

Foundation \rightarrow Intermediate \rightarrow Final CA 7

CA Foundation **Statistics Revision Notes**

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.

🌈 +91 - 73044 54689

🔟 댥 /officialjksc 🛛 🎡 jkshahclasses.com

STATISTICAL DESCRIPTION OF DATA

(Introduction to Statistics)

Relc	ated I	MCQ's:		
1.	The	word statistics refers either	in	formation or to a method of dealing
	with	n information.		
	a)	absolute, actual	b)	quantitative, qualitative
	c)	real, actual	d)	none of the above
 2	Stat	istics is considered with:		R
 	a)	Qualitative information	b)	Quantitative information
	<u>د</u> ,	Both a) and b)	d)	Fither a) or b)
	C/			S
 3.	An c	attribute is:		E.e.
	a)	A measurable characteristics	b)	A quantitative characteristics
	c)	A qualitative characteristic	d)	All of the above
			0	₩
4.	Nati	ionality of a student is:	~	
	α)	A continuous variable	b)	An attribute
	c)	A discrete variable	d)	None of the above
 5.	The	quickest method to collect primary	/ data	is:
	a)	Personal Interview	b)	Indirect Interview
	c)	Mailed Questionnaire Method	d)	Telephonic Interview
 6	The	data obtained by the internet are:		
 0.	a)	Primary data	b)	Secondary data
	c)	Both a) and b)	d)	Neither a) nor b)
	C/		α,	
 7.		classification refers to th	e clas	sification of data according to some
	chai	racteristics that can be measured.		
	α)	qualitative	b)	subjective
	c)	quantitative	d)	all of the above
		quantitative	e .,	

- 16. the mid-point of a class is obtained by:
 - a) adding upper and lower limits
 - b) by dividing the difference of upper and lower limits by 2
 - c) by adding upper and lower limits and dividing it by 2
 - d) by deducting upper limit from the lower limit

17. The lower class boundary is :

- a) an upper limit to Lower Class Limit
- b) a Lower limit to Lower Class Limit
- c) both a) and b) above
- d) none of the above

18. When all classes have equal width, the heights of the rectangles in Histogram will

Ada Enterprise

be numerio	cally equal	to the
------------	-------------	--------

- a) class frequencies
- c) both a) and b0 above

b) class boundariesd) none of the above

MEASURES OF CENTRAL TENDENCY (Averages of First Order)

1.	The average salary	of a group of unsk	killed workers is ₹ 1	0,000 and that of a group
	of skilled workers i	s ₹ 15,000. If the c	ombined salary is ₹	t 12,000, then what is the
	percentage of skille	ed workers?		
	(a) 40%	(b) 50%	(c) 60%	(d) none of these
2.	The interest paid or	n <mark>the same sum yie</mark>	lding 3%, 4%, and	5% compound interest for
	3 consecutive year	respectively. What	is the average yield	l percent on the total sum
	invested.			
	(a) 3.83%	b) 4.83%	c) 2.83%	d) 3.99%
				3
3.	An aeroplane flies	from A to B at the	rate of 500 km/hor	ur and comes back from B
	to A at the rate of	700 km/hour. The c	average speed of th	e aeroplane is
	(a) 600 km. per h	our	(b) 583.33 km. pe	er hour
	(c) 100 $\sqrt{35}$ km. pe	er hour	(d) 620 km. per h	iour.
		L'ud (diri		
4.	If there are two gro	oups with 75 and 6	5 as harmonic mea	ins and containing 15 and
	13 observation the	n the combined HM	l is given by	
	(a) 65	(b) 70.36	(c) 70	(d) 71.
5.	If the AM and GM fo	or two numbers are	6.50 and 6 respecti	vely then the two numbers
	(a) 6 and 7	(b) 9 and 4	(c) 10 and 3	(d) 8 and 5.
6.	Two variables x an	d y are given by y	= 2x – 3. If the med	lian of x is 20, what is the
	median of y?			
	a) 20	b) 37	c) 40	d) 35
7.	The third decile for	the numbers 15, 1	0, 20, 25, 18, 11, 9	, 12 is
	(a) 13	(b) 10.70	(c) 11	(d) 11.50

