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Chapter 15 – Probability 
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Introduction 
The result of a random experiment is known as an event or an outcome. Probability is the 

chance of an outcome. 

Probability = 
No. of Favourable Cases/Events/Outcomes

Total No. of Cases/Events/Outcomes
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Computation of total number of outcomes when an 

experiment is repeated a certain number of times: 
When an experiment with total number of events a is repeated b number of times, the 

total number of outcomes is given by .ba  
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Question 

A coin is tossed three times. What is the probability of getting 2 heads? 

(a) 3/8 (b) 2/3 (c) ¾ (d) None 
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Question 

A coin is tossed three times. What is the probability of getting at least 2 heads? 

(a) 1/2 (b) 2/3 (c) ¾ (d) None 
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Question 

Two dice are thrown simultaneously. Find the probability that the sum of points on the 

two dice would be 7 or more. 

OR 

What is the chance of throwing at least 7 in a single cast with 2 dice? 

(a) 5/12 (b) 7/12 (c) ¼ (d) 17/36 
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Question 

There are three boxes with the following composition: 

Box I: 5 Red + 7 White + 6 Blue balls 

Box II: 4 Red + 8 White + 6 Blue balls 

Box III: 3 Red + 4 White + 2 Blue balls 

If one ball is drawn at random, then what is the probability that they would be of same 

colour? 

(a) 89/729 (b) 97/729 (c) 82/729 (d) 23/32 
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Question 

If two letters are taken at random from the word HOME, what is the Probability that none 

of the letters would be vowels? 

(a) 1/6 (b) ½ (c) 1/3 (d) ¼ 
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Question 

Two balls are drawn from a bag containing 5 white and 7 black balls at random. What is 

the probability that they would be of different colours? 

(a) 35/66 (b) 30/66 (c) 12/66 (d) None 
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Question 

A lot of 10 electronic components is known to include 3 defective parts. If a sample of 4 

components is selected at random from the lot, what is the probability that this sample 

does not contain more than one defective? 

(a) 2/3 (b) 1/3 (c) ¼ (d) None 
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Question 

A bag contains 12 balls which are numbered from 1 to 12. If a ball is selected at random, 

what is the probability that the number of the ball will be a multiple of 5 or 6? 

(a) 0.30 (b) 0.25 (c) 0.20 (d) 1/3 
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Question 

What is the probability that a leap year selected at random would contain 53 Saturdays? 

(a) 1/7 (b) 2/7 (c) 1/12 (d) ¼ 
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Question 

If two unbiased dice are rolled, what is the probability of getting points neither 6 nor 9? 

(a) 0.25 (b) 0.50 (c) 0.75 (d) 0.80 
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Question 

What is the chance of picking a spade or an ace not of spade from a pack of 52 cards? 

(a)  4/13 (b)  5/13 (c)  6/13 (d)  7/13 
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Question 

Four digits 1, 2, 4 and 6 are selected at random to form a four-digit number. What is the 

probability that the number so formed, would be divisible by 4? 

(a) ½ (b) 1/5 (c) ¼ (d) 1/3 
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Question 

A pair of dice is thrown together and the sum of points of the two dice is noted to be 10. 

What is the probability that one of the two dice has shown the point 4? 

(a) ¾ (b) ½ (c) 2/3 (d) None 
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Question 

It is given that a family of 2 children has a girl, what is the probability that the other child 

is also a girl? 

(a) 0.50 (b) 0.75 (c) 1/3 (d) 2/3 
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Odds 
 

𝑂𝑑𝑑𝑠 𝑖𝑛 𝐹𝑎𝑣𝑜𝑢𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡 𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 

 

𝑂𝑑𝑑𝑠 𝐴𝑔𝑎𝑖𝑛𝑠𝑡 𝐸𝑣𝑒𝑛𝑡 𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠
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Question 

If p : q are the odds in favour of an event, then the probability of that event is: 

(a) 
p

q
 (b) 

p

p q+
 (c) 

q

p q+
 (d) None 
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Question 

If ( ) 5 / 9P A = , then the odds against the event A is: 

(a) 5 : 9 (b) 5 : 4 (c) 4 : 5 (d) 5 : 14 
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Question 

If an unbiased die is rolled once, the odds in favour of getting a point which is a multiple 

of 3 is: 

(a) 1 : 2 (b) 2 : 1 (c) 1 : 3 (d) 3 : 1 
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Types of Events 
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Equally Likely Events or Mutually Symmetric Events or Equi-

Probable Events 
• If two or more events have the same probability, the events are said to be equally 

likely events. 

• For example, when a coin is tossed, the probability of getting heads is ½; also, the 

probability of getting tails is also ½. 

• Therefore, these two events are said to be equally likely. 

• Similarly, when a dice is thrown, the probability of getting either 1, or 2, or 3, or 4, 

or 5, or 6 is 1/6. 

• Therefore, these events are known as equally likely events. 

• The events which have different probabilities are said “Not Equally Likely” events. 
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Question 

If ( ) ( )P A P B= , then the two events A and B are: 

(a) Independent (b) Dependent (c) Equally Likely (d) Both (a) and (c) 
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Impossible Events 
• Events which have zero probability are known as “Impossible Events”. 

• For example, let today be Monday. Now, the probability that tomorrow is going to 

be Wednesday is zero. 

• Therefore, this event is an impossible event. 
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Sure/Certain Events 
• Events which have 100% (or 1) probability are known as “Sure/Certain Events”. 

• For example, let today be Wednesday. Now, the probability that tomorrow is going 

to be Thursday is 100%, i.e. 1. 

• Therefore, this event is a sure/certain event. 

• From the above discussion on impossible and certain events, it can be seen that the 

probability ranges from 0 to 1 (both inclusive). 

• Probability can never be a negative number. 
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Question 

If ( ) 1P A = , then the event is known as: 

(a) Symmetric Event (b) Dependent Event (c) Improbable Event (d) Sure Event 
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Mutually Exclusive Events or Incompatible Events 
• The events which cannot occur simultaneously are called mutually exclusive events.  

