CA Foundation			DNOVATE
	3 PRO	BABILITY	
	TRY YOURSI	ELF - 1	
1. Three unbiased coins ar	re tossed. Find proba	bility of getting at le	ast two heads
(a) $\frac{2}{3}$ Sol. n (S) = 8 Event \in = at least 2 he \in = HHH HHT HT	(b) $\frac{1}{2}$ eads	(c) $\frac{1}{3}$	(d) $\frac{4}{3}$
P ∈ = $\frac{4}{8} = \frac{1}{2}$ ∴ (b) is correct			
2. Three unbiased coins are	tossed. Find probab	ility of getting at mo	st two tails.
(a) $\frac{8}{3}$	(b) $\frac{7}{2}$	(c) $\frac{1}{3}$	(d) 7 <u>/</u> 8
Sol. n (S) = 8 Event \in = atmost 2 tails \in = HTT,HHT,HTF N \in = 7	s H,THH,HHH,THT	,TTH	
$P \in = \frac{7}{8}$.:. (d) is correct			
3. Three unbiased coins are opposite result	tossed. Find probab	ility of getting 1 st a	and 3 rd coin indicating
(a) $\frac{4}{5}$ Sol. n(S) = 8 Event \in = 1 st & 3 rd co	(b) $\frac{2}{3}$ in , indicate opposite	(c) $\frac{1}{2}$ result.	(d) $\frac{3}{4}$
\in = HTT,THH,TTI	H,HHT		
n ∈ = 4 P ∈ = $\frac{4}{8} = \frac{1}{2}$ ∴ (c) is correct			

(a)

(a)

(a)

Sol.

(d) $\frac{1}{2}$

Sol.

Sol.

 $P \in = \frac{3}{6} = \frac{1}{2}$: (a) is correct 6. If a unbiased dice is thrown. Find the probability of getting Prime number. $\frac{1}{4}$ (b) $\frac{3}{2}$ (c) $\frac{1}{3}$ S = 1, 2, 3, 4, 5, 6Event : Prime Number \in = 2,3,5 n \in = 3 $P \in = \frac{3}{6} = \frac{1}{2}$. (d) is correct

7. Two dice are thrown. Find probability of sum of the numbers being divisible by 4.

(a)
$$\frac{1}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$

Sol. n(S) = 36Event : (Sum) divisible by 4 \in = 1,3 2,2 2,6 3,1 3,5 4,4 5,3 6,2 6,6 $N \in = 9$ $P \in = \frac{9}{36} = \frac{1}{4}$.: (c) is correct 8. Two dice are thrown. Find probability of product of numbers being greater than 20. (b) $\frac{3}{2}$ (c) $\frac{1}{3}$ (d) $\frac{1}{6}$ (a) $\frac{3}{4}$ Sol. n(S) = 36Event : Product > 20 \in = 4,6 , 5,5 5,6 6,4 6,5 6,6 $n \in = 6$ $P \in = \frac{6}{36} = \frac{1}{6}$. (d) is correct 9. A card is drawn from a pack of 52 playing cards. Find the probability that the card drawn is a Diamond Card. (a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{6}$ Sol. $n(S) = 52_{c_1}$ Event : Diamond card $n \in = 13_{c_1} = 13$ $P \in = \frac{13}{52} = \frac{1}{4}$. (b) is correct 10. A card is drawn from a pack of 52 playing cards. Find the probability that the card drawn is a Red Card.

EDNOYATE

(a) $\frac{1}{5}$ (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Sol. n(S) = 52_{c1} Event : Red card n \in = 26_{c1} = 26 P \in = $\frac{26}{52} = \frac{1}{2}$ \therefore (c) is correct

Sol.

11. A bag contains 6 red balls and some blue balls. If the probability of drawing a blue ball form the bag is twice that of a red ball, find the number of blue balls in the bag (a) 10 (b) 12 (c) 14 (d) 16 Sol. R В 6 X P(Blue ball) = 2 P (a red ball) $\frac{x}{6+x} = 2\frac{6}{6+x}$ $\therefore X = 12$: (b) is correct 12. A box contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue? (a) $\frac{10}{21}$ (b) $\frac{11}{21}$ (c) $\frac{2}{7}$ (d) $\frac{5}{7}$ Sol. RGB $2 \ 3 \ 2 = 7$ balls Selection = 2 balls N(S) = $7_{c_2} = \frac{7 \times 6}{2 \times 1} = 21$ Event : None is blue $n \in = 5_{c_2} = \frac{5 \times 4}{2 \times 1} = 10$ $P \in = \frac{10}{21}$: (a) is correct

EDNOVATE

13. In a packet of 500 pens, 50 are found to be defective. A pen is selected at random. Find the probability that it is non defective ۵ 2

7

(a)
$$\frac{8}{9}$$
 (b) $\frac{7}{8}$ (c) $\frac{9}{10}$ (d) $\frac{2}{3}$
D N.D
50 4.50 = 500
P(non defective) = $\frac{450}{500} = \frac{9}{10}$
 \therefore (c) is correct

TRY YOURSELF - 2

EDNOVATE

1. The following data relates to the distribution of wages of a group of workers.

Wages in Rs.	No. of workers
50-60	15
60-70	23
70-80	36
80-90	42
90-100	17
100-110	12
110-120	5

If a worker is selected at random from the entire group of workers, what is the probability that his wage would be less than Rs. 50?

(a) 0 (b)
$$\frac{29}{150}$$
 (c) $\frac{89}{150}$ (d) 0.72
P (wage < 50) = $\frac{0}{150}$ = 0

Sol.

: (a) is correct

2. The following data relates to the distribution of wages of a group of workers.

Wages in Rs.	No. of workers
50-60	15
60-70	23
70-80	36
80-90	42
90-100	17
100-110	12
110-120	5

If a worker is selected at random from the entire group of workers, what is the probability that his wage would be less than Rs. 80?

(a) 0 (b)
$$\frac{19}{75}$$
 (c) $\frac{37}{75}$ (d) 0.72
Sol. P(wage < 80) = $\frac{15+23+36}{150} = \frac{74}{150} = \frac{37}{75}$
 \therefore (c) is correct
3. If P(A) = 6/9 then the odds against the event is
(a) $\frac{3}{9}$ (b) 6/3 (c) 3/6 (d) 3/15

 $P(A) = \frac{6}{0}$ Sol. $\therefore P(A') = 1 - P(A) = 1 - \frac{6}{0} = \frac{3}{0}$: (a) is correct 4. If p:q are the odds in favour of an event, then the probability of that event is (b) $\frac{p}{(p+q)}$ (c) $\frac{q}{(p+q)}$ (d) None of these (a) p/q Sol. Ratio = p:qP (odds in favour) = $\frac{p}{p+q}$. (b) is correct 5. The odds in favour of one student passing a test are 3:7. The odds against another student passing at are 3:5. The probability that both pass is (b) $\frac{21}{80}$ (a) $\frac{7}{16}$ (c) $\frac{9}{80}$ (d) $\frac{3}{16}$ Sol. P(odds in favour of one student passing) = $\frac{3}{10}$ P(odds against other student passing) = $\frac{5}{8}$ P (both passing) = $\frac{3}{10} \times \frac{5}{8} = \frac{3}{16}$. (d) is correct 6. The odds in favour of one student passing a test are 3:7. The odds against another student passing at are 3:5. The probability that both fail is (b) $\frac{21}{80}$ (d) $\frac{3}{16}$ (a) $\frac{7}{16}$ (c) $\frac{9}{80}$ Sol. P (odds in favour of passing) = $\frac{3}{10}$ \therefore P (failing) = $\frac{7}{10}$ P (odds against other student passing) = $\frac{5}{2}$ P (other student failing) = $\frac{3}{2}$ P(both failing) = $\frac{7}{10} \times \frac{3}{8} = \frac{21}{80}$. (b) is correct

EDNOVATE

7. The odds in favour of an event is 2:3 and odds against another event is 3:7. Find the probability that only one of the two events occurs.

EDNOVATE

(a)
$$\frac{27}{50}$$
 (b) $\frac{17}{50}$ (c) $\frac{37}{50}$ (d) $\frac{47}{50}$
Sol. A : one event
B : another event
 $P(A) = \frac{2}{5} = P(A') = \frac{3}{5}$
 $P(B) = \frac{7}{10} = P(B') = \frac{3}{10}$
P(Only one event occurs) = P(only A) or P(only B)
 $= P A \cap B' + A' \cap B$
 $= P(A) P(B') + P(A') P(B)$
 $= \frac{2}{5} \times \frac{3}{10} + \frac{3}{5} \times \frac{7}{10}$
 $= \frac{6}{5} + \frac{21}{10}$
 $= \frac{27}{50}$

: (a) is correct

CA Foundation		ED	NOVATE
	TRY YOURSELF - 3		
1. If P(A)=3/8, P(B)=1/3 and P(B (a) 5/8 (b) Sol. P(A) = $\frac{3}{8}$ P(B) = $\frac{1}{3}$ P(B ^c) = P(A ^c) = 1 - P(A) = 1 - $\frac{3}{8}$ = \therefore (a) is correct	Bc)=2/3 then P(AC)) 3/8 = $\frac{2}{3}$ 5/8) is equal to (c) 1/8	(d) None
2. If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{2}{3}$ t (a) 1/4 (b) Sol. $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$, $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(B) = \frac{1}{3}$, $P(B) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(B) = \frac{1}{$	then the events P(A) 1/6 $\mathcal{P}B = \frac{2}{3}$ $A \cup B$	A ∩ B) ? (c) 2/3	(d) ½
3. If P(A) = 1/2, P(B) = 3/5 and the e (a) 7/10 (b) Sol. \therefore A and B are Independent P A \cap B = P(A) P(B) $= \frac{1}{2} \times \frac{3}{5}$ $= \frac{3}{10}$ \therefore (b) is correct	events A & B are ir) 3/10 : Events	ndependent then P(A (c) 5/10	∩ B) is - (d) 9/10
4. If P(A ∩ B) = 0.60 and P(A ∪ B (a) 1.30 (b)	8)=0.70 for two eve) 0.90	nts A and B, then P(A (c) 1.00	(d) 0.75

EDNOVATE

CA Foundation Sol. P $A \cap B = 0.6$ P $A \cup B = 0.7$ $P A \cup B = P(A) + P(B) - P A \cap B$ \therefore P(A) + P(B) = P A \cup B + A \cap B = 0.7 + 0.6= 1.30: (a) is correct 5. If for two independent events A and B, $P(A \cup B) = 2/3$ and P(A) = 2/5, what is P(B)? (b) $\frac{4}{0}$ (a) 4/15 (c) 5/9 (d) 7/15 Sol. : A and B are Independent Events $P A \cup B = P(A) + P(B) \rightarrow (1)$ $P A \cup B = P(A) + P(B) - P A \cap B$ $\frac{2}{3} = \frac{2}{5} + P B - P (A) P (B)$ $\frac{2}{3} - \frac{2}{5} = P(B) - \frac{2}{5} P(B)$ $\frac{10-6}{15} = \frac{5P B - 2P B}{5}$ $\frac{4}{15} = \frac{3P B}{5}$ $P(B) = \frac{4}{5} \times \frac{5}{3}$ $P(B) = \frac{4}{9}$: (b) is correct 6. A and B are two events such that P(A) = 1/2, P(B)=1/4 and $P(A \cap B)=1/5$. Find $P(A \cup B)$. (a) 4/5 (b) 11/20 (c) 3/5 (d) None of these. Sol. P $A \cup B = P(A) + P(B) - P A \cap B$ $=\frac{1}{2}+\frac{1}{4}-\frac{1}{5}$ $=\frac{10+5-4}{20}$ $=\frac{11}{20}$. (b) is correct

