		nano, i ropornon	Logs, mulocs
1.	What is Ratio?		
_			
_			
_			
2.	Find simplest form	of 3.50 : 8.75.	
-			
-			
_			
3.	5.7 con also be suit	Manager 1	
J .	5:7 can also be writ	tten as :	
4.	Ratio	lt's	Answer
4.	5:7	Duplicate Ratio	7.5.16.16.2
	8:3	Triplicate Ratio	
	11: 19	Inverse Ratio	
	64:625	Sub-Duplicate Ratio	
	125:27	Sub-Triplicate Ratio	
	120.21	Sub III pilotto Itatio	
5.	Find compounded r	atio of 5:7, a:b, x:y, 9:8	
l –			
	2		
6.	3:8:9:11 is a		
	313131113 u		
_			
			My Notes :
			My Notes :
_			My Notes :
_			My Notes:
=			My Notes :
			My Notes:

		natio, Proportion, Logo, marces
7.	Ratio of 3 or more terms	is known as
\setminus —		
8.	Ratio is unit free.	
9.	First term of the ratio =	
	Second term of the ratio	
10	Find the ratio of 3kg : 3	5,000 grams
	_	
	7	
11.	a:b can also be written a	s (ak : bk) or $\left(\frac{a}{k}:\frac{b}{k}\right)$ provided $k \neq 0$
12.	The auden of the tours :	a susting in immentant
12.	The order of the terms i	a ratio is important.
13.	Find simplest form	s o1 . o2
10.	Find Simplest form	יו ב $\overline{3}:3\overline{3}$
_		
\setminus —		
	7	
14.	In the Ratio	then a:b is called as
	a:b If	
	a > b	
	a < b	
	a = b	
4.5		
15.	Ratio exists only when 2	or more quantities are of same kind.
4.0		
16.	Find simplest form of	1, 1, 1 3, 8, 10
-		
17		3 2 8
17 .	Find simplest form of	5:3:5
\ <u> </u>		
		My Notes :
_		
CA	A Vinod Reddy - vinod.redd	y.ca@gmail.com

18. Ratios are unit - free	
19. If a:b = 2:3 b:c = 4:7 c:d = 8:1 Find a:b:c:d, a:d, b:d	
20. If Quantity increase or decreathen new quantity = b of or ∴ New quantity = coriginal quantity × where multiplying = Reciprocal ratio coriginal quantity × quantity × quantity × quantity	mutiplying ratio of given io
Population of a city is x then it o	hanges in the ratio of p:q then find new population
22. Inverse ratio of Inverse ratio of sub duplicate ratio of sub triplicate Sub triplicate ratio Triplicate Sub duplicate ratio of duplicate ratio of duplicate ratio of sub duplicate	ate ratio of p:q is = te ratio of m:n is = e ratio of x:y is =
23. Find Duplicate ratio of Inverse	ratio of 5:7
24. Find Triplicate ratio of sub du	plicate ratio of 25:49
CA Vinod Reddy - vinod.reddy.ca@gmail	My Notes :

Ratio, Proportion, Logs, Indices

			Ratio, Proportion, Logs, Indices
25 .	Find compounded	ratio of Duplicate ratio of 2:3,	Triplicate ratio of 9:4, Sub duplicate ratio
	of 81:64, sub dup	licate ratio of 512:27	
26.	When A supprisi	oo a b a d aya aaid ta ba iy	· muomoutiou?
20.	wnen 4 quantiti	es a,b,c,d are said to be in	i proportion?
_			
_			
07			
27.	When 4 quantiti	ies a,b,c,d are said to be i	n continued proportion?
_			
_			
28.	4 Quantities		her 4 Quantities are in
28.		Whet Continued Proportion?	her 4 Quantities are in Proportion?
28.	4 Quantities 2,6,18,54 3,8,12,32		
28.	2,6,18,54 3,8,12,32 8,24,96,288		
28.	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45		
	2,6,18,54 3,8,12,32 8,24,96,288		
28.	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50		Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?
	2,6,18,54 3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	Continued Proportion?	Proportion? proportion?

Ratio.	Pro	portion,	Logs.	Indice
nanv,	LIU	pui liuii,	LUSS,	

20	If a.b.c.d	are in	proportion	iea_	C then
5U.	II a,v,v,u	are in	proportion	1.6. =	d tileii

Invertendo:	Alternendo :	

Componendo and Dividendo :

31. If
$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{e}}{\mathbf{f}} = \frac{\mathbf{g}}{\mathbf{h}} = \frac{\mathbf{i}}{\mathbf{j}} = \mathbf{k}$$
, then

32. If
$$\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$$
 then, Find value of $\left(\frac{4a + 2b - 3c}{5b}\right)$

35.	4 Quantities in Proportion	Value of k = ?
	8, 9, k, 63	
	58, -3k, 28, 85	
	36, 60, 2k, 98	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

-3k, 86, 25, 63

36. Rules of Indices

			m
1. a" x a" =	6.	a	
		b	

2.
$$\frac{a^m}{a^n} =$$
 7. $a^{1/m} =$

$$8. [(a^{m})^{n}]^{p} =$$

9.
$$(a^{m/n})=$$

4.
$$a^{-m} =$$
10. If $a^x = a^y$; then

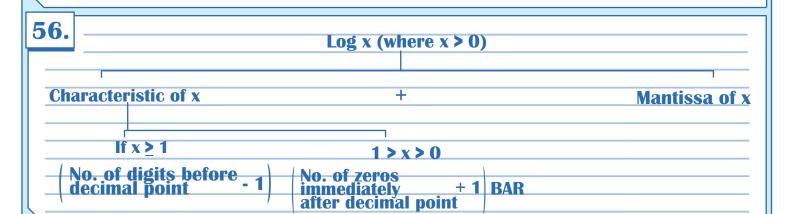
5.
$$(a.b)^m =$$
 11. If $a^m = b^m$; then

37.
$$2x^{1/2} \times 3x^{-1} = ?$$
 If $x = 4$

$$\frac{6ab^{2}c^{3}}{2a^{2}bc^{8}} = \boxed{ }$$

$$\left|\frac{40.}{x^{-1/3}}\right| =$$

$$\frac{2a^{1/2} x a^{2/3} x a^{7/3}}{9a^{5/3} x a^{3/2}} = ? \quad \text{If } a = 4$$


	Ratio, Proportion, Logs, Indices
$\frac{(\mathbf{a}^{m} \mathbf{x} \ \mathbf{a}^{n} \mathbf{x} \ \mathbf{a}^{p})}{\mathbf{a}^{x}} = $	
$6a^{4b} \cdot x^{6} \cdot (a^{2/3} \cdot x^{-1})^{-b} = ?$	
44. $(\sqrt{9})^7 \times (\sqrt{3})^{-5} = 3^k \text{ then } k = ?$	
$\frac{2^{5}}{2^{5}} = \frac{1}{2^{5}}$	
$\frac{ 81x^4 ^{1/4}}{ y^{-8} ^{1/4}} = \frac{ x ^{1/4}}{ x ^{1/4}}$	
$\left[\frac{47.}{\left(3^{3}\right)^{3}x \left(4^{2}\right)^{3}x \left(5^{3}\right)^{2}} \left(\frac{\left(3^{3}\right)^{3}x \left(4^{3}\right)^{3}x \left(5^{2}\right)^{3}}{\left(3^{2}\right)^{3}x \left(4^{3}\right)^{3}x \left(5^{2}\right)^{3}}\right] =$	
48. y^{a-b} y^{b-c} $y^{c-a} = 2$	
40	
$\left[1-\left[1-(1-x^2)^{-1}\right]^{-1/2}\right] =$	
	My Notes :

	Ratio, Proportion, Logs, Indices
50. $(x^n)^{n-\frac{1}{n}} \Big _{n+1}^{\frac{1}{n+1}}$	
51. If $a^{x} = b$, $b^{y} = c$, $c^{z} = a$ then $xyz = 2$	
51. If $a^x = b$, $b^y = c$, $c^z = a$ then $xyz = ?$	
52. $ \frac{\left \frac{\mathbf{X}^{a}}{\mathbf{X}^{b}}\right ^{(\mathbf{a}^{2}+\mathbf{ab}+\mathbf{b}^{2})} \cdot \left \frac{\mathbf{X}^{b}}{\mathbf{X}^{c}}\right ^{(\mathbf{b}^{2}+\mathbf{bc}+\mathbf{c}^{2})} \cdot \left \frac{\mathbf{X}^{c}}{\mathbf{X}^{a}}\right ^{(\mathbf{c}^{2}+\mathbf{ac}+\mathbf{a}^{2})} = \mathbf{P} $	
53. Log of number consist of 2 parts	
Integer Part = Fractional Part =	
	My Notes :
CA Vinod Reddy - vinod.reddy.ca@gmail.com	

54. Log x = characteristic of x + Mantissa of x

Log a =	A.log (log x) =
Log _m (ab) =	$Log (A.log x) = $ $Log a^a =$
Log m ^{(a} / _{b)} =	Log b x Log b =
If log h ^a = k; then	Log 10 =
If $x^y = z$; then	Log 100 =
Log (a) ^{-b} =	Log 1000 =
$Log\left(\frac{ab}{c}\right) =$	Log mabc =

$$\frac{\text{Log}_{3}8}{\text{Log}_{9}16 \times \text{Log}_{4}10} =$$

My Notes :

57.	X	Characteristic of x
	56.81	
	583.2	
	81.93	
	5.81	
	13	
	0.008126	
	0.5826	

Common base of Logs is:

8.5926

Natural base of Logs is:

62.
$$\log_{\sqrt{2}} 64 =$$

$$63. \quad Log_2 Log_2 Log_2 16 =$$

64.
$$Log_9(1/3) =$$

66. Log x = (m + n); Log y = (m - n); then
$$Log \left(\frac{10x}{v^2}\right) =$$

69.
$$\log_{2\sqrt{2}} 64 = ?$$

			Tim	ie Value	of Money	у			
1.									
2.	Why is	interest pa	aid?						
1. Time Value of Money 2. Opportunity Cost 3. Inflation 4. Liquidity Preference 5. Risk Factor									
3.	3. Simple Interest = Amount = P + Simple Interest =								
4. Compound Interest = Amount =									
5. With Simple Interest									
5.	With Si	mple Inter	est						
A	mount	mple Inter	<u>est</u>	Amou	nt at the end o	of years			
A		mple Inter 5 2P	est 10	Amoui 15	nt at the end o	of years 25	30	35	

Amount	Amount at the end of years							
Invested	5	10	15	20	25	30	35	
Р	2P							
Р	3P							

6. With Compound Interest

Amount			Amount at the	e end of years		
Invested	7	14	21	28	35	42
P	2P					
P	3P					
Р	4P					

7	7.	A = 50,00,000; r = 12% p.a.S.l; P = ?; n = 10 years							

My Notes:

		Time Value of Money
8.	A = 50,50,000; r = 13.50% p.a.S.l; P = 20,00,000 ; n =	_ years
_		
_		
9.	A = ?; r = 18% p.a.S.I; P = 25,000 ; n = 8 years 3 months	
_		
_		
10		
10.	A sum of money doubles itself with compound interest in 10 ye it will become after 40 years?	ars. How many times
_		
_		
11.	Find the future value of ₹50,000 after 25 years @ 22%	p.a.C.I
_		
$\lfloor -$		
12.	Find present value of ₹ 20,00,000 receivable after 25 years if n	noney is 18.50% effective.
_		
_		

Time Value of M

13.	A = ?; r = 14% p.a.C.	Q; P = 20,00,000 ; n = 3 years 9 months
—		
_		
4.4		
14.	A = 80,00,000; r = 18	5.50% p.a.C.semiannually; P = ?; n = 8 years 6 months
—		
—		
	-	
15.	Compounded	No. of conversion periods in a year
	Annually	
	Semi-annually	
	Monthly Quarterly	
	Weekly	
	Daily	
	Fortnightly	
16.	$A = P (1+r)^n$	
	A = Amount	
_	P =	
	r =	
\—	n =	
		THE PARTY OF THE P
		My Notes:
C	Vined Peddy vined red	ly ca@dmail.com
UA	\	y.ca@gman.com

_		_			
	. 11/6	3 100		9 V.	one
1111	- 1/2		4 AN	1 7	T 8 1 4 T 5
	, ,				

17 .	A = 2,00,000; r = 18% p.a.C.Q; P = 80,000 ; n = years
18.	A = 20,00,000; r =% p.a.C.Q ; P = 5,00,000 ; n = 8 years
10	
19.	1.01 ³⁵ =
	1.1025 ³⁸ =
	1.10285 ⁴⁵ =
	1.1826 ⁹⁰ =
20.	Discounting Factor =
	Discounting Factor –
	Present Value = (Future Value x Discounting Factor)
	How to find discounting factor on calculator?
$\lfloor -$	
	My Notes :
C	A Vinod Reddy - vinod.reddy.ca@gmail.com

Time	Value	of N	Mone

21.	Simple A	nnuity is a series	of payment /	receipts where	
	<u>'</u>				

Effective rate of interest =
$$\left(1 + \frac{r}{n}\right)^n - 1$$
 where $r = n = n$

23.	Nominal Rate of Interest	Effective Rate of Interest
	12% p.a.c.q	
	14.50% p.a.c.m	
	18% p.a.c.semiannually	
	26.26% p.a.c.weekly	

24.	Effective Rate of Interest	Nominal Rate of Interest
	18%	% p.a.c.q
•	20%	% p.a.c.monthly
	28.56%	% p.a.c. half yearly

My Notes :

	Time value of money
25.	
20.	
	a. Future Value of annuity regular =
_	
_	
_	
	b. Future Value of annuity due =
\ -	
00	
26.	Annuity Regular Annuity Due / Immediate
	\downarrow
_	
_	
\ <u> </u>	
27 .	Present Value of Annuity Regular = (Periodical Amount x Annuity Factor)
28.	
	Present Value of Annuity Due = (Periodical Amount x Annuity Factor) x (1+ r)
L —	
29.	
	received at the end of 30 years, if money is 16% effective.
_	
_	
_	
30.	A person desires to create a sinking fund to be invested @12% p.a.c.l. by saving some
00.	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000.
	Find amount to be saved at the end of each year.
	ring amount to be saved at the end of each year.
	ring amount to be saved at the end of each year.
	Find amount to be saved at the end of each year.
	Find amount to be saved at the end of each year.
	Find amount to be saved at the end of each year.