• For example, when a coin is tossed, there are a total of two outcomes – Heads, and 

Tails. 

• However, these two events cannot occur at the same time. 

• If heads occur, tails would not occur; and if tails occur, heads would not occur.  

• Therefore, these two events are said to be mutually exclusive events. 

• “Mutually exclusive events” is technically defined as follows: when the occurrence 

of one event prevents the occurrence of other event, such events are known as 

mutually exclusive events. 

• The events which can occur simultaneously are called “Not Mutually Exclusive” 

events. 
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• For example, when a dice is rolled, the events “odd number occurs”, and “number 

5 occurs” can occur together. 

• Therefore, these events are called “not mutually exclusive” events. 
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Question 

Which of the following pairs of events are mutually exclusive? 

(a) A: The student reads in School B: He studies Philosophy 

(b) A: Raju was born in India B: He is a fine Engineer 

(c) A: Ruma is 16 years old. B: She is a good Singer 

(d) A: Peter is under 15 years of age B: Peter is a voter of Kolkata 
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Simple (or Elementary) and Composite (or Compound) Events 
• An event which cannot be split into two or more parts is known as a simple event.  

• For example, when a dice is thrown, the event “5 occurs” cannot be broken down 

into any more parts. 

• An event which can be broken down into two or more simple events is known as a 

composite event. 

• For example, when a dice is thrown, the event “odd number occurs” can be broken 

down into two or more parts. 

• This is because, if the numbers 1, 3, or 5 occur, they correspond to our event “odd 

number occurs”. 

• Therefore, the event “odd number occurs” can be broken down into 3 parts – 

o “1 occurs”,  

o “3 occurs”, and  
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o “5 occurs”.  

• Similarly, on throwing of a dice, the event “number more than 2 occurs” can be split 

into 4 parts –  

o “3 occurs”,  

o “4 occurs”,  

o “5 occurs”, and  

o “6 occurs”.  

• Therefore, the event “number more than 2 occurs” is also a composite event. 
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Question 

An event that can be split into further events is known as: 

(a) Complex Event (b) Mixed Event (c) Simple Event (d) Composite Event 
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Exhaustive Events 
• All the possible events of an experiment are combinedly known as Exhaustive 

Events. 
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Question 

If an unbiased coin is tossed once, then the two events Head and Tail are: 

(a) Mutually Exclusive (b) Exhaustive (c) Equally Likely (d) All 
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Question 

If ( ) ( )P A P B= , then 

(a) A and B are the same events (b) A and B must be same events 

(c) A and B may be different events (d) A and B are mutually exclusive events 
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Operations on Events – Set Theoretic Approach to Probability 
• Sample space represents the Universal Set, denoted by S or  . 

• An event A is defined as a non-empty subset of S. 

• Then, probability of event A is given by: ( )
( )

( )

n A
P A

n S
= , where, ( )n A  is the cardinal 

number of the set A; and ( )n S  is the cardinal number of the set S.  
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Points to be Noted 
1. If two events A and B are not mutually exclusive, then, 

( ) ( ) ( ) ( )P A B P A P B P A B = + −   

2. Two events A and B are mutually exclusive, if A B =  Therefore, ( ) 0,P A B =  

or ( ) ( ) ( ).P A B P A P B = +   

3. If three events A, B, and C are not mutually exclusive, then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P A B C P A P B P C P A B P A C P B C P A B C  = + + −  −  −  +    

4. Three events A, B, and C are mutually exclusive, if 

( ) ( ) ( ) ( ).P A B C P A P B P C  = + +  

5. Two events A and B are exhaustive, if ( ) 1.P A B =  

6. Three events A, B, and C are exhaustive, if ( ) 1.P A B C  =  
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7. Three events A, B, and C are equally likely if ( ) ( ) ( ).P A P B P C= =  

8. Probability that only event A occurs: ( ) ( ) ( )P A B P A P A B− = −   

9. Probability that only event B occurs: ( ) ( ) ( )P B A P B P A B− = −   
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Question 

If ( ) 0P A B = , then the two events A and B are: 

(a) Mutually Exclusive (b) Exhaustive (c) Equally Likely (d) Independent 
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Question 

If, for two events A and B, ( ) 1P A B = , then A and B are: 

(a) Mutually Exclusive (b) Equally Likely (c) Exhaustive (d) Dependent 
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Question 

If A, B and C are mutually exclusive and exhaustive events, then ( ) ( ) ( )P A P B P C+ +  

equals to: 

(a) 
1

3
 (b) 1 (c) 0 (d) any value between 0 and 1 
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Question 

Three events A, B and C are mutually exclusive, exhaustive, and equally likely. What is 

the probability of the complementary event of A? 

(a) 6/11 (b) 3/11 (c) 1/6 (d) 2/3 
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Question 

A number is selected from the first 25 natural numbers. What is the probability that it 

would be divisible by 4 or 7? 

(a) 6/25 (b) 8/11 (c) 9/25 (d) None 
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Question 

The probability that an Accountant’s job applicant has a B. Com. Degree is 0.85, that he 

is a CA is 0.30 and that he is both B. Com. and CA is 0.25 out of 500 applicants, how 

many would be B. Com. or CA? 

(a) 450 (b) 500 (c) 900 (d) 950 
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Question 

If ( ) 1/ 5P A B− = , ( ) 1/ 3P A =  and ( ) 1/ 2P B = , what is the probability that out of the 

two events A and B, only B would occur? 

(a) 10/30 (b) 11/30 (c) 9/30 (d) None 
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Question 

There are three persons A, B and C having different ages. The probability that A survives 

another 5 years is 0.80, B survives another 5 years is 0.60 and C survives another 5 years 

is 0.50. The probabilities that A and B survive another 5 years is 0.46, B and C survive 

another 5 years is 0.32 and A and C survive another 5 years 0.48. The probability that all 

these three persons survive another 5 years is 0.26. Find the probability that at least one 

of them survives another 5 years. 