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

	8.	If the Mean and Mode of a certain set of numbers be 60.4 and 50.2 respectively, find								
		appro	oximately the	e value o	of the Mediar	า.				
		a) 55		b) 56		c) 57		d) 58		
	9.	Whick	n of the follo	wing sto	atements is t	rue?				
		(a) I	Usually mea	n is the	best measure	e of ce	ntral ten	dency		
		(b) (Usually med	ian is th	e best meası	ire of o	entral te	endency		
		(c) (Usually mod	e is the	best measure	e of ce	ntral ten	dency		
		(d)	Normally, GN	1 is the	best measure	e of ce	ntral ten	dency		
	10.	For a	moderately	skewed	distribution,	which	of he fo	llowing relationship	holds?	
		(a)	Mean – Mod	e = 3 (M	ean – Mediar	ר)				
		(b)	Median – Mc	de = 3 (Mean – Medi	an)		®		
		(c)	Mean – Medi	an = 3 (Mean – Mode	e)				
		(d)	Mean – Medi	an = 3 (Median – Mo	de)				
							5	9		
	11.	Whick	n of the follo	wing re	sults hold for	a set	of distin	ct positive observat	ions?	
		(a) /	$AM \ge GM \ge H$	M	(b) HM ≥	GM ≥	AM	(15		
		(c) /	AM > GM > H	IM	(d) GM >	AM >	НМ			
						0				
_	12.	The s	um of the s	quares	of deviations	s of a	set of c	bservations has th	e smallest	
		value	, when the c	leviation	ns are taken f	rom th	neir	(I)		
_		(a)	A.M	(b) H.	.M	(c) G.	Μ	(d) none		
	12		te envel te				1		(N) . 1)/10	
_	13.		- is equal to	o the vo	tribution	naing	to cumu	llative frequency k	(N + 1)/10	
			simple frequ	ency as		(c) k^{th}	norcont	ila (d) nona		
		(u) ™	ealan	(D) K.	decite	(C) K ^a	percent	ite (d) none		
	14	Alad	v travel at c	uspeed	of 20 km/h	und rot	urned at	auicker speed. If h	er average	
_	14.	sneed	f of the whole		$\frac{1}{20} \frac{1}{100} \frac{1}{100}$	r find	the snee	d of return journey	(in km/h)	
_		(a) 2	5	(h) 3()	(c)	35	(d) 38		
		(0) 2	5	(6) 50	,	(C)	33	(4) 50		
-	15.	The n	nedian of fol	lowina r	numbers, whi	ch are	aiven is	ascendina order is 2	25. Find the	
		value	of X.		,		5			
		11, 1	.3, 15, 19 (x + 2).	(x + 4), 30. 3	5, 39	46			
		(a) 2	1	(b) 20)	(c)	15	(d) 30		
+		-								

MEASURES OF DISPERSION

(Average of Second Order)

1. What is the coefficient of range for the following distribution?

Class	s Interval :	10	0-19	20	-29	3()-39	40	-49	50)-59	
Frequ	uency:		11	2	25		16		7		3	
(a) 22	2	(b)	50		(c)	72.	46	(d)	75.8	32		

- If x and y are related as 3x+4y = 20 and the quartile deviation of x is 12, then the quartile deviation of y is
 (a) 16
 (b) 14
 (c) 10
 (d) 9.
- 3. If the relation between x and y is 5y-3x = 10 and the mean deviation about mean for x is 12, then the mean deviation of y about mean is
 (a) 7.20 (b) 6.80 (c) 20 (d) 18.80.
 - (a) 7.20 (b) 6.80 (c) 20 (d) 18.80.
- 4. If the mean and SD of x are a and b respectively, then the SD of $\frac{(x-a)}{b}$ is (a) -1 (b) 1 (c) ab (d) a/b.
- 5.
 The standard deviation of 10, 16, 10, 16, 10, 10, 16, 16 is

 (a) 4
 (b) 6
 (c) 3
 (d) 0.
- 6. What is the coefficient of variation of the following numbers?53, 52, 61, 60, 64.
 - (a) 8.09 (b) 18.08 (c) 20.23 (d) 20.45
- 7. If x and y are related by y = 2x+ 5 and the SD and AM of x are known to be 5 and 10 respectively, then the coefficient of variation of y is
 (a) 25 (b) 30 (c) 40 (d) 20
- 8. If two samples of sizes 30 and 20 have means as 55 and 60 and variances as 16 and 25 respectively, then what would be the SD of the combined sample of size 50?
 (a) 5.00
 (b) 5.06
 (c) 5.23
 (d) 5.35

.1.1	K. SHAH [®]						TATISTICS
	ASSES dranda Enternrise					CATOONDATION 3	IAIISTICS
 9.	If all the obse	rvations	are multiplie	d by 2. th	en		
 	(a) New SD wo	ould be a	lso multiplie	ed by 2			
	(b) New SD wo	ould be h	alf of the pr	evious SD			
	(c) New SD wo	ould be ir	ncreased by 2	2			
	(d) New SD we	ould be d	lecreased by	2.			
10.	In a set of 100	observa	tions, taking	assumed	mean as 4	, the sum of the	deviations
	is -11 cm, and	the sum	of the squar	es of these	e deviation	s is 257 cm². The	coefficient
	of variation is						
	(a) 41.13%	(b)	42.13%	(c)	40.13%	(d) none	
11.	If 5 is subtract	ed from e	each observa	tion of sor	ne certain	item then its co-	efficient of
	variation is 10	% and if	5 is added to	each item	then its co	pefficient of varia	ition is 6%.
	Find original c	oefficient	of variation				
	(a) 8%		(b)	7.5%		9	
	(c) 4%		(d)	none	of these	e	
				79	rons		
				9 E	ite.		
 				90 -			
		4	<u> </u>				
			3				
				7			

