

SCARED OF MATHEMATICS ? No More Now...

REVISE ALL CONCEPTS in Just 8 Hours!

Sr. no	Name	Marks	Page no.
1	Ratio & Proportion, Indices and Logarithms	06	1-3
2	Equations & Linear Inequalities	05	4-5
3	Logical reasoning	20	6-8
4	Statistical Discription of Data & Sampling	08	9-12
5	Index Numbers	04	13-14
6	Correlation and Regression	05	15-17
	TOTAL	48	

Sr. no	Name	Marks	Page no.
7	Mathematics of Finance	06	1-3
8	Sets, Relations & Functions , Sequence and Series and Permutations & Combinations	11	22-23
9	Measures of Central Tendency and Measures of Dispersion	11	24-28
10	Probability & Random Variables	06	29-31
11	Theoretical Distributions	06	32-35
12	Limits, Differentiation, Application of Differentiation & Integration	04	36-40
	TOTAL	52	

HIGHEST ALL INDIA RANKERS & HIGHEST PASSING PERCENTAGE

Mumbai's Most Preferred CA Coaching

Twins Shine bright in FINAL CA!

"I thoroughly enjoyed the lectures and appreciated the clarity of the concepts presented. The lectures were engaging and fun, which helped me retain the information better. I particularly enjoyed Dhawal sir's sense of humor and appreciated Sagar sir's discipline. I am grateful to the entire Endnovate team for their efforts."

CA SANSKRUTI PAROLIA FINAL CA NOV'23 RANKERS

"Good Conceptual Teaching Regular Test Series – Timely and accurate checking Good Summary books especially for DT SFM and costing Thank you to the entire Ednovate team, including teachers, support staff etc."

CA SHRUTI PAROLIA FINAL CA NOV'23 RANKERS

Our ARS CA INTER MAY'22, MAY'23, NOV'23 & MAY'24

PRACHI NANDU

CA INTER MAY'23

MARVI LODHA CA INTER MAY'23

NAMAN GABHAWALA CA INTER MAY'24

PIYUSH KOTHARI CA INTER MAY'23

ARYAN HOSANGADY CA INTER MAY'22

41

Â7

RAYNA DOSHI CA INTER MAY'24

DHAIRYA DOSHI CA INTER MAY'24

RESHI KOTHARI

CA INTER MAY'24

HIMANSHI CHHAJED CA INTER MAY'23

VANSHIKA LOHANA CA INTER MAY'22

CA INTER MAY'24

YUKTA SATPALKAR CA INTER MAY'22

PRANJAL MUNDRA CA INTER MAY'23 **46**

Our AIRs Ca final May'22, Nov'23

SANSKRUTI PAROLIA **CA FINAL NOV'23**

MAHESH TAPADIYA CA FINAL MAY'22

AIR

SHRUTI PAROLIA CA FINAL NOV'23

2

MAYANK HOLANI CA FINAL NOV'23

KUSHAGRA AGARWAL CA FINAL MAY'22

RITIK SANGHAVI CA FINAL MAY'22

PARTHIV CHABRIA CA FINAL NOV'23

HIMANSHU KHATRI CA FINAL MAY'22

PINAL KHETAN CA FINAL NOV'23

SHRAVAN MUNDRA CA FINAL NOV'23

ΔIR

SHOURYA TIBREWALA CA FINAL MAY'22

DEEPTHI PACHIPULUSU CA FINAL MAY'22

SHREY AGARWAL CA FINAL MAY'22

AIR

CA FINAL NOV'23

Early bird batch will have a clear one month lead over the regular batch. This extra month will prove to be a big bonus for one extra revision of the entire syllabus and taking up the test series after full preparation.

This additional time will remove all your last minute tensions and anxiety and will make you more confident for the examination.

INTER CA SEPT'25

	LECTURE SCHEDULE	
COMMENCEMENT	COMPLETION	TIMING
26.09.2024	30.05.2025	7-8 HOURS/DAY

	TEST SCHEDULE	
MONTHS	NO. OF TESTS	MARKS
Oct - Apr	14 (2 Test / Month)	50
May - Aug	12 (6 Subjects x 2)	50
ridy - Aug	12 (6 Subjects x 2)	100

Only Classes to conduct 38 tests with KNOW YOUR MISTAKE Report

[6 Marks]

RATIO & PROPORTION

Meaning of Ratio:

proportion if

If a and b are two quantities of the same kind (in same units), then the fraction a/b is called the ratio of a to b. It is written a:b. Thus, the ratio of a to b = a/b or a:b. The quantities a and b are called the terms of the ratio, a is called the first term or **antecedent** and b is called the **second term or consequent**. For example, in the ratio 3:2, the numbers 3 and 2 are terms of the ratio. 3 is the first term or antecedent and 2 is the second term or consequent.

1. The ratio compound of the two ratios a:b and c:d is ac:bd.

For example compound ratio of 3: 4 and 5: 7 is 15: 28.

Compound ratio of 2: 3, 5: 7 and 4: 9 is 40: 189.

- (i) a^2 : b^2 is called duplicate ratio of a: b. Duplicate ratio of 2: 3 is 4: 9. 2.
 - (ii) a^3 : b^3 is called triplicate ratio of a: b. Triplicate ratio of 2: 3 is 8: 27

(iii) \sqrt{a} : \sqrt{b} is called sub-duplicate ratio of a: b. sub duplicate ratio of 4: 9 is 2:3.

- (iv) $a^{1/3}$: $b^{1/3}$ is called sub-triplicate ratio of a: b. sub triplicate ratio of 8: 27 is 2:3.
- 3. One ratio is the inverse of another if their ratio compound is 1: 1.
 - Thus a:b is the inverse of b:a and vice-versa.

PROPORTION

Meaning of Proportion: The equality of two ratios is called proportion.

If, a:b=c:d we say that a, b, c, d are proportional and, we write a:b::c:d Here and d are known as extremes and b, c are known as means, d is called the called fourth proportional to a, b and c. We always have: Product of Means = Product of Extremes

Continued Proportion: The quantities a, b, c, d,... are said to be in continued

 $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \dots$

If *a*, *b*, *c* are in continued proportion then $\frac{a}{b} = \frac{b}{c}$ or $b^2 = ac$.

then b is called mean proportional between a and c. Also c is called third proportional to a and b.

INDICES

$\ln a^x$	a=Ba	ase x = power / exponent / Index		
Laws o	f Indic	es		
	1.	$a^m \times a^n = a^{m+n}$	8.	a ⁰ = 1
	2.	a ^m	9.	a ^{-m} = <u>1</u>
		$\frac{1}{a^n}$		a ^m
	3.	$(a^m)^n = a^{mn}$	10.	If $a^m = x_{1/2}$
				Then $\mathbf{a} = x^{/m}$
	4.	$(ab)^n = a^n \times b^n$	11.	If $a^m = a^n$
				Then m = n
	5.	$(a)^n _ a^n$	12.	If $a^m = b^m$
		$\left(\overline{\mathbf{b}}\right)^{-}\overline{\mathbf{b}^{n}}$		Then a = b
	6.	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$	13.	$(a)^{x} (b)^{x}$
				$\left(\overline{\mathbf{b}}\right) = \left(\overline{\mathbf{a}}\right)$

Q				
	7.	$\sqrt{a} = a^{\frac{1}{2}}$		
		$a\sqrt{a} = a^{\frac{3}{2}}$		

 $a^2 \sqrt{a} = a^{\frac{5}{2}}$

14. If $a^3 + b^3 + c^3 = 3abc$ Then either a+b+c=0 Or a=b=c(Both simultaneously not possible)

т /ith f 1

a-b b-c c-a	
1. $x^{ab} \times x^{bb} \times x^{ca}$ is equal to	$5. \qquad \qquad$
	$\frac{ \mathbf{a}+\mathbf{b} ^{\lambda}}{ \mathbf{y} ^{\mathbf{b}^{2}}} \times \mathbf{b}+c \sqrt{\frac{\lambda}{ \mathbf{y} ^{\mathbf{c}^{2}}}} \times \mathbf{c}+a \sqrt{\frac{\lambda}{ \mathbf{y} ^{\mathbf{a}^{2}}}}$
	is equal to
2. (2.2)	6. 1 1 1
$(x^{a})^{(a^{2}+ab+b^{2})}$ $(x^{b})^{b^{2}+bc+c^{2}}$ $(x^{c})^{c^{2}+ca+a^{2}}$	$\left(\begin{array}{c} \frac{b+c}{r}\\ r^{C-a}\end{array}\right)^{\overline{a}-b} \left(\begin{array}{c} \frac{c+a}{r}\\ r^{\overline{a}-b}\end{array}\right)^{\overline{b}-c} \left(\begin{array}{c} \frac{a+b}{r}\\ r^{\overline{b}-c}\end{array}\right)^{\overline{c}-a}$
$\left(\frac{\overline{x^{b}}}{x^{b}}\right)$ $\left(\frac{\overline{x^{c}}}{x^{c}}\right)$ $\left(\frac{\overline{x^{a}}}{x^{a}}\right)$	
is equal to	is equal to
3.	$7. \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$
$\left \left(\frac{x^a}{b} \right) \times \left(\frac{x^b}{c} \right) \times \left(\frac{x^c}{a} \right) \right $	$\frac{1+a^{m-p}}{m} + a^{m-p} + a^{m-p} + a^{m-p} + a^{p-m} + a^{p-m$
$\begin{pmatrix} x^{\circ} \end{pmatrix} \begin{pmatrix} x^{\circ} \end{pmatrix} \begin{pmatrix} x^{\circ} \end{pmatrix}$	is equal to
is equal to	
$\left(\begin{array}{c} 4 \\ (x^{b})^{a} \\ (x^{c})^{b} \\ (x^{a})^{c} \end{array}\right)^{c}$	
$\left \left(\frac{x}{x^{c}} \right) \times \left(\frac{x}{x^{a}} \right) \times \left(\frac{x}{x^{b}} \right) \right $	
is equal to	
	LOGARITHM
m	
$a = b \Rightarrow$ Exponent form	log with base $e \Rightarrow$ Natural logarithm
$m = \log_a b \Rightarrow Logarithmic form$	$\lfloor \log \text{ with base } 10 \Rightarrow \text{common logarithm} \rfloor$
$1 \log(ab) = \log a + \log b$	9 $\log(a+b) = N_0 \text{ property}$
7 . (a)	$10 \log(1 \rightarrow \text{Not defined})$
$\log\left(\frac{a}{b}\right) = \log a - \log b$	
3. Lag(ab) Laga Laga Laga	11. $log(-5) \Rightarrow$ Not defined
$\log\left(\frac{1}{C}\right) = \log a + \log b - \log C$	
4. $\log\left(\frac{a}{a}\right) = \log a - [\log b + \log c]$	12. If $\log_a m = \log_a n$
	Then m=n
= log a - log b - log c	
5. loga ^m = mloga	$\frac{13.}{\log_{b}a} = \frac{1}{\log_{b}b}$
$0. \log_a \alpha = 1$	$-\frac{14}{\log_{b}a} = \frac{\log_{x}a}{\log_{b}b}$
7 log 1= 0	$\frac{\log_x \mathbf{D}}{15 \qquad x \log_x \mathbf{a} - \mathbf{a}}$
r . $\log_a r = 0$	$\lambda = a$
8. $(\log a)^m = N_0 \text{ property}$	

				÷	MCO					
1	Anand og	rns ₹ Q∩ ii	n 7 hours an	d Pramor	1 ₹ Q() in 1	2 hours	The ratio	of their of	arninas	ic
1.	$(a) 32 \cdot 21$	113 \ 00 11	(h) 23	· 12	(c)	2 110urs. 8 · 9		(d) 18·2	arrings a	15
2	$\frac{(a) 52 \cdot 21}{\text{If } A \cdot B = 7}$	· 2 and I	(0, 2) B·C = 3·5	then A · F	3 · C is	0.5		(0) 10.2	5	
L.	(a) 9:6:	10	(b) 6 :	9:10	(c)	10:9:6	5	(d) 7:8:9)	
3	The first t	ree term	s of a prope	ortion are	30 40 an	d 60 Find	, 1 the four	th propor	, tional	
5.	(a) 90		(b) 60		(c)	80		(d) 75	cionac.	
4	Find the n	nean pror	ortion betw	een 3 and	127	00		(0) 15		
т.	(a) 10		(h) 12	een 5 and	(c)	9		(d) 14		
	(0) 10		(0) 12		(0)	5		(0) 14		
5	lf	1	1 1 is							
5.	$\frac{1}{2^{x}} = 3^{y} =$	$=6^{-z},\frac{1}{r}+$	$\frac{1}{v} + \frac{1}{z}$							
	(a) 1	л	<u>y 2</u> (b) 0		(c)	2		(d) 3		
	(0) 1		(6) 0		(C)	<u> </u>		(0) 5		
6	If $3^x = 5^y$	$=(75)^{z}$ th	en							
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	(a)	1 2 1		(b) 2	1 1				
	\~/	-+	,		-, <u>-</u> v	$+\frac{1}{v}=\frac{1}{7}$				
	(c)	$\frac{x - y - 2}{1 - 1}$	1	($\frac{\lambda}{1}$	$\frac{y}{1} \frac{2}{2}$				
	(0)	$\frac{1}{r} + \frac{1}{r} = -\frac{1}{r}$			r	+=				
		л у .	<u> </u>		Л	y 2				
7	If $\sqrt{6}$	$+\sqrt{5}$	$\sqrt{6} - \sqrt{5} + 1$	en the vo	lue of 1	1 is				
1.	$a = \frac{\sqrt{6}}{\sqrt{6}}$	$\frac{1}{\sqrt{5}}, b =$	$=\frac{\sqrt{6}}{\sqrt{6}}$		$\frac{1}{a^2}$	$+\frac{1}{b^2}$				
	(a) 486	- \\ J	(b) 484	. ()	c) 482		(d) 50()		
	(4) 100		(0) 10	· · ·	0, 102		(0, 500			
8.	Given log,	= 0.3010	and log, =	0.4771 th	e value o	f loa 6 is				
	(a) 0.9030		(b) 0.9	542 (c) 0.7781		(d) 0.1	761		
9.	$\log_2 x + \log_2 $	$\log_4 x + \log_4 x$	$g_{16} x = 21/4$	4, these 3	(is equal	to				
	(a) 8	04	(b) 4	. (c) 16		(d) 2			
10.	Given tha	$\log_{10} x$	= m + n - 1 of	and log.	v = m -	n, the va	lue of lo	$g_{10}(100x)$	(v^2) is	s expresse
	terms of r	n and n a	s:		/	, -		-10 (
	(a) 1 - m	+ 3n	(b) m	– 1 + 3n	(c)	m + 3n +		(d) m ^{2 - r}	12	
Answ	ers									
1	2	3	4	5	6	7	8	9	10	
α	a	с	с	b	α	с	с	a	a	
				1	1	1	1	1		1