(a) 0.30 (b) 0.90 (c) 0.45 (d) None 

  



CA NISHANT KUMAR  

 

Question 

If a card is drawn at random from a pack of 52 cards, what is the chance of getting a 

Spade or an ace? 

(a) 4/13 (b) 5/13 (c) 0.25 (d) 0.20 
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Question 

If ( ) 5 / 6P A B = , ( ) 1/ 2P A =  and ( ) 2 / 3P B = , what is ( )P A B ? 

(a) 1/3 (b) 5/6 (c) 2/3 (d) 4/9 
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Conditional Probability and Compound Theorem of 

Probability 
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Independent and Dependent Events 
• For practical questions, just remember the following: 

o OR means Union of Sets 

▪ ( ) ( ) ( ) ( )P A B P A P B P A B = + −   

o AND means Intersection of Sets 

▪ ( ) ( ) ( )P A B P A P B =   
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Question 

A box contains 5 white and 7 black balls. Two successive draws of 3 balls are made with 

replacement. The probability that the first draw would produce white balls and the second 

draw would produce black balls are respectively: 

(a) 6/321 (b) 1/20 (c) 35/144 (d) 7/968 
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Question 

A box contains 5 white and 7 black balls. Two successive draws of 3 balls are made 

without replacement. The probability that the first draw would produce white balls and 

the second draw would produce black balls are respectively: 

(a) 3/926 (b) 1/30 (c) 35/108 (d) 5/264 
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Question 

Tom speaks truth in 30 percent cases and Dick speaks truth in 25 percent cases. What is 

the probability that they would contradict each other? 

(a) 0.325 (b) 0.400 (c) 0.925 (d) 0.075 
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Question 

A problem in probability was given to three CA students A, B and C whose chances of 

solving it are 1/3, 1/5 and 1/2 respectively. What is the probability that the problem would 

be solved? 

(a) 4/15 (b) 7/8 (c) 8/15 (d) 11/15 
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Question 

For two events A and B, ( ) 0.3P B = , ( )but not 0.4P A B = , and ( )not 0.6P A = . The 

events A and B are: 

(a) exhaustive (b) independent (c) equally likely (d) mutually exclusive 
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Rules of Probability When Events are Independent 
1. ( ) ( ) ( )P A B P A P B =   

2. Probability of event A given that event B has already occurred is given by P(A/B): 

( )
( )

( )
/

P A B
P A B

P B


=   

3. Probability of event B given that event A has already occurred is given by P(B/A): 

( )
( )

( )
/

P B A
P B A

P A


=   

4. ( )
( )

( )

( ) ( )

( )

'
'/

P A B P B P A B
P A B

P B P B

 − 
= =  
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5. ( )
( )

( )

( ) ( )

( )

'
/ '

' 1

P A B P A P A B
P A B

P B P B

 − 
= =

−
 

6. ( )
( )

( )

( )

( )

( )

( )

' ' ' 1
'/ '

' 1 1

P A B P A B P A B
P A B

P B P B P B

  − 
= = =

− −
 

7. Probability that only event A or only event B occurs: ( ) ( ) ( )2P A P B P A B+ −   
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Question 

In connection with a random experiment, it is found that ( )
2

3
P A = , ( )

3

5
P B = , 

( )
5

6
P A B = . Evaluate ( )/P A B . 

(a) 13/18 (b) 13/20 (c) 7/12 (d) 5/18 
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Question 

Given that ( ) 1/ 2P A = , ( ) 1/ 3P B = , ( ) 1/ 4P A B = , what is ( )'/ 'P A B ? 

(a) ½ (b) 7/8 (c) 5/8 (d) 2/3 
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Question 

For a group of students, 30%, 40% and 50% failed in Physics, Chemistry, and at least 

one of the two subjects respectively. If an examinee is selected at random, what is the 

probability that he passed in Physics if it is known that he failed in Chemistry? 

(a) ½ (b) 1/3 (c) ¼ (d) 1/6 
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Random Variable – Probability Distribution 
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Expected Value of a Random Variable 
Important Formulae 

1. Expected value ( )  of a random variable ( )x  is given by: ( ) i iE x p x = =  

2. Expected value of ( )2x  is given by: ( ) ( )2 2

i iE x p x =
   

3. Expected value of a monotonic function ( )g x    is given by: 

( ) ( ) iE g x p g x   =     

4. Variance ( )2  of a random variable ( )x  is given by: 

( ) ( ) ( )
22 2 2V x E x E x  = = − = −  
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5. Standard Deviation ( )  of a random variable ( )x  is given by the positive square 

root of the variance. 

6. If a and b are two constants related with two random variables x and y as ,y a bx= +  

then the mean, i.e., the expected value of y is given by: .y xa b = +  

7. If a and b are two constants related with two random variables x and y as ,y a bx= +  

then the standard deviation of y is given by: .y xb =   

8. If a and b are two constants related with two random variables x and y as ,y a bx= +  

then the variance of y is given by: ( ) ( ) ( ) ( )
2 2 2 2

.y x xb b  =  =   
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Properties of Expected Value 
1. Expectation of a constant k is k, i.e., ( ) ,E k k=  for any constant k. 

2. Expectation of sum of two random variables is the sum of their expectations, i.e., 

( ) ( ) ( ),E x y E x E y+ = +  for any two random variables x and y. 

3. Expectation of the product of a constant and a random variable is the product of the 

constant and the expectation of the random variable, i.e., ( ) ( ). ,E kx k E x=  for any 

constant k. 

4. Expectation of the product of two random variables is the product of the expectation 

of the two random variables, provided the two variables are independent, i.e., 

( ) ( ) ( ).E x y E x E y =   This holds true whenever x and y are independent. 
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Question 

In a business venture, a man can make a profit of ₹50,000 or incur a loss of ₹20,000. The 

probabilities of making profit or incurring loss, from the past experience, are known to 

be 0.75 and 0.25 respectively. What is his expected profit? 