LINEAR CORRELATION & LINEAR REGRESSION

	1.	The Cov (x, y	/) = 25; v(x) = 36, v	(y) = 25 , then t	ne coefficie	ent of co	orrelat	ion is		
		a) 0.409	b) 0.416	c) 0.8	333	d) 0.	.277			
	2.	Find the coe	fficient of correlati	ion from the foll	owing dat	a:				
		X: 1 2	3 4 5							
		Y: 6 8	11 8 12							
		a) + 0.775	b) – 0.775	c) + ().895 📀	d) +	0.956			
	3.	The coefficie	ent of rank correlat	ion between the	marks in S	Statistic	s and	Mathe	matics	
		obtained by	a certain group o	of students is 2/	3 and the	sum of	the so	quares	of the	
		differences i	n ranks is 55. How	many students	are there i	in the gi	roup?			
		a) 10	b) 9	c) 12	roris	d) m	ore th	an 15		
				19 EN	te					
	4.	From the fol	lowing data calcu.	late the value o	f coefficier	nt of Rar	nk cori	relatio	n:	
		X: 75 88	95 70 60 80	81 50						
		Y: 120 134	150 115 110 140	0 142 100						
		a) 0.93	b) – 0.85	c) 0.8	35	d) 0.	.63			
	5.	What is the	coefficient of conci	urrent deviation	s for the fo	ollowing	g data:	:		
		Supply:	68 43 38	78 66 8	3 38	23	83	53	48	
		Demand:	65 60 55	61 35 7	5 45	40	85	80	85	
		a) 0.82	b) 0.85	c) 0.8	39	d) –	0.81			
	6	The secold size		levietien femmen	ative of ob			. f		
	0.		ent of concurrent c	ant deviations w	ac found t	servatio	thon t			
_		$1/\sqrt{3}$. If the I			as touna t	d) N	then t	ne vai	ue or p	
_		u) 10	6 (0	C) 8		a) N	one of	these		
	7	If u + Ev = 6	and $2y = 7y = 20$ a	ind the correlati	on coofficie	ont hotu		and y		
	1.	11 u + 5x = 0	would be the corre	lation coefficier				unu y	15 0.30	
		(a) 0.58					v:			
		(u) 0.30	(D) -0.50	(c) = c	.04	(u) 0	.04			

	J.I	K. SHAH [®]				CAE	OUNDATION STATIST	
		ASSES eranda Enterprise						
		· ·						
	8.	Find the probable e	rror of r if r =	0.05 aı	nd n = 25.			
		a) 0.1928 b) 0.1345		c) 0.0129)	d) 0.0192	
	9.	In Case of "insurand	ce companies'	' profit	and the r	number o	f claims They have	e pay
		there is cor	relation.					
		a) Positively	b) Negativ	'e	c) No of d	correlatio	n d) None of th	lese
	10.	The Cov (x, y) =15, wh	nat restrictions	should	be put for	the stando	ard deviations of x a	ınd y?
		a) No restriction						
		b) The product of	the standard	deviat	ions shoul	d be more	e than 15	
		c) The product of	the standard	deviat	ions shoul	d be less	than 15	
		d) The sum of the	e standard dev	viations	should be	e less tha	n 15	
	11.	Standard Error of "r	" is given by:					
		a) $\frac{1-r^2}{n}$ b	$\frac{1-r^2}{\sqrt{n}}$		c) $\frac{1+r^2}{\sqrt{n}}$	29	d) None of the abo	ove
						-: 50		
	12.	From the following	data, find the	regres	sion equat	tion of X c	on Y:	
		X 1	2	3	4	5		
		Y 2	3	5	4	6		
		a) $X = 0.9Y + 0.6$		b) >	<pre>< = 0.9Y -</pre>	0.6		
		c) $X = 0.9Y + 1.3$	3	d) >	x = 0.9Y -	1.3		
_	12		datas					
_	13.	Given the following						
_		Mogn:	× .	y 0.9				
		Variance:	4	90				
_		Coefficient of correly	4	5				
		What is the most lik		when	x = 90 ?			
_		(a) 90 (l	b) 103	when	(c) 104		(d) 107	
		(5) 50 (1	-, 100		(0, 104			
	14.	With bxv = 0.5 r =	0.8 and varia	nce of v	/ = 16. sta	ndard dev	viation of x equals	to:
		a) 6.4 b) 2.5		c) 10.0		d) 26.5	
		· · · · · · · · · · · · · · · · · · ·	•					
-								
-								

