Foundation \rightarrow Intermediate \rightarrow Final CA 7

CA FOUNDATION MATHEMATICS AND LOGICAL REASONING

Head Office

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.

🔟 댥 /officialjksc 🛛 🎡 jkshahclasses.com

PREFACE

Dear Student,

Welcome to the World of Knowledge - J.K. Shah Classes !

I have the pleasure of presenting this study material to you. It contains good number of good problems, selected so carefully from wide-ranging sources. It covers the problems which will bring in to focus all important concepts that you need to study in order to fortify yourself for your examination.

The subject will be taught by eminent professors who are highly experienced and well-versed with the job.

The coaching is very exhaustive and wholly concept based. The conceptual explanations are entirely supported by good problems that cover the past and the problems which peep into the future. Also, the coaching is very systematic, well - planned and absolutely time bound. For a change, say good - bye to mechanical learning. I am sure you will feel that the study is a pleasurable job and not a painful exercise.

I wish you a very happy study time. BEST OF LUCK !

Prof. J.K. Shah. Chartered Accountant

CA FOUNDATION LOGICAL REASONING

MATHEMATICS

CA FOUNDATION - MATHEMATICS

Ratio, Proportion & Partnership

THEORY
Ratio
• A ratio is a fraction (either proper or improper) which compares two or more quantities of
similar kind, which enables us to understand as to how many times one quantity is involved
in the other.
A
• If A : B $\left(\frac{A}{B}\right)$ is a ratio, then the numerator A is called "Antecedent" and the denominator B
is called the "Consequent".
• Ratios must be expressed in the simplest possible form and we can calculate ratios only
when the quantities are commensurable (fully quantifiable).
Scoule
• Two or more ratios can be bridged in order to have a continuous comparison between more
than two variables.
 Rule for bridging more than two ratios :
0
If ,a,b,c,d,e are five Quantities, and
$a _ N_1 . b _ N_2 . c _ N_3 . d _ N_4$
$\frac{a}{b} = \frac{N_1}{D_1}; \frac{b}{c} = \frac{N_2}{D_2}; \frac{c}{d} = \frac{N_3}{D_3}; \frac{d}{e} = \frac{N_4}{D_4}$
 Then, a:b:c:d:e= $N_1N_2N_3N_4: D_1N_2N_3N_4: D_1D_2N_3N_4: D_1D_2D_3N_4: D_1D_2D_3N_4: D_1D_2D_3D_4$
Let a : b is a ratio, then:
• $\frac{a}{b} > 1$ (Ratio of Greater Inequality)
 D
• $\frac{a}{b} < 1$ (Ratio of Lesser Inequality)
 • $\frac{a}{b} = 1$ (Ratio of Equality)

- $a^2:b^2$ (Duplicate Ratio) •
- $a^3:b^3$ (Triplicate Ratio)
- $\sqrt{a}:\sqrt{b}$ (Sub-Duplicate Ratio)
- $\sqrt[3]{a}$: $\sqrt[3]{b}$ (Sub-Triplicate Ratio)
- $\frac{d}{b} = \frac{c}{d} = \frac{e}{f} = \dots$ If then the value of each ratio can be obtained by mean of any one of the following two operations;
- Each ratio = $\frac{a+c+e+...}{b+d+f+...}$ (ADDENDO) α. Or
- Each ratio = $\frac{a-c-e-\dots}{b-d-f-\dots}$ (SUBTRANDENDO) b.

INVERSE RATIO:

- IR of a:b is b : a
- IR of a:b:c is bc : ac : ab •
- IR of a:b:c:d is bcd : acd : abd : abc

COMPOUND RATIO:

tanda Enterprist The multiplying effect of all ratios given is known as compound ratio. If a:b and c:d are two ratios, then ac : bd is called the compounded ratio of the two.

Proportion

- Proportion is defined as the equality of two or more ratios. If $\frac{a}{b} = \frac{c}{d}$, in such a case the quantițies a,b,c,d are said to be proportional, here 'd' is called the fourth proportional.
- If $\frac{a}{b} = \frac{b}{c}$, then a,b,c are said to be in continued proportion, where 'b' is called the mean proportional and 'c' is called third proportional.

• If
$$\frac{a}{b} = \frac{b}{c}$$
 or $b^2 = ac$ \therefore $b = \sqrt{ac}$

IF	THEN	PROPERTY	
	ad = bc	PRODUCT OF EXTREMES =	
		PRODUCT OF MEANS	
	$\frac{b}{d} = \frac{d}{d}$	INVERTENDO	
$\frac{a}{b} = \frac{c}{d}$	$\frac{a}{c} = \frac{b}{d}$	ALTERNENDO	
	$a+b_c+d$	COMPONENDO	
	b - d		
	$\frac{a-b}{b} = \frac{c-d}{d}$	DIVIDENDO	
	$\frac{a+b}{a+b} = \frac{c+d}{a+b}$	COMPONENDO & DIVIDENDO	
	$\frac{1}{a-b} = \frac{1}{c-d}$		
	$\frac{a-b}{a+b} = \frac{c-d}{c+d}$	DIVIDENDO &	
	$a+b^{-}c+d$	COMPONENDO	
		19	
	G		
		orise	
	9 enter		
	S Enter Ada Enter		
V	L'iliano		
Ć	Ac.		
	0		
	3		

CLASSWORK SECTION

1. Two numbers are in the ratio 5 : 6. If 5 is subtracted from each number, the ratio											
	becomes 4 : 5. The numbers are:										
	α)	15, 20	b)	5, 10							
	c)	10, 15	d)	25, 30							
2.	Two	o numbers are	in th	e ratio 3 : 4. If 6 be added to each terms of the ratio, then the							
	nev	w ratio will be	4:5	. The two numbers are:							
	α)	24, 32	b)	18, 24							
	c)	15,20	d)	9, 12							
				®							
3.	Dai	ily earnings of	two	persons are in the ratio 4 : 5 and their daily expenses are in							
	the	ratio 7 : 9. If e	each	saves ₹ 50 per day, their daily incomes are ₹							
	α)	(40, 50)	b)	(50, 40)							
	c)	(400, 500)	d)	None of these							
				Serprise							
4.	The	e sum of the a	ges o	f 3 persons is 150 years. 10 years ago their ages were in the							
	rat	io 7 : 8 : 9. The	eir pr	esent ages are: O							
	α.	40, 60, 50	b.	50, 45, 55							
	с.	55, 35, 60	d.	45, 50, 55							
5.	Мо	i earns ₹ 80 in	7 hou	urs and Zen earns ₹ 90 in 12 hours. The ratio of their earnings							
	is:										
	α)	32:21	b)	23:12							
	c)	8:9	d)	None of the above							
6.				speeds of two trains is 7 : 8. If the second train runs 400 kms							
	in 5			peed of the first train?							
	α)	10 km per ho	ur	b) 70 km per hour							
	c)	50 km per ho	ur	d) None of the above							

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

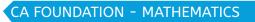
 av	Veranda Enterprise									
 7.	The ratio of the speeds of two trains is 2 : 5. If the distances they travel are in the									
	ratio 5 : 9, find the ratio of the times taken by them.									
	α.	18:25			b.	5:4				
	с.	25:18			d.	1:1				
 8.	lf x	/2 = y/3 = z/7,	then	find the value of	(2x	- 5y +	4z) / 2y.			
	α)	6/23	b)	23/6	c)	3/2		d) 17/6		
 9.	The	e ratio of the n	umb	er of 50 paise, Re.	1 0	and ₹ !	5 coins wi	ith Mr. Zen is 5 : 2 : 1. If	F	
	the	amount with l	him i	s ₹ 38, then the nu	ımt	er of I	Re. 1 coin	s with him is:		
	α)	4	b)	8	c)	12		d) 16		
 10.								coins in the ratio 3:4:5. If		
 	he	has an amoun	t of ₹	224, then find the	e ni	umbers	s of one r	upee coins with the boy.	•	
	α)	40	b)	35	c)	20		d) 30		
 		a b				3	<u>79</u>			
 11.	lf -	$\frac{a}{b+c} = \frac{b}{c+a} = \frac{b}{c+a}$	$\frac{c}{a+b}$. Then find the val	ue	of eac	h ratio.			
 	α.	1	b.	$\frac{1}{2}$	с.	$\frac{1}{20}$	pris	d. None of the above		
				29	Ę	ne	~ ~			
12.								broken into three pieces,		
								5. The value of the stone		
					veig	ght. Co	alculate t	he percentage loss thus	5	
		urred by this br		5						
	•	80%	b)	90%						
 	c)	84%	d)	78%						
						-				
 13.								of 19 : 16 and increases		
 				o of 4 : 5. What is	the	e ratio	of the wo	age bill of the employer	-	
		ially and now?		47 44						
 	α.		b.	17:16						
	с.	16:17	d.	19:20						
 		D (1								
 		Ratios:		2 . / :-						
 14.		e duplicate rati								
 	•	$\sqrt{3}:2$	b)							
	C)	9:16	d)	None of these						

J.K. SHAH [®]
CLASSES
a Verondo Enterprise

a Vơranda Enterprise									
15.	The	e sub-duplicate	e rati	o of 25 : 36 is					
	α)	6:5	b)	36:25					
	c)	50:72	d)	5 :6					
16.	The	e triplicate rati	o of 2	2 : 3 is					
	α)	8:27	b)	6:9					
	c)	3:2	d)	None of these					
17.	The	e sub-triplicate	e rati	o of 8 : 27 is					
	α)	27:8	b)	24:81					
	c)	2:3	d)	None of these					
18.				icate ratio of $(p - x^2)$: $(q - x^2)$, then find the value of x^2 .					
		p / (p + q)							
	c)	pq / (p – q)	d)	pq / p+q					
				2/9					
Com	pou	nd Ratio		G S F ise					
				Storphy					
19.				of 2 : 3, 9 : 4, 5 : 6 and 8 : 10 is					
	-	1:1							
	C)	3:8	d)	None of these					
20	71	untic		A					
20.			indec	l of 4 : 9, the duplicate ratio of 3 : 4, the triplicate ratio of					
		3 and 9 : 7 is	<u>لم</u>	7.0					
		2:7	•	7:2					
	C)	2:21	d)	None of these					
21	Ci	d the company	ndad	ratio of 27E + 21 invorce of 720 + 1221 dualizate ratio of					
21.		•		ratio of 275 : 31, inverse of 729 : 1331, duplicate ratio of					
		•		9 : 11, sub-duplicate ratio of 961 : 1296, sub-triplicate ratio					
		729:1331.	b.	1:2					
		275:11	d.	31:25					
	ι.	213.11	u.	J1. <i>LJ</i>					

	dV	eranda Enterprise											
	Inve	rse Ratio											
	22.	The Inverse ratio	of 11	l : 15 is									
		a) 15:11	b)	$\sqrt{11}$: $\sqrt{15}$									
		c) 121:255	d)	None of these									
	23.	3. The ratio of the quantities is 5 : 7. If the consequent of its inverse ratio is 5, the											
		antecedent is											
		α) 5	b) \	<i>[</i> 5	c) 7	d) None of these							
	Joint	t Ratio											
	24.	If $\frac{a}{b} = \frac{2}{3}$ and $\frac{b}{c} = \frac{4}{5}$, the	ratio a : b : c = ?		®							
		a) 4:6:15											
		c) 8:12:15	d)	8:16:25									
						79							
	25.	lf A : B = 2 : 3, B	: C =	4 : 5 and C : D = 3	: 7, find A	: B : C : D							
		a) 4:6:15:3	5		b) 4:12	. 15 : 35							
		c) 8:12:15:3	35	/9	d) 8:16	: 25 : 35							
					0								
	26.	lf a : b = 3 : 5, k	o : c =	5:4,c:d=2:	3 and d is	50% more than e, find the ratio							
		between a and e		ave.									
		a) 2:3	b)	3:4									
		c) 3:5	d)	4:5									
	27.	Aoi, Boi and Coi	work	in a company. Th	ne ratio of	Aoi's age to Boi's age is 11 : 13							
		and Boi's age to	o Coi's	age is 13:14. If t	he sum of	their ages is 76, what are their							
		respective ages?											
		a) 33, 39, 42	b)	23, 27, 32									
		c) 22, 26, 28	d)	24, 28, 30									
	28.	If $\frac{a}{b} = \frac{2}{3}$ and $\frac{b}{c} = \frac{4}{5}$, ther	n find the value of	$\frac{a+b}{b+c}$								
		a) 8:15	b)	20:27									
		c) 3:4	d)	27:20									
-													

		CARLA SE [®]		
J. CL		<u>Shah</u> s s e s		CA FOUNDATION - MATHEMATICS
 a۷		da Enterprise		
 29.	Ah	medabad, Bom	bayo	and Calcutta are three cities. The ratio of average temperature
	bet	ween Ahmeda	bad o	and Bombay is 11 : 12 and the average between Ahmedabad
	and	d Calcutta is 9	: 8.	Then the ratio between the average temperature of Bombay
	and	d Calcutta is:		
	α)	22:27	b)	27:22
	c)	32:33	d)	None of the above
30.	A r	nan distributes	his p	property of ₹ 6,00,000 among his three sons. The share of his
	firs	t son is thrice	that	of the second son's share and the share of the second son is
	twi	ce that of the t	third	son. Find the ratio in which sons share the property.
	α)	1:2:6	b)	3:4:5
	c)	6:2:1	d)	2:4:6
				®
Prop	orti	on		
31.	The	e fourth propor	tion	al to 4, 6, 8 is
	α)	12	b)	32
	c)	48	d)	None of these
				None of these Senterolise
32.	The	e third proporti	onal	to 12, 18 is
	α)	24	b)	27
	c)	36	d)	None of these
				·
33.	The	e mean proport	tiona	l between 25, 81 is
	α)	40	b)	50
	c)	45	d)	None of these
34.	The	e fourth propor	tion	al to 2a, a³ & c is
	α)	ac/2	b)	ac
	c)	2/ac	d)	a²c/2
35.	If f	our numbers 1,	/2, 1,	/3, 1/5, 1/x are proportional then x is
	α)	6/5	b)	5/6
	c)	15/2	d)	None of these



av	erund	uu enterprise					
36.	The	e mean propor	tiona	l between 12x² ar	d 27y ² is		
	α)	18×y	b)	81xy			
	c)	8xy	d)	None of these			
37.	lf x	: / y = z / w, im	plies	y /x = w / z, then	the process	is called	
	α)	Dividendo	b)	Componendo			
	c)	Alternendo	d)	None of these.			
38.	lf p	o /q = r / s = p	- r /	q - s, the process	is called		
	α)	Subtrahendo	b)	Addendo			
	c)	Invertendo	d)	None of these.			
39.	lf c	ı/b = c/d, then	the p	process (a+b)/(a-b	= (c+d)/(c	-d), is called	
	α)	Componendo					
	b)	Dividendo					
	c)	Componendo	and	Dividendo		19	
	d)	None of these	•	6			
					9	01150	
40.	lf u	ı / v = w / p. th	en tł			o) / (w+p), is called	
	α)	Invertendo		P de	3		
	b)	Alternendo	/_	Verandr			
	c)	Addendo	\mathcal{O}	3			
	d)	None of these	e.				
	6	u h					
41.	If $\frac{1}{4}$	$\frac{a}{b} = \frac{b}{5}$ then					
		. 4 1 5		a+4 b+5			
	α)	$\frac{a+4}{a-4} = \frac{b-5}{b+5}$		b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$			
	c)	$\frac{a-4}{a+4} = \frac{b+5}{b-5}$		d) None of these			
42.					, 38 and 1	34 so that the numb	er become
	-	portionate to					
	α)	3	b)	5	c) 7	d) 2	

Mixtures and Alligation

43.	In	what propor	tion mu	ust rice @ ₹ 3.10/kg be mixed with rice @ ₹ 3.60/kg to make
	the	e mixture wo	orth₹3.	.25/kg?
	α.	3:5	b.	5:3
	с.	3:7	d.	7:3
44.	On	combining	two gro	oups of students having 30 and 40 marks respectively in an
	exc	am, the resu	ltant gr	roup has an average score of 34. Find the ratio of the number
	of	students in t	he first	t group to the number of students in the second group.
	α.	2:3	b.	3 : 5
	с.	5:3	d.	3:2
				8
45.	A r	merchant ha	s 100 k	g of sugar, part of which he sells at 7% profit and the rest at
	17	% profit. He	gains 1	10% on the whole. Find how much is sold at 7% profit.
	α.	30 kg	b.	70 kg
	с.	55 kg	d.	45 kg
				5 rorist
				45 kg Senterorise Add Enterorise
				Ad h
			<u> </u>	L'Idraine
				av

PAST YEAR QUESTIONS

46.	An alloy is to con	tain c	copper and zinc in the ratio 9 : 4. The zinc required to melt with	
	24 kg of copper i	S		
	(a) 10 ² / ₃ kg	(b)	$10\frac{1}{2}$ kg	
 	3		3	
	(c) $9\frac{2}{2}$ kg	(d)	9 kg	
 	3			
 47.	A box contains ₹	56 ir	n the form of coins of one rupee, 50 paise and 25 paise. The	
	number of 50 pa	ise co	oin is double the number of 25 paise coins and four times the	
 	numbers of one i	rupee	coins. The numbers of 50 paise coins in the box is	
 	(a) 64	(b)	32 (c) 16 (d) 14	
 48.	Eight people are	plan	ning to share equally the cost of a rental car. If one person	
 	withdraws from t	he ar	rrangement and the others share equally entire cost of the car,	
 	then the share of	f each	n of the remaining persons increased by:	
 	(a) 1/9	(b)	1/8 (c) 1/7 (d) 7/8	
 			S interp	
 49.	The incomes of A	A and	B are in the ratio 3 : 2 and their expenditures in the ratio	
 	5:3. If each say	ves ₹ :	1,500, then B's income is:	
 	(a) ₹ 6000	(b)		
 	(c) ₹ 3000	(d)	₹ 7500	
 50.	In 40 litres mixtu	ire of	glycerine and water, the ratio of glycerine and water is 3 : 1.	
 			added in the mixture in order to make this ratio 2 : 1 is	
 	(a) 15 litres		10 litres (c) 8 litres (d) 5 litres	
 		(0)		
 51.	The third propert	ional	L between $(a^2 - b^2)$ and $(a + b)^2$ is :	
51.				
	(a) a + b	(b)	a – b	
	(a) $\frac{a+b}{a-b}$		$\frac{a-b}{a+b}$	
	(c) $\frac{(a - b)^2}{a + b}$	(ط)	$\frac{(a+b)^3}{a-b}$	
	(C) a + b	(u)	a — b	

	®				
J.]	K. SHAH				CA FOUNDATION - MATHEMATICS
aV	dranda Enterprise				
52.	In a film shootir	ng, A	and B received m	noney in a ce	ertain ratio and B and C also
	received the mor	ney in	the same ratio. I	f A gets ₹ 1,	60,000 and C gets ₹ 2,50,000.
	Find the amount	recei	ved by B?		
	(a) ₹2,00,000	(b)	₹ 2,50,000		
	(c) ₹1,00,000	(d)	₹ 1,50,000		
53.	The ratio compo	unded	l of 4:5 and sub-d	uplicate of a	: 9 is 8 : 15. Then value of a is:
	(a) 2	(b)	3	(c) 4	(d) 5
54.	Find two numbe	ers su	ch that mean pr	oportional b	etween them is 18 and third
	proportional bet	ween	them is 144		
	(a) 9,36	(b)	8, 32	(c) 7, 28	(d) 6, 24
55.	If the salary of P	is 259	% lower than that	of Q and the	salary of R is 20% higher than
	that of Q, the ra	tio of	the salary of R an	d P will be:	
	(a) 5:8	(b)	8:5	(c) 5 : 3	9 (d) 3 : 5
			6		P.
56.	A dealer mixes r	rice co	sting ₹ 13.84 per	kg. with rice	costing ₹ 15.54 and sells the
	mixture at ₹ 17.	.60 pe	er kg. So, he earn	is a profit of	14.6% on his sale price. The
	proportion in wh	ich he	e mixes the two qu	alities of rice	e is:
	(a) 3:7	(b)	5:7	(c) 7:9	(d) 9 : 11
		\mathcal{O}	210.		
57.	X, Y, Z together	starts	a business. If X i	nvests 3 time	es as much as Y invests and Y
	invests two third	ofwl	nat Z invests, then	the ratio of	capitals of X, Y, Z is
	(a) 3:9:2	(b)	6:3:2		
	(c) 3:6:2	(d)	6:2:3		
58.	There are total 2	23 coi	ns of ₹ 1, ₹ 2 and	₹5 in a bag	. If their value is ₹ 43 and the
	ratio of coins of	₹1 ar	id ₹ 2 is 3 : 2. Thei	n the number	r of coins of ₹ 1 is :
	(a) 12	(b)	5	(c) 10	(d) 14
59.	The ratio of the r	numbe	er of ₹ 5 coins and	₹ 10 coins is	8 : 15. If the value of ₹ 5 coins
	is ₹ 360, then the	e num	ber of ₹ 10 coins v	will be:	
	(a) 72	(b)	120	(c) 135	(d) 185

HOMEWORK SECTION

1.	The inverse ratio of	of 11	: 15 is		
	(a) 15:11	(b)	$\sqrt{11}$: $\sqrt{15}$		
	(c) 121 : 225	(d)	none of these		
2.	The ratio of two a	juant	ities is 3 : 4. If the	antecedent is 15,	the consequent is
	(a) 16	(b)	60	(c) 22	(d) 20
3.	The ratio of the a	quan	tities is 5 : 7. If th	ne consequent of i	ts inverse ratio is 5, the
	antecedent is				
	(a) 5	(b)	$\sqrt{5}$	(c) 7	(d) none of these
				®	
4.	The ratio compou	nded	l of 2 : 3, 9 : 4, 5 :	6 and 8 : 10 is	
	(a) 1:1	(b)	1:5	(c) 3 : 8	(d) none of these
				5/9	
5.	The duplicate rati	o of	3 : 4 is	V	
	(a) √3 : 2	(b)	4:3	(c) 9 : 16	(d) none of these
			/9	Enterr	
6.	The sub-duplicate	e rati		3	
	(a) 6:5	(b)	36:25	(c) 50 : 72	(d) 5 : 6
		\mathcal{O}	ave		
7.	The triplicate ration	o of a	2 : 3 is		
	(a) 8:27	(b)	6:9	(c) 3 : 2	(d) none of these
8.	The sub-triplicate	e rati			
	(a) 27:8	(b)	24:81	(c) 2 : 3	(d) none of these
9.	•			luplicate ratio of 3	
	(a) 1:4	(b)	1:3	(c) 3 : 1	(d) none of these
10.		Indec	d of 4 : 9, the dup	licate ratio of 3 :	4, the triplicate ratio of
	2 : 3 and 9 : 7 is				
	(a) 2:7	(b)	7:2	(c) 2:21	(d) none of these

	al	eranda Enterprise						
	11.	The ratio compou	Inded	of duplicate ratio	of 4 : 5, triplicate	ratio o	f 1 : 3, sub duplicate	
		ratio of 81 : 256 and sub-triplicate ratio of 125 : 512 is						
		(a) 4:512	(b)	3:32	(c) 1 : 12	(d) r	none of these	
	12.	lf a : b = 3 : 4, th	e val	ue of (2a+3b) : (3a	+4b) is			
		(a) 54:25	(b)	8:25	(c) 17:24	(d)	18:25	
	13.	Two numbers are	in th	e ratio 2 : 3. If 4 be	e subtracted from	each,	they are in the ratio	
		3 : 5. The numbe	rs are	2				
		(a) (16, 24)	(b)	(4, 6)	(c) (2, 3)	(d)	none of these	
	14.	The angles of a t	riang	le are in ratio 2 : 7	7 : 11. The angles	are		
		(a) (20°, 70°, 90°)		®			
		(b) (30°, 70°, 80°)					
		(c) (18°, 63°, 99°)			2		
		(d) none of these	5			2		
				6		2		
	15.	Division of ₹ 324	betw	een X and Y is in t	he ratio 11 : 7. X	& Y wo	ould get Rupees	
		(a) (204, 120)	(b)	(200, 124)	enterr			
		(c) (180, 144)	(d)	none of these	3			
			/	L'and				
	16.	The ratio of two	numt	pers is 7 : 10 and t	heir difference is :	105. Tł	ne numbers are	
		(a) (200, 305)	(b)	(185, 290)				
		(c) (245, 350)	(d)	none of these				
	17.	P, Q and R are t	hree	cities. The ratio of	average temper	ature l	petween P and Q is	
		11 : 12 and that k	betwe	en P and R is 9 : 8.	The ratio betweer	n the a	verage temperature	
		of Q and R is						
		(a) 22:27	(b)	27:22	(c) 32 : 33	(d)	none of these	
	18.	lf x : y = 3 : 4, the	e valı	$1e ext{ of } x^2y + xy^2 : x^3 + xy^2 = x^3 + xy^2 = x^3 + xy^2 = x^3 + xy^2 = x^3 + x^$	+ y³ is			
		(a) 13:12		12:13	(c) 21 : 31	(d)	none of these	
	19.	If p : q is the sub	-dup	licate ratio of p-x ²	r^2 : q-x ² then x ² is			
		(a) <u>p</u>	(b)	-	(c) $\frac{pq}{p+q}$	(d) I	None of these	
		p+q		p+q	p+q			
—								

 al⁄	Veranda Enterprise						
20.	If 2s : 3t is the	duplica	te ratio of 2s – p :	3t – p then			
	(a) p ² = 6st	(b)	p = 6st	(c) 2p = 3st	(d) r	none of these	
21.	lf p : q = 2 : 3 c	ınd x : y	• = 4 : 5, then the	value of 5px + 3qy	: 10p	ox + 4qy is	
	(a) 71:82	(b)	27:28	(c) 17:28	(d) r	none of these	
22.	The number w	hich wh	nen subtracted fro	om each of the ter	ms c	of the ratio 19 : 31	
	reducing it to 1	: 4 is					
	(a) 15	(b)	5	(c) 1	(d)	none of these	
23.	Daily earnings	of two p	persons are in the	ratio 4:5 and their	daily	expenses are in the	
	ratio 7 : 9. If ea	ach save	es ₹ 50 per day, th	eir daily earnings i	n ₹ a	re	
	(a) (40, 50)	(b)	(50, 40)	(c) (400, 500)	(d)	none of these	
24.	The ratio betwe	een the	speeds of two trai	ns is 7 : 8. If the se	cond	train runs 400 kms.	
 	in 5 hours, the	speed c	of the first train is	29			
	(a) 10 Km/hr	(b)	50 Km/hr	(c) 70 Km/hr	(d)	none of these	
 				Suprise			
25.	The fourth prop	oortion		Enterpris			
 	(a) 12	(b)	32	(c) 48	(d)	none of these	
 		<u> </u>					
 26.	The third propo	ortional	to 12, 18 is				
 	(a) 24	(b)	27	(c) 36	(d)	none of these	
27.			l between 25, 81				
	(a) 40	(b)	50	(c) 45	(d)	none of these	
 28.				26 that 6 has to 1			
	(a) 11	(b)	10	(c) 21	(d) r	none of these	
 29.	The fourth prop						
 	(a) ac/2	(b)	ac	(c) 2/ac	(d)	none of these	
30.	If four numbers	5 1/2, 1,	/3, 1/5, 1/x are pr	oportional then x i	S		
 	(a) 6/5	(b)	5/6	(c) 15/2	(d)	none of these	

 a r	eranaa Enterprise					
31.	The mean propor	tionc	ι <mark>l between 12x² α</mark> n	d 27y² is		
	(a) 18xy	(b)	81×y	(c) 8×y	(d)	none of these
	(Hint: Let z be the	e meo	an proportional an	d z = $\sqrt{(12x^2 \times 27y^2)}$)	
32.	lf A = B/2 = C/5, t	then	A : B : C is			
	(a) 3:5:2	(b)	2:5:3	(c) 1 : 2 : 5	(d)	none of these
33.	$lf \alpha/3 = b/4 = c/7$, the	n a + b + c/c is			
	(a) 1	(b)	3	(c) 2	(d)	none of these
34.	lf p/q = r/s = 2.5/	1.5,	the value of ps : qr	' is		
	(a) 3/5		1:1	(c) 5/3	(d) r	none of these
				®		
35.	lf x : y = z : w = 2	2.5:2	1.5, the value of (x	+ z)/(y + w) is		
	(a) 1	(b)	3/5	(c) 5/3	(d)	none of these
				2/9		
36.	lf (5x - 3y)/(5y -	3x) =	3/4, the value of >	<: y is		
	(a) 2:9		7:2	(c) 7:9 015	(d)	none of these
			9	Enterr		
37.	If A : B = 3 : 2 and	dB:	C = 3 : 5, then A : I	3 : C is		
	(a) 9:6:10	(b)	6:9:10	(c) 10:9:6	(d)	none of these
		\mathcal{O}	ave			
38.	If $x/2 = y/3 = z/7$,	, ther	n the value of (2x -	- 5y + 4z)/2y is		
	(a) 6/23	(b)	23/6	(c) 3/2	(d)	17/6
39.	lf x : y = 2 : 3, y :	z = 4	: 3 then x : y : z is			
	(a) 2:3:4	(b)	4:3:2	(c) 3 : 2 : 4	(d)	none of these
40.	Division of ₹ 750	into 3	3 parts in the ratio	4:5:6 is		
	(a) (200, 250, 30	0)		(b) (250, 250, 250))	
	(c) (350, 250, 15	0)		(d) 8 : 12 : 9		
41.	The sum of the a	ges c	of 3 persons is 150	years. 10 years ag	jo the	eir ages were in the
	ratio 7 : 8 : 9. The	eir pr	esent ages are			
	(a) (45, 50, 55)			(b) (40, 60, 50)		
	(c) (35, 45, 70)			(d) none of these		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

av	Canda Enterprise						
42.	The numbers 14	, 16, 3	35, 42 are no	t in proportion. The	fourth	term for which the	y
	will be in propor	rtion is	;				
	(a) 45	(b)	40	(c) 32	(d)	none of these	
43.	lf x/y = z/w, imp	lies y/	x = w/z, then	the process is called	d		
	(a) Dividendo			(b) Componen	do		
	(c) Alternendo			(d) none of the	ese		
44.	lf p/q = r/s = p -	• r/q –	s, the process	s is called			
	(a) Subtrahendo)		(b) Addendo			
	(c) Invertendo			(d) none of the	ese		
45.	If $a/b = c/d$, imp	lies (a	+ b)/(a - b) =	<pre>(c + d)/(c - d), theg</pre>	orocess	is called	
	(a) Componendo	0		(b) Dividendo			
	(c) Componendo	o and	Dividendo	(d) none of the	ese		
					9		
46.	If $u/v = w/p$, the	n (u –	v)/(u + v) = (v	v – p)/(w + p). The p	rocess is	s called	
	(a) Invertendo			(b) Alternendo			
	(c) Addendo			(d) none of the	ese		
				<u>da</u>			
47.	12, 16, *, 20 are	in pro		* is			
	(a) 25	(b)	14	(c) 15	(d)	none of these	
48.	4, *, 9, 13½ are	in prop	oortion. Then	* is			
	(a) 6	(b)	8	(c) 9	(d)	none of these	
49.				gms and 5.6 gms i			
	(a) 28 gms	(b)	2.8 gms	(c) 3.2 gms	(d)	none of these	
	_ a b c	a+h+	<i>C</i> + .				
50.	If $\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$ the						
	(a) 4	(b)	2	(c) 7	(d)	none of these.	
51.				f 6 be added to each	terms o	of the ratio, then th	е
	new ratio will be						
	(a) 14,20	(b)	17, 19	(c) 18 and 24	(d)	none of these	

52.	If $\frac{a}{4} = \frac{b}{5}$ then						
	(a) $\frac{a+4}{a-4} = \frac{b-5}{b+5}$	(b)	$\frac{a+4}{b+5} = \frac{b+5}{b+5}$				
			a-4 b-5				
	(c) $\frac{a-4}{a+4} = \frac{b+5}{b-5}$	(d)	none of these				
 53.	lf a : b = 4 : 1						
	(a) 5/2	(b)	4	(c) 5	(d)	none of these	
 	X		Z				
 54.	If $\frac{x}{b+c-a} = -\frac{a}{a}$	c+a-b	a+b-c then				
	(b - c)x + (c -	a)y + (a ·	- b)z is				
	(a) 1	(b)		(c) 5	(d) r	one of these	
					®		
					5		
					19		
			G				
				79	orise		
				2 enter			
			averan	90 r			
		<u> </u>	Vid(di)				
			3				
				_			

HOMEWORK SOLUTION

1.	(a) 15:11
2.	(d) 20
	Ratio = $\frac{3}{4}$, antecedent = 3 × 5 = 15
	\therefore consequent = 4 × 5 = 20
 3.	(c) 7
 4.	(a) 1:1
 -	
 5.	(c) 9:16
 6.	(d) 5:6
 0.	(u) 5.0
 7.	(a) 8:27
 1.	Ginterna Sinterna
 8.	(a) 8:27 (c) 2:3 (a) 1/4
	L'idua
 9.	(a) 1/4
	Compound ratio = $\frac{4}{9} \times \frac{9}{16} = \frac{1}{4}$
10.	(c) 2:27
	Compound ratio = $\frac{4}{9} \times \frac{9}{16} \times \frac{8}{27} \times \frac{9}{7} = \frac{2}{21}$
11.	(d) None of these
	Compound ratio = $\frac{16}{25} \times \frac{1}{27} \times \frac{9}{16} \times \frac{5}{8} = \frac{1}{120}$
 4.2	
12.	(d) 18:25
	Here, $a : b = 3 : 4$
	∴ a = 3, b = 4 ∴ Value of 2a + 3b : 3a + 4b
	= 2(3) + 3(4) : 3(3) + 4(4)
	$= 2(3) + 5(4) \cdot 5(3) + 4(4)$ $= 18 : 25$
	- 10.23

TI	K. SHAH	
CL	ASSES	
	Veranda Enterprise	
 13.	(a) 16, 24	
	Let numbers are 2 : 3 = 2x : 3x	
 	If 4 subtract from each	
	2x - 4 3	
 	$\therefore \frac{2x-4}{3x-4} = \frac{3}{5}$	
	$\therefore 5(2x - 4) = 3(3x - 4)$	
	$\therefore 10x - 20 = 9x - 12$	
	$\therefore x = 8$	
	\therefore the numbers are = 2x, 3x	
	= 16, 24	
 14.	(c) (18°, 63°, 99°)	
	Angles of triangle = 2 : 7 : 11	
	= 2x, 7x, 11x	
	Let 2x + 7x + 11x = 180	
	∴ 20x = 180	
 	∴ x = 9	
	∴ Angles of triangle = 2x, 7x, 11x	
	= 18, 63, 99	
15.	(d) None of these Trial and error	
16.	(c) (245, 350) Trial and error	
 17.	(b) 27:22	
	Here, P : Q = 11 : 12, P : R = 9 : 8	
	∴ Q : P = 12 : 11	
	Joint ratio = Q : P P : R	
	9 × (12 : 11) (9 : 8) × 11	
	= 108 : 99 99 : 88	
	∴ Ratio of Q : R = 108 : 88	
	= 27 : 22	

J.K.	SHAH®
CLA	SSES

CLASSES a Veranda Enterprise
18. (b) 12:13
Here, x : y = 3 : 4
∴ x = 3, y = 4
the value of x²y + xy² : x³ + y³
$= (3)^{2}(4) + 3(4)^{2} : (3)^{3} + (4)^{3}$
= 36 + 48 : 27 + 64
= 84 : 91
= 12 : 13
19. (c) pq / p + q
$\frac{p}{q} = \frac{\sqrt{p - x^2}}{\sqrt{q - x^2}}$
$\frac{p^2}{p^2} = \frac{p - x^2}{q - x^2}$
$q^2 q - x^2$
$\therefore p^2(q - x^2) = q^2(p - x^2)$
$\therefore p^2q - p^2x^2 = pq^2 - q^2 \cdot x^2$
$\therefore p q \cdot p x - p q \cdot q \cdot x$ $\therefore p^2 q - p q^2 = p^2 x^2 - q^2 x^2$ $\therefore p q (p - q) = x^2 (pp - qq)$ $\therefore p q (p - q) = x^2 (p - q) (p + q)$ $\therefore x^2 = \frac{pq}{p + q}$
$\therefore pq(p-q) = x^{2}(pp-qq)$
$\therefore pq(p-q) = x^2(p-q)(p+q)$
$\therefore x^2 = \frac{pq}{p+q}$
20. (a) $p^2 = 6 \text{ st}$
$\frac{2s}{2s} = \frac{(2s - p)^2}{2}$
$3t (3t - p)^2$
$\therefore \frac{2s}{2s} = \frac{4s^2 - 4sp + p^2}{2}$
$3t 9t^2 - 6tp + p^2$
$\therefore 2s(9t^2 - 6tp + p^2) = 3t(4s^2 - 4sp + p^2)$
∴ 18t²s – 12ps + 2p²s = 12ts² – 12tps + 3pt
$\therefore 18t^2s - 12 + s^2 = 3p^2t - 2p^2s$
:. $6ts(3t - 2s) = p^2(3t - 2s)$
∴ p² = 6st

a Veranda Enterprise
21. (c) 17:28
p:q=2:3,x:y=4:5
∴ the value of 5px + 3qy : 10px + 4qy
= 5(2)(4) + 3(3)(5) : 10(2)(4) + 4(3)(5)
= 85 : 140 = 17 : 28
22. (a) 15 Trial and error
19 – 15 4 1
$\frac{19-15}{31-15} = \frac{4}{16} = \frac{1}{4}$
23. (c) (400, 500) Trial and error
24. (c) 70 km/hrs
Speed d 2 nd train = $\frac{\text{Distance}}{\text{Time}}$
$=\frac{000}{5}$
∴ Speed of 2 nd train = 80 km/hr
$\therefore \text{ Speed of } 2^{\text{nd}} \text{ train = 80 km/hr}$ Speed ratio = $\frac{S_1}{S_2} = \frac{7}{8}$
Speed ratio = $\frac{S_1}{S_2} = \frac{7}{8}$
$\therefore S_1 = \frac{7}{8} \times S_2$
$= \frac{7}{8} \times 80$
\therefore S ₁ = 70 km/hr.
25. (a) 12
$\frac{4}{6} = \frac{8}{x}$
$\therefore x = \frac{8 \times 6}{4}$
∴ x = 12

CL	K. SHAH A S S E S
	/dranda Enterprise
26.	(b) 27
	$\frac{12}{18} = \frac{18}{x}$
	$\therefore x = \frac{18 \times 18}{12}$
	$\therefore x = 27$
27	(c) 45
21.	
	Mean proportion = $\sqrt{25 \times 81}$
	= 45
28.	(d) None of these
	x _ 6
	$\frac{x}{26} = \frac{6}{13}$
	6 × 26
	$\therefore x = \frac{6 \times 26}{13}$
	∴ x = 12
20	
23.	(a) $\frac{ac}{2}$
	$\frac{2a}{2} = \frac{c}{r}$
	$\frac{2a}{a^2} = \frac{c}{x}$ $\therefore x = \frac{ca^2}{2a}$
	$\therefore x = \frac{ca^2}{2a}$
	2a 2a
	ac
	$X = \frac{ac}{2}$
30.	(c) $\frac{15}{2}$
	2 1 1
	2 _ 5
	$\frac{2}{\frac{1}{3}} = \frac{5}{\frac{1}{x}}$
	$\therefore \frac{3}{2} = \frac{x}{5}$
	2 5
	$\therefore x = \frac{3 \times 5}{2} = \frac{15}{2}$
	$\cdots = \frac{2}{2} = \frac{2}{2}$

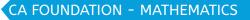
al⁄	aranda Enterprise
31.	(a) 18×y
	Mean proportion = $\sqrt{12x^2 + 27y^2}$
	$=\sqrt{324.x^2.y^2}$
	= 18×y
32.	(c) 1:2:5
	B
	Here A = $=\frac{B}{2}=\frac{C}{5}$
	A = 1, B = 2, C = 5
	∴ A : B : C = 1 : 2 : 5
33.	(c) 2 a b C
	(c) 2 Here, $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$
	∴ a = 3, b = 4, c = 7 ®
	$\frac{a+b+c}{c} = \frac{3+4+7}{7} = \frac{14}{7} = 2$
	c 7 7 7
	0,2/9
34.	(b) 1:1
	$\frac{p}{q} = \frac{r}{s} = \frac{2.5}{1.5}$
	q \$ 1.5
	(b) 1:1 $\frac{p}{q} = \frac{r}{s} = \frac{2.5}{1.5}$ $\therefore p = r = 2.5, q = s = 1.5$ $\frac{ps}{qr} = \frac{(2.5)(1.5)}{(1.5)(2.5)} = \frac{1}{2}$
	$\frac{ps}{qr} = \frac{(2.5)(1.5)}{(1.5)(2.5)} = \frac{1}{2}$
	qr (1.5)(2.5) 2
	5
35.	(c) $\frac{5}{3}$
	$\frac{x}{z} = \frac{z}{z} = \frac{2.5}{1.5}$
	y 2 1.5
	x = z = 2.5, y = w = 1.5
	x + z = 2.5 + 2.5 = 5
	the value of $\frac{x+z}{y+w} = \frac{2.5+2.5}{1.5+1.5} = \frac{5}{3}$

J.I	K. SHAH [®] CA FOUNDATION - MATHEMATICS
CL	A S S E S //randa Enterprise
50.	(d) $\frac{27}{29}$
	Here $5x - 3y = 3$
	Here, $\frac{5x - 3y}{5y - 3x} = \frac{3}{4}$
	$\therefore 4(5x - 3y) = 3(5y - 3x)$
	$\therefore 20x - 12y = 15y - 9x$
	∴ 29x = 27y
	x 27
	$\therefore \frac{x}{y} = \frac{27}{29}$
37.	(a) 9:6:10
	A:B B:C
	3 × (3 : 2) (3 : 5) × 2
	∴ 9:6 6:10
	∴ A : B : C = 9 : 6 : 10
38.	(d) $\frac{17}{16}$
	$\frac{x}{2} = \frac{y}{3} = \frac{z}{7}$
	X = Z, V = D, Z = I
	$\therefore \text{ The value of } \frac{2x - 5y + 4z}{2y}$
	$=\frac{2(2)-5(3)+4(7)}{6}$
	2(3)
	$=\frac{17}{6}$
39	(d) 8:12:9
	x:y y:z
	4 × (2 : 3) (4 : 3) × 3
	$\therefore 8:12$ 12:9
	∴ x:y:z = 8:12:9
10	(a) (200, 250, 200) Trial and arror
40.	(a) (200, 250, 300) Trial and error
11	
41.	(a) (45, 50, 55) Trial and error

J.I	K. SHAH [®] A S S E S
	ASSES /dranda Enterprise
	(b) 40
42.	
	$\frac{14}{16} = \frac{35}{16}$
	16 x
	$\therefore x = \frac{35 \times 16}{14}$
	17
	x = 40
43.	
	(a) Subtrahendo
45.	•
46.	(d) None of these
47.	(c) 15 ©
	$\frac{12}{12} = \frac{x}{12}$
	$\overline{16} = \overline{20}$
	12 × 20
	$\therefore x = \frac{12 \times 20}{16}$
	x = 15 Senterprise
	S enteri
48.	
	$\frac{4}{2} = \frac{9}{2}$
	(a) 6 $\frac{4}{x} = \frac{9}{13.5}$
	$\therefore x = \frac{4 \times 13.5}{9}$
	$\therefore x = \frac{1}{9}$
	x = 6
49.	(b) 2.8
	Mean proportion = $\sqrt{1.4 \times 5.6}$
	= 2.8
50.	(b) 2
	$\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$
	$\therefore a = 4, b = 5, c = 9$
	$\therefore \frac{a+b+c}{c} = \frac{4+5+9}{9} = 2$
	$\frac{1}{c} = \frac{1}{9} = 2$

J.K. SHAH CLASSES a Veranda Enterprise CA FOUNDATION - MATHEMATICS 51. (c) 18, 24 $\frac{3x+6}{4x+6} = \frac{4}{5}$ \therefore 5(3x + 6) = 4(4x + 6) $\therefore 15x + 30 = 16x + 24$ ∴ 6 = x : numbers = 3x = 3(6) = 184x = 4(6) = 2452. (b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$ 53. (a) $\frac{5}{2}$ Here, $\frac{a}{b} = \frac{4}{1}$ $\therefore \frac{\sqrt{a}}{\sqrt{b}} = \frac{2}{1}, \frac{\sqrt{b}}{\sqrt{a}} = \frac{1}{2}$ Ada Enterprist $\therefore \text{ Value of } \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = \frac{2}{1} + \frac{1}{2}$ $\frac{4+1}{2}$ 54. (b) 0

Cyclical terms in base.


Partnership

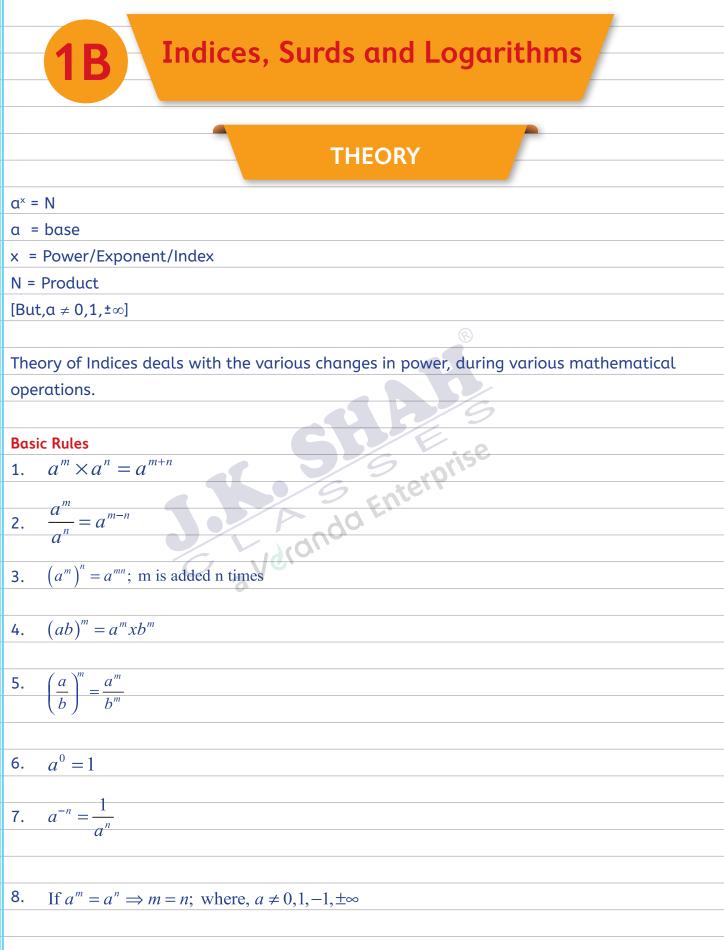
CLASSWORK SECTION

- 1.Anand and Deepak started a business investing Rs. 22,500 and Rs. 35,000respectively. Out of a total profit of Rs. 13,800, Deepak's share is(a) Rs. 5,400(b) Rs. 7,200(c) Rs. 8,400(d) Rs. 9,600
- A, B, C enter into a partnership investing Rs. 35,000, Rs. 45,000 and Rs. 55,000 respectively. The respective shares of A,B,C in an annual profit of Rs. 40,500 are:
 (a) Rs. 10,500 Rs. 13,500, Rs. 16,500
 (b) Rs. 11,500 Rs. 13,000 Rs. 16,000
 (c) Rs. 11,500 Rs. 14,000 Rs. 15,500
 (d) Rs. 11,500 Rs. 12,500 Rs. 16,500
- 3. Reena and Shaloo are partner in a business. Reena invests Rs. 35,000 for 8 months and Shaloo invests Rs. 42,000 for 10 months. Out of a profit of Rs. 31,570, Reena's share is:
 (a) Rs. 9471 (b) Rs. 12628 (c) Rs. 18040 (d) Rs. 18942
- 4. Simran Started a software business by investing Rs.50, 000 . After six months , Nanda joined her with capital of Rs. 80,000. After three years , they earned a profit of Rs.24,500. What was Simran's share in the profit ?
 (a) Rs.9423 (b) Rs.10500 (c) Rs.12,500 (d) Rs.14,000

5. Aman started a business investing Rs. 70000. Rakhi joined him after six months with an amount of Rs. 1,05,000 and Sagar joined them with Rs.1.4 Lakhs after another six months. The amount of profit earned should be distributed in what ratio among six months. The amount profit earned should be distributed in what ratio among Aman, Rakhi, and Sagar respectively, 3 years after Aman started the business ?
(a)7:6:10
(b) 12:15: 16
(c) 42:45:56
(d) None of these

6. A began a business with Rs.85,000 and is joined afterwards by B with Rs.42,500.
For how much period does B join , if profits at the end of the year are divided in the ratio of 3:1 ?
(a) 4 months (b) 5 months (c) 6 months (d) 8 months

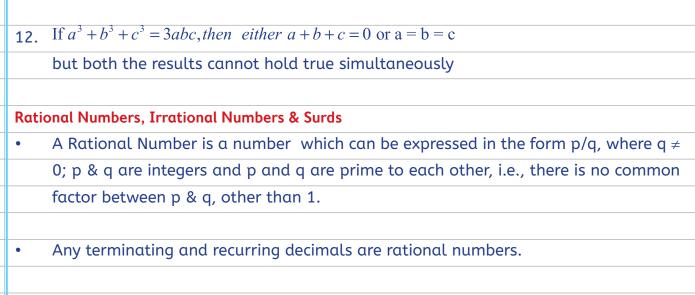
HOMEWORK SUMS


- 7. Kanchan started a business investing Rs. 9000. After five months, Sameer joined with a capital of Rs. 8000. If at the end of the year, they earn a profit of Rs. 6970, then what will be the share of Sameer in the profit?
 (a) Rs. 1883.78 (b) Rs. 2380 (c) Rs. 3690 (d) Rs. 3864
- 8. A and B started a business in partnership by investing Rs.20, 000 and Rs.15,000 respectively. After six months, C joined them with Rs.20000. What will be B;s share in the total profit of Rs.20,000 earned at the end of 2 tears from the starting of the business ?
 (a) Rs. 7500 (b) Rs.6000 (c) Rs.9500 (d) Rs. 10,000
- 9. A, B and C enter into partnership by investing in the ratio of 3:2:4. After one year, B invests another Rs.2,70,000 and C, at the end of 2 years, also invests Rs.2,70,000. At the end of three years, profits are shared in the ratio of 3:4:5. Find the initial investment of each.
 (a) 2,70,000 : 1,80,000; 3, 60,000
 (b) 2,70,000 : 1,50,000; 3, 60,000
 - (c) 2,50,000 : 1,80,000; 3, 60,000 (d) 2,70,000 : 1,80,000; 3, 00,000
- 10. A , B and C enter into partnership . A invests 3 times as much as B invests and B invests 2/3rd of what C invests . At the end of the year , the profit earned is Rs.6600.
 What is the share of B ?
 (a) Rs.1200 (b) Rs.1500 (c) Rs.1800 (d) Rs.2000

Time & Work

11. A and B can do a work in 8 days , B and C can do the same work in 12 days . A, B and C together can finish it in 6 days . A and C together will do it in :

(a) 4 days	(b) 6 days	(c) 8 days	(d) 12 days	
------------	------------	------------	-------------	--



al	dranda Enterprise
9.	For $a^m = b^m$ if $m \neq 0$ then
	(i) $a = b$ (when m is odd)
	(ii) $a = \pm b$ (when m is even)
10.	$a^x = N$
	1
	$\Rightarrow a = N^{\frac{1}{x}} = \sqrt[x]{N}$
11.	$(i)0^a = 0$
	$(ii)1^a = 1$
	$(iii)a^1 = a$
	$(iv)a^0 = 1$
	$(v)0^{\circ}$ has no meaning
Basi	c Formulae
 1.	$(a+b)^2 = a^2 + 2ab + b^2$
2.	$(a-b)^2 = a^2 - 2ab + b^2$
	Senterr
3.	$a^2 - b^2 = (a + b)(a - b)$
	u diant
4.	$(a+b)^{2} + (a-b)^{2} = 2(a^{2}+b^{2})$
5.	$(a-b)^{2} = a^{2} - 2ab + b^{2}$ $a^{2} - b^{2} = (a+b)(a-b)$ $(a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2})$ $(a+b)^{2} - (a-b)^{2} = 4ab$
6.	$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab+bc+ca)$
7.	$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = a^{3} + b^{3} + 3ab(a+b)$
8.	$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3} = a^{3} - b^{3} - 3ab(a-b)$
9.	$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$
10.	$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$
11.	If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$

- Thus any non-recurring and non-terminating decimals are irrational numbers, and • when the irrational numbers are expressed in radical form (root form), it is known as "Surds".
- Thus all the surds are irrational, but all irrational numbers are not surds. •
- The numbers whose perfect root can be evaluated are rational quantities and • numbers for which perfect roots cannot be evaluated are irrational quantities.

Order of Surds

a Veranda Enterprise

a Veranda If $\sqrt[k]{m} = (m)^{\frac{1}{k}}$ is a surd, then, it is said to be a surd of order "k".

Pure Surds and Mixed Surds

In case of pure surds, entire expression is kept within the radical sign. In mixed surds, it is expressed as a product of one rational and one irrational quantity.

Example:

 $\sqrt{7}$ is a pure surd; $\sqrt{12} = \sqrt{4x^3} = 2\sqrt{3}$ is a mixed surd.

Conjugate of a Surd

If $(a + \sqrt{b})$ or $(\sqrt{a} + \sqrt{b})$ are surds, their respective conjugates would be given by,

 $(a-\sqrt{b})$ or $(\sqrt{a}-\sqrt{b})$ and vice-versa.

Rationalization of Surds

Rationalization is a process, where we convert the irrational part of the surd into a rational quantity, with help of its conjugate.

Note: 1

- Rational + Rational = Rational •
- Rational Rational = Rational •
- Rational x Rational = Rational •
- Rational ÷ Rational = Rational •

Note: 2

- Irrational + Irrational = Irrational •
- Irrational Irrational = Rational (only when the quantities are equal); otherwise -•
- Irrational Irrational = Irrational
- Irrational x Irrational = May be Rational or Irrational •
- Irrational ÷ Irrational = May be Rational or Irrational Rational + Irrational = Irrational Rational x Irrational = Irrational Rational ± Irrational = Irrational •

Note: 3

- •
- •
- •
- •

Square Root of Surds

- The square root of a surd is always a surd. •
- Every answer for square root must contain +ve or -ve sign and in the absence of • +/- sign, "none of these" will be marked as answer.
- If the given surd, whose square root is to be evaluated is in the form $(a \pm \sqrt{b})$, then ٠ the answer will also be in the form $\pm (x \pm \sqrt{y})$.
- Square the options, in order to get the question back. •

	al	/dranda Enterprise				
				IN	DICES	
	1.	The value of 4/(3	2) ^{1/5} i	S		
		(a) 8	(b)	2		
		(c) 4	(d)	none of these		
	2.	21/2 . 43/4 is equal	to			
		(a) a fraction			(b) a positive inte	eger
		(c) a negative int	teger		(d) none of these	
	3.	The value of y ^{a - b}	× y ^b	$f^{c} \times y^{c-a} \times y^{-a-b}$ is		
		(a) y ^{a+b}	(b)	у		
		(c) 1	(d)	1/y ^{a+b}	8	
	4.	The value of (8/2	7) ^{-1/3}	× (32/243) ^{-1/5} is		
		(a) 9/4		4/9	29)
		(c) 2/3	(d)	none of these	E:se	
					Suppro	
	5.) ^{7/8} . (32) ^{9/10} } ⁴] ^{3/25} is	S Enterprise	
		(a) A fraction		airmeeger).	
		(c) 1	(d)	none of these		
_		Fa (a (a 2)-1)	-11-1/2	3		
_	6.	$[1 - \{1 - (1 - x^2)^{-1}\}]$		•		
		(a) x		1/x		
		(c) 1	(d)	none of these		
	7.	$ f a^3 - b^3 - la - b^3 $	(α^2)	$ab + b^2$ + bas + bas	simplified form of	c .
_	1.	$\Pi \mathbf{u}^* = \mathbf{b}^* - (\mathbf{u} - \mathbf{b})$	/ (u- 1	$db + b^{-}$, then the	simplified form of	
_		$ x ^2 + lm + m^2$	m 7 ^{m2} -	$-mn+n^2$ x^n $ ^2+ln+n^2$	<u>.</u>	
_		$\frac{x}{x^{m}}$ \times $\frac{x}{x^{m}}$	n	$\frac{-mn+n^2}{x} \frac{x^n}{x^1}$		
_		(~) 0	/L\	1		(d) none of these
				1	_(c) x	(d) none of these
	0		-	$\times \left(\frac{x_c}{x_b} \right)^{b+c} \times \left(\frac{x_c}{x_c} \right)^{c+c}$	-	
	8.)			
		(a) 1	(h)	0	(c) 2	(d) none of these
				~		
_						

 	•					
		(a ² +	$ab+b^2$) (b ² +l	$pc + c^2$) (c ²	² +ca+a ²)	
9.	The value of	$\left \frac{\mathbf{X}^{\mathbf{d}}}{\mathbf{b}} \right $	$\frac{ab+b^2}{x} \times \left(\frac{x^b}{x^c}\right)^{(b^2+b)}$	$\times \left(\frac{x^{c}}{a} \right)$		
		(x)	(x°)	(x°)		
	(a) 1	(b)	0	(c) -1	(d) none of th	ese
10.			– 3ab(a – b) tic	k the correct o	of these when $x = p^{1/3}$	- p ^{-1/3}
	(a) $x^3 + 3x = p$	•				
	(b) $x^3 + 3x = p$	•				
	(c) $x^3 + 3x = p$	o + 1 (d)	none of these			
	$\frac{1}{10}$ $-\frac{1}{2}$ $-\frac{1}{2}$		·			
 11.	If $x = 3^3 + 3^3$,					
	(a) 15					
	(c) 12	(d)	none of these		8	
12		7				
12.	If $a^x = b$, $b^y = c$					
	(a) 1	(b)			9	
	(c) 3	(a)	none of these		rise	
12	$1f_{1}/p_{1} = 1/q_{1} = -$	1/r and w	$y_7 = 1$ then the			
13.			yz = 1, then the	value or p + C	ן ד ו וא	
	(a) 1 (c) 1/2	(b)	none of these	30		
 	() 1/2	(u)	none of these			
14	On simplificat	ion 1//1	+ 0 ^{m-n} + 0 ^{m-p})	$+ 1/(1 + a^{n-m})$	$+ a^{n-p}$ + 1/(1 + a^{p-n}	$p + q^{p-n}$ is
±7.	equal to			· 1/(1 · U	· · · · · · · · · · · · · · · · · · ·	· u / 13
	(a) 0	(b)	a	(c) 1	(d) 1/a	
 			~	(~/ ±	(4) 1/4	
4 5		1 1	1			
 15.	If $2^x = 3^y = 6^{-z}$,	<u>-+-+</u> x y	– IS z			
	(a) 1	(۴)	0	(c)	(d) none of the	
	(a) 1	(b)	U	(c) 2	(d) none of th	626
16	On simplificat	ion ^{2x+3}	$\frac{\times 3^{2x-y} \times 5^{x+y+3}}{6^{x+1} \times 10^{y+3} \times 15}$	$\times 6^{\gamma+1}$ roduce	s to	
10.	on simplificat		$6^{x+1} \times 10^{y+3} \times 15$	x reduce		
	(a) -1	(b)	0	(c) 1	(d) 10	
	(u) - <u>1</u>	(0)	0	(C) 1	(0) 10	

	- y = 2 + - y = 1	- V		
17.	If $\frac{9^{7} \cdot 3^{2} \cdot (3^{-7})^{-1} - 2}{2^{3^{2}} \cdot 2^{3}}$	$\frac{27^{y}}{27} = \frac{1}{27}$ then x - y is g	jiven by	
	3^.2	27		
	(a) -1	(b) 1	(c) 0	(d) none
	(_ \a+	-b / b+c / c+a		
18.	Show that $\frac{x^a}{b}$	$\frac{\mathbf{x}^{b}}{\mathbf{x}^{c}} \times \left(\frac{\mathbf{x}^{b}}{\mathbf{x}^{c}}\right)^{b+c} \times \left(\frac{\mathbf{x}^{c}}{\mathbf{x}^{a}}\right)^{c+a}$	is given by	
	(x ^o)	(\mathbf{x}^{c}) (\mathbf{x}^{a})		
	(a) 0	(b) -1	(c) 3	(d) 1
		$(\mathbf{y}^{\mathbf{b}})^{\mathbf{a}}$ $(\mathbf{y}^{\mathbf{c}})^{\mathbf{b}}$	(va) ^c	
 19.	Show that reduc	$\underline{\text{ces to}}\left(\frac{x^{b}}{x^{c}}\right)^{a} \times \left(\frac{x^{c}}{x^{a}}\right)^{b} \times \left($	x x ^b	
			^)	
	(a) 1	(b) 3	(c) 0 🛞	(d) 2
 20.	The value of z is c	given by the following	if $z^{z\sqrt{z}} = (z\sqrt{z})^{z}$	/
		3	3/9	q
	(a) 2	$\frac{3}{(b)}\frac{3}{2}$	$(c) \frac{3}{2}$	(d) $\frac{3}{4}$
			if $z^{z\sqrt{z}} = (z\sqrt{z})^{z}$ (c) $\frac{3}{2}$	·
21.	lf (5.678)× = (0.56	78) ^y = 10 ^z then	cnterr	
 	1 1 1 .	1 1	a .	
	$\frac{+-}{(a) \times y z} = 1$	$\begin{array}{c c} 1 & 1 \\ \hline (b) & x & y \end{array}$	z = 0	
	$\frac{1}{(\alpha)} \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$ $\frac{1}{z} - \frac{1}{z} + \frac{1}{z} = -1$	C Ve		
	$(c) \times y z = -1$	(d) None		
 22.	If 3 ^a = 5 ^b = (75) ^c , t	hen the value of ab -	c(2a + b) reduces to	0
	(a) 1	(b) 0	(c) 3	(d) 5
			1 1 1	
 23.	If $2^{a} = 4^{b} = 8^{c}$ and	abc = 288 then the vo	alue $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is	given by
	1	1	11	11
	(a) 8	(b) <u>8</u>	(c) 96	(d) 96
24.	lf ax ^{2/3} + bx ^{1/3} + c	= 0 then the value of a	a ³ x ² + b ³ x + c ³ is giv	en by
	(a) 3abcx	(b) -3abcx	(c) 3abc	(d) -3abc
25.	$x^{a^{2}b^{-1}c^{-1}}.x^{b^{2}c^{-1}a^{-1}}.x^{c^{2}}$	^{2a-1} b ⁻¹ – x ³ would redu	ice to zero a + b + d	c is given by
	(a) 1	(b) -1	(c) 0	(d) None
		26		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

TI	K. SHAH [®]						
	ASSES				CA FOI	UNDATION ·	- MATHEMATICS
al	dranda Enterprise						
26	If $a^{b} = b^{a} + b^{a} + b^{a}$	o val	$\frac{a}{b} = \frac{a}{b} = 1$	reduces to			
20.	If $a^{b} = b^{a}$, then the	e vul					
 		(b)	b			(d) Nono	
 	(a) a	(b)	U	(c) 0		(d) None	
 SUR							
 	If a = 3 + 2 $\sqrt{2}$ the	on th	$a_{\rm rel}$	-1/2 :c			
 21.				-/ - IS			
 	(a) $\sqrt{2}$ (c) $2\sqrt{2}$	(D)	$-\sqrt{2}$				
 	(C) 2√2	(a)	-2 \(\)2				
20	$16 = \sqrt{7 \pm 4/2}$			4 / \12 •			
28.	$If \alpha = \sqrt{\frac{7 + 4\sqrt{3}}{7 - 4\sqrt{3}}} tI$	nen t	ne value of [a(a -	14)] ² IS			
	· · ·				~	/ 1) 4	
	(a) 14	(b)	((c) 2	®	(d) 1	
		6.2					
 29.	The square root o	0†3+	·√5 IS				
	() 5 1		$(1) = \left(\frac{5}{5} + \frac{1}{1} \right)$	15	<u>, 9</u>		
	(a) $\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}$		(D) $\left(\sqrt{2} \sqrt{2} \right)$				
				Enter	0112		
	(c) Both the abov		(d) None	Ente	-		
	If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, b =	$\sqrt{3}$	$\sqrt{2}$		1.2.		
30.	If $a = \frac{1}{\sqrt{3} - \sqrt{2}}$, b =	$=\sqrt{3}$	$\frac{1}{1+\sqrt{2}}$, then the value	lue of a ² +	b² is		
	/ >		3 1	() = =		(1) = =	
	(a) 10	(b)	100	(c) 98		(d) 99	
	TYEAR QUESTIONS						
31.	Value of (a ^{1/8} + a ⁻						1
	$(\alpha) a + \frac{1}{a}$	(b)	$a - \frac{1}{a}$	(c) a ² + — a	2	(d) a ² – –	2
32.	If $2^{x} - 2^{x-1} = 4$ the		-				
	(a) 7	(b)	3	(c) 27		(d) 9	
	$2^{n} + 2^{n-1}$						
33.	$\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$						
	(a) 1/2	(b)	3/2	(c) 2/3		(d) 1/3	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	dranda Enterprise					
34.	If $2^x \times 3^y \times 5^z =$	= 360. Th	ien what	is the value of x, y, z ?		
	(a) 3, 2, 1	(b)	1, 2, 3	(c) 2, 3, 1	(d) 1, 3, 2	
		_		$\frac{a+b+c}{a+b+c}$		
35.	If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}$			ue of $\left(\frac{a+b+c}{3}\right)$		
	(a) abc		9abc	× /		
	(c) $\frac{1}{abc}$	(d)	<u>1</u> 9abc			
36.	If (25) ¹⁵⁰ = (25)					
	(a) 5 ³	(b)	54	(c) 5 ²	(d) 5	
37.	If $p^{x} = q$, $q^{y} = r$	r and r ^z =	p ⁶ , then	the value of xyz will be :		
	(a) 0	(b)	1	(c) 3	(d) 6	
				8		
					6	
				00/9		
				61/ //e		
				Senterprise		
				9 Enteri		
				~ da ~		
 		<u> </u>	Vid.	<u>ionac</u>		
			ave			
				38		

SPECIAL TYPE OF QUESTIONS 1. (i) The value of $\sqrt{20 + \sqrt{20 + \sqrt{20 + \dots \cdot to \infty}}}$ is (b) 4 (a) 5 (c) 20 (d) None (ii) The value of $\sqrt{20 - \sqrt{20 - \sqrt{20 - \dots \cdot to \infty}}}$ is (a) 5 (b) 4 (c) 20 (d) None (iii) $\sqrt{20}\sqrt{20}\sqrt{20}$ to ∞ (a) 5 (b) 4 (c) 20 (d) None (iv) The value of $\sqrt{8 \div \sqrt{8 \div \sqrt{8 \div \dots \dots t}}} to \infty$ (c) 6 (a) 2 (b) 8 (d) None (v) The value of $\sqrt{8\sqrt{8\sqrt{8}}}$ (c) 8 (a) 8 (b) 8 (d) None If xyz = 1 then the value of $\frac{1}{1+x+y^{-1}} + \frac{1}{1+y+z^{-1}} + \frac{1}{1+z+x^{-1}}$ is 2. (b) 0 (a) 1 (c) -2 (d) None If x = $\sqrt{2} - \sqrt{2} - \sqrt{2} - \dots \infty$ the value of X is given by 3. (a) – 2 (b) 1 (c) 2 (d) 0 If $x = \sqrt{7\sqrt{7\sqrt{7}}}$ the value of X is given by 4. (a) – 3 (b) 3 (c) 12 (d) 5. Simplify $\sqrt{a\sqrt{a\sqrt{a}}}$ for a = 3^{16/15} (c) 3; (d) None (a) 0; (b) 2;

Logarithms

THEORY

If $a^x=N$, then $x=\log_a N$; * $a \neq 0,1, \pm \alpha$ and for the purpose of log, any negative quantity. * x is called the logarithm of N (product) to the base "a".

Base "a"

- The base "a" of log can be any positive real number except 1.
- The base of log can be clearly divided into two parts: 💿
- 0 < a < 1 (the proper fraction)
- a > 1 (positive integer / mixed fraction)
- Unless otherwise specified, the base of log is always taken to be 10 and this is known as Common Logarithm.
- For theoretical purpose, the base is always taken to be "e", where "e" is a constant and this is known as "Natural Logarithm".
- Common Logarithms are used for numerical calculations and Natural Logarithms
 are used in calculus.

Basic Rules

 $1. \quad \log_a mn = \log_a m + \log_a n$

2.
$$\log_a \frac{m}{n} = \log_a m - \log_a m$$

3.
$$\log_a m^n = n \log_a m$$

- 4. $\log_a a = 1$
- 5. $\log_a 1 = 0$

6. $\log_a 0 =$ Undefined

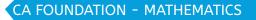
7. $\log_a - ve =$ Undefined

8. $\log_a m = \log_a n \Rightarrow m = n$

Change of Base in Logarithms

1.
$$\log_b a = \frac{\log_m a}{\log_m b}$$
 (m can be any common base) (m $\neq 0, 1, \pm \alpha$,-ve value)

$$2. \quad \log_a b = \frac{1}{\log_b a}$$


$$3. \quad a^{\log_a x} = x$$

Nature of Log Values

- All the values which are obtained from log tables are irrational numbers provided the numbers are not 10 or in the form of 10ⁿ.
- $\log_b a$ is a rational quantity only when, $\frac{\log a}{\log b}$ is rational.
- If K is a number, then its log value, logK can be divided into two parts: a) Integral
 Part, b) Fractional Part.
- The integral part is called "Characteristics" and the fractional part is called "Mantissa".

• The integral characteristics part can be positive or negative or zero but not a fraction.

- The values of mantissa are always positive fractions.
- The values for mantissa are obtained from log tables.
- Characteristics are to be calculated before we evaluate mantissa from the log table.
- Value of characteristics = number of significant digits before decimal 1

CLASSWORK SECTION

- $\log_{10} 10 + \log_{10} 100 + \log_{10} 1000 + \log_{10} 10000 + \log_{10} 100000$ is 1.
 - a) 15

2.

- b) log₁₀ 11111
- c) log₁₀ 1111
- d) 14log₁₀ 100

d) a - b = 1

If $\log\left(\frac{a}{b}\right) + \log\left(\frac{b}{a}\right) = \log(a+b)$, then which of the following is true?

- a) a + b = 1b) a + b = 0c) $\alpha = b$
- 3. Find the value of $\log_{10}\left(\frac{4}{25}\right) + \log_{10}\left(\frac{125}{7}\right)$ $-\log_{10}\left(\frac{2}{7}\right)$. a) 1 b)
 - None of the above Sprifs d) c) 41
- $\frac{1}{2}\log_{10} 25 2\log_{10} 3 + \log_{10} 18$ equals 4.
 - a) 18
 - b) 1
 - c) 3
 - d) None of the above

5. $7\log\frac{16}{15} + 5\log\frac{25}{24} + 3\log\frac{81}{80} =$

- a) log 2
- b) log 3
- c) log 5
- d) None of the above

If $\log_{10} [98 + \sqrt{x^2 - 12x + 36}] = 2$, then x =6.

a) 4 b) 8 c) 12 d) 4,8 **J.K. SHAH** C L A S S E S a Veranda Enterprise

a Veranda Enterprise
7. If $\log_5(x^2 + x) - \log_5(x + 1) = 2$; then find the value of x.
α) 5
b) 1/5
c) 5 ²
d) None of the above
$(21)^{\mathbf{X}}$
8. If $\left(\frac{21}{10}\right)^2$ = 2, then x = ?
log 2 log 2
a) $\frac{\log 2}{\log 3 + \log 7 + 1}$ b) $\frac{\log 2}{\log 3 + \log 7 - 1}$
c) $\frac{\log 2}{\log 7 + \log 3 + 2}$ d) None of the above
9. Evaluate: x ^{logy - logz} . y ^{logz - logy} .
a. 0 b. 1 c. 2 d 1
10. The value of is a ^{log b/c} . b ^{log c/a} . c ^{log a/b}
a) 0 b) 1 c) -1 d) None
11. Given log2 = 0.3010 and log3 = 0.4771, find the value of log6.
a) 0.9030 b) 0.9542
c) 0.7781 d) None of the above
12. Given that $\log_{10} 2 = x$ and $\log_{10} 3 = y$, the value of $\log_{10} 60$ is expressed as:
a) $x + y + 1$ b) $x - y + 1$
c) x - y - 1 d) None of the above
12 Given leav = $m + n$ and leav = $m - n$ the value of leas $(10y/y^2)$ is supressed in terms
 13. Given logx = m + n and logy = m - n, the value of log (10x/y²) is expressed in terms of m and n as:
a) $1 - m + 3n$ b) $m - 1 + 3n$
c) m + 3n + 1 d) None of the above
14. If $\log(\frac{x+y}{y}) = \frac{1}{(\log x + \log y)}$, then $\frac{x}{y} + \frac{y}{y} = \frac{1}{(\log x + \log y)}$
14. If $\log(\frac{x+y}{5}) = \frac{1}{2}(\log x + \log y)$, then $\frac{x}{y} + \frac{y}{x} =$ a) 20 b) 23 c) 22 d) 21
15. If $\log a = -\log b = -\log c$, then find the value of $a^4b^3c^{-2}$.
15. If $\log a = \frac{1}{2}\log b = \frac{1}{5}\log c$, then find the value of $a^4b^3c^{-2}$.a) 0b) -1c) 1d) None of the above

		 8						
$\mathbf{J}_{\mathbf{C}}$	K.	SHAH SSES				CA FOL	IND	ATION - MATHEMATICS
		a Enterprise						
 16.	Fine	d the value of		<u>3</u> 1728.				
	a)	2	b)	6	c)	1	d)	None of the above
 17.	On	solving the eq	Juatio	n logt + log (t - 3)) =	1 we get the va	lue	of t as
	α)	5	b)	2	c)	3	d)	0
 18.	For	any three con	secut	ive integers x, y, z.	th	e equation log (1 +	xz) – 2logy = 0 is:
	α)	True		b) False				
	c)	Sometimes tr	ue	d) Cannot be det	ern	nined in case of	сус	lic order
 19.	If lo	og ₂ (log ₃ (log ₂ x	:)) = 1	, then x =				
	α)	512	b)	128	c)	12	d)	0
						B		
 20.	If lo	og _{0.5} (log _x (log ₄	32)) =	2, then x =				
	α)	5/2	b)	625/16	c)	25/4	d)	None of the above
						29		
21.	lf x	= log _a bc; y = l	.og _b ca	; z = log _c ab, then ⁻	the	value of xyz - : - 1	× - :	y – z is:
	α)	1	b)	2	c)	21 ror15	d)	0
				/9	¢	nteri		
22.	Fine	d the value of	log₅5		<u>}`</u>			
	α)	1	b)	2 10101	c)	5	d)	None of the above
			0	ave				
23.	Fine	d the value of	(log _b	$a \times \log_{c} b \times \log_{a} c)^{3}$				
	a).	1	b)	2	c)	3	d)	None of the above
24.	If lo	$\log_4 x + \log_2 x = 0$	6, the	n the value of x is				
	α)	2	b)	4	c)	8	d)	16
25.	If lo	$\log_{10}\sqrt{x} = 2 \log_{10}$	_× 10, t	hen a possible val	.ue	of x is given by:		
	α)	10	b)	1 100	c)	$\frac{1}{1000}$	d)	None of the above
		1		100				
26.	Evo	Iluate : $a^{\frac{1}{\log_b a}}$	- !					
	α)		b)	b	c)	a + b	d)	None of the above
						1 7 1	1	7 1
27.	Fine	d the value of	the fo	ollowing expressio	n: ($a^{\log_a b \cdot \log_b c}$	log	$g_c d \log_d t$
	α)	t	b) c	ıbcdt	c)	a+b+c+d+t	d)	None of the above

-	677 A 77⁸						
	ASSES						DATION - MATHEMATICS
al	dranda Enterprise	-					
 		1 +	1 1				
28.	The value of	$\log_p x \log_q$	$g_{\underline{q}} x \log_{\underline{r}} x$	is?			
]			
 	a) 3	b)	2	c)	1	d)	None of the above
29.	$\log_2 \log_{\sqrt{2}} \log_{\sqrt{2}}$	₃ 81 = ?					
 	a) 3	b)	2	c)	1	d)	0
 30.	If MOI = $\log_2 l$	og ₂ log ₄ 2	56 + 2log	$\sqrt{2}$ 2, then	MOI equ	ials:	
	a) 3	b)	5	c)	7	d)	25
31.	Given log2 = (0.30103, t	he numbe	r of digits	in 2⁵⁰ is		
	a) 14	b)	16	c)	18	🕑 d)	25
						5	
32.	log ₂ 5						
	a) An integer					nal numbe	er
 	c) An irration	nal numbe	er	d)	A prime	e number	
	7	5			2	2ris	
 33.		\log_7^5		94	nte		
	a) log 2	b)	1	<u> </u>	0	d)	None of the above
				<u>), </u>			
34.	The value of l						
 	(a) 1	(b)	2	(c)	0	(d) none of these
	101		0.4 le		1		
 35.	If $\log_2 x + \log_2$						
	(a) 8	(b)	4	(C)	16	(d) none of these
26	Character 1			the area	4.0 1		n townoo of a secol
 36.							n terms of x and y as
	(a) x + 2y - 1	(D)	x + y - 1	(C)	2x + y -	-1 (d) none of these
 27	The velue of l			0.2010 :-			
51.	The value of l	og ₈ 25 giv (b)			1.5482	۲ /) none of these
	(a) 1	(0)	۷	(C)	1.3482	(a	l) none of these

J.K. SHAH C L A S S E S a Veranda Enterprise

a Veranda Enterprise											
38. If $a = b^2 = c^3 = d^4$ then the value of $\log_a(abcd)$ is (a) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$ (b) $1 + \frac{1}{21} + \frac{1}{31} + \frac{1}{41}$											
	2 3 4		2! 3! 4	↓ ! 							
	(c) 1 + 2 + 3 + 4	⊦ (d)	None								
39.	The sum of the s	s <mark>eries l</mark> oa b	0+ log _2 b ² + loa	,₃ b³++loa	" b ⁿ is aiven	by					
	$(\alpha) \log_a b^n$	(b) log "nk		(c) log _a nb ⁿ		None					
	<u> </u>	.,									
40.	If $a^2 + b^2 = 7ab t$	hen the vo	ilue of is log	$\frac{1+b}{2} - \frac{\log a}{2}$	$-\frac{\log b}{2}$						
	(a) 0	(b) 1		3 <u>2</u> (c) -1	2(d) `	7					
	<u></u>	,~/ ∸		,-, -	(0)						
<u>4</u> 1	If $a^3 + b^3 = 0$ the	n the valu	e of log(g + b)	$-\frac{1}{1}$ (log 2^{+}		is equal +	0				
 		ene vutu		$-\frac{109 a +}{2}$	<u>, אין אין אין אין אין אין אין אין אין אין</u>	,					
	(a) 0	(h) 1		(c) -1	(d)	3					
		(b) 1		(0) -1	(u) .						
DACT	T YEAR QUESTION	IS			76						
гАЭ	I ILAN QUESTION	.J									
1.2	The value of 21		n v ² + 2 loo - 2			•					
42.	The value of 2 lo					•					
	(a) $\frac{n(n+1)\log x}{2}$			b) $n(n + d)$							
	(c) $n^2 \log x$		r de	d) none	or these						
12	16 m 1 1 1	<u> </u>	Yeco.								
43.	If n = m! where (≥ 2) then th	e value of :						
	$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_3 n}$	1									
			ເບg _m n								
	(a) 1	(b) 0		(c) -1	(d) /	2					
			11	11							
44.	Which of the foll			-+=	-						
	(a) log(ab + bc +	+ ca) = abc									
	(b) $\log \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{b}\right)$	1									
	\	/									
	(c) log (abc) = 0										
	(d) log (a + b + a	c) = 0									
45.	For what value of	of x, the ec	juation (log $_{\sqrt{x}}$ 2	$2)^2 = \log_x 2 i$	is true?						
	(a) 16	(b) 32	v •••	(c) 8		(d) 4					

46.	If $x = \log_{2}$	₄ 12, y =	: log ₃₆ 24 an	$dz = log_{48}$	36, then xyz	z + 1 = _			
	(a) 2xy		(b) 2xz		(c) 2yz		(d) 2		
47.	The value	of log ($1^3 + 2^3 + 3^3$	+ n³) is	equal to:				
	(a) 3 log	1 + 3 lo	g 2 + + 3	3 log n					
	(b) 2 log	n + 2 lo	g (n + 1) – 2	log 2					
	(c) log n	+ log (n	+ 1) + log (2	2n + 1) – lo	g 6				
	(d) 1								
						®			
)		
					G	rise			
 				19	S Entern	2.			
					3				
 				, dua					
		/	\mathcal{O}	6,0				 	
				17					

a Veranda Enterprise				
		CIAL TYPE OF		
	Q	UESTIONS		
1. Find the simp	lest value of $\log_{17}\sqrt{17}$	$\sqrt{17\sqrt{17\infty}}$		
(a) 1;	(b) – 1;	(c) 0;	(d) None	
1				
2. If $\log_{1000} x = \frac{-1}{4}$, then x is given by:			
(a) 1/100		(c) 1/20	(d) None of these	
			R	
			6	
		S Enterpr	ジ	
			ce	
		10, eve		
		Senteri		
		70 L		
	- An			
	0			

HOMEWORK SECTION (INDICES & LOG)

			(INDIC	LES	s & LOG)		
1.	4x ^{-1/4} is expressed	d as					
	(a) -4x ^{1/4}	(b)	X ⁻¹	(c)	4/x ^{1/4}	(d) nc	one of these
2.	The value of 8 ^{1/3} i	is					
	(a) 3√2	(b)	4	(c)	2	(d) nc	one of these
3.	The value of 2 × ((32)1/5	ⁱ is				
	(a) 2	(b)	10	(c)	4	(d)	none of these
4.	The value of 4/(3						
	(a) 8	(b)	2	(c)	4 🛞	(d)	none of these
5.	The value of (8/2						
	(a) 2/3	(b)	3/2	(c)	2/9	(d)	none of these
			6		V:ce		
6.	The value of 2(25			2	2 10/12		
	(a) 1	(b)	2 / 9	(c)	1/2	(d) nc	one of these
			Verandr	3	-		
7.	2 ¹ / ₂ . 4 ³ / ₄ is equal to	4	<u>, 19(0),</u>				
	(a) a fraction		3 1 -) a positive integ	ger	
	(c) a negative int	teger		(d)) none of these		
	$(\frac{81x^4}{4})^{\frac{1}{4}}$						
8.	(y^{-8}) has simp		value equal to				
	(a) xy ²	(b)	x²y	(c)	9xy ²	(d) 3×	κy²
	a-b b-c c c ·						
9.	$x^{\alpha-b} \times x^{b-c} \times x^{c-\alpha}$ is			1.1	0	(1)	
	(a) x	(b)		(c)	U	(a) no	one of these
 10		$p^2 q^3$		ic c			
 10.	The value of	3xy	where $p,q,x,y\neq 0$			(d)	and of these
 	(a) 0	(D)	2/3	(c)	T	(a) no	one of these
11	(103)2 / [2]3 / [3]	2) / (/-	7 213 × (1312 × (F 213) :	~			
11.	$\{(3^3)^2 \times (4^2)^3 \times (5^3)^2$				1.17	(d)	1
	(a) 3/4	(D)	4/5	(C)	4/7	(d)	1

	8				
$\frac{\mathbf{J}}{\mathbf{C}}$	K. SHAH			CA FOUNDATION - MATHEMAT	ICS
 al	dranda Enterprise				
 12.	Which is True ?				
 	(a) 2° > (1/2)°	(b)	2° < (1/2)°		
	(c) $2^{\circ} = (1/2)^{\circ}$	(d)	none of these		
13.	If $x^{1/p} = y^{1/q} = z^{1/r}$	and xyz = 1, th	en the value of p +	q + r is	
	(a) 1	(b) 0	(c) 1/2	(d) none of these	
14.	The value of y ^{a-b}	^o × y ^{b-c} × y ^{c-a} × y ⁻	-a-b is		
	(a) ya+b	(b) y	(c) 1	(d) 1/y ^{a+b}	
15.	The True option	is			
	(a) $x^{2/3} = \sqrt[3]{x^2}$	(b)	$\mathbf{X}^{2/3} = \sqrt{\mathbf{X}^3}$		
	(c) $x^{2/3} > 3\sqrt{x^2}$	(d)	$x^{2/3} < 3\sqrt{x^3}$	®	
16.	The simplified ve	alue of 16x ⁻³ y ² :	× 8 ⁻¹ x ³ y ⁻² is		
	(a) 2xy	(b) xy/2	(c) 2	(d) none of these	
			G		
17.	The value of (8/	27) ^{-1/3} × (32/243	3) ^{-1/5} is	orise	
	(a) 9/4	(b) 4/9	(c) 2/3	(d) none of these	
		l l l l l l l l l l l l l l l l l l l	> dar.		
18.	log 6 + log 5 is e	expressed as	(dn)		
	(a) log 11	(b) log 30	(c) log 5/0	6 (d) none of these	
19.	log ₂ 8 is equal to				
	(a) 2	(b) 8	(c) 3	(d) none of these	
20.	log 32/4 is equa	ıl to			
	(a) log 32/log 4	(b) lo	og 32 – log 4		
	(c) 23	(d) n	one of these		
21.	log (1 × 2 × 3) is	equal to			
	(a) log 1 + log 2	2 + log 3	(b) log 3		
	(c) log 2		(d) none	of these	
22.	The value of log	0.0001 to the l	base 0.1 is		
	(a) -4	(b) 4	(c) 1/4	(d) none of these	

T	k chyr _s				
	LASSES			CA	FOUNDATION - MATHEMATICS
	Veranda Enterprise) + h		l to	
23.	If $2 \log x = 4 \log \frac{1}{2}$				(d) none of these
	(a) 3	(b)	9	(c) 2	(d) none of these
24.	$\log_{\sqrt{2}}$ 64 is equa	l to			
	(a) 12	(b)	6	(c) 1	(d) none of these
25.	$\log_{2\sqrt{3}} 1728$ is eq	qual t	0		
	(a) 2√3	(b)	2	(c) 6	(d) none of these
26.	log (1/81) to the	base	9 is equal	to	
	(a) 2	(b)	1/2	(c) -2	(d) none of these
27.	log 0.0625 to th	e base	e 2 is equa	l to	B
	(a) 4	(b)	5	(c) 1	(d) none of these
28.	Given log2 = 0.3	010 a	nd log3 =	0.4771 the value of log	g 6 is
	(a) 0.9030	(b)	0.9542	(c) 0.7781	(d) none of these
				S Enterpri	
29.	The value of log	2 log ₂	log ₂ 16	9 Enteri	
	(a) 0	(b)	2 P	(c) 1	(d) none of these
		/	V Ids	01	
30.	The value of log	1/3 t	o the base	e 9 is	
	(a) - ½	(b)	1/2	(c) 1	(d) none of these
31.	If log x + log y =	log (>	(+y), y can		
	(a) x-1	(b)	x	(c) ×/x-1	(d) none of these
32.	The value of log	² [log ₂	{log ₃ (log ₃	27 ³)}] is equal to	
	(a) 1	(b)	2	(c) 0	(d) none of these
33.	If $\log_2 x + \log_4 x +$	log ₁₆	x = 21/4, t	hese x is equal to	
	(a) 8	(b)	4	(c) 16	(d) none of these
34.		$2 = \times c$	ind log ₁₀ 3	= y, the value of log ₁₀ 6	0 is expressed as
	(a) x - y + 1			(b) x + y + 1	
	(c) x - y - 1			(d) none of these	
11					

J.K. SHAH [®]
CLASSES
a Vergodg Enterprise

al	/dranda Enterprise				
35.	Given that log ₁₀ 2	2 = x, l	$\log_{10}3 = y$, then $\log_{10}3$	J ₁₀ 1.2 is expressed	in terms of x and y as
	(a) x + 2y - 1		(b) x + y - 1		
	(c) 2x + y - 1		(d) none of these	2	
36.	Given that log x	= m +	n and log y = m	- n, the value of l	og 10x/y² is expressed in
	terms of m and	n as			
	(a) 1 – m + 3n		(b) m – 1 + 3n		
	(c) m + 3n + 1		(d) none of these	2	
37.	The simplified vo	alue o	f 2 log ₁₀ 5 + log ₁₀ 8	– ½ log ₁₀ 4 is	
	(a) 1/2	(b)		(c) 2	(d) none of these
 38.	log [1 - {1 - (1 -	• x ²) ⁻¹ }	⁻¹] ^{-1/2} can be writte	n as 🛞	
	(a) log x ²		log x		
	(c) log 1/x	(d)	none of these		/
					7
39.	The simplified vo	alue o	f log ∜729 ∛9 ⁻¹ .2	7 ^{-4/3} is	3
	(a) log 3	(b)	log 2	(c) log 1/2	(d) none of these
			/9	Enterp	
40.	The value of (log	g _b a×l	og b × log c)³ is eq	ual to	
	(a) 3	(b)		(c) 1	(d) none of these
		\mathcal{O}	a Vei		
41.	The logarithm of	f 64 to	the base $2\sqrt{2}$ is		
	(a) 2	(b)	$\sqrt{2}$	(C) ¹ / ₂	(d) none of these
42.	The value of log	₈ 25 gi	ven log 2 = 0.3010	is	
	(a) 1	(b)	2		
	(c) 1.5482	(d)	none of these		
	. 1/		1/ 1/		
43.	Show that $\left(\frac{x^b}{x^c}\right)^{/b}$	$\int \frac{x^{c}}{x^{a}}$	$\left(\frac{1}{2}\right)^{1/ca} \times \left(\frac{x^a}{x^b}\right)^{1/ab}$ redu	ces to	
	(a) -1			(c) 1	(d) None
		2 -	2) (12.1.2)		
44.	Show that $\left(\frac{x^a}{x^b}\right)^{(a)}$	a∸+ab+ b	$\begin{pmatrix} x^{2} \end{pmatrix} \mathbf{X} = \left(\frac{x^{b}}{x^{c}}\right)^{\left(b^{2}+bc+c^{2}\right)}$	$\left(\frac{x^{c}}{x^{a}}\right)^{\left(c^{2}+ca+a^{2}\right)}$ is	given by
	(x -)		×~ /		
	(a) 1	(b)	-1	(c) 0	(d) 3

		K. SHAH [®]		_		
		ASSES		CA	Foundation - Mathemat	TICS
		/dranda Enterprise		$\frac{1}{1+z^{b-c}+z^{b-a}} + \frac{1}{1+z^{c-a}+z^{c-b}}$ WC		
	45.					
_		(a) 0	(b) -1	(c) 1	(d) 2	
_		······································				
_	46.			-15x is given by	()) = =	
_			(b) 26	(c) 27	(d) 30	
			$\frac{1}{\frac{a}{a-b}} \times \frac{x^{\frac{b}{b-b}}}{\frac{a}{b}}$	a		
	47.	On simplification	on x	- reduces to		
_			X ^{a+b} X ^{b+}	.g		
_		(a) 1	(b) -1	(c) 0	(d) None	
_			x ^{ab}	$\frac{(x^{b^2+c^2})^{b+c}}{x^{bc}} x \left[\frac{x^{ca}}{x^{c^2+a^2}} \right]^{c+a} reduce$		
	48.	On simplification	$\frac{\text{on}}{x^{a^2+b^2}} x -$	x^{bc} $x \left[\frac{x^{c^2+a^2}}{x^{c^2+a^2}} \right]$ reduce	ces to	
		() 2.2		,	11 2/0 ³ +1 ³ , 0 ³ 1	
_		(a) x ^{-2a3}	(b) x ^{2a3}	(c) X 2(0 10 10	(d) x $2(a^3+b^3+c^3)$	
-		3/10 + 1	3/12 1			
_	49.			the value of $a^3 + 3a - 2$ is	6	
_		(a) 3	(b) 0	(c) 2	(d) 1	
_		$\frac{1}{100} = \frac{1}{100} \left(5 \sqrt{21} \right)^{-1}$			se	
_	50.	-		of $a^3 + a^{-3} - 5a^2 - 5a^{-2} + a^{-3} - 5a^{-3} - 5a^{-2} + a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} + a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} + a^{-3} - 5a^{-3} -$		
_		(a) 0	(b) 1	S (c) 5 term	(d) - 1	
-	F 4	11		radu		
	51.	$1 + \log_a(bc) + \frac{1}{1 + \log_a(bc)}$	$\frac{1}{g_b(ca)} + \frac{1}{1 + \log_c(ab)}$ (b) 1			
		(a) U	(b) 1	(c) 3	(d) -1	
		, loga logh	logc			
	52.	$\frac{\text{If } y - z}{y - z} = \frac{z - y}{z - x} =$	$=\frac{\log c}{x-y}$ the value	e of abc is		
		(a) 0	(b) 1	(c) -1	(d) None	
	F 2	10 ¹ 1000 1100	h 1,			
	53.		$b = \frac{1}{5} \log c$ the vc			
		(a) 0	(b) 1	(c) -1	(d) None	
	54.			e value of a ³ b ² c is	()) NI	
		(a) 0	(b) 1	(c) -1	(d) None	
			1 _ 1			
	55.			the value if z is given by		
		(a) abc	(b) a+b+c	(c) a(b+c)	(d) (a+b)c	

56. If I = 1+log_abc, m = 1+log_bca, n = 1+log_cab then the value of $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1$ is (c) -1 (a) 0 (b) 1 (d) 3 57. If $(4.8)^{\times} = (0.48)^{\vee} = 1,000$ then the value of $\frac{1}{x} - \frac{1}{y}$ is (b) -3 (a) 3 (c) 1/3 (d) -1/3 58. If $x^{2\alpha-3}y^{2\alpha} = x^{6-\alpha}y^{5\alpha}$ then the value of alog $\left(\frac{x}{y}\right)$ is (a) 3 log x (b) log x (c) 6 log x (d) 5 log x Senterprise Varanda Enterprise 54

J.K. SH

a Veranda Enterprise

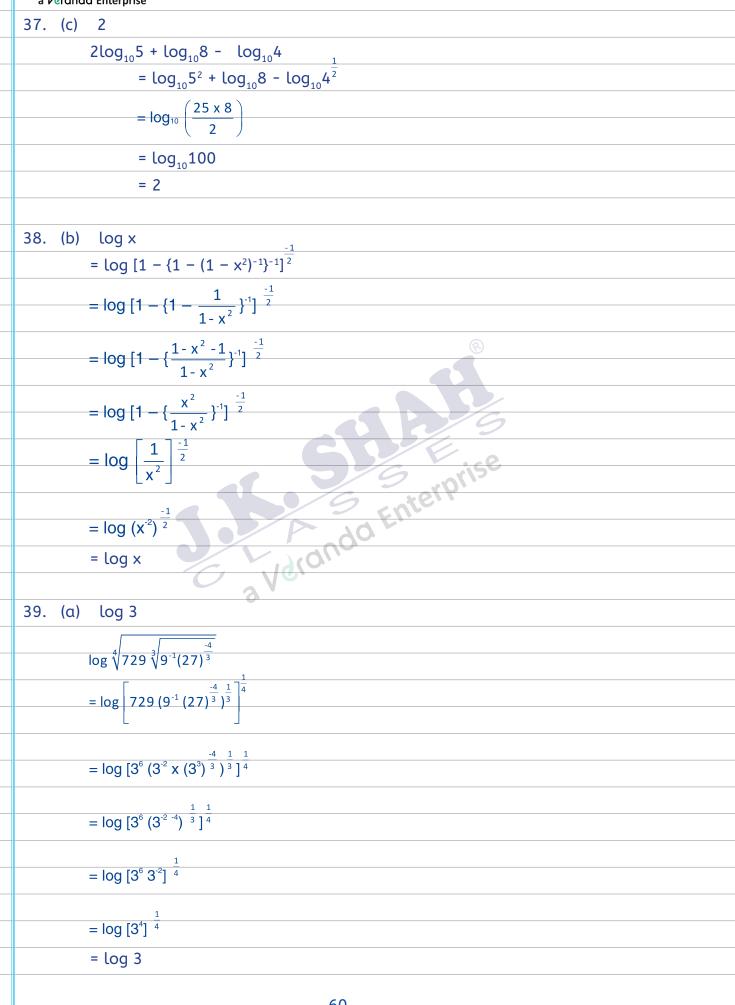
HOMEWORK SOLUTION

	4
1.	(c) $\overline{x^{1/4}}$
2.	(c) 2
3.	(c) 4
4.	(b) 2
5.	(a)
	8
6.	(a) 1
7.	(b) A positive integer
	$2^{1/2} \cdot (4)^{3/4} = 2^{1/2} \cdot (2^2)^{3/4}$ $= 2^{1/2} \cdot (2)^{3/2}$ $= 2^{\frac{1}{2} + \frac{3}{2}}$ $= 2^{2}$
	Sarphis
	$= 2^{1/2} \cdot (2)^{3/2}$
	$=2^{\frac{1}{2}+\frac{3}{2}}$
 	= 2 ²
 	= 4
 8.	(d) $3xy^2$
	$\left(\frac{81.x^4}{y-8}\right)^{1/4} = \left(\frac{3^4.x^4}{y^{-8}}\right)^{1/4}$
	$=\frac{3x}{y^{-2}}=3xy^2$
	1
 9.	(b) 1 Cyclical terms (in power)
 	···
10.	(c) 1
11.	(d) 1
	$\frac{3^{6} \times 4^{6} \times 5^{6}}{3^{6} \times 4^{6} \times 5^{6}} = 1$