(a) ₹42,500 (b) ₹32,500 (c) ₹35,000 (d) None 
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Question 

A bag contains 6 white and 4 red balls. If a person draws 2 balls and receives ₹10 and 

₹20 for a white and red balls respectively, then his expected amount is: 

(a) ₹25 (b) ₹26 (c) ₹29 (d) ₹28 

 

  



CA NISHANT KUMAR  

 

Question 

If a random variable x assumes the values 0, 1 and 2 with probabilities 0.30, 0.50 and 

0.20, then its expected value is: 

(a) 1.50 (b) 3 (c) 0.90 (d) 1 
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Question 

The probability distribution of a random variable x is given below: 

x: 1 2 4 6 8 

P: k 2k 3k 3k k 

The variance of x is: 

(a) 2.1 (b) 4.41 (c) 2.32 (d) 2.47 

 



CA NISHANT KUMAR 1 

 

Theoretical Distributions 
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Binomial Distribution 
Binomial Distribution is used to find out the probability where the total no. of outcomes 

is huge. The probability is given by the following formula: 

( ) n x n x

xP x C p q −= , for x = 0, 1, 2, 3, …, n 

Here, 

n = number of times the experiment is repeated 

x = the requirement of the question 

p = probability of success in each trial 

q = probability of failure in each trial = 1 – p 

Sometimes, ( )P x  is also written as ( )f x . ( )f x  is called “Probability Mass Function”. 
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Conditions 
Binomial distribution is applicable only if the following conditions are satisfied: 

1. All the trials are independent, and 

2. Each trial has only two outcomes. 
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Question 1 

The incidence of occupational disease in an industry is such that the workmen have a 

10% chance of suffering from it. What is the probability that out of 5 workmen, 3 or more 

will contract the disease? 

(a) 0.0906 (b) 0.0086 (c) 0.8006 (d) None 

 

Solution 

(b) 

Here n = 5; p = 0.10; q = 1 – 0.10 = 0.90; x ≥ 3 

We know that ( ) n x n x

xP x C p q −=  
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( ) ( ) ( ) ( )3 3 4 5P x P x P x P x = = + = + =  

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 4 1 5 05 5 5

3 4 53 0.10 0.90 0.10 0.90 0.10 0.90P x C C C  = + +  

( )3 0.00856 0.0086P x  =   
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Question 2 

If the overall percentage of success in an exam is 60, what is the probability that out of a 

group of 4 students, at least one has passed? 

(a) 0.6525 (b) 0.9744 (c) 0.8704 (d) 0.0256 

 

Solution 

(b) 

Pass percentage is 60. This means 60%. This means that p = 0.6. Therefore, q = 0.4. 

Therefore, we have, 4; 0.6; 0.4; 1n p q x= = =   

( ) n x n x

xP x C p q −=  
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( ) ( )1 1 1P x P x = −   

( ) ( )1 01P Px x= − =  

( ) ( ) ( )
0 4 04

01 0 6 .41 . 0P x C
−

 = −  

( ) 1 0.01 256P x = −  

( ) 0.97441P x =  
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Question 3 

An experiment succeeds thrice as after it fails. If the experiment is repeated 5 times, what 

is the probability of having no success at all? 

(a) 1/1024 (b) 2/3 (c) 1/1025 (d) None 

 

Solution 

(a) 

We have n = 5; 3p q= ; x = 0 

3p q=  

( )3 1p p = −  
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3 3p p = −  

4 3p =  

3

4
p =  

1

4
q =  

( )
0 5

5

0

3 1 1
0

4 4 1024
P x C

   
= = =   

   
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Important Points 
1. Binomial Distribution is applicable when the random variable (x) is discrete. 

2. As 0n  , , 0p q  , therefore, ( ) 0f x   for every x. 

Also, ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 ... 1f x f f f f f n= + + + + + =  

3. Binomial distribution is known as bi-parametric distribution as it is characterised by 

two parameters n and p. This means that if the values of n and p are known, then the 

distribution is known completely. 

4. The mean of the binomial distribution is given by np = . 

5. A binominal distribution is symmetrical when p = q. 
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Question 4 

x is a binomial variable with n = 20. What is the mean of x if it is known that x is 

symmetric? 

(a) 5 (b) 10 (c) 2 (d) 8 

 

Solution 

(b) 

If x is symmetric, p = q = 0.5. 

Therefore, mean = np = 20 × 0.5 = 10 
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Important Points (Contd.) 
6. Mode of a Binomial Distribution is given by ( )0 1n p = +  

a. If the value of ( )1n p+  is an integer (i.e., without decimal part), then the 

binomial distribution is said to have two modes. It is called a bi-modal binomial 

distribution. The two modes are given by: 

i. ( )1n p+ , and 

ii. ( )1 1n p + −   

For example, if, in a binomial distribution, 11n = , and 
1

2
p = , then ( )1n p+  = 

( )
1

11 1
2

+   = 
12

2
 = 6 (Integer). Therefore, this binomial distribution will have 

two modes: 
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i. ( )1 6n p+ =  

ii. ( )1 1 6 1 5n p + − = − =    

b. If the value of ( )1n p+  is a fraction (i.e., with a decimal part), then the binomial 

distribution is said to have one mode. It is called a unimodal binomial 

distribution. Its mode is given by the largest integer contained in ( )1 .n p+  

For example, if, in a binomial distribution, 12n = , and 
1

3
p = , then ( )1n p+  = 

( )
1

12 1
3

+   = 
13

3
 = 4.33 

Since the answer is a fraction, this binomial distribution has only one mode. Its 

mode is given by the largest integer contained in ( )1n p+ . Therefore, the mode 

is 4. 
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Question 5 

If x is a binomial variate with parameter 15 and 1/3, what is the value of mode of the 

distribution? 

