1 + \log x) + \frac{d}{dx}(1 + \log x)$)		007 16 99	dy dy		
(c) $\frac{dy}{dx}(1 + \log x) - y\frac{d}{dx}(1 + \log x)$	x)		Q37. If $e^{xy} - 4x$	$y = 4$ then $\frac{dy}{dx} = \frac{1}{2}$	X	- n - x
(d) $\frac{dy}{dx}(1 + \log x) - \frac{d}{dx}(1 + \log x)$			(a) $\frac{y}{x}$	(b) $\frac{-y}{x}$	(c) $\frac{x}{y}$	(d) $\frac{-x}{y}$
dx dx dx dx dx dx dx	1		-			
June 2012			Dec 2015			du
Q27. If $x = ct$, $y = c/t$, then $\frac{dy}{dx}$ is	equal to:			$+5t^{3}+2t^{2}+t+$		u
	(c) -1/t2 (d) N	one	(a) 0	(b) 1	(c) 2	(d) 5
			039 Slope of t	angent to the cu	$y = \frac{x-1}{x-1}$ at x	r = 2 is:
Q28. If $y = e^{a \log x} + e^{x \log a}$, then	$\frac{dy}{dx} =$				A 1 2	
(a) $x^a + a^x$	(b) $ax^{a-1} + a^x \log a$		(a) $\frac{16}{16}$	(b) $-\frac{3}{16}$	(C) $\frac{-}{4}$	(d) $-\frac{1}{4}$
(c) $ax^{a-1} + xa^{x-1}$	(d) $x^x + a^a$.		June 2016			
Dec 2012			_	- k the dy :	l he i	
	2. the velve of d ² y et .	uhinh	N	$\frac{x}{x}$, then $\frac{dy}{dx}$ is equa		
Q29. For the functions $y = x^3 - dy$	Sx, the value of $\frac{1}{dx^2}$ at v	WHICH	(a) $\frac{y}{x^2-1}$		(b) $\frac{y}{1-x^2}$	
$\frac{dy}{dx}$ is zero, is			(c) $\frac{y}{1+X^2}$		(d) $\frac{y}{y^2-1}$	
(a) ± 1 (b) ± 3	(c) ± 6 (d) N	one				
Q30. The equation of the tanger	nt to the curve, $f = x^3 - c^3$	2x +	Dec 2016			
3, at the point (2,7) is -				al Co-efficient of	$\log_e(\sqrt{x-1} +$	$\sqrt{x+1}$ with
(a) $y = 2x - 13$	(b) $y = 10x$		respect to x is: $\begin{pmatrix} 2 \end{pmatrix}$		(b) 1	
(c) $y = 10x - 13$	(d) $y = 10$		(a) $\frac{1}{2\sqrt{x^2-1}}$		(b) $\frac{1}{2\sqrt{x^2+1}}$	
$(5-4x^2)$, dy	· ·		(c) $\frac{1}{2(x^2-1)}$		(d) $\frac{1}{\sqrt{x-1}+\sqrt{x+1}}$	
Q31. If y = log $\left(\frac{5-4x^2}{3+5x^2}\right)$, then $\frac{dy}{dx} =$				(* 1)		
(a) $\frac{8}{4x-5} - \frac{10}{3+5x}$	(b) $(4x^2 - 5) - (3 + 5)$	x ²)	Q42. If $f(x) = 1$	$\log_{10}\left(\frac{x-1}{x+1}\right)$, then	n the value o	f x at which
(c) $\frac{8x}{4x^2-5} - \frac{10x}{3+5x^2}$ (d) $8x -$	- 10		f'(x) = 1, is	(b) 1	(a) 1 /2	
			(a) 0	(D) T	(c) $\pm \sqrt{3}$	(d) $\pm \sqrt{2}$
June 2013			June 2017			
Q32. If $y = \log_y x$, then $\frac{dy}{dx}$ is equ			Q43. Equation of	of the curve whi		
(a) $\frac{1}{x + \log y}$	(b) $\frac{1}{x + x \log y}$			slope 3x – 4 at		
(C) $\frac{1}{1+x\log y}$	(d) $\frac{1}{y + \log x}$		(a) $2y = 3x^2 - 4$ (c) $y = x^2 - 8x^2$		(b) $y = 6x^2 - (d) 2y = 3x^2 - (d) 2y = 3x^2$	
	, ç		(c) y = x - 0x		$(\alpha) \ 2y = 5x$	JA PU
8888111134 8	888111034	Page	e 56		Revision & Pro	utice Sension —
www.pranavcho		Stu	dy from ti	he BEST	CA Prana	av Chandak

Differential Calculus - PYQs

Q44. If $x = at^3 + $	$+ bt^2 - t \& y = a$	$t^2 - 2bt$, then $\frac{dy}{dt}$	at t = 0 is:	Q55. Differentiat	te x ^x w.r.t x.		
	(b) –2b			(a) $x^{x}(1 + \log x)$)	(b) y/x	
(0) 20	(0) 20	2b	2b	(c) -y/x		(d) $y + x^x \log x$	
Dec 2017				Dec 2020			
Q45. If $x^y = e^{x^-}$	$\frac{dy}{dx}$ is equa	l to:		Q56. If $y = x(x - x)$	- 1)(x – 2) then	dy/dx is:	
(a) $\frac{2\log x}{(1+\log x)^2}$	C. I.I.	(b) $\frac{\log x}{(1+\log x)}$		(a) -6x		(b) $3x^2 - 6x + 3$	2
((1.10g 11)	abaya	(c) $6x + 4$		(d) $3x^2 - 6x$	
(c) $\frac{\log x}{(1+\log x)^2}$		(d) None of the	above				12
	v v ² v ³	dy		Q57. The average			
	$\frac{x}{ 1} + \frac{x^2}{ 2} + \frac{x^3}{ 3} + \dots \infty$		l to:	where Q is quan	- R R		
(a) x	(b) y	(c) 1	(d) 0	(a) 42	(b) 36	(c) 66	(d) 130
		, dv		Jan 2021			
Q47. If $x = at^2$,	y = 2a then the v			Q58. The cost fu	nction of produ	ction is given by	$C(x) = \frac{x^3}{2} - \frac{x^3}{2}$
(a) 2	(b) 4	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$	$15x^2 + 36x$ when			
				The level of outp	out for which ma	arginal cost is mi	inimum and
	x ^x then ^{dy} is equ			the level of outp are given by, res		ie average cost i	is minimum
(a) log ex	(b) $\log \frac{e}{x}$	(c) $\log \frac{x}{e}$	(d) 1		(b) 10 & 12	(c) 12 & 15 (d	d) 15 & 10
					Contract Regist Contract		
June 2018	с	1		July 2021			
	function for the iven by $C(x) = 2$			Q59. In a market			
	minimum. When			they allocate. X rupees, is given			
(a) 3	(b) 2	(c) 1	(d) 4	shops should the			
				(a) 0	(b) 30	(c) 25	(d) 10
Dec 2018	a a dv					×3	
	$x^3, y = \frac{a}{t^2}$. Then $\frac{dy}{dx}$			Q60. Cost function			
(a) $\frac{-1}{t^6}$	(b) $\frac{-3a}{t^6}$	(c) $\frac{1}{3at^6}$	(d) None	& demand, funct x then marginal			
					(b) 571	(c) 676	(d) 875
Q51. xy = 1 the	$n y^2 + \frac{dy}{dx} = ?$						
(a) 1	(b) 0	(c) 2	(d) None	Q61. If $f(x) = 3x$	4 then $f^{1}(x) - 4$	$e^{x^3}fx + \left(\frac{1}{3}\right)f(0) - \frac{1}{3}f(0)$	$f^{1}(0) =:$
lupo 2010				(a) 0	(b) ex ²	(c) 1	(d) -1
June 2019 O52. If the give	n cost function o	f commodity is a	iven by C =				
Q52. If the given cost function of commodity is given by C = $150 \text{ x} - 5x^2 + \frac{x_3}{c}$, where C stands for cost and x stands for				Dec 2021 OS2 The cost for producing x units is $500 - 20x^2 + x^3/2$			
output, if the average cost is equal to the marginal cost then				Q62. The cost for producing x units is $500 - 20x^2 + x^3/3$. The marginal cost is minimum at x =			
the output $x = \frac{1}{2}$		(c) 15	(d) 20	1. The second	(b) 10	(c) 40	(d) 50
(a) 5	(b) 10	(c) 15	(d) 20				
053 If $2^{x} - 2^{y}$	$= 2^{x-y}$ then $\frac{dy}{dx}$ at	x = y = 2		Q63. If $y = \frac{x^4}{e^x}$ the	en $rac{\mathrm{d} y}{\mathrm{d} x}$ is equal to	:	
(a) 1	(b) 2	x - y - 2 (c) 4	(d) 5	(a) $x^{3}(4-x)/(e^{x})$ (c) $x^{2}(4-x)/e^{x}$) ²	(b) $x^3(4-x)/e^{3}$	x
	(0) 2	(0) न		(c) $x^2(4-x)/e^x$		(d) $x^{3}(4x-1)/6$	ex
Dec 2019					of a sector of a	listerer (f	the stand
Q54. $\frac{d}{dx}(x \cdot \log x)$	x)			Q64. The speed point) is given b			
(a) $x(1 + \log x)$		(b) 1 + log x		(of distance) at x			.9-
(c) $e^x x \cdot \log x$		(d) $x^2(\log x)$		(a) -1	(b) 0	(c) 1	(d) 2
1							
() () ()	1110/10	0001110	34 Pag	e 57		Revision & Prad	tion Comer
088881	11134 8	8881110	54 Tay		and the second se	Revenion & frad	ice Session J

www.pranavchandak.com Study from the BEST

CA Pranav Chandak 🔘

Differential Calculus - PYQs

June 2022 Q65. What will be $f(x)$ if $f'(x) =$ (a) $f(x) = \frac{10x^3}{3} + 2x^2 + 89$ (c) $f(x) = \frac{10x^3}{3} - 2x^2 + 89$			2 – x ² . When 'x' increases at the e of curve will: (b) Increase at 3units/s (d) Decrease at 3 units/s
Q66. The derivative of the functi (a) $\frac{1}{2\sqrt{x+\sqrt{x}}}$	$ (b) \ 1 + \frac{1}{2\sqrt{x}} $	Q72. If $xy = 1$ then $y^3 = dy$ (a) 1 (b) 0	r/dx is equal to: (c) -1 (d) 12
(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$	(d) None of these	Q73. If $y = \frac{x}{x+5}$, then $\frac{dx}{dy}$ is equivalent to $\frac{5}{2}$	
Dec 2022 Q67. Find the area under the cuthe limits 0 to 1?	urve $f(x) = x^2 + 5x + 3$	2 with (a) $\frac{5}{(1-y)^2}$ (b) $\frac{5}{(1+y)^2}$	(c) $\frac{3}{(1-y)^2}$ (d) $\frac{3}{(1+y)^2}$
(a) 3.833 (b) 4.388	(c) 4.833 (d) 3	.338	
		2x ³ -	
(c) $x = 3$ and $x = 2$ Q69. If $y = x^x$, then dy/dx at $x = (a) 0$ (b) 1			
Q70. If $x^5 + y^5 - 5xy = 0$ then $\frac{dy}{dx}$	<u>y</u> is:		
(a) $\frac{y+x^4}{x+y^4}$ (b) $\frac{y-x^4}{y^4-x}$	(c) $\frac{x-y^4}{x^1-y}$ (d) $\frac{x}{x^2}$	$\frac{+y^4}{4+y}$	
© 8888111134 8 www.pranavcho		Page 58 Study from the BES	Recition & Practice Session 7

LAST 38 EXAMS PYQ. By ca pranav chandak Integral Calculus

TO BUY HARDCOPY OF PYQs

SCAN ME

Click here

Integral Calculus - PYQs

(d) None

(d) None

(d) None

Nov 2006		O11 . The value	of $\int_0^1 \frac{dx}{(1+x)(2+x)}$ is:	
Q1. $\int_0^1 (e^x + e^{-x}) dx$ is :				
	(c) e + e ⁻¹ (d) None	(a) $\log \frac{1}{4}$	(b) $\log \frac{4}{3}$	(c) log 12
		Feb 2008		
Q2. $\int \frac{8x^2}{(x^3+2)^3} dx$ is equal to:			of $\int_2^3 f(5-x) dx$	$-\int_{a}^{3} f(x) dx$ is:
(a) $-\frac{4}{3}(x^3+2)^2 + C$	(b) $-\frac{4}{3}(x^3+2)^{-2}+C$	(a) 1		(c) -1
(c) $\frac{4}{2}(x^3 + 2)^2 + C$	(d) None of these			
· · 3 · · ·		Q13. $\int \frac{e^{\log e^x}}{x} dx$	k is:	
Feb 2007		(a) x ⁻¹ + C	(b) x + C	(c) x ² + C
Q3. Evaluate : $\int \frac{dx}{\sqrt{x^2+a^2}}$:				
VATA	(b) $\log(x + \sqrt{x^2 + a^2}) + C$	June 2008		
4	(d) $\frac{1}{2} \log (x \sqrt{x^2 + a^2}) + C$	Q14. Evaluate ∫		
	$\left(\alpha \right)_{2} \log \left(x \cdot x + \alpha \right) + \alpha$	(a) $\log\left(\frac{x-2}{x-1}\right)$ +	С	(b) log [(x- 2) (x
Q4. the value of. $\int_0^2 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}} dx$ is		(c) $\log\left(\frac{x-1}{x-2}\right) +$	c	(d) None
(a) 0 (b) 3	(c) 2 (d) 1			
		Q15. $\int_{1}^{4} (2x + 5)$)dx and the value	e is:
May 2007		(a) 10	(b) 3	(c) 30
Q5. The integral of $(e^{3x} + e^{-3x}) / $		Dec 2008	2	
(a) $\frac{e^{2x}}{2} + \frac{e^{-4x}}{4} + C$	(b) $\frac{e^{2x}}{2} - \frac{e^{-4x}}{4} + C$		lv.	
(c) $e^{2x} - e^{-4x} + C$	(d) None of these	Q16. $\int \frac{1}{x(x^5+1)} dx$		1 (25)
		(a) $\log\left(\frac{x^5}{x^5-1}\right) +$		(b) $\frac{1}{5}\log\left(\frac{x^5}{x^5+1}\right)$
Q6. ∫ x ² e ^{3x} dx is :	e ^{3x} xe ^{3x}	(c) $\frac{1}{3}\log\left(\frac{x^5}{x^5+1}\right)$ +	+ C	(d) $\frac{1}{3}\log\left(\frac{x^5+1}{x^5}\right)$
(a) $x^2 \cdot e^{3x} - 2xe^{3x} + 2e^{3x} + C$	(b) $\frac{c}{3} - \frac{xc}{9} + 2e^{3x} + C$			
(c) $\frac{x^2 \cdot e^{3x}}{3} - \frac{2x \cdot e^{3x}}{9} + \frac{2}{27} e^{3x} + C$	(d) None of these	June 2009		
			alue of $\int_3 x\sqrt{8}$ – (b) -1	
Q7. $\int_{1}^{2} \frac{2x}{1+x^2} dx$:		(a) 1	(0) -1	(c) 0
(a) $\log_e \frac{5}{2}$	(b) log _e 5 - log _e 2 + 1	Q18. Evaluate ∫	xe ^x dx	
(c) $\log_{e} \frac{2}{5}$	(d) None of these	(a) $e^{x}(x+1) + e^{x}(x+1)$		(b) $e^{x}(x-1) +$
		(c) $e^x + c$		(d) $x - e^{x} + c$
Aug 2007			.3	
Q8. The value of $\int_{1}^{e} \frac{(1+\log x)}{x} dx$ is:		Q19. Find $\int \frac{x}{(x^2-x)^2}$		
(a) ¹ / ₂ (b) 3/2	(c) 1 (d) 5/2		$x^{-2} + 1/2(x^2 + 1)^{-1}$	
3			$x^{-1} - 1/2(x^2 + 1)$ $x^{-2} - 1/2(x^2 + 1)$	
Q9. Find $\int \frac{x^3}{(x^2+1)^3} dx$:	~	(d) None of the		+ C
(a) $\frac{1}{4} \left[\frac{2x^2 + 1}{(x^2 + 1)^2} \right]$	(b) $\frac{1}{4} \left[\frac{2x^2 + 1}{(x^2 + 1)^2} \right]$	(,		
(c) $\frac{1}{2} \left[\frac{2x^2 + 1}{(x^2 + 1)^2} \right]$	(d) $-\frac{1}{2} \left[\frac{2x^2 + 1}{(x^2 + 1)^2} \right]$	Dec 2009		
$(2) _{2} [(x^{2}+1)^{2}]$	$(u) = 2 [(x^2+1)^2]$	Q20. $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$	$= \int dx$	
Nov 2007		(a) $2x^{1/2}\left(\frac{1}{3}x-\frac{1}{$	1)	(b) $2x^{1/2}\left(\frac{1}{3}x + \right)$
Q10. $\int \frac{1}{x^2 - a^2} dx$ is:		(c) $2\left(\frac{1}{3}x + x^{1/2}\right)$	/	(d) None of the
A = u	(b) $\log x - \frac{a}{x+a} + C$	(3	/	~~ 1
(c) $\frac{1}{2a} \text{Log} \left(\frac{x-a}{x+a} \right) + C$	(d) None of these			
2a = 3(x+a)				

(c) 30 (d) None (b) $\frac{1}{5} \log \left(\frac{x^5}{x^5 + 1} \right) + C$ (d) $\frac{1}{3} \log \left(\frac{x^5 + 1}{x^5} \right) + C$

(b) log [(x- 2) (x -1)] + C

 $\int_{3} x\sqrt{8-x^2} d_x$ (c) 0 (d) None

(b) $2x^{1/2}\left(\frac{1}{3}x+1\right)$ (d) None of these.

(b) $e^{x}(x-1) + c$

© 8888111134 | 8888111034 www.pranavchandak.com Page 59 **Study from the BEST**

Revision & Practice Session 🔼 CA Pranav Chandak 🤅

Integral Calculus - PYQs

Q21. $\int_{0}^{1} \left(\frac{1-x}{1+x}\right) dx$		Q30. $\int \frac{e^x}{(1+x)^3} dx - \int \frac{e^x}{2(1+x)^2} dx =$	
(a) 2log 2 – 1	(b) 4log 2 – 1	(a) 0	(b) $\frac{e^x}{2(1+x)^2} + c$
(c) 2log 2	(d) None of these		=(= · · · ·)
		(c) $-\frac{e^x}{2(1+x)^2} + c$	(d) $\frac{e^x}{(1+x)^2} + c$
June 2010			
Q22. Equal to $\int \frac{dx}{\sqrt{3x+4}-\sqrt{3x+1}}$		June 2012	
(a) $\frac{2}{27} \left[(3x+4)^{32} - (3x+1)^{3/2} \right]$	+ c	Q31. $\int_0^1 \frac{dx}{Qax+b(1-x)^2} =$	
(b) $\frac{2}{27} [(3x+4)^{3/2} + (3x+1)^{3/2}]$] + c	(a) a/b (b) b/a	(c) ab (d) 1/ab
(c) $\frac{2}{3} [(3x+4)^{3/2} - (3x+1)^{3/2}]$	+ c	Dec 2012	
(d) None of these.		$\mathbf{Q32.} \int 2^{3x} \cdot 3^{2x} \cdot 5^x \cdot dx = \underline{\qquad}$	
- 2 vdv		(a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log (720)} + c$	(b) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(360)} + c$
Q23. $\int_{1}^{2} \frac{x dx}{x^2 + 2} = $		(c) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(180)} + c$	(d) $\frac{2^{2x} \cdot 3^{2x} \cdot 5^{x}}{\log(90)} + c$
(a) $\log \sqrt{2}$	(b) $\log \sqrt{3}$	(c) $\frac{1}{\log(180)} + c$	$(u) - \frac{\log(90)}{\log(90)} + c$
(c) $\log \frac{1}{\sqrt{2}}$	(d) $\log \frac{1}{\sqrt{3}}$	June 2013	
		Q33. $\int_{1}^{2} \frac{(\log_{e} (ex))^{n}}{x} dx(n + -1)$ is	equal to:
Dec 2010			
Q24. $\int \frac{6x+4}{(x-2)(x-3)} dx$ is equal to		(a) $\left[\frac{(\log_e (2e))^{n+1}-1}{n+1}\right]$	(b) $\left[(\log_e (2e))^{(n+1)} + 1 \right]$
(a) $22\log(x-3) - 16(x-2)$ (b) $11\log(x-2) - 9(x-2)$		(c) $\frac{(\log_e (2e))^{n+1}}{n+1} - \frac{(\log_e 2)^{n+1}}{n+1}$	(d) None of these
(b) $11\log (x - 3) - 8(x - 2)$ (c) $22\log (x - 3) - 16\log (x - 2)$	2)		
(d) $22\log(x-3) - 10\log(x-2)$ (d) $22\log(x-3) + 16\log(x-2)$	~	$\mathbf{Q34.} \int 2^{3x} \cdot 3^{2x} \cdot 5^{x} \mathrm{dx} = \underline{\qquad}$	20. 20. 0
(a) ==rog (a = c) + ±orog (a =)		(a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(270)} + c$	(b) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(360)} + c$
Q25. $\int \frac{1}{x(1+\log x)^2} dx$ is equal to		(c) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(180)} + c$	(d) $\frac{2^{2x} \cdot 3^{2x} \cdot 5^{x}}{\log(90)} + c$
(a) $-\frac{1}{2(1+\log x)^2} + c$	(b) $\frac{1}{(1+\log x)} + c$	10g (180)	10g (90)
$(c) - \frac{1}{(1+\log x)^2} + c$	(d) None of these	Dec 2013	
$(c) = \frac{1+\log x}{(1+\log x)} + c$	(d) None of these	Q35 . ∫ (a) ^{2x} dx	
June 2011		(a) $\frac{a^{2x}}{2\log a}$ (b) $\frac{2 \cdot a^{2x}}{\log a}$ (c) $\frac{a^{2x} \cdot a^{2x}}{2}$	og a (d) None
Q26. Solve: $\int_{-1}^{1} (e^{x} - e^{-x}) dx$			
(a) 0 (b) 1	(c) 12 (d) None	June 2014	
		Q36. $\int_0^5 \frac{x^2 dx}{x^2 + (5-x)^2}$ is equal to	·
Q27. Solve: $\int \frac{(\log x)^2}{x^3} \cdot dx$		(a) 5 (b) $\frac{5}{2}$	(c) 1 (d) None
(a) $\frac{3}{2}(\log x)^3 + c$	(b) $\frac{1}{3}(\log x)^3 + c$		
(c) $\frac{1}{6}(\log x)^3 + c$	(d) $\frac{3}{7} (\log x)^3 + c$	Dec 2014	2
0		Q37. Value of definite integral	
June 2011	V	(a) 0 (b) ½	(c) 3/2 (d) 1
Q28. Given, $y = \int (e^{a \log x} + e^{x \log x})$	d^{a})dx; then $\frac{dy}{dx}$	June 2015	
(a) x ^a a ^x	(b) $x^a + a^x$	Q38. The value of $\int_0^{1/2} \frac{dx}{\sqrt{3-2x}}$ is	
(c) $ax^{x-1} + a^x \log a$	(d) None of the above.		$(h) 1 - \sqrt{2/2}$
Dec 2011		(a) 1	(b) $1 - \sqrt{3/2}$ (d) $\sqrt{2} - \sqrt{3}$
Dec 2011		(c) $\sqrt{3} - \sqrt{2}$	(a) $\sqrt{2} - \sqrt{3}$
Q29. $\int_{-1}^{1} \frac{ x }{x} dx =$		Q39. The value of $\int_0^2 x e^{x^2} dx$ is	
(a) -1 (b) 0	(c) 1 (d) 2	· · · · · · · · · · · · · · · · · · ·	$(c)(c/2) = 1$ $(d)^{1}(c^{4} - 1)$
		(a) 1 (b) e - 1	(c) $(e/2) - 1$ (d) $\frac{1}{2}(e^4 - 1)$

© 8888111134 | 8888111034 www.pranavchandak.com

Page 60 Study from the BEST Revision & Produce Section 7

Integral **Calculus** - PYOs

Dec 2015

Dec 2018 **Q40.** The value of $\int_{1}^{2} \frac{1-x}{1+x} dx$ is equal to: **Q50.** $\int x(x^2 + 4)^5 dx$ is equal to (a) $(x^{2} + 4)^{6} + c$ (c) $\frac{1}{6}(x^{2} + 4)^{6} + c$ (b) $\frac{1}{12}(x^2+4)^6 + c$ (b) $2\log \frac{3}{2} - 1$ (a) $\log \frac{3}{2} - 1$ (d) $\frac{1}{2}\log \frac{1}{2} - 1$ (d) None of the above (c) $\frac{1}{2} \log \frac{3}{2} - 1$ **Q51.** $\int_{-1}^{3} (1 + 3x - x^3) dx$ June 2016 (a) -4 (c) 3 **Q41.** $\int_0^2 \frac{3^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to _____ (b) 4 (d) -3 (b) 0 (c) $\frac{2}{\log_3 3} \left(3^{\sqrt{2}} - 1 \right)$ (d) $\frac{3^{\sqrt{2}}}{\sqrt{2}}$ June 2019 (a) $\frac{2\sqrt{2}}{\log^3}$ Q52. $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx =$ (a) 1 (b) 12 Q42. $\int \frac{x}{(x^2+1)(x^2+2)} dx$ is equal to _____ (b) ½ (c) 2 (d) 3/2(b) $\frac{1}{2} \log \left(\frac{x^2 + 1}{x^2 + 2} \right) + c$ (a) $\log \left(\frac{x^2+1}{x^2+2}\right) + c$ **Q53.** $\int e^{x}(x^{2} + 2x)dx =$ (c) $\frac{1}{2} \log \left(\frac{x^2 + 2}{x^2 + 1} \right) + c$ (d) $-\log \left| \frac{x^2 + 1}{x^2 + 1} \right| + c$ (a) $x^{x} \cdot e^{2} + c$ (b) $e^x \cdot x + c$ (c) $-e^{x}x^{2} + c$ (d) $-e^x \cdot x + c$ Dec 2016 **Q54.** $\int \log (a^x) dx =$ Q43. $\int_{1}^{e} \frac{e^{x}(x\log_{e} x+1)}{x} dx$ is equal to: (a) e + 1 (b) e^{e} (c) (a) $\log a\left(\frac{x^2}{2}\right) + c$ (b) log a $\left(\frac{x}{2}\right)$ + c (c) e - 1 (d) $e^x + 1$ (c) xlog $a^x - x + c$ (d) $x \log a^{x} + c$ June 2017 Dec 2019 **Q44.** The value of $\int_{1}^{2} \frac{x}{x^{2}+1} dx$ is equal to: **O55.** $\int^{a^{x}} dx$. (a) $\log_{e}\left(\frac{5}{2}\right)$ (b) $\frac{1}{2}\log_{e}\left(\frac{5}{2}\right)$ (a) $x^{x}(1 + \log x)$ (b) $1 + \log x$ (d) None of these (c) $\log_{e}(5) - \log_{e} 2 + c$ (d) $\frac{a^x}{\log a} + c$ (c) $x \cdot \log x$ Dec 2017 **Q56.** $\int \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}} d\mathbf{x}$. **Q45.** Value of $\int^{e^x} [f(x) + f'(x)] dx =$ _____ (a) $e^{x}(x-1) + c$ (b) $e^x \cdot x + e^x + c$ (b) $e^{x}f'(x) + c$ (a) $e^{x}f(x) + c$ (c) $\log x + e^x + c$ (d) $\frac{x^2}{e^x} + c$ (d) $e^{x} \left[\frac{f(x)}{f'(x)} \right] + c$ (c) $\left[\frac{f'(x)}{f(x)}\right] + c$ **Q57.** $\int (4x + 3)^6 dx$. Dec 2017 (a) $\frac{1}{28}(4x+3)^7 + c$ (b) $\frac{1}{7}(4x+3)^7 + c$ **Q46.** $\int \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}^2} d\mathbf{x}$ is equal to: (a) $2e^{x^2+c}$ (b) e^{x^2+c} (c) $\frac{1}{2} \cdot e^{x^2+c}$ (d) $xe^{x^2} + c$ (c) $\frac{1}{6}(4x+3)^6 + c$ (d) $\frac{4x}{5} + \frac{3}{5} + c$ **Q58.** $\int_{-1}^{\dagger} (2x^2 - x^3) dx.$ June 2018 **Q47.** Value of $\int_{1}^{2} \frac{1-x}{1+x} dx$ is equal to: (a) 4/3 (b) 1 (c) 2 (d) 2/3 (b) $2\log \frac{3}{2} - 1$ (a) $\log \frac{3}{2} - 1$ **Q58.** $\int x^2 \cdot e^x dx$. (d) $\frac{1}{2}\log \frac{2}{2} - 1$ (c) $\frac{1}{2}\log \frac{3}{2} - x$ (a) $2x \cdot e^x$ (b) $e^{x}(x^{2} - 2x)$ (c) $x^2 \cdot e^x - e^x \cdot (2x) + 2$ (d) $e^{x}(x-1)$ **Q48.** $\int_0^2 \frac{3^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to Dec 2020 (c) $\frac{2(3\sqrt{2}-1)}{\log_6 3}$ (d) $\frac{3\sqrt{2}}{\sqrt{2}}$ (a) $\frac{2\sqrt{2}}{\log_e 3}$ (b) 0 **Q59.** $\int \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}} d\mathbf{x}$ is equal (b) $e^{x}(x+2) + c$ (a) $e^{x}(x+1) + c$ **Q49.** The value of $\int_0^2 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}} dx$ is: (c) $e^{x}(x-1) + c$ (d) None (b) 3 (a) 0 (c) 2 (d) 1

© 8888111134 | 8888111034 Page 61 www.pranavchandak.com

Study from the BEST

Revision & Practice Session 🔼 CA Pranav Chandak 🕻

Integral Calculus - PYQs

Q60. $\int e^{x} (x \log x + 1) \cdot x^{-1} dx$ is	equal to		June 2022	
(a) $e^x + c$	(b) $e^{x}log x + c$		Q66. $\int (\log x)^2 dx$ is equal to:	
(c) $\frac{e^x}{\log x} + c$	(d) $e^{x}(\log x)^{2} +$	c	(a) $x(\log x)^2 - 2x\log x + 2x + 2x + 2x + 2x + 2x + 2x + 2$	
			(b) $x(\log x)^2 + 2x\log x - 2x +$ (c) $x(\log x)^2 - 2x\log x - x + c$	c
Q61. $\int_{2}^{8} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{10-x}} dx$ is equal to			(c) $x(\log x)^2 - 2x\log x - x + c$ (d) None	
(a) 4 (b) 3	(c) 2	(d) None	(d) None	
		(d) None	Dec 2022	
Jan 2021			Q67. $\int (2x - 3)^5 dx$ is:	
Q62. $\int_{1}^{2} e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx =$			(a) $\frac{(2x-3)^6}{6}$ (b) $\frac{(2x-3)^6}{2}$	(c) $\frac{(2x-3)^6}{12}$ (d) $\frac{(2x-3)^6}{3}$
(a) $e\left(\frac{e}{2}-1\right)$	(b) e (e-1)		6 7 2	12
(c) a $\binom{2}{2}$	(d) $e^2(e - i)$		Q68. $\int_{2}^{4} \frac{x dx}{x^{2}+1}$ is:	
	$(\mathbf{u}) \in (\mathbf{c} - \mathbf{i})$		(a) $\frac{1}{2}\log\left(\frac{17}{5}\right)$	(b) $2\log\left(\frac{17}{5}\right)$
July 2021			4 (3)	< 3 /
Q63. The value of $\int_{-2}^{2} f(x) dx$	lx, where f(x)	$= 1 + n, x \le$	(c) $\frac{1}{2}\log\left(\frac{5}{17}\right)$	(d) $2\log\left(\frac{5}{17}\right)$
$0, f(x) = 1 - 2x, n \ge 0$ is:				
(a) 20 (b) -2	(c) -4	(d) 0	June 2023	1
			Q69. Evaluate the integral $\int \frac{1}{(x)}$	$\frac{1}{(-1)(y-2)}$ dx :
Dec 2021	1 /5 /2 22		(a) $\log \frac{(x-2)}{(x-1)} + c$ (b) $\log \frac{1}{2}$	Q(x-2)(x-1).+c
Q64. Integrate with respect to x (a) $-1/\log x + k$	(b) $1/\log x + k$			g Q(x-2)(x+1).+c
(a) $-1/\log x + \kappa$ (c) $\log x$	(d) $x + k$		$(c) \log_{(x-2)} (c-2)$	$\int Q(x - 2)(x + 1) + C$
	(0) X			
June 2022				
Q65. $\int_0^1 \int xe^x dx$ is equal to:				
(a) 0 (b) 2	(c) 1	(d) 3		
			7	
		2		
	-107			
		Dee	o 62	
S888111134 8			e 62	Revision & Praetice Session \neg
www.pranavcho	indak.co	m Stu	dy from the BEST	CA Pranav Chandak

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK

Stațistical Description of Data

TO BUY HARDCOPY OF PYQs

PYQs - Statistical Description of Data

Nov 2006

Q1. Quickest method to collect primary data:

- (a) Personal Interview
- (c) Mailed Questionnaire
- (b) Indirect Interview (d) Telephonic Interview

Q2. Which of the following statement is true?

(a) Statistics is derived from the French word 'Statistic

- (b) Statistics is derived from the Italian word 'Statista'.
- (c) Statistics is derived from the Latin word 'Statistique'.
- (d) None of these.

O3. Following data relates to the incomes of 90 persons:

Income in Rs.:	1500-	2000-	2500-	3000-
	1999	2499 2999		3499
No. of Persons:	13	32 20		25
What is the % of	f persons e	arning mor	e than Rs. 2	2,500?
(a) 45	(b) 50	(c) 52	2	(d) 55

Feb 2007

Q4. In tabulation, source of data is shown in: (b) Footnote (a) Stub (c) Caption (d) None

Q5. Divided bar chart is good for:

(a) Comparing various components of a variable

- (b) Relating the different components to the whole.
- (c) (a) and (b) (d) (a) or (b)

May 2007

Q6. Relative frequency for a particular class lies between: (b) -1 & 1 (a) 0 & 1 (c) -1 & 0 (d) None

Q7. Find the number of observations between 350 and 400 from the following' data:

Value:		> 200	> 350	> 400	> 450
No.	of	48	25	12	0
observation	ons:		_		j.
(a) 13		(b) 15	(c) 17		(d) 19

Q8. When width of all classes is same, frequency polygon has not the same area as the Histogram: (a) False

(b) True (c) Both (d) None

Q9. The graphical representation of a cumulative frequency distribution is called: (d) None (c) Both

(a) Histogram (b) Ogive

Aug 2007

Q10. A table has parts.