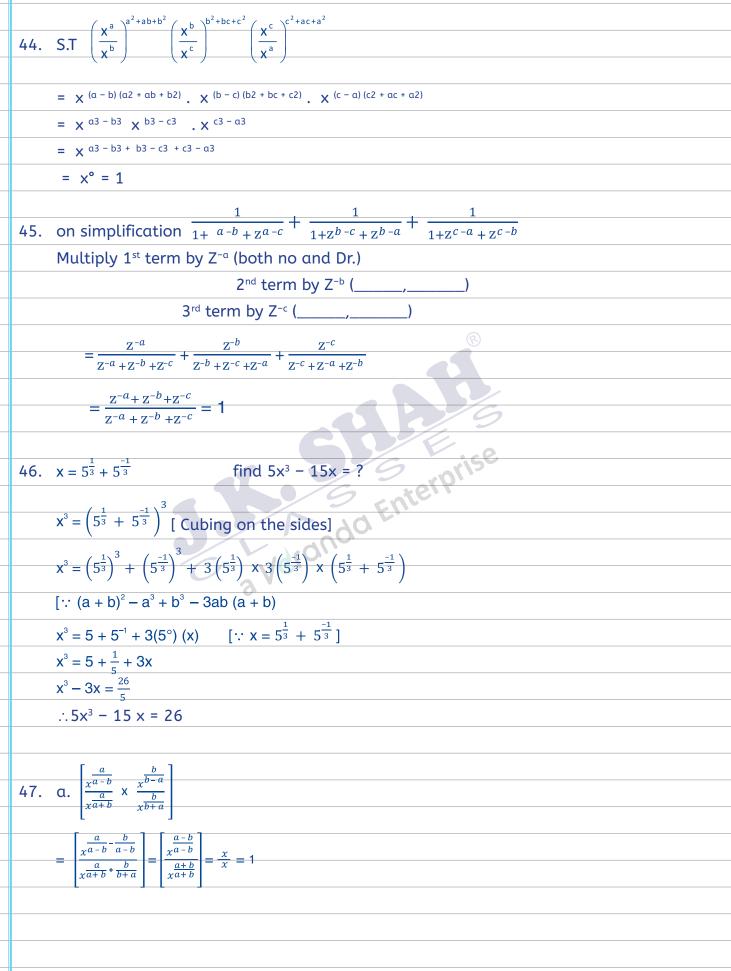
12.	(c) $2^{\circ} = \left(\frac{1}{2}\right)^{\circ}$
13.	(b) 0
	$x^{1/p} = y^{1/q} = z^{1/r} = k$
	$\therefore x^{1/p} = k \qquad \Rightarrow x = k^p$
	$\therefore y^{1/q} = k \qquad \implies x = k^q$
	$\therefore \ z^{1/r} = k \qquad \implies z = k^r$
	xyz = 1
	$\therefore k^{p} \cdot k^{q} \cdot k^{r} = k^{o}$
	$\therefore k^{p+q+r} = k^{o}$
	$\therefore p + q + r = 0$
14.	(d) $\frac{1}{v^{a+b}}$
	$y^{a-b} \times y^{b-c} \times y^{c-a} \times y^{-a-b}$
	$= y^{a-b+b-c+c-a-a-b}$
	$y^{a-b+b-c+c-a-a-b}$ $= y^{-(a+b)}$ $= \frac{1}{y^{a+b}}$ (a) $x^{2/3} = \sqrt[3]{x^2}$
	1 Senter
	$=\frac{1}{y^{a+b}}$
	id colle
15.	(a) $x^{2/3} = \sqrt[3]{x^2}$
16.	(c) 2
	$= 16 \cdot x^{-3} \cdot y^2 \cdot 8^{-1} \cdot x^3 \cdot y^{-2}$
	$=\frac{16.y^2.x^3}{8.x^3.y^2}$
	8.x ³ .y ²
	= 2
	9
17.	(a) $\frac{5}{4}$
	$\left(\frac{8}{27}\right)^{-1/3} \cdot \left(\frac{32}{243}\right)^{-1/5} = \left(\frac{27}{8}\right)^{1/3} \cdot \left(\frac{243}{32}\right)^{1/5}$
	(27) (243) (8) (32)
	3_3
	$=\frac{3}{2}\cdot\frac{3}{2}$
	9
	$=\frac{9}{4}$

J.K. SHAH CLASSES
 a Veranda Enterprise
18. (b) log 30
log (6 × 5) = log 30
19. (c) 3
 $\log_2 8 = \log_2 2^3 = 3 \log_2 2 = 3$
 20. (b) log 32 – log 4
 21. (α) log 1 + log 2 + log 3
 22. (b) 4
 $\log_{0.1} 0.0001 = \log_{0.1} (0.1)^4 = 4 \log_{0.1} 0.1 = 4$
 ®
 23. (b) 9
 $Log x^2 = log 3^4$
 $\therefore X^2 = 3^4$
$\therefore X = 3^2 = 9$
24. (a) 12 $\log_{\sqrt{2}} 64 = \log_{\sqrt{2}} \left(\left(\sqrt{2} \right)^2 \right)^6$
$\log_{\sqrt{2}} 64 = \log_{\sqrt{2}} \left(\left(\sqrt{2} \right)^2 \right)^2$
$= \log_{\sqrt{2}} \left(\sqrt{2} \right)^{12}$
25. (c) 6
 $\log_{258} 1728 = \log_{2\sqrt{3}} \left(2\sqrt{3} \right)^6$
 =6
 26. (c) -2
 $Log_{9}\left(\frac{1}{81}\right) = log_{9}\left(81\right)^{-1}$
 $= \log_9(9)^{-2}$
 $= \log_{9}(9)$ = -2
 <u>L</u>
 27 (d) None of these trial and error
 27. (d) None of these trial and error

<u>J.</u>	K. SHAH ASSES
 a V	deranda Enterprise
28.	(c) 0.7781
	$\therefore \text{ Log 6} = \log (2 \times 3) = \log 2 + \log 3$
	= 0.3010 + 0.4771
	= 0.7781
29.	(c) 1
	$\log_2 \log_2 \log_2 16 = \log_2 \log_2 \log_2 2^4$
	$= \log_2 \log_2 4$
	$= \log_2 \log_2 2_2$
	= log ₂ 2
	= 1
30.	(a) $\frac{-1}{2}$
	$\log_9 \frac{1}{3} = \frac{\log(3)^{-1}}{\log 9} = \frac{-1\log 3}{2\log 3} = \frac{-1}{2}$
	$\log_9 73 - \log_9 2 \log_3 2$
31.	(c) $\frac{x}{x-1}$
	log x + log y = log (x + y)
	∴ log (xy) = log (x + y)
	$\therefore \log (xy) = \log (x + y)$ $\therefore xy = x + y$ $\therefore xy - y = x$ $\therefore y (x - 1) = x$
	$\therefore xy - y = x$
	\therefore y (x - 1) = x
	x
	$\therefore y = \frac{x}{x - 1}$
32.	(c) 0
	log ₂ [log ₂ {log ₃ (log ₃ 27 ³)}]
	= log ₂ [log ₂ {log ₃ (log ₃ (3 ³) ³)}]
	= log ₂ [log ₂ {log ₃ 9}]
	= log ₂ [log ₂ 2]
	= log ₂ 1


J.K. SHAH [®]
CLASSES
a Veranda Enterprise

a Veranda Enterprise
 33. (a) 8
$Log_{2} x + log_{4} x + log_{16} x = \frac{21}{4}$
$\frac{\log x}{\log 2} + \frac{\log x}{\log 4} + \frac{\log x}{\log 16} = \frac{21}{4}$
$\frac{\log x}{\log 2} \left[1 + \frac{1}{2} + \frac{1}{4} \right] = \frac{21}{4}$
$\log 2 \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}^{-4}$
$\therefore \log_2 x \left[\frac{4+2+1}{4} \right] = \frac{21}{4}$
$\therefore \log_2 x = 3$
$\therefore 2^3 = x$
∴ x = 8
34. (b) x + y + 1 🛞
$\log_{10} 60 = \log_{10} (2 \times 3 \times 10)$
= log 2 + log 3 + log 10
 = x + y + 1
G S V :ce
35. (c) $2x + y - 1$ $\log_{10} 12 = \log_{10} \frac{12}{10}$
$\log_{10} 12 = \log_{10} \frac{1}{10}$
= log 12 - log 10
= log (2 × 2 × 3) - log 10
= log 2 + log 2 + log 3 - log 10
= x + x + y - 1
 = 2x + y - 1
26 (a) 1 = a + 2a
36. (a) $1 - m + 3n$
 $\log \frac{10x}{y^2} = \log 10 + \log x - \log y^2$
= log 10 + log x - 2 log y = 1 + m + n - 2 (m - n)
 = 1 + m + n - 2(m - n) = 1 + m + n - 2m - 2n
 = 1 + m + 3n = 1 - m + 3n
 _ T III . 211



J.K. SHAH C L A S S E S a Veranda Enterprise

a 🗸	randa Enterprise
40.	(c) 1
	The value of (log _b a x log _c b x log _a c)
	$= \left(\frac{\log a}{\log b} \times \frac{\log b}{\log c} \times \frac{\log c}{\log a}\right)^{3}$
	<pre>[logb `logc `loga]</pre>
	$= (1)^3$
	= 1
41.	(d) 4
	$\log_{2\sqrt{2}} 64 = \log_{2\sqrt{2}} (2\sqrt{2})^4$
	= 4
42.	(c) 1.5482
	$\log_{8}25 = \log_{8}\left(\frac{25\times4}{4}\right) = \log_{8}\left(\frac{100}{4}\right)$
	$= \log_8\left(\frac{100}{4}\right)$
	= <u>log 100 - log 4</u>
	log 8
	$= \frac{\log 20 - \log 2}{\log 2}$
12	Show that $\left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \cdot \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} \cdot \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}}$.
43.	Show that $\left(\frac{1}{x^c}\right) \cdot \left(\frac{1}{x^a}\right) \cdot \left(\frac{1}{x^b}\right)$.
	$M - 1 \left(x^{b-c}\right)^{\frac{1}{bc}} \cdot \left(x^{c-a}\right)^{\frac{1}{ca}} \cdot \left(x^{a-b}\right)^{\frac{1}{ab}} \cdot \frac{1}{ab}$
	$\frac{b-c}{c} + \frac{c-a}{c} + \frac{a-b}{c}$
	$= \frac{\log 20 - \log 2}{\log 2}$ Show that $\left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \cdot \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} \cdot \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}}$ $M - 1 \left(x^{b-c}\right)^{\frac{1}{bc}} \cdot \left(x^{c-a}\right)^{\frac{1}{ca}} \cdot \left(x^{a-b}\right)^{\frac{1}{ab}}$ $= \frac{b-c}{x^{bc}} + \frac{c-a}{ca} + \frac{a-b}{ab}$ $(b-c) + b(c-a) + c(a-b)$
	$= x^{\frac{(b-c)+b(c-a)+c(a-b)}{abc}}$ [Taking L.C.M. in the power]
	ab - ac + bc - ac + ac - ab
	= x abc
	$= \chi abc$
	$= x^{\circ} = 1$
	<u>k</u> <u>k</u> <u>d</u>
	$M - II = \frac{\frac{\cancel{b}}{\cancel{bc}}}{x^{\cancel{bc}}} \frac{x^{\cancel{c}}}{x^{\cancel{c}a}} \frac{x^{\cancel{a}}}{\cancel{ab}}}{x^{\cancel{ab}}}$
	$x^{be} x^{ca} x^{ab}$
	1 1 1
	$= \frac{x^{\frac{1}{z'}}}{x^{\frac{1}{b'}}} \frac{x^{\frac{1}{a'}}}{x^{\frac{1}{z'}}} \frac{x^{\frac{1}{b'}}}{x^{\frac{1}{a'}}} = 1$
	$\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$

a Veranda Enterprise
48. $\left(\frac{x^{ab}}{x^{a^2+b^2}}\right)^{a+b} \left(\frac{x^{b^2+c^2}}{x^{bc}}\right)^{b+c} \left(\frac{x^{ca}}{x^{c^2+a^2}}\right)^{a+b}$
$\left(\mathbf{x}^{\mathbf{a}^2+\mathbf{b}^2} \right) \left(\mathbf{x}^{\mathbf{b}\mathbf{c}} \right) \left(\mathbf{x}^{\mathbf{c}^2+\mathbf{a}^2} \right)$
$= (x^{ab-a^2-b^2})^{a+b} x^{(b^2+c^2-bc)(b+c)} x^{(ca-c^2-a^2)(c+a)}$
$= \mathbf{x}^{-(a^2+b^2-ab)(a+b)} \mathbf{x}^{(b^2+c^2-bc)(b+c)} \mathbf{x}^{-(c^2-a^2-ca)(c+a)}$
$= x^{-(a^3+b^3)} x^{b^3+c^3} x^{-(c^3+a^3)}$
$= \chi^{-a^3 - b^3 + b^3 + c^3 - c^3 - a^3}$
$= \chi^{-2a^3}$
49. If $a = a = \sqrt[3]{\sqrt{2} + 1} - \sqrt[3]{\sqrt{2} - 1}$
Then the value of a^3 + 3a-2 is
$a = (\sqrt{2} + 1)^{\frac{1}{3}} - (\sqrt{2} + 1)^{\frac{1}{3}}$
Cubing on both sides, we get,
$a^{3} = \left[\left(\sqrt{2} + 1 \right)^{\frac{1}{3}} - \left(\sqrt{2} - 1 \right)^{\frac{1}{3}} \right]^{3}$
$= \sqrt{2} + 1 - \left(\sqrt{2} - 1\right) - 3\left[\left(\sqrt{2} + 1\right)^{\frac{1}{3}} \left(\sqrt{2} - 1\right)^{\frac{1}{3}}\right] \left(\sqrt{2} + 1\right)^{\frac{1}{3}} - \left(\sqrt{2} - 1\right)^{\frac{1}{3}}$
$= \sqrt{2} + 1 - (\sqrt{2} - 1) - 3 \left[(\sqrt{2} + 1)^{\frac{1}{3}} (\sqrt{2} - 1)^{\frac{1}{3}} \right] (a)$ $= \sqrt{2} + 1 - \sqrt{2} + 1 - 3a \left[(\sqrt{2})^2 - (1)^2 \right]^{\frac{1}{3}}$
Senter
$=\sqrt{2} + 1 - \sqrt{2} + 1 - 3a \left[(\sqrt{2})^2 - (1)^2\right]^{\frac{1}{3}}$
$a^3 = 2 - 3a[2 - 1]^{\frac{1}{3}}$
$a^3 = 2 - 3a$
$\therefore a^3 + 3a - 2 = 0$
50. $a = \frac{1}{2}(5 - \sqrt{21})$
$a = \frac{(5 - \sqrt{21})}{2}; \frac{1}{a} = \frac{1}{2}(5 + \sqrt{21})$
2 a 2 z z z z z z z z z
$\therefore a + \frac{1}{a} = \frac{5\sqrt{21} + 5 + \sqrt{21}}{2} = \frac{10}{2} = 5$
a 2 2

a Veranda Enterprise
$\frac{51.}{1 + \log_{a}bc} + \frac{1}{1 + \log_{b}ca} + \frac{1}{1 + \log_{c}ab} = ?$
$1 + \log_{abc} 1 + \log_{b}ca 1 + \log_{c}ab$
M – I
Let, a = 2, b = 4, c = 8
1 1 1
$=\frac{1}{1+\log_{2}^{32}}+\frac{1}{1+\log_{4}^{16}}+\frac{1}{1+\log_{8}^{8}}$
$=\frac{1}{1+5\log_2^2}+\frac{1}{1+2\log_4^4}+\frac{1}{1+1}$
$=\frac{1}{1+5} + \frac{1}{1+2} + \frac{1}{2}$
$=\frac{1}{6} + \frac{1}{3} + \frac{1}{2}$
$=\frac{1+2+3}{6}$
$=\frac{6}{6}$
M-II
1 1 1 9
$\frac{1}{\log_{a}^{a} + \log_{a}^{bc}} + \frac{1}{\log_{b}^{b} + \log_{b}^{ac}} + \frac{1}{\log_{c}^{c} + \log_{a}^{ab}}$
$= \frac{1}{\log_{a} abc} + \frac{1}{\log_{b} abc} + \frac{1}{\log_{c} abc}$
$= \frac{1}{\log_{a} abc} + \frac{1}{\log_{b} abc} + \frac{1}{\log_{c} abc}$ $= \log_{a} \frac{abc}{a} + \log_{b} \frac{abc}{b} + \log_{c} \frac{abc}{c}$
$= \log_{abc} a + \log_{abc} b + \log_{abc} c$
= log _{abc} abc = 1
52. $\frac{\log a}{\log a} = \frac{\log b}{\log a} = \frac{\log c}{\log a} = k$
$\frac{1}{y-z} = \frac{1}{z-x} = \frac{1}{x-y} = k$
log a = k (y - z)
log b = k (z - x)
<u>log c = k (x - y)</u>
log a + log b + log c = 0
log abc = 0 = log 1
∴ abc = 1
Hence, ×, y, z are in cyclic order, ∴their sums is 0
M-II
$\log_{10} abc = 0$
10° = abc = 1

a V	dranda Enterprise
53.	a ⁴ - bc = ?
	1. 1. 1
	$\frac{1}{2}\log a = \frac{1}{3}\log b = \frac{1}{5}\log c = k$
	$\log_{10}a = 2k$; $\log_{10}b = 3k$; $\log_{10}c = 5k$
	10 ^{2k} = a ;10 ^{3k} = b ;10 ^{5k} = c
	a ⁴ = 10 ^{8k} ;
	10 ^{8k} - 10 ^{3k} × 10 ^{5k}
	10 ^{8k} - 10 ^{8k}
	= 0
54.	1. 11
	$\frac{1}{4}\log_2 a = \frac{1}{6}\log_2 b = \frac{-1}{24}\log_2 c = k \qquad a^3 b^2 c = ?$
	$\log_2 a = 4k$; $\log_2 b = 6k$; $\log_2 c = -24k$
	$2^{4k} = a; 2^{6k} = b; 2^{-24k} = c$
	$a^{3} = (2^{4k})^{3} = 2^{12k}$; $b^{2} = (2^{6k})^{2} = 2^{12k}$
	$\therefore a^{3}b^{2}c = 2^{12k} 2^{12k} 2^{-24k}$
	$= 2^{24k-24k}$
	$= 2^{\circ} = 1$ 1 + 1 + 1 = + 1 - z = ? 00
	9 Entern
55.	log _a t log _b t log _c t log _z t
	$\log_t \alpha + \log_t b + \log_t c = \log_t z$
	$\log_t abc = \log_t z$
	abc = z
56.	$L = 1 + \log_{a}bc$
	M = 1 + log _b ac
	$M = 1 + \log_{c}ab$
	M- I
	Take, a = 2 ; b = 2 ² ; c = 2 ³ = 8
	$L = 1 + \log_2^{32} = 1 + 5 \log_2^{2} = 6$
	$M = 1 + \log_4^{16} = 1 + 2 = 3$
	$N = 1 + \log_8^8 = 1 + 1 = 2$
	$=\frac{1}{-+},\frac{1}{-+},\frac{1}{-+},\frac{1}{-+}$
	= - + - + 1 L M N

J.K. SHAH
CLASSES
a Veranda Enterprise

	$=\frac{1}{6}+\frac{1}{3}+\frac{1}{2}-1$
	6 3 2
	$=\frac{1+2+3}{-1}$
	6
	= 1 - 1 = 0
	M- II
	Let $a = b = c$
	$L = 1 + \log_{a}bc = 1 + \log_{a}a^{2} = 1 + 2 = 3$
	M = 3; $N = 3$.
	$= \frac{1}{L} + \frac{1}{M} + \frac{1}{N} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - 1 = 1 - 1 = 0$
	1 1
57.	$(4.8)^{\times} = (0.48)^{\vee} = 1,000$ $\frac{1}{x} + \frac{1}{y} = ?$
	$(4.8)^{\times} = (0.48)^{\text{y}} = (10)^3$
	$(4.8)^{\times} = 10^3$; $(0.48)^{\vee} = 10^3$
	3 3
	$4.8 = 10^{\times}$; $0.48 = 10^{\circ}$
	$\frac{3}{4.8 = 10^{\times}}; 0.48 = 10^{\circ}$
	$0.48 \times 10 = 10^{\frac{1}{7}} 10$
	$4.8 = 10^{\frac{3}{\gamma}+1}$
	3 3 1
	$\frac{3}{10^{\circ}} = 10^{\circ}^{\circ} + 1$
	$\therefore \frac{3}{2} = \frac{3}{2} + 1$
	$3 3_{-1}$
	$\therefore \frac{3}{x} - \frac{3}{y} = 1$
	$= 3\left(\frac{1}{-}, \frac{1}{-}\right) = 1$
	(\mathbf{x}, \mathbf{y})
	$=\frac{1}{2},\frac{1}{2}=\frac{1}{2}$
	x y 3

J.K. SHAH CLASSES a Veranda Enterprise
a Veranda Enterprise
58. $x^{2a-3}y^{2a} = x^{6-a}y^{5a}$ $a \log\left(\frac{x}{y}\right) = 3 \log^{x}$
$\frac{x^{2a-3}}{x^{6-a}} = \frac{y^{5a}}{y^{2a}}$
$\frac{1}{x^{6-a}} - \frac{1}{y^{2a}}$
$x^{2a-3-6} = y^{3a}$
$x^{30-9}y^{3a}$
x ^{3a}
$\frac{x^{3a}}{x^9} = y^{3a}$
x ^{3a}
$\frac{x^{3a}}{y^{3a}} = x^9$
$\left(\mathbf{x} \right)^{3a}$ 9
 $\left(\frac{x}{y}\right)^{3a} = x^9$
 6 7 6
 Serprise Senterprise
 S S prise
Gintern
 Veranda Er
C Vec

av								
		SEL	F ASSESSME	NT TEST 1				
	Ratio, Proportion and Mixtures							
	20 Question, 20 Marks							
1.	The ratio of A to I	B is 4 : !	5 and that of C to	o B is 3 : 2. lf A = 8	300, C = ?			
	a) 1000	b) 1200	c) 1500	d) 2000			
2.	Three numbers A,	B and (C are in the ratio	1/2:2/3:3/4.	The difference between			
	the greatest and	the smo	allest number is	36. Find A.				
	a) 60	b) 72	c) 84	d) None of the above			
3.	Ratio of land and	l water	on earth is 1 : 2.	In northern hemis	sphere, the ratio is 2 : 3.			
	What is the ratio	in the s	outhern hemisph	nere?				
	a) 3:11	b) 2	2:11	c) 4:11	d) 5:11			
4.	The ratio of copp	er and	zinc in a 63 kg	alloy is 4 : 3. Son	ne amount of copper is			
	extracted from the	e alloy a	and the ratio becc	omes 10 : 9. How m	uch copper is extracted?			
	a) 6 kg	b) 8	3 kg	c) 12 kg	d) 10 kg			
			/9	Enteri				
5.	A bag contains Rs	. 55 in t	the denomination	ns of Re 1, 50 paise	and 25 paise coins. The			
	coins are in the ro	utio 1 : 7	2:3. Find the nu	imber of 50 paise o	coins.			
	a) 15	b) 3	30	c) 40	d) 45			
6.	A person cover ce	ertain di	istance by train,	bus and car in the	ratio 4 : 3 : 2. The ratio			
	of fare is 1 : 2 : 4	i per kn	n. The total exp	enditure as fare is	Rs. 720. Find the total			
	expenditure as fa	re on tr	rain.					
	a) Rs. 140	b	o) Rs. 150	c) Rs. 160	d) Rs. 170			
7.	The ratio of the	expendi	iture of A, B and	d C are 16 : 12 : 9	9 respectively and their			
	savings are 20%,	25% a	nd 40% of their	incomes. If the su	m of their income is Rs.			
	15,300; find B's s	alary.						
	a) Rs. 4800	b	o) Rs. 5000	c) Rs. 4900	d) Rs. 5100			

	ASSES		CA FC	DUNDATION - MATHEMATICS
	/dranda Enterprise			
8.				he ratio of their individual
				respectively. If their total
		ent year is Rs. 4300,		-
	a) Rs. 1200	b) Rs. 1800	c) Rs. 1600	d) Can't be determined
9.	The income of A an	d B is in the ratio 5 :	3. The expenses of	A, B and C are in the ratio
	8 : 5 : 2. If C spend	s Rs. 2000 and B sa	ves Rs. 700, then he	ow much did A saves?
	a) Rs. 500	b) Rs. 1500	c) Rs. 1000	d) Rs. 250
10.	The ratio of total a	mount distributed ir	all the males and	females as salary is 6 : 5.
	The ratio of salary	of each male and fe	male is 2 : 3. Find t	the ratio of the number of
	male and female.			
	a) 5 : 9	b) 5 : 7	c) 9:5 🕓	d) 7 : 5
11.	Rs. 56000 is to be o	divided among A, B.	C and D in such a w	vay that the ratio of share
				n of share of A & C and B
	& C.	2		
	a) Rs. 24000, Rs.	30000	b) Rs. 20000, Rs	5. 32000
	c) Rs. 24000, Rs.		d) Rs. 20000, Rs	
	,		0	
12.	A. B and C works of	on a project for 30	50 and 60 days res	pectively. The ratio of the
				nount received by A is Rs.
		amount received by	<u> </u>	
	a) Rs. 18000	b) Rs. 19000	c) Rs. 18500	d) Rs. 19500
	a, n.s. 10000	5/113. 13000	C/ N3. 10500	uj 113. 1 <i>3 3</i> 00
13.	Two numbers are	in the ratio 4 · 5	If each number is	reduced by 25, the ratio
10.		the second number		
				d) 12F
	a) 120	b) 130	c) 125	d) 135
4.1	The proving of the later	te altre et la seu d'A		e contelet. A second e l
14.				s weight. A person broke
		ne ratio of 3 : 2 : 1 a	ind faces a loss of F	Rs. 46,200. Find the initial
	price of the gold.			
	a) Rs. 75,200	b) Rs. 75,400	c) Rs. 75,300	d) Rs. 75,600

a Vergoda Enterprise 15. Rs. 78,000 is distributed among A, B and C such that the share of A = 3 / 4 share of B and share of B = 2 / 3 of the share of C. What is the difference between the shares of B and C? c) Rs. 11000 a) Rs. 9000 b) Rs. 10000 d) Rs. 12000 16. A dog chases a rabbit. The dog takes 6 leaps for every 7 leaps of the rabbit. The rabbit takes 6 leaps for every 5 leaps of the dog. What is the ratio of speed of dog and rabbit? a) 36 : 35 b) 36 : 40 c) 35 : 36 d) None of the above 17. A mixture contains milk and water in the ratio of 4 : 3 respectively. If 6 litres of water is added to this mixture, the respective ratio of water and milk becomes 7 : 8. What is the quantity of milk in the original mixture? a) 96 litres d) 48 litres b) 84 litres c) 36 litres 18. There are X members in a club, whose average age is 26 years. 3 more persons join them at the 35th Annual General Meeting, and thus the average age of members now increases by 1 year. If the average age of 3 new members joining at the 35th AGM is 29 years, find X. randoc) 8 d) None of the above a) 6 b) 7 19. If the ratio of volume of two cubes with Amit and Ajay is 125 : 8, then find the ratio of the total surface area of the cubes with Ajay and Amit. a) 25:4 b) 4:25 c) 5:2 d) 2:5 20. Mr. Azon divides \$ 51,300 among his four partners A, B, C and D such that 3 times A's share = 4 times B's share = 5 times C's share = 6 times D's share. What is the share of B? a) \$11,000 b) \$ 13,500 c) \$ 15,300 d) \$ 12,350

 A: B = 4:5 B: C = 2:3 A: B: C = 8:10:15 C = 800/8 * 15 = 1500 Option C A: B: C = 1 / 2:2 / 3:3 / 4 = 6:8:9 9x - 6x = 3x = 36; x = 12 A = 6 * 12 = 72 Option B Let total = 300. At earth, Land = 100, Water = 200 	
A : B : C = 8 : 10 : 15 C = $800/8 * 15 = 1500$ Option C 2. A : B : C = $1/2:2/3:3/4 = 6:8:9$ 9x - 6x = 3x = 36; x = 12 A = $6 * 12 = 72$ Option B	
C = $800/8 * 15 = 1500$ Option C 2. A : B : C = $1/2 : 2/3 : 3/4 = 6 : 8 : 9$ 9x - 6x = 3x = 36; x = 12 A = $6 * 12 = 72$ Option B	
Option C 2. A : B : C = 1 / 2 : 2 / 3 : 3 / 4 = 6 : 8 : 9 9x - 6x = 3x = 36; x = 12 A = 6 * 12 = 72 Option B ®	
2. A : B : C = 1 / 2 : 2 / 3 : 3 / 4 = 6 : 8 : 9 9x - 6x = 3x = 36; x = 12 A = 6 * 12 = 72 Option B	
9x - 6x = 3x = 36; x = 12 A = 6 * 12 = 72 Option B	
9x - 6x = 3x = 36; x = 12 A = 6 * 12 = 72 Option B	
A = 6 * 12 = 72 Option B	
Option B ®	
8	
3. Let total = 300. At earth, Land = 100, Water = 200	
In northern hemisphere = 150, Land = 150 * 2/5 = 60, Water = 90	
In southern hemisphere: Land = 100 - 60 = 40, Water = 200 - 90 = 110	
Ratio = 40 : 110 = 4 : 11	
Option C	
S Enter.	
4. Alloy: Copper = 4/7 * 63 = 36; Zinc = 3/7 * 63 = 27	
(36 - X) / 27 = 10 / 9	
36 - X = 30; X = 6	
Option A	
5. $X + (2X)^{1/2} + (3X)^{1/4} = 55$	
11X/4 = 55	
X = 20	
No. of 50 paise coins = 2X = 40	
Option C	
6. 4x * 1 + 3x * 2 + 2x * 4 = 18x = 720; x = 40	
Fare expenditure on train = 4 * 40 = 160; Option C	
7. Expenditure = 100% - Savings%	
16x/80% + 12X/75% + 9X/60% = 20x + 16x + 15x = 51x = 15300; x = 300	
B's income = 16 * 300 = 4800; Option A	

СЦ	K. SHAH ASSES Veranda Enterprise
8.	One year ago = 3x, 5x
	Present salary = (3x)3/2 : (5x)5/4 = 18 : 25
	A's present salary = 18/43 * 4300 = 1800; Option B
9.	Income = 5x, 3x
	Expenses = 8y, 5y, 2y
	2y = 2000; y = 1000
	3x - 5000 = 700; x = 1900
	A saves = (5 * 1900) - (8 * 1000) = 9500 - 8000 = 1500
	Option B
10.	Person = Total salary/Salary per person
	M:F=6/2:5/3=9:5
	Option C
11.	A : B = 1 : 2
	B:C=3:1
	C: D = 2:3
	B: C = 3 : 1 C: D = 2 : 3 A : B : C : D = 6 : 12 : 4 : 6 = 3 : 6 : 2 : 3 A & C = $5/14 + 56000 = 20000$
	A A C = 3/14 - 30000 - 20000
	B & C = 8/14 * 56000 = 32000
	Option B
12.	30x(4) + 50x(3) + 60x(2) = 390x
	120× = 14400; × = 120
	B's amount = 150x = 150 * 120 = 18000
	Option A
13.	(4x - 25): (5x - 25) = 3 / 4
	16x - 100 = 15x - 75
	Or, x = 25
	Second number = 5 * 25 = 125
	Option C

	K. SHAH ASSES
 	dranda Enterprise
 14.	$P = k.w^2$
 	New P = k (9 + 4 + 1) = 14k
	Old P = k(6)2 = 36k
 	Loss = 36k - 14k = 22k = 46200; k = 2100
	Old P = 36 * 2100 = 75600; Option D
15.	A : B = 3 : 4
	B:C=2:3
	A : B : C = 6 : 8 : 12
	6x + 8x + 12x = 78000; x = 78000 / 26 = 3000
	B – C difference = 4 * 3000 = 12000
	Option D
	8
16.	1 leap of dog = 1 units
	6 leaps of dog = 6 units = 7 leaps of rabbit; 1 leap of rabbit = 6/7 units
	In a given time: 6 rabbit = 5 dog; 6(6/7) : 5 (1) = 36 : 35
	Speed of dog and rabbit = $35:36$ Option C
	Option C
	9 Enter
17.	3x/7 + 6 = 7/15 (x + 6)
	3x/7 + 6 = 7/15 (x + 6) 45x + 630 = 49x + 294 4x = 336, x = 84
	4x = 336, x = 84
	Milk in original mixture = 4/7 * 84 = 48
	Option D
18.	Total age of 26 members = 26X
	Total age of 29 members = 26X + (29x3) = 27(X + 3)
	26X + 87 = 27X + 81
	X = 6
	Option A
19.	Amit : Ajay
	V = 125 : 8
	Side = 5 : 2
	Total Surface = 25 : 4
	Option B
 	•

 20. A : B : C : D = 1 / 3 : 1 / 4 : 1 / 5 : 1 / 6 = 120 : 90 : 72 : 60
 B's share = 90 / 342 * 51300 = 13500
 Option B
 •
 3
 ise
 Serprise Add Enterprise
 da
74

 a	veranaa Enterprise					
		S	ELF ASSES	SMENT TES	Т 2 🦰 — — — — — — — — — — — — — — — — — —	
		Su	ds, Indice	es & Logarit	thms	
				ion, 30 Marks		
1.	The value of is	5: $)^{30+\sqrt{3}}$	$0 + \sqrt{30 + \dots + to\infty}$			
	a) 6	b)		c) 3	d) None of these	
2.	If 8 [×] = 4 ^y , what	is the v	alue of K ^{(3x - 2y}	ı) ?		
	a) K	b)	K2	c) 0	d) 1	
3.	If X = log ₂ log ₃ l	og_512;	find the value	e of (X - 1)!		
	a) 1	_	4	c) 6	d) 24	
		- 1			®	
4.	If $2\log\frac{4}{3} - \log\frac{x}{10} +$	-log=	0 , find the vo	alue of x.		
	3 10	160	-,			
	a) 3	b)	4	c) 7	9 d) 9	
		,				
5.	$ f \log 2 = 0.30^{\circ}$	103 [.] the	n find the nur	nber of digits in a	2510	
5.	a) 13	b)	15	C) 14	d) 25	
	a, 15	5,			Q, 23	
6.	Find the value	of 91/3 c	1/9 Q 1/27 Q 1/81	100		
0.	a) 3	b)	9	c) 81	d) None of the above	
	u, 5	DJ	53	C/ 81		
 7.	If $X = cube rece$	t of 2 V	$4 = 6^{\text{th}} \operatorname{root} \operatorname{of}$	$3 7 = 0^{\text{th}} \text{ root of}$	4; then which of the following	
1.	is true?			5, 2 - 5 100001	-, then which of the following	
		Ы	¥ > V > 7		Z d) X = Y < Z	
	$u_1 \wedge - t = Z$	U)	~ ~ T ~ Z	C/ ~ Y < Z		
8.	$1f (AD)^{1/2} - 6 = 6$		aro positivo	intogore than we	hich of the following could not	
υ.	be a value of (integers, then wi	hich of the following could not	•
	a) 0	b)		c) 0	d) 0	
	u) U	D)	2	c) 8	d) 9	
0	$15_{\rm V} = 2 + 10^{1/2}$	there	hat is the web			
9.	If $x = 3 + (8)^{1/2}$,					
	a) 1154	b)	1145	c) 1164	d) 1146	
4.2	10 - 14	1.1.2				
10.				the value of y(x +		
	a) 2	b)	2xz	c) xz	d) None of these	
				75		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	11.	If ^{Ic}	$\log\left(\frac{a+b}{7}\right) = \frac{1}{2}(\log a)$	r+log	^{b)} , then which of t	he fol	lowing is true	e?	
			a + b = 49				$+ b^2 = 47ab$		
		c)	$a^2 - b^2 = 49ab$)	d)	None	e of these		
			1	3 100/1	1728				
	12.	Giv	ren X = $\frac{1}{6} \cdot \frac{1}{1+-1}$	og(0.3	$\frac{1728}{16) + \frac{1}{3} \log 8}$, find the	e valu	e of (2X - 1).		
_			1 4		.				
_		α)	4	b)	1	c) 0		d)	- 1
_	10	١£	6ab then the		x+3a $x+3b$	ic or	rual to:		
_	15.	(11	a+b		$\frac{1}{x-3a} + \frac{x+3b}{x-3b}$	IS et	juur to.		
_		α)	0	b)	1	c) 2		d)	None of the above
_				- /			®		
	14.	If X	$x = 3\sqrt{2} + 7\sqrt{8} + 7\sqrt{8}$	√27	+ 5√3. Find X.				
		α)	17√2 + √3	b)	17√2 + 8√3				
		c)	15√2 + 8√3	d)	None of the abov	e	29		
				10	6		E:ce		
	15.	Giv	en $\frac{\sqrt{x+4}+\sqrt{x-3}}{\sqrt{x+4}-\sqrt{x-3}}$	$\frac{10}{10} = \frac{1}{10}$	5 2 . The value of x i	s: 🤊	erpris		
_									. = / = .
_		α)	1	b)	331/5	c) 26	53/20	d)	17/21
_	16	lf o	1	ada	b VCC				
_	10.	а)	1	h)	-b 3	c) –	3	d)	None of the above
_		α,	1	D)	5	C/	5	u)	
	17.	lf ^{lo}	$\log \frac{12}{13} - \log \frac{7}{25} + \log \frac{1}{25}$	$\frac{91}{3} = x$, find the value of	fx.			
					1			d)	3
		1							
	18.		$\frac{1}{x}$ is equal to v	vhich	of the following?				
			~						
		α)	(x + 1)	b)	(x + 1)-1				
		c)	x(x + 1) ⁻¹	d)	None of the abov	е			
	10	ا د ۵	$b^3 - b^3 = 13$	find	the value of $a+b$				
_	19.	IT – a	$\frac{1}{a^3+b^3}=\frac{1}{14}$; ther	ιτιπα	the value of $\frac{a+b}{a-b}$	•			
_		a)	1	b)	2	c) 1	5	d)	None of the above
_		~/	-	~/		~/ 1.	-	~/	

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

al	⁄dranc	da Enterprise						
20.	lf (x + x ⁻¹) = 3, th	nen tl	he value of (x ⁶ + x	-6)	is		
	α)	927	b)	364	c)	414	d)	322
21.	Wh	ich of the follo	owing	g relations is true?				
	α)	$\sqrt{4} + \sqrt{3} < \sqrt{5}$	+ √2					
	b)	$\sqrt{4} + \sqrt{3} = \sqrt{5}$	+ √2					
	c)	$\sqrt{4} + \sqrt{3} > \sqrt{5}$	+ √2					
	d)	None of the a	bove	is true				
					2			
22.	The	e expression sir	mplif	ies to: $\frac{(y-1)(y-2)(y-2)}{(y-2)(y^2)}$	2 – 9 2 v	$\frac{9y+14}{4}$		
	α)	(y – 1)	b)	ies to: $\frac{(y-1)(y-2)(y)}{(y-7)(y^2-1)(y-7)}$	<i></i>	- 21		
	c)	(y – 2)	d)	(y - 7) ⁻¹				
				_				
23.	lf x	$=\frac{\sqrt{3}+1}{\sqrt{3}-1}$ and y	$=\frac{\sqrt{3}}{\sqrt{3}}$	$\frac{-1}{-1}$, then find the v	alu	e of $\frac{x^2 + xy + y^2}{x^2 - xy + y^2}$.		
		V3 1	V 3 1	1				
	α)	13/15	b)	15/13		29		
	c)	2/13	d)	11/13		V		
				1 3		4 ror15		
24.	Fin	d the value of	<u></u>	$-2\sqrt{30}$ $\sqrt{7-2\sqrt{10}}$	√8-	+ 4 \[\]		
					2)			
	α)	√6 + √2	b)	√6 + √5				
	c)	$\sqrt{5} + \sqrt{2}$	d)	None of the abov	e			
25.	If X	x = 3 log5 + 2 l	og4 ·	- log2, Find the va	lue	of (X + 3).		
	α)	0	b)	6	c)	3	d)	None of the above
26.	If lo	ogX = log1.5 +	log1	2, Find the value o	of X	/3.		
	α)	0	b)	6	c)	3	d)	None of the above
27.	Fin	d the value of		Log (X - 13) + 3 Lo	og2	= Log(3X + 1).		
	α)	21	b)	22	c)	20	d)	24
28.				the value of log (0.				
	α)	2.702	b)	- 0.0552	c)	2.2402	d)	- 2.689

J.K. SHAH C L A S S E S a Veranda Enterprise CA FOUNDATION - MATHEMATICS 29. $E = \frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)}$. Find the value of (E - 3). b) 1 c) -1 d) None of the above a) 0 30. If $\log \frac{75}{35} + 2\log \frac{7}{5} - \log \frac{105}{x} - \log \frac{13}{25} = 0$ find the value of x. b) 45 a) 13 c) 50 d) 65 Veranda Enterpris 78

	ANSWERS
1.	30 = 6*5. If A = K(K +1) and you find "+" sign in it, answer is always (k + 1). Option A
2.	$8^{x} = 4^{y}$
	3x = 2y
	(3x - 2y) = 0. K ^o = 1; Option D
3.	52 53 5
	$= \log_2 \log_3 \log^2(2)^9$
	= log ₂ log ³ 9
	$= \log_2 \log_3(3)^2$
	$= \log_2 2 = 1$
	(X – 1)! = 0! = 1; Option A
 	
4.	$2\log\frac{4}{3} - \log\frac{x}{10} + \log\frac{63}{160} = 0$
	$2\log\frac{4}{3} - \log\frac{x}{10} + \log\frac{63}{160} = 0$ $2\log\frac{4}{3} + \log\frac{63}{160} = \log\frac{x}{10}$ $\log\left(\frac{4^* 4^* 7^* 3^* 3}{3^* 3^* 4^* 4^* 10}\right) = \log\frac{7}{10} = \log\frac{x}{10}$
	$\frac{3}{(4*4*7*2*2)} = 7$
-	$\log\left(\frac{4*4*7*3*3}{3*3*4*4*10}\right) = \log\frac{7}{10} = \log\frac{x}{10}$
	x = 7; Option C
5.	X = 25 ¹⁰
<u>.</u>	LogX = 10Log25 = 20Log5 = 20(1 - Log2) = 20(1 - 0.30103) = 13.97
-	Characteristics of LogX = 13
	Thus number of digits in X = C + 1 = 13 + 1 = 14; Option C
6.	9 ^{1/3} .9 ^{1/9} .9 ^{1/27} .9 ^{1/81} .
	$= 9^{1/3+1/9+1/27+1/81} = 9^{40/81} = 3^{80/81}$
	Option D
7.	$X = 2^{1/3} = 2^{6/18} = 64^{1/18}$
	$Y = 3^{1/6} = 3^{3/18} = 27^{1/18}$
	$Z = 4^{1/9} = 4^{2/18} = 16^{1/18}$
	X > Y > Z. Option B

J.K. SHAH C L A S S E S a Veranda Enterprise

 av	ceranaa Enterprise
8.	AB = 36. Possible pairs (1, 36) (2, 18) (3, 12) (4, 9) (6, 6)
	C = A - B = 35, 16, 9, 5, 0
	Option C
9.	$X = 3 + \sqrt{8}$
	$X^{-1} = (3 - \sqrt{8})/(9 - 8) = 3 - \sqrt{8}$
	$X + X^{-1} = 6$
	$X^2 + X^{-2} = 36 - 2 = 34$
	$X^4 + X^{-4} = 34^2 - 2 = 1156 - 2 = 1154$
	Option A
10.	$A^{z} = B^{y} = C^{x} = K$
	$K^{2/y} = K^{1/z+1/x}$
	2xz = y(x + z); Option B
	(a+b) 1
11.	$\log\left(\frac{a+b}{7}\right) = \frac{1}{2}(\log a + \log b)$
	$2\log\left(\frac{a+b}{7}\right) = \log(ab)$ $(a+b)^2 = 49ab$ $a^2 + b^2 + 2ab = 49ab; Option B$ $X = \frac{1}{c} \cdot \frac{3\log(1728)}{1}$
	$(a+b)^2 = 49ab$
	a ² + b ² + 2ab = 49ab; Option B
	L d d l l
12.	$X = \frac{1}{6} \cdot \frac{3 \log(1728)}{1}$
	$X = \frac{1}{6} \cdot \frac{3 \log(1728)}{1 + \frac{1}{2} \log(0.36) + \frac{1}{3} \log 8}$ $X = 1 \sqrt{-2 \log(1728)} = 1 \sqrt{0 \log(12)} = 1/2$
	-1 $3\log(1/28)$ - 1 $9\log(2 - 72)$
	$\overline{6} \sqrt[4]{1 + \log(0.6) + \log 2} = \overline{6} \sqrt[4]{\log 12}$
	(2X – 1) = 0. Option C
13.	$x = \frac{6ab}{a+b}; \frac{x}{3a} = \frac{2b}{a+b}; \frac{x+3a}{x-3a} = \frac{a+3b}{b-a}$
	$x = \frac{6ab}{a+b}; \frac{x}{3b} = \frac{2a}{a+b}; \frac{x+3b}{x-3b} = \frac{3a+b}{a-b}$
	$\frac{x+3a}{x-3a} + \frac{x+3b}{x-3b} = \frac{a+3b}{b-a} + \frac{3a+b}{a-b} = \frac{-a-3b+3a+b}{(a-b)} = \frac{2a-2b}{a-b} = 2$
	x-3a $x-3b$ $b-a$ $a-b$ $(a-b)$ $a-b$
	Option C
14.	$3\sqrt{2} + 7\sqrt{8} + \sqrt{27} + 5\sqrt{3} = 3\sqrt{2} + 14\sqrt{2} + 3\sqrt{3} + 5\sqrt{3} = 17\sqrt{2} + 8\sqrt{3}$
	Option B

J.K. SHAH C L A S S E S a Veranda Enterprise

a 🗸	dranda Enterprise
15.	$\sqrt{x+4} + \sqrt{x-10}$ 5
	$\frac{1}{\sqrt{x+4}-\sqrt{x-10}} = \frac{1}{2}$
	$\frac{2\sqrt{x+4}}{2\sqrt{x-10}} = \frac{5+2}{5-2} = \frac{7}{3}$
	$\frac{x+4}{x-10} = \frac{49}{9}; \frac{2x-6}{14} = \frac{58}{40}; \frac{x-3}{7} = \frac{29}{20}$
	20x - 60 = 203; x = 263/20. Option C
16.	$a:b=3:-1$ find $\frac{ab}{a+b}$
	$a \& b = \frac{ab}{(a+b)}, \text{ find } 3 \& (\& -1)$
	$a \propto b - \frac{1}{(a+b)}$, mu s $\propto (\alpha - 1)$
	$3 \& -1 = \frac{3(-1)}{3-1} = \frac{-3}{2}$
	Then, $3 \& (3 \& -1) = \frac{(3)\left(\frac{-3}{2}\right)}{3 - \left(\frac{3}{2}\right)} = \frac{\frac{-9}{2}}{\frac{3}{2}} = -3$
17.	$\log \frac{12}{13} - \log \frac{7}{25} + \log \frac{91}{3} = \log \left(\frac{2 \cdot 2 \cdot 3}{13} \times \frac{5 \cdot 5}{7} \times \frac{13 \cdot 7}{3} \right) = \log 100$
11.	13 25 3 (13 / 3) x = log100 = 2. Option C
10	$\frac{1}{1+\frac{1}{x}} = \frac{x}{x+1} = x(x+1)^{-1}$ Option C
10.	$1 + \frac{1}{x}$
	Option C
	$a^3 - b^3 = 13 - 2a^3 = 27 - a^3 = 27 - a^$
19.	$\frac{a^{3}-b^{3}}{a^{3}+b^{3}} = \frac{13}{14}; \frac{2a^{3}}{-2b^{3}} = \frac{27}{-1}; \frac{a^{3}}{b^{3}} = \frac{27}{1}; \frac{a}{b} = \frac{3}{1}; \frac{a+b}{a-b} = \frac{4}{2} = 2$
	Option B
20.	$x + x^{-1} = 3$
	$x^2 + x^{-2} = 9 - 2 = 7$
	$x^3 + x^{-3} = (3)(7-1) = 18$
	$x^{6} + x^{-6} = 18^{2} - 2 = 324 - 2 = 322$. Option D
21.	$2 + \sqrt{3} = 2 + 1.732 = 3.732$
	$\sqrt{5} + \sqrt{2} = 2.23 + 1.41 = 3.64$
	Option C

J.K. SHAH

CL	CA FOUNDATION - MATHEMATICS
	$\frac{(y-1)(y-2)(y^2-9y+14)}{(y-7)(y^2-3y+2)} = \frac{(y-1)(y-2)(y-7)}{(y-7)(y-2)(y-1)} = (y-2)$
22.	$(y-7)(y^2-3y+2)$ $(y-7)(y-2)(y-1)$ $(y-2)(y-1)$
	Option C
23.	(x + y) = 8/2 = 4; xy = 1
	$\frac{x^{2} + xy + y^{2}}{x^{2} - xy + y^{2}} = \frac{(x + y)^{2} - xy}{(x + y)^{2} - 3xy} = \frac{16 - 1}{16 - 3} = \frac{15}{13}$
	$x^{2} - xy + y^{2}$ $(x + y)^{2} - 3xy$ 16-3 13
	Option B
24.	$\frac{1}{\sqrt{11-2\sqrt{30}}} - \frac{3}{\sqrt{7-2\sqrt{10}}} - \frac{4}{\sqrt{8+4\sqrt{3}}}$
	$=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}-\frac{4}{\sqrt{6}+\sqrt{2}}$
	$\sqrt{6} + \sqrt{5} = 3(\sqrt{5} +)\sqrt{2} = 4()\sqrt{6} - \sqrt{2}$
	$=\frac{\sqrt{6}+\sqrt{5}}{6-5}-\frac{3(\sqrt{5}+)\sqrt{2}}{(5-2)}-\frac{4(\sqrt{6}-\sqrt{2})}{(6-2)}$
	$=\sqrt{6} + \sqrt{5} - \sqrt{2} - \sqrt{6} + \sqrt{2} = 0$
	Option D
25.	X = Log(5*5*5*16/2) = Log(1000) = 3
	X = Log(5*5*5*16/2) = Log(1000) = 3 (X + 3) = 3 + 3 = 6. Option B LogX = Log(1.5*12) = Log18. X = 18, X/3 = 18/3 = 6. Option B
26.	LogX = Log(1.5*12) = Log18.
	X = 18. X/3 = 18/3 = 6. Option B
27.	(X - 13).8 = (3X + 1)
	8X - 104 = 3x + 1; 5X = 105; X = 21. Option A
	$()^{2} ()^{2/3}$
28.	$\log\left(\frac{81}{100}\right)^2 * \log\left(\frac{27}{10}\right)^{2/3} \div \log 9$
	$= (8\log 3 - 4)(2\log 3 - 2/3) * (1/2\log 3)$
	= (3.8168 - 4) (0.9542 - 0.6667)(1/0.9542) = (- 0.1832)(0.2875)/(0.9542) = - 0.0552
	Option B
	1 1 $\log xy + \log yz + \log zx + \frac{1}{2}$
29.	$E = \frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)} = \frac{\log xy}{\log xyz} + \frac{\log yz}{\log xyz} + \frac{\log zx}{\log xyz} = \log_{xyz}(xyz)^2 = 2$
	(E - 3) = (2 - 3) = -1
	Option C

J.K. SHAH C L A S S E S a Veranda Enterprise CA FOUNDATION - MATHEMATICS 30. $\log \frac{75}{35} + 2\log \frac{7}{5} - \log \frac{105}{x} - \log \frac{13}{25} = 0$ $\log\left(\frac{75*49*25}{35*25*13}\right) = \log\frac{105}{13} = \log\frac{105}{x}$ x = 13 Option A Veranda Enterprist 83

EQUATIONS

THEORY Equations An equation is defined as a mathematical statement of equality. **Types of Equations** a) Linear equation in one variable. b) Linear simultaneous equations in 2 or 3 variables. Quadratic equations. **c**) d) Cubic equations. **Bi-quadratic equations.** e) **f**) **Exponential equations. Quadratic Equations** A quadratic equation is defined as polynomial equation of degree 2. • A quadratic equation can be expressed in the following general form: • $ax^{2} + bx + c = 0; (a \neq 0)$ A quadratic equation can also be expressed in the factor form as follows: • $a(x-\alpha)(x-\beta) = 0$ Here, α and β are the roots or solutions of quadratic equations. The general solution of the quadratic equation can be obtained as follows: • $\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ Sum of roots = $\alpha + \beta = -\frac{b}{\alpha}$ Product of roots = $\alpha\beta = \frac{c}{\alpha}$ **Structure of Quadratic Equations** If Sum (S) ($\alpha + \beta$) and Product (P) ($\alpha\beta$) of the roots are known, then the quadratic equation is $x^{2} - Sx + P = 0$

a Veranda Enterprise

Sign of Roots of a Quadratic Equation

- When c=0, one root of the equation must be 0.
- When b and c are 0, then both the roots must be 0. •
- If a, b, c all are of same sign, both roots are negative. •
- If a and c are of same sign, opposite to that of b, then both the roots will be positive. •
- If a and c are of opposite signs, one root is positive and another root is negative.

Nature of Roots

The expression " $b^2 - 4ac$ " is called the "Discriminant (D)" of the quadratic equation.

- When D > 0, Roots are real and distinct. •
- When D = 0, Roots are real and equal. •
- When D < 0, Roots are imaginary.
- When $D \ge 0$, Roots are real.
- When D is a perfect square, Roots are real, rational and unequal.
- When D is not a perfect square, Roots are real, irrational and unequal.
- If roots are equal use $b^2 = 4ac$. •
- If roots are reciprocal of each other, use a = c•
- If roots are equal but of opposite sign, use b = 0•
- If roots are reciprocal but opposite in sign, use c = -a

Note

Haranda Irrational roots will always appear in conjugate pairs. •

$$\alpha = (a - \sqrt{b})$$
 and $\beta = (a + \sqrt{b})$

Imaginary roots will always appear in conjugate pairs •)

$$\alpha = (a - ib)$$
 and $\beta = (a + ib)$

Cubic Equations

A cubic equation is a polynomial equation of degree 3, and the general form is • represented as follows:

$$ax^{3} + bx^{2} + cx + d = 0; (a \neq 0)$$

The factor form of a cubic equation is given as follows: •

$$a(x-\alpha)(x-\beta)(x-\gamma) = 0$$

Here, α , β , and γ are the roots or solutions of the cubic equation.

- Sum of roots = $\alpha + \beta + \gamma = -b/\alpha$
- **Product of the roots =** $\alpha\beta\gamma$ = -d/a

Bi-Quadratic Equations

• A bi-quadratic equation is a polynomial of degree 4, and the general form is represented as follows:

$$ax^4 + bx^3 + cx^2 + dx + e = 0; (a \neq 0)$$

• The factor form of a cubic equation is given as follows:

$$(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) = 0$$

Ada Enterprise

Here, α , β , γ and δ are the roots or solutions of the bi-quadratic equation.

- Sum of roots = $\alpha + \beta + \gamma + \delta$ = -b/a
- **Product of the roots** = $\alpha\beta\gamma\delta$ = e/a

CLASSWORK

Cho	Choose the most appropriate option (a), (b), (c) or (d).						
1.	The sum of two numbers is 52 and their difference is 2. The numbers are						
	α)	17 and 15	b)	12 and 10			
	c)	27 and 25	d)	none of these			
2.	The	diagonal of a rec	tangle is 5	cm and one of	its sides is	4 cm. Its area is	
	α)	20 sq.cm.	b)	12 sq.cm.			
	c)	10 sq.cm.	d)	none of these			
					B		
3.	Divi	de 56 into two pa	rts such th	at three times t	he first part	exceeds one third of	the
	seco	ond by 48. The pa	rts are.			¢	
	a)	(20, 36)	b)	(25, 31)	79		
	c)	(24, 32)	d)	none of these	V.ce		
				79	roris		
4.	The	sum of the digits	of a two	digit number is	10. lf 18 b	e subtracted from it	the
	digi	ts in the resulting	number w	ill be <mark>equal.</mark> The	e number is		
	α)	37	b) 73	(OII)			
	c)	75	d) n	one of these nur	mbers.		
5.	The	fourth part of a r	umber exe	ceeds the sixth p	part by 4. T	ne number is	
	a)	84	b) 44	4			
	c) 48	8	d) no	one of these			
6.	Ten	years ago, the ag	je of a fat	her was four tir	nes of his s	on. Ten years hence,	the
	age	of the father will	be twice	that of his son.	The presen	t ages of the father o	and
	the	son are.					
	α)	(50, 20)	b) (6	0, 20)			
	c)	(55, 25)	d) no	one of these			
7.	The	product of two n	umbers is	3200 and the o	quotient wł	en the larger numbe	r is
	divi	ded by the smalle	r is 2. The	numbers are			
	a) (1	16, 200)	b) (160,	20) c) (60, 30)	d) (80, 40)	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	al	a Veranda Enterprise					
	8.	One student is ask	ked to divide a hal	f of a number by	6 and other half by 4 and	then	
		to add the two quantities. Instead of doing so the student divides the given number					
		by 5. If the answer is 4 short of the correct answer then the number was					
		a) 320	b) 400	c) 480	d) none of these.		
	9.	If a number of wh	nich the half is gre	ater than 1/5 th	n of the number by 15 the	n the	
		number is					
		a) 50	b) 40	c) 80	d) none of these.		
	10.	Monthly incomes	of two persons ar	e in the ratio 4	: 5 and their monthly expe	enses	
		are in the ratio 7 :	: 9. If each saves ₹	50 per month f	ind their monthly incomes.		
		a) (500, 400)	b) (400, 500)	c) (300, 600)	d) (350, 550)		
					®		
	11.	The age of a perso	on is twice the sun	n of the ages of	his two sons and five years	s ago	
			the sum of their o				
		a) 60 years	b) 52 years	c) 51 years	d) 50 years		
			Ċ				
	12.	A number betwee	n 10 and 100 is fiv	ve times the sum	of its digits. If 9 be added	l to it	
		the digits are reve					
		a) 54	b) 53	c) 45	d) 55		
			V.J.d	70			
	13.	The wages of 8 m	en and 6 boys am	ount to ₹ 33. If	4 men earn ₹ 4.50 more th	nan 5	
		boys determine th	e wages of each n	nan and boy.			
		a) (₹ 1.50 <i>,</i> ₹ 3)	b) (₹ 3 <i>,</i> ₹ 1.50)	c) (₹ 2.50 <i>,</i> ₹	2) d) (₹ 2, ₹ 2.50)		
	14.	y is older than x b	y 7 years 15 years	s back, x's age w	as 3/4 of y's age. Their pre	esent	
		ages are:					
		a) (x=36, y=43)	b) (x=50)	, y=43)			
		c) (x=43, y=50)	d) (x=40	, y=47)			
	15.	The sum of the d	igits in a three di	git number is 12	2. If the digits are reversed	d the	
		number is increas	ed by 495 but reve	ersing only of th	e ten's and unit digits incre	eases	
		the number by 36	.The number is				
		a) 327	b) 372	c) 237	d) 273		
_							
_							

J.K. SHAH[®] C.L.A.S.S.E.S a Veranda Enterprise

a 🖌	Veranda Enterprise					
16.	The demand and supply equations for a certain commodity are 4q + 7p = 17 and					
	$p = \frac{q}{1} + \frac{7}{2}$ respectively where p is the market price and q is the quantity then the					
	³ ⁴ equilibrium price and quantity are:					
	3	1	3			
	(a) 2, 4	(b) $3, \frac{1}{2}$	(c) 5, $\frac{5}{5}$	(d) None of these.		
	Т	L	5			
17.	The sum of two	numbers is 8 and th	ne sum of their squ	ares is 34. Taking one nur	mber	
	as x form an eq	uation in x and hen	ce find the numbe	rs. The numbers are		
	a) (7, 10)	b) (4, 4)	c) (3, 5)	d) (2,6)		
18.	Five times of a p	oositive whole numb	per is 3 less than ty	wice the square of the num	nber.	
	The number is					
	a) 3	b) 4	c) -3	📀 d) 2		
19.	Two squares ha	ve sides p cm and ((p + 5) cms. The s	um of their squares is 62!	5 sq.	
	cm. The sides of	f the squares are		9		
	a) (10 cm, 30 c		(12 cm, 25 cm)	· · · · ·		
	c) 15 cm, 20 cm	n) d)	none of these	(150		
			9 Enterr			
20.	Divide 50 into ty	wo parts such that t	he sum of their re	ciprocals is 1/12. The num	ibers	
	are	, dia	(10			
	a) (24, 26)	b) (28, 22)	c) (27,	23) d) (20, 30)		
		_				
21.	There are two a	consecutive number	s such that the di	fference of their reciproco	ıls is	
	1/240.The numb	oers are				
	a) (15, 16)	b) (17, 18)	c) (13, 1	14) d) (12, 13)		
22.	The sum of two	numbers is 45 and	the mean proport	ional between them is 18.	. The	
	numbers are					
	a) (15, 30)	b) (32,13)	c) (36, 9)	d) (25, 20)		
23.	The sides of an	equilateral triangle	are shortened by	12 units 13 units and 14 u	units	
	respectively and	l a right angle triang	gle is formed. The	side of the equilateral tria	ngle	
	is					
	a) 17 units	b) 16 units	c) 15 units	d) 18 units		

PAST YEAR QUESTIONS

24.	Area and p	perimeter of rect	angle is 6000 cm² a	nd 340 cm length of rectangle is	
	(a) 140	(b) 120	(c) 170	(d) 200	

25. If length of rectangle is 5 cm more than the breadth and if perimeter of rectangle is40 cm, length and breadth of rectangle will be

	<i>i</i> 5	5	
(a)	7.5 cm, 2.5 cm	(b)	10 cm, 5 cm
(c)	12.5 cm, 7.5 cm	(d)	15.5 cm, 10.5 cm

26. Number of students in each section of a school is 36. After admitting 12 new students, four new sections are started. If total number of students in each section now is 30, then number of section initially were

Ada Enterprise Veranda

18

(a) 6	(b) 10	(c) 14	(d)

QUADRATIC EQUATIONS

1.	Equation : x ² + x + 1 = 0 roots are
	(a) Real and equal (b) Real and unequal
	(c) Imaginary (d) Real and rational
2.	For what value of 'c', the roots of the equation $2x^2 - 10x + c = 0$ are real and equal
	(a) 25/2 (b) 25/4 (c) 25/3 (d) none
3.	If '-4' is a root of the equation $x^2 + ax - 4 = 0$ and the equation $x^2 + ax + b = 0$ has
	equal roots, the value of 'a' & 'b' are
	(a) $a = 2, b = \frac{5}{4}$ (b) $a = 3, b = \frac{9}{4}$
	(c) $a = , b = \frac{5}{2}$ (d) none
4.	If the roots of equation $x^2 + (2k - 1)x + k^2 = 0$ are real, condition is
	$(a) k \ge 1 \qquad (b) k \le 4$
	(a) $k \ge 1$ (b) $k \le 4$ (c) $k \ge \frac{1}{4}$ (d) $k \le \frac{1}{4}$
5.	If the equation $x^2 - (b + 4)x + 2b + 5 = 0$ has equal roots, then the values of 'b'
	(a) -2 (b) 2 (c) ± 2 (d) ± 1
6.	If α and β are roots of $x^2 + 2x + 1 = 0$, $\alpha^3 + \beta^3 =$
	(a) 2 (b) -2 (c) 4 (d) -4
7.	If p + q + r = 0 and p, q, r are rational nos. the roots of equation
	$(q + r - p)x^{2} + (r + p - q)x + (p + q - r) = 0$
	(a) real and irrational (b) real & equal
	(c) imaginary (d) real & rational
8.	If one root of the equation $x^2 - 8x + k = 0$ exceeds the other by 4, value of k is
	(a) k = 10 (b) k = 11 (c) k = 9 (d) k = 12
9.	If one root is double the other for the equation $ax^2 + bx + c = 0$, then
	(a) $b^2 = 4ac$ (b) $2b^2 = 9ac$ (c) $3b^2 = 10ac$ (d) $4b^2 = 9ac$

J.K. SHAH CLASSES a Veranda Enterprise

ak	dranda Enterprise
10.	If roots of the equation $ax^2 + bx + c = 0$ are in the ratio $\frac{1}{m}$, then value of b^2/ac is
	(a) $\frac{(l+m)^2}{lm}$ (b) $\frac{l+m}{lm}$ (c) $\left(\frac{l-m}{lm}\right)^2$ (d) $\frac{l-m}{lm}$
	lm lm (lm) lm
11.	If α , β are roots of equation $x^2 - 5x + 6 = 0$, $\alpha > \beta$, then equation with roots
	$\alpha + \beta$, $\alpha - \beta$ as
	(a) $x^2 - 6x + 5 = 0$ (b) $2x^2 - 6x + 5 = 0$
	(c) $2x^2 - 5x + 6 = 0$ (d) $x^2 - 5x + 6 = 0$
12.	The values of 4 + $\frac{1}{4+1}{4+\frac{1}{4}1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4}$
	4+ <u>+</u> <u>+</u> <u>+</u> ∞
	(a) $1 \pm \sqrt{2}$ (b) $2 + \sqrt{5}$ (c) $2 \pm \sqrt{5}$ (d) None of these
	8
13.	If the sum of the roots of the quadratyic equation $ax^2 + bx + c = 0$ is equal to the
	sum of the squares of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is equal to
	a) 2 b) -2 c) 1 d) -1
14.	If p ≠ q and p ² = 5p - 3 and q ² = 5q - 3 the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is
	(a) $x^2 - 19x + 3 = 0$ (b) $3x^2 - 19x - 3 = 0$
	(c) $3x^2 - 19x + 3 = 0$ (d) $3x^2 + 19x + 3 = 0$
	, diana
15.	If one root of $5x^2 + 13x + p = 0$ be reciprocal of the other then the value of p is
	a) -5 b) 5 c) 1/5 d) -1/5
	92

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

_						
			PAST	YEARS QUESTIC	ONS	
			$\sqrt{1-x}$	1		
	1.	On solving	$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{x}{x}} = 2$	$rac{1}{6}$, we get one value	of x as:	
		4	1	$\frac{2}{1}$	3	
		(a) 13	(b) 13	(c) 13	(d) 13	
			··· · · · · · · · · · · · · · · · · ·	<u> </u>		0
	2.				ation : $x^2 + kx + 64 =$	U ana
_			• 0 will have real r			
		(a) 12	(b) 16	(c) 18	(d) 22	
	2	If one reat a	f an oquation is a	E than the aver	tratic equation is	
	3.		F an equation is 3 + 4 = 0 (b)	$+\sqrt{5}$, then the quad		
		• •	4 = 0 (b)		8	
		(C) X ⁻ + 0X +	-4 = 0 (u)	$x^{-} - 6x - 4 = 0$		
	1		a weat of a month		a - O then find unline if	and a
_	4.				q = 0 then find value of p	ana q
_		(a) (4, -1)	(D) (4, 1)	(c) (-4, 1)	(a) (2, 3)	
_		On root of t			01.	r Find
_	5.	the value of		(5 + m)x + 3(1 + m) =	0 is reciprocal of the othe	er. Find
_		(a) <u>-64</u>	(b) 7	(c) 1/7	(d) $\frac{-20}{2}$	
_		(u) <u>-</u> 7			(u) 3	
_	6.	If one root o	$\frac{1}{2}$	- 3x + k = 0 is 2 then	value of k will be	
_	0.	(a) -10	(b) 0	(c) 2	(d) 10	
					(0) 10	
_	7.	If roots of e	auation $x^2 + x + r =$	= 0 are α and β and α	$x^3 + \beta^3 = -6$. Find value of r	•
_			7			
-		<u>5</u> (a) 3	(b) 3	(c) <u>4</u>	(d) 1	
-		. , .	, -	, -	. ,	
_	8.	If one root o	of the equation px	² + qx + r = 0 is r the	n other root of the equation	on will
-		be				
_		(a) 1/q	(b) 1/r	(c) 1/p	(d) <u>1</u>	
_		<u> </u>			p + q	
_	9.	If the ratio o	of the root of the e	equation 4x ² – 6x + p	= 0 is 1 : 2 then the value	of p is
-		(a) 1	(b) 2	(c) -2	(d) -1	
_						
_						

10.	lf p	and q	are the root of equation	$x^2 - bx + c = 0$	then what is the equa	tion whose
	root	s are (pq + p + q) and (pq – p -	- q)		
	(a)	x² - 2	$cx + c^2 - b^2 = 0$	(b) x ² - 2c	$x + c^2 + b^2 = 0$	
	(c)	cx ² –	$2(a + c)x + c^2 = 0$	(d) x ² + 2b	$x - (c^2 - b^2) = 0$	
						2 02
11.	lfα,	β are t	he roots of the quadration	c equation 2x ² -	4x = 1 then the value	of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$
		-11	(b) 22	(c) -22	(d) 11	βŭ
12.	If di	fferenc	e between the roots of t	he equation x ² -	- kx + 8 = 0 is 4 then t	he value of
	k is					
	(a)	0	(b) ±4	(c) ±8√3	(d) ±4√3	3
					/9	
				79	orise	
				Sente		
				40 E.		
			110	100		
			- O Ver	S Enter		
			<u>0</u> .			

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

Hiller

CUBIC EQUATION

Cho	ose tł	he <mark>most ap</mark> p	oropriate op	otion (a),	(b), (c) or (d)		
1.	The	solution o	f the cubic	equation	1 x ³ -6x ² +1	1x-6=0 is	given by the triplet:	
	a) -	-1, 1 -2	b) 1,	2,3	c) –	2, 2, 3	d) 0, 4, -5	
2.	The	cubic equo	ation x ³ +2x	$x^{2} - x - 2 = 0$	has 3 roo	ts namely.		
	α)	1, -1, 2	b) -	1, 1, -2	c) –	1, 2, -2	d) 1, 2, 2	
3.	x,x-	4,x+5 are 1	the factors	of the le	eft-hand s	ide of the	equation.	
	α)	$x^{3} + 2x^{2} - x$	-2=0		b)	x ³ +x ² -20	0=x0	
	c)	x ³ -3x ² -4x	x+12=0		d)	x ³ -6x ² +2	11x-6=0	
4.	The	equation 3	$3x^{3} + 5x^{2} = 3x^{3}$	x+5 has g	jot 3 roots	and hence	e the factors of the le	eft-hand
	side	e of the equ	lation 3x ³ +	5x ² -3x-	5=0 are		9	
	α)	x-1,x-2,x	:-5/3		b)	x-1,x+1	, 3x +5	
	c)	x+1,x-1,3	8x-5		d)	x-1,x+1	,x-2	
				<u>></u>	19	nteri		
5.	The	roots of th	ne equation	n x ³ +7x ² -	21x-27=0	are		
	a) (-	-3,-9,-1)	b) (3	,-9,-1)	d) (3	3,9,1)	e) (-3,9,1)	
				aver				
6.	lf 4>	x ³ +8x ² -x-2	=0 than vo	alue of (2	x+3)is give	en by		
	a) 4	, -1, 2	b) -	4, 2, 1	c) 2	-4, -1	d) None of these	5
7.	The	rational ra	pot of the	equation	$2x^3 - x^2 - 4x$	+2=0 is		
		1						
	a)	$\frac{1}{2}$	b)	$-\frac{1}{2}$		c) 2	d) -2	
			E	BI QUAD	ORATIC E	QUATION		
1.	Solv	ving equati	on 6x ⁴ + 1	$1x^{3} - 9x^{2}$	-11x + 6	= 0 follow	ing roots are obtaine	d
		11	$=\sqrt{37}$		b) $-\frac{1}{2}$, 2,	$-1\pm\sqrt{37}$		
	α)	$\frac{1}{2}$, -2, $\frac{-1\pm}{2}$	6		b) 2, ² ,	6		
		$\frac{1}{2}$, -2, $\frac{5}{6}$, -	7					
	c)	2, 6,	6		d) None			

J.K. SHAH C L A S S E S a Veranda Enterprise

2.	The shall be a second as a	- Culture in a subscription of the		3 . 11.2 0	
		of the equation: 2x			
	a) 1, 2, ½	b) - 1, 2, ½		c) - 2, 1, ½	d) - ½, 1, 2
		CONSIST			1
		CONSISTE		OF EQUATION	N
1.	The system of (equation 5x - 4y =	7 an	$d_{2x} = 2y = 15$ be	
1.	(a) unique sol		(b)	infinite solution	
	(c) no solutio		(d)	none	
			(0)	none	
2.	The system of e	equation 9x - 17y	= 34	and 36x - 68y =	115 have
	(a) unique So	lution	(b)	infinite Solution	
	(c) no solutio	n	(d)	none	
					2)
3.	The system of e	equation 6x + 5y =	11 a	nd 9x + (15/2)y =	21 have
	(a) unique So	lution	(b)	infinite Solution	
	(c) no solutio	n	(d)	none	9
			2		0
4.	The system of e	equation 4x + 7y =	10 a	nd 10x + (35/2)y	= 25 have
	(a) unique sol	lution	(b)	infinite solution	
	(c) no solutio	n	(d)	none	
			3//		
5.	The value of k f	for which the system	m of o	equations: 7x - y	=5; 21x - 3y =k have infinite
	solution is:				
	(a) k = 4	(b) k = 15		(c) k =3	(d) k=7
6.					g system of linear equations
	nas consistent	INTINITO MONU COLUT	lions:	2x - (a - 4)y = 2b	+ 1 and $4x - (a-1)y = 5b - 1$
				/I_\ ¬	
	(a) $a = -7, b =$ (c) $a = -7, b =$	=3		(b) a = 7, (d) None	, b =3

Children of

EQUATION HOMEWORK

_							
			. 2) /				
1.		the equation (p				C + 1	
	(a) 6	(b) 7		(c) 5	(d) none	of these	
2.	The equation $\frac{1}{2}$	$\frac{2x+1}{4} = \frac{15x-1}{5} + \frac{2x-3}{3x-3}$	is	true for			
		x = 2 (c) $x = 5$					
3.	Solve for x and	$y: \frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} +$	$\frac{3}{10}$ and	d 3xy= 10 (y-x)			
		(b) (-2,-5)			(d) (2,5)		
					B		
4.	The simultaned	ous equations 7x	-3y =	31, 9x-5y = 41	have solutions	given by	
	(a) (-4, -1)	(b) (-1, 4)		(c) (4, -1)	(d) (3, 7	7)	
					9		
5.	$\frac{xy}{x+y} = 20, \frac{yz}{y+z} =$		6				
	(a) (120, 60,	30)	(b)	(60, 30, 120)	(150		
	(c) (30, 120,			(30, 60, 120)			
				90			
6.	$\frac{xy}{y-x} = 110, \frac{yz}{z-y}$	$=132, \frac{zx}{z+x} = 60/1$	10				
	(a) (12,11,1			(10, 11, 12)			
	(c) (11, 10, 1	2)	(d)	(12, 10, 11)			
7.	If the roots of t	the equation 2x ²	+ 8x -	m ³ = 0 are equ	al then value c	of m is	
	(a) - 3	(b) – 1		(c) 1	(d) – 2		
8.	If 2 ^{2×+3} - 3 ² . 2 [×]	+ 1 = 0 then valu	ues of	x are			
	(a) 0, 1	(b) 1,2		(c) 0, 3	(d) 0, ·	- 3	
9.	A solution of t	ne quadratic equ	ation ((a+b-2c)x2 + (2c	a-b-c)x + (c+a-	-2b) = 0 is	
	a) x = 1	b) x = -1		c) x = 2	d) x = -	2	
10.	If the root of th	e equation x2-8×	(+m =() exceeds the ot	her by 4 then tl	he value of m	ı is
	a) m = 10	b) m = 11		c) m = 9	d)	m = 12	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	dranda Enterprise				
11.	The values of x in	the	equation		
	$7(x+2p)^2 + 5p^2 = 3$	35xp	+ 117p² are		
	(a) (4p, -3p)	(b)	(4p, 3p)	(c)(-4p, 3p)	(d) (-4p, -3p)
			(a)	(411)	
12.	The solutions of t (a) (2, 3)	he eo	quation $\frac{6x}{x+1} + \frac{60}{x}$	$\frac{x+1}{x} = 13$ are	
	(a) (2, 3)	(b)	(3, -2)	(c) (-2, -3)	(d) (2, -3)
 13.	The satisfying val	ues c	of x for the equation	$\underline{\operatorname{on}}_{x+p+q} = \frac{1}{x} + \frac{1}{p}$	$+\frac{1}{q}$ are
 	a) (p, q)	b)	(-p, -q)	c) (p, –p)	d) (-p, q)
14.	The values of x fo	or the	equation x ² + 9x -	+ 18 = 6 – 4x are	
 	a) (1, 12)	b)	(-1, -12)	c) (1, -12)	d) (-1, 12)
				®	
15.	The values of x so				
	$\sqrt{(2x^2+5x-2)} - \frac{1}{2}$				
 	(a) (2, -9/2)	(b)	(4, -9)	(c) (2, 9/2)	(d) (-2, 9/2)
 			6	E ise	
 16.	The solution of th	ie eq	uation $3x^2 - 17x + 2$	4 = 0 are	(2)
 	(a) (2,3)	(b)	$(2,2\frac{2}{3})$	(c) $\left(3, 2\frac{2}{3}\right)$	(d) $(3, \frac{2}{3})$
 	The solution of the (a) (2,3) The equation $\frac{3(3x)}{a}$ a) (1, 1)	$(^{2}+15)$		x ² +96	
 17.	The equation	6	$x^2 + 2x^2 + 9 = -$	$\frac{1}{7}$ + 6 has got t	the solution as
 	a) (1, 1)	b)	(1/2, -1)	c) (1, -1)	d) (2, -1)
 18.	Solving equation				
 	(a) a, b	(b)	a	(c) b	(d) None
10	Solving equation	v ² - '	2/12 + 125 - 0 arc	value(s) of x	
 19.			9, 15		(d) None
 		(0)	J, 1J	(C) 13, 0	
20	$If \frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$	th≏	roots of the equat	ion are	
20.				(c) a ² , b ² /a	(d) a, b ²
		(0)	~ , 010		
21.	Solving equation	3x ² -	14x+16 = 0 we get	roots as	
	(a) <u>+</u> 1		2 and $\frac{8}{3}$	(c) 0	(d) None
	. , _	, /	3		· / · · ·

J.	K.SH	AH ES					JNDATION -	- MATHEMATI	CS
	⁄dranda Ente								
22.	Solving	equation	3x ² -	14x + 8 = 0 we g					
	(a) ±4		(b)	± 2	(c) $4, \frac{2}{3}$		(d) None		
23.	Solving	equation	(b-c)	x ² + (c-a) x + (a-	b) = 0 follov	wing roo	ots are obt	ained	
	(a) $\frac{a-b}{b-c}$,	1	(b)	(a-b) (c-a),1	(c) $\frac{b-c}{a-b}$, 1		(d) None		
24.	Solving	equation	$7\sqrt{\frac{x}{1-x}}$	$\frac{1-x}{x} = 15$ foll	lowing root	s are ob	tained		
			VI X	V A					
	(a) $\frac{64}{113}, \frac{1}{2}$	<u></u>	(b)	$\frac{1}{50}, \frac{1}{65}$	(c) $\frac{49}{50}, \frac{1}{65}$		(d) $\frac{1}{50}, \frac{64}{65}$		
	115 2			50 05	50 05		50 05		
 25.	If α, β are	e the root	s of e	equation x ² -5x+6=	=0 and α >	β then t	he equatio	on with root	s (
	$(\alpha\beta + \alpha -$	$+\beta$) and ($\alpha\beta - \delta$	$(\alpha - \beta)$ is			· ·		
	(a) x ² - 2	12x+11=0)		(b) 2x ² - 6	6x+12=0)		
	(c) x ² - 2	12x+12=0)		(d) None				
 							, ,		
 26.	Solvina	x ³ +9x ² -x	-9=0	we get the follow	vina roots	19)		
		-9			(c) ±1, 9		(d) None		
	(-	(/		6	rise	(d) None		
 27.	Solve x ³	-7x ² +14x	<-8=0	given that the ro	ots are in a	leometri	cal progre	ession	
 	(a) ½, 1			1, 2, 4					
 	(0) 72, 1	., L		1, 2, 4		,	(0, 1, 2,	T	
28.	Solve x ³	$-6x^{2}+5x+$	-12=0	given that the pr	roduct of th	e two ro	ots is 12		
 20.	(a) 1, 3,			-1, 3, 4	(c) 1, 6, 2		(d) 1, -(6 - 2	
 	(u) 1, 3,	, 4	(D)	-1, 5, 4	(C) 1, 0, 2		(u) 1, -(0, -2	
				00					

Children of the second

HOMEWORK SOLUTIONS

1.	The solution of the equation $(p + 2) (p - 3) + (p + 3)(p - 4) = p(2p - 5) = ?$
	(p + 2)(p - 3) + (p + 3)(p - 4) = p(2p - 5)
	$\Rightarrow (p^2 + 2p - 3p - 6) + (p^2 + 3p - 4p - 12) = 2p^2 - 5p$
	$\Rightarrow 2p^2 - 2p - 18 = 2p^2 - 5p$
	\Rightarrow 5p - 2p = 18
	\Rightarrow 3p = 18 \Rightarrow p = 6
2.	The equation $\frac{12x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is true for?
	$\Rightarrow \frac{12x}{4} + \frac{1}{4} = \frac{15x}{5} - \frac{1}{5} + \frac{2x - 5}{3x - 1}$
	$4 \ 4 \ 5 \ 5 \ 3x - 1$
	$\Rightarrow 3x + \frac{1}{4} = 3x - \frac{1}{5} + \frac{2x - 5}{3x - 1}$
	$-3x^{+}4^{-}5^{+}3x^{-}1$
	$\Rightarrow \frac{1}{4} + \frac{1}{5} = \frac{2x - 5}{3x - 1}$
	4 5 3x - 1
	$ \Rightarrow \frac{9}{20} = \frac{2x-5}{3x-1} $
	20 3x - 1
	Now, if x = 7, $\frac{9}{20} = \frac{2(7) - 5}{3(7) - 1} = \frac{14 - 5}{21 - 1} = \frac{9}{20}$
	$\frac{1}{20} = \frac{1}{3(7) - 1} = \frac{1}{21 - 1} = \frac{1}{20}$
3.	(d)
4.	(c)
5.	$\frac{xy}{x+y} = 20$; $\frac{yz}{y+z} = 40$; $\frac{zx}{z+x} = 24$
	x + y y + z z + x
 	Here, $(x > y > z)$: We pick option (d) 30, 60, 120
	$\frac{\text{also check, }}{30+60} = \frac{180}{90} = 20$
	30 + 60 90

	a	Veranaa Enterprise	
		$\frac{\text{(Ascending order)}}{60 + 120} = \frac{7200}{180} = 40$)
		$\frac{1}{60+120} = \frac{1}{180} = 40$	
_			
	6.	$\frac{xy}{y-x} = 110 \ ; \ \frac{yz}{z-y} = 132 \ ; \ \frac{zx}{z+x} = \frac{60}{11} \ x$	< V < Z
		$y - x$ $z - y$ $z - y$ $\frac{z - x}{z - 102}$	· , _
		(Ascending order) : 10, 11, 12	
		(40)/44) (44)/49)	
		also, $\frac{(10)(11)}{11-10} = 110$; $\frac{(11)(12)}{12-11} = 132$	
	7.	If the roots of the equation $2x^2 + 8x - m^2$	³ = 0 are equal, then value of m is:
		When the roots are equal b ² = 4ac	8
		Here, a = 2; b = 8; c = - m ³	
		$\therefore 64 = (4) (2) (-m^3)$	
		$\rightarrow \frac{64}{8} = -m^3$	
		8	9.00
		∴ m = –2	Supris
		$\Rightarrow -8 = -m^3$	Enteri
		m=-2	3
		∴ m = -2 $⇒ -8 = -m^{3}$ m = -2 If $2^{2x+3} - 3^{2} . x + 1 = 0 ; x = ?$ M-I $2^{2x} . 2^{3} - 3^{2} . 2^{x} + 1 = 0$	
	8.	If $2^{2x+3} - 3^2 \cdot x + 1 = 0$; x = ?	
		M–I	
			Let 2 ^x = t
		$\Rightarrow 8x^{2x} - 9 \cdot 2^x + 1 = 0$	Now, $2^{x} = \frac{1}{8} = \frac{1}{2^{3}}$
			-
		$\Rightarrow 8t^2 - 9t + 1 = 0$	$2^{x} = 2^{-3}$
		$\Rightarrow \underline{8t^2 - 8t^2 - 1t + 1} = 0$	∴ x = -3
		$\Rightarrow 8t(t-1) - 1(t-1) = 0$	$2^{x} = 1 = 2^{\circ}$
		\Rightarrow t = $\frac{1}{8}$; t = 1	
		8, 1	∴ x = 0

	M–II
	Plug in option (d) (0, -3)
	Put x = 0, $2^{0+3} - 3^2 \cdot 2^0 + 1$
	= 8 - 9 + 1 = 0
	$x = -3 \ 2^{-6+3} - 3^2 \ . \ 2^{-3} + 1$
	1 9
	$\Rightarrow \frac{1}{8} - \frac{9}{8} + 1$
	- 1 + 1 = 0
9.	(b)
10.	(d) $\alpha + \beta = 8, \alpha - \beta = 4$
	$2\alpha = 12, \alpha = 6, \beta = 2$
	$m = \alpha\beta = 12$
	02/9
11.	(a)e
	(a) (d) (b)
12.	(d) Senter
	da -
13.	(b)
14.	(b) Equation $x^2 + 13x + 12 = 0$
	$\alpha\beta = 12, \alpha + \beta = -13$
15.	(a)
16.	(c) $\alpha\beta = 8, \alpha + \beta = 17$
17.	(C)
	() $() $ $() $ $() $ $()$
18.	(a) $\alpha + \beta = a + b, \alpha\beta = ab$
	u = u + 0 = 0.4 $u = 0.25$
19.	(b) $\alpha + \beta = 24, \ \alpha\beta = 135$
20.	(a)

21. (b)
$$\alpha + \beta = \frac{14}{3}, \alpha\beta = \frac{16}{3},$$

22. (c) $\alpha + \beta = \frac{14}{3}, \alpha\beta = \frac{n}{3}$
23. (a) Since, '1' is the roots in all 3 options
Let $\beta = 1$. We know that, $\alpha\beta = \frac{C}{a}$
(α)(1) $= \frac{a-b}{b-c}$.. the other tool
 $\alpha = \frac{a-b}{b-c}$ \odot
24. (a) $7\sqrt{\frac{x}{1-x}} + 8\sqrt{\frac{1-x}{x}} = 15$
M-I:
Let, $\sqrt{\frac{x}{1-x}} = k$, then $\sqrt{\frac{1-x}{x}} = \frac{1}{k}$
 $\therefore 7k + \frac{8}{k} = 15 \Rightarrow 57k^2 + 8 = 15k$
 $7k^2 - 15k + 8 = 0$
 $7k^2 - 7k - 8k + 8 = 0$
 $7k(k-1) - 8(k-1) = 0$
 $k = 1; k = \frac{8}{7}$
Now, $\sqrt{\frac{x}{1-x}} = 1; \quad \sqrt{\frac{x}{1-x}} = \frac{8}{7}$
Now, $\sqrt{\frac{x}{1-x}} = 1; \quad \frac{x}{1-x} = \frac{64}{49}$
 $x = 1-x$
 $49x = 64 - 64x$
 $2x = 1 - x = \frac{1}{2}$
 $113x = 64$
 $\frac{64}{113} = x$

25. (a) If α , β are the roots of $x^2 - 5x + 6 = 0$, $\alpha > \beta$ then equation with $(\alpha\beta + \alpha + \beta)$ and
$(\alpha\beta - \alpha - \beta) = ?$
$x^2 - 5x + 6 = 0$, x = 2 and x = 3 [on factorization]
$\therefore \alpha = 3 \text{ and } \beta = 2 [\because \alpha > \beta]$
Now, $(\alpha\beta + \alpha + \beta) = [3 \times 2 + 3 + 2] = [6 + 5] = 11$
and $(\alpha\beta - \alpha - \beta) = [3 \times 2 - 3 - 2] = [6 - 5] = 1$
∴ the equation $(x^2 - 5x + p)$
$\Rightarrow x^2 - 12x + 11 = 0$
26. (a) Solving $x^3 + 9x^2 - x - 9 = 0$ we get; the foll roots.
a 6
Sol. We know that, if $\frac{a}{b} = \frac{c}{d}$, in $ax^3 + bx^2 + cx + d = 0$ then, we factorise,
$\underline{x^3 + 9x^2 - x - 9} = 0$
$\Rightarrow x^{2}(x+9) - 1(x+9) = 0$
$\Rightarrow (x^2 - 1)(x + 9) = 0$
\Rightarrow x = ± 1; x = -9
SENTEN
27. Solve x ³ - 7x ² + 14x - 8 = 0, roots are in G.P.
L d Colle
Sol. Among the options, (b) has 1, 2, 4. a, b, c
$\sqrt{ac} = b$ $\therefore 2 = \sqrt{1 \times 4}$
 28. Solve $x^3 - 6x^2 + 5x + 12 = 0$, given the product of 2 roots is 12.
We know that, $\alpha\beta\gamma = \frac{-d}{a} = \frac{-12}{1}$
Here, a = 1 ; b = -6 ; c = 5 ; d = 12
Only option (b) satisfies with -1, 3, 4 as - 1 × 3 × 4 = -12
 Again, chk, sum of the roots,
 -b -(-6)
 $\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(-6)}{1} = 6$
4 + 3 - 1 = 7 - 1 = 6.

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

				ations 1 ion, 13 Marks		
	1.	If sum of three	e numbers is 25, sum o	f product of numbers	in pairs is 250, what is the	
		sum of square	e of numbers?			
		a) 250	b) 125	c) 375	d) 300	
	2.	Find the value	e of (1.348) ³ + 3(1.348)	(1.304) + (0.652) ³		
		a) 2	b) 8	c) 2.258	d) 8.258	
	3.	Solve for X an	d Y: 1.5X + 2.4Y = 1.8	and 2.5(X + 1) = 7Y		
		a) 0.5, 0.5	b) 0.4, 0.4	c) 0.4, 0.5 🛞	d) 0.5, 0.4	
	4.	If 3 chairs an	d 2 tables cost Rs. 12	000 and 5 chairs and	3 tables cost Rs. 19000,	
		then the cost	of 2 chairs and 2 table	es is:	2	
		a) Rs. 9000	b) Rs. 7000	c) Rs. 10000	d) Rs. 11000	
				S roris		
	5.			stem of equations 2x	+ 2y = 5 and 3x + Ky = 7	
		has no solutio		,00 -		
		a) 9	b) 5	c) 7	d) 3	
		The day of the state	31			
	6.		-	stem of equations 2x	+ ky = 1; 3x - y = 7 has a	
		unique solutio	on.	b) $\neq \frac{2}{3}$		
		a) $k = -2/3$ c) $k \neq -\frac{2}{2}$		-	zhovo	
		c) $k \neq -\frac{2}{3}$		d) None of the d	TDOAG	
	7.	Find the value	e of $(1.729)^3 + 3(1.729)($	$(0.542) + (0.271)^3$		
	•••	a) 2	b) 8	c) 2.271	d) 1.458	
		~, =	~, ~	-,	., 1.100	
	8.	A man has so	me hens and cows. If	the number of heads	be 48 and number of feet	
-		equals 140, t	ne number of hens wil	l be:		
		a) 22	b) 23	c) 24	d) 26	

CA FOUNDATION - MATHEMATICS a Veranda Enterprise Ramesh bought a horse for Rs. X. He sold it at 0.9X, thereby registering 10% loss. 9. Had the horse been sold at Rs. 4500 more Ramesh would have make a profit of 12.5%. Find X. a) Rs. 20,000 b) Rs. 18,000 c) Rs. 200,000 d) Rs. 150,000 10. Given $x \in \{-3, -4, -5, -6\}$ and $9 \le 1 - 2x$, find the possible values of x. a) $\{-3, -4, -5, -6\}$ b) {-4, -5, -6} c) {-3, -5, -6} d) None of the above 11. Give the solution set for $3 - 2x \ge x - 32$, given that $x \in N$. a) $\{1, 2, 3, 4, 5\}$ b) {-3, -2, 1, 2, 3, 4, 5, 6, 7} c) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} d) None of the above 12. Dipti needs a minimum of 360 marks in four tests in a Statistics course to obtain an A grade. On her first three tests, she scored 88, 96, 79 marks. What should her score (X) be in the fourth test so that she can make an A grade? a) X > 95 c) X ≥ 97 d) None of the above b) X ≥ 95 13. Which of the following is the solution set for $|x + 2| \ge 5$? randa a) $\{x : x \in R, x < -7 \text{ or } x \ge 3\}$ b) $\{x : x \in R, x \le -7 \text{ or } x \ge 3\}$ c) $\{x : x \in R, x \le -7 \text{ or } x > 3\}$ d) None of the above

EXPLANATORY ANSWERS

1.	(A + B + C) = 25, (AB + BC + CA) = 250
	$(A^2 + B^2 + C^2) = (A + B + C)^2 - 2(AB + BC + CA) = 625 - 500 = 125$; Option B
2.	$(1.348)^3 + 3(1.348)(1.304) + (0.652)^3$
	$= (1.348)^3 + (0.652)^3 + 3(1.348)(0.652)(1.348 + 0.652)$
	= (1.348 + 0.652) ³ = 2 ³ = 8; Option B
3.	Option C (Using options).
4.	3C + 2T = 12000; 5C + 3T = 19000
	2C + T = 7000
	C + T = 5000
	2C + 2T = 10000. Option C
	S S S S S S S S S S S S S S S S S S S
5.	2/3 = 2/K. K = 3. Option D
	S Enteri
6.	$2/3 \neq k/-1$, Option C
	Lid Collin
7.	$(1.729)^3 + 3(1.729)(0.542) + (0.271)^3$
	$= (1.729)^3 + (0.271)^3 + 3(1.729)(0.271)(1.729 + 0.271)$
	$= (1.729 + 0.271)^3 = 23 = 8$
	Option B
8.	H + C = 48; 2H + 4C = 140; H = 26. Option D
9.	CP = X
	New SP = 0.9X + 4500
	Profit = 0.9X + 4500 - X = 4500 - 0.1X
	(4500 - 0.1X)/X = 0.125
	4500 - 0.1X = 0.125X
	0.225X = 4500
	X = 4500/0.225 = 20000; Option A

J.K. SHAH CLASSES CAFOUNDATION - MATHEMATICS
a Veranda Enterprise
10. $9 \le 1 - 2x$
$x \le -4$
$x = \{-4, -5, -6\}$
Option B
11. $3 - 2x \ge x - 32$
35 ≥ 3x
x ≤ 11.67
x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Option D
12. 88 + 96 + 79 = 263
 $x \ge (360 - 263) = 97$
Option C
13. $(x + 2) \le -5; x \le -7$
$(x + 2) \ge 5; x \ge 3$
(x + 2) ≥ 5; x ≥ 3 Option B
S Enter
Adar
Verana

CA FOUNDATION - MATHEMATICS

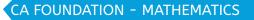
SELF ASSESSMENT TEST 4 Equations 2

15 Question, 15 Marks

1.	1. If A and B are the roots of the equation $16x^2 - 8x + 1 = 0$, then which of the following					
	is true?					
	a) A, B are re	al	b) A, B are re	eal and $A \neq B$		
	c) A, B are re	al and A = B	d) A and B, b	ooth are imaginary		
2.	If M and N are	the roots of the equa	ation $2(A^2 + B^2)X^2 +$	2(A + B)x + 1 = 0, then v	vhich	
	of the followin	g is true?				
	a) M, N are re	al	b) M, N are II	maginary		
	c) M, N are D	istinct	d) Both b) &	c) above		
3.	If one root of	the equation $4x^2$ +	5x + K = 0 be rec	procal of another root	, but	
	negative in sig	n, then what can be		e P.		
	a) 4	b) – 4	c) 2.75	d) – 3.25		
			9 enter			
4.	If the roots of	the equation 1/(x + 2	(2) + 1/(x + 3) = 2/5	are equal in magnitude	e but	
	opposite in sig	n, then the product o	f the roots is:			
	a) 1	b) 2.5	c) -13	d) – 6.5		
5.	'A' meters of cl	oth costs \$35. If this	piece of cloth wou	ld had been 4 m longer	r and	
	each meter co	sts \$ 1 less, the cost	of the cloth would	had been \$35. What co	an be	
	the value of A	?				
	a) 8	b) 10	c) 12	d) 14		
6.	Find the maxin	num value of the exp	ression $x^2 - 4x + 7$,	for real value of x.		
	a) 3	b) 8	c) 9	d) Undeterminable	е	
7.	For the given b	i-quadratic equation	$: 4x^4 - 16x^3 + 7x^2 + 10x^3$	16x + 4 = 0, what is the v	/alue	
	of product of c	all possible roots of t	he equation?			
	a) – 4	b) 4	c) – 16	d) 1		

J.K. SHAH C L A S S E S a Veranda Enterprise

	al	dranda Enterprise				
	8. For the given equation: $(x^2 + 2)^2 + 8x^2 - 6x(x^2 + 2) = 0$, what is the sum of the roots					
		of the equation?				
		α) 8	b) 6	c) – 6	d) 0	
	9.	If one root of the equa	tion 14x ² + 5 ³ x + k	K = 0 be reciprocal of	another root, find the	
		value of K.				
		a) 7	b) 14	c) 14/125	d) None of the above	
	10.	For the given equation:	$(x^2 + 2)^2 + 8x^2 - 6x$	(x² + 2) = 0, what is th	ne product of the roots	
		of the equation?				
		a) – 4 b)	4	c) 3 d) None of the above	
	11.	Which of the following	equation in varia	ble X have two roots,	, 2 and 4?	
		a) $X^2 - 6X - 8 = 0$		b) $X^2 + 6X - 8 = 0$		
		c) $X^2 + 6X + 8 = 0$		d) $X^2 - 6X + 8 = 0$		
				29		
	12.					
		then which of the follo	wing quadratic eq	juation will have root	ts – A and B?	
		a) $x^2 - 5x + 6 = 0$	/9	b) $x^2 + 5x - 6 = 0$		
		c) $x^2 + 5x + 6 = 0$	40	d) $x^2 - 5x - 6 = 0$		
			Vid(oi)			
	13.	Which of the following	O			
		a) (x + 3) b) (x	: - 2)	c) (x - 4)	d) (x – 3)	
	14.	Which of the following				
		a) $2x^3 - 7x^2 - 9x + 18$	-	b) $x^3 - 7x^2 - 9x + 18$		
		c) $x^3 - 7x^2 + 9x + 18 =$	= ()	d) $2x^3 + 7x^2 - 9x + 1$	18 = 0	
	4 -	If the survey density of the				
	15.	If the quadratic equation	$bns x^2 + ax + b = 0$	$ana x^{2} + bx + a = 0$ (a ≠ d) nave a common	
		root, then:	h) a 1 b2 · 1 2		d) a + b + 1 = 0	
		a) a + b = ab	$D a + D = a^2 + b^2$	c) $a^2 + b^2 = ab$	a) a + b + 1 = 0	
_						
			440			


J.K. SHAH [®]
CLASSES
a Veranda Enterprise

EXPLANATORY ANSWERS

	ANSWERS
1.	Discriminant (D) = 64 - 4*16*1 = 0. Roots are Real and Equal. Option C
2.	$D = 4(A + B)^2 - 4^*2(A^2 + B^2)^*1 = 4[A^2 + B^2 + 2AB - 2A^2 - 2B^2] = -4(A - B)^2 < 0$
	Thus M and N are imaginary and distinct. Option D
3.	Product of roots = K/4 = -1. K = - 4. Option B
4.	5(x + 2 + x + 3) = 2(x + 2) (x + 3)
	$10x + 25 = 2x^2 + 10x + 12$
	$2 \times 2 - 13 = 0$
	Product of roots = -13/2 = - 6.5
	Option D
5.	Cost per meter = 35/A
	(A + 4)(35/A - 1) = 35
	35 - A + 140/A - 4 = 35
	$(A + 4)(35/A - 1) - 35$ $35 - A + 140/A - 4 = 35$ $A^{2} + 4A - 140 = 0$ $A = 10$ Option B
	A = 10
	Option B
6.	$x^2 - 4x + 7$
	$= x^2 - 2^* 2^* x + 2^2 + 3$
	$= (x - 2)^2 + 3$
	The expression is positive for any value of x> = 2
	Maximum value is undeterminable. Option D
7.	Product of roots = +e/a = 4/4 = 1. Option D
8.	$x^4 + 4 + 4x^2 + 8x^2 - 6x^3 - 12x = 0$
	$x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$
	Sum of roots = -b/a = -(-6)/1 = 6
	Option B

J.K. SHAH [®]	
CLASSES	
a Veranda Enterprise	

a Veranda Enterprise				
9.	Product = 1 = K/14. K = 14. Option B			
10.	$(x^2 + 2)^2 + 8x^2 - 6x(x^2 + 2) = 0$			
	$x^4 + 4x^2 + 4 + 8x^2 - 6x^3 - 12x = 0$			
	$x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$			
	Product of roots = 4/1 = 4			
	Option B			
11.	(X - 2) (X - 4) = 0			
	X ² - 6X + 8 = 0; Option D			
12.	$x^{2} + x - 6 = 0$			
	(x - 2)(x + 3) = 0			
	A = 2, B = - 3			
	B = - 3 and - A = - 2			
	Required equation is (x + 3) (x + 2) = 0			
	$x^2 + 5x + 6 = 0$			
	Option C Senterprise			
	Senteri			
13.	$F(x) = x^4 - 19x^2 + 6x + 72$			
	$F(3) = 3^4 - 19(3)^2 + 6^*3 + 72 = 81 - 171 + 18 + 72 = 0$			
	(x – 3) is one of the factor. Option D			
14.	(x - 2)(2x + 3)(x - 3) = 0			
	$(2x^2 - x - 6)(x - 3) = 0$			
	$2x^3 - 7x^2 - 9x + 18 = 0$			
	Option A			
15.	$k^2/(a^2 - b^2) = k/(b - a) = 1/(b - a)$			
	k = (a + b) or 1			
	1 + a + b = 0			
	Option D			
	9. 10. 10. 11. 11. 12. 12. 13. 13. 13.			