(a) 5 and 6 (b) 5 (c) 5.50 (d) 6 

 

Solution 

(b) 

Mode = ( ) ( )
1

1 15 1 5.33
3

n p+ = +  =  

Since this is a fraction, mode is the highest integer, i.e., 5. 
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Important Points (Contd.) 
7. The variance of the binomial distribution is given by 2 npq = . 

a. Variance of a binomial distribution is always less than its mean. 

b. If 0.5,p q= =  variance is the maximum, and is given by .
4

n
 

8. Standard Deviation of a binomial distribution is given by npq = .  
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Question 6 

If X ~ B (n, p), what would be the greatest value of the variance of x when n = 16? 

(a) 2 (b) 4 (c) 8 (d) 5  

 

Solution 

(b) 

In a binomial distribution, the value of the variance is maximum when p = q = 0.5. 

Variance is given by n/4 = 16/4 = 4. 
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Question 7 

What is the standard deviation of the number of recoveries among 48 patients when the 

probability of recovering is 0.75? 

(a) 36 (b) 81 (c) 9 (d) 3 

 

Solution 

(d) 

Here, n = 48; p = 0.75 

Standard Deviation of a Binomial Distribution = 48 0.75 0.25 3npq = =   =  
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Question 8 

What is the number of trials of a binomial distribution having mean and SD as 3 and 1.5 

respectively? 

(a) 2 (b) 4 (c) 8 (d) 12 

 

Solution 

(d) 

Mean of a Binomial Distribution is given by 3np =  

SD of a Binomial Distribution is given by 1.5npq =  

Putting the value of 3np =  above, we get 3 1.5q =  



CA NISHANT KUMAR 19 

 

( ) ( )
2 2

3 1.5q =  

3 2.25q =  

2.25
0.75

3
q = =  

If q = 0.75, p = 1 – 0.75 = 0.25 

Therefore, we have 0.25 3n =  

3
12

0.25
n = =  
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Question 9 

What is the mode of the distribution for which mean and SD are 10 and 5  respectively? 

(a) 10 (b) 11 (c) 10 and 11 (d) None 

 

Solution 

(a) 

Mean = 10np =  

Standard Deviation = 5npq =  

Squaring both sides: 
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( ) ( )
2 2

5npq =  

10 5q =  

5 1

10 2
q = =  

1

2
p =  

Putting the value of p from above in the equation np = 10 

1
10

2
n =  

2 10 20n =  =  
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Mode is dependent on the value of ( )1n p+  

( ) ( )
1 21

1 20 1 10.5
2 2

n p+ = +  = =  

Since it is fractional, Mode is the largest integer contained in it. 

Therefore, Mode = 10  
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9. Additive property of binomial distribution: 

Let x and y be two independent binomial distributions where x has the parameters 

1n  and p, and y has the parameters 2n  and p. Then ( )x y+  will be a binomial 

distribution with parameters ( )1 2n n+  and p. 
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Question 10 

If x and y are 2 independent binomial variables with parameters 6 and ½ and 4 and ½ 

respectively, what is ( )1P x y+  ? 

(a) 1023/1024 (b) 1024/1023 (c) Both (d) None 

 

Solution 

(a) 

We have 
1 6n = ; 

2 4n = ; 
1

2
p =  

Let z x y= +  
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The parameters of z will be: 
1 2 6 4 10n n+ = + =  and 

1

2
p =  

( ) ( )1 1 1P z P z = −   

( ) ( )1 1 0P z P z  = − =  

( )
0 10

10

0

1 1
1 1

2 2
P z C

    
  = −     

     

 

( )1 1 0.0009765625 0.9990234375P z  = − =   
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10. Sometimes, Binomial Distribution is also written as B(n, p). So, if, in a question 

you find something like “X~B(5, 0.4)”, it means that n = 5, and p = 0.4. Here, X 

denotes the requirement of the question. 
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Poisson Distribution 
Poisson Distribution is used to find out the probability where the total no. of outcomes is 

too huge and the probability of success is extremely small. The probability is given by 

the following formula: 

( )
!

m xe m
P x

x

− 
= , for x = 0, 1, 2, 3, …, n 

Here, 

e = exponential constant = 2.71828 

m = mean = np 

x = the requirement of the question 

Sometimes, ( )P x  is also written as ( )f x . ( )f x  is called “Probability Mass Function”. 
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Question 11 

If 1.5 per cent of items produced by a manufacturing unit are known to be defective, what 

is the probability that a sample of 200 items would contain no defective item? 

(a) 0.05 (b) 0.15 (c) 0.20 (d) 0.22 

 

Solution 

(a) 

Here 
1.5

200; 0.015
100

n p= = =  

Therefore, 200 0.015 3m np= =  =  



CA NISHANT KUMAR 29 

 

( )
( ) ( )

3 0
2.71828 3

0
0!

P x

−


= =  

( )
( )

3

1
0 0.0497

2.71828
P x = = =  
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Question 12 

If 2 per cent of electric bulbs manufactured by a company are known to be defectives, 

what is the probability that a sample of 150 electric bulbs taken from the production 

process of that company would contain more than 2 defective bulbs? 

(a) 0.33 (b) 0.58 (c) 0.15 (d) None 

 

Solution 

(b) 

Here, 
2

150; 0.02
100

n p= = =  

150 0.02 3m np= =  =  
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( )
.

!

m xe m
P x

x

−

=  

( )2 1 ( 2)P x P x = − 
 

( ) ( ) ( ) ( )2 1 0 1 2P x P x P x P x  = − = + = + =   

( )
3 0 3 1 3 22.71828 3 2.71828 3 2.71828 3

2 1
0! 1! 2!

P x
− − −   

 = − + + 
   

( )2 0.58P x  
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Question 13 

The manufacturer of a certain electronic component is certain that two per cent of his 

product is defective. He sells the components in boxes of 120 and guarantees that not 

more than two per cent in any box will be defective. Find the probability that a box, 

selected at random, would fail to meet the guarantee? Given that e–2.40 = 0.0907. 