7. If $P(\overline{A} \cup B) = 5/6$, P(A)=1/2 and $P(\overline{B}) = 2/3$, What is $P(A \cup B)$? (a) 1/3 (b) 5/6 (c) 2/3 (d) 4/9 8. If P(A)=a, P(B)=b and P(A \cap B) = c then the expression of P(A' \cap B') in terms of a, b and c is (c) 1+a-b-c (d) 1-a-b+c (a) 1-a-b-c (b) a+b-cSol. P $A' \cap B' = P A \cup B'$ $= 1 - \begin{bmatrix} P & A \cup B \end{bmatrix}$ $= \mathbf{1} \cdot \left[P \ A \ + P \ B \ - P \ A \cap B \right]$ = 1 - [a + b - c]= 1 - a - b + c. (d) is correct 9. If P (A-B) $=\frac{1}{5}$, P (A) $=\frac{1}{3}$ and P(B) $=\frac{1}{2}$, what is the probability that out of the two events A and B, only B would occur? (a) 11/30 (b) 13/30 (c) 17/30 (d) $\frac{1}{2}$ Sol. P(only B occur) = P $A' \cap B$ $= P B - P A \cap B \rightarrow (1)$ $P(A - B) = P(A) - P \quad A \cap B$ $\frac{1}{5} = \frac{1}{3} - P \quad A \cap B$ P A \cap B = $\frac{1}{3} - \frac{1}{5} = \frac{5-3}{15} = \frac{2}{15}$ From (1) P (only B occurs) = $\frac{1}{2} - \frac{2}{15} = \frac{15 - 4}{30} = \frac{11}{30}$: (a) is correct 10. If P(A)=1/5, P(B)=1/2 and A and B are mutually exclusive then P(AB) is (a) 7/10 (b) 3/10 (c) 1/5 (d) 0 Sol. A and B are mutually exclusive events $P A \cap B = 0$ P(AB) = 0. (d) is correct 11. A, B, C are three mutually independent with probabilities 0.3, 0.2 and 0.4 respectively. What is $P(A \cap B \cap C)$? (a) 0.400 (b) 0.240 (c) 0.024 (d) 0.500

EDNOYATE

EDNOVATE

CA Foundation

Sol. P (B

P (B) = 0.2 P (C) = 0.4 P $A \cap B \cap C$ = P(A) P(B) P(C) = (0.3) (0.2) (0.4) = 0.024 [:. A,B,C are Independent variable]

P(A) = 0.3

12.
$$P(B) = \frac{3}{4}, P(\overline{A} \cap B \cap \overline{c}) = \frac{1}{3}P(A \cap B \cap \overline{c}) = \frac{1}{3}$$
 then $P(B \cap C)$:
(a) 1/12 (b) 3/4 (c) 5/12 (d) 23/36

- 13. A, B and C are three mutually exclusive and exhaustive events such that P(A) = 2P(B) = 3 P(C). What is P(B)? (a) 6/11 (b) 6/22 (c) 1/6 (d) 1/3
- 14. If A, B and C are mutually exclusive and exhaustive events, then P(A) + P(B) + P(C) equals to

(a) 1/3 (b) 1 (c) -1 (d) Any value between 0 and 1

C	A Foundation	EDNOVATE
	1	TRY YOURSELF – 4
1. Sol.	The conditional probability of an actually occurred is given by (a) $P(B/A) = P(AB)/P(A)$ (c) $P(B/A) = P(AB)$ (a) is correct	event B on the assumption that another event A has (b) P(A/B) = P(AB)/P(B) (d) P(A/B) = P(AB)/P(A).P(B)
2.	If $P(A \cap B) = P(A \mid B) \times P(B)$, then (a) Both events are statistically d (b) Both events are statistically d (c) Both events are statistically in (d) None of the above.	it implies that: ependent and independent ependent idependent
3.	(a) is correct If $P(A/B) = P(A)$, then (a) A is independent of B	(b) B is independent of A
Sol.	(c) B is dependent of A(d) is correct	(d) Both (a) and (b)
4. Sol.	P(B/A) is defined only when (a) A is a sure event (c) A is not an impossible event P (B/A) = $\frac{P A \cap B}{P A}$	(b) B is a sure event(d) B is an impossible event
	 ∴ P(A) ≠0 ∴ A is not an Impossible event ∴ (c) is correct 	
5.	In formula P(B/A), P(A) is (a) Greater than 0 (c) Equal to 0	(b) Less than 0 (d) Greater than or equal to 0
Sol.	$P B_A = \frac{P A \cap B}{P A}$	
	 ∴ P(A) > 0 ∴ (a) is correct 	
6.	P(A/B') is defined only when (a) B is not a sure event (c) B is an impossible event	(b) B is a sure event (d) B is not an impossible event

Sol. P
$$A'_{B'} = P A \cap B'$$

P B'
 \therefore P B' $\neq 0$
 $1 - P(B) \neq 0$
 \therefore P (B) $\neq 1$
 \therefore B is not a sure event
 \therefore (a) is correct
7. The Theorem of Compound Probability states that for any two events A and B.
(a) P(A \n B) = P(A) × P(B/A) (b) P(A \u03c6 B) = P(A) × P(B/A)
(c) P(A \n B) = P(A) × P(B) (d) P(A \u03c6 B) = P(A) × P(B) - P(A \cap B)
Sol. (a) is correct
8. Let A & B are two events with P(A) = 2 / 3 , P(B) = 1/4 and P(A \cap B) = 1/12 then P(A / B)
is equal to
(a) 2/3 (b) 1/3 (c) 1/8 (d) 7/8
Sol. P $A'_{B} = \frac{P A \cap B}{P B} = \frac{\frac{1}{1/4}}{\frac{1}{4}} = \frac{4}{12} = \frac{1}{3}$
 \therefore (b) is correct
9. If P(A) = $\frac{2}{3}$, P(B) = $\frac{2}{n}$, P(A \cap B) = $\frac{1}{4}$ then the events A & B are ______
(a) Independent and mutually exclusive
(b) Independent but not mutually exclusive
(c) Mutually exclusive but not independent
(d) Neither independent not exclusive
Sol. P(A) = $\frac{2}{3}$, P(B) = $\frac{3}{8}$
P(A) P(B) = $\frac{2}{3} \times \frac{3}{8} = \frac{2}{8} = \frac{1}{4}$
 $= P A \cap B$
 \therefore (b) is correct
10. Given P(A) = 1/2, P(B) = 1/3, P(AB) = 1/4, the value of P(A/B) is
(a) 1 (b) 1/2 (c) 1/15 (d) $\frac{3}{4}$
Sol. P $A'_{B} = \frac{P A \cap B}{P B} = \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}$

EDNOVATE

. (d) is correct 11. In connection with a random experiment, it is found that $P(A) = \frac{2}{3}P(B) = \frac{3}{5}$ and P(A \cup B)= $\frac{5}{6}$. Find P(B/A). (a) 13/18 (b) 1/2 (c) 13/20 (d) 5/18 Sol. P $A \cap B = P(A) + P(B) + P(C)$ $=\frac{2}{3}+\frac{3}{5}-\frac{5}{6}$ $=\frac{20+18-5}{30}$ $=\frac{13}{30}$ $P = \frac{P}{A} = \frac{P + A \cap B}{P + A} = \frac{\frac{13}{30}}{\frac{2}{2}} = \frac{39}{60} = \frac{13}{20}$. (c) is correct If $P(A \cap B) = 0.10$ and $P(\overline{B}) = 0.80$, then $P(A \mid B)$ is 12. (a) 0.25 (b) 0.40 (c) 0.50 (d) 0.75 Sol. P $A_B = \frac{P A \cap B}{P B} = \frac{P A \cap B}{\lceil 1 - P B' \rceil}$ $=\frac{0.1}{1-0.8}=\frac{0.1}{0.2}=\frac{1}{2}$ = 0.5: (c) is correct A and B are two events such that P(A)=1/3, P(B)=1/4, P(A+B)=1/2, then P(B/A) is equal 13. to (a) 1/4 (b) 1/3 (c) 1/2 (d) None Sol. P $A \cap B = P(A) + P(B) - P(A + B)$ $=\frac{1}{3}+\frac{1}{4}-\frac{1}{2}$ $=\frac{4+3-6}{12}$ $=\frac{1}{12}$

$$P B_{A} = \frac{P A \cap B}{P A} = \frac{\frac{1}{12}}{\frac{1}{3}} = \frac{3}{12} = \frac{1}{4}$$

: (a) is correct

14. In connection with a random experiment, it is found that $P(A) = \frac{2}{3}P(B) = \frac{3}{5}$ and $P(A \cup B) = \frac{5}{6}$. Find P (A'/B).

EDNOYATE

(a) 13/18 (b) 1/2 (c) 13/20 (d)
$$\frac{5}{18}$$

Sol. P A \cap B = P(A) + P(B) - P A \cup B
 $= \frac{2}{3} + \frac{3}{5} - \frac{5}{6}$
 $= \frac{20 + 18 - 25}{30} = \frac{13}{30}$
 $= \frac{P A - P A \cap B}{[1 - P B]}$
P A'/B = $\frac{P A' \cap B}{P B} = \frac{P B - P A \cap B}{P B}$
 $= \frac{\left(\frac{3}{5} - \frac{13}{30}\right)}{3 5}$
 $= \frac{\left(\frac{18 - 30}{30}\right)}{3 5}$
 $= \frac{5}{30} \times \frac{5}{3}$
 $= \frac{5}{18}$
 \therefore (d) is correct

15. In connection with a random experiment, it is found that $P(A) = \frac{2}{3}P(B) = \frac{3}{5}$ and $P(A \cup B) = \frac{5}{6}$. Find P(A/B').

(a) 1/3 (b) 5/12 (c) 7/12 (d) 11/12

Sol.P
$$A \cap B = P(A) + P(B) - P A \cup B$$

$$= \frac{2}{3} + \frac{3}{5} - \frac{5}{6}$$

$$= \frac{20 + 18 - 25}{30}$$

$$= \frac{13}{30}$$
P $A'_{B'} = \frac{P A \cap B'}{P B'} = \frac{P A - P A \cap B}{[1 - P B]}$

$$= \frac{\frac{2}{13} - \frac{13}{30}}{[1 - \frac{3}{5}]} = \left(\frac{\frac{20 - 13}{30}}{\frac{2}{5}}\right)$$

$$= \frac{7}{30} \times \frac{5}{2} = \frac{7}{12}$$
 \therefore (c) is correct

16. In connection with a random experiment, it is found that P(A)=2/3 P(B) =3/5 and P(A \cup B)= 5/6. Find P(A'/B').

5 12

EDNOVATE

(a)
$$\frac{1}{3}$$
 (b) $\frac{5}{12}$ (c) $\frac{7}{12}$ (d)
Sol.P $A \cap B = P(A) + P(B) - P A \cup B$
 $= \frac{2}{3} + \frac{3}{5} - \frac{5}{6}$
 $= \frac{20 + 18 - 25}{30}$
 $= \frac{13}{30}$
P $A'_{B'} = \frac{P A' \cap B'}{P B'} = \frac{P A \cup B'}{[1 - P B]}$
 $= \frac{\frac{1}{6}}{[1 - \frac{3}{5}]} = \frac{\frac{1}{6}}{\frac{2}{5}}$
 $= \frac{5}{12}$

c	A Foundation		EDNOVATE
	: (b) is correct		
		TRY YOURSE	LF – 5
1.	Value of a random variable are (a) Always positive numbers (c) Real numbers	(b) Always po (d) Natural nu	ositive real numbers umbers
Ans.	(c) is correct		
2. Ans.	Expected value of a random varia (a) Is always positive (c) May be positive or negative o (c) is correct	able r zero	(b) May be positive or negative (d) Can never be zero.
0			
J.	 (a) Its expected value is zero (c) Its standard deviation is positive (b) is correct 	ve	(b) Its standard deviation is zero (d) Its standard deviation is a real number
/ 113			
4.	If x and y are independent, then (a) $E(xy) = E(x) \times E(y)$ (c) $E(x+y) = E(x) + E(y)$		(b) $E(xy) = E(x) + E(y)$ (d) $E(x-y) = E(x) - x E(y)$
Ans.	(a) is correct		
5.	If a Random Variable x assumes	the values x_1 ,	x_2 , x_3 , x_4 with corresponding probabilities
	(a) $p_1 + p_2 + p_3 + p_4$		(b) $x_1/p_1 + x_2/p_2 + x_3/p_3 + x_4/p_4$
Ans.	(c) p ₁ x ₁ + p ₂ x ₂ + p ₃ x ₃ + p ₄ x ₄ (c) is correct		(d) None of these
6.	Mean is the Expected Value of x	for a	
	(a) Correlation(c) Dispersion		(b) Statistics(d) Probability Distribution.
Ans.	(d) is correct		
7.	Variance of a random variable x	is given by	
Ans.	 (a) E(x-μ)² (b) E[x-E(x)]² (c) E (d) is correct 	(x² - μ)	(d) (a) or (b)
8.	f(x), the probability mass function	of a random	variable x satisfies
	(a) $f(x) > 0$ (c) Both (a) and (b)	(b) $\sum_{x} f(x) = 1$ (d) $f(x) \ge 0$ and	$\int d\sum_{x} f(x) = 1$
Ans.	(d) is correct		

