1. The standard format of a linear equation is :
--

ax + by + c = 0where $a, b \neq 0$ at a fime.

6

2+6=2

OR	y=mze+c	where	m= slope of the line	

a	b	С
5	13	8
133	- 18	2K-18
(2p+3)	-18K	246
2	3	- 88
(17K+5)	-3	-18K +23
2	0	- 83
0	8	2K+99
k	-47	£
- 12	23	- 88
(2p+8K-12m)	(-13-11p+18p)	- 22
	a 5 133 (2p+3) 2 (17k+s) 2 0 k -22 (2p+8k-12m)	a b 5 13 133 -18 $(2p+3)$ $-18 \times$ 2 3 $(17 \times + 5)$ -3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 -47 -22 53 (2p+8k-l2m) $(-13-11p+18p)$

CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

., 3ª2 Inequalities & Equations Y-azis 100 90 80 70 60 50 40 ** × y × 100 30 20 0 70 60 80 30 X-qzeis Line is a set / collection of infinite points satisfying the given. Linear guation Graphical presentation of a linear equation is known as Line. 8. How to draw a line on a graph paper if equation of the line is given? Find atleast 2 points satisfying the given \cap Linear Equation plot those points on Graph paper straight line passing α (3) Draw the points Graphical representation of Linear equation is line set collection of infinite Line is points a equation. the given linear satisfying CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

13. Draw the lines (x + y = 50) & (2x + y = 60) on graph paper and Find point of intersection of these 2 lines.

"IL

2+2=2

18. Point of intersection of lines 5x + 2y = 90, 10x + 9y = 180 lie in

Inequalities & Equation				
Slope of 1st line = slope of 2nd line				
<u>_ S</u>	-8m 104m = - 110			
13	-22 m = -110 = -55 = 1.057			
$\frac{-5}{12} = \frac{8}{2}$	$\frac{m}{104} = \frac{100}{52}$			
26.				
Eq ⁿ of the line	Slope of the line			
ax + by - c = 0	- a/b			
3x + 5y + 30 = 0	-3/5			
3x + 5y - 1000 = 0	-3/s			
5x - 13y = 88	$-a_{b} = -\frac{5}{13} = \frac{5}{13}$			
8kx - 33py = 8k - p	8K/33P			
29x - 33y = 5x - 88	$24x - 33y + 88 = 0 \therefore 510pe = \frac{24}{33} = \frac{8}{11}$			
24x - 33y = -88				
13x - 2y = 88x - 130y - y + 2x				
- 8p + 63	$Slope = \frac{77}{129}$			
i.e77x + 129y = -8p + 63				
31x - 2y = 8kx - 55y + 11	510PE = -(31-8K) = 8K-31			
i.e. (31-8k)x +53y = 11	53 53			
x = 35	chap = -1 - Not defined			
$i \cdot e \cdot x + 0y - 35 = 0$	0 = undefined			
2x = 101	slope = -2 - undefined			
2x + 0y - 101 = 0	0			
5y = 33	Slope = -0 = 0 = Zero			
0x + 5y = 33	5			
○≈ + y = 33	Slope = -0/1 = 0 = Zero			
x = 500	i.e. $x + oy = 500$ \therefore slope $= -\frac{1}{6}$ = Not defined			
px + qy + r = 0	- P/q			
33x + py = r	-33/p			
CA VINOD REDDY Math	1s Kegular Notes			

Inequalities & Equations 27. Find slope of line x = 155 (.e. x + oy = 155 Slope = -1/o = Not defined 28. Find slope of line y = 30 (.e. ox + y = 30 Slope = -0/1 = zero = 0 Slope of X-axis and all the lines || to X-axis is : Zero Slope of Y-axis and all the lines || to Y-axis is : undefined ox Not defined

A line	Slope	Equation
X - Axis	Zero	y=0
Y - Axis	Not defined	8 = 0
to X - Axis	Zero	y = constant
toY-Axis	Not defined	ze = constant

29. Standard format of a linear equation is,	slope of the line			
ax + by + c = 0	32+5y=88 is -3/5			
by = -ax <u>+</u> c	$3\pi + 5\mu - 88$			
dividing by b on both sides	52 + 59 = 88 - 32			
$\frac{by}{b} = \frac{-ax + c}{b}$	Sy = 3x + 90			
$y = \left(\frac{-a}{b}\right)x + constant$	39 = -32 + 88			
y = mx + c	y = (- ई) र + (ड)			
where, $m = slope$ of the line.	compasing this with			
$y = 8x + 13 \implies m = slope = 8$	y=mze+c			
$-8x + y - 13 = 0 \implies slope = -\alpha/b = 8$	m = -3/5 = slope of line			
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com				

Inequalities & Equations 30. Find slope of the line 3x + 5y = 883x + 5y - 88 = 03x + 5y = 88comparing this with ax + by + c = 05y = 88 - 3xa = 3, b = 5dividing by 5 on both sides : slope of the line = -9/b $y = \frac{-3}{5}x + \frac{88}{5}$ = -3/5comparing this with y = mx + c $m = -\frac{3}{2} = slope of the line$ 31. Find any 2 points satisfying the equation 7x - 3y = 100points satisfying the equation 72-34 = 100 2 are: (100,200), (10,-10) 32. Find eqⁿ of the line passing through points (100,200) 4 (10,-10) _____ (≈, , ५,) $\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{y} - \mathbf{y}_1} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{x} - \mathbf{x}_1} \quad \dots \quad \text{Eq}^n \text{ of line passing through } (\mathbf{x}_1, \mathbf{y}_1) \& (\mathbf{x}_2, \mathbf{y}_2)$ = 10-100 -10-200 9-200 2-100 4-200 2-100 -210(x-100) = -90 (y-200) -2102 +21000 = -goy + 18,000 -2102 + 90y = -3000 2107 - 904 = 3000 7 2 - 34 = 100 CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