Ċ

		[5 Marks]	
		<u> </u>	

QUADRATIC EQUATION An equation of the form $ax^2 + bx + c = 0$ where x is a variable and a, b, c are constants with a $a \neq 0$ is called a quadratic equation or equation of the second degree. Sum and Product of the Roots: Let one root be $\, {\it l} \,$ and the other root be $\, {\it eta} \,$ hus sum of roots $= -\frac{b}{a} = -\frac{coefficient of x}{coefficient of x^2}$ So the product of the roots $=\frac{c}{a}=\frac{cons \tan t \, term}{coefficient of x^2}$ **HOW TO CONSTRUCT A QUADRATIC EQUATION** For the equation $ax^2 + bx + c = 0$ we have $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ or $x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$ or $x^{2} - (Sum of the roots)x + Pr oduct of the roots = 0$ or **NATURE OF THE ROOTS** $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ i) If $b^2 - 4ac = 0$ the roots are real and equal; ii) If $b^2 - 4ac > 0$ then the roots are real and unequal (or distinct); iii) If $b^2 - 4ac < 0$ then the roots are imaginary; iv) If $b^2 - 4ac$ perfect square $(\neq 0)$ the roots are real, rational and unequal (distinct); v) If $b^2 - 4ac > 0$ but not a perfect square the rots are real, irrational and unequal. **Cubic Equations** A cubic equation is a polynomial equation of degree tree and it is of following form $ax^{3} + bx^{2} + cx + d = 0$ [a ≠ 0] $\alpha, \beta and \gamma$ are the roots of equation Sum of roots $\Rightarrow \alpha + \beta + \gamma = \frac{-b}{a}$ Product of roots $\Rightarrow \alpha \beta \gamma = -d/a$ $\alpha \beta + \beta \gamma + \alpha \gamma \Rightarrow c/a$

EQUATIONS & INEQUALITIES

																					[2	0 Ma	rks]
							N	umbe	er Se	ries	, Co	ding	& D	ecoding	[5 N	1ark	s]						
											NUM	1BEF	R SER	RIES									
Ex	am	nple	1: F	ind the	miss	sing	term	n of t	he s	erie	s 2,	7,1	6,	46	, 67	, 92							
Ex	plo	anat	ion:	Here th	ie te	rms	of tł	ne se	ries	are	+5,	+9,	+13,	+17, +	21,	+25	•••						
Th	us	, 2 +	+ 5 =	= 6; and	7 +	9 =	16	••															
So	m	nissiı	ng te	erm = 1	6+3	13 =	29																
Ex	am	nple	2: F	ind the	wro	ng te	erms	s of t	he se	erie	s 9,	29,	65, 1	126, 21 [.]	7, 34	4							
Ex	plo	anat	ion:	2 ³ +1;3	3 ³ +	1; 4³	3 + 1	;															
He	ere	29	is w	rong ter	m o	f ser	ries																
										Α	LPH	ABE	T SE	RIES									
Al	ph	abe	t sei	ries cons	sists	ofle	etter	s of t	the c	alph	nabe	t plo	aced	in a spe	ecific	pat	tern	. For exe	amp	le, t	he s	eries	are
in	the	e fo	llow	ing ord	er of	f the	nun	nbers	5.														
1	ī	2	3	4 5	6	7	8	9	10	11	12	13	14	15 16	17	18	19	20 21	22	23	24	25	26
4		В	С	DE	F	G	н	1	J	К	L	М	Ν	O P	Q	R	S	ΤU	V	w	X	Y	Z
2	6	25	24	23 22	21	20	19	18	17	16	15	14	13	12 11	10	9	8	7 6	5	4	3	2	1
Ex	an	nple	3: F	ind the	next	: terr	n of	the	serie	s B	KS, I	DJT,	FIU,	HHV?								·	
Ex	plo	anat	ion:	In each	tern	n, th	e fir:	st let	ter i	s m	oved	d tw	o ste	ps forw	ard,	the	seco	ond lette	er on	e ste	ep b	ackw	/ard
ar	nd t	third	d let	ter one	step	o for	warc	l to c	btai	in tł	ne co	orres	spon	ding let	ter c	of th	e ne	xt term.	Sot	he r	niss	ing t	erm
is	JG۱	W.											-									-	
Еx	am	nple	4: If	in a cer	tain	lang	guad	je M۱	/STIF	-Y is	s coc	led o	as NZ	ZTUJGZ,	how	/ is №	1ENE	SIS cod	ed ir	h thc	ıt la	nguo	ıge?
Ex	plo	inat	ion:	Clearly,	eac	h let	ter i	n the	wor	d M	YST	IFY is	s mo	ved one	step	for	ward	l to obto	in tł	ne co	orres	pone	ding
let	tte	r of	the	code.																			
											М	ΥS	TIF	Y									
												+1	\downarrow										
											N	ZΤl	JJG	Z									
So	, ir	n ME	ENES	SIS, N w	ill be	e coo	ded	as O,	Εa	s F,	Μa	s N (and s	so on. T	hus,	the	cod	e becon	nes N	IFOF	TJT.		
Ex	am	nple	5: If	f PAINT i	is co	ded	as 7	4128	3 an	d E>	KCEL	is c	odec	l as 935	96,	ther	۱ ho	w would	l you	ı en	code		
A١	ICI	ENT	?																-				
Еx	plo	anat	ion:	Clearly,	, in t	he g	iven	code	e, th	e al	lpho	bets	s are	coded	as fo	ollov	vs:						
Р		А			N	1	Т		Е		Х		С	L									
7		4		1	2		8		9		3		5	6									
So), ir	n Al	NCIE	NT, A is	cod	ed o	ıs 4,	N is	cod	ed	as 2	, C	as 5,	l is co	ded	as 3	, E c	us 9, an	dТ	as 8	. He	nce,	the
со	rre	ect c	ode	is 4251	928	•																	
Ex	am	nple	6: 1	.0, 14, 1	6, 1	8, 23	3, 24	i and	l 26														
(a)) 2(6		(b) 1	7		(c) 23			(d)	9											
Ex	plo	anat	ion:	Each of	the	abo	ove s	eries	are	eve	en ni	umb	er, e	xcept 2	3. ar	iswe	er :(c)					
Ex	am	nple	7: 6	5, 9, 15,	21,	24, 2	26, 3	30															
(a)) 9			(b) 2	6		(c) 24			(d)	30											
Ex	plo	anat	ion:	All are	mul	tiple	es of	3, e>	kcep [.]	t 26	5, ar	iswe	r (b)										
1						-																	
1																							
1																							
-																							
-																							

/

Ç

DIRECTION TESTS [5 Marks]

Always Remember:

•		
Left + left	Down	
Left + right	Up	
Right + left	Up	
Right + right	Down	
Up + left	Left	
Up + right	Right	
Down + left	Right	
Down + right	Left	

→E

SEATING ARRANGEMENTS [4 Marks]

(A) When direction of face is not clear, then we take based on diagram will be as follows:

From the above diagram, it is clear that

(i) Q, R, S, T are right of P but only Q is the immediate right of P.

(ii) S, R, Q, P are left of T but only S is the immediate left of T.

(iii) R, S, T are right of Q only R is the immediate right of Q.

(iv) R, Q, P are left of S but only R is the immediate left of S.

(v) S and T are right of R but only S is the immediate right of R.

(vi) Q and P are left of R but only Q is the immediate left of R.

(vii) A is the immediate left of Q while T is the immediate right of S.