(a) Four (b) Two

(c) Five (d) None

Q11. Cost of sugar in a month under heads raw materials, labour, direct production & others were 12, 20, 35 & 23 units respectively. What is the difference between central angles for the largest & smallest components of the cost of sugar? (d) 92° (a) 72° (b) 48° (c) 56°

Q12. Frequency density corresponding to a class interval is the ratio of:

- (a) Class Frequency to the Total Frequency
- (b) Class Frequency to the Class Length
- (c) Class Length to the Class Frequency
- (d) Class Frequency to the Cumulative Frequency.

Nov 2007

(a) Histogram

Q13. In order to compare two or more related series, we consider:

(a) Multiple Bar Chart (c) (a) or (b)

(b) Grouped Bar Chart (d) (a) and (b)

Q14. An area diagram is:

(b) Ogive (c) Frequency Polygon (d) None of these

Q15. Most extreme values which would ever be included in a class interval are called:

(a) Class Interval	(b) Class Limits
(c) Class Boundaries	(d) None of these.

Q16. In 2000, out of total of 1,750 workers of a factory, 1,200 were members of a trade union. Number of women employed was 200 of which 175 did not belong to a trade union. In 2004, there were 1,800 employees who belong to a trade union & 50 who did not belong to trade union. Of all the employees in 2004, 300 were women of whom only 8 did not belong to trade union. On basis of this information, ratio of female members of trade union in 2000 & 2004 is: (d) 25:292 (a) 292: 25 (b) 8: 175 (c) 175:8

Feb 2008

- Q17. The lower-class boundary is: (a) An upper limit to Lower Class Limit (b) A lower limit to Lower Class Limit
- (c) Both (a) & (b) (d) None of these
- Q18. Distribution of profits of a co. follow:
- (a) J shaped frequency curve
- (b) U shaped frequency curve
- (c) Bell shaped frequency curve
- (d) Any of these

Q19. Out of 1000 persons, 25% were industrial workers & the rest were agricultural workers. 300 persons enjoyed world cup matches on T.V. 30 per cent of the people who had not watched world cup matches were industrial workers. What is the number of agricultural workers who had enjoyed world cup matches on TV?

(a) 230 (b) 250 (c) 24	40 (d) 260
------------------------	------------

Q20. Median of a distribution can be obtained from;

- (a) Histogram (c) Less than type Ogives
- (b) Frequency Polygon (d) None of these

8888111134 | 8888111034 www.pranavchandak.com

Page 63 **Study from the BEST**

Revision & Practice Session 🔁 CA Pranav Chandak 🕻

PYQs - Statistical Description of Data

June 2008			type & more t	han type Ogiv	ves meet at a
Q21. In indirect oral investigation	on:	point known as:			
(a) Data is not capable of nume		(a) Mean	(b) Median	(c) Mode	(d) None
(b) Not possible or desirable to a		Dec 2009			
(c) Data is collected from the bo	ooks.		mensions of Bar	diagram Cub	a diagram Pie
(d) None of these		diagram in sequ		utagrani, cube	e utagrafii, rite
Q22. Circular diagrams are alwa	N/C'	(a) 1,3,2	(b) 2,1,3	(c) 2, 3, 1	(d) 3,2,1
(a) One - dimensional	(b) Two - dimensional				
(c) Three - dimensional	(d) Cartograms		elp of histogran		
		(a) Mean	(b) Median	(c) Mode	(d) Q1
Q23. Column headings of a tabl		Q34. Nationality	of a person is:		
(a) Body	(b) Stub	(a) Discrete vari		(b) An attribu	ito
(c) Box-head	(d) Caption	(c) Continuous		(d) None	ite
Q24. Some important sources o	f secondary data are:	(c) continuous (Variable		
(a) International and Governme		Q35. If we plot	t less than and	more than ty	pe frequency
(b) International and primary so			en the graph plo		
(c) Private and primary sources		(a) Histogram		(b) Frequency	
(d) Government sources		(c) Ogive		(d) None of t	hese
		June 2010			
Dec 2008			nary rules that	t should be	observed in
Q25. From following data find		classification	nary rules that	t should be	observed at
length is given as 5. 73, 72, 65, 4		(i) As far as poss	sible, the class sl	hould be of eq	ual width
(a) 6 (b) 5	(c) 7 (d) 8	(ii) The classes should be exhaustive			
Q26. Most appropriate diagram	to represent data relating to	(iii) The classes should be unambiguously defined.			
monthly expenditure on differen		Then which of t	he following is c	correct	
(a) Histogram	(b) Pie-diagram	(a) only (i) and ((b) only (ii) ar	
(c) Frequency polygon	(d) Line graph.	(c) only (i) and (iii)	(d) all (i), (ii) a	and (iii)
	Particul datas	027 Using Ogi	ve Curve, we car	dotormino	
Q27. Which of following is a sta (a) Ram is 50 years old.		(a) Median	(b) Quartile	(c) Both (d) N	one
(b) Height of Ram is 5'6" & of 1	Shvam & Hari is 5'3" & 5'4"	(u) riculari			one.
respectively.	Shyam & Hartis 55 & 54	Dec 2010			
(c) Height of ham is 5'6" & weig	ght is 90kg	Q38. Mode can	be obtained fro	m	
(d) Sale of A was more than B &	ι C.	(a) Frequency p	olygon.	(b) Histogram	
		(c) Ogive		(d) All of the	above
Q28. Sales of XYZ Ltd. for 4 mor	nths is:	O20 The date -	btained by the :	internet are	
Months Sales		(a) Primary data	btained by the i	(b) Secondary	v data
Jan. 10,000		(c) Both (a) and		(d) None of t	
Feb. 15,000			(-)	(sy none of t	
May 18,000			tical measure c		n the sample
The above data represents:			one have been t		
(a) Discrete (b) Continuous	(c) Individual (d) None	(a) estimate	(b) parameter	(c) statistic	(d) attribute.
luno 2000		June 2011			
June 2009 Q29. Mid values are also called			two curves of o	ogive intersect	, the point of
(a) Lower limit (b) Upper limit		intersection pro		5	Pressie al
(a) cover and (b) opper and	(s) class mark (a) None	(a) Q1	(b) Q2	(c) Q3	(d) Mode.
Q30. Which is not a two-dimens	sional figure?				
(a) Line Diagram	(b) Pie Diagram				
(c) Square Diagram	(d) Rectangle Diagram				
		I			

© 8888111134 | 8888111034 www.pranavchandak.com Page 64 Study from the BEST Revision & Prodice Session J

PYQs - Statistical Description of Data

	Q42. Frequency Density can be termed as: (a) Class frequency to the cumulative frequency					Dec 2012 Q51. What is a exclusive series?			
N 2 N	2			-		(a) In which both upper & lower limit are not included in			
	(b) Class frequency to the total frequency(c) Class frequency to the class length					class frequency.			
(d) Class length to the class frequency.						(b) In which lower limit is not included in class frequency.			
(a) class length to the class hequency.						(c) In which upper limit is not included in class frequency.			
Q43. Chronolo	gical cla	ssification	n of data	is classifie	d on the	(d) None of the above.			
basis of:									
(a) Attributes	(b) Cla	iss Interva	l (c) Tir	ne (d) Area	Q52. For data on frequency distribution of weights:			
Q44. Arrange	the follo	owing dir	nension v	wise: nie-	diagram	70, 73, 49, 57, 56, 44, 56, 71, 65, 62, 60, 50, 55, 49, 63 & 45 If we assume class length as 5, no. of class intervals =			
bar-diagram a				noc. pro	atagranı,	(a) 5 (b) 6 (c) 7 (d) 8			
(a) 1,2,3	(b) 3,1	,2	(c) 3,2,1	(d) 2, 1, 3				
						June 2013			
Dec 2011		- 20 - 20	ter estreme	data in		Q53. Pie diagram is used to represent the following data:			
Q45. Frequenc		1	=	1		Source Customs Excise Income Wealth			
Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	Tax Tax			
Cumulative		- 20	- 30	- 40	- 20	Revenue (in 120 180 240 180			
Frequency	5	13	28	34	38	million Rs.)			
(a) 5	(b) 28		(c) 15	(d) 13	The central angles in the pie diagram corresponding to income tax and wealth tax respectively:			
						(a) (120°, 90°) (b) (90°, 120°)			
Q46. The Graphical representation by which median is calculated is called				which m	edian is	(c) (60°, 120°) (d) (90°, 60°)			
(a) Ogive Curve (b) Frequency Curve				rve		Dec 2013			
(c) Line diagrar	m		(d) Histo	gram		Q54. Difference between maximum & minimum value of a			
Odd Maleich	é ales é	- Harrian		anne alter	and a set	given data is called			
Q47. Which c diagram?	of the f	ollowing	is not a	two-alm	ensional	(a) Width (b) Size (c) Range (d) Class			
(a) Square diag	gram		(b) Line o	diagram					
(c) Rectangular	diagrar	n	(d) Pie-c	hart		Q55. If class interval is $10 - 14,15 - 19,20 - 24$, then the first class is			
				- A.		(a) $10 - 15$ (b) $9.5 - 14.5$			
June 2012	-l				and a state of	(c) 10.5 – 15.5 (d) 9 – 15			
Q48. From whi partition value		nical repre	esentation	i, we can	calculate				
(a) Lorenz curv			(b) Ogive	e curve		Q56. Difference between upper & lower limit of class is			
(c) Histogram				of the ab	ove.	(a) Class Interval(b) Mid Value(c) Class boundary(d) Frequency			
						(c) Class boundary (d) Frequency			
Q49 . The data group of stude		elow refe	rs to the i	marks gai	ned by a	June 2014			
Marks		Palavi	Relay	Polou	Polour	Q57. There were 200 employees in an office in which 150			
Marks	Below 10	Below 20	Below 30	Below 40	Below 50	were married. Total male employees were 160 out of which			
No. of	15	38	65	84	100	120 were married. What was the number of female unmarried employees?			
Students				0.1	100	(a) 30 (b) 10 (c) 40 (d) 50			
The no. of stuc	lents get	tting mar	ks more t	nan 30 wo	ould be?				
(a) 50	(b) 53		(c) 35) 62	Q58. "The less than Ogive" is a:			
1	1					(a) U-Shaped Curve (b) J-Shaped Curve			
Q50. Cost of S labour, direct p						(c) S-Shaped (d) Bell Shaped Curve			
respectively. D									
smallest comp					<u> </u>				
(a) 92	(b) 72		(c) 48	(d) 56				
						Q59. Following data relates to marks of a group of students.			
88881	1113	24 2	8881	1103/	Pac	je 65 Revision & Praetice Section -			
						Nantano & Lumana Jerrano			

444494 www.pranavchandak.com

Study from the BEST

🔼 CA Pranav Chandak 🧕

PYQs - Statistical Description of Data

Marks	No. of Students	Q68. The numb	er of obse	rvations bet	ween 150 8	200 based
More than 70%	07	on the followin				
More than 60%	18	Value	>100	>150	>200	>250
More than 50%	40	No. of				
More than 40%	60	observations	76	63	28	05
More than 30%	75	(a) 46	(b) 35	(c) 2	0	(d) 23
More than 20%	100	(a) 40	(D) 55	(C) Z	0	(u) 25
How many students have got n	Party in the second	Q69. The numb	er of car a	ccidents in s	seven days	in a locality
(a) 60 (b) 82	(c) 40 (d) 53	are given below				
		No. of acciden		1 2 3		7
Q60. To draw Histogram, frequ	ency distribution should be	Frequency:		9 11 13		
(a) Inclusive type	(b) Exclusive type	No. of cases wh				
(c) Inclusive & Exclusive type	(d) None.	(a) 32	(b) 41	(c) 2	0	(d) 18
		Dec 2015				
Dec 2014		Q70. Most com	mon form	of diagram	natic repres	entation of
Q61. Most appropriate diagram outlay of India in different ecor		a grouped freq				and the second
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	togram	(a) Histogram	(b) Ogive	(c) B	oth	(d) None
(c) Line-Graph	(d) Frequency Polygon					
(-) e. april		Q71. Classificat				()) F
Q62. If fluctuations in observ		(a) Two	(b) Three	(c) C	ne	(d) Four
compared to size of the item, it	-	072 Chart that		rithm of var	iahlo is kno	wn ac
(a) Z chart	(b) Ogive curve	Q72. Chart that uses logarithm of variable is known as: (a) Ratio chart (b) Line chart				
(c) False base line	(d) Control chart	(c) Multiple line	chart	. ,	Component	line chart
O62 For constructing a histor	rom the close intervals of a	(c) ridicipie une	chart	(4) 6	omponent	tine chart
Q63. For constructing a histog frequency distribution must be		Q73. Find num		ervations be	tween 250	& 300 from
(a) equal (b) unequal	(c) a or b (d) none	the following d	ata:			
		Value more th	ian:	200 25	0 300	500
Q64. 100 persons are class		No. of observa	ation:	56 38	3 15	0
graduate/non-graduate classes		(a) 38	(b) 23	(c) 1	5	(d) None
(a) Cardinal data	(b) Ordinal data	200 45				
(c) Spatial Series data	(d) Temporal data	June 2016				
June 2015		Q74. Data colle		-		12
Q65. If we draw a perpendicu	lar on x-axis from point of	(a) Primary data			econdary d	ata
inter-section of both 'less that		(c) Sample data	1	(d) (d	a) or (b)	
curves we will get the value of		Dec 2016				
(a) mode (b) median	(c) AM (d) third quartile	Q75. In collecti	on of data	which of t	he followin	a interview
OFF Historym is used for	recontation of the following	methods:				5
Q66. Histogram is used for pl type of series	resentation of the following	(a) Personal inte	erview	(b) T	elephone ir	nterview
(a) Time series		(c) Published da	ata	(d) (a) and (b)	
(b) Continuous frequency distri	bution					
(c) Discrete frequency distribut		Q76. For cons				
(d) Individual observation		frequency distri (a) Equal.	bution mu (b) Unequ		or b	(d) None
		(a) Equal.	(b) Unequ	uat (C) a	010	(u) NOTE
Q67. Curve obtained by joining		Q77. Profits n	nade bv 1	XYZ Bank	which is a	blue-chip
are upper limits of the class inte corresponding cumulative freq		company in dif				1-
(a) Frequency Polygon	(b) Frequency curve	(a) An attribute		. ,	discrete va	
(c) Histogram	(d) Ogive.	(c) A continuou	s variable	(d) N	lone of the	se.
				1		
		Q78. Mode of p	presentatio	n data		
S8888111134 8	888111034 Pag	e 66		Revi	rion & Pract	ice Session —

Study from the BEST www.pranavchandak.com

Kevision & Fractice Session

🔽 CA Pranav Chandak 🧕

CA PRANAV CHANDAK	PYQs - Statistical Description of Data
(a) Textual presentation(b) Tabulation(c) Oral presentation(d) (a) and (b)	(a) AM (b) Median (c) Mode (d) None
June 2017Q79. If data represent costs spent on conducting an examination under various needs, then most suitable diagram will be:(a) Pie diagram(b) Frequency diagram(c) Bar diagram(d) Multiple bar diagram	 Q88. Data are said to be if the investigator himself is responsible for the collection of the data. (a) Primary data (b) Secondary data (c) Mixed of primary & secondary data (d) None of the above Q89. A suitable graph for representing the portioning of total into sub parts in statistics is:
Q80. Frequency density corresponding to class interval is ratio of:	(a) A Pie chart(b) A pictograph(c) An ogive(d) Histogram
 (a) Class frequency to the total frequency (b) Class frequency to the class length (c) Class length to the class frequency (d) Class frequency to the cumulative frequency 	Q90. The number of times a particular item occurs in a class interval is called its:(a) Mean(b) Frequency(c) Cumulative frequency(d) None of the above
Q81. The point of intersection of less than ogive and greaterthan ogive curve gives us:(a) Mean(b) Mode(c) Median(d) None	Q91. An ogive is a graphical representation of (a) Cumulative frequency distribution (b) A frequency distribution
Dec 2017 Q82. 'Stub' of a table is the (a) Left part of the table describing the columns (b) Right part of the table describing the columns (c) Right part of the table describing the rows	(c) Ungrouped data (d) None of the above Q92. For class 20-30. Cumulative frequency is: Class 0-10 10-20 20-30 30-40 40-50
(d) Left part of the table describing the rows.	Frequency 4 6 20 8 3
Q83. Frequency density corresponding to a class interval is the ratio of (a) Class frequency to total frequency	(a) 10 (b) 26 (c) 30 (d) 41 June 2019
(b) Class frequency to the class length (c) Class length to class frequency	Q93. Which of the following graph is suitable for cumulativefrequency distribution?(a) Ogive(b) Histogram(c) G.M(c) A.M
(d) Class frequency to the cumulative frequency.	Q94. Histogram can be shown as
June 2018 Q84. Frequency density is used in the construction of	(a) Ellipse (b) Rectangle (c) Hyperbola (d) Circle
 (a) Histogram (b) Ogive (c) Frequency polygon (d) None when the classes are of unequal width 	Q95.Series is continuous.(a) Open ended(b) Exclusive(c) Close ended(d) Unequal call intervals
Q85. Divided bar chart is considered for (a) Comparing different components of a variable (b) The relation of different components to the table	Q96. Ogive graph is used for finding (a) Mean (b) Mode (c) Median (d) None
(c) (a) or (b) (d) (a) and (b)	Q97. Histogram is used for finding (a) Mode (b) Mean (c) 1 st quartile (d) None
Dec 2018 Q86. The following frequency distribution is classified as X: 12 17 24 36 45 F: 2 5 3 8 9 (a) Continuous distribution (b) Discrete distribution (c) Cumulative frequency distribution (d) None	Dec 2019Q98. The graphical representation of cumulative frequency distribution is called.(a) Histogram(b) Historiagram(c) Ogive(d) None
Q87 . Histogram is useful to determine graphically value of	Dec 2020

© 8888111134 | 8888111034 www.pranavchandak.com

Page 67 Study from the BEST

Revition & Practice Section 7

PYQs - Statistical Description of Data

Q99. Average of salaries in a fa		nent	(a) Mode	(b) SD	(c) Median	(d) Mean
that average salary ₹ 47,000 is _	_					
(a) Descriptive statics	(b) Inferential		Q112. Left part	of a table prov	iding descriptio	on of rows is
(c) Detailed	(d) Undetailed		called.			
			(a) Caption	(b) Box – head	(c) Stub (d) Bo	dy
Q100. Statistics cannot deal wit	h data.					
(a) quantitative (b) qualitative	(c) textual (d) undeta	ailed	Q113. Mode ca	n be obtained fr	om	
			(a) Frequency p		(b) Histogram	
Q101. Sweetness of a sweet dis			(c) Ogive	,,,	(d) All of the a	bove
(a) Attribute	(b) Discrete variable		(-) - 9			
(c) Continuous variable	(d) Variable		0114 Most of (Commonly used	distributions pr	ovide a
			(a) Bell – Shape		(b) U Shaped	
Q102. Census reports are used a	as a source of data.		(c) J-Shaped Cu		(d) Mixed Curv	0
(a) Secondary	(b) Primary		(c) J-Shaped Co	live	(u) Mixed Curv	e
(c) Organize	(d) Confidential		OILE Which o	f the fellowing	id duitable for t	ha aranhical
				f the following of a Cumulative		
Q103. Types of cumulative frequ	uencies are:					button:
(a) 1 (b) 2	(c) 3 (d) 4			olygon		
			(c) Ogive		(d) Pie chart	
Q104. You are an auditor of a fi						
67,000 you stated to them that	the annual profit is ₹ 67,	000.		ss of sweet dish		
This is _ type of statistics.			(a) An Attribute		iscrete variable	
(a) Descriptive	(b) Detailed		(c) A continuou	s variable	(d) A variable	
(c) Non detailed	(d) Inferential					
			July 2021			
Q105. The are used usually		nine	Q117 mea	ans separating	items according	g to similar
relationship between two variak			characteristics &	& grouping into	various classes.	
(a) Bar Graph	(b) Pie Chart		(a) Classificatio	n (b) Edit	ting	
(c) Line Chart	(d) Scatter Plot		(c) Separation		(d) Tabulation	
Q106. When data are classified		rion,	Q118. In graph	ical representat	ion of data, ide	ographs are
then it is called classif			also called as:			
(a) quantitative	(b) qualitative		(a) Pictographs		(b) Asymmetry	graphs
(c) simple	(d) factored		(c) Symmetry g	raphs	(d) Pictograms	
2021						
Jan 2021			0119 . Graph t	hat uses vertica	l bars to repre	sent data is
Q107. A bar chart is drawn for			called a:			
(a) Continuous data	(b) Nominal data		(a) Line graph		(b) Scatter plo	t 📕
(c) Time series data			(c) Vertical grap	ohs	(d) Bar graph	
(d) Comparing different compo	nents					
			0120. In a c	graphical repres	sentation of d	ata, largest
Q108. A tabular presentation ca				e is 45 smalles		
(a) Continuous series data	(b) Nominal da			are 4 then which		A CONTRACT OF A
(c) Time series data for longer p	eriod (d) Primary dat	ta	(a) 45	(b) 5	(c) 20	(d) 7.5
					-	
Q109. A variable with qualitative		n as	Q121 . Frequence	cy density of a cl	ass interval is ra	tio of
(a) Quality Variable	(b) An attribute			ncy to the total		
(c) A discrete variable	(d) A continuous variat	ole	· · ·	to class frequer		
				ncy to the cumu		, 📕
Q110. Accuracy & consistency of	-	у.		of that class int		
(a) Scrutiny	(b) Internal Checking		class length.		ervat to the co	responding
(c) External Checking	(d) Double Checking		class length.			
			O122 Thora w	ere 200 employe	os in an offica i	n which 150
Q111. From a histogram one ca	nnot compute approxin	nate		otal male employe		
value of			were mariteu. I	otat mate empti	Syces were 100	
		Dag	0.68		D 0 D	-fz @
© 8888111134 8			e 68		Revision & Prai	
www.pranavcho	indak.com	Stu	dy from t	he BEST	🔼 CA Prana	v Chandak 🧿

	CHANDA	ĸ	PYQs - St Descriptio	atistical n of Data	
120 were married. What wunmarried employees? (a) 30 (b) 40	vas the number of fe		(a) 0.20, 0.50, 0.90 (c) 0.1875, 0.1667, 0.2083	(b) 0.70, 0.90, 1.10 (d) 0.90, 1.00, 0.80	
Dec 2021 Q124. In a study about the r Commerce and Science depar	ed (c) Sample (d) Second male and female studer tments of a college in 5	l <mark>ary</mark> nts of	 Q130. Multiple axis line chart is (a) There is more than one time (b) The units of the variables are (c) In any case. (d) If there are more than or variables are different. 	series e different.	
the following data were obtain			June 2022		
1995	2000		Q131. Less than 'o' give curve g		
70% female students	75% female students		(a) Mean (b) Median	(c) Mode (d) MD	
65% read Commerce	40% read Science		Q132. If a data collected from a	census Report. What type of	
20% of male students	50% of female student	S	data it is: -	Standards a set one is concerned (A 1 of the	
read Science	read Commerce		(a) Time series data	(b) Primary data	
3000 total No. of students	3600 total No. of stude		(c) Secondary data	(d) Geographical data	
After combining 1995 & 2000 commerce students to female the ratio of male commerce student, then	Science student & y de	notes	Q133. Sweetness is an (a) Attribute (b) Quantity	(c) Quality (d) None	
(a) $x = y$ (b) $x > y$	(c) x< y (d) x2	≥y	Q134. Which of following is not		
Q125. An Institute arranged its with different states. This arran	ngement of data is know	vn as	(a) Tabular form (c) Graphical form	(b) Textual form (d) Regression analysis	
(a) Temporal Data	(b) Geographical Data	a	Q135. Histogram can be drawn	from	
(c) Ordinal Data	(d) Cardinal Data.		(a) Class intervals are equal		
Q126. A student marks in five 86, 79, 90, 88 & 89. If we draw marks, then what will be Centi	a Pie chart to represent		(b) Class intervals are unequal(c) Frequency of class interval and(d) None	re equal	
(a) 103.2° (b) 75 °	(c) 105.6° (d) 94	4.8°	Q136. Which of following does dividing the data?	s not form characteristics in	
Q127. Ogive curves can't be u (a) Mean (b) Median	sed to determine (c) Mode (d) Ra	ange	(a) No. of auditors auditing Accounts. (b) No. of files audited by auditor		
Q128. The following data rela students:	te to the marks of a gro	oup of	(c) No. of files audited less than (d) Files less than, moderate tha	6, less than 5, less than 10	
Marks Below Below 10 20		elow 50	Q137. If the cumulative frequer which type of curve is formed	ncy are plotted on axis then	
No. of 15 38 students		L00	(a) Ogive (c) Histogram	(b) Frequency curve (d) Frequency Polygon	
How many students got marks	s more than 30?			(a) requency rolygon	
(a) 65 (b) 50	(c) 35 (d) 43	3	Q138. Which one is research da	ta?	
			(a) Discrete & Continuous		
Q129. Marks in Statistics of 48			(b) Qualitative & Quantitative		
56 10 54 38 48 51 39 26	21 43 12 22 12 17 36 19		(c) Processed & Unprocessed		
48 36 15 33	30 62 57 17		(d) Organize & unorganized da	ta	
5 17 45 46	43 55 57 38		Q139. Profitability of a blue-chi	p company is shown by –	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54 27 17 16 16 46 28 45		(a) bell shape curve	(b) U shake curve	
What are the frequency densit		s 30 –	(c) J shape curve	(d) Mixed curve	
39,40 - 49, 50 - 59 ?			Dec 2022		
© 8888111134 8	8888111034	Pag	e 69	Revision & Practice Session -	

www.pranavchandak.com Study from the BEST

🔼 CA Pranav Chandak 🧿

PYQs - Statistical Description of Data

Q140. Which one of following is a source of primary data?(a) Government Records(b) Research Articles(c) Journals(d) Questionnaire filled by Enumerators

Q141. Which is the left part of the table providing the description of the rows?

(a) Caption (b) Box head (c) Stub (d) Body

Q142. The suitable formula for computing the number of class intervals is:

(a) 3.322log N	(b) 0.322log N		
(c) 1 + 3.322logN	(d) 1 – 3.322log N		

Q143. Ogive for more than type and less than type distributions intersect at: (a) Mean (b) Median (c) Mode (d) Origin

June 23

Q144. The share holding pattern of ABC Ltd. b as follows:

Share holders	Promoter	FII	MF	Other	Public		
No. Of shares insomnious	120	25	20	20	15		
Difference between central angles of Promoters and public							

(a) 216 (b) 189 (c) 180 (d) 99

Q145. Following is data of the daily income of 86 person

Income is	500	1,000	1,500	2,000
₹	- 999	- 1,499	— 1,999	- 2,499
No. of Persons	15	28	36	7

 Percentage of person earning attests ₹ 1,500 per day?

 (a) 50% (b) 45%
 (c) 40%
 (d) 60%

Q146. For tabulation caption is:

- (a) The upper part of table
- (b) The lower part of table
- (c) The main part of table
- (d) Upper part of table that describes the rows & sub rows

Q147. The mode of presentation of data are:

- (a) Textual Diagrammatic and Internal presentation
- (b) Tabular, textual and Internal presentation
- (c) Textual, Tabular and Diagrammatic Presentation
- (d) Tabular, Diagrammatic and Internal Presentation
- Q148. What does an Ogive curve represent?
- (a) The cumulative frequency & class boundary
- (b) The frequency & class boundary
- (c) The frequency & cumulative frequency
- (d) The frequency & class interval

© 8888111134 | 8888111034 www.pranavchandak.com

Page 70 Study from the BEST

Reutsion & Practice Session – J CA Pranav Chandak O

LAST 38 EXAMS PYQs BY CA PRANAV CHANDAK Measures of Central Tendency & Dispersion

TO BUY HARDCOPY OF PYQs

PYQs - Central Tendency & Dispersion

		2.2	2.2
N	ov	20	06

NOV 2006				Aug 20			
Q1. If x and y are related by $x - y -10 = 0$ & mode of x is known to be 23, then the mode of y is:							
(a) 20	(b) 13	(c) 3	(d) 23	(a) 4.05			
a speed of 30 k	els at a speed of m/ hr. His avera (b) 24.5 km/hr	ge speed of jour	ney is:	Q13. dispers (a) Mec			
Q3. A student obtained the mean & SD of 100 observations as 40 & 5.1 respectively. It was later discovered that he had wrongly copied down an observation as 50 instead of 40. The correct standard deviation is:							
(a) 5	(b) 6	(c) 3	(d) 7	Divider (a) A			
Q4. For a moderately skewed distribution, quartile deviation and the standard deviation are related by:							

(a) S. D. = $\frac{2}{3}$ Q.D	(b) S. D. = $\frac{3}{4}$ Q.D
(c) S. D.= $\frac{4}{3}$ Q.D	(d) S. D.= $\frac{3}{2}$ Q.D

Q5. The median	of the data	13, 8, 11,6, 4,15,	2, 18, is :
(a) 5	(b) 8	(c) 11	(d) 9.5

Feb 2007

Q6. Sum of squares of deviations of a set of observations has smallest value, when the deviations are taken from their: (a) A.M. (b) H.M. (c) G.M. (d) None

Q7. If two samples of sizes 30 & 20 have means as 55 & 60 and variances as 16 & 25 respectively, then what would be the SD of combined sample size 50?

(a) 5.33 (b) 5.17 (c) 5.06 (d) 5

Q8. If two variables \times and y are related by 2x + 3y - 7 = 0 & mean & MD about mean of x are 1 & 0.3 respectively, then the co-efficient of MD of y about mean is:

(a) -5 (b) 4 (c) 12 (d) 50

May 2007

Q9. Which of the following result hold for a set of distinct positive observations? (a) A. M. \geq G. M. \geq H. M. (b) G. M. > A. M. > H. M.

(c) G. M. \geq A.M. \geq H. M. (d) A. M. > G. M. > H. M.

Q10. Measures of dispersion are called averages of _ order. (a) 1st (b) 2nd (c) 3rd (d) None tin.