Inequalities & Equations 33. Find equation of the line passing through points (x_1, y_1) , (x_2, y_2) Let y = mx + c be the eqⁿ of the line passing through point y=m2+C $(x_1,y_1) \& (x_2,y_2)$ $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$(1) (x_2, y_2) As point (x_1, y_1) is on the line y = mx + c $y_1 = mx_1 + c$(2) æ, yi $eq^{n}(1) - eq^{n}(2)$ $eq^{n}(3) - eq^{n}(2)$ $\mathbf{y}_2 - \mathbf{y}_1 = \mathbf{m}\mathbf{x}_2 + \mathbf{p} - \mathbf{m}\mathbf{x}_1 - \mathbf{p}$ $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}\mathbf{x} + \mathbf{\phi} - \mathbf{m}\mathbf{x}_1 - \mathbf{\phi}$ $y - y_1 = m(x - x_1)$ $y_2 - y_1 = m(x_2 - x_1)$ $m = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{x} - \mathbf{x}_1} \dots (4)$ From $eq^{n}(4) \& eq^{n}(5)$ $\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_1 - \mathbf{x}_2} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{x}_1 - \mathbf{x}_2}$ This is eqⁿ of the line passing through points $\left(\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{v} - \mathbf{v}_1}\right) = \left(\frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{x} - \mathbf{x}_1}\right)$ • $(x_1,y_1), (x_2,y_2)$ 34. Find Eq^n of the line passing through point (p, q), (m, n) Eqn of line passing through points $(\mathcal{R}_1, \mathcal{Y}_1) \neq (\mathcal{R}_2, \mathcal{Y}_2)$ $\frac{y_2 - y_1}{y_2} = \left(\frac{x_2}{x}\right)$ Eqh of line passing through points (P, 9), (m, n) $\left(\frac{n-q}{y-q}\right) = \left(\frac{m-p}{x-p}\right)$ is CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

Inequalities & Equations 192-33y+2ky-82+930 = 0 112 + (2K-33) y + 930 = 0 comparing this with are + by + c = 0 $a = 11, b = (2\kappa - 33)$ $slope = \frac{-a}{b} = \frac{-11}{2k-33} = \frac{11}{8}$ $\therefore 22k=275$ k = (275) $\kappa = \left(\frac{2.75}{22}\right)$ 22K - 363 = -88K = 12.50 38. Find Eq^n of the line passing through points (8, -12), (18, 33) $(\mathfrak{R}_1, \mathfrak{Y}_1), (\mathfrak{R}_2, \mathfrak{Y}_2)$ Eqn of the line Passing through (201, y1) & (202, y2) is $\frac{y_2 - y_1}{y_2 - y_1} = \frac{x_2 - x_1}{x_2 - x_1}$ 452 - 360 = 109 + 120452 - 104 = 480 452-104-480 = 0 $\frac{33 - (-12)}{9 - (-12)} = \frac{18 - 8}{28 - 8}$ 98-29-96=0 45(x-8) = 10(y+12) 39. Find Eqⁿ of the line passing through points (-30, -20), (-1.50, 80) $(\mathfrak{R}_1, \mathfrak{Y}_1)$ $(\mathfrak{R}_2, \mathfrak{Y}_2)$ <u> 4</u>-41 - 22-291 26-361 9-91 100x + 3000 = 28.50y + 570 $\frac{80 - (-20)}{4 - (-20)} = \frac{-1.50 - (-30)}{2 - (-30)}$ 100% - 28.50% + 2430 = 010002-2854+24300 = 0 2002 - 574 + 4860 = 0 100(x+30) = 28.50(y+20)CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

Inequalities & Equations
43. Find Slope of the line passing through points (a, b) & (c, d)
a. $\left(\frac{d-b}{c-a}\right)$ b. $\left(\frac{b-d}{a-c}\right)$ b. $\left(\frac{b-d}{a-c}\right)$ Both d. None
44. Slope of the line passing through (2k, 19) & (50, -8) is $\frac{-16}{3}$
Find k.
Slope of the line passing through $=\left(\frac{-8-19}{50-2k}\right)=\frac{-16}{3}$ points $(2k, 19) \notin (50, -8)$
$\frac{+27}{-16}$
50-2K 3
16(50-2k) = 81
800-32K = 81
719 = 32 k
$\therefore K = \left(\frac{719}{32}\right) = 22.46875$
45. The line $8x - 3y = 20 \& 7kx + 55y = 250$ have no solution. Find k
As these 2 lines have No solution, Means
we can say that these 2 lines have same intersection
slope.
slope of 1st line = slope of 2nd line
$\frac{8}{-7k}$
3 22
-21k = 440
$K = \left(\frac{-440}{21}\right) = -20 \cdot 9523809523$
CA VINOD REDDY Mathe Regular Notes @vinod reddy ca@dmail.com
UA VINUD NEDDI I Mains negulai Nuies j 🖤 vinuu.i euuy.ca@ginan.cum

these

AS

2 lines are 1 to each

= 15/28

other

 \therefore 120 = -84k + 588

Inequalities & Equations						
58. Find Eq ⁿ of line having slope $\frac{8}{5}$ & passing through points (20,16)						
$(20,16) \rightarrow \text{Slope} = \underline{8}$						
< s						
Eqh of Line: 8x-5y=80						
OR						
-8x+5y = -80						
59. Find eq ⁿ of line passing through point (0.50, 8.75) and to						
17x - 20y = 88						
172-20y=88						
(0.50, 8.75) $(0.50, 8.75)$						
$\leftarrow \bigcirc \land $						
Stope of LI - 17						
: Eqh of L1: 20x+17y=20(0.50)+17(8.75)						
2020 + 174 = 158.75						
80æ+68y = 635						
60. If slope of line is zero then that line can be						
a. X-Axis b. to X-Axis c. to Y-Axis d. All of these						
61. If slope of line is Not Defined then that line can be						
a. Y-Axis b. to Y-Axis c. to X-Axis a. All of these						
62 The line x = 25/2 is						
$\frac{1}{2} + \frac{1}{2} + \frac{1}$						
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com						

68. The lines 3kx - 22y = 80 & 90x - 47y = 285 are | to each other.

Find k As these 2 lines are 1 to each other (slope of 1st line x slope of 2nd line) = -1 $\frac{3k}{22} \times \frac{90}{47} = -1$ 270k = -1034k = -3.82962962962^ Y-axis x intercept of line 7x + 3y = 21069. is 30 & y intercept of line B (0, 70) 7x + 3y = 210 is 70 A (30, 0) X-axis 7x+3y=210 -> >e intercept of this Line is 30 y intercept of this Line is 70 If x intercept of a line is 'm' & y intercept is k then that line passes through (m,0), (0, k)If x intercept of a line is -20 & y intercept 35 then that line passes through points: ໂຮ $(-20,0) \not\in (0,35)$ CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com 266

3+6-2

72.