C

				BLOOD R	ELATIONS	5 [6 Marks]			
perso	on who is relo	ated to a	nother by	ı birth rat	her than l	oy marriag	e.			
o rem	ember easily	the relat	ions may	v be divide	ed into two	o sides as	given l	pelow:		
i)	Relations of F	Paternal s	side:		(ii)	<u>Relatio</u>	ns of M	aternal side:		
	Father's fath	er → Gra	ndfather			Mother	's fath	er → Matern	al grandfo	ther
	Father's mot	her \rightarrow Gr	andmoth	er		Mother	's mot	ner → Mater	nal grandı	nother
	Father's brot	her → Un	ncle			Mother	's brot	her → Mater	nal uncle	
	Father's siste	er → Aunt	t			Mother	's siste	r → Aunt		
	Children of u	ncle \rightarrow Co	ousin			Childre	n of m	aternal uncl	$e \rightarrow Cousir$	<u>ו</u>
	Wife of uncle	e → Aunt				Wife of	mater	nal uncle →	Maternal	aunty
	Children of a	unt → Co	ousin							
	Husband of a	aunt → U	ncle							
				3	MCQ	÷				
. lı	n a certain co	ode '256'	means 'y	ou are go	ood', '637'	means 'w	e are t	ad' and '35	8' means '	good and
b	oad'. Which of	the follo	owing rep	resents 'o	ınd' in tha	t code?				
((a) 2		(b) 5		(c)	8		(d) 3		
	f P x Q mean	s P is to tl	he south	of Q: P+Q	means P	is to the n	orth o	f Q' P% Q m	eans P is ta	the east
	of Q· P - Q me	ans P is t	o the we	st of Q: th	en in case	of A %B+(-D D	is in which d	irection wit	h respect
					en in ease		2 0,0			
t	.U D !									
t	a) North-wes	st	(b) Sou	th-east	(c)	North-eas	t	(d) South	-east	
t ((E E	a) North-wes Directions (Q. Eight persons Detween U an	st No. 03- 0 P to W ai d V and f	(b) Sou (5): Study re sitting facina No	th-east the follov in front o orth. Q. wl	(c) ving inforn f one ano no is to th	North-eas nation care ther in two ie immedic	t e fully t o rows ite left	(d) South o answer the Each row h	-east given ques as four per a W. R is b	stions. sons. P is between T
t ((E b c	a) North-wes Directions (Q. Eight persons between U an and S and W	st No. 03- 0 P to W and f is to the i	(b) Sour (b) Sour (b): Study (c): Study (c): Study (c): Source (c): Study (c): Study (c	th-east the follov in front o orth. Q, wl ce right of	(c) ving inform f one ano no is to th V.	North-eas nation care ther in two he immedic	t e fully t o rows ite left	(d) South o answer the Each row h of S is facin	-east given ques as four per ig W. R is b	stions. rsons. P is between T
tt ((E b c c	a) North-wes Directions (Q. Eight persons Detween U an and S and W Who is sitting	st No. 03- 0 P to W and f is to the i in front c	(b) Sour (b) Study (c) Study (c) Study (c) Study (c) Source (c) So	th-east the follow in front o orth. Q, wl ce right of	(c) ving inform f one ano no is to th V.	North-eas nation care ther in two ie immedic	t f ully t o rows ite left	(d) South o answer the Each row h of S is facin	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t ((E b o . V ((a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U	st No. 03- 0 P to W and f is to the i in front c	(b) Sour (b) Study (c) Study (c) Study (c) Study (c) Source (c) So	th-east the follov in front o orth. Q, wl e right of	(c) ving inform f one ano no is to th V. (c) ^v	North-eas nation care ther in two le immedic	t efully t o rows. ute left	(d) South o answer the Each row h of S is facin	-east given ques as four per Ig W. R is b	stions. rsons. P is between T
t ((E b c c v ((a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the	st No. 03- 0 P to W and f is to the i in front c immedia	(b) Sour (b) Study (c) Study (c) Study (c) Study (c) Study (c) Source (c) Sou	th-east the follov in front o orth. Q, wl ce right of	(c) ving inform f one ano no is to th V. (c) ^v	North-eas nation care ther in two le immedic	t e fully t o rows ite left	(d) South o answer the Each row h of S is facin (d) P	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t ((E b o o V ((a) North-wes Directions (Q. Eight persons Detween U an and S and W Mho is sitting a) U Who is to the a) S	st No. 03- 0 P to W and f is to the i in front o	(b) Sour (b) Study (c) Study (c) Study (c) Study (c) Study (c) Study (c) Study (c) Source (c) Sourc	th-east the follow in front o orth. Q, wl ce right of of R?	(c) ving inform f one ano no is to th V. (c) v	North-eas nation care ther in two le immedic V	t efully t o rows ute left	(d) South o answer the Each row h of S is facin (d) P (d) T	-east given ques as four per ig W. R is b	stions. rsons. P is petween T
t ((E b c c V ((a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S	st No. 03- 0 P to W and f is to the i in front c immedia	(b) Sour (b) Sour (b) Study (c) Study (c) Study (c) Study (c) Source (c) Sour	th-east the follow in front o orth. Q, wl ce right of	(c) ving inform f one ano no is to th V. (c) v (c) v	North-eas nation care ther in two le immedic	t efully t o rows. ute left	(d) South o answer the Each row h of S is facin (d) P (d) T	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t ((E b o V (((V	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th	st No. 03- 0 P to W and f is to the i in front c immedia e followin	(b) Sour (b) Sour (b) Study (c) Study (c) Study (c) Study (c) Study (c) Source (c) Sourc	th-east the follov in front o orth. Q, wl ce right of of R? persons c	(c) ving inform f one ano no is to th V. (c) v (c) v	North-eas nation care ther in two le immedic V W in front of	t efully t o rows ite left	(d) South o answer the Each row h of S is facin (d) P (d) T	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t (() E b o o () () () () () () () () () ()	a) North-wes Directions (Q. Eight persons Detween U an and S and W i Who is sitting a) U Who is to the a) S n which of th a) SV	st No. 03- 0 P to W and f is to the i in front a immedia e followin	(b) Sour (b) Sour (b) Study (c) Stud	th-east the follov in front o orth. Q, wl ce right of of R? persons c	(c) ving inform f one ano no is to th V. (c) v (c) v ure sitting (c) v	North-eas nation care ther in two le immedic V V W in front of TV	t efully t o rows ite left each o	(d) South o answer the Each row h of S is facin (d) P (d) T (d) T other? (d) UR	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t ((E b o o (((((((((a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV	st No. 03- 0 P to W and f is to the i in front c immedia e followin	(b) Sour (b) Sour (b) Study (c) Stud	th-east the follov in front o orth. Q, wl ie right of of R? persons c	(c) ving inform f one ano no is to th V. (c) v (c) v ure sitting (c) v	North-eas nation care ther in two le immedic V W in front of TV	t efully t o rows. ite left each o	(d) South o answer the Each row h of S is facin (d) P (d) T (d) T	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t (() E b b c c c c c c c c c c c c c c c c c	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mothe	st No. 03- 0 P to W and f is to the i in front o immedia e followin	(b) Sour (b) Sour (b) Study (c) Stud	th-east the follov in front o orth. Q, wl ie right of of R? persons c ly mother	(c) ving inform f one ano no is to th V. (c) (c) ure sitting (c) thas a sor	North-eas nation care ther in two he immedic V W in front of TV n whose sc	t efully t o rows ite left each o on is Ao	(d) South o answer the Each row he of S is facin (d) P (d) T (d) T other? (d) UR	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t (() E b o o V (() () ()	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mothe Ramu?	st No. 03- 0 P to W and f is to the i in front o immedia e followin	(b) Sour (b) Sour (c) Study (c) Stud	th-east the follov in front o orth. Q, wl ce right of of R? persons c 1y mother	(c) ving inform f one ano no is to th V. (c) ^v (c) ^v ure sitting (c) ^r thas a sor	North-eas nation care ther in two le immedic V V W in front of TV n whose so	t sfully t o rows. ite left each o on is Ao	(d) South o answer the Each row ha of S is facin (d) P (d) T (d) T other? (d) UR	-east given ques as four per ig W. R is b	stions. rsons. P is between T
t (((() E b o o (() (() () () () () () () () () () () (a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mothe Ramu? a) Uncle	st No. 03- 0 P to W and f is to the i in front o immedia e followin	(b) Sour (b) Sour (c) Study re sitting facing No immediat (c) Q te right o (b) Q ng pairs, (b) RV Ramu,"M (b) Cou	th-east the follov in front o orth. Q, wl ce right of of R? persons c 1y mother sin	(c) ving inform f one ano no is to th V. (c) (c) tre sitting (c) thas a sor (c)	North-eas nation care ther in two le immedic V W in front of TV n whose so Brother	t sfully t o rows. ute left each o on is Ao	(d) South o answer the Each row ha of S is facin (d) P (d) T (d) T other? (d) UR :hyut". How i (d) Nephe	-east given ques as four per ig W. R is b g W. R is b s Achyut re	stions. rsons. P is between T
	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mothe Ramu? a) Uncle	st No. 03- 0 P to W and f is to the i in front o immedia e followin er said to	(b) Sour (b) Sour (c) Study re sitting facing No immediat (c) Q te right o (b) Q te right o (b) U ng pairs, (b) RV Ramu,"M (b) Cour (b) Cour	th-east the follov in front o orth. Q, wl ce right of of R? persons c ly mother sin	(c) ving inform f one ano no is to th V. (c) (c) (c) tre sitting (c) thas a sor (c)	North-eas nation care ther in two le immedic V W in front of TV n whose so Brother	t sfully t o rows. ite left each o on is Ao	(d) South o answer the Each row ha of S is facin (d) P (d) T (d) T other? (d) UR :hyut". How i (d) Nephe	-east given ques as four per ig W. R is b s Achyut re ew	stions. rsons. P is between T elation to
t (() E b b c c c c c c c c c c c c c c c c c	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) U Who is to the a) S n which of th a) SV Ramu's mothe Ramu? a) Uncle /ijay says, An a) Brother	st No. 03- 0 P to W and f is to the i in front o immedia e followin er said to anda's m	(b) Sour (b) Sour (c) Study (c) Study (c) Study (c) Study (c) Study (c) Q (c)	th-east the follov in front o orth. Q, wl ce right of of R? persons o ly mother sin the only d her	(c) ving inform f one ano no is to th V. (c) (c) tre sitting (c) thas a sor (c) laughter c (c)	North-eas nation care ther in two le immedic V W in front of TV n whose so Brother of my moth Nephew	t efully to o rows. ite left each o on is Ao ner". Ho	(d) South o answer the Each row hi of S is facin (d) P (d) T (d) T (d) UR (d) UR (d) Nephe (d) Nephe (d) Grand	-east given ques as four per og W. R is b s Achyut re ew a relation to father	elation to
t (() E b o o () () () () () () () () () () () () ()	a) North-wes Directions (Q. Eight persons between U an and S and W Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mothe Ramu? a) Uncle /ijay says, An a) Brother	st No. 03- 0 P to W and d V and f is to the i in front a immedia e followin er said to anda's m	(b) Sour (b) Sour (c) Study re sitting facing No immediat (c) Q te right o (b) Q te right o (b) RV Ramu,"M (b) Cou nother is t (b) Fath	th-east the follov in front o orth. Q, wl ce right of of R? persons c ly mother sin the only d her	(c) ving inform f one ano no is to th V. (c) (c) (c) tre sitting (c) thas a sor (c) laughter c (c)	North-eas nation care ther in two le immedic V W in front of TV n whose so Brother of my moth Nephew	t sfully to o rows. ite left each o on is Ao	(d) South o answer the Each row hi of S is facin (d) P (d) T (d) T other? (d) UR chyut". How i (d) Nephe ow is Anando (d) Grand	-east given ques as four per ig W. R is b s Achyut re ew a relation f father	stions. rsons. P is between T elation to to Vijay?
t (()	a) North-wes Directions (Q. Eight persons between U an and S and W i Who is sitting a) U Who is to the a) S No which of th a) SV Ramu's mothe Ramu? a) Uncle /ijay says, An a) Brother	st No. 03- 0 P to W and f is to the i in front o immedia e followin er said to anda's m	(b) Sour (c) Study re sitting facing No immediat (b) Q te right o (b) U ng pairs, (b) RV Ramu,"M (b) Cou nother is t (b) Fath	th-east the follow in front o orth. Q, wl ce right of of R? persons c ly mother sin the only d her	(c) ving inform f one ano no is to th V. (c) (c) ure sitting (c) thas a sor (c) laughter c (c)	North-eas nation care ther in two le immedic V W in front of TV n whose sc Brother of my moth Nephew	t sfully t o rows. ite left each o on is Ao ner". Ho	(d) South o answer the Each row he of S is facin (d) P (d) T (d) T other? (d) UR chyut". How i (d) Nephe ow is Anando (d) Grand	-east given ques as four per ig W. R is b s Achyut re ew a relation s lfather	stions. rsons. P is between T elation to to Vijay?
t (() E b c c c c c c c c c c c c c c c c c c	a) North-wes Directions (Q. Eight persons between U and and S and W is Who is sitting a) U Who is to the a) S n which of th a) SV Ramu's mother Ramu? a) Uncle /ijay says, An a) Brother IS 2	st No. 03- 0 P to W and f is to the i in front o immedia e followin er said to anda's m	(b) Sour (c) Study re sitting facing No immediat of R? (b) Q te right o (b) U ng pairs, (b) RV Ramu,"M (b) Cou hother is t (b) Fath	th-east the follow in front o orth. Q, wl ce right of of R? persons o ly mother sin the only d her 5	(c) ving inform f one ano no is to th V. (c) ^r (c) ^r tre sitting (c) ^r has a sor (c) laughter c (c)	North-eas nation care ther in two le immedic V W in front of TV n whose so Brother of my moth Nephew	t sfully to o rows. ite left each o on is Ao ner". Ho	(d) South o answer the Each row hi of S is facin (d) P (d) T (d) T (d) UR (d) UR (d) Nephe ow is Anando (d) Grand	-east given ques as four per ig W. R is b g W. R is b s Achyut re ew a relation to father	elation to

04 STATISTICAL DESCRIPTION OF DATA & SAMPLING

	[8 Marks]
<u>Stat</u>	istics is originated from:
Latir	n word 'Status'
Itali	an word 'Statista'
Gerr	nan word 'Statistik'
Fren	ich word 'Statistique'
The	meaning of all above word is 'Political State'. In those days statistics was analogous to state or to be
mor	e precise, the data that are collected and maintained for the welfare of the people belonging to the
state	e.
Defi	nition of Statistics
Stat	Istic when used as a singular noun may be defined as technique, formula of method used for collecting,
ana	usantitativo data
us y 1	Discrete Variable or Non-Continuous Variable
••	The variable which can't take all values but only takes pre-defined values at set intervals e.a. Class
	that student belongs to, e.g. Number of students in a class can only be integers 10, 11, 12, etc.
2.	Continuous Variable
_,	The variable which can take any value e.g. Height of student.
3.	Attributes
	Attributes are those variables which cannot be numerically measured. Generally represented by
	some words e.g. honestly, nationality of students etc.
4.	Primary Data
	When data is collected and processed first hand by means of observations, interviews, questionnaires
	etc. it is referred as primary, e.g. Census conducted by government.
5.	Secondary Data
	When one uses data that was collected and processed by someone else, i.e. using second hand
	information, it is referred secondary data. The use of secondary data might involve representation
	further processing and analysis e.g. Use of Census data by health department to know demo-
	graphics of a region.
	Note: Primary data is always more reliable compare to secondary data.
	Collection of Data:
1)	Interview method:
	Interview method again could be divided into
	(a) Personal Interview method
	(b) Indirect Interview method
- \	(c) Telephone Interview method
a)	Personal Interview Method:
	• In personal interview method, the investigator meets the respondents directly and collects
	cyclope or an earthquake or an epidemic like plaque, we may collect the percessary data much
	cyclone of an earthquake of an epidemic like plague, we may collect the necessary data much
	more quickly and accurately by applying this method
	more quickly and accurately by applying this method.
b)	 more quickly and accurately by applying this method. It is suitable in case of natural calamities. Such as cyclone, earthquake, Tsunami, plague etc.
ь)	 more quickly and accurately by applying this method. It is suitable in case of natural calamities. Such as cyclone, earthquake, Tsunami, plague etc. Indirect Interview Method: If there are some practical problems in reaching the respondents directly as in the case of a rail
b)	 more quickly and accurately by applying this method. It is suitable in case of natural calamities. Such as cyclone, earthquake, Tsunami, plague etc. Indirect Interview Method: If there are some practical problems in reaching the respondents directly, as in the case of a rail accident, then we may take recourse for conducting Indirect Interview where the investigator.