LINEAR INEQUALITIES

CLASS WORK

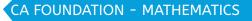
- 1. Draw the graph for the following set of in-equalities and indicate the feasible region:
 - a) $3x + 4y \le 12$
 - b) $2x 3y \ge 6$
 - c) $x + 2y \le 6, 5x + 3y \le 15, x \ge 0, y \ge 0$

- d) $x + y \le 4, \ 3x + y \ge 3, \ x + 4y \ge 4, \ x \le 3, \ y \le 2$
- e) $x y \ge 4, 2x + 3y \ge 18, y \le 4, x \le 7$
- 2. Graph of five linear in-equations are given below. These are 15x+6y=300, 5x+4y=120, x+2y=50, $x \ge 0$ and $y \ge 0$. Identify the set of

five in-equations which satisfy the common region as shown in the figure:

	9 .0113
50	
45	
40 35	Adar
30 25	
20	
10	
5	
0	5 10 15 20 25 30 35 40 45 50

	$15x + 6y \le 300$		$15x + 6y \le 300^{\circ}$	
	$5x + 4y \le 120$	b)	$-5x + 4y \le 120$	
a)	x + 2y = 50		$x + 2y \le 50$	\$
	$x \ge 0, y \ge 0$		$x \ge 0, y \ge 0$	


	$15x + 6y \le 300$	
c)	$5x + 4y \le 120$ $x + 2y \le 50$	d) None of the given
	x + 2y = 0 $x > 0, y > 0$	

C L A S S E S a Veranda Enterprise

3.	A car manufacturing company manufactures cars of two types A and B. Model A
	requires 150 man-hours for assembling, 50 man-hours for painting and 10 man-
	hours for checking and testing. Model B requires 60 man-hours for assembling,
	40 man-hours for painting and 20 man-hours for checking and testing. There are
	available 30 thousand man-hours for assembling, 13 thousand man-hours for
	painting and 5 thousand man-hours for testing and checking. Let the company
	manufacture x units of type A model of car and y units of type B model of the car.
	Then, the inequalities are:
	a) 5x + 2y = 1000, 5x + 4y \leq 1300, x + 2y \leq 500, x \geq 0, y \geq 0
	b) $5x + 2y \le 1000, \ 5x + 4y \le 1300, \ x + 2y \le 500, \ x \ge 0, \ y \ge 0$
	c) $5x + 2y \le 1000, 5x + 4y = 1300, x + 2y = 500, x \ge 0, y \ge 0$
	d) 5x + 2y \leq 1000, 5x + 4y \geq 1300, x + 2y \geq 500, x \geq 0, y \geq 0
	8
4.	A dealer wishes to purchase a number of fans and sewing machines. He has only
	₹ 5760 to invest and has space for at most 20 items. A fan costs him ₹ 360 and
	sewing machine ₹ 240. Express the above situation in terms of linear inequalities.
	G D F .ce
	$x + y \le 30$
	a) $360x + 240y \le 5760$ b) $x + y \le 20$ $360x + 240y \le 5760$

- c) $x + y \le 30$ $36x + 24y \le 576$ d) None of the above
- 5. A firm is engaged in breeding pigs. The pigs are fed on various products grown on the farm. In view of the need to ensure certain nutrient constituents, it is necessary to buy two additional products, say A and B. The contents of the various products (per unit) in nutrient constituent (eg., vitamins, proteins, etc.) is given in the following table:

 Nutrient	Nutrient content in product		Minimum amount of Nutrient
	А	В	
 M1	36	6	108
 M2	3	12	36
 M3	20	10	100

The last column of the above table gives the minimum amounts of nutrients

constituents M1, M2 and M3 which must be given to the pigs. Express the above situation in terms of linear inequalities.

	$36x + 6y \ge 108$		$6x + y \ge 18$	
	$3x + 12y \ge 36$		$x + 4y \ge 12$	\$
α)	$20x + 10y \ge 100$	b)	$x + 0.5 y \ge 5$	
	$x \ge 0, y \ge 0$		$x \ge 0, y \ge 0$	

	$36x + 6y \le 108$	
c)	$3x + 12y \le 36$	d) (a) & (b) both
	$20x + 10y \le 100$	
	$x \ge 0, y \ge 0$	R

The rules and regulations demand that the employers should employ not more 6. than 5 experienced hands to 1 fresh one and this fact is represented by: (Taking experienced person as x and fresh person as y) d) None of the above terroris

a) $y \ge x/5$ c) $y \le x/5$

- Which of the following represents the linear relationship between two variables in 7. an in-equality:
 - a) $ax + by \le c$ b) ax x by $\leq c$ c) $axy + by \le c$ d) $ax + bxy \le c$
- The solution of the in-equality $\frac{(5-2x)}{3} \le \frac{x}{6} 5$ is: 8. a) $x \le 8$ b) x = 8 c) $x \ge 8$ d) None of the above
- Solution space of the in-equalities $2x + y \le 10$ and $x y \le 5$ are: 9.
 - Includes the origin Ι. II. Includes the point (4, 3)
 - Which one of the following is correct?
- a) Only I b) Only II c) Both I and II d) Neither I nor II

J.K. SHAH C L A S S E S a Veranda Enterprise

a۷	dranda Enterprise	
10.	On an average, experienced person does	5 units of work while a fresh person does 3
	units of work daily but the employer has	s to maintain the output of at least 30 units
	of work per day. The situation can be ex	pressed as:
	a) $5x + 3y \le 30$	b) 5x + 3y < 30
	c) $5x + 3y \ge 30$	d) 5x + 3y = 30
11.	Find the range of real values of x satisfy	ing the in-equalities 3x – 2 > 7 and 4x – 13
	> 15.	
	a) x > 3	b) x < 7
	c) x > 7	d) x < 3
12.	If $\begin{vmatrix} x+\frac{1}{4} \end{vmatrix} > \frac{7}{4}$, then which of the following is	s correct?
	a) $x < -\frac{3}{2}$ or $x > 2$	b) $x < -2 \text{ or } x > \frac{3}{2}$
	c) $-2 < x < \frac{3}{2}$	d) None of the above
	6	See. See
13.	If a > 0 and b < 0, then which of the foll	owing follows:
	a) 1/a > 1/b b) 1/a < 1/b	Enteri
	c) $1/a = 1/b$ d) None of the al	bove
	, dans	
14.	For 14 Do as Directed	
	Mark (a) if $x - y \le 0$	
	Mark (b) if $x - y \ge 0$	
	Mark (c) if x + y ≤ 0	
	Mark (d) if $x + y \ge 0$	
	V	у
	y	
	_x1 X	x ¹ x
	_ / _	
	y ¹	y ¹

		1					I	у		
			/							
 					x ¹			$\overline{}$	×	
 x ¹				X			\nearrow			
									<	
								y ¹		
		y 1								
 15. A die	etitian wishes	s to mix	togethe	er two kin	ds of fo	od so tho	t the	vitamin co	ontent of	
	nixture is at l									
 and	12 units of vi					Kg. of ec	ich fo	od is show	n below:	
 		4	B	C	D	16				
 Food			1	1	2					
 Food			1		3	rise				
 Assu	iming x units	of food	L is to b	e mixed v	vith v u	nits of foc	od II t	he situatio	n can be	
	essed as :		P	- 70	i di y ² di					
(a)	2x + y ≤ 9			b) 2x + y	≥ 30		(c)	2x + y ≥ 9		
	$x + y \le 7$	0	^y Ve.	x + y ≤	≦ 7			x + y <u>></u> 7		
	x + 2y <u>≤</u> 10			x + 2y	<u>></u> 10			x + y ≤ 10)	
	2x + 3y <u><</u> 1	2		x + 3y	<u>></u> 12			2x + 3y <u>></u>	12	
	x ≥ 0, y ≥ 0									
 / 13	2 2									
(d)	2x + y <u>></u> 9									
 	x + y <u>></u> 7									
	$v \pm 2v \times 10$									
	$x + 2y \ge 10$ $2x + 3y \ge 12$	2								
	2x + 3y <u>></u> 12	2								
		2								
	2x + 3y <u>></u> 12	2								
	2x + 3y <u>></u> 12	2								
	2x + 3y <u>></u> 12	2								

L1 : 2x +y = 9 L2 : x + y = 7 L3 : x+2y= 10 L4 : x + 3y = 12

10 11 12

The common region (shaded part) indicated on the diagram is expressed by the set of inequalities

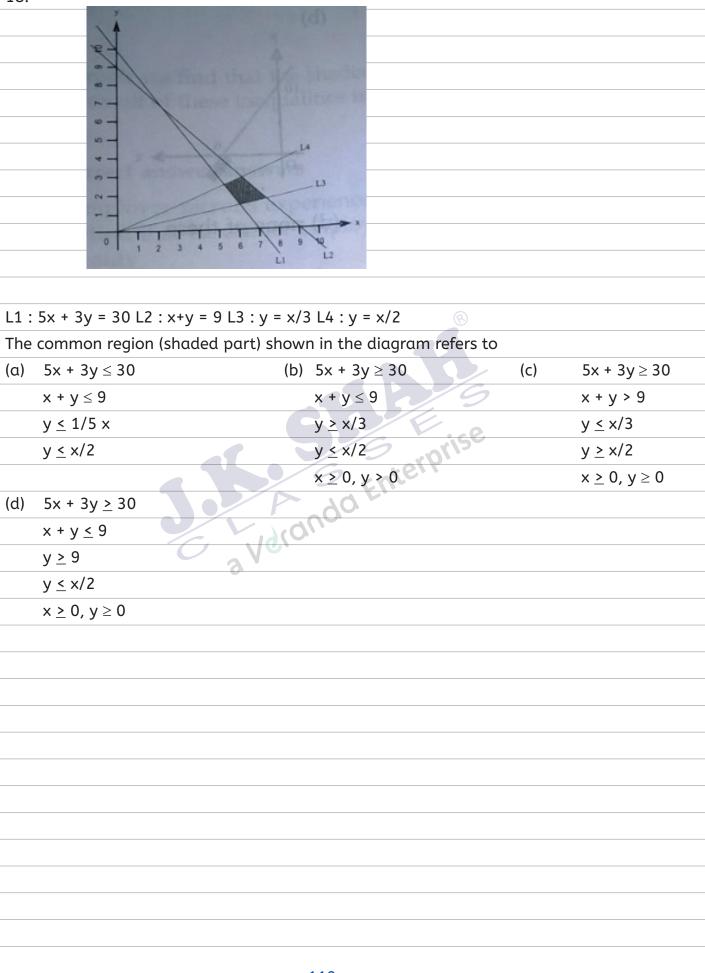
(a)	$2x + y \le 9$	(b) $2x + y \ge 9$ (c)	c) $2x + y \ge 9$
	$x + y \ge 7$	x + y ≤ 7	x + y ≥ 7
	$x + 2y \ge 10$	x + 2 y ≥ 10	$x + 2y \ge 10$
	x +3 y ≥ 12	x + 3y ≥ 12	x +3 y ≥ 12

(d) none of these

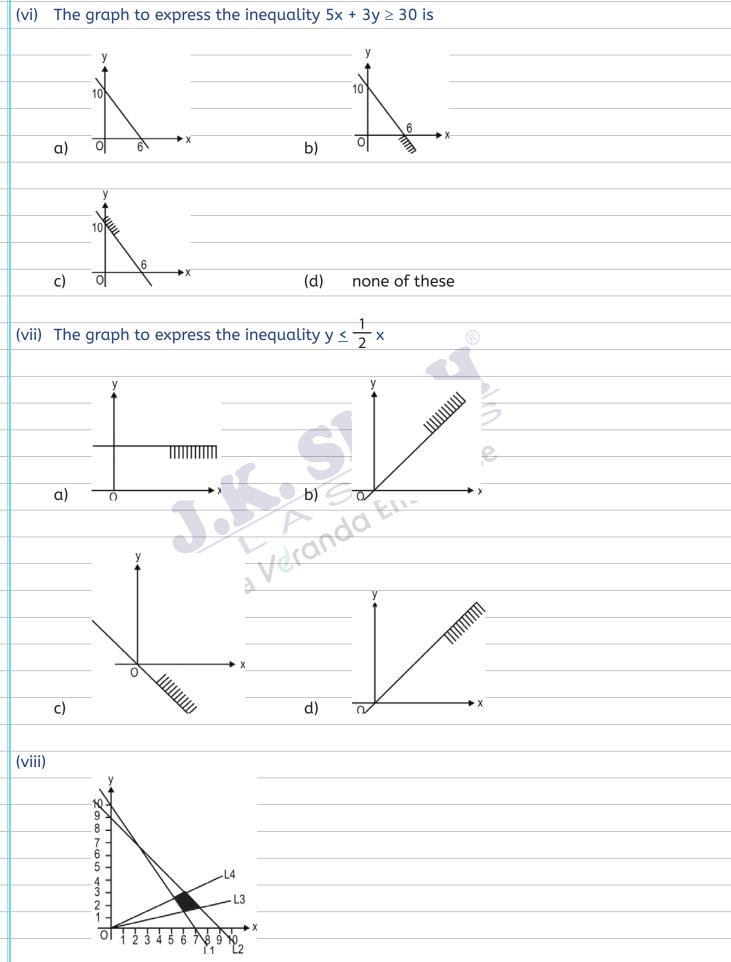
0 1 2

17. A company produces two types of leather belts, say A and B. Belt A is of superior quality and belt B is of lower quality. Each belt of type A requires twice as much time as required by a belt of type B. If all belts were of type B, the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day. Belt A requires fancy buckles and only 400 fancy buckles are available per day. For belt of type B only 700 buckles are available per day.

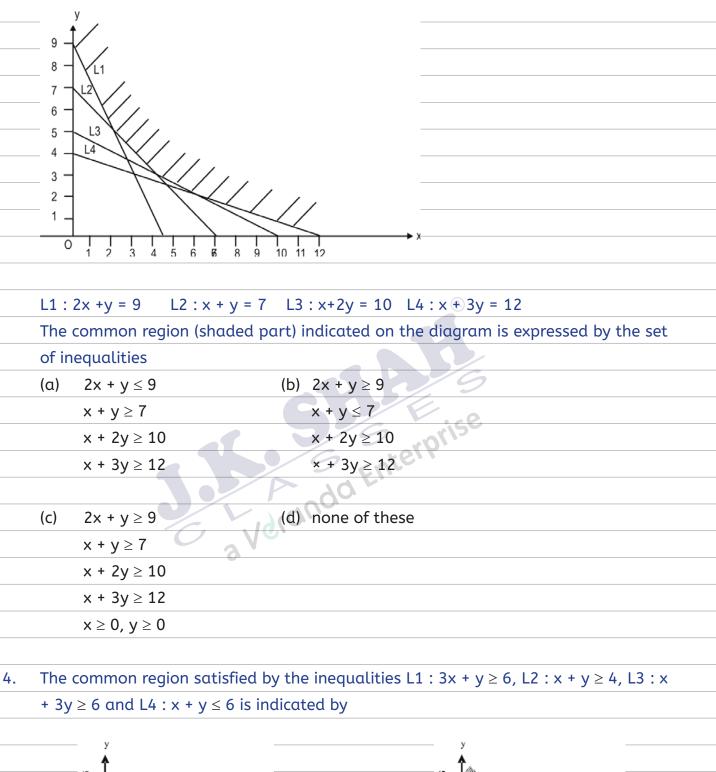
Constraints can be formulated by assuming that the company produce x units of belt A and y units of belt B as :

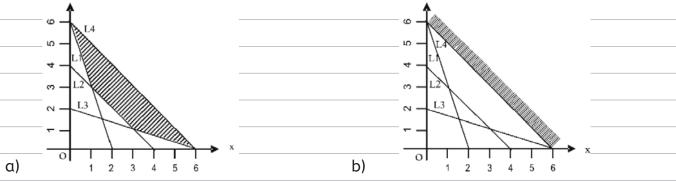

(a)	$2x + y \le 1000$	(b) $2x + y \le 1000$	(c) $2x + y \ge 1000$
	$x + y \ge 800$	$x + y \le 800$	$x + y \le 800$
	$x \leq 400$; $y \leq 700$	$x \leq 400$; $y \leq 700$	$x \leq 400$; $y \leq 700$
	$x\geq 0$; $y\geq 0$	$x\geq 0$; $y\geq 0$	$x\geq 0$; $y\geq 0$

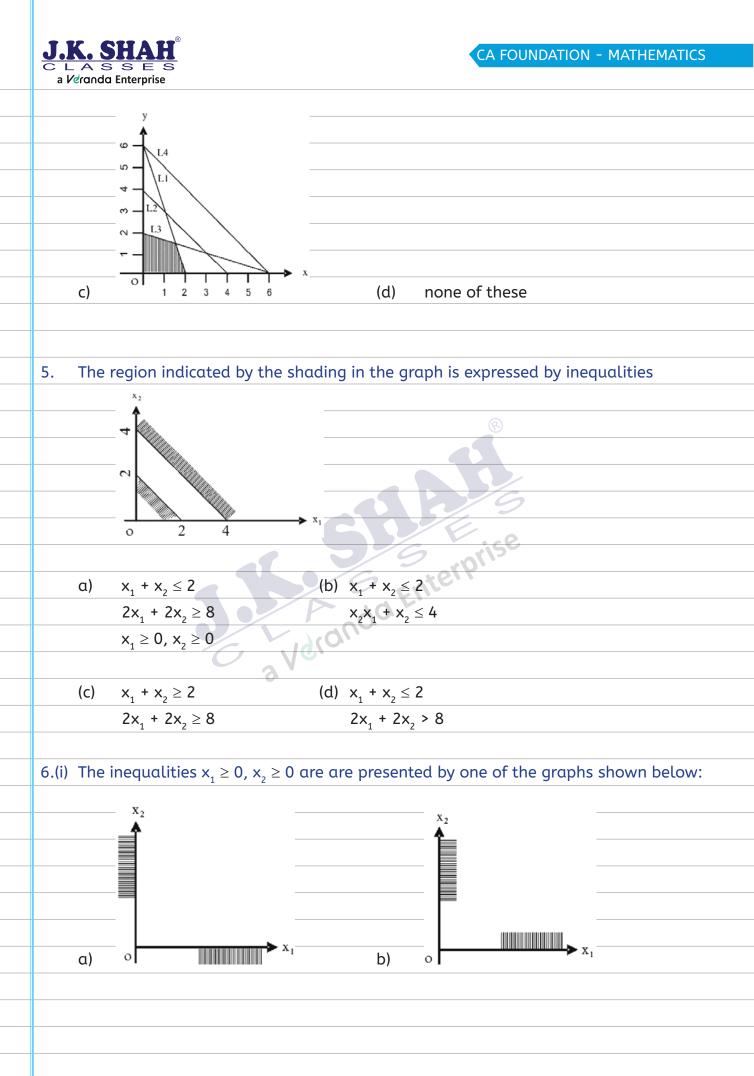
d) None of these



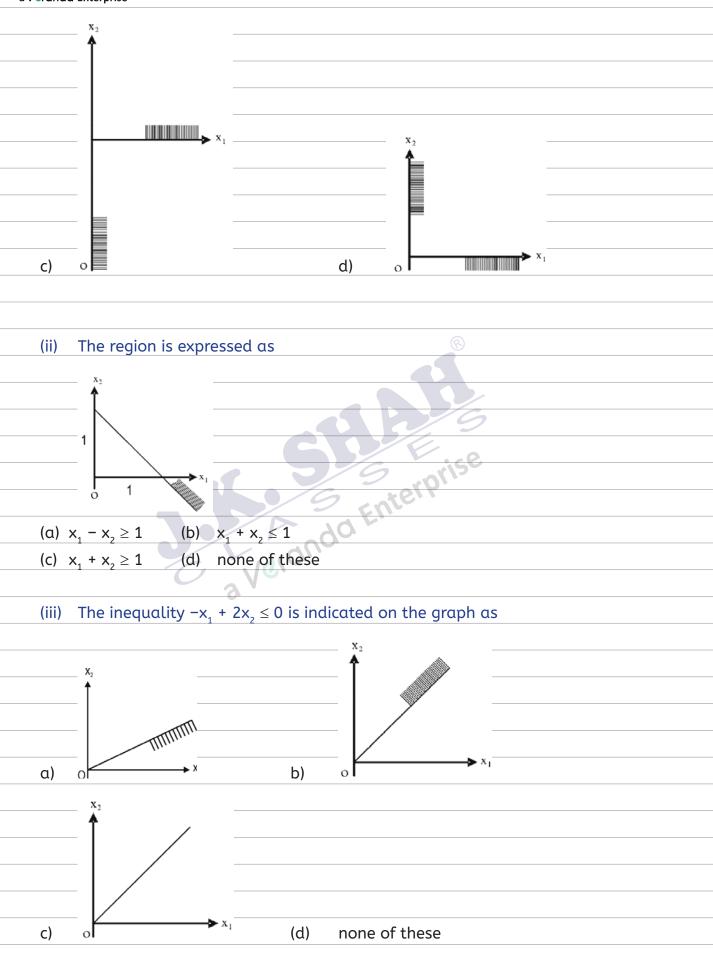
1. (i) An employer recruits experienced (x) and fresh workmen (y) for his firm under the condition that he cannot employ more than 9 people, x and y can be related by the inequality. (a) $x + y \neq 9$ (b) $x + y \leq 9 \times \geq 0$, $y \geq 0$ (c) $x + y \geq 9 \times \geq 0$, $y \geq 0$ (d) none of these (ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \leq 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \geq 30 \times \geq 0$, $y \geq 0$ (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \geq x/5$ (b) $5y \leq x$ (c) $5y \geq x$ (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \leq y/2$ (b) $y \leq x/2$ (c) $y \geq x/2$ (d) $x > 2y$		HOMEW	ORK
 (i) An employer recruits experienced (x) and fresh workmen (y) for his firm under the condition that he cannot employ more than 9 people, x and y can be related by the inequality. (a) x + y ≠ 9 (b) x + y ≤ 9 x ≥ 0, y ≥ 0 (c) x + y ≥ 9 x ≥ 0, y ≥ 0 (d) none of these (ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) 5x + 3y ≤ 30 (b) 5x + 3y > 30 (c) 5x + 3y ≥ 30 x ≥ 0, y ≥ 0 (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) y ≥ x/5 (b) 5y ≤ x (c) 5y ≥ x (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) x ≤ y/2 (b) y ≤ x/2 (c) y ≥ x /2 (d) x > 2y 	1.		
condition that he cannot employ more than 9 people, x and y can be related by the inequality. (a) $x + y \neq 9$ (b) $x + y \leq 9 \times \geq 0$, $y \geq 0$ (c) $x + y \geq 9 \times \geq 0$, $y \geq 0$ (d) none of these (ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \leq 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \geq 30 \times \geq 0$, $y \geq 0$ (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \geq x/5$ (b) $5y \leq x$ (c) $5y \geq x$ (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \leq y/2$ (b) $y \leq x/2$ (c) $y \geq x/2$ (d) $x > 2y$	-	An employer recruits experienced (x) ar	nd fresh workmen (y) for his firm under the
inequality.(a) $x + y \neq 9$ (b) $x + y \leq 9 \times \geq 0, y \geq 0$ (c) $x + y \geq 9 \times \geq 0, y \geq 0$ (d) none of these(ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as(a) $5x + 3y \leq 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \geq 30 \times \geq 0, y \geq 0$ (d) none of these(iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as(a) $y \geq x/5$ (b) $5y \leq x$ (c) $5y \geq x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as(a) $x \leq y/2$ (b) $y \leq x/2$ (c) $y \geq x/2$ (d) $x > 2y$			-
(c) $x + y \ge 9 x \ge 0, y \ge 0$ (d) none of these(ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 \times \ge 0, y \ge 0$ (d) none of these(iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$			
(ii) On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 \times \ge 0$, $y \ge 0$ (d) none of these(iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(a) x + y ≠ 9	(b) $x + y \le 9 \ x \ge 0, \ y \ge 0$
work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 \times \ge 0$, $y \ge 0$ (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(c) $x + y \ge 9 \ x \ge 0, \ y \ge 0$	(d) none of these
work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 \times \ge 0$, $y \ge 0$ (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$			
per day. This situation can be expressed as (a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 x \ge 0, y \ge 0$ (d) none of these (iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these (iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$	(ii)	On the average experienced person does	s 5 units of work while a fresh one 3 units of
(a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30 \times \ge 0$, $y \ge 0$ (d) none of these(iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as(a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to eachfresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		work daily but the employer has to mai	ntain an output of at least 30 units of work
(c) $5x + 3y \ge 30 \times \ge 0$, $y \ge 0$ (d) none of these(iii) The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (c) $y \ge x/2$		per day. This situation can be expressed	las
(iii)The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as (a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv)The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as (a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(a) $5x + 3y \le 30$	(b) 5x + 3y > 30
5 experienced hands to 1 fresh one and this fact can be expressed as(a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to eachfresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(c) $5x + 3y \ge 30 \ x \ge 0, \ y \ge 0$	(d) none of these
5 experienced hands to 1 fresh one and this fact can be expressed as(a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to eachfresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$			
(a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$	(iii)	The rules and regulations demand that	the employer should employ not more than
(c) $5y \ge x$ (d) none of these(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		5 experienced hands to 1 fresh one and	this fact can be expressed as
(iv) The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(a) $y \ge x/5$	(b) 5y ≤ x
fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$		(c) 5y ≥ x	(d) none of these
fresh person. This situation can be expressed as(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$			0 -
(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$	(iv)		
(c) $y \ge x/2$ (d) $x > 2y$		O	
		•	
(v) The graph to express the inequality x + y ≤ 9 is		(c) $y \ge x/2$	(d) x > 2y
(v) The graph to express the inequality x + y ≤ 9 is			
	(∨)	The graph to express the inequality x +	y ≤ 9 is
		Y	
		🔪ĭ 💘	»
a) $0 \xrightarrow{9} x$ b) $0 \xrightarrow{9} x$			9 × X
			×
y y		y .	
		¥	
		-	
c) 0 (d) none of these	_	c) o y x (d) none c	of these

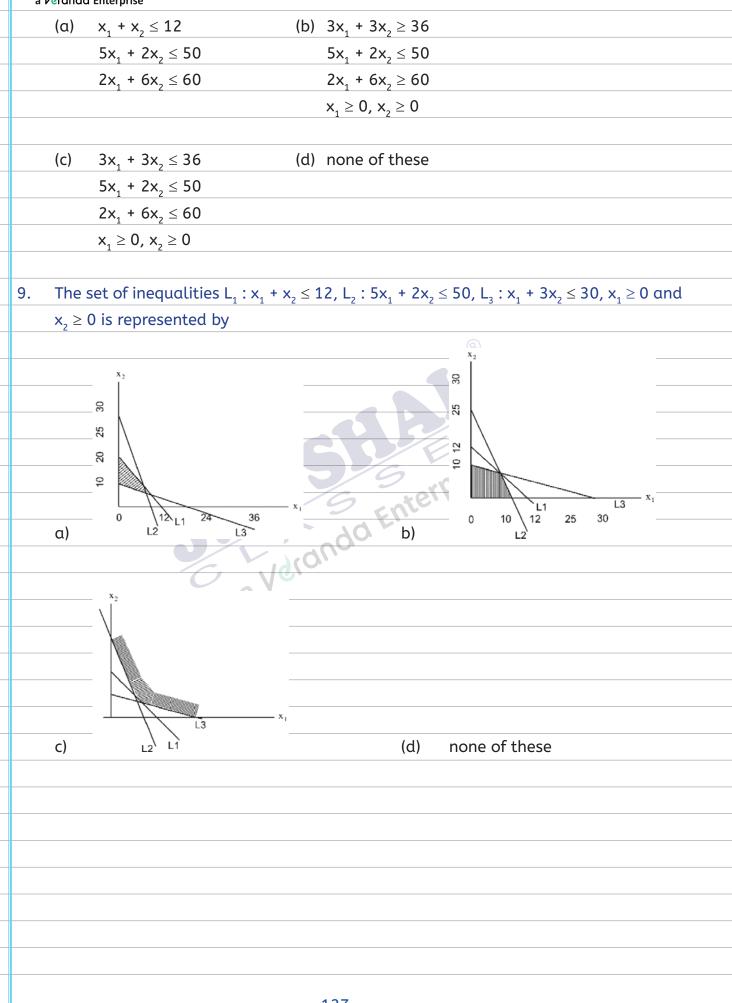



J.K. SHAH C L A S S E S a Veranda Enterprise

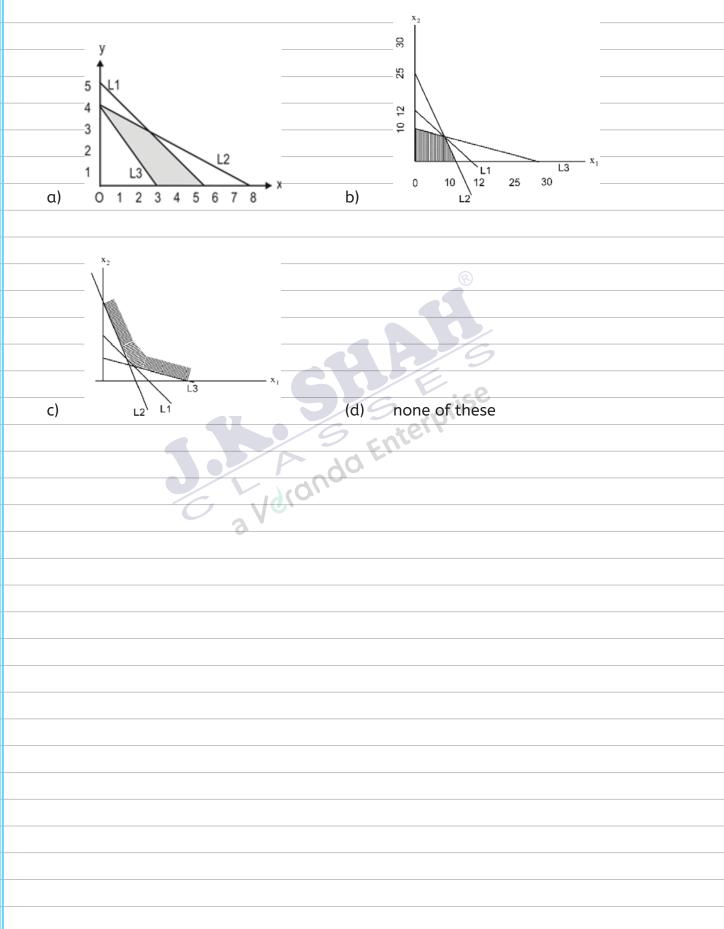

a Verdnad Enterprise	
$L_1: 5x + 3y = 30$ $L_2: x+y = 9$ $L_3: y$	= x/3 L ₄ : y = x/2
The common region (shaded part) s	shown in the diagram refers to
(a) $5x + 3y \le 30$	(b) 5x + 3y <u>></u> 30
x + y ≤ 9	x + y ≤ 9
y ≤ 1/5 x	$y \ge x/3$
y ≤ x/2	y <u><</u> x/2
	$x \ge 0, y \ge 0$
(c) $5x + 3y \ge 30$	(d) 5x + 3y ≥ 30
x + y ≥ 9	x + y ≤ 9
y ≤ x/3	$y \ge 9$
$y \ge x/2$	y ≤ x/2
$x \ge 0, y \ge 0$	$x \ge 0, y \ge 0$
2. A dietitian wishes to mix together t	wo kinds of food so that the vitamin content of
the mixture is at least 9 units of vito	amin A, 7 units of vitamin B, 10 units of vitamin C
and 12 units of vitamin D. The vitan	nin content per Kg. of each food is shown below:
A B	GENDELL
Food I: 2 1	1 2
Food II: 1 1	2 3
Assuming x units of food I is to be r	mixed with y units of food II the situation can be
expressed as	
(a) $2x + y \le 9$ (b)	$2x + y \ge 30$
x + y ≤ 7	x + y ≤ 7
$x + 2y \le 10$	x + 2y \ge 10
2x +3 y ≤ 12	x +3 y ≥ 12
0 > 0, y > 0	
(c) $2x + y \ge 9$ (d)	2x + y ≥ 9
x + y ≥ 7	x + y ≥ 7
x + y ≤ 10	$x + 2y \ge 10$
x + 3y ≥ 12	$2x + 3y \ge 12$
	$x \ge 0, y \ge 0$

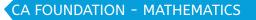
J.K. SHAH CLASSES a Veranda Enterprise



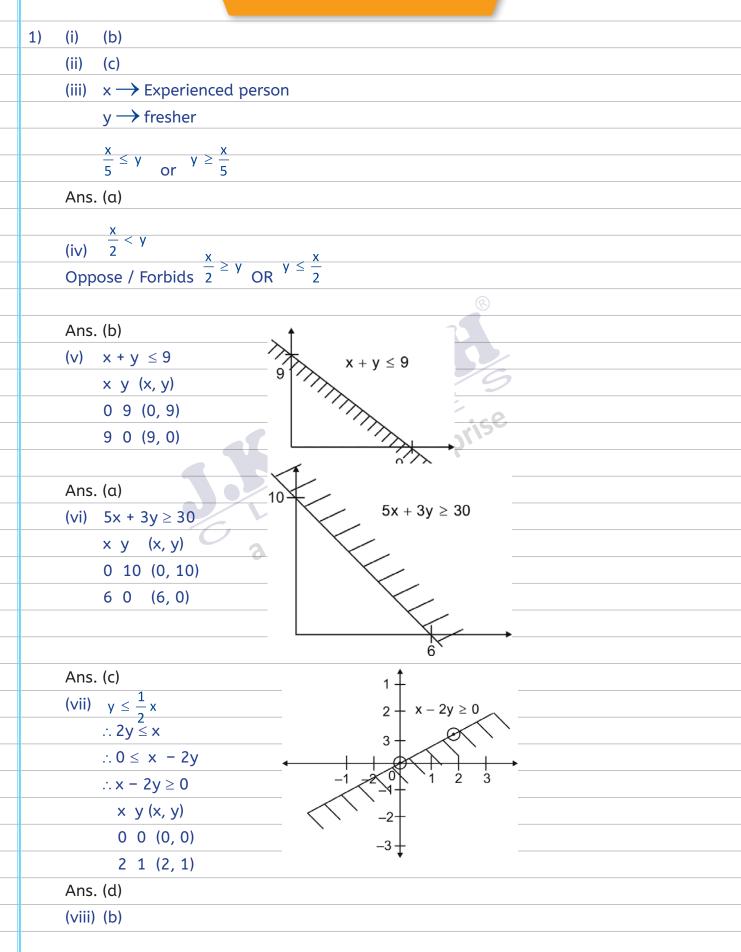


CLASSES a Veranda Enterprise			INDATION - MATHEMATIO
7.			
·			
L2	L4		
\setminus /			
\backslash	L5		
(2,1)		L1	
		x,	
(0,0) (1, 0)			
$ \downarrow $	L3		
he common region indico	Ited on the graph is e	expressed by the s	et of five inequalities
(a) $L_1 : x_1 \ge 0$	(b) L ₁ : x ₁		
$L_2:X_2 \ge 0$	$L_2: X_2$		
$L_3: x_1 + x_2 \le 1$		+ $x_2 \ge 1$	
$L_4 : x_1 - x_2 \ge 1$		$-x_2 \ge 1$	
$L_5: - x_1 + 2x_2 \le$		$x_1 + 2x_2 \le 0$	
<u> </u>	1/9		
(c) $L_1: x1 \le 0$	(d) none	of these	
$L_2 : x2 \le 0$	L'J'OUR		
$L_3: x_1 + x_2 \ge 1$	Ver		
$L_4: x_1 - x_2 \ge 1$	O		
$L_5: - x_1 + 2x_2 \le$	0		
3. A firm makes two ty	pes of products : Type	e A and Type B. Tl	he profit on product A
Nu. 20 each and that	on product B is Nu. 3	0 each. Both type	s are processed on thr
machines M1, M2 and	d M3. The time require	ed in hours by eacl	h product and total tin
available in hours pe	er week on each mach	nine are as follow	s:
Machine	Product A	Product B	Available Time
M1	3	3	36
M2	5	2	50
M3	2	6	60
The constraints can b	e formulated taking	x ₁ = number of un	its A and x ₂ = number
unit of B as			

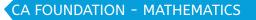




10. The common region satisfying the set of inequalities $x \ge 0$, $y \ge 0$, $L_1 : x + y \le 5$, $L_2 : x$



HOMEWORK SOLUTION



2 (d) For					
<u>2. (u) X - FOC</u>					
		Vita	min		
	А	В	С	D	
Food I	2	1	1	2	
Food II	1	1	2	3	
Atleast req.	9	7	10	12	
2x + y ≥ 9					
x + y ≥ 7					
x = 2y ≥ 10					
2x + 3y ≥ 12					
			B		
∵ Food cannot be	e consumed in ne	gative			
$x \ge 0 \& y \ge 0$					
3. (c) By opti	ion method		/9		
4. (a) By obs			V e.		
5. (a) By obs	ervation & option	n method	corise		
6. (i) Ans. (b		9 Ente			
	ethod Ans. (c)	- da L.			
		due			
$x_1 - 2x_2 \ge 0$	a voi				
x y (x, y)					
0 0 (0, 0)		1 🕇			
2 1 (2, 1)					
			\frown _		
			$x_1 - 2x_2 \ge 0$		
		2 0 1 2	┼─→ 3 ──		
	-	<u>_</u> ™†			
		-2+			
		¥			
Ans. (a)					
(d)					
	Food I Food II Atleast req. $2x + y \ge 9$ $x + y \ge 7$ $x = 2y \ge 10$ $2x + 3y \ge 12$ \therefore Food cannot be $x \ge 0 & y \ge 0$ 3. (c) By option 4. (a) By obs 5. (a) By obs 6. (i) Ans. (b (ii) By option m (iii) $-x_1 + 2x_2 \le 0$ $x_1 - 2x_2 \ge 0$ x y (x, y) 0 0 (0, 0)	AFood I2Food II1Atleast req.9 $2x + y \ge 9$ $x + y \ge 7$ $x = 2y \ge 10$ $2x + 3y \ge 12$ \because Food cannot be consumed in nex $x \ge 0 & y \ge 0$ 3. (c) By option method4. (a) By observation & option5. (a) By observation & option6. (i) Ans. (b)(ii) By option method Ans. (c)(iii) $-x_1 + 2x_2 \le 0$ $x + y (x, y)$ 0 0 (0, 0)2 1 (2, 1) -1 Ans. (a)	ABFood I21Food II11Atleast req.97 $2x + y \ge 9$ 7 $x + y \ge 7$ $x = 2y \ge 10$ $2x + 3y \ge 12$ $2x + 3y \ge 12$ \because Food cannot be consumed in negative $x \ge 0 \& y \ge 0$ 3. (c) By option method4. (a) By observation & option method5. (a) By observation & option method6. (i) Ans. (b)(ii) By option method Ans. (c)(iii) $-x_1 + 2x_2 \le 0$ $x y (x, y)$ $0 = 0 (0, 0)$ $2 = 1 (2, 1)$ $x = 1 (2,$	ABCFood I211Food II11Atleast req.9710 $2x + y \ge 9$ $x + y \ge 7$ $x = 2y \ge 10$ $2x + 3y \ge 12$ \therefore Food cannot be consumed in negative $x \ge 0 & y \ge 0$ 3. (c) By option method4. (a) By observation & option method5. (a) By option method Ans. (c)(iii) $-x_1 + 2x_2 \ge 0$ $x \ge 12, 12, 12, 12, 12, 12, 13, 12, 12, 13, 12, 12, 13, 13, 12, 13, 13, 12, 13, 13, 12, 13, 13, 12, 13, 13, 12, 13, 13, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13$	VitaminABCDFood I2112Food II11123Atleast req.971012 $2x + y \ge 9$ $x + y \ge 7$ $x = 2y \ge 10$ $2x + 3y \ge 12$ $x = 2y \ge 10$ $2x + 3y \ge 12$ (a) (b) $x \ge 0 & y \ge 0$ (b) (c) (c) $3.$ (c) By option method (c) $5.$ (a) By observation & option method $5.$ (a) By option method Ans. (c) (ii) $-x_1 + 2x_2 \le 0$ $x_1 - 2x_2 \ge 0$ $x > y (x, y)$ 0 $0 (0, 0)$ $2 = 1(2, 1)$ 1 1 4 4 4 4 4 4 (a)

a /	anac		
8.	(c)	As per given informa	tion
		$3x_1 + 3x_2 \leq 36$	
		$5x_1 + 2x_2 \le 50$	
		$2x_1 + 6x_2 \le 60$	
 		$x_1 \ge 0, x_2 \ge 0$	
 9.	(b)		$L_2: 5x_1 + 2x_2 \le 50$
 		$x_{1} x_{2} (x_{1}, x_{2})$	
		0 12 (0, 12)	
		12 0 (12, 0)	10 0 (10, 0)
 		$L_3 : x_1 + 3x_2 30$	
		$x_1 x_2 (x_1, x_2)$	Sol. lies in
		0 10 (0, 10)	1st Quadrant
		30 0 (30, 0)	Now by observation
			G V · · ce
 10.	(a)	By observation & opt	Now by observation
			S ENTE.
			- <u>1</u> 90 -
			(d(O))
		2	
			131

SELF ASSESSMENT TEST 5 LINEAR INEQUALITIES 12 Question, 12 MARKS

- 1. Find the range of values of x, which satisfy the inequality $-\frac{1}{5} \le \frac{3x}{10} + 1 < \frac{2}{5}, x \in \mathbb{R}$
 - a) {x : x E R, 4 < x < 2}
 - b) {x : x ∈ R, 4 < x < 2}
 - c) $\{x : x \in R, -4 \le x < 2\}$
 - d) $\{x : x \in R, -4 \le x < -2\}$

2. List the elements of the solution set of the in-equation – 3 < (x – 2) \leq (9 – 2x), x \in N.

- a) {0, 1, 2}
- b) {1, 2, 3}
- c) {1, 2, 3.67}
- d) None of the above
- 3. An animal feed company must produce 200 kg of a mixture consisting on ingredients X1 and X2. Not more than 80 Kg of X1 can be used and at least 60 kg of X2 must be used. The ingredient X1 costs Rs. 30 per kg and X2 costs Rs. 50 per kg. To determine the quantities of X1 and X2, give a mathematical formulation.

	_X1 + X2 =200	- 31	-X1+X2 ≤200)	
	X1 ≤80		_X1 ≤80	
α)	X2 ≥60	b)	X2 ≥60	
	[−] X1 ≥0, X2 ≥0 ∫		X1 ≥0, X2 ≥0	

	_X1+X2 ≤200		-X1+X2 ≥200	
	X1 ≤80		X1≥80	
c)	X2 ≤60	d)	X2 ≥60	
	$-X1 \ge 0, X2 \ge 0$		$X1 \ge 0, X2 \ge 0$	

J.K. SHAH C L A S S E S a Vergndg Enterprise

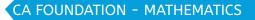
4. A machine producing either product A or B can produce A by using 2 units of chemical and 1 unit of a compound and can produce B by using 1 unit of chemical and 2 units of the compound. Only 800 units of chemical and 1000 units of the compound are available. Express this information by linear inequalities.

	—2A + B ≥800		-2A+B≤800)-		
	A + 2B ≥1000 }		A + 2B ≥1000 }		
α)	A ≥0,B ≥0	b)	A ≥0, B ≥0		
	—2A + B ≥800] —		-2A+B≤800		
	A + 2B ≤1000 }		A + 2B ≤1000 }		
c)	A ≥0,B ≥0	d)	A ≥0, B ≥0		

 A dealer wishes to purchase a number of fans and sewing machines. He has only Rs. 5760 to invest and has space at most for 20 items. A fan costs him Rs. 360 and a sewing machine Rs. 240. Express this information by linear inequalities.

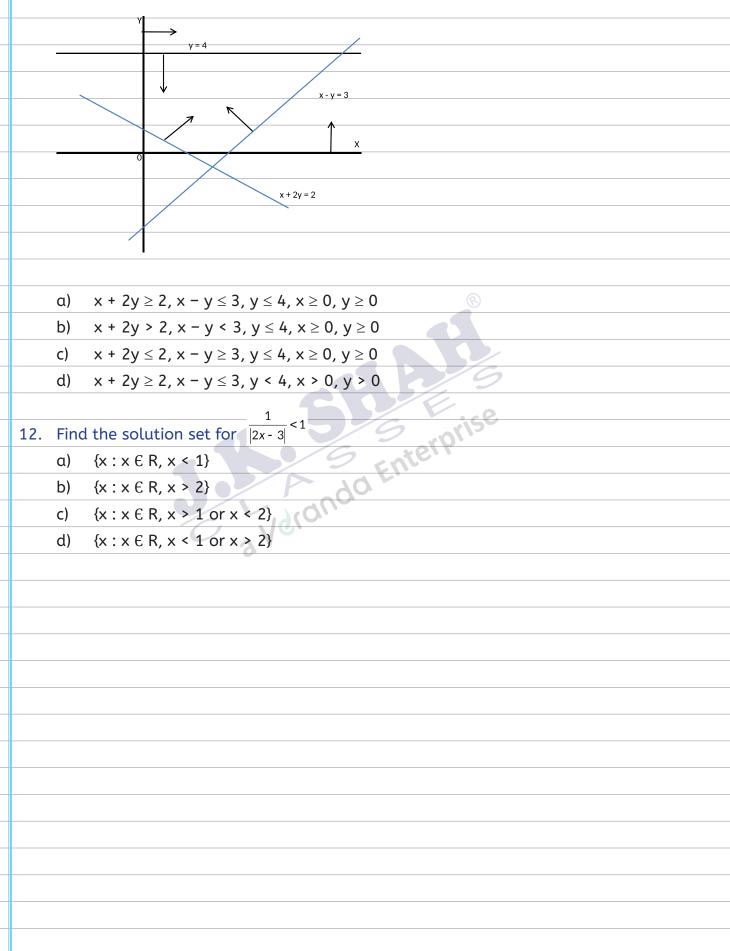
	x + y ≤20	$x + y \leq 20$
α)	$360x + 240y \le 5760$	b) $360x + 240y \ge 5760$
	- x ≥0,y ≥0	x ≥0, y ≥0
	$x + y \ge 20$	x + y ≤20
d)	$360x + 240y \le 5760$	d) $360x + 240y \le 5760$
- /	- x ≥0, y ≥0	x < 0, y < 0
	U	

6. A firm manufactures two products A and B. Each product is processed on two machines X and Y. The product A requires one minute of processing time on X and two minutes on Y while B requires one minute on X and one minute on B. Machine X us available for use for not more than 7 hours 30 minutes, while machine Y is available for 10 hours during any working day. Give the mathematical formulation to this linear problem.


α)	$ \begin{array}{c} A + B \leq 450 \\ 2A + B \leq 600 \\ A \geq 0, B \geq 0 \end{array} $	b)	$ \begin{array}{c} A + B \leq 7.30 \\ 2A + B \leq 10 \\ A \geq 0, B \geq 0 \end{array} $
c)	$ \begin{array}{c} A+B \leq 7.5 \\ 2A+B \leq 10 \\ A \geq 0, B \geq 0 \end{array} $	d)	$ \begin{array}{c} A+B \leq 45 \\ 2A+B \leq 60 \\ A \geq 0, B \geq 0 \end{array} $

J.K. SHAH C L A S S E S a Veranda Enterprise

A carpenter has 90, 80 and 50 running feet respectively of teak, plywood and 7. rosewood. The product A requires 2, 1 and 1 running feet and the product B requires 1, 2 and 1 running feet of teak, plywood and rosewood respectively. Give the mathematical formulation to this linear problem. $x + y \leq 50$ $x + y \leq 50$ $x + 2y \leq 90$ $x + 2y \le 80$ $2x + y \leq 80$ $2x + y \leq 90$ a) b) $x \ge 0, y \ge 0$ $x \ge 0, y \ge 0$ *x* + *y* ≤80 $2x + y \leq 50$ $x + 2y \leq 90$ $2x + 2y \leq 80$ $2x + y \leq 50$ $2x + y \leq 90$ c) d) $x \ge 0, y \ge 0$ $x \ge 0, y \ge 0$ 8. A firm manufactures two types of electrical items A and B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers, and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. Type B is an export model requiring a voltage stabilizer, restricted to 65 units per month. Give a mathematical formulation of this linear problem. Agrauge $3x + 2y \le 210^{\circ}$ $3x + 2y \le 210$ $2x + 4y \le 300$ 2x + 4y > 300x ≤65 x ≤65 a) b) $x \ge 0, y \ge 0$ $x \ge 0, y \ge 0$ $3x + 2y \ge 210$ $3x + 2y \le 210^{\circ}$ $2x + 4y \ge 300$ $2x + 4y \le 300$ y ≤65 d) c) y ≤65 $x \ge 0, y \ge 0$ $x \ge 0, y \ge 0$ 134


J.K. SHAH C L A S S E S a Veranda Enterprise

	av	eranaa Enterprise						
	9.	A confectioner manufactures two types of biscuits – One Regular type and the other						
		Non-regular type. The biscuits are processed in three main operations: Blending,						
		Cooking and I	Packaging	g. The ave	rage time	taken (in m	inutes) for each bo	x for each
		of the process	sing oper	ations is gi	ven below	•		
				Blending	Co	ooking	Packaging	
		Regulars		1 min	5	min	3 min	
		Non-Regulars	5	2 min	4	min	1 min	
		The Blending e	equipmer	nt is availal	ole for a ma	aximum of 1	12 hours, the Cookin	g facilities
		for 30 hours of	at the mo	ost, and Pa	ickaging ea	quipment fo	or maximum 15 hou	urs. Give a
		mathematica	l formulo	tion to thi	s linear pr	oblem.		
		x+2y ≤720)		_ x + 5y + 3z ≤7	/20]		
		5x + 4y ≤18			$2x + 4y + z \le 1$		®	
1		a) $3x + y \leq 900$)	b)	3 <i>x</i> + <i>y</i> ≤900			
		x ≥0,y ≥0	J		$x \ge 0, y \ge 0, z \ge$	≥0		
		$x + 2y + z \leq$	720)		_x + 2y ≤720		9	
		$x + 2y + 2 \le 5x + 4y + z \le$			$5x + 2y \le 720$	0	0	
+		c) $3x + y + z \le 3x + y + y + y + y + y + y + y + y + y + $	}	d)	$3x + y \le 900$	7	SE	
-		$x \ge 0, y \ge 0, x$		ц)	x < 0, y ≥0	J tett		
_								
	10	The standard	Woight	of a coast		brick is 5	and it contains	two basis
	10.						kg and it contains	
_		•					te that the brick co	
-			-				ine the amount of ir	igrealents
-		B1 and B2, given the second se						
		x + y = 5				$x + y \leq 5$	<u> </u>	
		$x \leq 4$	·			$x + y \le 3$ $x \le 4$ $y \le 2$		
		$\begin{array}{c} a) y \geq 2 \\ \hline x \geq 0, y \geq 0 \end{array}$			b)	$\frac{y \leq 2}{x \geq 0, y \geq 0}$	 	
		-)						
		x + y ≥5						
		x ≤4				x ≤4 y ≤2	<u>}</u>	
		b) $y \le 2$ $x \ge 0, y \ge 0$			d)	$y \leq 2$ 		
		∧ _0,y ≥0j				∧ <u>_</u> 0, y ∠0 j		
1								

J.K. SHAH C L A S S E S a Veranda Enterprise

11. Following is the solution of which of the set of linear in-equations:

	EXPLANATORY						
	ANSWERS						
1.	$-\frac{1}{5} \le \frac{3x}{10} + 1 < \frac{2}{5}, x \in \mathbb{R}$						
	$-2 \le 3x + 10 < 4$						
	$\Rightarrow -2 - 10 \le 3x + 10 + (-10) < 4 + (-10)$ $\Rightarrow -12 \le 3x < -6$						
	$\Rightarrow -4 \le x < -2$ Option D						
2.	$-3 < (x - 2) \le (9 - 2x), x \in N$						
	$-3 < (x - 2)$ and $(x - 2) \le (9 - 2x)$						
	$-1 < x \text{ and } (3x - 2) \le 9$						
	$-1 < x \text{ and } x \le 11/3$						
	$-1 < x \le 11/3$ but x $\in \mathbb{N}$						
	The solution set is {1, 2, 3}						
	Option B						
3.	An animal feed is the mixture of X1 kg of type X1 and X2 kg of type X2.						
	X1 + X2 = 200 (as weight of the mix is 200 kg)						
	$X1 \le 80$ (as not more than 80 kg of X1 can be used)						
	$X2 \ge 60$ (as at least 60 kg of X2 must be used)						
	X1, X2 \geq 0 (Non Negativity Constraint, as both ingredients should be used)						
	Option A						
4.	Let A units of product A and B units of product B are produced.						
	2A + B \leq 800 (Only 800 units of chemical are available)						
	A + 2B \leq 1000 (Only 1000 units of compound is available)						
	A, $B \ge 0$ (Non Negativity Constraint)						
	Option D						
5.	Let x units of fans and y units of sewing machines are purchased.						
	360x + 240y \leq 5760 (Maximum investment allowed is Rs. 5760)						
	x + y \leq 20 (Maximum units of x and y that can be stored are 20)						
	x, $y \ge 0$ (Non Negativity Constraint)						
	Option A						
	427						

6.	Let A units of product A and B units of product B are produced.
	A + B \leq 450 (7*60 + 30) (Maximum time available on Machine X is 7 hrs 30 minutes)
	2A + B \leq 600 (10*60) (Maximum time available on Machine Y is 10 hours)
	A, $B \ge 0$ (Non Negativity Constraint)
	Option A
7.	Let x units of Product A and y units of Product B are produced
	$2x + y \le 90$ (Maximum 90 feet of teak is available)
	x + $2y \le 80$ (Maximum 80 feet of plywood is available)
	x + y \leq 50 (Maximum 50 feet of rosewood is available)
	x, $y \ge 0$ (Non Negativity Constraint)
	Option B 🛞
8.	Let x units of item A and y units of item B are manufactured.
	3x + 2y ≤ 210 (Maximum 210 motors are available)
	2x + 4y ≤ 300 (Maximum 300 transformers are available)
	y ≤ 65 (Maximum 65 voltage stabilizers are available)
	x, y \geq 0 (Non Negativity Constraint)
	Option D
9.	Let x boxes of Regulars and y boxes of Non-Regulars are produced.
	x + $2y \le 720$ (12*60) (Maximum time available with blending equipment is 12 hours)
	$5x$ + $4y \leq 1800$ (30*60) (Maximum time available with cooking facilities is 30 hours)
	$3x + y \leq 900$ (15*60) (Maximum time available with Packaging equipment is 15
	hours)
	x, $y \ge 0$ (Non Negativity Constraint)
	Option A
10.	Let x kg of ingredient B1 and y kg of ingredient B2 is used
	x + y = 5 (The standard weight of the brick is 5 kg)
	$x \le 4$ (Maximum B1 to be used is 4 Kg)
	$y \ge 2$ (Minimum B2 to be used is 2 kg)
	x, $y \ge 0$ (Non Negativity Constraint)
	Option A

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

11.	$x \ge 0$ & $y \ge 0$, as solution set is in the first quadrant
	y = 4 line shading is towards the origin. Thus, y \leq 4
	x + 2y = 2 area is away from origin. Thus x + $2y \ge 2$
	x – y = 3 shaded portion is towards the origin (it lies to the right of origin). Thus $x - y$
	≤ 3
	Option A
12.	First, we note that $(2x - 3) \neq 0$, i.e. $x \neq 3/2$
	Also, for $x \neq 3/2$, $ 2x - 3 > 0$
	Thus, $\frac{1}{ 2x-3 } < 1 \longrightarrow 1 < 2x-3 $
	$\rightarrow 2x - 3 > 1 \rightarrow (2x - 3) < -1 \text{ or } (2x - 3) > 1$
	\rightarrow 2x < 2 or 2x > 4
	\rightarrow x < 1 or x > 2
	Hence the solution set is $\{x : x \in R, x < 1 \text{ or } x > 2\}$
	Option D
	Serprise Serprise Add Enterprise
	S Enteri
	da -
	L d (d l l

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

TIME VALUE OF MONEY

Simple Interest

Simple interest is charged on the principal amount and hence it is same for every year.

A = Amount, P = principal, n = number of years, R = interest rate

$$SI = \frac{PTR}{100}$$

$$\mathbf{A} = \mathbf{P} + \mathbf{SI} = \mathbf{P} + \frac{PTR}{100} = P\left(1 + \frac{TR}{100}\right)$$

Notes:

- If rate of interest is known, then sum of money will double itself in 100/r years.
- If number of years is known, then sum of money will double itself @ 100/n %.
- A sum of money will become "n" times in $\frac{(n-1) \times 100}{p}$ years.

Example:

In how many years a sum of money @10% p.a. SI will become (a) double, (b) triple,

(c) N times.

	<i>u</i> , <u> </u>		1
(a) Double	(b) Triple	(c) N times	
$\frac{(2-1) \times 100}{10} = 10 \text{ years}$	$\frac{(3-1) \ge 100}{10} = 20 \text{ years}$	$\frac{(N-1) \times 100}{10} = 10(N-1) \text{ years}$	

• If the sum of money becomes "n₁" times in T₁ years and "n₂" times in T₂ years, then the ratio of their times is: $\frac{T_1}{T_2} = \frac{n_1 - 1}{n_2 - 1}$.

Compound Interest							
•	In case of compound interest, the interest is calculated on the amount of the						
	succeeding years, i.e., principal keeps changing every year.						
•	Here interest on interest is also earned, thus money grow faster when						
	Compounding is done						

If P is the principal, n = number of years for which interest is calculated and "i"
 (R/100) is the rate of interest, then, the amount A after n years will be given by:

A=P(1+i)ⁿ

 In case of depreciation by diminishing balance method (WDV), if C = Cost of the machinery, I = rate of depreciation per annum and n = effective life of the machinery, then the depreciated value D after n years is :

$$D = C (1 - i)$$

D is also known as the scrap value of the machinery.

• Compound Interest thus would be calculated as follows:

$$CI = A - P = P \left| \left(1 + i \right)^n - 1 \right|$$

• Depending upon the compounding style of interest rate, the effective formula for calculating Amount would be as follows:

Half Yearly or Semi Annually	Quarterly	Monthly	
$A = P\left(1 + \frac{i}{2}\right)^{2n}$	$A = P\left(1 + \frac{i}{4}\right)^{4n}$	$A = P\left(1 + \frac{i}{12}\right)^{12n}$	

• When differential interest rates are charged $(i_1, i_2, i_3, \dots, i_n)$, then: $A = P(1+i_1)(1+i_2)(1+i_3)\dots(1+i_n)$

• Relationship between CI and SI

a) For the first year, CI = SI, i.e. for the first year difference is zero.

b) For two years, $CI - SI = Pi^2$

c) For three years, CI - SI = Pi²(i + 3)

Notes:

- A sum of money will double itself in approximately 72/r years (known as Rule 72), where r is the rate of interest per annum.
- 2. A sum of money will triple itself in approximately 114/r (known as Rule 114), where r is the rate of interest per annum.
- If a sum of money becomes "n" times in "t" years, then, it will become n^m times in "mt" years.

Example: If sum of money doubles itself in 3 years, then it will be 8 times (2³) in 3x3 = 9 years at CI.

a relation	
Concept	of Effective Rate of Interest
1.	When the compounding is done more than once a year, then, the net annual
	rate of interest is found to be slightly higher than the given annual rate of
	interest.
2.	This new rate of interest is known as the effective rate of interest and the given
	annual rate is called the nominal rate of interest.
3.	Effective rate of interest is denoted by E and is given by the formula:
	$E = \left\{ \left(1 + i \right)^n - 1 \right\} \ge 100$
	Where "i" is rate of interest, converted monthly, quarterly, half yearly and n is
	the number of conversion period per annum.
4.	Effective rate of interest are particularly useful in making investment decisions
	when various options are given with differential interest rates.
5.	Amongst various investment options, we shall choose that investment option,
	where effective rate of interest is maximum.
Concept	of Present Value
Pres	sent Value is defined as the present worth of the money that would yield an
amo	ount A after n years at a specified rate of interest i.

CA FOUNDATION - MATHEMATICS

If
$$A = P(1+i)^n$$

 $\therefore P = PV = Principal = \frac{A}{(1+i)}$
 $or, PV = A(1+i)^{-n}$

Annuities

- Annuity is defined as a series of payments (usually equal) which are made at regular intervals of time (usually a year).
- The period for which the payment continues is called the status or the term of the annuity.

J.K. SHAH CLASSES a Vergndg Enterprise

- Unless otherwise stated, the first payment will fall due at the end of every year. This is known as "Ordinary Annuity".
- When the payment falls due at the beginning of every year, i.e., immediately, it is called "Immediate Annuity".
- When the status or term of the annuity is not fixed, i.e., the payment is to be continued for an indefinite period, these are known as "Perpetual Annuity or Perpetuity".
- Hence forth, we shall maintain the following notation throughout. The regular annual payment i.e., annuity = P, rate of interest = "i" and the period for which payment is made = n (status or term of the annuity).
- The amount of the ordinary annuity is given by:
- The amount of immediate annuity is obtained by multiplying amount obtained for ordinary annuity by (1 + i); hence the formula becomes: $A = \frac{P}{i} \{ (1+i)^n - 1 \} (1+i)$

 $A = \frac{P}{i} \left\{ \left(1+i\right)^n - 1 \right\}$

- Note:
 - When half yearly or quarterly or monthly payment is "P", in such a case change "i" to i/2 or i/4 or i/12 and change "n" to 2n or 4n or 12n respectively.
 - 2. When half yearly, quarterly or monthly rate of interest is "i", in such a case, change P to P/2, P/4 or P/12 and change n to 2n or 4n or 12n respectively.
- The present value of an annuity payable over a period of n years is defined as the sum of the present value of all the future payments.

J.K. SHAH CLASSES a Veranda Enterprise

• The present value of an ordinary annuity is represented by V and given as follows:

$$V = \frac{P}{i} \{ 1 - (1 + i)^{-n} \}$$

 If the term of the annuity is n years, then for evaluating the present value of the immediate annuity, first calculate the present value of the annuity for (n-1) years and then add to it the initial or first payment.

$$v = \frac{P}{i} \{ 1 - (1 + i)^{-n} \} (1 + i)$$

Present value of the perpetual annuity is given by,

$$V = P/i$$

Important concepts related to CA Inter and CA Final

Financial Management

Sinking Fund

1.

•

It is the fund credited for a specified purpose by way of sequence of periodic payments over a time period at a specified interest rate. Interest is compounded at the end of every period. Size of the sinking fund deposit is computed from A = P.A(n, i) where A is the amount to be saved, P the periodic payment, n the payment period.

nterprise

2. Leasing

Leasing is a financial arrangement under which the owner of the asset (lessor) allows the user of the asset (lessee) to use the asset for a defined period of time(lease period) for a consideration (lease rental) payable over a given period of time. This is a kind of taking an asset on rent.

3. Capital Expenditure (investment decision)

Capital expenditure means purchasing an asset (which results in outflows of money) today in anticipation of benefits (cash inflow) which would flow across the life of the investment. For taking investment decision we compare the present value of cash outflow and present value of cash inflows. If present value of cash inflows is greater than present value of cash outflows decision should be in the favour of investment. J.K. SH a Vergoda Enterprise

Valuation of Bond

A bond is a debt security in which the issuer owes the holder a debt and is obliged to repay the principal and interest. Bonds are generally issued for a fixed term longer than one year.

5. Perpetuity

4.

 (\square)

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually. Fixed coupon payments on permanently invested (irredeemable) sums of money are prime examples of perpetuities.

The formula for evaluating perpetuity is relatively straight forward. Two points which are important to understand in this regard are:.

- (a) The value of the perpetuity is finite because receipts that are anticipated far in the future have extremely low present value (today's value of the future cash flows).
- (b) Additionally, because the principal is never repaid, there is no present value for the principal.

Therefore, the price of perpetuity is simply the coupon amount over the appropriate discount rate or yield. nterprise

Calculation of multi period perpetuity:

The formula for determining the present value of multi-period perpetuity is as follows:

$$PVA\infty = \frac{R}{(1+i)^{1}} + \frac{R}{(1+i)^{2}} + \frac{R}{(1+i)^{3}} + \dots + \frac{R}{(1+i)} = \sum_{n=1}^{\infty} \frac{R}{(1+i)^{n}} = \frac{R}{i}$$

Where:

R = the payment or receipt each period

i = the interest rate per payment or receipt period

6. **Calculation of Growing Perpetuity**

A stream of cash flows that grows at a constant rate forever is known as growing perpetuity. The formula for determining the present value of growing perpetuity is as follows:

$$PVA = \frac{R}{(1+i)^{1}} + \frac{R(1+g)}{(1+i)^{2}} + \frac{R(1+g)^{2}}{(1+i)^{3}} + \dots + \frac{R(1+g)^{\infty}}{(1+i)^{\infty}}$$

 $\sum_{i=1}^{\infty} \frac{R(1+g)^{n-1}}{i!}$ R i - g

J.A. SHAH CLASSES CLASSES
a Veranda Enterprise
7. Net Present Value
 Net present value = Present value of net cash inflow - Total net initial investment
 Since it might be possible that some additional investment may also be required during
 the life time of the project then appropriate formula shall be:
 Net present value = Present value of cash inflow – Present value of cash outflow
 The steps to calculate net present value are:-
 1. Determine the net cash inflow in each year of the investment.
 2. Select the desired rate of return or discounting rate or Weighted Average Cost of
 Capital.
3. Find the discount factor for each year based on the desired rate of return selected.
4. Determine the present values of the net cash flows by multiplying the cash flows by
respective the discount factors of respective period called Present Value (PV) of Cash
flows
5. Total the amounts of all PVs of Cash Flows
Decision Rule:
If NPV > 0Accept the Proposal
If NPV > 0Accept the Proposal If NPV < 0Reject the Proposal
 Ad L.
8. Nominal Rate of Return
The nominal rate is the stated interest rate. If a bank pays 5% annually on a savings
account, then 5% is the nominal interest rate. So if you deposit ₹ 100 for 1 year, you will
receive ₹ 5 in interest.
However, that Rs. 5 will probably be worth less at the end of the year than it would have
been at the beginning. This is because inflation lowers the value of money. As goods,
services, and assets, such as real estate, rise in price.
The nominal interest rate is conceptually the simplest type of interest rate. It is quite
simply the stated interest rate of a given bond or loan. It is also defined as a stated
interest rate. This interest works according to the simple interest and does not take into
account the compounding periods.

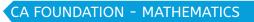
Real Rate of Return: The real interest rate is so named because it states the "real" rate that the lender or investor receives after inflation is factored in; that is, the interest rate that exceeds the inflation rate.

J.K. SH a Vergoda Enterprise

A comparison of real and nominal interest rates can therefore be summed up in this equation:

Nominal Rate of Return - Inflation = Real Rate of Return

Nominal Interest Rate = Real Interest Rate + Inflation


9. Compound Annual Growth Rate (CAGR)

Compound Annual Growth Rate (CAGR) is a business and investing specific term for the smoothed annualized gain of an investment over a given time periodit is not an accounting term, but remains widely used, particularly in growth industries or to compare the growth rates of two investments because CAGR dampens the effect of volatility of periodic returns that can render arithmetic means irrelevant. CAGR is often used to describe the growth over a period of time of some element of the business, for example revenue, units delivered, registered users, etc.

$$\mathsf{CAGR}(\mathsf{t}_{0'},\mathsf{t}_{n}) = \left(\frac{\mathsf{V}(\mathsf{t}_{n})}{V(\mathsf{t}_{0})}\right)^{\frac{1}{\mathsf{t}_{n}-\mathsf{t}_{0}}} - 1$$

Where V(t_0) = Beginning Period ; V(t_n) = End Period Ada Enterpris

CLASSWORK SECTION

SIMF	PLE INTEREST				
1.	How much interes	st wil	l be earned on Rs.	4000 at 6% p.a. s	imple interest for 2 yrs?
	(a) 450	(b)	480	(c) 500	(d) 540
2.	A deposited 1,00,	000	in a bank for 2 yec	ars with the interes	t at 5.5% p.a. What will
	be the final value	of ir	nvestment?		
	(a) 1,00,000	(b)	1,11,000	(c) 1,20,000	(d) 1,30,000
3.	Find rate of intere	est if	the amount owed	after 6 months is	2100, borrowed amount
	being Rs. 2000.			R	
	(a) 10%	(b)	8%	(c) 9%	d 11%
4.	P = 5000, N = 1, I	= 30	0, R will be	/9	
	(a) 5%	(b)	4%	(c) 6%	(d) none
				Srouse	
5.	46875 was lent o	ut at	SI and at the end	of 1 yr 8 months, te	otal amount was 50000.
	Find rate of int pe	er an	num?		
	(a) 2%	(b)	4%	(c) 6%	(d) 8%
			310		
6.	Sum required to e	earn	quarterly interest o	of 3600 at 18% p.c	ı. is
	(a) 50,000	(b)	60,000	(c) 80,000	(d) none
7.	In how much time	e wo	uld SI on a certair	n sum be 0.125 tim	nes the principal at 10%
	p.a.?				
	(a) 1 ¼ years	(b)	1.5 years	(c) 1 ¾ years	(d) 2 ¼ years
8.		noun	ts to 6804 on 20 y	rs. What sum will	amount to 5200 in 6 yrs
	at same rate?			() = = = = =	
	(a) 3000	(b)	4000	(c) 5000	(d) 600
	20000			+ 400/	
9.					partly at 15% p.a. Total
				vested at lower rat	
	(a) 20000	(b)	24000	(c) 26000	(d) 28000

		ASSES dranda Enterprise				CA FOL	JNDATION - MATHEMATICS	
			ad by	making a down	navmont of	15000	and balance to be paid	
+	10.	•					and balance to be paid	
-		of the bike.	si ut s	570 p.u. 101 2 yrs.		ni pulu	is 28200. Find cash price	:
-			(h)	26000	(c) 27000		(d) 25000	
_		(a) 28000	(b)	26000	(c) 27000		(d) 25000	
+	11	A cortain cum an	00112+	c to 7/00 in 2	and 0600 in		Find the cum and rate of	ç
_	11.	interest	nount	5 to 1400 iff 5 yrs		i 4 yi S.	Find the sum and rate of	l
-					(h) 2 000	2504		
-		(a) 3800, 31.579	0		(b) 3,000,	2370		
-		(c) 3,500, 20%			(d) none			
	12	A cortain sum da	hubles	itself in 20 yrs. h	n how many	Vegrai	t will become 7 times	
-	12.	(a) 100		120		years I		
		(u) 100	(b)	120	(c) 140	R	(d) none	
_	12	Mr. Y takas laar	of 700	10 for 8 ure After	2 urc ho take		more Total interact agid	1
-	13.						more. Total interest paid	ι
				s 3550. Find the r			(d) none	
-		(a) 4% p.a.	(b)	5% p.a.	(c) 6% p.a		(d) none	
_						rise		
	PASI	F EXAM QUESTION	15		-*er	7		
		= 0.000 l	-		Ente	1	t The second states and	
	14.						t. The amount that will	L
				ears at the same				
_		(a) ₹4,850	(b)	₹ 5,000	(c) ₹ 5,500)	(d) ₹ 5,275	
_	4 =		• •					
	15.						first 3 years, 8% p.a. for	
				•			ars. If the simple interest	[
				r a period for 10	-			
_		(a) ₹1,500	(b)	₹ 2,000	(c) ₹ 3,000)	(d) ₹ 5,000	
_								<u> </u>
	16.		doubl	es itself in 10 yea	rs. The numb	per of ye	ears it would treble itself	t
		is :					(I)	
		(a) 25 years	(b)	15 years	(c) 20 yeaı	rs	(d) none	
				149				
				149				

a Veranda Enterprise 17. If ₹ 1,000 be invested at interest rate of 5% and the interest be added to the principal every 10 years, then the number of years in which it will amount to ₹ 2,000 is: (b) $16\frac{1}{4}$ years (a) $16\frac{2}{3}$ years (d) $16\frac{1}{3}$ years (c) 16 years 18. Two equal sums of money were lent at simple interest at 11% p.a. for $3\frac{1}{2}$ years and $4\frac{1}{2}$ years respectively. If the difference in interests for two periods was ₹ 412.50, then each sum is: (a) ₹ 3,250 (b) ₹3,500 (c) ₹ 3,750 (d) ₹ 4,350 19. Find the numbers of years in which a sum doubles itself at the rate of 8% per annum. (b) 12 1/2 (a) $11\frac{1}{2}$ (d) $13\frac{1}{2}$ (c) $9\frac{1}{2}$ 20. If a simple interest on a sum of money at 6% p.a. for 7 years is equal to twice of simple interest on another sum for 9 years at 5% p.a. The ratio will be (b) 7:15 (c) 15:7 (a) 2:15 (d) 1 : 7 21. If the simple interest on ₹ 1,400 for 3 years is less than the simple interest on ₹ 1,800 for the same period by ₹ 80, then the rate of interest is (a) 5.67% 6.67% (c) 7.20% (d) 5.00% (b) The S.I. on a sum of money is $\frac{4}{9}$ of the principal and the no. of years is equal to the 22. rate of interest per annum. Find the rate of interest per annum? (a) 5% (b) 20/3% (c) 22/7% (d) 6% 23. Mr. X invests ₹ 90,500 in post office at 7.5% p.a. simple interest. While calculating the rate was wrongly taken as 5.7% p.a. The difference in amounts at maturity is ₹9,774. Find the period for which the sum was invested: (a) 7 years (b) 5.8 years (c) 6 years (d) 8 years

TI								
	ASSES		CA FO	UNDATION - MATHEMATICS				
	dranda Enterprise		a surface stands at the set of the					
24.	A sum of ₹ 44,000 is divided into three parts such that the corresponding interest							
				al. If the rates of simple				
		1., 8% p.a. and 6% p.a	. respectively, ther	n the smallest part of the				
	sum will be :							
	(a) ₹ 4,000	(b) ₹8,000	(c) ₹ 10,000	(d) ₹ 12,000				
25.			-	nual simple interest. He				
	immediately lends	to another person at	6 🛓 🤲 %. Per annua	al for 2 years find his gain				
	in the transaction	for per year:						
	(a) ₹112.50	(b) ₹225	(c) ₹ 125	(d) ₹ 107.50				
26.	A man invests an o	amount of ₹ 15,860 in	the names of his	three sons A, B and C in				
	such a way that th	ney get the same SI af	ter 2, 3 and 4 yea	rs respectively. If the rate				
	of interest is 5%, t	hen the ratio of amou	nt invested in the	name of A, B and C is				
	(a) 6:4:3	(b) 3:4:6	(c) 30 : 12 : 5	(d) none of these				
			/9	2				
СОМ	POUND INTEREST	G						
			9 orise					
27.	Find amount for a	sum of 4000 at 8% p.	a. for 5 yrs compo	ounded annually?				
	(a) 5877	(b) 6577	(c) 8577	(d) 5677				
	C	L'I'GUA						
28.	Find C-I for a sum	of 8000 at 4% p.a. fo	r 6 yrs compounde	ed half yearly?				
		(b) 2416	(c) 2164	(d) 2641				
29.	Find amount and	C-I for a sum of 60	00 at 12% p.a. f	or 3 years compounded				
	quarterly?		· ·					
	(a) 8554.5, 2554.5	5	(b) 7554.5,1554.	5				
	(c) 9554.5, 3554.5		(d) 6554.5,554.5	-				
		-	(0,000,00,00,00					
30.	Find amount for a	sum of 10000 at 6% p	a for 2 years co	mpounded monthly?				
50.		(b) 11712	(c) 11271	(d) 12117				
	(~/ IEIII	\~/ <u>+</u> + + + + E	(~) IIL I	(~/ 1611)				
31.	Find present value	of 10000 due in 2 vrs a	t 5% n.a. compour	nd interest paid annually?				
51.		(b) 9070	(c) 9080	(d) 9090				
	(u) 3030			(4) 3030				

al	dranda Enterprise				
32.	Find present val	ue of a	20000 due in	3 yrs at 6% p.a. C-I	paid half yearly?
	(a) 16570	(b)	16500	(c) 16750	(d) 16075
33.	A machinery is d	lepreci	ated at 10%	p.a. for 3 yrs costing F	Rs. 50000.Find scrap value?
	(a) 36400	(b)	36450	(c) 36500	(d) 36550
34.	Find depreciatio	n if m	achinery wor	th 12000 is depreciate	ed at 6% p.a. for 4 yrs?
	(a) 2631.8	(b)	2613.8	(c) 2361.8	(d) 2316.8
35.	A machinery wo	orth 10	000 is depre	ciated at the rate of	10% p.a. for first 3 yrs. 8%
	p.a. for next 2 y	rs. Fin	d its value af	fter 5 yrs.	
	(a) 5170.25	(b)	7170.25	(c) 6170.25	(d) 8170.25
36.	An investment o	of 2000	0 sums on in	nterest of 6% p.a. for f	first 4 yrs 5% p.a. for next 3
	yrs and 4% p.a.	for ne	xt 2 yrs. Find	value of investment	after 9 yrs where interest is
	compound annu	ıally			3
	(a) 31441.62	(b)	31614.62	(c) 31416.62	o (d) 31641.62
				9 roris	
37.	Difference betwe	een C-	I and SI at 50	% p.a. for 2 yrs on a s	sum of 6000 is
	(a) 10	(b)	12	(c) 15	(d) 18
			120		
38.	Difference betwe	een Cl	and SI on 10	000 at 5% p.a. for 4 y	yrs is
	(a) 150	(b)	155	(c) 160	(d) 165
39.	A sum of money	1 at 5%	6 p.a. CI dout	ole in	
	(a) 14 yrs (appr	ox.)		(b) 16 yrs (appr	rox.)
	(c) 18 yrs (appr	ox.)		(d) 19 yrs (appr	rox.)
40.	In how many ye	ears a	sum of mon	ey trebles at 5% p.a.	. CI payable on half yearly
	basis				
	(a) 20 yrs 3 moi	nths		(b) 21 yrs 3 mo	onths
	(c) 22 yrs 3 mo	nths		(d) 24 yrs 3 mo	onths
41.	A sum at a cert	ain ra	te of interest	compounded annual	ly doubles in 5 yrs. In how
	many yrs will it	becom	ne 8 times		
	(a) 10	(b)	15	(c) 18	(d) 20

	R								
<u>J</u>	K. SHAH			CA	Foundation - Mathematics				
a	Veranda Enterprise								
PAS	ST EXAM QUESTION	IS							
42.	The difference be	etwee	n the simple	and compound inter	rest on a certain sum for 3				
	year at 5% p.a. is ₹ 228.75. The compound interest on the sum for 2 years at 5%								
	p.a. is								
	(a) ₹3,175	(b)	₹ 3,075	(c) ₹ 3,275	(d) ₹ 2,975				
43.	In what time wil	ll ₹ 3,	,90,625 amoi	unt to ₹ 4,56,976 at	8% per annum, when the				
	interest is compo	ounde	d semi-annu	ally?					
	(a) 2 years	(b)	4 years	(c) 5 years	(d) 7 years				
44.	The annual birth	n and	death rates	per 1000 are 39.4	and 19.4 respectively. The				
	number of years	s in w	hich the pop	oulation will be dou	bled assuming there is no				
	immigration or e	migro	ition is:	P)				
	(a) 35 years	(b)	30 years	(c) 25 years	(d) none of these				
					/				
45.	A person deposi	ted ₹	5000 in a bo	ink. The deposit was	left to accumulate at 6%				
	compounded que	arterly	, for the first f	ive years and at 8% c	ompounded semi-annually				
	for the next eigh	t year	s. The compo	und amount at the e	end of 13 years is:				
	(a) ₹12621.50	(b)	₹ 12613.10	(c) ₹ 13613.10	(d) none				
				- 40 E					
46.	A sum amount t	o₹1,	331 at a prin	cipal of ₹ 1,000 at 1	.0% compounded annually.				
	Find the time.	\mathcal{O}	2 Ver						
	(a) 3.31 years	(b)	4 years	(c) 3 years	(d) 2 years				
47.	Mr. X invests 'P'	amou	nt at simple	interest rate 10% ar	nd Mr. Y invests 'Q' amount				
	at compound int	erest	rate 5% com	oounded annually. A	t the end of two years both				
	get the same am	nount	of interest, tl	nen the relation betw	veen two amounts P and Q				
	is given by								
	410		410						
	(a) $P = \frac{41Q}{80}$	(b)	$P = \frac{41Q}{40}$						
	410		410						
	(c) $P = \frac{41Q}{100}$	(d)	$P = \frac{41Q}{100}$						
48.	A sum of money	comp	ounded annu	ally becomes ₹ 1,14	0 in two years and ₹ 1,710				
	in three years. F	ind th	e rate of inte	rest per annum.					
	(a) 30%	(b)	40%	(c) 50%	(d) 60%				

CA FOUNDATION - MATHEMATICS a Veranda Enterprise 49. A sum of money invested of compound interest doubles itself in four years. It becomes 32 times of itself at the same rate of compound interest in (a) 12 years (b) 16 years (c) 20 years (d) 24 years 50. A compound interest on a sum for 2 years is ₹ 30 more than the simple interest at the rate of 5% per annum then the sum is (a) ₹ 11,000 (b) ₹13,000 (c) ₹ 12,000 (d) ₹ 15,000 51. If compound interest on any sum at the rate of 5% for two years is ₹ 512.50 then the sum would be: (a) ₹ 3,000 (b) ₹4,000 (c) ₹ 5,000 (d) ₹ 6,000 52. If compound interest on a sum for 2 years at 4% per annum is ₹ 102, then the simple interest on the same sum for the same period at the same rate will be (a) ₹99 (c) ₹ 100 (b) ₹101 (d) ₹ 95 **EFFECTIVE RATE OF INTEREST** 53. Effective annual rate of interest compounding to a nominal rate of 6% p.a payable half yearly is (b) 6.08 (c) 6.09 (a) 6.07 (d) none 54. Effective rate of interest of 8% p.a. converted monthly is (a) 8% (c) 8.43% (d) 8.30% (b) 8.34% 55. Which is a better investment? (i) 9% p.a. compounded half yrly. (ii) 9.23% p.a. S.I. (c) both (d) none (a) (i) (b) (ii) ANNUITY (FUTURE VALUE) 56. The amount of annuity of 6,000 payable at the end of each 3 months for 4 years compounded Quarterly at 8% p.a. (a) 111836 (b) 110836 (c) 112836 (d) 113836

 al	dranda Enterprise					
57.	The amount of	annuit	y of Rs. 2000	payable at the end	of each year for 5 years at	
	8% p.a. is					
	(a) 11733.86	(b)	14502.6	(c) 21005.8	(d) 16721.31	
58.	A company req	uires 20	0,00,000 at th	ne end of 10 yrs to re	place one of its assets. It is	
	decided to crea	te a sir	king fund by	investing a fixed amo	unt every year in securities	
	which gives 109	% CI. Ye	early investme	ent is		
	(a) 124590	(b)	125490	(c) 154290	(d) 145290	
59.	A company issu	ued 10	% cumulative	e debentures of Rs. 1	00 each, 5000 cumulative	
	debentures are	to be	redeemed wi	th 10% of interest fo	or 5 yrs. For this a Sinking	
	Fund is created	and in	vested at 12%	6 rate of C.I. Sum to b	e transferred every year to	
	sinking fund is			®		
	(a) 805500	(b)	126834.64	(c) 207382	(d) 126755	
60.	The value of th	e amo	unt at the en	d of 12 years of an a	nnuity of 1200 payable at	
	the beginning c	of each	year for 12 yi	rs at 8% p.a. C.I is	0	
	(a) 26879.32	(b)	3432.11	(c) 24594.35	(d) none	
				Scnteir		
61.	A machine cost	ting 5,2	20,000 with c	an estimated life of 2	25 years. A sinking fund is	
	created to repl	ace it b	y new model	at 25% higher cost o	after 25 years with a scrap	
	value realizatio	on of 2!	5000. What a	mount should be set	aside every year if sinking	
	fund investmen	t at 3.!	5% C.I p.a.?			
	(a) 16000	(b)	16500	(c) 16050	(d) 16005	
62.	Ratan aged 45	wishes	his wife Ratno	a to have 40 lacs at h	is death. His expectation of	
	life is another 3	0 years	and he starts	s making equal annuc	Il investments commencing	
	now at 3% p.a.	, how r	nuch should I	he invest annually?		
	(a) 84077	(b)	81628	(c) 84450	(d) none	
ANN	IUITY (PRESENT \	/ALUE)				
63.	A loan of 30,00	0 at th	e interest rate	e of 6% compounded of	annually is to be amortized	
	by equal paym	ents at	the end of ed	ach year for 5 years. F	ind annual payment.	
	(a) 6121.89	(b)	7121.89	(c) 8121.89	(d) 9121.89	
			•	155		

J. CL	K. SHAH			CA F	OUNDATION - MATHEMATICS	
 a۷	dranda Enterprise					
64.	Present value of	f an a	nnuity which	pays 200 at the end	of each 3 months for 10	
	years, assuming	mone	ey to be wort	h 5% p.a. converted qu	larterly.	
	(a) 3809.20	(b)	3109.60	(c) 6265.38	(d) none	
65.	Pravin buys a ho	use p	aying Rs. 50,0	000 in cash and balanc	e in 20 installments of Rs.	
	8,000 each at th	ne end	l of each yea	r. If interest is at 16%	p.a., how much he should	
	have paid if had	purch	nased it cash	down.		
	(a) 85250	(b)	94730	(c) 97430	(d) 87589	
66.	P.V. of an annuit	ty of I	Rs. 80 made	at the end of each 6	months forever, if money	
	worth 4% p.a. is	comp	ounded sem	i-annually		
	(a) 2000	(b)	3000	(c) 4000	(d) 5000	
67.	A man purchase	d hous	se valued at 3	3,00,000 by making a p	ayment of 2,00,000 at the	
	time of purchase	e and	agreed to pay	y balance with interest	at 12% p.a. compounded	
	half yearly in 20) equo	ıl half yearly	installments. If first i	nstallment is paid after 6	
	months from the	e date	of purchase	then amount of each i	nstallment is	
	(a) 8719	(b)	8679	(c) 7719	(d) 8769	
				Senterr		
68.	John wants to cr	reate o	a fund to don	ate 1800 every month	to a deprived family. Rate	
	of unit is 12% p.	a. Fin	d amount to	be deposited		
	(a) 360000	(b)	180000	(c) 90000	(d) none	
69.	A company borr	ows 1	0000 on con	dition to repay it with	C.I. at 5% p.a. by annual	
	installments of 3	1000 (each. The nur	mber of years by which	debt will be cleared is	
	(a) 14.2	(b)	10	(c) 12	(d) 17	
 70.	A person retires	at 60	years receivir	ng a pension of 14,400	a year paid in half yearly	
	installments for	the re	st of his life w	vith his life expectation	to be 13 years and interest	
	at 4% p.a. payal	ble ho	llf yearly. Wh	at single sum is equive	alent to his pension?	
	(a) 144000	(b)	144900	(c) 144600	(d) 144300	
71.	If discount rate i	s 7%	p.a., how mu	ch would you pay to re	eceive 500, growing at 5%	
	annually forever	?				
	(a) 25000	(b)	250000	(c) 2500	(d) none	

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

PAS	T YEARS QUESTION							
72.	. A machine can be purchased for ₹50,000. Machine will contribute ₹12,000 per year							
	for the next five years. Assume borrowing cost is 10% per annum. Determine whether							
	machine should be purchased or not:							
	(a) Should be purchase	d	(b) Should not be	purchased				
	(c) Can't say about pur	chase	(d) None of the ab	oove				
73.	A company considering	proposal of pur	chasing a machin	e either by, making full				
	payment of ₹4000 or by	leasing it for fou	r years at an annu	ial rate of ₹1,250. Which				
	course of action is prefer	able, if the compo	any can borrow mo	ney at 14% compounded				
	annually?							
			[Given: (1.1	4)4 = 1.68896]				
	(a) Leasing is preferable	e	(b) Should be Pure	chased				
	(c) No difference		(d) None of these					
74.	Vipul Purchases a car fo	or ₹5,50,000. He g	ets a loan of ₹5,00	0,000 at 15% P.a. from a				
	bank and balance ₹50,0	00 he pays at the	time of purchase.	He has to pay the whole				
	amount of loan in 12 eq	ual monthly insta	alments with intere	est starting from the end				
	of the first month. The money he has to pay at the end of every month is:							
			[Given (1.0125) ¹² = 1.16075452]				
	(a) ₹ 45,130.43 (b) ₹ -	45,230.43	(c) ₹ 45,330.43	(d) ₹ 45,430.43				
		310						
75.	A company establishes	a sinking fund to	provide for the pay	/ment of ₹ 2,00,000 debt				
				nade at the end of every				
	year. Find the amount o			5% per annum.				
	(a) ₹ 6,142 (b)	₹ 6,049	(c) ₹ 6,052	(d) ₹ 6,159				
76.				years (useful life) at an				
	-	5. 5	-	100. If the company can				
	borrow money at 18% p	-						
	(a) Leasing (b)	Purchasing	(c) Can't say	(d) None of these				
77.				₹5 lacs at the end of 25				
			-	ofits each year provided				
	sinking fund investment		•					
	(a) ₹12,006 (b)	₹ 12,040	(c) ₹ 12,039	(d) ₹ 12,035				

CA FOUNDATION - MATHEMATICS a Veranda Enterprise 78. Find the present value of an annuity of ₹1,000 payable at the end of each year for 10 years. If rate of interest is 6% compounding per annum (Given $(1.06)^{-10} = 0.5584$): (c) ₹ 12,000 (a) ₹ 7,360 (b) ₹8,360 (d) None of these 79. The future value of an annuity of ₹ 5,000 is made annually for 8 years at interest rate of 9% compounded annually. [Given (1.09)⁸ = 1.99256] is _ (a) ₹ 55,142.22 (b) ₹ 65,142.22 (c) ₹65,532.22 (d) ₹ 57,425.22 80. A person wants to lease out a machine costing ₹ 5,00,000 for a 10 year period. It has fixed a rental of ₹ 51, 272 per annum payable annually starting from the end of first year. Suppose rate of interest is 10% per annum compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of lessee (b) Favour of lessor (c) Not for both (d) Can't be determined Typical Sums related to Important Concepts 81. If the nominal rate of growth is 17% and inflation is 9% for five years. Let P be the Gross Domestic Product (GDP) amount at the present year then the projected real GDP after 6 years is (B) 1.921 P (A) 1.587 P (C) 1.403 P (D) 2.51 P Let the operating profit of a manufacturer for five years is given as: 82. Year 1 2 3 4 5 6 107.14 Operating profit (in lakh *) 90 100 106.4 120.24 157.35 Then the operating profit of Compound Annual Growth Rate (CAGR) for year 6 with respect to year 2 is given at (A) 9% (B) 12% (C) 11% (D) 13% 83. If the cost of capital be 12% per annum, then the net present value (in nearest *) from the given cash flow is given as Year 0 1 2 3 Operating profit (in lakh *) (100)60 40 50 (A) 31048 (B) 34185 (C) 21048 (D) 24187

J.K. SHAH®
CLASSES
a Veranda Enterprise

84.	Madhu takes a	a loan of 50,000 fron	n ABC Bank LTD.The r	ate of interest is 10% per	
	annum. The fi	rst instalmennt will I	pe paid at the end o	f five year. Determine the	
	amount (in) of	equal instalments, if I	Madhu wishes to repa	y the amount in five years.	
	(a) ₹ 19,510	(b) ₹ 19,430	(c) ₹ 19,310	(d) ₹ 16,630	
			®		
				2	
				3	
		C		2.	
			S Enterpris		
			9 enteri		
			90 L.		
		did in the second secon			
			50		

HOMEWORK SECTION

1.	S.I on ₹ 3,500 fo	r 3 yeo	ars at 12% pe	r annum is			
	(a) ₹1,200	(b)	₹ 1,260	(c) ₹2,26	60 (d)	none of these	
2.	P = 5,000, R = 1	5, T =	4 ½ using I = I	PRT/100, I will	be		
	(a) ₹3,375	(b)	₹ 3,300	(c) ₹ 3,735	5 (d)	none of these	
3.	If P = 5,000, T =	1, =	₹ 300, R will b	e			
	(a) 5%	(b)	4%	(c) 6%	(d)	none of these	
4.	lf P = ₹ 4,500, A	=₹7,2	200, than Sim	ple interest i.e.	I will be		
	(a) ₹2,000	(b)	₹ 3,000	(c) ₹ 2,50	00 (d)	₹ 2,700	
5.	P = ₹ 12,000, A	= ₹ 16	,500, T = 2 ½	years. Rate pe	rcent per an	num simple interest	
	will be		<u> </u>				
	(a) 15%	(b)	12%	(c) 10%	(d)	none of these	
				9 Enter			
6	P = ₹ 10,000, I =	₹ 2,50	00, R = 12 ½%	SI. The numbe	er of years T	will be	
	(a) 1 ½ years	(b)	2 years	(c) 3 years	s (d) ı	none of these	
			ave				
7.	P = ₹ 8,500, A =	₹ 10,2	00, R = 12 ½	% SI, t will be.			
	(a) 1 yr. 7 mth.	(b)	2 yrs.	(c) 1 ½ yr.	. (d)	none of these	
 8.	The sum require	d to ea	arn a monthly	interest of ₹ 1,	200 at 18%	per annum SI is	
	(a) ₹ 50,000		(b)₹60,000				
	(c) ₹80,000		(d) none of t	hese			
9.				in 2 years and	₹ 7,400 in 3	years. The principal	
 	and rate of simp	ole inte	erest are				
 	(a) ₹ 3,800, 31.	57%		(b) ₹ 3,00			
	(c) ₹ 3,500, 15%	6		(d) none	of these		
10.			es itself in 10	years at simple	e interest. Th	e number of years it	
	would triple itse	lf is					
			1	60			
				VIVI			

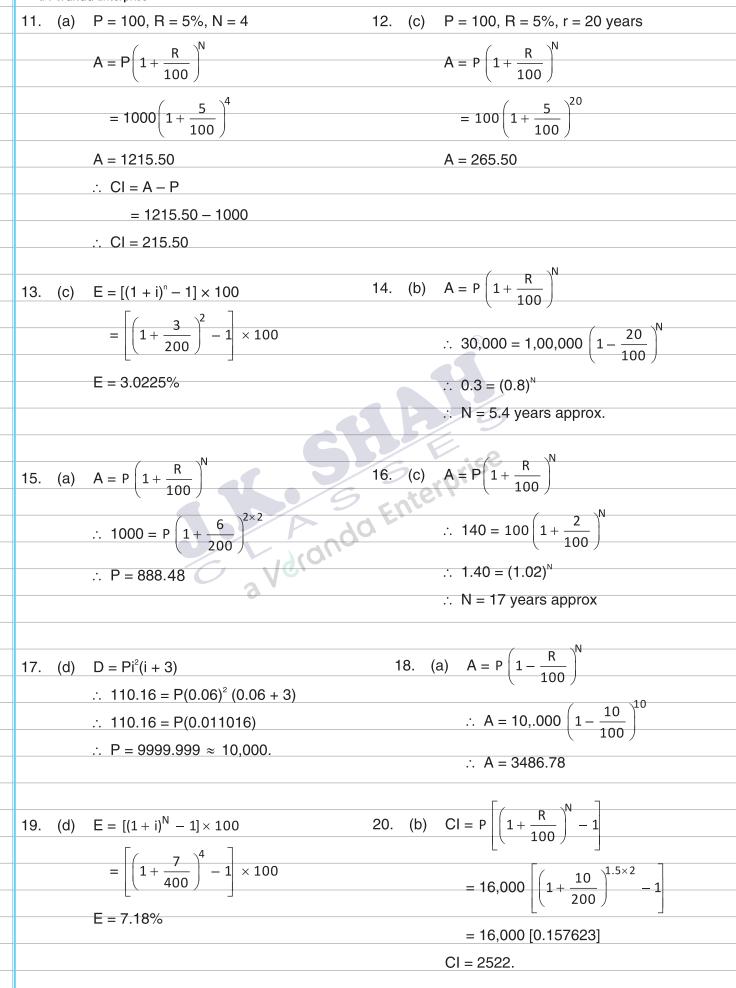
	J. C L a V	ASSES cranda Enterprise			CA F	OUNDA	TION -	MATHEMATIC	S
		•	(b)	15 years.	(c) 20 years	(d)	none	e of these	
	11.	lf P = ₹ 1,000, I	R = 5% p	o.α, n = 4; W	hat is Amount and C.I	. is			
		(a) ₹1,215.50,	,₹215.5	0	(b) ₹ 1,125, ₹	₹125			
		(c) ₹ 2,115, ₹ 2	115		(d) none of t	hese			
	12.	₹ 100 will becc	ome afte	r 20 years a	t 5% p.a compound in	nterest o	amou	nt of	
		(a) ₹250	(b)	₹ 205	(c) ₹ 265.50	(d)	none	e of these	
	13.	The effective ro	ate of in	terest corres	sponding to a nominal	l rate 3	% p.a	payable hal	ſ
		yearly is							
		(a) 3.2% p.a	(b)	3.25% p.a	(c) 3.0225% p.c	a (d)	none	e of these	
	14.				te of 20% on reducing				
					nd its ultimate scrap	value	was 🔻	t 30,000. Th	е
		effective life of	the ma	chine is					
		(a) 4.5 years (a	•••		(b) 5.4 years)		
		(c) 5 years (ap	px.)		(d) none of	these			
					Suldar 6				
	15.		n = 2 ye	ars, R = 6% p	p.a compound interest	payab	le hal	f-yearly, the	n
		principal (P) is			<u> </u>				
		(a) ₹888.48	4	(b) ₹ 885 ((c) 800	(d)	none	e of these	
	4.5			3 .		C 11		1 11 1 1 11	
	16.				ses every year by 2%				
			at year.	i ne number	of years by which the t	otal inc	rease	of populatio	n
		be 40% is	(1-)	10	(c) 17	····) (-1)	10.0	66 4 b c c c	
		(a) 7 years	(b)	10 years	(c) 17 years (ap	p) (d)	none	e of these	
	17.	The difference	hotwoor	Clandela	n a cortain sum of mo	novin	unctood	for 3 years a	+
	11.				on a certain sum of mc	ney IIIV	ested	ioi s yeurs u	
		6% p.a is ₹ 110 (a) ₹ 3,000		₹ 3,700	(c) ₹ 12,000	(d)	₹10	000	
		(u) \ 3,000	(D)	\$ 3,100	(C) \ 12,000	(u)	10	,000	
	18.	The useful life	ofama	chine is estim	mated to be 10 years	and cos	st ₹ 1() ()() Rate o	of
	10.				value at the end of its			,	
		(a) ₹ 3,486.78		₹ 4,383	(c) ₹ 3,400	(d)	none	e of these	
		(4, (5,-00.10		. 1,000		(0)			
_									