Q11. For a set of	of 100 observat	(a) 14	(b) <mark>1</mark> 5			
4, sum of the c	leviations is -11					
these deviation	ns is 257 cm ² . C	Q21. Extrem	e values have	_		
(a) 41.13%	(b) 42.13%	(c) 40.13%	(d) None	(a) High	(b) low	

Study from the BEST

©8888111134 | 8888111034 www.pranavchandak.com

f x is	Aug 2007 Q12. If the A. M, & H.M. for two numbers are 5 & 3.2
	respectively then the G.M. will be: (a) 4.05 (b) 16 (c) 4 (d) 4,10
ns at	Q13. are used for measuring central tendency, dispersion & skewness:
one	(a) Median (b) Quartiles (c) Percentiles (d) Decile
tions e had	Q14. Out of companies A or B which is more consistent so far as the payment of dividend is concerned?
of 40.	Dividend paid by A: 5 9 6 12 15 10 8 10
	Dividend paid by B: 4 8 7 15 18 9 6 6
	(a) A (b) B (c) Both A & B (d) Neither A nor B
ation	Q15. What is the coefficient of range for
	Class Interval: 10-19 20 29 30-39 40-49 50-59
	Frequency: 11 25 16 7 3
	(a) 22 (b) 50 (c) 75.82 (d) 72.46
5	Nov 2007 Q16. Aeroplane flies from A to B at the rate of 500 km/hr and comes back from B to A at the rate of 700 km / hr. The
. 🤊	average speed of the aeroplane is:
tions their:	(a) 600 km / hr (b) 583.33 km / hr
	(c) $100\sqrt{35}$ km / hr (d) 620 km/hr.
& 60 ld be	Q17. For a moderately skewed distribution, which of the following relationship holds? (a) Mean - Median = 3 (Median - Mode) (b) Median - Mode = 3 (Mean - Median)
	(c) Mean - Mode = 3 (Mean - Median)
=0 & then	(d) Mean - Median = 3 (Mean - Mode)
	Q18 & are called ratio averages: (a) H. M. & G. M. (b) H. M. &A. M.
,	(a) H. M. & G. M. (b) H. M. &A. M. (c) A. M. & G. M. (d) None
stinct	Q19. A sample of 35 observations has the mean 80 and S.D. as 4. A second sample of 65 observations from the same
М.	population has mean 70 and S.D. 3. The S.D. of the
М.	combined sample is: (a) 5.85 (b) 5.58 (c) 10.23 (d) None
rder. one an as	Q20. If x and y are related as $3x - 4y = 20$ and the quartile deviation of x is 12, then the quartile deviation of y is:(a) 14(b) 15(c) 16(d) 9
es of	Q21. Extreme values have effect on mode.
one	(a) High (b) low (c) No (d) None
Pag	e 71 Review & Practice Section 7

🔼 CA Pranav Chandak 🧿

PYQs - Central Tendency & Dispersion

			6 40 6	and the second		D 2000			
					kers is Rs. workers is	Dec 2008			
	per month.		-			Q33. Mean & SD of a given set of observations is 1,500 & 400 respectively. If there is an increment of 100 in first year			
(a) 6,160	(b) 6		(c) 6,89		(d) 6,920		ation is hiked by		
(u) 0,100	(6) 0	,200	(0) 0,00	0	(u) 0,520	new mean & S		2070 th 2nd yet	ans, then the
Feb 2008						(a) 1920, 480	_	(b) 1920, 580	
and the second second second	oest measu	re of disp	ersion is:			(c) 1600,480		(d) 1600,400	<u> </u>
(a) QD	(b) N		(c) Rang	re	(d) SD	(c) 1000, 100		(u) 1000,100	· · · · ·
(u) QD				ge	(u) 50	034 If 5 is s	ubtracted from	each observati	on of some
Q24. Mear	n & SD of x	are a & b	respectiv	elv then	SD of $\frac{x-a}{a} =$		en its co-efficien		
							item then its co		
(a) a/b	(b) -	1	(c) 1		(d) ab	Find original co	pefficient of varia	ation.	
O2E Supp		lation A b	ac 100 ab	convotion	c 101 102	(a) 8%	(b) 7.5%(c) 4%	(d) No	one
					s 101, 102, servations				
					ice of two	June 2009			
	ns respectiv					Q35. The media	an of $x, \frac{x}{2}, \frac{x}{3}, \frac{x}{5}$ is 1	0. Find x where	x> 0
(a) 9/4	(b) 1		(c) 4/9		(d) 2/3	(a) 24	(b) 32	(c) 8	(d) 16
						(0) 24	(0) 52	(c) 0	(0) 10
June 2008						O36 Average	salary of 50 mer	was ₹80 but	it was found
Q26. If the	ere are two	o groups	with 75 a	nd 65 as	harmonic		of them were ₹ 4		
					Then the		k ₹ 82. Revised a		
combined	H.M. is giv	en by.				(a) 80	(b) 78.56	(c) 85.26	(d) 82.92
(a) 70	(b) 8	0	(c) 70.3	5	(d) 69.48				
						Q37. Inter Quartile Range is of Quartile Deviation.			
Q27. The (G.M. of 4, 6	& 8 is:				(a) Half	(b) Double		(d) Equal
(a) 4.77	(b) 5	.32	(c) 6.14		(d) 5.77				
						Q38. Sum of	squares of de	viation from r	mean of 10
Q28. The							250. Mean of t		
					tions have	efficient of vari	ation.		
				what is t	he S.D. for	(a) 10%	(b) 25%	(c) 50%	(d) 0%
the group		-							
(a) 2.03	(b) 4	. <mark>03</mark> (c) 8.0	3	(d) 9.33		Q39. If A be th	ne A.M. of two p	ositive unequal	quantities X
		· · · ·				and Y and G be	e their G.M., then		
Q29 . The c		lation for	the data	LS:	<u> </u>	(a) A < G	(b) $\mathbf{A} > \mathbf{G}$	(c) $A \leq G$	(d) $A \ge G$
X:	2	3	4	5	6				
ft	3	4	8	4	1	Dec 2009			
(a) ¼	(b) ¹ /	1/2	(c) 1		(d) 0	Q40. When me	an is 3.57 & moo	de is 2.13, media	an is
(-)	(-7 -				Tesh re	(a) 3.09	(b) 5.01	(c) 4.01	(d) None
O30. If X 8	k Y are two	random	ariables 1	then v (x	+ y) is:				
(a) $v(x) + v$				+ v (y)-2	-		highest obser		= smallest
(c) v (x) + y		(x, v)	(d) v (x)	-			en Coefficient of	f Range =	
				- ()/		(a) $\frac{L_1 \times L_2}{L_1 / L_2} \times 100$		(b) $\frac{L_1 - L_2}{L_1 + L_2} \times 100$)
Q31. G.M i	is a better i	measure t	han other	s when.		17 4			
	and percent					(c) $\frac{L_1 + L_2}{L_1 - L_2} \times 100$		(d) $\frac{L_1/L_2}{L_1 \times L_2} \times 100$	
(b) interva									
(c) Both (a		9	(d) Fith	er (a) or (b)		ion of a line is 5		
					~)	-	in is 5. Calculate		
022 Mar	OLCD of		Find M-		x−50	(a) -2	(b) 2	(c) -4	(d) None
Q32. Mear					5				
(a) (1,0)	(b) (l	<mark>0,1)</mark> (c) (1,1	L)	(d) (0, -1	.)		e of x is 5, then fi		
						(a) 10	(b) 45	(c) 5	(d) -13
0000	00000	011-	0000	-	Pag	e 72		D O D	te @
0388	81111	.34 8	88881	1103	4 Pay		a second	Revietor & Pra	elice Jession 🥄

www.pranavchandak.com Study from the BEST

🕞 CA Pranav Chandak 🧿

PYQs - Central Tendency & Dispersion

June 2010				Q56. For Normal distribution relation between QD & SD is
Q44. The HM of				(a) $QD > SD$ (b) $QD < SD$ (c) $QD = SD$ (d) None
(a) 1/(n + 1)	(b) 2/(n + 1)	(c) (n + 1)/2	(d) 1/(n - 1)	
O45 Massage	the set 1 The standard	its is 110 kg. Mea		Q57. Median of following numbers, which are given is ascending order is 25. Find the Value of X.
		er 5 students is		
the mean weigh			125 Kg. thei	(a) 22 (b) 20 (c) 15 (d) 30
(a) 120	(b) 105	(c) 115	(d) None	
				Q58. Average age of a group of 10 students was 20 years.
		3 students were		Average age increased by 2 years when 2 new students
		cured 10,11,20,1		joined the group. Find average age of two new students.
		n marks of the st		(a) 22 years (b) 30 years (c) 44 years (d) 32 years
(a) 12	(b) 15	(c) 13	(d) 13.5	
Dec 2010				June 2012
Q47. The variant	co of data · 3 / 5	S Q ic		Q59. If SD of first 'n' natural numbers is 2 'n' is
	(b) 3.5	(c) 5.5	(d) 6.5	(a) 10 (b) 7 (c) 6 (d) 5
(a) 4.5	(0) 5.5	(0) 5.5	(u) 0.5	
Q48. A lady tra	vel at a speed o	of 20 km/h and	returned at	Q60. GM of 3 observations 40,50 & X is 10. Value of X is
	and the second	peed of the who		
24 km/h, find th	e speed of retu	rn journey (in kn	n/h)	Q61. The mean of first three term is 14 and mean of next
(a) 25	(b) 30	(c) 35	(d) 38	two terms is 18. The mean of all five term is:
				(a) $14 E$ (b) $1E$ (c) 14 (d) $1E C$
-		then mean of u		
(a) 250	(b) 260	(c) 265	(d) 273	Q62. The standard deviation is independent of change of
Q50. 4,9,11,14,3	7 MD about th	o Modian is		(a) Scale (b) Origin
	(b) 8.5	(c) 7.6	(d) 7.45	(c) Both origin & scale (d) None
(a) 11	(D) 0.5	(C) 7.0	(u) 7.45	
June 2011				Q63. In a normal distribution, the relationship between the
and the second sec	rence between	mean and Mode	e is 63, ther	three most commonly used measures of dispersion
		nd Median will b		(a) $SD > MD > QD$ (b) $MD > SD > QD$
(a) 63	(b) 31.5	(c) 21	(d) None	(c) $SD > QD > MD$ (d) $QD > MD > SD$
		umbers is 64 & 0	GM betweer	c ,
them is 16. HM			() 10	arbitrary constants, will be
(a) 64	(b) 4	(c) 16	(d) 40	(a) σ (b) $\frac{a\sigma+b}{c}$ (c) $\frac{a}{c} \cdot \sigma$ (d) $\left \frac{a}{c}\right \sigma$
053 If all obser	vations in a dis	tribution are inc	reased by 6	
then the variance			reased by 0	Q65. The mean salary of a group of 50 persons is ₹ 5,850.
		(c) Unchanged	(d) None	Later on it is discovered that the salary of one employee has
				been wrongly taken as ₹8,000 instead of ₹7,800. The
		s is 6 and the av	erage of 3 is	
8. what is the av				(a) ₹ 5,854 (b) ₹ 5,846 (c) ₹ 5,650 (d) None
(a) 4	(b) 5	(c) 3	(d) 3.5	OFF Which of the following manufactor of dispersion is used
OSS The stand	and doviation a	of the weights (in	n ka) of the	Q66. Which of the following measures of dispersion is used for calculating the consistency between two series?
		dents was calcu		
		that due to so		
weighing machi	ine, the weight	of each studen	t was under	
-		of the weight w		Q67. If mode of a data is 18 & mean is 24, then median=
(a) Less than 4.5		(b) Greater tha		(a) 18 (b) 24 (c) 22 (d) 21
(c) Equal to 4.5		(d) Can't be de		
S88811	1134 8	8881110	34 Pa	ge 73 Revision & Pradice Section 7
www.pr	anavcho	andak.co	m St	udy from the BEST CA Pranav Chandak 🔾

PYQs - Central Tendency & Dispersion

Q68. The point	of intersection	of the "less tha	an" & "more	June 20	14			
than" ogives co	prrespond to			Q80. W	'hat will	be probable val	ue of MD? Whe	$n Q_3 = 40 \&$
(a) Mean	(b) Mode	(c) Median	(d) None	$Q_1 = 15$				
				(a) 17.5	0	(b) 18.75	(c) 15.00	(d) None
O69. A man tr	avels from Agra	a to Gwalior at	an average					
	n per hour and b			081. W	hich of t	he following sta	tements is true?	
	. What is his ave					used on all the o		1
(a) 38 km per h	our	(b) 40 km per	hour			the mid value	boorrations	·
(c) 45 km per h	our	(d) 35 km per l		~ ~		is the second qu	artilo	
						the fifth decile.	laitue	
June 2013				(u) me	mode is	the fifth decile.		
	squares of the v	alues = 3390. N	= 30 & SD	092 M	oop of th	ne following data	a is 6 Find 'D'	
= 7, find out th		,						
(a) 113	(b) 210	(c) 8	(d) None	Х :	2	4 6	10 P+	-5
				F :	3	2 3	1 2	
071 If mean of	a frequency dist	tribution is 100 a	& coefficient	(a) 4		(b) 6	(c) 8	(d) 7
of variation is 4								
(a) 45	(b) 0.45	(c) 4.5	(d) 450	Q83. Fo	ormula fo	or range of midd	lle 50% items of	a series
(-)		(-)	()			(b) $Q_3 - Q_2$		(d) $\frac{Q_3 - Q_1}{2}$
072 Which of	the following m	easures of cent	ral tendency	(a) Q3	Q1	$(\mathbf{D}) \mathbf{Q}_3 = \mathbf{Q}_2$	$(c) Q_2 - Q_1$	(u) 2
	lated by graphic		ructendency					
(a) Mean	(b) Mode	(c) Median	(d) Quartile	Dec 203				
(u) i iouri			(a) Quartae		^{ra} decile	for numbers 15,		
073 Geometri	c mean of 8, 4, 2	ic	-	(a) 13		(b) 10.70	(c) 11	(d) 11.50
(a) 4	(b) 2		(d) None					
(d) 4	(D) Z	(c) 8	(u) None			variable X has		ution on the
074	(15-1-1	te de la contra de 1	-		(-3, 7).	The mean of the	distribution is:	
	ige of 15 studen			(a) 2		(b) 4	(c) 5	(d) 6
	ge age of 5 stude is is 16 years. Ag							
(a) 11 years	(b) 14 years	(c) 15 years	(d) None	Q86. If the first quartile is 142 and semi-inter quartile range				
(d) II years	(b) 14 years	(c) 15 years	(u) None		ien the v	alue of median		
Dec 2012				(a) 151		(b) 160	(c) 178	(d) None
Dec 2013	and an and the set of the	the AM	1 12 /2					
	ariance given th			Q87. Th	ne quarti	le deviation is:		
(a) 2	(b) 6	(c) 1	(d) 4	(a) 2/3	of SD	(b) 4/5 of SD	(c) 5/6 of SD	(d) None
-	distribution mea			Q88. If	the AM c	of two numbers i	s 10 & GM of th	ese numbers
(a) Equal	(b) Not Equal	(c) Zero	(d) None	is 8, the	en the ha	armonic mean is:		
				(a) 9		(b) 8.9	(c) 6.4	(d) None
Q77. Coefficien	t of MD about m	nean for first 9 n	atural no. is					
(a) 200/9	(b) 80	(c) 400/9	(d) 50	June 20	15			
				Q89. SE) of a va	riable x is knowr	n to be 10. SD o	f 50 + 5x
Q78. Pair of a	averages whose	value can be	determined	(a) 50		(b) 100	(c) 10	(d) 500
graphically?							- 10 - 10	
(a) Mode, Medi	an	(b) Mean, Mod	e	090. Th	ne harmo	onic mean H of	two numbers is	4 and their
(c) Mean, Media	an	(d) None of the	e above			n A and the ge		
						$G^2 = 27$, then the		
Q79. If mean =	= 5, SD = 2.6, me	edian = 5 & QD) = 1.5, then	(a) (1, 3		(b) (9, 5)	(c) (6, 3)	(d) (12, 7)
the coefficient								
(a) 35	(b) 39	(c) 30	(d) 32					
e								
				I				

© 8888111134 | 8888111034 www.pranavchandak.com Page 74 Study from the BEST

Revision & Practice Session –

🔼 CA Pranav Chandak 🧕

PYQs - Central Tendency & Dispersion

Q91. Coefficien	t of quartile dev	iation is equal to	l.	Q102. If the me	an of two numb	ers is 30 and geo	metric mean	
(a) Quartile dev	viation × 100/me	edian		1	t will be these tv		. 📕	
(b) Quartile dev	iation × 100/me	ean		(a) 36 & 24	(b) 30 & 30	(c) 48 & 12	(d) None	
(c) Quartile dev	viation × 100/mo	de						
(d) None				Dec 2016	1			
		increased by 5, t	nen	commerce for	Q103. For moderately skewed distribution of marks in commerce for a group of 200 students the mean marks and mode marks were found to be 55.60 and 46. What is the			
	e increased by 5			median marks?				
	be increased by 5			(a) 55.5	(b) 60.5	(c) 52.4 (d) No	ne	
	e increased by 5			-0 E				
	e would not be ir	icreased by 5				1, 6, 5, 10, 3 is a smean of the da		
	value of MD abo	out mean from	the number	(a) 5	(b) 6	(c) 7	(d) 10	
5,8,6, 3 & 4? (a) 5.20	(b) 7.20	(c) 1.44 (d) 2.23	3	of first 4 obser	rvations is 16.5.	vations is 14.4. If The average of		
094 . For observ	vation of 6, 4, 1,	6, 5, 10, 4, 8 the	range is	observations is			_	
(a) 10	(b) 9	(c) 8	(d) None	(a) 13.6	(b) 13.0 (c) 13.			
Q95. If a varian variance of 2x -		variable 'x' is 23, t	then what is	room, a size be	e more appropria			
(a) 56	(b) 33	(c) 46	(d) 92	(a) median	(b) mean	(c) mode	(d) all	
Q96. If variance variation is:	$\bar{\mathbf{x}} = 148.6$ and $\bar{\mathbf{x}}$	= 40, then the c	pefficient of		ond and third m 5, -4, -2, 0, 2, 4, 6	oments of a sam 5) are	ple of seven	
(a) 37.15	(b) 30.48	(c) 33.75	(d) None	(a) (12, 0)	(b) (0, 12)	(c) (0, 16)	(d) (16, 0)	
1 C C C C C C C C C C C C C C C C C C C	can be determin	ed graphically us		Q108. The geo 10, the value of		three numbers 4	0, 50 and x is	
(a) Histogram (c) Ogive curve	(d) Pie	(b) Frequency p chart	oolygon	(a) 5	(b) 4	(c) 2	(d) $\frac{1}{2}$	
098 In a class	s of 50 student	s, 10 have faile	d and their	June 2017				
		marks secured b			es of returns fro	m three differer	nt shares are	
		who have passed (c) 6.40 (d) Nor	is:	100%, 200% a return will be:	nd 400% respe	ctively. The ave	rage rate of	
June 2016				(a) 350%	(b) 233.33%	(c) 200%	(d) 300%	
	first n natural ni	umber is		Q110 . If GM is	6 & AM is 6.5, th	nen HM will be:		
				(a) $\frac{6^2}{6.5}$	(b) $\frac{6}{65^2}$		(d) None	
(a) $\sqrt{\frac{n^2-1}{12}}$	(b) $\sqrt{\frac{n(n+1)}{12}}$	(c) $\sqrt{\frac{n(n-1)}{6}}$	(d) None	(d) 6.5	$(0)_{6.5^2}$	6.5	(d) None	
		variation of the ly. What will be		crores. To have including these	ve the same av e 10 years, how	ears average ear rerage earning f much earning m	for 11 years	
(a) 256	(b) 16	(c) 25	(d) None	by the compan (a) ₹ 40 crores	ly in the elevent	h year? (b) ₹ ^{40×10} /11 croi	res	
0101 If same a	mount is added	to or subtracted	from all the	(c) More than ₹	40 crores	(d) None		
		then the standar		Service and State and State		9 - 6		
and variance be								
(a) changed	(b) unchanged	(c) same	(d) none					
0 88881	11134 9	8881110	34 Pag	e 75		Revision & Pra	Tim Sarim -	
		indak.co		dy from t	he BEST		v Chandak 🔘	
www.pi	anabent	anduk.co				CA Prana	w Changak Q	

PYQs - Central Tendency & Dispersion

Q112. A person purchases 5 ru					390, 480, 485, 76	0, 111, 240
different markets. You are to f	<u> </u>		Rank of median			
eggs per rupee purchased fr		rkets taken	(a) 2.75	(b) 5.5	(c) 8.25	(d) none
together. The suitable average i (a) A.M. (b) G.M.	(c) H.M. (d) Nor		0104 7	C		
(a) A.M. (b) G.M.		le			f overlapping ave	
Q113. For a moderately skewed	distribution the	relationship	is know as.	ed on a certain hi	umber of item wit	nun a series
between mean, median and mo		retationship	(a) Moving aver	ene	(b) Weighted av	verage
(a) Mean - Mode = 2 (Mean - M			(c) Simple avera		(d) None	relage
(b) Mean - Median = 3 (Mean - I			(c) Simple aver	ige	(d) None	
(c) Mean - Median = 2 (Mean - I			0125 If the ST) of the 1^{st} n n	atural Nos. is $\sqrt{3}$	Then the
(d) Mean - Mode = 3 (Mean - M			value of n is			of men are
			(a) 19	(b) 20	(c) 21	(d) None
Q114. If AM & coefficient of va	ariation of x are	10 and 40,				
respectively then the variance o	$f - 15 + \frac{3x}{2}$ will be	e:	Nov 2018			
(a) 64 (b) 81	(c) 49	(d) 36	Q126. The med	ian of the data	5, 6, 7, 7, 8, 9, 10,	, 11, 11, 12,
			15, 18, 18 & 19	is		
Q115 is reciprocal of AM o	f reciprocal of ob	oservations.	(a) 10.5 (b) 10	(c) 11	(d) 11.5	
(a) HM	(b) GM					
(c) Both (a) & (b)	(d) None				a data is 5 and i	f each item
				3, then the new		(1) 00
Q116. MD is the least when dev	iations are taken	from	(a) 5	(b) 10	(c) 15	(d) 20
(a) Mean (b) Median	(c) Mode	(d) HM	O129 The Coor	matric mann of "	0 (24 and 40 is	
			(a) 8	metric mean of 3 (b) 12	(c) 24	(d) 6
Q117. If mean value of seven n		, 4,11 and 5	(a) o	(0) 12	(C) 24	(u) 0
is 9, then the missing number X		(-1) 0	0129 The Alge	braic sum of the	e deviation of a s	et of values
(a) 13 (b) 14	(c) 15	(d) 8	from their arith		actuation of a s	ct of values
Q118. When all observations of	accur with acus	frequency	(a) > 0	(b) = 0	(c) < 0	(d) None
does not exist.	occur with equa	t frequency	1			
(a) median (b) mode	(c) mean	(d) none	Q130. Which or	ne of the followi	ng is not a centra	l tendency?
		(1)	(a) MD	(b) AM	(c) Median	(d) Mode
May 2018						
Q119. If the variables x & z are	so related that	z = ax + b		-	values is 65 and	
for $x = x_1$, where a & b are const					ninimum value in	
(a) True (b) false	(c) both	(d) none	(a) 74	(b) 9	(c) 18	(d) None
			0122 16 10 16	5 C - I		co - 1 00
Q120. Relation between mean, I		le is	-		ree series are 50 d 20 respectivel	
(a) mean-mode = 2 (mean-med				omposite series		y, then the
(b) mean-median = 3 (mean-me			(a) 16	(b) 15.5	(c) 16.5	(d) 14.5
(c) mean-median = 2 (mean-median $=$ 2 (mean-median)				(0) 2010	(0) 2010	(0) = 110
(d) mean-mode = 3 (mean-med	ilan)		Q133. If the vari	iance of 5,7,9 an	d 11 is 4, then the	e coefficient
$(Q_3 - Q_1)$.			of variation is:			
Q121. $\frac{(Q_3 - Q_1)}{(Q_3 + Q_1)}$ is known as			(a) 15	(b) 25	(c) 17	(d) 19
(a) Coefficient of Range	(b) Coefficient of	***				
(c) Coefficient of S.D.	(d) Coefficient of	of M.D.			the marks obta	
					nathematic (out	of 50) as
Q122. If each item is reduced by			30,35,25,20,15		() /22	()) = 0
(a) reduced by 15	(b) increased by	/ 15	(a) 25	(b) √ 50	(c) √ <u>30</u>	(d) 50
(c) reduced by 10	(d) none					
		I				

© 8888111134 | 8888111034 www.pranavchandak.com

Page 76 Study from the BEST

Revision & Practice Session 🥣 🕞 CA Pranav Chandak Q

PYQs - Central Tendency & Dispersion

							-
Q135. If in a moderately skewed distribution, the values of	Q147. F	or the d	istributio	n			
mode and mean are 32.1 and 35.4 respectively, then the	Х	1	2	3	4	5	6
value of the median is	F	6	9	10	14	12	8
(a) 34.3 (b) 33.3 (c) 34 (d) 33	The valu	ue of me	dian is				
0126 If the standard deviation for the marks obtained by a	(a) 3.5		(b) 3	((c) 4	(0	d) 5
Q136. If the standard deviation for the marks obtained by a student in monthly test is 36, then the variance is							2
(a) 6 (b) 36 (c) 1296 (d) None	Q148. C	Coefficier	nt of QD	is 1/4 the	en Q_3/Q_1	is	
	(a) 5/3		(b) 4/3	((c) 3/4	((d) 3/5
Q137. If the mean of the following distribution is 6 then the							
value of P is	1.25						add 2 to
X: 2 4 6 10 P+5	1		n of serie				
f: 3 2 3 1 2	(a) a + l	b + 2	(b) 6 – a	+ b (c) 4 + a -	-b (0	d) None
(a) 7 (b) 5 (c) 8 (d) 11	Nov 201	10					
			oximate r	atio of S		Dic	
June 2019	(a) 3 : 4		(b) 2 : 3 :		c) 15 : 12		d) None
Q138. If $\sigma^2 = 100$ & coefficient of variation = 20% then $\bar{x} =$	(a) 5 . 4		(0) 2 . 5 .	· •	() 13.12		a) None
(a) 60 (b) 70 (c) 80 (d) 50	0151 T	he devia	ations are	minimu	m when t	taken fro	m.
	(a) Mear		(b) Medi		c) Mode		d) None
Q139. The AM of 15 Observation is 9 and the AM of first 9							.,
Observation is 11 & then AM of remaining Observations is	Q152.	f the Al	M & GM	l of two	number	s are 30) and 24
(a) 11 (b) 6 (c) 5 (d) 9			d the no.				
Q140. In a moderately Skewed distribution, the values of	(a) 12 &	ι 24	(b) 48 &	12 ((c) 30 & 3	80 (d) 40 & 20
mean & median are 12&8 respectively. Mode is							
(a) 0 (b) 12 (c) 15 (d) 30			shifted by				
			ase by 5		b) QD wi		
Q141. SD is times of $\sqrt{MD \times QD}$	(c) MD will increase by 5 (d) No change in SD						
(a) 2/3 (b) 4/5 (c) $\sqrt{\frac{15}{8}}$ (d) $\sqrt{\frac{8}{15}}$							
V 8 V 15			nt of varia				Mean
Q142. The Q.D of 6 numbers 15,8,36,40,38,41 is equal to	(a) Mean		(b) $\frac{SD}{Mean}$	× 100 ((c) $\frac{1}{SD}$ >	< 100 (0	$\frac{1}{SD}$
(a) 12.5 (b) 25 (c) 13.5 (d) 37							
		ind the I	mode of t	the follow	wing data	a:	
Q143. Which of the following is positional average?	Class		3 6	9	12	15	18
(a) Median (b) GM (c) HM (d) AM	Interva		-6 -9			- 18	- 21
	Freque	ency 2		10	23	21	12
Q144. S.D of first five consecutive natural numbers is	(a) 25		(b) 4.6	.((c) 14.6	(0	d) 13.5
(a) $\sqrt{10}$ (b) $\sqrt{8}$ (c) $\sqrt{3}$ (d) $\sqrt{2}$			6 H - 6 H				
			of the foll				1. 2. 20
Q145. If profits of a company remain same for the last 10	(a) 2.58		(b) 60/9	((c) 60/3	(0	d) 3.20
months then the S.D. of profits of the company would be:	0157 N	100n- 2	00 & vari	anco = 8	0 Cooffi	cient of v	variation
(a) Positive (b) Negative (c) Zero (d) (a) or (c)	(a) 2.56		(b) 4.47			d) 0.32	
Q146. For a symmetric distribution			(m) 1117	() 22	(.,	
(a) Mean = Median = Mode	Q158. V	Vhich of	the follow	wing is a	ffected b	y shifting	g of scale.
(b) Mode = 3 Median -2 Mean	(a) SD		(b) MD	_	c) QD		d) None
(c) Mode = $\frac{1}{3}$ Median = $\frac{1}{2}$ Mean							
5 2	Q159. H	listograr	n is used	to repre	sent		
(d) None	(a) Mod	e	(b) Medi	an (c) Percer	ntile (d) Quartile
		Coefficier	nt of varia				
	(a) 640		(b) 256	((c) 16	(0	d) 250
					10		
©8888111134 8888111034 Pag	e 77				Revision &	& Practice	» Session —

www.pranavchandak.com Study from the BEST

🔽 CA Pranav Chandak 🧿

PYQs - Central Tendency & Dispersion

	- median of the fo — 20 20 — 30		- 50	Q173. Ten ma following canno		given. Then wi	nich of the
f 2 (a) 35	3 4 (b) 32	5 6 (c) 36	(d) 37.5	(a) least score (c) Best score		(b) Highest sco (d) Median sco	
class is known a	te between uppe as.	er limit and low (b) Class mark	er limit of a	respectively, the	en GM is	two numbers a	re 6 and 9
(a) Range (c) Class size		(d) Class bound	dary	(a) 7.35	(b) 8:5	(c) 6.75	(d) None
	mode of the foll		50 60	Q175. Which of on absolute dev		easure of dispers	sion is based
0 - 10 10 - 2 7 14 (a) 32		-40 40 - 50 34 20 (c) 25.42	19 (d) 35	(a) Range Jan 2021	(b) SD	(c) MD	(d) QD
Cl 0-10 10	median of the fo — 20 20 — 30	30 - 40 40 -		Q176. From the		of shoes sold in etermine the mo	
	15 28 (b) 23.57	10 2 (c) 25	(d) None	(a) Mean	(b) Median	(c) Mode	(d) Range
Q165 . $\sum_{i=1}^{n} (\bar{x} - a) \bar{x} \sum_{i=1}^{n} x_i$	(\mathbf{x}_i) is equal to (b) $n(\overline{x}\sum_{i=1}^n x_i)$	(c) x — nx	(d) zero	Q177. Which o mathematical p		measure does	not possess
	numbers 1,4,5,7			(a) AM	(b) GM	(c) HM	(d) Median
each then SD w (a) 12.45	ill be:	(c) No Change		Q178. If $y = 3$ the mode for y		mode for x-valu	ie is 20, then
Nov 2020	(0) 2 1.0	(c) ito change		(a) 3.225		(c) 24.5	(d) 93
Q167. Given the respectively 1 ² ,	the weights for the constant $2^2 3^2 \dots n^2$ then $(b) \frac{2n+1}{6}$	n weighted HM i		and H_1 and H_2		with n ₁ and n ₂ o harmonic mear bservation is	
Q168. Which	measure is			(a) $\frac{n_1H_1 + n_2H_2}{n_1 + n_2}$ (c) $\frac{n_1 + n_2}{n_1H_1 + n_2H_2}$		(b) $\frac{n_1H_1+n_2H_2}{H_1+H_2}$ (d) $\frac{(n_1+n_2)H_1+H_2}{n_1H_2+n_2H_1}$	
classification? (a) Median	(b) Mean	(c) Mode	(d) GM		statistical meas	ure used for cor	
Q169. 50 th Perc	centile is equal to			<mark>series is</mark> (a) Mean absolu		(b) Range	1 3
(a) Median	(b) Mode	(c) Mean	(d) None	(c) Coefficient o		(d) Standard de	eviation
	monic mean A a D is 1/5. The har (b) 1/4				3Q -10. If the ra	en P-series and inge of P-Series	
Q171. Which is	least affected by	extreme values	?	(a) -10	(b) 15	(c) 9	(d) 12
(a) Mean	(b) Median	(c) Mode	(d) None	deviation (s.d.)	is 3.2. If the obse	ean (\overline{X}) is 10 an ervations are inc	
speed of 110 k	gine rushes to a mph and after t	ne completion o	of operation	then the new m (a) $\overline{X} = 10$, s.d. =	ean and SD are: = 7.2	(b) $\overline{X} = 10$, s.d.	= 3.2
hour in per-dire	e at a speed of the speed of the speed of the speed of a	d as of sp	eeds.	(c) $\overline{\mathbf{X}} = 14$, s.d.		(d) $\overline{\mathbf{X}} = 14$, s.d.	
(a) Average	(b) HM	(c) GM (c	d) Half of HM	Q183. Which is (a) Range	a relative measu	ure of dispersion (b) Mean devia	
				(c) Standard dev	viation	(d) Coefficient	
S8881	11134 8	8881110	34 Pag	e 78		Revision & Prac	tice Session —

www.pranavchandak.com Study from the BEST

🔼 CA Pranav Chandak 🧿

PYQs - Central Tendency & Dispersion

0

Q184. Find the coefficient of mean deviation about mean for	
the data: 5, 7, 8,10,11,13,19(a) 17.28(b) 28.57(c) 32.11(d) 18.56	company had to pay during this period? (a) 33.66 (b) 36.66 (c) 31.66 (d) 39.66
July 2021 Q185. There are n numbers. When 50 is subtracted from each of these number the sum of the numbers so obtained	
is -10. When 46 is subtracted from each of the original numbers, then the sum of numbers. So obtained is 70. What is the mean of the original n numbers?	t Dec 2021
(a) 56.8 (b) 25.7 (c) 49.5 (d) 53.8	Q196. If there are 3 observations 15, 20, 25 then the sum of deviation of the observations from their AM is
Q186. If a school has 14 teachers, their heights (in cm are:172, 173, 164, 178, 168, 169, 173, 172, 173, 164, 178, 168, 169, 173, 172, 173, 164, 178, 168, 169, 173, 169, 169, 169, 173, 169, 173, 169, 173, 169, 169, 173, 169, 173, 169, 173, 169, 173, 169, 173, 169, 169, 173, 169, 169, 173, 169, 173, 169, 169, 169, 169, 173, 169, 173, 169, 173, 169, 173, 169, 169, 169, 169, 169, 169, 173, 169, 169, 169, 169, 169, 169, 169, 169	
169, 173then average deviation of this data is: (a) 2.43 approx. (b) 3.93 approx.	the value of HM is
(c) 3.43 approx. (d) 2.92 approx.	(a) less than 15(b) more than 15(c) 15(d) cannot be determined
Q187. The mean of 'n' observation is 'x'. If k is added to each observation, then the new mean is.	Q198. If average mark for a group of 30 girls is 80, a group of boys is 70 and combined average is 76, then how many
(a) k (b) xk (c) x-k (d) x+k	are in the boy's group? (a) 21 (b) 20 (c) 22 (d) 19
Q188. If $y = 3 + 1.9x$, & mode of x is 15, then mode of y is (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5	$\frac{(a)}{21} \frac{(b)}{20} \frac{(c)}{22} \frac{(c)}{22} \frac{(c)}{19} \frac{19}{19}$
Q189. SD of 1 to 9 natural number is:	of c is equal to
(a) 6.65 (b) 2.58 (c) 6.75 (d) 5.62	(a) G.M. of $a + G.M.$ of b (b) G.M. of $a \times G.M.$ of b (c) G.M. of $a - G.M.$ of b (d) G.M. of $a / G.M.$ of b
Q190. Probable value of MD when $Q_3 = 40 & Q_1 = 15$ is:(a) 15(b) 18.75(c) 17.50(d) 0	Q200. For a moderately skewed distribution, the median is twice the mean, then mode is times the median.
Q191. Numbers are 5,1,8,7,2 then coefficient of variation is	
(a) 56.13% (b) 59 . 13 % (c) 48.13% (d) 44.13%	Q201. Median value of 48, 36, 72, 87, 19, 66, 56, 91 is (a) 53 (b) 87 (c) 61 (d) 19
Q192. If every observation is increased by 7 then: (a) Standard deviation increased by 7	Q202. The marks secured by 5 students in a subject are
(b) Mean deviation increased by 7.(c) Not affected at all.	82,73,69,84,66. What is the coefficient of Range (a) 0.12 (b) 12 (c) 120 (d) 0.012
(d) Quartile deviation increased by 7.	
Q193. If the relationship between $x & y$ is given by $2x - 10^{-10}$	
3y = 10 & range of y is 10, then what is range of x? (a) 10 (b) 18 (c) 8 (d) 15	the difference between the last and the middle value; similarly, difference between the second and middle values
Q194. Expenditures of a company (in million rupees) pe	
item in various years) Year Item of expenditures	(a) Half of the range (b) Half of SD (c) Mode (d) Mean
Salary Fuel & Bonus Interest Taxes	
Transport on Loans 1998 288 98 3.00 23.4 83	Q204. 100 participants expressed their opinion on recommending a new product to their friends using
1999 342 112 2.52 32.5 108	attributes: most unlikely, not sure, likely, most likely.
2000 324 108 3.84 41.6 74 2001 236 133 268 264 88	Appropriate measure of central tendency that can be used (a) Mean (b) Mode (c) GM (d) HM
2001 336 133 3.68 36.4 88 2002 420 142 3.96 49.4 98	(a) Mean (b) Mode (c) GM (d) HM
	ge 79 Revision & Provilies Session -
	tudy from the BEST CA Pranav Chandak