9.	 Which of the following is the characteristic of the probability distribution of a random variable? (a) 0 ≤ P(Aj) ≤ 1, for all i. (b) ∑P(Ai) = 1, for all I (c) The outcomes of each trial are independent. (d) All of these 					
Ans.	(d) is correct					
10.	The Integral of the probabili	ity density function J	$\int_{-\infty}^{+\infty} f(x) dx \text{ is is equal t}$ (c) Finity	o (d) Zero.		
Ans.	(a) is correct		(0) 1 mily	(0) 20:01		
11.	Probability mass function is (a) 0 (b) Greater that	always an 0 (c) Greater	than or equal to 0	(d) Less than 0		
Ans.	(c) is correct					
12.	The sum of probability mass $(a) -1$ (b) 0	s function is equal to) (d) None			
Ans.	(c) is correct	(0) 1				
13. Ans.	When X is a continuous fun (a) Probability mass functio (c) Both (b) is correct	nction f(x) is called n (b) Probability (d) None	density function			
14.	If x and y are random varia	ables having expec	ted values as 4.5 and	d 2.5 respectively,		
	then the expected value of (a) 2 ((x-y) is (b) 7	(c) 6	(d) 0		
Sol.	\in X = 4.5 \in y = 2.5					
	$\therefore \in \mathbf{X} - \mathbf{y} = \mathbf{x} - \mathbf{z}$	y				
	= 4.5 - 2 = 2	2.5				
	∴ (a) is correct					
15.	X is a random variable taki then Find $E(X)$ and $E(2x + f)$	ing the values 5, 6 a 5). E(x2)	and 7 with probabilitie	s 1/3, ¼ and 5/12,		
	(a) 5,28,25 ((b) 6, 17.17, 37.75,	(c) 7,19,49	(d) 3,12,9		

EDNOVATE

Sol.

xi	pi	pixi	pixi ²
5	$\frac{1}{3}$	5/3	$\frac{25}{3}$
6	$\frac{1}{4}$	6/4	36/4
7	5/12	35/12	245/12
		73/	453/12

$$\epsilon(x) = \epsilon(pi xi) = \frac{73}{12} = 6.08$$

$$\epsilon x^{2} = \epsilon(pi xi^{2}) = \frac{453}{12} = 37.75$$

$$\epsilon 2x + 5 = 2\epsilon(x) + 5$$

$$= 2(6.08) + 5$$

$$= 17.17$$

$$\therefore (b) \text{ is correct}$$

CA Foun	dation			ED	ΝΟΥΛΤΕ
	но	OME WORF	K		
1. The Theo	rem of compound Probability	states that	for any two	events A ar	nd B
(a)	$P(A \cap B) = P(A) \times P(B / A)$)	(b) $P(A \cup A)$	$\mathbf{B}) = \mathbf{P}(\mathbf{A}) \times \mathbf{I}$	P(B / A)
(c)	$P(A \cap B) = P(A) \times P(B)$		(d) P (A ∪	$(B) = P(A) \times$	$P(B) - P(A \cap B)$
Sol. (a) P (.	$\mathbf{A} \cap \mathbf{B}) = \mathbf{P}(\mathbf{A}).\mathbf{P}(\mathbf{B} / \mathbf{A})$				
2. The odds of no occurre	n favour of event A, in a trial, i	is 3:1. In a	three indep	endent trials	s, the probability
(a) Sol. Given: n=No. c Odds ir $\frac{P(A)}{P(A)} =$ =P(A) Here P Then c $\therefore P(X =$	$\frac{1}{64} \qquad (b) \qquad \frac{1}{32}$ of trials = 3 a Favour of event A $\frac{3}{1}$ $= \frac{3}{3+1} = \frac{3}{4}$ $= P(A) = \frac{3}{4}$ $q = P(A^{1}) = 1 - P(A) = 1 - \frac{3}{4} = \frac{1}{4}$ $= 0) = 3c_{0} \cdot p^{0}q^{3}$ $Q^{3} = 1$	(c)	1/27 (c	l) 1/	
=1.1.(-4 ∴ (a) is	$=\frac{1}{64}$ correct				2
3. What is the (a) 3/7	chance that a leap year selec (b) 1/7	ted at rand	lom will con (c) 2/7	itain 53 Frida	ays? (d) 4/7
Sol. No. of dense so same set of the set of	ays in a leap year =366 eks & 2 days 52 Fridays will be sure but in r ple Space for those 2 days n, Mon); (Mon; Tues); (Tues; = 7 nt of getting Friday rs; Fri); (Fri; Sat.)}	rest two da wed); (We	ys Friday lie ed; Thurs);	əs or not. (Thurs; Fri);	(Fri; Sat); (Sat;

[Dec. 2021]

 \therefore n(E) = 2

Sol.

 $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{2}{7}$

 \therefore (c) is correct

4. In a group of 20 males and 15 females 12 males and 8 females are service holders. What is the probability that a person selected at random from group is a service holder given that the selected person is a male? (-) 0.4E (d) 0.5E (a) 0.40~ ~~

(a) 0.40	(D)	0.60	(C)	0.45 (d) 0.55
			Males	Females
Total			20	15
Service holder			12	8
Non-Service holder			8	7

Probability of male service holder

$$=\frac{12}{20}=0.60$$

: (b) is correct

5. For any two dependent events A and B, P(A) = 5/9 and P(B) = 6/11 and = 10/33. What are the values of P(A/B) and P(B/A)?

(a)
$$5/9, 6/11$$
 (b) $5/6, 6/11$ (c) $1/9, 2/9$ (d) $2/9, 4/9$
Sol. $P(A / B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{10}{33}}{\frac{5}{11}} = \frac{10}{33} - \frac{11}{33} = \frac{5}{-9}$
 $P(B / A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{10}{33}}{\frac{5}{9}} = \frac{10}{33} - \frac{3}{5} = \frac{6}{11}$
 \therefore (a) is correct

6.If in a class, 60% of the student study Mathematics and Science and 90% of the student study Science, then the probability of a student studying Mathematics given that he/she is already studying science is

(a) 1/4	(b) 2/3	(c) 1 (d) ½	[July. 2021]
---------	---------	-------------	--------------

Sol. Let A = Event of studying Mathematics B= Event of Studying Science. Given

and

$$p(A \cap B) = 60\% = 0.60$$
$$p(B) = 90\% = 0.90$$
$$p(A_B) = \frac{p(A \cap B)}{p(B)} = \frac{0.60}{0.90}$$

11. If (A∪B) = 0.8 and P(A∩B) = 0.3 then P(Ā)+P(Ē) is equal to:
(a) 0.3 (b) 0.5 (c) 0.9 (d) 0.7
Sol. P(A∩B)=P(A)+P(B)-P(A∩B)
or ; 0.8= P(A) + (B) -0.3
or ; P(A) + P(B) = 0.8 + 0.3 = 1.1
∴ P(Ā) + P(B) = 1-P(A) + 1-P(B)
= 2-[P(A)+P(B)]
= 2-1.1=0.9
∴ (c) is correct
12.If P(A) =
$$\frac{1}{2}$$
, P(B) = $\frac{1}{3}$, and P(A∩B) = $\frac{1}{4}$ then P(A∪B) is equal to
(a) $\frac{11}{12}$ (b) $\frac{7}{12}$ (c) $\frac{10}{12}$ (d) $\frac{1}{6}$
Sol. P(A∪B)=P(A)+P(B)-P(A∪B)
= $\frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{6+4-3}{12} = \frac{7}{12}$
∴ (b) is correct
13.Sum of all probabilities of mutually exclusive and exhaustive events is equal to
(a) 0 (b) 1/2 (c) 1/4 (d) 1
Sol. If events are mutually exclusive and exhaustive events is equal to
(a) 0 (b) 1/2 (c) 1/4 (d) 1
Sol. If events are mutually exclusive and exhaustive events is equal to
(a) Tue (b) False (c) Both (d) None
Sol. (a) is correct
15.For the events A & B if P(A) = $\frac{1}{2}$.P(B) = $\frac{1}{3}$ and P(A∩B) = $\frac{1}{4}$ then P $\left(\frac{A}{B}\right)$ =
(a) 1/2 (b) 1/6 (c) 2/3 (d) 3/4
Sol. P(A/B) = $\frac{P(A∩B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{\frac{1}{4}}$
∴ (d) is correct

EDNOYATE

16. The probability of occurrence of at least one of the 2 events A and B (which may not be mutually exclusive) is given by (a) P(A+B) = P(A) - P(B)(b) P(A+B) = P(A) + P(B) - P(AB)(c) P(A+B) = P(A) - P(B) + P(AB)(d) P(A+B) = P(A) + P(B) + P(AB)Sol. (b) is correct 17. If P(A-B) = P(B-A), then the two events A and B satisfy the condition (a) P(A) = P(B) (b) P(A)+P(B) = 1 (c) $P(A \cap B) = 0$ (d) $P(A \cup B) = 1$ Sol. P(A - B) = P(B - A) \therefore P(A) - P A \cap B = P(B) - P A \cap B $\therefore P(A) = P(B)$: (a) is correct 18. For any two events A and B, (a) $P(A)+P(B) > P(A \cap B)$ (c) $P(A)+P(B) \ge P(A \cap B)$ (b) $P(A)+P(B) < P(A \cap B)$ (d) $P(A)+P(B) \leq P(A \cap B)$ Sol. (c) is correct 19. For any two events A and B, (a) P(A-B) = P(A) - P(B)(c) $P(A-B) = P(B) - P(A \cap B)$ (b) $P(A-B) = P(A) - P(A \cap B)$ (d) $P(B-A) = P(B) + P(A \cap B)$ Sol. (b) is correct 20. Three events A, B, and C are mutually exclusive, exhaustive and equally likely. What is the probability of complementary event of A? . . 1 $(1)^2$ () 1(-1) 3

EDNOVATE

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{3}{4}$
Sol. P A \cup B \cup C = 1 [\cdot Exhaustive events]
 \therefore P(A) + P(B) + P(C) = 1 [\cdot Mutually likely events]
 \therefore P(A) = $\frac{1}{3}$ [\cdot Equally likely events]
 \therefore P A¹ = $\frac{2}{3}$
 \therefore (b) is correct

21. A bag contains 20 discs numbered 1 to 20. A disc is drawn from the bag. The probability that the number on it is a multiple of 3 is

Sol.S = 1.2, 3,20 n (S) = 20 E: Multiple of 3 E = 3.6.9.12.15.18 $n \in = 6$ $P \in = \frac{6}{20} = \frac{3}{10}$: (d) is correct 22. Find the probability that a four digit number comprising the digits 2, 5, 6 and 7 would be divisible by 4. (b) 1/3 (a) 2/3(c) 1/2 (d) 1/4 Sol. 2,5,6,7 n (S) = ${}^4_{P_A}$ = 4! = 24 E : No divisible by 4 . [Last 2 digit divisible by 4] $5 2 = 2p_2 p_1 p_1 = 2$ $5 6 = 2p_2 p_1 p_1 = 2$ $7 2 = 2p_2 p_1 p_1 = 2$ $7 6 = 2p_2 p_1 p_1 = 2$ $7 6 = 2p_2 p_1 p_1 = 2$ TIT TU $N \in = 2 + 2 + 2 + 2 = 4$ $P \in = \frac{8}{24} = \frac{1}{3}$. (b) is correct 23. A number is selected from the set $S = \{1, 2, 3, 4, \dots, 25\}$. The probability, that it would be divisible by 4 or 7, is (c) 0.36 (d) None of these (a) 0.26 (b) 0.46 S = { 1, 2 3, 25} n (S) = 25 Sol. Divisible by 4 or 7 E = 4.8, 12, 16, 20, 24, 7, 14, 21 n $\in = 9$ $P \in = \frac{n \in 1}{n + 1} = \frac{9}{25} = 0.36$. (c) is correct 24. A bag contains 30 balls numbered from 1 to 30. One ball is drawn at random. The probability that the number of the drawn ball will be multiple of 3 or 7 is (a) 7/15 (b) 13/30 (c) 1/2 (d) None of these.

