

CA INTER COST AND MANAGEMENT ACCOUNTING FORMULA SHEET

Material Cost

Re-order Stock Level (ROL) ROL = Max. Con. x Max. Lead time

or = Min. Stock + (Avg Consumption. x Avg Lead time)

Economic Order Quantity (EOQ)

 $EOQ = \sqrt{\frac{2 AO}{C}}$

A = Annual Requirement O = Cost per order C = Carrying cost p.u. p.a.

Minimum Stock Level = ROL – (Avg Con. x Avg. Lt)

Maximum Stock Level = ROL + ROQ - (Min Consumption x Min Lead time)

Average Inventory Level

= Min. stock + $\frac{1}{2}$ ROL (or) = $\frac{1}{2}$ (Max. Stock + Min. Stock)

Danger Level = Avg Consumption x Lead time for emergency

Where, Lt = lead time or Re-order period

Inventory Turnover Ratio

= Cost of Materials Consumed Cost of Average Stock held

Avg stock = $\frac{1}{2}$ (Opening + Closing)

Average no. of days of Inventory holding

365 days / 12 months

= Inventory Turnover Ratio

Employee Cost

Wage Payment methods

Straight Time Rate System = Time Worked x Rate for the time

Straight Piece Rate System = No. of units x Rate per unit

Halsey Premium Plan

Time Taken x Time rate+ (50% of time saved x time rate)

Rowan Premium Plan = Time Taken x Time rate + Time Saved Time Allowed x Time taken x Rate

Efficiency Rating

 $\frac{\text{Efficiency in \%}}{\text{Time allowed as per stantard}} \times 100$

Employee Productivity = Standard time for doing actual work Actual time taken

Employee Turnover

 $\frac{\text{Replacement Method}}{\text{Average no. of employees Replaced}} \times 100$

Separation Method = $\frac{\text{No. of Employees Separated}}{\text{Average no. of employees}} \times 100$

Flux Method

 $= \frac{\text{No.of Separations} + \text{Accessions}}{\text{Average no.of employees}} \times 100$

Equivalent Employee TO Rate

 $= \frac{\text{No. of Employees Replaced}}{\text{Average no. of employees}} \times 365$

Overheads: Absorption Costing Method

Overheads Absorption Methods

% of Direct Material = Total Production Overheads Budgeted Direct Material Cost

% of Prime Cost = Total Production Overheads Prime Cost

% of Direct Labour Cost = Total Production Overheads Direct Labour Cost

Labour Hour Rate = Total Production Overheads Direct Labour Hour

Rate per unit of output = Amount of Overheads Number of units

Types of Overhead Rates

Normal OH Rate = Actual amount of Overheads Actual base

Pre-determined Rate = Budgeted amount of Overheads Budgeted base

Blanked Rate

 $= \frac{\text{Total Overheads for the factory}}{\text{Total units of base for the factory}}$

Departmental OH Rate

= OH of department or cost centre Corresponding base

Supplementary Rate

Under / Over absorbed Overheads Units produced

https://www.1fin.in | support@indigolearn.com +91 9640-11111-0

Activity Based Costing

 $\frac{\text{Activity cost driver rate}}{\text{Activity driver}}$

Unit & Batch Costing

 $\frac{\text{Cost per unit}}{\text{No. of units produced}}$

Economic Batch Quantity

D = Annual demand for product S = Setting up cost per batch C = Carrying cost per unit

Process & Operation Costing

Value of units transferred $= \frac{TC - RV \text{ of normal loss}}{\text{input units } - \text{ normal loss units}}$ x units transferred

Value of Normal loss = Scrap RV – cost to sales

Value of Abnormal loss $= \frac{TC - RV \text{ of normal loss}}{\text{input units - normal loss units}}$ *x Abnormal loss units*

where, TC = total cost RV = realizable value

Equivalent completed units = Actual units in process x % of work completed

Standard Costing

Material Cost Variance = (SQ x SP) - (AQ x AP)

Material Price Variance = $(SP - AP) \times AQ$

Material Usage Variance = $(SQ - AQ) \times SP$

Material Mix Variance = $(RSQ - AQ) \times SP$

Material Yield Variance = (SQ - RSQ) x SP Labour Cost Variance = (SH x SR) - (AH x AR)

Labour Rate Variance = (SR - AR) x AH

Labour Efficiency Variance = (SH - AH) x SR

Labour Mix Variance = (RSH - AH) x SR

Labour Yield Variance = (SH - RSH) x SR

Idle Time Variance = SR x Actual Idle Hours

Variable OH Cost Variance = Std OH for actual prod. - Actual OH

V OH Expenditure Variance = (SR - AR) x AH

V OH Efficiency Variance = (SH - AH) x SR

Fixed OH Cost Variance = Absorbed - Actual

Fixed OH Expenditure Variance = Budgeted - Actual

Fixed OH Volume Variance = Absorbed – Budgeted

Fixed OH Efficiency Variance = Absorbed - Standard

Fixed OH Capacity Variance = Standard - Budgeted

Fixed OH Calendar Variance = SR x (Actual working days – Std Working days)

Marginal Costing

Contribution = Sales - Variable cost (Or) = Fixed cost + profit P/V Ratio = Contribution Sales

Break-even point

in units = $\frac{\text{Fixed cost}}{\text{Contribution per unit}}$ in value = $\frac{\text{Fixed cost}}{P/V \text{ Ratio}}$

Cash Break-even point in units $= \frac{\text{Cash Fixed cost}}{\text{Contribution per unit}}$ Required Sales $= \frac{\text{Fixed cost + Desired profit}}{\text{P/V Ratio}}$

Margin of Safety = Actual Sales - BE point (or) = $\frac{Profit}{P/V Ratio}$

Margin of Safety ratio = Total sales - BE sales Total sales

Budgets & Budgetary Controls

 $\frac{\text{Efficiency Ratio}}{\text{Actual hours}} \ge 100$

 $\frac{\text{Activity Ratio}}{\text{Budgeted hours}} \ge 100$

Calendar Ratio $= \frac{Available working days}{Budgeted working days} \times 100$

Standard Capacity Usage ratio

 $= \frac{\text{Budgeted hrs.}}{\text{Max. hrs. in budgeted period}} \times 100$

 $\frac{\text{Actual Capacity Usage ratio}}{\text{Actual hrs worked}} = \frac{\text{Actual hrs worked}}{\text{Max. working hrs in a period}} \times 100$

Actual Usage of Budgeted Capacity ratio

 $= \frac{\text{Actual working hours}}{\text{Budgeted hours}} \times 100$