Equation of line	x-intercept	y-intercept		
3x + 5y = 90	30	18		
5x - 2y = 200	ৰ্ণ0	-100		
13x + 18y = k	<u> </u>	<u>K</u> 18		
20x + 13y = 500	25	<u>13</u> <u>200</u>		
2x - 11y = -53	- <u>53</u> 2	53		
21x - y = 200	<u>200</u> 21	-200		
x - y = 10	10	-10		
2x + y = 58	29	58		
x = 90	90	NO Y- intercept as line is to Y-azeis		
y = 65	No se intercept	65		
kx + my = j	j/k	j/m		
2kx + 3mv = 93	$\frac{93}{2k}$	$93_{3m} = 31_{m}$		
x + 2y = m	m	m/2		
5x + 3y = 1500	300	500		
$x = \frac{90}{7}$	90 7	No Y-intercept		
CA VINOD REDDY Maths Regular Notes @vinod.reddy.ca@gmail.com				

Inequalities & Equations					
$\mathbf{v}^2 - 5\mathbf{v} - 6 = 0 \longrightarrow For \mathcal{R} = 6$					
In t	In this quadratic equation $a = 1$ $b = -5$ $c = -6$ this eq^h is				
If w	If we put $x = 6.6^2 - 5(6) - 6 = 36 - 30 - 6 = 0$				
If w	r = -1.(-1)	$(-1)^{2} - 5(-1) - 6 = 1$	+ 5 - 6 =	= 0	
	-1 are roots of	guadratic equat	$x^2 - \frac{1}{2}$	5x - 6 = 0	
	, -1 die 10015 01	quadrane equat		JX - U - U	
87.	Equation	No. of roo	ts		
	Linear				
	Quadratic	2			
	Cubic	3			
88. С)uadratic Ea [®]	а		h	C
	$v^2 + 5v - 8 = 0$	2	<	~	Q
102	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$			5 55 m	- 0
15x	-30111 - 2K - 81 - 0	1-1	- 3311)		-26-51
$15x^{-} - 21x - 8px + 39x$			(-21 - 8P + 39)		
lio 3	+00 K - 93 - 10 K	-3	(-21-87139)		
1.e0			= (1	8-87)	(888-33)
	+ 88k - 93 = 0				
	$3x^2 - 2p + 63 = 0$	10	C)	-2p+e3
55x ²	- kx [≥] + 8px - 33mx				
+ 18j = 63		(55-K)	(8)	P-33 m)	(18j-63)
i.e. (5	55-k)x [*] +(8p-33m)x			• •	
	+ 18j - 63 = 0				
1	$7x^{2} - 3x - 93 = 0$	17	_	3	- 93
	$x^4 - 25 = 0$	<u> </u>	C)	- 25
	$x^{2} = 58$		()	- 58
$(p+q)x - p^{-}q^{-}x - 33m = 80 \qquad (p+q) \qquad -p^{-}q^{-} \qquad (-33m - 80)$					
11/214	Harth 18 Ber 1 HI DI		1111111111	8.01.00	. \O . .
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com					

90. Find roots of quadratic equation $5x^2 - 13x - 18 = 0$ Formula Method Short-cut q = 5, b = -13, c = -18 $x = \frac{-b \pm \sqrt{b^2 - 4qc}}{2q}$ q = -13x - 18 = 0 $x = \frac{-b \pm \sqrt{b^2 - 4qc}}{2q}$ $q = -(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ 2×5 $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(5)(-18)}}{10}$ $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(-18)}}{10}$ $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(-18)}}{10}$ $= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(-18)$

Inequalities & Equations 91. Find the roots of quadratic equation $2x^2 + 21x + 9 = 0$ $2x^{2} + 2x + 9 = 0$ This question can not be solved by short-cut Let's use formula $\mathcal{R} = -b \pm \sqrt{b^2 - 4ac} = -21 \pm \frac{1}{2}$ $\sqrt{21^2 - 4(2)(9)}$ 2 X 2 $x = \frac{-21 \pm \sqrt{369}}{4}$ $\therefore x = \frac{-21 + \sqrt{369}}{4}$ or $x = \frac{-21 - \sqrt{369}}{4}$ $\Re = -0.4476568 \text{ or } \Re = -40.2093$ x = -10.052392. Find the roots of $x^2 - 11x - 102 = 0$ $x^2 - 11x - 102 = 0$ $x^2 - 11x - 102 = 0$ $2e = -(-11) + \sqrt{121 - 4(1)(-102)}$ $\frac{2}{2} - 172 + 62 - 102 = 0 \quad (2 - 17) \quad (2 + 6) = 0$ $\chi(\chi-17)+6(\chi-17)=0$ $x = \frac{11\pm23}{2}$ 2=17 2=-6 (2-17)(2+6)=0 $2l = \frac{11+23}{2}, 2l = \frac{11-23}{2}$ 2=17, 2=-6 2e = 17, 2e = -693. Find the roots of $10x^2 - x - 24 = 0$ $10x^2 - x - 24 = 0$ $(0x^2 - x - 24 = 0)$ By Farmula $10x^2 - 16x + 15x^2 - 24 = 0$ $-(-1) \pm \sqrt{(-1)^2 - 4(10)(-24)}$ 22 (52-8) + 3 (52-8) = 0 (5&-8) (2&+3) = 0 2 × 10 $x = \frac{1 \pm \sqrt{961}}{20}$ $x = \frac{1+31}{20}$ or $\frac{1-31}{20}$ $2e = \frac{8}{5} \circ R = \frac{3}{2}$ CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