EDNOVATE

Sol. S = (1,2,3,.....30} n (S) = 30

Divisible by 3 or 7 $\in = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 7, 14, 28\}$ n $\in = 13$ p $\in = \frac{13}{30}$ \therefore (b) is correct

(b)6/11

25. A bag contains 6 green and 5 red balls. One ball is drawn at random. The probability of getting a red ball is

(c) 6/5

EDNOVATE

(d) None of these.

(a) 5/11

Sol. G R 6 5 = 11 balls

P (Red ball) = $\frac{5}{11}$.: (a) is correct

26. Out of numbers 1 to 120, one is related at random what is the probability that it is divisible by 8 or 10.

(a)23/120 (b) 18/125 (c) 32/120 (d) 25/120 Sol. $S = \{1,2,3,...,120\}$ n (S) = 120 Divisible by 8 or 10 $\subseteq = \{8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,10,20,30,50,60,70,90,100,110$ n $\in = 24$ $\Rightarrow 24/$ 1/

$$P \in \frac{24}{120} = \frac{1}{5}$$

$$\therefore \text{ (d) is correct}$$

27. There are 10 balls numbered from 1 to 10 in a box. If one of them is selected at random, what is the probability that the number printed on the ball would be an odd number greater that 4?

(a) 0.50 (b) 0.40 (c) 0.60 (d) 0.30

Sol. S = {1,2,3,, 10} n (S) = 10 \in : odd no > 4 \in = {5,7,9} n \in = 3 P \in = $\frac{3}{10}$ = 0.30 \therefore (d) is correct

28. If the letters of the word ATTEMPT are written down at random, the chance that all Ts are consecutive is (a) 1/42 (b) 6/7 (c) 1/7 (d) 1/2

EDNOVATE

Sol. ATTEMPT = 7 letters TTT = 3. A.E.M.P = 4 = 7 letters 1 + 4 = 5 sets $n(S) = {}^7 P_7 = 7!$ n (A) = ${}^{5}P_{5} {}^{3}P_{3}$ = 5! 3! $P(A) = \frac{5!3!}{7!} = \frac{5! \times 6}{7 \times 6 \times 5!} = \frac{1}{7}$

- 29. If two letters are taken at random from the word HOME, what is the probability that none of the letters would be vowels?
- (a) 1/6 (b) 1/2 (c) 1/3 (d) 1/4 Sol. HOME = 4 letters N (S) = ${}^{4}P_{2} = 4 \times 3 = 12$ letters

None is a Vowel \cap F H M = 4 letters

: (c) is correct

$$n \in P_2 = 2^2 P_2 = 2$$

$$P \in = \frac{2}{12} = \frac{1}{6}$$

: (a) is correct

Sol.

- 30. If a coin is tossed twice, then the events 'occurrence of one head', 'occurrence of 2 heads' and 'occurrence of no head' are
 - (a) Independent (c) Not equally likely (d) Both (a) and (b) (b) Equally likely $S = \{HH, HT, TH, TT\}$
 - P {occurrence of 1 head} = $\frac{2}{4} = \frac{1}{2}$ P {occurrence of 2 head} = $\frac{1}{4}$ P(occurrence of no head} = $\frac{1}{A}$
 - . (c) is correct

- Not equal
- If an unbiased coin is tossed twice, the probability of obtaining at least one tail is 31. (a) 0.25 (b) 0.50 (c) 0.75 (d) 1.00

is

Sol. $S = \{HH, HT, TH, TT\}$ n (S) = 4 \in : atleast one tail \in : {HT, TH, TT} n \in = 3 $P \in = \frac{3}{4} = 0.75$. (c) is correct A coin is tossed two times. The toss resulted in one head and one tail. What is the 32. probability that the first throw resulted in tail? (d) None of these (a) 1/3 (b) 1/4 (c) 1/2 Sol. $S = \{HT, TH\} N(s) = 2$ \in : First throw is tail $\in = \{TH\} n \in = 1$ $\mathsf{P} \in = \frac{1}{2}$. (c) is correct 33. Two unbiased coins are tossed. The probability of obtaining one head and one tail is (a) 1/4 (b) 2/4 (c) 3/4 (d) None Sol. $S = \{HH, HT, TH, TT\} n (S) = 4$ \in = 1 head & 1 tail $\in = \{HT, TH\} n \in = 2$ $P \in = \frac{2}{4} = \frac{1}{2}$: (b) is correct Two unbiased coins are tossed. The probability of obtaining atleast one head is 34. (a) 1/4 (b) 2/4 (c) 3/4 (d) 0 Sol. $S = \{HH, HT, TH, TT\}$ n (S) = 4 \in = atleast one head $\in = \{HH, HT, TH\}$ N $\in = 3$ $\in = \frac{3}{4}$: (c) is correct 35. When two unbiased coins are tossed, the probability of getting both heads or both tails

(a) 1/2 (b) 3/4 (c) 1/4 (d) 0

EDNOVATE

EDNOVATE Sol. $S = \{HH, HT, TH, TT\} n (S) = 4$ \in : Both Heads or Both tails \in : {HH,TT} n ∈ =2 $P \in = \frac{2}{4} = \frac{1}{2}$: (a) is correct 36. When 3 unbiased coins are tossed. The probability of obtaining not less than 3 heads is (a) 2/4 (b) 1/4 (c) 3/4 (d) 1/8 Sol. $S = \{HHH, HHT, HTH, HTT, THH, TTH, THT, TTT\} n(S) = 8$ \in : Not less than 3 heads \in : {HHH} n ∈ =1 $\mathsf{P} \in = \frac{1}{8}$. (d) is correct 37. Three coins are tossed together. The probability of getting exactly two heads is (a) 5/8 (b) 3/8 (c) 1/8 (d) None Sol. S = {HHH,HHT,HTH,HTT,THH,TTH,THT,TTT} n(S) = 8 \in : Exactly 2 heads \in : {HHT, HTH, THH} n \in = 3 $P \in = \frac{3}{8}$. (b) is correct The probability that atleast one head appears in a single throw of three fair coins is 38. (a) 1/8 (b) 7/8 (c) 1/3 (d) None Sol. $S = \{HHH, HHT, HTH, TTH, THH, THT, HTT, TTT\} n(S) = 8$ \in : atleast 1 head \in : {HHH,HHT,HTH,TTH,THH,THT,HTT} n \in = 7

$$\mathsf{P} \in = \frac{n \in}{n(s)} = \frac{7}{8}$$

39. 4 coins are tossed. The probability that there are 2 heads is (a) 1/2 (b) 3/8 (c) 1/8

(d) None

Sol. Coin $1 = \{H, H, H, H, H, H, T, T, T, T, T, T\}$ Coin 3 = $\{H, H, T, T, H, H, T, T, H, H, T, T, H, H, T, T\}$ Coin 4 = $\{H, T, H, T,$ n(S) = 16 \in : 2 heads \in : {HHTT,HTHT,HTTH,THHT,THTH,TTHH} $n \in = 6$ $P \in = \frac{6}{10} = \frac{3}{8}$. (b) is correct 40. Probability of throwing an even number with an ordinary six faced die is -(a) 1/2 (b) 1 (c) 0 (d) -1/2 Sol. $S = \{1, 2, 3, 4, 5, 6\} n(S) = 6$ \in :Even number \in : {2,4,6} n \in = 3 $P \in = \frac{3}{6} = \frac{1}{2}$: (a) is correct 41. The probability of throwing more than 5 in a single throw from an ordinary die is -(a) 5/6 (b) 1 (c) 1/6 (d) 0 Sol. $S = \{1, 2, 3, 4, 5, 6\} n(S) = 6$ \in : more than 5 \in : {6} n \in = 1 $\mathsf{P} \in = \frac{1}{6}$. (c) is correct 42. If two unbiased dice are rolled, what is the probability of getting points neither 6 nor 9? (c) 0.75 (b) 0.50 (a) 0.25 (d) 0.80 Sol. S = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1)(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4), (5,5) , (5,6) , (6,1) , (6,2) , (6,3) , (6,4) , (6,5) , (6,6)} n(S) = 36 \in : neither 6 nor 9 \in : {(1,1), (1,2), (1,3), (1,4), (1,6) (2,1), (2,2), (2,3), (2,5), (2,6) (3,1), (3,2), (3,4), (3,5)(4,1), (4,3), (4,4), (4,6) (5,2), (5,3), (5,5), (5,6) (6,1), (6,2), (6,4), (6,5), (6,6)} $n \in = 27$

EDNOVATE

$$P \in \frac{27}{36} = \frac{3}{4} = 0.75$$

: (c) is correct

43. If two unbiased dice are rolled together, what is the probability of getting no difference of points?

EDNOVATE

(a) 1/2	(b) 1/3	(c) 1/5	(d) 1/6
301.	n(s) = 36	Plan N He	
	E. no differ point E= \$ (11) (213) (313	s 1) (44) (515) (66) }	
	n(z) = 6 p(z) = 6/3z = 1/6 (d)	Rest of the less	

44. Two dice are thrown together. The probability that 'the event the difference of nos shown is 2' is

(a) 213	(D) 5/9	(c) 4/9	(d) 7/9
h(S)= 36			
E: Diff of nots ip 2.	22		
$E = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$	£.4		
n(1) = 2 1			
1(2)= 8/36 = 2/9			
	h(3) = 36 $\varepsilon : Diff of nots if 2.$ $E = \sum_{i=1}^{n} (1:3), (2:4), (3:4)$ $(5:4), (6:4) = \frac{1}{2}$ $h(\varepsilon) = -\frac{1}{2} = \frac{1}{2}$ $l(\varepsilon) = \frac{1}{2}/2$	h[S] = 36 $\varepsilon : Diff of nots ip 2.$ $E = \sum_{i=1}^{n} (1,3), (2,4), (3,4), (3,4), (5,4), ($	h(S) = 36 $\varepsilon : Diff of nots if 2.$ $E = \sum_{i=1}^{n} (1,3), (2,i4), (3,i), (5,i2), (6,i4) = \frac{3}{2}$ $h(\varepsilon) = 3/2\varepsilon = 2/9$

45. Two dice are thrown together. The probability of the event that the sum of nos. shown is greater than 5 is

(a) 13/18	(b) 15/18	(c) 1	(d) None
-----------	-----------	-------	----------

Sol. n(s) = 36 $\in = \{(1,5), (1,6), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), 5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$ $n \in = 26$ $P \in = \frac{26}{36} = \frac{13}{8}$ \therefore (a) is correct

46. In a single throw with two dice the probability of getting a sum of five on the two dice is (a) 1/9 (b) 5/36 (c) 5/9 (d) None of these. Sol. n(s) = 36 $\in = \{(1,4), (2,3), (3,2), (4,1)\}$ n $\in = 4$ $P \in = \frac{4}{36} = \frac{1}{9}$. (a) is correct 47. What is the chance of throwing atleast 7 in a single cast with 2 dice? (c) 1/4 (a) 5/12 (b) 7/12 (d) 17/36 Sol. n(s) = 36 $\in = \{(1,6), (2,5), (2,6)\}$ (3,4), (3,5), (3,6)(4,3), (4,4), (4,5), (4,6)(5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)} $n \in = 21$ $P \in = \frac{21}{36} = \frac{7}{12}$. (b) is correct The chance of getting a sum of 10 in a single throw with two dice is 48. (a) 10/36 (b) 1/12 (c) 5/36 (d) None Sol. n(s) = 36 $\in = \{(4,6), (5,5), (6,4)\}$ $n \in = 3$ $P \in = \frac{3}{36} = \frac{1}{12}$. (b) is correct 49. Two dice with face marked 1, 2, 3, 4, 5, 6 are thrown simultaneously and the points on the dice are multiplied together. The probability that product is 12 is (a) 4/36 (b) 5/36 (c) 12/36 (d) None Sol. n(s) = 36 $\in = \{(2,6), (3,4), (4,3), (6,2)\}$ $n \in = 4$ $P \in = \frac{4}{36} = \frac{1}{9}$

