

Chapter Name :- Material Cost

INTERMEDIATE Chapter Wise Test Series Suggested Answers

Marks-40

- **1.** Annual requirement of raw material in kg. (A)
- $=\frac{60,000 \text{ units}}{5 \text{ units per kg.}} = 12,000 \text{ kg.}$

Ordering Cost (Handling & freight cost) (O) = ₹ 400 + ₹ 350 = ₹ 750

Carrying cost per unit per annum i.e. inventory carrying cost + working capital cost (c × i) = (₹ 0.25 × 12 months) + ₹15

= ₹ 18 per kg.

- (i) E.O.Q.=  $\sqrt{\frac{2x \ 12,000 \ kgs. \ x \ Rs.750}{Rs.18}} = 1,000 \ kg.$
- (ii) Frequency of orders for procurement:

| Annual consumption (A)                               | = 12,000 kg.                                                      |
|------------------------------------------------------|-------------------------------------------------------------------|
| Quantity per order (EOQ)                             | = 1,000 kg.                                                       |
| No. of orders per annum $\left(\frac{A}{EOQ}\right)$ | $=\frac{12,000 \text{ kg.}}{1,000 \text{ kg.}}=12$                |
| Frequency of placing orders (in months)              | $=\frac{12 \text{ months}}{12 \text{ orders}} = 1 \text{ months}$ |
| Or, (in days)                                        | $=\frac{360 \text{ days}}{12 \text{ orders}}=30 \text{ days}$     |

(iii) Calculation of total ordering cost and total inventory carrying cost as per EOQ:

|                         | Amount/Quantity                    |
|-------------------------|------------------------------------|
| Size of the order       | 1,000 kg.                          |
| No. of orders           | 12                                 |
| Cost of placing orders  | ₹ 9,000                            |
|                         | (12 orders × ₹ 750)                |
| Inventory carrying cost | ₹ 9,000                            |
|                         | (1,000 kg. × $\frac{1}{2}$ × ₹ 18) |
| Total Cost              | ₹18,000                            |

# 2. Working:

# Computation of effective quantity of each chemical available for use

|                                        | Chemical A (kg.) | Chemical B (kg.) |
|----------------------------------------|------------------|------------------|
| Quantity purchased                     | 10,000           | 8,000            |
| Less: Shortage due to normal breakages | 500              | 320              |
|                                        | 9,500            | 7,680            |
| Less: Provision for deterioration 2%   | 190              | 153.6            |
| Quantity available                     | 9,310            | 7,526.4          |

# Statement showing the computation of rate per kg. of each chemical

|                                                     | Chemical A (₹) | Chemical B (₹) |
|-----------------------------------------------------|----------------|----------------|
| Purchase price 10,000@ ₹10 per kg, 8,000@₹13 per kg | 1,00,000       | 1,04,000       |
| Add: Basic Custom Duty @10%                         | 10,000         | 10,400         |
| Add: Railway freight                                |                |                |
| (in the ratio of quantity purchased i.e., 5:4)      | 2,133          | 1,707          |
| Total cost (A)                                      | 1,12,133       | 1,16,107       |
| Effective Quantity (see working) (B)                | 9,310 kg.      | 7,526.4 kg.    |
| Rate per kg. $(A \div B)$                           | 12.04          | 15.43          |

# Page 2

# 3. Working Notes:

#### (i) Computation of Annual consumption & Annual Demand for raw material 'D':

| Sales forecast of the product 'X'                    | 20,000 units |
|------------------------------------------------------|--------------|
| Less: Opening stock of 'X'                           | 1,800 units  |
| Fresh units of 'X' to be produced                    | 18,200 units |
| Raw material required to produce 18,200 units of 'X' | 72,800 kg.   |
| (18,200 units $\times$ 4 kg.)                        |              |
| Less: Opening Stock of 'D'                           | 2,000 kg.    |
| Annual demand for raw material 'D'                   | 70,800 kg.   |

# (ii) Computation of Economic Order Quantity (EOQ):

EOQ

 $^{-}\sqrt{}$  Carrying cost per unit per annum

 $=\frac{2 \times 70,800 \text{ kg. x Rs. } 1340}{\text{Rs. } 250 \times 14\%} = \frac{2 \times 70,800 \text{ kg. x Rs. } 1340}{\text{Rs. } 35} = 2,328 \text{ kg.}$ 

#### (iii) Re- Order level:

= (Maximum consumption per day × Maximum lead time)

$$= \left\{ \left( \frac{\text{Annual Consumption of /D'}}{300 \text{ days}} + 40 \text{kg.} \right) \ge 8 \text{ days} \right\}$$
$$= \left\{ \left( \frac{70,800 \text{kg.}}{300 \text{ days}} + 40 \text{kg.} \right) \ge 8 \text{ days} \right\} = 2,208 \text{ kg.}$$

(iv)Minimum consumption per day of raw material 'D':

Average Consumption per day = 236 Kg.