			_
Inequalities & Equat	tions		²⁻⁸ +8
96. Find roots of quadra	96. Find roots of quadratic equation $10x^2$ -		
Also find sum of roo	ts, product of roots	J.	
$ 0x^2 - 5qx - 6 $	= 0	Sum of roots = $-b$	
102-602+22-	6 = 0	- (- S9)	59
1036 (3-6) +1 (9.	- 6) = 0		10
(x-6) (10x+1) = 0		<u> </u>
$2e = 6 \circ R = 3$	$e = -\frac{1}{10}$	product of roots =	9
Roots are : 6,-	$-\frac{1}{12}$	6	3
sum of roots = 6+ :	$\frac{10}{-1} = \frac{60-1}{-1} = \frac{59}{10}$	10	5
	10 10 10		
product of = 6x roots	$\frac{1}{10} = \frac{-6}{10} = \frac{-3}{5}$		
97.		•	_
Quadratic Equation	Sum of Roots	Product of Roots	
$ax^2 + bx + c = 0$	-b/a	C/a	
$8x^2 - 15x - 33 = 0$	15/8	- 33/8	
		70	
$2x^2 - px + mq + 93 = 0$	P/2	$\left(mq+93 \right)$	
	/2	(2)	
$x^{2} - 40 = 0$	Zero	-40 - 40	
		1 - 10	
$\mathbf{p}\mathbf{x}^2 + \mathbf{q}\mathbf{x} + \mathbf{r} = 0$	- 9/p	×/P	
(3k+3)x - (2p-q)x	$\frac{(2P-q)}{(2P-q)}$	(81+03)	
+ 8j + 63 = 0	(3K+3)	(3 × + 3)	
			mm
CA VINOD REDDY	Maths Regular Notes ⊕vin	iod.reddy.ca@gmail.com	1

Inequalities & Equations 99. If α , β are roots of quadratic equation $5x^2 - 3x - 8 = 0$. Find the value of $(\alpha + \beta)$, $\alpha\beta$, $(\alpha + \beta)^2$, $(\alpha^2 + \beta^2)$ ▶ 1. α + β = sum of roots = 3/52. $\alpha\beta$ = product of roots = $-\frac{8}{5}$ 3. $(\alpha + \beta)^2 = \left(\frac{3}{5}\right)^2 = \frac{\alpha}{2}$ 4. $(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{3}{5}\right)^2 - 2\left(-\frac{8}{5}\right) = \frac{9}{25} + \frac{80}{25} = \frac{89}{25}$ $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$ $(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta$ Please $(\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ remem ber $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ 100. If p, q are roots of quadratic equation $x^2 - 3x + 20 = 0$. Find values of a.p+q = -(-3)/1 = 3 = sum a front sb.pg = product of roots = 20/ = 20 c. $(p-q)^2 = (p+q)^2 - 4pq = 3^2 - 4(20) = -71$ d. $(p^2 + q^2) = (p+q)^2 - 2pq = 3^2 - 2(20) = -31$ $e.p^{3} + q^{3} = (p+q)^{3} - 3pq(p+q) = 3^{3} - 3 \times 20(3) = 27 - 180 = -153$ $f. p^{2}q + q^{2}p = pq(p+q) = 20 \times 3 = 60$ CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

<u>||}</u>} 101. If α , β are roots of quadratic equation $3x^2 - 5x + 2 = 0$. Find the values of : $1.\alpha + \beta = \text{sum of roots} = (5/3)$ 2. $\alpha\beta$ = product of roots = (2/3) 3. $(\alpha + \beta)^3 = (5/3)^3 = (125/27)^3$ 4. $(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = \frac{25}{9} - 2\times\frac{2}{3} = \frac{25}{9}$ 5. $(\alpha^3 + \beta^3) = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $= \frac{125}{27} - \left(3 \times \frac{2}{3} \times \frac{5}{3}\right) = \frac{125}{27} - \frac{90}{27} = \left(\frac{35}{27}\right)$ $6. (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta$ $= \frac{25}{9} - 4\left(\frac{2}{3}\right) = \frac{25}{9} - \frac{24}{9} = \left(\frac{1}{9}\right)$ 7. $\alpha^2\beta + \beta^2\alpha = \alpha\beta(\alpha + \beta)$ $= \frac{1}{3} \times \frac{5}{3} = \left(\frac{10}{3}\right)$ $8. \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{\frac{13}{q}}{\frac{2}{2}} = \frac{\frac{13}{q}}{\frac{6}{q}} = \frac{13}{6}$ 9. $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha \beta} = \frac{35/27}{26} = \frac{35/27}{1867} = (35/18)$ CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

104

104.		
Find roots of quadratic equation	Find the quadratic equation whose	
$10x^2 + 11x + 1 = 0$	roots are $-1 & -\frac{1}{10}$	
\rightarrow		
$10x^{2} + 10x + x + 1 = 0$	$\frac{2}{\varkappa^2 - \left(\frac{\text{sum of}}{\text{roots}} \right) \approx + \left(\frac{\text{product of}}{\text{soots}} \right) = 0$	
lox(x+1) + 1(x+1) = 0 (x+1)(lox+1) = 0	$x^{2} - \left(-1 + \frac{-1}{10}\right)x^{2} + \left(-1 \times \frac{-1}{10}\right) = 0$	
$\therefore x^2 = -1, x^2 = -\frac{1}{10}$	$2e^{2} - (-11) + 1 = 0$	
-1 -1 - are the roots		
of quad. egh.	$2e^{2} + \frac{11}{10}e^{2} + \frac{1}{10} = 0$ $10e^{2} + 11e^{2} + 1 = 0$	
105. Find roots of quadratic	Find the quadratic equation whose	
equation $16x^2 + 36x - 10 = 0$	roots are $\frac{1}{\sqrt{2}} \neq -\frac{5}{2}$	
$ 6x^2 + 36x - 10 = 0$	→ · · · · · · · · · · · · · · · · · · ·	
$8\pi^2 + 18\pi - 5 = 0$	2-(sum of) &+ (product of) = 0	
$8x^2 + 20x - 2x - 5 = 0$	2(1,-5) + (1,x-5) - 0	
42(22+5) - 1(22+5) = 0	$2^{-}\left(\frac{1}{4}+\frac{1}{2}\right)^{+}\left(\frac{1}{4}+\frac{1}{2}\right)^{-}$	
(22+5)(42-1)=0 z=-5/2, z=1/4	$\frac{2}{8} - \frac{-18}{8} = 2 - \frac{5}{8} = 0$	
Roots are : - == == == ==	$8x^2 + 18x - 5 = 0$	
106. Find roots of quadratic	Find the quadratic equation whose	
equation $6x^2 + 19x - 7 = 0$	roots are $\frac{1}{3} \neq \frac{-7}{2}$	
$6x^2 + 21x^2 - 2x^2 - 7 = 0$	$x^{2} - \left(\begin{array}{c} \text{sum of} \\ \text{roots} \end{array} \right) x + \left(\begin{array}{c} \text{product of} \\ \text{roots} \end{array} \right) = 0$	
$3 \approx (2 \approx +7) - 1 (2 \approx +7) = 0$	$\chi^{2}_{-}\left(\frac{1}{3}-\frac{7}{2}\right)\mathcal{H}+\left(\frac{1}{3}\times\frac{-7}{2}\right)=0$	
$\frac{1}{2} = -\frac{7}{2} = \frac{1}{3}$	$x^{2} = \frac{-19}{6}x = \frac{7}{6} = 0$	
Roots are: 1 & -7	$6x^2 + 19x - 7 = 0$	
<u>ակարիտիտիտիտիջնիտիտը տեստիսկստիտիստիտիստիստիստիստիստիստ</u>		
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com		