PYQs - Central Tendency & Dispersion

Q205. Along a road there are 5 buildings of apartri marked as 1, 2, 3, 4, 5. Number of people residing in building is available. A bus stop is to be setup near of the buildings so that the total distance walked be residents to the bus stop from their buildings must be minimum. One must consider involvingto fin	n each one of oy the e kept	Q218. If the coefficient of variation & SD are 30 & 12respectively, then the AM of the distribution is:(a) 40(b) 36(c) 25(d) 19Q219 is based on all the observations & _ is based onthe central fifty percent of the observations
position of the bus stop.		the central fifty percent of the observations. (a) Mean deviation, Range
(a) Mean (b) Median (c) Mode (d) N	None	(b) Mean deviation, quartile deviation
Q206. Given that Mean = 70.20 & Mode = 70.50 , Mea expected to be	dian is	(c) Range, standard deviation (d) Quartile deviation, standard deviation
(a) 70.15 (b) 70.20 (c) 70.30 (d) 7	70.35	Q220. Relationship between two variables x and y is given by $4x - 10y = 20$. If the median value of the variable x is 10
June 2022		then what is median value of variable y ?
Q207. Which is not a measure of central tendency(a) Mean(b) Median(c) QD(d) Mean	Mode	(a) 1.0 (b) 2.0 (c) 3.0 (d) 4.0
Q208. MD of data 3, 10, 10, 4, 7, 18, 5 from mode is		Q221. Which one of the following is not a method of measures of dispersion?
(a) 4.39 (b) 4.70 (c) 4.14 (d) 5	5.24	(a) Standard deviation(b) Mean deviation(c) Range(d) Concurrent deviation method
Q209. A M and Coefficient of variation of x is 10 and	nd 40.	
What is the variance 30 – 2x (a) 64 (b) 56 (c) 49 (d) 8	31	Q222. MD is minimum when deviations are taken from: (a) Mean (b) Median (c) Mode (d) Range
		(a) Mean (b) Median (c) Mode (d) Kange
Q210. Which is based on absolute deviation?(a) Standard deviation(b) Mean deviation(c) Data (b) Data (c)		Q223. If the first quartile in 56.50 and the third quartile is 77.50, then the co-efficient of quartile deviation is:
(c) Range (d) Quartile deviation	n	(a) 638.09 (b) 15.67 (c) 63.80 (d) 156.71
Q211. When each value does not have equal importance	e then	Q224. Median of 42,72,35,92,67,85,72,81,51,56 is:
(a) AM(b) GM(c) HM(d) Weighted Average	je	(a) 69.5 (b) 72 (c) 64 (d) 61.5
Q213 . Following are wages of 8 workers 82,96,5 70,65,50,70 Find range & coefficient of range?	52, 75,	Q225. If the sum of square of the values equals to 3390, Number of observations are 30 and Standard deviation is 7, what is the mean value of the above observations?
(a) 46,32.70 (b) 43,31.50		(a) 14 (b) 11 (c) 8 (d) 5
(c) 46 , 31 . 50 (d) 43,32.70		Q226. The mean of 50 observations is 36. If two observations
Q214. The mean of 20 observation is 38. If two observare taken as 84 & 36 instead of 48 and 63 find new m		30 and 42 are to be excluded, then the mean of the remaining observations will be:
(a) 38.45 (b) 41.15 (c) 37.55 (d) 4	40.05	(a) 36 (b) 38 (c) 48 (d) 50
Q215. 3 rd decile for 15,10,20,25,18,11,9,12 is (a) 13 (b) 10.70 (c) 11.00 (d) 1	L1.50	Q227. If AM & GM between two numbers are 5 & 4 respectively, then these numbers are:
		(a) 2 & 3 (b) 2 & 8 (c) 4 & 6 (d) 1 & 16
Q216. Find SD & coefficient of variation for. 1,9,8,5,7(a) 2.828,49.32(b) 2.828,48.13(c) 2.828,47.13(d) 2.828,50.13		Q228. If the variance of random variable 'x' is 17, then what is variance of $y = 2x + 5$?
		(a) 34 (b) 39 (c) 68 (d) 78
Dec 2022 Q217. If mean (\overline{X}) is = 10 and mode (Z) is = 7, then find	nd out	Q229. If the variance of given data is 12, and their mean value is 40, what is coefficient of variation $(CV)^2$
the value of median (M)?(a) 9(b) 17(c) 3(d) 4	4.33	value is 40, what is coefficient of variation (CV)? (a) 5.66% (b) 6.66% (c) 7.50% (d) 8.65%
	l	

© 8888111134 | 8888111034 www.pranavchandak.com Page 80 Study from the BEST

Revision & Practice Session -

🔼 CA Pranav Chandak 🧕

Q230. In a given set if all data are of same value, then Q241. Find the mode of the following data variance would be: 25 30 35 40 X 50 45 (c) -1 (a) 0(b) 1 (d) 0.5 - 30 - 35 - 50 -40- 45 - 55 20 53 51 51 41 53 F(x)Q231. If AM between two numbers is 5 & GM is 4 then what (a) 31.75 (b) 30.75 (c) 33.75 (d) 35.75 is the value of HM? (a) 3.2 (b) 3.4 (c) 3.5 (d) 3.6 Q242. If the SD of data 2,4,5,6,8,17 is 4.47, then SD of the data 4,8,10,12,16,34 is Q232. The average age of 15 students in a class is 9 years. (a) 4.47 (b) 8.94 (c) 13.41 (d) 2.24 Out of them, the average age of 5 students is 13 years and that 8 students is 5 years. What is the average of remaining Q243. The mean & variance of a group of 100 observations 2 students? are 8 & 9 respectively of 100 observations, mean & SD of 60 (a) 5 years (b) 9 years (c) 10 years (d) 15 years observation 10 & 2 respectively. Find SD of remaining 40 (b) 3.5 (c) 2.5 (a) 4.5 (d) 1.5 June 2023 **Q233.** If x and y are related as 4x + 3y + 11 = 0 and mean Q244. For the given data set: 5,10,3,6,4,8,9,3,15,2,9,4,19,11,4, deviation of y is 7.2 then mean deviation of x is? what is the median (a) 2.70 (b) 7.20 (c) 4.50 (d) 5.40 (a) 8 (b) 6 (c) 4 (d) 9 Q234. A Professor has given assignment to students in a Q245. If mean of two numbers is 30 & GM is 24, then what statistics class. A student computer AM & SD for 100 will be HM of two numbers? students as 50 & 5 respectively. Later on She points out the (a) 19.2 (b) 21.8 (d) 18.4 (c) 22.3 student that he has made mistake in taking one observation as 100 instead of 50. What would be the consent mean if the Q246. For the given set of normally distributed data, the wrong observation is correct? following statistical data are known: Mean = 6; Standard (b) 49.9 (a) 50.5 (c) 49.5 (d) 50.1 Deviation = 2.6; Median = 5 and Q deviation = 1.5, then the coefficient of quartile deviation equals to Q235. Find the mean of the following data (a) 30 (b) 32 (c) 25 (d) 39 30 Class 10 20 40 50 60 70 -20-30-50-70interval -40-60- 80 9 13 6 6 2 Frequenc 4 3 у (a) 23.7 (b) 35.7 (c) 39.7 (d) 43.7 Q236. For a moderately skewed distribution of master is statistics is for a group of 200 students, the mean and median marks were found to be 55.60 & 52.40 respectively: What are the modal makes? (a) 54.43 (b) 48 (c) 53.56 (d) 46 Q237. The geometric mean of 3,7,11,15,24,28,30,0 is: (a) 6 (b) 0 (c) 9(d) 12 Q238. If the first quartile is 42.75 and the third quartile is 74.25 then the co-efficient of QD is (a) 29.62 (b) 15.75 (c) 17.57 (d) 0.2692 Q239. Find MD about mean for the data 12, 16, 21, 30, 35, 39, 40 (a) 9.14 (b) 9.63 (c) 8.91 (d) 9.81 Q240. The median of the following set of observation 24,18,36,42,30,28,21,20,25,33,18 (d) 29.5 (a) 26.5 (b) 27.5 (c) 28.5 Page 81 **© 8888111134 | 8888111034** Revision & Practice Session **Study from the BEST** www.pranavchandak.com

🔼 CA Pranav Chandak 🤇

PYQs - Central Tendency & Dispersion

LAST 38 EXAMS PYQs by capranav chandak Drobability

TO BUY HARDCOPY OF PYQs

SCAN ME

Click here

PYQs - Probability

Nov 2006				Q10. The pro	bability o	of gettir	ng quali	fied in	IT- JEE	& AIEEE
	ix slips in a box	& numbers 1,1,2	2, 2, 3, 3 are	by a student	are respe	ectively	$\frac{1}{5} \& \frac{3}{5}$. T	he prol	oability	that the
		s are taken at ra		student gets	-					
the box. The ex two slips is:	pected values of	f the sum of num	bers on the	(a) $\frac{17}{25}$	(b) $\frac{22}{25}$		(c) $\frac{8}{2}$	$\frac{3}{5}$	(d)	$\frac{3}{25}$
(a) 5	(b) 3	(c) 4	(d) 7				_			-
(0) 0		(0)		Q11. Amitabl						
Q2. A letter is ta	aken out at rande	om from the wor	d RANGE &	than 3 appea				therwis	e he ha	s to pay
		word PAGE. The	probability	Rs. 10. If the ((a) 25	(b) 20		d. (c) 2	2	(d)	18
	e same letters is			(a) 25	(0) 20		(C) 2		(u)	10
(a) 1/20	(b) 3/20 (c) 3/5	(d) 3/4		Aug 2007						
O3 An urn cont	tains 9 halls two	of which are red	three blue	Q12. Suppose	e E & F a	re 2 eve	nts of a	randor	n exper	iment. If
		re drawn at ra		the probabili						
	they are of sam			occurrence of occurrence of						of non-
(a) $\frac{3}{27}$	(b) $\frac{20}{31}$	(c) $\frac{5}{84}$	(d) None	(a) $\frac{1}{50}$			h			49
-				(a) $\frac{1}{50}$	(D) $\frac{1}{25}$		$(c) = \frac{1}{5}$	0	(u)	50
		ll shuffled pack		Q13. A bag c	ontaine	g rad g	5 whit	o balle	Two cu	cossivo
Let E, "a king on is drawn", then:		wn" & E ₂ : "a que	en or a jack	draws of 3						
	ot independent			probability th	hat the fi					
	nutually exclusiv			second 3 red				7		2
(c) $E_1 \otimes E_2$ are in				(a) $\frac{6}{255}$	(b) $\frac{3}{54}$	B	(c) $\frac{-}{4}$	29	(d)	233
(d) None of the	se									
				Q14. A box defectives. A						
Feb 2007				of defective l					п. схре	cted no.
	- leap year, the Fuesdays or 53 T	e probability of	getting 53	(a) 1.25 (b) 2.					2.03	
	(b) $\frac{2}{7}$	P	$(d)^{1}$							
(d) $\frac{-}{7}$	(D) $\frac{1}{7}$	$(C) = \frac{1}{7}$	(d) $\frac{1}{7}$	Nov 2007						
	the second of D	$(A) \xrightarrow{3} D(D) \xrightarrow{1}$		Q15. 3 ident					that th	ne same
1.00		(A) $= \frac{3}{8'}$, P(B) $= \frac{1}{2'}$	$P(A \cap B) =$	number will a (a) 1/6			(c) 1		(d)	1
$\frac{1}{4'}$, then value of				(a) 1/0	(0) 1/	12	(0) 1	,50	(u)	1
(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{8}$	(d) $\frac{5}{4}$	Q16. Among	the exan	ninees i	n an ex	aminati	on 30%	, 35% &
				45% failed in	Statistic	s, in Ma	themat	ics & in	at leas	t one of
		is at least one		the subjects						
		A is 0.3 & for B 8 & C prepared 2		random. Find (a) 0.245	b) 0.2			ed in Ma).254		0.55
		xpected number		(a) 0.245	(b) 0.	25	())	1.234	(u)	0.55
statements in a				Q17 . An ar	ticle co	nsists	of two	parts	A &	B. The
(a) 32	(b) 45	(c) 42	(d) 25	manufacturin	g proces	s of eac	ch part	is such	that pro	bability
		-		of defect in A						
May 2007	als of courds two	ana dravua tha	first bains	that the asser (a) 0.934	bled pr (b) 0.8		vill not I (c) C			0.874
		o are drawn, the drawn. The chan		(a) 0.954	(b) 0.a	504	() (.05	(u)	0.074
	nd & the second			Q18. Daily d	emand fo	or calcu	lators i	s havin	a the fo	ollowing
(a) $\frac{1}{52}$	(b) $\frac{3}{2704}$	(c) $\frac{4}{12}$	(d) $\frac{3}{52}$	probability di					9	
52	2704	13	52	Demand:	1	2	3	4	5	6
Q9. The theory	of compound p	robability states	that for any	Probability:	0.10	0.15	0.20	0.25	0.18	0.12
two events A &	B:	-							0.10	0.12
(a) $P(A \cap B) = P$		b) $P(A \cap B) = P(A)$	A) \times P(B/A)	Determine th					2 1 0	
(c) $P(A \cup B) = P(A \cup B) = P(A \cup B)$) P)		(a) 2.54	(b) 2.9	22	(C) 2	2.22 (d)	2.19	
(u) P(AUB) = P(AUB)	A) + P(B) - P(A ∩	(0)								

© 8888111134 | 8888111034 www.pranavchandak.com Page 82 Study from the BEST

Revision & Pradice Session 🥎 🕞 CA Pranav Chandak 🤕

PYQs - Probability

Feb 2008				Q28. lf:				
		re A & B, stand ir		x :	-2	1	3	1
is the probabili & B?	ty that there will	be exactly 3 me	n between A	P(x) :	1/3	Ļ	/2	1/6
(a) 11/15	(b) 4/15	(c) 1/15	(d) 2/15	then find E (2x (a) 7	+ <mark>5)</mark> (b) 6	(c) 9	(d)	4
O20 Probabilit	v can assume an	ıy value between						
(a) 0 & 1	(b) - 1 & 0.	(c) - 1 & 1	(d) None	June 2009				
(u) 0 0 1	(5) 10.0.	(0) 1011		Q29. If A & B a	are two inde	pendent ever	nts & P(AUB) = 2/5;
O21 . The odds	are 9:5 against a	person who is 50) vears living	P(B) = 1/3. Find				
till he is 70 & 8	3:6 against a per	son who is 60 liv east one of them	ving till he is	(a) 2/9	(b) -1/3	(c) 2/10) (d)	1/10
after 20 years:				Q30. A bag cor				
(a) $\frac{11}{14}$	(b) $\frac{22}{49}$	(c) $\frac{31}{49}$	(d) $\frac{35}{49}$	drawn at rando				
14	49	49	49	(a) 3/132	(b) 5/396	(c) 1/36	6 (d)	1/22
		& 4 black balls pected number of		Q31. A randor distribution.	n variable 3	K has the fo	llowing pro	bability
that will be obt							2	
(a) 6/5	(b) 1/5	(c) 7/5	(d) 4/5	X	0	1	2	3
				P(x)	0	2K	3K	К
June 2008				Then, $P(x < 3) v$				
	o & P (B) = q, the			(a) 1/6	(b) 1/3	(c) 2/3	(d)	5/6
(a) P (A / B) ≤ c		(b) $P(A/B) \ge p/$						
(c) $P(A / B) \le p$	p/q	(d) P (A / B) ≥ 0	q/p	Dec 2009				
OD4 Desired	all a star former of	difference to set the		Q32. $P(A) = 2/3$				
		vill remain with a e earns more tha		(a) 11/20	(b) 13/20	(c) 13/1	.8 (d)	None
		employee, who w						
& remained w	ith company o	r who earns mo	ore than Rs.	Q33. If $P(A \cap B)$				
		hat an employee		(a) Independen (c) Exhaustive e				
with the compa		t he is a trainee,	who stayed	(c) Exhaustive e	events	(d) Mutua	lly inclusive	events
(a) 5/8	(b) 3/8	(c) 1/8	(d) 7/8	Q34. E(XY) is a	lso known a	S:		
				(a) $E(X) + E(Y)$		(b) E(X)		
Q25. A randor distribution:	n variable X ha	as the following	probability	(c) $E(X) - E(Y)$		(d) E(X)	$) \div E(Y)$	
Х	: -2	3	1	Q35. In a bag,	there were	5 white, 3 re	ed, & 2 blac	k balls.
P(X = x)	: 1/3	1/2	1/6	Three balls are			the probabi	lity that
Find E (X ²) & E	(2X + 5).			the three balls				
(a) 6 & 7 respe		(b) 5 & 7 respe	ectively	(a) 1/12	(b) 1/24	(c) 1/12	20 (d)	None
(c) 7 & 5 respec		(d) 7 & 6 respe		Q36. In how n				ON' be
O26 Limiting r	elative frequence	y of probability i	c.	arranged so that				
(a) Axiomatic	clative nequenc	(b) Classical	5.	(a) 1/252	(b) 1/144	(c) 144/	(d)	None
(c) Statistical		(d) Mathematic	cal	Les - 2010				
		(0)		June 2010	of playing a	anda with 2 i	aliana muaka	hilling of
Dec 2008				Q37. In a pack getting king of		ards with 2 J	okers proba	builty of
Q27. If a proba	bility density fur	nction is f (x) =		(a) 4/13	(b) 4/52	(c) 1/52	2 (d)	1/54
$\begin{cases} 1 \text{ if } 0 < x < \\ 0 \text{ otherwise} \end{cases}$	¹ then find E (x)							
(a) ∞	(b) 0	(c) 1	(d) - ∞	Q38. Consider				
		\$-X		that $P(A) = 1/4$,				
				(a) 3/7	(b) 2/10	(c) 1/10) (d)	None
			Dag			1		

© 8888111134 | 8888111034 www.pranavchandak.com

Page 83 Study from the BEST

Revision & Practice Session –

🔼 CA Pranav Chandak 🧕

PYQs - Probability

Q39. If x be sum of two numbers obtained when two die are	Dec 2011
thrown simultaneously then $P(x \ge 7)$ is (a) $F(12)$ (b) $T(12)$ (c) $11/(15)$ (d) $2/8$	Q50. Exactly 3 girls are to be selected from 5 Girls & 3 Boys.
(a) 5/12 (b) 7/12 (c) 11/15 (d) 3/8	Probability of selecting 3 Girls will be
Q40. $E(13x + 9) = $	(a) $\frac{5}{28}$ (b) $\frac{1}{56}$ (c) $\frac{15}{28}$ (d) None.
(a) $13x$ (b) $13E(x)$ (c) $13E(x)+9$ (d) 9	
	Q51. Two unbiased dice are thrown. Expected value of the
Dec 2010	sum of numbers on the upper side is;
Q41. A dice is thrown once. What is the mathematical	(a) 3.5 (b) 7 (c) 12 (d) 6
expectation of the number on the dice?	OF2 One Card is drawn from made of F2 what is the
(a) 16/6 (b) 13/2 (c) 3.5 (d) 4.5	Q52. One Card is drawn from pack of 52, what is the probability that it is a king or a queen?
	(a) 11/13 (b) 2/13 (c) 1/13 (d) None
Q42. If $P(A/B) = P(A)$, then A & B are	
(a) Mutually exclusive events (b) Dependent events	Q53. In a packet of 500 pens, 50 are found to be defective.
(c) Independent events (d) Composite events	A pen is selected at random. Find the probability that it is
	non defective.
Q43. A bag contains 3 white & 5 black balls & 2^{nd} bag	(a) 8/9 (b) 7/8 (c) 9/10 (d) 2/3
contains 4 white & 2 black balls. If 1 ball is taken from each	
bag, probability that both balls are white is:	Q54. Four married couples have gathered in a room. Two
(a) 1/3 (b) ¼ (c) ½ (d) None	persons are selected at random amongst them, find the
	probability that selected persons are a gentleman & a lady but not a couple.
Q44. The odds in favour of A solving a problem is 5:7 & odds against B solving the same problem is 9:6. What is the	(a) 1/7 (b) 3/7 (c) 1/8 (d) 3/8
probability that if both of them try, the problem will be	
solved?	Q55. A team of 5 is to be selected from 8 boys & 3 girls.
(a) 117/180 (b) 181/200 (c) 147/180 (d) 119/180	Probability that it includes 2 particular girls is:
	(a) 2/30 (b) 1/5 (c) 2/11 (d) 8/9
Q45. Consider Urn I: 2 white balls, 3 black balls	
Urn II: 4 white balls, 6 black balls	June 2012
One ball is randomly transferred from first to second Urn,	Q56. Let A & B two events in a sample space S such that
then one ball is drawn from II Urn. The probability that	$P(A) = \frac{1}{2}; P(B) = \frac{5}{8}, P(A \cup B) = \frac{3}{4}; P(A \cap B) = _$
drawn ball is white is	(a) 3/4 (b) 1/4 (c) 3/16 (d) None
(a) 22/65 (b) 22/46 (c) 22/55 (d) 21/45	
June 2011	Q57. A card is drawn out of a standard pack of 52 cards.
Q46. If $P(A \cup B) = P(A)$, Find $P(A \cap B)$.	Probability of drawing a king or red colour?
(a) $P(A) \cdot P(B)$ (b) $P(A) + P(B)$ (c) 0 (d) $P(B)$	(a) $1/4$ (b) $4/13$ (c) $7/13$ (d) $\frac{1}{2}$
Q47. A bag contains 5 Red balls, 4 Blue Balls & 'm' Green	Q58. A player tosses two fair coins, he wins ₹ 5 if 2 heads
Balls. If random probability of picking two green balls is 1/7.	appear, ₹ 2 if one head appears & ₹ 1 if no head occurs. Find his expected amount of winning.
What is the no. of green Balls (m).	(a) 2.5 (b) 3.5 (c) 4.5 (d) 5.5
(a) 5 (b) 7 (c) 6 (d) None.	
	Q59. Arun & Tarun appear for an interview for two
Q48. The probability of Girl getting scholarship is 0.6 & same	vacancies. The probability of Arun's selection is 1/3 & that
probability for Boy is 0.8. Probability that at least one of categories getting scholarship.	of Tarun's selection is 1/5 Find the probability that only one
(a) 0.32 (b) 0.44 (c) 0.92 (d) None	of them will be selected.
	(a) 2/5 (b) 4/5 (c) 6/5 (d) 8/5
Q49. A coin is tossed 5 times, what is the probability that	
exactly 3 heads will occur.	Q60. A co. employed 7 CA's, 6 MBA's & 3 Engineer's. In how many ways company can form a committee, if committee
(a) $\frac{5}{16}$ (b) $\frac{1}{32}$ (c) $\frac{5}{36}$ (d) $\frac{3}{32}$	has 2 members of each type.
16 (a) 32 (b) 36 (a) 32	(a) 900 (b) 1,000 (c) 787 (d) 945
© 8888111134 8888111034 Pag	e 84 Revision & Practice Session -

www.pranavchandak.com Study from the BEST

CA Pranav Chandak Q

PYQs - Probability

Dec 2012 Q61. Two dice are thrown together. Find the probability of getting a multiple of 2 on one 1 st dice & multiple of 3 on	Q71. Probability of a cricket team winning match at Kanpur is 2/5 & losing match at Delhi is 1/7. Probability of the team winning atleast one match is _
the other dice.	(a) 3/35 (b) 32/35 (c) 18/35 (d) 17/35
(a) 2/3 (b) 1/6 (c) 1/3 (d) None	Q72. Expected value of following probability distribution
Q62. The odds against A solving a certain problem are 4 to	X: -20 -10 30 75 80 P(x): 3/20 1/5 1/2 1/10 1/20
3 & the odds in favour of B solving same problem are 7 to	(a) 20.5 (b) 21.5 (c) 22.5 (d) 24.5
5. What is the probability that the problem will be solved if they both try?	
(a) 15/21 (b) 16/21 (c) 17/21 (d) 13/21	Q73. Two coins are tossed simultaneously. Find the probability of getting exactly are head.
Q63. Expected value of following probability distribution	(a) 3/4 (b) 2/3 (c) ¹ / ₄ (d) ¹ / ₂
$x: -20 -10 \ 30 \ 75 \ 80$	
$p(x): 3/20 1/5 \frac{1}{2} 1/10 1/20$	June 2014
(a) 20.5 (b) 21.5 (c) 22.5 (d) 24.5	Q74. If a pair of dice is thrown then the probability that sum
	of the digit is neither 7 nor 11 is
Q64. A bag contains 6 red balls & some blue balls. If	(a) $\frac{1}{6}$ (b) $\frac{1}{18}$ (c) $\frac{2}{9}$ (d) $\frac{7}{9}$
probability of drawing a blue ball form the bag is twice that	18 19 19
of a red ball, find no. of blue balls in bag	Q75. An urn contains 2 red & 1 green balls. Another urn
(a) 10 (b) 12 (c) 14 (d) 16	contains 2 red & 2 green balls. An urn was selected at
	random & then a ball was drawn from it. If it was found to
June 2013	be red then the probability that it has been drawn from urn
Q65. The probability of selecting a sample of size 'n' out of	one is
a population of size N by simple random sampling with replacement is:	(a) $\frac{4}{7}$ (b) $\frac{3}{7}$ (c) $\frac{2}{3}$ (d) $\frac{7}{12}$
(a) $1/N$ (b) $1/N^{n}(c) 1/Nc_{n}$ (d) $\frac{1}{Nc_{n}n!}$	Q76. For any two events A_1, A_2 let $P(A_1) = \frac{2}{3}, P(A_2) = \frac{3}{8}$ &
	$P(A_1 \cap A_2) = \frac{1}{4}$ then A_1, A_2 are:
Q66. A box contains 2 red, 3 green & 2 blue balls. Two balls are drawn at random. Probability that none of the balls	(a) Mutually exclusive but not independent events
drawn is blue =	(b) Mutually exclusive & independent events
(a) 10/21 (b) 11/21 (c) 2/7 (d) 5/7	(c) Independent but not mutually exclusive
	(d) None of these
Q67. The odds that a book will be favourably received by 3	
independent reviewers are 5 to 2,4 to 3 & 3 to 4 respectively.	Dec 2014
What is the probability that out of 3 reviewers a majority will	Q77. An unbiased die is thrown twice. Probability of the sum
be favourable?	of numbers obtained on two faces being divisible by 4 is:
(a) $\frac{209}{343}$ (b) $\frac{209}{434}$ (c) $\frac{209}{443}$ (d) $\frac{209}{350}$	(a) 7/36 (b) 1/3 (c) 11/36 (d) 1/4
	079 Lot distribution function of a worders workly V ha
Q68. A player tosses 3 fair coins. He wins \mathbf{E} 5 if three heads	Q78. Let distribution function of a random variable X be $F(X) = P(X \le X)$. Then $F(5) - F(2)$ is:
appear, ₹ 3 if two heads appear, ₹ 1 if one head occurs. On the other hand, he losses ₹ 15 if 3 tails occur. Find expected	(a) $P(2 < X < 5)$ (b) $P(2 \le X < 5)$
gain of the player:	(c) $P(2 \le X \le 5)$ (d) $P(2 \le X \le 5)$
(a) 0.15 (b) 0.25 (c) 0.35 (d) 0.45	
	Q79. Discrete random variable X takes values $-1,2 \otimes 3$ with
Q69. Find the probability of drawing an ace on each of two	probabilities $p(-1) = \frac{1}{3}$, $p(2) = \frac{1}{3}$, $p(3) = \frac{1}{3}$, then $E(X)$ is:
consecutive draws from a well shuffled pack of cards,	(a) 3/2 (b) 5/2 (c) 2 (d) 9/2
without replacement	
(a) $\frac{2}{51}$ (b) $\frac{1}{221}$ (c) $\frac{4}{51}$ (d) $\frac{5}{51}$	June 2015
	Q80. Sum of numbers obtained in throw of a dice twice is S.
Dec 2013	Probability of S will be maximum if S is
Q70. If $P(A) = 0.45$, $P(B) = 0.35$ & $P(A \otimes B) = 0.25$, then	(a) 5 (b) 7 (c) 6 (d) 8
P(A/B) = ?	
(a) 1.4 (b) 1.8 (c) 0.714 (d) 0.556	1
© 8888111134 8888111034 Pag	je 85 Review & Proctice Section -

© 8888111134 | 8888111034 www.pranavchandak.com

Study from the BEST

Kerision & Fractice Session \neg

🔼 CA Pranav Chandak 🧿

PYQs - Probability

of heads is		d 3 times. EV of		Q91. If two upoints neithe
(a) 2.5	(b) 1.0	(c) 1.5	(d) 2.0	(a) 0.25
$P(A_1 \cap A_2) = \frac{1}{4'}$ (a) mutually exercise (b) mutually exer	then clusive but not in clusive & indepe t but not mutua	endent	$P(A_2) = \frac{3}{8} \&$	Q92. Two did total is divisib (a) $\frac{20}{36}$ Dec 2016 Q93. If two then P(A \cap B)
chosen at ran multiplied. The	ndom without		& are then	(a) $\frac{1}{4}$ Q94. A bag co The probabili
getting a point (a) 1:2 Q85. A bag cc coins & 10 five	which is multipl (b) 2: 1 ontains 15 one- rupees coins, if	d once, the odds le of 3 is: (c) 1:3 rupee coins, 25 a coin is selecte ting a one-rupee (c) 0.25	(d) 3: 1 two rupees d at random	(a) 11 Q95. For two 1 then A & B (a) Mutually e (b) Independ (c) Mutually e (d) None of t
	e tossed togeth	er, the probabili		June 2017
exactly two head (a) $\frac{5}{8}$		(c) $\frac{1}{8}$	(d) None	Q96. Let A 8 $P(A \cap B) = \frac{1}{12}$
		andom from wo		(a) 7/8
(a) $\frac{1}{6}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{1}{4}$	Q97. What is 3 throws of a
equally among	four players. Pro	bughly shuffled &		(a) $\frac{5}{6}$ (c) $1 - \left(\frac{1}{6}\right)^3$
gets all the 4 ki (a) $\frac{{}^{13}C_4 \times {}^{48}C_{13}}{{}^{52}C_{13}}$ (c) $\frac{{}^{13}C_4 \times {}^{52}C_4}{{}^{52}C_{13}}$	ngs ts	(b) $\frac{{}^{4}C_{4} \times {}^{48}C_{9}}{{}^{52}C_{13}}}{(d) \frac{{}^{4}C_{4} \times {}^{39}C_{9}}{{}^{52}C_{13}}}$		Q98. For any (a) $P(A - B) =$ (b) $P(A - B)$ (c) $P(A - B) =$ (d) $P(B - A)$
contains 5 Red	& 3 Black balls. I . Then the prob	5 Black balls. f one ball is draw pability that one	n at random	(d) P(B – A) = Dec 2017 Q99. If for tw
(a) $\frac{12}{72}$	(b) $\frac{25}{72}$	(c) $\frac{37}{72}$	(d) $\frac{13}{72}$	$\& P(A) = \frac{2}{5} th$
Q90. If P(A) =	$\frac{2}{3}$, P(B) = $\frac{3}{5}$ & P(A)	$A \cup B) = \frac{5}{6}$ then I	$P\left(\frac{A}{B^{1}}\right)$ is	(a) $\frac{4}{15}$
(a) $\frac{7}{12}$	(b) $\frac{5}{12}$	$A \cup B) = \frac{5}{6} \text{ then } I$ $(C) \frac{1}{4}$	(d) $\frac{1}{2}$	

unbiased dice are rolled, Probability of getting er 3 nor 6? (b) 0.50 (c) 0.75 (d) 0.80 ce are tossed. What is the probability that the ble by 3 or 4. (b) $\frac{21}{36}$ (c) $\frac{14}{36}$ (d) None events A, B, P(A) = $\frac{1}{2}$, P(B) = $\frac{1}{3}$ & P(A \cup B) = $\frac{2}{3}$ 3) is: (b) $\frac{1}{6}$ (c) $\frac{2}{3}$ (d) $\frac{1}{2}$ ontains 6 white & 5 red balls. One ball is drawn. lity that it is red is: (b) $\frac{6}{11}$ (c) $\frac{1}{11}$ (d) None events A, B let $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{8} \& P(A \cap B) =$ are:

exclusive but not independent

ent but not mutually exclusive

exclusive & independent

these

& B are two events with $P(A) = \frac{2}{2}$, $P(B) = \frac{1}{4}$ & , then P(B/A) will be:

the probability of having at least one 'SIX' from an unbiased die? (=> 3

(a)
$$\frac{5}{6}$$
 (b) $\left(\frac{5}{6}\right)^{3}$
(c) $1 - \left(\frac{1}{6}\right)^{3}$ (d) $1 - \left(\frac{5}{6}\right)^{3}$

two events A & B: = P(A) - P(B) $= \mathbf{P}(\mathbf{A}) - \mathbf{P}(\mathbf{A} \cap \mathbf{B})$ $= P(B) - P(A \cap B)$ $= P(B) + P(A \cap B)$

vo mutually exclusive events A & BP(A \cup B) = $\frac{2}{2}$ hen what is the value of P(B)?

a)
$$\frac{4}{15}$$
 (b) $\frac{4}{9}$ (c) $\frac{5}{9}$ (d) $\frac{7}{15}$

©8888111134 | 8888111034 www.pranavchandak.com

Page 86 **Study from the BEST**

Revision & Practice Session

🔁 CA Pranav Chandak 🤇

PYQs - Probability

Q100. Probability distribution of demand for a commodity	
is given below:	I

Demand (x)	5	6	7	8	9	10		
Probability [P(x)]	0.05	0.10	0.30	0.40	0.10	0.05		
Expected value of demand will be								
(a) 7.55 (b) 7.85 (c) 1.25 (d) 8.35								

Q101. Given $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3} \& P(A \cap B) = \frac{1}{4'}$ the value of P(A/B) is (a) 1/2 (b) 1/6 (c) 2/3 (d) 3/4

Q102. A brother & his sister appear in an interview for two vacancies for the same post. The probability of brother's selection is $\frac{1}{7}$ & the probability of sister's selection is $\frac{1}{5}$. The probability that (i) both are selected (ii) only one of them is selected & (iii) none of them is selected will be:

(-) 1 10 24	(1) 24 1 10
(a) $\frac{1}{35}, \frac{10}{35}, \frac{24}{35}$	(b) $\frac{24}{35}, \frac{1}{35}, \frac{10}{35}$
(1) 10 1 24	(1) 24 10 1
(c) $\frac{10}{35}, \frac{1}{35}, \frac{24}{35}$	(d) $\frac{24}{35}, \frac{10}{35}, \frac{1}{35}$