Hence, Maximum Consumption per day = 236 kg. + 40 kg. = 276 kg.

So Minimum consumption per day will be

Average Consumption

Or, 236 kg.

Or, Min. consumption = 472 kg - 276 kg = 196 kg.

#### (a) **Re-order Quantity :** EOQ - 400 kg. = 2,328 kg. - 400 kg.= 1,928 kg.

# (b) Maximum Stock level:

= Re-order level + Re-order Quantity – (Min. consumption per day × Min. lead time)

 $= 2,208 \text{ kg.} + 1,928 \text{ kg.} - (196 \text{ kg.} \times 4 \text{ days}) = 4,136 \text{ kg.} - 784 \text{ kg.} = 3,352 \text{ kg.}$ 

# (c) Minimum Stock level:

= Re-order level – (Average consumption per day  $\times$  Average lead time) = 2,208 kg. – (236 kg.  $\times$  6 days) = 792 kg.

# (d) Impact on the profitability of the company by not ordering the EOQ.

|     |                      | When purchasing the ROQ                                                              | When purchasing the EOQ                                                              |
|-----|----------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Ι   | Order quantity       | 1,928 kg.                                                                            | 2,328 kg.                                                                            |
| п   | No. of orders a year | $\frac{70,800 \text{ kg.}}{1,928 \text{ kg.}} = 36.72 \text{ or } 37 \text{ orders}$ | $\frac{70,800 \text{ kg.}}{2,328 \text{ kg.}} = 30.41 \text{ or } 31 \text{ orders}$ |
| III | Ordering Cost        | 37 orders × ₹ 1,340                                                                  | 31 orders × ₹ 1,340                                                                  |
| IV  |                      | =₹49,580                                                                             | =₹41,540                                                                             |
| V   | Average Inventory    | $\frac{1,928 \text{kg.}}{2} = 964 \text{kg.}$                                        | $\frac{2,328 \text{ kg.}}{2} = 1,164 \text{ kg.}$                                    |
|     | Carrying Cost        | 964 kg. × ₹ 35 = ₹ 33,740                                                            | 1,164 kg. × ₹ 35 = ₹ 40,740                                                          |
| VI  | Total Cost           | ₹ 83,320                                                                             | ₹ 82,280                                                                             |