2+6=2

 \mathbf{O}

	all hells
107. Find roots of quadratic	Find the quadratic equation whose
equation $x^2 - 10x + 23 = 0$	roots are $(5+\sqrt{2}) \not\in (5-\sqrt{2})$
$x^2 - 10x + 23 = 0$	→
By Formula,	$\mathscr{L}^{2} = \begin{pmatrix} sum of \\ roots \end{pmatrix} \mathscr{L} + \begin{pmatrix} product of \\ roots \end{pmatrix} = 0$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x^2 - [s + \sqrt{2} + s - \sqrt{2}] + [(s + \sqrt{2})(s - \sqrt{2})] =$
$= \frac{-(-10) \pm \sqrt{100 - 4(1)(23)}}{2 \times 1}$	$\frac{1}{x^2 - 10x^2 + (5^2 \sqrt{2}^2) = 0}$
= 10± 18 = 10± 14x2	$x^2 - 10x + 23 = 0$
$= \frac{10\pm 2\sqrt{2}}{2} = \frac{10\pm 2\sqrt{2}}{12} = \frac{10\pm 2\sqrt{2}}{12}$	
$= (5 \pm \sqrt{2}) \therefore Roots are: \frac{5 \pm \sqrt{2}}{5 - \sqrt{2}}$	1
109	

5.5

.00.	
Roots of Quadratic Eq^n	Quadratic Equation
5, 10	$x^2 - 15x + 50 = 0$
-18, 20	$x^2 - 2x - 360 = 0$
1,-1	$2^2 - 02 - 1 = 0$ i.e. $2^2 - 1 = 0$
15, 18	$2^2 - 332 + 270 = 0$
-16, -20	$x^2 + 36 + 320 = 0$
$-\frac{5}{2}, \frac{9}{2}$	$\mathscr{A}_{-}\left(\frac{q}{2}-\frac{5}{2}\right)\mathscr{R}+\left(\frac{q}{2}\times\frac{-5}{2}\right)=0$
	$\chi^2 - 2\varkappa - \frac{45}{4} = 0$, $4\varkappa^2 - 8\varkappa - 45 = 0$
$\frac{9}{7}, \frac{8}{13}$	$2e^{2} - \left(\frac{q}{7} + \frac{8}{13}\right) \approx + \left(\frac{q}{7} \times \frac{8}{13}\right) = 0$
	$\Re^{2} - \left(\frac{173}{91}\right) \Re + \frac{72}{91} = 0 91 \\ \Re^{2} - 1733 + 72 = 0$
16,0	$2^{2} - 162 = 0$
(8 + \3), (8 - \3)	$x^2 - (16)x + (61) = 0$
$(1 + \sqrt{30}), (1 - \sqrt{30})$	$x^{2} - (2)x + (-29) = 0$ $x^{2} - 2x - 29 = 0$

CA VINOD REDDY Maths Regular Notes @vinod.reddy.ca@gmail.com

2+6=2

$42e^2 + 122e + 9 = 0$	$-12 + 1 \sqrt{12} - 4(4)(a)$		
$42e^{2} + 62e + 62e + 9 = 0$	&= <u>12 - 12 - 1(1)(1)</u>		
$2 \approx (2 \approx + 3) + 3 (2 \approx + 3) = 0$	2 × 4		
(2x+3)(2x+3)=0	$\mathcal{L} = \frac{-12\pm0}{2}$		
$\therefore 22+3=0$ or $22+3=0$	8		
$x = -\frac{3}{2}$ or $x = -\frac{3}{2}$	$\mathcal{R} = \frac{12+0}{8} \circ R \frac{12-0}{8}$		
$\therefore Roots are -\frac{3}{2}f -\frac{3}{2}$	2e = -3/2 or $2e = -3/2$		
$b^{2} - 40c = 12^{2} - 4(4)(9) = 144 - 144 =$	0		
When b2- 4ac = 0 then Roots of Quadratic Equation are equal.			
110. Find roots of quadratic equation $5x^2 + 15x^2$	x + 91 = 0		
Lets solve by formula			
$-15 \pm \sqrt{15^2 - 4(5)(91)}$ when	$(b^2 - 4ac) < 0$		
2×5 then	roots of		
QUAG	Inatic equation		
$-15\pm \sqrt{225-1820}$ are	unreal/complexe/		
2 = 10 Ima	ginary_ Num bers		
2e = <u>-15 ± 1/-1595</u> 10 Roots are imaginary / Unreal/complexe Numbers			
V			
$\frac{1}{10000000000000000000000000000000000$			
CA VINOD REDDY Maths Regular Notes @ vinod.reddy.ca@gmail.com			

112.