June 2018

Q103. Two broad divisions of probability are: (a) Subjective probability & objective probability (b) Deductive probability & mathematical probability (c) Statistical probability & mathematical probability (d) None of these Q104. Term "chance" & probability are synonyms: (a) True (b) False (c) Both (d) None Q105. The theorem of compound probability states any two events A an B (a) $P(A \cap B) = P(A) \times P(B/A)$

(b) $P(A \cup B) = P(A) \times P(B/A)$ (c) $P(A \cap B) = P(A) \times P(B)$ (d) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Q106. Variance of a r	andom variable x is given by
(a) $E(X - \mu)^2$	(b) $E[X - E(X)]^2$
(c) $E(X^2 - \mu)$	(d) (a) or (b)

Q107. If two random variables x & y are related by y = 2 - 3x, then the SD of y is given by(a) $-3 \times SD$ of x(b) $3 \times SD$ of x(c) $9 \times SD$ of x(d) $2 \times SD$ of x

Q108. What is the probability of having at least one' six' in 3 throws of a project die? (a) 5/6 (b) $(5/6)^3$ (c) $1 - (1/6)^3$ (d) $1 - (5/6)^3$

Q109. Sum of all probabilities mutually exclusive & exhaustive events is equal to (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 1

© 8888111134 | 8888111034 www.pranavchandak.com Dec 2018

	Q110. If, P(A) =	$=\frac{1}{2}$, P(B) $=\frac{1}{2}$, & I	$P(A \cap B) = \frac{1}{4'}$ the	n P(A∪B) is
9 10	equal to	2 0	4	
.10 0.05	(a) $\frac{11}{12}$	(b) $\frac{10}{12}$	(c) $\frac{7}{12}$	(d) $\frac{1}{6}$
			ear has 53 Wedn	
he value of	(a) $\frac{2}{7}$	(b) $\frac{3}{5}$	(c) $\frac{2}{3}$	(d) $\frac{1}{7}$
(d) 3/4		is tossed six tin Is & tails alterna		robability of
ew for two	(a) $\frac{1}{2}$	(b) $\frac{1}{64}$	(c) $\frac{1}{32}$	(d) $\frac{1}{16}$
f brother's on is $\frac{1}{5}$. The of them is	whereas Shyan	n is known to hi is the probability	target in 2 out t the same targe y that the target	t in 5 out of
	(a) $\frac{9}{11}$	(b) $\frac{3}{11}$	(c) $\frac{10}{33}$	(d) $\frac{6}{11}$
		, that the sum o	thrown simultan f two numbers a	
oility	(a) $\frac{8}{9}$	(b) $\frac{1}{9}$	(c) $\frac{7}{9}$	(d) None
ility	Q115. If P(A U B	$(3) = 0.8 \& P(A \cap B)$	P(A) = 0.3, then $P(A)$	+ P(B) =
	(a) 0.3	(b) 0.5	(c) 0.7	(d) 0.9
s:	June 2019			
e		en mathematica	l expectation is	
			(b) $E(X) \le E(Y)$	
tes that for	(a) $E(X) > E(Y)$)	$(D) L(A) \geq L(A)$)
tes that for	(a) $E(X) > E(Y)$ (c) $E(X) = E(Y)$		(d) $E(X) \cdot E(Y)$	·
tes that for	(c) $E(X) = E(Y)$ Q117. Two even	L	(d) $E(X) \cdot E(Y)$ uch that they do	= 1
tes that for	 (c) E(X) = E(Y) Q117. Two events simultaneously (a) Mutually ex 	ent A & B are si 7, they are called haustive	(d) $E(X) \cdot E(Y)$ uch that they do	= 1 o not occurs cclusive
	 (c) E(X) = E(Y) Q117. Two events simultaneously (a) Mutually ex (c) Mutually indications 	ent A & B are so , they are called haustive dependent	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like	= 1 o not occurs cclusive
	 (c) E(X) = E(Y) Q117. Two events simultaneously (a) Mutually ex (c) Mutually indications 	ent A & B are so , they are called haustive dependent	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like	= 1 o not occurs cclusive
y = 2 -	(c) $E(X) = E(Y)$ Q117. Two even simultaneously (a) Mutually ex (c) Mutually inc Q118. Accordin $P(E_K/A) = \frac{P(P_{L_{l-1}})^n}{\sum_{l=1}^n}$ (a) E_1, E_2 (b) $P(E/A_1), P(I_{L_{l}})$ (c) $P(A_1/E), P(A_{L_{l}})$ (d) A & E_1's area	ent A & B are so to they are called haustive dependent ng to bayee's the $\frac{E_K)P(A/E_K)}{P(E_1)P(A/E_1)}$ here $are mutually ex E/A_2) are ofA_2/E) are ofa disjoint sets.$	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like corem, clusive equal to 1 equal to 1	= 1 o not occurs aclusive ly
y = 2 -	(c) $E(X) = E(Y)$ Q117. Two even simultaneously (a) Mutually ex (c) Mutually inc Q118. Accordin $P(E_K/A) = \frac{P(P_{L_{l-1}})^n}{\sum_{l=1}^n}$ (a) E_1, E_2 (b) $P(E/A_1), P(I_{L_{l}})$ (c) $P(A_1/E), P(A_{L_{l}})$ (d) A & E_1's area	ent A & B are so to they are called haustive dependent ng to bayee's the $\frac{E_K)P(A/E_K)}{P(E_1)P(A/E_1)}$ here $are mutually ex E/A_2) are ofA_2/E) are ofa disjoint sets.$	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like corem, clusive equal to 1 equal to 1	= 1 o not occurs aclusive ly
y = 2 -	(c) $E(X) = E(Y)$ Q117. Two even simultaneously (a) Mutually ex (c) Mutually inc Q118. Accordin $P(E_K/A) = \frac{P(P_{L_{l-1}})^n}{\sum_{l=1}^n}$ (a) E_1, E_2 (b) $P(E/A_1), P(I_{L_{l}})$ (c) $P(A_1/E), P(A_{L_{l}})$ (d) A & E_1's area	ent A & B are so to they are called haustive dependent ng to bayee's the $\frac{E_K)P(A/E_K)}{P(E_1)P(A/E_1)}$ here $are mutually ex E/A_2) are ofA_2/E) are ofa disjoint sets.$	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like corem, clusive equal to 1 equal to 1	= 1 o not occurs aclusive ly
y = 2 -	 (c) E(X) = E(Y) Q117. Two events simultaneously (a) Mutually ex (c) Mutually indications 	ent A & B are so to they are called haustive dependent ng to bayee's the $\frac{E_K)P(A/E_K)}{P(E_1)P(A/E_1)}$ here $are mutually ex E/A_2) are ofA_2/E) are ofa disjoint sets.$	(d) E(X) · E(Y) uch that they do events (b) Mutually ex (d) Equally like corem, clusive equal to 1 equal to 1	= 1 o not occurs aclusive ly

Study from the BEST

Page 87

Revision & Proelice Session 🥣 🏹 CA Pranav Chandak 🤕

PYQs - Probability

Dec 2019 Q121. 2 letters are choosen from the word HOM Probability that letters choosen are not vowels	Q132. A basket contains 15 white balls, 25 red balls & 10 blue balls. If a ball is selected at random, the probability of selecting not a white ball.			
(a) 1/2 (b) 1/6 (c) 2/3 (d) 0	(a) 0.20 (b) 0.25 (c) 0.60 (d) 0.70			
Q122. If A,B,C are 3 mutually exclusive & exhaustive even P(A)=2(B)=3P(C) what is P(B)?	of a total score of 5 from outcomes of dice-is.			
(a) 6/11 (b) 3/11(c) 1/6 (d) 1/3	(a) $\frac{1}{18}$ (b) $\frac{1}{12}$ (c) $\frac{1}{9}$ (d) $\frac{2}{5}$			
Q123. What is the probability of getting 7 or 11 when tw dices are thrown?	⁷⁰ Q134. If an unbiased coin is tossed twice, then the probability of obtaining at least one tail is.			
(a) 2/9 (b) 6/36 (c) 10/36 (d) 2/36	(a) 1 (b) 0.5 (c) 0.75 (d) 0.25			
Q124. A bag contains 15 one-rupee coins, 25 two-rup coins & 10 five-rupee coins. If a coin is selected at rando probability for not selecting a one-rupee coin is:	ⁿ , probability of getting more than one head?			
(a) 0.30 (b) 0.20 (c) 0.25 (d) 0.70	(a) $\frac{1}{2}$ (b) $\frac{3}{8}$ (c) $\frac{7}{8}$ (d) $\frac{1}{3}$			
Q125. What is probability of occurring 4 or more than accidents. No. of acc. 0 1 2 3 4 5 6 7 Frequency 36 27 33 29 24 27 18 9	4 July 2021 Q136. If there are 48 marbles market with numbers 1 to 48, then the probability of selecting a marble having the number divisible by- 4 is:			
(a) 24 (b) 69 (c) 78 (d) 80	(a) ¹ ⁄ ₂ (b) 2/3 (c) 1/3 (d) 1/4			
Dec 2020 Q126. When 2 fair dice are thrown what is the probability getting the sum which is a multiple of 3? (a) 4/36 (b) 13/36 (c) 2/36 (d) 12/30	(a) 5/12 (b) 12/35 (c) 7/12 (d) 0			
Q127. When two coins are tossed simultaneously the probability of getting at least one tail?	Q138. Probability that a football team losing a match at Kolkata is 3/5 & winning a match at Bengaluru is 6/7; the probability of team winning at least one match is			
(a) 1 (b) 0.75 (c) 0.5 (d) 0.25	(a) 3/35 (b) 18/35 (c) 32/35 (d) 17/35			
Q128. When 3 dice are rolled simultaneously probability a number on the third die is greater than the sum of the numbers on two dice. (a) 12/216 (b) 36/216 (c) 48/216 (d) 20/216				
	(a) ¹ ⁄ ₄ (b) 2/3 (c) 1 (d) 1/2			
Q129. If a speaks 75% of truth & B speaks 60% of truth. what percentage both of them likely contradict with ear other in narrating the same questions? (a) 0.60 (b) 0.45 (c) 0.65 (d) 0.35				
	(a) 2/5 (b) 81/128 (c) 81/256 (d) 81/64			
Jan 2021 Q130. An event that can be subdivided into further events called as.	them are of Apple, then probability of 4 randomly selected			
(a) A composite event(b) A complex event(c) A mixed event(d) A simple event	phones to include 2 Android & 2 Apple phone is:(a) 0.47(b) 0.51(c) 0.37(d) 0.27			
Q131. Three identical & balanced dice are rolled. T				
probability that the same number will appear on each them is.	of X 0 1 2 3 4 5 6			
(a) $\frac{1}{6}$ (b) $\frac{1}{18}$ (c) $\frac{1}{36}$ (d) $\frac{1}{24}$	$\begin{array}{ c c c c c c c c } \hline P(x) & 5k & 3k & 4k & 6k & 7k & 9k & 11k \\ \hline (a) 39 & (b) \frac{1}{40} & (c) \frac{1}{49} & (d) \frac{1}{45} \\ \hline \end{array}$			
0999911112/ 999911102/ P	age 88 Revision & Provider Series			
	tudy from the BEST			

PYQs - Probability

🔽 CA Pranav Chandak 🧿

Dec 2021 Q143. For any two dependent events A & B, $P(A) = 5/9$ &	Q151. What is the probability of occurrence of leap year having 53 Sunday?
$P(B) = 6/11 \& P(A \cap B) = 10/33$. What are the values of $P(A/B) \& P(B/A)$?	(a) $\frac{1}{7}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$
(a) 5/9, 6/11 (b) 5/6, 6/11 (c) 1/9, 2/9 (d) 2/9, 4/9	Q152. If in a bag of 30 balls numbered from 1 to 30. Two balls are drawn find probability of getting a ball being multiple of 2 or 5
Q144. Which of the following pair of events E & F are mutually exclusive?	(a) $\frac{108}{465}$ (b) $\frac{117}{435}$ (c) $\frac{117}{300}$ (d) $\frac{116}{485}$
(a) $E=\{Ram's \mbox{ age is } 13\}$ & $F=\{Ram \mbox{ is studying in a college}\}$	Q153. Two perfect dice are rolled what is the probability that
(b) $E = \{Sita studies in a school\} \& F = \{Sita is a play back singer\}$	one appears at least in one of the dice? (a) $\frac{7}{36}$ (b) $\frac{11}{36}$ (c) $\frac{9}{36}$ (d) $\frac{15}{36}$
(c) $E = \{Raju \text{ is an elder brother in a family}\} \& F = \{Raju's father has more than one son\}$	Q154. If two dice are rolled & one dice shows 1 at a point
(d) $E = \{Banu studied B.A.Engilsh literature & \}F = \{Banu can read English novels\}$	then how many such outcome can be done where it is known that its probability is $\frac{x}{36}$, where x =
Q145. Assume that the probability for rain on a day is 0.4. An umbrella salesman can earn ₹ 400 per day in case of rain	(a) 11 (b) 7 (c) 8 (d) 9
on that day & will lose ₹ 100 per day if there is no rain. The expected earnings in (in ₹) per day of the salesman is	Q155. If $P(A) = 0.3$; $P(B) = 0.8 \& P\left(\frac{B}{A}\right) = 0.5$, find $P(A \cup B)$
(a) 400 (b) 200 (c) 100 (d) 0	(a) 0.85 (b) 0.95 (c) 0.55 (d) 0.5
Q146. Probability distribution of a random variable x is given below: $\begin{array}{ccc} x_{1} & 1 & 2 & 4 & 5 & 6 \\ \hline & & & & & \\ \end{array}$	Q156. If PQ are the odds in favour of an event, then the probability of that event is
P: 0.15 0.25 0.2 0.3 0.1 What is the standard deviation of x?	(a) $\frac{p}{q}$ (b) $\frac{p}{p+q}$ (c) $\frac{q}{p+q}$ (d) $\frac{q}{p}$
(a) 1.49 (b) 1.56 (c) 1.69 (d) 1.72	Dec 2022
Q147. In a group of 20 males & 15 females, 12 males & 8females are service holders. Probability that a personselected at random from the group is a service holder giventhat the selected person is a male?(a) 0.40(b) 0.60 (c) 0.45(d) 0.55	Q157. A machine is made of two parts A & B. The manufacturing process of each part is such that probability of defective in part A is 0.08 & that B is 0.05. What is the probability that the assembled part will not have any defect? (a) 0.934 (b) 0.864 (c) 0.85 (d) 0.874
Q148. There are 3 boxes with the following composition:	Q158. If $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$ & $P(A \cup B) = \frac{11}{12}$ then $P\left(\frac{B}{A}\right)$ is:
Box I: 7 Red +5 White +4 Blue balls Box II: 5 Red +6 White +3 Blue balls	(a) $\frac{1}{6}$ (b) $\frac{4}{9}$ (c) $\frac{1}{2}$ (d) $\frac{1}{8}$
Box III: 4 Red +3 White +2 Blue balls One of the boxes is selected at random & a ball is drawn	Q159. Probability that a leap year has 53 Monday is:
from It. What is probability drawn ball is red? (a) 1249/3024 (b) 1247/3004	(a) $\frac{1}{7}$ (b) $\frac{2}{3}$ (c) $\frac{2}{7}$ (d) $\frac{3}{5}$
(c) 1147/3024 (d) 1/2	Q160. Suppose A & B are two independent events with
Q149. For a probability distribution, probability is given by, $P(X_i) = \frac{X_i}{k}, X_{i,i} = 1, 2, \dots 9.$ Value of k is	probabilities $P(A) \neq 0$ & $P(B) \neq 0$. Let A' & B' be their complements. Which of the following statements in FALSE? (a) $P(A \cap B) = P(A)P(B)$ (b) $P(A/B) = P(A)$
(a) 55 (b) 9 (c) 45 (d) 81	(c) $P(A \cup B) = P(A) + P(B)$ (d) $P(A' \cap B') = P(A')P(B')$
June 2022 Q150. A dice is rolled twice. Find the probability of getting numbers multiple of 3 or 5?	Q161. Theorem of Compound Probability states that for any two events A & B. (a) $P(A \cap B) = P(A) \times P(B/A)$
(a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{6}$	(b) $P(A \cup B) = P(A) \times P(B/A)$
	(c) $P(A \cap B) = P(A) \times P(B)$ (d) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
©8888111134 8888111034 Pag	
www.pranavchandak.com Stu	dy from the BEST CA Pranav Chandak

PYQs - Probability

				n first 50 natural	Q16	
numbers, what will be the probability that the selected number is a multiple of 3 & 4?						
(a) 5/50 (b) 2/25 (c) 3/30 (d) 4/25						
O162 If three	coinc are t	torrod	simultanoou	dy what is the	(c) N	
probability of				sly, what is the	1 (b)	
(a) ¹ ⁄ ₄	(b) 1/8		(c) 5/8	(d) 3/8	010	
	(, -, -		(-) -) -	(-) -/ -	Q16 digi	
June 2023					by 4	
Q164. Four pe	ersons are c	hosen	at random fr	ame a group of	(a) ¹ /	
		dren. T	he probabili	ty that exactly 2		
of them are ch					Q17	
(a) 10/21	(b) 1/12		(c) 1/5	(d) 1/9	prov	
OTCE IS DIAL	1/2 0(0)	17	$\gamma(\Lambda/D) = 1/C$	AL.,	incu incu	
Q165. If P(A) = P(B/A) is	= 1/3, P(B)	= 4, I	P(A/B) = 1/6,	the probability	& 0.	
(a) 1/8	(b) ¹ / ₄		(c) 3/8	(d) 1/2	shou	
(4) 1/0	(6) 74		(c) 5/0	(0) 1/2	(a) ₹	
0166 . Comp	anv a pro	duces	10% defe	ctive products,		
				cts, company C	Q17	
				company is an	dist	
equally likely Chosen is free			robability th	at the product.	X	
(a) 0.88 (b) 0.8		c) 0.79) (d)	0.78	F(X	
	50 ((0, 0, 7)	, (u)	0.70		
					(a) 3	
	bability dis	tributi	on of x aiven	below.	(a) 5	
Q167. The pro	bability dis			1 1	(a) 5	
Q167. The pro	bability dis	1	0	Total	(a) 5	
Q167. The pro Value of x Probability				1 1	(a) 5	
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1	(a) 5	
Q167. The pro Value of x Probability		1	0	Total		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		
Q167. The pro Value of x Probability Mean is equal	to	1	0 1-P	Total 1		

Q168. For any two events A & B. It is $P(A) = 2/3$, $P(B) = 3/8$
& $P(A B) = \frac{1}{4}$. Then the events A & B are
(a) Mutually exclusive & independent
(b) Mutually not exclusive & independent
(c) Mutually exclusive, But not independent

Neither independent nor mutually exclusive

69. The Probability that a 4-digit number comprising the it 2, 5, 6 & 7 without refection of digits would be divisible 4. ./3

(a) ½	(b) ³ /4	(C) ¹ /4	(d) 1,
	20		

70. On a commodity exchange when booking traits with ovision for stop strider can make a profit of ₹ 50,000 or ur a loss of ₹ 20,000. The probability of making profit an urring loss from the part experience are known to be ____ 0.5 respectively. The expected profit to be made by trader ould be.

```
₹ 32,500
             (b) ₹ 35,000
                             (c) ₹ 30,000 (d) ₹ 35,200
```

71. If a random variable X has the following probability tribution, then the expected value of X is:

X	-1	-2	0	1	2
F(X)	1/3	1/6	1/5	1/6	1/3
(a) 3/2	(b) 1/2/		(c) 1/6	(d) 1/5

© 8888111134 | 8888111034 www.pranavchandak.com Page 90 **Study from the BEST**

Revision & Practice Session 🔼 CA Pranav Chandak 🤇

LAST 38 EXAMS PYQ. BY CA PRANAV CHANDAK Theoretical Distribution

TO BUY HARDCOPY OF PYQs

SCAN ME

PYQs - Theoretical Distribution

Nov 2006		Q9. A manufacturer, who produces medicine bottles, finds
Q1. Parameter is a characteristic	of	that 0.1 % of the bottles are defective. The bottles are
(a) Population	(b) Sample	packed in boxes containing 500 bottles. A drug
(c) Probability distribution	,	manufacturer buys 100 boxes from the producer of bottles.
(c) Probability distribution	(d) Both (a) & (b)	Using Poisson distribution, find how many boxes will
		contains at least two defectives: [Given: $e^{-0.5} = 0.6065$]
Q2. What is the probability of m		(a) 7 (b) 13 (c) 9 (d) 11
True-False answer type question	ns?	
(a) 0.4156 (b) 0.32	(c) 0.3125 (d) 0.5235	Aug 2007
		Q10. No. of methods of fitting normal curve is:
Q3. The 1.Q.'s of army volun	teers in a given vear are	
normally distributed with Mean=		(a) 4 (b)3 (c) 2 (d) 1
to give advance training to 209		
highest scores. Lowest 1.Q		Q11. Suppose that weather records show that on an average
advanced training=? (Value of Z		5 out of 31 days in October are rainy days. Assuming a
(a) 0.84 (b) 118.4	(c) 138.4 (d) 115.4	binomial distribution with each day of October as an
		independent trial, then the probability that the next October
		will have at most three rainy days is:
Feb 2007		(a) 0.4403 (b) 0.2403 (c) 0.3403 (d) None
Q4. No. of calls arriving at an		
office is 96 per hour. Probability	that there will be:	Q12. If 5% families in Kolkata do not use gas as a fuel,
(i) not more than 3 calls on the	board,	Probability of selecting 10 families in a random sample of
(ii) at least 3 calls in a minute on	board. [Given: e ^{-1.6} = 0.2019]	100 families who do not use gas=? [Given: $e^{-5} = 0.0067$]
(a) 0.08 & 0.92 resp.	(b) 0.19 & 0.92 resp.	(a) 0.038 (b) 0.028 (c) 0.048 (d) 0.018
(c) 0.92 & 0.13 resp.	(d) 0.92 & 0.08 resp.	(a) 0.038 (b) 0.028 (c) 0.048 (d) 0.018
(c) 0.32 & 0.13 Tesp.	(d) 0.52 & 0.08 Tesp.	
		Q13. If 1 st quartile & MD about median of a normal
Q5. For a normal distribution wi	th mean 150 & S.D. 45; find	distribution are 13.25 & 8 resp, then mode of distribution=
$Q_1 \& Q_3$:		(a) 20 (b) 10 (c) 15 (d) 23
(a) 119.35 & 190.65 resp.	(b) 119.65 & 180.35 resp.	
(c) 180.35 & 119.65 resp.	(d) 123.45 & 183.65 resp.	Nov 2007
		Q14. If 15 dates are selected at random, then the probability
Q6. Probability density function	n of a normal variable x is	of getting two Sundays is:
given by:		(a) 0.29 (b) 0.99 (c) 0.49 (d) 0.39
(a) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for	$0 < x < -\infty$	
		Q15. if X is a Poisson variate with $P(X = 0) = P(X = 1)$, then
(b) $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for	$-\infty < x < -\infty$	P (X = 2) =?
$1 \frac{1}{(x-\mu)^2}$		(a) $\frac{1}{2e}$ (b) $\frac{e}{6}$ (c) $\frac{1}{2e}$ (d) $\frac{e}{3}$
(c) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for	$-\infty < \mathbf{x} < -\infty$	2e 6 2e 3
(d) None of these		OIC A secole of 100 declaration collected to Collected
		Q16. A sample of 100 dry battery cells tested to find length
May 2007		of life produced the following results: $\overline{x} = 12$ hours, $\sigma = 3$
May 2007		hours. What % of battery cells are expected to have life less than 6 hours? [Area under the normal sume from $z = 0$ to z
Q7. The Interval (μ -3 δ , μ + 3 δ)		than 6 hours? [Area under the normal curve from $z = 0$ to z
(a) 95% area of normal distribut		= 2 is 0.4772]
(b) 96% area of normal distribut	ion	(a) 2.28% (b) 2.56% (c) 4.56% (d) 1.93%
(c) 99% area of normal distribut	ion	
(d) All but 0.27% area of a norm	al distribution	Feb 2008
		Q17. The method usually applied for fitting a binomial
Q8. The overall percentage	of failure in a cortain	distribution is known as:
examination is 0.30. What is th		(a) Method of probability distribution
group of 6 candidates at least 4		(b) Method of deviations
(a) 0.74 (b) 0.71 (c) 0.59		(c) Method of moments
(c) 0.59	(0) 0.07	(d) Method of least squares.
		(a) Fiction of least squares.

© 8888111134 | 8888111034 www.pranavchandak.com

Page 91 Study from the BEST

Revision & Practice Session -

🔼 CA Pranav Chandak 🧕

CA PR	ANAV	CHAN	DAK	PY	Qs - The Distrib		al
Q18. If X follow	s a normal distri	bution with $\mu=5$	50 & σ=0.		e probability of g		f 6 unbiased
What is value o	$f P\left(\frac{x \le 60}{x \ge 50}\right)$: [Area	under the norm	nal curve		d simultaneously		
from $z = 0$ to z				(a) 0.3125	(b) 0.25	(c) 0.6875	(d) 0.50
(a) 0.6826	(b) 0.7354	(c) 0.1983	(d) 0.5492	June 2009			
					distribution P(x	= 0 = P(X) =	2) $F(x) =$
produced turn of	in manufacturir out to be defecti 0 tools, utmost 2	ve. Find the pro	bability that	(a) √2	(b) 2	(c) -1	(d) 0
(a) 0.555	(b) 0.932	(c) 0.785	(d) 0.675	Dec 2009			
(a) 0.555	(b) 0.952	(C) 0.785	(u) 0.075		Normal Distribut	ion Curve:	
020 Examine t	he validity of the	following: Me	an & SD of a	(a) Depends on		matara	
	oution are 10 & 4			(c) Either (a) or	epend on its para	(d) Neither (a) I	nor (b)
(a) Not valid		(b) Valid		(c) Littler (a) Of		(u) Nettrier (a)	
(c) Both(a)&(b)		(d) Neither (a)	nor (b)	O31 For hinom	ial distribution E	S(x) = 2 V(x) = 0	1/3 n - 2
				(a) 3	(b) 4	(c) 5	(d) 6
June 2008				(u) 5		(c) 5	(u) U
	nent succeeds tv			O32 What are	the parameters o	of binomial distri	hution?
is the probabilit three successes	ty that in next fiv ?	e trials there wi	ill be at least	(a) n	(b) p	(c) Both n & p	
(a) $\frac{33}{81}$	(b) $\frac{46}{81}$	(c) $\frac{64}{24}$	(d) $\frac{25}{81}$				
81	81	81	81	June 2010		1.11.4.11.41	
022. Probability	y than a man ag	ed 45 vears will	die within a		nce of standard r		
	obability that of			(a) 1	(b) μ	(c) σ ²	(d) 0
	ay? [Given: e ^{-0.12}			024 5 0	and all search and any spec		F) (D) 2
(a) 0.0935	(b) 0.9934	(c) 0.9335	(d) 0.9555		on distribution P(
				(a) 4	(b) 2	(c) 16	(d) √2
a second of the second s	in normal variat						
is 4. Find P (X \ge 0 to z = 2 is 0.4	20): [Area unde	r the normal cu	rve from z =	4), then P is	mial distribution	B(6, p), P(x = 2)	(2) = 9p(x) =
(a) 0.5238	(b) 0.0472	(c) 0.7272	(d) 0.0228	(a) $\frac{1}{2}$	(b) 1/3	(c) 10/13	(d) 1/4
(u) 0.5250	(0) 0.0 172	(c) 0.7272	(4) 0.0220			(0) 20/ 20	(
024 In Poissor	Distribution, p	robability of su	ccess is very	O36. In Binomia	al distribution n	= 9 & P = 1/3 v	ariance=?
close to:		iobubility of su	cccss is very	(a) 8	(b) 4	(c) 2	(d) 16
(a) -1	(b) 0	(c) 1	(d) None	() -		(9-	()
			£	Dec 2010			
Dec 2008					Poisson distribut	ion is 2, then its	
Q25. If x and	y are two inde	ependent stand	dard normal	(a) Mode is 2		(b) Mode is 4	
variables, then t	the distribution o	of $\frac{x}{y}$ is :		(c) Modes are 3	8.4	(d) Modes are 4	4&5
(a) Normal Dist	ribution (I	b) Exponential [Distribution				
(c) Couchy's Dis	tribution	(d) Binomial D	istribution	Q38. The area u	under the Norma	l curve is	
				(a) 1	(b) 0	(c) 0.5	(d) -1
	re two independ						
	~ X^{2}_{n} , then the d			Q39. For N(μ, σ	²), $P(\mu - 3\sigma < x)$	< µ + 3σ) =	
(a) normal		(b) standard no		(a) 0.9973	(b) 0.9546	(c) 0.9899	(d) 0.9788
(c) T		(d) Chi-square	h				
				Q40. If for B(n,	p,) mean = 6 & \	/ariance = 2 the	n 'p' is
	n of a Poisson v	ariable X is 1, w	/hat is P (x =	(a) 2/3 (b) 1/3	(c) 3/5	(d) 1/4	
at least one)?	(b) 0 921	(c) 0.622	(d) 0 2E4				
(a) 0.456	(b) 0.821	(c) 0.632	(d) 0.254				

© 8888111134 | 8888111034 www.pranavchandak.com

Page 92 Study from the BEST

Ration & Pratice Sector 7

PYQs - Theoretical Distribution

June 2011	Q51. If parameters of a binomial distribution are n & p then,		
Q41. If inflexion points of a Normal Distribution are 6 & 14.	this distribution tends to a Poisson distribution when		
Find its SD?	(a) $n \to \infty, p \to 0$ (b) $p \to 0, np = \lambda$		
(a) 4 (b) 6 (c) 10 (d) 12.	(c) $n \to \infty$, $np = \lambda$ (d) $n \to \infty$, $p \to 0$, $np = \lambda$		
Q42. In a Binomial Distribution, if mean is k-times the	Q52. If a random variable x follows Poisson distribution such		
variance, then the value of 'k' will be	that $E(x)=30$, then variance of the distribution is		
(a) p (b) $\frac{1}{p}$ (c) $1 - p$ (d) $\frac{1}{1-p}$	(a) 7 (b) 5 (c) 30 (d) 20		
Q43. If $x \sim N(3,36) \otimes y \sim N(5,64)$ are two independent	Q53. In a normal distribution quartile deviation is 6, the		
Normal variates with their standard parameters of	standard deviation will be		
distribution, then if $(x + y) \sim N(8, A)$ also follows normal	(a) 4 (b) 9 (c) 7.5 (d) 6		
distribution. The value of A will be			
(a) 100 (b) 10 (c) 64 (d) 36	June 2013		
	Q54. The mode of the Binomial Distribution for which the		
Dec 2011	mean is 4 & variance 3 is equal to?		
Q44. The mean of Binomial distribution is 20 & Standard	(a) 4 (b) 4.25 (c) 4.5 (d) 4.1		
deviation is 4 then;			
(a) n=100, p=1/5, q=4/5(b) n=50, p=2/5, q=2/5	Q55. For Poisson Distribution:		
(c) n=100, p=2/5, q=4/5 (d) n=100, p=1/5, q=3/5	(a) Mean & SD are equal (b) Mean & variance are equal		
	(c) SD & variance are equal (d) Both (a) & (b) are correct		
Q45. A Company has two cars which it hires out during the			
day. The number of Cars demanded in a day has poison distribution with mean 1.5. Then percentage of days on	Q56. Which of the following is not a characteristic of a		
which only one car was in demand is equal to	normal probability distribution?		
(a) 23.26 (b) 33.47 (c) 44.62 (d) 46.40	(a) Mean of normally distributed population lies at the centre of its normal curve.		
(u) 23.20 (b) 33.47 (c) 44.02 (u) 40.40	(b) It is multi-modal		
Q46. Binomial distribution with mean 3 & variance 2 is:	(c) Mean, median & mode are equal		
	(d) It is a symmetric curve		
(a) $\left(\frac{2}{4} + \frac{1}{4}\right)^{2 \Rightarrow 9}$ (b) $\left(\frac{2}{6} + \frac{1}{6}\right)^{2 \Rightarrow 9}$			
(c) $\left(\frac{2}{3} + \frac{1}{3}\right)^{2 \Rightarrow 9}$ (d) $\left(\frac{2}{5} + \frac{1}{5}\right)^{2 \Rightarrow 9}$	Q57. Relation between QD & S.D of normal distribution is:		
	(a) $5QD = 4SD$ (b) $4QD = 5SD$		
1 2010	(c) $2QD = 3SD$ (d) $3QD = 2SD$		
June 2012	(0) 200 = 300 (0) $500 = 200$		
Q47. For binomial distribution	Q58. In a binomial Distribution with 5 independent trials,		
(a) Variance < Mean(b) Variance = Mean(c) Variance > Mean(d) None of the above.	probability of 2 & 3 successes are 0.4362 & 0.2181		
(c) variance $>$ Mean (d) None of the above.	respectively. Parameter 'p' of the binomial distribution is:		
	(a) 3/4 (b) 1/3 (c) 2/3 (d) 1/4		
Q48. If x is a Poisson variate & $E(x) = 1$, then $P(x > 1)$ is			
(a) $1 - \frac{e^{-1}}{2}$ (b) $1 - e^{-1}$ (c) $1 - 2e^{-1}$ (d) $1 - \frac{5}{2}e^{-1}$	Dec 2014		
	Q59. In a Poisson frequency distribution, probability		
Q49. The mean & the variance of a random variable X having	corresponding to two successes is half the probability		
the probability density function $P(X = x) = \exp \{-(x - x)\}$	corresponding to three successes. Mean of distribution is		
$4)^{2}/\sqrt{\pi}, -\infty < x < \infty \text{ is.}$	(a) 6 (b) 12 (c) 3 (d) 2.45		
(a) $4, \frac{1}{2}$ (b) $4, \frac{1}{\sqrt{2}}$ (c) $2, 2$ (d) $2, \frac{1}{2}$			
	June 2014		
Dec 2012	Q60. Mean & Variance of a binomial variance are 4 & $\frac{4}{2}$		
Q50. In a Normal Distribution	respectively then $P(x \ge 1)$ will be		
(a) The $1^{st} \otimes 2^{nd}$ quartile are equidistant from median	(a) $\frac{728}{729}$ (b) $\frac{1}{729}$ (c) $\frac{723}{729}$ (d) None		
(b) The 2^{nd} & 3^{rd} quartiles are equidistant from the median	729 729 729		
(c) The 1 st & 3 rd quartiles are equidistant from the mean	O61 5 000 students were encoured in an eventination. The		
(d) None of the above.	Q61. 5,000 students were appeared in an examination. The mean of marks was 39.5 with a Standard Deviation 12.5		
© 8888111134 8888111034 Pag			
www.pranauchandah.com	du from the BEST		

www.pranavchandak.com Study from the BEST CA Pranav Chandak Q

PYQs - Theoretical Distribution

marks. Assuming the distribution to be normal, find	the Dec 2015	
number of students recorded more than 60% marks.		
When Z = 1.64, Area of normal curve = 0.4495 (a) 1,000 (b) 505 (c) 252 (d) 2,2	(a) \sqrt{np} (b) $(np)^2$ (c) \sqrt{npq} (d) (r	ıpq)²
Q62. If a variate X has, mean > variance, then its distrib will be	(a) Binomial distribution (b) Poisson distribution	
(a) Binomial distribution (b) Poisson distribution	(c) Normal distribution (d) Chi-square distribution	on 🔤
(c) Normal distribution (d) T-distribution		
	June 2016	
Dec 2014	Q74. The normal curve is:	
Q63. If six coins are tossed simultaneously. The proba of obtaining exactly two heads are:	(a) Positively skewed (b) Negatively skewed (c) Symmetrical (d) All these	1
(a) 1/64 (b) 63/64 (c) 15/64 (d) No	Q75. For a Poisson variate $X, P(X = 1) = P(X = 2), w$	hat is
Q64. If $x & y$ are two independent normal random variation the distribution of $x+y$ is:	bles, the mean of X? (a) 1 (b) $\frac{3}{2}$ (c) 2 (d) $\frac{5}{2}$	
(a) Normal (b) T-distribution		
(c) Chi-square (d) F-distribution	Q76. In a discrete random variable X follows un distribution & assumes only the values $8,9,11,15,18,20$. P(X \leq 15) is	
Q65. For a normal distribution having mean = 2 & var ≥ 4 , the fourth central moment μ_4 is:	ance $\begin{vmatrix} r(x \le 13) \ ts \end{vmatrix}$ $(b) \frac{1}{3}$ $(c) \frac{2}{3}$ $(d) \frac{2}{5}$	
(a) 16 (b) 32 (c) 48 (d) 64	Dec 2016	
Q66. T-test can be used only when sample is taken fro	$\mathbf{Q77.}$ If x & y are independent normal variates with Me	
(a) Binomial Population (b) Poisson Population (c) Normal Population (d) Exponential Population	z = x + y also follows normal distribution with (a) Mean = $\mu_1 + \mu_2$ & S.D. = 0 respectively	then
	(b) Mean = 0.8 SD = $\sigma_{1}^{2} + \sigma_{2}^{2}$	
Q67. For binomial distribution with mean= 4 & variar 3, the third central moment μ_3 is:	ce = (c) Mean = $\mu_1 + \mu_2$ & S.D. = $\sqrt{\sigma_1^2 + \sigma_2^2}$	
(a) 5/2 (b) 7/4 (c) 3/2 (d) 1/	(d) None of these.	
June 2015 Q68. If x is a binomial variable with parameters n & p,	then $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	e i.e.,
x can assume	(a) $\frac{2}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{3}{2}$	
(a) any value between 0 & n (b) any value between 0 & n, both inclusive		
(c) any whole number between 0 & n, both inclusive (d) any number between 0 & infinity	Q79. Name the distribution which has Mean = Variance (a) Binomial (b) Poisson (c) Normal (d) Chi-se	
Q69. In distribution, mean = variance (a) Normal (b) Binomial (c) Poisson (d) No	Q80. An example of a bi-parametric continuous proba	bility
	(a) Binomial (b) Poisson (c) Normal (d) (a) 8	ጵ (b)
Q70. Under a normal curve $\bar{x} \pm 3\sigma$ covers (a) 100% (b) 99% (c) 99.73% (d) 99	37% June 2017 Q81. If $X \sim N(50,16)$, then which of the following it possible:	s not
071 If y' is a binomial variable with parameter 15 e^{1}		
Q71. If 'x' is a binomial variable with parameter 15 & $\frac{1}{3'}$ the value of the mode of the distribution:	(a) $P(X < 60) = 0.30$ (b) $P(X < 50) = 0.30$ (c) $P(X < 60) = 0.40$ (d) $P(X > 50) = 0.50$	
(a) 5 (b) 5 & 6 (c) 5.50 (d) 6	Q82. If for a distribution mean = variance, ther distribution is said to be:	1 the
	(a) Normal (b) Binomial (c) Poisson (d) N	one
© 8888111134 8888111034	Page 94 Review & Practice Se	V.
www.pranavchandak.com	Study from the BEST CA Pranav Cha	ndak 🧕