EDNOVATE

(a) is correct

 $P(A) = \frac{24}{52} = \frac{6}{13}$

. (a) is correct

50. A card is drawn from a well-shuffled pack of playing cards. The probability that it is a spade is (a) 1/13 (b) 1/4 (c) 3/13 (d) None

EDNOVATE

Sol. $n(s) = {}^{52}c_1 = 52$ $n(A) = {}^{13}c_1 = 13$ $P(A) = \frac{13}{52} = \frac{1}{4}$ \therefore (a) is correct

51. A card is drawn from a well-shuffled pack of playing cards. The probability that it is a king is

(a) 1/13 (b) 1/4 (c) 4/13 (d) None Sol. $n(s) = {}^{52}c_1 = 52$ $n(A) = {}^4c_1 = 4$ $P(A) = \frac{4}{52} = \frac{1}{13}$ \therefore (a) is correct

52. The probability that a card drawn at random from the pack of playing cards may be either a queen or an ace is

(a) 2/13 (b) 11/13 (c) 9/13 (d) None Sol. n(s) = ${}^{52}c_1 = 52$ $n(A) = {}^{4}C_{1} + {}^{4}C_{1} = 4 + 4 = 8$ $P(A) = \frac{8}{52} = \frac{2}{13}$: (a) is correct A card is drawn from a pack of 52 cards. What is the probability that it is neither a black 53. card nor a king? (a) 6/13 (c) 1/6 (b) 5/13 (d) None of these. Sol. n(s) = ${}^{52}c_1 = 52$ $n(A) = {}^{24}c_1 = 24$

54. What is the chance of picking a heart or a queen not of heart from a pack of 52 cards? (a) 17/52 (b) 1/3 (c) 4/13 (d) 3/13

Sol. n(s) = ${}^{52}c_1 = 52$ n(A) = ${}^{13}c_1 + {}^{3}c_1 = 13 + 3 = 16$ P(A) = ${}^{16}\!\!/_{52} = {}^{4}\!\!/_{13}$ \therefore (c) is correct

- 55. Two cards are drawn from a well shuffled pack of playing cards. Find the probability that both are ace.
 - (a) 1:221 (b) 2:221 (c) 10:21 (d) None of these

Sol.

56. Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that they are both kings if the first is replaced.

(a) 1/13 (b) 1/169 (c) 1/221 (d) None of these. Sol. P(Both Kings) = P(1st King card) × P(2nd King card)

$$= \frac{4}{52} \times \frac{4}{52}$$
 [∵ 1st Card is replaced]
$$= \frac{1}{13} \times \frac{1}{13}$$
$$= \frac{1}{169}$$

∴ (b) is correct

57. A card is drawn from a pack of playing cards and then another card is drawn without the first being replaced. What is the probability of getting two kings?

(a) 7/52 (b) 1/221 (c) 3/221 (d) None of these. Sol. P (Both king) = P (1st King card) × P(2nd king card) $= \frac{4}{52} \times \frac{3}{51} [\because 1^{st} \text{ card is not replaced}]$ $= \frac{1}{13} \times \frac{1}{17}$ $= \frac{1}{221}$

: (b) is correct

58. A card is drawn from a pack of playing cards and then another card is drawn without the first being replaced. What is the probability of getting two hearts?(a) 1/17(b) 1/4(c) 2/17(d) None of these.

EDNOYATE

Sol. P(Two heart card) = P (1st heart card) \times P(2nd Heart card)

 $= \frac{13}{52} \times \frac{12}{51} \quad [1^{st} \text{ card is not replaced}]$ $= \frac{1}{4} \times \frac{4}{17}$ $= \frac{1}{17}$ $\therefore \text{ (a) is correct}$

- 59. If probability of drawing a spade from a well- shuffled pack of playing cards is 1/4 then the probability that of the card drawn from a well- shuffled pack of playing cards is 'not a spade' is
 - (a) 1 (c) 1/4 (b) 1/2 (d) 3/4

Sol.

60. A card is drawn from each of two well-shuffled packs of cards. The probability that atleast one of them is an ace is

(a)10/169 (b) 25/169 (c) 1/169 (d) 8/169
Sol. P(No Ace) =
$$\frac{48}{52} \times \frac{48}{52} = \frac{12}{13} \times \frac{12}{13}$$

P(at least one Ace) = 1 - P(no Ace)
= $1 - \frac{144}{169}$
= $\frac{25}{169}$
 \therefore (a) is correct

61. If a card is drawn at random form a pack of 52 cards, what is the chance of getting a Spade or an ace?

EDNOYATE

(a) 4/13 (c) 0.25 (b) 5/13 (d) 0.20 Sol. 52 sace

62. The probability of drawing a black ball from a bag containing 8 white and 5 black balls (a) 5/13 (b) 8/13 (c) 1/2 (d) 1 Sol.

63. A bag contains 10 red and 10 green balls. A ball is drawn from it. The probability that it will be green is
(a) 1/10
(b) 1/3
(c)1/2
(d) None of these.

Sol. REXGIN- 031 10 10 = 20 Balls Keen Ball C

64. A bag contains 5 red and 3 yellow balls. Two balls are drawn at random one after the other without replacement. The probability that both balls drawn are yellow is
(a) 9/64 (b) 3/28 (c) 1/7 (d) None of these.

Sol.

	DALE , ,
Ry	a 60
5 2 - 2	110
0 3 = 8	
at interpolation	11
Playellow Pells - Plistupllow Plupllow	Ball
	y
a) = 27-8] = pet 201 = 13	17
$= 3 \times 2$ loo with	NH
8 7 Peplace	uert!
- 2 /1)	-
- 5 (b)	(A)
28 8 11	(62)

65. A bag contains 3 red, 6 white, and 7 blue balls. If two balls are drawn at random, then the probability of getting both white balls is:

(a) 5/40	(b) 6/40	(c) 7/40	(d) 14/40
Sol.			

W B 7 = 16 Balls ____ 6 3 662 2 White Balls $= 6 \times 5$. 1602 16×15 5 (a 40

66. A box contains 6 red, 7 white and 4 blue balls. The number of ways in which the selection of three balls can be made so that none is red is-

(a) 561	(b) 156	(c) 165	(d) 651
---------	---------	---------	---------

Sol.

4 B= 01 - (1)=9,0000 6 7 4 = 17 Balls Selection = 3 Balls Hore is Red 151 1.9 No. of ways = = 11×10×9 = 165 (C)

67. There are two boxes containing 5 white and 6 blue balls and 3 white and 7 blue balls respectively. If one of the boxes is selected at random and a ball is drawn from it, then the probability that the ball is blue is

(a) 115/227	(b) 83/250	(c) 137/220	(d) 127/250
Sol			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 ST Box is Selected and Blue Ball is drawn P(Box Lisselected) 1 × 6 = 6
) 2rd Box is selected and Blue Bell is draw
P(Box2 is selected) = 1×7 = 7 and Blue Bellisdrawn) 2 TO 20
$\frac{\partial P(Box is selected}{and blue hall is} \frac{\partial e_{4}\omega n}{\partial 2} = \frac{6}{22} + \frac{7}{20}$
$= \underbrace{(2 + 1)(1)}_{(2 + 1)(1)} \underbrace{(2 + 1)(1)(1)}_{(2 + 1)(1)(1)} \underbrace{(2 + 1)(1)(1)}_{(2 + 1)(1)(1)} \underbrace{(2 + 1)(1)(1)}_{(2 + 1)(1)(1)} \underbrace{(2 + 1)(1)(1)(1)}_{(2 + 1)(1)(1)(1)} \underbrace{(2 + 1)(1)(1)(1)}_{(2 + 1)(1)(1)(1)(1)} \underbrace{(2 + 1)(1)(1)(1)(1)}_{(2 + 1)(1)(1)(1)(1)(1)} \underbrace{(2 + 1)(1)(1)(1)(1)(1)}_{(2 + 1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)}$
and Blue Ballis drawn -2 11 22 2 ^{Md} Box is selected and Blue Ball is drawn P(Box2 is gelected) $= 1 \times 7 = 7$ and Blue Ball is drawn 2 10 20 $\circ P(Box is selected)$ $drawn = 6 + 7$ and blue ball is $drawn = 6 + 7$ $2 \times 7 = 274$ (22)(20) $(22)(20)= \frac{137}{220} \Rightarrow (C)$

68. A bag contains 2 Red, 3 Green, and 2 Blue balls. If 2 balls are drawn at random from the bag find the Probability that none of them will be Blue
(a) 11/21
(b) 5/7
(c) 10/21
(d) 2/7

(a) 11/21 (b) 5/7 Sol. 232=7Balls Selection = 2 Balls nonc is blue) = $5L_2 = 5XR =$

69. A bo with prod (a) 6/3 (b) 1/2	x contains 5 white ar replacement (ii) wit uce white balls and t 321 and 3/926 20 and 1/30	nd 7 black balls. Two hout replacement. he second draw wo	o successive dra The probability uld produce blac (c) 35/144 and (d) 7/968 and	tws of 3 balls are made (i) that the first draw would the balls are respectively d 35/108 5/264
Sol.				
$\frac{1}{2} \frac{1}{144} \frac{1}{14} \frac$	$\frac{b_{1}}{b_{2}} = \frac{b_{2}}{b_{2}} + \frac{2c_{3}}{b_{2}} + \frac{2c_{3}}{b_{$			
70.8 iden first bag (a) 0.27	tical balls are place will contain 3 balls? 731 (d at random in thre ? b) 0.3256	e bags. What is (c) 0.1924	s the probability that the (d) 0.3443

EDNOVATE

Sol.

71. There are two urns containing 5 red and 6 white balls and 3 red and 7 white balls respectively. If two balls are drawn from the first urn without replacement and transferred to the second urn and then a draw of another two balls is made from it, what is the probability that both the balls are red?

(a)
$$\frac{55}{726}$$
 (b) $\frac{65}{726}$ (c) $\frac{75}{726}$ (d) $\frac{85}{126}$
Sol. URN 1 URN 2
R W R W
5 6 - 11 Pollo 2 7 - 10 Pollo

5 6 = 11 Balls 3 7 = 10 Balls

I) Red Ball is drawn from URN I transferred to URN 2 and 2 Red balls are drawn from URN 2

$$=\frac{5c_2}{11c_2}\times\frac{5c_2}{12c_2}$$

$$= \frac{5 \times 4}{11 \times 10} \times \frac{5 \times 4}{12 \times 11}$$
$$= \frac{2}{11} \times \frac{5}{3}$$
$$= \frac{10}{363}$$

II) White ball is drawn from URN 1 transferred to URN 2 and 2 Red balls are drawn from URN 2

$$= \frac{6c_2}{11c_2} \times \frac{3c_2}{12c_2}$$

$$= \frac{6 \times 5}{11 \times 10} \times \frac{3 \times 2}{12 \times 11}$$

$$= \frac{3}{11} \times \frac{1}{22} = \frac{3}{242}$$

$$\therefore \text{ Required Probability} = \text{Case I} + \text{Case II}$$

$$= \frac{10}{363} + \frac{3}{242}$$

$$= \frac{20+9}{121 \ 3 \ 2} \Rightarrow \text{LCM}$$

$$= \frac{29}{726}$$

: (b) is correct

72. If one ball is drawn at random from each of that three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls then the probability that 2 white and 1 black balls will be drawn, is -

(a) 13/32	2 (b) 1/4	(c) 1/32	(d) 3/16
Sol.			
	Day 2 Box3		
(72), Box +	BOX B IN B		
17 13 13 7 = L	eBills 2 2=4Balls 7 3=4		
3) Box 9 1.	30x2 130×3 - 3×2×3 = (8		
Cure(I) IW	<u> 4 4 4 4 64</u>		
CareT) Iw	4B (w = 3×2×1 = 6		
Balls are	1 4 4 4 04		
Care TI 13	$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{64} \frac{1}{64}$		
	Total ways = 26		
	84		
	$= \frac{13}{32} (a)$		
	AXE A CAO - OF		

(a) 5/223

Sol.