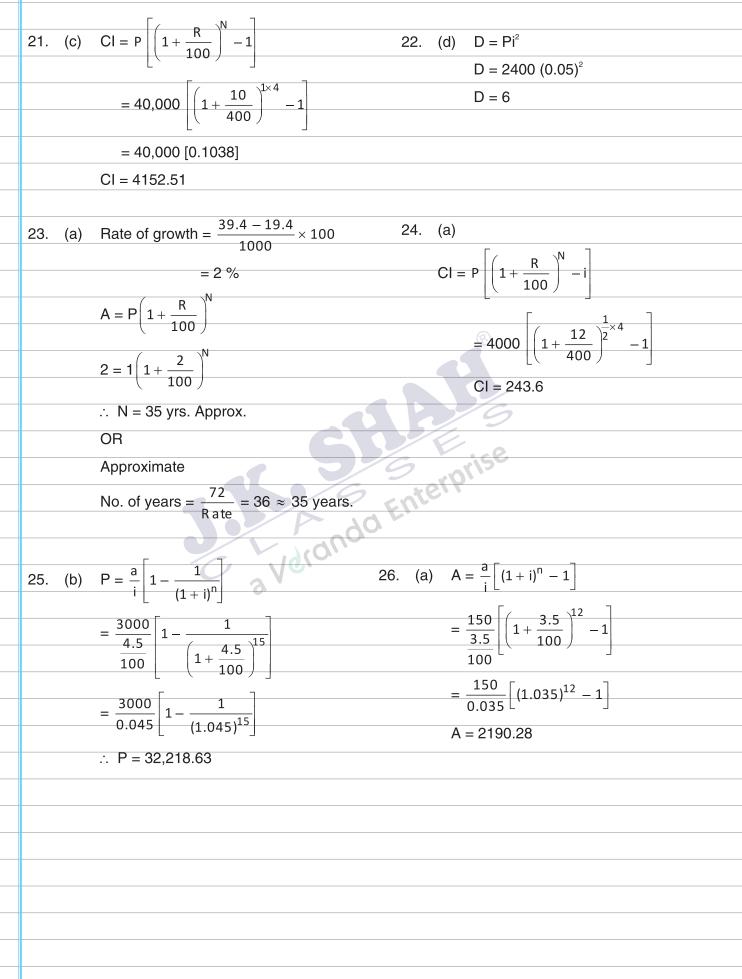
	19.	The effective rate	e of i	nterest correspond	ling a nominal ra	te of 7% p.a convertible
		quarterly is				
		(a) 7%	(b)	7.5%	(c) 5%	(d) 7.18%
	20.	The C.I on ₹ 1600	0 for	1 ½ years at 10%	p.a payable half ·	-yearly is
		(a) ₹ 2,222	(b)	₹ 2,522	(c) ₹ 2,500	(d) none of these
	21.	The C.I on ₹ 4000	0 at	10% p.a for 1 year	when the interest	is payable quarterly is
		(a) ₹ 4,000	(b)	₹ 4,100	(c) ₹4,152.51	(d) none of these
	22.	The difference be	twee	n the S.I and the C	.I on ₹ 2,400 for 2	years at 5% p.a is
		(a) ₹ 5	(b)	₹10	(c) ₹ 16 🛞	(d) ₹ 6
	23.	The annual birth	and	death rates per	1,000 are 39.4 an	d 19.4 respectively. The
		number of years	in w	hich the populati	on will be double	ed assuming there is no
		immigration or er	migro	tion is		
		(a) 35 years.	(b)	30 years.	(c) 25 years	(d) none of these
				- / 9	Enterr	
	24.	The C.I on ₹ 4,000) for	6 months at 12%	p.a payable quarte	erly is
		(a) ₹ 243.60	(b)	₹ 240	(c) ₹ 243	(d) none of these
			\mathcal{O}	a Ver		
	25.	The present value	e of o	n annuity of ₹ 300	0 for 15 years at 4	4.5% p.a CI is
		(a) ₹23,809.41			(b)₹32,218.63	
		(c) ₹32,908.41			(d) none of these	
	26.	The amount of a	n ann	uity certain of ₹ 1!	50 for 12 years at	3.5% p.a C.I is
		(a) ₹ 2,190.28	(b)	₹ 1,290.28	(c) ₹ 2,180.28	(d) none of these
	27.	A loan of ₹ 10,00)0 is t	o be paid back in	30 equal instalme	nts. The amount of each
		installment to co	ver tl	ne principal and at	t 4% p.a Cl is	
		(a) ₹ 587.87	(b)	₹ 587	(c) ₹ 578.30	(d) none of these
	28.	A = ₹ 1,200 n = 1	2 yec	urs i = 0.08, V = ?		
				= $\frac{A}{i} \left[1 - \frac{1}{(1+i)^n} \right]$ value	ue of v will be	
		(a) ₹ 3,039		i [(1+i) ⁿ] ₹ 3,990	(c) ₹ 9930	(d) none of these
-			-			

 29.	p = ₹ 100 n = 10	, i = 5	% find the FV o	of annuity	
	(a) ₹1,258	(b)		(c) ₹1,528	(d) none of these
30.	If the amount of	an ar	nuity after 25	years at 5% p.a C.I is	₹ 50,000 the annuity will
	be				
	(a) ₹1,406.90	(b)	₹ 1,047.62	(c) ₹ 1,146.90	(d) none of these
31.	Given annuity of	₹ 100	amounts to ₹	3137.12 at 4.5% p.a	C. I. The number of years
	will be				
	(a) 25 years (ap	px.)		(b) 20 years (app	x.)
	(c) 22 years			(d) none of these	5
				®	
32.	A company borro	ows ₹	10,000 on cond	dition to repay it with	compound interest at 5%
	p.a by annual in	stalln	nents of ₹ 1000) each. The number o	f years by which the debt
	will be clear is				2
	(a) 14.2 years	(b)	10 years	(c) 12 years	(d) none of these
				19 rolls	
33.	Mr. X borrowed ₹	5,120	0 at 12 ½ % p.c	a C.I. At the end of 3 y	rrs, the money was repaid
	along with the ir	nteres	t accrued. The	amount of interest po	aid by him is
	(a) ₹ 2,100	(b)	₹ 2,170	(c) ₹ 2,000	(d) none of these
			210		
34.	Mr. Paul borrow	s ₹ 20),000 on condi	tion to repay it with	C.I. at 5% p.a in annual
	installments of ₹	ŧ 2000) each. The nur	nber of years for the	debt to be paid off is
	(a) 10 years	(b)	12 years	(c) 11 years	(d) none of these
35.					nk which pays interest at
	· ·		-		lit one year after he has
	made his yearly				
 	(a) ₹11,761.36	(b)	₹ 10,000	(c) ₹ 12,000	(d) none of these
 36.		ue of	annuity of ₹ 5	5,000 per annum for	12 years at 4% p.a C.I.
	annually is				
	(a) ₹ 46,000	(b)	₹ 46,850	(c) ₹ 15,000	(d) none of these

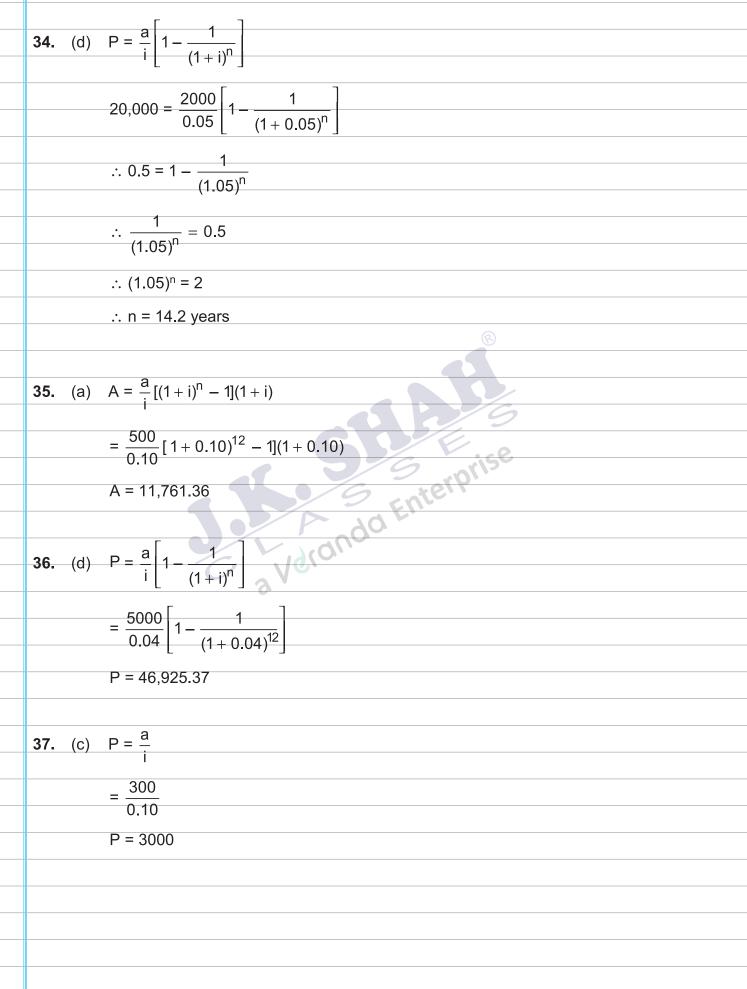
 d 1	veranda Enterprise				
37.	A person desires	to cre	eate a fund to be ir	nvested at 10% Cl	per annum to provide for
	a prize of ₹ 300 e	every	year. Using V = a/	find V and V will	be
	(a) ₹2,000	(b)	₹ 2,500	(c) ₹ 3,000	(d) none of these
38.	A = ₹ 5,200, R =	5% p.	a., T = 6 years, P v	vill be	
	(a) ₹2,000	(b)	₹ 3,880	(c) ₹ 3,000	(d) none of these
39.	lf P = 1,000, n =	4 yea	rs., R = 5% p.a the	n C. I will be	
	(a) ₹215.50	(b)	₹ 210	(c) ₹ 220	(d) none of these
40.	The time in which	n a su	Im of money will b	e double at 5% p.	.a C.I is
	(a) ₹ 10 years	(b)	12 years	(c) 14.2 years	(d) none of these
				®	
41.	lf A = ₹ 10,000, r	n = 18	yrs., R = 4% p.a C.	I, P will be	
	(a) ₹ 4,000	(b)	₹ 4,900	(c) ₹ 4,500	(d) none of these
				12/9	2
42.	The time by whic	hαsι	um of money woul	d treble it self at	8% p. a C. I is
	(a) 14.28 years	(b)	14 years	(c) 12 years	(d) none of these
			19	Enterr	
43.	The present valu	e of c	In annuity of ₹ 80	a years for 20 yea	rs at 5% p.a is
	(a) ₹ 997 (appx.)	(b)	₹ 900	(c) ₹ 1,000	(d) none of these
		\mathcal{O}	ave.		
44.	A person bought	a hou	use paying ₹ 20,00	0 cash down and ₹	4,000 at the end of each
	year for 25 yrs. c	ıt 5%	p.a. C.I. The cash	down price is	
	(a) ₹ 75,000	(b)	₹ 76,000	(c) ₹ 76,392	(d) none of these.
45.	A man purchase	d a ho	ouse valued at ₹ 3	,00,000. He paid	₹ 2,00,000 at the time of
	purchase and agr	reedto	o pay the balance v	vith interest at 12%	6 per annum compounded
	half yearly in 20	equo	ıl half yearly insta	lments. If the first	t instalment is paid after
	six months from	the d	ate of purchase th	en the amount of	each instalment is
	[Given log 10.6 =	1.02	53 and log 31.19	= 1.494]	
	(a) ₹8,719.66	(b)	₹ 8,769.21	(c) ₹ 7,893.13	(d) none of these.
46.	The difference be	twee	n compound and s	imple interest at 5	5% per annum for 4 years
	on ₹ 20,000 is ₹ _				
	(a) 250	(b)	277	(c) 300	(d) 310

a k	dranda Enterprise		
47.	The compound interest on hal	f-yearly rests on ₹ 10,000	the rate for the first and
	second years being 6% and for	the third year 9% p.a. is ₹.	·
	(a) 2,200 (b) 2,287	(c) 2,285	(d) 2290
48.	The present value of ₹ 10,000 c	lue in 2 years at 5% p.a. cor	npound interest when the
	interest is paid on yearly basis	is ₹	
	(a) 9,070 (b) 9,000	(c) 9,061	(d) None
49.	The present value of ₹ 10,000 c	lue in 2 years at 5% p.a. cor	npound interest when the
	interest is paid on half-yearly	basis is ₹	
	(a) 9,070 (b) 9,069	(c) 9,059.50	(d) None
50.	Johnson left ₹ 1,00,000 with t		
 	that his minor sons Tom, Dick		
	receive equally after attaining		
 	3.5%, how much each son rece		
	(a) 50,000 (b) 51,994	(c) 52,000	(d) 48332
 		5 S roris	
 51.	In how many years will a sum		-
	(a) 15 years 3 months	(b) 14 years 2 m	
	(c) 14 years 3 months	(d) 15 years 2 m	onths
	31		
52.	In how many years a sum of n	noney trebles at 5% p.a. co	mpound interest payable
 	on halfyearly basis?		
	(a) 18 years 7 months	(b) 18 years 6 m	
	(c) 18 years 8 months	(d) 22 years 3 m	nonths
 F 2			c
53.	A machine depreciates at 10%		
	scrap value realized at the tim	-	a < 9,000 respectively. For
 	how many years the machine $\sqrt{(x)}$	-	
	(a) 7 years (b) 8 years	(c) 9 years	(d) 10 years
Γ/	A machine worth # / 00 7/0'	depression at 150/ 't	
54.	A machine worth ₹ 4,90,740 is	-	opening value each year.
	When its value would reduce t		nthe
	(a) 4 years 6 months	(b) 4 years 7 mo	
 	(c) 4 years 5 months	(a) 5 years 7 mo	nths approximately
		165	


55.	A n	nachine worth ₹ 4,90,740 is depreciat	ed at 15% of its opening value each year.
	Wh	en its value would reduce by 90%?	
	(a)	11 years 6 months	(b) 11 years 7 months
	(c)	11 years 8 months	(d) 14 years 2 months approximately
			ß
 			6
		A drande	Sprise
		/9	- nterp.
			1 El
 		L'your	
		a ver	
		<u> </u>	

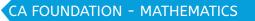

HOMEWORK SOLUTION

_						
	1.	В			2.	Α
_		$I = \frac{3500 \times 3 \times 12}{100}$			۷.	8
_		100				$I = \frac{5000 \text{ x } 15 \text{ x } 4.5}{100} = 3375$
		l = 1260				100
	3.	C			4	D
_	ാ.				4.	D
_		$300 = \frac{5000 \mathrm{x} 1 \mathrm{x} \mathrm{r}}{100} = 6\%$				I = A –P = 7200 – 4500
		100				0700
						= 2700
	5.	A			6.	В
_						
_		I = A – P = 16,500 -12,000				$2500 \frac{10,000 \times 12.5 \times N}{100} = 2 \text{ years}$
		= 4,500				100
		$45,000 = \frac{12,000 \times R \times 2.5}{100} = 15\%$, ວ			29
_		100				/6,
_						Vise
	7.	A			8.	crolis
				19	6.5	P(1)(18)
		l = 10,200 - 8,500 = 1700	\mathcal{D}		7	$1200 = \frac{P(1)(18)}{100 \times 12} = 80,000$
-		$1700 = \frac{85,00 \times 12.5 \times N}{100}$		<u>kouq</u> a		
_		100 - 100	(<u>jo</u> .		
		=1.6 years	3			
		(4.0	_			
		$= (1.6 \times 12) = 19.2 \text{ month}$	1			
_		=1 year 7 months				
		-				
	9.	А			10.	С
		After 3 years	=	7400		$R = \frac{(2-1)x100}{10} = 10\%$
		<u>2</u> years	=	6200		10
_		1 year	=	1200		$N = \frac{(3-1)x\ 100}{10} = 20 \text{ years}$
		After 3 years	7400			
		(1200 x 3)	<u>3600</u>			
		Principle	3800			
		2000 w 1 w P				
		$12,00 = \frac{3800 \text{ x 1 x R}}{100}$				
		R = 31.57%				

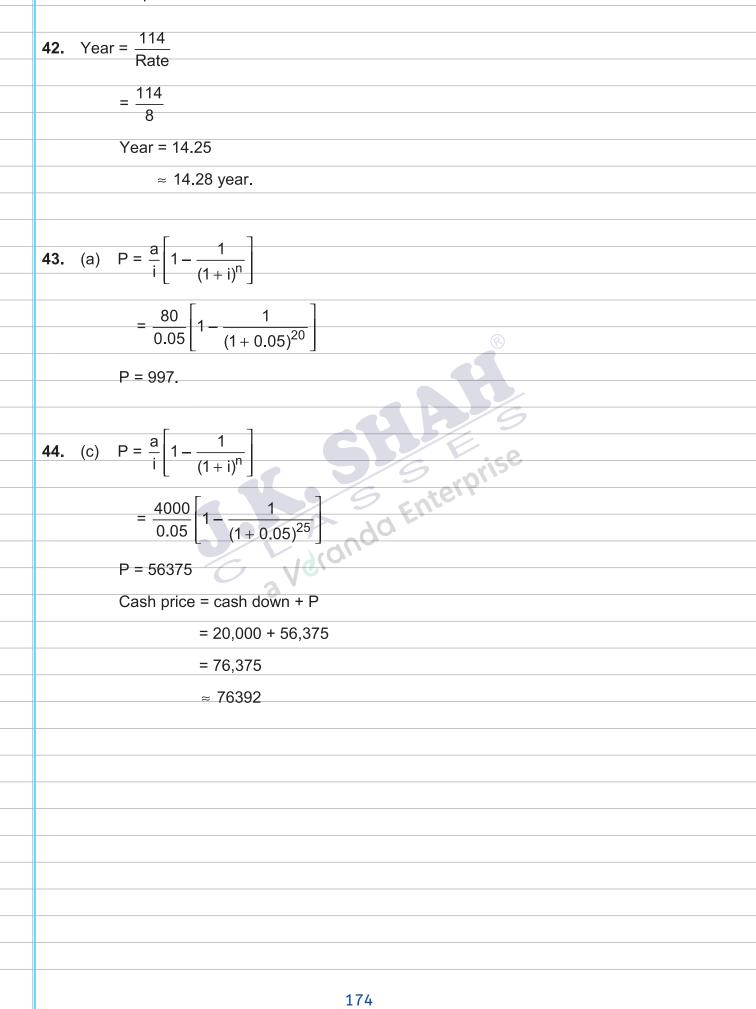


27. (c)
$$P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$$

 $\therefore 10,000 = \frac{9}{0.04} \left[1 - \frac{1}{(1.04)^{30}} \right]$
 $\therefore 10,000 = 9(17.2920)$
 $\therefore a = 578.87$
28. (d) Value of $V = \frac{A}{i} \left[1 - \frac{1}{(1+i)^N} \right]$
Hence, $A = 1200$, $n = 12$ years, $i = 0.08$
 $V = \frac{1200}{0.08} \left[1 - \frac{1}{(1.08)^{12}} \right]$
 $V = 9043.29$
29. (a) $FV = \frac{a}{i} [(1+i)^n - 1]$
 $= \frac{100}{0.05} [(1+0.05)^{10} - 1]$
 $FV = 1258$
30. (b) $A = \frac{a}{i} [(1+i)^n - 1]$
 $50,000 = \frac{a}{0.05} [(1+0.05)^{25} - 1]$
 $\therefore 50,000 = \frac{a}{0.05} [2.3864]$
 $\therefore a = 1047.62$


31. (b)
$$A = \frac{a}{i} [(1 + i)^n - 1]$$

 $\therefore 3137.12 = \frac{100}{0.045} [(1 + 0.045)^n - 1]$
 $\therefore 1.4117 = (1.045)^n - 1$
 $\therefore n = 20$ years.
32. (a) $P = \frac{a}{i} \left[i - \frac{1}{(1 + i)^n} \right]$
 $\therefore 10,000 = \frac{1000}{0.05} \left[1 - \frac{1}{(1 + 0.05)^n} \right]$
 $\therefore 0.5 = 1 - \frac{1}{(1.05)^n}$
 $\therefore 0.5 = 1 - \frac{1}{(1.05)^n}$
 $\therefore \frac{1}{(1.05)^n} = 0.5$
 $\therefore (1.05)^n = 2$
 $\therefore N = 14.2$ years
33. (b) $CI = P \left[\left(1 + \frac{R}{100} \right)^n - 1 \right]$
 $= 5120 \left[\left(1 + \frac{12.5}{100} \right)^3 - 1 \right]$
 $\therefore CI = 2170$



38. (b) $A = P\left(1 + \frac{R}{100}\right)^{N}$:. 5200 = $P\left(1+\frac{5}{100}\right)^6$ ∴ P = 3880. **39.** (a) $CI = P\left(1 + \frac{R}{100}\right)^N - 1$ $CI = 1000 \left[\left(1 + \frac{5}{100} \right)^4 - 1 \right]$ CI = 215.50 $\therefore 2 = 1\left(1 + \frac{5}{100}\right)^{N}$ **40.** (c) $A = P\left(1 + \frac{R}{100}\right)^N$ \therefore N = 14.2 year approved. **41.** (d) $A = P\left(1 + \frac{R}{100}\right)^{N}$ $\therefore 10,000 = P\left(1 + \frac{4}{100}\right)^{18}$ ∴ P = 4936.28

ur	anac	
 45.	(a)	P = 3,00,000 - 2,00,000
		P = 1,00,000
 		$P = \begin{bmatrix} a \\ 1 \\ - \end{bmatrix}$
 		$P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$
		$1 00 000 = \frac{a}{1} \begin{bmatrix} 1 - \frac{1}{1} \end{bmatrix}$
		$1,00,000 = \frac{a}{\frac{12}{200}} \left[1 - \frac{1}{\left(1 + \frac{12}{200}\right)^{20}} \right]$
		$1,00,000 = \frac{a}{0.06} \left[1 - \frac{1}{(1.06)^{20}} \right]$
		∴ a = 8719.66
 		(R)
46.	(d)	S.I. = $\frac{20,000 \times 5\% \times 4}{100}$ = 4000
		C.I. = $20.000 \{(1.05)^4 - 1\} = 4310.125$
 		D = 310.125
		Serise
 A 7	(d)	A = $10,000 (1.03)^4 (1.045)^2$
 4 7.	(u)	= 12,290
		∴ C.I. = 2290
 		$D = 310.125$ $A = 10,000 (1.03)^4 (1.045)^2$ $= 12,290$ $\therefore C.I. = 2290$
 	,	
 48.	(d)	$A = p(1+i)^{N}$
 		$10,000 = P (1.05)^2$
		= 9070
 49.	(c)	$A = P(1+i)^{N}$
 		$10,000 = P(1.025)^4$
 		= 9059.50
		175

al	/erando	a Enterprise
 50.	(d)	Assuming simple interest
		Let the amount = x
		$\frac{x}{\left(1+\frac{3.5\times16}{100}\right)} + \frac{x}{\left(1+\frac{3.5\times13}{100}\right)} + \frac{x}{\left(1+\frac{3.5\times10}{100}\right)} = 1L$
		$\frac{x}{1.56} + \frac{x}{1.455} + \frac{x}{1.35} = 1L$
 		x(0.6410 + 0.6873 + 0.7407) = 1 L
		x(2.0690) = 1 L
		$x = \frac{100000}{2.0690} \qquad \qquad x = 48332$
 51.	(b)	2 = 1 (1.05) ^N
		For perfect answer taking log
		log2 = N log 1.05
		0.3010 = N(0.0212)
		N = 14.2
		G sterpin
 52,	(c)	N = 14.2 A = P $(1+i)^N$ 3 = 1 $(1.025)^N$ Trial and Error
 	(-)	$3 = 1 (1.025)^{N}$
 		Trial and Error
		(c) 22 years 23 month
 53.	(c)	$A = P(1+i)^{N}$
 • • •	1-7	$9000 = 23240 \ (0.9)^{N}$
 		$0.3873 = (0.9)^{N}$
		N = 9 years [Trial and Error]
 - 4	(-1)	
 54.	(a)	$A = P(1 - i)^{N}$
 		$2,00,000 = 490,740 \ (0.85)^{N}$
 		$0.4075 = (0.85)^{N}$
 		5 years 7 months [Trial and Error]
		176

55. (d) 49074 = 490740 (0.85) ^N
$0.1 = (0.85)^{N}$
 N = 14 years 2 month
[Trial and Error]
 8
 S S rise
 Geterpi
 - india
Service Service Add Enterprise
177

<u>J.</u>]	K. SHAH			CA F	OUNDATION - MATHEMATICS				
a					,				
				SSMENT TEST	6				
				NUITIES					
			25 Quest	tion, 25 Marks					
1. Find the amount of an annuity of Rs. 100 in 10 years allowing compound interest at									
	5%, given (1.05)	$^{10} = 1.$	5289.						
	a) Rs. 1527.80			b) Rs. 1257.80					
	c) Rs. 1357.90			d) None of the	above				
2.				-	00 for 5 years reckoning				
		est at	4% per annum	. Given (1.04) ⁵ = 1.21	167				
	a) Rs. 1335.78			b) Rs. 1353.87					
	c) Rs. 1533.98			d) None of the	above				
3.					d agrees to pay both the				
					s at the end of each year.				
				ots. Given (1.04) ¹⁰ = 1	2				
	a) Rs. 2470	b)	Rs. 2570	c) Rs. 2740	d) Rs. 2760				
				2 EULE					
4.					terly for 15 years at 5%,				
	compounded qu								
	a) Rs. 4422	b)	Rs. 4411	c) Rs. 5544	d) Rs. 4433				
5.	•				arterly for 15 years at 5%,				
	compound-ed q		-						
	a) Rs. 2000	b)	Rs. 2098	c) Rs. 2108	d) Rs. 2100				
_		<u> </u>							
6.				05 a year at 5.25% p					
	a) Rs. 2000	b)	Rs. 2098	c) Rs. 2108	d) Rs. 2100				
7.					5000 is to be paid on the				
				-	3000 each payable at the				
					est is charged at 5% p.a.,				
			-	Given (1.05) ⁻⁴ = 0.82					
	a) Rs. 16358	b)	Rs. 15638	c) Rs. 10638	d) Rs. 14500				

J.K. SHAH[®] C.L.A.S.S.E.S a Veranda Enterprise

 a Veranda Enterprise										
8.	A government co	onstru	icted housing fla	1t costs Rs. 136000;	40% is to be paid at the					
	time of possession	on an	d the balance, r	eckoning compound	d interest of 9% p.a. is to					
	be paid in 12 equal annual instalments. Find the amount of each such instalment.									
	Given (1.09) ⁻¹² = 0.3558									
	a) Rs. 11000	b)	Rs. 12000	c) Rs. 11400	d) Rs. 12400					
9.	What sum will b	uy an	annuity of Rs. 1	000 payable half-y	early for 5 years, the rate					
	of interest being	8% p	.a. compounded	half-yearly? Given	$(1.04)^{-10} = 0.6756$					
	a) Rs. 8000	b)	Rs. 9000	c) Rs. 9110	d) Rs. 8110					
10.	Dipti borrowed R	s. 400	00 at 6% compo	und interest promisir	ng to repay Rs. 9000 at the					
	end of each of th	e first	four years and t	o pay the balance a	t the end of the fifth year.					
	Ascertain how m	uch sł	ne would pay as t		Given (1.06) ⁻⁴ = 0.79206					
	a) Rs. 8809	b)	Rs. 11789	c) Rs. 12897	d) Rs. 10589					
11.	· ·				80 at a fixed rate per cent					
					ind the rate of interest.					
	a) 4%	b)	3.5%	c) 5%	d) 3%					
				2 EULE.						
12.					ives him a pension of Rs.					
 					his life. If the expectation					
			O		num payable half-yearly,					
 				nsion. Given (1.03) ⁻²						
	a) Rs. 26,783	b)	Rs. 28,768	c) Rs. 26,893	d) Rs. 28,763					
4-										
13.				υυ. If the annual re	ent of the property be Rs.					
 	2,000, find the ro	<u> </u>	•							
 	a) 3%	b)	3.5%	c) 4%	d) 5%					
 17	A machine and	0.55	many Pa Faca	0 and its offertime	life is estimated to be 25					
 14.					life is estimated to be 25					
 	<i>y y</i>				e by a new model at the					
 					500 only. The price for the					
 					e of the present one. Find s for the sinking fund, if it					
 				Given $(1.035)^{25} = 2.3$						
 	a) Rs. 1590	b)	Rs. 1650	c) Rs. 1602	d) Rs. 1592					
 	uj N3. 1 <i>33</i> 0	D)	NS. 1030	C/ NS. 1002	uj NS. 1 <i>331</i>					

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

u ,	oranc			•									
15.	A n	nar	n deci	des to	o depo	osit Rs. 100	00 at the	e enc	d of each	year i	n a bank w	hich pays	5
	109	% p	oer ar	num	comp	ound intere	st. If the	insto	alments a	re alla	owed to ac	cumulate	,
	wh	at	will b	e toto	ιι αςςι	umulation a	at the end	l of s	9 years? G	liven (1.1) ⁹ = 2.25	583	
	α)	Rs	. 124	000	b)	Rs. 12500	0 c)	Rs.	. 125830	d)	Rs. 12493	0	
16.	Th	eα	nnua	. rent	of a p	erpetual ar	nnuity is R	s. 40	000. Find i	its val	ue, the inte	rest being]
	cor	npo	ounde	ed at 8	3% p.	a.							
	α)	Rs	. 400	00	b)	Rs. 45000	c)	Rs.	. 50000	d)	None of th	ne above	
17.	The	e vo	alue o	and a	nnual	rent of per	rpetuity o	re R	s. 12500	and R	s. 1000 re	spectively	•
	Fin	d tl	he rat	e of c	ompo	ound interes	st.						
	α)	79	6		b)	8%	c)	10	%	d)	None of th	ne above	
									®				
18.	Fin	d tl	he va	lue of	a def	erred perpe	etuity of F	ks. 50	00 p.a. to	comm	nence 10 ye	ears hence	9
	at	6%	p.a.	compo	ound	interest. Giv	/en (1.06)	10 =	1.791				
	α)	Rs	. 465	3	b)	Rs. 4563	c)	Rs.	4356	d)	Rs. 4365		
									F	0			
19.	Αl	oar	n of R	s. 10,0	000 is	to be repai	id in 30 e	qual	annual ir	nstalm	ents of Rs.	X. Find X	,
	if t	he	CI cho	arged	is at	the rate of	4% p.a. (Ann	uity is an	annui	ty immedic	ate). Giver	า
	(1.0	04) [:]	³⁰ = 3	2434			90						
	α)	Rs	. 878	.80	b)	Rs. 758.40) c)	Rs.	. 578.40	d)	Rs. 598.80)	
					0	210.							
20.	A n	nar	n buy	s a ho	ouse f	or Rs. 60,0	00 on co	nditi	on that h	e will	pay Rs. 30	0000 casł	۱
	dov	wn	and t	he ba	lance	in 10 equa	l annual i	nsta	llments, tl	he firs	t to be paid	d one yea	r
	aft	er	the d	ate of	f purc	hase. Calcı	ulate the	amo	ount of ec	ach ins	stalment, o	compound	ł
	inte	eres	st bei	ng cor	npute	ed at the ra	te of 5%	p.a.	Given (1.0)5) ⁻¹⁰ =	0.6139		
	a)	Rs	. 588	3	b)	Rs. 3885	c)	Rs.	. 8583	d)	Rs. 3588		
21.	The	e ai	nnual	subs	criptio	on for the n	nembersh	ip o	f a club is	s Rs. 2	5 and a pe	erson may	/
	bec	com	ne a li	fe-me	embei	r by paying	Rs. 1000	in a	lump sum	. Find	the rate pe	er cent pe	r
	anr	nun	n.										
	a)	29	6		b)	3%	c)	2.5	5%	d)	3.5%		

<u>J.</u>]	K. SHAH [®] CA FOUNDATION - MATHEMATICS
CL al	- A S S E S Adranda Enterprise
22.	An overdraft of Rs. 50,000 is to be paid back in equal instalments over a period of
	20 years. Find the value of the instalment, if interest is compounded annually at
	14% per annum. Given (1.14) ²⁰ = 13.74349
	a) Rs. 7549 b) Rs. 7561 c) Rs. 7571 d) Rs. 7539
23.	What is the value of an annuity at the end of 5 years, if Rs. 100 per month is
	deposited into an account earning interest 9% per year compounded monthly?
	Given log10075 = 4.003245055 and antilog 4.1947033 = 15656.81067
	a) Rs. 7542 b) Rs. 7892 c) Rs. 7598 d) Rs. 7498
24.	A man borrows Rs. 20,000 at interest rate 4% per annum compounded annually and
	agrees to pay both the principal and the interest in 10 equal annual instalments at
	the end of each year. Find the amount of these instalments. Given log104 = 2.0170
	and log6761 = 3.8300
	a) Rs. 2400 b) Rs. 2470 c) Rs. 2489 d) Rs. 2459
25.	Rs. 12,000 is invested at the end of each month in an account paying interest 6% per
	year compounded monthly. What is the amount of this annuity after 10th payment?
	Given (1.005) ¹⁰ = 1.0511
	a) Rs. 122000 b) Rs. 120680 c) Rs. 122980 d) Rs. 122640
	L Idiana

_		
		EXPLANATORY
		ANSWERS
_	1.	A = $100/0.05[(1.05)^{10} - 1] = 2000(1.6289 - 1) = 1257.80$, Option B
_		
	2.	PV = 300/0.04[1-(1.04) ⁻⁵] = 7500[1 - 1/1.2167] = 1335.78. Option A
_	2	20000 - D(0.0/[1 - (1.0/)-10])
_	3.	$20000 = P/0.04[1 - (1.04)^{-10}]$
_		800 = P[1 - 1/1.4802]
_		P = (800 * 1.4802)/0.4802 = 2470
		Option A
_	4.	Amount = 50/0.0125[(1.0125) ⁶⁰ - 1] = 4000(1.1028) = 4411. Option B
_	4.	Amount - 50/0.0125[(1.0125) - 1] - 4000(1.1028) - 4411. Option B
_	5.	PV = 50/0.0125[1 - (1.0125) ⁻⁶⁰] = 4000(1.1028/2.1028) = 2098. Option B
_	5.	
_	6.	Perpetuity PV = 105/5.25% = 2000. Option A
_		Siter
_	7.	PV of instalment = 3000/0.05[1 - 0.82270] = 10638
		Cash down price = 5000 + 10638 = 15638. Option B
		C Ver
	8.	Loan amount = 136000 * .60 = 81600
		81600 = P/0.09 [1 - 0.3558]
		7344 = P(0.6442)
		P = 11400. Option C
	9.	PV = 1000/0.04[1 - 0.6756] = 25000(0.3244) = 8110. Option D
	10.	PV of 4 instalments = 9000/0.06[1 - 0.79206] = 31191
		PV of loan amount remaining to be paid = 40000 - 31191 = 8809
		FV of Rs. 8809 payable after 5 years = 8809(1.06)5 = 11789
		Option B

a Veranda Enterprise

J.K. SH

- 11. $2000 = \frac{180}{r[1 (1+r)^n]} = \frac{180}{r[(1+r)^n 1]}{(1+r)^n} = \frac{3000}{(1+r)^n}$
 - $3000 = 180/r[(1+r)^{n} 1]$

 $3/2 = (1+r)^n$

- 3000 = 180/r[3/2 1]
- r = 180/3000[1/2] = 0.03

Interest rate = 3%

Option D

12. $PV = 1800/0.03[1 - (1.03)^{-20}] = 60000[1 - 0.55362] = 26783$. Option A

13. R/100 = 2000/50000 = 0.04. R = 4%. Option C

- 14. Amount required = 52000 * 1.25 2500 = 62500 $62500 = A/.035[(1.035)^{25} - 1] = A(39.0257)$
 - A = 62500/39.0257 = 1602. Option C
- 15. $FV = 10000/0.10 [(1.1)^9 1] = 100000[2.2583 1] = 125830$. Option C Enterpr

16. Value = 4000/0.08 = 50000. Option C

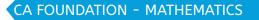
- 17. R/100 = 1000/12500 = 0.08. R = 8%. Option B
- 18. Value = 500/0.06 = 8333 PV of Value = 8333/(1.06)¹⁰ = 8333/1.791 = 4653. Option A
- 19. 10000 = X/0.04 [1 1/3.2434] = X(17.292)X = 10000/17.292 = 578.40. Option C
- 20. 30000 = X/0.05[1 0.6139] = X(7.722)X = 30000/7.722 = 3885. Option B
- 21. R/100 = 25/1000 = 0.025. R = 2.5%. Option C

22. 50000 = X/0.14[1 - 1/13.74349] = X(6.6231)X = 50000/6.6231 = 7549. Option A

23. Amount = $100/0.0075[(1.0075)^{60} - 1]$ $X = (1.0075)^{60}$ LogX = 60 log(1.0075) = 60[0.003245055] = 0.1947033 = Log 1.565681067X = 1.565681067Amount = 13333.33(1.565681067 - 1) = 7542. Option A 24. $20000 = P/0.04[1 - (1.04)^{-10}]$ Let X = (1.04)10Log X = 10 log(1.04) = 10(0.0170) = 0.170 = 4 - 3.83 = log 10000 - log 6761 = log1.4791 X = 1.479120000 = P/0.04[1 - 1/1.4791] = P(8.098)P = 20000/8.098 = 2470 **Option B** 25. Amount = 12000/0.005[(1.005)¹⁰ - 1] = 2400000(0.0511) = 122640. Option D Ada Enterprise

SELF ASSESSMENT TEST 7 INTEREST

24 Question, 24 Marks


1.	Mahe	esh lent Rs. 1	1000	00, partly at 12%	ar	nd partly at 10	% s	simple interest. After
	three	e years he got	t Rs.	31500 as total sin	npl	e interest. How	mu	ch did he lend at the
	12%	?						
	a) 2	5000	b)	75000	c)	50000	d)	40000
2.	At w	hat rate will	a si	um of money Rs.	205	000, becomes	Rs.	410000 with simple
	inter	est in 20 year	rs?					
	a) 5	5%	b)	6.67%	c)	5.5% 📀	d)	7.14%
3.	A sur	m of money c	amou	ints to Rs. 44700 i	n 1	4 years at 8.33	% s	imple interest. When
	will i	t double itsel	lf at	the same rate?		1.9)	
	a) 1	.6 years	b)	12 years	c)	11 years	d)	17 years
					~	S rolls		
4.	A sur	m of Rs. 5700	00 is	lent out in two po	ırts	A and B in suc	hα	way that interest on
	A @	8% per annu	um si	imple interest for	5 y	ears is equal to	o th	nat on B at 0.5% per
	annu	ım sim-ple in	iteres	st for 15 years. Fin	d tl	ne value of A.		
	a) 9	000	b)	6000	c)	48000	d)	45000
5.	In wł	nat time will	Rs. 4	,500 amount to 2	2,5	00 at 4% per ar	าทน	m simple interest?
	a) 5	50	b)	60	c)	110	d)	100
6.	Mr. M	1 takes a loar	n of F	ر 25000 at 4% at 4%	ρ.α.	Compound Inte	eres	st from Mr. J. He pays
	Mr. J	Rs. 250000 c	at the	e end of 1st year. I	Hov	v much should	he ן	pay at the end of the
	2nd y	year in order	to cl	ear his dues?				
	a) 3	00000	b)	300800	c)	307840	d)	370480
7.	A per	rson bought o	ı robo	ot under the follow	ving	j scheme: Down	pa	yment of Rs. 150,000
	and	the rest amou	unt a	t 8% per annum fo	or 2	2 years. In this v	vay	, he paid Rs. 289,200
	in to	tal. Find the a	actuc	al price of the robo	ot. (Assume simple	inte	erest).
	a) 2	70000	b)	300000	c)	280000	d)	275000

J.K. SHAH [®]								
CLASSES								
a Veranda Enterprise								

	av	eranda	Enterprise					
	8.	Man	ohar Bhaiya	borro	ows Rs. 140,000	at	simple interes	t from the village co-
		oper	rative society	bank	. At the end of 3	ye	ears, he again t	porrows Rs. 60,000 and
		clos	es his account	after	r paying Rs. 92,30	0 a	s interest after	8 years from the time he
		mad	le the first bo	r-row	ving. What is the s	sim	ple interest rat	e of interest charged by
		the l	bank?					
		a) (6.5%	b)	5.5%	c)	5%	d) 7%
	9.		-					for 20 years is equal to
				int fo	r that period. Find	l R.		
		a) 4	4%	b)	5%	c)	4.5%	d) 6.5%
	10.			omp	ound interest amo	oun	ts to Rs. 48400	0 in 2 years at 10% p.a.
		Find					®	
		a) 4	400000	b)	410000	c)	390000	d) 380000
	11.					_		ompounded annually. In
								npound rate on interest?
		a) :	10	b)	8	c)	12 12	d) 17
_					/9	K	nte	
	12.							f compound interest in 3
		•		iy yec	ars will the ratio of	r th	e principal to th	ne compound interest be
		1:3?		b	<u>3</u>	_\	0	
		a) (0	b)	5	c)	8	d) 7.5
	10			ل ما	eenen euro diteterre -	- -		
	13.				•			000 in 3 years @ R% per
								unt becomes 1000000?
		a) 9	9 years	b)	10 years	C)	11 years	d) 7 years
	1/	Dc.	A arous us to	De 0	0000 in 2 um and			
	14.					up) LO KS. 85000 II	n 3 yrs @ R% per annum
			-		d the value of R.		6 7 5 0 6	d) E E04
		α) (5.25%	b)	6%	C)	6.75%	d) 5.5%
	1 5	A 10 -	mount of mo		arows upto Da 00		0 in 2 years an	unto Dr. 102690 in 2
	15.						-	nd upto Rs. 103680 in 3
		-	-		erest. What is the			d) Pc 60000
		α) Ι	Rs. 51000	b)	Rs. 61000	C)	Rs. 58000	d) Rs. 60000

	<u>J.</u>	K. SHAH				CA FO	UNDATION - N	MATHEMATICS
	al	dranda Enterprise						
	16.	The difference be	tweer	n Compound intere	est d	and simple inte	erest on a ce	rtain sum of
		money is Rs. 400	for fi	rst two years and	Rs.	1220 for first t	hree years. F	ind the sum,
		if the rate is same	e in b	oth the cases.				
		a) 6400	b)	8000	c)	12000	d) 9400	
	17.	The Compound In	teres	t @ R% per annun	n or	n a certain sum	of money Rs	s. X for 2 yrs.
		is Rs. 357 and the	Sim	ple Interest on the	san	ne sum of mon	ey Rs. X at th	ne same rate
		of in-terest is Rs.	350.	What is the value	e of I	R?		
		a) 4%	b)	5%	c)	4.5%	d) 5.5%	
	18.	The value of a res	sident	tial flat constructe	ed a	t a cost of Rs. 1	15,00,000 is	depreciating
				annum. Find its va				
		a) 12,42,150	b)	12,50,000		12,75,850		
				_ , ,			- • • •	
	19.	A money lender b	orro	ws a sum from ma	arke	t at 3% per an	num simple	interest and
_				person at 6% per				
								-
		one year, he gets a profit of Rs. 618, then find out the sum borrowed by the mor lender.						y the money
		a) Rs. 25,000		1/6		Rs. 20,000		
		c) Rs. 18,000			<u>d)</u>	Can't he deter	mined	
				- dna	- u,	Rs. 20,000 Can't be deter		
	20.	The simple intere	st on	a certain sum of r				annum is Re
	20.			the compound in				
		time?				St ut the sum		
					<u>لم</u>	Pc 2/07 20		
		a) Rs. 3507.80				Rs. 3407.20		
		c) Rs. 3207.20			a)	Rs. 3307.20		
	21	What would be t		interact		2- 10000 for t		C the works of
	21.			mpound interest				
			r the	first year, 6% for			10 /% TOP THE	e thira year?
		a) Rs. 1900.10			-	Rs. 1919.10		
		c) Rs. 1909.10			d)	Rs. 1809.10		
	22.	Rs. 4000 becomes			:α c	ertain rate of a	compound in	terest. What
		will be the sum a	t the	end of 12 years?				
		a) Rs. 7812.50				b) Rs. 7612.50)	
		c) Rs. 7712.50				d) Rs. 7512.50)	

23.	Simple interest	on a si	um for 3 years o	at any rate of interes	t is Rs. 225 while comp	ound
	interest on the	same s	sum at the san	ne rate for 2 years i	s Rs. 153. Find the sum	n and
	rate percent.					
	a) Rs. 1875, 49	%		b) Rs. 1875	, 5%	
	c) Rs. 1785, 40	%		d) Rs. 1785	, 5%	
24.	A man borrows	Rs. 60	00 at 10% con	npound rate of inter	est. At the end of each	year
	he pays back Rs	5. 2000). How much ar	mount should be po	y at the end of third ye	ar to
	clear all his due	es?				
	a) Rs. 3636	b)	Rs. 3663	c) Rs. 3366	d) None of the ab	ove
				Ē)	
-					/	
					9	
-			C			
-				19ri	E	
				S Enterpris		
				10 FIL		
			L.J.al	0-		
 -		$\overline{\mathbf{O}}$				
			0			
 -						
 -						
 _						
1						

EXPLANATORY ANSWERS

- 1. X * 0.12 * 3 + (100000 X) * 0.10 * 3 = 31500
 - 0.36X + 30000 0.30X = 31500

0.06X = 1500

X = 25000; Option A

- 2. 410000/205000 = 2; Doubled; Rate = 100/20 = 5%. Option A
- 3. Time = 100/8.33 = 12 years. Option B
- 4. A * 0.08 * 5 = (57000 A) * 0.005 * 15

0.4A = 4275 - 0.075A

- A = 4275 / 0.475 = 9000; Option A
- 5. 22500 4500 = 18000 = 4500 * 0.04 * T T = 18000/180 = 100 years; Option D
- 6. 525000 * 1.04 = 546000 250000 = 296000 × 1.04 = 307840. Option C

Enterprise

7. 150000 + X(1.16) = 289200

X = 120000; Actual price = 150000 + 120000 = 270000; Option A

8. 140000 * R/100 * 3 + 200000 * R/100 * 5 = 92300 4200R + 10000R = 92300

R = 6.5%; Option A

9. X * R/100 * 20 = 4X (1 + 20R/100)/9

9R/5 = 4 + 4R/5

R = 4, Option A

10. $484000 = X (1.1)^2$

X = 484000/1.21 = 400000; Option A

al⁄	dranda Enterprise
11.	Doubles = 5 years, Four times = 5 * 2 = 10 years. Option A
12.	Double 3 years
	1:3 means Sum now becomes 4 times.
	Four times 3*2 = 6 years; Option A
13.	Double 3 years
	Eight times = 3*3 = 9 years; Option A
14.	5000 = 80000 * R/100
	R = 5000/800 = 6.25%; Option A
15.	(103680 - 86400) = 17280 = Interest on 86400 for 1 years
	R = 17280 / 86400 * 100 = 20%
	P = 86400 / (1.2)2 = 60000
	Option D
16.	PII = 400
	PII = 400 Second S
	I/100 = 0.05
	I = 5%
	P (25/100) (25/100) =400
	P = 400 * 4 * 4 = 6400
	Option A
17.	X * R/100 * R/100 = 7
	2X * R/100 = 350
	XR/100 = 175
	175 * R/100 = 7
	R = 4
	Option A
18.	Value = 1500000 (1 - 0.09) ² = 1242150.
	Option A

a V	ASSES Granda Enterprise
9.	3% pa CI is equivalent to (1.03)² – 1 = 6.09% pa SI
	Profit = 3.09% = 618
	100% = Sum borrowed = 618/3.09% = 20000. Option B
20.	P = 3120 / 24% = 13000
	$CI = 13000 [(1.12)^2 - 1] = 13000 * 0.2544 = 3307.20.$
	Option D
21.	CI = 10000 [(1.05)(1.06)(1.07) - 1] = 10000 * 0.19091 = 1909.10. Option C
22.	In 4 years amount increases by 1000/4000 * 100 = 25%
	In next 4 years 5000 shall become 5000 * 1.25 = 6250
	In next 4 years 6250 shall become 6250 * 1.25 = 7812.50
	Option A
23.	Simple interest for 1 year = 225/3 = 75
	Thus CI for 2 years = 75 + 75 + 75*R% = 153
	75 * R/100 = 3
	R = 300/75 = 4%
	P = 225/12% = 1875; Option A
	, diana
24.	Year 1 - 6000 * 1.10 = 6600 - 2000 = 4600
	Year 2 - 4600 * 1.1 = 5060 - 2000 = 3060
	Year 3 - 3060 * 1.1 = 3366
	Option C

PERMUTATION AND COMBINATION

THEORY

Permutation

- Permutation is defined as the arrangement of things by taking some or all at a time
- Permutation is order dependent
- Fundamental principle of counting;
 - If one operation can be performed in 'm' ways and another operation can be performed in
 - 'n' ways, then the total number of ways in which both the operation can be performed will
 - be given by 'm n' ways
- Definition of Factorial 'n', i.e., n! or Pactorial n (n!) is defined as the continued product of first n natural numbers or first n positivel integers and is expressed as n! = 1 x 2 x 3 x 4 ... x n
- $|\underline{n} = \mathbf{n} \times |\underline{n-1} = \mathbf{n} \times (\mathbf{n-1}) |\underline{n-2} = \dots$

• Mathematical definition of Permutation (Repetition not allowed):

Total number of arrangements of 'n' different things taking "r" at a time will be given by

nPr or P (n, r) =
$$\frac{|\mathbf{n}|}{|\mathbf{n}-\mathbf{r}|}$$
, where r \leq n.

Note:

- When r = n, it is known as "all at a time"
- When r < n, it is known as "some at a time"
- r can never exceed n
- n and r must be positive integers

- $^{n}P_{1} = \mathbf{n}$
- ${}^{n}P_{0} = 1$
- ${}^{n}P_{n} = n!$
- ${}^{n}P_{n} = {}^{n}P_{(n-1)} = n!$ But ${}^{n}P_{r} \neq {}^{n}P_{(r-1)}$
- Permutation or arrangements of 'n' different things in which few are alike (Repetition • not allowed)

The total number of arrangements of n different things in which p are alike and of one kind, q are alike and a second kind, r are alike and yet of another kind and the rest are n different, will be given by p|q|r

- Permutation when repetitions are allowed • The total number of arrangements of n things taken r at a time when each thing may be repeated once, twice, thrice,to r number of times will be given by n^r
- **Rules for restricted Permutation** ٠
- Whenever the arrangements should begin or end or begin and end with a particular a) letter or object keep the objects fixed at the respective places and arrange the rest.
- When in the arrangement of n things, r things are together, the total arrangements b) will be given by: (n - r + 1)! r!
- **c**) When in the arrangements of n things, r things are together in a specified order, the total arrangement will be given by (n - r + 1)!
- Total number of ways in which out of n things, r things are never together = total **d**) ways – number of ways when they are always together, i.e., n!-(n-r+1)!r!
- When the relative positions of few objects are to be kept unaltered it implies that the **e**) objects can be interchanged or arranged in their respective place only.
- In problems involving re-arrangements always subtract 1 from the total arrangements. **f**)
- g) When in the arrangement of n things, r alike things are together, then total number of arrangements will be given by (n - r + 1)!

Circular Permutation (When the things are arranged in a ring or circle)

- Total ways in which n things can be arranged in a ring or circle is n-1
- Total ways in which n things can be arranged in a ring or circle with respect to any object will be given by <u>n</u>
- When the clockwise or anti clock wise position cannot be disguised (for example: arrangements of different flowers in garland or arrangement of different beads in a necklace etc), in such a case the total number of circular arrangements will be given by (n - 1)! / 2

Arrangements of digits

- There are 10 random digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 💿
- 5 odd digits (1, 3, 5, 7, 9) and
- 5 even digits (0, 2, 4, 6, 8)
- Unless otherwise mentioned no number can start with '0'
- If there are 'n' different digits (0 is included) then the total number of n digit numbers not beginning with 0 will be given by: n n 1
- If there are n different digits (0 is included) and we are to form a number with r different digits then the total number of r digit numbers not beginning with 0 will be given by: ${}^{n}P_{r} - {}^{n-1}P_{r-1}$

CLASSWORK SECTION

Fun	damental Principl	.e of (Counting			
1.	There are 10 tra	lins m	noving between Co	Ilcutta and Dell	ni. In how many ways can a	
	man go from Ca	lcutto	a to Delhi and retu	irn by a differen	t one?	
	a) 100	b)	90	c) 120	d) None of the above	
2.	There are four b	us lin	es between A & B	and there are 3	bus lines between B & C. In	
	how many ways	s can	a man take round	trips by bus fro	om A to C by way of B, if he	
	does not want to	o use	a bus line more th	nan once?		
	a) 36	b)	24	c) 72	d) 120	
3.	There are 26 sta	tions	on a railway line.	How many diffe	rent kinds of tickets of class	
	ll must be printe	d in o	rder that a passen	iger may go fron	n any one station to another	
	by purchasing a	ticket			9	
	a) 65	b)	240	c) 650	d) 1300	
				9 rori	5	
4.	In a class after	every	student had sent	greeting cards	to the other student, it was	
	found that 1,640	0 carc	ls were exchanged	. Find the numb	er of students in the class.	
	a) 40	b)	39	c) 41	d) 42	
		\mathcal{O}	ave			
Forr	nula Pattern - "P _r					
5.	${}^{n}P_{5} = 20 \times {}^{n}P_{3}, t$	hen n	=			
	a) 7	b)	6	c) 9	d) 8	
6.	ⁿ P ₃ : ⁿ P ₂ = 3:1, th	ien th	e value of n is:			
	a) 4	b)	5	c) 6	d) 7	
7.	$^{n+r}P_2 = 110, ^{n-r}P_2$	$P_2 = 2$	0, then find n & r.			
	a) 8,4	b)	8, 3	c) 4,8	d) 8,5	
8.			2! + 3.3! +	+ n. n! is:		
	a) $(n+1)-1$					
	c) $(n-1)-1$	d)	None of the abo	ve		

General Linear Permutation – Repetition not allowed

9.	Fine	d how many	word	s can be for	rmed	by t	aking let	tters from	n the following	y word
	DAI	UGHTER takin	g (i) a	ll at a time ((ii) 4 (at a t	ime (iii) 🤅	3 at a tim	e?	
	α)	40320,1680), 336	b)	1680), 40320,	336		
	c)	336, 1680,	40320) d	l)	None	e of the c	above		
10.	Ηο	w many (i) 5 d	ligit no	o (ii) 6 digit r	no (iii)) 8 di	git no cai	n be form	ed with the dig	it 1, 2,
	3,4	+, 5, 6, 7, 8?								
	α)	6720, 2016	0, 403	320		b)	5720, 2	20161, 40)324	
	c)	4720, 2016	4,504	•0		d)	None o	of the abo	ve	
Ther	re ar	e 5 letters an	d 5 aa	dressed env	velop	es		®		
11.	In h	now many wa	ys the	letters can	be p	ut int	o the en	velopes?		
	α)	3!	b)	4!		c)	5!	d)	None of These	2
						5		9		
12.	In h	now many arr	anger	nents all the	e lett	ers a	re correc	tly placed	1?	
	α)	0	b)	1		c)	2 .0	() d)	None of the a	bove
					9	<u>, c</u>	nteri			
13.	Fine	d the total no	ofwo	ays in which	exac	tly or	he letter	is wrongl	y placed?	
	a)	0	b)	1		c)	2	d)	None of the a	bove
				ave						
		ms – Repetitio								
		number of a	rrang	ements that	can	be m	ade out	of the le	tters of the foll	lowing
word	ds:									
14.		THEMATICS								
	a)	4989600	b)	4998960		c)	5987590	0 d)	4545450	
15.		TITUTION								
	a)	554499	b)	445588		C)	554400	d)	None of the a	bove
·		n Allowed	_	• • •						
		nany ways ca	n 5 pr	izes be givei	n to					
16.	4 b	-	. `						N 0.1	
	a)	54	b)	5⁵		c)	4 ⁵	d)	None of the a	bove

-												
J. CL		SHAH SSES					CA FOU	INDA	TION - M	ATHEMA	TICS	
		da Enterprise										
 17.	<u>5</u> α)	oys	b)	4 ⁵	<u>_</u>	54		<u>ل</u> ا	None of	the abo		
	u)	5-	DJ	4-	C)	J.		u)	None of		ve	
 18.	6 b	OVS										
	α)		b)	6 ⁵	c)	64		d)	None of	the abo	ve	
19.	In I	now many way	ıs car	1 20 different date	s co	an any c	of the 7 o	days	of the v	veek?		
	α)	207			b)	7 ²⁰						
	c)	Both of a) and	d b) a	lbove	d)	None c	of the ab	ove				
In ho	ow n	nany ways the r	esults	of:								
20.	10		eclare	d when each mat			a win, lo			?		
	α)	3 ¹⁰	b)	10 ³	c)	22 ³	®	d) 1	322			
21.		• • •		arms and each arr					-		ding	
 		•		/hat is the total n			gnals th			ade?		
 	a)	1024	b)	2048	C)	720	rise	d)	1023			
22	In I			2 parsans aptar i	nto	/s hotal	c if (i) ro	noti	tion is al	lowed	and	
 22.		repetition is no		3 persons enter i		4 notei	.s ii (i) ie	peu		lowed,	unu	
 	(II) a)	3 ⁴ ,3 ⁴	b)	4 ³ ,P(4,3)								
	c)	3 ⁴ ,P(4,3)	d)	None of the abov	/e							
 	0/		α,									
 23.	Ho	w many 3 digit	t nos.	can be formed wi	ith 1	the 3,1	and 9?					
 	α)		b)	12		27		d) a	81			
24.	The	ere are 'm' me	n and	d 'n' monkeys. If c	ı m	an has	any nur	nber	r of mon	keys, b	ut a	
	mc	onkey may have	e only	one master, then	in ł	now ma	ny ways	may	v every m	nonkey h	ave	
	a n	naster?										
	α)	Mn	b)	n ⁿ	c)	m ⁿ		d)	n ^m			
25.	Fin	d the number of	of diff	ferent signals that	cai	n be ma	de with	20 f	lags, 4 fl	.ags eac	h of	
				flags are required			a signal?					
	α)	560	b)	625	c)	480		d)	240			

Restricted Permutation

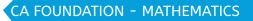
You	are	given the let	ters of	the word "MONDA	Y". I	Find the numbe	r of	arrangements in the
follo	owin	ng cases:						
26.	Wi	thout any res	striction	n.				
	α)	120	b)	144	c)	720	d)	360
27.	Wc	ords beginnin	g with	Μ				
	α)	120	b)	240	c)	360	d)	720
28.	Wc	ords ending w	vith Y					
	α)	24	b)	120	c)	96	d)	144
						R		
29.	Wc	ords beginnin	g with	M & ending with Y				
	α)	24	b)	96	c)	144	d)	240
						29)	
30.	Wc	ords beginnin	g with	M & not ending wi	th `			
	α)	24	b)	96		360	d)	144
				/9	C	nterr		
31.	M	& Y are at th	e two e	extremes	<u>, (</u>			
	α)	24	b).	48	c)	96	d)	144
				aver				
32.	Vo	wels are toge	ether					
	α)	120	b)	144	c)	240	d)	360
33.	Vo	wels are toge	ether in	the given order				
	α)	144	b)	240	c)	120	d)	480
34.								
	Vo	wels are nev	er toge	ther				
		wels are nev 480	er toge b)	ther 240	c)	360	d)	144
					c)	360	d)	144
35.	α)		b)	240	c)	360	d)	144
35.	a) Vov	480	b)	240		360 120		144
35.	a) Vov	480 wels occupy	b) odd pla	240 aces				
	a) Vov a)	480 wels occupy 480 wels occupy	b) odd plo b)	240 aces 240	c)	120		
	a) Vov a)	480 wels occupy 480	b) odd plo b)	240 aces 240	c)		d)	

 	June	ia enterprise						
37.	Rel	ative position o	of the	e vowels and the c	ons	sonants are to b	e k	ept untouched
	α)	96	b)	48	c)	56	d)	144
38.	Cor	nsonants are to	geth	er				
	α)	96	b)	120	c)	144	d)	240
39.	Ho	w many words	can	be formed by takin	g f	our letters at a	tim	ne?
	α)	240	b)	120	c)	360	d)	700
40.	In I	now many of th	nese	(given in previous o	que	estion) M is alwo	ıys	included?
	α)	240	b)	120	c)	360	d)	144
41.	In ł	now many of th	nese	(given in Q. No. 50)) M	is excluded?		
	α)	240	b)	360	c)	120	d)	144
42.	Fin	d the number o	of rec	irrangements of th	le v	vord "Monday".		
	α)	720	b)	719	c)	360	d)	717
					2	2 roris		
43.					le	tters in the wor	rd (COSTING, the vowels
 		ng not separat	\rightarrow					
	a)	144	b)	1440	c)	1280	d)	2880
				3				
Cons				h the letters of the v				
44.								can be made (i) if the
				rated; (ii) if the vov				
	α)	600,576	b)	600,120	c)	120,144	d)	None of the above
/ =							L. 1	
45.		5 5						ed among 8 boys of
					alw	ays goes to the	yo	ungest boy? [Assume
		it each boy get			<u>_`</u>	50/0	دام	Nene of the share
	α)	2520	b)	1240	C)	5040	α)	None of the above
				e word BALLOON. F	·inc	I the following ar	ran	gements:
46.		hout any restri			- \	1100	(اب	1200
	α)	960	b)	1060	C)	1160	a)	1260

	av	erana	la Enterprise						
	47.	Two	o LL will alway	's cor	ne together.				
		α)	720	b)	360	c)	180	d)	120
	48.	Two	o LL and two O)O wi	ll always come tog	get	her.		
		α)	360	b)	480	c)	180	d)	120
	49.	All	the O's & the I	.'s wi	ll come together.				
		a)	120	b)	184	c)	144	d)	168
	50.	Vov	wels are togeth	ner.					
		a)	180	b)	120	c)	360	d)	240
	51.		N are togethe				®		
		a)	180	b)	120	c)	360	d)	240
	52.		N are never to				29		
		a)	900	b)	980	c)	160	d)	720
						2	2 roris		
	53.		N & O's are tog			Ç	nteri		
		a)	288	b)	142	c)	144	d)	368
				6	<u> </u>				
					the letters of the wo			<u> </u>	
	54.				ords can be formed				
		a)	720	b)	360	C)	180	α)	240
	55	10 4	ow many of th	0050	R and H are never	+~~	10thor?		
	55.		360	b)	B and H are never 180		240	۲۷	120
_		u)	200	וט	100	0	240	u)	120
	56.	Ho	w many of the	se he	gin with B and enc	1 14	vith T?		
_	50.	a)		b)	12		18	d)	21
		α,			±£	-	10	α,	
	57.	Ηοι	w many differe	nt w	ords can be forme	d w	vith the letters of	of t	he word CAPTAIN? In
			-		Ind T are never to				
			2520, 1600	b)	2520, 1890		2520, 1800	d)	3250, 1800
_		~/	_0_0, 1000	~1		-/		~/	
_									

a V	eranc	la Enterprise								
58.	In h	now many differ	rent v	ways can the letter	s of	the word "CONS	STITUTION" be arranged?			
	Ho	w many of the	se wi	ll have the letter N	N bo	oth at the begin	ning and at the end?			
	α)	9979200, 151	200		b) 9989920, 152150					
	c)	9979000, 151	000		d)	None of the ab	oove			
59.	In ł	now many way	s can	the letters of the	wo	rd AGARTALA b	e arranged?			
	a)	1600	b)	1800	c)	1980	d) 1680			
60.	Tak	ing data from	the p	revious question,	In h	ow many of the	ese will the 4 A's (i) come			
	tog	ether, (ii) not c	ome	together?						
	α)	120, 1560	b)	360, 1620	c)	300, 1500	d) 220, 1380			
61.	In I	now many diffe	erent	ways can the let	ters	of the word V	IDYAPITH be arranged ?			
	Ho	w many of the	se ari	rangements begin	wit	h V but do not	end with H?			
	a)	181000,17600)		b)	181400,17640				
	c)	181440,17640)		d)	182000,18600				
				61		V.o				
62.	In ł	now many way	s car	5 dots (.) and 3 c	ros	ses (x) be arran	ged in a row?			
	α)	36	b)	46 9		66	d) 56			
				P AC	2					
63.	Αl	ibrary has 5 co	pies d	of 1 book, 4 copies	of	each of the 2 b	ooks, 6 copies of each of			
			· · · ·				ays can all the books be			
		anged?		<u> </u>						
		39!				39!				
	a)	$\overline{5!(4!)^2(6!)^3}$			b)	$\frac{39!}{8! (4!)^2 (6!)^3}$				
		39!								
	c)	$(4!)^2 \times (6!)^3$			d)	None				
Circu	ılar	Permutation								
			s 8 p	ersons can be sea	ted	at a round tab	le?			
<u> </u>		5040	b)	40320		2020	d) 2520			
			•		,		•			
65.	In ł	now many way	s can	7 persons be arro	ina	ed at a round to	able so that 2 particular			
		sons can be to		-	5		. P			
	-	180	b)	240	c)	360	d) None of the above			
			~/		-1					

CA FOUNDATION - MATHEMATICS a Veranda Enterprise 66. In how many ways can 4 MBA & 4 MCA be seated at the round table so that no 2 MBA students are adjacent? 144 a) 12 b) 24 c) 96 d) 67. Find the no. of ways in which 5 beads can be arranged to form a necklace c) 36 a) 12 b) 24 d) 48 68. In how many ways 8 stones of different colours be arranged on a ring? In how many of these arrangements red and yellow beads being separated? a) 2520, 900 b) 2520, 1800 c) 1800, 2520 d) 1800, 1260 69. 20 persons are invited to a party. In how many ways can they and host be seated at a circular table? In how many of these 2 particular persons be seated on either side of the host? (18!), 2(20!) (18!), (20!)(20!), (18!)(20!), 2(18!)a) b) c) 70. In how many ways can 6 ladies and 6 gents be arranged at a round table, if the two particular ladies Miss X and Miss Y refuse to sit next to Mr. Z, all men being separated? 1730,000 c) 1728 a) 1278 b) d) 34560 **Problem Involving Digits** 71. How many (i) 8 digit no (ii) 5 digit no (iii) 4 digit no (iv) 3 digit no can be formed with the digit 0,1,2,3,4,5,6,7? b) 5880, 1740, 4294, 294 a) 35280, 5880, 1470, 294 c) 294, 1470, 5880, 35280 d) None 72. How many 6 digit nos. can be formed with 3, 4, 5, 6, 7, & 8 (no digits are repeated)? How many of these are (i) divisible by 5 (ii) not divisible by 5. a) 720, 120, 600 b) 720, 600, 120 c) 780, 600, 180 d) 780, 180, 600 73. How many 4 digit nos. can be formed with the digits 0, 1, 2, 3, 4, 5, and 9 (repetition not allowed)?


a) 9000 b) 4536 c) 3654

d) 2635

d 1/	eranda Enterprise							
74.	In the abov	e question,	if repetitio	n is allow	ed ther	n find the nu	umber of wa	ys it can
	be done?							
	a) 4536	b)	3654	c)	2598	d)	9000	
75.	How many	numbers c	an be form	ed with th	e digit	s 1, 2, 3, 4,	3, 2, 1, so t	hat odd
	digits are at	t odd place	s?					
	a) 18	b)	19	c)	20	d)	None	
76.	How many f	four digits r	numbers cai	n be forme	d with	the digits 3,	4, 5, 6? Find	the sum
	of all the n	umbers thu	s formed.					
	a) 24,142	0 b)	24, 1520	c)	24, 47	'42 d)	24, 119988	
77.	How many	3 digit nos.	are there,	with distin	ct digit	ts, with each	n digit odd?	
	a) 30	b)	60	c)	90	d)	120	
78.	Find the tot	al number	of number	s divisible	by 2 w	vhich can be	formed wit	h the six
	digits 1, 2, 4	4, 5, 6 and	7.					
	a) 180	b)	360	c)	720	d)	120	
				94	nte			
79.	How many	5 digit nos	, can be fo	rmed with	h the d	igits 2, 3, 5	, 7, and 9 w	hich are
	-		(ii) less the	ın 70000:	(iii) lies	between 30	000 and 90	000?
	a) 96,72,	72 b)	96, 96, 72	c)	96, 96	5,96 d)	72, 72, 96	
80.	How many			4000 can	be forr	ned with the	e digits 2, 3,	4, 5 and
	6 when no o							
	a) 216	b)	212	c)	192	d)	180	
81.	-			-	each g	reater than	4000 can be	e formed
	from the dig	-						
	a) 160	b)	180	c)	150	d)	240	
82.	-					rmed with th	ne digits 0, 1	., 2, 3, 4
	and 5(no di		·	-			2/2	
	a) 180	b)	120	c)	160	d)	240	

 av	eranda Enterprise						
83.	How many nu	mbers co	n be form	ed with the	digits 1,	2, 3, 4 and 5; which are greate	er
	than 3400?						
	a) 180	b)	120	c)	160	d) 360	
84.	How many nu	mbers gr	reater thai	n a million	(10 lakhs	s) can be formed with the digi	ts
	2, 3, 0, 3, 4, 2	, and 3?					
	a) 240	b)	180	c)	540	d) 360	
85.	How many ev	en numb	ers greate	r than 300	can be fo	ormed with the digits 1, 2, 3,	4
	and 5 (no digi	t being r	epeated)?				
	a) 121	b)	111	c)	222	d) 124	
Misc	ellaneous					®	
86.	How many wo	ays can 3	3 boys and	d 5 girls be	arrange	d in row so that no 2 boys a	re
	together?					2	
	a) 14400	b)	604800	c)	2880	<i>G</i> d) 28800	
				51			
87.	In how many	ways can	5 boys an	d 4 girls be	arrange	d in a row so that the boys an	nd
	the girl stand	alternat	ely?	19	nterr		
	a) 28800	b)	14400	- 00c)	2880	d) 60480	
		<u> </u>	Vids	<u>d''</u>			
88.	A dinner is ar	ranged f	or 11 gues	sts in which	there a	re 4 children, 1 old man and	6
	adults. They a	ire to be o	arranged i	n a row for	a dinner.	The 4 children wish to occupy	2
	seats at each	end corn	er seats a	nd the old r	nan refu	ses to have a child on his eithe	er
	side. In how m	nany way	/s can all g	guests be a	rranged?		
	a) 28800	b)	43200	c)	86400	d) 14400	
89.	In how many	ways car	n 5 boys a	nd 5 girls b	e arrang	jed in a row so that they stan	nd
	alternately?						
	a) 14400	b)	2880	c)	604800	d) 28800	
90.						how many ways can they b	be
	arranged so t	hat A & I	3 speak ne	ext to each o	other.		
	a) 48	b)	49	c)	56	d) None	

 al	/drane	da Enterprise									
91.	Α	Speaks immed	diately	y before B							
	a)	24	b)	120	c)	12	d)	None			
92.	As	speaks always	befor	e B							
	α)	60	b)	6	c)	120	d)	None			
93.	In	how many wo	ays ca	In the letters of th	ne v	vord PARNECIO	US	be arranged without			
	cho	anging the ord	ler of	the vowels?							
		33590	b)	30239	c)	14400	d)	28800			
 94.	On	e arrange 10	letters	s taken 7 at a time	. In	how many of t	hes	se 3 particular letters			
	. One arrange 10 letters taken 7 at a time. In how many of these 3 particular letters (i) always occur, and (ii) never occurs?										
	a) 720, 30240					30240, 5040					
	c) 5040, 5040					176400, 5040					
	-	-			•						
95. If the number of permutation of "n' different things taken 4 at a time, in which 1											
	particular thing does not occur, is equal to the number in which it does occur, find										
	the value of "n".										
	a)	2	b)	4 9	c)	612	d)	8			
	•				3		•				
96.	Fin	d the rank of	word	CHALK?							
	(a)	31	(b)	32	(c)	33	(d)) 34			
				<u> </u>							
97.	Fin	d rank of wor	d 'ZEN	IITH'.							
	(a)	613	(b)	614	(c)	615	(d)) 616			
98.	Fin	d rank of wor	d GOC	DGLE							
	(a)	86	(b)	87	(c)	88	(d)) 89			
				205							

COMBINATION

- Combination is the selection of different items from a given number of items
- Combination is order independent •
- The total number of combinations or selections of r items from n different items will be • given by;

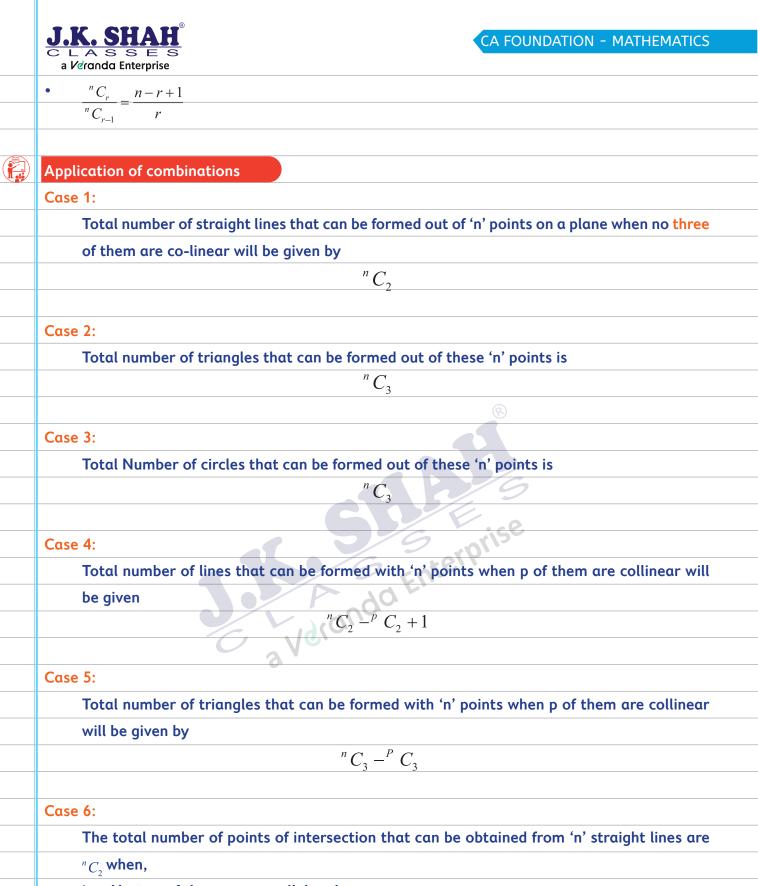
$${}^{n}C_{r}$$
 or C(n, r) = $\frac{|n|}{|r \times |n-r|}$ where r $\leq n$

- No arrangement (Permutation) is possible without selection (Combination) but selection • (Combination) process can take place independently
- Thus ${}^{n}C_{r} < {}^{n}P_{r}$, except when r=0 or 1 •

Ado Enterprise Relation between ${}^{n}P_{r}$ and ${}^{n}C_{r}$ •

•
$${}^{n}P_{r} = {}^{n}C_{r} \times |\underline{r}|$$

• $\frac{{}^{n}P_{r}}{{}^{n}C_{r}} = |\underline{r}|$


•
$${}^{n}C_{0} = {}^{n}P_{0} = 1$$

- ${}^nC_1 = {}^nP_1 = n$
- ${}^{n}C_{n}=1, {}^{n}P_{n}=\lfloor n \rfloor$

Complementary Combination

- ${}^{n}C_{r} = {}^{n}C_{n-r}$ (Use this result, when ${}^{r>\frac{n}{2}}$) •
 - If ${}^{n}C_{x} = {}^{n}C_{y}$ then either •
 - a. x = y or

- b. x+y=n or
- c. both the results can hold true simultaneously
- ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ •

- i. No two of them are parallel and
- ii. No three of them are concurrent

Case 7:

To find the number of diagonals in a polygon having 'n' sides

No of diagonals = ${}^{n}C_{2} - n$

Where ${}^{n}C_{2}$ = total number of lines by joining 2 vertices in pairs and

'n' number of sides = number of vertices

$${}^{n}C_{2} - n$$

 $= \frac{n(n-1)}{2} - n = n\left(\frac{n-1}{2} - 1\right) \Rightarrow n\left(\frac{n-1-2}{2}\right) \Rightarrow n\left(\frac{n-3}{2}\right)$

Case 8:

Total number of selections or combinations of 'n' different things taking one or more at a

time (i.e., at least 1) will be given by

$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} = 2^{n} - 1$$

Case 9:

Combinations or selections of things which are alike.

Total number of combinations or selection of p, q, r items by taking one or more(atleast

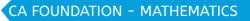
one) will be given by, (p+1)(q+1)(r+1)-1

When p are alike and of one kind, q are alike and of a second kind and r are alike and of yet of another kind.

Note:

Total number of selections of p alike, q alike and r different items by taking at least one will be given by (p+1)(q+1)2^r-1

Case 10: Division into groups


• The total number of ways in which (m+n) items can be divided into two distinct groups containing m & n items respectively will be given by:

<u>m + n</u>
m n

- Total ways in which m+n+p items can be divided into 3 distinct groups containing m,
 - n & p items respectively will be given by,

$$m+n+p$$

m n p

Case i :

When m = n or m=n=p then 2m or 3m items can be equally distributed into two or

three distinct groups in,

2*m* |3m| $\frac{2}{3}$ ways or 2 m m

Case ii:

When the identities of the groups are not distinct i.e, the groups are alike in such a case 2m or 3m items can be distributed equally into 2 or 3 identified groups in

Veranda Enterprist

$$\frac{|2m|}{(m)^2} \times \frac{1}{2!} \text{ or } \frac{|3m|}{(m)^3} \times \frac{1}{3!} ways$$

CLASSWORK SECTION

Basic Mean

Basi	c Meaning								
1.	Find the value of	f <mark>n w</mark> ł	nen ${}^{20}C_{3n} = {}^{20}C_{2n+5}$						
	a) 3			b)	5				
	c) Both a) and	b) aba	ove	d)	Neither a) nor	b) c	above		
2.	$If {}^{15}C_{3r} = {}^{15}C_{r+3}$, f	ind th	ne value of r.						
	a) 3			b)	4				
	c) Both a) and	b) aba	ove	d)	None of a) or b) a	bove		
3.	$If^{2n}C_{r} = {}^{2n}C_{r+2}$, fir	nd the	value of r.		R				
	a) n + 1			c)	2n + 1	d)	None of the above		
 4.	If "P _r = 336 and "C _r = 56, find n and r. Find also " + 2C _{r + 1}								
	a) 8, 3, 120				8, 5, 210	d)	None of the above		
 				7	3 orise				
 5.	Find the value of	F: ¹² C ₄	+ ¹² C ₃		nterr				
	a) 720	b)	715	c)	815	d)	820		
			L'YOUR						
 6.	$If {}^{13}C_6 + 2. {}^{13}C_5 +$	¹³ C ₄ =	¹⁵ C _x , what is the ve	alu	e of X?				
	α) 6			b)					
	c) Either a) or b)		d)	Both a) and b)				
 7.	If ¹⁰⁰⁰ C ₉₈ = ⁹⁹⁹ C ₉₇ +	⊦ ×C ₉₀₁	, find x						
	a) 1000			c)	997	d)	999		
 8.	Find the value of α) ${}^{52}C_6$	F ⁴⁷ C ₄	$+\sum_{r=1}^{5} {}^{52-r} C_{3}$						
	α) ⁵² C ₆	b)	⁵² C ₅	c)	⁵² C ₄	d)	None		
 9.	$\int \frac{C_{r-1}}{C} = \frac{1}{4} \text{ and } \frac{C}{C}$	$-=\frac{1}{3}$	then find the value	e of	n and r?				
	r r-	-1							
	a) 35,7	b)	53,8	c)	35,8	d)	19,4		

	<u>K. SHAH</u>			C.	A FOUNDATION - MATHEM	ATICS	
a	dranda Enterprise						
"n" (different things,	"r" to be	selected (r \leq n)	- Without Restrict	ions		
10.	In how many	ways ca	n a committee	of 6 men and 2	women be formed out o	of 10	
	men and 5 wo	omen?					
	a. 1200	b.	2100	c. 1300	d. 3100		
"n" (different things,	"r" to be	selected (r \leq n)	- With Restriction	S		
In h	ow many ways	can fou	r students be s	elected out of two	elve students if		
11.	2 particular s	tudents	are not include	d at all.			
	a. 120	b.	210	c. 340	d. 320		
12.	2 particular s	tudents	are always incl	uded?			
	a. 54	b.	56	c. 57	📀 d. 45		
13.	From 6 gentle	emen an	d 4 ladies, a c	ommittee of 5 is	to be formed. In how r	many	
	ways can this	be done	so as to incluc	le at least one la	dy?		
	a. 642	b.	259	c. 246	d. 586		
				19 rol	150		
In h	ow many ways	can a co	mmittee of 5 m	embers be forme	d from 10 candidates so	as to	
14.	Include both t	he youn	gest and the ol	dest candidates			
	a. 196	b.	65	c. 54	d. 56		
		0	2V.				
15.	Exclude the ye	oungest	if it includes th	e oldest?			
	a. 196	b.	165	c. 156	d. 157		
16.				-	. In how many ways ca	n 10	
	students be s	elected f	rom them so a	s to include at lea	ast 4 lady students?		
	a. 2770	b.	2772	c. 7227	d. 7272		
	The guestion	paper o	n Mathematics	and Statistics c	ontains 10 questions div	vided	
17.		into two groups of 5 questions each. In how many way					
17.		ps of 5 c	questions each.	In how many wo	ays can an examinee set	ect 6	
17.	into two grou	· · · · · · · · · · · · · · · · · · ·	•	In how many wo ons from each gro	-	ect 6	

		®			
	ASSES			A FOUNDATION - MATHEMAT	ICS
	/dranda Enterprise				
 18.			• •	h containing 7 questions.	
 				nore than five questions fro	om
 	any group. In	how many ways co	an 9 questions be sele	cted?	
 	a) 1470	b) 1570	c) 1680	d) 1970	
19.	A candidate i	s required to answe	er 6 out of 12 question	ns which are divided into ty	NO
	groups each o	containing 6 questi	ons and he is permitt	ed to attempt not more th	an
	four from any	y group. In how ma	ny different ways can	he make up his choice?	
	a. 580	b. 680	c. 850	d. 950	
"n" (different things,	any number can be	selected at a time		
20.	In how many	ways can a person a	choose one or more of	the four electrical appliance	es:
	T.V., Refrigera	tor, Washing Machi	ine, Radiogram?		
	a. 16	b. 31	c. 32	d. 15	
				9	
21.	In how many	ways a man can i	nvite 5 friends to a d	inner so that two or more	of
	them remain	present?	2/9 .01	150	
	a. 24	b. 25	9 c. 26	d. 32	
		P	> 70 F.		
22.	At an election	n there are 5 candid	dates and 3 members	are to be elected and a vo	ter
	is entitled to	vote for any numbe	er of candidates but no	ot more then to be elected.	In
	how many wo	ays may a voter che	oose a vote?		
	a. 24	b. 23	c. 26	d. 25	
 Am	an has 5 Germa	an, 4 Spanish and 3 F	rench friends. Find:		
 23.	Total ways in	which at least one	friend can be invited.		
	a. 4096	b. 4095	c. 2048	d. None of the above	e
 24.	Total ways of	invitation so that	there is at least 1 Ger	man friend.	
	a. $(2^5 - 1).2^4$		b. $(2^5 - 1).2^3$		
 	c. $(2^5 - 1).2^7$		d. None of t	he above	

a۷	reranda Enterprise							
25.	At	least 1 Germar	n anc	l at least 1 French	frie	end.		
	α.	$(2^5 - 1).(2^4 - 1).2^3$			b.	$(2^5 - 1).(2^3 - 1).2^4$		
	c.	$(2^4 - 1).2^3.2^5$			d.	None of the ab	ove	2
26.	At	least one frien	d froi	m each country.				
	α.	3165	b.	3290	c.	3255	d.	3250
27.	Ter	n electric bulbs	, of \	which 3 are defect	ive	, are to be tried	d in	three different light
	ро	ints in a dark ro	oom.	In how many out o	of t	he total trial th	e rc	oom shall be lighted?
	α.	120	b.	121	c.	119	d.	122
28.	Fiv	e bulbs of whic	ch th	ree are defective a	re	to be tried in tv	vo l	ight points in a dark
	roc	om. In how mar	ny tri	als the room shall	be	lighted? 🛞		
	α.	7	b.	8	с.	9	d.	11
29.	The	ere are 10 lamp	os in (a hall. Each of the	m c	an be switched	on	independently. What
	is t	the number of v	ways	in which the hall o	an	be illuminated	?	
	α.	1024	b.	100	c.	1023	d.	120
				/9	ç	nteri		
30.					jud	ges. In how mo	any	ways the bench can
	giv	re a decision in	majo	rity?				
	α.	16	b.	15	с.	31	d.	32
Appl	icat	ion of Combinat	ion in	Geometry				
31.					d by	y joining 16 poi	nts	on a plane, no three
	-	ints being on th						
	α.	120	b.	240	c.	119	d.	480
32.					inin	ig 16 points on	a p	lane, no three points
		ing on the sam						
	α.	240	b.	360	c.	560	d.	480
		1.0	C .					
33.				5		, ,		nt points on a plane,
								which are collinear).
	α.	41	b.	45	с.	39	d.	40

<u>J.</u>	ζ.	<u>SHA</u>	H						CA FOL	JND	ATION - MATHEN	MATICS
a V	dran	da Enterpi	rise									
34.	Fin	d the i	number	of tri	angles	formed by	joi	ning	10 differer	nt p	oints on a pla	ne, no
	thr	ree of t	hem beii	ng co	llinear (with the e	xce	ptior	n of 4 point	s w	hich are colline	ear).
	α.	120		b.	116		с.	121		d.	126	
35.	lf 2	20 strai	ight lines	s be c	lrawn in	i a plane, r	no t	wo c	of them bei	ng p	parallel and no	three
	of	them b	peing cor	ncurre	ent, how	/ many poi	nts	of ir	ntersection	wil	l there be?	
	α.	200		b.	180		с.	210		d.	190	
Find	the	e numb	er of dia	igonc	ıls in:							
36.	Qu	adrilat	teral									
	α.	2		b.	3		с.	4		d.	6	
 37.	Oc	tagon							®			
	α.	10		b.	35		с.	20		d.	9	
38.	Aŗ	oolygor	n has 44	diag	onals. F	ind the nu	mb	er of	its sides.			
	α.	10		b.	11	6	с.	12	E.o	d.	14	
						7	2	5	rorise			
Selec	ctio	ns of p,	q,r alike i	tems	taken ar	ny number o	at a	time				
 	Th	ere are	8 manga	oes, 4	apples	and 5 oran	iges	s. If a	ny number	off	ruits can be sel	ected,
	fin	d:				100						
39.	Tot	tal nun	nber of s	elect	ions.	5						
	α.	269		b.	270		с.	275		d.	300	
40.	Tot	tal nun	nber of s	elect	ions so	that there	is c	at leo	ast 1 mang	0.		
	α.	269		b.	270		с.	240		d.	None	
41.	At	least 1	l mango	and	at least	: 1 apple.						
	α.	129		b.	108		c.	40		d.	192	
42.	At	least 1	l fruit of	each	type.							
	α.	160		b.	170		с.	190		d.	210	
How	mo	any sel	ections o	an b	e made	by taking o	any	lett	ers from th	e w	ords	
43.	DA	DDY D	ID A DEA	DLY I	DEED							
	α.	1920		b.	1921		c.	129	0	d.	1919	

		@						
<u>J.</u>]	<u>K.</u>	<u>SHAH</u>					JND	ATION - MATHEMATICS
aV	drand	da Enterprise						
44.	Αŗ	person has in hi	s bag	14 notes of Rs. 10) eq	ach, 9 notes of I	Rs. !	5 each, 4 notes of Rs.
	2 €	ach and 7 note	es of	Re. 1 each. In how	ı m	any different w	ays	can he contribute to
	αc	haritable fund	?					
	α)	3000	b)	6000	c)	5999	d)	2999
Divis	sion	into Groups – ei	ther o	listinct or alike				
 45.	The	e three differer	nt seo	ctions of a Library	ne	eed the services	s of	3, 4 and 5 workers
	res	pectively. If 12	work	ers are available,	in l	now many ways	s ca	n they be allotted to
	dif	ferent sections	?					
	α.	27720	b.	22770	c.	27270	d.	72270
46.	Div	vide 12 items in	two	groups so that ea	ch	containing 8 an	d 4	items.
	α)	12!	b)	12!		B		
		8!		4!8!				
	c)	8!4!	d)	None of the abov	e			
		12!				29)	
In he	ow I	many ways can	20 b	ooks be equally d	ivic	led amongst:		
					4	2 rorise		
47.	2 E	Boys.		9	ç	201		20!
	α.	$\frac{20!}{(10!)^2}$	b.	20! (5!) ⁴	c.	$\frac{20!}{(4!)^5}$	d.	$\frac{20!}{(2!)^{10}}$
		(10!)	<u>/</u>	())) ())		(1.)		()
48.	4 E	Boys.		20!		20!		201
	α.	$\frac{20!}{(10!)^2}$	b.	$-\frac{20!}{(5!)^4}$	c.	$-\frac{20!}{(4!)^5}$	d.	$\frac{20!}{(2!)^{10}}$
		(10.)						
49.	In	how many way	's 9 st	udents be divided	eq	ually into 3 gro	oups	?
	α)	260	b)	270	c)	280	d)	300
"n" t	:hing	<mark>js, few are alike</mark> ,	, "r" t	hings chosen at a ti	me	and then arrang	ed	
How	/ mo	any different wo	ords	can be formed taki	ing	4 letters from t	the	following words?
50.	PR	OPORTION						
	α.	758	b.	875	с.	587	d.	578
51.	EX	AMINATION						
	α.	2434	b.	2454	c.	1424	d.	6424

.11	2	CH.	ΔH [®]								<u> </u>
		S S	ES					CA FOU	ND,	ATION - MATHEMATI	CS
a v Mixe		da Entei	prise								
		-	e 25 can	didate	s which include 5	fror	n the Sch	eduled	Ca	stes for 12 vacancie	25
52.										and the remaini	
										the selection can	<u> </u>
			es ure of			ibei	or wuys		СП	the selection can	be
		$\frac{1}{5}C_{3}.^{20}$	C		${}^{5}C_{3}.{}^{22}C_{9}$		$^{25}C_{12}$			NI	
	α.	C ₃ .	C ₉	D.	$C_3. C_9$	с.	C ₁₂		α.	None	
53.										ny different forecas	sts
		-	-		rect results out o						
	α.	$^{22}C_{13}$	3	b.	$^{22}C_{18}.2^4$	с.	$^{22}C_{18}.4^{2}$		d.	None	
54.	In l	how r	nany wa	iys can	the letters of the	e wo	rd FOREC	CAST ta	ker	n 3 at a time and t	he
	wo	ord MI	LKY take	en 2 at	a time be arrang	ed?					
	α.	6270	00	b.	67000	c.	68720		d.	67200	
55.	Α"	'numb	er lock"	consis	sts of 3 rings each	n mo	rked witl	h 10 dif	ffer	ent numbers. In ho	w
	mc	any w	ays the	lock ca	nnot be opened?						
	a)	1000)	b)	999	c)	998	rise	d)	997	
					1/6		ntert		· ·		
56.	Но	w ma	nv diffe	rent fa	ctors can 210 hav	/e?					
		15		b)	16		31		d)	32	
				\mathcal{O}		-,			.,		
57.	Ho	w ma	ny diffe	rent fa	ctors can 2160 ha	יאר:					
 51.		40	ing anter	b)	39		37		d)	45	
	u)	40		D)	22	C)	51		u)	45	
FO	^	antai	n and a	vice	antain are to be a	bocc		atoam	ha	ving 11 playars lie	
58.						IUSE			nu	ving 11 players. Ho	, vv
			ays are		o achieve this?	-1	120		(ام	News of the show	
	a)	100		b)	110	C)	120		a)	None of the above	5
					216						

HOMEWORK SECTION

1.	In ⁿ P _r = n (n-1) (n-2)	(n-r	r+1), the number of f	actors is	
	a) n	b)	r-1	c) n−r	d) r	
2.	n articles are ar	rangeo	d in such a wo	ay that 2 particular c	rticles never come together.	
	The number of s		-	is		
	(a) $(n-2)$ <u>$n-1$</u>	(b)	(n-2) n-2	(c) <u>n</u>	(d) None of these	
3.	The number of	ways t	he letters of	the word `TRIANGLE	to be arranged so that the	
	word 'angle' wil	l be a	lways presen	t is		
	(a) 20	(b)	60	(c) 24	(d) 32	
4.	The sum of all 4	4 digit	number cont		, 6, 8, without repetitions is	
	a) 1,33,330	b)	1,22,220	c) 2,13,330	夕 d) 1,33,320	
					<u></u>	
5.					that vowels occupy the odd	
	places, then nu					
	(a) 2,880	(b)	676	(c) 625	(d) 576	
		4	V dig			
6.	3 ladies and 3 g	gents o	an be seated	l at a round table so	that any two and only two	
	of the ladies sit					
	(a) 70	(b)	27	(c) 72	(d) none of these	
7.				0 different things tak	en 4 at a time in which one	
 	particular thing					
	(a) 2015	(b)	2016	(c) 2014	(d) none of these	
8.		-) different things tak	en 4 at a time in which one	
	particular thing				(1) 7.1	
	(a) 3,020	(b)	3,025	(c) 3,024	(d) none of these	
9.			-		ns can be arranged in a line	
	such that no tw			-	(1) 2.1	
	(a) 17/13	(b)	6/7/3	(c) 35	(d) none of these	

al								
10.	5 persons are sit	ting i	n a round table in	such way that Tal	llest Person is always on			
	the right-side of	the s	hortest person; the	e number of such o	arrangements is			
	(a) 6	(b)	8	(c) 24	(d) none of these			
11.	The total numbe	r of 9	digit numbers of a	different digits is				
	(a) 10 <u>9</u>	(b)	89	(c) <u>99</u>	(d) none of these			
12.	There are 5 spec	akers	A, B, C, D and E.	The number of wa	iys in which A will speak			
	always before B	is						
	(a) 24	(b)	<u>4 x 2</u>	(c) <u>5</u>	(d) none of these			
13.	The number of w	/ays i	n which 8 sweats	of different sizes co	an be distributed among			
	8 persons of diff	erent	ages so that the	largest sweat alw	vays goes to be younger			
	assuming that ea	ach oi	ne of then gets a s	weat is				
	(a) <u>8</u>	(b)	5040	(c) 5039	(d) none of these			
				12/9	7			
14.	If ${}^{n}C_{r-1} = 56$, ${}^{n}C_{r} =$	28 a	nd "C _r +1 +1 = 8, th	en r is equal to				
	(a) 8			(c) 5 0115E	(d) none of these			
			/9	cnterr				
15.	If ${}^{28}C_{2r}$: ${}^{24}C_{2r-4}$ = 2	225 :	11, then the value	of r is				
	(a) 7			(c) 6	(d) none of these			
		\mathcal{O}	Ver					
16.	The number of w	ays in	which 12 students	s can be equally div	vided into three groups is			
	(a) 5775	(b)	7575	(c) 7755	(d) none of these			
17.	The number of w	ays ir	which 15 mangoe	es can be equally d	livided among 3 students			
	is		15	11.5				
	(a) $\frac{ 15 }{(15)^4}$	(b)	$\frac{15}{(15)^3}$	(c) $\frac{ 15 }{(15)^2}$	(d) none of these			
	(<u>15</u>)			<u>(1)</u>				
18.	The Supreme Cou	ırt ha	s given a 6 to 3 de	cision upholding a	lower court; the number			
	of ways it can giv	ve a n	najority decision re	eversing the lower	court is			
	(a) 256			(c) 245	(d) 226.			
19.	Out of 7 gents	and 4	udies a commit	tee of 5 is to be	formed. The number of			
	(a) 400	(b)	440	(c) 441	(d) none of these			
	10. 11. 11. 11. 12. 12. 13. 13. 13. 13. 13. 13. 13. 13	10. 5 persons are sit the right-side of (a) 6 11. The total number (a) $10 9$ 12. There are 5 spect always before B (a) 24 13. The number of w 8 persons of diff assuming that eq (a) $\frac{18}{2}$ 14. If $^{n}C_{r-1} = 56$, $^{n}C_{r} = \frac{1}{6}$ (a) 8 15. If $2^{28}C_{2r}$: $2^{24}C_{2r-4} = \frac{1}{6}$ (a) 7 16. The number of w (a) 5775 17. The number of w (a) 5775 18. The Supreme Cou of ways it can giv (a) 256 19. Out of 7 gents committees such	10. 5 persons are sitting in the right-side of the s (a) 6 (b) 11. The total number of 9 (a) 109 (b) 12. There are 5 speakers always before B is (a) 24 (b) 13. The number of ways in 8 persons of different assuming that each or (a) $\frac{18}{2}$ (b) 14. If $^{n}C_{r-1} = 56$, $^{n}C_{r} = 28$ and (a) 8 (b) 15. If $^{28}C_{2r}$: $^{24}C_{2r-4} = 225$: (a) 7 (b) 16. The number of ways in (a) 5775 (b) 17. The number of ways in (a) $\frac{15}{(5)^{4}}$ (b) 18. The Supreme Court had of ways it can give a n (a) 256 (b) 19. Out of 7 gents and 4 committees such that	10. 5 persons are sitting in a round table in the right-side of the shortest person; the (a) 6 (b) 8 11. The total number of 9 digit numbers of a (a) 10 2 (b) 8 2 12. There are 5 speakers A, B, C, D and E. always before B is (a) 24 (b) $ 4 \times 2$ 13. The number of ways in which 8 sweats a 8 persons of different ages so that the assuming that each one of then gets a s (a) $ 8$ (b) 5040 14. If "C _{r-1} = 56, "C _r = 28 and "C _r +1 +1 = 8, th (a) 8 (b) 6 15. If ${}^{28}C_{2r}$: ${}^{24}C_{2r-4}$ = 225 : 11, then the value (a) 7 (b) 5 16. The number of ways in which 12 students (a) 5775 (b) 7575 17. The number of ways in which 15 mangoes is (a) $\frac{ 15}{(5)}$ (b) $\frac{ 15}{(5)}$ 18. The Supreme Court has given a 6 to 3 de of ways it can give a majority decision re (a) 256 (b) 276	10.5 persons are sitting in a round table in such way that Ta the right-side of the shortest person; the number of such a (a) 6 (b) 8 (c) 2411.The total number of 9 digit numbers of different digits is (a) 10 2 (b) 8 2 (c) 9 212.There are 5 speakers A, B, C, D and E. The number of wa always before B is (a) 24 (b) $ 4 \times 2$ (c) $ 5$ 13.The number of ways in which 8 sweats of different sizes of 8 persons of different ages so that the largest sweat alwa assuming that each one of then gets a sweat is (a) 8 (b) 5040 (c) 503914.If ${}^{n}C_{r-1} = 56$, ${}^{n}C_r = 28$ and ${}^{n}C_r + 1 + 1 = 8$, then r is equal to (a) 8 (b) 6 (c) 515.If ${}^{28}C_{2r} : {}^{24}C_{2r-4} = 225 : 11$, then the value of r is (a) 7 (b) 5 (c) 616.The number of ways in which 12 students can be equally di (a) 5775 (b) 7575 (c) 775517.The number of ways in which 15 mangoes can be equally of (s) $\frac{115}{(s)}$ (c) $\frac{115}{(s)}$ 18.The Supreme Court has given a 6 to 3 decision upholding a of ways it can give a majority decision reversing the lower (a) 256 (b) 276 (c) 24519.Out of 7 gents and 4 ladies a committee of 5 is to be committees such that each committee includes at least or			

J.]	K. SHAH ASSES			CA FC	DUNDATION - MATHEMATICS	
 	Veranda Enterprise		•			
 20.	If ${}^{500}C_{92} = {}^{499}C_{92}$			() 500		
	(a) 501	(b)	500	(c) 502	(d) 499	
 21	Five bulles of w	الح ماء أمار	kaa aka da	factive are to be tried in t	une hulls pointe in a dark	
 21.		nich th	ree are ae	efective are to be tried in t	wo bulb points in a dark	
	room.	c the r	om chall	ha lightad is		
	Number of trial (a) 6	(b)	8	(c) 5	(d) 7.	
 	(u) 0	(D)	0	(C) 5	(u) <i>i</i> .	
 22.	The number of	difforon	t words th	nat can be formed with 12	consonants and 5 yowels	
 22.				owels in each word is	consonants and 5 vowets	
	(a) ${}^{12}C_4 \times {}^{5}C_3$			(c) 4950 × 17!	(d) none of these	
 	$(\alpha) \mathbf{c}_4 \mathbf{c}_3$	(6)	C ₇			
 23.	Eight guests hav	ve to be	seated 4	on each side of a long recto	Ingular table.2 particular	
				of the table and 3 on the a		
				ements can be made is	/	
	(a) 1732	(b)	1728	(c) 1730	(d) 1278.	
				GUE		
24.	The number of	words	that can	be made by rearranging	the letters of the word	
	APURNA so tha	t vowel	s and con	sonants appear alternate	is	
	(a) 18	(b)	35	(c) 36	(d) none of these	
			· Id	(0,00		
25.	The results of a	8 matcl	hes (Win,	Loss or Draw) are to be p	predicted. The number of	
	different foreca	sts con	taining ex	actly 6 correct results is		
	(a) 316	(b)	214	(c) 112	(d) none of these	
26.	The number of	4 digit	numbers f	formed with the digits 1, 1	, 2, 2, 3, 4 is	
	(a) 100	(b)	101	(c) 201	(d) none of these	
27.	$^{(n-1)}P_{r} + r. ^{(n-1)}P_{(r-1)}$					
	(a) ⁿ C _r	(b)	$\frac{\lfloor n \\ (r n-r) \end{bmatrix}}$	(c) ⁿ P _r	(d) none of these	
			(———)		1 11 11 11 11 11 1	
28.				reater than 300 can be for	med with the digits 1, 2,	
	3, 4, 5 without			1 \		
	(a) 110	(b)	112	(c) 111	(d) none of these	

					a founda	TION - MA	THEMATICS
	ASSES Veranda Enterprise						
29.			1	$(h) \Omega^{n} n$			
	(a) 2^n {1.3.5		}	(b) 2° <u>1</u>	haca		
	(c) {1.3.5(2n	-1)}		(d) none of tl	nese		
30.	How many num	bers hig	gher than a r	million can be formed	d with the	digits 0,4,	4,5,5,5,3?
	(a) 420	(b)	360	(c) 7!	(d)	None	
31.	The total numb	er of n	umbers less	than 1000 and divi	isible by 5	formed v	with 0,1,2,
				t occur more than o			
	(a) 150	(b)	152	(c) 154	(d)	None	
		/					
32.	The number of	ways i	n which 8 e	xamination papers	be arrang	ed so tha	t the best
	and worst pape	ers neve	er come toge	ether is	B		
	(a) 8! - 2 x 7!	(b)	8! - 7!	(c) 8!	(d) I	None	
33.	If you have 5 c	opies o	f one book,	4 copies of each of	f two bool	ks, 6 copie	es each of
33.				4 copies of each of books you may arra			
33.							
33.	three books and ways.		e copy of 8 l				
33.	three books and ways. 39!	d single	e copy of 8 l	books you may arra			
33.	three books and ways.	d single	e copy of 8 I	39! (4!) ² × (6!) ³			
33.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$	d single	(b) 5! ×8!× (books you may arra $39!$ $(4!)^2 \times (6!)^3$			
33.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$	d single	(b) 5! ×8!× (books you may arra $39!$ $(4!)^2 \times (6!)^3$			
33.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$	d single	(b) $\overline{5! \times 8! \times (0)}$ (c) $\overline{5! \times 8! \times (0)}$	books you may arra $39!$ $(4!)^2 \times (6!)^3$	nge it in _	I	number of
	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compr	d single $\overline{5!}^3$ $\overline{(6!)^2}$ ised of	(b) $5! \times 8! \times (0)$ (c) $5! \times 8! \times (0)$ (c) $5! \times 8! \times 100$ an old mar	books you may arra 39! $(4!)^2 \times (6!)^3$ 9! $4! \times 6!$	nge it in _) be seate	number of
	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition	d single $\overline{5!}^3$ $\overline{(6!)^2}$ ised of ion that	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times 2}$ an old mark t the children	39! (4!) ² × (6!) ³ 9! (4! × 6! (4! × 6!) (4! × 6!)	nge it in _ ildren is to th the enc	be seate	number of ed is a row ver occupy
	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition	d single 5!) ³ (6!) ² ised of ion that he old r	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times 2}$ an old mark t the children	39! (4!) ² × (6!) ³ (4! × 6! (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	nge it in _ ildren is to th the end ments are	be seate	number of ed is a row ver occupy
	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the	d single 5!) ³ (6!) ² ised of ion that he old r	(b) 5! × 8! × ((c) 5! × 8! × ((c) 5! × 8! × an old man t the children nan. How m	39! (4!) ² × (6!) ³ (4! × 6! (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	nge it in _ ildren is to th the end ments are	be seate ls and nev possible?	number of ed is a row ver occupy
	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the (a) $4! \times 5! \times 7!$	d single 5!) ³ (6!) ² ised of ion that he old r (b)	(b) 5! ×8!× ((c) 5! ×8!× ((c) 5! × 8! × (c) 5! × 8! × an old man t the children nan. How m 4! × 5! × 6!	39! (4!) ² × (6!) ³ (4! × 6! (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (4! × 6!) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	nge it in _ ildren is to th the end ments are 5! x 6! (o be seate ls and nev possible? (d) None	number of ed is a row ver occupy
34.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the (a) $4! \times 5! \times 7!$ A boat's crew compression	d single 5!) ³ (6!) ² ised of ion that he old r (b) onsist of	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ an old mark t the children nan. How m $4! \times 5! \times 6!$ of 8 men, 3	39! (4!) ² × (6!) ³ (4! × 6! a, 6 adults and 4 chi en would occupy bot nany sitting arranger (c) 2! × 4! × 5	nge it in _ ildren is to th the end ments are 5! x 6! (nly on one	o be seate ls and nev possible? (d) None e side and	number of ed is a row ver occupy 2 only on
34.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the (a) $4! \times 5! \times 7!$ A boat's crew compression	d single 5!) ³ (6!) ² ised of ion that he old r (b) onsist of humber	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ an old mark t the children nan. How m $4! \times 5! \times 6!$ of 8 men, 3	39! (4!) ² × (6!) ³ (4!) ² × (6!) ³ (5) ² × (6!) ³ (5) ² × (6!) ³ (6) ² × (6!) ⁴ (7) ⁴ × (6!) ⁴	nge it in _ ildren is to th the end ments are 5! x 6! (nly on one	o be seate ls and nev possible? (d) None e side and	number of ed is a row ver occupy 2 only on
34.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2} \times (6!)^2 \times (6!)^2$	d single 5!) ³ (6!) ² ised of ion that he old r (b) onsist of humber	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 8! \times (2)}$ an old mark t the children nan. How m $4! \times 5! \times 6!$ of 8 men, 3 of ways in v	39! (4!) ² × (6!) ³ 9! (4!) ² × (6!) ³ 9! 4! ×6! any 6 adults and 4 chi any sitting arranger (c) 2! × 4! × 5 of whom can row or which the crew can l	nge it in _ ildren is to th the end ments are 5! x 6! (nly on one be arrange	o be seate ls and nev possible? (d) None e side and ed is	number of ed is a row ver occupy 2 only on
34.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the (a) $4! \times 5! \times 7!$ A boat's crew condition the other. The rest (a) ${}^3C_1 \times (4!)^2$	d single 5!) ³ (6!) ² ised of ion that he old r (b) onsist of humber (b)	(b) $\overline{5! \times 8! \times (2)}$ (c) $\overline{5! \times 6!}$ (c) $\overline{5! \times 8! \times (2)}$ (c) $5! \times$	39! (4!) ² × (6!) ³ 9! (4!) ² × (6!) ³ 9! 4! ×6! any 6 adults and 4 chi any sitting arranger (c) 2! × 4! × 5 of whom can row or which the crew can l	nge it in _ ildren is to th the end ments are 5! x 6! (nly on one be arrange (d)	b be seate ls and nev possible? (d) None e side and ed is None	number of ed is a row ver occupy 2 only on
34.	three books and ways. (a) $\frac{39!}{5! \times (4!)^2 \times (6!)^2}$ (c) $5! \times 8! \times 4! \times 6!$ A family compression with the condition either side of the (a) $4! \times 5! \times 7!$ A boat's crew condition the other. The rest (a) ${}^3C_1 \times (4!)^2$ In a cross word	d single 5!) ³ (6!) ² ised of ion that he old r (b) onsist of humber (b) puzzle	(b) $\overline{5! \times 8! \times (0)}$ (c)	39! (4!) ² × (6!) ³ (4!) ² × (6!) ³ 2. 4! ×6! a, 6 adults and 4 chi en would occupy both any sitting arranger (c) 2! × 4! × 5 of whom can row or which the crew can l (c) ³ C ₁	nge it in _ ildren is to th the enc ments are 5! x 6! (nly on one be arrange (d)	b be seate ls and nev possible? (d) None e side and ed is None	number of ed is a row ver occupy 2 only on

a۷	dranda Enterprise						
37.	In how many	ways the	vowels o	f the word 'ALLAHABA	D' will occupy th	e even places?	
	(a) 120	(b)	60	(c) 30	(d) None		
38.	How many n	umbers be	etween 3	000 and 4000 can be	formed with 1, 2	2,6?	
	(a) 3,024	(b)	60	(c) 78	(d) None		
39.	How many n	umbers gi	reater the	an 23,000 can be forr	med with 1, 2,	5?	
	(a) 3,024	(b)	60	(c) 78	(d) Non	e	
40.	The total nu	mber of s	sitting ar	rangements of 7 per	rsons in a row if	3 persons sit	
	together in a	ı particulo	ır order is	5			
	(a) 5!	(b)	6!	(c) 2! × 5!	(d)	None	
					®		
41.	In how many	y ways 6	men can	sit at a round table	so that all shall	not have the	
	same neighb	ours in ar	iy two ar	rangements?			
	(a) 5! ÷ 2	(b)	5!	(c) (7!) ²	9 (d) 7!		
				<u>SPE</u>			
 42.				ed out of n persons. T	hen the number o	of times 2 men	
	'A' and 'B' are			29. Entern			
	(a) ⁿ C ₁₂	(b)	ⁿ⁻¹ C ₁₁	(c) ⁿ⁻² C ₁₀	(d) None		
			Vid.	(011)			
 43.			O	that can be made by	y taking 4 letter	s of the word	
	COMBINATIC)N' is	•				
	(a) 70	(b)	63	(c) 3	(d) 136		
44.	-	-		and 19 blue balls ca	In be arranged in	a row so that	
	no two blue		-				
	(a) 1540	(b)	1520	(c) 1560	(d) None		
				221			

HOMEWORK SOLUTIONS

- "P, is the product of "r" consecutive factors beginning with "n". Thus for "P, the 1. (d) number of factors is "r".
- (a) Never together = Total possible arrangements Number of arrangements 2. when things are together

Total arrangement of n things = n!