PYQs - Theoretical Distribution

Q83. For a Binomial distrib		(Mean) ² , then		normal distribut		& Q ₃ = 78.86,
the values of n & p will be: (a) 1 & $\frac{1}{2}$ (b) 2 & $\frac{1}{2}$	(c) 3 & $\frac{1}{2}$	(d) 1 & 1	(a) 12.17	lian of the distrik (b) 39.43	(c) 66.69	(d) None
2 2 2	2		000 Мани	f V hadaa dha		
Dec 2017			Q96. Mean of	of X having the = $\frac{1}{4\sqrt{2\pi}} \cdot e^{\frac{-(x-10)^2}{32}} f$	e following den	sity function?
Q84. In a normal distribution between &		bservations lie				
(a) $\mu - 2\sigma, \mu + 2\sigma$	(b) μ – 3σ, μ	+ 3σ	(a) 10	(b) 4	(c) 40	(d) None
(c) μ – 1. 96σ, μ + 1. 96σ	(d) μ – 2.58σ	, <mark>μ + 2.58</mark> σ	097 . The pro	bability that a s	tudent is not a	swimmer is $\frac{1}{2}$
Q85. An example of a bid distribution is	-parametric discre	te probability		obability that o		3
(a) Binomial distribution	(b) Poisson c	listribution	(a) $\left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)$		(b) ${}^{5}C_{1}\left(\frac{1}{5}\right)^{4}$	$\left(\frac{4}{c}\right)$
(c) Normal distribution	(d) Both (a) 8	દ્ર (b)	(c) ${}^{5}C_{4}\left(\frac{4}{5}\right)^{1}\left(\frac{4}{5}\right)^{1}$	<u>1</u>) ⁴	(d) None of t	(5)
				5/		
Q86. In distributi (a) Normal (b) Binomi		ce (d) None	June 2019			
		(d) None		were tossed 16		
June 2018				ns do not turn he (b) 1000e ⁻¹⁰⁰	7.4	
Q87. The variance of a bino n & p is:	mial distribution w	ith parameters				
(a) $np^2(1-p)$	(b) $\sqrt{np - (1)}$	* *	Q99. If mean between p &	& variance are 5	& 3 respectively	y then relation
(c) nq(1 - q)	(d) $n^2p^2(1 -$	$P)^2$	(a) $p > q$	(b) p < q	(c) $p = q$	(d) None
OPP V is a poisson variate	caticfuing the follow	ving condition				
Q88. X is a poisson variate 9P(X = 4) + 90 (X = 6) =				isson distribution r of Poisson dist		P(x = 5) then
$P(X \le 1)$? (a) 0.5655 (b) 0.6559	(c) 0.7358	(d) 0.8201	(a) $\frac{4}{5}$	(b) $\frac{5}{4}$	(c) 4	(d) 5
(-,	(-)		5			
Q89. 1 st quartile of x having function 2 f(x) = $\frac{1}{2} e^{-(x-1)}$			Q101. Area be	etween = 1.96 to	+1.96 in a norm	al distribution
function? $f(x) = \frac{1}{\sqrt{72\pi}}e^{-(x-1)}$ (a) 4 (b) 5			(a) 95.45%	(b) 95%(c) 96	5% (d) 9	9%
(a) 4 (b) 5	(c) 5.95 (d) 6	.75				
Q90. An example of a bid distribution is	i-parametric discre	te probability		points of inflexic ly, then its mean		urve are 40 &
(a) binomial distribution	(b) Poisson c	listribution	(a) 8	(b) 45	(c) 50	(d) 60
(c) normal distribution	(d) both (a) 8	ጲ (b)	Dec 2019			
			Q103 . Area u	nder U \pm 3 σ		
Q91. Probability distribution (a) discrete (b) continu	on may be Jous (c) infinite	(d) (a) or (b)	(a) 99.73%	(b) 99%	(c) 100%	(d) 99.37%
Q92. If the area of standard		ween $z = 0$ to	(a) mean & S	oisson distributi	on:	
z = 1 is 0.3412, then the v		(-I) 1	-	ariance are equa	ι	
(a) 0.5000 (b) 0.8413	(c) -0.5000	(d) 1	(c) SD & Varia	· · · · · · · · · · · · · · · · · · ·		
Dec 2018			(d) both a &	b		
Q93. For a Poisson variate		(X = 4), then		T 10 8	1	
the standard deviation of)				ode, n = 15 & p	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
(a) 2 (b) 4	(c) √2	(d) 3	(a) 4	(b) 4 & 3	(c) 4.2	(d) 3.75
Q94. Mean of Binomial dis	tribution $B(4, \frac{1}{2})$ is	equal to	Q106. In Poiss	son distribution, i	$f P(x = 2) = \frac{1}{2}P(x = 2)$	x = 3) find m?
(a) $\frac{3}{5}$ (b) $\frac{8}{3}$	(c) $\frac{3}{4}$	(d) $\frac{4}{3}$	(a) 3	(b) 1/6	(c) 6	(d) 1/3
5	*	, ,	0.05		6	4 0
©8888111134			je 95			netice Session 🥆
www.pranav	chandak.c	om Su	udy from	the BEST	CA Pran	av Chandak 🤆

PYQs - Theoretical Distribution

Q107. In a binomial distribution $B(n, p) = 4P(x = 3xP(x = 3))$ find P	
(a) 1/3 (b) 2/3 (c) 6/4 (d) 4/3	
	July 2021
Q108. Find SD & mean x if $f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} e^{-2(x-3)^2}$, $-\infty < x < \infty$	
(a) $3, \frac{1}{2}$ (b) $3, \frac{1}{4}$ (c) $2, \frac{1}{2}$ (d) $2, \frac{1}{2}$	
Dec 2020	Q121. It is Poisson variate such that $P(x = 1) = 0.7$, $P(x = 2) = 0.3$, then $P(x = 0) =$
Q109. Which is uni-parametric distribution? (a) Poisson (b) Normal (c) Binomial (d) Normal	(a) $e^{6/7}$ (b) $e^{-6/7}$ (c) $e^{-2/3}$ (d) $e^{-1/3}$
Q110. If probability of success in a binomial distribution less than one-half, then binomial distribution	Q122. Which of the following diagram is the most appropriate to represents various heads in total cost?(a) Pie chart(b) Bar graph
(a) is skewed to left (b) is skewed to right	(c) Multiple Line chart (d) Scatter Plot
(c) has two modes (d) has median at point > mean +	
Q111. If we change the parameter(s) of a distribution sharpe of probability curve does not change.	
(a) Normal (b) Binomial (c) Poisson (d) No	(a) $\sqrt{5}$ (b) $\sqrt{5}$ (c) $2\sqrt{5}$ (d) $\sqrt{15}$
 Q112. Which one of the following has Poisson distribut (a) The number of days to get a complete cure. (b) The number of defects per meter on long roll of copolythene sheet. (c) The errors obtained in repeated measuring of the le 	a mean of 50 hours & a standard deviation of 15 hours. A person owns one of these mobiles & want to know the probability that the length of time will be between 50 & 70 hours is (given $g(1.22)$) = 0.0082 g(0) = 0.512
of a rod. (d) The number of claims rejected by an insurance ager	
Q113. Far a Poisson distributed variable X, we have P(7) = $8P(X = 9)$, the mean of the distribution is: (a) 3 (b) 4 (c) 7 (d) 9	Dec 2021
Q114. The quartile deviation of a normal distribution mean 10 & standard deviation 4 is	Q126. Four unbiased coins are tossed simultaneously. The
(a) 54.24 (b) 23.20 (c) 0.275 (d) 2.7	(a) 1 (b) 2 (c) 3 (d) 4
Q115. If the parameter of Poisson distribution is m & (N + SD) = 6/25 then find m: (a) 3/25 (b) 1/25 (c) 4/25 (d) 3/5	Q127. If, for a Poisson distributed random variable X, the probability for X taking value 2 is 3 times the probability for X taking value 4, then the variance of X is
Jan 2021	(a) 4 (b) 3 (c) 2 (d) 5
Q116. A coin with probability for head as $\frac{1}{5}$ is tossed times. The SD of the number of head 5 turned up is.	100 Q128. Let X be normal distribution with mean 2.5 & variance 1. If $PQa < X < 2.5 = 0.4772$ & that cumulative normal
(a) 3 (b) 2 (c) 4 (d) 6	probability value at 2 is 0.9772, then $a = ?$
Q117. If x is a Poisson variable & $P(x = 1) = P(x = 2)$,	(a) 0.5 (b) 3 (c) -3.5 (d) -4.5
P(x = 4) is (a) $\frac{2}{3}e^{-2}$ (b) $\frac{2}{3}e^{4}$ (c) $\frac{3}{2}e^{-2}$ (d) $\frac{3}{2}e^{4}$ Q118. Which one of the following is an uniparameter distribution?	etric Q129. The manufacturer of a certain electronic component is certain that 2% of his product is defective. He sells the components in boxes of 120 & guarantees that not more than 2% in any box will be defective. Find the probability that a box, selected at random would fail to meet the guarantee? (Given that $e^{-2.4} = 0.0907$)
(a) Poisson (b) Normal (c) Binomial (d) No	
©8888111134 8888111034 www.pranavchandak.com	Page 96 Retition & Provide Section 7 Study from the BEST CA Pranav Chandak 0

PYQs - Theoretical Distribution

	vned hospital u			Q136. The Star	ndard Deviation of	of Binomial di	stribution is:
	e percent patier			(a) npq	(b) $\sqrt{\mathbf{npq}}$	(c) np	(d) \sqrt{np}
	acilities. On one			x 7 1 1		** 1	Y Y T
	ly one special			0137 The spe	eds of a numbe	ar of bikes fo	llow a normal
	t more than 3 pa	atients would	require special		odel with a mea		
room facilities?					.4 km. /hr. Find		
(a) 0.1428	(b) 0.1732	(c) <mark>0.2235</mark>	(d) 0.3450		dom is travelling		
					1.28) = 0.1003.	g at more a	
June 2022				(a) 0.1003	(b) 0.38	(c) 0.49	(d) 0.278
Q131. If Standa	ard Deviation is :	1.732 then w	hat is the value	(4) 0.1000	(6) 0.50	(0) 0.15	(0) 0.270
of poisson distr	ribution. The PQ	- 2.48 < x <	3.54. is	hum a 2022			
(a) 0.73	(b) 0.65 (c) 0.86		0.81	June 2023			
<u><u> </u></u>					idence of skin d		
0132 In a norm	nal distribution,	variance is 16	then the value		a way that its w		
of mean deviati		variance is re	inen me value		it. What is the pr	obability that	6 workers 4 or
(a) 4.2	(b) 3.2	(c) 1 E			skin diseases?		
(d) 4.2	(D) 5.2	(c) 4.5	(d) 2.5	(a) 0.1696	(b) 0.01696	(c) 0.1643	(d) 0.01643
	omial distributio				9 & 10am the av		
(a) One mode	(b) Two mode	(c) Multi mo	o <mark>de</mark> (d) None		ng into the switc		
					y that during one		nute. There will
Dec 2022				be either two p	phone calls or no	phone calls.	
0134. Skewnes	s of Normal Dist	ribution is:		(a) 0.156	(b) 0.165	(c) 0.149	(d) 0.194
(a) Negative	(b) Positive	(c) Zero	(d) Undefined				
(a) Negative	(b) TOSILIVE	(c) 2010	(u) ondenned	O140 . If a Po	isson distributio	n is such th	at $P(X = 2) =$
	11			$\frac{1}{3}P(x = 3)$			- () -
	sson distributio						
	the variance of t			(a) 4	(b) 3	(c) 2	(d) 1
(a) <mark>√3</mark>	(b) 3	(c) 6	(d) 9				
				*			
		4					
	1						
1		-					
_							
4							
1				1			
088881	11134 8	888111	034 Pag	e 97		Partition & I	Practice Session -
C C C C C C C C C C C C C C C C C C C				Alex Courses to	L. DECT	North Control Con 1	Ocorano Ocorano

© 8888111134 | 8888111034 | 5 www.pranavchandak.com | 5

Study from the BEST

Revision & fractice Settion T

LAST 38 EXAMS PYQs by ca pranav chandak Correlation St Regression

TO BUY HARDCOPY OF PYQ ^s

SCAN ME

PYQs - Correlation Regression

		20	0	~
IN	ov	20	υ	0

Nov 2006	Aug 2007
Nov 2006	Q9. For 10 pairs of observations, number of concurrent
Q1. The coefficient of correlation r between x and y where $C_{\text{ext}}(x,y) = -16.5$. Ver $(x) = -2.80$. Ver $(y) = -100$ is t	deviations was found to be 4. What is the value of the
Cov (x, y) = -16.5, Var (x) = 2.89, Var (y) = 100 is : (a) -0.97 (b) 0.97 (c) 0.89 (d) -0.89	coefficient of concurrent deviation?
(a) -0.97 (b) 0.97 (c) 0.89 (d) -0.89	(a) $\sqrt{0.2}$ (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $-\sqrt{0.2}$
O2 Take 200 and 150 respectively as the assumed mean for	(11)
Q2. Take 200 and 150 respectively as the assumed mean for X and Y series of 11 values, then $dx = X - 200$, $dy = Y - 150$,	Q10. If the covariance between two variables is 20 and the
$\Sigma dx = 13$, $\Sigma dx2 = 2667$, $\Sigma dy = 42$, $\Sigma dy2 = 6964$, $\Sigma dx dy = 100$	variance of one of the variables is 16, what would be the
3943. The value of r is:	variance of the other variable?
(a) 0.77 (b) 0.98 (c) 0.92 (d) 0.82	(a) More than 10 (b) More than 100
	(c) More than 1.25 (d) Less than 10
Q3. For some bivariate data, the following results were	
obtained for two variables x and y : , \overline{x} = 53.2, \overline{y} = 27.9, byx	Nov 2007
= -1.5 , bxy = -0.2 , Most probable value of y when x = 60 is	Q11. Assume 69 and 112 as the mean values for X and Y
(a) 15.6 (b) 13.4 (c) 19.7 (d) 17.7	respectively., $\sum dx = 47$, $\sum dx^2 = 1475$, $\sum dy = 108$, $\sum dy^2 =$
	3468 , $\sum dx dy = 2116$ and N = 8, Where $dx = X - 69$, $dy = Y$
Q4. If the sum of squares of the rank difference in	– 112. Then the value of r is:
mathematics and physics marks of 10 students is 22, then	(a) 0.95 (b) 0.65 (c) 0.75 (d) 0.85
the coefficient of rank correlation is:	
(a) 0.267 (b) 0.867 (c) 0.92 (d) None	Q12. In rank correlation, the association need not be linear:
OF 2 renders veriables have regression lines 24 + 24 - 20	(a) True (b) False
Q5. 2 random variables have regression lines $3x + 2y = 26$ & $6x + y = 31$. Coefficient of correlation between x & y is:	(c) Partly True (d) Partly False
(a) -0.25 (b) 0.5 (c) -0.5 (d) 0.25	
(a) -0.25 $(b) 0.5$ $(c) -0.5$ $(d) 0.25$	Q13. The lines of regression are as follows: $5x - 145 = -10y$;
Q6. The coefficient of correlation between X and Y is 0.6. U	14y - 208 = -8x. The mean values (x, y) is:
and V are two variables defined as U = $\frac{x-3}{2}$, V = $\frac{y-2}{3}$, then the	(a) (12,5) (b) (5,7) (c) (7, 12) (d) (5, 12)
coefficient of correlation between U & V is:	Feb 2008
(a) 0.6 (b) 0.4 (c) 0.8 (d) 1	Q14. Coefficient of rank correlation of marks obtained by 10
	students, in English & Economics was found to be 0.5. It was
Q7. For following data, coefficient of rank correlation is:	later discovered that the difference in ranks in two subjects
	obtained by one student was wrongly taken as 3 instead of
	7. Correct coefficient of rank correlation is:
Rank in Chemistry: 2 3 1 5 4	(a) 0.32 (b) 0.26 (c) 0.49 (d) 0.93
(a) 0.93 (b) 0.4 (c) 0.6 (d) None	
	Q15. Given the following data: bxy = $0.4 \&$ byx = 1.6 . The
May 2007	coefficient of determination is
Q8. Following data is given, based on 450 students for marks	(a) 0.74 (b) 0.42 (c) 0.58. (d) 0.64
in Statistics & Economics at a certain examination:	
Mean marks in Statistics = 40	Q16. Method applied for deriving regression equations is known as:
Mean marks in Economics = 48	(a) Concurrent deviation (b) Product moment
S.D. of marks (Statistics) = 12	(c) Least squares (d) Normal equation
Variance of marks (Economics) = 256	(c) reast squares (d) Normal equation
Sum of the products of deviations of marks from their respective mean = 42075	June 2008
The average marks in Economics of candidates who	Q17. The coefficient of correlation between x & y series from
obtained 50 marks in Statistics is:	the following data:
(a) 45 (b) 54.5 (c) 54 (d) 47.5	X series Y series
	Number of pairs of 15 15

© 8888111134 | 8888111034 www.pranavchandak.com

Page 98 **Study from the BEST**

Revision & Practice Session -🔽 CA Pranav Chandak 🧿

Inthemetic Mean2518Standard Deviation3.013.03Sum of the squares of136138Seviation from mean136138Sum of the product of the deviations of x and y series from their respective means = 122, its: (a) 0.89 (b) 0.99 (c) 0.667 (d) 0.91(a) And (b) (d) None of theseQ18. If the tines of regression in a bivariate distribution are torrelation is: (a) 0.866 (b) 0.0566 (c) 0.667 (d) 0.0866(c) 0.667 (d) 0.0866Q19. If the correlation coefficient between two variables is then the two lines of regressions are: (a) 0.866 (b) 0.0566 (c) 0.667 (d) 0.0866(c) 0.667 (d) 0.0866Q20. If the sum of square of differences of rank is 50 and correlation coefficient of correlation between x and y is 0.46, Find (c) 0.040 (c) 0.36 (c) 0.063(c) 3.07, 3.1/4 (c) 3.07, 3.1/4 (c) 3.07, 1.7/4 (c) 3.07, 3.1/4 (c) 3.07, 1.7/4 (c) 3.0, 1.6, 1.7, 1.7/4 (c) 3.1, 1.7, 1.7/4 (c)		-				
parallel between means 332 333 Sum of the product of the deviations of x and y settes from their respective means = 122, is: (a) G8 (b) G9 (c) 0.9 (c) 0.06 (d) 0.01 Q18. If the lines of regression in a bivariate distribution are trained to the sure of the source source of the source of the source of the	Arithmetic Mean	25	18	Dec 2009		
			3.03			
Sum of the product of the deviations of x and y series from their respective means 12.2; (a) 0.89 (b) 0.99 (c) 0.69 (d) 0.91 (28. If the lines of regression in a bivariate distribution argiven by $x + 2y = 5$ and $2x + 3y = 8$, then the coefficient formelation is: (a) 0.866 (b) 0.966 (c) 0.667 (d) 0.986 (c) 0.67 (d) 0.866 (c) 0.9 (c) 11 (d) 12 (29. Correlation coefficient between X & Y is negative when (a) X and Y are decreasing (b) X is increasing. Y is decreasing (c) X and Y are increasing (c) X an		136	138			
(a) 0.89 (b) 0.99 (c) 0.69 (d) 0.91 Q48. If the lines of regression in a bivariate distribution are given by $x + 2y = 5$ and $2x + 3y = 8$, then the coefficient of correlation is: (a) 0.866 (b) 0.666 (c) 0.667 (d) 0.086 Q19. If the correlation coefficient between two variables is 1, then the two lines of regressions are (a) Parallel (b) At right angles (c) Coincident (c) None of these Q20. If the sum of square of differences of rank is 50 and number of items is 8 then what is the value of rank correlation coefficient between x and y is 0.46, find (a) 0.95 (b) 0.40 (c) 0.36 (d) 0.63 Q21. If coefficient of correlation between x and y is 0.46, find (b) 0.92 (c) -0.46 (d) 0.92 Q22. Given the regression equations as $3x + y = 13$ and $4x - y = 11 = 0$. Find the values of b_{xx} and b_{xy} . (a) $2x + 5y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (c) $2x + 5y = 20$ Q23. The correlation coefficient; (a) -2 (b) -4 (c) 0 (d) 2 Q24. The coefficient of correlation between x and y is 0.46, find (c) $x + 5y = 13$ (c) $2x + 5y = 20$ (c) $3x + 5y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (c) $2x + 5y = 20$ Q25. The correlation coefficient; (a) -2 (b) -4 (c) 0 (c) 2 Q25. The correlation coefficient by $4y = 29$ (c) -3 (b) $\frac{3}{2}$ (c) -12 (d) 0 Q25. The correlation coefficient by $4y = 29$ (c) -2 (b) -4 (c) 0 (c) 2 Q26. So the term regression equations are: $2x + 3y + 18 = 0$, (a) -2 (b) -4 (c) 0 (c) 2 Q26. So the correlation coefficient by $4y = 29 = 0$ (c) $2x + 3y - 8 = 0$. The regression line of y on x is (a) -2 (b) -4 (c) 0 (c) 2 Q26. So then thene thene by, $-1/2$ (c) -1 (c) 0 (c) 2 Q26. So thene thene find the value of Sparma runk (c) -1 (b) 0 (c) 1 (d) 0.75 (d) -2 (d) (d) None of the two lines. (e) -1 (b) 0 (c) 1 (d) 0.75 (b) -2 (c) $(-6)/2$ (d) (c) (d) None (c) -1 (c) 0 (d) None			series from			
Q18. If the lines of regression in a bivariate distribution are given by $x + y = 5$ and $2x + 3y = 8$, then the coefficient of correlation is:(a) 9 (b) 10 (c) 11 (d) 12(a) 0.866 (b) -0.666 (c) 0.667 (c) -0.866(c) 0.667 (c) -0.866Q29. Correlation coefficient between X & Y is negative when (a) X and Y are decreasing (c) X and Y are decreasing (d) None of theseQ20. If the sum of square of differences of rank is 50 and number of items is 8 then what is the value of rank (d) 0.59 (c) 0.36 (d) 0.63Q3. The two regression cluston set $2x + 3y + 13 = 0$ and $2x - y - 11 = 0$. Find the values of by $x_{2} - 13$ (b) $2x + 5y = 20$ Q22. Given the regression equations as $3x + y = 13$ and $2x + \frac{1}{2} = 0$ (f) $2x + 5y = 13$ (g) $2x + 5y = 20$ Q23. The coefficient of correlation significant if: (a) $1 > 5 P$. E (b) $r < 6 P$. E (c) $r < 6 P$. E (c) $r < 6 P$. E (d) $r < 6 P$. E (e) $r < 6 P$. E (f) $r < 6 P$. E (g) $r < 6 P$			1	Management and Mathematics for a group of students is 0.6		
 (a) 0.866 (b) -0.666 (c) 0.667 (d) -0.866 (b) -0.666 (c) 0.667 (d) -0.866 (c) X and Y are decreasing (d) None of these Q20. If the sum of square of differences of rank is 50 and number of correlation between x and y is 0.46. Find coefficient of correlation between x & ½ (a) 0.46 (b) 0.92 (c) -0.46 (c) -0.92 Q21. If coefficient of correlation between x & ½ ² (a) 0.46 (b) 0.92 (c) -0.46 (c) -0.92 Q22. Given the regression equations as 3x + y = 13 and 7x (b) X + 5y = 13 (c) 2X + 5y = 20 Q23. The coefficient of correlation is significant if: (a) - x = (b) - x = (c) - c 6P. E (b) - x = (c) - c 6P. E (c) - x = (c) - c 6P. E (c) - x = (c) - c 6P. E (c) - x = (c) - (c)	given by $x + 2y = 5$ and $2x + 2y = 5$			Then what is the number of students in the group?		
 Q19. If the correlation coefficient between two variables is 1, then the two lines of regressions are: (a) Arallel (b) At right angles (c) Caincident (c) None of these Q20. If the sum of square of differences of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of correlation between x and y is 0.46. End coefficient of correlation between x & 2 / (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as 3x + y = 13 and 2x + 5y = 13 (c) 2x + 5y = 20 (c) -0.46 (d) -0.92 Q22. Given the regression equations as 3x + y = 13 and 2x + 5y = 13 (c) 2x + 5y = 20 (c) -0.46 (d) -0.92 (c) -0.46 (d) -0.92 Q23. The coefficient of correlation between x & 2 / (c) -0.46 (d) -0.92 (c)		(c) 0.667	(d) -0.866	Q29. Correlation coefficient between X & Y is negative when		
1. then the two lines of regressions are: (a) Parallel (b) At right angles (c) Coincident (d) None of these Q20. If the sum of square of differences of rank is 50 and number of times is 8 then what is the value of rank correlation coefficient. (a) 0.59 (b) 0.40 (c) 0.36 (c) 0.63 Q21. If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x $8k \frac{1}{2}$ (a) 0.46 (b) 0.92 (c) 0.46 (c) 0.92 (c) $-3/7, -1/4$ (d) None of these Q30. The two regression lines are $7x - 3y - 18 = 0$ and $4x - y - 11 = 0$. Find the values of b_{xy} and b_{xy} (a) 0.40 (c) 0.36 (d) 0.63 Q21. If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x $8k \frac{1}{2}$ (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x$. 5y = 20. Find regression equations of y on x. (a) $3x + y = 13$ (b) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5P$. E (b) $r < 6P$. E (c) $r \ge 6P$. E (c) $r < 6P$. E (c) $r \ge 6P$. E (d) $r = 6P$. E June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/3. Find b_{xx}.(a) -2 (b) -4 (c) 0 (d) 2Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/3. Find b_{xx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Fanks of two$	019 If the correlation coeffi	cient between two	variables is	(a) X and Y are decreasing		
(a) Parallel (b) At right angles (c) Coincident (c) None of these Q20. If the sum of square of differences of rank is 50 and number of items is 8 then what is the value of rank correlation coefficient. (a) 0.59 (b) 0.40 (c) 0.36 (c) 0.63 Q21. If coefficient of correlation between x and y is 0.46. Find (a) 0.59 (b) 0.40 (c) 0.36 (c) 0.92 (c) -0.46 (c)	-		variables is	(b) A is uncreasing, I is decreasing		
 (c) Coincident (d) None of these Q20. If the sum of square of differences of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of rank is 50 and number of items is 8 then what is the value of sparama name (a) A the two regression equation as re: 2x + 3y + 18 = 0, x + 2y - 25 = 0, find the value of y f x = 9 (a) - 8 (b) 8 (c) - 12 (c) 0 Q23. The correlation coefficient between x and y is -1/2. The value of b_{xx} - 1/8. Find b_{xx}. (a) -2 (b) -4 (c) 0 (c) 1 (c) 0. Q24. If the two lines of regression line is (a) first of the value of the sparama rank correlation coefficient. (a) -1 (b) 0 (c) 1 (c) 0. Q32. Page 99 			gles			
Q20. If the sum of square of differences of rank is 50 and number of titems is 8 then what is the value of rank correlation coefficient. $4x - y - 11 = 0$. Find the values of b_{yx} and b_{xy} (a) 7.3, 4/4 (b) -7/3, -1/4 (c) 3/7, -1/4 (c) None of these.Q21. If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x $8x\frac{y}{2}$ (a) 0.46 (b) 0.92 (c) -0.46 (c) 0.92 (c) -0.46 (c) 0.92 (c) -0.46 (d) 0.92 (e) -0.46 (f) 0.92 (g) -0.46 (g) 0.92 (g) $2.4 + 5y = 20$ (g) $2x - 5y = 20$ (g) $2x + 5y = 20$ (g) $2x + 5y = 20$ (g) $2x - 3y - 8 = 0$ (g) $2x + 3y - 8 = 0$ (g)	(c) Coincident		7 .0	(d) None of these		
number of items is 8 then what is the value of rank correlation coefficient. (a) 0.59 (b) 0.40 (c) 0.36 (d) 0.63 Q21. If coefficient of correlation between $x \ge \frac{y}{2}$ (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of y on x . (a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (c) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. The value of b_{xy} - 1/8. Find, b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation c (c) 1 (c) 0 (d) 2x + 3y - 8 = 0(c) Any of the two line (d) None of the two lines.Dec 2010Q35. If sum of the product of deviations of x \& y series from ther means is zero, then coefficient.(a) -1 (b) 0 (c) 1 (d) 0.75(c) EX8UBUILD34 B88B111034 Page 99$	O20. If the sum of square of	differences of rar	nk is 50 and			
(a) 0.59 (b) 0.40 (c) 0.36 (d) 0.63 Q21. If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x $\otimes \frac{y}{2}$ (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of y on x. (a) $3x + y = 13$ (b) $2X + y = 20$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is r. The value of b_{xy} - 1/8. Find b_{xy}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank orrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.75B8288111134 B888111034 Page 99$	number of items is 8 ther			$4x - y - 11 = 0$. Find the values of D_{yx} and D_{xy}		
(a) 0.35(b) 0.45 (c) 0.35(c) 0.03Q21. If coefficient of correlation between x at y is 0.46. Find coefficient of correlation between x k_z^2 June 2010(a) 0.46 (b) 0.92(c) -0.46(d) -0.92(a) 0.46 (b) 0.92(c) -0.46(d) -0.92(a) 0.46 (b) 0.92(c) -0.46(d) -0.92(b) 22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of y on x.(a) $3x + y = 13$ (a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if:(a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6 P. E$ June 2009Q24. The two regression equations are: $2x + 3y + 18 = 0$, $x + 2y - 25 = 0$, find the value of y if $x = 9$ (a) -8 (b) 8 (c) -12 (d) 0 Q25. The correlation coefficient between x and y is $-1/2$. The value of $b_{xy} = 1/8$. Find b_{yx} .(a) -2 (b) -4 (c) 0 (c) 0 Q26. Ranks of two, characteristics by two judges are in reverse order then find the value of Spearman rank correlation $coefficient of correlation sof x \& y series fromtheir means is zero, then coefficient of correlation sof x \& y series fromtheir means is zero, then coefficient of correlation sof x \& y series fromtheir means is zero, then coefficient of correlation will be(a) 1(a) 1(b) -1(c) 0(d) 0(c) 1(d) 0.75$			_			
Q31. If 'P' is the simple correlation coefficient, the quantity P is known as: (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of y on x. (a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ Q33. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. The value of b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank (a) -1 (b) 0 (c) 1 (d) 0.75O 8888111134 B88811103 Page 99$	(a) 0.59 (b) 0.40 (c) 0.	36 (d) 0.6	3			
coefficient of correlation between x & $\frac{y}{2}$ (a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. The value of b_{xx} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two, characteristics by two judges are in reverse order then find the value of Spearman rank(a) -1 (b) 0 (c) 1 (d) 0.75S8888111134 B888111034 Page 99$	O21 If coefficient of correlation	on between x and y	vis 0.46 Find	June 2010		
(a) 0.46 (b) 0.92 (c) -0.46 (d) -0.92 Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of $2x + 5y = 20$ (a) $3x + y = 13$ (b) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6 P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -3 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. The value of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank (a) -1 (b) 0 (c) 1 (d) 0.7528888111134 B88811103 Page 99$			13 0.40.1 110			
(a) Coefficient of adterminationQ22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$.(b) Coefficient of Non-determination(a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if:(a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r = 6P.E$ (c) $r \ge 6 P. E$ (d) $r = 6P.E$ (d) $r = 6P.E$ (d) $r = 6P.E$ June 2009Q24. The two regression equations are: $2x + 3y + 18 = 0$, $x + 2y - 25 = 0$, find the value of y if $x = 9$ (a) $a = (b) 8$ (c) -12 (d) $0 = (b) - r$ Q25. The correlation coefficient between x and y is $-1/2$. The value of $b_{xy} - 1/8$. Find b_{yx} .(a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two		2	92			
Q22. Given the regression equations as $3x + y = 13$ and $2x + 5y = 20$. Find regression equation of y on x.(a) $3x + y = 13$ (b) $2X + y = 20$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if:(a) $r > 5P$. E(b) $r < 6P$. E(c) $r \ge 6P$. E(c) $r = 6P$. EJune 2009Q24. The two regression equations are: $2x + 3y + 18 = 0$, $x + 2y - 25 = 0$, find the value of y if $x = 9$ (a) -8 (b) 8 (c) -12 (a) -8 (b) 8 (c) -12 (a) -2 (b) -12 (c) 0 Q25. The correlation coefficient between x and y is $-1/2$. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (c) 0 (a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two						
(d) None of the above. (a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (d) $2x + 5y = 20$ (23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6 P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are inreverse order then find the value of Spearman rankcorrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.75(b) 8888111134 8888111034 Page 99$	Q22. Given the regression eq	uations as 3x + y	= 13 and 2x			
(a) $3x + y = 13$ (b) $2x + y = 20$ (c) $3x + 5y = 13$ (c) $2x + 5y = 20$ Q23. The coefficient of correlation is significant if: (a) $r > 5 P. E$ (b) $r < 6 P. E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are inreverse order then find the value of Spearman rankcorrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.753888111134 8888111034 Page 99$						
Q23. The coefficient of correlation is significant if: (a) $r > 5$ P. E (b) $r < 6$ P. E(b) $r < 6$ P. E (c) $r \ge 6$ P. E (d) $r = 6$ P. E(g) $r < 6$ P. E (d) $r = 6$ P. E(g) $r < 6$ P. E (c) $r \ge 6$ P. E (c) $r \ge 6$ P. E (d) $r = 6$ P. E(g) $r < 6$ P. E (f) $r = 6$ P. E(g) $r < 6$ P. E (c) $r \ge 6$ P. E (c) $r \ge 6$ P. E (c) $r \ge 6$ P. E (d) $r = 6$ P. E(g) $r < 6$ P. E (f) $r \ge 6$ P. E (g) $r \ge 6$ P. E (g) $r \ge 6$ P. E (h) $r = 6$ P. E(g) $r < 6$ P. E (c) $r \ge 6$ P. E (d) $r \ge 6$ P. E (d) $r \ge 6$ P. E (e) $r \ge 6$ P. E (f) $r \ge 6$ P. E (c) $r \ge 6$ P. E (c) $r \ge 6$ P. E (d) $r \ge 6$ P. E (e) $r \ge 6$ P. E (f) $r \ge 6$ P. E (g) $r \ge 6$ P. E (h) $r \ge 6$						
Q23. The coefficient of correlation is significant if:(a) $r > 5$ P. E(b) $r < 6$ P. E(c) $r \ge 6$ P. E(c) $r = 6$ P. E(d) $r = 6$ P. E(d) $r = 6$ P. EJune 2009Q24. The two regression equations are: $2x + 3y + 18 = 0$, $x + 2y - 25 = 0$, find the value of y if $x = 9$ (a) -8 (b) 8 (c) -12 (d) 0 (a) -8 (b) -12 (c) -12 (d) 0 Q25. The correlation coefficient between x and y is $-1/2$. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two, characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. (a) -1 (a) -1 (b) 0 (a) -1 (c) 0 (d) 0.75 88881111348888111034Page 99	(c) $3x + 5y = 13$	(d) $2x + 5y = 2$	20	Q32 of the regression Coefficients is greater than the		
(a) $r > 5 P. E$ (b) $r < 6 P. E$ (c) $r \ge 6 P. E$ (d) $r = 6 P. E$ (d) $r = 6 P. E$ (e) Combined mean (f) Harmonic	O23 The coefficient of correl	ation is significant	if			
(c) $r \ge 6 P. E$ (d) $r = 6P.E$ June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are inreverse order then find the value of Spearman rankcorrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.758888111134 8888111034 Page 99(c) Geometric mean (d) Arithmetic mean(c) Geometric mean (d) Arithmetic mean(d) Arithmetic mean(d) Arithmetic mean(d) Arithmetic mean(e) Geometric mean (d) Arithmetic mean(f) Geometric mean (d) Arithmetic mean(g) Arithmetic mean$		and the second				
June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are inreverse order then find the value of Spearman rankcorrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.758888111134 8888111034 Page 99between U = \frac{x-5}{10} and V = \frac{y-7}{2} is(a) r (b) -r (c) (r - 5)/2 (d) (r - 7)/10Q34. If the two lines of regression are x + 2y - 5 = 0 and2x + 3y - 8 = 0$, The regression line of y on x is (a) $x + 2y - 5 = 0$ (b) $2x + 3y - 8 = 0$ (c) Any of the two line (d) None of the two lines. Dec 2010 Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None				(c) Geometric mean (d) Arithmetic mean		
June 2009 Q24. The two regression equations are: $2x + 3y + 18 = 0$, x + 2y - 25 = 0, find the value of y if $x = 9(a) -8 (b) 8 (c) -12 (d) 0Q25. The correlation coefficient between x and y is -1/2. Thevalue of b_{xy} - 1/8. Find b_{yx}.(a) -2 (b) -4 (c) 0 (d) 2Q26. Ranks of two characteristics by two judges are inreverse order then find the value of Spearman rankcorrelation coefficient.(a) -1 (b) 0 (c) 1 (d) 0.758888111134 8888111034 Page 99between U = \frac{x-5}{10} and V = \frac{y-7}{2} is(a) r (b) -r (c) (r - 5)/2 (d) (r - 7)/10Q34. If the two lines of regression are x + 2y - 5 = 0 and2x + 3y - 8 = 0$, The regression line of y on x is (a) $x + 2y - 5 = 0$ (b) $2x + 3y - 8 = 0$ (c) Any of the two line (d) None of the two lines. Dec 2010 Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None				O33. If the correlation coefficient between x and y is r, then		
(a) -8 (b) 8 (c) -12 (d) 0 Q25. The correlation coefficient between x and y is -1/2. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation coefficient. (a) -1 (b) 0 (c) 1 (d) 0.75 (a) -1 (b) 0 (c) 1 (d) 0.75 (b) -1 (c) 0 (d) None of the two lines is zero, then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None of the two lines is zero. Then coefficient of the two lines is zero. Then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None of the two lines is zero. Then coefficient of the two lines is zero. Then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None of the two lines is zero. Then coefficient of the two lines is zero. Then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (c) 1 (c) None of the two lines (c) 0 (c				between $II = \frac{x-5}{x-5}$ and $V = \frac{y-7}{y-7}$ is		
(a) -8 (b) 8 (c) -12 (d) 0 Q25. The correlation coefficient between x and y is $-1/2$. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. (a) -1 (b) 0 (c) 1 (d) 0.75 S888111134 S888111034 Page 99 Q34. If the two lines of regression are $x + 2y - 5 = 0$ and 2x + 3y - 8 = 0, The regression line of y on x is (a) $x + 2y - 5 = 0$ (b) $2x + 3y - 8 = 0$ (c) Any of the two line (d) None of the two lines. Dec 2010 Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) None			y + 18 = 0	10 1		
Q25. The correlation coefficient between x and y is -1/2. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (b) -4 (c) 0 (c) 1 (c) 1Q34. If the two lines of regression are $x + 2y - 5 = 0$ and $2x + 3y - 8 = 0$, The regression line of y on x is (a) $x + 2y - 5 = 0$ (b) $2x + 3y - 8 = 0$ (c) Any of the two line (d) None of the two lines.Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. (a) -1 (b) 0 (c) 1 (c) 1 (d) 0.75Dec 2010 Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) 1 (b) -1 (c) 0 (d) NoneS88881111348888111034Page 99		-	(d) 0			
Q25. The correlation coefficient between x and y is -1/2. The value of $b_{xy} - 1/8$. Find b_{yx} . (a) -2 (b) -4 (c) 0 (c) 1 (c) 0 (d) 2(a) $x+2y-5=0$ (c) Any of the two line (d) None of the two lines.(a) $x+2y-5=0$ (c) Any of the two line (d) None of the two lines.(a) $x+2y-5=0$ (c) Any of the two line (d) None of the two lines.Q26. Ranks of two		(0) ==				
(a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. (c) Any of the two line (d) None of the two lines. Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) 1 (c) 0 (d) 0.75 S888111134 8888111034 Page 99 Review & Praellee Series	Q25. The correlation coefficie	nt between x and y	/ is -1/2. The			
(a) -2 (b) -4 (c) 0 (d) 2 Q26. Ranks of two characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. Dec 2010 (a) -1 (b) 0 (c) 1 (d) 0.75 S888111134 8888111034 Page 99	value of $b_{xy} - 1/8$. Find b_{yx} .					
Q26. Kanks of two, characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) -1 (b) 0 (c) 1 (d) 0.75 S8888111134 8888111034 Page 99 Revision & Practice Sector Revision & Practice Sector	(a) -2 (b) -4	(c) 0	(d) 2	(c) Any of the two line (d) None of the two lines.		
Q26. Kanks of two, characteristics by two judges are in reverse order then find the value of Spearman rank correlation co-efficient. Q35. If sum of the product of deviations of x & y series from their means is zero, then coefficient of correlation will be (a) -1 (b) 0 (c) 1 (d) 0.75 S8888111134 8888111034 Page 99 Revision & Practice Sector Revision & Practice Sector	O26 Depter of the	staviation by the t	uda ca a sa b	Dec 2010		
correlation co-efficient. (a) -1 (b) 0 (c) 1 (d) 0.75 their means is zero, then coefficient of correlation will be (a) -1 (b) 0 (c) 1 (d) 0.75 (a) 1 (b) -1 (c) 0 (d) None S 8888111134 8888111034 Page 99 Revision & Page Section Revision & Page Section			-			
Series Revision & Provides Series Revision & Provides Series -		in the of open		their means is zero, then coefficient of correlation will be		
	(a) -1 (b) 0	(c) 1	(d) 0.75	(a) 1 (b) -1 (c) 0 (d) None		
www.pranavchandak.com Study from the BEST CA Pranav Chandak @						
	www.pranavch	andak.co	om St	udy from the BEST DCA Pranav Chandak 🧿		