(a) 0.43 (b) 0.58 (c) 0.15 (d) None 

 

Solution 

(a) 

Here, 
2

120; 0.02
100

n p= = =  



CA NISHANT KUMAR 33 

 

120 0.02 2.40m np= =  =  

As per Poisson Distribution, ( )
.

!

m xe m
P x

x

−

=  

A box, selected at random would fail to meet the guarantee if more than 2.40 components 

turn out to be defective. 

( ) ( )2.40 1 2.40P x P x = −   

( ) ( ) ( ) ( )2.40 1 0 1 2P x P x P x P x  = − = + = + =   

( )
( ) ( ) ( )

0 1 22.40 2.40 2.40. 2.40 . 2.40 . 2.40
2.40 1

0! 1! 2!

e e e
P x

− − − 
 = − + + 

  
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( )
( )

2
0.0907. 2.400.0907 1 0.0907 2.40

2.40 1
1 1 2

P x
  

 = − + + 
  

 

( )2.40 0.43P x    
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Important Points 
1. Poisson Distribution is applicable when the random variable (x) is discrete. 

2. Since 
1

0,m

m
e

e

− =   whatever may be the value of m (>0), it follows that ( ) 0f x   

for every x. 

Also, ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 ... 1f x f f f f f n= + + + + + = . 

3. Poisson distribution is known as a uniparametric distribution as it is characterised 

by only one parameter m. 

4. The mean of Poisson distribution is given by m, i.e., .m np = =  

5. The variance of Poisson distribution is given by 
2 .m np = =   

6. The standard deviation of Poisson distribution is given by .m np = =  
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Question 14 

If the mean of a Poisson variable x is 1, what is P (x = takes the value at least 1)? 

(a) 0.456 (b) 0.821 (c) 0.632 (d) 0.254 

 

Solution 

(c) 

( )
!

m xe m
P x

x

− 
=  

Here, we have 1; 1m x=   

( ) ( )1 1 1P x P x = −   
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( ) ( )1 01P Px x= − =  

( )
( ) ( )

1 0
2.71828 1

1
0!

1P x

−

= −  

( )
1

1
2.71828

1P x = −  

( ) 0.63211P x =  
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Question 15 

For a Poisson variate x, P (x = 1) = P (x = 2). What is the mean of x? 

(a) 1.00 (b) 1.50 (c) 2.00 (d) 2.50 

 

Solution 

(c) 

( ) ( )1 2P x P x= = =  

1 2

1! 2!

m me m e m− −

=  



CA NISHANT KUMAR 39 

 

2

2

m
m =  

22m m=  

2m =  
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Question 16 

Find the mean and standard deviation of x where x is a Poisson variate satisfying the 

condition ( ) ( )2 3P x P x= = = . 

(a) 3.00 (b) 1.50 (c) 2.00 (d) 2.50 

 

Solution 

(a) 

( ) ( )2 3P x P x= = =  

2 3. .

2! 3!

m me m e m− −

=  
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2 3

2 6

m m
=  

2 36 2m m=  

3

2

6

2

m

m
=  

3m =  

Therefore, mean = 3. 

Standard Deviation ( ) 3m = =  
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Question 17 

If the standard deviation of a Poisson variate x is 2, what is P (1.5 < x < 2.9)? 

(a) 0.231 (b) 0.158 (c) 0.15 (d) 0.144 

 

Solution 

(d) 

Standard Deviation = 2 4m m=  =  

We know that ( )
!

m xe m
P x

x

− 
= , for x = 0, 1, 2, 3, …, n 

Since x can only take integral values, 1.5 < x < 2.9  x = 2. 
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Therefore, ( )
( )

( )

4 2

4

2.71828 4 16
2 0.1465

2! 2.71828 2
P x

−


= = = =

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Important Points (Contd.) 
7. Like binomial distribution, Poisson distribution could be also unimodal or bimodal 

depending upon the value of the parameter m. 

a. If m is an integer, there are two modes: 

i. m 

ii. m – 1 

b. If m is a fraction, the mode is given by the largest integer contained in m. 
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Question 18 

The probability that a random variable x following Poisson Distribution would assume a 

positive value is ( )2.71 e−− . What is the mode of the distribution? 

(a) 2 (b) 3 (c) 4 (d) None 

 

Solution 

(a) 

Given 

( ) 2.70 1P x e− = −  

( ) 2.71 0 1P x e−−  = −  
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( ) 2.71 0 1P x e−− = = −  

( ) 2.70P x e−= =  

0
2.7

0!

me m
e

−
−=  

2.7me e− −=  

2.7m =  

Since m is fractional, mode will be the largest value of integer contained in it. Therefore, 

mode = 2. 
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Important Points (Contd.) 
8. Poisson approximation to Binomial distribution 

When n is rather large and p is rather small so that m = np is moderate then 

( ) ( ), .B n p P m  

9. Additive property of Poisson distribution: 

Let x and y be two independent poisson distributions where x has the parameter 1,m  

and y has the parameter 2m . Then ( )x y+  will be a poisson distribution with 

parameter ( )1 2 .m m+  
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Normal or Gaussian Distribution 

( ) ( )

( )
2

221
.

2

x

P x f x e





 

 − −
 
 
 = =  , for –∞ < x < ∞ 

Here, 

e = exponential constant = 2.71828 

x = random variable 

μ = mean of the normal random variable x 

σ = standard deviation of the given normal distribution 

Sometimes, ( )P x  is also written as ( )f x . ( )f x  is called “Probability Density Function”. 
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Question 19 

What is the coefficient of variation of x, characterised by the following probability 

density function: ( ) ( )
2

10 /321

4 2

x
f x e



− −
=  for x− ? 

(a) 50 (b) 60 (c) 40 (d) 30 

 

Solution 

(c) 

The standard form is ( ) ( )

( )
2

221
.