Q

-)	Telephonia Interview Method
C)	In this method investigator will ask the questions to the respondent on telephone and collect
	the information
	It is less expensive as compare to other method
	It is suitable for quick response
2)	Mailed Questionnaire Method:
	• In this method a list of question in systematic order is prepared and dispatch to the respondent.
	Respondent has to write the information and sent it back to the investigator.
	It is suitable for coverage of wide area.
	The amount of Non- responses is maximum
3)	Observation Method:
5)	 In this method investigator will not ask any questions to the respondent but will take help of
	some instrument to collect information.
	E.g. to record weight of students of a class, investigator will request every student to stand
	on weighing machine and record the weights.
	It is most accurate.
	• It applicable to collect only quantitative data where instrument is used.
Туре	es of Classification of Data:
lt is	used to present the data in a neat, precise & condensed form. Statistical analysis is possible only for
the	classified data. There are four types of classification.
(i)	Chronological or Temporal or Time Series Data:
	When the data are classified in respect of successive time points or intervals, they are known as time
	series data.
	E.g. The number of students appearing for C.A. Final exam for last 10 years.
(ii)	Geographical:
	Data arranged according to area or region is called geographical area.
	E.g. The number of Students appearing for C.A. Final exam of 2008 according to different states.
	Different parts of a table
1.	Title: Every table must be given a suitable title. It must be clear, brief and self-explanatory. Title is
	a description of the information presented in the table. It is written at the top of the table but below
	the table number.
2.	Caption: Caption refers to the column headings. It may consists of one or more column headings.
	Under a column heading, there may be sub-heads.
3.	Stup: are the designations of the rows or row headings. They are at the extreme left and perform
	the same function for the norizontal rows of numbers in the table as the column headings do for
_	vertical columns of numbers.
4.	Body: This most vital part of the table contains the numerical information.
F	Box nead: The box nead is on entire upper part of the table which includes columns and sub-
5.	columns, unit or measurement along with caption.
5.	(Types of Sampling)
5.	
5.	
5.	Probability Sampling Non - Probability Sampling Mixed Sampling
5.	Probability Sampling Non - Probability Sampling Mixed Sampling

Systematic Sampling [Mixed Sampling]

C

- It refers to a sampling scheme where the units constituting the sample are selected at regular interval after selecting the very first unit at random i.e., with equal probability.
- Systematic sampling is partly probability sampling in the sense that the first unit of the systematic
 sample is selected probabilistically and partly non- probability sampling in the sense that the
 remaining units of the sample are selected according to a fixed rule which is non-probabilistic in
 nature.
- Systematic sampling is a very convenient method of sampling when a complete and updated sampling frame is available. It is less time consuming, less expensive and simple as compared to the other methods of sampling.
- However, systematic sampling has a severe drawback. If there is an unknown and undetected periodicity in the sampling frame and the sampling interval is a multiple of that period, then we are going to get a most biased sample, which, by no stretch of imagination, can represent the population under investigation.

Purposive or Judgement sampling [Non Probability Sampling]

This type of sampling is dependent solely on the discretion of the sampler and he applies his own judgement based on his belief, prejudice, whims and interest to select the sample. Since this type of sampling is nonprobabilistic, it is purely subjective and, as such, varies from person to person. No statistical hypothesis can be tested on the basis of a purposive sampling.

INDEX NUMBERS

05

[4 Marks] **Test of Adequacy** 1. Unit Test: Condition: Formula for constructing an index number should be independent of the units in which prices and quantities are given. Satisfy unit Test: All formulae except the simple aggregative index satisfy this test. (i) Does not satisfy unit test: (i) Simple aggregative index formula. Time Reversal Test: 2. Condition : Product of price index with give base and current period, and price index after interchanging base and current period is one. Symbolically, $P_{01} \times P_{10} = 1$ P₀₁ = Index number for '1' on 'o' as base P_{10} = Index number for 'o' on '1' as base. Satisfy time reversal test: (i) Simple aggregative formula. (ii) Fisher's formula. (iii) Marshall - Edgeworth formula. (iv) Walsh formula. (v) Kelly's formula. Does not satisfy time reversal test: (i) Laspeyre's formula. (ii) Paasche's formula. (iii) Dorbish - Bowley's formula. (iv) Average of relative method. 3. **Factor Reversal Test: Condition:** Product of a price index and the quantity index should be equal to corresponding value index. $P_{01} \times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$ Symbolically, Satisfy factor reversal test. (i) Fisher's formula Does not satisfy factor reversal test: (i) Laspeyre's formula. (ii) Passche's formula. (iii) Dorbish - Bowley's formula. (iv) Marshall - Edgeworth formula. 4. Circular Test : Condition : It is an extension of time reversal test. If price indices are Po1,P12, P23, Pn0 then condition is Po1 x P12 x P23 x x Pno = 1 If three price indices are $P_{01} \times P_{12} \times P_{20} = 1$ then $P_{01} \times P_{12} \times P_{20} = 1$

Satisfy Ci	rcular Tes	it:			
(i) Sim	iple aggre	egative m	ethod.		
(ii) Sim	iple geom	netric med	an of price relative.		
(iii) We	ighted ag	gregative	with fixed weights	. (i.e. Kelly's formula)	
Does not	satisfy cir	cular test	•		
(i) Las	peyre's fo	ormula.			
(ii) Pac	sche's for	rmula.			
iii) Fisł	ner's form	ula.			
(iv) Dor	bish - Bo	wley's fo	rmula.		
v) Ma	rshall - E	dgeworth	n Formula.		
			÷	MCQ -	
1. Po1	is the ind	ex for tim	le		
(a)	1 on 0		(b) 0 on 1	(c) 1 on 1	(d) 0 on 0
2. The	oretically	, GM is th	e best average in t	he construction of index	no's but in practice, mostly the AM
is u	sed				
(a)	False		(b) True	(c) Both	(d) None
3. The	Cost of L	ivina Inde	x Numbers for the	vear 1996 and 1999 are	140 and 200 respectively. A person
60r	ns 11.20	00 p.m. ir	n the vear 1996. W	hat should be his earni	nas p.m. in the year 1999 so as to
eul					
ma	intain his	former (t	hat is of the year 1	.996) standard of living	?
ma (a)	intain his 14,000	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
ma (a)	intain his 14,000	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a) Answers	intain his 14,000 2	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a) (nswers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a) <u>Answers 1 a</u>	intain his 14,000 2 b	former (t 3 c	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a) Answers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
(a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a ma	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
ma (a) Answers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a ma (a)	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
ma (a) Answers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
Answers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000
a ma (a) Answers 1 a	intain his 14,000 2 b	former (t	hat is of the year 1 (b) 15,000	996) standard of living (c) 16,000	(d) 12,000

06 **CORRELATION AND REGRESSION**

	. 1	[5 Marks]
	y = a + bx + bx	
¥	•	¥
D > 0	b = 0	b < 0
··· – Г. •. Э.		··· – F 2···
y = 5 + 2x	y = 5	y = 5 - 2x
X y	X y	X y
<u> </u>	2 S	<u> </u>
4 13 6 17	4 5 6 5	4-3
8 21	8 5	8-11
r = 1	r = 0	r = -1
· - 1	I - 0	·
Change of origin and change of	scale	
t is not affected by change of o	rigin	
t is not affected by magnitude of	of change of scale	
t is affected by signs of change	of scale	
IF U = $3x + 4$ and V = $2y + 7$	If $U = -3x + 4$ and $V = -2y + 7$	U = 3x + 4 and $V = -2y + 7$
and $r_{(x,y)} = 0.75$	and $r_{(x,y)} = 0.75$	and $r_{(x,y)} = 0.75$
then $r_{(U,V)} = 0.75$	then $r_{(U,V)} = 0.75$	then $r_{(U,V)} = -0.75$
\checkmark	↓	\checkmark
Both Coefficients of change of	Both Coefficients of change	Both Coefficients of change of
scale are Positive	of scale are Negative	scale are having opposite signs
Other formulas based on " r "	2	
Other formulas based on "r" l) Coefficient of determinatio	$n = r^2$	
Other formulas based on "r" 1) Coefficient of determination $r^{2} = \frac{\text{Explaned variance}}{r^{2}}$	$n = r^2$	

$1 - r^2 = \frac{\text{Un Explaned variance}}{\text{Total variance}}$

Coefficient of alienation $=\sqrt{1-r^2}$ 3)

[i.e. Square root of Coefficient of non-determination]

4) Standard Error [SE]

 $\mathsf{SE} = \frac{1 - r^2}{\sqrt{n}}$

C

Ģ								
	5)	Probable	Error [P	E]				
			- 1-1	,2				
		PE = 0.6	$\sqrt{45} \times - \sqrt{n}$	<u></u>				
					Import	ant Point	s of Regr	ression
	1.	Regressio	n is mat	hematico	al relatio	onship be	tween tv	vo variables which are known as
	2	independ	lent vario	able and	depende	ent varia	ible	
	۷. ۲	Fauation	v on x is	to estin	minimiz	endent v	l distance	0
	з. 4	Fauation	x on v is	s used to	minimiz	e horizor	ntal dista	
	5.	In the rec	iression e	equation	v on x b	vx repres	sent the s	slope of the regression line
	6.	byx is the	rate of	change i	n value c	of y for u	nit chanc	ge in the value of x.
	7.	In the reg	ression e	equation	y on x, y	/= a + b:	x 'a' repre	esent y intersect which indicate
		the avera	age value	e of the o	depender	nt variab	le when	x = 0
	8.	1 Rep	present t	ne slope	of the lin	ne x on y	,	
		b _{xy}						
	0	ь.,		C 1	• • •		<u> </u>	
	9. 10	D _{xy} is the	ne rate o	f change	e in the v	alue of ×	tor a un	It change in the value of y
	10.	in the reg		the door	n x on y, >	x = a + b	y a repr	o
	11	$\frac{dveruge}{b} > 1$	then	$\frac{1}{2}$ < 1			vilen y -	<u> </u>
		xy 1	, ener -	xy ±				
	12.	$b_{yx} + b_{xy}$						
		2	- ≥ r [A. <i>r</i>	M≥G.M]				
	13.	Karl pea	rsons con	relation	coefficie	nt (r) is g	geometric	c mean of regression
		coefficier	nt.					
	14.	lfr= 1,	then reg	ression l	ines coin	icide or i	dentical.	
	15.	Both reg	ression c	oefficien	ts and co	orrelatio	n coeffici	ent has same signs. (i.e. all are +ve or
	10	all are -	ve)					
	16. 17	It r = 0, t	nen regr	ession ui	nes are p	erpenai	ift of orig	ach other.
	18	Regressio	on coeffic	cient is a	ffected b	v maani	tudes of	corresponding coefficient of
	10.	Chanae o	of scale.			y magin		
	19.	Lines of r	regressio	n have p	oint of ir	ntersectio	on x,v	
			3	· ·			/2	
						: MC	Q	
	1.	From the	followir	ng data	1	1		
		× :	2	3	5	4	7	
		y:	4	6	7	8	10	
				-				
		The coeff	ricient of	correlat	ion was f	round to	be 0.93.	What is the correlation between u and
		v as give	n below	<u>{</u>				
		u:	10	15	25	20	35	
		(a)	-24	-36	-42	-48	-60	
		(a) -0.93		(D)	0.0		(c) = 0.93	(a) 0.93

1 1 (c) -1 (d) Negative 3. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u? (a) 3.6 (b) -3.6 (c) 2.4 (d) -2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation (b) 2nd equation (c) Both (a) and (b) (d) None Answers - - 1 2 3 4 - - (a) So (b) -3.6 (c) 2.4 (d) -2.4 - - 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? - (a) Ist equation (b) 2nd equation - - - 1 2 3 4 - - - (b) -3.6 (c) -3.6 (c) -3.6 - - - 1 2 3 4 - - - (c) - c b b - - - - 1 2 3 4 - - - (c) - c	2 lf+	ho rolati	onshin ho	tween tu	vo variables v and	y is given by $2y+3y+4=0$ then the value of
(a) 0 (b) 1 (c) -1 (d) Negative 3. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u? (a) 3.6 (b) -3.6 (c) 2.4 (d) -2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1 2 4 (b) 2nd equation (c) Both (a) and (b) (d) None (d) None Answers 1 2 3 4 - 1 2 3 4 - - c b b	2. II t	ne retation	ion coeffi	icient bet		y is given by 2x+3y+4=0, then the value of
(u) 0 (b) 1 (c) 1 (c) 1 (c) Negdive 3. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u? (a) 3.6 (b) -3.6 (c) 2.4 (d) -2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation (b) 2nd equation (c) Both (a) and (b) (d) None Answers 1 2 3 4 - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - 1 2 3 4 - - - - 1 2 3 4 <t< th=""><th>(a)</th><th></th><th>(b) 1</th><th></th><th>(c) = 1</th><th>(d) Negative</th></t<>	(a)		(b) 1		(c) = 1	(d) Negative
3. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u? (a) 3.6 (b) -3.6 (c) 2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation (b) 2nd equation (c) Both (a) and (b) (d) None Answers 1 1 2 3 2 3 4 c c b 0 5 1 2 3 2 3 4 c c b 0 0 0 1 2 3 2 3 4 3 0 0 1 2 3 2 3 4 3 0 0 1 2 3 1 2 3 1 2 3 2 3 4 3 4 5 4 5 5 <	(u)	0	(b) 1		(C) - 1	(d) Negative
3. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u? (a) 3.6 (b) -3.6 (c) 2.4 (d) -2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation of y on x? (a) 1st equation (b) 2.1d equation (c) 8oth (a) and (b) (d) None Answers 1 2 3 4 c c b b (c)						
regression coefficient of volta: (a) 3.6 (b) -3.6 (c) 2.4 (d) -2.4 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation (b) 2nd equation (a) 1st equation (b) (d) None Answers 1 2 3 4 c c b b (d) None	3. If u	l = 2x + 5	and v =	-3y - 6 (and regression coe	fficient of y on x is 2.4, what is the
4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 15t equation (b) 2nd equation (c) 8oth (a) and (b) (d) None Answers 1 2 3 4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 15t equation (b) 2nd equation (c) 8oth (a) and (b) (d) None Answers 1 2 2 3 4. C b 5 5 6 1 1 2 2 3 4 C 5 5 6 1 1 1 2 3 3 4 4 C 5 6 6 1 1 1 1 1 1 2 2 3 <	(c	1) 3.6	(b) -	3.6	(c) 2.4	(d) -2.4
4. Given the following equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x? (a) 1st equation (b) 2nd equation (a) 1st equation (b) 2nd equation (c) Soft (a) and (b) (d) None Answers 1 2 3 4 c c b b (a) 1 2 3 4 (c) c c b b (c)		.,	(2)		(0)	(~,
regression equation of y on x? (a) 1st equation (b) 2nd equation (c) Both (a) and (b) (d) None Answers	4. Giv	ven the f	ollowing	equatio	ons as 3x + y = 13	and 2x + 5y = 20, which one is the
(a) Ist equation (b) 2/d equation (c) Both (a) and (b) (d) None Answers	reg	pression e	equation (of y on x	? (b) 2md ag	
I Z 3 4 c c b b -	(a)	Ist eque	ation and (b)		(b) 2na equ	lation
Answers 1 2 3 4 c c b b	(C)	Dotin (d)				
1 2 3 4 c c b b b	Answers		,			
<u>c</u> <u>c</u> <u>b</u> <u>b</u>	1	2	3	4		
17 CORRELATION AND REGRESSIO	С	с	b	b		
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						
17 CORRELATION AND REGRESSIO						