Q36. The ranks of five participants given by two judges are Q45						Q45. If one of regression coefficient is unity, the other
Participants						must be unity.
	A	В	C	D	Е	(a) more than, more then (b) Less than, Less then
Judge 1	1	2	3	4	5	(c) more than, less than (d) Positive, Negative
				~		
Judge 2	5	4	3	2	1	Q46. If Y is dependent variable and X is Independent variable
Rank correlation					b 1 (2	and the S.D of X and Y are 5 and 8 respectively and Co- efficient of co-relation between X and Y is 0.8. Find the
(a) 1 (b) 0	(0	:) -1	(C	1) 1/2	Regression coefficient of Y on X.
Q37. Regression	coefficie	nt are				(a) 0.78 (b) 1.28 (c) 6.8 (d) 0.32
(a) dependent of				cale.		
(b) independent	_	-			ale.	June 2012
(c) dependent of	change of	of origin	but not	of scale.		Q47. If the regression lines are $8x - 10y + 66 = 0 \& 40x - 10y + 66 = 0 \& 40x - 10y + 66 = 0 \& 40x - 10y + 60 = 0 \& 40x - 10y + 10y + 10y = 0 \& 40x - 10x - 10x - 10y = 0 \& 40x - 10x - 10$
(d) independent	of chang	e of orig	in but no	ot of scal	le	18y = 214, the correlation coefficient between 'x' & 'y' is :
						(a) 1 (b) 0.6 (c) -0.6 (d) -1
Q38. Given: $\bar{x} = 1$.6, σx =	4.8, <u>y</u> =	20, σy =	9.6		
The coefficient o).6. What	Q48. Coefficient of correlation between two variables x and
will be the regres						y is the simple of the two regression coefficients. (a) Arithmetic Mean (b) Geometric Mean
(a) 0.03 (b) 0.3	(0	:) 0.2	(C	l) 0.05	(c) Harmonic Mean (d) None of the above.
O20 If the two l	and of m	morelas	210 11 2		0 81 2-1	
Q39. If the two lint $3y - 8 = 0$ The r					0 & 2X +	Q49. If 2 variables are uncorrelated, their regression lines
(a) $x+2y-5 = 0$			b) $2x + 3$: 0	are:
(c) Any of the two			d) None			(a) Parallel (b) Perpendicular
(,	.,			(c) Coincident (d) Inclined at 45 degrees.
June 2011						
Q40. The covaria	nce betv	veen two	variabl	es X and	Y is 8.4	Q50. If the covariance between variables X and Y is 25 and
and their variance						variance of X and Y are respectively 36 and 25, then the coefficient of correlation is
Pearson's coefficient of correlation between them.						(a) 0.409 (b) 0.416 (c) 0.833 (d) 0.0277
(a) 0.82 (b) 0.28 (c) 0.01	(c	4) 0.09		
Odi Far a biyari	ata data	hun line	a of your		40	Q51. If \bar{x}, \bar{y} denote the arithmetic means, σ_x, σ_y denotes the
Q41. For a bivariant $18y = 214 & 8x$					ne 40x –	standard deviations. b _{xy} , b _{yx} denote the regression
$18y = 214 \& 8x - 10y + 66 = 0, \text{ then find } \bar{x} \& \bar{y}$ (a) 17 & 13 (b) 13 & 17 (c) 13 & -17 (d) -13 & 17					-13 & 17	coefficients of the variables 'x' & 'y' respectively, then point
(-) (-,					of intersection of regression lines x on y & y on x is
Q42. Three com	petitors	in a coi	ntest are	e ranked	l by two	(a) $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ (b) (σ_x, σ_y) (c) (b_{xy}, b_{yx}) (d) (σ_x^2, σ_y^2)
judges in the ord	er 1,2,3 a	nd 2,3,1	respectiv			Dec 2012
Spearman's rank						Dec 2012 Q52. In Spearman's Correlation Coefficient, the sum of the
(a) -0.5 (b) -0.8	(c) 0.5	(c	8.0 (differences of ranks between two variables shall be
Dec 2011			-			(a) 0 (b) 1 (c) -1 (d) None
Q43. Out of the 1	following	which -	no offer	te the re	arossian	
co-efficient.	ouowing	y which c		lis the re	gression	Q53. For certain x and y series which are correlated, the two
(a) Change of Ori	gin Only	ſł	o) Chang	e of scal	e Only	lines of regression are $5x-6y+9 = 0$; $15x - 8y - 130 = 0$
(c) Change of sca						The correlation coefficient is
(d) Neither Chang			hange o	f scale		(a) $4/5$ (b) $\frac{3}{4}$ (c) $\frac{2}{3}$ (d) $\frac{1}{2}$
						Q54. The Coefficient of correlation between x and y series is
Q44. For a bivari						-0.38. The linear relation between x&u and y&v are $3x +$
and of X on Y are					0X - Y =	5u = 3 and $-8y - 7v = 44$, what is the coefficient of
70, then the Corr						correlation between u&v ?
THE OWNER WATER OF THE OWNER WATER	(b) -0.2		:) 0.5		l) -0.5	(a) 0.38 (b) -0.38 (c) 0.40 (d) None
©888811						e 100 - Revision & Praelice Section 7
www.pro	inav	char	ıdak	.com	1 Sti	Idy from the BEST CA Pranav Chandak

CA PRANAV CHANDAK	PYQs - Correlation Regression
Q55. If $y = 18x + 5$ is regression line of y on x, $b_{xy} =$ (a) 5/18 (b) 18 (c) 5 (d) 1/18	Q63. When the value of correlation coefficient is +1 or -1, then the two regression lines will
June 2013	(a) have 30° angle between them.(b) have 45° angle between them.
Q56. If 'r' be Karls Pearson's coefficient of correlation in a bivariate distribution then the two regression lines are at right angle if:	(c) coincide (d) be perpendicular to each other
(a) $r = \pm 1$ (b) $r = 0$ (c) $r = \pm$ any finite value whose numerical value < 1	June 2014 Q64. Two regression lines for a bivariate data are: 2x – 5y +
(d) None	6 = 0 and $5x - 4y + 3 = 0$. Then the coefficient of correlation should be:
Q57. If the regression equations are $8x - 3y + 50 = 0$ and $14x - 7y - 60 = 0$ and standard deviation of y is 1. The coefficient of correlation is =	(a) $\frac{-2\sqrt{2}}{5}$ (b) $\frac{2}{5}$ (c) $\frac{+2\sqrt{2}}{5}$ (d) $\frac{\sqrt{2}}{5}$
(a) 2 (b) 1 (c) 0.87 (d) -0.87	Q65. When each individual gets the exactly opposite rank by the two Judges, then the rank correlation will be
Q58. The coefficient of correlation between two variables x and y is 0.28. Their covariance is 7.6. If the variance of x is 9,	(a) 0 (b) -1 (c) +1 (d) $\frac{1}{2}$
then the standard deviation of y is:(a) 8.048(b) 9.048(c) 10.048(d) 11.048	Q66. If mean of the two variables 'x' & 'y' are 3 & 1 respectively. Then equation of two regression lines are $_$
Q59. Two variables x and y are related according to $4x +$	(a) $5x + 7y - 22 = 0$, $6x + 2y - 20 = 0$ (b) $5x + 7y - 22 = 0$, $6x + 2y + 20 = 0$
3y = 7. Then x and y are:(a) Positively correlated(b) Negatively correlated.	(c) $5x + 7y + 22 = 0$, $6x + 2y - 20 = 0$ (d) $5x + 7y + 22 = 0$, $6x + 2y + 20 = 0$
(c) Correlation is zero. (d) None of these.	Q67. Equation of two lines of regression for 'x' and 'y' are $5x = 22 + y$ and $64x = 24 + 45y$ then the value of
Dec 2013 Q60. Determine coefficient of correlation between x & y series:	regression coefficient of 'y' on 'x' will be (a) 5 (b) $\frac{1}{5}$ (c) $\frac{64}{45}$ (d) $\frac{45}{64}$
x Series y Series	
No. of items1515Arithmetic Mean2518	Dec 2014 Q68. If the correlation coefficient between two variables is
Sum of Squares of Deviations 136 138 from Mean	zero, then the lines of regression are: (a) Parallel (b) Perpendicular
Sum of products of Deviations of x & y series from Mean = 122	(c) Coincide (d) None of these
(a) -0.89 (b) 0.89 (c) 0.69 (d) -0.69	Q69. If value of correlation coefficient between x & y is 1, then correlation coefficient between $x-2 & \frac{-y}{2} + 1$ is:
Q61. Price and Demand is the example for (a) No correlation (b) Positive correlation	(a) 1 (b) -1 (c) -1/2 (d) 1/2
(c) Negative (d) None of the above	Q70. The equations of two regression lines are $x+y = 6$ and $x+2y = 10$, then the value of correlation coefficient between x and y is:
Q62. If mean of x and y variables is 20 and 40 respectively and the regression coefficient of y on x is 1.608, then the regression line of y on x is	(a) $-1/2$ (b) $+1/2$ (c) $-1/\sqrt{2}$ (d) $+1/\sqrt{2}$
(a) $y = 1.608x + 7.84$ (b) $y = 1.5x + 4.84$	June 2015 Q71. 2 regression lines are $16x - 20y + 132 = 0$,
(c) $y = 1.608x + 4.84$ (d) $y = 1.56x + 7.84$	Q71. 2 regression lines are $16x - 20y + 132 = 0$, 80x - 36y - 428 = 0. Value of the correlation coefficient is
	(a) 0.6 (b) -0.6 (c) 0.54 (d) 0.45
Q8888111134 8888111034 Page	2 101 Revision & Prove Twee Services -

© 8888111134 | 8888111034 Page 101 www.pranavchandak.com Study from the BEST

Revision & Practice Session —

[CA Pranav Chandak 🧿

Q72. When the correlation coefficient r is equal to +1, all th	e (a) $-\frac{2}{3}$ (b) $\frac{100}{3}$ (c) $\frac{3}{2}$ (d) $\frac{2}{3}$
points in a scatter diagram would be	
(a) On a straight line directed from upper left to lower righ	O82 In a beauty contest there were 10 competitors. Rank of
(b) On a straight line directed from lower left to upper righ	these candidates are assigned by two judges A and B. The
(c) On a straight line (d) Both (a) and (b)	sum of squares of differences of ranks is 44. The value of rank correlation is:
Dec 2015	(a) 0.70 (b) 0.73 (c) 0.80 (d) 0.60
Q73. Out of following which is correct?	
(a) $b_{yx} = r \frac{\sigma_x}{\sigma_y}$ (b) $b_{yx} = r \frac{\sigma_y}{\sigma_x}$	June 2017
$\sigma_y = \sigma_x$	Q83. The coefficient of correlation between the temperature
(c) $b_{yx} = \frac{\pi \cdot \Sigma xy}{\sigma_x}$ (d) $b_{yx} = \frac{\pi \cdot \Sigma xy}{\sigma_y}$	of environment and power consumption is always:
	(a) Positive (b) Negative (c) Zero (d) Equal to 1
Q74. In case of "Insurance Companies" profits & the number	
of claims they have to pay there is correlation.	Q84. If two regression lines are $x+y = 1$ and $x-y = 1$ then
(a) Positive (b) Negative (c) No correlation (d) Non	
	(a) 0 & 1 (b) 1 & 1 (c) 1 & 0 (d) -1 & -1
June 2016	
Q75. Two regression equations are as follows:	Q85. Coefficient of correlation between x & y is 0.6. If x & y values are multiplied by -1 then coefficient of correlation =
Regression equation of x on y: $5x - y = 22$	values -are multiplied by -1, then coefficient of correlation=
Regression equation of y on x: $64x - 45y = 24$	(a) 0.6 (b) -0.6 (c) $\frac{1}{0.6}$ (d) $1 - 0.6$
What will be the mean of x & y?	
(a) $\bar{x} = 8, \bar{y} = 6$ (b) $\bar{x} = 6, \bar{y} = 6$	Dec 2017
(c) $\bar{\mathbf{x}} = 6, \bar{\mathbf{y}} = 8$ (d) $\bar{\mathbf{x}} = 8, \bar{\mathbf{y}} = 8$	Q86. If 2 regression lines are $5y = 9x - 22 & 20x = 9y + 22 & 20x = 9y + 25 & 20x = 20x $
	350, then the value of correlation coefficient (r) will be:
Q76. If the coefficient of correlation between X and Variables is +0.90 then what will be the coefficient c	
determination?	
(a) 0.30 (b) 0.81 (c) 0.94 (d) None	Q87. Regression coefficient is independent of change of:
	(a) Origin (b) Scale
Q77. The two lines of regression become identical when	(c) Both (a) and (b) (d) Neither (a) nor (b).
,	Q88. If $r = 0.6$ then the coefficient of non-determination
(a) $r = 1$ (b) $r = -1$ (c) $r = 0$ (d) (a) or (b)	will be:
	(a) 0.40 (b) -0.60 (c) 0.36 (d) 0.64
Q78. If $r = 0.6$, then the coefficient of determination is.	
(a) 0.4 (b) -0.6 (c) 0.36 (d) 0.64	Q89. Correlation coefficient (r) is _ coefficients $(b_{yx} \& b_{xy})$
	(a) AM (b) GM (c) HM (d) Median
Dec 2016	
Q79. The two regression lines passing through	Q90. If there is a constant increase in a series, then the
(a) Represent means (b) Represent SDs	corresponding graph will be
(c) (a) and (b) (d) None of these.	(a) Convex curve (b) Concave curve
	(c) Parabola (d) Straight line from the left to the right
Q80. Out of the following the one which effects th	e
regression coefficient is	May 2018
(a) Change of origin only	Q91. If the plotted points is a scatter diagram are evenly
(b) Change of scale only	distributed, then the correlation is
(c) Change of scale and origin both (d) Neither change in origin nor change of scale	(a) Zero (b) Negative (c) Positive (d) (a)/(b)
(a) Nether change in origin nor change of scale	
Q81 . The regression equation of x on y is $3x + 2y = 100$	
The value of b_{xy} is:	Q92. The covariance between two variables is
	ge 102 Revision & Practice Sentin 7
www.pranavchandak.com	tudy from the BEST 🛛 🖸 CA Pranav Chandak 🧕

(a) Strictly posi	tive	(b) Strictly negative		(a) 1	(k	o) 0.5	(c) -0.5	(0	d) O (t
		ositive or negative or z	ero	(-) -	X	.,	(0) 010		., -
002 6-05	1. C.1	and a first land a first		June 201			Anna ta		
		on is defined by the fo		(a) Equa		ression coeffic	ater than c	r og upl t	o r
		(b) $r^2 = \frac{\text{explained variance}}{\text{total variance}}$		(c) Half		(d) Nor		or equal (.01
(c) both (a) and	l (b)	(d) none			511				
004 In the m	athed of Conc	urrent Deviations, on	lu tha	Q105 . G	iven that				
		direction/Negative dire	-	X	-3	-3/2	0	3/2	3
		account for calculation		Y	9	9/4	0	9/4	9
(a) Coefficient) Coefficient of regress	ion	Then Ka	rlpearson'	s coefficient o	of correlation		
(c) Coefficient	of correlation	(d) none		(a) Posit) Zero (c) Nec		d) None	
OOF Correlatio	a se officient is	of units of more units							
(a) dependent	on coefficient is _	of units of measurer (b) independent	ment	Q106 . Fi	nd the pro	obable error i	$f r = \frac{2}{\sqrt{10}} an$	nd n = 3	6
(c) both		(d) none		1) 0.067			d) None
(0) 2001									
		tomobile and the dis		Q107 . G	iven the fo	ollowing serie	S:		
		pplying brakes correlat		X	10	13 12	15	8	15
(a) Positive	(b) Negative	(c) Zero (d) N	lone	Y	12	16 18	16	7	18
007 A relation	ship $r^2 = 1 - 500$	⁰ is not possible				on coefficient			
	ship $r^2 = 1 - \frac{500}{300}$ (b) False		long	6	$\Sigma d^2 + \Sigma_{i=1}^2 \frac{m_1}{m_1}$	$\frac{(m^2-1)}{12}$	Σ	$d^2 + \sum_{i=1}^{2} \frac{m_i}{2}$	$\frac{1\left(m_{1}^{2}-1\right)}{12}$
(a) True	(D) Faise	(c) both (d) h	lone	(a) 1 — —	$n(n^2-1)$)	(b) 1 – –	n (n ² -1	L)
O98 . Rank corr	elation coefficie	nt lies between		(c) 1 - 6	$\nabla d^2 + \nabla^2$	$=1 \frac{\frac{m_1(m^2-1)}{12}}{n(n^2-1)}$	$(d) 1 - 6 \Sigma d$	$1^{2} + \Sigma^{3}$	$\frac{m_1(m^2-1)}{12}$
(a) 0 to 1		clusive of these value				= 1 n(n ² -1)	(u) 1 — 0 <u>7</u> u	$L \rightarrow \Delta i = 1$	n(n ² -1)
(c) -1 to 0	(d) both			0108)etermine	Spearman's	rank corre	lation co	pefficient
						ta $\sum d^2 = 30$, r			
				(a) r =	0.82 (b) $r = 0.32$	(c) $r = 0$.40 (c	l) None
Nov 2018	ne of regression	intersect at the point)						
121		(c) Median (d) N	Jone			n line of y or			2
	(1)			1		efficient of cor			O'A
		ssion are $x+2y-5 =$		(a) 3	(k	o) 2	(c) 4	(0	d) None
		ession line of y on x is:		Nov 201	٥				
(a) $x+2y-5 =$	• 0	(b) $2x + 3y - 8 = 0$				of regressior	are x+2v	-5 = 0) & 2x +
(c) $x+2y = 0$		(d) $2x + 3y = 0$				$x^{2} - 5 = 0$			
0101. If the tw	o regression line	es are $3X = Y$ and $8Y$	= 6X.	(a) y on :	x (b	o) x on y	(c) both	(0	l) None
	of correlation co							_	
(a) 0.5	(b) -0.5	(c) 0.75 (d) -	0.80			ient of correla			x+3y=4
	<i>m</i> + +			(a) -0.71	(b) 0.71 (c) -0.5	(0	d) 0.5	
	on coefficient is	independent of chang	e ot:	0112 . Fi	nd coeffic	tient of correla	ation of the	e followir	ng data?
(a) Scale (c) Scale and o	rigin both	(b) Origin (d) None		x: 1 2	234	5			
	igar both			~	4 3 2		() 0 0	14	0.00
Q103. If correla	ation coefficient	between the variables	X & Y	(a) 0		b) -0.75	(c) -0.85		d) 0.82
	relation coefficie	ent between variables	2x – 4			ted points in r right, then c		-	the from
& 3 – 2y is				(a) Positi) Negative	(c) Zero		d) None
88881	11134 8	888111034	Page	e 103			Revision &	& Practice	Session -
		andak.com	and the second second		om the	BEST			handak Q
						Statement of the			S