2

x

P x f x e





 

 − −
 
 
 = =  
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Given: ( ) ( )
2

10 /321

4 2

x
f x e



− −
=  

The breakup of the power of e is analysed as follows: 

Standard Formula Formula as per Question 

( )
2

22

x 



− −
 

( )
2

10

32

x− −
 

( )
2

2

1

2
x 



−
  −  ( )

21
10

32
x

−
  −  

 

Comparing the given equation with the standard form, we have 10 = . 
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Also, we have 
2

1 1

32 2
− = −  

22 32 =  

2 16 =  

4 =  

4
100 100 40

10

SD
CV

AM
=  =  =  
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Important Points 
1. Normal Distribution is applicable when the random variable (x) is continuous. 

2. If we plot the probability function ( )y f x= , then the curve, known as probability 

curve, takes the following shape: 

 
The area under this curve gives us the probability. 
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3. The area between –∞ and μ = the area between μ and ∞ = 0.5 

4. If μ = 0, and σ = 1, we have ( )

2

21

2

z

f z e


 −
  
 = , for –∞ < z < ∞. 

The random variable z is known as standard normal variate (or variable) or standard 

normal deviate. It is given by .
x

z




−
=  

5. Normal distribution is bell shaped. 

6. It is unimodal. 

7. The normal distribution is known as biparametric distribution as it is characterised 

by two parameters μ and σ2. Once the two parameters are known, the normal 

distribution is completely specified. 

8. Since the normal distribution is symmetrical about its mean (μ), Mean = Median = 

Mode. 
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9. Relationship between MD, SD, and QD → 4SD = 5MD = 6QD 

10. Mean Deviation = 0.8σ. 

11. Quartile Deviation = 0.675σ. 
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Question 20 

If the two quartiles of ( )2,N    are 14.6 and 25.4 respectively, what is the standard 

deviation of the distribution? 

(a) 9 (b) 6 (c) 10 (d) 8 

 

Solution 

(d) 

We know that Quartile Deviation = 0.675σ 

Quartile Deviation = 3 1 25.4 14.6
5.4

2 2

Q Q− −
= =  
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Therefore, 
5.4

8
0.675 0.675

QD
 = = =  
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Question 21 

The quartile deviation of a normal distribution with mean 10 and SD 4 is: 

(a) 0.675 (b) 67.50 (c) 2.70 (d) 3.20 

 

Solution 

(c) 

QD = 0.675SD 

QD = 0.675 × 4 = 2.70 
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Question 22 

If the mean deviation of a normal variable is 16, what is its quartile deviation? 

(a) 10 (b) 13.5 (c) 15 (d) 12.05 

 

Solution 

(b) 

We know that 4SD = 5MD = 6QD 

5 × 16 = 6QD 

QD = 80 ÷ 6 = 13.33 
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Question 23 

The mean deviation about median of a standard normal variate is: 

(a) 0.675  (b) 0.675 (c) 0.80  (d) 0.80 

 

Solution 

(d) 

A standard normal random variable is a normally distributed random variable with mean 

μ = 0 and standard deviation σ = 1. 

Therefore, mean deviation = 0.80 × 1 = 0.80 
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Question 24 

If the quartile deviation of a normal curve is 4.05, then its mean deviation is: 

(a) 5.26 (b) 6.24 (c) 4.24 (d) 4.80 

 

Solution 

(d) 

4SD = 5MD = 6QD 

5MD = 6QD 

MD = 6QD/5 = (6 × 4.05)/5 = 4.86 
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Important Points (Contd.) 
12. 1Q  and 3Q  are equidistant from the median, therefore, 

i. 1 0.675Q  = − , and 

ii. 3 0.675Q  = +  
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Question 25 

What is the first quartile of x having the following probability density function? 

( ) ( )
2

10 /721

72

x
f x e



− −
=  for x−  

(a) 4 (b) 5 (c) 5.95 (d) 6.75 

 

Solution 

(c) 

1 0.675Q  = −  
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The standard format is ( ) ( )

( )
2

221
.

2

x

P x f x e





 

 − −
 
 
 = =  

Comparing this with the given expression, we have 10 = . 

Also, we have 
2

1 1

72 2
− = −  

22 72 =  

2 36 =  

6 =  

( )1 0.675 10 0.675 6 5.95Q  = − = −  =  
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Important Points (Contd.) 
13. 1 3Median Median.Q Q− = −  

14. The normal distribution is symmetric about   Therefore, its skewness is zero, 

i.e., the curve is neither tilted towards right (negatively skewed), nor towards left 

(positively skewed). 
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15. Points of inflexion – A normal curve has two inflexion points, i.e., the points 

where the curve changes its shape from concave to convex, and from convex to 

concave. These two points are given by: 

i. x  = − , and 

ii. x  = +  
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Question 26 

Find the points of inflexion of the normal curve ( ) ( )
2

10 /321
.

4 2

x
f x e



− −
=  for .x−   

(a) 6 and 14 (b) 7 and 15 (c) 8 and 16 (d) None 

 

Solution 

(a) 

The standard normal density function is given by ( ) ( )

( )
2

221
.

2

x

P x f x e





 

 − −
 
 
 = = . 
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Given: ( ) ( )
2

10 /321
.

4 2

x
f x e



− −
=  

The breakup of the power of e is analysed as follows: 

Standard Formula Formula as per Question 

( )
2

22

x 



− −
 

( )
2

10

32

x− −
 

( )
2

2

1

2
x 



−
  −  ( )

21
10

32
x

−
  −  

Comparing it with the standard formula, we have: 

( ) ( )
2 2

10x x− = −  

Therefore, Mean ( ) 10 =  
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Also, we have 
2

1 1

2 32

− −
=  

 
22 32 =  

 2 32
16

2
 = =  

16 4 = =  

We know that points of inflexion are given by  −  and  +  

Therefore, 10 4 6 − = − = ; 10 4 14 + = + =  
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Important Points (Contd.) 
16. In a normal distribution, μ ± 1σ covers 68.27% of area, μ ± 2σ covers 95.45% 

of area, and μ ± 3σ covers 99.73% of area. 
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Question 27 

The interval ( )3 , 3   − +  covers: 

(a) 95% area of a normal distribution 

(b) 96% area of a normal distribution 

(c) 99% area of a normal distribution 

(d) all but 0.27% area of a normal distribution 

 

Solution 

(d) 
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Important Points (Contd.) 
17. Under a normal distribution, the area enclosed between mean (μ) and 1σ is 

0.34135; mean and 2σ is 0.47725; and mean and 3σ is 0.49865. 