	Sequence & Series (AP-GP)	
1.	Terms a, b, c, d, e, f, g are said to be in	
	<u> </u>	V
AP, If	GP, If	HP, If

2.	Progression	AP/GP/HP/None of these
	8, 16, 32, 64, 128	
	80, 70, 60, 50, 40	
	2, 8, 32, 128	
0.5	50 , 0.25 , 0.1666666 , 0.125	
	1, 1, 1, 1, 1 8 10 12 14 18	
	100, 97, 94, 91	
	4, 6, 9, 13.50	
	10,80,150,220	
	10,0,-10,-20,-30	

3.

For	t,	S _n
AP		
GP		

		ocquence a series (Ar-ar)
4.	80, 87, 94, 101, Find t_{30} , t_{80} , t_{125} , t_{45} , t_{100} , t_{125}	
	30, 80, 125, 45, 9100, 9125	
_		
-		
_		
_		
-		
\ <u> </u>		
	F 40 20 40 F: 14 4 0 0	
5.	5, 10, 20, 40, Find t_{12} , t_{10} , S_{16} , S_{22}	
_		
-		
_		
_		
_		
_		
6.	1. Sum of infinite terms of G.P. where r > 1 =	
	2. Sum of infinite terms of G.P. where 0< r < 1 =	
_		
7.	10 + 20 + 40 + 80 + ∞ terms = ?	
_		
8.	$200 + 100 + 50 + 25 + \dots \infty$ terms = ?	
_		

					Sequence & Series (AP-GP)
0	E. AD.	0.0	F 00	Final or all 4 at 100	
9.	For AP t ₅	= 80, t ₁₅ =	580	Find a, d, t_{80} , t_{100} , S_{80}	
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					
L —					
40	E 40.4	4500			
10.	For AP t_3 =	$= 15, S_3 = 3$	30		
	' Find first t	term, com	non diff	erence, S ₄₀ , S ₁₀₀ , t ₃₀	
_					
_					
_					
_					
_					
_					
_					
_					
l —					
_					
					My Notes :
_					
_					

	Sequence & Series (AP-GP)
16. For 2 observations if $GM = 10$ and $AM = 12$, $HM = ?$	
Tot 2 observations if the To and Am = 12, him = ;	
13	
17. Insert 2 A.means between -200 and 1600	
18. Insert 3 A.means between 5000 and 8520.	
19. Insert one A.means between 100 and 250.	
20. Insert 5 G.means between 500 and 8,000.	

71							
	•	a. Sum	of first	'n	natural	numbers	=

- b. Sum of first 'n' odd numbers =
- c. Sum of squares of first 'n' natural numbers =
- d. Sum of cubes of first 'n' natural numbers =
- e. Sum of first 'n' even numbers =

22.
$$19^2 + 20^2 + 21^2 + 22^2 + \dots + 105^2$$

23. $28^3 + 29^3 + 30^3 + \dots + 62^3$

24. 1 + 3 + 5 + 7 + + 989 = ?

25. 4484 + 4488 + 4492 + + 16880 = ?

	Sequence & Series (AP-GP)
26. n th term of sequence 1, 3, 5, 7, is	
27. i=7	
∑√2i-1 =	
i=4	
28. If $S_n = 2n^2 + 8n$, first 3 terms of AP are:	
29. For AP $t_1 = -4$, $t_n = 146$, $S_n = 7171$. The number of terms	is:
30. $3\frac{1}{2}$ + 7 + $10\frac{1}{2}$ + 14 + Find S_{17}	
Z Z Z	

	Sequence & Series (AP-GP)
31. 4 A.means between -2 & 23 are	
TAINICUITS SCINCENT 2 a 20 ai c	
32. Find x such that $8x + 4$, $6x - 2$, $2x + 7$, are in A.P	
33. Find k such that (10k+8), (18k-19), (22k-81) are	in A.P.
0.4	
34. 4 A.means between -20 and 880 are	
	My Notes:
	my Notes :
•	

	Sequence & Series (AP-GP)
35 Incort 2 C magne between 1 and 0	
35. Insert 3 G.means between $\frac{1}{2}$ and 9.	
9	
20 20 20	
36. 3 + 33 + 333 + n terms = ?	
37. 6, 12, 24, 48, Find t_{10} , S_{12}	
0, 12, 24, 48, Fillu t ₁₀ , 8 ₁₂	
38. For GP t_2 = 24, t_5 = 81 then find common ratio.	

	Sequence & Series (AP-GP)
39.	Sum of first 20 terms of G.P. is equal to 244 times of sum of first 10 terms of G.P. then
	common ratio = ?
_	
_	
_	
40.	
	How many terms are there in the above G.P.?
_	
-	
41.	4 G.Means between 4 and 972 are:
—	
_	
12	For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False
74.	For G.F., Find $t_4 - \lambda$, $t_{10} - y$, $t_{16} - z$ then $y - \lambda z$. True / Taise
_	
-	

		Sequence &	series (AP-GP)
43. Find sum of all odd	numbers divisible b	y 9 between 5,000 and 1	5,000.
44. Find sum of all num	bers divisible by 7	between 800 and 8000.	
45. 1.03 + 1.03 ² + 1.0	03³+	Find S ₁₁	
$46. For AP t_m = n, t_n = m the$	n t _r = ?		
a. m+n+r	b. m+n-2r	c. (m+n+r)/2	d. m+n-r
		Mv	Notes:

Ineo	ualities and	Fauations
	duilties und	Lquations

1.

Locations	Points	Inequalities / Equations
1 st Quadrant		
2 nd Quadrant		
3 rd Quadrant		
4 th Quadrant		
X - Axis		
Y - Axis		
Origin		
2. The sta	ındard format of a linear	equation is :
3. Graphic	cal Presentation of a stra	aight line is known as
4. Line is	s a set / collection of	
_		
5. Slope o	f the line ax + by + c = 0	is

6.

Equation of line	Slope of Line
8x + 3y = 93	
3x - 11y = 51	
-33x -16 y = -25	
3x = 83	
8y = 65	
px - qy = 80	
2x + 6063y = 81	
y = 8x + 13	
y = -15x + 65	

7.	Equation of X-axis is :
	Equation of Y-axis is :
	Equation of line to X-axis is :
	Equation of line to Y-axis is :
	Slope of X-axis and all the lines to X-axis is :
	Slope of Y-axis and all the lines to Y-axis is :

- 9. Slope of the line passing through points (x_1,y_1) and (x_2,y_2) is :
- On solving 2 linear equations simultaneously if we get x=p and y=q, then

4	-4	
_	_	_

Equation Number of roots
Linear
Quadratic
Cubic

$$\frac{12.}{4} \frac{x+4}{4} + \frac{x-5}{3} = 11; \quad x=9$$

13.
$$\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$$
 then $y=9$

$$\frac{14.}{4} = \frac{15x - 1}{5} + \frac{2x - 5}{3x - 1}; \text{ then } x = ?$$

15. Standard format of a quadratic equation is:

16.	Find solution for $3x + 4$	$1 \mathbf{v} = 7.4 \mathbf{x} - \mathbf{v} = 3$
1		-, -, -, -, -

17. $x+5y=36, \frac{x+y}{x-y}=\frac{5}{3}$; then (x,y)=9

18.	3	$+\frac{2}{\mathbf{x}\cdot\mathbf{y}}=$	3 &	2	+ 3	$=3\frac{2}{3}$; then (x,	y) = ?
	$\mathbf{x} + \mathbf{y}$	x - y		$\mathbf{x} + \mathbf{y}$	x - y	3, 411011 (7.	

Monthly income of 2 persons is in the ratio of 4:5 and their monthly exp. are in the ratio of 7:9. If each saves $\stackrel{?}{\sim}$ 50 p.m. Find their monthly incomes.

20. Find the roots of $x^2 - 9x + 20 = 0$

	Inequalities and Equations
21. First root of quadratic equation =	
2 nd root of quadratic equation =	
Sum of roots =	
Product of roots =	

2	2.	Find roots of quadratic equation $3x^2$ -	7x - 20 = 0. Also find su	ım and product of roots

23.

Sum of roots	Product of roots
	Sum of roots

0.4		
24.	If $b^2 - 4ac =$	Nature of roots
	zero	
	Negative	
	Positive (perfect square)	
	Positive (not a perfect square)	

25.

$$(a+b)^2 =$$

$$(a-b)^2 =$$

$$(a^2+b^2)=$$

$$(a+b)^3 =$$

$$(a-b)^3 =$$

$$(a^3+b^3) =$$

$$(\mathbf{a}^2 - \mathbf{b}^2) =$$

$$(a+b+c)^2 =$$

$$\mathbf{a}^3 + \mathbf{b}^3 =$$

$$(a-b)^2 =$$

26. If $\alpha \& \beta$ are roots of the quadratic equation $3x^2 + 7x + 12 = 0$, then

$$\alpha + \beta =$$

$$\alpha^2 + \beta^2 =$$

$$\alpha^3 + \beta^3 =$$

$$(\alpha - \beta)^2 =$$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} =$$

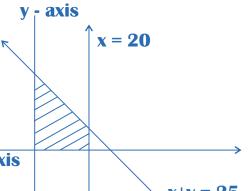
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} =$$

$$\alpha^2 \beta + \beta^2 \alpha =$$

Inequalities and	Equations
------------------	------------------

27.	Value of b ² - 4ac =	Nature of roots
	28	
	25	
	-100	
	0	
	35	
	64	
	729	
	-35	
	-0	
28.	If roots of quadratic eq	uation are then
	Equal	
	Equal but opposite in s	ign
	Reciprocals of each ot	1er
29.	If $\alpha \& \beta$ are roots of	the quadratic equation $x^2 + 7x + 12 = 0$, then quadratic
	equation whose roots	s are $(\alpha^2 + \beta^2)$ and $(\alpha - \beta)^2$ is
30.	Intercept form of	Equation of Line is -
		•
_		
—		
—		
_		

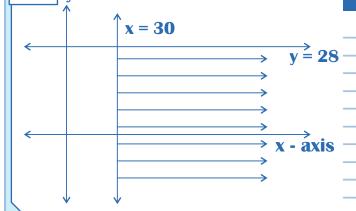
		Inequalities and Equations
33.	Length of segment drawn between points (x_1,y_1)) and (x_2, y_2) is
34.	If \mathbf{m}_1 is slope of one line and \mathbf{m}_2 is slope of other line	es then lines are said to be
	to each other if to each other, if	Oblique, if
35.	The standard format of a quadratic equation is ax^2 + dividing by 'a' on both sides	$bx + c = 0$, where $a \neq 0$


36. Find quadratic equation whose roots are 5, 8.		

37.	equation	Quadratic Equation
	8, 11	
	-19, 16	
	2, 20	
	3/8, 5/8	
	2/7, 5/2	
	$(5 + \sqrt{3}), (5 - \sqrt{3})$	
	$(8 + \sqrt{10}), (8 - \sqrt{10})$	

38.

Quadratic Equation Cubic Equation	Product of roots	Sum of roots	For
Cubic Fountier			Quadratic Equation
Cubic Equation			Cubic Equation


39.

Inequalities representing shaded area are:

	*	\	x+y = 25
40.	v - avie		

Inequalities representing shaded area are:

	Permutations & Combinations		
1. Permutation =			
Combination =			
2.			
0! =	a. <u>19!</u> =		
1! =	16:		
2! =	4.00		
3! =	b. 16! 14!3! =		
4! =			
5! =	$c.\frac{x!}{(x-1)!} =$		
6! =	(X-1):		
7! =			
$\frac{d \cdot \frac{(x+3)!}{(x+2)!} = }{}$			
9! =			
10! =	(x-3)!		
11! =	$e.\frac{(x-3)!}{(x-1)!} =$		
12! =			
3. In how many ways 3	students can stand in a line for a photograph?		
4. In how many ways 4	students can stand in a line for a photograph?		
CA Vinod Reddy - vinod.reddy	ca@gmail.com		

5.

There are 5 students A, B, C, D, E in how many ways 2 of them can be

Selected

Arranged

6.