Extra Cost incurred due to not ordering EOQ = ₹83,320 - ₹82,280 = ₹1,040

# Page 3

| 4. | As                                                     | procurement time is given i                                                          | n days, consumption should also be                                                                      | calculated in days:                                      |
|----|--------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|    | Ma                                                     | aximum Consumption per D                                                             | ay: $\frac{1}{7} = 50$ Kgs                                                                              |                                                          |
|    | Minimum Consumption per Day: $\frac{210}{7} = 30$ Kgs. |                                                                                      |                                                                                                         |                                                          |
|    | Av                                                     | verage Consumption per Day                                                           | $r: \frac{(30+30)}{2} = 40 \text{ Kgs}$                                                                 |                                                          |
|    | (a)                                                    | Calculation of Economic O                                                            | rder Quantity (EOQ)                                                                                     |                                                          |
|    |                                                        | Annual consumption of Ra<br>Storage or Carrying Cost p<br>Ordering Cost (O): ₹ 200 p | w Materials (A): 40 Kgs x 365 da<br>er unit per annum (C):(₹ 100 x 1% z<br>er Order                     | ays = 14,600 Kgs<br>x 12 months) + ₹ 2 = ₹ 14            |
|    |                                                        | EOQ = $\sqrt{\frac{2 \times A \times O}{C}}$                                         |                                                                                                         |                                                          |
|    |                                                        | $=\sqrt{\frac{2 x  14,600  x  20}{14}}$                                              | $\frac{1}{2} = 646$ Kgs.                                                                                |                                                          |
|    | (b)                                                    | Re-Order Level (ROL)                                                                 | <ul> <li>= (Maximum consumption Rate x</li> <li>= 50 kgs per day × 9 days</li> <li>= 450 kgs</li> </ul> | Maximum Procurement Time)                                |
|    | (c)                                                    | Maximum Stock Level                                                                  | = Recorder Level + Recorder Qua                                                                         | antity – (Minimum Consumption Rate x                     |
|    |                                                        |                                                                                      | $= 450 \text{ kgs} + 646 \text{ kgs} - (30 \text{ kgs} \text{ X}^{4})$                                  | o davs)                                                  |
|    |                                                        |                                                                                      | = 946 kgs                                                                                               |                                                          |
|    | (d)                                                    | Minimum Stock Level                                                                  | = Recorder Level – (Average con                                                                         | sumption Rate x Average Procurement Time)                |
|    |                                                        |                                                                                      | = 450 kgs – (40 kgs X 7 days)<br>= 170 kgs                                                              |                                                          |
|    | (e)                                                    | Average Stock Level                                                                  | = Maximum Stock Level + Minimum Sto                                                                     | ck Level                                                 |
|    |                                                        |                                                                                      | 2<br>946 kgs + 170 kgs                                                                                  |                                                          |
|    |                                                        |                                                                                      | $=\frac{0}{2}$                                                                                          |                                                          |
|    |                                                        |                                                                                      | = 558 kgs                                                                                               |                                                          |
|    | ( <b>f</b> )                                           | Number of Orders to be p                                                             | Daced per year<br>Annual Consumption of Raw Materials                                                   | 5                                                        |
|    |                                                        |                                                                                      | =EOQ                                                                                                    | -                                                        |
|    |                                                        |                                                                                      | $=\frac{14600 \text{ kgs}}{646 \text{ kgs}}$                                                            |                                                          |
|    |                                                        |                                                                                      | = 22.60 Orders or 23 Orders                                                                             |                                                          |
|    | ( <b>g</b> )                                           | Total Inventory Cost                                                                 |                                                                                                         | _                                                        |
|    |                                                        | Cost of Materials (A x Pure                                                          | chase Price) (14600 kgs x ₹ 100)                                                                        | = ₹ 14,60,000                                            |
|    |                                                        | Total Carrying Cost (EOO                                                             | $(2 \text{ x C}) (646 \text{ kgs} / 2 \text{ x } \gtrless 14)$                                          | = ₹4,000<br>= ₹4.522                                     |
|    |                                                        | Total Inventory Cost                                                                 | (2 A C) (0 10 Ago / 2 A C I I)                                                                          | ₹ 14,69,122                                              |
|    | (h)                                                    | If the supplier is willing to                                                        | o offer 1% discount on purchase (                                                                       | of total annual quantity in two orders:                  |
|    | ()                                                     | Offer Price -                                                                        | ₹ 100 v 0004                                                                                            | _₹00                                                     |
|    |                                                        | Revised Carrying Cost =                                                              | (₹ 99 x 1% x 12 months) + ₹2                                                                            | =₹13.88                                                  |
|    |                                                        | Revised Order Quantity =                                                             | = 14600 kgs / 2 Orders                                                                                  | = 7300 kgs                                               |
|    |                                                        | Total Inventory Cost at O                                                            | ffer Price                                                                                              |                                                          |
|    |                                                        | Cost of Materials (A x Pu                                                            | rchase Price) (14600 kgs x ₹ 99)                                                                        | =₹14,45,400                                              |
|    |                                                        | Total Ordering Cost (No.                                                             | of Orders x O) (2 Orders x 200)<br>$(2 \times C)$ (7200 kms (2 $\times \Xi$ 12 88)                      | $=$ $\overline{\mathbf{\zeta}}$ 400                      |
|    |                                                        | Total Inventory Cost                                                                 | (7500  kgs / 2  x  (15.88))                                                                             | = € 50,002<br>₹ 14.96.462                                |
|    |                                                        | Advisor As total inventory                                                           | cost at offer price is $\neq 27.240$ (14.0                                                              | 6.462 = 14.60.122 higher offer should not be accepted    |
|    |                                                        | (i) Counter-offer:                                                                   | $\cos a$ oner price is $\sqrt{27,340}$ (14,9                                                            | 0,402 - 14,07,122 inglier, other should not be accepted. |
|    |                                                        | Let Discount Rate                                                                    | = z%                                                                                                    |                                                          |
|    |                                                        | Counter-Offer Price                                                                  | =₹100 - z% =₹100 - z                                                                                    |                                                          |
|    |                                                        | Revised Carrying Cos                                                                 | t = [(₹ 100 - z) x 1% x 12 months] = ₹ 14 - 0.12z                                                       | + ₹ 2 = ₹ 12 -0.12z + ₹ 2                                |