Arrangements, when 2 particular things are always together = $(n - 2 + 1)! \times 2!$ = (n - 1)! * 2!

Arrangements, where 2 particulars things never come together:

= n! - (n - 1)! * 2!

= n(n - 1)! - 2(n - 1)!

= (n - 1)! (n - 2)

da Enterprise (c) Word "ANGLE" will always be present, means 5 things always occur in the 3. given order.

Number of ways this can be done = (8 - 5 + 1)! * 5!/5! = 4! = 24

- Sum of numbers = (Sum of digits) * (n 1)! * (111111..... n times) 4. (d) Here, n = 4, Sum of digits = (2 + 4 + 5 + 8) = 20Thus, sum of all numbers = 20 * (4 - 1)! * (1111) = 20 * 6 * 1111 = 133,320
- (a) Vowels = A, U, E. No. Of odd places = 4 5. Vowels arranged at the odd places in ⁴P₃ ways. Remaining 5 consonants are placed on the remaining 5 places in ⁵P₅ ways. Total number of different words this formed = ${}^{4}P_{3} * {}^{5}P_{5} = 24 * 120 = 2880$

		CA FOUNDATION - MATHEMATICS
		a Enterprise $2 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $
 6.	(c)	3 Gents arranged at the round table in (3 – 1)! = 2! = 2 ways
 		2 Ladies selected out of 3 ladies in ${}^{3}C_{2} = 3$ ways
		These selected ladies are placed in 3 gaps among the 3 gents in ${}^{3}P_{1} = 3$ ways
 		These 2 ladies shall arrange themselves in 2! = 2 ways
 		Remaining 1 lady can be placed at remaining 2 places in ${}^{2}P_{1} = 2$ ways
		Total ways = 2 * 3 * 3 * 2 * 2 = 72 ways
7.	(b)	One particular things shall be arranged first in ⁴ P ₁ = 4 ways
		Remaining 9 things can be arranged in remaining 3 places in ⁹ P ₃ = 504 ways
		Total number of arrangements = 4 * 504 = 2016.
8.	(c)	One particular thing never occurs shall be kept aside for the arrangement.
		Total number of arrangements shall be with remaining 9 things in ${}^{9}P_{4}$ = 3024
		ways.
9.	(c)	All "+" and "-" sigs are alike.
		Six '+' signs can be arranged in 6!/6! = 1 way
		Now four '-' signs shall be placed among the 7 places generated between and
		on sides of '+' signs in ⁷ P4/4! =35 ways
		Total number of arrangements = 1 * 35 = 35.
 10.	(a)	Tallest and the shortest person shall be grouped together. But they shall not
		arrange themselves, as tallest is always on the right-side of the shortest
		person.
 		Total arrangements = (5 - 2 + 1 - 1)! = 3! = 6
		-
11.	(c)	9-digit different numbers (without restriction of '0') = ${}^{10}P_{q}$ = 10!
		Numbers starting with '0' = 1 * ⁹ P ₈ = 9!
		Total numbers = 10! - 9! = 9! (10 - 1) = 9*9!
 12.	(a)	As A shall always speak before B, the order of A and B needs to be first and
	,	hence both shall be treated as alike objects.
 		Total arrangements = 5!/2! = 120 / 2 = 60
		OR, we can also solve it (in detail) as follows:
		A is the 1st speaker, B can speak at 2nd, 3rd, 4th or 5th position in
		1! * 4! = 24 ways
 		1. T. LT Ways

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

_		•
		A is the 2nd speaker, B can speak only at 3rd, 4th or 5th position in
		${}^{3}P_{1} * 1! * {}^{3}P_{3} = 18$ ways
		A is the 3rd speaker, B can speak only at 4th or 5th position in
		${}^{3}P_{2} * 1! * {}^{2}P_{2} = 12$ ways
		A is the 4th speaker, B can speak only at the 5th position in
	-	${}^{3}P_{3} * 1! * {}^{1}P_{1} = 6$ ways
		Total arrangements = 24 + 18 + 12 + 6 = 60 ways
	13. (b)	
		which need to be distributed among remaining 7 persons in $^{7}P_{7}$ = 5040 ways.
	14. (b)	$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n!}{r!(n-r)!} * \frac{(r-1)!(n-r+1)!}{n!} = \frac{n-r+1}{r} = \frac{28}{56} = \frac{1}{2} \text{ Or, } 2n-2r+2 = r. \text{ Or, } 2n-3r+2 = 0 \text{ (i)}$
_		ß
_		$\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n!}{(r+1)!(n-r-1)!} * \frac{r!(n-r)!}{n!} = \frac{n-r}{r+1} = \frac{8}{28} = \frac{2}{7} \text{ Or, } 7n - 7r = 2r + 2. \text{ Or, } 7n - 9r - 2 = 0 \text{ (ii)}$
_		Solving (i) and (ii) we get, n = 8, r = 6.
_	15. (a)	$\frac{{}^{28}C_{2r}}{{}^{24}C_{2r-4}} = \frac{28!}{2r!(28-2r)!} * \frac{(2r-4)!(24-2r+4)!}{24!} = \frac{28.27.26.25}{2r(2r-1)(2r-2)(2r-3)} = \frac{28}{2r} \cdot \frac{27}{(2r-1)} \cdot \frac{26}{(2r-2)} \cdot \frac{25}{(2r-3)} = \frac{225}{11}$
		$\frac{28}{2r} \cdot \frac{3}{(2r-1)} \cdot \frac{26}{(2r-2)} \cdot \frac{1}{(2r-3)} = \frac{1}{11}$
		Or, 2r(2r - 1)(2r - 2)(2r - 3) = 14*13*12*11
		Or, 2r = 14. r = 7.
	16. (a)	12 students can be equally divided in three groups, such that 4 students go to
_		each group. Here groups are identical in nature.
_		Thus, number of selection = $12!/(4!)^3 * 1/3! = 5775$.
	17. (b)	5 5
		in nature.
		Number of ways = 15!/(5!) ³ ,
	18. (a)	Total number of judges = 6 + 3 = 9
		Majority decision = 9C9 + 9C8 + 9C7 + 9C6 + 9C5 (i.e., at least 5 judges should
		be in favour)
		= 1 + 9 + 36 + 84 + 126 = 256
		224
		·

 a Verdnad Enterprise								
19.	(c)	Total number of committees = 11C5 = 462						
		Number of committees where no lady is present = ⁷ C ₅ = 21						
		Thus, at least one lady is present in 462 – 21 = 441 committees						
20.	(d)	$^{500}C_{92} = ^{499}C_{92} + ^{n}C_{91}$						
		${}^{500}C_{92} = {}^{499+1}C_{91+1} = {}^{499}C_{91} + {}^{499}C_{92}$						
		$::^{499} C_{91} = {}^{n} C_{91}$						
		n = 499.						
21.	(d)	Room shall be lighted in (Total selection) – (Selection of all defective bulbs)						
		$= {}^{5}C_{2} - {}^{3}C_{2} = 10 - 3 = 7$ ways.						
22.	(c)	Selection of consonants in 12C4 ways						
		Selection of vowels in ⁵ C ₃ ways						
		7 alphabets thus chosen cab be arranged in ⁷ P ₇ = 7! Ways						
		Total number of words = 12C4 * ⁵ C ₃ * 7! = 4950 * 7!						
		Add L.						
23.	(b)	2 on one side and 3 on other side. Thus five persons are fixed.						
		Of the remaining (8 – 5) = 3 guests, 1 shall be seated along with 3 fixed and						
		other two on the side with 2 fixed guests in ${}^{3}C_{1} * {}^{2}C_{2} = 3$ ways.						
		Total number of arrangements = 3 * 4!! * 4! = 1728						
24.	(c)	A P U R N A – Vowels (A U A) (2 alike) Consonants (P R N)						
		Arrangement shall be of the form CVCVCV or VCVCVC						
		Total arrangements = 2 (3! * 3!)/2! = 36						
		Again APURNA is of type VCVCCV, so this word shall not feature in our						
		arrangement						
		Total number of re-arrangements = 36 - 0 = 36						
25.	(c)	6 correct forecasts = ⁸ C ₆ * 1 ⁶ ways						
		Remaining 2 incorrect forecasts in 2 ² ways						
		Total number of different forecasts = ${}^{8}C_{6} * 1^{6} * 2^{2} = 28 * 4 = 112$.						

26. (d) 1, 1, 2, 2, 3, 4 = (1, 1) (2, 2) 3, 4

We have 4 different digits, where 2 of it occurs twice

Choosing 4 different digits and arranging it in ${}^{4}C_{4} * 4! = 24$ ways a)

Choosing 2 same and 2 different digits and arranging it in ${}^{2}C_{1} * {}^{3}C_{2} * 4!/2! = 72$ b) ways

CA FOUNDATION - MATHEMATICS

c) Choosing 2 same and 2 same digits and arranging it in ${}^{2}C_{2} * 4!/2!2! = 6$ ways Total number of 4 digits numbers formed = 24 + 72 + 6 = 102

27. (c)	${}^{n-1}P_{r} + r \cdot {}^{n-1}P_{r-1} = \frac{(n-1)!}{(n-r-1)!} + r \cdot \frac{(n-1)!}{(n-r)!} = (n-1)! \left[\frac{1}{(n-r-1)!} + \frac{r}{(n-r)(n-r-1)!} \right]$
	$= (n-1)! \left[\frac{1}{(n-r-1)!} + \frac{r}{(n-r)(n-r-1)!} \right] = (n-1)! \left[\frac{n}{(n-r).(n-r-1)!} \right] = \frac{n.(n-1)!}{(n-r)!} = {}^{n} P_{r}$

a 79

28. (c) Digits - 1, 2, 3, 4, 5

$$3 \times (2, 4) = 1 * {}^{3}P_{4} * {}^{2}P_{1} = 6$$

 $4 \times (2) = 1 * {}^{3}P_{1} * 1 = 3$
 $5 \times (2, 4) = 1 * {}^{3}P_{1} * {}^{2}P_{1} = 6$
 $\times \times \times (2, 4) = {}^{4}P_{3} * {}^{2}P_{1} = 48$
 $\times \times \times (2, 4) = {}^{4}P_{4} * {}^{2}P_{1} = 48$
Total numbers = 6 + 3 + 6 + 48 + 48 = 111

29. (d) N! contains n terms, thus (2n)! Shall contain (2n) terms

$$(2n)! = (2n) (2n - 1) (2n - 2) (2n - 3) \dots 3.2.1$$

 $= [(2n) (2n - 2) (2n - 4) \dots 6.4.2]_{n \text{ terms}} .[(2n - 1) (2n - 3) \dots 5.3.1]_{n \text{ terms}}$
 $= 2^{n} [n(n-1)(n-2)\dots 3.2.1] .[(2n - 1) (2n - 3) \dots 5.3.1]_{n \text{ terms}}$
 $= 2^{n}.n! [1.3.5....(2n - 3) (2n - 1)]$
30. (b) 1 Million = 10, 00, 000 = 7 digit number starting with digit 1.
We have digits = 0, 4, 4, 5, 5, 5, 3 = 7 digits (O included)

Total numbers formed without any restrictions = 7!/2!3! = 420

Total numbers starting with "0" = 6!/2!3! = 60

Thus, total numbers greater than a million = 420 - 60 = 360

J.K. SHAH [®]
CLASSES
a Vergodg Enterprise

 a Veranda Enterprise								
31.	(c)	Digits = 0, 1, 2,, 9 = 10 digits						
		1 digit number divisible by 5 = 1						
		2 digits number divisible by 5:						
		Ending with 5: $({}^{9}P_{1} - {}^{1}P_{1}) = 8$						
		Ending with 0: ⁹ P ₁ = 9						
		Total = 8 + 9 = 17						
		3 digits number divisible by 5:						
		Ending with 5: $({}^{9}P_{2} - {}^{8}P_{1}) = 72 - 8 = 64$						
		Ending with 0: ⁹ P ₂ = 72						
		Total = 64 + 72 = 136						
		Total numbers less than 1000 divisible by 5 = 1 + 17 + 136 = 154						
32.	(a)	Total cases, without any restrictions = ⁸ P ₈ = 8!						
		2 papers always come together = (8 - 2 + 1)! * 2! = 2.7!						
		Never comes together = 8! – 2.7!						
		0,19						
33.	(a)	Total copies = (5*1) + (4*2) + (6 * 3) + (1 * 8) = 5 + 8 + 18 + 8 = 39 books						
		Out of these 39 books, 5, 4, 4, 6, 6, 6 copies of different kinds are alike.						
		Total arrangement = 39!/5!.(4!)².(6!)³						
		Ad the						
34.	(d)	Total person = 1 + 6 + 4 = 11						
		4 children shall be seated at the two ends in 4P4 = 4! = 24 ways						
		For old man (4 + 2) = 6 seats are not available. He shall be seated in ${}^{5}P_{1} = 5$						
		ways						
		Remaining 6 person can be seated in 6P6 = 720 ways						
		Total arrangements = 24 * 5 * 720 = 86400.						
35.	(a)	2 sides, i.e., 4 person on each side. (3 + 2 = 5 person fixed) (remaining 3 need						
		to be arranged)						
		3 are fixed on row side. 1 more can be selected from 3 in ${}^{3}C_{1}$ ways and arranged						
		in 4! Ways						
		2 are fixed on other side. 2 more selected from remaining 2 in 2C2 = 1 way and						
		arranged in 4! ways.						
		Total number of arrangements = ${}^{3}C_{1} * 4! * 4! = {}^{3}C_{1} * (4!)^{2}$						

<u>J.</u>	K. 9	SHAH [®] CA FOUNDATION - MATHEMATICS
	rando	SSES a Enterprise
36.	(a)	8 words having alternative solution can be selected in 2*2**2 _{8 times} = 2 ⁸ ways
		Remaining 12 words can be selected in 1 ¹² = 1 way
		Total possible solutions = 2 ^{8*} 1= 2 ⁸ = 256 = 16 ² = (2 * 8) ²
37.	(b)	A L L A H A B A D – 9 letters word, with 4 even place and 5 odd place
		Vowels = 4 (A A A A) (all alike)
		Consonants = 5 (L L H B D) (2 are alike)
		Vowels occupying even places in ⁴ P ₄ /4! = 1 way
		Consonants occupying the remaining 5 places in 5!/2! = 60 ways
		Total arrangements = 1 * 60 = 60.
38.	(d)	Digits = 1, 2, 3, 4, 5, 6 = 6 digits
		If repetition is not allowed:
		4 digits number starting with 3 = 3 X X X = 1 * ⁵ P ₃ = 60
		If repetition is allowed:
		4 digits number starting with 3 = 3 X X X = 1 * 6 * 6 * 6 = 216
		[NOTE: In the sum, it is not mentioned whether repetition is allowed or not]
		S S rorise
39.	(d)	Digits – 1, 2, 3, 4, 5 = 5 digits
		Numbers greater than 23000 shall be of 5-digit only
		Assuming, repetition is not allowed:
		$2 3 \times X = {}^{3}P_{3} = 6$
		$2 4 \times X = {}^{3}P_{3} = 6$
		$2 5 \times X = {}^{3}P_{3} = 6$
		$(3, 4, 5) \times X \times X = {}^{3}P_{1} * {}^{4}P_{4} = 72$
		Total = 6 + 6 + 6 + 72 = 90
		[NOTE: Here we can't assume, repetition is allowed, as in that case, answer
		shall be infinity]
40.	(a)	Out of 7 persons 3 persons sit together, but in particular order (i.e., 3 persons
		shall be treated as alike items).
		Total number of sitting = (7 - 3 + 1) * 3!/3! = 5!

 a Veranda Enterprise									
41. Since all shall not have same neighbours hence, we have to view the arrangement									
either from clockwise or anti-clockwise sense and not both									
		1							
	Req	uired arrangement = $\frac{1}{2}(n-1)!$							
		1							
		$=\frac{1}{2}(6-1)!$							
		1 120							
		$= \frac{1}{2}5! = \frac{120}{2}$							
		= 60 ways							
42.	(c)	2 men out of n persons shall always feature in the team. It means, 2 particular							
		objects are always included.							
		Total number of selection = $\binom{(n-2)}{2} C_{(12-2)} = \binom{(n-2)}{2} C_{10}$ ways.							
43.	(d)	COMBINATION							
		(O O), (I I), (N N), C, M, B, A, T							
		8 different letters, 3 letters are in alike pairs							
		Choosing 4 different letters = 8C4 = 70							
		Choosing 2 alike and 2 different letters = ${}^{3}C_{1} * {}^{7}C_{2} = 63$							
		Choosing 2 same and 2 same letters = ${}^{3}C_{2} = 3$							
		Total number of selection = 70 + 63 + 3 = 136							
44.	(a)	Arrange 21 red balls (alike) in 21!/21! = 1 way							
		Now arrange 19 blue balls (alike) in 22 places (22 gaps generated by 21 red							
		balls) in 22P19/19! = 1540							
		Total number of arrangements = 1 * 1540 = 1540							

CA FOUNDATION - MATHEMATICS

SELF ASSESSMENT TEST 8 PERMUTATION

20 Question, 20 Marks

1.	How many a	different eig	jht letters	words can	be formed	d out of th	ne letters of	the word	
	DAUGHTER so that the word starts with D and ends with R?								
	a) 720	b)	5040	c)	6	d)	None of the	above	
2.	How many	three digit	s odd nu	mbers can	be forme	d using (0, 1, 2, 3, 4	, 5 with	
	repetitions?								
	a) 3	b)	60	c)	90	d)	120		
3.				here with t	nree digit	s such th	nat if 5 is or	ne of the	
	digits, then	7 is the ne	xt digit?						
	α) 5	b)	360	c)	365	d)	None of the	above	
					2	9			
4.	The number		-				•		
	a) 252	b)	648	c)	392	() d)	None of the	e above	
				190	nteri				
5.	There are 5	gentlemen	and 4 lad	lies to dine d	it a round	table. In	how many v	ways can	
	they seat th		o that no						
	a) 4!*5!	b)	9!	c)	5! * 3! * 2	2! d)	None of the	e above	
6.							s of n things		
		equal to 5	times the	number of	permuta	tions of (n – 1) things	s taken 3	
	together.								
	a) 13	b)	15	c)	16	d)	None of the	e above	
7.							ne letters of	the word	
	DAUGHTER s								
	a) 600	b)	5040	c)	4050	d)	None of the	above	
8.							"A" items is		
		er of arrang	gements o	of 1 item ta	ken from	the same	e group of "	A" items.	
	Find A.								
	a) 2	b)	3	c)	4	d)	5		

a	Canda Enterprise						
9.	Three dice are rolled simultaneously. In how many of the outcomes will there be at						
	least one "3"?						
	a) 6 ³	b)	5 ³	c) 6 ³ - 5 ³	d) None of the above		
10.	How many eve	en intege	ers betwee	n 4000 and 7000 have a	Ill digits different?		
	a) 600	b)	720	c) 728	d) None of the above		
11.	The letters of	the word	SPACE are	written in all possible o	rder and if these words are		
	written out in	a dictior	nary then t	he rank of the word SPA	CE is:		
	a) 112	b)	113	c) 114	d) 115		
12.	How many di	fferent e	ight letter	rs words can be formed	l out of the letters of the		
	word DAUGHT	ER so th	nat the rel	ative position of vowe	s and consonants remains		
	unaltered?						
	a) 720	b)	5040	c) 60	d) None of the above		
					5		
13.	A cat invites 3	rats an	d 4 cockro	aches for dinner. How m	any seating arrangements		
	are possible a	long a r	ound table	? Assume that animals	of a species all look alike,		
	though they w	vill be de	eply offen	ded at this assumption.			
	a) 7!	b)	35	c) 350	d) None of the above		
			120	du			
14.	How many dif	ferent eig	ght letters	words can be formed ou	t of the letters of the word		
	DAUGHTER so	that no	two vowel	s are together?			
	a) 12200	b)	13200	c) 14400	d) None of the above		
15.	How many ne	cklaces y	vou can ma	ake of 14 beads, 6 being	blue, 4 red, 3 green and 1		
	yellow?						
	a) 33000	b)	30300	c) 30030	d) None of the above		
16.	In how many w	ways can	three girls	s and nine boys be seate	d in two vans, each having		
	numbered sea	ıts, 3 in f	ront and 4	at the back?			
	a) ¹⁴ P ₁₁	b)	¹⁴ P ₁₂	c) ¹¹ P ₉	d) None of the above		
17.	How many dif	ferent eig	ght letters	words can be formed ou	t of the letters of the word		
	DAUGHTER so	that all	vowels ne	ver occur together?			
	a) 40320	b)	4320	c) 36000	d) None of the above		

18.	Ho	w many 4 digi [.]	t nun	nbers divisible by	4 can be made w	/ith	digits 4, 5, 6, 7, 8; if
	rep	etition of digit	s is n	ot allowed?			
	a)	6	b)	36	c) 216	d)	None of the above
19.	Fin	d the number o	of div	isors of the numbe	er 36000.		
	α)	36	b)	216	c) 72	d)	None of the above
20.	In h	now many way	s can	three prizes be give	en to 20 boys wh	en a	boy may receive any
	nur	mber of prizes?)				
	α)	20!	b)	²⁰ P ₃	c) 8000	d)	None of the above
					R		
					29	2	
				6			
					Storis		
				/9	enteri		
				a Verandr			
				L'Idraine			
				310			
				222			
				020			

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

1.

EXPLANATORY
ANSWERS

2.	First digit = 1, 2, 3, 4, 5 - 5 options
	Second digit = 0, 1, 2, 3, 4, 5 = 6 options
	Third / Last digit = 1, 3, 5 = 3 options
	No. of 3 digit odd numbers = 5 * 6 * 3 = 90; Option C
3	574 - 4 can be 0 2 4 6 8 = 5 cases

Words starting with D and ending with R = ${}^{1}P_{1} * {}^{6}P_{6} * {}^{1}P_{1} = 720$. Option A

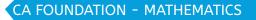
3. 57A - A can be 0, 2, 4, 6, 8 = 5 cases
A57 - Not possible, as we are looking for even numbers
Now, any 3 digit number not containing 5 and even = (8) * (9) * (5) = 360
Total = 360 + 5 = 365; Option C

- 4. All 3 digit numbers = 9*10*10 = 900
 All 3 digit numbers, not including 7 = 8*9*9 = 648
 At least 1 digit is 7 = 900 648 = 252 Option A
- 5. 5 gentlemen can be arranged at a round table in (5 1)! = 4! ways
 Now in 5 gaps, 4 ladies can be arranged in 4! Ways
 Total = 4! * 4! Option D
- 6. $4 * {}^{n}P_{3} = 5 * {}^{(n-1)}P_{3}$ 4n(n-1)(n-2) = 5(n-1)(n-2)(n-3) 4n = 5n - 15Therefore, n = 15. Option B
- 7. H is fixed. Remaining 7 letters will be arranged in 7! Ways = 5040 ways. Option B

8.	$^{A}P_{3} = 12 * ^{A}P_{1}$	
	A(A - 1)(A - 2) = 1	2A
	$A^2 - 3A + 2 = 12$	
	$A^2 - 3A - 10 = 0$	
	(A - 5) (A + 2) = 0	
	A = 5	Option D

J.K. SHAH	
CLASSES	

	Canda Enterprise
9.	Total outcomes = 6 ³
	Outcomes with no "3" = 5 ³
	At least one "3" = 6 ³ - 5 ³ Option C
10.	A) 4 (2, 6, 8, 0) = $1 * {}^{8}P_{2} * 4 = 224$
	B) 5 (2, 4, 6, 8, 0) = $1 * {}^{8}P_{2} * 5 = 280$
	C) 6 (2, 4, 8, 0) = $1 * {}^{8}P_{2} * 4 = 224$
	Total cases = 224 + 280 + 224 = 728; Option C
11.	SPACE – A, C, E, P, S
	Starting with A = 1 ^{*4} P ₄ = 24
	Starting with C = 1 ^{*4} P ₄ = 24
	Starting with $E = 1^{*4}P_4 = 24$
	Starting with $P = 1^{*4}P_4 = 24$
	Starting with SA = $1^{*3}P_3 = 6$
	Starting with SC = $1^{*3}P_3 = 6$
	Starting with SE = $1^{*3}P_3 = 6$
	Starting with SPACE = 1
	Rank = 24+24+24+24+6+6+6+1 = 115 Option D
	da -
12.	3 vowels, 5 consonants. Arrangements = 3! * 5! = 6 * 120 = 720 ways. Option A
13.	"Fix" the position of the cat. Now remaining 3 rats and 4 cockroaches can be seated
	in 7!/3!4! = 35 ways. Option B
14.	Place 5 consonants in ⁵ P ₅ = 120 ways.
	Now in 6 places generated between and on the sides of 5 consonants, 3 vowels can
	be placed in ⁶ P ₃ = 120 ways.
	Total ways = 120 * 120 = 14400. Option C
15.	Here we have one yellow bead which is not repeated. Hence we can "fix" its position.
	Now remaining 6 blue, 4 red and 3 green beads can be arranged in 13!/6!4!3!
	= 60060 ways. However, since a necklace can be turned over, actual number of
	arrangements is 60060/2 = 30030. Option C


.].]	K. SHAH [®] CA FOUNDATION - MATHEMATICS
	ASSES deranda Enterprise
16.	As there are a total of 14 seats and 12 persons are to be seated, it can be done in
	¹⁴ P ₁₂ ways. Option B
17.	Total cases = 8! = 40320
	Vowels are always together = (8 - 3 + 1)! * 3! = 720 * 6 = 4320
	Vowels never occur together = 40320 - 4320 = 36000; Option C
18.	A number is divisible by 4, when last 2 digits of the number are divisible by 4.
	The last 2 digits pairs shall be 48, 56, 64, 68, 76, 84 = 6 cases
	With each case, the first two digits can be arranged in 3P2 = 6 ways
	Total arrangements = 6 * 6 = 36
	Option B
19.	Factorizing 36000 = 2 ⁵ . 3 ² .5 ³
	This means any divisor of 36000 is of the type 2a.3b.5c where a can take values 0,
	1, 2, 3, 4, 5; b can take values 0, 1, 2; c can take values 0, 1, 2, 3. Hence number of
	divisors is 6 * 3 * 4 = 72. [Note, both 1 and 36000 are counted among 72 divisors].
	Option C
	S Enter
20.	Ways = 20 ³ = 20 * 20 * 20 = 8000. Option C
	d'and
	V
-	
_	

a Veranda Enterprise								
		SE	LF ASS	ESSMENT TES	Т 9 —			
23 Question, 25 Murks								
1.	Determine the	e number of	ways of ol	btaining 4 heads ar	nd 2 tails in 6 tosses of a coin.			
	a) 21	b) 15		c) 10	d) None of the above			
2.	In how many	ways a com	mittee, co	onsisting of 5 men	and 6 women can be formed			
	from 8 men o	ind 10 wome	en?					
	a) 266	b) 50	40	c) 11760	d) 86400			
3.	From a group	o of 7 men o	and 6 wo	men, five persons	are to be selected to form a			
	committee sc	o that at lea	st 3 men	are there in the co	mmittee. In how many ways			
	can it be don	e?						
	a) 645	b) 75	6	c) 564	d) 735			
					9			
4.	Out of 7 cons	onants and	4 vowels,	how many words o	of 3 consonants and 2 vowels			
	can be forme	d?		19.01	150			
	a) 210	b) 10	50	c) 21400	d) 25200			
				da r.				
5.	In a group of	f 6 boys and	t 4 girls,	four children are t	o be selected. In how many			
	different way	s can they b	e selected	such that at least	one boy should be there?			
	a) 205	b) 20	9	c) 194	d) 159			
6.	In how many	ways can fir	al eleven	be selected from 1	5 cricket players if there is no			
	restriction?							
	a) 1365	b) 10	001	c) 364	d) 572			
7.	In how many	ways can f	inal eleve	n be selected from	15 cricket players if one of			
	them must be	e included?						
	a) 1365	b) 10	001	c) 572	d) 364			
8.	In how many	ways can f	inal eleve	n be selected from	15 cricket players if one of			
	them, who is	in bad form,	must alv	vays be excluded?				
	a) 1365	b) 10	001	c) 364	d) 572			
		1. Determine the a) 21 2. In how many from 8 men or a) 2. In how many from 8 men or a) 3. From a group committee so can it be dom a) 645 4. Out of 7 conse can be forme a) a) 210 5. In a group or different way a) 205 6. In how many restriction? a) 1365 7. In how many them must be a) 1365	1. Determine the number of fance a) 21 b) 15 2. In how many ways a come from 8 men and 10 wome a) 2. In how many ways a come from 8 men and 10 wome a) 2. In how many ways a come from 8 men and 10 wome a) 3. From a group of 7 men of committee so that at lead can it be done? from 6 boys and fance a) 645 b) 75 4. Out of 7 consonants and formed? from 8 men and 10 b) 5. In a group of 6 boys and different ways can they be a) from 8 men and 10 b) 5. In a group of 6 boys and different ways can they be a) from 8 men and 10 b) 6. In how many ways can fin restriction? from 1365 7. In how many ways can fin them must be included? from 1365 8. In how many ways can fin them, who is in bad form, from 1365	SELF ASS CON 25 Que 1. Determine the number of ways of of a) 21 b) 15 2. In how many ways a committee, confrom 8 men and 10 women? committee, confrom 8 men and 10 women? a) 266 b) 5040 3. From a group of 7 men and 6 wo committee so that at least 3 men can it be done? a) 645 b) 756 4. Out of 7 consonants and 4 vowels, can be formed? a) 210 b) 1050 5. In a group of 6 boys and 4 girls, different ways can they be selected a) 205 b) 209 6. In how many ways can final eleven restriction? a) 1365 b) 1001 7. In how many ways can final eleven them must be included? a) 1365 b) 1001 8. In how many ways can final eleven them, who is in bad form, must alw	SELF ASSESSMENT TES COMBINATION 25 Question, 25 Marks 1. Determine the number of ways of obtaining 4 heads ar a) 21 b) 15 c) 10 2. In how many ways a committee, consisting of 5 men- from 8 men and 10 women? a) 266 b) 5040 c) 11760 3. From a group of 7 men and 6 women, five persons of committee so that at least 3 men are there in the co- can it be done? a) 645 b) 756 c) 564 4. Out of 7 consonants and 4 vowels, how many words c can be formed? a) 210 b) 1050 c) 21400 5. In a group of 6 boys and 4 girls, four children are t different ways can they be selected such that at least a) 205 b) 209 c) 194 6. In how many ways can final eleven be selected from 1 restriction? a) 1365 b) 1001 c) 364 7. In how many ways can final eleven be selected from them must be included? a) 1365 b) 1001 c) 572 8. In how many ways can final eleven be selected from them, who is in bad form, must always be excluded?	SELF ASSESSMENT TEST 9 COMBINATION 25 Question, 25 Marks 1. Determine the number of ways of obtaining 4 heads and 2 tails in 6 tosses of a coin. a) 21 b) 15 c) 10 d) None of the above 2. In how many ways a committee, consisting of 5 men and 6 women can be formed from 8 men and 10 women? a) 266 b) 5040 c) 11760 d) 86400 3. From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there in the committee. In how many ways can it be done? a) 645 b) 756 c) 564 d) 735 4. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed? a) 210 b) 1050 c) 21400 d) 25200 5. In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there? a) 205 b) 209 c) 194 d) 159 6. In how many ways can final eleven be selected from 15 cricket players if there is no restriction? a) 1365 b) 1001 c) 364 d) 572 7. In how many ways can final eleven be selected from 15 cricket players if one of them must be included? a) 1365 b) 1001 c) 572 d) 364 8. In how many ways can final eleven be selected from 15 cricket players if one of them, who is in bad form, must always be excluded?		

	al	a Veranda Enterprise							
	9.	In how many ways can final eleven be selected from 15 cricket players if two of							
		them being leg spinners, one and only one leg spinner must be included?							
		α)	364	b)	572	c)	1563	d) None of the above	
	10.							In how many ways can 3	
		bal	ls be drawn fro	om th	e box, if at least o	ne	black ball is to l	be included in the draw?	
		α)	32	b)	48	c)	64	d) 96	
	11.	Нον	w many words c	anbe	formed by taking 4	dif	ferentletters of	the word MATHEMATICS?	
		α)	756	b)	1680	c)	2454	d) 18	
	12.							rranged from a group of	
					of 6 men and 4 wo				
		α)	80	b)	90	c)	180	d) 360	
	13.							ntaining 4 questions. A	
			· · ·					e than 3 questions from	
		any	group. In how	' mar	ny ways can 5 ques			,	
		α)	24	b)	48 9	c)	96	d) None of the above	
						<u>, (</u>			
	14.		/					the same straight line,	
			· · · · · · · · · · · · · · · · · · ·					r of straight line to total	
			5	es th	at can be formed o				
		α)	200:451	b)	99:449	c)	100:451	d) None of the above	
	15.			n a ci	rcle. How many ch			by joining these points?	
		α)	21	b)	22	c)	23	d) 24	
	16.	A co	onvex polygon	has t	wice as many diag	gon	als as the num	ber of sides. The number	
		of s	ides of the pol	.ygon	is:				
		α)	5	b)	6	c)	7	d) 8	
	17.	Find	d the number o	ofwa	ys in which one ca	n m	nake a selection	of at least one book on	
		eac	h of the three	subje	ects P, C and M from	n c	ι collection cont	taining 3 different books	
		on	P, 4 different be	ooks	on C and 5 differe	nt l	books on M.		
_		α)	3522	b)	3255	c)	3525	d) None of the above	

a Varanda Enterprise							
18.	In ł	now many wa	iys Ar	jun can invite 5 of	f hi	s friends, viz. A	rman, Aakash, Anirudh,
	Alo	k and Aditya	to a c	linner so that two	or	more of them re	emain present?
	α)	31	b)	32	c)	26	d) 25
19.	Fro	m 8 boys and	6 gir	ls 7 are to be sele	cte	d for admission	for a particular course.
	In ł	now many way	ys car	n this be done if th	ere	must be exactly	y 2 boys?
	a)	186	b)	172	c)	187	d) 168
20.	In I	now many wa	ays A	nkita can invite 6	of	her friends, viz	. Aditi, Amita, Amrisha,
	Am	rita, Aakansh	a and	l Aakriti to her birt	hdo	ay treat so that	Aditi is always present?
	α)	32	b)	63	c)	64	d) 31
21.	Ho	w many five-l	etter	words containing	3 v	owels and 2 co	nsonants can be formed
	usi	ng the letters	of the	word EQUATION s	o t	hat the two con	sonants occur together?
	α)	720	b)	1440	c)	360	d) None of the above
						29	
22.	A is	s planning to g	give a	birthday party at	his	s place. In how I	many ways can he invite
	one	e or more of h	is five	friends and make	th	em sit at a circu	ılar table?
	α)	744	b)	74 9	c)	89	d) None of the above
					<u>, (</u>		
23.	2 b	alls need to b	e sele	ected from a bag. I	n h	ow many ways	is it possible to choose a
	wh	ite ball and a	black	ball from a bag c	ont	taining 5 white (and 4 black balls?
	a)	9	b)	12	c)	15	d) 20
24.	In ł	now many way	ys cai	n 18 identical whit	e a	nd 16 identical	black balls be arranged
	in c	a row so that I	no tw	o black balls are t	oge	ether?	
	a)	969	b)	699	c)	996	d) None of the above
25.	A to	ea party is arr	range	d for 16 people al	ong	g two sides of a	long table with 8 chairs
	on	each side. Fou	ır mei	n wish to sit on one	e po	articular side ar	nd two on the other side.
	In ł	now many way	ys car	n they be seated?			
	α)	¹⁰ C ₄ * 7! * 7!			b)	¹⁰ C ₄ * 8! * 7!	
	c)	¹⁰ C ₄ * 8! * 8!			d)	None of the ab	DOVE

EXPLANATORY ANSWERS

- Out of 6 tosses 4 heads means automatically there will be 2 tails.
 Ways = ⁶C₄ * ²C₂ = 15 * 1 = 15. Option B
- 2. Ways = ⁸C₅ * ¹⁰C₆ = 56 * 210 = 11760. Option C
- 3. $({}^{7}C_{3} * {}^{6}C_{2}) + ({}^{7}C_{4} * {}^{6}C_{1}) + ({}^{7}C_{5}) = (35 * 15) + (35 * 6) + 21 = 525 + 210 + 21 = 756.$ Option B
- 4. Words = ${}^{7}C_{3} * {}^{4}C_{2} * {}^{5}P_{5} = 35 * 6 * 120 = 25200$. Option D
- 5. ${}^{10}C_4 {}^{4}C_4 = 210 1 = 209$. Option B
- 6. 11 players can be selected out of 15 in ${}^{15}C_{11} = 1365$ ways. Option A
- 7. A particular player is always included. We have to select 10 more out of remaining 14 players in ${}^{14}C_{10}$ = 1001 ways. Option B
- 8. We have to choose playing 11 from the remaining 14 players in ¹⁴C₁₁ = 364 ways.
 Option C
- 9. We need to select 1 from 2 leg spinners and other 10 from the remaining 13 in ${}^{2}C_{1} * {}^{13}C_{10} = 2 * 286 = 572$ ways. Option B
- 10. ${}^{9}C_{3} {}^{6}C_{3} = 84 20 = 64$. Option C
- 11. MATHEMATICS = (MM, AA, TT), (H, E, I, C, S) = ${}^{8}C_{4} * 4! + {}^{3}C_{1} * {}^{7}C_{2} * \frac{4!}{2!} + {}^{3}C_{2} * \frac{4!}{2!2!} = 2454$ (C)

12. ⁶C₂ * ⁴C₂ * 2! = 15 * 6 * 2 = 180 ways. Option C

13. Number of selection = $({}^{4}C_{3} * {}^{4}C_{2}) + ({}^{4}C_{2} * {}^{4}C_{3}) = (4 * 6) + (6 * 4) = 48$. Option B

J.K.	SH	AH®
CLA	S S	ES
a Varan	da Ento	rnrico

CA FOUNDATION - MATHEMATICS

14. Straight Lines = ${}^{15}C_2 - {}^{4}C_2 + 1 = 100$

Triangles = ¹⁵C₃ - ⁴C₃ = 451

Ratio = 100 : 451. Option C

- 15. Number of chords = ${}^{7}C_{2}$ = 21. Option A
- 16. 2N = N(N 3)/2

 $4N = N^2 - 3N$

 $N^2 = 7N; N = 7. Option C$

17. $(2^3 - 1) * (24 - 1) * (2^5 - 1) = 7 * 15 * 31 = 3255$. Option B

18. ${}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} = 10 + 10 + 5 + 1 = 26$. Option C

- 19. ${}^{8}C_{2} * {}^{6}C_{5} = 28 * 6 = 168$. Option D
- 20. ¹C₁ * 2⁵ = 32 [Aditi is always present ¹C₁, Others may come or may not come = 2⁵]. Option A
- 21. EQUATION = (E, A, I, O, U) + (Q, T, N) Number of words = ${}^{5}C_{3} * {}^{3}C_{2} * (5 - 2 + 1)! * 2! = 10 * 3 * 24 * 2 = 1440$. Option B

22.
$${}^{5}C_{1} * (1-1)! + {}^{5}C_{2} * (2-1)! + {}^{5}C_{3} * (3-1)! + {}^{5}C_{4} * (4-1)! + {}^{5}C_{5} * (5-1)!$$

= 5 + 10 + 20 + 30 + 24 = 89. Option C

23. $({}^{5}C_{1} * {}^{4}C_{1}) = 20$. Option D

24. When 18 identical white balls are put in a straight line, there will be 19 spaces created. Thus 16 black balls will have 19 places to fill in. This will give an answer of ¹⁹C₁₆ = 969. (Here, the balls are identical, the arrangement is not important). Option A

25. Having seated 4 on side A and 2 on side B, we are left with 10 persons. We can choose 4 of them for side A in ¹⁰C₄ ways, and for side B we are automatically left with 6 persons. Now 8 persons on each side can be arranged among themselves is 8! Ways. Hence required number of seating arrangements = ¹⁰C₄ * 8! * 8!. Option C

b

•

CA FOUNDATION - MATHEMATICS

SEQUENCES AND SERIES (PROGRESSIONS)

THEORY


- A sequence is defined as an array of numbers in such a manner so that there is a similarity in a given array, which enables us to determine the term or terms preceding or succeeding to such an array.
- A sequence can be categorized into 3 parts:
 - a) Arithmetic Progression
 - b) Geometric Progression
 - c) Harmonic Progression

	Arithmetic Progression	Geometric Progression	
Definition	Series which increases or	Series which increases or	
	decreases by a fixed quantity	decreases by a fixed proportion	
	а	а	
Constant	Common Difference = d	Common Ratio = r	
Last Term	$l = t_n = a + (n-1)d$	$l = t_n = a r^{n-1}$	
Sum	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	$S_n = a \cdot \frac{1 - r^n}{1 - r} \text{when } r < 1$	
	$S_n = \frac{n}{2} \left(a + l \right)$	$S_n = a \cdot \frac{r^n - 1}{r - 1}$ when $r > 1$	

• If three numbers are in G.P., their Logarithms are always in A.P.

Infinite GP Series

$$a + ar + ar^2 + ar^3 + \dots \alpha = \frac{a}{1-r}$$
 given $|r| < 1$

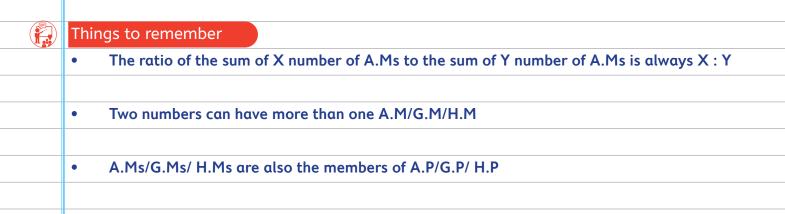
Sum of Natural Numbers:

$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2(n+1)^2}{4}$$

Harmonic Progression(H.P)


- Three numbers are in H.P, If their reciprocals are in A.P
- a,b,c are in H.P , if $\frac{1}{a} \frac{1}{b} \frac{1}{c}$ are in A.P.
- H.P fails when one of the terms of the A. P is Zero.

$$t_n$$
 of HP= $\frac{1}{t_n$ of the crresponding A.P

Concept of A.M , G.M and H.M

If a & b are any unequal real positive numbers then,

	A.M(A)	G.M(G)	H.M(H)	
Definition	$\frac{a+b}{2}$	$+\sqrt{ab}$	$\frac{2ab}{a+b}$	
Relation	i) A >	G >	H	
	ii) $A imes H$	$= G^2$		

		CLASSWORK SECTION							
	ARI	THMETIC PROGRES	SION						
	Cho	ose the most appr	opria	te option (a), (b), (c) or (d).				
1. The nth element of sequence 5, 7, 9, 11 is									
		(a) 3n + 2	(b)	n + 4	(c) 2n + 3	(d) none of these			
	2.	lf -17, -13, -9, .	in	the progression th	en t ₁₀ =				
		(a) 41	(b)	43	(c) 40	(d) 19			
	3.			gression -1, -3, -5					
		(a) 27 th	(b)	29 th	(c) 39 th ©	(d) none of these			
	4.			es 7 + 11 + 15 +					
		(a) 116	(D)	190	(c) 119	(d) 125			
		The 10th term in	3, 9	$, 6, \frac{15}{2} \dots$ is	Grise				
	5.	The Toth term in	2	2 · · · IS	terpi				
		(a) 33	(b)	33	(c) $-\frac{33}{2}$	(d) -33			
		(0) 55	(0)	2	2	(u) 55			
	6.	If the ninth term	of an	AP is 30 then S_{17} =	=				
		(a) 150		501	(c)	510 (d) 105			
			(~)		(-)				
	7.	The a th term of ar	ר AP	s b and b th term is	a. Then c th term of	f it is			
		(a) a + b + c			(b) b + a – 2c				
		(c) a + b + c/2			(d) a + b - c				
	8.	Third term of an A	AP is	8 and the 17th ter	m is 51/2. The 23r	d term is			
		(a) 37	(b)	33	(c) 41	(d) 31			
	9.	The n th term of th	e ser	ies whose sum to i	n terms 3n ² + 2n is				
		(a) 3n - 1	(b)	8n – 2	(c) 11n – 3	(d) none of these			
	10.	If 3 consecutive to							
		(a) 1	(b)	2	(c) 3	(d) none of these			
				243					

dV	Ciunua	Enterprise						
11.	The 16th term of an AP is 99 and common difference is 8 then S ₂₁ is:							
	(a) 1	1230	(b)	1290	(c) 1239	(d) 1293		
12.	The sum of all odd numbers between 100 and 200 is							
	(a) 6	5200	(b)	6500	(c) 7500	(d) 3750		
13.	The s	sum of all pos	sitive	integral multiples	s of 3 less than 100) is		
	(a) 1	1584	(b)	1665	(c) 1683	(d) none of these		
14.	The s	sum of all nat	ural	numbers from 100	0 to 300 which are	exactly divisible by 4 or		
	5 is							
	(a) 1	10200	(b)	15200	(c) 16200	(d) none of these		
					B			
15.	The s	sum of all nur	nber	s between 400 an	d 900 which are di	visible by 13 is		
	(a) 2	22504	(b)	29405	(c) 25402	(d) 25350		
 					29			
16.	The 4	4 arithmetic n	neans	s between – 2 and	l 23 are			
	(a) 3	3, 13, 8, 18			(b) 18, 3, 8, 13			
 	(c) 3	3, 8, 13, 18		5/9	(d) none of these			
				40				
17.			is (3r	- 1)/6. The sum of	of first p terms of t	he series is		
		n(3p + 1)		3	(b) (p/12) (3p + 1)			
	(c) (p/12) (3p – 1)			(d) none of these			
4.5			•					
18.						ach installment is Rs. 10		
	more than the preceding installment. The value of first installment is							
	(a) F	Rs. 36	(b)	Rs. 30	(c) Rs. 60	(d) none of these		
10	T I-	1 - +	and t					
19.	The 1st and the last term of an AP are -4 and 146. The sum of the terms is 7171. The number of terms							
				100	(a) 00	(d) mana of these		
	(a) 1	101	(b)	100	(c) 99	(d) none of these		
DAGT			r					
		RS QUESTIONS			100 and 1000	ich ave multiple of 5 in		
20.						ich are multiple of 5 is		
 	(a) 9	98450	(D)	96450	(c) 97450	(d) 95450		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

 av	Veranda Enterprise								
21.	On 1st January	every	y year a person b	ouys national savi	ing certifica	tes of value			
	exceeding that of his last years purchase by Rs. 100. After 10 years he finds that								
	the total value of the certificates purchased by him is Rs. 54500. Find the value of								
	certificates purchased by him in the first year								
	(a) 6000		4000	(c) 5000	(d)	5500			
22.	If in an AP, Tn represent nth term $t_7 : t_{10} = 5 : 7$ then $t_8 : t_{11} = $								
	(a) 13:16			(c) 14 : 17					
23.	If sum of 3 arithmetic means between 'a' and 22 is 42 then 'a' =								
	(a) 14		11	(c) 10	(d) 6				
24.	If each month Rs. 100 increases in any sum then find out the total after 10 months								
	if the sum of first month is Rs. 2000.								
	(a) 24500		24000	(c) 50000	(d)	60000			
				6					
25.	The 4th term of A	AP is	three times the firs	st term and the 7th	n term exce	eds twice the			
	The 4th term of AP is three times the first term and the 7th term exceeds twice the third term by 1. Find the first term 'a' and common difference 'd'.								
	(a) $a = 3, d = 2$ (b) $a = 4, d = 3$								
	(c) $a = 5, d = 4$			(d) $a = 6, d = 5$					
			Verana						
GEO	METRIC PROGRESS	SION							
26.			eries 0.5, 1, 2, 4	. to 8 term is					
 	(a) 64	(b)		(c) 512	(d) none of	fthese			
		(-		,				
 27.	Sum of three numbers x, y, z are in a GP is 39 and their product is 729. The values								
 	of x, y, z are								
		(b)	9, 3, 27	(c) 3, 9, 27	(d) none of	fthese			
	,	/		, - ,					
28.	If x, y, z are in GP, and xyz = 27/8. The value of y is								
	(a) 3/2		2/3	(c) 2/5	(d) none of	f these			
		/	·	• • • •					
29.	The value of three numbers in GP, so that their sum is (57/2) and product is 729 are								
	(a) 2, 9, 27		,	(b) 6, 9, 27/2	· · · · · · · · · · · · ·				
 	(c) 4, 16, 64/3			(d) none of these					
	, ,, • •								

<u>J.</u>]	K. SHAH			CA FO	DUNDATION - MATHEMATICS				
	_ A S S E S ⁄dranda Enterprise								
30.	A ball is dropped from a height of 48 m and rebounds two third of the distance								
	it falls. It continued to fall and rebound in this way, how far will it travel before								
	coming to rest								
	(a) 240 m	(b)	260 m	(c) 380 m	(d) none				
 31.	If a, b, c are in GF	Ρ , α ^p =	= b ^q = c ^r then 1/p,	1/q, 1/r are in					
	(a) AP	(b)	GP	(c) HP	(d) none of these				
32.	If x, y, z are pth, o	qth a	nd rth terms of a (GP then the value					
	(a) 0	(b)	1	(c) -1	(d) none of these				
					- 3 - 3				
 33.	Let A be the A.M and G_1 , G_2 be two GMs between two positive numbers. Then $G_1^3 + G_2^3$								
	is equal to			®					
	(a) $2AG_1G_2$	(b)	AG ₁ G ₂	(c) (AG ₁ G ₂)/2	(d) none				
				- 1					
 34.	If the pth term of			2-					
	(a) 25	(b)	22	(c) 23	(d) none of these				
	2-5 rolls								
 35.	If the first term and the common ratio of a GP are 1 and 1/2 respectively and sum								
	of its n terms is e	qual	to <u>255</u> . The value 128	of n is					
			128	() > >					
	(a) 6	(b)	5	(c) 8	(d) none of these				
36.			•	he sum of the reci	procals of n terms in a GP				
	then 'P' is of S^n and R^{-n}								
	(a) Arithmetic me			(b) Geometric mean					
	(c) Harmonic me	an		(d) none of these					
 27	The sum of 2 numbers in A.D. is 45.164. A much 40 milded to the second state of the state								
37.	The sum of 3 numbers in A.P. is 15. If 1, 4 and 19 added to them respectively the results are in G.P. The numbers are								
				(c) 5 9 2	(d) both (c) and (b)				
	(a) 26, 5, −16	(D)	2, 3, 0	(c) 5, 8, 2	(d) both (a) and (b)				
 20	Given x, y, z are in GP, $x^p = y^q = z^{\sigma}$ then $\frac{1}{p}, \frac{1}{q}, \frac{1}{\sigma}$ are in								
 38.	Given x, y, 2 ure li	n ar,	x - y - z then $-p$, ,— αιειπ q σ					
	(a) AP			(b) GP					
	(c) Both AP and	GD		(d) none of these	<u> </u>				
		ur			-				
			216						

a 🗸	a Veranda Enterprise								
39.	39. If $x = a + a/r + a/r^2 + \infty$, $y = b - b/r + b/r^2 \infty$; $z = c + c / r^2 + c / r^4 + \infty$,								
	then value of (xy)/z-(ab)/c is								
	(a) 0	(b)	1	(c) -1	(d) none of these				
40.	The value of S =	: 2/3 +	5/9 + 2/27 + 5/82	1 + to infinite t	terms is				
	(a) 11/8	(b)	8/11	(c) 3/11	(d) none of these				
41.	The third term c	of GP is	2, the product of	first five term is					
	(a) 2 ⁵	(b)	2 ³	(c) 5 ³	(d) none of these				
PAS	PAST YEARS QUESTIONS								
		a ⁿ⁺	$\frac{1}{b}$ may be the						
 42.	Find n such that		<u> </u>	ne geometric mean	between a and b				
			-						
	(a) 1/2	(b)	1	(c) -1/2	(d) 0				
 43.	43. If the first term of a GP exceeds the second term by 2 and the sum to infinity is 50;								
	the series is			*erpine					
	32			5					
 	(a) 10, 8, $\frac{32}{5}$		r dod	(b) 10, 8, $\frac{5}{2}$,					
 	(1) 10 10	70							
	(c) $10, \frac{10}{3}, \frac{10}{9}, \frac{10}{3}, \frac{10}{$		3	(d) none					
 	In a CD if the (n	+ a)+b	torm is m and (n.	- a) th torm is n that	a ath torm is				
 44.	(a) mn		√mn	 q)th term is n then (c) m² 	(d) n ²				
		(0)	¥11111						
45	If G be geometr	ric me	an between a and	b then the value	e of $\frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2}$ is				
	equal to				$G^{-} - a^{-} - b^{-} = b^{-}$				
	(a) G ²	(b)	3G ²	(c) 1/G ²	(d) 2/G ²				
		()	-						
46.	Find the product	t of 24	3, 243 ^{1/6} , 243 ^{1/36} , .	to ∞					
	(a) 1024		27	(c) 729	(d) 246				
47.	Geometric mear	n of p,	p^2, p^3, \ldots, p^n be	(n + 1)					
	(a) p ⁿ⁺¹	(b)	$p^{\frac{n}{2}}$	(c) p ²	(d) none of these				
			۲						
			a : =						

J.K. SHAH
CLASSES
a Veranda Enterprise

aŀ	⁄dranc	da Enterprise								
48.	ΑG	iP (Geometric P	rogre	ssion) consists	s of 2n t	terms. If the	sum of t	the terms o	ccupying	
	the	odd places is	S ₁ and	d that of the t	erms ir	n even place	s is S ₂ . T	he commor	n ratio of	
	the	progression is						6		
	(a)	n	(b)	2S ₁	(c)	$\frac{S_2}{S_1}$	(d)	$\frac{s_1}{s_2}$		
						<u> </u>		- <u>/</u>		
SPEC	CIAL	SERIES								
49.	The	e sum of 'n' ter	m of t	the series 1x4	+ 3x7 -	+ 5×10 +				
	(a)	$\frac{n}{2}[5n^2+4n-2]$	1]			(b) $\frac{n}{2} [4n^2 +$	- 5 <i>n</i> – 1]			
		2								
	(c)	$\frac{n}{2}[4n^2+5n+2]$	1]			(d) None				
50.	7+7	77+777+	•••••	n terms is equ	ial to	P	3			
	(a)	$\frac{7}{9}[10^{n+1}-10]$	$\frac{7n}{9}$			(b) $\frac{7}{9} [10^{n+1}]$	- 10] +	$\frac{7n}{9}$		
							9			
	(c)	$\frac{7}{81} \left[10^{n+1} - 10 \right]$	$-\frac{7n}{9}$	C		(d) $\frac{7}{81}$ [10 ⁿ⁺²	¹ – 10] +	$\frac{n}{9}$		
						170, S	~			
51.	<u>1</u> 1x2	$+\frac{1}{2x3}+\frac{1}{3x4}+\dots$	r	n terms is equ	al to	nterpris				
					90,	1				
	(a)	$\frac{n}{2n+1}$	(b) <u>n</u>		(c)	$\frac{1}{n+1}$	(d) I	None		
				ave.						
52.	Sur	m of 'n' terms v	whose	e t _n is n ² + 2 ⁿ						
		n(n+1)(2n+1)				$(n \downarrow 1)(2n \bot 1)$				
	(a)	$\frac{n(n+1)(2n+1)}{6}$ +	$2(2^{n} \cdot$	- 1)	(b)	$\frac{(n+1)(2n+1)}{6}$	+ 2(2 ⁿ	-1)		
		$n(n+1)^2$								
	(c)	$\frac{n(n+1)^2}{6}$ + 2(2 ⁿ -	- 1)		(d)) None				
MIX										
53.		0 times the 10			is equo	ıl to 15 time	es the 15	5th term, th	nen 25th	
		m of the A.P. is								
	a)	1		b) 25	c)	0	d) -	-25		
54.		he sum of p ter		^f an AP is sam	e as the	e sum of its o	q terms,	then the su	m of the	
	firs	t (p + q) terms	is:							
	α)	0	b)	p + q	c)	p – q	d) 1	None of the	above	
				~	1.0					
				2	48					

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	∕dra∩da Enterprise							
55.	If S_1 , S_2 , S_3 be	e the sum	s of n term	s of three	AP and th	e first teri	m of each	AP being
	1 and the res	pective co	mmon diffe	erence are	1, 2, 3; th	en $S_1 + S_3$	= ?	
	a) S ₂	b)	3S ₂	c)	0.5S ₂	d) 2	S ₂	
56.	An AP consist	s of n ter	ms. If the s	um of its f	irst three t	erms is x	and the su	Im of the
	last three ter	ms is y th	en the sum	of all the	terms of t			
	(a) $\frac{n}{6}(xy)$	(b) $\frac{n}{6}$	(x+y)	(c)	n(x+y)	(d) ^{<i>n</i>}	$\frac{(x-y)}{6}$	
57.	300 trees are	e planted	in a regul	ar patterr	n in rows i	in the sho	ipe of an	isosceles
	triangle, the I	numbers i	n the succes	ssive rows	diminishin	g by one f	rom the ba	ise to the
	apex. How m	any trees	are there ir	n the row,	which form	ns the bas	e of the tr	iangle
	a) 30	b)	21	c)	27	d) 2	4	
58.	The first and	the last te	erm of an A	P are "a" c	וnd "1" <mark>r</mark> esן	pectively.	The sum of	f n th term
	from the begi	inning and	l the n th ter	m from th	e end is:			
	a) a + 1	b)	a - 1	c)	a + 31	9 d) 2	a + 1	
						ee.		
59.	If the sums o	f n, 2n an	d 3n terms	of an AP	be S ₁ , S ₂ ai	nd S $_{3}$ resp	ectively, th	nen show
	that $S_3 = ?$			9,0	nteir			
	a) $3(S_2 - S_1)$	b)	$(S_2 - S_1)$	AOc)	$2(S_2 - S_1)$	d) 3	(S ₂ + S ₁)	
		Y	Vide					
60.	If S _n be the su	im of n co	nsecutive t	erms of ar	n AP, then t	the value	of	
	$S_{n+3} - 3S_{n+2} +$	3S _{n+1} - S _n	is:					
	a) 0	b)	1	c)	2	d) 3		
61.			s of two AP	are in the	ratio (7n ·	+ 2) : (n +	4). Find the	e ratio of
	a) 1:5	b)	5:1	c)	2:3	d) 3	: 2	
62.		3 ³ + +						
	a) 2010000	b)	3025000	c)	2870000	d) 1	409400	
63.					t a G.P. are	e 3, 486 ar	nd 728 resp	pectively.
		-						
	a) 4	b)	6	c)	8	d) 2		
	55. 56. 57. 57. 58. 58. 58. 58. 61.	1 and the res a) S_2 56. An AP consist last three ter (a) $\frac{n}{6}(xy)$ 57. 300 trees are triangle, the r apex. How m a) 30 58. The first and r from the begins a) a + 1 59. If the sums or that $S_3 = ?$ a) $3(S_2 - S_1)$ 60. If S_n be the su $S_{n+3} - 3S_{n+2} +$ a) 0 61. The sum of find their 5th term a) 1:5 62. $31^3 + 32^3 + 32$ a) 2010000	55. If S_1 , S_2 , S_3 be the sums 1 and the respective co a) S_2 b) 56. An AP consists of n term last three terms is y the (a) $\frac{n}{6}(xy)$ (b) $\frac{n}{6}$ 57. 300 trees are planted triangle, the numbers in apex. How many trees a) 30 b) 58. The first and the last term from the beginning and a) $a + 1$ b) 59. If the sums of n, 2n an that $S_3 = ?$ a) $3(S_2 - S_1)$ b) 60. If S_n be the sum of n co $S_{n+3} - 3S_{n+2} + 3S_{n+1} - S_n$ a) 0 b) 61. The sum of first n terms their 5th terms. a) 1 : 5 b) 62. $31^3 + 32^3 + 33^3 + \dots + 32^3$ 63. The common ratio, last The first term of the pro-	55. If S_1 , S_2 , S_3 be the sums of n term 1 and the respective common diffe a) S_2 b) $3S_2$ 56. An AP consists of n terms. If the sum (a) $\frac{n}{6}(xy)$ (b) $\frac{n}{6}(x+y)$ 57. 300 trees are planted in a regult triangle, the numbers in the succest apex. How many trees are there in a) 30 b) 21 58. The first and the last term of an A from the beginning and the n th tert a) $a + 1$ b) $a - 1$ 59. If the sums of n, 2n and 3n terms that $S_3 = ?$ a) $3(S_2 - S_1)$ b) $(S_2 - S_1)$ 60. If S_n be the sum of n consecutive t $S_{n+3} - 3S_{n+2} + 3S_{n+1} - S_n$ is: a) 0 b) 1 61. The sum of first n terms of two AP their 5th terms. a) 1 : 5 b) 5 : 1 62. $31^3 + 32^3 + 33^3 + \dots + 50^3$ a) 2010000 b) 3025000	55.If S_{11} , S_2 , S_3 be the sums of n terms of three and the respective common difference are a) S_2 b) $3S_2$ c)56.An AP consists of n terms. If the sum of all the (a) $\frac{n}{6}(xy)$ (b) $\frac{n}{6}(x+y)$ (c)57.300 trees are planted in a regular pattern triangle, the numbers in the successive rows apex. How many trees are there in the row, a) 30 b) 21 c)58.The first and the last term of an AP are "a" of from the beginning and the nth term from th a) $a + 1$ b) $a - 1$ c)59.If the sums of n, 2n and 3n terms of an AP that $S_3 = ?$ a) $3(S_2 - S_1)$ b) $(S_2 - S_1)$ c)60.If S_n be the sum of n consecutive terms of ar $S_{n+3} - 3S_{n+2} + 3S_{n+1} - S_n$ is: a) 0b) 1 c)61.The sum of first n terms of two AP are in the their 5th terms. a) $1:5$ b) $5:1$ c)62. $31^3 + 32^3 + 33^3 + \dots + 50^3$ a) 2010000 b) 3025000 c)63.The common ratio, last term, and the sum of The first term of the progression is:c)	55.If S_1, S_2, S_3 be the sums of n terms of three AP and the 1 and the respective common difference are 1, 2, 3; th a) S_2 b) $3S_2$ c) $0.5S_2$ 56.An AP consists of n terms. If the sum of its first three to last three terms is y then the sum of all the terms of t (a) $\frac{n}{6}(xy)$ (b) $\frac{n}{6}(x+y)$ (c) $n(x+y)$ 57.300 trees are planted in a regular pattern in rows a triangle, the numbers in the successive rows diminishin apex. How many trees are there in the row, which form a) 30b) 21c) 2758.The first and the last term of an AP are "a" and "1" respective from the beginning and the nth term from the end is: (a) $a + 1$ b) $a - 1$ c) $a + 31$ 59.If the sums of n, 2n and 3n terms of an AP be S_1, S_2 a that $S_3 = ?$ (a) $3(S_2 - S_1)$ b) $(S_2 - S_1)$ c) $2(S_2 - S_1)$ 60.If S_n be the sum of n consecutive terms of an AP, then $S_{n-3} - 3S_{n+2} + 3S_{n-1} - S_n$ is: (a) 0b) 1c) 261.The sum of first n terms of two AP are in the ratio (7n their 5th terms. (a) 1:5b) $5:1$ c) $2:3$ 62. $31^3 + 32^3 + 33^3 + \dots + 50^3$ (a) 2010000b) 3025000 c) 28700000 63.The common ratio, last term, and the sum of a G.P. are The first term of the progression is:	55.If S_1, S_2, S_3 be the sums of n terms of three AP and the first term 1 and the respective common difference are 1, 2, 3; then $S_1 + S_3$ a) S_2 b) $3S_2$ c) $0.5S_2$ d) 256.An AP consists of n terms. If the sum of its first three terms is x last three terms is y then the sum of all the terms of the AP is: (a) $\frac{n}{6}^{(xy)}$ (b) $\frac{n}{6}^{(x+y)}$ (c) $n(x+y)$ (d) $\frac{n}{2}$ 57.300 trees are planted in a regular pattern in rows in the shot triangle, the numbers in the successive rows diminishing by one fi apex. How many trees are there in the row, which forms the bass (a) 30 b) 21 c) 27 d) 2 58.The first and the last term of an AP are "a" and "1" respectively. from the beginning and the nth term from the end is: (a) $a + 1$ b) $a - 1$ c) $a + 31$ d) 2 59.If the sums of n, 2n and 3n terms of an AP be S_1, S_2 and S_3 resp that $S_3 = ?$ (a) $3(S_2 - S_1)$ b) $(S_2 - S_3)$ c) $2(S_2 - S_1)$ d) 3 60.If S_n be the sum of n consecutive terms of an AP, then the value $S_{n'3} - 3S_{n'2} + 3S_{n'1} - S_n$ is: (a) 0 b) 1 c) 2 d) 3 61.The sum of first n terms of two AP are in the ratio $(7n + 2) : (n + their Sth terms.(a) 1 : 5b) 5 : 1c) 2 : 3d) 362.31^3 + 32^3 + 33^3 + + 50^3(a) 2010000b) 3025000c) 2870000d) 163.The common ratio, last term, and the sum of a G.P. are 3, 486 arThe first term of the progression is:$	55. If S_1, S_2, S_3 be the sums of n terms of three AP and the first term of each 1 and the respective common difference are 1, 2, 3; then $S_1 + S_3 = ?$ a) S_2 b) $3S_2$ c) $0.5S_2$ d) $2S_2$ 56. An AP consists of n terms. If the sum of all the terms of the AP is: (a) $\frac{n}{6}(w)$ (b) $\frac{n}{6}(x+y)$ (c) $n(x+y)$ (d) $\frac{n(x+y)}{6}$ 57. 300 trees are planted in a regular pattern in rows in the shape of an triangle, the numbers in the successive rows diminishing by one from the ba apex. How many trees are there in the row, which forms the base of the tr a) 30b) 21 c) 27 d) 24 58. The first and the last term of an AP are "a" and "1" respectively. The sum of from the beginning and the n th term from the end is: a) $a + 1$ b) $a - 1$ c) $a + 31$ d) $2a + 1$ 59. If the sums of n, 2n and 3n terms of an AP be S_1, S_2 and S_3 respectively, the that $S_3 = ?$ a) $3(S_2 - S_1)$ b) $(S_2 - S_2)$ c) $2(S_2 - S_1)$ d) $3(S_2 + S_1)$ 60. If S_n be the sum of n consecutive terms of an AP, then the value of $S_{n-3} - 3S_{n-2} + 3S_{n-1} - S_n$ is: a) 0b) 1 c) 2 d) 3 61. The sum of first n terms of two AP are in the ratio $(7n + 2) : (n + 4)$. Find the their Sth terms. a) $1 : 5$ b) $5 : 1$ c) $2 : 3$ d) $3 : 2$ 62. $31^3 + 32^3 + 33^3 + + 50^3$ a) 2010000 b) 3025000 c) 2870000 d) 14094000 63. The common ratio, last term, and the sum of a G.P. are 3, 486 and 728 resp

V CHAH®			
LASSES		CA F	OUNDATION - MATHEMATICS
•			
a) 397 cm b)	400 cm	c) 450 cm	d) 460 cm
. If a, b, x, y, z are pos	itive numbers such	n that a, x, b are i	n AP; a, y, b are in GP and
(a + b)z = 2ab, then x	, y, z are in:		
a. Arithmetic Progre	ssion	b. Geometric Pr	rogression
c. Harmonic Progres	sion	d. None of the	above
. If S_1 , S_2 , S_3 be respect	ively the sum of n	, 2n and 3n terms	of a GP, then
$S_1 (S_3 - S_2) - (S_2 - S_1)^2$	is:		
a) n b)	2n	c) 3n 📀	d) 0
. If "a" be the first term	ı, "b" the nth term	and "p" the produ	lct of the first n terms of a
GP, then which of the	following is true?		2
a) p = ab	6	b) p = (ab) ⁿ	2
c) $p^2 = (ab)^n$		d) None of the	above
	19	cnterr	
. The sum of 1st six ter	ms of a G.P. is 9 tir	nes the sum of the	e first three terms. Find the
common ratio.	, dans		
a. 2	b. 3	c. 4	d. 8
. The sum of the first	three terms of a	G.P. is to the sun	n of the first six terms as
125:152. Find the cor	nmon ratio of the	G.P.	
a. 0.40 b.	0.50	c. 0.75	d. 0.60
. The first, tenth and tw	venty-eighth term	of an AP are thre	e successive terms of a GP.
Find the common rat	io of the GP. given	that the sum of t	he first 28 terms of the AP
is 210, find its first te	rm.		
a. 2, 2 b.	2, 3	c. 3, 2	d. – 3, 2
. An air pump used to e	extract air from a v	essel removes one	e-tenth of the air at stroke
each stroke. Find who	at fraction of origin	nal volume of air i	is left after the 5th stroke.
a) 0.54899 b)	0.54999	c) 0.59049	d) 0.60099
	of three-fifth the dist 100 cm, how far it ha a) 397 cm b) If a, b, x, y, z are posi- (a + b)z = 2ab, then x a. Arithmetic Progree c. Harmonic Progres If S_1 , S_2 , S_3 be respect S_1 ($S_3 - S_2$) – ($S_2 - S_1$) ² a) n b) If "a" be the first term GP, then which of the a) p = ab c) p ² = (ab) ⁿ The sum of 1st six term common ratio. a. 2 The sum of the first 125:152. Find the cor- a. 0.40 b. The first, tenth and tw Find the common ratio An air pump used to e each stroke. Find who	When a certain golf ball is dropped on of three-fifth the distance from which it 100 cm, how far it has travelled when it a) 397 cma) 397 cmb) 400 cmIf a, b, x, y, z are positive numbers such $(a + b)z = 2ab$, then x, y, z are in: a. Arithmetic Progressionc. Harmonic Progressionc. Harmonic Progressionc. Harmonic Progressionc. Harmonic Progressionf (S ₁ , S ₂ , S ₃ be respectively the sum of n, S ₁ (S ₃ - S ₂) - (S ₂ - S ₁) ² is: a) na) nb) 2nIf "a" be the first term, "b" the nth term GP, then which of the following is true? a) p = ab c) p ² = (ab) ⁿ The sum of 1st six terms of a G.P. is 9 tin common ratio. a. 2a. 2b. 3The sum of the first three terms of a 125:152. Find the common ratio of the a. 0.40b. 0.50The first, tenth and twenty-eighth term Find the common ratio of the GP. given is 210, find its first term. a. 2, 2a. 2, 2b. 2, 3	LASSEESWhen a certain golf ball is dropped on a piece of pavemof three-fifth the distance from which it falls. If the ball i100 cm, how far it has travelled when it hits the pavemea) 397 cmb) 400 cmc) 450 cmIf a, b, x, y, z are positive numbers such that a, x, b are i(a + b)z = 2ab, then x, y, z are in:a. Arithmetic Progressionb. Geometric Pic. Harmonic Progressiond. None of theIf s_1, S_2, S_3 be respectively the sum of n, 2n and 3n terms $S_1(S_3 - S_2) - (S_2 - S_1)^2$ is:a) nb) 2nc) $3n$ b) $p = ab$ c) $p^2 = (ab)^n$ c) $p^2 = (ab)^n$ d) None of thefrequenciesa. 2b. 3c. 4The sum of 1st six terms of a G.P. is 9 times the sum of thecommon ratio.a. 2b. 3c. 4The first, tenth and twenty-eighth term of an AP are threeFind the common ratio of the G.P.a. 0.40b. 2, 3c. 3, 2In the first, tenth and twenty-eighth term of an AP are threeFind the common ratio of the GP. given that the sum of thecommon ratio of the GP. given that the sum of thecommon ratio of the GP. given that the sum of thecommon ratio of the GP. given that the sum of thecommon ratio of the GP. given that the sum of thecommon ratio of the GP. given that the sum of the <tr< th=""></tr<>

<u>J.K</u>	SHAH [®]	CA FOUNDATION - MATHEMATICS
a Vơr	anda Enterprise	
	b+c $c+a$ $a+b$	
72. li	$f\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP, then $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are i	in:
C	1. Harmonic Progression	c. Geometric Progression
b	o. Arithmetic Progression	d. None of the above
	a b c	
73. li	f a^2 , b^2 , c^2 are in AP, the $\frac{a}{b+c}, \frac{a}{c+a}, \frac{a}{a+b}$ are i	n :
c	a. Geometric Progression	c. Both a) and b) above
b	o. Arithmetic Progression	d. None of the above
	1 1 1	
74. li	f a, b, c are in AP, then $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$	are in:
С	1. Geometric Progression	c. Arithmetic Progression
С	. None of the above	d. Harmonic Progression
75. li	f $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in AP, then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$	are in :
	a. Harmonic Progression	c. Arithmetic Progression
 b	. Geometric Progression	d. None of the above
		-nterp
76. E	valuate the following:	J. E.
	i) 0.4 (ii) 0.42	(iii) 0.423 (iv)0.42
 	v) 0.4 <u>23</u> (vi) 0.42 <u>3</u>	(vii) 7.42
 77. T	he ratio of the sum of x AM to y AM bet	ween two numbers is:
 	a) $x:y$ b) $x^2:y^2$	c) 1:1 d) None of the above
 	.,	
 78. li	fab care in GP and x y be the arithmet	ic means between a, b and b, c respectively,
 	hen which of the following/s is/are true?	·
	a) $\frac{a}{x} + \frac{c}{y} = 2$	(b) $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$
	c) Both a) and b) above	(d) Neither a) nor b) is true

CA FOUNDATION - MATHEMATICS

HOMEWORK SECTION

1.	The nth element	t of the	e sequence 1, 3	3, 5, 7,is			
	(a) n	(b)	2n – 1	(c) 2n +1	(d)	none of these	
2.	The nth element	t of the	e sequence -1,	2, -4, 8 is			
	(a) (−1) ⁿ 2 ^{n−1}	(b)	2 ⁿ⁻¹	(c) 2 ⁿ	(d) r	none of these	
3.	$\sum_{i=4}^{7}\sqrt{2i-1}$ can						
	(a) $\sqrt{7} + \sqrt{9} + \sqrt{9}$			(b) $2\sqrt{7} + \sqrt{9}$	$+2\sqrt{11}$	+ 2\sqrt{132}	
	(c) $2\sqrt{7} + \sqrt{9} + \sqrt{9}$	-2 \sqrt{11}	$+ 2\sqrt{132}$	(d) None of th	nese		
					8		
4.				5,625,can be		as	
	(a) $\sum_{k=1}^{\infty} (-5)^k$	(b) 2	$\sum_{k=1}^{\infty} (5)^k$	(c) $\sum_{k=1}^{\infty} -5^k$	(d) N	lone of these	
					9		
5.	The first three te	erms of	f sequence wh	en nth term t _n is n		2	
	(a) -1, 0, 3	(b)	1, 0, 2	(c) -1, 0, -3	(d) r	none of these	
				Senteri			
6.	Which term of t	he prog	gression -1, -3				
	(a) 21 st	(b)	20 th	(c) 19 th	(d)	none of these	
			3				
7.	The value of x s	uch the	at 8x + 4, 6x -	2, 2x + 7 will form	n an AP is	;	
	(a) 15	(b)	2	(c) 15/2	(d)	none of the these	
8.				erm is m. The rth			
	(a) m + n +r	(b)	n + m – 2r	(c) m + n + r/	2 (d)	m + n – r	
				$9^{2} \pm 9^{1} \pm 9$	F		
9.						ll amount to 155 is	
	(a) 30	(b)	31	(c) 32	(d)	(a) and (b) both	
10.				to n terms is 5n ²		6	
	(a) 3n - 10	(b)	10n – 2	(c) 10n – 3	(d) r	none of these	
11.				, 7, 10i			
	(a) 58	(b)	52	(c) 50	(d)	none of these	

av	eranaa Enter	prise					
12.	The last	term of t	he se	ries 5, 7, 9, to	21 terms is		
	(a) 44		(b)	43	(c) 45	(d)	none of these
13.	The last	term of t	he A.	P. 0.6, 1.2, 1.8,	to 13 terms is		
	(a) 8.7		(b)	7.8	(c) 7.7	(d)	none of these
14.	The sum	of the se	eries S	9, 5, 1, to 100 te	erms is		
	(a) -18	,900	(b)	18,900	(c) 19,900	(d)	none of these
 15.				ans between -6 a			
 	(a) 2/3,	1/3	(b)	$2/3, 7\frac{1}{3}$	(c) -2/3, $-7\frac{1}{3}$	(d) N	lone of these
 16.	The sum	of three	integ	ers in AP is 15 and	l their product is	s 80. The	e integers are
	(a) 2, 8,	5	(b)	8, 2, 5	(c) 2, 5, 8	(d)	8, 5, 2
 17.	The sum	of n tern	ns of	an AP is 3n² + 5n.		2	
 	(a) 8, 14			6	(b) 8, 22, 42, 68	6	
 	(c) 22, 6	58, 114, .			(d) none of the	se	
 				9	Enter		
 18.				rs between 74 and		-	
 	(a) 5,09	0	(b)	5,097	(c) 5,095	(d)	none of these
				3			
 19.			n AP	is (3p – 1)/6. The :			of the AP is
	(a) n (3r				(b) n/12 (3n +	•	
 	(c) n/12	(3n – 1)			(d) none of the	se	
 20	The exit	motic	han h	etween 33 and 77	. ic		
 20.	(a) 50	metic me	(b)		(c) 55	(م) م	one of these
 	(u) 50		(D)	45	(C) 55	(u) T	
 21.	The 4 ar	ithmetic	mean	s between -2 and	23 gre		
 <u> </u>	(a) 3, 13		neun		(b) 18, 3, 8, 13		
	(c) 3, 8,				(d) none of the	50	
	(0, 5, 0,	13, 10					
 22.	The first	term of	an A	P is 14 and the su	ims of the first f	five tern	ns and the first ten
 				gnitude but oppos			
	(a) $6\frac{4}{11}$		(b)		(c) 4/11	(d)	none of these
 	11		(~)	-	, .,	(~)	

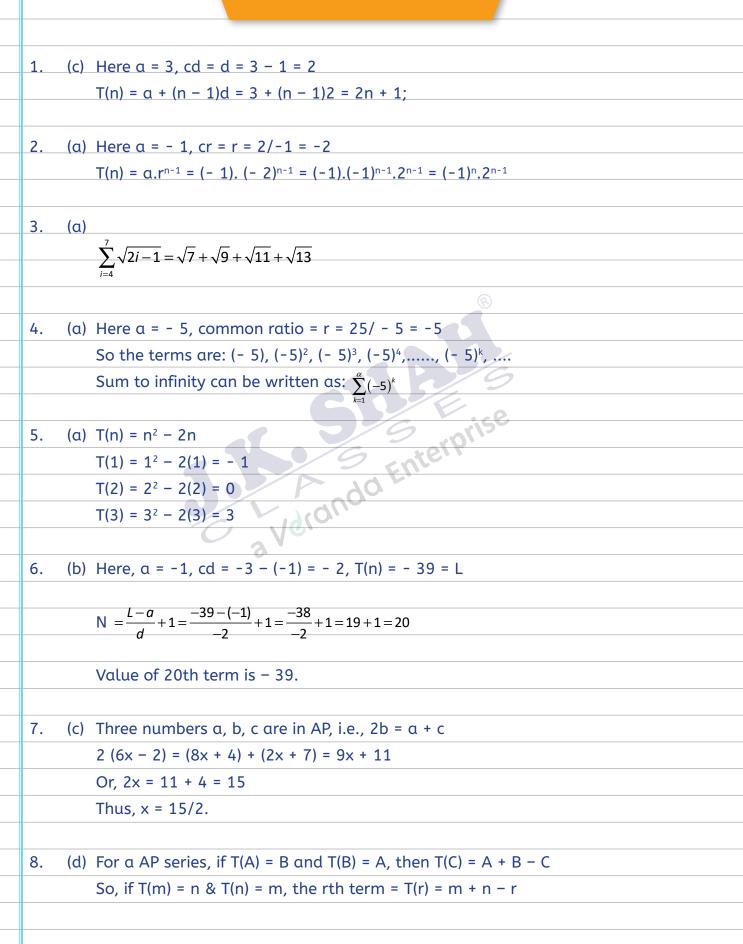
J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	/erando	a Enterprise					
23.	The	sum of a cer	tain	number of terms	of an AP series -8	8, -6,	, –4, is 52. The
	num	nber of terms i	is				
	(a)	12	(b)	13	(c) 11	(d)	none of these
24.	The f	irst and the lo	ıst te	rm of an AP are -	4 and 146. The su	ım of	the terms is 7171.
	The	number of ter	ms is	5			
	a)	101	(b)	100	(c) 99	(d)	none of these
25.	The	sum of the se	ries 3	31/2 + 7 + 101/2 + 14	+ to 17 terms i	S	
	(a)	530	(b)	535	(c) 535 ½	(d)	none of these
26.	The	7 th term of th	ie ser	ries 6, 12, 24,	is		
	(a)	384	(b)	834	(c) 438 🛞	(d)	none of these
27.	t ₈ of	f the series 6,	12, 2	4, is			
	(a)	786	(b)	768	(c) 867	(d)	none of these
				61	V		
28.	t ₁₂ 0	of the series -1	128, 6	54, -32,is	Suprise		
	(a)	- 1/16	(b)	16 9	(c) 1/16	(d)	none of these
29.	The	4th term of th	ne ser	ries 0.04, 0.2, 1,	. is		
	(a)	0.5	(b)	1/2	(c) 5	(d)	none of these
30.	The	last term of t	he se	ries 1, 2, 4, to 1	0 terms is		
	(a)	512	(b)	256	(c) 1024	(d)	none of these
31.	The	last term of th	he se	ries 1, -3, 9, -27 u	up to 7 terms is		
	(a)	297	(b)	729	(c) 927	(d)	none of these
32.	The	last term of th	he se	ries x ² , x, 1, to	31 terms is		
	(a) :	X ²⁸	(b)	1/x	(c) 1/x ²⁸	(d)	none of these
33.	The	sum of the se	ries -	-2, 6, -18, to 7	terms is		
	(a)	-1094	(b)	1094	(c) - 1049	(d)	none of these

al	dranda Enterprise			
 34.	The sum of the se	eries 243, 81, 27, to		
	(a) 364	(b) $364\frac{13}{30}$	(c) 364 ¹ / ₉	(d) None of these
		~ ~	-	
35.		eries $1 + \sqrt{3} + 1 + 3/\sqrt{3} + 1$		
	(a) $\frac{9841(1+\sqrt{3})}{\sqrt{3}}$	(b) 9841	(c) $\frac{9841}{\sqrt{3}}$	(d) None of these
	¥3		- -	
36.	The second term	of a G P is 24 and the f	ifth term is 81. The	e series is
 	(a) 16, 36, 24, 54	ł,	(b) 24, 36, 53,	
	(c) 16, 24, 36, 54	ŀ,	(d) none of these	
 37.	The sum of 3 num	nbers of a G P is 39 and	d their product is 7	29. The numbers are
 	(a) 3, 27, 9	(b) 9, 3, 27	(c) 3, 9, 27	(d) none of these
			ß	
38.	In a G. P, the proc	luct of the first three te	erms 27/8. The mid	ldle term is
	(a) 3/2	(b) 2/3	(c) 2/5	(d) none of these
			29	7
39.	If you save 1 paise	e today, 2 paise the nex	t day 4 paise the s	ucceeding day and so on,
 	then your total so	avings in two weeks wil	ll be	
 	(a) ₹ 163	(b) ₹ 183	(c) ₹ 163.83	(d) none of these
			3 -	
40.		f the series 4 + 44 + 44	4 + is	
	(a) 4/9 { 10/9 (10) ⁿ –1) –n }	(b) 10/9 (10 ⁿ -1)	-n
 	(c) 4/9 (10 ⁿ -1) ^{-r}	1	(d) none of these	
 41.	Sum of n terms of	f the series 0.1 + 0.11	+ 0.111 + is	
 	(a) (1/9) {n - (1-	(0.1) ⁿ)}	(b) (1/9) {n - (1-(0.1) ⁿ)/9}
 	(c) $n-1-(0.1)^n/9$	9	(d) none of these	
 42.	The sum of the fir	st 20 terms of a G. P is	244 times the sum	of its first 10 terms. The
 	common ratio is			
	(a) ±√3	(b) ± 3	(c) √3	(d) None of these
43.	Sum of the series	1 + 3 + 9 + 27 +is 36	64. The number of t	terms is
	(a) 5	(b) 6	(c) 11	(d) none of these

 al	dranda Enterprise											
44.	The product of 3 numbers in G P is 729 and the sum of squares is 819. The numbers											
	are											
	(a) 9, 3, 27	(b)	27, 3, 9	(c) 3, 9, 27	(d)	none of these						
45.	The sum of the s	eries	1 + 2 + 4 + 8 + te	o n term								
	(a) 2 ⁿ -1	(b)	2n – 1	(c) 1/2 ⁿ - 1	(d)	none of these						
46.	The sum of the in	nfinite	e GP 14, - 2, + 2/7	, - 2/49, + is								
	(a) $4\frac{1}{12}$	(b)	$12\frac{1}{4}$	(c) 12	(d) N	None of these						
47.	The sum of the in	nfinite	e GP 14, - 2, + 2/7	, – 2/49, + is								
	(a) $4\frac{1}{12}$	(b)	$12\frac{1}{4}$	(c) 12	(d)	none of these						
				B								
48.	The sum of the in	nfinite	e G. P. 1 - 1/3 + 1/	9 - 1/27 + is								
	(a) 0.33	(b)	0.57	(c) 0.75	(d)	none of these						
				/9	7							
 49.	The number of te	erms	to be taken so that	t 1 + 2 + 4 + 8 + w	ill be	8191 is						
	(a) 10	(b)	13	(c) 12	(d)	none of these						
			/9	Enterr								
50.	Four geometric n	neans	s between 4 and 9	72 are								
	(a) 12, 36, 108,	324	L'Id(d(is	(b) 12, 24, 108, 3	20							
	(c) 10, 36, 108,	320	aver	(d) none of these								
			-									
51.	Three numbers a	re in A	P and their sum is 2	21. lf 1, 5, 15 are ad	lded t	o them respectively,						
	they form a G. P.	The I	numbers are									
	(a) 5, 7, 9	(b)	9, 5, 7	(c) 7, 5, 9	(d)	none of these						
52.	The sum of 1 + 1	/3 +	1/3 ² + 1/3 ³ +	upto infinite								
	(a) 2/3	(b)	3/2	(c) 4/5	(d)	none of these						
53.	The sum of the in	nfinite	e series 1 + 2/3 + 4	/9 + is								
	(a) 1/3	(b)	3	(c) 2/3	(d)	none of these						
54.	The sum of the fi	rst tv	vo terms of a G.P. i	s 5/3 and the sum	to inf	finity of the series is						
	3. The common r	ratio i	S									
	(a) 1/3	(b)	2/3	(c) – 2/3	(d)	(b) & (c) both						

		ASSES				CA FOU	NDAT	ION - MATHEMATICS				
_		dranda Enterprise										
_	55.			and x, y, z are in (
_		(a) 0	(b)	-1	(c) 1		(d) n	one of these				
_												
	56.	The sum of three	num	bers in G.P. is 70. I	f the two e	extremes	by m	ultiplied each by 4				
		and the mean by 5, the products are in AP. The numbers are										
		(a) 12, 18, 40			(b) 10, 20), 40						
		(c) 40, 20, 10			(d) (b) &	(c) both						
	57.											
		results are is G. P	. The	numbers are								
		(a) 26, 5, -16	(b)	2, 5, 8	(c) 5, 8, 2		(d) (a) & (b) both				
	58.	Given x, y, z are i	n G.P.	and $x^p = y^q = z^\sigma$, the	nen 1/p , 1	./q, 1/σ αι	re in					
		(a) A.P.			(b) G.P.							
		(c) Both A.P. and	G.P.		(d) none d	of these						
						79						
	59.	If the terms 2x, (>	(+10)	and (3x+2) be in A	.P., the va	lue of x is	5					
		(a) 7	(b)	10	(c) 6	orise	(d)	none of these				
				/9	Enter							
	60.	If A be the A.M. o	f two	positive unequal of	quantities	x and y a	nd G	be their G. M, then				
		(a) A < G	(b)	A>G	(c) $A \ge G$		(c	A A G				
			\mathcal{O}	ave								
	61.	The A.M. of two p	ositiv	ve numbers is 40 a	nd their G	. M. is 24	. The	numbers are				
		(a) (72, 8)	(b)	(70, 10)	(c) (60, 20	C)	(d)	none of these				
	62.	Three numbers ar	e in A	P. and their sum is	15. lf 8, 6,	, 4 be add	led to	them respectively,				
		the numbers are	in G.F	?. The numbers are								
		(a) 2, 6, 7	(b)	4, 6, 5	(c) 3 <i>,</i> 5, 7		(d)	none of these				
	63.	The sum of four	numb	ers in G. P. is 60 o	nd the A.M	M. of the	first	and the last is 18.				
		The numbers are										
		(a) 4, 8, 16, 32	(b)	4, 16, 8, 32	(c) 16, 8,	4,20		(d) none of these				
	64.	A sum of ₹ 6240 i	s paio	d off in 30 instalme	ents such t	hat each	insto	llment is ₹ 10 more				
		than the proceed	ing in	stallment. The va	ue of the	1 st instalr	nent	is				
		(a) ₹36	(b)	₹ 30	(c) ₹ 60		(d)	none of these				


al	dranda Enterprise						
65.	The sum of 1.03 + (1.03) ²	² + (1.03) ³ +	to n terms	is			
	(a) 103 {(1.03) ⁿ - 1}		(b) 103/3 ·	{(1.03) ⁿ	- 1}		
	(c) (1.03) ⁿ -1		(d) none o	f these			
66.	If x, y, z are in A.P. and x,	y, (z + 1) are in (G.P. then				
	(a) $(x - z)^2 = 4x$		(b) z ² = (x	– у)			
	(c) z = x - y		(d) none o	f these			
67.	The numbers x, 8, y are in	n G.P. and the nur	mbers x, y,	-8 are ir	n A.P.	The value of x and	
	y are						
	(a) (-8, -8) (b) (1	16,4)	(c) (8, 8)		(d) (a) & (b) both	
68.	The nth term of the serie	s 16, 8, 4, in	1/2 ¹⁷ . The	value of	n is		
	(a) 20 (b) 2	1	(c) 22	5	(d) no	one of these	
69.	The sum of n terms of a		erms is 1 o	and the o	comm	non ratio is 1/2 , is	
	equal to $1\frac{127}{128}$. The value	e of n is	PE				
	(a) 7 (b) 8		(c) 6	prise	(d) no	one of these	
		5/9	(c) 6 Enter				
70.	$t_4 = x, t_{10} = y \text{ and } t_{16} = z.$	are in G.P., Then					
	(a) $x^2 = yz$ (b) z^2	² = xy	(c) $y^2 = zx$		(d)	none of these	
		ave					
 71.	If x, y, z are in G.P., then						
	(a) $y^2 = xz$		(b) y (z ² +	x^2) = x (Z² +	y²)	
	(c) 2y = x+z		(d) none o	f these			
72.	The sum of all odd numb) and 300	is			
	(a) 11,600 (b) 1	2,490	(c) 12,500		(d)	24,750	
73.	The sum of all natural nu		500 and 1				
	(a) 28,405 (b) 2	4,805	(c) 28,540		(d)	none of these	
74.	If unity is added to the s	sum of any num	ber of terr	ns of the	e A.P.	3, 5, 7, 9, the	
	resulting sum is						
	(a) 'a' perfect cube		(b) 'a' perf	ect squa	re		
	(c) 'a' number		(d) none o	f these			

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	75.	The sum of all n	atural num	bers from 10	0 to 300 which	n are exactly divisible by 4 or
		5 is				
		(a) 10,200 (b)	15,200		(c) 16,200	(d) none of these
	76.		atural num	bers from 10	0 to 300 which	are exactly divisible by 4 and
		5 is				
		(a) 2,200	(b) 2,0	00	(c) 2,220	(d) none of these
	77.	A person pays ₹	975 by mo	onthly instalr	nent each less	then the former by ₹ 5. The
		first instalment	is ₹ 100. Th	e time by wh	ich the entire o	imount will be paid is
		(a) 10 months (b) 15 mont	hs	(c) 14 months	s (d) none of these
	78.	A person saved	₹ 16,500 in t	ten years. In	each year after	the first year he saved ₹ 100
		more than he di	id in the pre	eceding year.	The amount o	f money he saved in the 1st
		year was				
		(a) ₹ 1000	(b) ₹15	00	(c) ₹ 1200	🥝 (d) none of these
				6		- 9
	79.	At 10% C.I. p.a.,	a sum of m	ioney accum	ulate to ₹ 9625	in 5 years. The sum invested
		initially is		/9	Enterr	
		(a) ₹ 5976.37	(b) ₹ 59	70	(c) ₹ 5975	(d) ₹5370.96
				12(0(10		
	80.	The population	of a country	was 55 cror	es in 2005 and	is growing at 2% p.a C.I. the
		population is th	e year 2015	is estimated	d as	
		(a) 57.05	(b) 60.0)5	(c) 67.00	(d) none of these
1						

HOMEWORK SOLUTIONS

av	veranda enterprise
9.	(d) A = 10, D = 29/3 - 10 = - 1/3, S(n) = 155
 	$155 = \frac{n}{2} [2A + (n-1)D] = \frac{n}{2} \left[20 - \frac{n-1}{3} \right] = \frac{n}{6} [61 - n]$
 	$Or,930 = n(61-n); \therefore n^2 - 61n + 930 = 0, (n-30)(n-31) = 0$
 	n = 30 or 31.
 10.	(c) $S(n) = 5n^2 + 2n$
	S(1) = T(1) = 5 + 2 = 7 = A
 	S(2) = 20 + 4 = 24 = T(1) + T(2). $T(2) = 24 - 7 = 17$
 	CD = D = T(2) - T(1) = 17 - 7 = 10
	T(n) = A + (n - 1)D = 7 + (n - 1)10 = 10n - 3
 11.	(a) $A = 1$, $CD = 4 - 1 = 3$, $T(20) = A + 19D = 1 + 19(3) = 58$.
 12.	(c) $A = 5, D = 7 - 5 = 2, T(21) = A + 20D = 5 + 40 = 45.$
	0.79
13.	(b) A = 0.6, D = 1.2 - 0.6 = 0.6, T(13) = A + 12D = 0.6 + 7.2 = 7.8.
	S S offis
14.	(a) A = 9, D = 5 - 9 = - 4, S(100) = 100/2[18 - 99(4)] = 50[- 378] = - 18900.
	10 m do m
15.	(b) A = - 6, T(4) = 14 = A + 3D. Thus D = 20/3
	The two AM are (-6 + 20/3) = 2/3 and (2/3 + 20/3) = 22/3 = 7 1/3
16.	(c) or (d)
	Option selection shall also help. Both (c) and (d) sum up to 15 and product is 80 and
	also are in AP. Both options are correct.
	Or, one can take numbers (A – D), A, (A + D), and solve the following to equations to
	find the value of A and D.
	(1) $[A + D + A + A - D] = 15$
	(2) $(A - D).A.(A + D) = 80$
	On solving one shall get numbers, 2-5-8 or 8-5-2.

