MATHEMATICS FORMULA SHEET

CA Nishant Kumar

Stay updated with the latest FREE lectures: https://www.youtube.com/@ekagrataca

Chapter 1 – Ratio, Proportion, Indices, Logarithms

Topic 1 – Ratio

- 1. Ratio exists only between quantities of same kind.
- 2. Quantities to be compared must be in the same units.
- 3. If a quantity increases or decreases in the ratio a : b, then new quantity = b of the original quantity/a.

- 4. Inverse Ratio The inverse ratio of a/b is b/a.
- 5. Compound Ratio The multiplication of two or more ratios is called compound ratio. The compound ratio of a : b and c : d is ac : bd.

- 6. **Duplicate Ratio** A ratio compounded of itself is called a Duplicate Ratio. The duplicate ratio of a : b is $a^2 : b^2$.
- 7. Sub-Duplicate Ratio The sub-duplicate ratio of a : b is $\sqrt{a} : \sqrt{b}$.
- 8. **Triplicate Ratio** The triplicate ratio of a : b is $a^3 : b^3$.
- 9. Sub-Triplicate Ratio The sub-triplicate ratio of a : b is $\sqrt[3]{a} : \sqrt[3]{b}$.

Topic 2 – Proportion

1. Cross Product Rule: If
$$\frac{a}{b} = \frac{c}{d}$$
, then $ad = bc$.
2. Invertendo: If $\frac{a}{b} = \frac{c}{d}$, then $\frac{b}{a} = \frac{d}{c}$.
3. Alternendo: If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a}{c} = \frac{b}{d}$, or, $\frac{d}{b} = \frac{c}{a}$
4. Componendo: If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+b}{b} = \frac{c+d}{d}$.
5. Dividendo: If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a-b}{b} = \frac{c-d}{d}$

6. Componendo and Dividendo: If
$$\frac{a}{b} = \frac{c}{d}$$
, then $\frac{a+b}{a-b} = \frac{c+d}{c-d}$.
7. Addendo: If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, then each of these ratios is equal to $\frac{a+c+e+\dots}{b+d+f+\dots}$, i.e., $\frac{a}{b} = \frac{a+c+e+\dots}{b+d+f+\dots}$;
8. Subtrahendo: If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, then each of these ratios is equal to $\frac{a-c-e-\dots}{b-d-f-\dots}$, i.e., $\frac{a}{b} = \frac{a-c-e-\dots}{b-d-f-\dots}$; $\frac{c}{d} = \frac{a-c-e-\dots}{b-d-f-\dots}$; $\frac{e}{f} = \frac{a-c-e-\dots}{b-d-f-\dots}$
CANISHANT KUMAR

Topic 3 – Indices 1. $a^n = a \times a \times a \times a \times \dots \times a$ (*n* times) 2. $a^{-n} = \frac{1}{a^n}$ 3. $a^0 = 1$ 4. $a^m \times a^n = a^{m+n}$ $5. \ \frac{a^m}{a^n} = a^{m-n}$ $6. \left(a^{m}\right)^{n} = a^{mn} = \left(a^{n}\right)$ $\left(\frac{a}{a}\right)^n =$ $=\frac{a^n}{b^n}$ 7. $(ab)^n = a^n b^n$; or, CA NISHANT KUMAR

8.
$$a^{m/n} = (a^m)^{1/n}$$
, i.e., $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$
CA NISHANT KUMAR 8

Topic 4 – Logarithms

- 1. $2^3 = 8$ is expressed in terms of Logarithms as $\log_2 8 = 3$. It is read as log 8 to the base 2 is 3.
- 2. $\log_a 1 = 0$; $\log_a a = 1$ 3. $\log_a(mn) = \log_a m + \log_a n$ 4. $\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$ 5. $\log_a(m^n) = n \log_a m$ 6. $\log_a m = \frac{\log_b m}{1-1}$ $\log_{h} a$

6. If α and β are the roots of the equation, the equation is given by: $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ 7. $(a+b)^2 = a^2 + b^2 + 2ab$ 8. $(a-b)^2 = a^2 + b^2 - 2ab$ 9. $a^2 - b^2 = (a+b)(a-b)$ 10. $(a+b)^3 = a^3 + b^3 + 3ab + 3(a+b)$ $(a-b)^3 = a^3 - b^3 - 3ab - 3(a-b)$ 11. $(a+b+c)^{2} = a^{2}+b^{2}+c^{2}+2ab+2bc+2ca$ 12. If $b^2 - 4ac = 0$, the roots are real and equal. 13. If $b^2 - 4ac > 0$, the roots are real and unequal. 14.

a. If b² - 4ac is a perfect square, the roots are real, rational, and unequal.
b. If b² - 4ac is not a perfect square, the roots are real, irrational, and unequal.
15. If b² - 4ac < 0, the roots are imaginary and unequal.