J.K. SHAH CLASSES a Veranda Enterprise

	15.	lf th	e regression o	oefficient of	f y on x, the	coefficient	of corre	elation betwee	n x and y
		and	variance of y	are -3/4, -	$\frac{\sqrt{3}}{2}$ and 4 re	spectively,	, what is	s the variance (of x
					2				
		(a) 2	2/√3/2	(b) 16/3		(c) 4/3		(d) 4	
	16.	Give	en b _{xy} = 0.756,	b _{yx} = 0.659	, then the va	lue of coe	fficient	of non-determ	ination is
		give	n by:						
		α)	0.402	b) 0.502		c) 0.602		d) 0.702	
	17.	lf u	= 2x + 5, v =	= -3y + 1, o	and the regr	ression co	efficient	of y on x is -	· 1.2, the
		regr	ession coeffici	ient of v on	u is:				
		α)	1.8	b) - 1.8		c) 3.26		d)0.8	
							B		
	18.	The	two regressio	n lines are	7x-3y-18=0	and 4x-y-	-11=0. F	ind the value o	of b _{yx} and
		b _{xy}							
				_			19		
		α)	$\frac{7}{3}, \frac{1}{4}$	b) $-\frac{7}{3}$,	$\frac{1}{4}$	c) $-\frac{3}{7}, -\frac{1}{4}$		d) none of the	se
			5 4			9	oris		
					/9	cnter			
	19.	The	two lines of r	egression ar	re given by				
		8x +	· 10y = 25 and	1 16x + 5y =	12 respectiv	ely.			
		lf th	e variance of	x is 25, who	at is the stan	dard devic	ation of	y?	
		(a) 1	16	(b) 8		(c) 64		(d) 4	
	20.	The	two types of	variables in	regression a	nalysis are	e:		
		α)	Direct & Indi	rect	b)	Depende	nt & Ind	ependent	
		c)	Discrete & Co	ontinuous	d)	None of t	the abov	/e	
	21.	The	regression lin	e of x on y i	s derived by:				
		a)	The minimizo	ation of vert	ical distance	in the sco	atter dia	gram.	
		b)	The minimizo	ation of hori	zontal distar	nce in the	scatter	diagram.	
		c)	Either a) or b	o) above.					
		d)	Both a) and	b) above.					
-									

J.K. SHAH C L A S S E S a Veranda Enterprise

 22.	The	sign analogy of correlation co	efficient a	nd two regression coefficients is:
	α)	-, +, +	b)	-, -, -
	c)	+, +, +	d)	Both b) and c) above
23.	lf tł	ne regression coefficient of y or	n x is 4/3,	then the regression coefficient of x on y
 	is:			
	α)	More than 1	b)	Less than 1
	c)	Less than zero	d)	None of the above
 				®
 				rise
 			6	rerpi
 			106	110
			<u>1000.</u>	
 		- C V		
		· O		
			1 1	

INDEX NUMBERS

1. From the following table by the method of relatives using Arithmetic mean the price Index number is

Commodity	Wheat	Milk	Fish	Sugar	
Base Price	5	8	25	6	
Current Price	7	10	32	12	
(a) 140.35	(b) 148.25	(c) 140.7	'5 (d) N	one of these.	

2. From the following data for the 5 groups combined

		λ	
Group	Weight	Index Number	
 Food	35	425	
 Cloth	15	235	
Power & Fuel	20	215	
Rent & Rates	8	115	
 Miscellaneous	22	150	
	P		1

```
        The general Index number is
        (a) 270
        (b) 269.2
        (c) 268.5
```

(d) 272.5

Refer to the follow data and answer the questions:

Commodity	19	79	1980			
	Price in ₹	Quantity (kg)	Price in ₹	Quantity(kg)		
А	20	8	40	6		
В	50	10	60	5		
С	40	15	50	10		
D	20	20	20	15		

3.	Which of the fo	llowing	represents	Paasche's Price Index Nu	umber:	
	a) 125.23	b)	124.70	c) 124.96	d) 125.95	
4.	Which of the fo	llowing	represents	Laspeyer's Price Index N	umber:	
	a) 125.23	b)	124.70	c) 124.96	d) 125.95	