73. There are two urns. The first urn contains 3 red and 5 white balls whereas second contains 4 red and 6 white balls. A ball is taken at random from the first urn and is transferred to the second urn. Now another ball is selected at random from the second urn. The probability that the second ball would be red is

EDNOVATE

(d) 3/54

	(a) 7/20	(b) 35/88	(c) 17/52	(d) 3/20
Sol.				
	(73) URNY URN2 R (1) R (1)	Ed le w		
	3 5 = 8 Bulls 4 6	= 10 Bells		
	Case I Red Ball is Selected	from ISTURN, transford		
	selected from 1	a Red ball is JRN2.		
	$= 3 \times 5$	= (5		
	Care T : Isthite Bell is colo	abod Comme 110N 4		
	transferred to 1 boll is selected fo	IRN2 and a Red		
	$= 5 \times 4$	= 20		
	3 11	88		
	2. Required = 4 Peopahility	ase I t case I		
	(aller) + P(aller) + (aller)	$\frac{15}{88} + \frac{20}{88}$		
	- 12 12 12 12 12 12 12 12 12 12 12 12 12	$\frac{35}{33} \Rightarrow (b)$		
	NING THE	20		

74. A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made without replacement. The probability that the first draw will produce 3 white balls and the second 3 red balls is

(c) 7/429

W 13 Balls 5 8 200/16a 12st draw 3 white and of 3 Red of 3 white 3 Red Bulls Bulls 803 0: without 563 × Replacement 1002 130 8x7x x 5xax3 13×72×11 7 (0 2

(b) 6/257

75. The E E I	ere are three boxes wi Box I: 5 Red + 7 White Box II: 4 Red + 8 Whit Box III: 3 Red + 4 Whi f one ball is drawn at colour?	ith the following compo e + 6 Blue balls e + 6 Blue balls te + 2 Blue balls random, then what is th	sition: ne probability that they	would be of same
(a) 89	/729	(b) 97/729	(c) 82/729	(d) 23/32
Sol.				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & Box3\\ \hline B & R & & B\\ \hline 6 & = 8 & 3 & 4 & 2 & =\\ \hline 0 & 007 + P(white) + P(Block) + P(B$	9 too)	

EDNOVATE

76. There are three boxes with the following compositions:

Colour → Box↓	Blue	Red	White	Total
I	5	8	10	23
II	4	9	8	21
Ш	3	6	7	16

One ball is drawn from each box. What is the probability that they would be of the same colour?

(a)
$$\frac{1052}{7728}$$
 (b) $\frac{1897}{7728}$ (c) $\frac{3356}{7728}$ (d) $\frac{4856}{7728}$
Sol.
Sol.
$$\frac{Required = f(Blue) + f(Red) + f(white)}{f(bhath)[1+y]}$$
$$= \frac{5 \times 4 \times 3 + 3 \times 9 \times 6 + lo \times 8 \times 7}{23 21 (c 23 (c 23$$

77.

EDNOVATE A packet of 10 electronic components is known to include 2 defectives. If a sample of 4 components is selected at random from the packet, what is the probability that the sample

does not contain more than 1 defective? (a) 1/3 (c) 13/15 (d) 3/15 (b) 2/3 Sol. Defective Non defective 2 8 = 10Selection= 4 $n(S) = {}^{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 4} = 210$ E : Not more than 1 defective [i.e. 0 defective or 1 defective] I) Defective Non defective 0 4 = 4 selection $= {}^{2}c_{0}{}^{8}c_{4} = (1) \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} = 70$ II) Defective Non defective 1 3 = 4 selection $= {}^{2}C_{1} {}^{8}C_{2} = (2) \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 112$ \therefore n \in = 70 + 112 = 182 $P \in = \frac{182}{210} = \frac{13}{15}$. (c) is correct

What is the chance of getting at least one defective item if 3 items are drawn randomly 78. from a lot containing 6 items of which 2 are defective item?

(a) 0.30	(b) 0.20	(c) 0.80	(d) 0.50
----------	----------	----------	----------

Sol.

Det Non-nel
2 4 = 6
- 60 -+ GAL -+ 560
Selection = 3
m/a) 6 frank na
$n(s) = o_{3} = 6x + sxy = 20$
BALA
at least one defective
0) 01 0
E': No defective
Dec includes all allo
0 2 = 2 Selection
<u> </u>
$n(\epsilon') = 2(\delta^{4}(3) = (1)^{4}q = q$
0(01) 10
$P(z) = \frac{4}{20} = \frac{1}{5}$
P(atteast 1 Def) = 1- P(no. defective)
MARANT 1)
$= 1 - P(\varepsilon)$
=1-1/5
(1) - AXER = 4/5 08 00 -
Well ()
=0:80 (c)

79. The independent probabilities that the three sections of a costing department will encounter a computer error are 0.2, 0.3 and 0.1 per week respectively. What is the probability that there would be one and only one computer error per week?

EDNOVATE

lial		e and only one compute		
	(a) 0.25	(b) 0.60	(c) 0.40	(d) 0.65
Sol.				
	ERROR : A, B, C	U.B. A : mont (B)		
	HOERROR: A', B'	cl. in manager		
	P(A) = 0.2 $P(A) = 0.2$	1) = 0-8		
	P(C) = 0.3 $P(C) = 0.1$ $P(C$	B' = 0.7 C' = 0.9		
	P(only one Error) =	P(ANBINC) + P(AIMBINC!)		
	PLACOS' AC)	+P(AINBINC)		
	= P(A) P(B') P(c)	y + p(A') p(B) p(C')		
	+P	(A') P(B') P(C) [. Independent		
	= (0.2)(0.7)(0.9) -	- (08) (0.3) (0.9)		
		+ (0-8)(0-+)(0-1)		
	= 0.126 +	0.216 + 0.056		

80. The independent probabilities that the three sections of a costing department will encounter a computer error are 0.2, 0.3 and 0.1 per week respectively. What is the probability that there would be at least one computer error per week?

(a) 0.25	(b) 0.50	(c) 0.94	(d) 0.65
----------	----------	----------	----------

Sol.

E-6600 : A, B, C No. Error : A', B', CI P(A) = 0-2 P(A') = 0-8P(B1=0-3 P(B1)=0.7 P(c)=0.1 P(c')=0.9 P(attenstone) = 1 - p(no Errox) 88800 = (- P(A' n B' n c'))60 Independ = (- p(n') p(n') p(c))Eventi = (-(0.8)(0.7)(0.9)= 1- 0-504 = 0.696 ~ O.So (b)

= 0.398 × 0.40 (c).

81. It is given that a family of 2 children has a girl, what is the probability that the other child is also a girl?

EDNOVATE

(d) 2/3

(d) None of these

(a) 0.50 (b) 0.75 (c) 1/3 Sol. $S = \sum Bg, gB, gggg$ n(sl = 3) E: Other child also give $<math>E = \sum ggg n(2) = 1$ $P(2l = y_3 = 7(c).$

82. A class consists of 10 boys and 20 girls of which half the boys and half the girls have blue eyes. Find the probability that a student chosen random is a boy and has blue eyes.

83. Mr. Roy is selected for three separate posts. For the first post, there are three candidates, for the second, there are five candidates and for the third, there are 10 candidates. What is the probability that Mr. Roy would be selected?

(a) $\frac{11}{25}$	(b) $\frac{13}{25}$	(c) $\frac{17}{25}$	(d) $\frac{19}{25}$
Sol			

84. Following are the wages of 8 workers in rupees: 50, 62, 40, 70, 45, 56, 32, 45 If one of the workers is selected at random, what is the probability that his wage would

EDNOYATE

be lower than the average wage?

85. A committee of 7 members is to be formed from a group comprising of 8 gentlemen and 7 ladies. What is the probability that the committee would comprise of at least 2 ladies?

(a)	<u>189</u>	(b) $\frac{392}{122}$	(c) $\frac{228}{122}$	(d) $\frac{95}{100}$
• •	429	429	429	• 429

Sol.

86. There are 7 seats in a row. Three persons take seats at random. The Probability that the middle seat is always occupied and no two persons are consecutive is
(a) 9/70
(b) 9/35
(c) 4/35
(d) 1/5

87. The probability that A speaks truth is 4/5, while the probability for B is 3/4. The probability that they contradict each other when asked to speak on a fact is

(a) $3/20$ (b) $1/5$ (c) $7/20$ (d)	(a) 3/20	(D) 1/5	(C) 7/20	(d) 4/5
-------------------------------------	----------	---------	----------	---------

Sol.

P(A) = 4/5	P(A') = 1/5
P(B) = 3/4	P(B') = 1/4
(They Contro each offe	$\frac{diet}{r} = p(AnB') \text{ or } p(A'nB)$
() > x	= P(A) P(B') + P(A') P(B)
1(2) Jal	$= \frac{4}{5} \frac{x_{1}}{4} + \frac{1}{5} \frac{x_{3}}{4}$
-271 00001	$= \frac{4+3}{20}$
3	$= \frac{7}{20} \Rightarrow (c),$

88. A problem in probability was given to three CA students A, B and C whose chances of solving it are 1/3, 1/5 and 1/2 respectively. What is the probability that the problem would be solved?

(a) 4/15 (b) 7/8 (c) 8/15 (d) 11/15

Sol.

89. If the overall percentage of success in an exam is 60, what is the probability that out of a group of 4 students, at least one has passed?

	(a) 0.6525	(b) 0.9744	(c) 0.8704	(d) 0.0256
Sol.				
	D(average) (= = D	No. Carlo		

 $P = \frac{6}{10}, \quad Q = \frac{4}{10} \quad N = \frac{4}{10}$ 2C = a Heast oneP(attest one) = P(x 71) = 1 - P(x < 1)= 1 - P(x=0) $= 1 - 4_{0} (6)^{0} (4)^{10}$ = 1 - (1)(1) 256 10000 = 1 - 0.0256 = 0.9744 (b)

90. If the probability of a horse A winning a race is 1/6 and the probability of a horse B winning the same race is 1/4, what is the probability that one of the horses will win
(a) 5/12
(b) 7/12
(c) 1/12
(d) None

EDNOVATE

(d) 50/243

(d) None

Sol.

16 P(B)=1/4 AI =1 (B')=3/4 D orse wing D WIN - Sublew p(B) BI 8 20 24 24 2

91. An experiment succeeds twice as often as it fails. What is the probability that in next five trials there will be three success.

	(a)192/243	(b) 19/243	(c) 80/243
501.	9 =) Saucces	8 gr=) fail use	eri taraati
	P = 29		
	P = 2(1 - F)		-
	p = 2 - 2 3p = 2		The Guard
	p = 2/3	$19 = \frac{1}{3} n = 5$	X=3
	P(X=3) = 5	(3 (2/3) (1/3) -	> (6)
	= 57	N2N 27 9	
		$80 \rightarrow (c)$	

92. If on an average 9 ships out of 10 return safely to a port. The probabilities that a ship returns safely is (c) 9/10

(b) 8/10 (a) 1/10 Sol. 70 10

93. A man can kill a bird once in five shots. The probabilities that a bird is not killed is
(a) 4/5
(b) 1/5
(c) 3/5
(d) 2/5
Sol.

 $P(\text{Killing a brid}) = \frac{1}{5}$ $P(\text{not Killing a brid}) = \frac{1}{5} \Rightarrow (a)$

94. Rupesh is known to hit a target in 5 out of 9 shots whereas David is known to hit the same target in 6 out of 11 shots. What is the probability that the target would be hit once they both try?

	(a) $\frac{1}{3}$	(b) $\frac{79}{99}$	(c) $\frac{58}{99}$	(d) $\frac{28}{99}$
Sol.	5			
	P(Rupest) = 5/9 =7 P	(A)		
	~ P(A1)= 4/9	ribro		
	P(David) = 0/11 =)	12(13)		
	$P(B') = 5/\mu$			
	P(tasget ip hit) = 1	- P(Turgetis nothit)		
	= -	P(BINB)		
	=1-	P(A') P(B) [Sugers		
	= [-	4 X 5 9 11		
	= ! -	20 99		
	= 79/9	9 =7(b)		

95. There are three persons A, B and C having different ages. The probability that A survives for another 5 years is 0.80, B survives for another 5 years is 0.6C and C survives for another 5 years is 0.50. The probabilities that A and B survive for another 5 years is 0.46, B and C survive for another 5 years is 0.32, A and C survive for another 5 years is 0.48 and probability that all will survive is 0.26. Find the probability that at least one of them survives for another 5 years.