16. Irrational roots occur in conjugate pairs, i.e., if $(m + \sqrt{n})$ is a root, then

 $(m-\sqrt{n})$ is the other root of the same equation.

17. If one root is reciprocal to the other root, then their product is 1 and so $\frac{c}{a} = 1$, i.e. c = a.

18. If one root is equal to the other root but opposite in sign, then their sum = 0, i.e. $-\frac{b}{a} = 0 \Rightarrow b = 0$.

Topic 2 – Compound Interest

1.
$$A = P\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}$$

2. $CI = P\left[\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1\right]$

- 3. Difference between Compound Interest and Simple Interest $CI - SI = P\left[\left\{\left(1+i\right)^{t} - 1\right\} - it\right]$
- 4. Effective Rate of Interest $E = \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} 1$

4. Present Value of Annuity Due = Initial Cash Payment/Receipt + P.V. of Annuity Regular (for n - 1 periods)

Topic 4 – Perpetuity

1. Present Value of Perpetuity = $\frac{A}{i / NOCPPY}$

2. Present Value of Growing Perpetuity = $\frac{A}{i-q}$

Topic 5 – Miscellaneous Topics

1. Nominal Rate of Return = Real Rate of Return + Inflation Rate

2. Compound Annual Growth Rate = Formula of Amount in Compound Interest

Chapter 5 – Permutations and Combinations

1. The number of arrangements of n items in a straight line is given by n!.

2. Formula for selecting *r* items out of *n* items = $\frac{n!}{r!(n-r)!}$.

3. Formula for arranging *r* items out of *n* items = $\frac{n!}{(n-r)!}$

4. Obvious Relationship between ${}^{n}C_{r}$ and ${}^{n}P_{r} \rightarrow {}^{n}P_{r} = {}^{n}C_{r} \times r!$

5. The number of arrangements of *n* items in a circle is given by (n-1)!.

CA NISHANT KUMAR 19

6. The number of necklaces formed with *n* beads of different colours is $\frac{1}{2}(n-1)!$

7. Number of ways of selecting some or all items from a set of n items –

a. When there are 2 choices for each item: $(2^n - 1)$.

b. When there are 3 choices for each item: $(3^n - 1)^n$

8. ${}^{n+1}C_r = {}^{n}C_r + {}^{n}C_{r-1}$ 9. $\frac{{}^{n}C_r}{{}^{n}C_{r+1}} = \frac{r+1}{n-r}; \frac{{}^{n}C_{r-1}}{{}^{n}C_r} = \frac{r}{n-r+1}$ 10. If ${}^{n}C_x = {}^{n}C_y$, and $x \neq y$, then x + y = n. 11. If ${}^{n}P_x = {}^{n}P_y$, and $x \neq y$, then x + y = 2n - 1.

- 12. The number of diagonals in a polygon of *n* sides is $\frac{1}{2}n(n-3)$.
- 13. Division of Items in Groups
 - a. Division of Distinct Items in Groups
 - i. Equal items in every group The number of ways to divide *n* students into *k* groups of *h* students each is given by $\frac{n!}{k!(h!)^k}$.
 - ii. Unequal items in every group The number of ways to divide *n* items into 3 groups \rightarrow one containing *a* items, the second containing *b* items, and the third containing *c* items, such that a+b+c=n, is given by $\frac{n!}{a!b!c!}$.

b. Division of Identical Items in Groups – The number of ways to divide *n* identical objects into *k* groups of *h* items each is given by $\frac{n!}{(h!)^k}$.

14. Number of Factors of a number – Factors of a number N refers to all the numbers which divide N completely.

Step 1 – Express the number N in the form of $N = p^a . q^b . r^c$, where p, q, and r are the prime factors of the number N.