	5.	Given The follo	lowing Data:									
		Items		Currer	nt Year			Base	Year			
			Price	e (₹)	Valu	ıe (₹)	V	alue (₹)	Quantity (kg)			
T		A	2	0	20	200		360	12			
		В	4	ł	3	6	64		16			
		С	1	4	23	38	575		23			
		The quantity ir	ndex using	Bowley'	s formul	a is:						
		a) 65.95	b) 7	5.95		c) 85	.95	d) 95.	95			
(6.	From the follo	wing data									
		Year	1992	1	993	199	5	1996	1997			
		Link Index	100		103	10	5 (112	108			
		(Base 1992 = 1	L00) for the	e years 1	.993–97.	The cor	struct	tion of chai	n index is :			
		(a) 103, 100.9	4, 107, 11	8.72				9				
		(b) 103, 108.1	5, 121.13,	130.82			2					
		(c) 107, 100.2	5, 104, 11	8.72		9	170%	5				
		(d) None of the	ese.	<u>></u>	19	Ente						
				P	- 70							
•	7.	The price relat	ive for the	year 20	00 with	base 199	95 = 1	00 is 135. ⁻	The price relative			
		for the year 19	95 with bo	ise 1990) = 100 is	5 120. Fir	nd the	price relat	ive for 2000 with			
		base 1990 = 1	00.									
		(a) 100	(b) 8	3.33		(c) 162		(d) 13	5			
	Read	the following do	ata and ans	wer the c	questions	that follo	ow:					
		1						1	1			
		Year			Price I	ndex A		Pric	e Index B			
					[Base Ye	ar: 2000]	[Base	Year: 2003]			
		200	00		10	00						
		200	01		1:	10						
		200	02		1:	15						
		200	03		12	20	100					
		200)4					125				
		200	05					135				

a Veranda Enterprise When PI B is spliced with PI A, the spliced index for the year 2004 is: 8. a) 100 c) 135 9. Net Monthly income of an employee was ₹ 800 in 1980. The consumer price Index number was 160 in 1980. It is rises to 200 in 1984. If he has to be rightly compensated. The additional dearness allowance to be paid to the employee is : (a) ₹ 240

- (b) ₹ 275 (c) ₹250 (d) 200
- 10. The total value of retained imports into India in 1960 was ₹ 71.5 million per month. The corresponding total for 1967 was ₹ 87.6 million per month. The index of volume of retained imports in 1967 compared with 1960 (= 100) was 62.0. The price index for retained imports for 1967 with 1960 as base is
 - (a) 198.61 (b) 197.61 (c) 198.25 (d) None of these.

b) 125

d) 150

- is an extension of time reversal test 11.
 - Circular test Factor Reversal test b) a)
 - d) none c) both 99
- 12. Chain index is equal to
 - link relative of current year × chain index of the current year) (a)
 - 100 link relative of previous year × chain index of the current year (b)
 - 100
 - (c) link relative of current year × chain index of the previous year
 - 100
 - link relative of previous year × chain index of the previous year (d)
 - 100
- 13. When the product of price index and the quantity index is equal to the corresponding value index then the test that holds is

(a)	Unit Test	(b)	Time Reversal Test
(c)	Factor Reversal Test	(d)	none holds

J.K. SH CA FOUNDATION STATISTICS a Vergoda Enterprise 14. If the index number of prices at a place in 1994 is 250 with 1984 as base year, then the prices have increased on average by (d) None of these. (a) 250% (b) 150% (c) 350% 15. For constructing consumer price Index is used : Marshall Edge worth Method. Paasche's Method. (a) (b) (c) Dorbish and Bowley's Method. (d) Laspeyre's Method. 16. Time Reversal Test is represented by symbolically is : (a) $P_{01} \times Q_{01} = 1$ $I_{01} \times I_{10} = 1$ (b) (b) $I_{01} \times I_{12} \times I_{23} \times \dots \cdot I_{(n-1)n} \times I_{n0} = 1$ None of these. (d) Ada Enterprise

		6			PRC)BA	BILI	ТҮ			
Toss	ing o	of Coins									
 Three	e coii	ns are to:	ssed simu	ltaneous	lv. Find tł	ne p	robabil	itv of ae	ttir	na:	
 1.	More	e than tw	vo tails								
	a) 2	2/8	b)	6/8		c)	1/8		d)	4/8	
Pack	k of (Cards – V	Vithdrawn	of a car	d						
_								B			
 A car	'd is	drawn fro	om a well	-shuffled	d pack of	52	cards. I	Find the	pro	bability that:-	
 2	Δ sn	ade or a	n Ace not	of spade							
 ۷.	<u>a) ;</u>	2/13	b)	4/13		c)	1/13	29	d)	7/13	
		_,		., = •	5,		5	rise		.,	
Roll	ina c	of Dice			19	-	rer	<i>6</i> , .			
					> 20	7					
 Two	dices	are rolle	ed. Find th	ne probal	oility that	t,					
 3.	lt is	either 7 d	or 11.	ave	-						
	a) 3	3/9	b)	5/9		c)	2/9		d)	None of these	
 4.	Sum	is a mul	tiple of 3	or 4.							
 	a) !	5/9	b)	3/9		C)	7/9		d)	None of these	
_ Leap	o Yeo	ar									
 Find [·]	the r	orobabilit	ty that a l	.eap year	selected	at	random	n will coi	nta	in;	
 5.	53 T	hursdays	or 53 Fri	days.						,	
	a) :	1/7	b)	3/7		c)	2/7		d)	4/7	
					16						