(a) 0.80	(b) 0.90	(c) 0.78	(d) 0.64
Sol.			
?(A) = 0.30 P(D)=0.6	o p(c) = 0.50		
P(ADB) = 0.46 P(BDC))=0.32 P(Anc)=0.43		
P(Anona) = 0.26			
Plateastone) = P(+	AUBUG)		
= P(A) + P(B) - + P(Anone	+ P(c) - 7(Ang) - 7(Bnc) - 7(Anc) G		
= 0.8 + 0.6 +0.26	+0.5-0.46-0.32-0.48		
= 0.9 (b)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		

96. What is the probability that a leap year selected at random would contain 53 Saturdays? (a) 1/7 (b) 2/7 (c) 1/12 (d) 1/4

EDNOVATE

Sol.

97. What is the probability that 4 children selected al random would have different birthdays? (a) $\frac{364 \times 363 \times 362}{(365)^3}$ (b) $\frac{6 \times 5 \times 4}{7^3}$ (c) 1/365 (d) (1/7)³

Sol.

h(s) = 365 365 365 365 Child child 2 Child 3 child 4 = (365)4 n(A) = 365 P4 = 345×364×363×362) P(A) = n(A) = 36(x, 344, x343, x342 n(s) (365)43 $P(A) = (364 \times 363 \times 362) \rightarrow (a),$ (345)3

98. There are 6 positive and 8 negative numbers. Four numbers are selected at random without replacement and multiplied. Find the probability that the product is positive:
(a) 420/1001
(b) 409/1001
(c) 70/1001
(d) 505/100

Sol.

103. A pair of dice is rolled. If the sum on the dice is 9, find the probability that one of dice showed 3.

(b) 1/4 (c) 1/2 (d) 1 (a) 1/9

(d) $\frac{1}{2}$

(d) None

Sol.
$S = \int (3,6), (4,5) (5,4), (6,3) \frac{1}{2}$
$h(s) = \frac{1}{2}$
E: One of dice should 3
$E = \{ (3,6), (6,3) \}$
$h(\varepsilon) = 2$
$P(\varepsilon) = \frac{2}{4} = \frac{1}{2} \cdot \frac{1}{2}$

- 104. A pair of dice is thrown and sum of the numbers on the two dice comes to be 7. What is the probability that the number 3 has come on one of the dice?
 - (a) 1/9
 - (b) 1/3

(c) 1/4(d) None of these.

Sol.

 $S = \begin{cases} (1.6), (2.5), (3.4), (4.3) \\ (5.2), (6.1) \end{cases}$ n(s) = 6 $E = \{(3,4), (4,3)\}$ $h(\varepsilon) = 2$ P(2) = 2/6 = 1/3 (b)

105. A pair of dice is thrown together and the sum of points of the two dice is noted to be 10. What is the probability that one of the two dice has shown the point 4

106. A family has 2 children. The probability that both of them are boys if it is known that one of them is a boy

(a) 1 (b)
$$1/2$$
 (c) $2/3$
Sol.
$$S = \frac{1}{2} RB, BS, SS, SS = \frac{1}{2} RB, BS, SS = \frac{1}{2} RB, BS, SS = \frac{1}{2} RB, BS = \frac{1}{2} RB, SS = \frac{1}$$

C	CA Foundation			EDNOVATE
107.	The probability of known that only	of the occurrence of a no even nos. can occur is	b. greater than 2 in	a throw of a dice if its is
Sal	(a) 1/3	(b) 1/2	(c) 2/3	(d) None
501.	$S = \begin{cases} 2, u_1 6 \end{cases}$ $F = \begin{cases} u_1 6 \end{cases}$ $P(z) = \frac{2}{3} (C)$	n(s)=3 n(€)∈2		
108.	In a group of 20 What is the probal	males and 15 females, 1 pility that a person selecte ected person is a male?	2 males and 8 fen d at random from th	nales are service holders. e group is a service holder
Sol.	(a) 0.20	(b) 0.30	(c) 0.60	(d) 0.75
109.	A player has 7 card is drawn a red is	cards in hand of which t random. The probabilities	5 are red and of t ty that it is a king,	hese five, 2 are kings. A , it being known that it is
Sol.	(a) 2/5	(b) 3/5	(c) 4/5	(d) None
110. I Sol.	n a class 40% st One student is known that he re (a) 2/5	udents read Maths, 25% selected at random. Th ead Biology is (b) 3/5	Biology and 15% be probability that (c) 4/5	both Maths and Biology. the reads Maths if it is (d) None

EDNOVATE

CA Foundation		E	NOVATE
Sol. $P(Heeds and Tails) = (1)^3 (1)^3 = 1 \times 1$ $= (2)^3 (1)^3 = 1 \times 1$ $= 1 - (2)^3 = 1 \times 1$ $= 1 - (2)^3 = 1 \times 1$	3		
115.The term "chance" and probability (a) True (b) False Sol.(a) is correct	y are synonyms: (c) Both	(d) None	
116. The theorem of compound pro (a) $P(A \cap B) = P(A) \times P(B)$ (c) $P(A \cap B) = P(A) \times P(B)$ Sol. (a) is correct	bability states that for $B(A)$ (b)P (A \cup B) (d)P (A \cup B) =	or any two events A = P(A) x P(B/A) P(A) + P(B) - P(A)	A an B ∩B)
117. Variance of a random variable x (a) $E(X- \mu)^2$ (b) $E X-E$ Sol. (d) is correct	(X). ²	(c) $E(X^2 - \mu)$	(d) (a) or (b)
118. If two random variables x and y are (a) $-3 \times SD$ of x Sol. $y = 2 - 32$ $S \cdot O(y) = 2$. (computing with $y = a + bx$ b = -3 $ b = 3S \cdot O(y) = b \cdot S \cdot O(x)= 3 \cdot S \cdot O(x) (b)$	e related by y=2-3x, t (b) 3 x SD of x	hen the SD of y is g (c) 9 x SD of x	iven by (d) 2 x SD of x
119.What is the probability of having (a) 5/6 Sol.	at least one 'six' in 3 (b) (5/6) ³	3 throws of a project (c) 1-(1/6) ³	ct die? (d) 1-(5/6)
$P(a Heytone) = 1 - P(nosix) = 1 - \frac{5 \times 5 \times 5}{6 \times 5} = 1 - \frac{5 \times 5 \times 5}{6 \times 5} = 1 - \frac{(5/2)^3}{6} $			
120. Sum of all probabilities mutually(a) 0Sol. (d) is correct	v exclusive and exha (b) 1/2	ustive events is eq (c) 1/4	ual to (d) 1

121. Ram is known to hit a target in 2 out of 3 shots where as Shyam is known to hit the same target in. 5 out of 11 shots. What is the probability that the target would be hit if they both try?

EDNOVATE

- (a) E_1, E_2, \dots are mutually exclusive
- (b) $P(E/A), P(E/A_2)$ are equal to 1
- (c) $P(A_1 / E), P(A_2 / E)$ are equal to 1
- (d) A & E1's are disjoint sets

Sol. (b) is correct

125. If a coin is tossed 5 times then the probability of getting Tail and Head occurs alternatively is

EDNOVATE

(d) $\frac{1}{7}$

(d) $\frac{1}{64}$ (c) $\frac{1}{32}$ (a) $\frac{1}{8}$ (b) $\frac{1}{16}$ Sol. Stacts with Head Teads and Tait afternatively Starts with Tail leads and Tails altoinchively Requised Perkhility = 1 + 1 = -/32 = = = (b) 126. When 2 - dice are thrown Simultaneously then the probability of getting at least one 5 is (a) $\frac{11}{36}$ (b) $\frac{5}{36}$ (c) $\frac{8}{15}$

Sol.

n(s) = 36	Dels Min Ce
E: atkast one 5	Ersen
$F = \int (1,5) (2,4) (3,5) (5,1) (5,1) (5,3) (5,4) (5,5) (5,5) (5,4) (5,5$	(4.5) (5.1) (5.5) (5.4)
n(z) = (1	n(<u>c)</u> = 2
$P(\epsilon) = 11/36$ (a)	361 - Later (50

127. Two letters are chosen from the word HOME. What is the probability that none of the letters would be vowels.

(a) 1/2 (b) 1/6 (c) 2/3 (d) 0

EDNOYATE **CA Foundation** Sol. MOME = 4 letters selection = 2 letters $h(s) = \frac{4}{2} = \frac{4}{2} = \frac{4}{2} = \frac{6}{2}$ 2 = 4 letters E: No vowels $n(z) = 2c_{2} = 1$ P(E) = 1/6 (b) 128. The chance of getting 7 or 11 when two dices are thrown is ? (c) 10/36 2/9 (b) 6/36 (d) 2/36 (a) Sol. n(s) = 36E: 70811 $\mathcal{E} = \begin{cases} (1,6) (2,5) (3,4) (4,3) (5,2) (5,6) \\ (6,1) (6,5) & y \end{cases}$ n(s) = 8 $P(\varepsilon) = \frac{3}{24} = \frac{2}{9} (\alpha)$ 129. When 3 dice are rolled simultaneously the probability of a number on the third die is greater than the sum of the numbers on two dice. (a) 12/216 (b) 36/216 (c) 48/216 (d) 60/216 Sol. 130. Three identical and balanced dice are rolled. The probability that the same number will appear on each of them is. (b) $\frac{1}{18}$ (c) $\frac{1}{36}$ (d) $\frac{1}{24}$ (a) $\frac{1}{6}$

Sol.

$$\begin{split} n(s) &= 2(6 \\ & E = \underbrace{\begin{cases} (1,1,1,1) & (2,2,2) & (3,3,3) & (4,4,4) & (5,5,5) \\ (6,6,4) & y & \\ \end{array} \\ n(E) &= 6 \\ p(E) &= \frac{6}{216} &= \frac{1}{36} &= 76 \end{split}$$

131.A basket contains 15 white balls, 25 red balls and 10 blue balls. If a ball is selected at random, the probability of selecting not a white ball.

	(a)	0.20	(b) 0.25	(c) 0.60	(d) 0.70
Sol.					
	W R 15 25	B 10 - 50 B	alls		
	P(not a whi	to bell) -	$\frac{1}{25}$ - 7/ = 0.7 (d)		
	1 fus		5/50 - 10		

132. If there are 48 marbles market with numbers 1 to 48, then the probability of selecting a marble having the number divisible by 4 is:

(a)	1⁄2	(b)	2/3 (c)	1/3 (d)	1/4

Sol.

n(s) = 48	1913 = 1810
E DIVISIBLE by 4	10 1
E= & 418112116120	24,28,32,34,40,44,
h(z) = 12	SP 221 = 1210
$P(z) = \frac{12}{48} = \frac{1}{48}$	(d)
and the second	0100

133. A bag contains 7 blue and 5 Green balls. One ball is drawn at random. The probability of getting a blue ball is _____.

(a) 5/12 (b) 12/35 (c) 7/12 (d) 0 Sol.

 $\begin{array}{c} B & Y \\ \hline 7 & 5 \\ \end{array} = 12 \text{ Balls}$ P(Blue Bell) = 7/12 (C)

134. If in a class, 60% of the student study. Mathematics and science and 90% of the student study science, then the probability of a student studying mathematics given that he/she is already studying science is :

EDNOVATE

(a) 1/4(b) 2/3 (c) 1 (d) 1/2 Sol. $P(mns) = \frac{60}{100}$ $P(s) = \frac{90}{100}$ $P(H_{s}) = \frac{P(MS)}{P(S)} = \frac{60/00}{90} = \frac{60}{90}$ = 2 (b)

135. If there are 16 phones, 10 of them are Android and 6 of them are of Apple, then the probability of 4 randomly selected phones to include 2 Android and 2 Apple phone is: 0.47 (b) 0.51 (a) (c) 0.37 (d) 0.27 Sol.