0.200	SHAH [®] CA FOUNDATION - MATHEMATICS
	S S E S da Enterprise
17. (a)	$S(n) = 3n^2 + 5n$
	S(1) = T(1) = 3 + 5 = 8
	S(2) = 12 + 10 = 22 = T(1) + T(2), T(2) = 22 - 8 = 14
	CD = D = T(2) - T(1) = 14 - 8 = 6
	The AP series is: 8, 14, 20, 26,
18. (b)	A= 75, L = 25555, D = 5
	$N = \frac{L-A}{D} + 1 = \frac{25555 - 75}{5} + 1 = \frac{25480}{5} + 1 = 5097$
	D 5 5
 19. (b)	T(p) = 1/6 [3p - 1]
 	$S(n) = \sum_{p=1}^{n} T_p = \frac{1}{6} \left[3\sum_{p=1}^{n} n - n \right] = \frac{1}{6} \left[\frac{3n(n+1)}{2} - n \right] = \frac{1}{12} \left[3n^2 + n \right] = \frac{n}{12} (3n+1)$
 	$p=1$ 6^{2} 6^{2} 12^{2} 12^{2} 12^{2}
 (c)	AM between 33 and 77 = (33 + 77)/2 = 110/2 = 55.
 21. (c)	A = - 2, T(6) = 23 = A + 5D, D = 25/5 = 5
 	The 4 AM between -2 and 23 are:
	$(-2 + 5) - 2 \cdot (2 + 5) - 0 \cdot (0 + 5) - 12 \cdot (12 + 5) - 10 \cdot$
	A = 14 $S(5) = -S(10)$
 (a)	A = 14
	S(5) = -S(10)
 	$\frac{5}{2}[28+4D] = -\frac{10}{2}[28+9D]$
 	140 + 20D = -280 - 90D
 	110D = -420; D = -42/11
 	T(3) = A + 2D = 14 - 84/11 = 70/11 = 64/11.
 23. (b)	A = - 8, D = - 6 + 8 = 2, L = S(N) = 52
	$52 = \frac{N}{2} \left[-16 + (N-1)2 \right]$
	104 = N(2N - 18)
	52 = N(N - 9)
	Or, N ² - 9N - 52 = 0
	Or, (N - 13)(N + 4) = 0
 	N = 13;

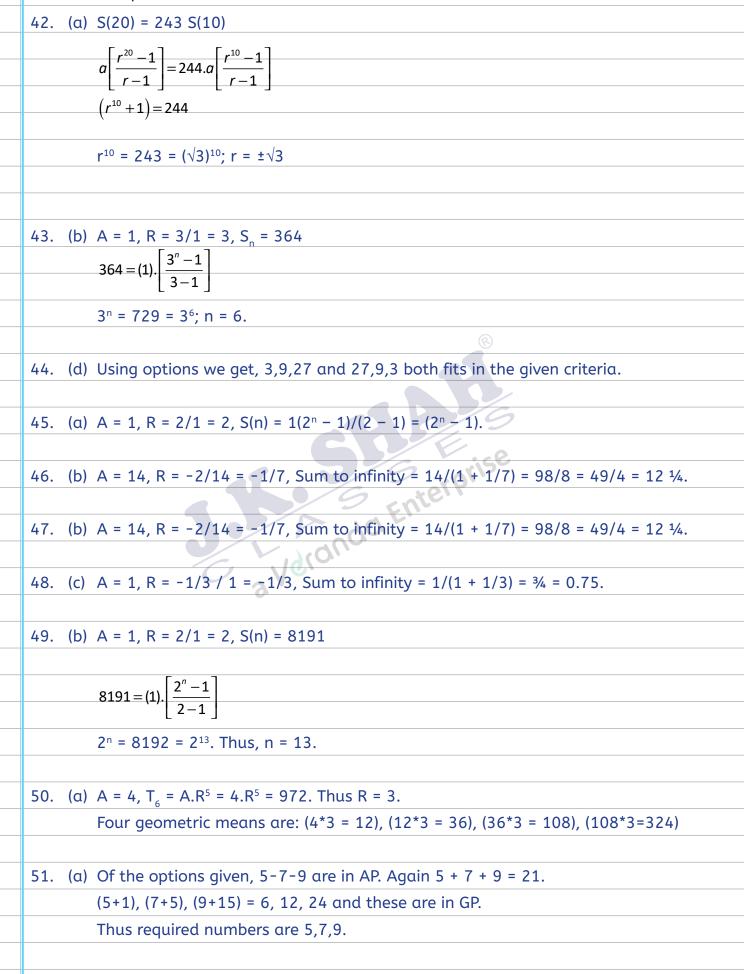
J.K. SHA CA FOUNDATION - MATHEMATICS a Vergoda Enterprise 24. (a) 7171 = N/2(-4 + 146) = 71NN = 7171 / 71 = 101.25. (c) A = 3.5, D = 7 - 3.5 = 3.5 S(17) = 17/2[7 + 16(3.5)] = 535.5.26. (a) A = 6, R = 12/6 = 2. $T_7 = A$. $R^6 = 6(2)^6 = 384$. 27. (b) A = 6, R = 12/6 = 2. T₈ = A.R⁷ = $6(2)^7 = 768$. 28. (c) A = -128, $R = 64/-128 = -\frac{1}{2}$ $T_{12} = A.R^{11} = (-128).(-\frac{1}{2})^{11} = \frac{2^7}{2^{11}} = \frac{1}{2^4} = \frac{1}{16}.$ 29. (c) A = 0.04, R = 0.2/0.04 = 5. $T_4 = A.R^3 = 0.04(5)^3 = 5.$ 30. (a) A = 1, R = 2/1 = 2, $T_{10} = A \cdot R^9 = 1 \cdot (2)^9 = 512$. 31. (b) A = 1, R = -3/1 = -3. T₇ = A.R⁶ = (1).(-3)⁶ = 729. > Ente

32. (c)
$$A = x^2$$
, $R = x/x^2 = 1/x$, $T_{31} = A \cdot R^{30} = x^2 (1/x)^{30} = 1/x^{28}$.

33. (a) A = - 2, R = 6/-2 = -3

$$S_7 = (-2) \left[\frac{1 - (-3)^7}{1 - (-3)} \right] = \frac{-2}{4} (1 + 3^7) = -1094$$

$$S_{8} = (243) \left| \frac{1 - \frac{1}{3^{8}}}{1 - \frac{1}{3}} \right| = 3^{5} \left[\frac{3^{8} - 1}{3^{8}} \cdot \frac{3}{2} \right] = \frac{3^{8} - 1}{18} = \frac{6560}{18} = \frac{3280}{9} = 364 \frac{4}{9}$$


35. (d) A = $1/\sqrt{3}$, R = $1/A = \sqrt{3}$

$$S_{18} = \left(\frac{1}{\sqrt{3}}\right) \left[\frac{\left(\sqrt{3}\right)^{18} - 1}{\sqrt{3} - 1}\right] = \left(\frac{1}{\sqrt{3}}\right) \left[\frac{19682}{\sqrt{3} - 1}\right] \frac{\left(\sqrt{3} + 1\right)}{\left(\sqrt{3} + 1\right)} = \frac{(9841)\left(\sqrt{3} + 1\right)}{\sqrt{3}}$$

HAH		
SES		
Enterprise		

J. CL aV		SSES da Enterprise
	(c)	$T_2 = A.R = 24; T_5 = A.R^4 = 81$
		$R^3 = T_5/T2 = 81/24 = (27/8) = (3/2)^3$
		R = 3/2
		A = 24/R = 24/1.5 = 16
		Series: 16, 24, 36, 54, 81,
37.	(d)	Options can be used.
		a) 3, 27, 9 are not in GP. Rejected
 		b) 9, 3, 27 are not in GP, rejected
		c) 3, 9, 27 are in GP. Sum = 39, Product = 729
		But again, for 27, 9, 3, which are also in GP, same Sum = 39 and Product =
		729 exists.
		We thus have 2 set of answer: (3 - 9 - 27) & (27 - 9 - 3).
38.	(a)	Product of three numbers in GP = 27/8. Let the middle term is A.
		$A^3 = 27/8 = (3/2)^3$
		A = 3/2.
 39.	(c)	A = 1, R = 2/1 = 2, N = 14
 		A = 1, R = 2/1 = 2, N = 14 $S_{14} = (1) \left[\frac{2^{14} - 1}{2 - 1} \right] = 16383 = Rs.163.83$
 <u>4</u> 0	(a)	S(3) = 4 + 44 + 444 = 492
 40.	(0)	Putting n= 3 in the options, the option which gives result 492 is the correct
		option.
		(a) $4/9 [10/9(1000 - 1) - 3] = 492$
 41.	(b)	S(3) = 0.1 + 0.111 + 0.111 = 0.321
		Putting n= 3 in the options, the option which gives result 0.321 is the correct
		option.
		(a) $1/9\{3 - (1 - (0.1)^3)\} = 0.222$
		(b) $1/9\{3 - (1 - (0.1)^3)/9\} = 0.321$

	J.K. SHAH CLASSES
	a Veranda Enterprise
	52. (b) A = 1, R = $1/3$, S(∞) = $1/(1 - 1/3) = 3/2$.
	53. (b) A = 1, R = 2/3, S(∞) = 1/(1 - 2/3) = 3.
	54. (d) $A + AR = A(1 + R) = 5/3$
	A/(1 - R) = 3
	$(1 + R)(1 - R) = (1 - R^2) = 5/9$
	$R^2 = 4/9 = (2/3)^2$
	R = ± 2/3
	55. (c) AP: p(2), q(3), r(4)
	GP: x(2), y(4), z(8)
	$x^{q-r}.y^{r-p}.z^{p-q} = 2^{-1}.4^2.8^{-1} = 16/16 = 1$
	8
	56. (d) 10, 20, 40 are in GP. 40, 100, 160 are in AP. Option B fits in
_	Again, 40, 20, 10 are also in GP. 160, 100, 40 are also in AP. Option C also
	fits in.
	57. (b) 2, 5, 8 are in AP and sum is 15. (2 + 1), (5 + 4), (8 + 19) = 3, 9, 27 are in GP
	Again, 8, 5, 2 are also in AP. (8 + 1), (5 + 4), (2 + 19) = 9, 9, 21 are not in GP
	58. (a) x, y, z are in GP. y ² = xz
	58. (a) x, y, z are in GP. $y^2 = xz$ $x^p = y^q = z^r = k$
	$k^{2/q} = k^{1/p} \cdot k^{1/r}$
	2/q = 1/p + 1/r
	Thus, 1/p, 1/q, 1/r are in AP
	59. (c) $2(x + 10) = 2x + 3x + 2$
	2x + 20 = 5x + 2
	x = 18/3 = 6;
	60. (b) For unequal quantities, AM > GM.
	61. (a) A = 40, G = 24, $A^2 - G^2 = 40^2 - 24^2 = 1024$
	$X = A + \sqrt{(A^2 - G^2)} = 40 + 32 = 72$
	$Y = A - \sqrt{(A^2 - G^2)} = 40 - 32 = 8$
	62. (d) 3, 5, 7 are in AP, and sum = 15.
	(3 + 8), (5 + 6), (7 + 4) = 11, 11, 11. But this is not in GP.

J.]	K.	CA FOUNDATION - MATHEMATICS
al		da Enterprise
63.	(d)	4, 8, 16, 32 are in GP. Sum = 4 + 8 + 16 + 32 = 60
		AM of 4 and 32 = 36/2 = 18
		But again, 32, 16, 8, 4 are also in GP and fits in the criteria.
64.	(d)	A = A, D = 10, N = 30, S(30) = 6240
		6240 = 30/2 [2A + 290]
		416 = 2A + 290
		A = 63;
65.	(b)	Series is: (1.03) ¹ , (1.03) ² , (1.03) ³ ,
		A = 1.03, R = 1.03
		$S_n = (1.03) [(1.03)^n - 1]/(1.03 - 1) = 103/3 [1.03^n - 1]$
		8
66.	(a)	$2y = (x + z)$ and $y^2 = x(z + 1)$
		$(x+z)^2/4 = x(z + 1)$
		$x^{2} + z^{2} + 2xz = 4xz + 4x$
		$x^2 + z^2 - 2xz = 4x$
		$(x - z)^2 = 4x$
		$x^{2} + z^{2} - 2xz = 4x$ $(x - z)^{2} = 4x$ Senterorise
67.	(b)	xy = 64; 2y = (x - 8)
		(2y + 8)y = 64
		$xy = 64; 2y = (x - 8)$ $(2y + 8)y = 64$ $2y^{2} + 8y - 64 = 0$
		$y^2 + 4y - 32 = 0$
		(y + 8) (y - 4) = 0
		y = 4, -8
		x = 64/4 = 16, 64/-8 = -8
		(x, y) = (16, 4), (-8, -8)
		But, -8, -8, -8 is not in AP.
68.	(c)	A = 16, R = 8/16 = $\frac{1}{2}$, T _n = $\frac{1}{2}$ 17 = 16(1/2) ⁿ⁻¹ = 2 ⁵⁻ⁿ
		5 – n = - 17
		22 = n

69. (b) A = 1, CR = $\frac{1}{2}$, S _n = 1 127/128
$\left[\left(1 \right)^{n} \right]$
$\frac{255}{255} = (1) \left \frac{1 - \left(\frac{1}{2}\right)}{2} \right = \frac{2^n - 1}{2} \cdot \frac{2}{2} = \frac{2^n - 1}{2}$
$\frac{\frac{255}{128}}{1} = (1) \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = \frac{2^n - 1}{2^n} \cdot \frac{2}{1} = \frac{2^n - 1}{2^{n-1}}$
$\frac{256-1}{128} = \frac{2^8-1}{2^7} = \frac{2^n-1}{2^{n-1}}$
n = 8
70. (c) T ₄ , T ₁₀ , T ₁₆ of a GP are also in GP
$Y^2 = X.Z$
71. (α) If X, Y, Z are in GP, Y ² = XZ.
72. (c) A = 201, L = 299, D = 2, N = (299-201)/2 + 1 = 50
Sum = 50/2(201 + 299) = 12500
73. (α) A = 507, D = 13, L = 988, N = (988 - 507)/13 + 1 = 38
Sum = 38/2 [507 + 988] = 28405
74. (b) We know, $1 + 3 + 5 + 7 + \dots$ nth term = n^2
Thus, when 1 is added to the sum of (3, 5, 7,), the resulting term is a perfect
square.
75. (c) Divisible by 4
A = 100, D = 4, L = 300, N = (300 - 100)/4 + 1 = 51
Sum = 51/2 (100 + 300) = 10200
Divisible by 5
A = 100, D = 5, L = 300, N = (300 - 100)/5 + 1 = 41
Sum = 41/2 [100 + 300] = 8200
Divisible by both 4 and 5, i.e. 20
A = 100, D = 20, L = 300, N = (300 - 100)/20 + 1 = 11
Sum = 11/2(100 + 300) = 2200
Required sum = 10200 + 8200 - 2200 = 16200.

U 01 20 1	SHAH [®] CA FOUNDATION - MATHEMATICS
	SSES da Enterprise
76. (a)	Divisible by both 4 and 5, i.e. 20
	A = 100, D = 20, L = 300, N = (300 - 100)/20 + 1 = 11
	Sum = 11/2(100 + 300) = 2200
77. (b)	A = 100, D = - 5. Sn = 975
	975 = n/2 [200 - (n - 1)5]
	1950 = n(205 – 5n)
	390 = n(41 - n)
	N2 - 41N + 390 = 0
	(N - 26)(N - 15) = 0
	N = 15
78. (c)	A = A, D = 100, N = 10, Sum = 16500
	16500 = 10/2 [2A + 900]
	A = 1200.
79. (a)	Sum invested = 9625 (10/11) ⁵ = 5976.37.
	Sarphis
80. (d)	P(2015) = 55 (1.02) ¹⁰ = 67.05 Crores
	- Wilding
	31

MIXED BAG (HOMEWORK)

1.	If the p th term	n of an A.P.	is q and th	e q th term is p th	e value of the (p + q) th	term
	is					
	(a) 0	(b) 1		(c) -1	(d) None	
2.	If S_1 , S_2 , S_3 be	e the respec	tively the s	um of terms of n,	2n, 3n an A.P. the value	of S ₃
	$\div(S_2 - S_1)$ is given	ven by	·			
	(a) 1	(b) 2		(c) 3	(d) None	
3.	The sum of n t	erms of two	A.P.s are in	the ratio of (7n-5)/(5n+17) . Then the	
	term of the tw	vo series ar	e equal.			
	(a) 12	(b) 6		(c) 3	📀 (d) None	
4.	lf a, b, c are ir	A.P. then t	he value of	$(a^3 + 4b^3 + c^3)/[b(a^3 + c^3)]$	² + c ²)] is	
	(a) 1	(b) 2		(c) 3	🥑 (d) None	
			C		~ P.	
5.	lf a, b, c are ir	A.P. then t	he value of	$(a^2 + 4ac + c^2)/(a$	b + bc + ca) is	
	(a) 1	(b) 2		(c) 3	(d) None	
				90 r.		
6.	The Pth term	of an A.P. i	s 1/q and th	ne qth term is 1/p	. The sum of the pq ter	ms is
			Ve.			
	(a) $\frac{1}{2}(pq+1)$	(b) $\frac{1}{2}$	(pq - 1)	(c) pq+1	(d) pq-1	
7.	The sum of p t	erms of an	A.P. is q and	the sum of q term	ns is p. The sum of p + q	terms
	is					
	(a) – (p + q)	(b) p	+ q	(c) (p – q) ²	(d) $p^2 - q^2$	
8.	If S_1 , S_2 , S_3 be	the sums o	of n terms o	f three A.P.s the f	ïrst term of each being	unity
	and the respe	ctive comm	on differenc	es 1, 2, 3 then (S ₁	+ S ₃) / S ₂ is	
	(a) 1	(b) 2		(c) -1	(d) None	
9.	2 ⁴ⁿ -1 is divisi	ble by				
	(a) 15	(b) 4		(c) 6	(d) 64	

_	/dranda Enterprise			
).	3 ⁿ -2n-1 is o			
	(a) 15	(b) 4	(c) 6	(d) 64
1.	The least va	Ilue of n for which t	he sum of n terms of	the series 1 + 3 + 3 ² + i
	greater than	n 7000 is		
	(a) 9	(b) 10	(c) 8	(d) 7
12.	If 'S' be the	sum, 'P' the product	and 'R' the sum of t	he reciprocals of n terms in (
	G.P. then 'P'	is the of S ^r	and R ⁻ⁿ .	
	(a) Arithmet	tic Mean	(b) Geometr	ic Mean
	(c) Harmoni	ic Mean	(d) None	
13.	lf 1+a+a ² +	∞ = x and 1+b+b	p^2 +∞= y then 1 +	$ab + a^2b^2 + \dots \infty$ is given b
	(a) (xy)/(x+y	·-1)	(b) (xy)/(x-y	- 1)
	(c) (xy)/(x+y	·+1)	(d) None	9
			GDE	0
14.	If a, b, c are	in G.P. then the valu	$a = of a(b^2 + c^2) - c(a^2 + b)$	2 ²) is
	(a) 0	(b) 1	9 (c) -1	(d) None
		P	~ 90 F.	
	lf a, b, x, y, z	z are positive numbe	rs such that a, x, b ar	re in A.P. and a, y, b are in G.I
15.	-		•	
15.	and z=(2ab)	/(a+b) then		
5.			(b) $x \ge y \ge z$	
15.	and z=(2ab)/		(b) x ≥ y ≥ z (d) None	
	and z=(2ab), (a) x, y, z ard (c) both	e in G.P.	(d) None	re in
	and z=(2ab), (a) x, y, z ard (c) both If a, b-a, c-a	e in G.P. a are in G.P. and a=t	(d) None p/3=c/5 then a, b, c a	
	and z=(2ab), (a) x, y, z ard (c) both	e in G.P.	(d) None	re in (d) None
16.	and z=(2ab), (a) x, y, z ard (c) both If a, b-a, c-a (a) A.P.	e in G.P. a are in G.P. and a=t (b) G.P.	(d) None 0/3=c/5 then a, b, c a (c) H.P.	
16.	and z=(2ab), (a) x, y, z ard (c) both If a, b-a, c-a (a) A.P. If S ₁ ,S ₂ ,S ₃ ,	e in G.P. a are in G.P. and a=t (b) G.P. S _n are the sume	(d) None 0/3=c/5 then a, b, c a (c) H.P. s of infinite G.P.s who:	(d) None se first terms are 1, 2, 3
16.	and z=(2ab), (a) x, y, z ard (c) both If a, b-a, c-a (a) A.P. If S ₁ ,S ₂ ,S ₃ ,	e in G.P. a are in G.P. and a=t (b) G.P. S _n are the sume	(d) None 0/3=c/5 then a, b, c a (c) H.P. s of infinite G.P.s who:	(d) None
16.	and $z=(2ab)$, (a) x, y, z are (c) both If a, b-a, c-a (a) A.P. If S_1, S_2, S_3 , and whose a	e in G.P. a are in G.P. and a=t (b) G.P. S _n are the sums common ratios are	(d) None 0/3=c/5 then a, b, c a (c) H.P. s of infinite G.P.s who:	(d) None se first terms are 1, 2, 3 +1) then the value of S ₁ ,S ₂ ,S ₃

MIXED BAG (HOMEWORK SOLUTION)

1.	(a)	T(1) = 2, T(2) = 1; A = 2, D = -1. T(3) = A + 2D = 2 - 2 = 0
		Similarly, (p + q) th term in this case = 0.
2.	(c)	Let n = 1. The three terms of AP = 100, 200, 300
		S1 = 100, S2 = 100 + 200 = 300; S3 = 100+200+300 = 600
		S3 / (S2 - S1) = 600/200 = 3;
3.	(b)	Sum of n terms of two AP are in the ratio (7n - 5)/(5n + 17)
		Equate ratio to 1, we get 7n – 5 = 5n + 17; n = 11
		Required term is (11 - 1)/2 + 1 = 6 th term
		n_{r} $(n-1)_{r}$
		$\frac{S_{n1}}{2} - \frac{\frac{n}{2}[2A_1 + (n-1)D_1]}{2} - \frac{A_1 + (n-1)D_1}{2} - \frac{A_1 + (n-1)D_1}{$
		$\frac{S_{n1}}{S_{n2}} = \frac{\frac{n}{2} [2A_1 + (n-1)D_1]}{\frac{n}{2} [2A_2 + (n-1)D_2]} = \frac{A_1 + \left(\frac{n-1}{2}\right)D_1}{A_2 + \left(\frac{n-1}{2}\right)D_2}$
4.	(b)	A, B, C are in AP. Let the numbers be 1, 2, 3
		$(A^3 + 4B^3 + C^3) = (1 + 12 + 27) = 40$
		$(A^3 + 4B^3 + C^3) = (1 + 12 + 27) = 40$ B(A ² + C ²) = 2(1 + 9) = 20 Required values = 40/20 = 2;
		Required values = 40/20 = 2;
		id come
5.	(b)	A, B, C are in AP. Let the numbers be 1, 2, 3
		$(A^2 + 4AC + C^2) = (1 + 12 + 9) = 22$
		(AB + BC + CA) = (2 + 6 + 3) = 11
		Required value = 22/11 = 2;
6.	(a)	T2 = 1/3, T3 = 1/2.
		D = ½ - 1/3 = 1/6, A = 1/3 - 1/6 = 1/6
		(P.Q) = 6
		$S_6 = 6/2 (2/6 + 5/6) = 7/2$
		Option (a): (PQ + 1)/2 = 7/2

		SSES da Enterprise
a 7.		S1 = 3, S3 = 1 (P = 1, Q = 3)
		A = 3
		A + A + D + A + 2D = 1; 3A + 3D = 1; D = -8/3
		S4 = 4/2 [6 - 8] = -4
		Option (a) = $-(P + Q) = -4;$
8.	(b)	S1 = 1 + 2 + 3 + + n = 6 [Assuming n = 3)
	· · · · · · · · · · · · · · · · · · ·	S2 = 1 + 3 + 5 + = 9 (Assuming n = 3)
		S3 = 1 + 4 + 7 + = 12 (Assuming n = 3)
		(S1 + S3)/S2 = 18/9 = 2
9.	(a)	2 ⁴ⁿ – 1 is divisible by:
		Let n = 1, Number = 16 - 1 = 15 (15 = 3 * 5)
		Let n = 2, Number = 256 – 1 = 255 (127 = 3 * 5 * 17)
		Common factors are 3*5 = 15;
		A B / 9
10.	(b)	3 ⁿ – 2n – 1 is divisible by:
		When n = 1, Expression = $(3 - 2 - 1) = 0$
		When n = 2, Expression = $(9 - 4 - 1) = 4$
		When n = 3, Expression = (27 - 6 - 1) = 20 HCF of 4 and 20 is 4;
		C Ver
11.	(a)	Series is: 1, 3 ¹ , 3 ² , 3 ³ ,
		A = 1, R = 3; Sn = 1 [3 ⁿ - 1]/(3 - 1) > 7000
		3 ⁿ > 14001
		3º = 19683, which is just greater than 14001
		The least value of n is 9.
12.	(b)	Let n = 3. GP terms are 1, 2, 4
		S = Sum = 1+2+4 = 7
		P = Product = 1.2.4 = 8
		R = Sum of reciprocals = 1 + 1/2 + 1/4 = 7/4
		Now, $S^3 \cdot R^{-3} = 7^3 \cdot 4^3 / 7^3 = 4^3 = 64 = 8^2 = P^2$
		P is GM between S ⁿ and R ⁻ⁿ

СЦ	- A	SSES da Enterprise
 		$X = 1/(1 - \alpha); X - \alpha X = 1; \alpha = (X - 1)/X$
		Y = 1/(1 - b); Y - bY = 1; b = (Y - 1)/Y
		Required Sum = 1/(1 - ab) = XY/(XY - XY + X + Y - 1) = XY/(X + Y - 1);
14.	(a)	A, B, C are in GP. Let A = 1, B = 2, C = 4
		$A(B^2 + C^2) - C(A^2 + B^2) = 1(4 + 16) - 4(1 + 4) = 20 - 20 = 0;$
15.	(a)	Let A = 2, B = 18, X = 10, Y = 6, Z = (2*2*18)/(2+18) = 3.6
		X, Y, Z = 10, 6, 3.6 are in GP
		And X > Y > Z. (Equality shall not hold true)
16.	(a)	A = B/3 = C/5 = K
		A = K, B = 3K, C = 5K
		A, (B – A), (C – A) are in GP; K, 2K, 4K are in GP and that's true
		A, B, C = K, 3K, 5K are in AP.
17.	(c)	$S1 = 1/(1 - \frac{1}{2}) = 2$
		S2 = 2/(1 - 1/3) = 3
		Sn = (n + 1)
		S1 + S2 + Sn = 2 + 3 ++ (n + 1) = n(n+1)/2;
		- Veron.
		3

SELF ASSESSMENT TEST 10 ARITHMETIC PROGRESSION

18 Question, 18 Marks

1.	The sum of three numbers in A.P. is 33 and their product is 1155. Find the second								
	term of the se	eries.							
	a) 5	b)	7	c)	9	d)	11		
2.	The sum of 8 th	ⁿ and 18t	h terms	of an A.P. is 2	144. Fi	nd the sum o	of the first 25 te	rms.	
	a) 1000	b)	1500	c)	1800	d)	2500		
3.	The sum of 16	5 th and 2	6 th term	s of an A.P. is	5 200 c	and that of 1	18 th and 28 th ter	ms is	
	600. Find the	22nd ter	m.						
	a) 50	b)	200	c)	125	d)	175		
					1.	79			
4.	If three prime	numbers	in AP a	re such that tl	hat the	eir sum is 39,	then the smalle	est of	
	the prime nur	nber is:			2	oris			
	a) 3	b)	7	9 c)	13	d)	Data Insufficier	nt	
				<u> </u>					
5.	The sum of th	ree numt	pers in A	P is 24 and th	eir pro	duct is 440.	Find the second	term	
	of the series.		-3 V						
	α) 5	b)	8	c)	11	d)	16		
6.	The sum of 4 th	[•] and 10 ^t	^h term o	f an AP is 42.	Find t	he sum of th	e first 13 terms.	,	
	a) 253	b)	263	c)	273	d)	293		
7.	The sum of 3 rd	and 5 th	term of o	an AP is 2 and	that c	of 4th and 8t	h term is 10. Fin	d the	
	2nd term.								
	a) 2	b)	- 3	c)	- 5	d)	None of the ab	ove	
8.		of all the					are divisible by 7		
	a) 2114	b)	2107	c)	2100	d)	None of the ab	ove	
9.	What is the m								
	a) 217.5	b)	218	c)	232.5	d)	233		

		 ®					
<u>J.</u>	K .	SHAH [®]				CAF	FOUNDATION - MATHEMATICS
a	/dranc	a Enterprise					
10.	The	interior angle	es of	a polygoi	n are in A	P. The smalle	est angle is 120° and the
	con	nmon differ-er	nce is	5°. Find th	ne number	of sides of the	e polygon.
	a)	9	b)	16	c) Can't b	e determined	d) None of the above
11.	The	sum of 4th ar	nd 7t	h term of o	an AP is 50	5 and that of	5 th and 8 th term is 68. Find
	the	6th term.					
	α)	25	b)	28	c)	31	d) 37
12.	Bal	ls are arrange	d in r	ows to for	m an equi	lateral triangl	le. The first row consists of
	one	e ball, the seco	nd ro	w of two l	balls and s	so on. If 669 n	more balls are added, then
	all	the balls can l	be ar	ranged in	the shape	of a square a	and each of the sides than
	con	itain 8 balls les	ss tho	ın each sid	le of the tr	iangle did. De	etermine the initial number
	of t	balls.				B	
	a)	1540	b)	1210	c)	2878	d) 2209
13.	The	e ratio between	the s	sum of n te	erms of tw	o arithmetic p	progressions is (7n + 1) : (4n
	+ 2	7). The ratio of	⁻ theii	r 11 th term			<u>e</u>
	a)	124:105	b)	136 : 117	c)	148 : 111	d) None of the above
					19	enteri	
14.	Fin	d the sum of t	he fo	llowing se	ries till n t	erms: $1 + 5 + 1$	$12 + 22 + 35 + \dots + t_n$.
		1	2	n	01,	$-n^2$	<i>n</i> ³
	α)	$\frac{1}{2}(n+1)$	b)	$\frac{n}{2}(n+1)$	c)	$\frac{n}{2}(n+1)$	d) $\frac{n^3}{2}(n+1)$
15.	The	sum of 4 th and	d 8 th 1	terms of a	n A.P. is 24	and the sum	of the 6th and 10th terms
	is 3	4. What is the	com	mon differe	ence of the	e A.P.?	
	a)	1.5	b)	2.5	c)	3.5	d) 5.5
16.	The	e first and the l	ast te	erms of an	A.P. are A	and L respect	tively. The sum of nth term
	fror	m the beginnin	g and	d nth term	from the	end is:	
	a)	A + 2L	b)	A + 3L	c)	A + L	d) 2A + L
17.	The	sum of three	term	s of an A.	P. is 21 ar	nd the produc	t of the first and the third
	terr	ms exceeds the	e seco	ond term b	y 6, find tł	nree terms.	
	a)	1, 7, 13	b)	7, 13, 19	c)	1, 5, 9	d) None of the above

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

18.	Th	ne third	term of	f an /	Α.Ρ. is 7 a	nd the se	ven	th terr	m exceeds t	hree tir	nes the	third	
	ter	m by 2.	What is	s the	sum of th	e first ter	m, t	he con	nmon differ	ence an	d the s	um of	
		st 20 tei											
	α)	740		b)	742		c) 7	41	d)	743			
									8				
									5				
									19				
						CÌ		~					
						7/	9	7	ntise				
						16	<	iterr					
					P		E						
					V de	duore							
				\mathcal{O}	Ve	,							
						277							

	EXPLANATORY
	ANSWERS
1.	Sum = 33 = 3A; A = 11
	Numbers are: (11 – D), 11, (11 + D)
	Option D
2.	A + 7D + A + 17A = 144
	2A + 24D = 144
	S(25) = 25/2[2A + 24D] = 25/2(144) = 1800
	Option C
3.	A + 15D + A + 25D = 200; 2A + 40D = 200; A + 20D = 100
	A + 17D + A + 27D = 600; 2A + 44D = 600; A + 22D = 300
	D = 100, A = - 1900
	T22 = A + 21D = - 1900 + 2100 = 200
	Option B
	3A = 39, A = 13 Numbers are (13 – D), 13, (13 + D)
4.	3A = 39, A = 13
	Numbers are (13 – D), 13, (13 + D)
	Two seta are possible: (3, 13, 23) and (7, 13, 19)
	Option D
5.	3A = 24, A = 8
	Numbers are (8 – D), 8, (8 + D)
	Second term of the series is 8. Option B
6.	A + 3D + A + 9D = 42; 2A + 12D = 42
	S(13) = 13/2[2A + 12D] = 13/2(42) = 273
	Option C
7.	A + 2D + A + 4D = 2; 2A + 6D = 2; A + 3D = 1
	A + 3D + A + 7D = 10; 2A + 10D = 10; A + 5D = 5
	D = 2, A = - 5
	T(2) = A + D = -5 + 2 = -3
	Option B

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

al	dranda Enterprise
8.	A = 105, L = 196, D = 7
	N = (196 - 105)/7 + 1 = 14
	S(14) = 14/2[105 + 196] = 2107
	Option B
9.	A = 15, D = - 0.5, L = 0.5
	N = (0.5 - 15)/-0.5 + 1 = 30
	S(30) = 30/2 [15 + 0.5] = 232.5
	S(31) = 31/2 [15 + 0] = 232.5
	Option C
10.	Sum = (2N - 4)*90 = N/2[240 + (N - 1)5]; N = 9
	Sum of interior angles of N sided polygon is (2N – 4)*90°
	Option A
11.	A + 3D + A + 6D = 56; 2A + 9D = 56
	A + 4D + A + 7D = 68; 2A + 11D = 68
	D = 6, A = 1
	D = 6, A = 1 T(6) = A + 5D = 1 + 30 = 31 Option C
	Option C
12.	Total number of balls inside the triangle = 1 + 2 + 3 + + N = N(N + 1)/2
	Number of balls in each side of the square = $(N - 8)$
	Thus, $(N - 8)^2 = N(N + 1)/2 + 669$; N = 55
	Initial number of balls = 55*56/2 = 1540
	Option A
13.	$N/2[2A_1 + (N - 1)D_1] / N/2[2A_2 + (N - 1)D_2] = [A_1 + (N - 1)D_1/2] / [A_2 + (N - 1)D_2/2]$
	Putting $(N - 1)/2 = 10$; we get N = 21
	If we put N = 21, we get, [A1 + 10D1] / [A2 + 10D2] which becomes the ratio of their
	11th term.
	Ratio = (7*21 + 1) : (4*21 + 27) = 148 : 111
	Option C

J.K.	SHAH [®]
CLA	SSES

a Veranda Enterprise

a V	dranda Enterprise
14.	T1 + T2 + T3 = 1 + 5 + 12 = 18
	Put n = 3, in the options.
	a) $\frac{1}{2}(n + 1) = 2$
	b) $n/2(n + 1) = 6$
	c) $n^2/2(n+1) = 18 - Option C$
15.	A + 3D + A + 7D = 24; 2A + 10D = 24
	A + 5D + A + 9D = 34; 2A + 14D = 34
	4D = 10; D = 2.5
	Option B
16.	Nth term from the beginning is the last term = L
	Nth term from the end is the first term = A
	Thus, Sum = A + L
	Option C
17.	3A = 21; A = 7
	Now if numbers are 1, 7, 13 (as given in option A), we get:
	Product of first and third term = 1 * 13 = 13, which is 6 more than the second term,
	i.e. 6
	The three terms are either 1, 7, 13 or 13, 7, 1
	Option A
18.	A + 2D = 7
	A + 6D = 3*7 + 2 = 23
	4D = 16; D = 4; A = -1; S(20) = 20/2[-2 + 19*4] = 740
	A + D + S(20) = -1 + 4 + 740 = 743
	Option D

SELF ASSESSMENT TEST 11 GEOMETRIC PROGRESSION

17 Question, 17 Marks

1.	The 9th term of	f a G.P.	is 27 times the 6t	th term. What is th	ne first term of the G.P. if
	the 4 th term is 2	27?			
	a) 1	b)	2	c) 3	d) 4
2.	The third term	of a C	G.P. is the square	of its first term.	If the second term is 8,
	determine the 6	5 th term	l.		
	a) 32	b)	128	c) 64	d) 1024
3.	In a G.P., the rat	tio of th	ne second and the	fourth terms is 1 :	4 and the sum of the first
	and the fourth	terms i	s 108. What is the	value of the third	term?
	a) 42	b)	44	c) 48	d) 52
				/9)
4.	lf (x + 9), (x - 6)) and 4	are in G.P., then fi	ind the value of x.	
	a) - 16	b)	- 4	c) 4 0115	d) 16
			/9	Enteri	
5.	How many tern	ns of th	e GP 3, 3/2, 3/4	are needed to giv	/e the sum 3069/512?
	a) 9	b)	10	c) 11	d) 12
			3		
6.	How many tern	ns of th	ie GP √3, 3, 3√3,	. add up to 39 + 1	3√3?
	a) 3	b)	4	c) 6	d) 5
7.	The third term of	of a GP	is the square of it	s 1st term. If the 2	nd term is 27, determine
	the 16 th term.				
	a) 315	b)	317	c) 322	d) None of the above
8.	If A, B, C are re	al and	5, A, B, C, 405 are	in GP, find A.	
	a) 45	b)	135	c) ± 15	d) None of the above
9.	Four numbers f	orm a	GP in which the pr	roduct of the extre	me terms is 256 and the
	sum of the mid	dle teri	ms is 40. Find the	sum of the four te	rms of the series.
	a) 32	b)	170	c) 160	d) 180

<u>J.</u>	K. SHAH Asses	CA FOUNDATION - N	ATHEMATICS
al	/dranda Enterprise		
10.	The second, the first and the third term	of an AP whose common diffe	rence is non
	zero, form a GP in that order. Find its cor	nmon ratio.	
	a) 2 b) - 2	c) 1 d) - 1	
11.	The number of bacteria in certain cult	ure doubles every hour. If the	ere were 25
	bacteria present originally, how many bacteria will be present at the end of 6^{th}		
	hour?		
	a) 800 b) 1600	c) 25(2) ⁶ d) 2 (25) ⁶	
12.	Mr. Shyam Das is entitled to receive an	annual payment from his emp	loyer, which
	for each year is less by 1/10th of wha	t it was for the previous year	r. If the first
	payment is Rs. 10,000; what is the maxin	num amount he can receive, h	owever long
	he may live?	®	
	a) Rs. 80,000 b) Rs. 100,000	c) Rs. 90,000 d) Rs. 110,	500
13.	If $x = 1 + a + a^2 + a^3 + a^4 + \dots \infty$ and y	$b^{2} = 1 + b + b^{2} + b^{3} + b^{4} + \dots \infty$,	hen what is
	the value of ?	E.e.	
	$1 + ab + a^2b^2 + a^3b^3 + \dots \infty$?	Suprise	
	a) $\frac{xy}{x+y-1}$ b) $\frac{x}{y(x+y)}$	c) $\frac{xy}{(x+y+1)}$ d) None of	the above
14.	After striking a floor a certain ball rebo	ounds 4/5 th of the height from	which it has
	fallen. Find the total distance that it tr	avels before coming to rest, i	f it is gently
	dropped from a height of 600 metres.		
	a) 3600 m b) 5400 m	c) 7200 m d) None of	the above
15.	If a, b, c, d are in Geometric Progression	then $(a^2 + b^2)$, $(b^2 + c^2)$, $(c^2 + d^2)$	²) are in:
	a) Geometric Progression	b) Arithmetic Progression	
	c) Both a) and b) above	d) None of the above	
16.	If a, b, c, d are in Geometric Progression	, then $\frac{1}{a+b}$, $\frac{1}{b+c}$, $\frac{1}{c+d}$ are in:	
	a) Harmonic Progression	b) Arithmetic Progression	
	c) Geometric Progression	d) All of the above	
17.	If p, q, r are in AP, q, r, s are in GP and r,	s, t are in HP, then p, r, t are in	n:
	a) Arithmetic Progression	b) Geometric Progression	
	c) Harmonic Progression	d) None of the above	

 a	Canda Enterprise
	EXPLANATORY
	ANSWERS
1.	AR ⁸ = 27.AR ⁵ ; AR ³ = 27
	R ³ = 27; Thus A = 1
	Option A
2.	$AR^2 = A^2; R^2 = A$
	AR = 8; R ³ = 8; R = 2; A = 4
	$T6 = AR^5 = 4^2 + 2^5 = 128$
	Option B
	®
3.	AR/AR ³ = ¹ / ₄ ; R ² = 4; R = 2
	A + AR ³ = 108
	A (1 + 8) = 108; A = 12
	$T3 = AR^2 = 12^2 = 48$
	Option C
	Senteri
4.	$(x - 6)^2 = 4(x + 9); x^2 - 16x = 0; x = 16; Option D$
	, diana
5.	A = 3, R = 1/2
	$3069/512 = 3 [1 - (1/2)^n]/(1 - \frac{1}{2})$
	$1023/512 = (2^{n} - 1)/2^{n-1}$
	Putting n = 10, we get the required answer. Option B
6.	$A = \sqrt{3}, R = \sqrt{3}$
	$39 + 13\sqrt{3} = \sqrt{3} \left[(\sqrt{3})^n - 1 \right] / (\sqrt{3} - 1)$
	$78 + 26\sqrt{3} = \sqrt{3} \left[(\sqrt{3})^n - 1 \right] (\sqrt{3} + 1)$
	Putting n = 6, in RHS, we get = $26\sqrt{3}(\sqrt{3} + 1) = 78 + 26\sqrt{3}$
	Option C
7.	$AR^2 = A^2, R^2 = A$
	AR = 27; R ³ = 27; R = 3; A = 9
	$T(16) = AR^{15} = 9.3^{15} = 3^{17}$
	Option B

J.K. SHAH [®]
CLASSES
a Vergoda Enterprise

a۷	dranda Enterprise
8.	B ² = 405*5 = 2025; B = ± 45
	A ² = 45 * 5 = 225, A = ± 15
	Option C
9.	$A.AR^3 = A^2R^3 = 256 = 2^2.4^3$
	AR + AR ² = 40; AR(1 + R) = 40, assumption fits in
	$S(4) = A(1 + R + R^2 + R^3) = 2(1 + 4 + 16 + 64) = 2*85 = 170$
	Option B
10.	A, (A - D), (A + D) are in GP
	$(A - D)^2 = A(A + D)$
	$A^2 + D^2 - 2AD = A^2 + AD$
	3AD = D ²
	D = 3A
	Terms are, A , -2A, 4A are in GP
	Common ratio = -2A/A = - 2
	Option B
	T(6) = 25(2) ⁵ = 800. Option A
11.	T(6) = 25(2) ⁵ = 800. Option A
	da tr
12.	Series is: 10000, 9000, 8100, O
	A = 10000, R = 9/10, S = 10000/(1 - 9/10) = 100,000
	Option B
13.	$X = 1/(1 - \alpha); X - \alpha X = 1; \alpha = (X - 1)/X$
	Y = 1/(1 - b); Y - bY = 1; b = (Y - 1)/Y
	Required Sum = 1/(1 - ab) = XY/(XY - XY + X + Y - 1) = XY/(X + Y - 1)
	Option A
14.	Distance covered = $H(1 + R)/(1 - R) = 600 (1+4/5)/(1-4/5) = 600*9 = 5400.$
	Option B

al⁄	dranda Enterprise
15.	A = 1, B = 2, C = 4, D = 8
	$(A^2 + B^2) = 5$
	$(B^2 + C^2) = 20$
	$(C^2 + D^2) = 80$
	5, 20, 80 are in GP
	Option A
16.	A = 1, B = 2, C = 4, D = 8
	1/(A+B) = 1/3
	1(B+C) = 1/6
	1/(C+D) = 1/12
	1/3, (1/2*1/3), (1/4*1/3) are in GP
	Option C
17.	AP: 1, 2, 3
	GP: 2, 3, 4.5
	GP: 2, 3, 4.5 HP: 3, 4.5, 9 1, 3, 9 are in GP Option B
	1, 3, 9 are in GP
	Option B
	L'ud come
	285

SET THEORY RELATION AND FUNCTIONS

SET THEORY RELATIONS

STANDARD	NOT	ATIONS
1) U	\Rightarrow	OR (Union)
2) በ	⇒ 8	and (Intersection)
3) ⇒	\Rightarrow	Implies
4) ∈	⇒ ⊧	belongs to
5) ∉	\Rightarrow	does not belong to
6) ∀x	⇒ f	for all x
7) :	\Rightarrow	such that
8) /	\Rightarrow	such that
9) ⊂	\Rightarrow	Subset OR Proper Subset.
11) ⊄	\Rightarrow	(not a proper subset)
12) 🗅	\Rightarrow ((Superset) (Difference)
13) ~	\Rightarrow ((Difference)
14) Ø or { }	\rightarrow	(nullset)
15) U or S	\Rightarrow ((Universal set)

2. SET THEORY (Concepts)

- 1. A set is a collection of well-defined and distinct object. The objects are called the elements of the set.
- 2. Sets are denoted by A, B, C, D etc and the elements are kept within brackets.

e.g $A = \{a, b, c, d\}$

A = {1, 2, 3, 4}

3. METHOD OF DESIGNATING A SET

- i. ROSTER METHOD / TABULAR METHOD / ENUMERATION METHOD
- ii. PROPERTY METHOD / SELECTOR METHOD / RULE METHOD/SET BUILDER NOTATION.

CLASS	E S
a Veranda Enterr	
1)	Under Roster or Enumeration method the set is defined by listing all the
	elements.
	e.g A = {a, e, i, o, u}
2)	Under Property Method the sets are indicated by their common characteristics
	which an object must possess in order to its elements.
	e.g. A = { x : x is a vowel}
TYPES OF SETS	
1) A se	t is said to be finite when the elements can be exhausted by counting.
A =	{4,5,6}
2) A se	t is said to be infinite when its elements can not be exhausted by counting.
Eg. /	A = {1, 2, 3}
3) SIN	GLETON SET : A set which has only 1 element is called Singleton set
e.g /	A = {2}
3. A FEW STAN	IDARD INFINITE SETS
1. I ⁺ =	Sets of Positive integers = N = Set of natural numbers
= { 1	, 2, 3}
2. W =	Set of whole nos.
= {0	, 1, 2}
3. I ⁻ =	Sets of Negative integers
= {-1	1, -2, -3}
4. I = 5	Set of Integers
= {0	, ±1, ±2, ±3}
5. Q =	Sets of Rational nos.
6. R =	Set of real nos
• NUL	L SET / EMPTY SET / VOID SET
It is	a set having no element in it. It is denoted by \varnothing or { }
A =	{x : x is a real no. whose square is negative}
4. EQUAL SETS	
Two sets	are said to be equal if all the elements of A belong to B and all the elements of B
belong to	Α
$\Delta - \beta C T$	R A N D

A = { S, T, R, A, N, D}

J.K. SHAH CLASSES CAFOUNDATION - MATHEMATICS
a Veranda Enterprise
B = { S, T, A, N, D, A, R, D}
Note : Order of arrangement or repetition of elements does not affect the property of
equality.
5. EQUIVALENT SETS
If the total no. of elements of one set is equal to the total no. of elements of another set,
then the two sets are said to be equivalent. The elements may or may not be same always.
$A = \{1, 2, 3, 4\}$
B = {b, l, u, e}
$A \equiv B$
6. SUB SET
If each element of set A is an element of set B, then A is said to be a subset of B or A is
contained in B or B is the Superset of A.
Symbolically, $A \subseteq B$
If a set has n elements than the number of subset are 2^n .
e.g. If A = {1, 2, 3}
then the subsets of A are Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}
Therefore the total number of subsets are $2^3 = 8$
Note 1. : If a set has n elements then
i. TOTAL NUMBER OF SUBSETS = 2 ⁿ
ii. TOTAL NUMBER OF NON- EMPTY SUBSETS = 2 ⁿ – 1
iii. TOTAL NUMBER OF PROPER SUBSETS = 2 ⁿ – 1
iv. TOTAL NUMBER OF NON- EMPTY PROPER SUBSETS = 2 ⁿ – 2
Note 2. : i. Every set is a subset of itself
ii. Φ is a subset of every set
iii. In subset element may be equal
iv. If $A \subseteq B$ and $B \subseteq A$ $A = B$
7. PROPER SUB SET
If each element of set A is an element of set B but there is atleast 1 element in B which is
not in A, in such a case A is said to be proper subset of B and is symbolically denoted by :
$A \subset B$: for example, A={1,2,3}
To the above e.g. the proper subsets of A are {1}, {2}, {3}, {1,2}, {1,3}, {2,3} & \varnothing

To the above e. g. the proper subsets of A are {1}, {2}, {3}, {1,2}, {1,3}, {2,3} & \varnothing

{1,2,3} is the improper subset because all the element are equal.

8. UNIVERSAL SET (U \ S)

Universal set or the universe is the set which contains all the elements under investigation

in a particular content.

Eq. U = $\{1, 2, 3, 4, 5\}$

 $A = \{2, 3\}$

 $B = \{1, 3, 5\}$

 $C = \{4, 5\}, etc$

Here A, B, C are all subsets of U.

9. POWER SET

It is defined as the set of all possible subsets in a particular investigations. If a set contains

n elements, its power set will contain 2ⁿ elements.

A = $\{2, 3, 4\}$ Total elements in the Power set will be $2^3 = 8$ (8)

[there are 3 elements in set A]

 $\mathsf{P}(\mathsf{A}) = \{ \varnothing, \{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\} \}$

e.g. The power set of A contains 128 elements. Find the no. of elements in set A Let there Lianda Enterprise be n elements in Set A

 $\therefore 2^{n} = 128$

Or $2^n = 2^7$

Or n = 7 ... Set A has 7 elements

10. CARDINAL NO. IN A SET: n(A)

If a set A contains "X" no. of elements, then the cardinal no. in set A will be given by:

n(A) = x.

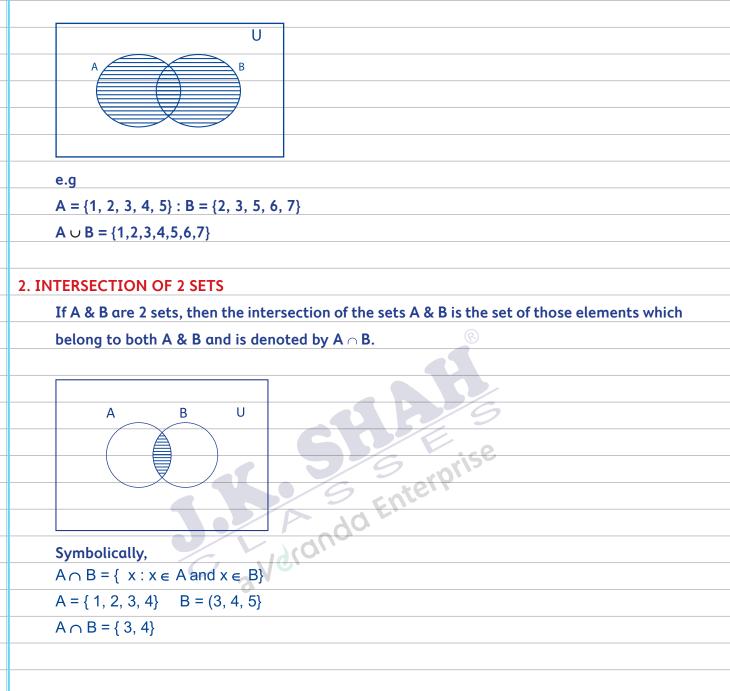
e.g. A {2, 3, 4, 5}

n(A) = 4

SET OPERATIONS

1. UNION OR JOIN OF 2 SETS

If A & B are 2 sets then the Union or Join of 2 sets is defined as, the set of all elements


which belong either to A or to B or to both A & B.

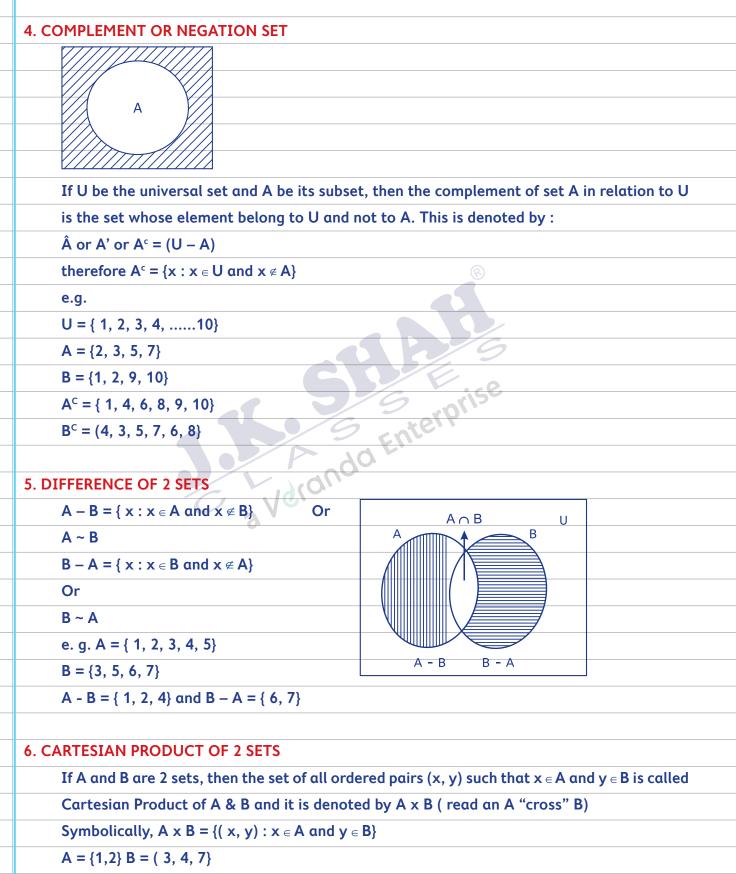
Symbolically $A \cup B = \{x : x \in A \text{ or } x \in B\}$

NOTE : Here 'UNION' \Rightarrow or

3. DISJOINT SETS

2 Sets are said to be disjoint when they have no elements in common i.e. their intersection

is a Null Set.



a Vergoda Enterprise

CA FOUNDATION - MATHEMATICS

e.g. If A = {1, 3, 5,} B = {2, 4} then A \cap B = ϕ

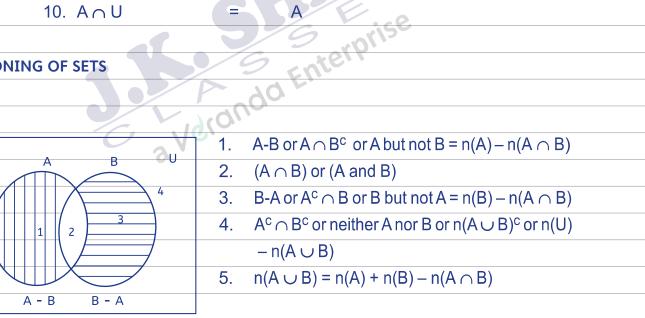
therefore A & B are disjoints sets.

 $A \times B = \{(1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 7)\}$

$B \times A =$	{(3, 1),	(3, 2), (4,	1), (4,2), (/, 1), (/, 2)}

 $A \times B \neq B \times A$ but $A \times B \cong B \times A$ since n (A x B)

 $= n (B \times A)$


Note :1. If n(A) = m and n(B) = n then the total number of elements in $A \times B = m \times n$

2. The total number of subsets of $A \times B = 2^{mn}$

Notes :	1.	\$\$ '	=	U
	2.	U′	=	φ
	3.	(A ^c) ^c	=	A
	4.	A U A'	=	U
	5.	$A \cap A'$	=	ϕ
	6.	$A \subset B$ then $B' \subset A'$		®
	7.	$A \cup \phi$	=	A
	8.	$A \cap \phi$	=	ø
	9.	AUU	=	U
	10.	A∩U	=	A

PARTITIONING OF SETS

Case 1

Case 2

use	∠		
		1.	$(A \cap B \cap C)$
	U	2.	$n(A \cap B \cap C^{c}) = n(A \cap B) - n(A \cap B \cap C)$
	8	3.	$n(A \cap B^{c} \cap C) = n(A \cap C) - n(A \cap B \cap C)$
	5 2 6	4.	$n(A^{c} \cap B \cap C) = n(B \cap C) - n(A \cap B \cap C)$
	1	5.	$n(A \cap B^{c} \cap C^{c}) = n(A) - n(A \cap B) -$
	3 4		$n(A \cap C) + n(A \cap B \cap C)$
	7	6.	$n(A^{c} \cap B \cap C^{c}) = n(B) - n(A \cap B) -$
			$n(B \cap C) + n(A \cap B \cap C)$
		7.	$n (A^{c} \cap B^{c} \cap C) = n(C) - n(A \cap C) -$
			$n(B \cap C) + n(A \cap B \cap C)$
		8.	$n (A^{c} \cap B^{c} \cap C^{c}) = n(A \cup B \cup C)^{c} = n(U)$
			$-n(A \cup B \cup C)^{\otimes}$
		9.	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap$
			B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)
			6 2/9

Notes :

- a) (2), (3), (4) are cases where only 2 items of the 3 are taken at a time.
- b) (5), (6), (7) are cases where only 1 item of the 3 is taken at a time
- c) (8) is the case where no item of the 3 are taken.
- d) (1) is the case where all the items are taken i.e. the common part to all the 3.

LAWS

ASSOCIATIVE LAW

- (a) $A \cup (B \cup C) = (A \cup B) \cup C$
- (b) $A \cap (B \cap C) = (A \cap B) \cap C$

DISTRIBUTIVE LAW

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

DEMORGAN'S LAW

- (a) $(A \cup B)^c = A^c \cap B^c$
- (b) $(A \cap B)^c = A^c \cup B^c$

DEMORGAN'S LAW ON DIFFERENCE OF SETS

- (a) $A (B \cup C) = (A-B) \cap (A-C)$
- (b) $A (B \cap C) = (A-B) \cup (A-C)$

CARTESIAN PRODUCT

- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (b) $A \times (B C) = (A \times B) (A \times C)$

RELATIONS

- 1.If A and B are two non empty sets, then any sub-set of A x B is called a relation fromA to B. If R is a relation, then, $R \in A \times B$.
- 2. $A = \{1, 2, 3, 5\} B = \{2, 4\}$ Then, $A \times B = \{(1, 2), (1, 4), (2, 2), (2, 4), (3, 4), (3, 2), (5, 2), (5, 4)\}$
- 3. If we consider the relation 'is less than' then the set of all ordered pairs R in

A x B, where

(i)
$$R = \{(1,2), (1, 4), (2, 4), (3, 4)\} = \{(x, y) : x \in A, Y \in B, X R Y\}$$

- (ii) Let A = (1, 2, 3, 432) R be the relation "one fourth of A"
 R = { (1, 4), (2,8), (3, 12), (4, 16), (5, 20), (6, 24), (7, 28), (8, 32)}
- 4. Number of Relation

If A and B are 2 sets containing m and n items respectively, then A x B will have mn ordered pairs, Total number of subsets of mn ordered pairs = 2^{mn}

Since each relation is subset of A x B.

 \therefore Total Relation = 2^{mn}

e.g. if n(A) = 4, n(B) = 2

Total relations = $2^8 = 256$.

5. Domain and Range of Relation

If A and B are 2 non-empty sets and R be the relation, then the set of first element in the ordered pair (x, y) is called the Domain of the relation and the set of second elements in the ordered pair is called the Range of the relation.

e.g. : A = { 1, 3, 4, 5, 7}

	A S S E S
al	/dranda Enterprise
	B = (2, 4, 6, 8)
	And R is the relation 'is one less than' from
	A to B, then
	$R = \{(1, 2), (3, 4), (5, 6), (7, 8)\}$
	Domain of R = { 1, 3, 5, 7}
	Range of R = (2, 4, 6, 8}
	Co-domain of R = (2, 4, 6, 8}
	Range ⊆ Co-domain
ΤΥΡ	ES OF RELATIONS
1.	Note : A relation R in set A is a subset of A x A
2.	A relation R in set A is said to be "Reflexive", if $(a, a) \in R$, for all $a \in A$
	where 'a' is the element of set A
	e.g. : A = {2, 4, 7} then the relation R =
	{(2, 2), (4, 4), (7, 7)} is reflexive.
3.	A relation R in set A is called "Symmetric"
	if $(a, b) \in \mathbb{R}$, then $(b, a) \in \mathbb{R}$.
	e.g. A = {2, 4, 7}
	$R = \{(2,4), (4, 2), (2, 7), (7, 2)\} is a$
	symmetric relation.
	0
4.	A relative R in Set A is called "Transitive" relation if (a, b), (b, c) \in R, then (a, c) \in R
	e.g. : R = {(2, 4), (4, 7), (2, 7)} is transitive
5.	A relation which is reflexive, symmetric and transitive is called an "Equivalence" relation.

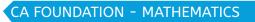
Note :

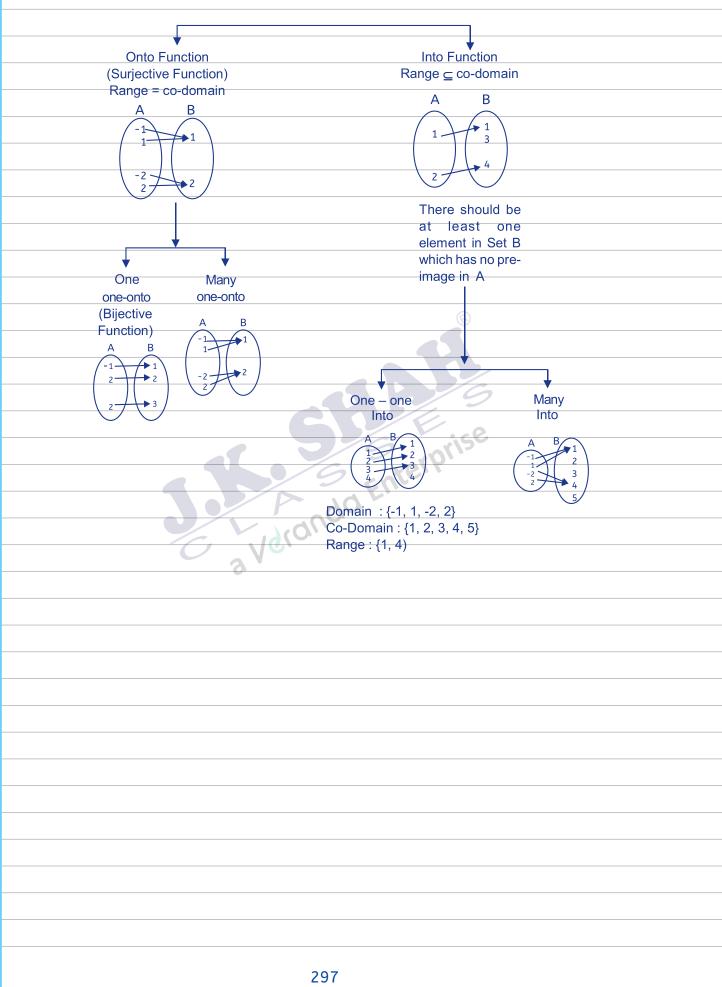
- Inverse of Equivalence relation is also an Equivalence relation. 1.
- 2. Intersection of two Equivalence relation is also Equivalence relation.

Inverse Relation

Let, R be the relation from set A to B, then the inverse relation of R is denoted by R⁻¹ is a

relation from **B** to **A**.


 \therefore If R is a subset of A x B.



J.K. SHAH[®] C L A S S E S a Veranda Enterprise

a Veranda Enterprise							
R ⁻¹ is a subset of B x A which	R ⁻¹ is a subset of B x A which consists of all the ordered pairs which when reversed belongs						
to R.							
e.g. A = (2, 3, 5, 7), B = (4, 6	e.g. A = (2, 3, 5, 7), B = (4, 6, 9, 10, 11)						
R be the relation "is a division	R be the relation "is a divisior of" from A to B						
then, R = {(2, 4), (2, 6), (2, 1	0), (3, 6), (3, 9), (5, 10)}						
$\therefore R^{\text{-1}}$ is a relation from B to /	A will be given by;						
R ⁻¹ in this relation "is divisib	le by"						
Domain of R ⁻¹ = {4, 6, 10, 9}	= Range of R						
Range of R ⁻¹ ={2, 3, 5) = Dor	nain of R						
Note :							
$D(R^{-1}) = R(R)$							
$R(R^{-1}) = D(R)$							
FUNCTIONS							
1. If A and B are 2 non-	empty sets then, function is a ru	le or correspondence which					
associates every elem	ent 'X' of A to a unique element of	f 'Y' in B.					
2. Symbolically we expre	ss it as $f : A \rightarrow B$	0					
	9 g roris						
Note :	Senter						
1. Set from which it is defined	is called domain i.e. Set A						
2. Set to which it is defined is a	alled co-domain i.e. Set B						
3. The set of images are the ra	Inges of the function, Range \subseteq Co-	domain					
	Types of Functions						
↓	•	Ļ					
One – One (Injective)	Many – One C	Dne – Many					
A B	(d	does not exist)					
2							
3	-2 3						
47	2 4						
Each Element in A	At least two elements in A						
has only one image	has the same image in B						
in B and each	and at least one element in						
element in B has	B, has more than one pre-image	in A					
one pre-image in A							
	296						

			CLASSWC	ORK S	ECTION			
(For	Q. No. 1 to 6)							
		D (• • •					
 If A	= { a, b, c, d, e};	B = { (a, e, I, o, u} an	a C = {r	n, n, o, p, q	, r, s, t,	, u}	
 1.	$A \cup B$ has how	many	elements?					
 1.	a) 8	b)		c)	9	d)	11	
 	., .	,	•		•	,		
2.	$B \cup C$ is equal	to:						
	a) {a, e, i, o, u	, m, n,	p, q, r, s, t}	b)	{a, e, i, r, s	, t}		
	c) {o, u, p, q, I	r, s}		d)	None of th	e abov	'e	
					(B		
3.	A \cup C is equal	to:						
	a) {d, e, f, p, q			b)			n, o, p, q, r, s, t, u}	
	c) {a, b, c, s, t	, u}		d)	None of th	e abov	'e	
,						se_		
4.	$B \cap C$ is equal		(a vil			d)	None of the should	
 	a) {a, e}	b)	{o, u}	()	{o, p}	u)	None of the above	
5.	A \cap B is equal	to:		00.				
 5.	a) {a, e}	b)	{o, u}	c)	{o, p}	d)	None of the above	
	, , ,							
6.	A - B is equal	to:						
	a) {a, e, o}	b)	{m, n, p, q}	c)	{b, c, d}	d)	None of the above	
7.	The set of cube	es of the	e natural numb	pers is:				
	a) A finite set			b)	An infinite	set		
	c) A null set			d)	None of th	e abov	'e	
0			,					
8.							respectively, find the	
 	-	ble nur b)					elements A∪B. 8, 13	
	a) 5,10	D)	4, 12	c)	7, 11	u)	0, 13	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

 al⁄	/drando	a Enterprise							
9.	Set	X and Y had 6	and	12 elements resp	oecti	vely, what can	be t	the minimum number	
	of e	lements in X (י Y?						
	α)	14	b)	16	c)	12	d)	18	
10.	lf A,	B, C are three	e sets	in which n(A \cap E	$B \cap C$	C) = 8, n(A ∩ B)	= 1	5, n(A) = 22, n(B ∩ C)	
	= 11	1, n(B) = 19 = r	n(C),	n(A \cap C) = 10, the	en w	hat is n(A \cup B	\cup C)?	
	α)	31	b)	33	c)	35	d)	32	
11.	K ₁ 8	« K ₂ are two se	ts su	ch that n(K ₁) = 17	7, n(ł	< ₂) = 23, n(K ₁ ∪	ν <mark>Κ₂)</mark>	= 38, then ($K_1 \cap K_2$) =	
	?								
	α)	12	b)	2	c)	7	d)	9	
12.	If A	= { 1, 2, 3}, B	= {3,	4}, and C = {4, 5,	, 6} t	:hen (A x B) ြ (В×	C) is equal to :	
	α)	{ }			b)	{(3, 4)}			
	c)	{(2, 3), (3, 2), ((3, 4)	}	d)	None of the o	bov	e	
					5 \	29	2		
13.	Let	A : {O, R, A, N,	, G, E	} and B = { 0, 1, 2	2, 3,	4, 5}. The abov	e tv	vo sets are:	
	α)	Equal			b)	Equivalent			
	c)	Disjoint		/9	d)	Both b) and c) ab	ove	
				P A	0				
14.	The	number of ele	emen	ts in the power o	of set	t of a set conto	linin	g 'p' elements is:	
	α)	2 ^{p-1}	b)	2 ^p	c)	2 ^{p+1}	d)	2 ^{p + 1}	
				-					
15.	The	number of no	n - e	mpty subsets of	the s	set {8, 9, 10, 1	1, 15	5} is :	
	α)	32	b)	31	c)	30	d)	33	
16.	lf th	ie set A has m	elen	nents and set B h	as n	elements ther	n the	e number of elements	
	in A	× B is:							
	α)	m + n	b)	mn	c)	m – n	d)	m ⁿ	
17.	Two	finite sets hav	ve p c	and q number of e	elem	ents. The total	nun	nber of subsets of the	
	first	set is eight ti	mes t	the total number	of s	ubsets of the s	ecor	nd set. Find the value	
	of p	- q.							
	α)	2	b)	3	c)	4	d)	None of the above	

J.]	K. SHAH [®] A S S E S	
 	Granda Enterprise	
 18.	For A and B two given non-empty sets consisting of m and n elements respectively,	
	the total number of subsets of A X B are:	
 	a) 2^m b) 2^{mn} c) $2^m + 2^n$ d) None of the above	
 19.	In a class of 65 students, 35 students have taken Mathematics, 40 have taken	
	Statistics. Find the no. of students who have taken both. Find the no. of students	
 	who have taken Mathematics but not Statistics. (Assume that every student has to	
 	take atleast one of the two subjects.)	
 	(a) 10, 25 (b) 10, 10 (c) 10, 20 (d) 10, 30	
 20.	In a class of 50 students, 20 students play football and 16 students play hockey. It	
 20.		
 	is found that 10 students play both the games. Use algebra of sets to find out the	
	number of students who play neither.	
 	(a) 26 (b) 25 (c) 24 (d) 20	
 21.	In a class test of 45 students, 23 students passed in paper first, 15 passed in paper	
 	first but did not pass in paper second. Using set theory, find the no. of students	
 	who passed in both the papers and who passed in paper second but did not pass in	
	paper first. (Assume that each student passed at least one of the two paper.)	
	(a) 8, 22 (b) 8, 20 (c) 10, 8 (d) None	
	L'Id(di'	
 22.	In a statistical investigation of 1003 families of Calcutta it was found that 63 families	
	had neither a radio nor a T.V. 794 families had a radio and 187 a television. How	
	many families in that group had both a radio and a T.V.	
	(a) 41 (b) 42 (c) 40 (d) None	
23.	In a City, there are three daily newspaper published X, Y, Z. 65% of the people of	
	the city read X, 54% read Y, 45% read Z, 38% read X and Y, 32% read Y and Z, 28%	
	read X and Z. 12% do not read any of the three papers. If 10,00,000 person live in	
	the city. Find the number of persons who read all the three newspaper.	
	(a) 220000 (b) 230000 (c) 120000 (d) 200000	
(For	Q No.24-Q27)	
 Out	of 1600 students in a college, 390 played Kho-Kho, 450 played Kabaddi, and 500	
 	ed cricket; 90 played both Kho-Kho and Kabaddi; 125 played Kabaddi and Cricket,	
 	155 played Kho-Kho and Cricket; 50 played all the three games.	

J.K. SHAH C L A S S E S a Veranda Enterprise

 aı	veran	da Enterprise						
24.	Ho	w many studer	nts di	d not play any g	ame	?		
	α)	400	b)	500	c)	450	d)	None of the above
25.	Ho	w many played	d only	y Kho-Kho?				
	α)	295	b)	195	c)	95	d)	1000
26.	Ho	w many played	d only	y one game?				
	α)	1030	b)	930	c)	750	d)	730
27.	Ho	w many played	d only	y two games?				
	α)	220	b)	320	c)	120	d)	None of the above
Refe	er to	the data below	w an	d answer the que	stior	ns that follow.	(For	Q No.28-Q32)
Kim	aya	colony has a p	opul	ation of 2800 me	embe	rs.		
Num	nber	of member lis	tenin	g only English m	usic	= 650		
Num	nber	of member lis	tenin	g only Hindi mus	ic = !	550	2	
Num	nber	of member lis	tenin	g only Bengali m	usic	= 450		
Num	nber	of member lis	tenin	g all three types	of m	nusic = 100		
				g Hindi as well a				
				g Hindi as well a		-		
Num	nber	of member lis	tenin	g Bengali as well	l as I	English music	= 30	0
				3				
28.				embers listening I				
	α)	950	b)	1050	c)	650	d)	550
29.				ers listening none			• •	
	a)	450	b)	2650	c)	2550	d)	550
20	- :	al 41a a 1991 19	- f	unde aug 11-1 - 1				
30.				embers listening o				1650
	α)	450	b)	1100	c)	1600	d)	1650
21	L i~	d number of re	omb	ore listoning to st	t lor	ct two two co	f	
31.				ers listening to at				
	α)	600	b)	400	c)	700	d)	500
32.	The	ratio of mom	hora	listoning Hindi to	that	of Bongali m		ic :
52.		2:1	bers b)	listening Hindi to	c)	1:2		3:2
	u)	<i>L</i> . 1	U)	1.1	C)	1.2	u)	J. L

J.]	K.	SHAH SSES				CA FO	DUND	ATION - MATHEMATICS	
a۷	′drano	da Enterprise							
33.	As	hop has only	red, g	green and blue c	arpe	ts. 60% of the	e car	pets have red colour,	
	300	% have green	coloi	ur and 50% have	e blu	e colour. If no	o carj	pet has all the three	
	col	ours, what pe	rcento	age of the carpe	ts hav	ve only one co	lour	?	
	α)	40%	b)	60%	c)	70%	d)	None of the above	
34.	For	two non-emp	oty se	ts A and B contai	ning	m and n eleme	ents	respectively, the total	
	nui	mber of relation	ons fr	om A to B will be	e :				
	α)	2 ^{m + n}	b)	2 ^m	c)	2 ^{mn}	d)	2 ^m + 2 ⁿ	
35.	If A	A = {a, b, c, d}	and E	8= {p, q, r, s} ther	n whi	ch of the follo	wing	are relations from A	
	to	B?							
	α)	R1 = {(a, p), (b, r),(c, s)}					
	b)	R2 = {(q, b), (c, s),(d	d, r)}		®			
	c)	R3 = {(a, p),	(b, r),	(c, r)(s, q)}					
	d)	R4 = {(a, p),	(b, s),	(s, b)(q, a)}			/		
					5		>		
36.	If A	A = {1, 3, 5, 7}	and	B = {2, 4, 6, 8,	10} a	nd R = {(1, 8),	, (3,	6), (5, 2), (1, 4)} be a	
				hen Dom(R) = ?		3 roris			
	α)	{1, 5}	b)	{ 1, 3, 5}	c)	(3, 5}	d)	None of the above	
					0				
37.	In t	the above que	stion,	what is the Ran	ge (R)?			
	α)	{1, 3, 5}	b)	{ 8, 6, 2, 4}	c)	(2, 4, 6}	d)	None of the above	
38.	Let	: A = {1, 2} and	l B = {	{3, 4}. The total	numł	per of relation	s fro	m A into B is:	
	α)	8	b)	16	c)	32	d)	4	
39.	Let	: A = {x, y}. The	e num	ber of all relatio	ons or	n A are:			
	α)	4	b)	8	c)	16	d)	32	
40.	Wh	nat can be said	d abo	ut the relation R	={(a,	b),(b, c), (c, a)} def	fined on set A = {a, b,	
	c}?								
	α)	Reflexive, Syr	nmet	ric, Transitive					
	b)	Non Reflexive	e, Syn	nmetric, Transitiv	/e				
	c)	Non-Reflexiv	e, No	n-Symmetric, No	on Tro	ansitive			
	D	NI 6.1							

d) None of the above

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

41.	What can be said about the relation R = {(a, a), (a, b), (a, c),(b, b), (b, c), (c, a), (c, b),
	(c, c)} defined on Set A = {a, b, c}?
	a) Reflexive, Symmetric, Transitive
	b) Non Reflexive, Symmetric, Transitive
	c) Reflexive, Symmetric, Non Transitive
	d) Reflexive, Non-Symmetric, Non Transitive
42.	What can be said about the relation R = {(a, b), (b, a),(a, c), (c, a)} defined on Set A
	= {a, b, c}?
	a) Reflexive, Symmetric, Transitive
	b) Non Reflexive, Symmetric, Non-Transitive
 	c) Reflexive, Symmetric, Non Transitive
	d) Reflexive, Non-Symmetric, Non Transitive
43.	Let A = {1, 2, 3} and R = {(1, 2), (1, 1,), (2, 3)} be a relation on A. What minimum
	number of ordered pairs may be added to R so that it may become a transitive
	relation on A.
	a) (3, 1) b) (1, 3) c) (2, 2) d) None of the above
	S ENTERI
44.	The Range of the relation R where $R = \{(x, x + 5) : x \in \{0, 1, 2, 3, 4, 5\}$ is:
	a) {0, 1, 2, 3, 4, 5} b) {1, 5, 6, 7, 8}
	c) {5, 6, 7, 8, 9} d) {5, 6, 7, 8, 9, 10}
45.	A = { 1, 2, 3) R = {(1, 2), (2, 2,), (3, 1), (3, 4)} Find
	a) $D(R)$ b) $R(R)$ c) R^{-1} d) $D(R^{-1})$ e) $R(R^{-1})$
46.	Find in each case the type of relation:
	$A = \{1, 2, 3\}$
	$R_{1} = \{(1,1), (2,2), (3,3), (1,2)\}$
	$R_{2} = \{(1,1), (2,2), (1,2), (2,1)\}$
	$R_{3} = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3)(3,2)\}$
	$R_4 = \{(1,1), (2,3), (3,2,)\}$

47.	Find in each case	e the T	ype of Relation.					
i.	"Is smaller than	" over	the set of eggs ir	n a b	ox is			
	(a) T	(b)	S	(c)	R		(d)	E
ii.	"Is equal to " ov	er the	set of all rationa	ıl nu	mbers is			
	(a) T	(b)	S	(c)	R		(d)	E
iii.	"Is perpendicula	r to" o	over the set of str	aigh	t lines in	a give	en pl	lane is
	(a) R	(b)	S	(c)	Т		(d)	E
iv.	"Is the reciproca	l of".	over the set of	non	-zero rea	l num		
	(a) S	(b)	R	(c)	Т	®	(d)	none of these
V.			r a set of real nui					
	(a) R	(b)	S	(c)	T	9	(d)	none of these
 			6					
					nterip	115		
 				-	nic			
			P d d	0				
		4						
 			3					

FUNCTIONS

1.	If A = {x, y, z}, B = {p, q, r, s} which of the	e relo	ation on A to B are function.
	(a) {(x, p), (x, q), (y, r), (z, s)}	(b)	{(x, s), (y, s), (z, s)}
	(c) {(y, p), (y, q), (y, r), (z, s)	(d)	{(x, p), (y, r), (x, s)}
2.	{(x, y) $ x + y = 5$ } where x, $y \in R$ is		
	(a) not a function	(b)	a composite function
	(c) one-one mapping	(d)	none of these
3.	{(x, y), $y = x^2$ } where x, $y \in R$ is		
	(a) not a function	(b)	a function
	(c) inverse mapping	(d)	none of these
4.	$\{(x, y) \mid x < y\}$ where x, $y \in R$ is		
	(a) not a function	(b)	a function
	(c) one-one mapping	(d)	none of these
			2 roris
5.	The range of {(3, 0), (2, 0), (1, 0), (0, 0)]	is 🧹	nteri
	(a) {0, 0}	(b)	{0}
	(c) {0, 0, 0, 0}	(d)	none of these
	ave		
6.	The domain and range of $\{(x, y) : y = x^2\}$	whe	ere x, $y \in R$ is
	(a) (reals, natural numbers)	(b)	(reals, positive reals including zero)
	(c) (reals, reals)	(d)	none of these
7.	Let the domain of x be the set [1]. Whic	h of	the following functions are equal to 1
	(a) $f(x) = x^2$, $g(x) = x$	(b)	f(x) = x, g(x) = 1 - x
	(c) $f(x) = x^2 + x + 2$, $g(x) = (x + 1)^2$	(d)	none of these
	(1)		
8.	If $g(x) = (x - 1)/x$, $g\left(-\frac{1}{2}\right)$ is		
	(a) 1	(b)	2
	(c) 3/2	(d)	3

J.K. SHAH CLASSES a Veranda Enternrise

	dranda Enterprise		
9.	If $f(x) = 1/1 - x$ and $g(x) = (x - 1)/x$, that	ו fog	(x) is
	(a) ×	(b)	1/x
	(c) -x	(d)	none of these
10.	If $f(x) = 1/1 - x$ and $g(x) = (x - 1)/x$, then	ı gof	(x) is
	(a) × - 1	(b)	×
	(c) 1/x	(d)	none of these
11.	The function $f(x) = 2^x$ is		
	(a) one-one mapping	(b)	one-many
	(c) many-one	(d)	none of these
 12.	The range of the function $f(x) = \log_{10}(1 - 1)$	⊦ x) f	ror the domain of real values of x when
	$0 \le x \le 9$ is		
	(a) [0, 1]		[0,2]
 	(c) [0, 9]	(d)	none of these
 4.2			ise
 13.	The inverse function f^{-1} of $f(x) = 2x$ is		× erplis
	(a) $1/2x$	(b)	
 	(c) 1/x	(d)	none of these
 17	If $f(x) = x + 3$, $g(x) = x^2$, then $f(x) \cdot g(x)$ is		
 14.	(a) $(x + 3)^2$	(b)	x ² + 3
	(c) $x^3 + 3x^2$		none of these
		(u)	hone of these
 15.	The inverse h^{-1} when $h(x) = \log_{10} x$ is		
 	(a) $\log_{10} x$	(b)	10 [×]
	(c) $\log_{10} (1/x)$	(d)	none of these
	2 10 · · · ·	· ·	
16.	Which of the diagram is graph of a func	tion	
	- • •		
	У		У
	(a)	(b)	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	У		У
	(c)	(d)	
			X
	306		

 17.	lf f	f(x) = 1/1 - x, then f ⁻¹ (x) is		
	(a)	1 - x	(b)	(x - 1)/x
	(c)	x/(x - 1)	(d)	none of these
				®
				5/19
 				s vise
			16	<u>* erpi : </u>
 			- JAF	nterprise
			nac.	
		- C Ver		
 		3		

HOMEWORK SECTION

1.	Out of 20 members in a family, 11 like t	to te	a and 14 like coffee. Assume that
	each one likes at least one of the two d	lrinks	s. Find how many like both coffee a n d
	tea:		
	(a) 2	(b)	3
	(c) 4	(d)	5
2.	In a town of 20,000 families it was four	าd th	at 40% families buy newspaper A, 20%
	families buy newspaper B, 10% families	; buy	newspaper C, 5% families buy A and B,
	3% buy B and C and 4% buy A and C. If	2%	families buy all the three newspaper,
	then the number of families which buy	A on	ly is:
	(a) 6,600	(b)	6,300 🛞
	(c) 5,600	(d)	600
	2.	_	
3.	If $f(x) = \frac{2+x}{2-x}$, then $f^{-1}(x)$:	2	29
			E
	(a) $\frac{2(x-1)}{x+1}$	(b)	$\frac{2(x+1)}{x-1}$
	/9		x - 1
	(c) $\frac{x+1}{x-1}$	(d)	$\frac{x-1}{x+1}$
	, , , , , , , , , , , , , , , , , , ,		
4.	If $f(x) = 2x + h$ then $f(x + h) - 2f(x)$		
	(a) h – 2x	(b)	2x - h
	(c) 2x + h	(d)	None of these
	X X		
5.	If f (x) = $\frac{x}{\sqrt{1 + x^2}}$ and g (x) = $\frac{x}{\sqrt{1 - x^2}}$ Find f	fog?	
	· · · · · · · · · · · · · · · · · · ·		1
	(a) x	(b)	x
	Х		
	(c) $\frac{x}{\sqrt{1-x^2}}$	(d)	$x \sqrt{1-x^2}$
6.	If A = (1, 2, 3, 4, 5), B = (2, 4) and C (1, 3		then (A – C) × B is
	(a) {(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), (5,	4)}	
	(b) {(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5,	4)}	
	(c) {(2, 2), (4, 2), (4, 4), (4, 5)}		
	(d) {(2, 2), (2, 4), (4, 2), (4, 4)}		

J.K. SHAH CLASSES a Vergnda Enterprise

a	dranda Enterprise		
7.	The range of the function f: $N \rightarrow N; \ f(x)$ =	= (-1) ^{x-1} , is
	(a) [0, -1]	(b)	[1, -1]
	(c) [1, 0]	(d)	{1, 0, -1}
8.	The number of elements in range of cor	nstar	nt function is
	(a) One	(b)	Zero
	(c) Infinite	(d)	Indetermined
	(1+x) $(2x)$		
9.	If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ then $f\left(\frac{2x}{1+x^2}\right)$ is equa	l to:	
	(a) f (x)	(b)	2f (x)
	(c) 3f (x)	(d)	-f (x)
10.	Of the 200 candidates who were intervi	iewe	d for a position at call centre, 100 had
	a two- wheeler, 70 had a credit card ar	nd 14	40 had a mobile phone, 40 of them had
	both a two- wheeler and a credit card, 3	30 h	ad both a credit card and mobile phone,
	60 had both a two-wheeler and mobile	e pho	one, and 10 had all three. How many
	candidates had none of the three?		V.ce
	(a) 0		20 0115
	(c) 10	(d)	18
	$(x^2 - 25)$	0 '	-
11.	If $f'(x) = \left(\frac{x^2 - 25}{x - 5}\right)$ then $f(5)$ is		
	(a) 0	(b)	1
	(c) 10	(d)	Not defined
12.	Let A = $\{1, 2, 3\}$ and B = $\{6, 4, 7\}$. Then,		
	(a) Function from A to B		Function from B to A
	(c) Both A and B	(d)	Not a function
	(\mathbf{x}) $(f(\mathbf{x}/\mathbf{v}))$		
13.	If f (x) = $\left(\frac{x}{x-1}\right)$ then $\left(\frac{f(x/y)}{f(y/x)}\right)$ =		·
			y/x
	(c) - x/y	(d)	- y/x
	200		

		da Enterprise					
14.	If N be the set of all natural number and E be the set of all even natural numbers						
	then the function $f: \mathbb{N} \to \mathbb{E}$, such that $f(x) = 2x$ for all $X \in \mathbb{N}$ is						
	(a)	one-one onto	(b)	one-one into			
	(c)	many-one onto	(d)	constant			
15.	In c	a class of 80 students, 35% students o	can p	play only cricket, 45% students can play			
	onl	y table tennis and the remaining stu	dent	is can play both the games. In all how			
	ma	ny students can play cricket?					
	(a)	55	(b)	44			
	(c)	36	(d)	28			
16.	The	e domain (D) and range (R) of the fun	ctior	n f(x) = 2 - x + 1 is			
	(a)	D = Real numbers, R = (2, ∞)		8			
	(b)	D = Integers, R = (0, 2)					
	(c)	D = Integers, R = (- ∞ , ∞)					
	(d)	D = Real numbers, R = $(-\infty, 2]$	5	2/9			
		6					
17.	The	e number of subsets of the set forme	d by	the word ALLAHABAD is:			
	(a)	128	(b)	16			
	(c)	32	(d)	64			
18.	If <i>f</i>	$f'(x) = \frac{x-1}{x}$ and $g(x) = \frac{1}{1-x}$ then (fog) (x) is	equal to:			
	(a)	x - 1	(b)	×			
	(c)	1 - ×	(d)	- x			
		$x+1$ $c\left(c\left(1\right)\right)$					
19.	If ^f	$f'(\mathbf{x}) = \frac{\mathbf{x}+1}{\mathbf{x}+2}$, then $f\left\{f\left(\frac{1}{\mathbf{x}}\right)\right\} = $	•				
		- 2		<u>2x + 5</u>			
	(a)	$\frac{2x+3}{3x+5}$	(b)	3x + 2			
	(c)	$\frac{3x+2}{5x+3}$	(d)	$\frac{5x+2}{2x+3}$			
20.				icket and 16 like to play football. Also			
			of tł	ne two games. How many students like			
		play both cricket and football?					
	(a)		(b)	11			
	(c)	19	(d)	8			

J.K. SHAH

J.K. SHAH C L A S S E S a Veranda Enterprise

a۷	dranda Enterprise		
21.	If A = {1, 2, 3, 4, 5, 6, 7} and B = {2, 4, 6	, 8}.	Cardinal number of A – B is:
	(a) 4	(b)	3
	(c) 9	(d)	7
22.	If A = {1, 2, 3, 4, 5, 6, 7, 8, 9}		
	B = {1, 3, 4, 5, 7, 8}; C = {2, 6, 8} the	n fin	d (A − B) ∪ C
	(a) {2, 6}	(b)	{2, 6, 8}
	(c) {2, 6, 8, 9}	(d)	None
 23.	A = {1 2 3 4 10} a relation on A, R	= {(>	x, y)/ x + y = 10, x \in A, y \in A, x \ge y} then
 	domain of R ⁻¹ is.		
	(a) {1, 2, 3, 4, 5}	(b)	{0, 3, 5, 7, 9}
	(c) {1, 2, 4, 5, 6, 7}	(d)	None 🛞
24.	If f (x) = x^2 and g(x) = \sqrt{x} then		
	(a) gof(3) = 3		gof(-3) = 9
	(c) gof(9) = 3	(d)	gof(-9) = 3
			2 roris
 25.	If A = {a, b, c, d}; B = {p, q, r, s} which of to B	f the	following relation is a function from A
 		(b)	$R_2 = \{(p, a), (b, r), (d, s)\}$
 	(a) $R_1 = \{(a, p), (b, q), (c, s)\}$ (c) $R_3 = \{(b, p), (c, s), (b, r)\}$		$R_{2} = \{(a, p), (b, r), (c, q), (d, s)\}$
	$(c, n_3 - (b, p), (c, 3), (b, n))$	(u)	$n_4 = ((\alpha, \beta), (b, 1), (c, q), (\alpha, s))$
 26.	If A = {x,y,z}, B = { α ,b,c,d}, then which of	the	following relation from the set A to set
	B is a function ?		
	(a) {(x,a), (x,b), (y,c), (z,d)}	(b)	{(x,a), (y,b), (z,d)}
	(c) {(x,c), (z,b), (z,c)}	(d)	{(a,z), (b,y), (c,z)}
27.	Let A be the set of squares of natural n	umb	ers and let xEA, yEA then
	(a) x + y ∈ A	(b)	x - y є A
	<u>u</u>		
	(c) $\frac{X}{Y} \in A$	(d)	xy є A
	·		

J.K. SHAH [®]					
CLASSES					
a Veranda Enterprise					

aı	veranda Enterprise								
28.	. If four members a, b, c, d of a decision making body are in a meeting to pass a								
	resolution where rule of majority prevails list the winning conditions. Given that a,								
	b, c, d own 50%, 20%, 15%, 15% shares each. List of winning condition is								
	(a) {a, b} {a, c} {c	c} {a, d} {a, b, c} {a, b, d} {a, b, c, d} (b) {b, c, d}							
	(c) {b, c} {b, d} {c	, d} {a, c, d} {b, c,	d} {a} {b} {c} {d} @	ð (d)	None				
29.	As per question N	No.(28) with same	o.(28) with same order of options (a) (b) (c) and (d) list the blo						
	conditions.								
	(a) {a, b} {a, c} {c	, d} {a, b, c} {a, b, d} {a, b, c, d} (b) {b, c, d}							
	(c) {b, c} {b, d} {c	{c, d} {a, c, d} {b, c, d} {a} {b} {c} {d} Ø (d) None							
30.	As per question	No.(28) with sam	e order of option	ns (a) (b) (c) and	(d) list the losing]			
	conditions.		· ·	®					
	(a) {a, b} {a, c} {c	ı, d} {a, b, c} {a, b	, d} {a, b, c, d}	(b)	{b, c, d}				
	(c) {b, c} {b, d} {c				None				
				19					
31.	Consider the foll	owing data: -							
<u> </u>									
	_	Skilled &	Unskilled &	Skilled &	Unskilled &				
		Direct Worker	Direct Worker	Indirect Worker	Indirect Worker				
	Short Term	6	8	10	20				
	Medium Term	7	10	16	9				
	Long Term	3	2	8	0				
If S, M, L, T, I denote short, medium, long terms, skilled and indirect workers									
	respectively find	the number of w	orkers in set M.						
	(a) 42	(b) 8	(c) 10	(d) 43					
32.	Consider the pro	blem No. (31) an	d find the numbe	er of workers in s	et L∩I.				
	(a) 42	(b) 8	(c) 10	(d) 43					
33.	33. Consider the problem No. (31) and find the number of workers in set S \cap T \cap I.								
	(a) 42	(b) 8	(c) 10	(d) 43					
34.	Consider the pro	blem No. (31) and	d find the numbe	er of workers in s	et (M∪L) ∩ (T ∪ I).	•			
	(a) 42	(b) 8	(c) 10	(d) 43					

11	K CUAU	®							
	ASSES	-				CA FOUND	апол - М.	ATHEMATIC	S
 аи 35.	Consider the	problem I	NO. (31	1) and find the	number	of workers	in set S'	J (S'∩l)'	
	(a) 42	(b)		(c)		(d)			
	(w) TE			(0)		(0)	~~		
36.	Consider the	problem	No. (3'	1). Find out wh	ich set o	of the pair	has more	workers a	S
	its members.								-
	(a) (S ∪ M) >		(b)		∪ M) < L				
 	(c) (S ∪ M) =		(d)	Noi					
	,,		· - · /		-				
 37.	Consider the	problem	No. (36	6). Find out wh	ich set c	of the pair	has more	workers a	S
				r S − (I ∩ S'): −					
	(a) (I ∩ T) ' >				(I ∩ T);	< [S – (I ∩ S	5')]		
	(c) (I ∩ T)′ =			(d)	None				
						R			
38.	Out of 1000	students	658	failed in the a	ggregate	e, 166 in t	he aggreg	jate and ii	n
	group-1, 434	in aggreg	ate ar	nd in group-II,	372 in gi	roup-1, 590) in group	-II and 12	6
	in both the g	roups.				19			
	Find out how	many fai	led in	all the three.					
	(a) 106	(b)	224	(c)	206	(d)	464		
				/9	nter	V			
39.	As per questi	on No.(38) how	many failed in	the agg	regate but	not in gro	oup-II?	
	(a) 106	(b)	224	(C)	206	(d)	464		
		\overline{O}	N	0					
40.	As per questi	on No.(38) how	many failed in	group-l	but not in	the aggre	gate?	
	(a) 106	(b)	224	(c)	206	(d)	464		
41.	As per questi	on No.(38) how	many failed in	group-l	l but not in	group-l?		
	(a) 106	(b)	224	(c)	206	(d)	464		
42.	As per questi	on No.(38)	how r	many failed in c	Iggregat	e or group-	II but not	in group-I	?
	(a) 206	(b)	464	(c)	628	(d)	164		
43.	As per question	on No.(38)	how m	nany failed in ag	ggregate	but not in g	group-I an	nd group-II	?
	(a) 206	(b)	464	(c)	628	(d)	164		

	J.K. SHAH [®] CA FOUNDATION - MATHEMATICS
	CLASSES a Veranda Enterprise
	HOMEWORK SOLUTIONS
_	
	1. Out of 20 members in a family, 11 like to take tea, 14 like coffee Assume that each
	one likes atleast one of the two drinks. Find how many like both coffee and tea.
	$n(T \cup C) = 20; n(T) = 11; n(c) = 14$
	$n(T \cup C) = n(T) + n(C) - n(T \cap C)$
	$20 = 11 + 14 - n(T \cap C)$
	: $n(T \cap C) = 25 - 20 = 5$
	2. As per given data,
	$n(A \cup B \cup C) = 20000$ $n(A \cap B) = 1000$
	n(A) = 40% (20000) = 8000 n(B ∩ C) = 600
	$n(B) = 20\% (20000) = 4000 n(C \cap A) = 800$
	$n(C) = 10\% (2000) - 2000$ $n(A \cap B \cap C) = 400$
	find the no. of families only in A.
	8000 - (600 + 400 + 400)
	= α = 6600.
	9 prise
	B 4000 Enterpris
	8000 4000
	$\left(\begin{array}{c} a \\ 600 \end{array}\right)$
	(a 600)
	$\langle 400 \rangle 200 \rangle$
	2000
	C

$$\frac{3}{10} - f(x) = \frac{2 + x}{2 - x} f^{-1}(x) = ?$$

$$= Let, y = f(x) = \frac{2 + x}{2 - x}$$

$$\Rightarrow 2y - 2y = 2 + x = 2y - 2 = x + xy = \frac{2y - 2}{y + 1} = x$$

$$\Rightarrow 2y - 2 = x + xy = \frac{2y - 2}{y + 1} = x$$

$$\Rightarrow x = f^{-1}(y) = \frac{2(y - 1)}{y + 1}$$

$$= and f^{-1}(x) = \frac{2(x - 1)}{x + 1}$$
4. $f(x) = 2x + h \text{ find } f(x + h) - 2f(x)$?
$$= f(x + h) = 4x + 2h + h = 2x + 3h ... (1)$$

$$2f(x) = 2(2x + h) = 4x + 2h ... (2)$$

$$\therefore f(x + h) - 2f(x) = (2x + 3h) - (4x + 2h)$$

$$= 2x - 4x + 3h - 2h$$

$$= h - 2x$$
5. $f(x) = \frac{x}{\sqrt{1 + x^{2}}}; g(x) = \frac{x}{\sqrt{1 + x^{2}}} \text{ find fog}$

$$fog = f(g(x)) = t\left[\frac{x}{\sqrt{1 - x^{2}}}\right]$$

$$= \frac{\left(\frac{x}{\sqrt{1 - x^{2}}}\right)^{2}}{\sqrt{1 + \frac{x^{2}}{1 - x^{2}}}} = \frac{\frac{x}{\sqrt{1 - x^{2}} + \frac{x^{2}}{x^{2}}}}{\sqrt{1 - x^{2}}}$$

$$\therefore fog = \frac{x}{\sqrt{1 - x^{2}}} \times \frac{\sqrt{1 - x^{2}}}{1} = x$$

$$315$$

J .1	K. SHAH [°]	CA FOUNDATION -	MATHEMATICS
	ASSES Veranda Enterprise		
6.	A = {1, 2, 3, 4, 5}; B = {2, 4}; C = {1, 3, 5}	5}	
	$(A - C) \times B = ?$		
	A – C = {2, 4}; $x \in A \text{ and } X \not\in C$		
	$(A - C) \times B = \{2, 4\} \times \{2, 4\}$		
	= {(2, 2) (2, 4) (4, 2) (4, 4)}		
7.	$f(x) = (-1)^{x-1}$ Range = ? Given $f: N \rightarrow I$	M	
	Put, x = 1	$f(1) = (-1)^{1-1} = (-1)^{\circ} = 1$	
	x = 2	$f(2) = (-1)^{2-1} = (-1)^1 = -1$	
	x = 3	$f(3) = (-1)^{3-1} = (-1)^2 = 1$	
	x = 4	$f(4) = (-1)^{4-1} = (-1)^3 = -1$	
	∴ Range = {1, -1}		
		ß	
8.	y is a constant function and \therefore the const	ant can be any number (y = k)	
	Hence, Infinite.		
0	$(1+\mathbf{y})$ $(2\mathbf{y})$	/9	
 9.	$f(x) = \log\left(\frac{1+x}{1-x}\right)$ then $f\left(\frac{2x}{1+x^2}\right)$	Surprise	
	$f\left[\frac{2x}{1+x^2}\right] = \log\left[\frac{1+\left(\frac{2x}{1+x^2}\right)}{1-\left(\frac{2x}{1+x^2}\right)}\right]$	d Enter i	
	$= \log \left[\frac{1 + x^{2} + 2x}{1 + x^{2} - 2x} \right] = \log \frac{(1 + x)^{2}}{(1 - x)^{2}}$		
	$= 2 \log \left[\frac{1+x}{1-x} \right] = 2f(x)$		
	$-2 \log \left[\frac{1-x}{1-x}\right] - 2I(x)$		
10.	Total no. of candidates = 200		
	n(A) = 100 = who had 2-wheeler		
	n(B) = 70 = who had credit card		
	n(C) = 140 = who had mobile phones		
	$n(A \cap B) = 40$; $n(B \cap C) = 30$; $n(C \cap A)$	= 60	
	$n(A \cap B \cap C) = 10$		
	How many had none?		
	-		

Using Venn – diagram

g]

Given: b + c = 40 ; c = 10 ∴b = 30 c + f = 30 : f = 20

 $c + d = 60 \cdot d = 50$

a = [100 - (30 + 10 + 50)] = 10

e = [70 - (30 + 10 + 20)] = 10

q = [140 - (50 + 10 + 20)] = 60

 $= (A \cup B \cup C)'$ Candidates who has none

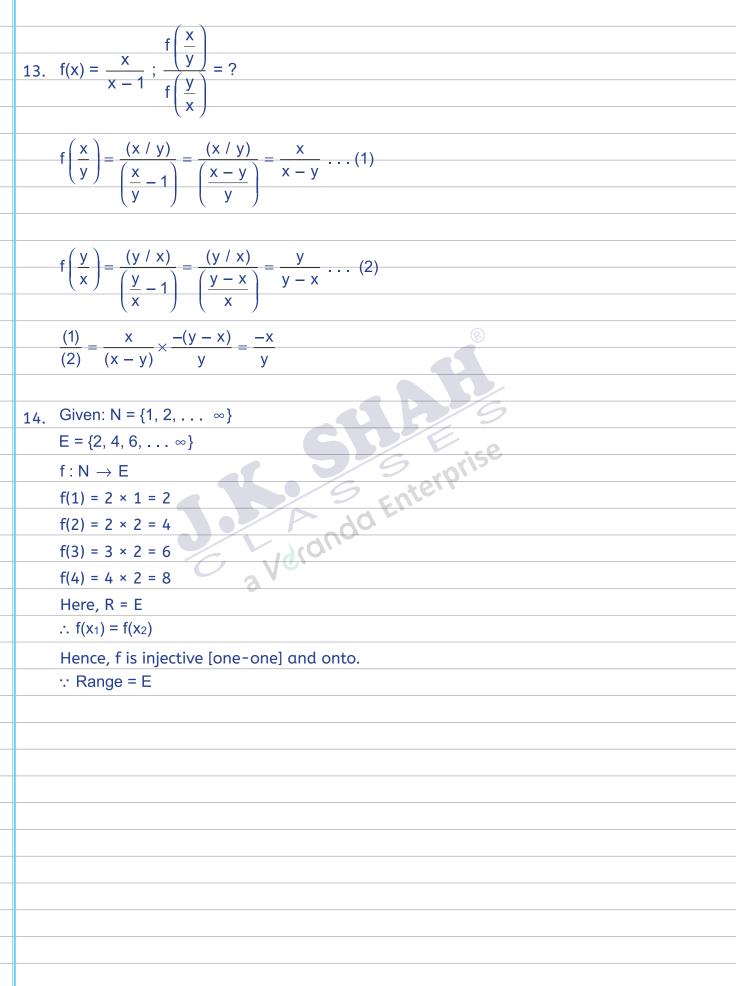
$$= 10tal - (A \cup B \cup C)$$

= 200 - [a + b + c + d + e + f +
= 200 - 190 = 10

11. $f(x) = \frac{x^2 - 25}{x - 5} f(5) = ?$ $f(5) = \frac{5^2 - 25}{5 - 5} = \frac{0}{0}$ = Undefined or Not defined.