|    |                                                                                              | Page 4        |                                             |                                                              |                                                                                         |  |
|----|----------------------------------------------------------------------------------------------|---------------|---------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
|    |                                                                                              |               | Total Inventory Cost at Counter-Offer Price |                                                              |                                                                                         |  |
|    |                                                                                              |               | Cost of Materials (A                        | x Purchase Price) [14600 kg                                  | gs x (₹ 100 – z)] = ₹ 14,60,000 – 14,600z                                               |  |
|    |                                                                                              |               | Total Ordering Cost (                       | (No. of Orders x O) (2 Orde                                  | $rs \ge 200) = ₹ 400$                                                                   |  |
|    |                                                                                              |               | Total Carrying Cost (                       | EOQ / 2 x C) [7300 kgs / 2                                   | x (₹ 14 – 0.12z)] = ₹ 51,100 – 438z                                                     |  |
|    |                                                                                              |               |                                             | Total Inventory Cost                                         | ₹15,11,500 – 15038z                                                                     |  |
|    |                                                                                              |               | ₹ 14,69,122                                 | =₹15,11,500 – 15038z                                         |                                                                                         |  |
|    |                                                                                              |               | Or 15038z                                   | = 42,378                                                     |                                                                                         |  |
|    |                                                                                              |               | Or z                                        | = 2.82                                                       |                                                                                         |  |
|    |                                                                                              |               | Therefore, discount s                       | hould be at least 2.82% in o                                 | ffer price.                                                                             |  |
| -  |                                                                                              |               |                                             |                                                              |                                                                                         |  |
| э. | (a)                                                                                          | An            | nual requirement of ra                      | w material in kg. (A)                                        | $=\frac{60,000 \text{ units}}{5 \text{ units per kg.}}=$ <b>12,000 kg.</b>              |  |
|    | Ordering Cost (Handling & freight cost) (O)                                                  |               | & freight cost) (O)                         | = ₹ 400 + ₹ 350 = ₹ 750                                      |                                                                                         |  |
|    | Carrying cost per unit per annum i.e. inventory carrying cost + working capital cost (c × i) |               |                                             |                                                              |                                                                                         |  |
|    |                                                                                              |               |                                             |                                                              | $= (₹ 0.25 \times 12 \text{ months}) + ₹15$                                             |  |
|    |                                                                                              |               |                                             |                                                              | = ₹ 18 per kg.                                                                          |  |
|    |                                                                                              | (i)           | E.O.Q.                                      |                                                              | $=\frac{2 \text{ x } 12,000 \text{ kgs. x Rs. 750}}{\text{Rs. 18}} = 1,000 \text{ kg.}$ |  |
|    |                                                                                              | ( <b>ii</b> ) | Frequency of orders                         | s for procurement:                                           |                                                                                         |  |
|    |                                                                                              |               | Annual consumption                          | (A)                                                          | = 12,000 kg.                                                                            |  |
|    |                                                                                              |               | Quantity per order (E                       | OQ)                                                          | = 1,000 kg.                                                                             |  |
|    |                                                                                              |               | No. of orders per ann                       | $\operatorname{um}\left(\frac{A}{\operatorname{EOQ}}\right)$ | $=\frac{12,000 \text{ kg.}}{1,000 \text{ kg.}}=12$                                      |  |
|    |                                                                                              |               | Frequency of placing                        | orders (in months)                                           | $=\frac{12 \text{ months}}{12 \text{ orders}} = 1 \text{ months}$                       |  |
|    |                                                                                              |               | Or, (in days)                               |                                                              | $=\frac{360 \text{ days}}{12 \text{ orders}}=30 \text{ days}$                           |  |

# (iii) Calculation of total ordering cost and total inventory carrying cost as per EOQ:

|                         | Amount/Quantity                           |
|-------------------------|-------------------------------------------|
| Size of the order       | 1,000 kg.                                 |
| No. of orders           | 12                                        |
| Cost of placing orders  | <b>₹ 9,000</b> (12 orders × <b>₹</b> 750) |
| Inventory carrying cost | ₹ 9,000 (1,000 kg. × ½ × ₹ 18)            |
| Total Cost              | ₹18,000                                   |

# 6. Inventory turnover ratio

(Refer to working note)

 $= \frac{\text{Cost of stock of raw material consumed}}{\text{Average stock of raw material}}$  $= \frac{\text{Rs.2,50,000}}{\text{Rs.1,00,000}} = 2.5$ 

Average number of days for which the average inventory is held

$$=\frac{365}{\text{Inventory turnover ratio}}=\frac{365 \text{ days}}{2.5}=146 \text{ days}$$

(**F**)

Working Note:

|                                         | $(\mathbf{v})$ |
|-----------------------------------------|----------------|
| Opening stock of raw material           | 90,000         |
| Add: Material purchases during the year | 2,70,000       |
| Less: Closing stock of raw material     | 1,10,000       |
| Cost of stock of raw material consumed  | 2,50,000       |
|                                         |                |