18. In case of normal distribution 

i. Highest Value = Mean + Half of Range, and 

ii. Lowest Value = Mean – Half of Range 

19. Normal Distribution with 0X = , and 1 =  is known as Standard Normal 

Distribution. 

20. The height of normal curve is maximum at the Mean Value. 

21. Additive Property: If there are two Independent Normal Distributions 

( )2

1 1~ ,x N    and ( )2

2 2~ ,y N   , then z x y= +  follows normal distribution with 

mean ( )1 2 +  and 
2 2

1 2SD  = +  respectively. 
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Question 28 

x and y are independent normal variables with mean 100 and 80 respectively and standard 

deviation as 4 and 3 respectively. What is the distribution of (x + y)? 

(a) 180; 5 (b) 190; 10 (c) 180; 10 (d) None 

 

Solution 

(a) 

Mean of z = 100 + 80 = 180 

2 2

1 2SD  = +  

2 24 3 25 5SD = + = =  
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Question 29 

If x and y are 2 independent normal variables with mean as 10 and 12 and SD as 3 and 4, 

then (x + y) is normally distributed with: 

(a) Mean = 22 and SD = 7 (b) Mean = 22 and SD = 25 

(c) Mean = 22 and SD = 5 (d) Mean = 22 and SD = 49 

 

Solution 

(c) 

Mean = 10 + 12 = 22 

2 2

1 2SD  = +  
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2 23 4 25 5SD = + = =  
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Problems on Finding Probability Through Graph 
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Question 30 

x follows normal distribution with mean as 50 and variance as 100. What is ( )60 ?P x   

Given ( )1 0.8413 = . 

(a) 0.16 (b) 0.26 (c) 0.36 (d) None 

 

Solution 

(a) 

Given: 50 = ; 100 10 = =  

For x = 60, 
60 50

1
10

x
Z





− −
= = =  
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( ) ( )60 1P x P Z =   

 

 Z = –3    Z = –2    Z = –1      Z = 0     Z = 1       Z = 2       Z = 3 
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As can be seen from the above diagram, the area to the right side of Z = 1 is 13.59 + 2.14 

+ 0.14 = 15.87%  16% or 0.16 

However, this is not always so straightforward and simple. The ( )1 0.8413 =  given in 

the question denotes the area from the left end to Z = 1; and we know that the total area 

of the graph is 1. So, if we subtract 0.8413 from 1, we’ll get the desired area. 

Therefore, 1 – 0.8413 = 0.1587  0.16  
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Question 31 

In a sample of 500 workers of a factory, the mean wage and SD of wages are found to be 

₹500 and ₹48 respectively. Find the number of workers having wages more than ₹600. 

Given that ( )2.08 0.9812 =  

(a) 0.0188 (b) 9 (c) 10 (d) None 

 

Solution 

(b) 

Given: 500 = ; 48 =  

x
Z





−
=  
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For x = 600; 
600 500

2.08
48

Z
−

= =  

( ) ( ) ( )600 2.08 1 2.08 1 0.9812 0.0188P x P Z  =  = − = − =  

Therefore, number of workers = 0.0188 × 500 = 9.4  9 
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Question 32 

In a sample of 500 workers of a factory, the mean wage and SD of wages are found to be 

₹500 and ₹48 respectively. Find the number of workers having wages less than ₹450. 

Given that ( )1.04 0.8508 = . 

(a) 0.1492 (b) 75 (c) 10 (d) None 

 

Solution 

(b) 

Given: 500 = ; 48 =  

x
Z





−
=  
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For x = 450; 
450 500

1.04
48

Z
−

= = −  

Since the graph is symmetrical, ( ) ( )1k k − = −  

( ) ( ) ( ) ( )450 1.04 1.04 1 0.14 1 0.8505 0.1492P x P z   =  − = − = − = − =  

Therefore, number of workers = 0.1492 × 500 = 74.6  75 
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Question 33 

In a sample of 500 workers of a factory, the mean wage and SD of wages are found to be 

₹500 and ₹48 respectively. Find the number of workers having wages between ₹548 and 

₹600. Given that ( )2.08 0.9812 = ; ( )1 0.8413 = . 

(a) 70 (b) 75 (c) 0.1399 (d) None 

 

Solution 

(a) 

Given: 500 = ; 48 =  

x
Z





−
=  
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For x = 548; 
548 500

1
48

Z
−

= =  

For x = 600; 
600 500

2.08
48

Z
−

= =  

( ) ( ) ( ) ( )548 600 1 2.08 2.08 1 0.9812 0.8413 0.1399P x P z    =   = − = − =  

Therefore, number of workers = 0.1399 × 500 = 69.95  70 
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Question 34 

For a normal distribution with mean as 500 and SD as 120, what is the value of k so that 

the interval [500, k] covers 40.32 percent area of the normal curve? Given 

( )1.30 0.9032 = . 

(a) 740 (b) 750 (c) 656 (d) 800 

 

Solution 

(c) 

Given: 500 = ; 120 =  

x
Z





−
=  
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The interval given is [500, k]. 500 is the mean. Z = 0 at mean. Hume isse right side ka 

thoda sa area chahiye, jisse mean se le ke us area tak ka area 40.32% ho jaaye. Hume 

( )1.30 0.9032 =  diya hua hai. Isme se agar –∞ se z = 0 tak ka area minus karen, toh 

0.4032 aayega…aur wohi toh hume chahiye. 

Matlab, jo z aayega, wohi   diya hua hai. Matlab z 1.30 aayega. 

x
Z





−
=  

500
1.30

120

k −
=  

Try the options. 
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