u	cianc	a Enterprise						
Ad	lditic	on Theorem						
 A nı	umb	er is selected o	nt ra	ndom from a set	of f	first 120 natura	Il numbers. What is the	
 prot	babil	ity that it is div	visibl	e by:				
				y				
 6.	7 o	r 9						
 	α)	31/120	b)	30/120	c)	29/120	d) None of the above	
For	mul	a						
 If P(A) =	1/4 , P(B) = 2/5	5, P(A	$A \cup B$) = 1/2 . Find:				
 7.	P(A	$C \cap B^{c}$				8		
	a)	3/20	b)	1/10	C)	1/4	d) ½	
 0								
 8.	P(B	/A)	<u>لم</u>	2/5		1/5	d) None of the above	
	α)	2/5	D)	5/5	0	175		
 9	lf fo	or two indepen	dent	events A and B P		$I_{\rm R} = 2/3$ and F	$P(\Delta) = 2/5$ what is $P(B)?$	
 5.	a)	4/15	b)	4/9	() ()	5/9	d) 7/15	
 		.,		L'anor			., .,	
 10.	The	e odds against	ac	ertain event are 5	5:2	and odds in fo	vour of another event,	
	ind	ependent of th	e for	mer, are 6:5. Find	the	chance that at	least one of the events	
 	wil	l happen.						
	α)	25/77	b)	35/77	c)	52/77	d) 65/87	
11.	A b	ag contains 8	red c	and 5 white balls.	Two	o successive dro	aws of 3 balls are made	
	wit	hout replacem	ent. ⁻	The probability the	at t	he first draw wi	ll produce 3 white balls	
	and	d the second 3	red b	palls is				
	(a)	5/223	(b) 6	5/257	(c)	7/429	(d) 3/548	
 12.	The	ere are three pe	erson	s aged 60, 65 and	70	years old. The s	survival probabilities for	
	the	se three persor	ns for	another 5 years a	re C).7, 0.4 and 0.2	respectively. What is the	
 	pro	bability that a	t lea	st two of them wo	ould	survive anothe	er tive years?	
 	(a)	0.425	(b) ().456				
	(c) (0.392	(d) (0.388				

J.K. SHAH CLASSES a Veranda Enterprise

13.	A packet of 10 el	ectronic components is	s known to include	2 defectives. If a sample
	of 4 components	is selected at random f	rom the packet, w	hat is the probability that
	the sample does	not contain more than	1 defective?	
	(a) 1/3	(b) 2/3	(c) 13/15	(d) 3/15
14.	Four digits 1, 2, 4 o	and 6 are selected at r	andom to form a f	our digit number. What is
	the probability th	nat the number so form	ned, would be divis	sible by 4?
	(a) 1/2	(b) 1/5	(c) 1/4	(d) 1/3
15.	If P(A) = 5/9, ther	n the odds against the	event A is	
	(a) 5:9	(b) 5:4	(c) 4 : 5	(d) 5 : 14
16.	P(A/B') is defined	only when	®	
	(a) B is not a sur	e event	(b) B is a sure ev	ent
	(c) B is an impos	sible event	(d) B is not an im	ipossible event.
			5/9	2
17.	A bag contains 3	red & 5 white balls o	ind the 2 nd bag co	ntains 4 red and 6 white
	balls. One ball is	drawn at random fror	m the first bag and	1 put into 2 nd bag. If now,
	a ball is drawn fr	rom the 2nd bag, find t	he probability tha	t it is red.
	a) 35/88	b) 53/88	c) 16/89	d) None of the above
		, didine		
18.	The probability o	f Girl getting scholarsh	ip is 0.6 and the so	ame probability for Boy is
	0.8. Find the prot	pability that at least or	ne of the categorie	s getting scholarship.
	a) 0.32	b) 0.92	c) 0.44	d) 0.54
19.	A bag contains 1	5 one rupee coins, 25 t	wo rupees coins a	nd 10 five rupees coins. If
	a coin is selected	at random then proba	Ibility for not selec	ting a one rupee coin is:
	a) 0.20	b) 0.30	c) 0.35	d) 0.70
20.	If two letters are	taken at random fron	n the word "HOME	", what is the probability
	that none of the	letters would be vowel	.s?	
	a) ½	b) 1/6	c) 1/3	d) ¼
21.	If P(A) = 2/3, P(B)	= 3/5, P(A U B) = 5/6,	find P(A/B')	
	a) 5/12	b) 7/12	c) 1⁄4	d) ¾