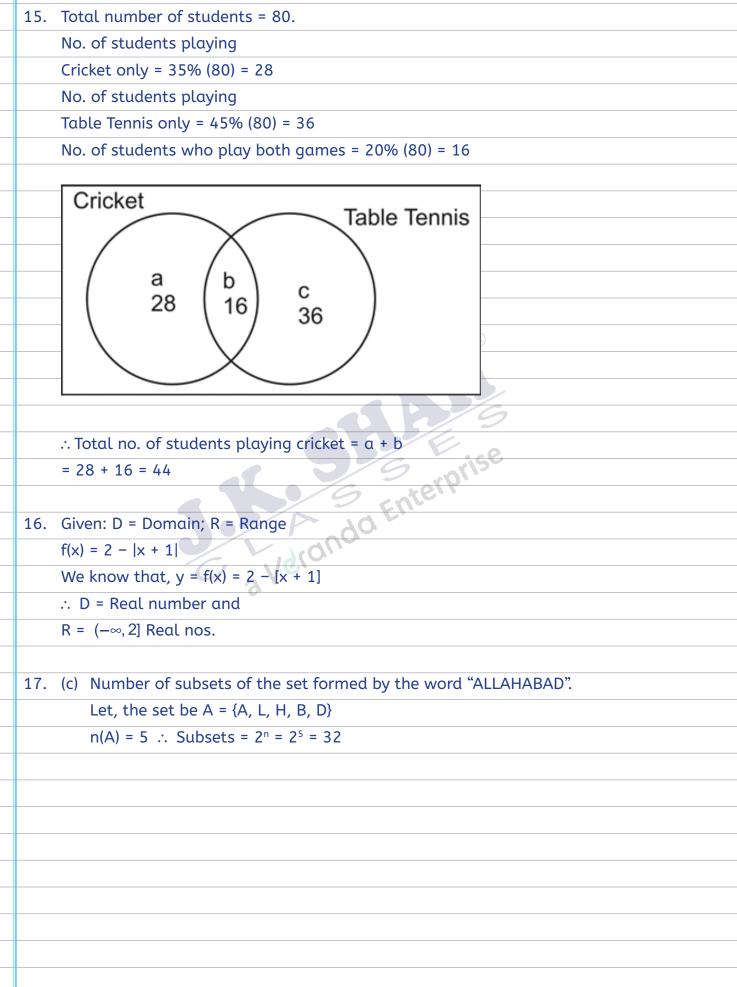
12. $A = \{1, 2, 3\}; B = \{6, 4, 7\}$

Given : $R = \{(2, 4)(3, 6)\}$


We observe that, ordered pairs in R has domain values from A and range values from B

 \therefore R : A \rightarrow B

R is a function from A to B.


J.K. SHAH[®] C L A S S E S a Veranda Enterprise

18.
$$f(x) = \frac{x-1}{x}$$
; $g(x) = \frac{1}{1-x}$ fog (x)
 $f[g(x)] = f\left[\frac{1}{1-x}\right] = \frac{\left(\frac{1}{1-x}\right)-1}{\left(\frac{1}{1-x}\right)}$
 $= \frac{1-(1-x)}{1} = 1-1+x = x$
19. $f(x) = \frac{x+1}{x+2}$ find $f\left[f\left(\frac{1}{x}\right)\right]$
 $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}+1}{\frac{1}{x}+2} = \frac{1+x}{1+2x}$ \odot
 $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}+1}{\frac{1}{x}+2} = \frac{1+x}{1+2x}$ \odot
Now, $f\left[f\left(\frac{1}{x}\right)\right] = \frac{\left(\frac{1+x}{1+2x}\right)+1}{\left(\frac{1+x}{1+2x}\right)+2} = \frac{1+x+1+2x}{1+x+2+4x}$
 \therefore fof $\left(\frac{1}{x}\right) = f\left[f\left(\frac{1}{x}\right)\right] = \frac{2+3x}{3+5x}$
20. $n(n \cap F) = ?$ when $n(C \cup F) = 35$
 $n(C) = 24$; $n(F) = 16$
where; $C = Cricket$ and $F = foot$ ball
21. $A = (1, 2, 3, 4, 5, 6, 7)$; $B = (2, 4, 6, 8)$
 $n(A - B) = ?$
 $A - B = (1, 3, 5, 7)$; \dots $n(A - B) = 4$
22. $A = (1, 2, 3, \dots 9)$
 $B = (1, 3, 4, 5, 7, 8)$; $C = \{2, 6, 8\}$ $(A - B) \cup C = ?$
 $A - B = \{2, 6, 9\}$; $x \in A$ and $x \neq B$
 $(A - B) \cup C = \{2, 6, 8, 9\}$

J.K. SHAH [®]
CLASSES
a Vergoda Enterprise

	a 🗸	dranda Enterprise
	23.	$A = \{1, 2, 3, \dots, 10\}$
		R = {x, $y/x + y = 10$, $x \in A$ and $y \in A$, $x \ge y$ }
		then domain of R ⁻¹ = ?
		$R = \{(5, 5) (6, 4) (7, 3) (8, 2), (9, 1)\}$
		$R^{-1} = \{(5, 5) (4, 6) (3, 7) (2, 8) (1, 9)\}$
		·· Domain [R ⁻¹] = {5, 4, 3, 2, 1}
	24.	$f(x) = x^2$ and $g(x) = \sqrt{x}$ then,
		fog (x) = f[g(x)] = f[\sqrt{x}] = $(\sqrt{x})^2$ = x
		$gof(x) = g[f(x)] = g[x^2] = x$
		∴ Option is (a) gof (3) = 3
	25.	A = {a, b, c, d}
		B = {p, q, r, s}
		function from A to B = ?
		$f : A \rightarrow B \text{ is } R_4 = \{(a, p) (b, r) (c, q) (d, s)\}$
		is an Injective function (one-one)
		a p S Enterprise
		s /s
		$ \setminus / \setminus / $
		$n(C \cup F) = n(C) + n(F) - n(C \cap F)$
_		35 = 24 + 16 - x
		35 = 40 - x
		\therefore x = 5 who play both cricket & foot ball.
	26.	$A = \{x, y, z\} ; B = \{a, b, c, d\} f : A \rightarrow B$
		$A \times B = \{(x, a) (x, b) (x, c) (x, d) (y, a) (y, b) (y, c) (y, d) (z, a) (z, b) (z, c) (z, d)\}$
		Then, {(x, a) (y, b), (z, d)} is a function.

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

- 27. A = Set of squares of natural nos. $x \in A$ and $y \in A$
 - $A = \{1^2, 2^2, 3^2, \dots \infty\} = \{1, 4, 9, \dots\}$
 - $x \in A$ and $x \in B$ then $xy \in A$, satisfies.
- 28. If four members a, b, c, d of a decision making body are in a meeting to pass a resolution where rule of majority prevails Given:
 - a = 50% share
 - b = 20% share
 - c = 15% share
 - d = 15% share

List the winning conditions

In this case, as per the share owned by the 4 members, winning condition is possible

only when shares are > 50%

: 'a' with any other member or all the members gives us winning condition more than 50%

29. List the blocking condition

In this case, either if has to be only 'a' or all 3 members 'b, c, d' to give us a blocking Veranda condition of exactly 50%

30. List the losing conditions

Losing condition is possible only when Share are < 50%. Either it has to be less than 'a' alone or Less than all 3 b, c, d

31.

	(T)		Тот	
	(1)		T & I	1
	Skilled & Direct	Unskilled &	Skilled &	Unskilled &
	workers	Direct	indirect	indirect
(S) Short	6	8	10	20
(M) Medium	7	10	16	9
(L) Long	3	2	8	0

Set M = 7 + 10 + 16 + 9 = 42

J.K. SH

ころららとう a Veranda Enterprise

CA FOUNDATION - MATHEMATICS

32. Set
$$L \cap I = 8 [3^{rd} R 3^{rd} C]$$

33. Set
$$S \cap T \cap I [1^{St} R 3^{rd} C] = 10$$

34. $M \cup L = \begin{pmatrix} 7+10+16+19 \\ +3+2+8+0 \end{pmatrix} \cap (T \cup I) \begin{pmatrix} 6 & 10 & 20 \\ 7 & 16 & 9 \\ 3 & 8 & 0 \end{pmatrix} = 43$

35. $S' \cup (S' \cap I)'$

$$\mathbf{S'} \cap \mathbf{I} = \begin{pmatrix} 16 & 9 \\ 8 & 0 \end{pmatrix} : (\mathbf{S'} \cap \mathbf{I})' = \text{Entire table except} \begin{pmatrix} 16 & 9 \\ 8 & 0 \end{pmatrix}$$

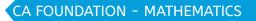
 $S' \cup (S' \cap I)' =$ Entire table = 99

36.
$$S \cup M = 1^{st} 2 \text{ Row}$$
 : $(S \cup M)^1 = \text{Last Row}$

37.
$$I \cap T = 3^{rd}$$
 Column, $(I \cap T)' = 1^{st}$, 2^{nd} , & 4^{th} column
 $6 + 8 + 20 + 7 + 10 + 9 + 3 + 2 + 0 = 65$
 $I \cap S = \begin{pmatrix} 16 & 9 \\ 8 & 0 \end{pmatrix}$; $S - (I \cap S) = 1^{st}$ Row

$$I \cap S = \begin{pmatrix} 16 & 9 \\ 8 & 0 \end{pmatrix}; S - (I \cap S) = 1^{st} Row$$

6+8+10+20 = 44

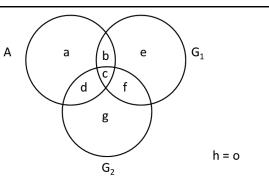

$$\therefore (\mathsf{I} \cap \mathsf{T})' > [\mathsf{S} - (\mathsf{I} \cap \mathsf{S})]$$

38. Using the formula,

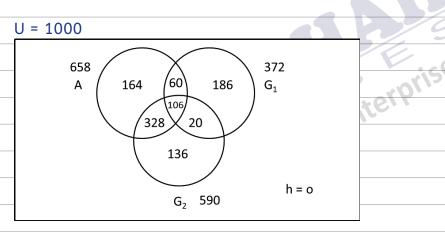
	(O) = (A D) = (D)	$(- C) - n (C \cap A) + n(A \cap B \cap C)$
$h(A \cup B \cup (C) = h(A) + h(B) +$	$h(C) = h(A \cap B) = h(B)$	$(\bigcirc (\bigcirc) = h ((\bigcirc \bigcirc \triangle) + h(\triangle \bigcirc B \bigcirc (\bigcirc))$
$\Pi(X \cup D \cup O) = \Pi(X) + \Pi(D)$		
· · · · · · · · · · · · · · · · · · ·		/ / / / /

As per the given data: there are 3 sets AGGREGATE GROUP - 1 GROUP - 2

Given:	n(A) =	658	;	$n(A \cap G_1)$ = 166
	n(G ₁) =	372	;	$n(A \cap G_2) = 126$
	n(G ₂) =	590	;	$n(A \cap G_3) = 434$
Now,	1000	=	658 + 372	2 + 590 - 166 - 126 - 434 + x
	1000	=	894 + x	
	∴× = 10)6		


x = No. students who failed in all 3 = 106

Note:-


In the given data, there are no students who have passed in aggregate, G_1 , G_2

$(\mathsf{A} \cup \mathsf{G_1} \cup \mathsf{G_2})'$

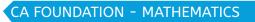
U = 1000

b + c = 166 \rightarrow	b + 106 = 166 ; b = 60	
	106 + f = 126 ; f = 20	
	106 + d = 434 ; d = 328	
c + d = 434		

c + f = 126

Now, 658 - (328 + 106 + 60)	= a = 164	
372 - (60 + 106 + 20)	= e = 186	
590 - (328 + 106 + 20)	= g = 136	

39. Aggregate but not group $2 \rightarrow 164 + 60 = 224$

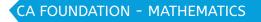


al	eranda Enterprise
40.	Group – 1 but not aggregate \rightarrow 186 + 20 = 206
41.	Group – 2 but not in group 1 \rightarrow 328 + 136 = 464
42.	Aggregate OR Group – 2 but not group – 1
	= 164 + 328 + 136 = 628
43.	Aggregate but not in G ₁ or G ₂ [only aggregate]
	= 164
 	8
 	ise ise
 	S terpi
 	Serprise Add Enterprise
	C Vec.

K. SHAH			ca foundation - mathematics
a Vơranda Enterprise			T 4 0
		SSMENT TES	
		THEORY	
	17 Ques	stion, 17 Marks	
The number of no	n-empty subsets o	of a set consisting	g of 10 elements is:
a) 1023	b) 1024	c) 2 ⁹	d) 2 ¹⁰ – 2
d, 1025	5,1024	C) 2	
Two finite sets wit	th p, and q as eler	ments. The total	number of subsets of the first
			ne second. The values of p and
q are:			
a) 5,7	b) 7, 6	c) 8, 7	d) 9, 7
		-	·
If A and B be two	sets containing 3 a	and 6 elements re	espectively, then the minimum
and maximum nu	mber of elements	of (A U B) respect	ively is:
a) 6, 9	b) 9, 6	c) 3, 6	d) 6, 3
			19
In a group of 80	people, 45 drink t	ea but not coffee	e and 52 drink tea. Then how
many drink coffee	but not tea?	19	rise
a) 28	b) 27	S c) 35	d) 52
		YO F.	
The number of ele	ements in $P[P(P(\Phi))]$] is:	
a) 0	b) 2	c) 5	d) 4
	<u>0</u>		
Which of the follo	wing is a singletor	ı set?	
a) {x : x = 5, x €	N}	b) {x : x =	6, x € Z}
c) {x : x ² + 2x + 1	= 0, x € N}	d) $\{x : x^2 = 1\}$	7,×€N}
In a survey, it is fo	und that 80% child	dren like A and 7	5% of the children like B. If X%
like both A and B,	then:		
a) X = 55	b) X < 55	c) X ≥ 55	d) 55 ≤ X ≤ 75
In a school, 21 p	lay basketball, 26	play hockey and	d 29 play football. If 14 play
hockey and basket	ball, 12 play footb	all and basketba	ll, 15 play hockey and football
and 8 play all the	three games, the	n the number of p	players who play only football
is:			
a) 10	b) 20	c) 21	d) 43

	J. CL	LASSES	CA FOUNDATION - MATHEMATICS						
	ء <i>ا</i> 9.	Veranda Enterprise In a college of 10,000 students, it was found that	40% students ont for electronics						
	5.	20% students opt for communications, 10% student							
		•							
		opt for both electronics and communication, 3%	•						
		and computers and 4% opt for electronics and co	•						
		opt for all the three. Find the number of students							
_		a) 3100 b) 3300 c) 290	d) 1400						
_									
	10.	5 7 7	•						
		20% students opt for communications, 10% studer							
		opt for both electronics and communication, 3% st	udents opt for communication and						
		computers and 4% opt for electronics and compu	iters, and 2% of the students opt						
		for all the three. Find the number of students wh	o don't opt for any of electronics,						
		computers and communication.	8						
		a) 4000 b) 3300 c) 4200	d) 5000						
	11.	In a college of 10,000 students, it was found that	40% students opt for electronics,						
		20% students opt for communications, 10% studer	nts opt for computers, 5% students						
		opt for both electronics and communication, 3% students opt for communication							
		and computers and 4% opt for electronics and co	omputers, and 2% of the students						
		opt for all the three. Find the number of students	who opt for only communication.						
		a) 2000 b) 1400 c) 2500	d) 1800						
	12.	In a survey conducted among certain people, 60	take tea and 30 take only coffee.						
		If 10 people take both, then how many people we	ere involved in the survey? [All the						
		people take at least one of them]							
		a) 80 b) 90 c) 100	d) 110						
		(For Q. No. 13 – 17)							
		During quality control checking of a sample of 10	000 TV sets it was found that 100						
		sets had defective picture tubes, 75 sets had a de	fective sound system, 80 sets had						
		defective remote control, 20 sets had a defective	e picture and remote controls, 30						
		sets had defective picture tube and a sound syst	tem, 15 sets had defective sound						
		system and defective remote control system and	5 sets had all the three defects.						
	13.	Number of TV sets having at least one defect is:							
		a) 195 b) 185 c) 175	d) 165						

J.K. SHAH C L A S S E S a Veranda Enterprise


14.	Find the numb	er of TV sets having I	no defects?		
	a) 705	b) 805	c) 605	d) 300	
15.	Find the numb	er of TV sets having o	only defective pic	ture tubes.	
	a) 45	b) 55	c) 65	d) 75	
16.	Find the numb	er of TV sets having o	defective sound s	ystem only.	
	a) 45	b) 55	c) 35	d) 25	
17.	Find the numb	er of TV sets having o		control only.	
	a) 50	b) 60	c) 70	d) 80	
				®	
				1	
				9	
				:58	
			erre verr		
 			Ente		
		r r	S Entern		
		C Vero	-		
 		3			
			328		
			1/0		

and the second

EXPLANATORY ANSWERS

 	ANSWERS
 1.	Number of non empty subsets = $2^{10} - 1 = 1024 - 1 = 1023$. Option A
 2.	$2^{p} = 2^{q} + 64.$
 	Only option placement shall help.
 	$2^7 = 128 = 2^6 + 64$. Option B
 3.	Minimum (A U B) = Max of A or B = 6
	Maximum (A U B) = n(A) + n(B) = 9
	Option A
	8
4.	People drinking both tea and coffee = 52 - 45 = 7
	People drinking only coffee and not tea = 80 - 52 = 28; Option A
	0/9
5.	$P(\Phi) = \{\Phi\}$
	$P\{P(\Phi)\} = \{\Phi, \{\Phi\}\}$
	$P\{P(\Phi)\} = \{\Phi, \{\Phi\}\}\$ $P[P(P(\Phi))] = \{\Phi, \{\Phi\}, \{\{\Phi\}\}, \{\Phi, \{\Phi\}\}\}\$
	Thus $n\{P[P(P(\Phi))]\} = 4$; Option D
6.	Set a = {5}
	Set b = {-6, 6}, is not a singleton set
	Set c = (x + 1) ² = 0, is not a singleton set
	Set d = x² = 7, is not a singleton set; Option A
 	Martine V 75
 7.	Maximum X = 75
 	For Minimum: 100 = 80 + 75 - X; X = 55
 	X lies between 55 and 75, both inclusive; Option D
 8.	Students playing only football = 29 - 12 - 15 + 8 = 10. Option A
 9.	Only electronics = 40% - 5% - 4% + 2% = 33% of 10000 = 3300. Option B
 10.	Students opted for any course = 40% + 20% + 10% - 5% - 3% - 4% + 2% = 60%
	Students not opting for any course = 40% of 10000 = 4000. Option A

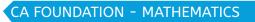
J.K. SHAH C L A S S E S a Veranda Enterprise

11. Only communications = 20% - 5% - 3% + 2% = 14% of 10000 = 1400. Option B
12. People involved = 60 + (30 + 10) - 10 = 90. Option B
13. At least one defect = 100 + 75 + 80 - 20 - 30 - 15 + 5 = 195. Option A
14. No defects = 1000 - 195 = 805 (Refer explanation of Q. No. 21). Option B

Veranda Enterprise

- 15. Only defective picture tubes = 100 20 30 + 5 = 55. Option B
- 16. Only defective sound system = 75 30 15 + 5 = 35. Option C
- 17. Only defective remote control = 80 20 15 + 5 = 50. Option A

SELF ASSESSMENT TEST 13 RELATIONS AND FUNCTIONS


16 Question, 16 Marks

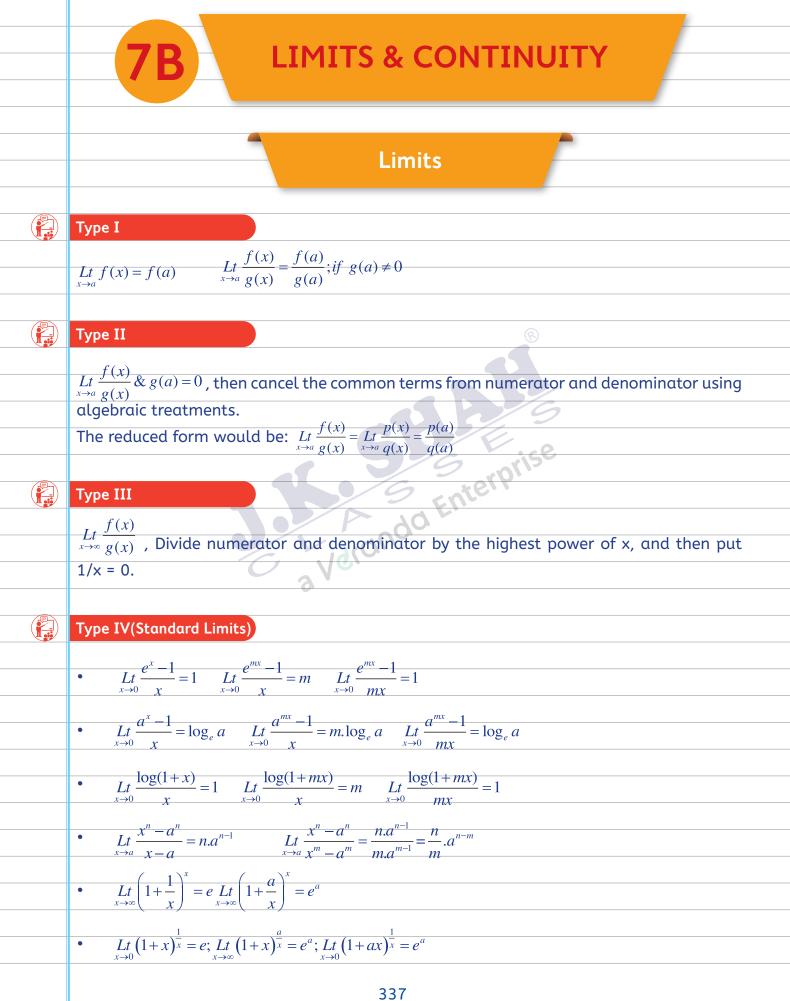
1.	If the ordered pairs (x – 1, y + 3) and (2, x + 4) are equal, what is the value of x and					
	y?					
	a) 3,3	b)	4, 3			
	c) 3, 4	d)	Can't be determined			
2.	If A = {x x \in W, x < 3}, B = {x x \in N, 2 \leq	x < 4	4} and C = {3, 4}, find the set (A U B) X C.			
	a) (A X C) ∩ (B X C)	b)	(A X C) U (B X C)			
	c) (A X B) U (A X C)	d)	$(A \times C) \cap (A \times B)$			
			®			
3.	Let A = {1, 2, 3}, B = {1, 2, 3, 4} and R = {	((x, y	$(x, y) \in A \times B, y = x + 1$. Which of the			
	following represents R?					
	a) R = {(1, 2), (2, 3), (3, 4), (4, 5)}	b)	$R = \{(1, 2), (2, 3), (3, 4)\}$			
	c) R = {(2, 1), (3, 2), (3, 4)}	d)	$R = \{(1, 2), (3, 2), (4, 3)\}$			
		- 4	rorise			
4.	Let R = {(x, y) : x, y \in W, 2x + y = 8}. Find	the	domain of R.			
	a) {1, 2, 3, 4}	b)	{0, 1, 2, 3, 4}			
	c) {-1, 1, 2, 3, 5}	d)	None of the above			
	210					
5.	Let R = $\{(x, y) : x, y \in W, 2x + y = 8\}$. Find	the	range of R.			
	a) {0, 2, 4, 6, 8}	b)	{2, 4, 6, 8}			
	c) {10, 8, 4, 2, 0}	d)	None of the above			
6.	If A and B are finite sets such that n(A) =	m a	nd n(B) = k, find the number of relations			
	from A to B.					
	a) 2 ^{m+k}	b)	2 ^m .2 ^k			
	c) 2 ^{mk}	d)	2 ^m – 2 ^k			
7.	Let A = {2, 4, 6, 8} and B = {0, 6, 8, 9, 10). Fi	nd the elements of S = (A \cap B) X (A – B),			
	corresponding to the relation "is a mult	iple	of".			
	a) {(6, 2), (8, 2)}	b)	{(2, 6), (2, 8), (4, 8)}			
	c) {(6, 2), (8, 2), (8, 4)}	d)	None of the above			

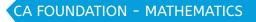
J.K. SHAH C L A S S E S a Veranda Enterprise

a۷	a Veranda Enterprise				
8.	lf f	(x + 1) = 3x + 5, find	f(2×).		
	α)	6x + 5		b)	6x + 10
	c)	6x + 2		d)	3x + 10
9.	lf -	$f(x) = \frac{x^2 - 3x + 1}{x - 1}$, find t	he value of f(-2)	+ f(1	/3).
	α)	- 32/6		b)	- 23/6
	c)	32/6		d)	23/6
10.	A f	function 'f' is defined	$f(x) = x^2 - 3, x$	× E R	, and – $2 \le x \le 2$. Find f(3).
	α)	6		b)	- 6
	c)	12		d)	Does not exist.
11.	A f	function 'f' is defined	$f(x) = x^2 - 3, x$	× E R	, and - $2 \leq x < 2$. Find x so that f(x) = 6.
	α)	3		b)	- 3
	c)	Both a) and b) abo	ve	d)	None of the above
					2/9
12.	A f	function f is defined	on the set of inte	gers	as follows:
	f(x)) = x + 1	if $0 \le x < 2$	20	2 rpris-
		= 2x - 1	if $2 \le x \le 4$		nter
		= 3x - 10	$if 0 \le x < 2$ $if 2 \le x < 4$ $if 4 \le x < 6$	0	
	Wł	nich of the following	represents f in t	he ro	aster form?
	α)	{(0, 1), (2, 2), (2, 3)			
	b)	{(0, 1), (2, 2), (2, 3)	, (3, 3), (4, 2), (5,	5)}	
	c)	{(0, 1), (2, 2), (2, 3)	, (3, 5), (4, 2), (5,	5)}	
	d)	{(0, 1), (1, 2), (2, 3)	, (3, 5), (4, 2), (5,	5)}	
13.		function f is defined		gers	as follows:
	f(x)) = x + 1	if 0 ≤ x <2		
		= 2x - 1	if $2 \le x \le 4$		
 		= 3x - 10	if 4 ≤ x <6		
		hich of the following	represents range	e of f	?
		{1, 2, 3, 4, 5}			
		{1, 2, 3, 5}			
		{0, 1, 2, 3, 4, 5}			
	d)	{0, 1, 2, 3, 5}			

J.K. SHAH	CA FOUNDATION - MA	THEMATICS
a Veranda Enterprise		
14. A function f on th	ne set R of real numbers is defined as:	
f(x) = 2x + 1	for $0 \le x \le 2$	
= x - 2	for $2 \le x \le 5$	
What type of fun	ction is f?	
a) One-One fun	ction	
b) Many-One fu	Inction	
c) Both a) and b	above	
d) Neither a) no	r b) above	
15. A function f on th	ne set R of real numbers is defined as:	
f(x) = 2x + 1	for $0 \le x \le 2$	
= x - 2	for $2 \le x \le 5$ ®	
Find the value of	x for which $f(x) = \frac{1}{2}$.	
a) 5/2	b) 2/5	
c) – ½	d) None of the above	
16. R is a set of all re	eal numbers. If f : $R \rightarrow R$ is defined by f(x) = 2x + 1 and g	$: R \rightarrow R by$
g(x) = 1 – 2x for c	all $x \in R$, which of the following is TRUE?	
a) fog(1) < gof(1	b) fog(1) > gof(1)	
c) Neither a) no	r b) d) Both a) and b)	

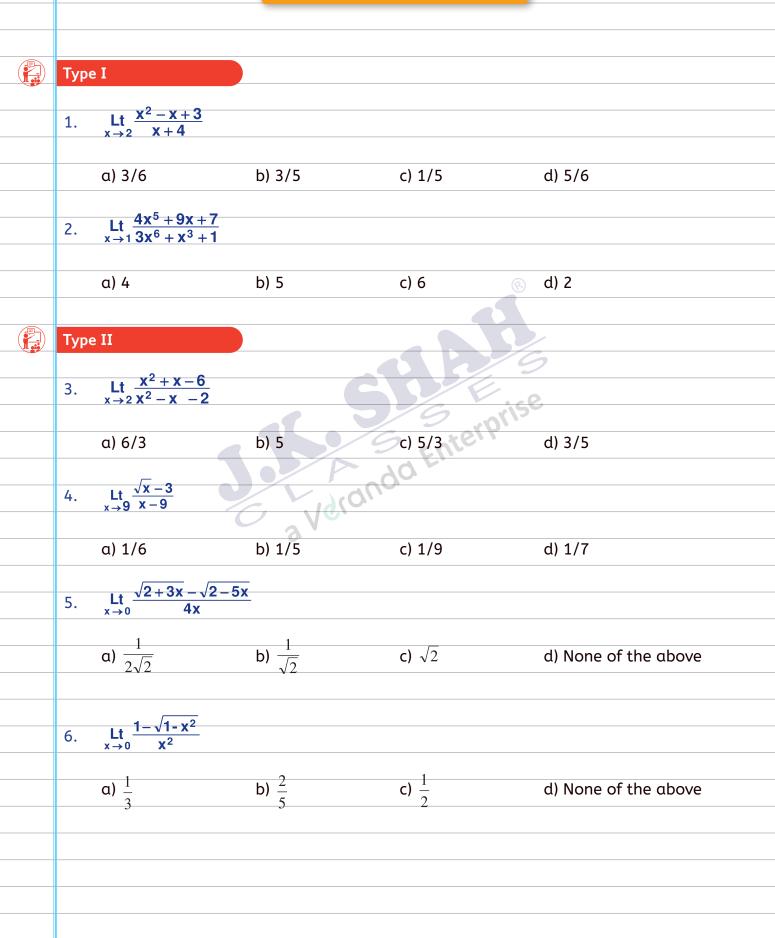
and the second

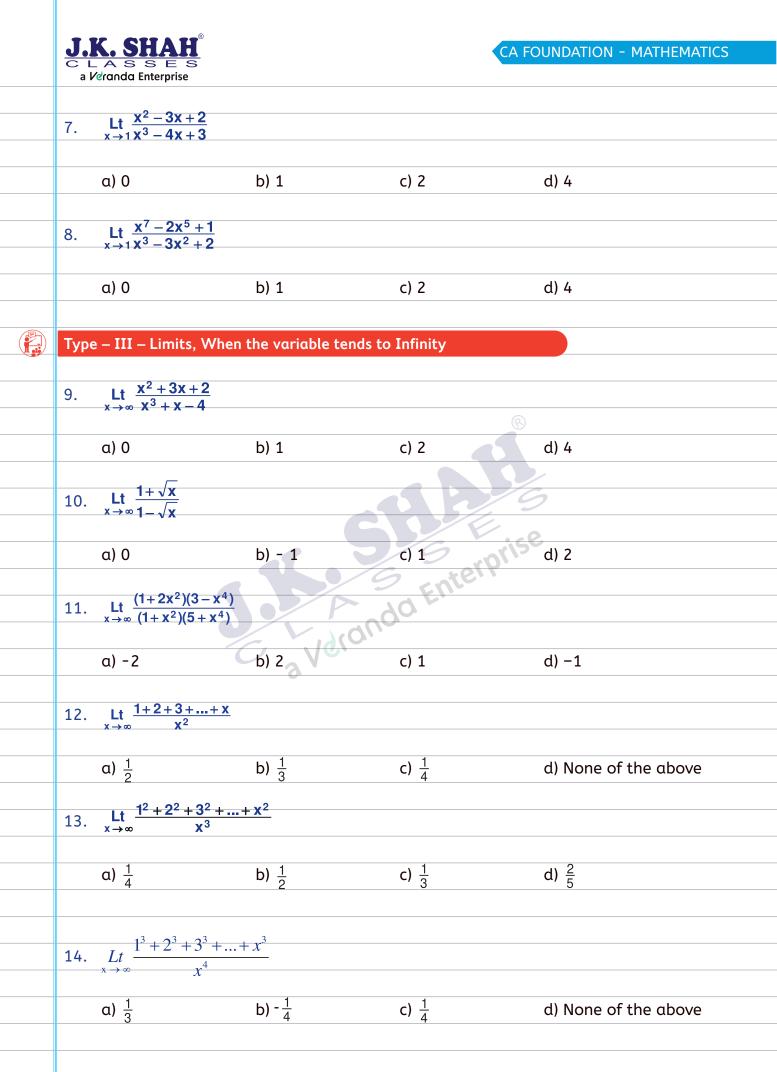

EXPLANATORY	7
ANSWERS	

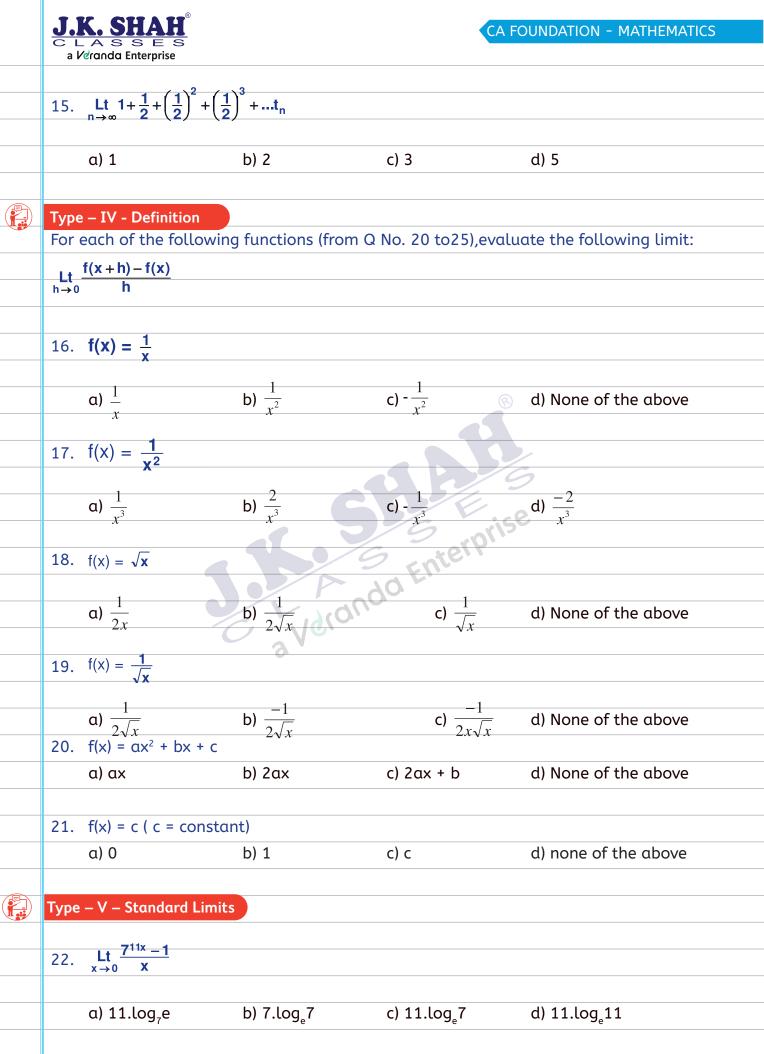

1.	(x - 1) = 2; x = 3
 	(y + 3) = (x + 4) = 7; y = 4
	(x, y) = (3, 4). Option C
2.	A = {0, 1, 2}
	B = {2, 3}
	C = {3, 4}
	A U B = {0, 1, 2, 3}
	(A U B) x C = {(0, 3), (1, 3), (2, 3), (3, 3), (0, 4), (1, 4), (2, 4), (3, 4)}
	(A X C) = {(0, 3), (1, 3), (2, 3), (0, 4), (1, 4), (2, 4)}
	(B X C) = {(2, 3), (2, 4), (3, 3), (3, 4)}
	(A X C) U (B X C) = {(0, 3), (1, 3), (2, 3), (3, 3), (0, 4), (1, 4), (2, 4), (3, 4)}
	(A U B) X C = (A X C) U (B X C)
	Option B
	S spritte
3.	$A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)\}$
	R have pairs where y = x + 1
	R have pairs where y = x + 1 R = {(1, 2), (2, 3), (3, 4)} Option B
	Option B
4.	$R = \{(0, 8), (1, 6), (2, 4), (3, 2), (4, 0)\}$
	Domain of R = {0, 1, 2, 3, 4}
	Option B
5.	$R = \{(0, 8), (1, 6), (2, 4), (3, 2), (4, 0)\}$
	Range of R = {8, 6, 4, 2, 0}
	Option A
6.	Number of relations from A to B = Subsets of (Number of elements in the set A X B) = 2 ^{mk}
	Option C

	K. SHAH [®]
	CA FOUNDATION - MATHEMATICS
	$A = \{2, 4, 6, 8\}$
	$B = \{0, 6, 8, 9, 10\}$
	$(A \cap B) = \{6, 8\}$
	$(A - B) = \{2, 4\}$
	$S = (A \cap B) \times (A - B) = \{(6, 2), (8, 2), (6, 4), (8, 4)\}$
	Of these the relation "is a multiple of" is followed by (6, 2), (8, 2), (8, 4)
	Thus R = {(6, 2), (8, 2), (8, 4)}, Option C
8.	f(x + 1) = 3x + 5
	f(y) = 3(y - 1) + 5 = 3y + 2
	f(2x) = 3(2x) + 2 = 6x + 2
	Option C
	®
9.	$f(x) = \frac{x^2 - 3x + 1}{x - 1}$
	$f(-2) = \frac{(-2)^2 - 3(-2) + 1}{(-2) - 1} = \frac{4 + 6 + 1}{2 - 1} = \frac{11}{2}$
	$f\left(\frac{1}{3}\right) = \frac{\frac{1}{9} - 3 \cdot \frac{1}{3} + 1}{1} = \frac{\frac{1}{9}}{-2} = \frac{-1}{6}$
	(3) $\frac{1}{3}$ -1 $\frac{1}{3}$ 0 0
	, diana
	f(-2) + f(1/3) = -11/3 - 1/6 = -69/18 = -23/6
	Option B
10.	Domain of x : - 2 \leq x < 2. 3 does not belong to the domain of f. Thus f(3) does not
	exist.
	Option D
11.	$-2 \leq x < 2 \rightarrow 0 \leq x^2 \leq 4 \rightarrow -3 \leq (x^2 - 3) \leq 1$
	Range of f = {y : y \in R and - 3 \leq y \leq 1}
	Now, 6 does not belong to the range of f, there is no x in domain of f so that $f(x)=6$.
	Option D

J.K. SHAH CLASSES
 a Veranda Enterprise
 12. $f(x) = x + 1$ if $0 \le x < 2 \rightarrow (0, 1), (1, 2)$
 = $2x - 1$ if $2 \le x < 4 \rightarrow (2, 3), (3, 5)$
 = $3x - 10$ if $4 \le x < 6 \rightarrow (4, 2), (5, 5)$
Thus function f in roaster form is {(0,1), (1, 2), (2, 3), (3, 5), (4, 2), (5, 5)}
Option D
13. Thus function f in roaster form is {(0,1), (1, 2), (2, 3), (3, 5), (4, 2), (5, 5)}
Range of f = {1, 2, 3, 5}
Option B
14. The function f is many-one because $f(1/2) = 2(1/2) + 1 = 2$ and $f(4) = 4 - 2 = 2$,
therefore the elements ½ and 4 of the domain have the same image 2.
Option B 🛞
15. We need to find the range of f
$0 \le x < 2 \rightarrow 0 \le 2x < 4 \rightarrow 1 \le (2x + 1) < 4 \rightarrow 1 \le y < 5$
$2 \le x \le 5 \rightarrow 0 \le (x - 2) \le 3 \rightarrow 0 \le y \le 3$
 On combining both we get, Range of f: $0 \le y < 5$
Now y = $\frac{1}{2}$, lie in the range $0 \le y \le 3$
 Thus, $f(x) = \frac{1}{2} = (x - 2)$. Thus, $x = 2 + \frac{1}{2} = \frac{5}{2}$
Option A
 Option A
 16. $f(x) = 2x + 1$
 g(x) = 1 - 2x
 fog(x) = f(g(x)) = 2g + 1 = 2(1 - 2x) + 1 = 3 - 4x
 fog(1) = 3 - 4 = -1
 gof(x) = g(f(x)) = 1 - 2f = 1 - 2(2x + 1) = -4x - 1
 gof(1) = -4 - 1 = -5
 Option B







CLASSWORK SECTION

	®			
J.]	K. SHAH		CA	FOUNDATION - MATHEMATICS
 a k	/dranda Enterprise			
 22	$\operatorname{Lt}_{x \to 0} \frac{e^{4x} - 1}{x}$			
 23.	$x \rightarrow 0$ X			
	a) 0	b) 4	c) 8	d) – 4
 	u) u	D) 4	0.0	u) - 4
 24.	$Lt_{x\to 0}\frac{2^{-x}-1}{x}$			
 24.	$x \rightarrow 0$ X			
 	a) - log_2	b) log 3	c) log 2	d) none of the above
	- 0	<i>b</i> , tog 5	c, tog _e 2	
 25.	$\frac{\text{Lt}}{x \to 0} \frac{e^{-2x} - 1}{x}$			
 23.	$x \rightarrow 0$ X			
 	a) 1	b) 2	c) -1	d) -2
 			-, _ R	
 26.	$\frac{Lt}{x \to 0} \frac{e^{\alpha x} - e^{\beta x}}{x}$			/
	$x \rightarrow 0$ χ			~
 	a) α + <i>β</i>	b)α.β	c) α - β d) N	lone of the above
 27.	$Lt_{x\to 0} \frac{3^x - 2^x}{x}$		9	Se
	x→0 x		2 - nterp	
	a) log _e (3.2)	b) $\log_{e}\left(\frac{2}{3}\right)$	c) $\log_{e}\left(\frac{3}{2}\right)$ d) N	Ione of the above
 			(2)	
 28.	$\frac{Lt}{x \to 0} \frac{e^{\alpha x} + e^{\beta x} - 2}{x}$			
 	$x \rightarrow 0$ x			
	α) α + β	b) α . β	c) α - <i>β</i>	d) None of the above
 29.	$Lt_{x \to 0} \frac{e^{5x} - e^{3x} - e^{2x} + 1}{x^2}$	1		
	α) 3	b) 2	c) 6	d) -6
	6X 2X 2X 1			
30.	$Lt_{x \to 0} \frac{6^{x} - 3^{x} - 2^{x} + 1}{x^{2}}$			
	a) log _e 3 + log _e 2		b) log _e 3 - log _e 2	
	c) log _e 6		d) log _e 3 . log _e 2	
	- (Y+h)2 - y2			
 31.	$\frac{Lt}{h \to 0} \frac{e^{(x+h)^2} - e^{x^2}}{h}$			
	a) e^{x^2}	b) xe^{x^2}	c) $2xe^{x}$	d) $2 x e^{x^2}$
		344	1	
		3/11	1	

J.K. SHAH CLASSES a Veranda Enterprise

2.2	$\log(x+h) - \log(x+h)$	bgx		
32.	$h \rightarrow 0$ h			
	a) x	b) 1	c) $\frac{1}{r}$	d) None of the above
	$(\mathbf{x} + \mathbf{h})^n - \mathbf{x}^n$		λ	
33.	$Lt \frac{(x+h)}{h}$			
	i) n x ⁿ⁻¹	i) n a ⁿ⁻¹	k) a ⁿ⁻¹	l) n².a ⁿ⁻¹
	1/ 11. ×	J) 11.a	N/ U	i i i i i i i i i i i i i i i i i i i
34.	$\operatorname{Lt}_{x \to \infty} \left(1 + \frac{a}{x} \right)^x$			
	a) e	b) eª	c) e ³	O d) e ^{4α}
35	Lt $\left(\frac{\mathbf{x}+6}{\mathbf{x}+6}\right)^{(\mathbf{x}+6)}$			16
55.	$x \to \infty (x+1)$			
	a. e	b. e²	C. e ³	d. e⁵
			9 Enter	
26	$1 + \frac{1}{x}$		dd -	
36.	$x \rightarrow 0$	C Vdr		
	a.e	b. e ^{2a}	c. e ^{3α}	d. e ^α
	2 h			
37.	$\operatorname{Lt}_{x\to 2} \frac{ax^2 - b}{x - 2} = 4$	find a & b.		
	a 1 2	h 1 0	c 1 1	d 1 /
			C. 1, 1	d. 1, 4
38.	$Lt_{x \to 1} \frac{ax^2 + bx - 2}{x - 1} =$	^{= 3} , find a & b.		
	- 4 4	h 4 0	4 2	
	α. 1, 1	D. 1, 2	C. 1, 3	d. 1, 4
			342	
	33. 34. 35. 35. 36.	a) x 33. $\frac{Lt}{h \to 0} \frac{(x+h)^n - x^n}{h}$ i) n. x^{n-1} 34. $\frac{Lt}{x \to \infty} (1 + \frac{a}{x})^x$ a) e 35. $\frac{Lt}{x \to \infty} (\frac{x+6}{x+1})^{(x+6)}$ a. e 36. $\frac{Lt}{x \to 0} \{1 + ax\}^{\frac{1}{x}}$ a. e 37. $\frac{Lt}{x \to 2} \frac{ax^2 - b}{x - 2} = 4$, a. 1, 2	a) x b) 1 33. $\lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$ i) n. x^{n-1} j) n. a^{n-1} 34. $\lim_{x \to \infty} (1 + \frac{a}{x})^x$ a) e b) e^a 35. $\lim_{x \to \infty} (\frac{x+6}{x+1})^{(x+6)}$ a. e b. e^2 36. $\lim_{x \to 0} \{1 + ax\}^{\frac{1}{x}}$ a. e b. e^{2a} 37. $\lim_{x \to 2} \frac{ax^2 - b}{x-2} = 4$, find a & b. a. 1, 2 b. 1, 3 38. $\lim_{x \to 1} \frac{ax^2 + bx - 2}{x-1} = 3$, find a & b.	a) x b) 1 c) $\frac{1}{x}$ 33. $\lim_{n \to 0} \frac{(x+h)^n - x^n}{h}$ i) n. x^{n-1} j) n. a^{n-1} k) a^{n-1} 34. $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x$ a) e b) e^a c) e^3 35. $\lim_{x \to \infty} \left(\frac{x+6}{x+1}\right)^{(x+6)}$ a. e b. e^2 c. e^3 36. $\lim_{x \to 0} \{1 + ax\}^{\frac{1}{x}}$ a. e b. e^{2a} c. e^{3a} 37. $\lim_{x \to 2} \frac{ax^2 - b}{x-2} = 4$, find a & b. a. 1, 2 b. 1, 3 c. 1, 1 38. $\lim_{x \to 1} \frac{ax^2 + bx - 2}{x-1} = 3$, find a & b. a. 1, 1 b. 1, 2 c. 1, 3

CONCEPT OF CONTINUITY OF A FUNCTION

A function f (x) is said to be Continuous at a particular point, x = a, if it satisfy the following conditions:

 $\lim_{x \to x^{-1}} f(x) = \lim_{x \to x^{+1}} f(x) = f(a)$

Left hand = Right hand =Functional

Limit (LHL) Limit (RHL) Value

Note1: Equality of RHL and LHL is treated as a condition for existence of limit i.e, limit of a function will exist if LHL=RHL

Note2: For Continuity, equality of the functional value at that point is also necessary.

Note3: For all Continuous functions, limit must exist, but existence of limit, is not a sufficient condition for continuity of a function.

Note4: Sum, difference , product and quotient of all continuous functions are always continuous.

Note5: All polynomials are continuous.

Note6: If a given function is of the form $\frac{f(x)}{g(x)}$, where both f (x) and g(x) are polynomials in x, it will be everywhere continuous except at the points at which it is undefined i.e; points of discontinuity of such functions are the points where g(x) =0.

Example: In each of the following cases, discuss continuity of the functions at x=5

i)
$$f(x) = \frac{x^2 - 25}{x - 5}$$

Solution: LHL= $\lim_{x \to 5^+} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5^+} \frac{2x}{1} = 2 \times 5 = 10$
RHL= $\lim_{x \to 5^+} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5^+} \frac{2x}{1} = 2 \times 5 = 10$

$$f(5) = \frac{25 - 25}{5 - 5} = \frac{0}{0} (undifined)$$

since,LHL = RHL \neq f (5), f (x)is discontinuous atx = 5,although the limit has existed.

ii)
$$f(x) = \frac{x^2 - 25}{x - 5}$$
, when $x \neq 5$

=10, when x=5

Solution: LHL=10=RHL taken from(i)

Given , f (5) =10 since, LHL=RHL= f (5), f (x) is continuous at x = 5

iii)
$$f(x) = \frac{x^2 - 25}{x - 5}$$
, when $x \neq 5$

=2, when x = 5

Solution: LHL=RHL=10 taken from(ii)

Given , f (5) = 2 since, LHL=RHL \neq f (5), f (x) is discontinuous at x = 5

Example 2: Find the points of discontinuity of the function, $f(x) = \frac{(x^2 - 3x + 2)}{(x^2 - 5x + 6)}$

Solution: The given function will be continuous at all points, except at the points at which it is undefined i.e the points at which its denominator is $0.(x^2-5x+6) = 0$

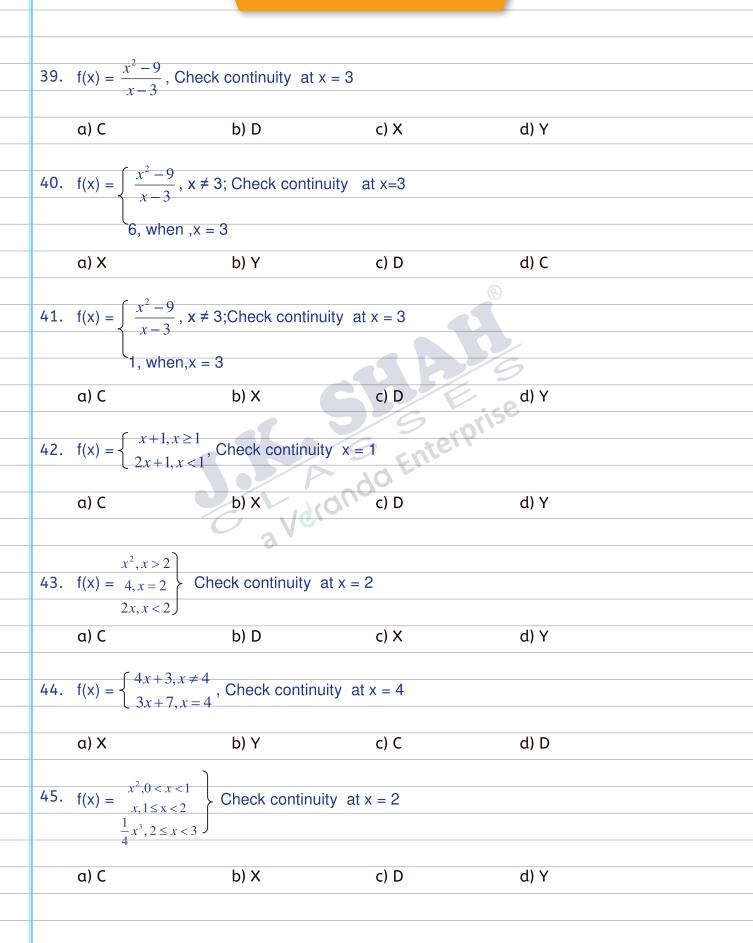
Points of discontinuity are 2 and 3

⇒x=2,3

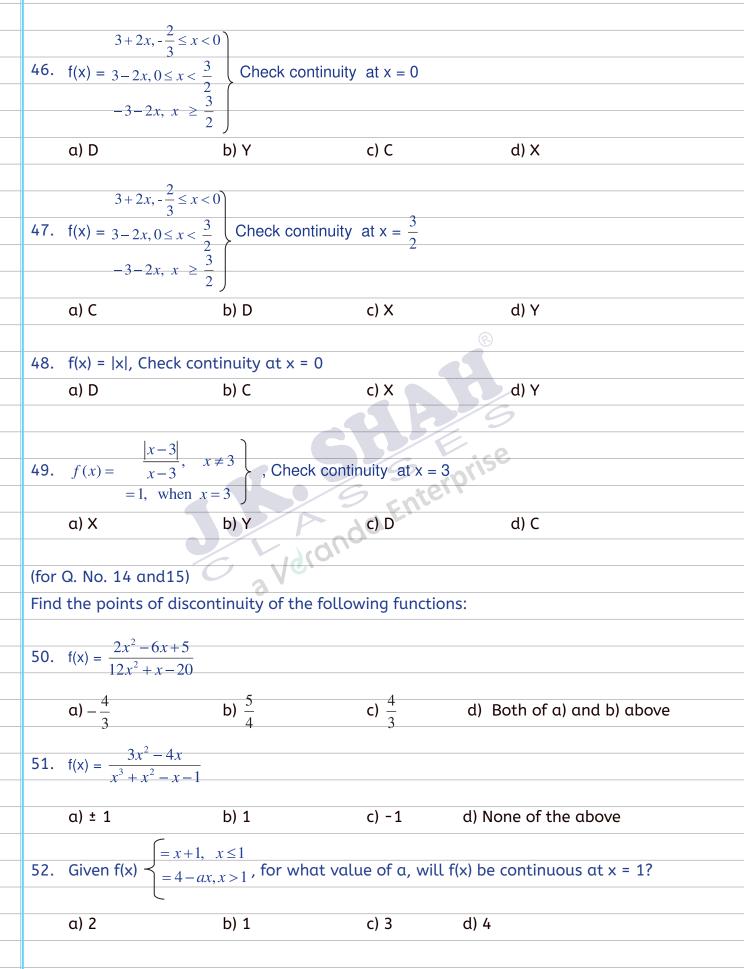
⇒(x-2) (x-3)=0

WORKING CODES for Q. No. 1 to 18

Mark C : if function is continuous at the given point


Mark D : if function is discontinuous at the given point

Mark X : if nothing can be said about the continuity of the function at the given point


Mark Y : if function is neither continuous nor discontinuous at the given point

CLASSWORK SECTION

 $= x+1, x \le 1$ = 3-ax², x > 1, for what value of a, will f(x) be continuous at x = 1? Given f(x) 53. α. 2 c. 8 d. 6 b. 1 54. Given f(x) = $\frac{2x^2-8}{x-2}$ is undefined at x = 2. What value must be assigned to f(2), if f(x is to be continuous at x = 2? a. 6 b. 2 c. 8 d. 1 Ada Enterpris

8

CA FOUNDATION - MATHEMATICS

BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

DIFFERENTIAL CALCULUS

THEORY

Let y = f(x) be a continuous function. Then, the value of y depends upon the value of x and it changes with a change in the value of x. We use the word increment to denote a small change, i.e., increase or decrease in the values of x and y.

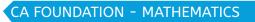
Let Δy be an increment in y corresponding to an increment Δx in x.

Then, $\frac{dy}{dx} = Lt \frac{f(x+h) - f(x)}{h}$. This limit, if it exists finitely, is called the derivative or differential coefficient of y = f(x) with respect to x and is denoted by $\frac{dy}{dx}$ or f'(x) or y_1 . The process of finding the derivative interval Veranda Ente finding the derivative is known as differentiation.

Standard Derivatives

$\frac{d}{dx}x^n = n \cdot x^{n-1}$	$\frac{d}{dx}(c) = 0$	$\frac{d}{dx}x = 1$	$\frac{d}{dx}\frac{1}{x^n} = -\frac{n}{x^{n+1}}$	
$\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$	$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$	$\frac{d}{dx}\frac{1}{\sqrt{x}} = -\frac{1}{2x\sqrt{x}}$	$\frac{d}{dx}e^x = e^x$	
$\frac{d}{dx}e^{mx} = m.e^{mx}$	$\frac{d}{dx}a^x = .a^x . \log_e a$	$\frac{d}{dx}a^{mx} = m.a^{mx}.\log_e a$	$\frac{d}{dx}\log_e x = \frac{1}{x}$	

Product and Quotient Rule


$$\frac{d}{dx}u.v = u.\frac{d}{dx}v + v.\frac{d}{dx}u \qquad \qquad \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v.\frac{du}{dx} - u.\frac{dv}{dx}}{v^2}$$

J.K. SHAH CLASSES a Veranda Enterprise

 a Veranda Enterprise
Parametric Functions
Sometimes x and y are given as function of another variable t. Then t is called a parameter. Let
x = f(t) and $y = g(t)$, then:
dy
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
 $\frac{dx}{dt}$
Implicit Functions
When the variables x and y are not explicitly or clearly defined in terms of each other ,the
function takes an implicit form. We differentiate both sides of the equation term wise, keeping
in mind that $\frac{d}{dx}2y = 2 \cdot \frac{dy}{dx} & \& \frac{d}{dt}m^2 = 2m \cdot \frac{dm}{dt}$ and so on.
 <u> </u>
Function of a Function – Chain Rule
If $y = f(t)$ and $t = g(x)$, then $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$, and the rule can be further extended.
dx dt dx
Logarithmic Differentiation – Log Rule
When the given function is a power of some expression or a product of expressions, we take
logarithm on both sides and differentiate the implicit functions so obtained.
 If $y = f(x)^{g(x)}$, then; $\log y = g(x) \cdot \log f(x)$ Then proceed.
Senteri
Slope – Applied Differentiation
 For $y = f(x)$, slope at any point (x_1, y_1) is given by $\frac{dy}{dx_{at x_1, y_1}}$
31
Higher Order Derivatives
 Let $y = f(x)$ be a differentiable function of x whose second and higher order derivatives exists.
The first, second, third, and the nth derivatives of this function are denoted by;
 $dy/dx, d^2y/dx^2, d^3y/dx^3,, d^ny/dx^n \text{ or } y_1, y_2, y_3,, y_n \text{ or } f'(x), f''(x),$

Integral Calculus

THEORY

Fundamental Integrals

r^{n+1}	c dx = 1	c dx = -	$\int dx = x + C$	I
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \frac{dx}{x^n} = \frac{1}{(1-n).x^{n-1}} + C$	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$	$\int dx = x + C$	
n + 1		VX		
$\int \frac{dx}{x} = \log x + C$	$\int e^{x} dx = e^{x} + C$	$\int e^{mx} dx = \frac{e^{mx}}{m} + C$	$\int a^{x} dx = \frac{a^{x}}{a^{x}} + C$	
$\int_{x} \int_{x} \int_{x$	J	$\int e^{-ax} = \frac{1}{m} + e^{-ax}$	$\int a^x dx = \frac{a^x}{\log_e a} + C$	
$\int a^{mx} dx = \frac{a^{mx}}{m \log_e a} + C$				
\dots \mathcal{B}_e \mathcal{A}				

Integration by Parts

 $\int u.v \, dx = u. \int v dx - \int \left\{ \frac{du}{dx} \int v dx \right\} dx$

Standard Integrals

•
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$
, Given $(|x| > |a|)$
• $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$, Given $(|x| > |a|)$

•
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log \left| \left(x + \sqrt{x^2 \pm a^2} \right) \right| + C$$

•
$$\int \sqrt{x^2 + a^2} dx = \frac{x\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

•
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

CA FOUNDATION - MATHEMATICS

Definite Integrals:- Important Properties

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(z) dz$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

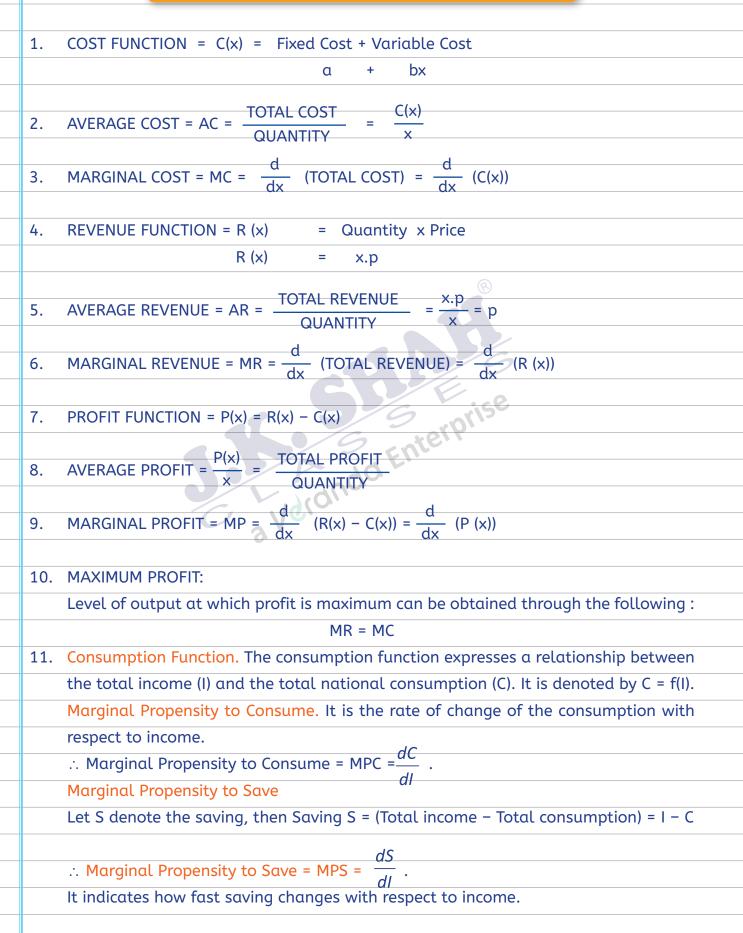
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ (a < c < b)}$$

$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

$$\int_{-a}^{+a} f(x) dx = 0, \text{ if } f(x) \text{ is an odd function.}$$

$$\int_{-a}^{+a} f(x) dx = 2\int_{0}^{a} f(x) dx, \text{ if } f(x) \text{ is an even function.}$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$


$$\int_{a}^{b} f(x) dx = \phi(b) - \phi(a)$$

$$\int_{a}^{b} x dx = \frac{x^{2}}{2} \int_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2} = \frac{b^{2} - a^{2}}{2}$$

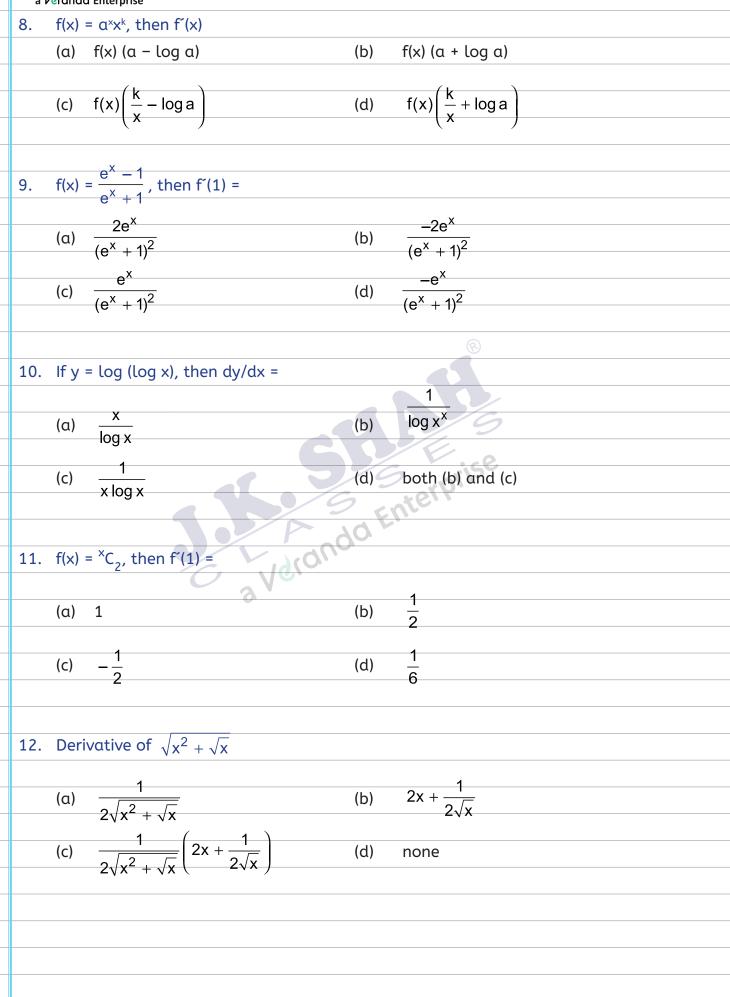
 \mathcal{C}

APPLICATION OF DERIVATIVE & INTEGRATION IN COMMERCE AND ECONOMICS

12. At Equilibrium, Qd = Qs
On solving the demand and supply equation, we obtain the equilibrium Price and
Quantity.
 13. Total Cost = Marginal Cost dx = MC dx
 = C(x) + k
where k = fixed cost
 i). AC = $\int MAC dx$
 $ii) \forall C = \int du dc du$
 ii). VC = $\int MVC dx$
 n 8 14. Total Cost for 'n' units = ∫ MC dx
15. Total Revenue = ∫ Marginal Revenue dx
S roriso
$= \int MR dx = R(x)$
Ad L
16. Total Revenue for 'n' units =) MR dx
 0

MAXIMA AND MINIMA (EXTREME VALUE)

Given : y = f(x)Steps for finding Maxima and Minima of a function. Find $\frac{dy}{dx}$ 1. Equate $\frac{dy}{dx} = 0$ to obtain the value/values of x 2. Find $\frac{d^2y}{dx^2}$ and put therein the values of x obtained from Step 2, and observe the 3. result: (i) if $\frac{d^2y}{dx^2}$ < 0, then the function attains its Maximum Value, at that point and the maximum value of the function can be obtained by putting the value in the original function. (ii) If $\frac{d^2y}{dx^2} > 0$, the function attains the Minimum Value, at that point and the minimum value of the function can be obtained by putting the value in the Veran original function. (iii) If on putting the value of 'x' $\frac{d^2y}{dx^2} = 0$, but $\frac{d^3y}{dx^3} \neq 0$, then the function will have a Point of Inflexion, at a point. In other words, at Point of Inflexion, the curve changes its Curvature.



CLASS WORK

DIFFERENTIATION

	(a) 10 (b) 3	(c) -3	(d)	2
2.	If y = a^x + x^a + a^a , then $\frac{dy}{dx}$ =			
	(a) $xa^{x-1} + ax^{a-1} + aa^{a-1}$	(b)	a [×] log a + ax ^{a-1}	
	(c) $a^{x} \log a + ax^{a-1} + aa^{a-1}$	(d)	none	
3.	If f(x) = $\frac{x^3 + 1}{x^3 - 1}$, then f ¹ (x)=			
	(a) $6x^2(x^3 - 1)^{-2}$	(b)	$-6x^{2}(x^{3}-1)^{-2}$	
	(c) $x^{2}(x^{3} - 1)^{-2}$	(d)	$-x^{2}(x^{3}-1)^{-2}$	
		579	$-6x^{2}(x^{3} - 1)^{-2}$ $-x^{2}(x^{3} - 1)^{-2}$	
4.	If $f(x) = x^2 - 6x + 5$, then $f'(2) - 2f'(2)$	f'(5) =		
	(a) $-3f'(2)$ (c) $2f'(2)$	(b) (d)	3f (2) 4f (2)	
		(d)	71 (८)	
5.	If $f(x) = x^2 e^x$, then $f'(x)$ is			
	(a) $xe^{x}(x^{2} + 2)$	(b)	xe ^x (x + 1)	
	(c) x e ^x (x + 2)	(d)	non	
6.	$y = x(x - 2) (x - 3)$, then $\frac{dy}{dx} =$			
	(a) $3x^2 - 10x + 6$	(b)	3x ² - 10x - 6	
	(c) 3x ² + 10x + 6	(d)	3x ² + 10x - 6	
7.	$f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$, then f'(x) a	ıt x = 4 is		
	(α) <u>17</u> 16	(b)	<u>1</u> 16	
	(c) <u>15</u> <u>16</u>			

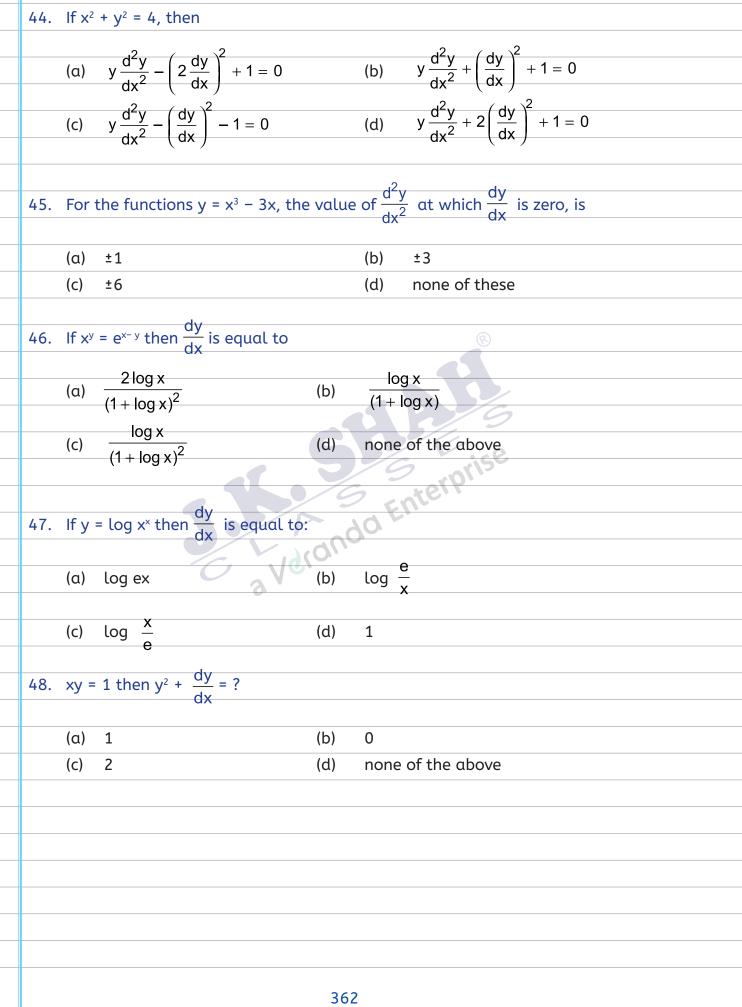
13. Derivative of e^{x^2+5x+6}

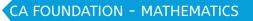
(a) $(2x+5)e^{x^2+5x+6}$ e^{x^2+5x+6} (b) (c) $(x+5)e^{x^2+5x+6}$ (d) none 14. $y = \sqrt{x^2 + a^2}$, then $y \frac{dy}{dx} =$ (b) 2x (a) x (d) 2y (c) y 15. $\frac{d}{dx}(3^{\log_3 x})$ (c) $\frac{1}{2}$ (d) $2^x \log_2 x$ (a) 1 (b) 0 16. $y = \log (x + \sqrt{x^2 + 5})$, then $\frac{dy}{dx} =$ $\frac{-1}{\sqrt{x^2+5}}$ (a) $\frac{1}{\sqrt{x^2+5}}$ (b) (c) $\frac{x}{\sqrt{x^2 + 5}}$ (d) 17. Find $\frac{dy}{dx}$, if $y = 7^{x^2 + x}$ (d) none (a) $7^{x^2+x} \log 7$ (b) $7^{x^2+x} \log 7(x+1)$ (c) $7^{x^2+x} \log 7(2x+1)$ (d) $2(x+1)7^{x^2+x}\log 7$ 18. $x^2 + xy + y^2 = 0$, then $\frac{dy}{dx} =$ $(\alpha) \quad -\left(\frac{2x+y}{x+2y}\right)$ (b) $-\left(\frac{2x-y}{x+2y}\right)$ (c) $-\left(\frac{x+2y}{2x+y}\right)$ (d) $\frac{2x+y}{x+2y}$

 10	2	21	dv					
 19.	ax ² ·	+ 2nxy + by	$^{2} = 0$, then $\frac{dy}{dx}$	=				
	(a)	-(ax + hy)	(hx + by) ⁻¹		(b)	-(ax + hy) (hx +	by)	
	(c)	$\frac{ax + by}{bx + by}$			(d)	none		
 20	-			2 .		0 + (2 4)		
 20.	The	slope of ta	ngent to the cu	urve x² + :	xy + y ²	= 0 at (2,1).		
	(a) -	$-\frac{5}{4}$	(b) $\frac{5}{3}$	(c) $\frac{3}{5}$		(d) $-\frac{3}{5}$		
		4		5		5_		
		dv						
21.	х ^у =	e^{x} , then $\frac{dy}{dx}$	is			®		
	(a)	log x – 1			(b)	$\log x - 1$		
	(u)	log x				$(\log x)^2$		
	(c)	$\frac{\log x + 1}{\log x}$		2	(d)	$\frac{\log x + 1}{(\log x)}$		
			dy		19			
22.	x³ y4	$f = (x + y)^7, f$	then $\frac{dy}{dx} =$	/9	2	nterr		
	(a)	<u> </u>			(b)	y x		
	(u)	X	70 N	9.0.	(0)	X		
	(c)	0	3		(d)	1		
23.	y =	x ^{x^{x∞}, the}	$n \frac{dy}{dx} =$					
	(a)	y ²	x)		(b)	$\frac{y^2}{x(1-y\log x)}$		
	(c)	$\frac{y}{x(1 + v \log x)}$	x)		(d)	$\frac{y}{x(1-y\log x)}$		
			/			\ ,·-3^/		
 21.	V = -	√x ^{√x} ∞ , th	dy					
			GA					
	(a)	y ²	x)		(b)	$\frac{y}{x(2 - y \log x)}$		
						y iuy x <i>j</i>		
	(c)	$\frac{y^2}{x(1-y\log x)}$	x)		(d)	none		

J.K. SHAH CLASSES a Veranda Enterprise

25. Find $\frac{dy}{dx}$, if x = αt^3 ; y = $\frac{a}{t^3}$. (a) $\frac{1}{t^5}$ (b) $-\frac{1}{t^5}$ (d) $-\frac{1}{16}$ (c) $\frac{1}{t^6}$ 26. y = 2at; x = at², then $\frac{dy}{dx}$ at t = 1 (b) 0 (c) 2 (d) a (a) 1 27. $e^{xy} + \log xy = 0$, then $\frac{dy}{dx} =$ $(b) -\frac{y}{x} + (c) + \frac{y^2}{x^2}$ $28. \quad y = x^x, \text{ then } \frac{dy}{dx} =$ $(a) \quad x^x (\log ex) + (b) \quad 1 + \log x$ $(c) \quad x^x (1 - \log x) + (d) + x^x$ $29. \quad y = x^x, \text{ then } \frac{d^2y}{dx^2} =$ (d) $-\frac{y^2}{y^2}$ (b) $\frac{dy}{dx}(1 + \log x) + \frac{d}{dx}(1 + \log x)$ (a) $\frac{dy}{dx}(1 + \log x) + y \frac{d}{dx}(1 + \log x)$ (d) $\frac{dy}{dx}(1 + \log x) - \frac{d}{dx}(1 + \log x)$ (c) $\frac{dy}{dx}(1 + \log x) - y \frac{d}{dx}(1 + \log x)$ 30. $y = x^{\log x}$, then $\frac{dy}{dx} =$ (a) $2x^{-1} \log x$ (b) 2x log x (c) $x^{\log x} \left(\frac{2 \log x}{x} \right)$ (d) none

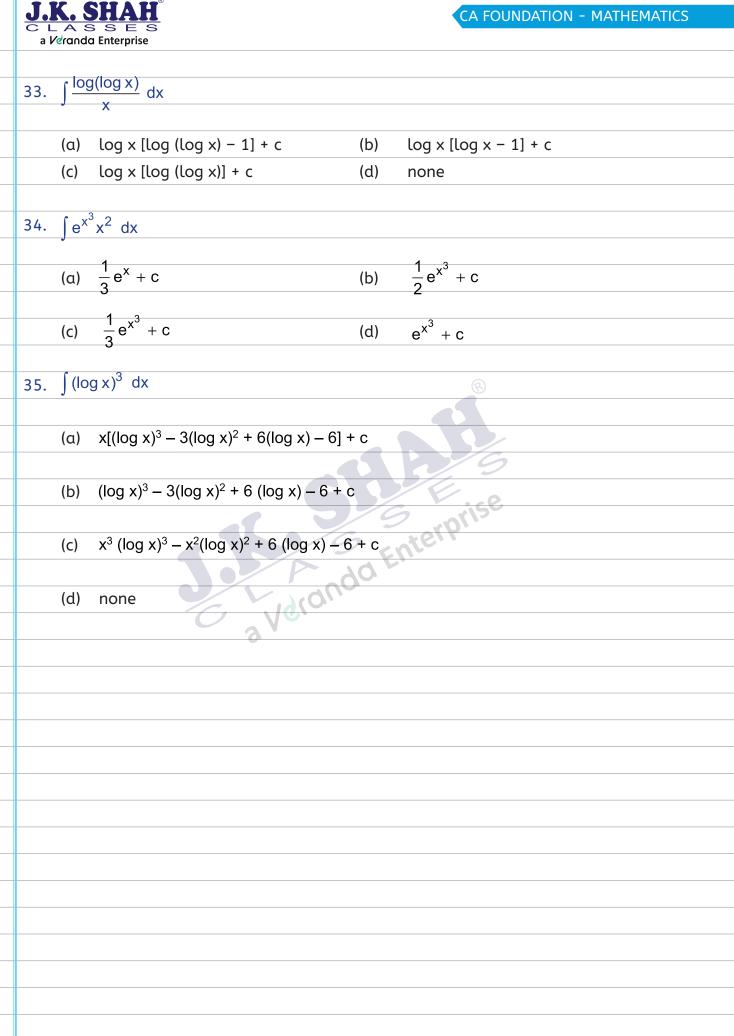

			al		
 31.	$\frac{1}{y = (3x + 1)^4}(4x + 1)^4$	$\frac{1}{1}$ $\frac{1}{5}(5x + 1)^{\frac{1}{6}}$ ' ther	<u>ay</u> dx =		
		, , ,	У		
	(a) $\frac{3}{4}\left(\frac{1}{3x+1}\right)$	$+\frac{4}{5}\left(\frac{1}{4x+1}\right)+\frac{5}{6}\left(\frac{1}{4x+1}\right)$	$\frac{1}{5x+1}$		
	(1) 3 (1	-), 4(-1), 3	5(1)]		
	(D) $y \boxed{\frac{1}{4}} (\frac{3x+3}{3x+3})$	$\frac{1}{1}$ + $\frac{4}{5}$ $\left(\frac{1}{4x+1}\right)$ + $\frac{4}{6}$	$\overline{5}\left(\overline{5x+1}\right)$		
	<u>()</u>	$\frac{1}{1}$			
	(c) $(X - 3)^{-1} + 1$	$\frac{1}{3}(x-4)^{-1} + \frac{1}{4}(x-4)^{-1}$	- 5)		
	(d) none				
		dv			
32.	$y = e^{k \log x} + e^{x \log k}$, then $\frac{dy}{dx}$ =			
	(a) x ^k + k ^x			(b)	kx ^{k-1} + k [×] log k
	(c) $kx^{k-1} + xk^{x-1}$			(d)	none
33.	The slope of the	e tangent to the c	urve y = $\sqrt{9}$ -	x^2 at the	Point where ordinate is
	equal to abscisso	n is			
	(a) 1	(b) -1	(c) 0	nrise	(d) none
			Sinte		
34.	The slope of tan	gent to the curve	$y = x^2 - x$ at the	e point w	here the line y = 6 meets
		first quadrant is		•	
 	(a) 4	(b) 5	(c) 6		(d) 2
 		0			
 35.	If $y = \frac{\sqrt{x}}{\sqrt{x}} + \frac{\sqrt{a}}{\sqrt{x}}$,	then $2xy \frac{dy}{dx} - \frac{x}{a} +$	<u>a</u>		
	√a √x´	dx a	x		
	(a) 1	(b) 0	(c) 2		(d) -1
	\~/ ±				\v;/ ±
36	If $y = \log (y \pm \sqrt{y})$	$(x^2 - a^2)$, then ($x^2 - a^2$)	d^2y dy	_	
50.		~ <i>i</i> , then (x –	$\frac{dx^2}{dx^2} + \frac{dx}{dx}$	_	
	(a) 1	(b) _1			(d) nono
	(a) 1	(b) -1	(c) 0		(d) none
27	If 1 2	$-\sqrt{m}$	$(dy)^2$ 22		
51.	$\prod y = (x + \sqrt{x^2} - $	$(x^2 - 4)^m$, then $(x^2 - 4)$	$\left(\frac{dx}{dx}\right) - m^{-}y^{-}$	=	
	() 0	/1 \ 4	1 1 2		
	(a) 0	(b) 1	(c) 2		(d) none
	(a) 0	(b) 1	(c) 2		(d) none



		PAST		
 		QUE	STI(ONS
38.	The	derivative of x² log x is		
	(a)	1 + 2 log x	(b)	2 log x
	(c)	x(1 + 2 log x)	(d)	none of these
		du .		
39.	If x ^y	= y ^x , then $\frac{dy}{dx}$ gives:		
	(a)	x(x log y – y)	(b)	$x(y \log x - x)$
		$y(y \log x - x)$		$y(x \log y - y)$
	(c)	$y(x \log y - y)$	(d)	none of these
		x(y log x – x)		
40.	If x ³	$-2x^{2}y^{2} + 5x + y = 5$, then $\frac{dy}{dx}$ at x	= 1 an	d y = 1 is
		u s		E.ee
	(a)	4/3	(b)	-5/4
	(c)	4/5	(d)	-4/3
		dy dy	0 -	
 41.	lf y	$= (x + \sqrt{x^2 + m^2}) \text{ then } \frac{1}{dx}$		
	(a)	$-\frac{ny}{\sqrt{2}}$	(b)	ny
 		$\sqrt{x^2 + m^2}$		-
	(c)	$-\frac{ny}{\sqrt{x^2+m^2}}$	(d)	none
		$\sqrt{x^2 + m^2}$		
		v ² v ³ du		
42.	lf y	= 1 + x + $\frac{x^2}{2!}$ + $\frac{x^3}{3!}$ + ∞ then $\frac{dy}{dx}$ -	y is ea	qual to
	(a)	1	(b)	-1
	(c)	0	(d)	none
43.		erentiate e ^{x*} :		
		(1 + log x)		x ^x (1 + log x)
	(c)	$e^{x^{x}}(1 + \log x)x^{x}$	(d)	$e^{x^{x}}(1 + \log x)$

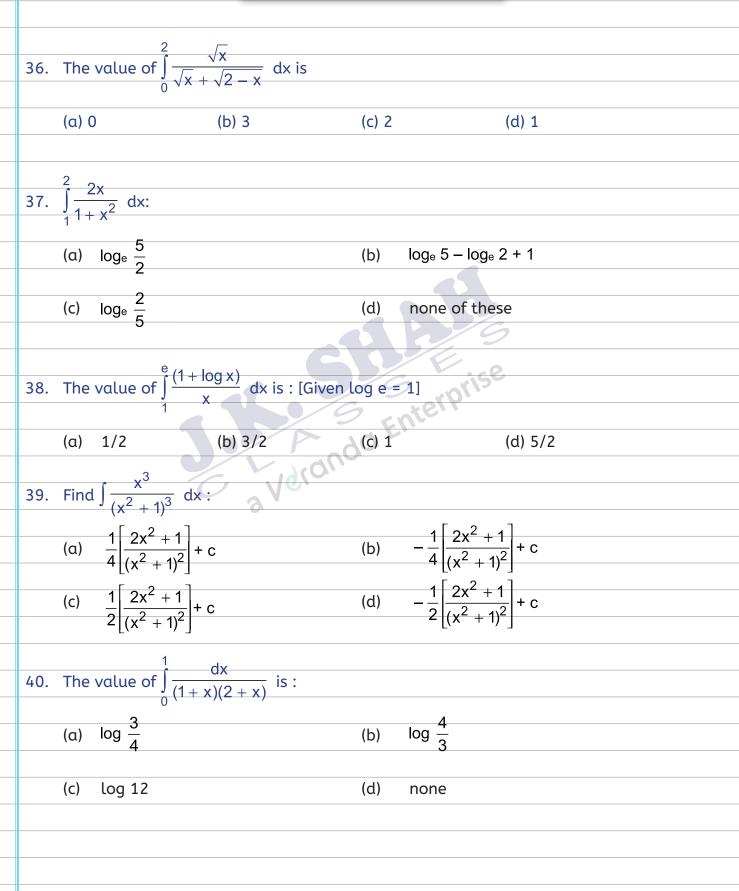
J.K. SHAH C L A S S E S a Veranda Enterprise

INTEGRATION $\int x\sqrt{x} dx$ 1. (b) $\frac{2}{5}x^{2/5} + c$ (a) $\frac{2}{5}x^{5/2} + c$ (c) $\frac{2}{3}x^{3/2} + c$ (d) $\frac{5}{2}x^{5/2} + c$ $\int \log(x^2) dx$ 2. (a) $x(\log x - 1) + c$ 2x (log x - 1) + c (b) (c) $2(\log x - 1) + c$ (d) $2 \times \log x = x + c$ $\int (e^{2x} + e^{-3x}) dx$ 3. (b) $\frac{e^{2x}}{2} - \frac{e^{-3x}}{3} + c$ (d) none (a) $\frac{e^{2x}}{2} + \frac{e^{-3x}}{3} + c$ (c) $\frac{e^{2x}}{2} - \frac{e^{+3x}}{3}$ (d) $\int \left(x + \frac{1}{x}\right)^2 dx$ 4. $\frac{x^3}{3} + 2x - \frac{1}{x} + c$ (b) $\frac{x^3}{3} + 2x + \frac{1}{x} + c$ (c) $\frac{x^3}{3} + x - \frac{1}{x} + c$ (d) $\frac{x^3}{3} - 2x + \frac{1}{x} + c$ $\int (1-4x)(1+x) \, dx$ 5. (a) $x - \frac{3x^2}{2} - \frac{4x^3}{3} + c$ (b) $x - \frac{x^2}{2} - \frac{x^3}{3} + c$ (c) $x + \frac{3x^2}{2} - \frac{4x^3}{3} + c$ (d) $x - \frac{3x^2}{2} + \frac{4x^3}{3} + c$ $\int x^{x}(1 + \log x) \, dx$ 6. (a) x[×] + c (b) $x^{x} (\log x) + c$ (c) x log x + c (d) done


J.K. SHAH CA FOUNDATION - MATHEMATICS $\int \frac{dx}{\sqrt{x+2}}$ 7. (a) $\sqrt{x+2} + c$ $2\sqrt{x+2} + c$ (b) (c) $\frac{2}{\sqrt{x+2}} + c$ (d) none ∫ x³e^{2x} dx 8. (a) $\frac{x^3e^{2x}}{2} + \frac{3}{4}(x^2e^{2x}) + \frac{3}{4}(xe^{2x}) + \frac{3}{8}e^{2x} + c$ (b) $\frac{x^3e^{2x}}{2} - \frac{3}{4}(x^2e^{2x}) + \frac{3}{4}(xe^{2x}) - \frac{3}{8}e^{2x} + c$ (c) $\frac{x^3e^{2x}}{2} + \frac{3}{4}(x^2e^{2x}) - \frac{3}{4}(xe^{2x}) - \frac{3}{8}(e^{2x}) + c$ $\int x^{2} 2^{x} dx$ (a) $x^{2} \frac{2^{x}}{\log 2} - \frac{x 2^{x}}{(\log 2)^{2}} + \frac{2 2^{x}}{(\log 2)^{3}} + c$ (b) $\frac{x^{2} 2x}{\log 2} + \frac{2x}{2} 2^{x}$ 9. (b) $\frac{x^2 2x}{\log 2} + \frac{2x 2^x}{(\log 2)^2} + \frac{2^x}{(\log 2)^3} + c$ (c) $\frac{x^2 2^x}{\log 2} + \frac{2x 2^x}{(\log 2)^2} + \frac{2^x}{(\log 2)^3} + c$ (d) none ∫ xⁿ log x dx 10. (a) $\frac{x^{n+1}}{(n+1)^2}[(n+1)\log x + 1] + c$ (b) $\frac{x^{n+1}}{(n+1)^2}[(n+1)\log x - 1] + c$ (c) $\frac{x^{n+1}}{n+1} [\log x - 1] + c$ (d) none

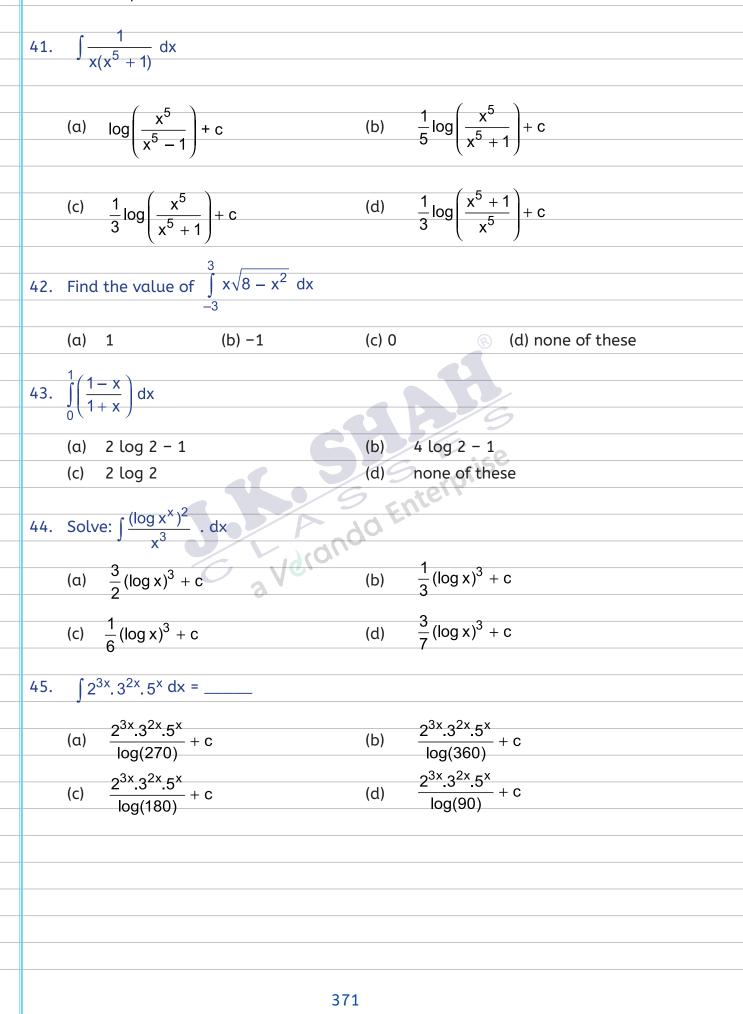
		NTE A TT [®]		
CL	AS	SHAH SSES		CA FOUNDATION - MATHEMATICS
 		a Enterprise Dg x dx		
 11.	J	$x \log x - x^2 + c$	(b)	x log x + c
		$x \log x - x + c$	(d)	none
 12.	∫ (lo	$(\log x)^2 dx$		
	(a)	x[(log x) ² - 2 log x + 2] + c	(b)	x[(log x) ² + 2 log x - 2] + c
	(c)	x² (log x)² – 2x log x + 2x + c	(d)	none
		-3x + 2		
 13.	<u> </u>	$\frac{3x+2}{(x-2)(x-3)}$ dx		
		$11 \log (x - 3) - 8 \log x - 2 + c$		
	(C)	-11 log x - 3 + 8 log x - 2 + c	(d)	- 8 log x - 3 + 11 log x - 2 + c
 1/.	ſ	1		®
 14.	<u> </u>	$\frac{1}{(x-1)(x-2)}$ dx		
 	(a)	$\log \left \frac{x-2}{x-1} \right + c$	(b)	$\log \left \frac{x-1}{x-2} \right + c$
	(c)	$\log \left \frac{x-2}{x-1} \right $	(d)	$\log \left \frac{x-1}{x-2} \right $
		- x-1	2	x-2
 			OE	
15.	$\int \frac{1}{\sqrt{1-1}}$		-	
	• (x	$\frac{1}{(x-1)(x-2)(x-3)} dx$		
	(a)	$\frac{1}{2}\log x - 3 - \log x - 2 + \frac{1}{2}\log x - 2 $	x – 1	+ c
		1 1.		
	(b)	$-\frac{1}{2}\log x-3 + \log x-2 - \frac{1}{2}\log x-2 $	9 x -	- 1 + C
	(-)	log x – 3 + log x – 2 – log x – 1 +	<u> </u>	
 	(c)	י וס – אן צטו י ד – אן צטו י ד – אן צטו י ד ד	0	
	(d)	none		
	(u)			
 16.	<u> </u>	$\frac{1}{(x-1)(x-3)^2}$ dx		
 	 (;	$(x - 1)(x - 3)^2$		
	(a)	$\frac{1}{4}\log x-1 - \frac{1}{4}\log x-3 - \frac{1}{2(x)}$	$\frac{1}{2}$ +	C
		Υ. Υ	- /	
	(b)	$\frac{1}{4}\log x-1 + \frac{1}{4}\log x-3 - \frac{1}{2}($	$\frac{1}{x-2}$	+ C
			x 3)	

$$\begin{aligned} \int_{a}^{a} \sum_{k=0}^{b} \sum_{k=0}^{a} \sum_{k=0}^{b} \sum_{k=0}^{a} \sum_{k=0}^{b} \sum_{k=0}^{a} \sum_{k=0}^{b} \sum_{k=0}^{a} \sum_{k=0}^{b} \sum_{k=0}^{a} \sum_{k=0}^{b} \sum_{k$$


EXAMPLE
SECONDATION - MATHEMATICS
CA FOUNDATION - MATHEMATICS
22.
$$\int e^{x} (x \log x + 1)(x)^{-1} dx$$

(a) $e^{x} \left(\frac{1}{\log x}\right) + c$ (b) $e^{x} (\log x) + c$
(c) $e^{x} (x \log x) + c$ (d) none
23. $\int e^{x} \left(\frac{2-x}{(1-x)^{2}}\right) dx$
(a) $e^{x} \left(\frac{1}{1-x}\right) + c$ (b) $e^{x} \left(\frac{-1}{1-x}\right) + c$
(c) $e^{x} \left(\frac{1}{2-x}\right) + c$ (d) none
24. $\int \frac{1}{x^{2}-9} dx$
(a) $\frac{1}{3} \log \left|\frac{x-3}{x+3}\right| + c$ (b) $\frac{1}{6} \log \left|\frac{x-3}{x+3}\right| + c$
(c) $-\frac{1}{6} \log \left|\frac{x-3}{x+3}\right| + c$ (d) $-\frac{1}{3} \log \left|\frac{x-3}{x+3}\right| + c$
(c) $-\frac{1}{6} \log \left|\frac{x-3}{x+3}\right| + c$ (d) $-\frac{1}{3} \log \left|\frac{x-3}{x+3}\right| + c$
25. $\int \sqrt{x^{2} + 4} dx$
(a) $\frac{x}{2} \sqrt{x^{2} + 4} + 8 \log |x + \sqrt{x^{2} + 4}| + c$
(b) $\frac{x}{2} \sqrt{x^{2} + 4} + 2 \log |x + \sqrt{x^{2} + 4}| + c$
(c) $-\frac{x}{2} \sqrt{x^{2} + 4} - 2 \log |x + \sqrt{x^{2} + 4}| + c$
(d) $\frac{x}{2} \sqrt{x^{2} + 4} - 2 \log |x + \sqrt{x^{2} + 4}| + c$
26. $\int \frac{1}{\sqrt{x^{2} + 9}} dx$
(a) $\log |x + \sqrt{x^{2} + 9}| + c$ (b) $\log |x - \sqrt{x^{2} + 9}| + c$
(c) $\sqrt{x^{2} + 9} + c$ (c) $\log |x - \sqrt{x^{2} + 9}| + c$

	J.K. SHAH CLASSES a Veranda Enterprise		CA FOUNDATION - MATHEMATICS
	2		
	27. $\int_{0}^{2} 6x^2 dx$		
	(a) 8	(b)	16
	(c) 4	(d)	2
	$\frac{5}{28.} \int \frac{5}{f(x) dx} - \int f(9 - x) dx$		
	4 4		
	(a) 0	(b)	1
	(c) -1	(d)	none
	$\frac{a}{\left[f(y) + f(y)\right]} = \frac{a}{\left[f(y) + f(y)\right]}$		
	29. $\int_{0} \left[f(x) + f(-x) \right] dx =$		
	(a) 0 [for an odd function]	(b)	a 2∫ f(x) dx (for an even function)
	(c) $\int_{a}^{a} f(x) dx$	(d)	all of the above
	-a		E.e.
	4		Enterprise
	30. $\int \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx =$	9	ntein
		70	
	(a) 4	(b)	1
	(c) $\frac{3}{2}$	(d)	<u>5</u> 2
		(0)	2
	$31. \int (x^3 + x) dx$		
	-3		
	(a) 0	(b)	3
	(c) -3	(d)	1
	32. Equation of the curve which passes t		y = x ² - x - 2
	(a) $y = x^2 - x - 1$ (c) $y = x^2 - x$	(b) (d)	$y = x^2 - x - 2$ none
		(u)	
-			



J.K. SHAH CLASSES a Veranda Enterprise

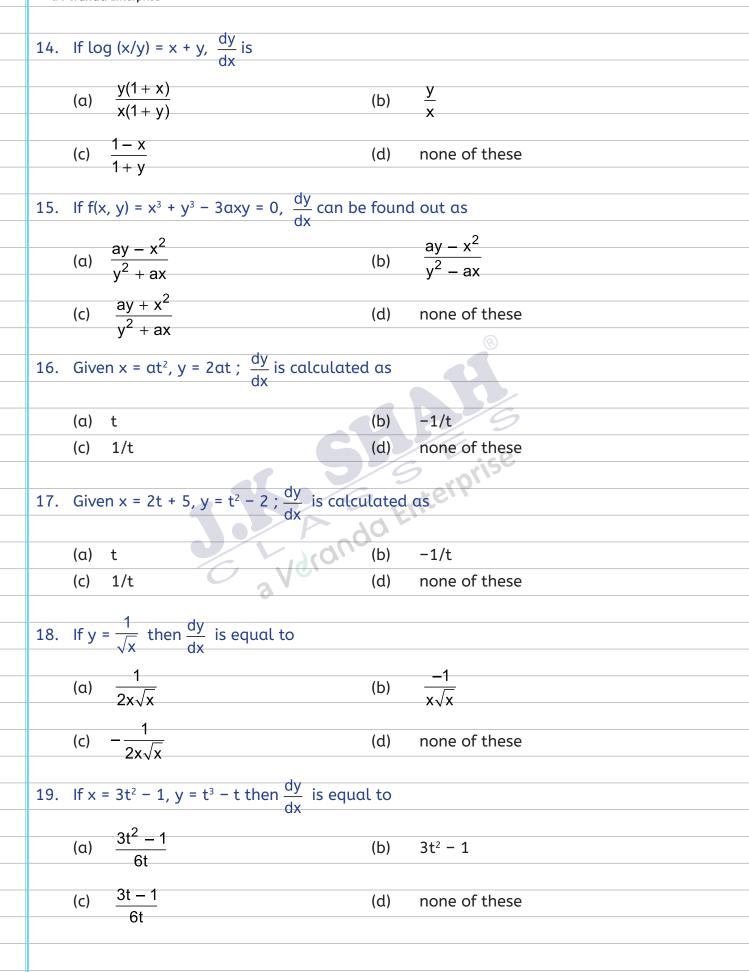
PRACTICAL PROBLEMS ON APPLICATION OF DIFFERENTIAL &
INTEGRATION CALCULUS
Q1. Find the maximum and minimum values of
$f(x) = \frac{1}{2}x^4 - x^2 + 1.$
2
Q.2. The total cost C(x) of a firm is C(x) = 0.0005x ³ - 0.02x ² - 30x + 5000, where x is the
output. Determine
(i) average of (AC)
(ii) slope of AC
(iii) Marginal cost (MC)
(iv) slope of MC
(v) value of x, for which MVC = AVC, where VC denotes the variable cost
8
Q.3. The total revenue received from the sale of a x units or product is given by:
$R(x) = 200 + \frac{x^2}{x}$. Find
5
(i) the average revenue;
(ii) the marginal revenue;
(iii) the marginal revenue when x = 25
(iv) the actual revenue from the sale of twenty sixth unit.
Q.4. If the consumption is given by C = 71 + 15 \sqrt{I} , where I is the income. When I = 25
(a) determine the marginal propensity to consume;
(b) marginal propensity to save.
Q.5. The manufacturing cost of an article involves a fixed overhead of ₹ 100 per day.
₹ 0.5 for material and (x²/100) per day for labour and machinery to produce x
articles. How many articles should be produced per day to minimize the cost per
article.
Q.6. A company charges ₹ 550 for a transistor set on orders of 50 or less sets.
The charge is reduced by ₹ 5 per set for each set ordered in excess of 50. Find the
largest size order company should allow so as to receive maximum revenue.