Ç

[14 Marks]

		SIMPLE INT	EREST
	Simpl	e Interest = Principal × Rate Interest × Numbe	er of years.
	SI = P	x R x N	
	Where	e R% is always expressed in the corresponding	g decimal form i.e. R = 2% is to be substituted
	in the	above formula as R = 0.02.	
		COMPOUND I	NTEREST
		$A = P(1 + i/_{m})^{m}$ Where A is amount an	nd P is Present Value or Principal.
		(/ m)	
		CI = A - P i is R/100 and m is No. of tir	mes compounding done in a year.
		EFFECTIVE RATE O	OF INTEREST
	Effect	ive rate of interest can be defined as the equ	uivalent annual rate of interest compounded
	annua	ally if interest is compounded more than once	e in a year.
	The ef	fective interest rate can be computed directly	y by following formula:
		$E = \left[\left(1 + \frac{i}{2} \right)^m - 1 \right] \times 100$ Where	E is the effective interest rate.
		$\sum_{m=1}^{\infty} \left[\left(\frac{1}{m} \right)^{m} \right]^{m} = \sum_{m=1}^{\infty} \left[\left(\frac{1}{m} \right)^{m} = \sum_{m=1}^{\infty} \left[\left(\frac{1}{m} \right)^{m} \right]^{m} = \sum_{m=1}^{\infty} \left[\left(\frac{1}{m} \right)^{m} = \sum_{m=1}^{\infty} \left[\left(\frac{1}{m} \right)$	
	Exam	ple: Suppose 1000 is invested for a year at	the rate of interest 6% compounded half
	yearly	۱.	
	∴ Effe	ective rate of interest is 6.09% p.a. [Using abo	ove formula]
		Annuit	<u>У</u>
	A seri	es of payments, usually equal in size, made a	t equal intervals of times is called an annuity.
	Month	nly Rental payments; premiums of life insuran	ce; deposits into a recurring account in a bank;
	equal	monthly payments got by a retired governme	ent servant as pension and loan installments
	of hou	ises or automobiles.	
	(α)	Ordinary Annuity: When all the periodic payr	ments are made at the end of each payment
		period, it is called regular annuity (or ordinal	ry annuity).
	(b)	Annuity Due: When all the periodic payments	s are made at the beginning of each payment
		period, it is called an annuity due.	
		$A = \frac{P}{(i+j)} \left \left(1 + \frac{i}{m} \right)^{mi} - 1 \right $	$ \mathbf{A} = \frac{\mathbf{F}}{(\mathbf{i}/\mathbf{i})} (1 + \mathbf{i}/\mathbf{m})^{\text{min}} - 1 (1 + \mathbf{i}/\mathbf{m}) $
		$(1/m)^{1/2}$	
_			
_			
_		$V = \frac{1}{(i/i)} \left 1 - \left(1 + \frac{1}{m}\right) \right $	$ \mathbf{V} = \frac{1}{(\mathbf{i}/\mathbf{i})} 1 - (1 + \frac{1}{m}) $
		$(/m)^{L}$	
_			[With and pariod Short]
			and Add initial cash navment in above
_			

SINKING FUND

It is the fund credit for a specified purpose by way of sequence of periodic payments over a time period at a specified interest rate.

If A be the money set aside for each payment and S be the accumulated sum after n periods at the rate i per period (i.e., the amount in the sinking fund), then

	1. $A = \frac{P}{\begin{pmatrix} i \\ m \end{pmatrix}} \left[\left(1 + \frac{i}{m} \right)^{mn} - 1 \right]$	2. $A = \frac{P}{\binom{i}{m}} \left[\left(1 + \frac{i}{m}\right)^{mn} - 1 \right] \left(1 + \frac{i}{m}\right)$	
_			
	If the payments are made at the end of	If the payments are made at the beginning	
	each period.	of each period.	

LEASING

Leasing is a financial arrangement under which the owner of the asset (lessor) allows the user of the asset (lessee) to use the asset for a defined period of time(lease period) for a consideration (lease rental) payable over a given period of time. This is a kind of taking an asset on rent.

Capital Expenditure (investment decision)

Capital expenditure means purchasing an asset (which results in outflows of money) today in anticipation of benefits (cash inflow) which would flow across the life of the investment. For taking investment decision we compare the present value of cash outflow and present value of cash inflows. If present value of cash inflows is greater than present value of cash outflows decision should be in the favour of investment.

Valuation of Bond

A bond is a debt security in which the issuer owes the holder a debt and is obliged to repay the principal and interest. Bonds are generally issued for a fixed term longer than one year. The bond issuer enters into contract with bondholder to pay interest.

PERPETUITY

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually. Fixed coupon payments on permanently invested (irredeemable) sums of money are prime examples of perpetuities.

$$V = \frac{P}{\left(\frac{i}{m}\right)}$$

Calculation of Growing Perpetuity:

A stream of cash flows that grows at a constant rate forever is known as growing perpetuity. $V = \frac{P}{i-g}$ The formula for determining the present value of growing perpetuity is as follows:

C

NET PRESENT VALUE

Net present value = Present value of net cash inflow - Total net initial investment

Since it might be possible that some additional investment may also be required during the life time of the project then appropriate formula shall be:

Net present value = Present value of cash inflow - Present value of cash outflow

Decision Rule:

If NPV > 0 Accept the Proposal

If NPV < 0 Reject the Proposal

COMPOUND ANNUAL GROWTH RATE (CAGR)

Compound Annual Growth Rate (CAGR) is a business and investing specific term for the smoothed annualized gain of an investment over a given time periodit is not an accounting term, but remains widely used, particularly in growth industries or to compare the growth rates of two investments because CAGR dampens the effect of volatility of periodic returns that can render arithmetic means irrelevant. CAGR is often used to describe the growth over a period of time of some element of the business, for example revenue, units delivered, registered users, etc.

$$\mathsf{CAGR}(\mathsf{t}_{0},\mathsf{t}_{n}) = \left(\frac{\mathsf{V}(\mathsf{t}_{n})}{\mathsf{V}(\mathsf{t}_{0})}\right)^{\frac{1}{\mathsf{t}_{n}\cdot\mathsf{t}_{0}}} - 1$$

C

Where $V(t_0)$ =Beginning Period; $V(t_n)$ =End Period

		E M	ICQ					
1.	The population of a	town increases every	year by	2% of th	ne popula	tion at t	he begir	ning of
	that year. The numb	er of years by which t	the tota	l increas	e of popu	llation b	e 40% is	5
	(a) 7 years	(b) 10 years	(c) 17	years(ap	op)	(d)	12 years	5
2.	The difference betwe	en the S.I and the C.	l on Rs.	2,400 fo	r 2 years	at 5% p	.a is	
	(a) Rs. 5	(b) Rs. 10	(c) Rs.	16		(d)	Rs. 6	
3.	The annual birth an	d death rates per 1,	000 are	39.4 an	id 19.4 re	espective	ly. The I	number
	of years in which th	ne population will be	e doubl	ed assur	ming ther	re is no	immigro	ition or
	emigration is							
	(a) 35 years.	(b) 30 years.	(c) 25	years		(d) 2	20 years	
4.	If the amount of an	annuity after 25 year	rs at 5%	p.a C.I i	s Rs. 50,0	00 the c	Innuity V	vill be
	(a) Rs. 1,406.90	(b) Rs. 1,047.62	(c) Rs.	1,146.9	0	(d) F	Rs. 1,246	5.90
5.	10 years ago the Ear	ning Per Share (EPS) a	of ABC L	td. was 5	5 share. It	s EPS for	r this yed	ar is 22.
	Compute at what ra	te, EPS of the compa	ny grow	annuall	<u>.</u> y?			
	(a) 15.97%	(b) 16.77%	(c) 18	.64%		(d) 1	L4.79%	
_		1 1 2 2 1						
6.	If the cost of capital	be 12% per annum,	then th	e net pre	esent valı	ie (in neo	arest) fr	om the
	given cash flow is gi	ven as]
	Year			0	1	2	3	
	Operating profit (in	thousand)		(100)	60	40	50	
	(a) 21048	(b) 34185	(c) 51	048		(d) 2	24187	
								-
7.	Ms. Paul invested 1,	,00,000 in a mutual	fund scl	neme in	January	2018. Af	ter one	year in
	January, 2019, she	got a dividend amou	nting to	10,000	for first	year. 12,	000 for	second
	year, 16,000 for thi	rd year, 18,000 for fo	ourth ye	ear and	21,000 fo	or fifth y	/ear in J	anuary
	2023. What is Comp	ounded Annual Grow	rth Rate	(CAGR) c	of dividen	d return	? Given :	1.20384
	= 2.1.							
	(a) 20.38%	(b) 18.59%	(c) 16:	36%		(d) 1	15.89%	

	nor	annum i	interest r	ate com	nounder		ly What	is the pr	n në rece	ue of thi	s annuit	v v ?
	Giv	$P(/_{10})$	10) 3 16	987	ipounded	a annuai	ty. What	is the pro	esent vut	ue or thi	sumun	.y:
	(a)	2.8	10, 3.10 0 493 27	,	(b) 2 (18 493 2	7				
	(a)	2,0	0,733.21 8 943 27	,	(1	d) 2,0	58 493 2	7				
	(C)	2,0	0,545.21			α, 2,.	50,455.2	1				
	An	investor	intends r	ourchasir	na a thre	e vear 1	000 par	value ba	nd havir	na nomin	al inter	st
•	rate	e of 10%	At who	it price t	he bond	may be	nurchase	ed now if	fit matu	res at pa	ar and t	he
	inve	estor rea	uires a re	ate of ret	turn of 1	4%?	parenase		it indet			
	(a)	907.625	5	(b) 90	7.525	(c)	907.675	5	(d) 907	.135		
	(0.)			(2) 00		(0)		-	(0,) 001			
0.	Rar	nesh wai	nts to ret	ire and re	eceive 3.	.000 a mo	onth. He	wants to	pass this	monthl	ν ρανμέ	ent
	to f	future ae	neration	s after hi	s death.	He can e	arn an in	terest of	8% com	pounded	annual	lv.
	Ho	w much v	will he no	eed to se	et aside t	o achieve	e his peri	petuity a	oal?	p		
	(a)	449757		(b) 44	9755	(c)	449775		(d) 449	575		
	(0.)	110101		(0) !!	0100	(0)			(0,) 110	0.0		
1.	Ass	umina th	nat the d	iscount r	ate is 7%	ó per ann	um. how	much w	ould vou	pay to r	eceive '	50.
	aro	wina at	5% anni	ally for	ever?				outu you			, , ,
	(a)	1500	<i>5 70,</i> ann	(b) 20	00	(c)	2500		(d) 300	0		
	()	1000		(0) 20		(0)	2000		(0, 000	•		
nsv	vers											
<u>.nsv</u> 1	<u>vers</u>	2	3	4	5	6	7	8	a	10	11	
<u>.nsv</u> 1	vers	2 d	3	4 b	5	6	7	8	9 d	10	11	_
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
<u>nsv</u> 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
<u>nsv</u> 1 c	vers 	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
1 c	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
Insv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
insv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
nsv 1 c	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 a	7 a	8 b	9 d	10 c	11 c	
	vers	2 d	3 d	4 b	5 a	6 α	7 a	8 b	9 d	10 c	11 c	

Ç

SETS, RELATIONS & FUNCTIONS, SEQUENCE SERIES AND PERMUTATIONS & COMBINATION

[11 Marks]