Nov 2020	Q124. If by $x = -1.6$ and by $x = -0.4$, then r_{xy} will be:
Q114. Which of the following is spurious correlation?	(a) 0.4 (b) -0.8 (c) 0.64 (d) 0.8
(a) Correlation between two variables having no ca	
relationship	Q125. If the sum of the product of the deviations of X & Y
(b) Negative correlation	from their means is zero correlation coefficient between X
(c) Bad relation between two variables	& Y is:
(d) Very low correlation between two variables.	(a) Zero (b) Positive (c) Negative (d) 10.
Q115. Scatter diagram does not help us to?	Q126. If the slope of the regression line is calculated to be
(a) Find the type of correlation	5.5 and the intercept 15 then the value of Y and X is 6 is:
(b) Identify whether variables correlated or not	(a) 88 (b) 48 (c) 18 (d) 78
(c) Determine the linear or non-linear correlation	
(d) Find the numerical value of correlation coefficient	Q127. The sum of square of any real positive quantities and
	its reciprocal is never less than:
Q116. The covariance between two variables is	(a) 4 (b) 2 (c) 3 (d) 4.
(a) Strictly positive (b) Strictly negative	
(c) Always Zero (d) Either positive or negative or zero.	Dec 2021
(c) Always zero (d) Entrer positive of negative of zero.	Q128. If the data points of (X, Y) series on a scatter diagram
Jan 2021	lie along a straight line that goes downwards as X-values
Q117. For set of observations {(1,2), (2,5), (3,7), (-	move from left to right, then the data exhibit correlation.
(5,10) value of karl-person's coefficient of correlatio	(b) Impertect Indirect
approximately given by	(c) Indirect (d) Imperfect direct
(a) 0.755 (b) 0.655 (c) 0.525 (d) 0.9	85
	Q129. For any two variables x and y the regression equations
Q118. The coefficient of correlation between x and y is	are given as $2x + 5y - 9 = 0$ and $3x - y - 5 = 0$. What are
the covariance, is 16, and the standard deviation of y is	the A.M. Of X & Y?
(a) 4 (b) 8 (c) 16 (d) 64	(a) 2, 1 (b) 1, 2 (c) 4, 2 (d) 2, 4
Q119. Interesting point of the two regression lines: y of	Q130. The intersecting point of two regression lines falls at
and x on y is	X-axis. If the mean of X-values is 16, the SD of X & Y are respectively, 3 & 4, then the mean of Y-values is
(a) (0,0) (b) (\bar{x}, \bar{y}) (c) (b_{yx}, b_{xy}) (d) (1,1)	1)
	(a) 16/3 (b) 4 (c) 0 (d) 1
Q120. Given that the variance of x is equal to the squar	e of Q131. The regression coefficients remain unchanged due to
standard deviation by and the regression line of y on	
y = 40 + 0.5(x - 30). Then regression line of x on y is	
(a) $y = 40 + 4(x - 30)$ (b) $y = 40 + (x - 30)$	(c) Always (d) Never
(c) $y = 40 + 2(x - 30)$ (d) $x = 30 + 2(x - 40)$	hune 2022
	June 2022 Q132. If Coefficient of correlation for $3x + 4y = 6$ is 0.5.
Q121. The regression coefficients remain unchanged du	e to Find coefficient of correlation for $3x + 4y = 8$ is 0.5. Find coefficient of correlation for of $3u + 9v = 7$ for u & v.
(a) A shift of scale (b) A shift of origin	(a) -(0.5) (b) +(0.5) (c) ± 0.5 (d) 0.25
(c) Replacing x - values by $\frac{1}{2}$ (d) Replacing y values l	
	Q133. Karl Pearson Correlation Coefficient method is used
July 2021	for -
Q122. If $y = 9x$ and $x = 0.01y$ then r is equal to:	(a) Any data (b) Scattered data
(a) -0.1 (b) 0.1 (c) $+0.3$ (d) -0.3	(c) Grouped data (d) Ungrouped data
Q123. The straight -line graph of the linear equation	
a + bx, slope is horizontal if:	Q134. If the plotted point in a scatter diagram lie from lower
(a) $b = 1$ (b) $b \neq 0$ (c) $b = 0$ (d) $a = b$	
	(a) Positive (b) Negative
© 8888111134 8888111034 F	Page 104
www.pranavchandak.com	Study from the BEST CA Pranav Chandak Q

www.pranavchandak.com

PYQs - Correlation Regression

(c) Perfectively negative	(d) Zero		(a) (0.33,0.466)	(b) (0.367,0.43)	3)
			(c) (0.337, 0.4		(d) (0.373,0.42	
Q135. If concurrent coefficient	is $\frac{1}{2}$ If sum of d	leviation is 6		,		í.
for n pairs of data?	Q144. Spearman rank correlation coefficient Y_R			is aiven by		
	(a) 10	(d) 11	20 E			
(a) 9 (b) 8	(c) 10	(d) 11	(a) $1 - \frac{6\sum d1^2}{n(n^2+1)}$		(b) $1 + \frac{\sum d1^2}{n(n^2 - 1)}$ (d) $1 - \frac{6\sum d1^2}{n(n^2 - 1)}$	
O12C Which of the following	to see al loss d'an	1	(c) $1 + \frac{6\sum d1^2}{n(n^2+1)}$		(d) $1 - \frac{6\sum d1^2}{(2-1)}$	y
Q136. Which of the following between two qualitative charac		d correlation	n(n ² +1)		n(n ² -1)	·
		relation	O14E If the re	avassian aquatio		- 0.9.2
	earman rank cor		1.5	gression equation the r, x & t		
(c) Concurrent deviation	(d) Scatter diag	gram	respectively.		ine mean or y	
O127 Contrared discourse is used	فحاج والجام		A 54	(b) -2 & 4	(c) 1 & 2	(d) 2 & 1
Q137. Scattered diagram is use		- Laster		(0) 2 0 1	(0) 1 0 2	(0) 2 0 1
(a) Quantitative data	(b) Qualitative		0146 The rec	gression lines wil	l he perpendici	ilar to each
(c) Discrete data	(d) Continuous	s data		e value of r is	a be perpendice	atal to each
			(a) 1	(b) -1	(C) ¹ / ₂	(d) 0
Dec 2022					(~) / ²	
Q138. The equations of the two			0147 For var	iables X and Y fo	or a set of four	observation
3y + 7 = 0 and $3x + 4y + 8$	= 0. Find the	correlation		14, $X^2 = 65 Y^2 =$		
coefficient between x and y?	(-) 0.02	(-1) 1 25	regression line			oyunen une
(a) -0.75 (b) 0.25	(c) -0.92	(d) 1.25	(a) $Y = -0.8X$		(b) $Y = 0.8X -$	- 5.5
Q139. The regression equation $F_{\rm reg} = 0$ then Mean of					(1)	
5x + 6y + 1 = 0, then Mean of						
(a) -1, -1 (b) -1, 1	(c) 1, -1	(d) 2, 3				
Q140. If $b_{yx} = 0.5$, $b_{xy} = 0.46$ t	hen the value o	f correlation				
coefficient r is:	() 0 0 0	()) () ()				
(a) 0.23 (b) 0.25	(c) 0.39	(d) 0.48	-			
Q141. The coefficient of ran						
ranking of following 6 students and Statistics is:	in two subjects	Mathematics				
	5 8 4	7 10				
Statistics 6 4	4 9 8	1 2				
(a) 0.25 (b) 0.35	(c) 0.38	(d) 0.20				
Q142. Pearson's Correlation co	efficient betwee	n x and y is:-				
(a) $\cot(x,y)$ (b) $\cot^2(x,y)$	$(s_x S_y)^2$	(S _x S _y				
(a) $\frac{\text{cov}(x,y)}{S_x S_y}$ (b) $\frac{\text{cov}^2(x,y)}{S_x S_y}$	(c) $\frac{S_x S_y)^2}{\operatorname{cov}(x,y)}$	(d) $\frac{S_x S_y}{cov(x,y)}$				
June 2023						
Q143. Given that $\mathbf{R} = 0.4$ and	n = 81 determi	ine the units				
for the population evaluation c						
8888111134 8	8881110	34 Page	e 105		Revision & Prai	tice Session —
				and the second se	Normania CX 1 Marc	

Study from the BEST

🔽 CA Pranav Chandak 🧿

LAST 38 EXAMS PYQs by ca pranav chandak Index Number

TO BUY HARDCOPY OF PYQs

SCAN ME

PYQs - Index Numbers

Nov 2006

Q1. The nu	mber of test of A	dequacy is :	
(a) 2	(b) 3	(c) 4	(d) 5

Q2. Consumer price index for 2006 on the basis of 2005 from the following data is

	Quantities consumed in	Price in	Prices in
	2005	2005	2006
А	6	5.75	6.00
В	6	5.00	8.00
С	1	6.00	9.00
D	6	8.00	10.00
Е	4	2.00	1.50
F	1	20.00	15.00
(a) 128	3.77 (b) 108.77	(c) 138.77 (d)) 118.77

Q3. Suppose a business executive was earning Rs. 2,050 in the base period, what should be his salary in the current period if his standard of living is to remain the same? Given $\Sigma W = 25$ and $\Sigma IW = 3544$:

Feb 2007

Q4. Bowley's index number is expressed in terms of:					
(a) $\frac{\text{Laspeyre's + Paasche's}}{2}$	(b) $\frac{\text{Laspeyre's} \times \text{Paasche's}}{2}$				
(C) $\frac{\text{Laspeyre's - Paasche's}}{2}$	(d) None				

Q5. Fisher's ideal formula for calculating index numbersatisfies the _____:(a) Unit Test(b) Factor Reversal Test

(c) Both (a) & (b)

b) (d) None of these

Q6. Calculate Fisher ideal index from the following data:

Price (Rs.)	Quantity ('000 kg.)					
Commodity	2004	2005	2004	2005		
Rice	9.3	4.5	100	90		
Wheat	6.4	3.7	11	10		
Pulse	5.1	2.7	5	3		
(a) 49.13	(b) 48.1	3	(c) 84.13	(d) 46.12		

May 2007

Q7. Circular Test is satisfied by :

(a) Paasche's Index Number.

(b) The simple geometric mean of price relatives and the weighted aggregative with fixed weights

(c) Laspeyre's Index Number (d) None

Q8. From the following data :

Group:	Α	В	С	D	Е	F	
Group Index :	120	132	98	115	108	95	
Weight:	6	3	4	2	1	4	
The general index is given by :							
(a) 113.54	(b) 11	5.30	(c) 1	(c) 117.92		111.30	

Aug 2007

Q9. Cost of living index numbers are also used to find real wages by the process of:

(a) Base shifting (b) Splicing of index numbers

(c) Deflating of index numbers (d) None

Q10. The prices of a commodity in the year 1975 and 1980 were 25 and 30 respectively. Taking 1980 as the base year the price relative is:

(a) 113.25	(b) 83.33	(c) 109.78	(d) None
------------	-----------	------------	----------

Q11. From the following data:

Base Ye	ar	Current Year			
Commodity	Price	Quantity	Price	Quantity	
A	7	17	13	25	
В	6	23	7	25	
C	11	14	13	15	
D	4	10	8	8	
The Marshal Edgeworth index number is:					

	9		
(a) 144.19	(b) 143.91	(c) 4900	(d) 140.31

Nov 2007

Q12. Net monthly salary of an employee was Rs. 3,000 in 1980. The consumer price index number in 1985 is 250 with 1980 as base year. If he has to be rightly compensated, then the Dearness Allowance to be paid to the employee is:

(a) Rs. 4,200 (b) Rs. 4,500 (c) Rs. 4,900 (d) Rs. 7,500

Q13. P10 is the index for time:

(a) 0 on 1	(b) 1 on 0	(c) 1 on 1	

Feb 2008

Q14. An enquiry into the budgets of middle-class families in a village gave the following information:

Expenses on:	Food	Rent	Clothing	Fuel	Others
	30%	15%	20%	10%	25%
Price in Rs. in 1987:	100	20	70	20	40
Price in Rs. in 2005:	90	20	60	10	55

© 8888111134 | 8888111034 www.pranavchandak.com

Page 106 Study from the BEST

Revision & Province Session 🥣 🏹 CA Pranav Chandak 🤕

(d) 0 on 0

PYQs - Index Numbers

	-								
				price index	Dec 2008				
	number based on Weighted Arithmetic Mean of price					Q21. Consumer Price Index Number goes up from 100 to			
relatives is:					200 and salary of a worker is also raised from 300 to 500				
(a) 111.015	(0) 101	015 (C) U.	0197	(d) None	(a) 300	(b) 2	2 <mark>50</mark> (c) 600)	(d) 350
Q15. Shifted	Price index				022 Using fol	llowing	data find	Daacaba	a's Index Number
	0.1.1.1.0.1	· Test Barris	× 100	n		-	data, fino	-	e's Index Number
= Price index of	the year on wh	nich it has to be sh	ifted × 100	J	Base Yea			United in the	ent Year
(a) True		(b) F			Commodities	Price	Quantity	Price	Quantity
(c) Partly True	e	(d) P	artly False	e	Α	5	25	6	30
016 Given th	he following	g information			B	3	8	4	10
Commodity		000		2003	С	2	10	3	8
commonty	Price				D	10	4	3	5
•		Quantity	price	Quantity	(a) 109.21		05.28	(c) 110	
A	2	74	3	82	(a) 109.21	(0) 1	05.20		
В	5	125	4	140	Q23. The Circu	ular Tes	t is knowr	n as :	
C	7	40	6	33	(a) P ₀₁ × P ₁₂ ×				$\times P_{01}P20 = 1$
Which of the				_	(c) $P_{20} \times P_{12} P_0$			(d) P ₀₂	$\times P_{21} P_{12} = 1$
· · ·		index for 2003	3 is 105.13	3					
(b) Fisher's in			Number	r is good	June 2009				
	-	orth Index 's Index Num		r is good		Q24. Fisher's Index is based on :-			
(d) None					(a) Arithmetic Mean of Laspeyre and Paasche				
					(b) Geometric Mean of Laspeyre and Paasche				
June 2008					(c) Harmonic Mean of Laspeyre and Paasche (d) Median of Laspeyre and Paasche.				
Q17. Laspeyr	es's & Paas	sche's Method	Time F	Reversal Test:	(d) Median of	Laspey	re and Paa	asche.	
(a) Do not sa	tisfy	(b) S	Satisfy		Q25. In Passch	e's ind	ex weight	s are ha	sed on '
(c) Depends	on the case	e (d) C	an't say.		(a) Current yea				se year quantities
			- 4		(c) Weighted a			(d) No	
Q18. Chain in			nk relative o	of current year ×		5			
(a) <u>chain index c</u>	of the current y	$\frac{vear}{(b)}$	ain index of	the previous year	Q26. Fisher's l	deal In	dex does i	not satisf	fy:
link relative	of previous ve	ar y		100	(a) Time Rever	sal Tes	t	(b) Fac	tor Reversal Test
(c) $\frac{\text{chain index c}}{\text{chain index c}}$	of the current y	(d) N	lone	P.	(c) Unit Test			(d) Cire	cular test
	100						_		
		ig class peopl			Q27. P ₀₁ Q ₀₂	$_1 = \frac{\Sigma P_1 0}{\Sigma P_0 0}$	$\frac{Q_1}{Q_0}$ which c	of follow	ing test satisfies the
		.6 per 20 kg, c			above?				
		iouse and oth neat rose by F			(a) Time Rever		t		tor Reversal Test
		e and other it			(c) Circular Tes	st		(d) No	ne
The working-	class cost o	of living index	for the ye	ar 2005 (with	D 2000				
	2004 as base) was 160. By how much did cloth rose in price				Dec 2009 Q28. Time rev	orcal &	factor rev	orcal are	
during the period (a) 1.28	(b) 0.99	(c) 1.	73	(d) 1.30	(a) Quantity In				eal Index
(0) 1.20	(b) 0.99	(C) 1.		(0) 1.50	(c) Price Index				st of Consistency
Q20. The rati	io of price	of the single	commodi	ity in a given					and the second
		other period is		,	Q29. In Laspe	eyre's l	ndex Nur	nber	are used as
(a) Price Ratio	O	(b) P	rice Relat	ive	weights?				
(c) Base Peric	bd	(d) N	lone of th	nese	(a) Base year p				rrent year price
1					(c) Base year c	quantiti	es (d) Cu	rrent yea	ar quantities
				Pag	. 107			~	0 B. t. C.

Page 107 © 8888111134 | 8888111034 **Study from the BEST** www.pranavchandak.com

Revision & Practice Session 🔼 CA Pranav Chandak 🧕

PYQs - Index Numbers

June 2010

Q30. In data group Bowley's and Laspeyre's index number is as follows. Bowley's index number = 150, Lspeyre's index number = 180 then Paesche's index number is

(a) 120	(b) 30	(c) 165	(d) None

Q31. Consumer price index is commonly known as

- (a) Chain Based index
- (c) Wholesale price index (d) Cost of living index.

(b) Ideal index

Q32. Find the paasche's index number for prices from the following data taking 1970 as the base year.

Commodity		1970		1975
	Price Commodity		Price	Commodity
A	1	6	3	5
В	3	5	8	5
С	4	8	10	6
(a) 261.36	(b)	265.48 (c)	274.32	(d) 282

Dec 2010

Q33. If Laspeyre's index number is 90 and Paasche's indexnumber is 160, then Fisher's index number will ______(a) 144(b) 120 (c) 125(d) None

June 2011

Q34. Wholesale Price Index (WPI	l) is	given by :
(a) Marshall-Edge worth Index	(b)	Laspeyre's Index
(c) Paasche's Index	(d)	None

Q35. Fisher's Ideal index is obtained by :

- (a) Arithmetic Mean of Laspeyre's & Paasche's index
- (b) Geometric Mean of Laspeyre's & Paasche's index
- (c) Sum of Laspeyre's & Paasche's index.
- (d) None of the above.

Q36. The index number of prices at a place in the year 2008 is 225 with 2004 as the base year then there is:

(a) average 125% increase in prices.

(b) average 225% increase in prices.

(c) average 100% increase in prices. (d) None

Nov 2011

Q37. The simple index number for the current year using simple aggregative method for the following data is _____

Commodity	Year	Current year
Base	Price	price
	(P0)	(P1)
Wheat	80	100

Rice	100			150		
Gram	120			250		
Pulses	200			300		
(a) 200 (b) 150	(c) 24((d) 160		
Q38. Fishers Ideal Index Number not satisfies_(a) Unit Test(b) Time Reversal Test(c) Circular Test(d) Factor Reversal TestQ39. If the prices of all commodities in a place has increased20% in comparison to the base period prices, then the index						
number of prices f						
(a) 100 (b) 120	(c) 20		(d) 150		
June 2012 Q40. If $\Sigma P_0 Q_0 = 116$, $\Sigma P_0 Q_1 = 140$, $\Sigma P_1 Q_0 = 97$, $\Sigma P_1 Q_1 = 117$, then Fisher's ideal index number is						
(a) 184 (b) 83.59	(c) 119	9.66	(d) 120		

Q41. Find the Paasche's Index number for prices from the following data taking 1970 as the base year.

Commodity		1970		1975
	Price	Commodity	price	Commodity
A	1	6	3	5
В	3	5	8	5
C	4	8	10	6
(a) 261.36	(b) 26	5.48 (c) 2	74.32	(d) 282

Dec 2012

Q42. If Fisher's index = 150 and Paasche's index = 144, then Laspeyre's index is _____

(a) 147 (b) 156.25 (c) 104.17 (d) 138

Q43. Net monthly salary of an employee was ₹ 3,000. The consumer price index number in 1985 is 250 with 1980 as base year. If he has to be rightly compensated then additional dearness allowance to be paid to employee is: (a) ₹ 4,000 (b) ₹ 4,800 (c) ₹ 5,500 (d) ₹ 4,500

June 2013

Q44. In year 2005 the wholesale price index number is 286 with 1995 as base year, then how much the prices have increased in 2005 in comparison to 1995?

(a) 286%	(b) 386%	(c) 86%	(d) 186%
Q45. Bowley Paasche's inc		Laspeyer's inde	ex = 180, then
(a) 120	(b) 30	(c) 165	(d) None

© 8888111134 | 8888111034 www.pranavchandak.com

Page 108 Study from the BEST

Revision & Practice Session 🥣

CA Pranav Chandak 🕻

PYQs - Index Numbers

Dec 2013

Q46. An index time series is a list of number of					
two or more	e period of time,	where each	index number		
employs the same base y can					
(a) Index (b) Absolute (c) Relative (d) Sample					

Q47. The index number for the year 2012 taking 2011 as the base year from the data given below by using simple average of price relative method is.

Commodity	A	В	С	D	E
Price in 2011	115	108	95	80	90
Price in 2012	125	117	108	95	95
(a) 112	(b) 117	(c) 120		(d) 1	11

Q48. What is the formula for calculating the deflated value? (a) Current value/Price index of current year

- (b) (Current value/Price index of current year) × 100
- (c) Price index of current year/Current value
- (d) (Current value/Price index of last year) × 100

June 2014

Q49. Circular test is satisfied by which index number? (a) Laspeyre's (b) Paasche's (c) Fisher's (d) None

Q50. Fisher's Index Number is __ of Laspeyre's and Paasche's Index Number

(a) A.M. (b) G.M. (c) H.M. (d) None

Q51. Which of the following statements is true?

(a) Paasche's Index Number is based on base year quantity

(b) Fisher's Index Number satisfies the circular test

(c) Arithmetic Mean is the most appropriate average for constructing the Index Number

(d) Splicing means constructing one continuous series from two different indices on the basis of common base.

Q52. Monthly salary of an employee was ₹ 10,000 in the year 2000 and it was increased to ₹ 20,000 in year 2013 while the consumer price Index No. is 240 in year 2013 with the base year 2000. What should be his salary in comparison of consumer price index in the year 2013? (a) ₹ 20,000 (b) ₹ 16,000 (c) ₹ 24,000 (d) None

Dec 2014 Q53. If ΣP₁Q₀ = 1180, ΣP₀Q₀ = 1170, ΣP₁Q₁ = 1064, ΣP₀Q₁ = 1100. The Fisher's Ideal Index is: (a) 96.73 (b) 98.795 (c) 98.77 (d) 100.86 Q54. If price of a commodity in a place has decreased by 30% over base period prices, then index number of the place is: (a) 30 (b) 60 (c) 70 (d) 80 June 2015 Q55. If with an increase of 10% in prices, the rise in wages is 20% then the real wage has increased by (a) 20% (b) 10% (c) Less than 10% (d) More than 10% ____play a very important role in the construction Q56. of index numbers. (a) Weights (b) Classes (c) Estimations (d) None Dec 2015 Q57. Consumer price index number for the year 1977, was 313, with 1960 as the base year, and was 100 for the year 1960. The average monthly wages in 1977 of the workers into factory be ₹ 160, their real wages is: (a) ₹ 48.40 (b) ₹ 51.12 (c) ₹ 40.30 (d) None June 2016 Q58. Purchasing power of money is (a) Reciprocal of price index number

(b) Equal to price index number

(c) Unequal to price index number

(d) None

Q59.	$\Sigma P_0 Q_0 = 1360, \Sigma P_n Q_0 = 19$	$00, \Sigma P_0 Q_n = 1344, \Sigma P_n Q_n =$
1880, t	nen the Laspeyre's Index N	lumber is
(a) 0.71	(b) 1.39 (c) 1.76	(d) none.

Q60. In the year 2010 the monthly salary of a clerk was \gtrless 24,000. The consumer price Index was 140 in the year 2010, which rises to 224 in the year 2016. If he has to be rightly compensated, what additional monthly salary should be paid to him?

(a) ₹ 14,400 (b) ₹ 38,400 (c) ₹ 7,200 (d) None

Q61. The suitable index number for the comparison of changes in price level of every year is ____

(a) Fixed Base Index Number

(b) Fisher's Ideal Index Number

(c) Chain Base Index Number

(d) Both (a) and (c)

© 8888111134 | 8888111034 www.pranavchandak.com

Page 109 Study from the BEST

Revision & Practice Session – –

🔼 CA Pranav Chandak 🕻

PYQs - Index Numbers

(b) $\frac{\text{Price in the base year}}{\text{Price in the given year}} \times 100$

(d) Price in base year \times 100.

(b) Wholesale traders

(b) Ideal Index

(d) Government Depots.

(d) Test of consistency

(b) Relative number

(d) 4

(b) The factor reversal test

(b) Paasche's Index Number

(d) None of these.

(d) 0 on 0

(d) None

(c) 1 on 1

(c) 3

(b) 0 on 1

Dec 2016 Q70. Price relative is equal to: (a) $\frac{\text{Price in the given year}}{\text{Price in the base year}} \times 100$ Q62. Following is the data concerning to commodities A, B, C and D in the base period 1992 and current period 1993 (c) Price in given year × 100 Base Year 1992 Current Year 1993 Cornmodities Price Quantity Price Quantity Q71. For consumer price index, prices are collected from: A 3 18 4 15 (a) Retail traders (c) Fair price shops 5 6 5 9 R C 4 20 6 26 May 2018 1 14 3 15 D Q72. Time reversal & factor reversal are: The Paasche's price index number is: (a) Quantity Index (a) 148.25 (b) 146.41 (c) 144.25 (d) None (c) Price Index Q63. Which method satisfy time reversal test? Q73. A series of numerical figures which show the relative (a) Laspeyer's method (b) Paasche's method position is called. (c) Fishers method (d) None (a) Index number (c) Absolute number Q64. Index number are the ____ (a) Economic (b) Statistics (c) (a) and (b) (d) None Q74. The number of test of Adequacy is: (a) 2 (b) 5 June 2017 Q65. The monthly income of an employee was ₹8,000 in **Q75.** P₀₁ is the index for time 2014. The consumer price index number was 160 in 2014, (a) 1 on 0 which rose to 200 in 2017. If he has to be rightly compensated, the additional dearness allowance to be paid Q76. The circular test is an extension of to him in 2017 would be: (a) The time is reversal test (a) ₹ 2,400 (b) ₹ 2,750 (c) ₹ 2,500 (d) None (c) The unit test Q66. If Laspeyre's index number (L) and Paasche's index Q77. Same as Q59. (June 2016) number (P) are known, then one can compute Fisher's index number (F) by: (a) F = LP (b) \sqrt{F} = LP (c) F = $\frac{1}{LP}$ (d) F² = LP Q78. Price -relative is expressed in term of (a) $P = \frac{P_n}{P_0}$ (b) $P = \frac{P_0}{P_n}$ (c) $P = \frac{P_n}{P_0} \times 100$ (d) $P = \frac{P_0}{P_n} \times 100$ Q67. Fisher's index number does not satisfy: (b) Circular Test (a) Unit Test (c) Time reversal test (d) Factor reversal test. Q79. Circular test is satisfied by (a) Laspeyre's Index Number Dec 2017 (c) The simple geometric mean of price relatives and the Q68. Circular Test is an extension of ____ weighted aggregative with fixed weights. (a) Factor reversal test (b) Time reversal test (d) None (c) Neither (a) nor (b) (d) Both (a) and (b). Q80. If 1970 index with base 1965 is 200 & 1965 index with Q69. Fishers index number is based on: base 1960 is 150, what will be index of 1970 on base 1960? (a) The AM of Laspeyre's and Paasche's index numbers (a) 700 (b) The median of Laspeyre's and Paasche's index numbers. (c) The mode of Laspeyre's and Paasche's index numbers

Q81. The multiplicative time series model is (a) y = T + S + C + 1(b) y = TSCI(d) $y = a + bx + cx^2$ (c) y = a + bxNov 2018

(c) 500

(b) 300

© 8888111134 | 8888111034 | www.pranavchandak.com Study from the BEST

(d) None of the above.

Page 110

Revision & Practice Session 🔼 CA Pranav Chandak 🤇

(d) 600

PYQs - Index Numbers

Q82. Which of					(a) 118.13	(b) 107.14	(c) 120.10	(d) None
(a) Paasche's Index Number is based on the base year quantity(b) Fisher's Index Number is the Arithmetic Mean of Laspreyre's Index Number and Paasche's Index number(c) Arithmetic Mean is the most appropriate average for			2018 were 97.5 in 2015 was required for hir	of-living index and 115 respect ₹ 19500. How n in 2018 to mai	tively. The salar much additiona	y of a worker I salary was		
constructing th (d) Fisher's Inde			lumber		as in 2015? (a) 3000	(b) 4000	(c) 3500 (d) 45	00
Q83. If Laspey Number is 160,				ndex	Q92. Trend in s (a) Linear	semi averages is (b) Parabola	: (c) Exponentia	ıl (d) None
(a) 40,000	(b) $\frac{25}{16}$	(c) 200	(d) $\frac{16}{25}$			t commonly use	ed mathematica	l method for
Q84. The simpl	e average meth	nod is used to a	calculate		finding secular			
(a) Trend Varia	-	(b) Cyclical			(a) Moving ave		(b) Simple ave	erage
(c) Seasonal Va		(d) Irregular			(c) Exponential		(d) None	
					Nov 2019			
Q85. If $\Sigma p_0 q_0 =$)0 and Σp_0	$q_1 =$	I Deriv Horsen	le of cold drin	k increases in	summer and
	eyre's Index Nu		(), 20			inters is an exam		summer and
(a) 250	(b) 300	(c) 350	(d) 20	0	(a) Seasonal va		(b) Cyclic varia	ations
Q86. The sale o	of Cold Drink we	uld ao un in si	immers an	nd do	(c) Secular tren	d	(d) None	
	nters is an exan			iu yo				
(a) Trend Varia		(b) Cyclical	Variation			Variations take J		
(c) Seasonal Va	riation	(d) Irregular			(a) one year		(b) two year	
					(c) half year		(d) five years	
June 2019						-1		
Q87. Which is a		ndex numbers			(a) Circular test	idex number do	es not satisfy: ne reversal test	
(a) Laspeyre's i			$\sim V$		(c) Factor rever		(d) Unit test	
(b) Pasche's inc						Surtest	(d) offic test	
(c) Fisher's inde		number (Q97. The index	number of price	es at place in the	e year 2008 is
(d) Marshall Ed	geworth thdex	number				as the base ther		
Q88. In semi a	iverages metho	d if the numb	per of valu	les is	(a) 125% increa		(b) 225% incre	ease
odd then we di					(c) 100% increa	ase	(d) 25% decre	ase
(a) First value		(b) Last valu	е					
(c) Middle value	e 🧹	(d) Middle t	wo value		exclude:	verage method i		es is odd, we
Q89. Which is r	not satisfied by	Fisher's ideal i	ndex numl	ber?	(a) First value		(b) Last value	
(a) Factor Reve		(b) Time Rev			(c) Middle valu	e (d) No	ne.	
(c) Circular Tes	t (d) No	one			Nov 2020			
	-					leal Index Numb	per does not sati	sfy tost
Q90. The prices		of 3 commodit	ties in base	e and	(a) Circular		(b) Time rever	
current years a	re as follows:				(c) Factor Reve	rsal	(d) Unit	
Po	p ₁	q ₀	q ₁				A CONTRACTOR OF	
12	14	10	20		Q100. Index Nu	umbers are expr	essed as	
10	8	20	30		(a) Squares		(b) Ratio	
8	10	30	10		(c) Percentages	(d) Co	mbinations	
The Laspeyre p	orice index is							
© 88881	11124	8888111	034	Pade	e 111		Revision & Pra	The Section -
	anavch				dy from t	he BEST		v Chandak Q
www.pi	anaben	anaak.	com			and the second se	CA Prana	w chandak Q

PYQs - Index Numbers

Q101. In Laspeyre's index number is 110 and Fisher's ideal index number is 109. Then Paasche's index number is (c) 109 (a) 118 (b) 110 (d) 108

Jan 2021

Q102. The cost-of-living index is	s always
(a) Price index number	(b) Quantity index number
(c) Weighted index number	(d) Value index number

Q103. Fisher's index number	r does not satisfy
(a) Unit test	(b) Circular test
(c) Time reversal test	(d) Factor reversal test

Q104. When the prices for quantities consumed of all commodities are changing in the same ratio, then the index numbers due to Laspeyre's and Paasche's will be.

(a) Equal (b) Unequal

(c) Reciprocal of Marshall Edge worth Index Number

(d) Reciprocal of Fisher Index Number

July 2021

Q105. The weighted aggregative price index turnover for 2001 with 2000 as base year using Fisher's Index Number is:

Commodity	Price	(In ₹)	Quar	ntities
	2000	2001	2000	2001
А	10	12	20	22
В	8	8	16	18
С	5	6	10	11
D	4	4	7	8
(a) 12.26 (b)	112.25	(c) 112	.32	(d) 126.01

Q106. The weighted aggregative price index numbers for 2001 with 2000 as the base year using Paasche's index number is :

Commodity	Price (In ₹)		Qua	ntities
	2000	2001	2000	2001
А	10	12	20	22
В	8	8	16	18
C	5	6	10	11
D	4	4	7	8
(a) 112.32 (b) 112.38	(c) 112	2.26	(d) 112.20

Q107. If in an additive model O refers to original data as 875, T refers to trend 700, S refers to seasonal variations -200, C refers to cyclical variations 75 then the value of 1 which refers to irregular variation is:

	(a)	-100 (b) -170	(c) -140	(d) -150
--	-----	----------------------	----------	----------

Q108. The weighted aggregative price index numbers for 2001 with 2000 as the base year using Marshall Edgeworth index number is:

Commodity		Price in (₹)	Quantitie	es
		2000	2001	2000	2001
А		10	12	20	22
В		8	8	16	18
С		5	6	10	11
D		4	4	7	8
(a) 112.26	(b)	112.20	(c) 112	2.32	(d) 112.38

Q109. The consumer price index goes up from 120 to 180 when salary goes up from 240 to 540, what is the increase in real terms?

(a) 80 (c) 360 (d) 240 (b) 150

Dec 2021

Q110. If P_{10} and P_{01} are index for 1 on 0 and 0 on 1 respectively then formula $P_{01} \times P_{10} = 1$ is used for (a) Unit Test (b) Time Reversal Test (C

:) Factor Reversal Test	(d) Circular Test	

Q111. The weighted averaged of price relatives of commodities, when the weights are equal to the value of commodities in the current year, yields _____index number.

(a) Fisher's ideal	(b) Laspeyres's
(c) Paasches'	(d) Marshall-Edgeworth

Q112. From the following data base year:

Со	nmodity	Base year		Current year	
	Price	Quantity	Price	Quantity	
А	4	3	6	2	
В	5	4	6	4	
С	7	2	9	2	
D	2	3	1	5	
Fisher's Ideal Index is					
(a) 11	7.30 (o) 115.43	(c) 118.3	35 (d) 116.48	

Q113. Index numbers are not helpful in

(a) Framing economics policies	(b) Revealing trend
(c) Forecasting	(d) Identifying errors

Q114. The three index numbers, namely, Laspeyre, Paasche and Fisher do not satisfy _____ test.

(a) Time reversal (c) Unit

(b) Factor reversal (d) Circular

8888111134 | 8888111034 www.pranavchandak.com

Page 112 **Study from the BEST**

Revision & Practice Session 🔁 CA Pranav Chandak 🕻

PYQs - Index Numbers

June 2022 Q124. If Laspeyre's Index is 119 and Paasche's Index is						s Index is 112.	
Q115. Geometric mean method used in which index number		Then Fisher's index number will be:					
to find it out		(a) 113.99 (b) 115.45 (c) 1		:) 115.89	(d) 151.98		
(a) Laspeyres	(b) Paasches						
(c) Fishers index Number	(d) None	Q125. In price index, when a new commodity is required to be added, which of the following index is used?					
Q116. Which test is known for shift base index no.		(a) Shifted price index (b) Splicing price index					
(a) Factor test	(b) Unit test	(c) Deflating price index (d) Value price index					
.,	Time revesral test						
(c) circular test (d)		June 2023					
Q117. Laspeyres and Paasch	ne do not satisfy -	Q126. Consider the data					
(a) Unit Test	(b) Factor Test	Year Base Year Current Year			rent Vear		
(c) Time Reversal Test	(d) Bowley's Test	i cui			Price		
(c) rand revelout rest	(d) Domey 5 rest		Price	Quantity		Quantity	
Q118. Laspeyres's index nur	mber is based on?	A	10	5	20	2	
(a) Last year weight	(b) Present year weight	В	15	4	25	8	
(c) Last year value	(d) Present year value	С	40	2	60	6	
(in) international from the second second		D	25	3	40	4	
Q119. Price relative is-		Laspeyre's	s Index is:	1	1		
(a) $\frac{P_1}{P_0} \times 100$ (b) P	(c) P_0 (d) $\frac{P_1}{P_0}$	(a) 166.04) 164.06	(d) 154.06	
(a) P ₀	(0, 1)						
Q120. Which one of the for calculation of index number (a) Unit Test (c) Circular Test	ollowing is not appropriate for r? (b) Price Relative Test (d) Time Reversal Test	Q127. Which of the following index is computed taking the average of base year and current year?(a) Marshall- Edgeworth's index(b) Paasche's index(c) Laspeyre's Index(d) Fisher's index					
Dec 2022 Q121. Construct the Index number by Laspeyre's method $P_1Q_1 = 99, P_0Q_1 = 76, P_0Q_0 = 73, P_1Q_0 = 96$ (a) 130.36 (b) 131.51 (c) 130.59 (d) 76.01 Q122. Which of the following index measures the change from month to month in the cost of a representative basket of goods and services of the type which are bought by a typical household? (a) Retail Price Index (d) Paasche's Index (c) Fisher's Index number is called as ideal index number because it is satisfying. (a) Factor reversal test (d) Circular test (d) Circular test (a) Laspeyre's Index (d) Circular test (d) Circular test (c) Factor reversal test (d) Circular test					d price the price se bytimes. (d) 2.5 baasche's index (d) 186.25 elative formula		
		1					

© 8888111134 | 8888111034 | www.pranavchandak.com

Page 113 Study from the BEST

Revision & Practice Session 🥣 🕞 CA Pranav Chandak Q