 ${}^{n}P_{r} = \frac{n!}{(n-r)!}$ where n = positive integer & n ≥ r ≥ 0

 $^{n}P_{r} = n(n-1) (n-2) \dots r tems$

 ${}^{n}P_{0} = {}^{18}P_{3} =$

 $^{\mathsf{n}}\mathsf{P}_{1} = ^{\mathsf{100}}\mathsf{P}_{2} =$

 ${}^{0}\mathbf{P}_{2} = {}^{50}\mathbf{P}_{4} =$

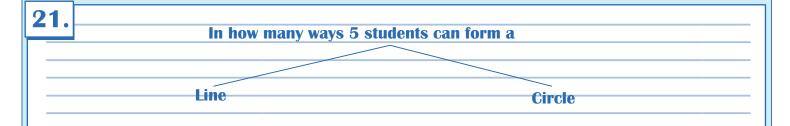
 $^{11}P_{3} = ^{25}P_{1} =$

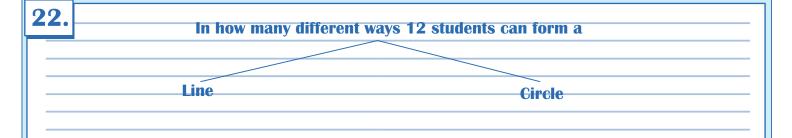
 ${}^{11}P_{4} = {}^{20}P_{5} =$

 $^{11}P_{5} = ^{24}P_{8} = ^{2$

"**P**_n =

 $7. \frac{{}^{18}P_3 x^{16}P_3}{{}^{19}P_3 y^{17}P} =$


8. 9


 $\frac{9!}{6!2!} x^{5} P_{2} =$


9.	AND ——> Multiply
	OR Add
10.	n! can also be written as
11.	How many different words can be formed by using letters of word:
_	SQUARE:
	HEXAGON:
	MISSISSIPPI:
	BOSTON:
	MANAGEMENT:
	PERMUTATION:
	BANANA:
	My Notes :

12	How many different words can be formed by using letters of word if all vowels should be kept together.
_	BANANA:
	PERCEPTION:
	JAYARAMAN:
	STATISTICS:
	COMPUTER:
	CALCULATOR:
	TATED:
13	In how many ways 'n' students can stand in a line for a photograph if r of them
	Want to be always together? Want to be never together?
_	
_	

20.	The no. of ways in which letters of word 'TRIANGLE' can be arranged if word 'ANGLE' is always present.

		i of mutations a combinations
24.	The no. of ways in which 'n' d	liamonds can form a necklace.
—		
25.	The number of ways of arranging ' same 2 neighbours	n' persons along a round table so that no person has the
26.	No. of different necklaces can b	pe formed with 'n' beads of different colours = ?
_		
27 .	Permutation of 'n' distinct thin	igs taken 'r' at a time when a particular object is
-	Always there?	Never there?
	Always there.	THOUSE CITOE CO.
-		
	7	
28.	How many 4 digit numbers can	be formed by using 0,1,2,3,4,5 if repetition of digits is
-		
	Allowed	Not allowed
-		
_		
\setminus $-$		
		My Notes :

		Permutations & Combinations
29.	How many even numbers of 5 did	its can be formed by using 2,3,4,5,6,7,8 if repetition
	of digits is	its can be formed by using 2,5,4,5,0,7,5 if repetition
	of digits is	
	Not allowed	Allowed
_		
_		
_		
\ <u> </u>		
30.	How many 5 digit numbers greate	r than 23,000 can be formed by using 1,2,3,5,8,9
24	How many A digit numbers great	on than 4700 can be formed by using 0.2.4.5.9
31.	How many 4 digit numbers great	er than 4700 can be formed by using 2,3,4,5,8
	if repetition of digits is	
	Allowed	Not allowed
_	7.110 11 011	The time to the ti
32.	"C"=	
		My Notes:

33. Formulae on combinations

nr –	n _C .	
U _r –	\mathbf{U}_{2}	_

$${}^{\mathrm{n}}\mathbf{C}_{\mathrm{r}} =$$

$${}^{\mathrm{n}}\mathbf{C}_{\mathrm{o}} =$$

$${}^{\mathrm{n}}\mathbf{C}_{\mathrm{r}} + {}^{\mathrm{n}}\mathbf{C}_{\mathrm{r-1}} =$$

$${}^{\text{n}}\mathbf{C}_{0} + {}^{\text{n}}\mathbf{C}_{1} + {}^{\text{n}}\mathbf{C}_{2} + \dots + {}^{\text{n}}\mathbf{C}_{n} =$$

$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} =$$

34.
$$^{45}C_x = ^{45}C_y$$
 then

36.
$$\frac{^{n}P_{r}}{^{n-1}P_{r-1}} =$$

37.	In how many ways 52 cards can l	be equally divided in 4 groups?
L —		
20	n how many different ways 10 mans	age can be divided amond 2 people such that they
38.	vill get 2,3,5 mangoes	oes can be divided among 3 people such that they
39.	n	no.
33.	"P _r =	"C _r =
	"C _r	"P,
	⁵ P _r =	
	·	⁵ P =
	⁵ C _r =	⁵ C₁
	O _r –	
40.	P (8, 3) =	
	C (12, 4) =	
41.	¹⁸ P ₃ x ¹⁷ C ₂	
	$\frac{1_3 \times 1_2}{1_9} = \frac{1_{19} \times 1_8}{1_{19}}$	
	P ₂ X C ₂	
		My Notes:

42.			
	${^{23}C_3 x^{^{22}}P_3 x^{^{21}}P_2} =$		
	3,13,12		
_			
—			
_			
43.	In a party of x people will take place	e if everyone hand :	shakes with other. How many handshakes
—			
—			
	1		
44.	How many diagona	als can be drawn i	a polygon having :
	7 sides		
	8 sides		
	10 sides		
45.	In a group of 100 pe be used in total?	eople, if everyone s	ends a greeting to other, How many cards will
—			
—			
	7		
46.	In a pl	ane of 20 non-collin	ear points
	How many differ		How many different triangles can be obtained?
<u></u>			

		Permutations & Combinations
4 -	}	
47.	In a plane there are 30	points out of which 8 are collinear
	In a plane there are se	
_		
_	How many different of the	ight How many different
_	How many different stra	
_	lines can be drawn	triangles can be obtained?
I —		
_		
_		
	1	
48.	There are 4 parallel lines interse	ecting with another set of 5 parallel lines. How many
	parallelograms can be drawn?	
_		
_		
_		
_		
	7	
49	8 Red; 3 Pink; 6 White Balls -	
		elections of 3 balls are possible with
_		possible with
_	Ψ Ψ	V
	All Red balls 2 Red balls	Atleast 2 white balls No pink balls
50 .		
OU	4 CA's; 3 Engineers; 8 Doct	nrs -
_	How many ways a comn	nitee of 4 members can be formed with
_	<u> </u>	V
-	Atleast 1 doctor	Atleast 1 person of
-		each profession
_		•
_		
_		
_		
_		
_		
-		
_		
IL —		

	4			
5 1	Thomas and S mala	e & 11 fameles In	how many ways a committee of	5 mombone con
		s α ι ι temates. In	now many ways a commutee of	5 members can
_	<u>be formed with</u>			
	V	V	V	- V
-	No restriction	Atleast 4	Atmost 1 Female	3 Females
-		Females		
-				
_				
_				
-				
-				
-				
-				
-				
_				
1 -				
-				
-				
-				
-				
_				
52	np _ n-1p _ n-1		o Truc	h Foloo
02	$^{1}P_{r} = ^{n-1}P_{r} + r \cdot ^{n-1}I$	r-1	a. True	b. False
-				
-				
_				
_				
-				
_				
53	A supreme court ben	ch consist of 7 ju	dges. In how many ways major	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways major	rity decision can be
5 3	A supreme court ben taken?	ch consist of 7 ju	dges. In how many ways major	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
5 3		ch consist of 7 ju	dges. In how many ways majo	rity decision can be
-	taken?			
5 3	taken?		dges. In how many ways major	
-	taken?			

				& Combinations
	aper has 8 questi ons can be solved		ulternatives). In how m	any ways one or
56. No. of ways i respectively.		can be divided in 3	groups containing 2,3	3,4 things
57. Number of o	odd numbers gre	ater than 500 can	be formed by using	3, 1, 2, 8
58 In a paper the	ere are 2 sections	A. B containing 5, 8	questions respectively	. In how
58. In a paper the many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively. ost 3 questions of any	. In how one of the section.
58. In a paper the many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively. ost 3 questions of any	. In how one of the section.
58. In a paper the many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively. ost 3 questions of any	. In how one of the section.
58. In a paper the many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively, ost 3 questions of any	. In how one of the section.
58. In a paper the many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively, ost 3 questions of any	In how one of the section.
many ways to	ere are 2 sections tal 5 questions ca	A, B containing 5, 8 n be solved with atm	questions respectively, ost 3 questions of any	In how one of the section.
many ways to	tal 5 questions ca	n be solved with atm	questions respectively ost 3 questions of any ost ost of any ost o	one of the section.
59. A man has	tal 5 questions ca	n be solved with atm	nvite for dir	nner
many ways to	s 12 friends in how	n be solved with atm	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10
59. A man has	s 12 friends in how	many ways he can in	nvite for dir	nner Atmost 10

	OCIA	s, runduons, neiations	
1.			
	<u>Set</u> is a collection of	and	objects
	Roster Form / Braces Form	Algebr Property	ic Form / Rule Form / Form / Set Builder Form
	A = {1,2,3,4,5,6,7,8,9,10}		t of first 10 natural numbers OR where $x \in \mathbb{N}$ and $x \leq 10$ }
2.	In mathematics everything in	n this world whether living or	non-living, is called as an
3.	A = {5,8,9,10,13} Expla	in •∈	
<u> </u>	A = {0,0,9,10,10}	· C	
_			
	7		
4.	No. of distinct elements o	f a set is known as	
_	Tynos	of sets on the basis of elem	uonte
5.	Types	ou sets on the basis of elem	ients
			Ψ
—			
C	A Vinod Reddy - vinod.reddy.ca@gr	nail.com	

	octs, Tunctions, Helations				
6. Conorally name of the cot					
Generally name of the set					
Order of object is					
Repetition is of no use					
A = {1,2,3,4,5} B = {5,4,4,5,1,2,2,3,4,5,4} sets A and B are name sets					
Sets A and D are name sets					
7. Equivalent sets :					
Equivalent sets:					
8. Subset:					
9. Superset:					
10. Proper Subset:					
Topol Subsect					

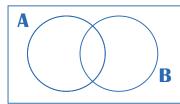
11. Improper Subset: 12. Find all possible subsets of A = {5,7,8}
40
13. For set B = $\{a,b,c\}$
All possible subsets :
All possible proper subsets :
All possible improper subsets :
All possible empty subsets :
All possible non-empty subsets :
14. If cardinal value of a set = n; then
No. of subsets :
No. of proper subsets :
No. of improper subsets :
No. of empty subsets :
No. of non-empty subsets :
No. of non-empty proper subsets :
No. of non-empty proper subsects.

		octs, Tullotions, Itelations
15.	When 2 sets are said to be equivalent sets?	
	when 2 sets are said to be equivalent sets:	
_		
_		
-		
-		
L —		
16 .	. When 2 or more sets are said to be equal sets?	
-		
_		
l _		
_		
—		
(
	· · All equal sets are equivalent but all equivalent sets are not	necessarily equal sets.
17 .	• Universal Set:	
_		
_		
_		
_		
_		
10		
18	Complementary Set:	
_		
—		
_		
-		
		My Notes :
		My Notes .
_		
_		
_		

Sets.	Functions ,	Relation
••••	1 41110110110,	ILCIACIOII

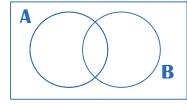
10		
10.	If A = {1,2,3,4} B = {2,4,8,10} U = {1,2,3,4,5,6,7,8,9,10}	0 }

Find A' =

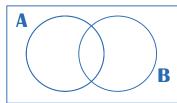

 $\mathbf{B}' =$

(A ∪ B) =

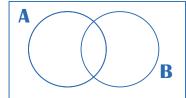
(A ∩B) =


20.

Find Set A


21.

Find Set A'


22.

Find Set B

23.

Find Set B'

My Notes:

		Sets, Functions, Relations	
24.	Find Set (A U B)		
	B		_
25.	Find Set (A∩B)		
	A B		
26.	Find $(A-B) = (A \cap B')$		
	A B		
27.	Find (B-A) = (B∩A')		
	A B		
28	Find (A∪B')		
	A B		_
29	Find (B ∪ A')		
	A B		_
CA	Vinod Reddy - vinod.reddy.c	a@gmail.com	

		Sets, Functions, Relations
30.	Find (A' ∩B')	
	A B	
31.	Find Set (A' ∪ B')	
	A B	
32.	Find Set (A \(\D \)	
	Find Set (A \(\triangle B \) B	
33.	Find (A ∪ B ∪ C)	
	A B B B B	
24		
34.	A B B 10 3 18 C	$n(A \cup B \cup C) =$ $B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C) =$
	A) · II(D) · II(O) · II (AI I	

3	5	

A B	Find A = {	}
3		
$(1,10(\frac{3}{9})2,4,5)$	Find B = {	}
	_	
678	Find $\Lambda' - f$	1

Find B' = {

Find A \cup B =	Find $A \cup B' =$
Find A ∩B =	Find A' \cap B' =
Find A - B =	Find $A' \cup B' =$
Find B - A =	Find B ∪ A' =

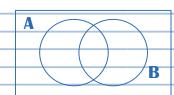
36.