Andraid Apple = (6 Selection = 4 $n(s) = ({}^{6}C_{4} = ({}^{6}X {}^{15}X {}^{14}X {}^{13} = {}^{1820}$ UX3X2X4 Andeoid Apple = Uselection $n(\varepsilon) = \frac{10}{2} \frac{6}{5} \frac{10}{2} = \frac{10}{2} \frac{$ $P(\epsilon) = \frac{635}{1310} = 0.33$ (c)

136. The value of K for the probability density function of a variate X is equal to:

	.)							ĸ
(a)	39	(1	b) $\frac{1}{40}$	(0	c) $\frac{1}{49}$	(d) $\frac{1}{45}$	

137. Two dice are thrown simultaneously. The probability of a total score of 5 from the out comes of dice is.

138. For any two dependent events A and B, P(A) = 5/9 and P(B) = 6/11 and $P(A \cap B) = 10/33$. What are the values of P(A/B) and P(B/A)?

(a) 5/9, 6/11 (b) 5/6, 6/11 (c) 1/9, 2/9 (d) 2/9,4/9

Sol.

- 139. Which of the following pair of events E and F are mutually exclusive?
- (a) E ={Ram's age is 13} and F = {Ram is studying in a college}
- (b) E ={Sita studies in a school} and F = {Sita is a play back singer}
- (c) $E = \{Raju \text{ is an elder brother in a family}\}$ and $F = \{Raju's \text{ father has more than one son}\}$
- (d) E={Banu studied B.A. English literature) and F = {Banu can read English novels}

Sol. (a) is correct

140. Four unbiased coins are tossed simultaneously. The expected number of heads is:

DNOVATE

(d) 4

141. Assume that the probability for rain on a day is 0.4. An umbrella salesman can earn Rs. 400 per day in case of rain on that day and will lose Rs. 100 per day if there is no rain. The expected earnings (in Rs.) per day of the salesman is

142. The probability distribution of a random variable x is given below:

х	1	2	4	5	6
Р	0.15	0.25	0.2	0.3	0.1

What is the standard	deviation of x?		
(a) 1.49	(b) 1.56	(c) 1.69	(d) 1.72

Sol.

			/	UAIE
Xê	pi	Di Xi 80	pi Xi2	P 1
1	0.15	0.15	0.15	9.6
2	0.25	0.50	7.00	9
4	0.2	0.30	3.20	19
5	0.3	1.50	7.50	11
6	0.1	0-60	3.00	
- 12	ap -Fare. N	3.55	15.45	
Vaec	ane =	2(cip) -1	(Exipi)2	
	1	15.45 -	(B·55)2	
	E L	= 2.8475		
S	·0 = J	2.8475 =	1.687 ~ 1	·69
	(2)		6 0000 10 10T	1

143.	3. In a group of 20 males and 15 females 12 males and 8 females are service holders. What						
	is the probability that a person selected at random from the group is a service holder given						
	that the selected person is a male?						
	(a) 0.40	(b) 0.60	(c) 0.45	(d) 0.55			
Sol.	Same as Q.108						

144. There are 3 boxes with the following composition:
Box I: 7 Red + 5 White + 4 Blue balls
Box II: 5 Red + 6 White + 3 Blue balls
Box III: 4 Red + 3 White + 2 Blue balls
One of the boxes is selected at random and a ball is drawn from it.

What is the probability the drawn ball is red?

(a) 1249/3024 (b) 1247/3004 (c) 1147/3024 (d) ½

EDNOVATE

Sol.

$$\begin{array}{rcrcrcr}
Box \pm & Box2 & Box3 \\
R & W & B & R & W & B & P & W & B \\
\hline
7 & 5 & 4 = |6Balls & 5 & 6 & 3 = |4Balls & 4 & 3 & 2 = 9 \\
\hline
7 (Box is selected) &= 1 \times 7 + 1 \times 5 + 1 \times 4 \\
Bull & drawn & 3 & (6 & 3 & 14 & 3 & 9 \\
&= 7 + 5 + 4 \\
&= 7938 + 6430 + 8064 \\
&= 7938 + 6430 + 8064 \\
&= 11241 &= 3743 = 1249 \\
&= 11241 &= 3743 = 1249 \\
&= 11241 &= 3743 = 1249 \\
&= 22482 \\
&= 11241 &= 3743 = 1249 \\
&= 27216 & 9072 & 3024 \\
&= (a)
\end{array}$$

(b) 9 (c) 45 (d) 81 (a) 55 Sol. $\begin{aligned} (\chi) &= \frac{\chi_i}{\kappa}, \quad \chi_i^* = l_1 2, \dots, 9\\ \overline{\chi}(P(\chi_i)) &= -1 \end{aligned}$ P(X) $\frac{1+2+\cdots+q}{K} = 1$ (1+2+3+4+5+6+7+8+9) = K. 45 = K (c)

EDNOYATE

147. What is the chance that a leap year selected at random will contain 53 Fridays?
(a) 3/7
(b) 1/7
(c) 2/7
(d) 4/7
Sol.

S = & MT, TW, WTh, Thf, FS, SSY h(s) = 7E: fridays E=S FS, Jh F4 h(s) = 2P(E) = 2/2 (C)

148. Two balanced dice are rolled. The probability of getting 1 in at least one dice is x/36 where x is

149. Thirty balls are serially numbered and placed in a bag. Find chance that the first ball drawn is a multiple of 3 or 5.

EDNOYATE

(a) 8/15 (b) 2/15 (c) 1/2 (d) 7/15 Sol. n(s) = 30E= Multiple of 3065 E= { 3,5,6,9,10, 12,15, 13, 20,21, 24,25 n(z) = 14 $P(\varepsilon) = 14/_{30} = 7/_{15}$ (d)

150. The odds in favour of an event A is 2:3 and odds against an event B is 6: 4 the probability that only one of A and B occurs is y/25 where y is

(a) 12	(b) 15	(c) 18	(d) 9
Sol.			
P(A) = 2/5 $P(A') = 3/5P(a) = 2/5$ $P(A') = 3/5$	dis por		
P(one one of) = p(only) = 0	o p(onlyB)		
$A and B = p(A \cap B') +$	p(A'no)		
$\frac{45}{45} = P(h) P(b') +$	P(A') P(B)		
$\frac{25}{9} = \frac{2\times6}{5} + \frac{3}{10}$	<u>× 4</u> 10		
$\frac{y}{as} = \frac{12}{50} + \frac{12}{50}$	22 P		
$y = \frac{24}{50} \times 25$	2.6		
y = 12	= 2		
(a)			

151. The odds in favour of event A, in a trial, is 3:1. In a three independent trials, the probability of no occurrence of the event A is
(a) 1/64
(b) 1/22
(c) 1/27
(d) 1/8

	(a) 1/64	(D) 1/32	(C) 1/27	(a) 1/8
Sol.				
	P(A) = 0.08 $P(A') = 0.92$	10.21		
	P(B) = 0.05 P(B) = 0.95			
	$P(no defect) = P(A' \cap B') = P(A') P(B')$			
	=(0.92)(0.95			
	= 0.374 (d)	at the second se		

152. A machine is made of two parts A and B The manufacturing process of each part is such that probability of defective in part A is 0.08 and that B is 0.05. What is the probability that the assembled part will not have defect?

EDNOVATE

(a)
$$0.934$$
 (b) 0.864 (c) 0.85 (d) 0.874
Sol.
 $P(A) = 0.02$ $P(A') = 0.92$
 $P(B) = 0.05$ $P(B) = 0.92$
 $P(B) = 0.05$ $P(B) = 0.95$
 $P(A \cup B) = \frac{11}{12}$ then $P\left(\frac{B}{A}\right)$ is:
(a) $\frac{1}{6}$ (b) $\frac{4}{9}$ (c) $\frac{1}{2}$ (d) $\frac{1}{8}$
Sol.
 $P(A \cap n) = P(A) + P(B) - P(A \cup B)$
 $= \frac{1}{3} + \frac{3}{4} - \frac{1}{12}$
 $= \frac{1}{3} + \frac{3}{4} - \frac{1}{12}$
 $= \frac{1}{2} + \frac{9}{12} - \frac{1}{12}$
 $= \frac{1}{3} + \frac{9}{4} - \frac{1}{12}$
 $= \frac{1}{2} + \frac{9}{12} - \frac{1}{12}$
154. The probability that a leap year has 53 Monday is:
(a) $\frac{1}{7}$ (b) $\frac{2}{3}$ (c) $\frac{2}{7}$ (d) $\frac{3}{5}$
Sol.
 $\frac{5 - (5m_1m_1 + Tb_1 + (D Th_1) \text{ KF}_1 \text{ FS}_1 \text{ SS}^{\frac{1}{2}}$

EDNOVATE **CA Foundation** 155. Suppose A and B are two independent events with probabilities P(A) #0 and P(B) # 0. Let A' and B' be their complements. Which one of the following statements is FALSE? (a) $P(A \cap B) = P(A)P(B)$ (b) P(A/B) = P(A)(c) $P(A \cup B) = P(A) + P(B)$ (d) $P(A' \cap B') = P(A')P(B')$ Sol. (c) is correct 156. The Theorem of compound Probability states that for any two events A and B (a) $P(A \cap B) = P(A) \times P(B/A)$ (b) $P(A \cup B) = P(A) \times P(B/A)$ (c) $P(A \cap B) = P(A) \times P(B)$ (d) $P(A \cap B) = P(A) + P(B) - P(A \cap B)$ Sol. (a) is correct 157. If a number is selected at random from the first 50 natural numbers, what will be the probability that the selected is a multiple of 3 and 4? (a) 1/4 (b) 2/25 (c) 3/50 (d) 4/25 Sol. $S = \sum (1, 2, 3, \dots, 50) \quad n(s) = 50$ E: Multiple of 3 and 4 [ie12] E = $\sum (1, 2, 3) \quad n(s) = 4$ P(E) = 4/50 = 2/25 (b) 158. If three coins are tossed simultaneously, what is the probability of getting two heads together. (a) 1/4 (b) 1/8 (c) 5/8 (d) 3/8 Sol. n(5) = 8E: Two Heads E = S HINT, HTH, THING

159. Company 'A' produces 10% defective products, company 'B' produces 20% defective products and company 'C' produces 5% defective products. If choosing a company is an equally likely event, what is probability that product chosen is free from defect?

 $n(\varepsilon) = 3$

P(s) = 3/2 (d)

(a) 0.88 (b) 0.80 (c) 0.79 (d) 0.78

(+P)

 $E(x) = \mathcal{E}(p_i X_i)$

Sol.

160. The probability distribution of x is given below:

	Value of x	1	0	Total	
	Probability	р	1-р	1	
Mea	n is equally to:				
(a)) p	(b) 1-	р	(c) 0	(d) 1
Sol.					
Xi	Di (Pili)	1. 6. 1			

161. For any two events 'A' and 'B' it is known that P(A)=2/3, P(B)=3/8 and P(A∩ B) = 1/4, then the events A and B are:

- (a) Mutually exclusive and Independent
- (b) Mutually Independent not exclusive and

=> (a)

- (c) Mutually exclusive but not independent
- (d) Neither independent nor mutually exclusive

Sol. P(B) = 3/8 P(ANB) = 1/4 P(A) = 2/3= p(AnB) $= \frac{2\times3}{3\times3} = \frac{1}{4}$ P(A) P(O) A and B are Motodly Sectoring Energy Independent PLANB) = 0 . A and B are not not utually Skolusin Evente. b

162. If a random variable X has the following probability distribution, then the expected value of X is:

EDNOVATE

Sol.

Xi	Pi	Pixi	
-1	±/3	-1/3	
-2	1/6	-2/6	$F(x) = \Sigma(p_i X_i) = 1/L$
0	0	0	F > t
L	16	16	(c)
2	Y3	2/3	
	Ŧ	Ve	
	and the second second	17000	

163. The probability that a four digit number comprising the digits 2, 5, 6 and 7, without repetition of digits, would be divisible by 4 is:

(b) 3/4 (a) 1/2 (c) 1/4 (d) 1/3

Sol. Same as Q.22.

Sol.

(a) ₹ 32,500

164. On a commodity exchange when booking trades with provision for stop-losses, a trader can make a profit of ₹ 50,000 or incur a loss of ₹ 20,000. The probabilities of making profit and incurring loss, from the past experience, are known to be 0.75 and 0.25 respectively. The expected profit to be made by trader should be:

(c) ₹ 30,000

(d) ₹ 40,000

Xi Di H 50000 37500 1.75 (-20000) 5000 0-25 $E(x) = \Sigma | b_i$ 32500 a

(b) ₹ 35,000