	RANDOM VARIABLE
_	Theory of Expectation - THEORY

1.	lfα	ran	dom	variat	olexo	assumes	the val	ues x ₁ , :	x_{2}, x_{3}, x_{4}	with corresponding p	probabilities
	p ₁ ,	p ₂ ,	p ₃ , p ₄	, ther	n the	expecte	d value	of x is	•		
	a)	p ₁	+ p ₂	+ p ₃ ·	+ p ₄			b)	x ₁ p ₁ +	$x_2p_2 + x_3p_3 + x_4p_4$	
	c)	X ₁	+ x ₂	+ x ₃ +	X ₄			d)	None	of the above	
A ra	ndo	m v	ariab	le x h	as th	e follow	ing pro	babilit	y distrib	oution:	
Х			:	4	5	6	8				
Prob	abil	ity	:	0.1	0.	.3 0.4	0.2			®	
2.	Wh	at i	s the	stanc	lard	deviatio	n of the	e rando	m varia	ıble x.	
	a)	5.9	9		b)	1.01		c)	2.25	9 d) 1.22	
							C				
3.	Let	Хb	eαr	andor	n va	riable a	ssumin	g value	s -3, 6	and 9 with probabil	ities 1/6, ½
	and	d 1/	3 res	pectiv	ely. 1	Then find	d the vo	alue of	E(X), E(>	(2) and E(2X+1) ²	
	a) !	5.5,	46.5	, 209	b)	6.5, 45	.5, 207	70 r	c) 6, 4	i0, 200 d) Nor	e of these
							101				
4.	lf it	raiı	ns a t	axi dr	iver o	can earn	Rs. 10	0 per d	ay if it is	s fair, he can lose Rs.	10 per day.
	lf t	he p	roba	bility	of ra	in is 0.4	what i	s his ex	pected	gain?	
	a)	60			b)	34		c)	- 6	d) – 40	
5.	A r	nan	drav	ws 2	balls	from a	bag c	ontaini	ng 3 w	hite and 6 black bo	alls. If he is
	to	rece	ive R	Rs. 14	for	every w	hite ba	ll and	Rs. 7 fo	or every black ball;	what is his
	exp	pecto	ation	?							
	a)	18.	67		b)	19.25		c)	20.25	d) 25.19	
A ra	ndo	m v	ariab	le x h	as th	e follow	ing pro	obabilit	y distrib	oution:	
X:		0	1	2	3	4	5	6	7		
P(x):		0	21	k 3k	k	2k	k ²	7k ²	2k ² +k		
6.	Wh	at i	s the	value	e of P	(x < 6)?					
	a)	0.1	9		b)	0.80		c)	0.81	d) 0.91	

7.	Daily dema	nd for c	ı prodı	u <mark>ct X is</mark>	having	g the f	ollowir	ng prob	ability dis	tribution:	
	Demand		1	2	3	4	5	6			
	Probability		0.10	0.15	0.20	0.25	0.18	0.12			
	Determine t	the varie	ance o	f the d	emand						
	a) 2.19		b) 2.	22		c)	2.33		d) 2.54		
8.	A random v	variable	X has	the fol	lowing	j probo	ability	distribu	ition:		
	Х –	2	3	1							
	P(X=x) 1.	/3	1⁄2	1/6							
	Find E(X ²) a	nd E(2X	+ 5)								
	a) 5 and 7	respect	ively			b)	6 and	7 respe	ctively		
	c) 7 and 7	respect	ively			d)	7 and	6 respe	ctively		
								5			
9.	A player to	osses 3	fair co	oins. He	e wins	Rs. 5	if 3 h	eads a	ppear, Rs.	3 if two	head
	appears, Re	e. 1 if or	ne hea	d occu	rs. On	the ot	her ha	nd, he	losses Rs.	15 if thre	ee tail
	occur. Find	the exp	ected g	gain of	the pl	ayer.	E				
	a) 0.15		b) 0.	25	2	c)	0.35	0112.	d) 0.55		
					19	2 6	nter	*			
				<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0'	~				
			\leq	(1d)	(0),,						
				a v Č							
					20						
					20						

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

THEORETICAL DISTRIBUTION

	1.	An unbiased dice is tossed 500 times. The standard deviation of the number of
		'sixes' in these 500 tosses are:
		a) 50/6 b) 51/6 c) 15/6 d) None of these
	2.	What is the probability of getting 3 heads if 6 unbiased coins are tossed
		simultaneously?
		a) 0.50 b) 0.20 c) 0.3125 d) 0.6875
		®
	3.	The binomial distribution with mean = 20 and sd = 4 is:
		a) $(1/4 + 4/5)^{100}$ b) $(4/5 + 1/5)^{100}$
		c) (4/5 + 1/5) ⁵⁰ d) None of the above
	4.	Assuming that one-third of the population is tea drinkers and each of 1000
		enumerators takes a sample of 8 individuals to find out whether they are tea
		drinkers or not, how many enumerators are expected to report that five or more
		people are tea drinkers?
		a) 100 b) 95 c) 88 d) 90
	5.	X is binomial variable such that $2P(x=2) = P(x=3)$ and mean of X is known to be 10/3.
		What would be the probability that X assumes at most the value 2?
		a) 16/81 b) 17/81 c) 47/273 d) 26/243
	6.	The important characteristic(s) of Bernoulli trials is:
		a) Trials are independent
		b) Each trial is associated with just two possible outcomes.
		c) Trials are infinite
		d) Both a) and b) above
_		