When	Nature of roots	
$b^2 - 4ac = 0$	Real Rational Equal	
$b^2 - 4ac < 0$	Unreal imaginary wmpleze	
b^2 - 4ac > 0 and not a	Real Irrational unequal	
perfect square		
$b^2 - 4ac > 0$ and a	Real Rational unequal	
perfect square		
value of b ² -4ac Na	ature of roots	
38 Rea	1, I rrational, unequal	
36 Rec	al, Rational, unequal	
81 Rea	1, Rational, unequal	
90 Rea	Real, Irrational, unequal	
-144 Com	Complex/imaginary/unreal	
O Rea	Real, Rational, Equal	
207936 Rea	Real, Rational, unequal	
810 Rea	Real, Irrational, unequal	
-90 Com	Comple= / 1 maginarry / un rea l	
— 35 Com	Complex/Imaginary/unreal	
<i>£</i> ea	Real, Rational, Equal	
905 Rea	Real, Irrational, unequal	
2025 Rea	Real, Rational, unequal	
86 Rea	Real, I roational, unequal	
100 Rea	Real, Rational, unequal	
	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	
	ומנווס ווכקטומו וועוכס ן שיוועט.ו כעטי.טמשצווומוו.טעוו	

Inequalities & Equations		
115. Find the quadra	atic equation whos	e one root is ($15 + \sqrt{41}$)
If one r	oot of Quad. equ	is $(15+\sqrt{41})$ then
other root	- must be (15	- 141)
: Roots	are : (15+ 15-	$\overline{41}) \not\in (15 - \sqrt{41})$
.: Quadratic	Eqn is:	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Sum of ) & + (	product of = 0
ے بر	- 30x + (225-41)	= 0
સ્	2 - 30ze + 184 = C	
116.		
Quadratic Equation	b ² - 4ac	Nature of Roots
$3x^2 - 5x - 8 = 0$	$(-5)^2 - 4(3)(-8)$	Real, Rational, unequal
	= 121	
$8x^2 - 13x + 200 = 0$	$(-13)^{2} - 4(8)(200)$	unreal complete Imaginary
	= leg - e400 = - e231	
$5x^2 + 11x - 3 = 0$	112-4(5)(-3)	Real Irrational unequal
	= 121 + 60 = 181	
$4x^2 + 12x + 9 = 0$	$12^{2} - 4(4)(9)$	Real Rational Equal
	= 0	
$x^{2} - 13x + 36 = 0$	$(-13)^2 - 4(1)(36)$	Real Rational unequal
	= 25	
$5x^2 + 12x + 7 = 0$	$12^{2} - 4(5)(7)$	Real, Rational, unequal
	= 4	
$4x^2 - 1 = 0$	0 - 4(4)(-7)	Real, Rational, Unequal
	$22^2 - 4(3)(0)$	Real Rational unequal
$3\mathbf{x} + 22\mathbf{x} = 0$	= 484	
$8x^2 - 2x + 33 = 0$	$(-2)^2 - 4(8)(33)$	Unreal complete Imaginary
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com		

all line

2+6=2

117.	Value of $b^2$ - 4ac	Nature of Roots	
	38	Real, Irrational, unequal	
	41	Real, Irrational, unequal	
	49	Real, Rational, unequal	
	-60	unreal complex Imaginary	
	0	Real, Rational, Equal	
	88	Real, Irrational, unequal	
	14641	Real, Rational, unequal	
	19288	Real, Irrational, unequal	
	3364	Real, Rational, unequal	
	-0	Real, Rational, Equal	
	380	Real Irrational, unequal	
	-100	unreal complex Imaginary	
118.1	Roots of quadratic e	quation $5x^2 - 33x + 8k + 5 = 0$ are equal. Find k.	
$\rightarrow$	As Roots of	- quadratic egn are equal	
		$\frac{b^2}{b^2} + 4\alpha c = 0 \qquad (\pi \alpha \sigma)$	
	$(-33)^2 - 4(5)(8k+5) = 0$ $\therefore k = \left(\frac{989}{160}\right)$		
	1080	$1 - 20(8 \times +5) = 0$ = 6.18125	
1089-160K-100 = 0 = 0.1181KS			
989 = 160k			
119. Roots of quadratic equation $5kx^4 - 3x^4 + 18x - 21 = 0$ are equal.			
Find k. $(3k-5)a + 18a - 21 \ge 0$			
As Roots of QUARTATIC OF ONCE EQUAL : 324+420 K-252=0			
$\frac{1}{10^2} = \frac{10^2}{10^2} =$			
$18 - 7(5k - 5)(-21) = 0$ $k = -\frac{72}{430} = -\frac{18}{105}$			
$324 + 84(5k-3) \qquad k = -6/35$			
CA VINOD REDDY   Mathe Redular Notes   @vinod reddy ca@dmail.com			
UA VINUD ILDUT IMALIS ICZUIAI NULES W VIIUU.I CUUY.UA@ZIIAII.UUII			

ĨŊ

Inequalities & Equations 120. Roots of quadratic equation $5mx^2 + 33x - 28 = 0$ are equal. Find m. As Roots of quadratic equator one equal $\therefore b^2 - 4ac = 0$
120. Roots of quadratic equation $5mx^2 + 33x - 28 = 0$ are equal. Find m. As Roots of quadratic eqn are equal $b^2 - 4ac = 0$
As Roots of quadratic eqn are equal . b-4ac = 0
$\frac{12}{10} - 490 = 0$
-2 ((-)) (-2) - 0
33 - 4(5m)(-28) = 0
1089 + 560m = 0
m = -1089
560
121. Roots of quadratic equation $5kx^2 - 33x + 8k - 19 = 0$ are reciprocals
of each other. Find the value of k.
As Roots of quadratic eqh are reciporcals of
each other,
1st root × 2nd root = 1
product at roots = 1
C Z a
$\alpha = C$
5k = 8k - 19
lg = 3k
$-1 K = \frac{19}{2}$
Э
122. Roots of quadratic equation $5x^2 - 8kx + 33x - 8p - 19 = 0$ are equal
but opposite in sign. Find the value of k.
AS Roots are equal but opposite in sign for
$q_{\text{nad.}} = q^{\text{h}} : 5x^2 + (-8k + 33) = -8p - 19 = 0$
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com