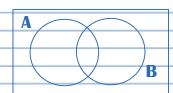
Formulae of sets at one place

n(A') =	$n(A' \cap B') =$
n (B') =	$n(A \triangle B) =$
n(A∪B) =	n(A'∪ B') =
n(A∩B) =	n(A ∪ B ') =
	,
n(A - B) =	n(B ∪ A') =
n(B - A) =	

37.

Find
$$(A \times B) =$$


Find
$$(B \times A) =$$


My Notes:

A is a subset of B : Notation :

A is a proper subset of B: Notation:

39. Demorgan's Rules of Sets

 $40. \quad A \cup A = \qquad \qquad A \cup (A \cup B) =$

 $A \cap A = (A \cup B) \cup (A \cap B) =$

 $A \cup \phi =$ $(A \cup B) \cup (A' \cap B') =$

 $A \cap \phi = A \cup (A \triangle B) =$

 $A \cup A' = A \cup (A \cap B') =$

 $\mathbf{A} \cap \mathbf{A}' = \qquad \qquad (\mathbf{A} \cap \mathbf{B}') \cup (\mathbf{A} \cap \mathbf{B}) =$

 $\mathbf{A} \cup \mathbf{U} = (\mathbf{A} \triangle \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{B}) =$

U' =

Any subject of the product set X.Y is said to define a relation from X to Y, and any relation from X to Y in which no 2 different ordered pairs have the same first element is called as function.

In $f: A \longrightarrow B$

the element f(x) of B is called as image of x while x is called as pre-image of f(x).

		octs, Tunotions, Relations
49	There are 4 types of relations	
T — •	THE CUIT OF TYPES OF TELEVIOLES	
	1.	
	2.	
	3.	
	4.	
43.		
	Find f(3), f(8), f(-9), f(10)	
_		
44 .	If $f(x) = 8x+11$; $g(x) = 2x+9$	
•	Find	
	f(3) =	
	g(8) =	
	g(p) =	
	f(-13) =	
	f(20) =	
45.	If $f(x) = 10x+15$; $g(x) = 7x - 13$ Find $f.g(x)$, $g.f(x)$	
•		
_		

	Sets, Functions, Relations
46. If $f(x) = 2x+11$ Find $f^{-1}(y)$, $f^{-1}(x)$, $f^{-1}(p)$	
17 1 16/40) 6/40) 6/40)	
47. If $f(x) = \frac{1}{1-x}$; Find $f(10)$, $f(2)$, $f(13)$, $f(p)$	
48. When a relation is said to be	
Symmetric	
Reflexive	
Transitive	
Transitive	
49. Relation of Equivalence	
netation of Equivalence	
50. 'Is perpendicular to' is a	
	My Notes :

	octs, Tullotions, Itelations
51. 'Is the reciprocal of' is a	
52. If $f(2x+3) = 8x + 7$. Find $f(x)$, $f(30)$	
$\frac{111(2x^{1}3) - 3x + 7.711101(x), 1(30)}{11101(x)}$	
53. Domain and Range of {(1,5),(2,8),(3,9),(4,18)}	
54. $f(x-1) = x^2$. Find $f(x)$, $f(x+1)$	
55. In a class of 100 students 60 like maths 50 like physics 2 how many students :	25 like both subjects. Find
a. Like maths or physics	
b. Like maths but not physics	
c. Like physics but not maths	
d. Neither like maths nor like physics	
e. Not like atleast one of 2 subjects	
f. Like one and only one subject	

	Statistical Description of Data
1. The word statistics	is derived from :
Latin word Status Italian word Statista German word Statistik French word Statistiqu	
2. We may define statis	tics in singular and plural sense
2 2	
3. Statistics is useful in) -
4. 5 Steps in Statistics -	
5.	Collection of Data
·	
6. Following methods can	be used for collection of primary data
1. Questionnaire Metho	
2. Mailed questionnair	
3. Interview Method	
4. Observation Method	
	My Notes:
CA Vinod Reddy - vinod.red	lv.ca@gmail.com

				Statistical Description	on of Data	
7.	Sources of Secondary Meth	<u>od</u>				
	1. International sources WI 2. Govt. Sources 3. Private Sources 4. Unpublished Data	HO, IMF, World Ba	nk, etc.			
8.	Checking the data for it _ as scrutiny of data		_ and		is known	
9.	Methods of Classification of	Data				
10.	1.					
		(Year 2	2022)			
	Students Course	Boys	Girls	Total		
	CA Foundation CA Inter					
	CA Final					
_						

	Statistical Description of Data
12. The best method of data presentation is	
12.	
13. The most attractive method of data preser	ntation is
14. Stubs are:	
15. Captions are:	
16. Diagrammatic Procentation	
<u>Diagrammatic Presentation</u>	
Line Diagrams Bar Dia	ngrams Pie Chart
OR	
Histograms	
17. Simple data on marks of 25 students :	
6, 3, 8, 11, 19, 23, 24, 18, 11, 13, 16, 15	, 19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13
C.I.	
0-5	
5-10	
10-15	
15-20	
20-25	

												Data
18.	LCB =											
	UCB =											
	Relati	ve Frequ	iency =									
	Percei	ntage Fr	equency	/ =								
	Class	Width =										
	Class-	mark =										
	Frequ	ency De	nsity =									
	Less t	han typ	e of cun	ıulative	frequen	icy =						
	Creat	on than	type of	aumulat	tivo from							
	Great	er than	type or	Gumulat	live ireq	uency =						
_												
19.												
C.I.	Freq.	LCL	UCL	LCB	UCB	Relative Freq.	% Freq.	Freq. Density	Class Mark	Class Width	less than type c.f.	greater tha
10-20	5					11 cq1		Denois	With	Width	урс от	of per our
20-60	8											
60-80 80-100	20											
100-120	3											
120-140	7											
20.												
20.	<u>Grap</u>	hical Pr	esentat	<u>ion</u>								
						<u> </u>				4. 0		
Area Diagrams Frequency Polygon Cumulative frequency curves OR Histograms OR Ogives				curves								
										My	Notes :	

		Statistical Description of Data
21.	Median can be	
	Median Can De	
	Mada and ba	
	Mode can be	
\rightarrow		
22 .	Frequency Curves	
	4 8 11 1	
	1. Bell shaped curve	
	2. U-shaped curve	
	3. J-shaped curve	
	4. Mixed curve	
$\overline{}$		
23 .		Data
~ U•		
	Ţ.	V
	¥	
24.		
24.	Discrete Variable :	
	Continuous Variable :	
25 .		
4 0.	<u>Definition</u>	n of Statistics
	V	V
	Plural sense	Singular sense
	↓	
Qu	antitative and qualitative data collected	Scientific method that is employed for collecting,
	usually with a view of having	analysing and presenting data leading finally
	statistical analysis	to drawing statistical interferences.
		My Notes:
CA	Vined Doddy, vined reddy coordinail com	
CA	Vinod Reddy - vinod.reddy.ca@gmail.com	

26.

Limitation of Statistics

- a. Deals with aggregate, an individual has no statistical significance.
- **b. Mostly concerned with quantitative data**
- c. Based on assumptions, so projections are likely to be inaccurate
- d. Based on random sampling.

27.

Methods of Collection of primary data

Mailed Questionnaire Method

Observation Method

Questionnaire filled and sent by enumeraters

a. Personal interview

Interview Method

b. Indirect interview

c. Telephonic interview

28.

- a. In personal interview investigator meets to the respondent directly and collects the information.
- b. If there are some practical problems in reaching the respondents directly then we may go for indirect interview when investigator collects the information from the persons associated with the problem.
- c. Telephonic interview is quick and non expensive method to collect primary data.

First 2 methods are inapplicable when there is large data. The amount of non-response is maximum for third method of data collection.

29.

Scrutiny of Data:

Since statistical analysis are made only on the basis of data, it is necessary to check whether the data under consideration are accurate and consistent.

No hard and fast rules can be applied for scrutiny of data. One must apply his intelligence, patience and experience while scrutinising the given information.

30.

Textual Presentation:

This method comprises presenting data with the help of paragraphs.

Advantage of this method lies in its simplicity, a layman can also present data under this method.

Textual presentation, however not preferred as it is Dull, Monotonous, Lengthy.

31.

Tabular Presentation:

It may be defined as systematic presentation of data with the help of a statistical table having no. of rows, columns and complete ref. no., title, description of rows and columns. foot notes, if any.

- a. Caption is the upper part of the table describing column and sub-columns.
- b. Stubs are left part of table providing description of rows.
- c. Body is the main part of the table that contains numerical figures.

32.

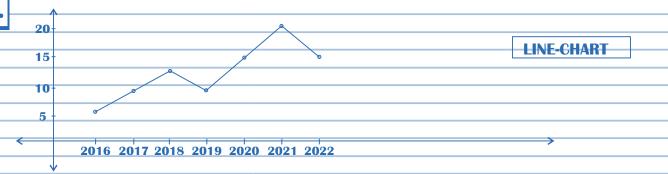
Diagrammatic Presentation of Data

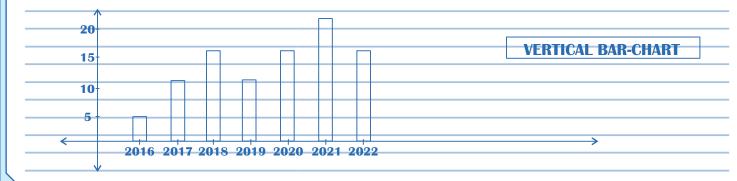
- a. Another alternative and attractive method is with the help of charts, graphs, pictures, etc.
- b. Any hidden trend can be understood with the help of this method.
- c. However, as compared to tabulation, this method is less accurate. So if priority is accuracy of data, we have to recommend tabulation.

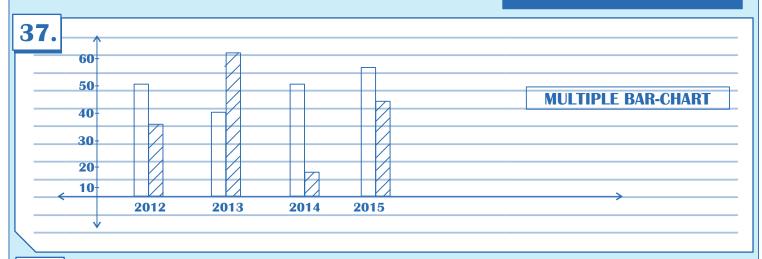
33.

We are going to consider the following types of diagrams

- a. Line diagram / histogram
- b. Bar diagram
- c. Pie chart / pie diagram / circle diagram.

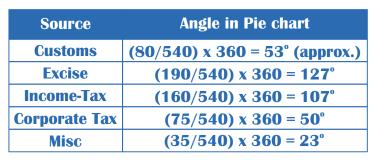

34.

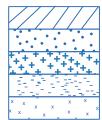

- Line diagram that uses logs is known as Ratio-chart.
- Multiple Line chart is used for representing 2 or more related time series data expressed in same unit.
- Multiple Axis chart in somewhat similar situations if variables are expressed in different units.

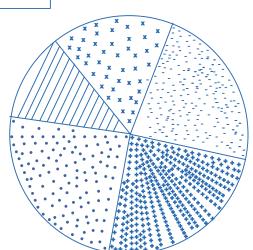

35.

- Horizontal bar diagram issued for qualitative data.
- Vertical bar diagram is associated with quatitative data OR time series data

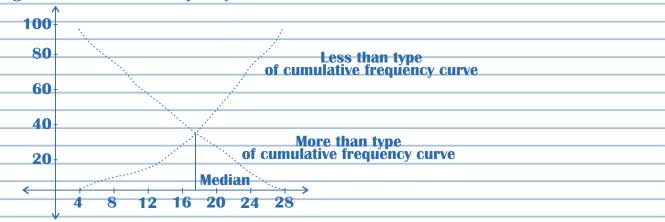
36.



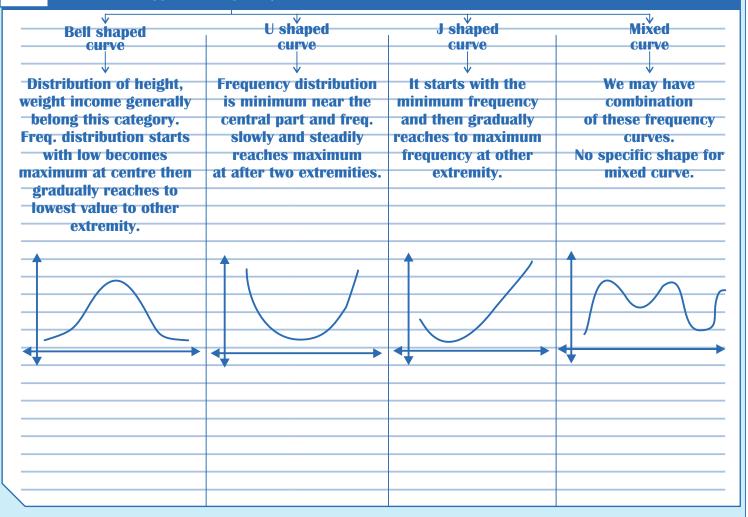



38. Draw the appropriate diagram for presentation the of following data:

Source	Revenue in Millions (₹)
Customs	80
Excise	190
Income-Tax	160
Corporate Tax	7 5
Misc	35
Total	540



Customs
Excise
Income-Tax
Corporate Tax
Misc



Median can be graphically obtained with the help of cumulative frequency curves / ogives Mode can be graphically obtained with the help of histogram.