7.	An example of a bi-parametric discrete probability distribution is									
	a) binomial distribution									
	b) Poisson distribution									
	c) normal distribution									
	d) both (a) and	l (b)								
8.	In a Binomial d	istribu	tion if n is infinite	ly la	rge, the prol	babi	lity p of occurrence of			
	event is close to	D	_ and q is close to		_ then binon	nial	distribution follows to			
	Poisson distribution.									
	a) 0,1	b)	1,1	c)	1,0	С	l) None of the above			
9.	The variance of binomial distribution with parameters n and p is									
	a) n(1-p)	b)	np(1-p)	c) r	np√(1-p)®		d) $\sqrt{np(1-p)}$			
10.	In a Poisson Distribution P(X = 0) = P(X = 1) = k, the value of "k" is:									
						5				
	a) 1	b)	$\frac{1}{2}$	c)	e^2	C	1) $\frac{1}{\sqrt{e}}$			
			e	2	2 10115					
11.	If x is Poisson variety with a parameter 4 find the Mode of the Distribution?									
	a) 4,2	b) 4	4,3	c) /	4,4	С	l) None			
			L'Idcome							
It is f	is found that the number of accidents occurring in a factory follows Poisson distribution									
with	a mean of 2 acc	idents	s per week. (Given	e ⁻² =	0.1353)					
12.	Find the probab	ility th	nat the number of	accio	dent in a wee	ek e>	kceeds 2.			
	a) 0.3235	b)	0.523	c) (0.352	С	l) None of the above			
13.	In a company manufacturing toys, it is found that 1 in 500 is defective. Find the									
	probability that there will be at the most two defectives in a sample of 2000 units.									
	[Given $e^{-4} = 0.0183$]									
	a) 0.2597	b)	0.3549	c)	0.2549	С	l) 0.2379			
14.	P (x $\leq 2 / x \geq 1$) given E(x) = 2.2 & $e^{-2.2}$ = .1108									
	a) 0.58	b)	0.68	c)	0.70	С	l) None of the above			

15.	Poisson distribution may be									
	α)	Bimodal			b)	Uni modal				
	c)	Multi Modal			d)	Either a) or b) above and not	c)		
16.	For a Poisson distribution									
	a) Standard Deviation and Variance are equal.									
	b) Mean and Variance are equal.									
	c) Mean and Standard Deviation are equal.									
	d) Both a) and b) above									
17.	If the 1st quartile and mean deviation about median of a normal distribution are									
	13.25 and 8 respectively, then the mode of the distribution is:									
	a) :	10	b)	12	c)	15	d) 20			
							¢			
18.	For	normal distri	butior	with mean =150	and	S.D = 45; find	Q_1 and Q_3			
	α)	119.35 and 1	90.65	6	b)	119.625 and	180.375			
	c)	180.35 and 1	19.65		d)	123.45 and 1	183.65			
				/9	61	nterr				
19.	What is the first quartile of x having the following probability density function?									
	$f(x) = \frac{1}{e^{-\frac{(x-10)^2}{72}}} \text{ for } -\infty < x < \infty$									
	$\sqrt{72\Pi}$									
	a) 4	4	b)	5	c)	5.95	d) 6.75			
20.	If x and y are 2 independent normal variable with mean 10 and 12 and SD 3 and									
	4 respectively, then (x + y) is also a normal distribution with mean and SD									
		·								
	a) 7	22, 7	b)	22, 25	c) 2	2, 5	d) 22, 49			
21.	In c	ı sample of 800	stude	nts, the mean weigl	nt an	d standard dev	viation of weight a	are found		
	to be 50 kg and 20 kg respectively. On the assumption of normality, what is the number									
	of students weighting between 46kg and 62kg? Given area of the standard normal curve									
	between z = 0 to z = 0.2 = 0.0793 and area between z = 0 to z = 0.60 = 0.2257.									
	α)	250	b)	244	c)	240	d) 260			

J.K. SH CA FOUNDATION STATISTICS a Vergoda Enterprise 22. The I.Q. of army volunteers in a given year are normally distributed with mean =110 and standard deviation =10. The army wants to give advance training to 20% of those recruits with the highest IQ. Find that lowest score acceptable for the advanced training? [ϕ (0.84) = 0.80] a) 118.4 b) 116.4 108.4 d) 101.6 c) 23. The interval ($\mu - 3\sigma$, $\mu + 3\sigma$) covers a) 96% area of a normal distribution. b) 95% area of a normal distribution. c) 99% area of a normal distribution. d) All but 0.27% area of a normal distribution 24. An approximate relation between Quartile deviation (QD) and Standard Deviation (SD) of normal distribution is: a) 5 QD = 4 SD4 QD = 5 SD b) 🤇 c) 2 QD = 35 SD 3 QD = 2 SD d) Ada Enterprise