Step 2 – Use the formula: Number of factors of N = (a+1)(b+1)(c+1).

15. The maximum number of points of intersection of *n* circles will be n(n-1).

Chapter 6 – Sequence and Series

- Topic 1 Arithmetic Progression 1. $t_n = a + (n-1)d$ 2. $n = \frac{l-a}{d} + 1$
 - 3. Sum of first *n* terms of the series: $S_n = \frac{n}{2} \times \{2a + (n-1)d\}$

4. Sum of the series when first and last terms are known: $S_n = \frac{n}{2} \times (a+l)$

- Topic 2 Geometric Progression 1. $t_n = ar^{n-1}$
 - 2. Sum of first *n* terms of the series when r > 1: $S_n = a$
 - 3. Sum of first *n* terms of the series when r < 1: $S_n = a$
 - 4. Sum of infinite series (provided r < 1): $S_{\infty} = \frac{a}{1-r}$

Topic 3 – Special Series

- 1. Sum of first *n* natural or counting numbers $(1+2+3+4+...+n) = \frac{n(n+1)}{2}$
- 2. Sum of first *n* odd numbers $\{1+3+5+...+(2n-1)\} = n^2$
- 3. Sum of the Squares of first n natural numbers
 - $(1^2 + 2^2 + 3^2 + 4^2 + ... + n^2) = \frac{n(n+1)(2n+1)}{6}$

4. Sum of the Cubes of first *n* natural numbers $\left(1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3\right) = \left\{\frac{n(n+1)}{2}\right\}^2$

6. Sum of the series $0.1 + 0.11 + 0.111 + \dots$ to n terms $= \frac{1}{9} \times \left| n - \left\{ \frac{1 - (0.1)^n}{9} \right\} \right|$

Example: Calculate the sum of 0.7 + 0.77 + 0.777 + ... to *n* terms. **Solution:**

 $0.7 + 0.77 + 0.777 + \dots$ to *n* terms = $7 \times (0.1 + 0.11 + 0.111 + \dots$ to *n* terms)

Therefore, $0.7 + 0.77 + 0.777 + \dots$ to n terms $= \frac{7}{9} \times \left| n - \left\{ \frac{1 - (0.1)^n}{9} \right\} \right|$

Similarly, sum of series 0.2 + 0.22 + 0.222 + ... to *n* terms $= \frac{2}{9} \times \left[n - \left\{ \frac{1 - (0.1)^n}{9} \right\} \right]$

Sum of series
$$0.4 + 0.44 + 0.444 + ...$$
 to *n* terms $= \frac{4}{9} \times \left[n - \left\{ \frac{1 - (0.1)^n}{9} \right\} \right].$
CA NISHANT KUMAR 28

Chapter 7 – Sets, Relations, and Functions

Topic 1 – Sets

- 1. Number of subsets of a set with *n* elements: 2^n
- 2. Number of proper subsets of a set with *n* elements: $2^n 1$
- 3. $(A \cup B)' = A' \cap B'$
- 4. $(A \cap B)' = A' \cup B'$
- 5. $n(A \cup B) = n(A) + n(B) n(A \cap B)$

6. $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

CA NISHANT KUMAR 29

Topic 2 – Relations

- 1. Number of elements in a product set: $n(A \times B) = n(A) \times n(B)$.
- 2. Total number of relations from Set A to Set B containing m and n elements respectively: 2^{mn}
- 3. A relation *R* on the set *A* is a reflexive relation if $(a, a) \in R$ for all $a \in A$.
- 4. A relation *R* on the set *A* is a symmetric relation if $(a, b) \in R \Rightarrow (b, a) \in R$.
- 5. A relation R on the set A is a symmetric relation if $(a, b) \in R$ and $(b, c) \in R \Longrightarrow (a, c) \in R$.

Topic 3 – Functions

1. Inverse of a Function

Step 1 –	Write the function in the form of an equation, substituting y in place of
	f(x).
Step 2 –	Rearrange the terms so that <i>x</i> comes on the LHS.
Step 3 –	Substitute $f^{-1}(x)$ in place of <i>x</i> , and <i>x</i> in place of <i>y</i> .