43. There are 4 types of frequency curves

		Statistical Description of Data
44.	LCB is	
	a. Latur Crime Branch	
	b. Lower Class Branch	
	c. Lower Class Boundary	
_	d. a or c	
45.	Relative Frequency of a particu	lar class
	a. Lies between 0 and 1	
	b. Lies between -1 and 1	
	c. Lies between -1 and zero	
	d. None of these	
4.0		
46 .	The primary data is collected	by
	a. Interview Method	b. Observation Method
	c. Questionnaire Method	d. All of these
47 .	The quickest method to collect pri	imary data is :
	a. Personal Interview	b. Indirect Interview
	c. Telephonic interview	d. Observation Method
48.	In case of Rail accident, the appr	opriate method of data collection is by :

	c. Indirect Interview	d. All of these
49.	Which method of data collection	covers widest area
	a. Telephonic interview	b. Mailed Questionnaire Method

b. Direct Interview

d. All of these

a. Personal Interview

c. Direct Interview Method

		Statistical Description of Data
50	The amount of non-responses are	maximum in case of
_	a. Mailed Questionnaire Method	b. Interview Method
	c. Observation Method	d. All of these
_		
51	. The accuracy and consistency of da	ata can be verified by -
_	a. Internal checking	b. External checking
	c. Scrutiny	d. None of these
_		
52	. The unit of measurement in tabul	ation is shown in the
_	a. Box Head	b. Body
	c. Caption	d. Stub
53	In tabulation, source of the data i	f any is shown in the
	a. Foot-Note	b. Body
_	c. Caption	d. Stub
54	. Hidden trend, if any, in a data can	be noticed by
	a. Textual presentation	b. Tabulation
_	c. Diagrammatic Presentation	d. None of these
55	The most accurate (Best) method	of data presentation is :
	a. Diagrammatic Presentation	b. Tabulation
_	c. Textual presentation	d. None of these
56	. The chart used logarithms of a var	iable is known as :
	a. Line chart	b. Ratio chart
_	c. Multiple line chart	d. Pie-chart
		My Notes :

57	Pie diagram is used for?	
	a. Comparing diff. components and their relation b. Representing qualitative data in a circle c. Representing quantitative data in a circle d. b or c	to total
58	A frequency distribution a. Arranges observations in increasing order b. Arranges observations in number of groups c. is for time pass d. All of these	
59	Frequency distribution of a continuous var	iable is known as
	a. Grouped frequency distribution c. a or b	b. Simple frequency distribution d. a and b
60	. The distribution of shares is an example	of frequency distribution of :
	a. A discrete variable c. An attribute	b. A continuous variable d. None of these
61	. The distribution of profits of a blue chip co	mpany relates to :
	a. A discrete variable c. An attribute	b. A continuous variable d. None of these
62	Mutually exclusive classification	
	a. Excludes both the class limits c. Includes UCL and excludes LCL	b. Excludes UCL but includes LCL d. None of these
_		My Notes:

_					
workers. 300 watched world	persons enjoye	ere industrial wed world cup ma were industrial v	tches on T.V, 30	D% of people w	ho had not
a. 260		240	с. 230		d. 250
The much on	of assidant fo	u 7 daya in a	logality and di	inga balan .	
The number	of accident ic	or 7 days in a	locality are gi	iven below :	
No. of accident		2 3 4	5 6		
Frequency	15 19	22 31 9	3 2		
What is no. of c	ases wnen 3 or b. 6		occur? c. 68		d. 87
_a. 30			0. 00		u. 01
_					
The follow da	ta relates to i	ncome :			
The follow da			1500 - 1999	2000 - 2499	
Income No. of persons	ta relates to i	1000 - 1499 28	1500 - 1999 36	2000 - 2499 7	
Income No. of persons	500 - 999 15	1000 - 1499	36		
Income No. of persons What is % of pe	500 - 999 15	1000 - 1499 28 more than ₹ 15	36 00?	7	
Income No. of persons What is % of pe	500 - 999 15 ersons earning	1000 - 1499 28 more than ₹ 15	36 00?	7	
Income No. of persons What is % of pe	500 - 999 15 ersons earning	1000 - 1499 28 more than ₹ 15	36 00?	7	
Income No. of persons What is % of persons a. 43%	500 - 999 15 ersons earning b. 50%	1000 - 1499 28 more than ₹ 15	36 00? c. 40%	7 d.	
Income No. of persons What is % of persons a. 43%	500 - 999 15 ersons earning b. 50%	1000 - 1499 28 more than ₹ 15	36 00? c. 40%	7 d.	
Income No. of persons What is % of persons a. 43% The following Marks	500 - 999 15 ersons earning b. 50% data relate to Below 10	1000 - 1499 28 more than ₹ 15 6 the marks of g	36 00? c. 40% Froup of studen Below 30	7 d. lats:	None of thes Below 50
Income No. of persons What is % of persons a. 43% The following Marks No. of Students	500 - 999 15 ersons earning b. 50% data relate to Below 10 15	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38	36 00? c. 40% Froup of studen Below 30 65	7 d.	None of thes
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100
Income No. of persons What is % of persons a. 43% The following Marks No. of Students	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of studen Below 30 65	7 d. lats: Below 40 84	None of thes Below 50
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100
Income No. of persons What is % of persons a. 43% The following Marks No. of Students How many stude	500 - 999 15 ersons earning b. 50% data relate to Below 10 15 ents have marks	1000 - 1499 28 more than ₹ 15 6 the marks of g Below 20 38 more than 303	36 00? c. 40% Froup of students Below 30 65	7 d. lats: Below 40 84	None of thes Below 50 100

67	Find number of obser	vations between	1 250 and 300 1	from the followi	ng data :
	Value	More than 200	More than 250	More than 300	More than 350
	No. of Observations	56	38	15	0
_	a. 56	b. 23	с. 15		d. 8
-					
-					
_					
68	Cost of sugar in a mont	th under the head	ds material, labou	ır, expenses, ove	rheads are
	₹ 12,20,35,23 respecti	vely. What is diff			
	components of cost of s		7.00		
_	a. 72° b. 4	48°	c. 56°	d. 92°	
CO	THE 12 4 21 42 0				
69	• The distribution of pro	ofits of a compai	ny generally follo	DWS:	
09	a. J shaped freq. curve	ofits of a compai		ows : o. U-shaped freque	ency curve
09			I		ency curve
	a. J shaped freq. curve		I	o. U-shaped freque	ency curve
	a. J shaped freq. curve		I	o. U-shaped freque	ency curve
	a. J shaped freq. curve c. Bell shaped freq. curve		d	o. U-shaped freque	ency curve
70	a. J shaped freq. curve c. Bell shaped freq. curve		d	o. U-shaped freque	ency curve
70	a. J shaped freq. curve c. Bell shaped freq. curve		d	o. U-shaped freque	ency curve d. None of these
70	a. J shaped freq. curve c. Bell shaped freq. curve	ommonly used is	d	o. U-shaped freque	
70	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most c	ommonly used is	d	o. U-shaped freque	
70	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most ca. Mixed Graph is a	ommonly used is	c. Be	D. U-shaped freque None of these	d. None of these
70	a. J shaped freq. curve c. Bell shaped freq. curve . The distribution most c	ommonly used is	c. Be	o. U-shaped freque	
70	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most c a. Mixed Graph is a Line diagram	ommonly used is b. U-shaped b. Bar-diag	c. Be	D. U-shaped freque None of these	d. None of these
70 71	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most ca. Mixed Graph is a Line diagram	ommonly used is b. U-shaped b. Bar-diag	c. Be	D. U-shaped freque None of these	d. None of these
70 71 72	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most ca Mixed Graph is a Line diagram (Class frequency / class a. Frequency density	b. U-shaped b. Bar-diag ss width) is defin b. Freq	c. Be	D. U-shaped freque None of these	d. None of these d. Pictogram
70 71	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most con. Mixed Graph is a Line diagram (Class frequency / class a. Frequency density Tally Marks determ	ommonly used is b. U-shaped b. Bar-diag ss width) is defin b. Freq	c. Be can be deduced as	D. U-shaped frequence. None of these II shaped Pie-diagram C. Both	d. None of these d. Pictogram
70 71 72	a. J shaped freq. curve c. Bell shaped freq. curve The distribution most con. Mixed Graph is a Line diagram (Class frequency / class a. Frequency density Tally Marks determ	b. U-shaped b. Bar-diag ss width) is defin b. Freq	c. Be c. led as	D. U-shaped freque None of these	d. None of these d. Pictogram

ion of Data
lty in
ency
ency es:

		Statistical Description of Data
81.	A representative value of a cl	ass interval for the calculation of Mean, SD, MD, etc. is
_	a. Class interval	b. Class limit
	c. Class mark	d. None
82.	In all statistical calculations &	diagrams involving end points of classes are used.
	a. Class Boundaries	b. Class Values
—	c. both	d. None
83.	Upper boundary of a class	coincide with Lower boundary of next class.
	a. True	b. False
	c. Both	d. None
84.	The lower extreme point o	f a class is called as
	a. Lower Class Limit	b. Lower Class Boundary
	c. Both	d. None
<u> </u>		
85.	When one end of the class	is not specified, the class is called as
85.	When one end of the class i	is not specified, the class is called as b. Close end class
85.		
85.	a. Open end class	b. Close end class
85. 86.	a. Open end class c. Both	b. Close end class
	a. Open end class c. Both When all classes have equal wi	b. Close end class d. None of these
	a. Open end class c. Both When all classes have equal wiequal to the	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numerical
	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries
	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numerical b. Class Boundaries d. None of these
86.	a. Open end class c. Both When all classes have equal we equal to the a. Class Frequencies c. Both	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numerical b. Class Boundaries d. None of these
86.	a. Open end class c. Both When all classes have equal we equal to the a. Class Frequencies c. Both To find 'Mode of data' gradents	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use
86.	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies c. Both To find 'Mode of data' grada. Ogives	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use b. Frequency Polygon
86.	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies c. Both To find 'Mode of data' grada. Ogives c. Histogram	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use b. Frequency Polygon
86.	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies c. Both To find 'Mode of data' grada. Ogives c. Histogram	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use b. Frequency Polygon d. None of these
86.	a. Open end class c. Both When all classes have equal wiequal to the a. Glass Frequencies c. Both To find 'Mode of data' grada. Ogives c. Histogram In representing simple frequencies	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use b. Frequency Polygon d. None of these ency distributions of a discrete variable is useful
86.	a. Open end class c. Both When all classes have equal wiequal to the a. Class Frequencies c. Both To find 'Mode of data' gra a. Ogives c. Histogram In representing simple frequencies	b. Close end class d. None of these dth, the heights of rectangles in histogram will be numericall b. Class Boundaries d. None of these phically we use b. Frequency Polygon d. None of these ency distributions of a discrete variable is useful b. Histogram

b. Continuous variable c. Both

d. None

CA Vinod Reddy - vinod.reddy.ca@gmail.com

a. Discrete variable

Statistical	Descri	ption of	Data
O tatel O ti Cal			

Characteris	stic	Discrete / Continuous Variable / Attribute
a. Income		
b. Profit		
c Blue-color	ur	
d. Honesty		
e. Nationali	ty	
f. No. of sha	ares	
g. Age		
h. No. of mo	embers	
i.Drinking ł	nabit	
j. Beauty		
k. Children	in a family	
I. Love		
m. Batch si	ze	

102.

Class - Interval	Frequency
0 - 10	5
10 - 20	8
20 - 40	9
40 - 60	10

Mutually Exclusive Classification

Class - Interval	Frequency
0 - 9	25
10 - 29	28
30 - 89	35
90 - 189	40

Mutually Inclusive Classification

My	Notes
----	-------

Measures of Central Tendency & Measures of Dispersion
1. 5 Measures of Central Tendency are :
AM of simple data =
AM of grouped data =
AM of grouped & classified data =
3. Find AM of: 80,63,90,101,65,73,88,100.
4. Find AM of
x 20 30 40 50 60
f 28 52 68 72 80
5 5 1111
5. Find AM of
C.I 10-20 20-40 40-80 80-120
f 15 18 23 84
My Notes:

					Measures of Central Tendency & Measures of Dispersion
6.	Find A	AM of			
			00.00	40.00	
	C.I f	10-19 33	20-39 32	40-69 85	
	•	00	02	00	
_					
$\setminus =$					
7	ANG *-		•		
7.	AM IS	magnitud	e-wise cei	ntral nur	nber
	Media	n is			
	Mode	is			
8.	Find M	ledian fo	r 81,36,2	2 5,35,3 8	3,43,50
_					
—					
9.					
			N	<u> Median - I</u>	f No. of observations are
		√)dd			↓ Even
		vuu —			Lveii
\setminus —					
10.	F	sal malati	an hatua	w Maga	Madian Mada
10.	Empiri	cai reiau	on betwee	en mean,	Median, Mode
_					

4 4		
	Find Median,	. Mode for

C.I	10-20	20-30	30-40	40-60	60-100
f	15	18	33	22	16

12. Find AM, Median, Mode for 80, 60, 90, 90, 80, 90, 50, 90, 10, 5, 18, 16, 12, 16, 55

13. For Simple data - Formulae

__Median =

 $\mathbf{Q}_1 =$

 $\mathbf{Q}_3 =$

 $\mathbf{D}_6 =$

P₇₁ =

Fractiles	Divides the data in equal parts	No. of fractiles	Notations
Median			
Quartiles			
Deciles			
Percentiles			

15.	For Grouped	and Classified	l data

Median =	

Q ₂ =			
-			

$$D_2 =$$

16.