		÷ M		
1.	Out of 2000 employ	yees in an office 48%	preferred Coffee (c),	54% liked (T), 64% used to
	smoke (S). Out of th	e total 28% used C ar	nd T, 32% used T and	S and 30% preferred C and
	S, only 6% did none	of these. The number	r having all the three	is
	(a) 360	(b) 300	(c) 380	(d) 350
2.	The number of item	s in the set A is 40 in t	the Set B is 32; in the	Set C is 50; in both A and B
-	is 4: in both A and C	is 5: in both B and C	is 7: in all the set is 2	2. How many are in only one
	set?			
	(a) 65	(b) 110	(c) 96	(d) 84
	(4) 03	(0) 110		
R	"Is smaller than" ov	er the set of eags in a	hox is	
5.	(a) Transitive (T)		(b) Symmetric (S)	
	(c) Reflexive(R)		(d) Equivalence (F)	
			(d) Equivalence (E)	
4	"is porpordicular to	" over the set of straig	abt lines in a siven al	ano is
4.	(a) P			
	(u) K	(U) S		(u) E
-	The weth taxes of	Diana and white		4 :
5.	ine m ^m term of an A	A. P. IS n and n^{m} term	is m. The r ^{ui} term of r	
	(a) m + n + r	(D) n + m - 2r	(c) m + n + r/2	(a) m + n - r
6.	Sum of n terms of t	ne series 4 + 44 + 444	+ is	
	(a) 4/9 {10/9 (10 ⁿ - 1	l) -n} (b)	10/9 (10 ⁿ - 1) -	
	(c) 4/9 (10n -1) -n	(d)	10/9 (10 ⁿ + 1)	
7.	If G be geometric m	ean between a & b, th	ien the value of 1	$\frac{1}{1}$ is equal to
			G² -	
	(a) G ²	(b) 3G ²	(c) 1/G ²	(d) 2/G ²
		1 1		
8.	Find the product of	243.243 ⁶ .243 ³⁶ to	∞	
	(a) 1024	(b) 27	(c) 729	(d) 246
9.	The sum of n terms	of the series 1+(1+3)+	(1+3+5)+	· · · · · · · · · · · · · · · · · · ·
	(a) $n(n+1)(2n+1)$	(b) $n(n+1)(2n+1)$	(c) $n(n+1)(n+2)$	(d) $n(n+1)(n+2)$
	6	3	6	3
10.	The sum of series 1/	$^{\prime}2 + 1/3^{2} + 1/2^{3} + 1/3^{4}$	+ up to infinity	is
	(a) 25/24	(b) 19/24	(c) 1/12	(d) 1/24
11	The sum of all 4 dig	it number containing	the digits 2, 4, 6, 8, v	without repetitions is
11.		5	c) 2 12 220	d) 1 33 320
11.	a) 1,33.330	b) 1,22,220	() 2,13,330	u, 1,55,520
11.	a) 1,33,330	b) 1,22,220	() 2,13,330	u, 1,55,520
11.	a) 1,33,330	b) 1,22,220	() 2,13,330	d) 1,55,520
11.	a) 1,33,330	b) $1,22,220$	necklace then the n	imber of ways is
11.	a) 1,33,330	b) 1,22,220 s can be set to form a	necklace then the nu	umber of ways is

: سالد	e number	of arran	gements ic	of 10 dif	ferent th	ings take	en 4 at a t	ime in w	hich one	e particular
thi	ng alway	s occurs	15	6						
(a)	2015		(D) 201	.0	(C)	2014		(a) 2013	ŏ	
/ Th	a number	ofperm	utations	of 10 diff	foront thi	inas take	n / at a t	ime in w	hich one	particular
4. 111 thi	na never	occurs is				ings take				purticului
(a)	3 020	00001313	, (b) 3 0	25	(c)	3 024		(d) 3 03	30	
(۵)	3,020		(87 878	23	(0)	3,021		(0, 5,05		
5. A	person h	as 8 friei	nds. The	number	of ways	in which	he may	invite or	ne or mo	ore of them
to	a dinner	is.								
(a)	250		(b) 25	5	(c)	200		(d) 256		
6. Th	e number	of diago	onals in a	a decago	n is					
(a)	30		(b) 35		(c)	45		(d) 25		
7. Th	e number	of ways	s a perso	n can co	ntribute	to a fun	d out of	1 ten -	rupee no	ote, 1 five-
ru	pee note,	1 two-r	upee and	l 1 one ri	upee not	e is				
(a)	15		(b) 25		(c)	10		(d) 12		
0	I			0.151			-+			
8. IN	e number	of ways	in which	9 things	s can be d	divided ii	nto twice	groups of	containii	ng 2,3, ana
4 t	nings res	pectively	(IS) (b) 126	0	(c)	1200		(4) 150	0	
(a)	1250		(D) 120	0	(C)	1200		(a) 150	0	
nsware										
1	2	3	4	5	6	7	8	٩	10	
-	<u>с</u>	a	h	d	a	C C	с С		b	
11	12	13	14	15	16	17	18	<u>u</u>		
	h	b		b	h		b			
~	5	8		5		~	5			

Ç

[11 Marks]

	Important Points of A.M. :
1.	It is mathematical average.
2.	It is based on all observations.
3.	It is best of all averages.
4.	It is rigidly defined.
5.	It is capable of further algebraic treatment.
6.	It has sampling stability. It is least affected by sampling fluctuations.
7.	It is affected by extreme values.
8.	It cannot be calculated for open end class intervals.
9.	Sum of deviations from A.M. is zero.
10.	It is affected by shift of origin.
11.	It is affected by change of scale.
12.	It satisfies linear relation between two variable.
13.	Mean of first n natural numbers = (n + 1)
	2
14.	Mean of first n odd natural numbers = n
15.	It is characterised as the point of balance or centre of gravity.
16.	It is the most stable of all measures of central tendency.
17.	Mean of first n even natural numbers = n + 1.
18.	It cannot be determined by inspections nor can it be located graphically.
19.	It is not suitable for finding means for ratios such as speed, rates, percentage.
20.	It cannot be used in the study of qualitative date, i.e. intelligence, beauty, honesty etc.
_	
1	Important Points of Median :
1.	It is not pased on all observations.
2.	It is not affected by extreme values.
3.	It is also known as partition value.
4.	It can be calculated for open end class intervals.
5.	It can be determined graphically using ogive.
6.	Sum of absolute deviations from median is minimum.
(.	It requires the arrangement of data in ascending or descending order.
8.	it is not capable of algebraic treatment. Mathematical properties are not applicable to
	median.
9.	It is affected more by sampling fluctuation than A.M.
10.	it is affected by shift to origin.
11.	It is affected by change of scale.
12.	It satisfy linear relation between two variables. e.g. If ax + by = C than relation between
	their medians is aXme + bYme = C
13.	It is the most appropriate average in dealing with quantitative data.
14.	If equal numbers of observation are added or deleted from each side of median, median
	remains the same.
15.	If wrong observations and correct observations both are less than median or both are
	more than median, median remains unchanged.
MFAS	
DISPE	RSION 24

It is not capable of further algebraic treatment. We cannot find the combined mode. 6. 7. It is affected more by sampling fluctuation than A.M. In certain situations mode is the only suitable average e.g. modal size of shirt, modal size 8. of garments, modal size of shoes. 9. It can be determined graphically by histogram. 10. To determine mode class intervals must be of equal size. 11. It is affected by shift of origin. It is affected by change of scale. 12. 13. It satisfy linear relation between two variables. e.g. If ax + by = C then. a Mode (x) + b Mode (y) = C14. It is a positional average. Important Points of G.M. It is used to find average rate of change in variable between any two periods. Eg. Average 1. rate of increase in population per year average rate of interest. The GM is used find average percent increase in sales, production, population etc. 2. It is mathematical average. It is based on all observations. It is rigidly defined. 3. It is capable of further algebraic treatment. It is most difficult to calculate. 4. 5. It can not be calculated if one of the observation is zero. It can not be calculated if some observations negative. It is affected by shift of origin but can not be determined. It is affected by change of scale. If y = ax then GM (y) = a GM(x). In construction of 6. index numbers, GM is the best average. 7. When we want to give less weights to large numbers and more weight to small numbers, then GM is preferable than AM. **Important points of HM** If same distances are travelled with different speed, the average speed can be computed 1. using HM. Combined H.M.: if harmonic mean of n_1 observations is H_1 and n_2 observations is H_2 2. then. Combined H.M. is given by Combined H.M $n_1 + n_2$ n, . n₂ H, H, Relationship among A.M., G.M., H.M. Relationship among A.M., G.M., H.M. : $GM^2 = AM \times HM$ 1. For positive numbers 2. $AM \ge GM \ge HM$ 3. For positive distinct numbers AM > GM > HM MEASURES OF CENTRAL TENDENCY AND MEASURES 25 OF DISPERSION

V

Important Points of Mode

1. It is easy to understand.

2. It is simple to compute.

3. It is not based on all observations.

4. It is not affected by extreme values

5. It is not rigidly defined. There may be two or more values of mode.

4.	For positive equal numbers
	AM = GM =HM
	Relationship among Mean, Median, Mode:
	(Mean – mode) = 3(Mean – median)
	Important Points of Range :
1.	It is simple to calculate and easy to understand.
2.	It is guickest of all methods.
3.	It is not based on all observations.
4.	It is affected by extreme values.
5.	It can not be calculated for open and class intervals.
6.	It is not affected by shift of origin.
7	It is affected only by positive magnitude of change of scale
	e_{α} If $Y = a_{x} + b$ then relation between range of x and y is
	Range (v) = Range (x).
8	It is used in quality control to find number of defectives
0.	it is used in quality control to find number of defectives.
	Important Points of Quartile Deviation
1.	It is based on middle 50% of the data.
2.	It is the only measure of dispersion which can be calculated for open end class intervals.
3.	It is not affected by extreme values.
4	It is not suitable for algebraic treatment
5	It is not affected by shift of origin
5. 6	It is affected by positive magnitude of change of scale
0.	$e_a x = ax + b_b then QD(x) = a QD(x)$
7	For normal distribution
	(i) $\Omega_1 = x - 0.675 (\sigma)$
	(i) $\Omega_1 = x + 0.675 (\sigma)$
	(iii) $O D = 0.675 (c)$
	(iv) 0, + 0.
	$\frac{1}{2}$ Median = $\frac{2}{2}$
	Important Points of Mean Deviation:
1.	It is not affected by shift of origin
2.	It is affected by positive magnitude of change of scale eg. Y = $ax + b$ then M.D. (y) = $ a $
	M.D(x)
3.	For normal distribution M.D = 0.8 (S.D) = 4
	$-\frac{\sigma}{5}$
4.	M.D about Mean for two numbers or equally repeated two numbers = 1 Range
	2
5.	M.D about median is minimum
MEAS	SURES OF CENTRAL TENDENCY AND MEASURES OF
DISPI	ERSION 26

							Ç	
			Imp	ortant points	of S.D			
1.	lt is mo	ost accurate m	easure of disp	persion.				
2.	2. It is used most commonly and most frequently.							
3.	It is all observations.							
4.	lt is cal	lculated usina	onlv A.M.					
5.	It is lea	ist affected by	samplina flu	ctuation.				
6.	lt is on	ly measure of (dispersion wh	nich is capabl	e of further o	laebraic treatment.		
7.	It is aff	ected by extre	me values.					
8	lt cann	ot be calculate	ed for open e	nd class inter	rvals			
9	For two	o numbers or e	aually repeat	ted two num	bers standar	deviation is half of	ranae	
10	Standa	rd deviation is	not affected	by shift of o	rigin		langer	
11	Standa	rd deviation is	affected by a	by shire of sco	ile en IfV =	ax then		
	$\sigma = a$	σ and Var (v	$a = a^2 Var(x)$	indinge of see				
12	Standa	e_x and var (y	s = u v u (x)	ofvariance				
12		ed in most sta	tistical analy	sis i a Corrol	ation Rearco	sion Theoretical Di	stribution	
10.	sampli	ng Theory atc	asticut unuty		adon, negres			
1/.	For the	ng meory etc.	nhars S D -	n ² - 1				
14.	i or the	in naturat null	10013 3.0	12				
Nat	0, C 4 ~ t	two numbers	or oqually re-	N IZ	umbore is be	If of range between	numbers	
NOU	e. s.u. or	two numbers	or equally re	peuleu lwo n		a or runge between	numbers	
				-Mco	k.			
1	The er	orago score ef	airle in class	T MCQ	F on in a schoo	lic 67 and that of l	over in 62	
1.	The av	erage score of	girls in class		Shin a schoo	or is of and that of i	Doys is 65.	
	class	erage score for	the whole ci	luss is 64.5, i	ind the perce	intage of girts and L	boys in the	
	$\frac{1}{2}$		(1-)					
	(a) 3	7.5% & 62.5%	(D)	38.5% & 6:	3.5%			
	(C) /	3.5% & 26.5%	(a)	39.5% & 68	5.5%			
2	What i	a tha CM far th	a pumbara 9	24 and 40 2				
۷.		s the GM for th ∕.	(h) 12	(c)	03/45	(d) Nono		
	(u) Z	4	(D) 12	(C)	8∛15	(d) None		
3	An ger	onlane flies fro	m A to B at th	he rate of 501) km/ hr and	comes back from B	to a at the	
5.	rate of	700 km/ br Th		herd of the d	proplane is :	comes back nom b		
	(a) 600	km / hr	ie average sp	(h) 582 22	km / hr			
	(c) 100	35 km / hr		(d) 620 km	/ hr			
	(C) 100				1 / 111			
4	lf the A	M and H M fr	or two numbe	ors are 5 and	3 2 respectiv	ely then the G.M. wi	II be	
-7.	(a) / 0		(h) 16	(c) /	(d) / 10			
	(4, 4.0		(0) 10	(0) 4	(0) 4.10			
5	When r	mean is 3 57 a	nd mode is ?	13 then the	value of med	ian is		
٦.	(a) 2 0	19	(h) 5 01	(c) / 01	(d) None			
	(4) 5.0		(0) 3.01	(C) 4.01				
6	If y and	ly are related	as 3x - hy =	20 and the a	uartile devia	tion of x is 12 then	the	
0.	auartil	e deviation of	vis ·					
	(a) 1/		(h) 15	(c) 16	(d) 0			
	(u) 14		CT (U)	(C) 10	(u) 9			
				77	MEASUI	RES OF CENTRAL TENDEN	ICY AND MEASURE	
				۷ ۲			OF DISPERSIO	