Inequalities & Equations			
	157 800 + 200 800 = 0		
SUM OF TOOTS - 0	5		
	0		
	0		
Ь =	0		
(-8K + 33) =	0		
33 =	8k		
: K =	33/8		
123. If Roots of quadratic equation are	then		
Equal	$b^2 - 4ac = 0$		
Reciprocal of each other	9 = C		
Equal but opposite in sign	b = 0 = Zero		
124 Poots of guadratic equation $Ex^2 \pm Irr$	2 10x 22k 02 – 0 aro		
124. ROOIS OF quadratic equation 5x + Kx	-19x - 30k - 90 - 0 die		
	d2 = 0		
(5+k) & -19 & -55k	- 45 - 0		
As Roots are Reciprocals	of each other,		
5+k = -33k - 93			
34k = -98			
<u> </u>			
$K = \frac{1}{34} = \frac{1}{17}$			
·			
■ CA VINOD REDDY   Maths Regular Notes   ⊕ vinod.reddv.ca@gmail.com			

## Inequalities & Equations ][]] 125. Roots of quadratic equation $5x^2 - 8px + 81x = 93x - 63k + 88$ are equal but opposite in sign. Find p. 5x2+ (-8p+81-93) & +63K-88 = 0 Roots are Equal but opposite in sign, AS h = 0-8P+81-93=0-12 = 8P $\therefore p = -\frac{12}{8} = -\frac{3}{2}$ 126. If p,q are roots of quadratic equation $x^2 - 11x - 28 = 0$ . Find values. 2+005 \$0 MUZ = 11 = p + q.1 2.pq = -28 = pruduct of roots $3. p^{3} + q^{3} = (P+q)^{3} - 3Pq(P+q) = 11^{3} - 3(-28)(11) = 1331 + 924$ = 2255 $4. p^{2} + q^{2} = (p+q)^{2} - 2pq = 11^{2} - 2(-28) = 177$ 5. $(p - q)^2 = (p + q)^2 - 4pq = 11^2 - 4(-28) = 233$ 6. $\frac{p}{q} + \frac{q}{p} = \frac{p^2 + q^2}{100} = \frac{177}{-28} = -\frac{177}{28}$ $7. \frac{p^2}{q} + \frac{q^2}{p} = \frac{p^3 + q^3}{pq} = \frac{2255}{-28} = -2255/28$ 8. $p^2q + q^2p = pq(p+q) = -28 \times 11 = -308$ 9. $(p - q) = \sqrt{(p - q)^2} = \sqrt{233}$ $10. p^{2}q^{2} = (pq)^{2} = (-28)^{2} = 784$ CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com





Inequalities & Eq	auations ~	
133. Standard form	at of a quadratic equation	n is :
$ax^2 + bx + c = 0$	$\mathbf{x}^2$ - (sum of roots) x	+ (product of roots) = $0$
Where a ≠ 0		
134.		
Roots of	Factors of	Quadratic Eq ⁿ
Quadratic Eq ⁿ	Quadratic Eq ⁿ	
3, -13	(2-3), (2+13)	$2^{2} + 102^{2} - 39 = 0$
-3, 8, 4	(2x + 3) (8x - 1)	$16x^2 - 2x + 24x - 3 = 0$
	$4\pi^2$ and $2\pi$ $1 - \pi$	162 + 222 - 3 = 0
	$2 \approx (2 \approx -1) - 1 (2 \approx -1) = 0$	$4x^2 - 4x + 1 = 0$
	(22-1) & $(22-1)$	2 (57) 10 - 0
<u>2</u> ,9 <u>5</u> ,8	(52-2), (82-9)	40x - 43x - 16x + 18 - 0
		$\frac{2}{2}$
$-\frac{3}{5},\frac{7}{11}$	(5x+3), (11x-7)	552 - 352 + 332 - 2 20
		2
-4, -1,	(3x+4), (2x+1)	62+32+82+4-0
		6x + 11x + 4 = 0
$\frac{7}{5},\frac{-11}{8}$	(5x-7)(8x+11)	402 + 558 - 568 - 7720
		402 - 22 - 77 = 0
0,8	æ, (æ-8)	22-82=0
1 1	$(\infty - 1)$ $(\infty + 1)$	$2^2 - 1 = 0$
1,-1		
5,3	(32-5) (52-3)	152-92-252+15=0
3 5		$15x^2 - 34x + 15 = 0$
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com		











## Inequalities & Equations 151. If $\alpha$ , $\beta$ are roots of quadratic equation $x^2 - 5x + 9 = 0$ then Find quadratic equation whose roots are $(2\alpha + 3\beta)$ & $(3\alpha + 2\beta)$ $\alpha + \beta = 5, \quad \alpha \beta = 9$ quad. eqn whose roots are (2x+3B) & (3x+2B) is 22- (sum of roots) & + (product of roots) = 0 $2^{2}$ = $2\alpha + 3\beta + 3\alpha + 2\beta + (2\alpha + 3\beta)(3\alpha + 2\beta)$ 20 $x^2 - (S \propto + S B) \approx + [G \propto^2 + 4 \propto B + 9 \propto B + 6 B^2]$ = 0 $x^2 - 5(\alpha + \beta)x + [13\alpha\beta + 6(\alpha^2 + \beta^2)] = 0$ $x^{2} (5 \times 5) x + | 13 \times 9 + 6 (5^{2} - 2 \times 9) | = 0$ $x^2 - 25x + (117 + 6x7) = 0$ $x^2 - 25x + (117 + 42) = 0$ $3e^2 - 252 + 15q = 0$ 152. One root of quadratic equation $3kx^2 + 18px - 19p + 21 = 0$ is 'zero'. Find value of 'p'. one root is zero, means for 2=0, Egh is satisfied $3 \kappa (0)^2 + 18 p(0) - 19 p + 21 = 0$ 0 + 0 + 21 = 139 $\therefore p = \frac{21}{10}$ CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com


