Measure	Simple Data	Grouped Data
AM		
GM		
НМ		
Median		
Mode		
Q ₁		
D ₇		
P ₆₁		
CA Vinod R	eddy - vinod.reddy.ca@gmail.com	

17 .	Find P ₈₅	for
	85	

C.I	10-18	20-38	40-98	100-168
f	28	36	56	28

18. Properties of AM

	Measures of Central Tendency & Measures of Dispersion
19.	Find AM, GM, HM for - 2,6,8,9,3,13,20,18
_	
_	
_	
_	
_	
_	
\ <u> </u>	
20.	If $\overline{x}_1 = 80$, $\overline{x}_2 = 120$ and Combined AM = 103. Find $n_1 : n_2$
-	
_	
_	
_	
_	
21.	
	Best Measure of Central Tendency =
_	
	For Open Class interval
	Best Measure of Central Tendency =
_	
22.	
22.	For n observations =
	Ean a distinct abcompations —
	For n distinct observations =
	For 2 Observations =

a,b,c,d 60,20,80	Observations	AM	GM	НМ
	p,q			
60,20,80	a,b,c,d			
	60,20,80			
5,10,20,0	5,10,20,0			

If one	of	the	obser	vation	İS	zero	then	
011								

GM =

HM =

24. Find GM, HM, AM for

X	5	6	7	8
f	1	2	2	3

25.

	For 2 Groups
Combined AM =	
Combined GM =	
Combined HM =	

	Measures of Central Tendency & Measures of Dispersion
26.	
	For 3 Groups
Combined AM =	
Combined GM =	
Combined HM =	
27. n ₁ = 30; n ₂ = 20; 8	$S_1 = 3$; $S_2 = 4$; $\overline{X}_1 = 40$, $\overline{X}_2 = 50$. Find combined SD.
Dispersion means Measures of dispe	: rsion are used to measure :

	Me	asures of Central Tendency & Measures of Dispersion
29.		
	Measu	res of Dispersion
	Absolute	Relative
	Absolute	neiauve
—		
_		
—		
_		
_		
L —		
20	E	
30.	For simple data :	
	Range =	
-	M.D =	
—		
	S.D =	
_		
-		
	Q.D =	
<u></u>		

	measures of Central Tendency & Measures of Dispersion
31. Find Range, M.D, S.D, Q.D for -	20,28,35,40,48,60,65,68
32. For Grouped data :	
52. For Grouped data:	
Range =	
nange –	
M.D =	
S.D =	
0.D.=	
Q.D =	

33.	Find Range,	M.D.	S.D.	Q.D

CI	10-20	20-30	30-40	40-50
f	5	7	2	6

medadites of central rendency a medadites of Dispersion										
34. If Mo	If Mode = 66. Find missing frequency									
CI	30-40	40-50	50-60	60-70	70-80	80-90				
f	8	16	22	28	-	12				
35. S.D.										
S.D	of 2 Observa	tions =								
S.D	of 1 st 'n' natu	ıral numbers	3 =							
36.										
M.D about		Simple Da	ata		Grouped	Data				
AM										
Median										
Mode										
MUUE										
						My Notes :				

			Measures of Cen	itral Tendency & Meas	sures of Dispersion
37.					
37. Q	.D = Sen	ni inter Quartile Range	=		
C	oefficien	t of Quartile Deviation	=		
L ——					
38.					
			If $y = a + bx$ then		
<u> </u>					
39.					
	Old Data	If 25 is subtracted by from each obs ⁿ	f every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20
AM	30				
Median	50				
Mode	60				
Range	70				
MD	28				
SD	36				
QD	55				
40. In	npact o	n coefficient of vari	ation :		
If 20 is a	added to	each observation			
If 30 is 9	subtracte	ed from each observation	1		
If every	observati	on is multiplied by 80			
If every	observati	on is divided by 100			

		reactives of central remaining a measures of Bispersion
41.	Runs of last 8 in	nings
Batsman A	80, 60, 65, 85, 75, 4	
Batsman B	35, 25, 50, 25, 55, 6	
Who is more c	onsistent?	
42.		
Best measure of dis	persion	
For comparison pu	rpose	
For Open Class Into	ervals	
43. Find S.D, Var	iance, Coefficient of V	/ariation for 18,19,20,28,35.
		My Notes :
CA Vined Roddy - v	vinod.reddy.ca@gmail.co	m

	isules of cellular remachery & measures of	
4.4		
44.	motions v.v.	
Ubse	rvations x,y,z	
AM =	GM =	HM =
7.111	CIVI —	
45. Find Range & Coefficient of range fo	r:₹90,₹80,₹60,₹30,₹10,₹5,₹(6 5,₹78
46. If $3x + 5y = 85$; AM of $x = 3$; SD of $x = 3$	- 0.75 Find AM of v. S.D. of v	
40. II 3x + 5y - 85; AM 01 x - 5; 8D 01 x	F 0.75. Find AM OI y, 8.D OI y	
CA Vinod Reddy - vinod.reddy.ca@gmail.com		
— CA vinou neutry - vinous cauy.ca@gillali.com		

	Correlation & Regression Analysis
1.	What is correlation and what is regression?
_	
_	
_	
2.	Whether correlation between 2 variables exists or not?
_	
-	Yes No
	↓
-	What is the type What is the degree of correlation?
_	
_	
-	
3.	Methods to measure correlation between 2 variables :
_	a.
	b.
_	c. d.
	My Notes:
C	A Vinod Reddy - vinod.reddy.ca@gmail.com

			Correlation a negleosion Analysis
4.	Scatter diagram showing		
1.			
2.			
3.			
4.			
_			
5.			
Scat	tter diagrams can give an idea a'	bout type of correlation but	it can't give exact degree of correlation.

	5.	. Fin	d Spearman's	rank correl	lation co	efficien
--	-----------	-------	--------------	-------------	-----------	----------

X	30	80	45	63	91	28	222
y	101	111	93	123	86	65	79

6. Find Coefficient of Concurrent Deviation for -

X	60	90	28	36	51	58	90	95	101	63
y	28	111	93	28	63	78	53	28	99	100

In the product column: No. of positive signs = x

No. of negative signs = y

* * * */	• • • • • • • • • • • • • • • • • • • •
X	r is positive
x < y	r is negative
$\mathbf{x} = \mathbf{y}$	r = 0

7. Spearman's Rank Correlation Coefficient.

8. Find Karl Pearson's _____

X	8	3	11	9	6
y	5	8	13	20	28

r	Type of Correlation
r = 1.00	
0.30 < r < 0.80	
0.80 < r <1.00	
$\mathbf{r} = 0$	
r = -1.00	
-1.00 < r < -0.80	
-0.80 < r < -0.30	
0 < r < 0.30	
-0.30 < r < 0	
	<u> </u>

10.

Covariance of (x,y) =

 $SD_x =$

 $SD_v =$

11. If v = 3x+8; u = 8y-19; $r_{xy} = 0.80$

r_{uv} =

Correlation coefficient is unaffected by change / shift of origin as well as by change in scale.

12. If u = -3x+53; v = -18y+99; $r_{xy} = 0.70$

r_{uv} =

13. If u = -18x + 55; v = 16y + 100; $r_{xy} = 0.85$

r_{uv} =

14. If u = -8x + 19; v = -16y - 33; $r_{xy} = -0.56$

r_{uv} =

	Eind	Kanl	Dogn	eon'e	Cool
J •	Find	Nair	Teal	SUII S	Cuel
	X	30	60	90	50
	y	20	30	40	80
				_	
_					

Regression Analysis

After studying correlation between 2 variables, the process of estimating the value of one variable on the basis of other is known as regression analysis

$$\mathbf{x} = \mathbf{P}$$

r, b_{vx}, b_{vy} all are unit-free

Reg line of y on x is:

Reg line of x on y is:

Reg coefficient of y on x is = b_{yx} =

Reg coefficient of x on y is = b_{xy} =

1	7	
		•

b_{vx} =

b_{xv} =

 $\mathbf{b}_{yx} \cdot \mathbf{b}_{xy} =$

Therefore 'r' is G.M. of

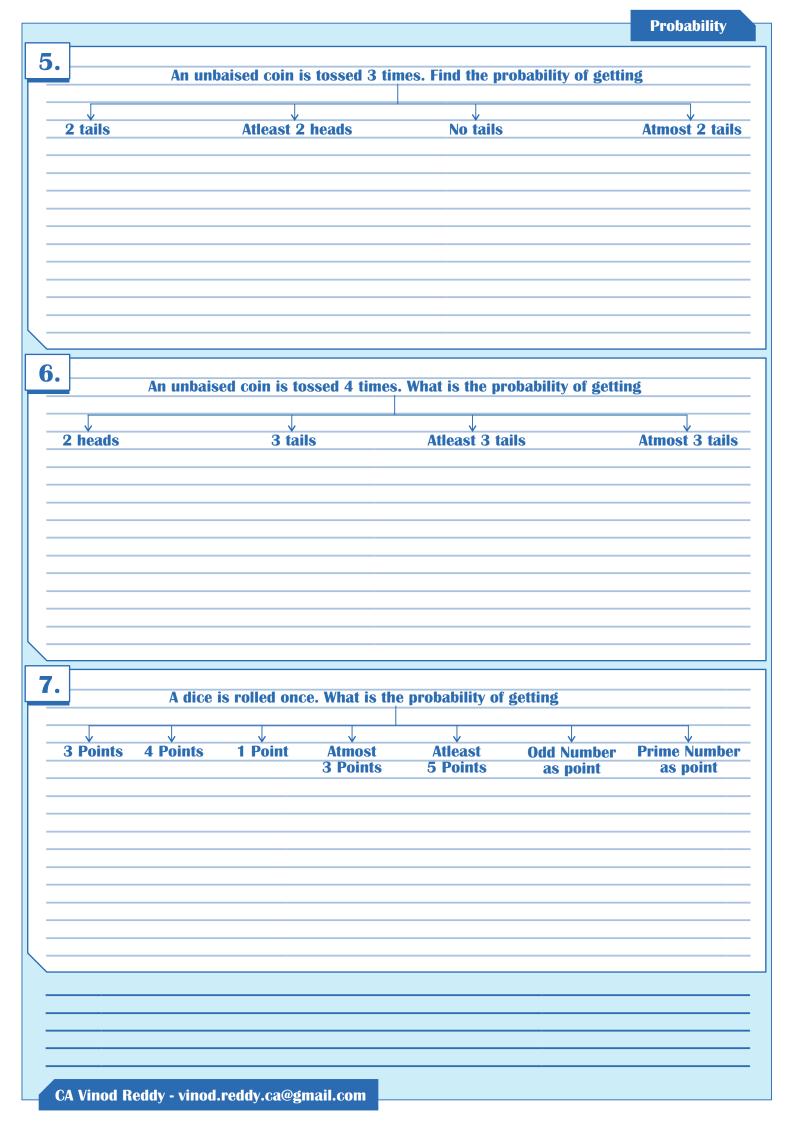
r	-b _{yx}	b _{xy}
0	0	0
+	+	+
_		

My Notes:

18.	If $\bar{x} = 30$, $\bar{y} = 90$, $\sigma_x = 5$, $\sigma_y = 8$, $r = 0.80$
	Find a. Reg line of x on y

b. Reg line of y on x

c. If x = 25, y = ?


d. If y = 85, x = 9

	1	
$\mathbf{b}_{yx} = \mathbf{r} \cdot \frac{\sigma_y}{\sigma_x}$	Therefore, b _{yx} . b _{xy}	Square of correlation coefficient
^	$= \mathbf{P} \cdot \frac{\mathbf{O}_{y}}{\mathbf{O}_{x}} \times \mathbf{P} \cdot \frac{\mathbf{O}_{x}}{\mathbf{O}_{y}}$	is equal to product of 2 regression coefficients.
$\mathbf{b}_{xy} = \mathbf{p} \cdot \frac{\sigma_x}{\sigma}$	$= \mathbf{r}^2$ $\mathbf{r} = \mathbf{b}_{yx} \cdot \mathbf{b}_{xy}$	Correlation coefficient 'r' is G.M. of
	$\mathbf{r}^2 = \mathbf{b}_{yx} \cdot \mathbf{b}_{xy}$	2 regression coefficients b _{yx} . b _{xy}

CA V	inod I	Reddy	- vinad	Lreddy	ca@øma	il con

	Correlation & Regression Analysis
19. If Reg. line of x on y is written in the form of	
If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
20. On solving 2 regression lines simultameously. If w	e get $x = 50$ and $y = 90$, then
Probable Error = $0.674 \times \left(\frac{1-r^2}{N}\right)$	
Standard Error = $\left(\frac{1 - r^2}{N}\right)$	
Coefficient of determination = Coefficient of Non-determination =	
25. 2 regression lines become identical i.e. they coincid	le when r = -1 or r = 1.
26. If $r = 0$; then regression lines are \bot to each other.	
When there is no correlation between 2 variables then regr	ression lines will be <u>1</u> to each other.