	wo varia	bles x ar	nd y is 5y	/ - 3x = 1	0 and th	ne mean	and mea	ın deviat	ion abou	t mean of
x a	re 1 and	0.3 resp	ectively,	then the	coefficie	nt of me	an devia	tion of y	about m	iean is
(a)	-5	(b) 6	.92	(0	:) 50		(d) 4			
3. Ift	he SD of	x is 3, w	hat is the	e varianc	e of (5 -	2x)?				
(a)	36	(b) 6	, ,	(0	:) 1		(d) 9			
9. The standard deviation of the weights (in kg) of the students of a class of 50 student										dents was
cal	culated 1	to be 4.5	kg. Latei	r on it wa	s found t	that due	to some	fault in v	veighting	g machine,
the	e weight	of each s	tudent v	vas unde	r measur	red by 0.	5 kg. The	correct	standard	deviation
oft	the weig	ht will be	9:							
(a)	Less tha	n 4.5		(1	o) Greate	er than 4	.5			
(C)	Equal to	0 4.5		(0	1) Can be	e determ	ined			
10 6						101 102	102 2			
10. Sup	ppose a p	bopulatio	n A has :	100 obsei	vations	101, 102	2,103,2	00 and c	inother p	opulation
Bn	as 100 o	DServatio	ons 151,	152, 153	, 250. IT	v _A ana v	ив represe	ents the v	/ariance	of the two
	o pulations	s respect	ively, the		= (a)	2				
(u)	<u> </u>	(D) 1			(u)	<u>-</u> 				
	4			1		5				
Answers										
1	2	2	4	5	6	7	8	9	10	
	2	5 b	4	5	d	r b	0	5	10	
						-	÷.	-	-]

10 PROBABILITY AND RANDOM VARIABLE

[6 Marks]

Ċ

	Probability Formula List
1.	$-p(A) = \frac{n(A)}{n(A)} = \frac{O \le P(A) \le 1}{[It cannot be negative and can never exceed 1]}$
	n(S) If $P(A) = 0$ then A is impossible event
	If $P(A)=1$ then A is sure or certain event.
2	D(A) (A)
2.	P(A) = I - P(A) P(u > 1) = 1 - P(u = 0)
3.	$P(x \ge 1) = 1 - P(x = 0)$
4	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
4.	$P(\Delta + B) = P(\Delta) + P(B) - P(\Delta \times B)$
	P(A or B) = P(A) + P(B) - P(A and B)
	P(at least one event) = = P(A) + P(B) - P(Both)
5.	Demorgan's law
	$P(A' \cup B') = P(A \cap B)' = 1 - P(A \cap B)$
	$P(A' \cap B') = P(A \cup B)' = 1 - P(A \cup B)$
	only A only B
6.	Special Formula: $P(A) = P(A \cap B) + P(A \cap B')$
	$P(B) = P(A \cap B) + P(A' \cap B)$
7.	When events are dependent
	$P(A \cap B)$ [A depends on B]
	$P(A/B) = \frac{P(B)}{P(B)}$
	$-P(B/A) = \frac{P(A \cap B)}{(A \cap B)}$ [B depends on A]
	• • • • • • • • • • • • • • • • • • •
	Extra Formulas with complement events
	$P(\Lambda' \cup B) - P(\Lambda') + P(B) - P(\Lambda' \cap B)$
	$P(A \cup B') = P(A) + P(B') - P(A \cap B')$
	$P(A' \cap B)$
	$-P(A'/B) = \frac{P(A'/B)}{P(B)}$
	\cdot (ε)
	$P(A \cap B')$
	$P(A/B') = \frac{P(B')}{P(B')}$
	$-P(A'/B') = \frac{P(A \cap B)}{P(B')}$
	× × • • • (B.)

$\mathbf{B}') = \mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B}')$
$\mathbf{B}') = \mathbf{P}(\mathbf{A}') \times \mathbf{P}(\mathbf{B}')$
en in the question that events are independent.
A B
if it is given in the guestion that event's are
not be simultaneously mutually exclusive and
they cannot be mutually exclusive
e then they cannot be independent.
.5.6} n(S)=6
$A = \{1, 2\}, n(A) = 2$
$B = \{3, 4\}, n(B) = 2$
$B = \{5, 6\}, n(C) = 2$
\downarrow
· · · · · · · · · · · · · · · · · · ·
t Here events are mutually exclusive and
exhaustive P(A + P + C) = P(A) + P(P) + P(C)
$P(A \cup B \cup C) = P(A) + P(B) + P(C)$
$=\frac{2}{6}+\frac{2}{6}+\frac{2}{6}$
6
$=\frac{1}{6}=1$
Odd's in against of event $\Delta = \Delta' \cdot \Delta$
Odd's in against of event $A = 5:1$ Odd's in against of event $A = 5:1$
Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5 + 1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution
Odd's in against of event $A = A + A$ Odd's in against of event $A = 5:1$ $\therefore P(A) = \frac{1}{6} \Rightarrow \frac{1}{5+1}$ And $P(A') = \frac{5}{6} \Rightarrow \frac{5}{5+1}$ obability Distribution

								Q			
3.											
	Varianco	- V(x) - V(x)	$\sum P_{x}^{2}$		$(r)^2$		$\mathbf{F}[\mathbf{x} \ \mathbf{x}]^2$				
	variance	-v(x) =	r x –	<u>رک</u> ۲:	л)	Varia	nce = $\lfloor x - x \rfloor$				
		$= E(x^2) -$	$\left[E(x) \right]^2$				$= \mathbf{E} \left[x - \overline{x} \right]^2$				
			2								
		$= \mathbf{E} \mathbf{x} - \mathbf{E}$	(x)				$= \underline{\sum \left[x - x \right]^2}$				
							n				
4.	$SD = \sqrt{variar}$	$\overline{nce} = \sqrt{V(x)}$									
		$\sqrt{1}$		Э	MCQ	÷					
1.	If x be the su	ım of two nı	umbers	obtai	ned whe	en two	dice are thrown simultaneously ther	۱P			
	(x <u>></u> 7) is										
	(a) <u>5</u>	(b) <u>7</u>	(c)	12	(d) <u>3</u>					
	12	12		36		8					
2					, -						
2.	If $P(A - B) =$	P (B –A), the	en the ty	wo ev	ents A c	Ind B s	atisty the condition.				
	(a) P (A) = P	(B)		(D) P (A) ·	+ P (B)	= 1				
	(c) P (A) P (B)			(d) None	of the	5e				
3.	Find the pro	hability of th	le even	ŀΔ·							
	(a) if the o	dds in favou	r are 3.	2	(h) if the	odd against it are 1.4				
			r are 5.	-	(0						
	(a) 5 2	(b) 3 2		(c) 3 4		(d) 5 1				
	6'3	<u>5</u> '5			5'5		6'5				
4.	A problem i	n statistics is	s given	to th	ree stud	ents A	, B and C. Their chances of solving t	he			
	problem are	1/3, 1/4 an	d 1/5 r	respe	ctively. I	f all o	f them try independently, what is t	he			
	probability t	hat									
	(i) Problem is	s solved									
	(ii) Exactly tw	vo students	solved	the p	roblem.						
	(a) <u>5</u> <u>7</u>	(b) <u>9</u> 7		(c) <u>3</u> <u>3</u>		(d) $\frac{7}{2}$				
	7´20	20 ′ 9)		5´20		9 20				
5	A bag conto	inc 6 white	and to m	od ba		norcor	draws 2 halls and resolves #10 ar	vd.			
J.	A bag contains 6 white and 4 red balls. If a person draws 2 balls and receives ₹10 and ₹20 for a white and red balls respectively, then his expected amount is										
	(a) ₹ 25	/h) ₹ 26	spect	(<i>c</i>)) ₹ 27	(d) ₹ 28				
		(D	, . 20								
6.	The probabi	ity distribut	ion of a	rand	lom vari	able is	as follows:				
	X:	1 2	4		6	8					
	P:	- <u>-</u> k 2k	3k		3k	k					
	The variance	e of x is		I		.,					
	(a) 1.41	(b) 4.41		(c) 3.41		(d) 4.14				
	· ·						· · ·				
Ansv	wers										
	1 2	3	4	5	6						
	b a	с	c 🗌	d	b						
	1	I	I		1						
					31		PROBABILITY AND RANDOM V	'ARIABL			

THEORETICAL DISTRIBUTIONS

11

Ç

[6 Marks]

1.	The experiment is repeated a finite and fixed number of times.									
2.	Each trial has only two outcomes, namely "Success" and "Failure".									
3.	The trials are independent. Outcomes of one trial has no effect on the outcomes of other									
	trial.									
4.	Probat	oilities of the outco	omes do not change for each tri	al.						
Impo	ortant P	oints								
1.	Type:	t is discrete probal	bility distribution.							
2.	Param	eters: It is biparan	netric distribution. The parame	ters are P (Probability of Success)						
	and n	(number of trials).								
3.	Condit	ions on Parameters	: n is small and finite and 0< p	<1.						
4.	Probab	ility Mass Function	: (p.m.f.)							
-	If 'X' is	a random variable	e then							
	(x) = "C	.x p ^x q ^(n-x) 0 <u><</u> x <u><</u> n								
5.	Mean :	Mean of B.D. = n.r	0.							
	Varian	ce : Var = npq								
	Stando	ard deviation = $\sqrt{n_i}$	pq							
6.	Relatio	on between mean a	nd variance : Mean > Variance.	1						
7.	Maxim	um Variance : Vario	ance of Binomial distribution is	maximum when P = $q = \frac{1}{2}$						
	and m	aximum variance i	sn.	L						
			4							
8.	Mode :	It is unimodal or l	bimodal distribution.							
	(i) If	f (n+1) p is non-int	eger then Mode = largest integ	er of (n+1) P.						
	(ii) If	f (n+1) p is an integ	ger then Mode = (n+1) p and (n+	+1)p-1						
9.	Shape	of binomial distribu	ition :							
		Value of P	Skewness	Shape						
	(i)	P = 0.5	S <u>y</u> mmetric							
			$x = M_e = M_0$							
	(ii)	P < 0.5	Skewed to the right i.e							
			positive skewness.	\perp / \mid \setminus						
			$X > M_e > M_0$							
	(iii)	P > 0.5	Skewed to the left i.e							
			Negative skewness							
	_		$x < M_e < M_0$							

THEORETICAL DISTRIBUTIONS

	Poisson Distribution
1.	Number of trials (n) is very large.(n $\rightarrow \infty$)
2.	Probability of success is very small. ($p \rightarrow 0$)
3.	Mean of poisson distribution, m = np, which is finite and moderate.
4.	Trials are independent.
Impo	ortant Points :
1.	Type : It is discrete probability distribution.
2.	Parameters : It is uniparametric distribution. parameter is m = np.
3.	Condition on Parameter : Since n and p are always positive, 'm' must be positive.
4.	Probability mass Function : If x is discrete random variable then $f(x) = e^{-m} \times (m)^{x}$
	$I(\mathbf{x}) = \frac{1}{\mathbf{x}!}$
	x = 0, 1, 2,∞.
	Where e = 2.71828.
5.	Mean : Mean of P.D. , m = np.
6.	Variance : Var = n.p.
7.	Relationship between mean and variance : Mean = Variance.
8.	Mode : It is unimodal or bimodal distribution.
	(i) If m is non - integer then mode = largest integer of m.
	(ii) If m is an integer then mode = m and (m^{-1}) .
9.	Shape of poisson distribution : It always positively skewed. As 'm' increases the distribution
	shifts to the right.
10.	Additive Property : If x and y are two independent variables following Poisson distribution
	with parameters m_1 and m_2 respectively then Z = x +y also follows poisson distribution
	with parameters (m1+m2).
11.	Application of Poisson distribution : Poisson distribution is applied when the total number
	of events is pretty large but the probability of occurrence is very small. Thus we can apply
	Poisson distribution, rather profitably, for the following cases:
	(a) The distribution of the no. of printing mistakes per page of a large book.
	(b) The distribution of the no. of road accidents on a busy road per minute.
	(c) The distribution of the no. of radio-active elements per minute in a fusion process.
	(d) The distribution of the no. of demands per minute for health centre and so on.
	Normal Distribution
1.	It is continuous probability distribution.
2.	Probability of a particular value of x is negligible and almost zero.
3.	Probability density function of normal distribution is $f(x) = \frac{1}{2}e^{-\frac{1(x-\mu)^2}{2\sigma^2}}$
	$\sigma\sqrt{2\pi}$
4.	It is biparametric distribution. Parameters of normal distribution are mean (or) and variance
	(σ^2) .
<u>Char</u>	racteristic of Normal Curve :
1.	It is bell - shaped symmetrical curve.
2.	Curve can be extended at both ends infinitely but never touches the horizontal line.
3.	All three averages are equal, AM = Median = Mode.
4.	Both Quartiles are equidistant from median.
5.	Total area under the curve is considered as unity.