## Inequalities & Equations 172. If p, q are roots of $3x^2 - 19x - 1 = 0$ , whose roots are $\frac{p}{q} \& \frac{q}{p}$ . Find quadratic equation. $p + q = \frac{1}{3}$ $pq = -\frac{1}{3}$ Quad. eqn whose roots are $\frac{p}{a} \neq \frac{q}{p}$ is, $\mathcal{Z} = \left(\frac{P}{q} + \frac{q}{P}\right)\mathcal{R} + \left(\frac{P}{q} \times \frac{q}{P}\right) = 0 \qquad \mathcal{Z} = \left(\frac{\frac{361}{q} + \frac{6}{q}}{\frac{3}{2}}\right)\mathcal{R} + 1 = 0$ = 0 $x^2 - \left(\frac{p^2 + q^2}{pq}\right)x + 1$ $x^2 + \frac{367}{2}x + 1 = 0$ $-\left(\frac{\frac{361}{q}-2\left(-\frac{1}{3}\right)}{-\frac{1}{2}}\right)\chi+1=0$ $2x^{2} + 367x + 3$ 173. The cubic eqⁿ whose roots are m, n, q is: $\implies \chi^{3} - \begin{pmatrix} \text{sum of } \\ \text{roots} \end{pmatrix} \chi^{2} + \left( (\text{ist}_{\chi 2^{\text{nd}}}) + (2^{\text{nd}} \times 3^{\text{rd}}) + (1^{\text{st}_{\chi 3^{\text{rd}}}}) \right) \chi^{2} - \begin{pmatrix} \text{product} \\ \text{of roots} \end{pmatrix}$ $\mathscr{R}^{3}$ = $(m+n+q)\mathscr{R}^{2}$ + $(mn+nq+mq)\mathscr{R}$ = mnq = 0 174. If x = No. of units produced Fixed Cost = ₹3,80,000; Variable Cost p.u. = ₹28 then y = Total Cost =Total cost = Total Fixed cost + Total vasiable cost TC = Total Fixed wst + (vari.wst p.y.x No.of units = 3,80,000 + 2820 CA VINOD REDDY | Maths Regular Notes | @ vinod.reddy.ca@gmail.com

## Inequalities & Equations



## Inequalities & Equations



5,0

	-	
→ b ² - 4ac = 0		
$(-24)^2 - 4(9)(k) = 0$	Roots are equal b-4ac=0	
576-36K = 0	Roots are reciprocals	
576 = 36K	of each other	
-: K = 16	Ponte are equal 1 - 0	
	but opposite insign	
178. Calculate the number such tha	t it is equal to 3 times of its	
diff from 56.	Rootsare b2-4ac	
Let that number be se	Real, irrational, 62-490 >0	
	unequal & Not a perfect	
$\mathcal{H} = 3 \times (\mathcal{H} - \mathcal{H})$	Real Rational 62-400C = 0	
2c = 168 - 32c	Equal	
	Real Rational 62-490 >04	
20 = 42	unequal perfect square	
	$\frac{1}{10000000000000000000000000000000000$	
179.2x + 3y = 5 & 3x - 4y = 2 then $5xy = ?$		
62+9y=15	For a cobic eq.	
_ 6R = 8Y = 4	$dx^{3} + bx^{2} + cx + d = 0$	
$17y = 11$ $\therefore y = \frac{11}{17}$		
$2 \approx + (3 \times \frac{11}{17}) = 5$	Course mate las last all mate	
$2\% = 5 - \frac{33}{2} = \frac{52}{2} : \% = \frac{26}{26}$	= -b/a $= -d/a$	
$5xy = 5x \frac{26}{17} \times \frac{11}{17} = \left(\frac{1430}{200}\right)$		
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com		

Inequalities & Equations		
$180. a^{2} + b^{2} = 45  \text{then } \frac{1}{a} + \frac{1}{b} = ?$ ab = 18 $(a+b)^{2} = (a^{2} + b^{2}) + 2ab$ = 45 + 2(18) $(a+b)^{2} = 81$ (a+b) = 9	$\frac{1}{a} + \frac{1}{b}$ $= \left(\frac{a+b}{ab}\right)$ $= \frac{9}{18} = \frac{1}{2}$	
181. If roots of quadratic equation are $(2m) \& (-2n)$ then factors are : Roots are : $2m, -2h$ Factors are : $(x-2m) \notin (x+2n)$		
182. If roots of quadratic equation are $(\frac{3}{5}) \& (\frac{-8}{11})$ then factors are : Factors are $(5 \approx -3) \notin (11 \approx +8)$		
Roots of quad. egn	quad. qn	
- 6.88	$x^2 - 20x + 99 = 0$	
$\frac{10,0}{2+\sqrt{20}}, 2-\sqrt{20}$	$x^2 - 1020 = 0$ $x^2 - 420 - 16 = 0$	
8+ VII, 8- VII 0.50, 2.50	$x^{2} - 16x + 53 = 0$ $x^{2} - 3x + 1.25 = 0$ , $4x^{2} - 12x + 5 = 0$	
 	$x^{2} + 15x + 54 = 0$ $x^{2} - 6x - 784 = 0$	
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com		



## Inequalities & Equations 185. Sum of 2 numbers is 15 & their product is 50 then sum of their reciprocal is : 1 + J x+y=15 24 = 50 $\frac{32+9}{324} = \frac{15}{50} = \frac{3}{10} = 0.30$ 186. Out of 3 numbers, sum of first and second is 24, sum of $2^{nd} \& 3^{rd}$ is 30, sum of first & third is 26. The smallest number is : **d**. 10 b. 14 a. 18 c.16 1st Number : 20 2nd number : y 2rd Number : Z 20+4 = 24 2+4 = 24 y + z = 30x + 30 - Z = 24x+z=26 $\chi$ + 30 - (26- $\chi$ ) = 24 20 + 30 - 26 + 20 = 24 228+4 = 24 22 = 20 2 =10 Z = 16 y=14 CA VINOD REDDY | Maths Regular Notes | @vinod.reddy.ca@gmail.com

Inequalities & Equations		
FORGET THE MISTAKE REMEMBER THE LESSON !		
CA VINOD REDDY   Maths Regular Notes   @ vinod.reddy.ca@gmail.com		
318		

Inequalities & Equations	TESSEE CONStructure
	d.Thailthe
CA VINOD REDDY Maths Regular Notes	vinod.reddy.ca@gmail.com