	Probability Probability	
1.	Probability is the	
2.	Classical Definition of Probability	
3.		
	Coin	
	Dice	
	Card	
	Daru	
4.		
	A coin is tossed 2 times what is probability of ge	tting
	↓	\
_2 h	leads 1 head Atleast 1 head	Atmost 1 head
		My Notes :
CA	/inod Reddy - vinod.reddy.ca@gmail.com	

	_		Probability
8.	Ac	ice is rolled twice what is the probability of getting	
		→ 7 points as sum	
		→ 8 points as sum	
		→ 9 or more points	
		→ Atleast 3 points	
		•	
		> Odd points on both dice	
		→ Odd points on atleast one dice	
		> Even points on both dice	
		-	
		→ 5 or 7 points	
		→ Sum as prime number	
		→ Odd-points on atleast one dice	
		→ Sum as odd number	

→ Sum as even number

9.	A card is drawn from a well shuffled	pack of 52 cards.	What is probability	of getting:
----	--------------------------------------	-------------------	---------------------	-------------

a. A diamond =

b. A King =

c. A Black Card =

d. A Black Queen =

e. A Jack =

10. P(AUB) =

P(A') =

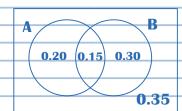
P(B') =

 $P(A \cap B) =$

P(A-B) =

P(B-A) =

 $P(A' \cap B') =$


 $P(A \cup B') =$

 $P(B \cup A') =$

 $P(A \triangle B) =$

P(AUBUC) =

11.

P(A) =

P(B) =

P(A')=

P(B')=

 $P(A \cup B) =$

 $P(A \cap B) =$

P(A-B) =

P(B-A) =

 $P(A' \cap B') =$

 $P(A \triangle B) =$

6. A, B are said to be mutually exhaustive events then : 7. A, B are said to be independent events when : 8. Events A & B are said to be P (A \cap B) = 0 P (A \cap B) = 1.00 P (A \cap B) = P(A) \times P(B) P(A) = P(B)		Probability
6. A, B are said to be mutually exhaustive events then : 7. A, B are said to be independent events when : 8. Events A & B are said to be P (A \cap B) = 0 P (A \cap B) = 1.00 P (A \cap B) = P(A) \times P(B) P(A) = P(B)	15. A, B are said to be mutually exclusive	e events then :
7. A, B are said to be independent events when : Events A & B are said to be If P (A \cap B) = 0 P (A \cup B) = 1.00 P (A \cup B) = P(A) \times P(B) P(A) = P(B) My Notes :	,	
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be		
7. A, B are said to be independent events when : Events A & B are said to be If P (A \cap B) = 0 P (A \cup B) = 1.00 P (A \cup B) = P(A) \times P(B) P(A) = P(B) My Notes :		
7. A, B are said to be independent events when : Events A & B are said to be If P (A \cap B) = 0 P (A \cap B) = 1.00 P (A \cap B) = P(A) \times P(B) P(A) = P(B) My Notes :		
7. A, B are said to be independent events when : Events A & B are said to be If P (A \cap B) = 0 P (A \cap B) = 1.00 P (A \cap B) = P(A) \times P(B) P(A) = P(B) My Notes :	6. A, B are said to be mutually exhaustive	e events then :
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0		
8. Events A & B are said to be P (A \cap B) = 0	7. A, B are said to be independent events	s when :
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:	71, D are said to be independent events	,e ,
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		
Events A & B are said to be $P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:	18.	
$P (A \cap B) = 0$ $P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:		lf .
$P (A \cup B) = 1.00$ $P (A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$ My Notes:	Events A & D are said to be	
P (A∩B) = P(A) x P(B) P(A) = P(B) My Notes:		
P(A) = P(B) My Notes :		
My Notes:		
		P(A) = P(B)
		My Notes :
CA Vinod Reddy - vinod.reddy.ca@gmail.com		

				Probabil	ity
19	2 dice are rolle	d. It is observed that	sum of points is 9. What	is probability that 4 has	s
13	appeared on on	ne of the dice?	sum of points is 9. What		
_					
_					
_					
-					
-					
_					
\rightarrow	7				
20	D (A (D)		D (A (D)		
	P (A/B) =		P(A'/B) =		
_					
	P (B / A) =		P(A'/B') =		
_	D (4 (D)		D (D)(A)		
_	P(A/B') =		P (B'/A) =		
_					
	P(B/A') =		P(B'/A') =		
	7				
21	If A. B are ind	lependent events th	en:		
	,				
_					
-					
_					
_					
-					
				My Notes:	
_					
_					
_					
_					

		Probability Probability
2.		
	8 Red 6 White	
	5 Black	
3	balls are drawn. What is proba	ability of getting
2 Red balls	Atleast 2 white Balls	↓ Atmost 1 Black Ba
_ nou sano	Attioust 2 Williams	Attion Dittor Di
3. 1. P(A∪B)	2. P(A∩B)	3. P(A∩B')
4. P(B∩A')	5. P(A'∩B')	6. P(A△B)
7. P(A∪B')	8. P(BUA')	9. P(A'∪B')
40 P(41 P1 10)	4.4 Dialo	
10. P(AUBUC)	11. P(A'∩	IBTIC)
	7	
	/	
		My Notes :
CA Vinod Reddy - vinod.re	ddy.ca@gmail.com	

24. If P(A) = 0.30, P(B) = 0.40, $P(A \cap B) = 0.15$. Find

P (A') =	D(A \land D) -
T(A) -	$\mathbf{P}(\mathbf{A} \triangle \mathbf{B}) =$
P(B') =	
	P(A/B) =
P(AUB) =	
P(A-B) =	P(B/A) =
P(B-A) =	
$P(A'\cap B') =$	P(A/B') =
P(A ∪ B') =	P(A'/B') =
P(B ∪ A ′) =	

Probability of A passing exam is 0.30. and B passing exam is 0.40. What is the probability that

Both will Only A Only B Atleast one One & Only Atleast one pass will pass will pass One will pass will fail

In a leap year selected at random what is probability of getting

53 Mondays 52 Mondays Atleast 52 Mondays 54 Mondays

In a non-leap year selected at random what is probability of getting

53 Sundays 52 Sundays 54 Sundays

								Probability
28.	In a voar e	alactad	at ranc	lom wh	at ie th	o nroha	bility of getting	
	iii a year s	Ciccicu	at rain	IOIII WII	at 15 til	C pi oba	onity of getting	
		-						—
	52 Tu	esdays					53.1	uesdays
29.	What is pro	obabilit	y that	15th d	ay of a	rando	mly selected month is Sund	ay?
l —								
l —								
30. -	X	30	60	00	120	150		
				90		150	Find E(x), SD _x , Varia	nce of x
	Prob. x	0.20	0.30	0.10	0.15	0.25		
l —								
31.	lf odds in f	avour o	f event	A are	3:8. F	ind P(A	A), P(A')	
						`		
32.	lf odds agai	nst even	t B are	8:13.	Find P	(B), P(B		
I —								
l —								
I								
l								
					.,			
CA	Vinod Reddy	y - vinod	.reddy.	ca@gma	ail.com			

33.	If odds in favour of event A are $3:11$; Odds against event B are $2:15$;
	A,B are independent events, then find :

P(A) =

P(B) =

P(**A**∩**B**) =

P(AUB) =

 $P(A' \cap B') =$

P(A-B) =

P(B-A) =

34.

Physics Maths 60 20 130 90

Find probability that a student likes

- a. Maths if it is known that he likes physics =
- b. Physics if it is known that he doesn't likes maths =

35		
33.	1	Ball

	The state of the s	
10 Red	2 Red	1 ball is drawn.
8 White	3 White	What is the probability that it is a red ball?

	Theoreti	cal Distributions
1.	Theoretical Dis	tributions
-		
	•	•
	→	→
	→	→
		→
	→	→
	>	
_		
_		
2.	Binomail's Distribution	
	Dinoman's Distribution	
	prob (x)	
	where,	
	n =	
	<u>p = </u>	
	x =	
	q =	
3.		
J.	4 coins are tossed. What is probability	of getting 3 heads
		<u> </u>
	Classical Approach	Binomial's Approach
		My Notes :
		My Notes:
	Vinod Reddy - vinod.reddy.ca@gmail.com	

		Theoretical Distributions
4.	5 coins are tossed. What is probab	ility of getting 3 heads
	social illustration of the	V 3
	Classical Approach	Binomial's Approach
_		
_		
—		
_		
5.		
J .	Mode of Binomial's distribution =	Largest integer contained in (n+1)P
		if (n+1)P is non integer. Data is uni-modal.
_		If (n+1)P is an integer, then data is bi-modal.
_		Modes are (n+1)P and (n+1)P-1
_		modeo are (ii-1)1 and (ii-1)1 1
•	E () N DO X DX	
6.	Freq (x) = N $x {}^{n}C_{x} p^{x}.q^{n-x}$	
_		
_		
_		
_		
_		
7 .	8 Coins are tossed 40,000 time	s. Find expected frequency of at most 7 heads?
		or ima expected frequency of at most i freads.
_		
—		
—		
-		
_		

5.	10 coins are tossed. Find probability of getting
a.	2 heads
-	O beads
0.	3 heads
C.	3 tails
d	4 tails
e.	5 or 7 heads
f.	4 or 5 or 6 heads
-6	Atmost 0 hoods
g.	Atmost 9 heads
<u>h.</u>	Atleast 2 heads
4	Atleast 1 tails
	ALIQUIS I WIII
j.	Atmost 2 tails
_	

	Theoretical Distributions
9. 2 dice are rolled what is probability of getting odd poir	its on atleast one dice
Classical Approach	Dinamial's Annuash
Classical Approach	Binomial's Approach
\	
10. 15 dates are selected at random. What is the probability	v of getting 4 Sundays ⁹
15 dates are selected at randoms what is the probability	-orgoning Touridays.
11. 4 x prob(x=4) = prob(x=2) for Binomial's distribution and	n=6. Find values of p,q?
	My Notes :
	My Notes:
	My Notes :
	My Notes:
CA Vinod Reddy - vinod.reddy.ca@gmail.com	My Notes:

			Theoretical Distribu	luons
12	5 dice are rolled. What is the probability	of getting at least 5	points on atmost	dice
	S also are relical. What is the probability	or Southing at roast of	- points on atmost	r-unou.
_				
-				
-				
_				
_				
-				
13.	Summary of Binomial's Distribution.			
_				
-				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
-				
_				

					THEOTE	
14.	n	p	q	Mean	SD	Variance
	20	0.20				
	80		0.60			
	120	0.05				
	200			45		
		0.20		50		
			0.20	80		
				100		80
	60	0.35				
	2,000		0.05			

	10,000	0.63			
15.	Prob (x) a	s per poiss	on's mode	=	
_					
16.	If m = 4. Fi	ind prob (x=	=5) for pois	son's variate.	

0.98

1	6. If $m = 4$. Find prob (x=5) for poisson's variate.				

8,000

~ ~ ~ ~ 4	ical			4
		I I I I I I I	4 4 4 4 4 4	

_	If SD of poisson's variate is 2. Find probability (-2.30 < $x \le 1$)
_	
18	If m = 3, for poisson's variate. Find prob $(x \ge 1)$, prob $(x > 1)$, prob $(3 \le x \le 5)$

	Ineoretical Distributions
19.	
n = 200, $p = 0.01$, find prob (x=2)	
Poi	sson's Model
Binomial's Model	3333
20. If m = 5. Find prob ($-8 \le x \le 1.56$) for poisson's var	iate
21. $p(x=3) = p(x=4)$. Find mean of Poisson's Distribution.	

23. Summary of Poisson's Distribution	
20. Summary of Poisson's Distribution	
CA Vinod Reddy - vinod.reddy.ca@gmail.com	
CA VIIIOU Keudy - VIIIOU.Feudy.Ca@gmaii.Com	

24. Normal Distribution

- 1. It is applicable only for distribution of a 'continous variable'
- 2. Derived by Karl Gauss :- known as Gaussian's theorem.
- 3. It is based on assumption of Normality.
- 4. As per assumption of Normality a variable is said to be normally distributed if 50%

observations are less than AM and 50% of the observations are more than AM.