Q								
	6.	Area on ea	ach side of vert	tical line	at the centre	e is 0.5.		
	7.	Standard	normal variate	$e_{-}x-\overline{x}$	$arz - x - \mu$.			
				σ	σ			
	<u>Imp</u>	ortant Points	<u>.</u>					
	1.	Total area ı	under normal	curve is c	one Area bet	ween - ∞ :	to \overline{x} = Area between \overline{x} to + ∞ =	
		0.5.						
	2.	mean $\overline{x} = 0$) and standard	l deviatio	n = 1 for sta	ndard norn	nal curve.	
	3.	Quartiles of	f Normal distri	bution				
		Q1 = x - 0.	675(σ).					
	,	Q3 = x + 0.	6/5(σ).	-				
	4. r	QD:MD:S	D = 10 : 12 : 1) davd navn			1 and 1 are	
	5.		lexion of stand	aara norn	nat aistributi	on are z =	$-1 \text{ and } z = 1 \text{ or } x = \mu - \sigma \text{ and } x =$	
		μ + σ.						
	6	If x and y ar	e independent	normal v	ariahles witl	n means an	d standard deviations as us and	
	0.	μ_2 and σ_1 a	nd σ_2 respectiv	elv then a	z = x + y also	follows nor	mal distribution.	
		with mean	$(u_1 + u_2)$ and SI	$D = \sqrt{\sigma_{4}^{2} + \sigma_{5}^{2}}$	$\frac{\sigma_1^2}{\sigma_2^2}$			
				V - I	- <u>Z</u>			
	7.	φ (a) is knov	wn as C.D.F					
		$\phi(a) = P(x \leq a)$	<u><</u> a)					
		Area from c	ι to - ∞					
								_
	8.	99.73% of t	he values of a	normal v	ariable lies l	petween µ :	\pm 3 σ , hence values outsides that	
		limit is as lo	ow as 0.27%					
	0	Thora are tw	a mathada far	fitting no	rmal distrib	ution		
	9.	(1) Ordinate	method	intung ne				-
		(2) Area Met	hod					-
		(
					Н МСО	÷		
	1.	What is the	probability of	marking	3 correct gue	esses in 5 t	rue – False Answer	
		(a) 0.4156	(b) (0.32	(c) 0.3125	(c	1) 0.5235	
								_
	2.	For binomia	IL distribution E	E(x) = 2, V	'(x) = 4/3. Fir	id the value	e on n.	
		(a) 3	(b)	4	(c) 5	(d) 6	
	2						4	_
	3.	(i) DIX - E1			n parameter - 0.00671	m = 5, find	1	-
		(I) P[X = 5], (a) 0.1745	(11) P[X 2 2]	lose e	(b) 0 27 0	27		
		(a) 0.1745	0.23		(d) 0.21, 0.	96		-
		(c) 0.1145,	0.23		(0) 0.21, 0.			-
	4.	A manufact	urer, who prod	uces med	icine bottles,	finds that (0.1% of the bottles are defective.	
		The bottles	are packed in	boxes c	ontaining 50	0 bottles.	A drug manufacturer buys 100	
		boxes from	the producer of	of bottles	. Using Poiss	son distribu	ition, find how many boxes will	_
		contains at	least two defe	ctives:				
							[Given : $e^{-0.5} = 0.6065$]	
		(a) 7	(b) 13	(c) 9	(d)	11		
								—
	[HE	URETICAL DIS	IRIBUTIONS		34			

							😵
5. Ide	ntify the	e paramet	ers of th	e follow	ing norm	nal distrik	oution
		(-x ² 10×	50				
f	$(1)^{-1}$	$\mathbf{q}^{\left(\frac{x}{18}+\frac{10x}{9}\right)}$	$\left \frac{30}{9}\right $	$\mathbf{v} < \infty$			
1(*	$\sqrt{3\sqrt{2}}$	<u></u> π	,,	$\mathbf{x} \cdot \mathbf{\omega}$			
(a)	10, 9		(b) 9,	10	(c)	10, 11	(d) None
6. The	e I.Q.'s of	army vol	lunteers	in a give	n year ar	re norma	lly distributed with Mean = 110 and
Sto	indard D	eviation =	= 10. The	army w	ants to a	ive advai	nce training to 20% of those recruits
wit	h the hid	nhest scor	res What	t is the lo	west I O	score ac	ceptable for the advanced training?
The		of 7 for th		3 = 0.8/	///c5t1.d	. score ac	
(a)		(b) 1 ²	18 /	.5 0.04	·· -)138/		(d) 115 h
(0)	5.04	(0) 1.	10.4	()	., 130.4		(0) 115.4
7 For	a norm	al dictrib	ution wit	h moan	150 and		find Or and Or :
(a)	110.25				130 unu	3.D. 43,	
(u)	119.55		oo respec		(D)	100.55 (and 119.65 respectively
(C)	119.65	and 180.	35 respe	ctively	(D)	123.45 (and 183.65 respectively
Answers	[[[1	
1	2	3	4	5	6	7	
с	d	α	с	a	b	с	
					25		THEORETICAL DISTRIBUTIO

12 LIMITS, DIFFERENTIATION , APPLICATION OF DIFFERENTIATION & INTEGRATION

[4 Marks]

Limits				
The concept of limit of a function is a fu	undamental conce	ept in calculus		
[i.e. Derivatives and Integrations]				
Consider function $\Rightarrow f(x) = x + 3$				
	f(x) = x + 3			
↓	↓			
Put <i>x</i> = 1.999	Put $x = 2$		Put <i>x</i> = 2.001	
	\downarrow		\Downarrow	
f (1.999) = 4.999	f(2) = 5	ر. ب	f(2001) = 5.001	
			\downarrow	
Value of <i>x</i> is close		Vo	alue of x is close	
to 2 then value of		to	o 2 then value of	
f(x) is close to 5		$\int f$	(x) is close to 5	
			\downarrow	
Value of <i>x</i> is close		Vo	alue of x is close	
to 2 from left side		to	2 from right side	
on number line			on number line	
			\downarrow	
Left hand limit		F	Right hand limit	
$\lim_{x \to 2^{-}} f(x)$			$\lim_{x \to 2^+} f(x)$	
$\lim_{x \to 2} x + 3$			$\lim_{x \to 2} x + 3$	_
				_
=2+3			=2+3	_
=5			=5	
Types of Question				
k				
1. $\frac{n}{k} \Rightarrow Answer$				_
Г Г Г Г Г Г Г Г Г Г С Г С Г С Г С Г С Г				_
$\lim_{x \to -\infty} \frac{5x+3}{5x+3} = \frac{5(2)+3}{5(2)+3} = \frac{13}{13}$				_
$x \rightarrow 2 2x + 7 2(2) + 7 11$				
0				
2. $\rightarrow Answer$ is zero				
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$				
 $\lim_{x \to -\infty} \frac{2x-4}{5} = \frac{2(2)-4}{5(2)-5} = \frac{1}{15} = 0$				
 $x \rightarrow 2 \ 5x + 7 \ 5(2) + 7 \ 17$				
 $3. \qquad \bigcup_{k} \rightarrow$ Limit does not exists				
 $\frac{K}{5m+2} = 5(2)+2 = 12 \dots$	1	2		
 $\lim_{x \to 2^+} \frac{5x+5}{2} = \frac{5(2)+5}{2} = \frac{15}{2} = \text{Limit}$	does not exist at	x = 2		
$x \rightarrow 2 x - 2 2 - 2 0$				

Ç

4.
$$\frac{0}{0} = d \text{ on ts substitute value of directly in the equation but cancel that term from numerator and denominator which tends to Zero.
$$\lim_{x \to \infty} \frac{x^2 - 4}{x - 2} = \frac{2^2 - 4}{2 - 2} = \frac{0}{0}$$
Formula list
1.
$$\lim_{x \to \infty} \frac{x^1 \cdot a^n}{x \cdot a} = n(a^{n+1})$$
4.
$$\lim_{x \to \infty} \frac{\log(1 + x)}{x} = 1$$
7.
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{e^x \cdot 1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 0$$
7.
$$\lim_{x \to 0} \frac{1}{x} = 1$$
7.
$$\lim_{x \to 0} \frac{1$$$$

© _

$$c_{n} = \frac{d(c)}{dx}$$
5. Marginal cost= Derivative of total cost wrt no. of unit produced
$$c_{n} = \frac{d(c)}{dx}$$
6. Average cost
$$c_{n} = \int \frac{Total cost}{N0.01 unit produced}$$

$$c_{n} = \int \frac{f}{\sqrt{x}}$$
7. Profit=Total Revenue-Total cost
$$\Pi = R \cdot C$$
1.
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} \cdot c$$

$$\int (ax+b)^{n} dx = \frac{(ax+b)^{n+1}}{n+1} \cdot \frac{1}{a} + c$$
2.
$$\int 1 dx = x + c$$
3.
$$\int \frac{1}{x} dx = e^{x + a} \cdot \frac{1}{n+1} \cdot c$$
4.
$$\int e^{t} dx = e^{x + a} \cdot \frac{1}{a} + c$$

$$\int a^{t} dx = e^{x + a} \cdot \frac{1}{a} + c$$

$$\int a^{t} dx = e^{x + a} \cdot \frac{1}{a} + c$$
5.
$$\int a^{t} dx = \frac{a^{t} \cdot x}{\log a} + \frac{1}{b} + c$$
6. If power of N is less than power of D then think about substitution
8.
$$\int \frac{f(x)}{f(x)} dx = \log(x) + c$$

$$\int \frac{1}{f(x)} dx = \log(x) + c$$
7. If power of N is less than power of D then think about substitution
8.
$$\int \frac{f(x)}{f(x)} dx = \log(x) + c$$

$$\int \frac{1}{f(x)} dx = \log(x) + c$$

$$\int \frac{1}{f(x)} dx = \log(x) + c$$

$$\frac{1}{23} = 8 + \frac{1}{3}$$
7. If power of N is less than power of D then think about substitution
8.
$$\int \frac{f(x)}{f(x)} dx = \log(x) + c$$

$$\frac{1}{23} = 8 + \frac{1}{3}$$
2.38

9. Integration by parts
$$\int UV dx$$

 $\int UV dx = U \int V dx - \int \left(\frac{dU}{dx} \int V dx \right) dx + c$
 $L \rightarrow \log A \rightarrow Algebric E \rightarrow Exponential
10. If we want to find integration of only log terms then always use by parts by taking V equal to 1.
 $\int \log x dx$ then write down $\int \log x(1) dx$ and then use by parts
 $\int \log x dx = x \log x - x + c$
11. SOME SPECIAL INTEGRALS
 $\frac{1}{\sqrt{x^2 - a^2}} = \frac{1}{2a} \log \left(\frac{x - a}{x + a} \right) (x < a)$
 $\frac{2}{\sqrt{x^2 - a^2}} = \frac{1}{2a} \log \left[(x + \sqrt{x^2 - a^2}) \right]$
 $\frac{4}{\sqrt{\sqrt{x^2 + a^2}}} = \log \left[x + \sqrt{x^2 - a^2} \right]$
 $\frac{4}{\sqrt{\sqrt{x^2 + a^2}}} = \log \left[x + \sqrt{x^2 - a^2} \right]$
 $\frac{5}{\sqrt{\sqrt{x^2 + a^2}}} = \frac{1}{2a} \log \left[x + \sqrt{x^2 - a^2} \right]$
 $\frac{6}{\sqrt{\sqrt{x^2 - a^2}}} = \frac{1}{2} \sqrt{x^2 - a^2 + \frac{a^2}{2}} \log \left[x + \sqrt{x^2 - a^2} \right]$
 $7. \int e^x \left[f(x) + f'(x) \right] dx = e^x f(x)$
12. Integration by Partial fraction
 $\frac{3x + 2}{\sqrt{(x^2 - 3)^2}} = \frac{A(x - 3) + B(x - 2)}{x - 3}$
 $\frac{3x + 2 = A(x - 2) + B(x - 2)}{x - 2}$$

$$Put x = 3$$

$$3(3) + 2 = A(0) + B(1)$$

$$B = 1$$

$$x^{3} + 2 = A(0) + B(1)$$

$$A = -8$$

$$x^{3} + 2 = A(0) + B(1)$$

$$A = -8$$

$$x^{3} + 2 = A(0) + B(1)$$

$$A = -8$$

$$f(x - 2)(x - 3) = e^{-8} + \frac{11}{x - 2}$$

$$f(\frac{4}{x - 2} + \frac{x - 3}{x - 3}) dx$$

$$-8 \log(x - 2) + 1 \log(x - 3) + e$$
13. Definite Integration
$$f_{1}^{2}(5x + 3) dx = \left[\frac{5(4)}{2} + 3(2)\right] \cdot \left[\frac{5(1)}{2} + 3(1)\right]$$

$$= 10 + 6 + \frac{5}{2} - 3$$

$$= 13 - \frac{5}{2}$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

$$= 2^{3} / 2$$

MUMBAI'S NO 1 COMMERCE & CA COACHING

OUR PRESENCE

HEAD OFFICE

4th Floor, Ajanta Square Mall, Near BMC Market, L.T. Road, Borivali (W), Mumbai - 400 092.

() 7273 967 967