- 5. prob(x < w) = 50%
- **Prob** (x > W) = 50%
- **6.** Z = Normal curve wefficient = $\left(\frac{x u_1}{\sigma}\right)$
- 7. There are 2 parameters of normal distribution namely u_i , σ^2 Therefore
- It is a Bi-parametric distribution
- 8. Normal curve is a Bell-shaped curve, symmetrical about AM.
- 9. In probability distribution of this type:
 - $Prob(x \le 50) = prob(x \le 50)$
 - Prob(x > 85) = prob(x > 85)
- Therefore, we can say that: probability that a particular variable will assume a specific value is always 0.
- 10. AM= Median= Mode
- **11. Median = (Q_3 + Q_1) = W_1 = mode**

2

12. Q.D. = $(\mathbf{Q}_3 - \mathbf{Q}_1) = \mathbf{0.6750} \times \mathbf{SD}$

2

- -13. MD = 0.80 X SD
 - **14.** $Q_3 = W + 0.675\sigma$

 $\mathbf{Q}_1 = \mathbf{W} - \mathbf{0.675} \sigma$

- 15. Φ (a) represents area from - ∞ to a.
 - 16. Total area covered by normal curve = 1.00= 100%
- 17. Expected frequency
 - 18. For normal distribution: SD > MD > QD
 - 19. Points of inflexion for normal distribution are

25. For Normal Distribution

1. Relation between MD & SD

MD =

2. Relation between QD & SD

QD=

3. Relation between MD & QD

Theore	ti co	I I C I II I	autions
	uoa		JULULUIN

26 .	\mathbf{Q}_3	Q ₁	Q.D.	M.D.	S.D.
	50	20			
	69.60	29.40			
	86	40			
	91.80	40.63			
	81.88	43.63			
	28.93	12.13			
	60.86	12.98			

27.

QD < MD < SD

		Derivatives & Integration
1.	What is Deriva	ive or Differential function?
_		
2.	Davis ation of 6	
Z .	Derivative of f	
_	f'(x) by first pri	nciple =
		•
3.	f(x)	f'(x)
3.	X	
	X ²	
	X ³	
	Log x	
	a ^x	
	e ^x	
	√X	
	constant = k	
4.	d (->) -	
	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{u}+\mathrm{v})=$	
	d () =	
—	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{u} \cdot \mathbf{v}) =$	
	d (
_	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{u} \times \mathbf{v}) =$	
—	$\frac{d}{dx} \left(\frac{u}{v} \right) =$	
—		
		My Notes:
CA	Vinod Reddy - vi	nod.reddy.ca@gmail.com

a)
$$y = 3x^2 + 5x - 2$$

b)
$$y = a^x + x^a + a^a$$

c)
$$y = \frac{1}{3}x^3 - 5x^2 + 6x - 2 \log x + 3$$

$$\mathbf{d)} \ \mathbf{y} = \frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{Log} \ \mathbf{x}}$$

e)
$$y = \frac{2x}{3x^3+7}$$

f)
$$y = 2^x \cdot \text{Log } x$$

g)
$$y = 5^x \cdot x^{10}$$

h)
$$y = \frac{3x + 5}{5x + 8}$$

Danin of in oa	O.	Intoduction
Derivatives	W.	
Delliative	_	B. ac

6.	Chain Rule	Find dy	$if y = a^{(2x+3)}$
		dx	

7. Find $\frac{dy}{dx}$ if

a.
$$y = 5^{(2x+3)}$$

b.
$$y = (8x+3)^2$$

$$\mathbf{c.\ y} = \mathbf{e}^{\log x}$$

d.
$$y = \sqrt{(5x+13)}$$

e.
$$y = \sqrt{2x^2 + 5x + 3}$$

$$f. y = \sqrt{\text{Log } x}$$

8. y = f(x)

dy	= f'(y)
dv	$-1(\lambda)$

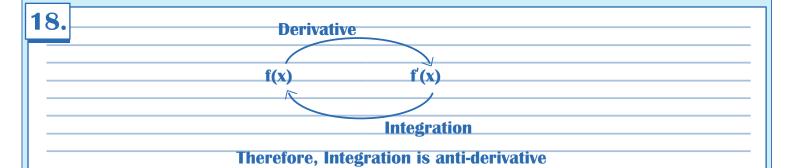
 $f(x)^n$

 $\mathbf{a}^{\mathbf{f}(\mathbf{x})}$

 $e^{f(x)}$

Log [f(x)]

 $\sqrt{f(x)}$


My Notes:

	Derivatives & Integration
9. $y = 2t^3$ $y = 2ht$ Find dy	
$y = at^3$, $x = 2bt$. Find $\frac{dy}{dx}$	
$y = x^{x}. \text{ Find } \frac{dy}{dx}$	
$y = x^x$. Find $\frac{dy}{dx}$	
11. $y = \sqrt{\frac{1-x}{1+x}}$ Find $\frac{dy}{dx}$	
$y - \sqrt{1+x}$ Find $\frac{dx}{dx}$	
12. Find d^2y If $y = 16x^3 + 99x^2 + 18x + 54$	
dx ²	

	Derivative:	s & Integration
4.0		
13	Find the gradient of curve $y = 3x^2 - 5x + 4$ at point $(1,2)$	
_		
_		
_		
(-		
14.	If $f(x) = x^k$ and $f'(1) = 10$; then value of k is	
_		
_		
_		
_		
4 =		
15	$5. \mathbf{y} = \mathbf{e}^{\mathbf{2x}} \mathbf{Find} \frac{\mathbf{dy}}{\mathbf{dx}}$	
	— ux	
_		
-		
_		
_		
_		
-		
-		
-		
_		
-		
_		
	My	Notes:
_		

16.	f(x) =	$3x^2 - 2x + 5$	Find f'(x)
		2x + 1	- IIId I (X)

	_	
19).	
	$\int \mathbf{x}^{\mathbf{n}} \cdot \mathbf{dx} =$	$\int \mathbf{k} \cdot \mathbf{dx} =$
_		
_	$\int \mathbf{a}^{\mathbf{x}} \cdot \mathbf{dx} =$	$\int 1 \cdot \mathbf{dx} =$
_		
_		
_	$\int \mathbf{e}^{\mathbf{x}} \cdot \mathbf{dx} =$	$\int \frac{1}{x} \cdot dx =$
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

 $20. \quad \int \overline{\mathbf{x} \cdot \mathbf{dx}} =$

 $\int \frac{1}{\sqrt{X}} \cdot dX =$ $\int e^{-3x} \cdot dX =$

 $\int 3^{x} \cdot dx =$

 $\int x \sqrt{x} \cdot dx =$

 $21. \int \left(x + \frac{1}{x^2}\right) \cdot dx =$

22.			6 3	×+	e-4x	•	dx	_
	J	•	_			,	/-	

24.		^ X ³		
		- (n ² 1		• ax =
	J	$(x^{-} + 1)$) "	

(Solve by Method of Substitution)

Dominiotingo	o.	Indodustic.
Derivatives	OX.	integration

25.
$$\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} Log \left| \frac{x-a}{x+a} \right| + c$$

26.
$$\frac{1}{a^2-x^2} dx = \frac{1}{2a} Log \left| \frac{a+x}{a-x} \right| + c$$

27.
$$\int \frac{1}{x^2+a^2} dx = \text{Log} \left| x + \sqrt{x^2+a^2} \right| + c$$

28.
$$\int \frac{1}{x^2-a^2} dx = \text{Log} \left| x + \sqrt{x^2-a^2} \right| + c$$

30.
$$\int x^2 + a^2 \cdot dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + c$$

32.
$$\int \frac{f'(x)}{f(x)} dx = \text{Log } f(x) + c$$

33. Integration by parts
$$\int (\mathbf{u} \cdot \mathbf{v}) \cdot d\mathbf{x} = \mathbf{u} \int \mathbf{v} \cdot d\mathbf{x} \cdot \int \left[\frac{d\mathbf{u}}{d\mathbf{x}} \times \int \mathbf{v} \cdot d\mathbf{x} \right] \cdot d\mathbf{x}$$

34. If
$$\int f(x) \cdot dx = g(x) + c$$
; then
$$\int_{a}^{b} f(x) = g(b) - g(a)$$

My Notes:

			Logical Reasoning
1. Series is class	sified into		
A. Number Ser	ies.		
B. Alphabet Se	eries.		
C. Letter Serie	es.		
2. 2, 7, 16, ?, 4	6 67 02		
a. 29	b. 31	c. 41	d. None
- u. 20	N. 0 I	0. 11	u. 140110
3. 2, 5, 10, 17,	P, 3 7		
a. 30	b. 21	с. 25	d. 26
4. 1, 1, 4, 8, 9,	07 16 0		
4. 1, 1, 4, 8, 9, 2 a. 32	b. 48	с. 64	d. 50
u. 02	0. 4 0	0. 04	u. ov
_			
5. 120, 99, 80,		20	
a. 48	b. 40	с. 30	d. None
6. 10, 11, 22,	23, 46, 47, 94, 95		
a. 96	b. 110	с. 190	d. 180
7. 1000, 500, 2			
a. 69	b. 25	с. 60	d. 62.50
CA Vinod Reddy - vi	inod.reddy.ca@gmail.com		

																					Log	ical	Rea	asoi	ning	
	8.	57	760	, 9	60.	19	2.	P. 1	6.	8																
		a.		, •			_, 		64						C.	38 4	4				d	. No	one	of t	hes	e
\																										
	9.	5,	2 5	, 3	6, (6, 8	3, 6	4, (6 2 5	, p																
		a.	25						b. 3	90	62 5	5					C	. 12	25_					_d.	5	
	\subseteq																									
1	0.	2,	3,	5,	7 , '	11,	13	, p																		
		a.	19					lb	. 1'	7					C	15					d	. 2				
	_																									
1	1.												Coc	ling <												
							Lett	er (Codi	ng ∢							► Nu	mb	er C	odiı	ıg					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	A	В	C	D	E	F	G	Н	ı	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	2.	lf	MEN	ITIO	N is	COC	led	as N	IFO	J JP () th	en E	XPI	RT	will	be	cod	ed a	s -							
1	3.	lf '	VIN	DD i	s co	odeo	d as	WH	ION	E th	en S	SUS	HEE	L w	ill b	e co	odec	as								
1	_																									

	Logical Reasoning
14. If MOBILE is coded as NQEMQK then ASHWAT will be coded as -	
15. If MAT is coded as 34 then PILLAR will be coded as -	
16. Find the odd man out -	
i. January, May, December, April	
ii. 10, 14, 16, 28, 17, 30, 38, 42	
iii. 25, 49, 35, 81, 121, 64, 4	
iv. 78, 91, 26, 52, 130, 117, 82, 143, 39	
v. 1, 64, 27, 16, 125, 343	
vi. Physics, Biology, Chemistry, Accounts	
vii. Book, Pen, Pencil, Bike	
- The Book, I only I onon, Bike	
17. Find the odd man out - 49, 39, 36, 225	
20 . only	
39 : only	
225 : only	
36 : only	
49 : only	

	Logical Reasoning
18.	
	<u> </u>
*	
	*
	₩
10	
19. North then right	
20. North left then left then right	
0.1	
21. West then left then right	
22. Southwest then left then right	
Southwest their felt their right	
CA Vinod Reddy - vinod.reddy.ca@gmail.com	
- Industrial State Small Comment	

23. Northwest then rig	ξhi
------------------------	-----

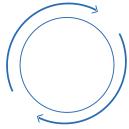
24.	Seating	arrangements	are classified in	to
-----	---------	--------------	-------------------	----

i)

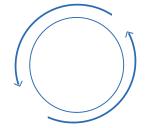
ii)

iii)

25. A B C D E F facing south

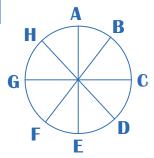

Who is to the right of A:

Who is to the left of B:


Who is to the immediate right of C:

Who is to the immediate left of E:

26.



Clockwise

Anti-clockwise

27.

If A, B, C, D, E, F, G, H are facing centre, then

A fa	acing
В	
C	
D	
E	
F	
G	
Н	

48.	
	1. Father's Father
	2. Father's Mother
	3. Father's Brother
	4. Father's Sister
	5. Children of Uncle
	6. Wife of Uncle
	7. Children of Aunt
	8. Husband of Aunt
	9. Mother's Father
	10. Mother's Mother
	11. Mother's Brother
	12.Mother's Sister
	13. Children of Maternal Uncle
	14. Wife of Maternal Uncle
	15. Grandfather's Son
	16. Grandfather's Only son
	17. Mother or Father's Mother
	18. Grandmother's Mother
	19. Grandmother's Father
	20. Grandson's Daughter
	21. Grandson's Son
	22. Grand-daughter's Son
	23. Grand-daughter's Daughter
	24. Daughter's Husband
	25. Son's Wife
	26. Husband's Father
	27. Husband's Mother
	28. Wife's Brother
	29. Wife's Sister
	30. Wife's Father
	31. Wife's Mother
	32. Brother's Son
	33. Brother's Daughter
	34. Sister's Son
	35. Sister's Daughter
	36. Brother's Wife
	37. Sister's Husband
	38. My father's son is my
	39. My father's daughter is my
	40. My father's father is my

Logical Reasoning

41. My mother's brother is my	
42. My daughter's husband is my	
43. My son's wife is my	
44. My Brother's wife is my	
45. My brother's daughter is my	
46. My brother's son is my	
47. My wife's father is my	
48. My wife's mother is my	
49. My wife's sister is my	
50. My wife's brother is my	
51. My father's wife is my	
52. My mother's husband is my	
53. My son's daughter is my	

54. My daughter's son is my