J.K. SHAH C L A S S E S

- Q.7. A manufacturer can sell x items per day at a price p rupees each, where
 - $p = 125 \frac{5}{3} x$. The cost of production for x items is 500 + 13x + 0.2x².
 - (i) Find how much he should produce to have a maximum profit, assuming all items produced are sold.
 - (ii) What is the maximum profit?
- Q.8. A seller makes an offer of selling certain articles that can be described by the equation x = 25 - 2y where x is price per unit and denotes the no. of units. The cost price of the article is ₹ 10 per unit. The maximum quantity that can be offered in single deal to avoid loss is

Q.9. Determine the cost of producing 200 cars, if the marginal cost (in rupees per unit) is given by MC(x) = $\frac{15}{2}$ x² - 4x + 8000

- Q.10.The marginal cost of production (in rupees) is $3 + \frac{x}{3000} + e^{-0.03x}$, where x denotes
the number of units. Find the cost of producing 100 units. It is given that $e^{-3} = 0.05$ (approx.)[CA (Foundation), Dec. 1993]
- Q.11. The marginal cost function of manufacturing X shoes is 6 + 10x 6x². The total cost of producing a pair of shoes is ₹ 12. Find the total and average cost function.
- Q.12. If the marginal revenue function for output x is given by Rm = $\frac{6}{(x+2)^2}+5$, find the total revenue function and the demand function.



HOMEWORK SECTION (DIFFERENTIATION)

1.	The	gradient of the curve $y = 2x^2$	³ – 3x ²	- 12x + 8 at x = 0 is
	(a)	-12	(b)	12
	(c)	0	(d)	none of these
 2.		gradient of the curve y = 2x ³		
 	(a)	3	(b)	-3
 	(c)	1/3	(d)	none of these
 				8
 3.		derivative of y = $\sqrt{x+1}$ is		
	(a)	$1 / \sqrt{x + 1}$	(b)	$-1/\sqrt{x+1}$
 	(c)	$1/2\sqrt{x+1}$	(d)	none of these
 		2	6	ise ise
 4.	If f(:	x) = $e^{ax^2 + bx + c}$, then f ⁻ (x) is		Sarphis
		2		
 	(a)	e ^{ax²+bx+c}	(b)	e^{ax^2+bx+c} (2ax + b)
	(c)	2ax + b	(d)	none of these
 _	10.01	$x^2 + 1$		
 5.	1† †()	x) = $\frac{x^2 + 1}{x^2 - 1}$, then f ⁻ (x) is		
 	()	1 1 1 2 4 1 2	(1.)	
 		$-4x / (x^2 - 1)^2$	(b)	$4x/(x^2 - 1)^2$
 	(C)	$x/(x^2 - 1)^2$	(d)	none of these
 6	16	$- y(y = 1)(y = 2) + b = p = \frac{dy}{dy}$		
 6.	т у	$= x(x - 1)(x - 2)$, then $\frac{dy}{dx}$ is		
 	(a)	3x ² - 6x + 2	(b)	-6x + 2
 	(u) (c)	$3x^2 - 6x + 2$ $3x^2 + 2$	(b) (d)	none of these
	(C)		(u)	none of these
 7.	The	aradient of the curve y - yy	+ 2nv +	$3qy = 0$ at the point (3, 2) is $-\frac{2}{3}$. The values
 1.		and q are	· 2hv +	$\frac{3}{3}$
 	(a)	(1/2, 1/2)	(b)	(2, 2)
 	(c)	(-1/2, -1/2)	(d)	(1/2, 1/6)
 	(~)	<u>, +, -, +, -,</u>	(~)	(_,_, _, _, ~, ~,

8.	The	curve y ² = ux ² + v passes through	the po	int P(2, 3) and $\frac{dy}{dx}$ = 4 at P. The values
		and v are		Uλ
	(a)	(u = 2, v = 7)	(b)	(u = 2, v = −7)
	(c)	(u = −2, v = −7)	(d)	(0, -1)
9.	The	gradient of the curve y + px + qy =	0 at (2	1, 1) is 1/2. The values of p and q are
	(a)	(-1, 1)	(b)	(2, -1)
	(c)	(1, 2)	(d)	(0, -1)
10.	lf xy	y = 1 then y ² + dy/dx is equal to		
	(a)	1	(b)	0
	(c)	-1	(d)	none of these
11.	The	derivative of the function $\sqrt{\chi + \sqrt{\chi}}$	is	
 		1	5	5/19
	(a)	$\frac{1}{2\sqrt{x+\sqrt{x}}}$	(b)	$1 + \frac{1}{2\sqrt{x}}$
			20	roris
	(c)	$\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$	(d)	none of these
			0 -	
		dy vidcom		
 12.	Give	en e ^{-xy} - 4xy = 0, $\frac{dy}{dx}$ can be proved	to be	
		-y/x		y/x
	(c)	x/y	(d)	none of these
	Y	2 v ² dv		
13.	If _	$\frac{2}{2} - \frac{y^2}{a^2} = 1$, $\frac{dy}{dx}$ can be expressed of	S	
				Х
	(a)	x y	(b)	$\frac{x}{\sqrt{x^2 - a^2}}$
	(c)	$\frac{x^2}{2} - 1$	(d)	none of these
		Va [∠]		

J.K. SHAH C L A S S E S a Veranda Enterprise J.K. SHAH CLASSES a Vergndg Enterprise

20.	If x^y	. y ^x = M, where M is constant then		equal to
			dx	
	(a)	$-\frac{y}{x}$	(b)	$\frac{-y(y + x \log y)}{x(x \log x + x)}$
				$-X(X \log x + X)$
	(c)	$\frac{y + x \log y}{y \log x + x}$	(d)	none of these
		$-y \log x + x$		
21.	Give	en x = t + t ⁻¹ and y = t - t ⁻¹ the valu	le of -	dy at t = 2 is
			C	dx
	(a)	3/5	(b)	-3/5
	(c)	5/3	(d)	none of these
22.	lf x ³	$-2x^2y^2 + 5x + y - 5 = 0$ then $\frac{dy}{dx}$ a	ut x = :	1, y = 1 is equal to
		UX.		
	(a)	4/3	(b)	-4/3
	(c)	3/4	(d)	none of these
		<u> </u>		
23.	The	derivative of $\frac{3-5x}{3+5x}$ is	70	
		G	5 <u>C</u>	nterr
	(a)	30/(3 + 5x) ²	(b)	$1/(3 + 5x)^2$
	(c)	$-30/(3 + 5x)^2$	(d)	none of these
24.	Let y	y = $\sqrt{2x}$ + 3 ^{2x} then $\frac{dy}{dx}$ is equal to		
	(a)	$(1 / \sqrt{2x}) + 2.3^{2x} \log_e 3$	(b)	$1 / \sqrt{2x}$
	(c)	2.3 ^{2x} log _e 3	(d)	none of these
25.	The	derivative of e^{3x^2-6x+2} is		
		$30(1-5x)^5$	(b)	(1 – 5x) ⁵
	(c)	$6(x-1)e^{3x^2-6x+2}$	(d)	none of these

J.K. SHAH[®] C L A S S E S a Veranda Enterprise **J.K. SHAH**[®] C L A S S E S a Veranda Enterprise

26.	lf y	$=\frac{e^{x}+1}{e^{x}-1}$ then $\frac{dy}{dx}$	is equal to		
				c X	
	(a)	$\frac{-2e^{x}}{(e^{x}-1)^{2}}$	(b)	$\frac{2e^{x}}{(e^{x}-1)^{2}}$	
 		$(e^{x} - 1)^{2}$		(e – 1) ⁻	
 	(c)	$\frac{-2}{(e^{x} 1)^{2}}$	(d)	none of these	
		(e ^x 1) ²			
27.	lf x	= at², y = 2at the	$\left[\frac{dy}{dx}\right]_{t=2}$ is equal to		
 			$\left[dx \right]_{t=2}$		
 	(a)	1/2	(b)	-2	
 		-1/2	(d)	none of these	
 28.	Let	$f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$	² then f´(2) is equal to	R	
 		··· (_√x)			
	(a)	3/4	(b)	1/2	
 	(c)		(d)	none of these	
 			<u>A</u>		
 29.	lf f(>	<) = x ² - 6x + 8 th	nen f (5) – f (8) is equal 1	to wise	
		f´(2)		3f [*] (2)	
	(c)	2f´(2)	(d)	none of these	
			- L'J'QUA		
 30.	lf y	$= (x + \sqrt{x^2 + m^2})$	ⁿ then dy/dx is equal to		
			0.		
	(a)	ny	(b)	ny / $\sqrt{x^2 + m^2}$	
	(c)	$-ny / \sqrt{x^2 + m^2}$	(d)	none of these	
		2	3 .		
 31.	lf y	$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!}$	$\frac{dy}{dx}$ + then $\frac{dy}{dx}$ – y is pro	ved to be	
		<u>∠!</u> 3	:		
	(a)	1	(b)	-1	
	(c)	0	(d)	none of these	
 32.	lf f(>	<pre>x) = x^k and f'(1) =</pre>	10 the value of k is		
	(a)	10	(b)	-10	
	(c)	1/10	(d)	none of these	

	(a)	-x		(b)	x
	(c)	1/x			none of these
34.	The	derivative o	of (x ² - 1)/x is		
	(a)	$1 + 1/x^2$		(b)	$1 - 1/x^2$
	(c)	1/x ²		(d)	none of these
	1			• •	
35.			coefficients of $(x^2 + 1)$		a a l?
		$1 + 1/x^2$			$\frac{1-1/x^2}{x^2}$
	(C)	1/x²		(d)	none of these
36	lf v :	$= o^{\sqrt{2x}}$ the	n dy/r is equal to		
50.			dx		
	(a)	$\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$		(b)	e ^{√2x}
			Ċ		G
	(c)	$\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$		(d)	none of these
			du	9.	nterr
37.	lf y :	$=\sqrt{x}^{\sqrt{x}\infty}$,	then $\frac{dy}{dx}$ is equal to	40	
		2			v ²
	(a)	$\frac{y}{2 - y \log x}$	aver	(b)	$\frac{y}{x(2 - y \log x)}$
		v ²			
	(c)	log x		(d)	none of these
20	۱۴۰۰۰	_ /1 _+2\ //1	<u>+ +2).</u> <u>- 2+//4</u> + +2)	م م م م	·/du at t = 1 ia
50.	(a)	$\frac{1}{2}$	+ t^2); y = $2t/(1 + t^2)$,	(b)	1
	(u) (c)	0		(d)	none of these
	(C)	0		(u)	none of these

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

HOMEWORK SOLUTION (DIFFERENTIATION) $y = 2x^3 - 3x^2 - 12x + 8$ at x = 01. gradient = m = $\left(\frac{dy}{dx}\right)_{x=0} \Rightarrow 6x^2 - 6x - 12$ \therefore m = 6(0)² - 6(0) - 12 ∴ m = –12 $y = 2x^3 - 5x^2 - 3x$ at x = 02. $\frac{\mathrm{dy}}{\mathrm{dx}} = 6x^2 - 10x - 3$:. m = gradient = $6(0)^2 - 10(0) - 3$ \therefore m = -3 4. $f(x) = e^{ax^2 + bx + c} \cdot f'(x) = ?$ $\therefore f'(x) = e^{ax^2 + bx + c} . (2ax + b)$ 5. $f(x) = \frac{x^2 + 1}{x^2 - 1}$; f'(x) = ?Using quotient rule $f'(x) = \frac{1}{(x^2 - 1)^2} \left[(x^2 - 1)(2x) - (x^2 + 1)(2x) \right]$ $= \frac{2x}{(x^2 - 1)^2} [x^2 - 1 - x^2 - 1] = \frac{-4x}{(x^2 - 1)^2}$

J.K. SHAH CLASSES a Veranda Enterprise

6.
$$y = x(x - 1)(x - 2)$$
, then $\frac{dy}{dx} = ?$
 $y = (x^2 - x)(x - 2)$
 $y = x^3 - x^2 - 2x^2 + 2x = x^3 - 3x^2 + 2x$
 $\therefore \frac{dy}{dx} = 3x^2 - 6x + 2$
7. $y - xy + 2px + 3qy = 0$ point (3, 2)
 $2 - 6 + 6p + 6q = 0 \Rightarrow 6p + 6q = 4$
Using plug-in option, put $p = \frac{1}{2}$ and $q = \frac{1}{6}$
 $6\left(\frac{1}{2}\right) + 6\left(\frac{1}{6}\right) = 3 + 1 = 4$
8. $y^2 = ux^3 + v$ passes through (2, 3), then u, v = ?
 $9 = 8u + v$
Using plugin option, put $u = 2$ and $v = -7$
 $9 = 8(2) - 7$ LHS = RHS
9. $y + px + qy = 0$ at (1, 1)
(1) $+ p + q = 0$ putting $p = 0$ and $q = -1$
 $1 + 0 - 1 = 0$
LHS = RHS
10. $xy = 1$, then $y^2 + \frac{dy}{dx} = ?$
 $y = \frac{1}{x} = x^3 - y^2 = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2}$
 $\frac{dy}{dx} = \frac{-1}{x^2}$
 $\therefore y^2 + \frac{dy}{dx} = \frac{1}{x^2} - \frac{1}{x^2} = 0$

EXAMPLE
SET A STRATES
a knowled Entropylie
11.
$$y = \sqrt{x} + \sqrt{x}$$

 $\frac{dy}{dx} = \frac{1}{2\sqrt{x}\sqrt{x}} \times \frac{d}{dx} (x + \sqrt{x})$
 $\frac{dy}{dx} = \frac{1}{2\sqrt{x}+\sqrt{x}} \cdot \left(1 + \frac{1}{2\sqrt{x}}\right)$
12. $e^{-w} - 4xy = 0$, then $\frac{dy}{dx} = ?$
 $e^{-w} = 4xy$
Applying log on both sides, we get,
 $-xy \log e = \log 4 + \log x + \log y$
 $xy + \log 4 + \log x + \log y = 0$
Differentiating using implicit function formula,
 $\frac{dy}{dx} = -\frac{\left[\frac{y(1)}{1} + \frac{1}{x}\right]}{\left[\frac{x}{x(1)} + \frac{1}{y}\right]} = -\frac{\left[\frac{xy + 1}{x}\right]}{\left[\frac{xy + 1}{y}\right]} = -\frac{y}{x}$
 $\frac{dy}{dx} = -\frac{\left[\frac{y(1)}{1} + \frac{1}{x}\right]}{\left[\frac{x(1)}{1} + \frac{1}{y}\right]} = -\frac{\left[\frac{xy + 1}{x}\right]}{\left[\frac{xy + 1}{y}\right]} = -\frac{x}{x}$
 $\frac{dy}{dx} = -\frac{\left[\frac{2x}{1} + \frac{1}{y}\right]}{\left[\frac{xy + 1}{xy + 1}\right]} = -\frac{x}{x}$
 $\frac{dy}{dx} = -\frac{\left[\frac{2x}{1} + \frac{1}{y}\right]}{\left[\frac{xy + 1}{xy + 1}\right]} = -\frac{x}{x}$
 $\frac{dy}{dx} = -\frac{\left[\frac{1}{2x}\right]}{\frac{1}{x^2}} = \frac{-x}{y}$
 $\frac{dy}{dx} = -\frac{\left[\frac{1}{x} - 1\right]}{\left[\frac{1}{y} - \frac{1}{y}\right]} = \frac{(1 - x)y}{(x)(1 + y)}$
15. $f(x, y) = x^2 + y^3 - 3axy = 0$, then $\frac{dy}{dx} = ?$
 $\frac{dy}{y} = -\frac{\left[3x^2 - 3ay(1)\right]}{\left[3y^2 - 3ax(1)\right]} = \frac{-3(x^2 - ay)}{3(y^2 - ax)} = \frac{ay - x^2}{y^2 - ax}$

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

$$\frac{dy}{dx} = \frac{-\left[y\left(\frac{1}{x}\right) + \log y(1)\right]}{\left[\log x(1) + x\left(\frac{1}{y}\right)\right]} = \frac{-\left[\frac{y + x \log y}{x}\right]}{\left[\frac{y \log x + x}{y}\right]}$$

$$\therefore \frac{dy}{dx} = \frac{-y(y + x \log y)}{x(y \log x + x)}$$

$$21. x = t + \frac{1}{t}; y = t - \frac{1}{t} \cdot then \frac{dy}{dx} at t = 2$$

$$\frac{dx}{dt} = 1 - \frac{1}{t^2} = \frac{t^2 - 1}{t^2} \dots (1)$$

$$\frac{dy}{dx} = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2} \dots (2)$$

$$(1) \frac{dy}{dx} = \frac{t^2 + 1}{t^2 - 1}$$

$$\left(\frac{dy}{dx}\right)_{t=2} = \frac{2^2 + 1}{2^2 - 1} = \frac{5}{3}$$

$$22. x^3 - 2x^2y^2 + 5x + y - 5, then \frac{dy}{dx} at = 1, y = 1$$

$$\frac{dy}{dx} = \frac{-[3x^2 - 2y^2(2x) + 5]}{[-2x^2(2y) + 4]}$$

$$\left(\frac{dy}{dx}\right)_{t,1} = \frac{-[3 - 4 + 5]}{[-4 + 1]} = \frac{-4}{-3} = \frac{4}{3}$$

$$\frac{23.}{y} = \frac{3 - 5x}{3 + 5x} \text{ Using quotient rule, we get,}$$

$$\frac{dy}{dx} = \frac{1}{(3 + 5x)^2} [-15 - 25x - 15 + 25x] = \frac{-30}{(3 + 5x)^2}$$

$$SKSHAFS
= Minordo Extension
24. $y = \sqrt{2x} + 3^{2x}$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{2x}} \cdot \frac{dy}{dx} (2x) + 3^{2x} \log 3x \cdot \frac{d}{dx} (2x)$$

$$= \frac{2}{2\sqrt{2x}} + 3^{2x} \log 3(2)$$

$$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{2x}} + 2 \cdot 3^{2x} \log_{0} 3$$

25. $y = e^{3x^{2} - bx + 2}$

$$\frac{dy}{dx} = e^{3x^{2} - bx + 2}$$

$$\frac{dy}{dx} = (6x - 6)e^{3x^{2} - 6x + 2} = 6(x - 1)e^{3x^{2} - 6x + 2}$$

$$\frac{dy}{dx} = (6x - 6)e^{3x^{2} - 6x + 2} = 6(x - 1)e^{3x^{2} - 6x + 2}$$

$$\frac{dy}{dx} = (6x - 6)e^{3x^{2} - 6x + 2} = 6(x - 1)e^{3x^{2} - 6x + 2}$$

$$\frac{dy}{dx} = (6x - 1)e^{(x - 1)}(e^{(x - 1)})(e^{(x - 1)})(e^$$$$

J.K. SHAH CLASSES

28.
$$f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$
 find f'(2) $f(x) = x + \frac{1}{x} + 2$
 $f'(x) = 1 - \frac{1}{x^2}$. $f'(2) = 1 - \frac{1}{4} = \frac{3}{4}$
29. $f(x) = x^2 - 6x + 8$ $f'(5) - f'(8) = ?$
 $f'(x) = 2x - 6$
 $f'(5) = 10 - 6 = 4$; $f'(8) = 16 - 6 = 10$
 $= 3 + 5(5) - f'(8) = 4 - 10 = -6$
Now, $f(2) = 2(2) - 6 = -2$
 $\therefore 3f'(2) = 3(-2) = -6$
30. $y = \left(x + \sqrt{x^2 + m^2}\right)^m \cdots (1) \frac{dy}{dx} = ?$
 $\frac{dy}{dx} = m\left(x + \sqrt{x^2 + m^2}\right)^m \cdots (1) \frac{dy}{dx^2 + m^2} + x}{\sqrt{x^2 + m^2}}$
 $= m\left(x + \sqrt{x^2 + m^2}\right)^{m-1} \left[\frac{\sqrt{x^2 + m^2} + x}{\sqrt{x^2 + m^2}}\right]$
 $\frac{dy}{dx} = \frac{m\left(x + \sqrt{x^2 + m^2}\right)^{m-1+1}}{\sqrt{x^2 + m^2}} = \frac{my}{\sqrt{x^2 + m^2}}$ from (1)
31. $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, then $\frac{dy}{dx} = y = ?$
 $\frac{dy}{dx} = 1 + \frac{1}{2!}(2x) + \frac{1}{3!}(3x^2) + \cdots$
 $\frac{dy}{dx} = 1 + \frac{x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + \frac{x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + \frac{x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + \frac{x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = \frac{1 + x}{1} + \frac{x^2}{2!} + \cdots = y$
 $\frac{dy}{dx} = 1 + \frac{x}{1} + \frac{x^2}{2!} + \cdots = y$

33.
$$y = \sqrt{x^{2} + m^{2}}$$
, then $yy_{1} = ?$

$$\frac{dy}{dx} = y = \frac{1}{2\sqrt{x^{2} + m^{2}}} (2x) = \frac{x}{y}$$

$$\therefore yy_{1} = x$$

34. $y = \frac{x^{2} + 1}{x} = x + \frac{1}{x}$

$$\frac{dy}{dx} = 1 - \frac{1}{x^{2}}$$

35. $y = \frac{x^{2} - 1}{x} = x - \frac{1}{x}$

$$\frac{dy}{dx} = 1 + \frac{1}{x^{2}}$$

36. $y = e^{\sqrt{2x}}; \frac{dy}{dx} = ?$

$$\frac{dy}{dx} = e^{\sqrt{2x}}; \frac{dy}{dx} = ?$$

$$\frac{dy}{dx} = e^{\sqrt{2x}}; \frac{dy}{dx} (\sqrt{2x}) \times \frac{d}{dx} (2x)$$

$$\frac{dy}{dx} = e^{\sqrt{2x}} \cdot \frac{1}{2\sqrt{2x}} (2) = \frac{e^{\sqrt{2x}}}{\sqrt{2x}}$$

37. $y = \sqrt{x}^{\sqrt{x} + m^{2}} \dots (1)$

 $y = (\sqrt{x})^{y}$ from (1)

Taking log on both sides, we get,

$$\log y = \log x^{w^{2}} = \frac{y}{2} \log x$$

$$2 \log y = y \log x \Rightarrow 2 \log y - y \log x = 0$$

$$\frac{dy}{dx} = \frac{-\left[-\frac{y}{x}\right]}{\frac{y}{y}} = \frac{\frac{y}{2(2 - y \log x)}}{\frac{2 - y \log x}{y}} = \frac{y^{2}}{x(2 - y \log x)}$$

38. $x = \frac{1-t^2}{1+t^2}$; $y = \frac{2t}{1+t^2}$ find $\frac{dy}{dx}$ at t = 1 $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{(1+t^2)^2} \left[(1+t^2)(-2t) - (1-t^2)(2t) \right]$ $= \frac{-2t}{(1+t^2)^2} [1+t^2+1-t^2] = \frac{-4t}{(1+t^2)^2} \dots (1)$ $\frac{dy}{dt} = \frac{1}{(1+t^2)^2} \left[(1+t^2)(2) - (2t)(2t) \right]$ $= \frac{1}{(1+t^2)^2} \left[2 + 2t^2 - 4t^2 \right] = \frac{2 - 2t^2}{(1+t^2)^2} \to (2)$ $\frac{\frac{2-2t^2}{(1)}}{\frac{dy}{dx}} = \frac{\frac{(1+t^2)^2}{-4t}}{\frac{-4t}{(1+t^2)^2}} = \frac{2-2t^2}{-4t}$ $\left(\frac{dy}{dx}\right)_{t=1} = \frac{2 - 2(1)^2}{-4(1)} = \frac{0}{-4} = 0$ Add Enterprise

al	/drande	a Enterprise		
		-	НОМ	
				GRATION)
				SKATION)
1.	Eva	luate ∫ ^{5x²} dx		- 5x ³
	(a)	5/3x³ + k	(b)	$\frac{5x^3}{3} + k$
				-
	(c)	5x ³	(d)	none of these
2.	Inte	gration of 3 – 2x – x4 wi	ill become	v ³
	(a)	$-x^{2} - x^{5}/5$	(b)	$3x - x^2 - \frac{x^3}{5} + k$
				®
	(c)	$3x - x^2 + \frac{x^5}{5} + k$	(d)	none of these
		5		
3.		en f(x) = $4x^3 - 3x^2 - 2x +$	J	
	(a)	$x^4 + x^3 - x^2 + 5x$	(b)	$x^4 + x^3 - x^2 + 5x + k$
	(c)	$12x^2 + 6x - 2x^2$	(d)	none of these
			9	Enteri
4.		luate: $\int (x^2 - 1) dx$		$\frac{x^3}{2} - x + k$
	(a)	$x^{5}/5 - 2/3x^{3} + x + k$	(b)	$\frac{x}{3} - x + k$
		2		
	(c)	2x	(d)	none of these
5.	J	-3x)(1 + x) dx is equal $-3x$		
		$x - x^2 - x^3$		$x^{3} - x^{2} + x$
	(c)	$x - x^2 - x^3 + k$	(d)	none of these
	- ۲ <u>۰</u>	- 11		
6.	,	$\overline{x} = \frac{1}{\sqrt{x}}$ dx is equal to		
				2
	(a)	$\frac{2}{3}x^{3/2} - 2x^{1/2} + k$	(b)	$\frac{2}{3}\sqrt{x} - 2\sqrt{x} + k$
		11		
	(c)	$\frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} + k$	(d)	none of these

J.K. SHAH CLASSES a Veranda Enternrise

	aV	a Veranda Enterprise				
	7.	The	integral of px ³ + qx ² + rx + w	/x is e	qual to	
		(a)	px² + qx + r + k	(b)	$px^{3} / 3 + qx^{2} / 2 + rx$	
		(c)	3px + 2q - w/x ²	(d)	none of these	
	8.	Use	method of substitution to in	tegrat	e the function $f(x) = (4x + 5)^6$ and the answer	
		is				
		(a)	1/28(4x + 5) ⁷ + k	(b)	$(4x + 5)^7/7 + k$	
		(c)	(4x + 5) ⁷ /7	(d)	none of these	
	9.			valuate	$\int x(x^2 + 4)^5 dx$ and the answer is	
		(a)	$(x^2 + 4)^6 + k$	(b)	$1/12(x^2 + 4)^6 + k$	
		(c)	$(x^2 + 4)^6 / + k$	(d)	none of these	
					ß	
	10.	Integrate (x + a) ⁿ and the result will be				
			$(x + a)^{n+1}$		$(x + a)^{n+1}$	
		(a)	$\frac{(x+a)^{n+1}}{n+1} + k$	(b)	$\frac{(x+a)^{n+1}}{n+1}$	
					E.e.	
		(c)	$(x + a)^{n + 1}$	(d)	none of these	
				<u></u>	o Entern	
	11.	∫8x ²	$(x^{3} + 2)^{3}$ dx is equal to	2		
				0.	4	
		(a)	$-4/3(x^3+2)^2+k$	(b)	$-\frac{4}{3(x^3+2)^2}+k$	
_			4	(1)	6.1L	
		(C)	$\frac{4}{3(x^3+2)^2}$ + k	(d)	none of these	
	10	11-1-	a mostly of a sufficient for all		$\frac{1}{1}$	
	12.	USIN	y method of partial fraction	the in	tegration of f(x) when f(x) = $\frac{1}{x^2 - a^2}$ and the	
		ans	wer is			
		(α)	$\log x - \frac{a}{k}$	(b)		
		(u)	$\log x - \frac{a}{x+a} + k$	(0)	$\log(x - a) - \log(x + a) + k$	
		(c)	$\frac{1}{2a}\log\left(\frac{x-a}{x+a}\right)+k$	(d)	none of these	
		(C)	$2a^{(3)}(x+a)^{(1)}$	(u)		
	1२	Use integration by parts to evaluate $\int x^2 e^{3x} dx$				
_	тэ.		$x^2 e^{3x}/3 - 2x e^{3x}/9 + 2/27 e^{3x}$		(b) $x^2 e^{3x} - 2x e^{3x} + 2e^{3x} + k$	
			$x^{2} e^{3x}/3 - x e^{3x}/9 + 2e^{3x} + k$	ľΝ	(d) none of these	
		(0)	E / J = X E / J + Z E + K			

14. $\int \log x \, dx$ is equal to $x \log x - x^2 + k$ (a) $x \log x + k$ (b) (c) $x \log x + k$ (d) none of these 15. $\int xe^x dx$ is (a) $(x - 1)e^{x} + k$ (b) (x - 1)e[×] (c) xe^x + k (d) none of these 16. Evaluate $\int_{0}^{1} (2x^2 - x^3) dx$ and the value is (a) 4/3 + k5/12 (b) (c) -4/3 (d) none of these 17. Evaluate $\int_{1}^{4} (3x - 2)^2 dx$ and the value is (b) 100 (a) 104 (d)9 (c) 10 none of these (a) $\times \log x + k$ (c) \times^2 18. $\int x^{x} (1 + \log x) dx$ is equal to (b) $e^{x^2} + k$ (c) $\frac{x^2}{2} + k$ (d) x[×] + c 19. If $f(x) = \sqrt{1 + x^2}$ then $\int f(x) dx$ is (a) $\frac{2}{3}x(1 + x^2)^{3/2} + k$ (b) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log(x+\sqrt{x^2+1}) + k$ (c) $\frac{2}{3}x(1+x^2)^{3/2} + k$ (d) none of these 20. $\int (e^{x} + e^{-x})^{2} (e^{x} - e^{-x}) dx$ is (a) $\frac{1}{3}(e^{x} + e^{x})^{3} + k$ (b) $\frac{1}{2}(e^{x}-e^{-x})^{2}+k$ (c) $e^{x} + k$ (d) none of these

J.K. SHAH

a Veranda Enterpris

_	21.	 [f()	() + f(-x)] dx is equal to		
		0			
		(a)	$\int_{a}^{a} 2f(x) dx$	(b)	$\int_{a}^{a} f(x) dx$
			Ō		-a
		(c)	0	(d)	$\int_{a}^{a} -f(-x) dx$
					_a
	22.	∫ xe'	x / $(x + 1)^2$ dx is equal to		
		J	× /		
		(a)	e ^x / (x + 1) + k	(b)	e ^x / x + k
		(c)	e [×] + k	(d)	none of these
	23.	∫(x ⁴	+ 3 / x) dx is equal to		8
		J			
		(a)	x ⁵ /5 + 3 log x	(b)	1/5x ⁵ + 3 log x + k
		(c)	1/5 x ⁵ + k	(d)	none of these
			6		E.e.
	24.	Eval	uate the integral $\int (1-x)^3 / x dx$ a	nd the	answer is equal to
				2	nterr
		(a)	log x - 3x + 3/2x ² + k	(b)	log x - 2 + 3x ² + k
		(c)	$\log x + 3x^2 + k$	(d)	none of these
	25.	The	equation of the curve in the form y	y = f(x)	if the curve passes through the point
		(1, 0)) and f´(x) = 2x - 1 is		
		(a)	$y = x^2 - x$	(b)	$x = y^2 - y$
		(c)	$y = x^2$	(d)	none of these
			4		
	26.	Eval	uate $\int_{1}^{1} (2x + 5) dx$ and the value is		
			1		
		(a)	3	(b)	10
		(c)	30	(d)	none of these
		$^{2}_{1}$ 2	2x		
	27.	$\int \frac{1}{1+}$	$\frac{x^2}{x^2}$ dx is equal to		
		1			
		(a)	log _e (5/2)	(b)	$\log_e 5 - \log_e 2 + k$
		(c)	log _e (2/5)	(d)	none of these

J.K. SHA CA FOUNDATION - MATHEMATICS LASSE: a Veranda Enterprise 28. $\int \sqrt{3x+4} dx$ is equal to (a) 9/112 (b) 112/9 (c) 11/9 none of these (d) 29. $\int_{0}^{2} \frac{x+2}{x+1} dx$ is (b) 2 + log_e 3 (a) 2 + log 2 (c) log_e 3 (d) none of these 30. Evaluate $\int_{1}^{e^2} \frac{dx}{x(1 + \log x)^2}$ and the value is (a) 3/2 (b) 1/3 (c) 26/3 (d) 1/2 (loge 5) $31. \int_{0}^{4} \frac{(x+1)(x+4)}{\sqrt{x}} dx \text{ is equal to}$ $(a) 51\frac{1}{5} (b) 48/5 (c) 48 (d) 55\frac{7}{15}$ 32. The equation of the curve which passes through the point (1, 3) and has the slope 4x - 3 at any point (x, y) is (a) $y = 2x^3 - 3x + 4$ (b) (b) $y = 2x^2 - 3x + 4$ (d) none of these (c) $x = 2y^2 - 3y + 4$ 33. The value of $\int_{2}^{3} f(5-x)dx - \int_{2}^{3} f(x)dx$ is -1 (a) 1 (b) 0 (c) (d) none of these 34. $\int \frac{e^x (x \log x + 1)}{x} dx$ is equal to (a) $e^{x} \log x + k$ (b) e[×] + k (c) log x + k (d) none of these 35. $\int \log x^2 dx$ is equal to (a) x (log x - 1) + k (b) $2x(\log x - 1) + k$ (c) 2 (log x - 1) + k (d) none of these

	2			
36.	∫x∣	log x dx is equal to		
	1			
	(a)	2 log 2	(b)	-3/4
	(c)	2 log 2 - 3/4	(d)	none of these
	2			
37.	J 3x'	² dx is		
	0			
	(a)	7 (b) -8 (c)	8	(d) none of these
		$r(2 - x)e^{x}$		
38.	Eval	uate $\int \frac{(2-x)e^x}{(1-x)^2} dx$ and the value i	is	
	(a)	$\frac{e^{x}}{1-x} + k$	(b)	e ^x + k ®
	(c)	$\frac{1}{1-x} + k$	(d)	none of these
				29
39.	Usin	g integration by parts $\int x^3 \log x dx$		E.ce
		x4/16 + k		x4/16(4 log x - 1) + k
	(c)	4 log x - 1 + k	(d)	none of these
			0	
 40.	Eval	uate $\int \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right) dx$ and the value	e is	
		loge e ^x + e ^{-x}		log ^e e ^x + e ^{-x} + k
	(c)	$\log_e e^x - e^{-x} + k$	(d)	none of these
		f f	3x	
41.	By t	he method of partial fraction $\int \frac{1}{(x^2)^2}$	- x -	2) dx is
				$2 \log_{e} x - 2 - \log_{e} x + 1 + k$
	(c)	log _e x - 2 + log _e x + 1 + k	(d)	none of these
10	10.00		<u> </u>	
42.		x) = $x - 1$, the equation of a curve y	= t(x) p	passing through the point (1, 0) is given
	by	2 2 4	/1. >	2/2
		$y = x^2 - 2x + 1$		$y = x^2 / 2 - x + 1$
	(C)	$y = x^2 / 2 - x + 1/2$	(d)	none of these

1.
$$t = \int 5x^{2} = \frac{5x^{3}}{3} + k$$
2.
$$I = \int (3 - 2x - x^{4}) dx$$

$$= 3x - \frac{2x^{2}}{x} - \frac{x^{5}}{5} = 3x - x^{2} - \frac{x^{5}}{5} + k$$
3.
$$f(x) = 4x^{3} + 3x^{2} - 2x + 5$$

$$\int f(x) = \int (4x^{3} + 3x^{2} - 2x + 5) dx$$

$$= \frac{4x^{4}}{4} + \frac{3x^{3}}{3} - \frac{2x^{2}}{2} + 5x$$

$$= x^{4} + x^{3} - x^{2} + 5x + k$$
4.
$$\int (x^{2} - 1) dx = \frac{x^{3}}{3} - x + k$$
5.
$$\int (1 - 3x)(1 + x) dx = \int (1 - 2x - 3x^{2}) dx$$

$$I = x - \frac{2x^{2}}{2} - \frac{3x^{3}}{3} + k$$

$$\therefore I = x - x^{2} - x^{3} + k$$
6.
$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = \int (x^{1/2} - x^{-1/2}) dx$$

$$I = \frac{x^{1/2+1}}{\frac{1}{2} + 1} - \frac{x^{-1/2+1}}{-\frac{1}{2} + 1} = \frac{x^{3/2}}{\frac{3}{2}} - \frac{x^{1/2}}{\frac{1}{2}}$$

$$I = \frac{2}{3}x^{3/2} - 2x^{1/2} + k$$

7.
$$\int \left(px^{3} + qx^{2} + rx + \frac{w}{x} \right) dx$$

$$I = \frac{px^{4}}{4} + \frac{qx^{3}}{3} + \frac{rx^{2}}{2} + w \log x + k$$

8. Let, $I = \int (4x + 5)^{5} dx$

$$= \frac{(5x + 5)^{7}}{7} \cdot \frac{1}{4} = \frac{(4x + 5)^{7}}{28} + k$$

9. Let, $I = \int x(x^{4} + 4)^{5} dx$
Let, $x^{2} + 4 = t$
Now, $I = \int I^{5} \frac{dt}{2}$
2xdx = dt

$$I = \frac{1}{12}(x^{2} + 4)^{6} + k$$

10. $I = \int (x + a)^{n+1} + k$
11. Let, $I = \int \frac{8x^{2}}{(x^{2} + 2)^{3}} dx$
Let, $x^{3} + 2 = t$

$$= 8\int \frac{x^{2}}{(x^{3} + 2)^{3}} dx$$

Let, $x^{3} dx = \frac{dt}{3}$

$$= \frac{8}{3}\int \frac{dt}{t^{3}} = \frac{8}{3}\int t^{-3} dt$$

$$I = \frac{4}{3}\frac{1}{t^{2}} = \frac{-4}{3}\frac{1}{(x^{3} + 2)^{2}} + c$$

EXAMPLE
EXAMPLE
CATOUNDATION - MATHEMATICS
I2. Given:
$$f(x) = \frac{1}{x^2 - a^2}$$

Using the standard integral formula
 $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + k$
13. Let $I = \int x^2 \cdot e^{3x} dx$
Using integration by parts, we get
 $I = x^2 \cdot \frac{e^{3x}}{3} - \frac{2xe^{3x}}{9} + \frac{2e^{3x}}{27} + k$
14. Let, $I = \int \log x dx$
Using the formula : $\int x^n \log x dx = \frac{x^{n+1}}{(n+1)^2} [(n+1)\log x - 1]$
 $\therefore I = \int (1) \log x dx$
Here, $n = 0$
 $= \frac{x^1}{1} [1\log x - 1] = x\log x - x + k$
15. Let, $I = \int xe^x dx$
 $= xe^x - e^x = e^x (x - 1) + k$
16. $I = \int (2x^2 - x^3) dx$
 $I = \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{2}{3} (x^3)_0^1 - \frac{1}{4} (x^4)_0^1$
 $I = \frac{2}{3} (1 - 0) - \frac{1}{4} (1 - 0)$
 $I = \frac{2}{3} - \frac{1}{4} - \frac{8 - 3}{12} - \frac{5}{12}$
17. $I = \int (3x - 2)^2 dx$
 $= \left[\frac{(3x - 2)^2}{3} \cdot \frac{1}{3} \right]_2^4 = \frac{1}{9} [(3x - 2)^3]_2^4$
 $I = \frac{1}{9} [(12 - 2)^3 - (6 - 2)^3] = \frac{1}{9} [1000 - 64] = \frac{936}{9} = 104$

18.

$$I = \int x^{x}(1 + \log x) dx$$
Let, $x^{x} = t$
differentiating using logarithmic differentiation,

$$\frac{dt}{dx} = x^{x} \left[\frac{x}{x} \frac{d}{dx}(x) + \log x \cdot \frac{d}{dx}(x) \right]$$

$$= x^{x} [1(1) + \log x(1)]$$

$$dt = x^{x} (1 + \log x) dx$$

$$\therefore I = \int dt = t = x^{x} + k$$
19.

$$I = \int \sqrt{1 + x^{2}} dx$$
Using std integral, $\int \sqrt{a^{2} + x^{2}} dx = \frac{x}{2} \sqrt{a^{2} + x^{2}} + \frac{a^{2}}{2} \log x + \sqrt{a^{2} + x^{2}}$

$$\therefore \int \sqrt{1 + x^{2}} dx = \frac{x}{2} \sqrt{1 + x^{2}} + \frac{1}{2} \log |x + \sqrt{1 + x^{2}}| + k$$
20.

$$\int (e^{x} + e^{-x})^{2} (e^{x} - e^{x}) dx$$
Let, $t = e^{x} + e^{-x}$

$$\frac{dt}{dx} = e^{x} - e^{-x} \Rightarrow dt = (e^{x} - e^{-x})^{3} + k$$
21.

$$\frac{a}{0} [f(x) + f(-x)] dx$$
We know the property of definite integral

$$\frac{a}{0}^{x} f(x) dx = 0 \text{ if } f(x) \text{ is odd}$$

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) \text{ if } f(x) \text{ is even}$$

 $f(-x) = -f(x) \Rightarrow f(x)$ is odd

$$f(x) = f(x) \Rightarrow f(x)$$
 is even

and
$$\therefore \int_{0}^{a} [f(x) + f(-x)] dx = \int_{-a}^{a} f(x) dx$$

22. Let, $I = \int \frac{xe^x}{(x+1)^2} dx$ $= \int e^{x} \left| \frac{x+1-1}{(x+1)^{2}} \right| dx$ $=\int e^{x} \frac{(x+1)}{(x+1)^{2}} - \frac{1}{(x+1)^{2}} dx$ $=\int e^{x} \left| \frac{1}{x+1} - \frac{1}{(x+1)^{2}} \right| dx = e^{x} \cdot \left(\frac{1}{x+1} \right) + k$ [Using $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$ 23. $I = \int \frac{(1-x)^3}{x^2} dx \qquad (a-b)^3 = a^3 - b^3 - 3a^2b + 3ab^2$ $= \int \frac{(1 - x^3 + 3x^2 - 3x)}{x} dx = \int \left(\frac{1}{x} - x^2 + 3x - 3\right) dx$ $1 = \log x - \frac{x^3}{3} + \frac{3x^2}{2} - 3x + k$ 24. $I = \int \left(x^4 + \frac{3}{x}\right) dx = \frac{x^5}{5} + 3 \log |x| + k$ $I = \int f'(x) dx = f(x) = y$ $= \int (2x - 1) dx = \left| \frac{2x^2}{x} - 1 \right| + c$ \therefore y = x² - x + c Putting x = 1 and y = 0 $0 = 1 - 1 + c \Rightarrow c = 0$ \therefore f(x) \Rightarrow y = x² = x 26. $I = \int_{-\infty}^{4} (2x + 5) dx = \left(\frac{2x^2}{2} + 5x\right)^{T}$ $= (x^2)_1^4 + 5(x)_1^4 = (16 - 1) + 5(4 - 1)$ I = 15 + 15 = 30

30.
$$I = \int_{1}^{2} \frac{dx}{x(1 + \log x)^{2}}$$
Let $1 + \log x = t$

$$\frac{1}{x} dx = dt$$

$$\therefore 2 = \int -\frac{dt}{t^{2}} = \int t^{2} dt = \frac{-1}{t}$$

$$I = \left[\frac{-1}{1 + \log x}\right]_{r}^{e^{2}} = -\left[\frac{1}{1 + \log e^{2}} - \frac{1}{1 + \log 1}\right]$$

$$= -\left[\frac{1}{1 + 2} - \frac{1}{1 + 0}\right] = -\left[\frac{1}{3} - 1\right]$$

$$0$$

$$I = \frac{2}{3}$$
31.
$$\int_{0}^{4} \frac{(x + 1)(x + 4)}{\sqrt{x}} dx$$

$$I = \int_{0}^{4} \frac{(x^{2} + 5x + 4)}{\sqrt{x}} dx$$

$$I = \int_{0}^{4} \frac{(x^{3/2} + 5 \cdot x^{1/2} + 4x^{-1/2})}{\sqrt{x}} dx$$

$$= \left[\frac{x^{5/2}}{5/2} + \frac{5x^{3/2}}{3/2} + \frac{4x^{1/2}}{1/2}\right]_{0}^{4}$$

$$= \frac{2}{5} [x^{5/2}]_{0}^{6} + \frac{10}{3} [4\sqrt{4} - 0] + 8[\sqrt{4} - 0]$$

$$= \frac{2}{5} [16 \times 2] + \frac{10}{3} [4 \times 2] + 8(2)$$

$$I = \frac{64}{5} + \frac{80}{3} + 16 - \frac{832}{15} - 55\frac{7}{15}$$

32. Given: Slope = m = 4x - 3 point (1,3)

$$\begin{pmatrix}
\frac{dy}{dx} \\
= 4x - 3
\end{pmatrix}
= 4x - 3$$

$$I = \int \frac{dy}{dx} = \int (4x - 3)dx = \frac{4x^2}{2} - 3x + k$$

$$\therefore y = 2x^2 - 3x + k$$
Now, $3 = 2 - 3 + k$. $y = 2x^2 - 3x + 4$

33. $I = \int \frac{3}{2}f(5 - x)dx - \int \frac{3}{2}f(x)dx$
Using the property of definite integral

$$\int \frac{b}{a} f(x) dx = \int \frac{b}{a}f(a + b - x)dx$$
Now, $I = \int \frac{3}{2}f(5 - x) dx - \int \frac{3}{2}f(3 + 2 - x) dx$

Now, $I = \int \frac{3}{2}f(5 - x) dx - \int \frac{3}{2}f(3 + 2 - x) dx$

$$= \int \frac{3}{2}I(5 - x) dx - \int \frac{3}{2}I(5 - x) dx = 0$$

34. $I = \int e^x \left[\log x + 1 \right] dx$

$$= \int e^x \left[\log x + \frac{1}{x} \right] dx = e^x \log x + c$$

35. $I = \int \log x^2 dx = 2 \int \log x dx$

$$= 2 [x \log x - x] = 2x (\log x - 1) + k$$

[$\int \log x dx = x \log x - x$]

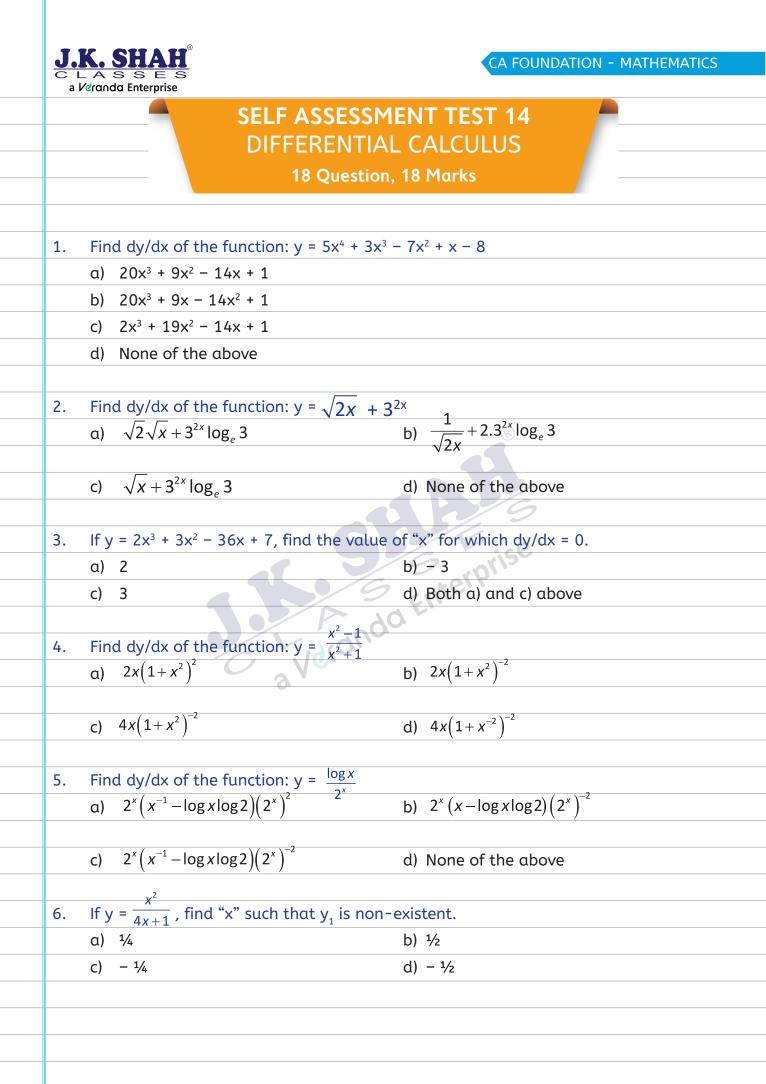
36. $I = \int_{1}^{2} (x \log x) dx$ $\int x^{n} \log x \, dx = \frac{x^{n+1}}{(n+1)^{2}} [(n+1) \log x - 1]$ $\therefore I = \int_{-1}^{2} x \log x \, dx = \left[\frac{x^2}{4} [2 \log x - 1] \right]_{1}^{2}$ $= \left(\frac{2x^2}{4}\log x\right)^2 - \left(\frac{x^2}{4}\right)^2$ $=\left(\frac{4}{2}\log 2 - \frac{1}{2}\log 1\right) - \left(\frac{4}{4} - \frac{1}{4}\right)$ $= (2\log 2) - \left(\frac{3}{4}\right) \therefore 1 = 2\log 2 - \frac{3}{4}.$ 37. $I = \int_{0}^{2} 3x^{2} dx - \left(\frac{3 \cdot x^{3}}{3}\right)_{0}^{2} = 8 - 0 = 8$ $=\int e^{x} \left[\frac{2-x}{(1-x)^{2}} \right] dx = \int e^{x} \left[\frac{1-x+1}{(1-x)^{2}} \right] dx$ $=\int e^{x} \left| \frac{1-x}{(1-x)^{2}} + \frac{1}{(1-x)^{2}} \right| dx$ $I = e^{x} \left[\frac{1}{1-x} \right] + k$ Using, $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$

39.

$$I = \int x^{3} \log x \, dx$$

$$= \frac{x^{4}}{4^{2}} [4 \log x - 1] = \frac{x^{4}}{16} [4 \log x - 1] + k$$
40.
$$I = \int \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx$$
Let, $t = e^{x} + e^{x} - \frac{dt}{dx} = e^{x} - e^{-x} \Rightarrow dt = (e^{x} - e^{-x}) dx$

$$I = \int \frac{dt}{t} = \log t = \log (e^{x} + e^{-x}) + k$$
41.
$$I = \int \frac{3x}{x^{2} - x - 2} dx$$
Put, $x = 1 \quad f(x) = \frac{3x}{x^{2} - x - 2} \quad f(1) = \frac{3}{x - 1 - 2} = \frac{-3}{2} \rightarrow (1)$
2
$$\log |x - 2| + \log |x + 1| + k$$


$$\Rightarrow \frac{2}{x - 2} + \frac{1}{x + 1} \quad put x = 1$$

$$\Rightarrow \frac{2}{1 - 2} + \frac{1}{1 + 1} = \frac{2}{-1} + \frac{1}{2} = \frac{4 - 1}{-2} = \frac{-3}{-2} \rightarrow (2)$$
(1)
(1) = (2)
42.
$$f(x) = x - 1 \quad point (1, 0)$$

$$y = \int f(x) \, dx = \int (x - 1) \, dx$$

$$y = \left[\frac{x^{2}}{2} - x\right] + k$$

$$0 = \frac{1}{2} - 1 + k \Rightarrow k = \frac{1}{2}$$

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

a Veranda Enterprise							
7.	Fin	d dy/dx of the function: x = t^2 , y = 2 -	t, c	at t = 1			
	α)	- 1/2	b)	1/2			
	c)	1/4	d)	1			
		2at 24	* + ²				
8.	Fin	d dy/dx of the function: $x = \frac{3at}{1+t^3}, y = \frac{3a}{1+t^3}$	$\frac{\pi}{t^3}$				
	a)	$\frac{2t-t^4}{1-2t^3}$	b)	$\frac{1-2t^3}{1-t^2}$			
	c)	$\frac{2t-t^4}{1-t^2}$	d)	None of the above			
9.	Fin	d dy/dx of the function: $\sqrt{x} + \sqrt{y} = \sqrt{a}$					
	a)	$\sqrt{\frac{x}{y}}$ b) $-\sqrt{\frac{x}{y}}$	c)	$\sqrt{\frac{y}{x}}$ (c) d) $-\sqrt{\frac{y}{x}}$			
10.	Fin	d dy/dx of the function: $y = \log \sqrt{1 - x^2}$					
		X		×			
	a)	$\frac{x}{(x^2-)1}$	b)	$\overline{(1-x)^2}$			
		X	2	Zerpris			
	c)	$\frac{x}{(x^2+)1}$	d)	None of the above			
 11.	Fin	d dy/dx of the function : $y = \log $	X				
		1 1 1 1 1 1 1		<u>1 1 1</u>			
	a)	$\frac{1}{\log\log\log x} \cdot \frac{1}{\log\log x} \cdot \frac{1}{\log x} \cdot \frac{1}{x}$	D)	loglog x log x x			
		$\frac{1}{\log \log x} \cdot \frac{1}{\log \log x} \cdot \frac{1}{\log x} \cdot \frac{1}{x}$	الم	$\frac{1}{\log \log \log x} \cdot \frac{1}{\log \log x} \cdot \frac{1}{\log x}$			
	c)	loglogx loglogx logx x	a)	logloglog x loglog x log x			
12	Fire	d dy/dx of the function : $y = x^x$					
 12.		$\frac{d dy/dx \text{ of the function : } y - x}{(1 + \log x)}$	ь١	X ^x			
		$x^2 \cdot \log x$	-	$\frac{x}{x^{x}.(1+\log x)}$			
	C)		u)				
13	lf y	$=\frac{x-2}{x+2}$, Find the value of $2x.\frac{dy}{dx}$					
		$\frac{1+y}{1+y}$	b)	1 – y			
 		$\frac{1}{1 - y^2}$		$1 + y^2$			
	-1	,	,	,			

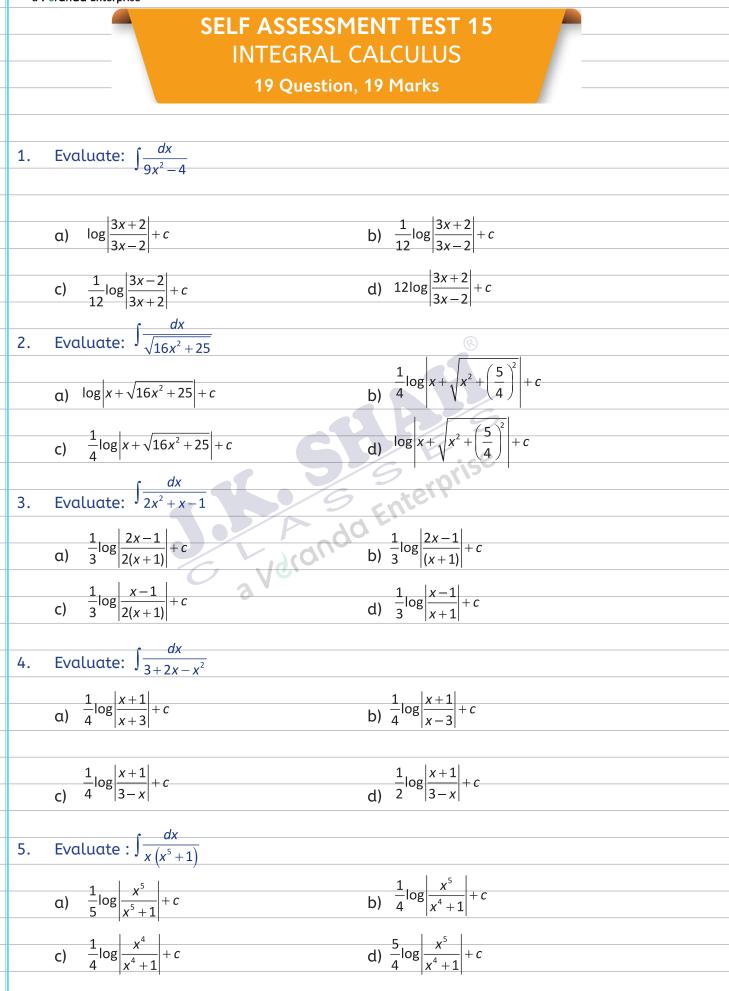
J.K. SHAH[®] C L A S S E S a Veranda Enterprise

			-															
14.	Fin	d th	e deriv	vative	e of x	⁴ with	respe	ect to 🗸	$\sqrt{x+2}$	ī.								
	a)	\sqrt{x}	+1						b)	$x^3\sqrt{x}$	+1							
	c)	8 <i>x</i> ³	$\sqrt[3]{x+1}$						d)	$8x^2\sqrt{x}$	x + 1							
							d ²											
15.	lf y	/ = e	^{4×} + e ⁻⁴	**, fin	d the	value	e of $\frac{d}{dx}$	$\frac{y}{x^2}$.										
		8y							b)	4y								
	c)	16	/						d)	20y								
16.	Fin	d th	e max	imun	n val	ue of	the fu	nction	y =	2/3 x	³ – 6	x ² + 20	< - 5	•				
	a)	6							b)	10								
	c)	- 6							d)	None	of t	he abov	e					
17.	The	e tot	al cos	t fun	ction	C(x) f	or pro	ducing	g x u	nits c	of an	article	per o	day is	s give	n by:		
	C(x	() = R	ks. (400	0 + x ²	- 16	x). Fin	d the	level c	of ou	tput	at wl	nich the	aver	age c	ost f	unctic	n	
	is r	minir	mum.															
	α)	16			b)	20			c)	24	/	9 d)	No	ne of	the c	above		
											2.	e						
18.	The	e tot	al cos	t C(x)	of a	firm i	s C(x)	= 150	0 + 3	30x +	x², v	vhere x	is th	e out	put. \	What	is	
	the	e ma	irginal	cost	whe	n 20 u	inits a	ire pro	duce	ed?								
	α)	20			b)	30		-90	c)	70		d)	40					
					2		,)(C											
						3												

and the second

1.
$$y = 5x^{3} + 3x^{3} - 7x^{2} + x - 8$$

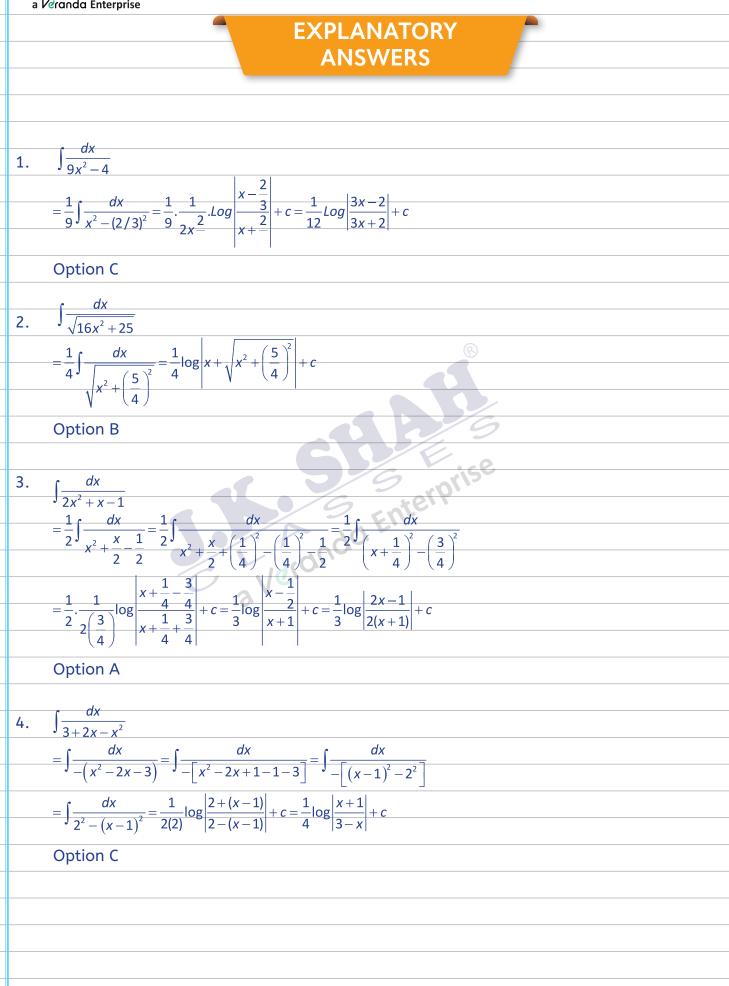
 $\frac{dy}{dx} = 5.4x^{3} + 3.3x^{2} - 7.2x + 1 = 20x^{2} + 9x^{2} - 14x + 1$
Option A
2. $y = \sqrt{2x} + 3^{2x}$
 $\frac{dy}{dx} = \sqrt{2} \cdot \frac{1}{2\sqrt{x}} + 2.3^{2x} \log_{x} 3 = \frac{1}{\sqrt{2x}} + 2.3^{2x} \log_{x} 3$
Option B
(5)
3. $y = 2x^{3} + 3x^{2} - 36x + 7$
 $\frac{dy}{dy} = 6x^{3} + 6x - 36 = 0$
 $\therefore x^{2} + x - 6 = 0$
 $(x + 3)(x - 2) = 0$
 $x = 2 \text{ or } -3. \text{ Option D}$
4. $y = \frac{x^{2} - 1}{x^{2} + 1}$
 $\frac{dy}{dx} = \frac{(x^{2} + 1)^{-d}}{(x^{2} + 1)^{-2}} \frac{(x^{2} - 1)(x^{2} - 1)(x$



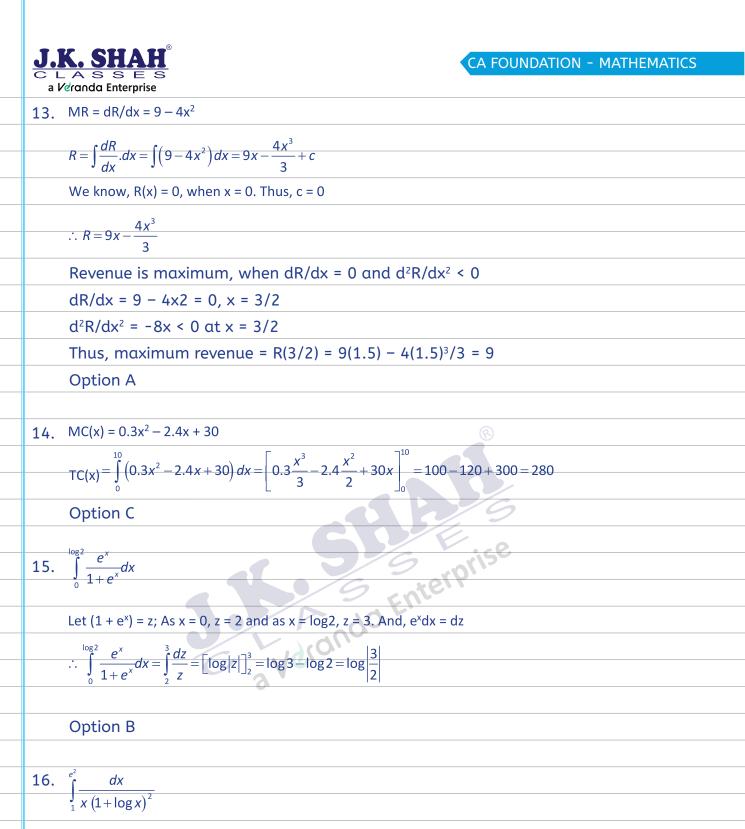
	a۷	dranda Enterprise
	7.	dx/dt = 2t, $dy/dt = -1$
		dy/dx = (dy/dt).(dt/dx) = -1(1/2t) = -1/2t
		dy/dx at t = 1, = -1/2; Option A
	8.	$x = \frac{3at}{1+t^{3}}; \frac{dx}{dt} = \frac{3a(1+t^{3}) - 3at(3t^{2})}{(1+t^{3})^{2}} = \frac{3a(1-2t^{3})}{(1+t^{3})^{2}}$
		$y = \frac{3at^{2}}{1+t^{3}}; \frac{dy}{dt} = \frac{6at(1+t^{3}) - 3at^{2}(3t^{2})}{(1+t^{3})^{2}} = \frac{3at(2-t^{3})}{(1+t^{3})^{2}}$
		$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{3at(2-t^3)}{(1+t^3)^2} \cdot \frac{(1+t^3)^2}{3a(1-2t^3)} = \frac{2t-t^4}{1-2t^3}$
		$dx = \frac{1}{dt} \frac{1}{dx} = \frac{1}{(1+t^3)^2} \frac{1}{3a(1-2t^3)} = \frac{1}{1-2t^3}$
		Option A
	9.	$\sqrt{x} + \sqrt{y} = \sqrt{a}$
		$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0$
		$\frac{dy}{dx} = \frac{-1}{2\sqrt{x}} \left/ \frac{1}{2\sqrt{y}} = -\frac{\sqrt{y}}{\sqrt{x}} = -\sqrt{\frac{y}{x}}$
		$dx = 2\sqrt{x}/2\sqrt{y} \sqrt{x} \sqrt{x}$
		Option D S offse
		9 enteir
	10.	$\frac{dx}{2\sqrt{x}} = \frac{2\sqrt{y}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x}} = \frac{-x}{(1-x^2)} = \frac{-x}{(x^2-1)} = \frac{x}{(x^2-1)}$
		$y = \frac{1}{2} \log \left(1 - x^2 \right)$
		$\frac{2}{dy}$ 1 $-2x$ $-x$ x
		$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{2x}{(1-x^2)} = \frac{x}{(1-x^2)} = \frac{1}{(x^2-1)}$
		Option A
-		
	11.	$y = \log \log \log x$
		dy 1 1 1 1
		$\frac{dx}{dx} = \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} = \frac{dx}{dx} + dx$
		Option A
	12.	$y = x^{x}$
		$\log y = x \log x$
		$\frac{1}{y} \cdot \frac{dy}{dx} = 1 \cdot \log x + x \cdot \frac{1}{x} = \log x + 1$
		$\frac{dy}{dx} = y(1 + \log x) = x^{x} (1 + \log x)$
		Option D
		· · · · · · · · · · · · · · · · · · ·

	K. SHAH [®] CA FOUNDATION - MATHEMATICS
	LASSES Veranda Enterprise
13.	x-2
	$y = \frac{x-2}{x+2}$
	$\frac{dy}{dx} = \frac{(x+2).1 - (x-2).1}{(x+2)^2} = \frac{4}{(x+2)^2}$
	$-2x \cdot \frac{dy}{dx} = \frac{8x}{(x+2)^2} = \frac{(x+2)^2 - (x-2)^2}{(x+2)^2} = 1 - \left(\frac{x-2}{x+2}\right)^2 = 1 - y^2$
_	
	Option C
14.	$A = x^{4}; B = \sqrt{x+1}$ $dA = \frac{dB}{dA} = 1$
_	$\frac{dA}{dx} = 4x^3; \frac{dB}{dx} = \frac{1}{2\sqrt{x+1}}$
	$\frac{dA}{dB} = \frac{dA}{dx} \cdot \frac{dx}{dB} = 4x^3 \cdot 2\sqrt{x+1} = 8x^3\sqrt{x+1}$
	$\frac{\partial B}{\partial B} = \frac{\partial A}{\partial x} \cdot \frac{\partial B}{\partial B} = \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} + 1 = \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} + 1$
	Option C
	®
15.	$y = e^{4x} + e^{-4x}$
	$dy/dx = 4.e^{4x} - 4.e^{-4x}$
	d²y/dx² = 16.e ^{4x} + 16.e ^{-4x} = 16y;
	Option C $y = \frac{2}{3}x^3 - 6x^2 + 20x - 5$
16.	$y = \frac{2}{3}x^3 - 6x^2 + 20x - 5$
-	$y = \frac{2}{3}x^3 - 6x^2 + 20x - 5$
-	$y = \frac{2}{3}x^{3} - 6x^{2} + 20x - 5$ $\frac{dy}{dx} = 2x^{2} - 12x + 20 = 0$
_	$x^{2}-6x+10=0; x=\frac{6\pm\sqrt{36-40}}{2}=3\pm i$
_	-
_	No real value of x exists for which dy/dx = 0. Given function has neither maximum
_	nor minimum. Option D
_	
17.	$C(x) = 400 + x^2 - 16x$
	AC(x) = C(x)/x = 400/x + x - 16
	$AC'(x) = -400/x^2 + 1 = 0$, we get x = 20, - 20
	AC'(x) = 800/x ³ , AC'(20) > 0
	At x = 20, AC(x) is minimum Option B
18.	$C(x) = 1500 + 30x + x^2$
	MC(x) = dC/dx = 30 + 2x
_	MC (20) = 30 + 40 = 70 Option C

	aV	dranda Enterprise			
	6.	Integrate : $\int 2^{(x+3)} dx$			
		2 ^x		2 ³	
		a) $\frac{2^{2}}{\log 2} + C$	b)	$\frac{2^3}{\log 2} + C$	
		· · · · · · · · · · · · · · · · · · ·			
_		c) $\frac{2^{x-3}}{\log 2} + C$	d)	$\frac{2^{(x+3)}}{\log 2} + C$	
_		· 10g2		1082	
_	7.	Integrate : $\int \frac{\log x}{x^2} dx$			
_		_		1	
_		a) $-\log x - \frac{1}{x} + c$	b)	$-x\log x - \frac{1}{x} + c$	
_					
_		c) $-\frac{1}{x}\log x - \frac{1}{x} + c$	d)	$-x^2\log x - \frac{1}{x^2} + c$	
_			u)	X	
	0	$\int a^x \int \frac{1}{2} dx$		B	
	ŏ.	Integrate: $\int e^x \left\{ \frac{1}{x^2} - \frac{2}{x^3} \right\} dx$			
				$\frac{e^{x}}{x^{2}} + C$ $\frac{e^{x}}{x} + C$	
		a) $e^x + C$	b)	x^2	
		e^x		e^x	
		c) $-\frac{e^x}{r^2}+C$	d)	$\frac{1}{x}$	
		\mathcal{A}	19 L	nterr	
	9.	Integrate : $\int \frac{x^2 + 5x + 2}{x + 2} dx$. 90 ,		
		$\frac{x^2}{a} - 4\log(x+2) + C$	200	$\frac{x^2}{2} + 3x - 4\log(x+2)$	
		a) $\frac{1}{2}$ - 410g(x+2)+C	b)	$\frac{-+3x-410g(x+2)}{2}$	+ L
				x^2	<u></u>
		c) $\frac{x^2}{2} - 3x + 4\log(x+2) + C$	d)	$\frac{x^2}{2} + x + 4\log(x+2) +$	C
		r dx			
	10.	Integrate : $\int \frac{dx}{x(x^3+1)}$			
		_		x ³	
_		a) $\frac{1}{3} \log \frac{x^3}{x^3 + 1} + c$	b)	$\log \frac{x^3}{x^3+1} + c$	
_					
_		c) $\frac{1}{2}\log \frac{x^2}{x^3+1} + c$	d)	$\frac{2}{3}\log\frac{x^2}{x^3+1}+c$	
-		· -		· –	
_	11.	The value of the marginal reven	ue function	a (aiven in thouse	ands of rupees) for a
		particular commodity is $R(x) = 4 +$			
		What is the total revenue from th			
					mmoury:
		[Given: $e-3 = 0.05$]	(70 -)		
		a) Rs. 430,000 b) Rs. 341	,010 C)	Rs. 340,000	d) Rs. 431,670



dV	eranda Enterprise	
	$\frac{1}{c}$ dx	
12.	Evaluate : $\int_{0}^{1} \overline{(1+x)(2+x)}$	
		1 3
	$\alpha) \frac{\log \frac{3}{4}}{\log \frac{1}{4}}$	b) $\frac{1}{2} \cdot \log \frac{3}{4}$
	4	1, 4
	c) $\frac{4}{3}$	d) $\frac{1}{3}\log\frac{4}{3}$
13.	If the marginal revenue of a firm is given	n by: MR = 9 – 4x², what can be maximum
	revenue possible?	
	a) 9	b) 5
	c) 13	d) None of the above
14.	Calculate the cost of producing certain t	type of 10 articles, if the marginal cost (in
	Rs. Per unit) is $C(x) = 0.3x^2 - 2.4x + 30$.	
	a) Rs. 200	b) Rs. 420
	c) Rs. 280	d) Rs. 180
		E.ce
	$\log^2 e^x$	Enterprise
15.	Evaluate: $\int \frac{1+e^x}{1+e^x} dx$	Enteri
	a) $\log \frac{2}{3}$	b) $\log \frac{3}{2}$
	c) $\log \frac{5}{3}$	d) $\log \left \frac{7}{5} \right $
	Evaluate: $\int_{1}^{e^2} \frac{dx}{x (1 + \log x)^2}$	
16.	Evaluate : $\int_{1} \frac{1}{x (1 + \log x)^2}$	
	u) 1/2	b) 2 / 3
	c) 3 / 4	d) None of the above
	(x-1)dx	
17.	Integrate : $\int \frac{(x-1)dx}{(x-3)(x+2)}$	
	. 2 3	3, , , , , , , , , , , , , , , , , , ,
	a) $\frac{2}{5}\log(x-3) + \frac{3}{5}\log(x+2) + c$	b) $\frac{3}{5}\log(x-3) + \frac{2}{5}\log(x+2) + c$
	2, , , , , , ,	
	c) $\frac{2}{5}\log(x-3) - \frac{3}{5}\log(x+2) + c$	d) $\frac{3}{5}\log(x-3) - \frac{2}{5}\log(x+2) + c$



18. Integrate : $\int \frac{(x-1)(x-5)}{(x-2)(x-4)} dx$ a) $x + \frac{3}{2} \log \left| \frac{x+2}{x+4} \right| + c$ b) $x + \frac{3}{2}\log \frac{x-2}{x-4} + c$ c) $x + \frac{2}{3} \log \left| \frac{x-2}{x-4} \right| + c$ d) $x + \frac{2}{3} \log \left| \frac{2-x}{x-4} \right| + c$ 19. Integrate : $\int \frac{5x^2 + 1}{(x+1)^2 (2x-1)} dx$ a) $2\log|x+1| + \frac{2}{x+1} + \log|2x-1| + c$ b) $\log|x+1| + \frac{2}{x+1} + \frac{1}{2}\log|2x-1| + c$ d) $2\log|x+1| + \frac{2}{x+1} + \frac{1}{2}\log|2x-1| + c$ C) $2\log|x+1| + \frac{1}{x+1} + \frac{1}{2}\log|2x-1| + c$ 6/6 S Enterprise

Let
$$(1 + \log x) = z$$
. When $x = 1$, $z = 1$ & when $x = e^2$, $z = 3$. And $dx = x.dz$

$$\therefore \int_{1}^{e^{2}} \frac{dx}{x(1+\log x)^{2}} = \int_{1}^{3} \frac{dz}{z^{2}} = \left[\frac{-1}{z}\right]_{1}^{3} = \frac{-1}{3} + 1 = \frac{2}{3}$$

Option B

17.
$$\int \frac{(x-1)dx}{(x-3)(x+2)} = \int \frac{A}{x-3} dx + \int \frac{B}{x+2} dx$$
On solving, we get: A = 2/5 and B = 3/5
$$\therefore \int \frac{(x-1)dx}{(x-3)(x+2)} = \frac{2}{5} \int \frac{dx}{x-3} + \frac{3}{5} \int \frac{dx}{x+2} = \frac{2}{5} \log(x-3) + \frac{3}{5} \log(x+2) + c$$
Option A
18.
$$\int \frac{(x-1)(x-5)}{(x-2)(x-4)} dx$$
Let
$$\int \frac{(x-1)(x-5)}{(x-2)(x-4)} dx = \int \frac{x^2-6x+5}{(x-2)(x-4)} dx = \int \left[1 + \frac{A}{x-2} + \frac{B}{x-4}\right] dx$$
On solving: $(x^2 - 6x + 5) = (x-2)(x-4) + A(x-4) + B(x-2)$; we get: $A = 3/2$ & $B = -3/2$

$$\therefore \int \frac{(x-1)(x-5)}{(x-2)(x-4)} dx = \int \frac{x^2}{2} \int \frac{dx}{x-4} = x + \frac{3}{2} \log(x-2) - \frac{3}{2} \log(x-4) + c$$
Option B
19.
$$\int \frac{5x^2+1}{(x+1)^2(2x-1)} dx = \int \left[\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{2x-1}\right] dx$$
On solving: $(5x^2+1) = A(x+1)(2x-1) + B(2x-1) + C(x+1)^3$; we get: $A = 2$, $B = -2$; $C = 1$

$$\therefore \int \frac{5x^2+1}{(x+1)^2(2x-1)} dx = 2 \int \frac{dx}{x+1} - 2 \int \frac{dx}{(x+1)^2} + \int \frac{dx}{2x-1}$$

LOGICAL REASONING

NUMBER SERIES, CODING AND DECODING AND ODD MAN OUT

- Series is a sequential order of numbers, letters or both arranged in some specific rules.
- These Rules can be based on mathematical operations, place of letters in alphabetical order etc.

Different types of Series

- 1. Number Series
- 2. Letter Series
- 3. Alpha-Numeric Series
- 4. Continuous pattern Series

NUMBER SERIES

Number series is a logical sequence of more than one elements made of arithmetical digits.

Some Types of number series:

- 1. Same numbers addition or subtraction series.
- 2. Increasing order addition or subtraction series.
- 3. Same number multiplication or division series
- 4. Increasing order multiplication or division series
- 5. Same number multiplication and addition or subtraction series

	6.	Same number multiplication and addition or subtraction in increasing order series
	7.	Increasing order multiplication and same number addition or subtraction series.
	8.	Increasing order multiplication and increasing order addition or subtraction series
	9.	Multiplication and division series.
	10.	Square series
-		
	11.	Cube series
_	4.2	
-	12.	Square addition series
	10	
	13.	Prime number series
	14.	Digital operation of number series
	14.	bigitat operation of number series
	15.	Digital operation of number series
	10.	
		L'idnas
		C Vere

CLASS WORK SECTION

In the following series replace the question (?) with the suitable option. 1. 6,9,12, 15, 18,? a) 21 b)20 c) 19 d) 22 2. 7, 12, 19, 28, 39,? a) 52 b) 50 c) 51 d) 48 3. 36, 28, 24, 22,? a) 18 b) 19 c) 21 d) 22 7, 11, 13, 17, 19, 23, 25, 29.? (Nov-2018) 4. Enterprise c) 32 d) 33 a) 30 b) 31 5. 7, 9, 13, 21, 37,? Verandoc) 69 a) 58 b) 63 d) 72 27, 32, 30, 35, 33, ? 6. a) 28 b) 31 c) 36 d) 38 71, 59, 48, 38, 29, ? 7. c) 20 d) 12 a) 18 b) 21 8. 2, 5, 10, ?, 26 a) 19 b) 21 c) 17 d) 25 1, 6, 15, ? , 45, 66, 91 9. a) 25 b) 26 c) 27 d) 28 10. 97, 86, 99, 88, 101, ?, ? a) 88,99 b) 90, 103 c) 121, 108, d) 114, 103

a V	dranda Enterprise			
11.	107, 97, 82, 62, ?			
	a) 52	b) 42	c) 47	d) 37
12.	2, 6, 12, ? , 30			
	a) 18	b) 24	c) 20	d) 26
13.	24, 60, 120, 210,	?		
	a) 300	b) 336	c) 420	d) 525
14.	8, 16, 28, 44, ?			
	a) 60	b) 64	c) 62	d) 66
15.	1, 4, 9, 25, ?		®	
	a) 49	b) 60	c) 30	d) 36
16.	198, 194, 185, 16	9,?	/9	
	a) 92	b) 136	c) 144	d) 112
			Suprise	
17.	1, 2, 5, 26,	19	Enteri	
	a) 620	b) 650	c) 677	d) 687
		L'Idrana.		
18.	7, 23, 47, 119, 16			
	a) 211	b) 223	c) 287	d) 319
19.	0, 6, 24, 60, 120,			
	a) 290	b) 240	c) 336	d) 504
20.	3, 15, 35, 63, ?, 14			
	a) 120	b) 110	c) 99	d) 91
21.	17, 36, 74, 150, ?			
	a) 250	b) 303	c) 300	d) 302
22.	2, 1, 4, 3, 6, 5, 8,	?		
	a) 9	b) 10	c) 7	d) 8

a V	Veranda Enterprise								
23.	3, 128, 6, 64, 9, ?,	, 12, 16, 15, 8							
	a) 32	b) 12	c) 108	d) 72					
24.	6, 13, 38, ?, 532,	2675							
	a) 129	b) 123	c) 172	d) 164					
25.	45, 46, 70,141, ?	, 1061.5							
	α) 353	b) 353.5	c) 352.5	d) 352					
		ODD MA	N OUT						
 Find	the odd out of the	following							
1.	Fish, Starfish, Croo	codile, Hen	ß						
	a) Fish	b) Hen	c) Starfish	d) Crocodile					
2.	15, 21, 63,81, 69	(N-2018)	2/9						
	a) 15	b) 21	c) 63	d) 81					
			Suprise						
		/9	Enterp						
3.	4, 12, 44, 176, 89	0 (J-2019)							
	a) 4	b) 12	c) 44	d) 176					
4.	3, 12, 36, 144, 43	1, 1728, 5184							
	a) 144	b) 431	c) 36	d) 5184					
5.	56, 72, 90, 110, 1	32, 150							
	a) 72	b) 90	c) 110	d) 150					
6.	9, 14, 19, 25, 32, 4	0							
	a) 14	b) 25	c) 32	d) 9					
7.	20, 40, 200, 400,	2000, 4000, 8000							
	a) 200	b) 40	c) 8000	d) 4000					
8.	4, 5, 12, 38, 160 8	305, 4836							
	a) 12,	b) 160	c) 38	d) 805					

	a V	a Veranda Enterprise								
	9.	7, 4, 5, 9, 20, 51,	160.5							
		α) 4	b) 51	c) 9	d) 20					
	10.	1788, 892, 444, 2	20, 112, 52, 24							
		a) 52	b) 112	c) 220	d) 444					
	LET	TER SERIES, ALPHA	NUMERIC AND CONTIN	UOUS PATTERN SEI	RIES					
	Lette	er series is a sequ	ence of letters taken f	rom English alpho	ibet and such sequence					
	follo	ows a certain logico	al pattern							
	1.	B, D, F, I, L, P, ?								
		a) U	b) R	c) S	d) T					
				®						
	2.	W, U, S, P, M, I, ?								
		a) E	b) A	c) H	d) F					
				17/9	1					
	3.	ACE, BDF, CEG, ?	C							
		a) DFE	b) DEF	c) DFH	d) DEH					
			/9	Enterp						
	4.	PMK, MPK, MKP, K	MP,?	<u>, E</u>						
		α) PMK	b) KMP	c) MPK	d) KPM					
			C Ver							
	5.	PBA, QDC, RFE, ?	0							
		a) SHG	b) OAB	c) TJI	d) ULK					
	6.	XWA, VTC, SPF, Ok	·							
		a) JDN	b) JEO	c) LPN	d) JDP					
╢										
	7.	OTE, PUF, QVG, RV	VH, ?							
╢		a) SYJ	b) TXI	c) SXJ	d) SXI					
		· · · · · · · · · · · · · · · · · · ·			·					
	8.	BFG, HLM, NRS, ?								
		a) TWX	b) RVW	c) TYZ	d) TXY					
		,	•	•	•					
	9.	P3, M8, ?, G24, D3	35							
		a) K15	b) J13	c) 13	d) J15					
-		w/ 1010	.,	-, 110	~, J 1 J					

	10.	A1, C3, F6, J10, O15,?									
		a) U21	b) V21		c) T20		d) (J20			
	11.	Which of the following is odd one: (J-2019)									
		a) CEHL	b) KMPT		c) OQTX		d) N	IPSV			
	12.	ac_ga_eg_ce_									
		a) dbag	b) ecag		c) deag		d) (ebdg			
	13.	ba_b_aab_a_b									
		a) abaa	b) abba		c) baab		d)	babb			
	14.	sr_tr_srs_r_srst_				®					
		a) ttssrr	b) tsrtsr		c) strtrs		d) 1	tstttr			
	4.5										
	15.	ab_cabb_caa_bco				<u> </u>					
		a) abbcc	b) baabc		c) bcbbb	rise	d) I	bcaac			
	CODING AND DECODING										
		oding-Decoding is process of transmitting an information from one place to other using ome suitable codes, so that it might reach to other person safely.									
	30111										
	Diffe	ifferent Types of coding and decoding:									
	1.	Coding based on Rearrangement of Letters									
	2.	Coding based on replacement of letters									
	3.	Opposite letter coding									
	4.	Coding of Letters by their Left and Right Letters									
	5.	Number coding									
	6.	Symbol coding based on Similarity									
	7.	Coding by substitution or word replacement									
	8.	Fictitious Language Coding									
	9.	Coding by Comparison									
_											

CLASS WORK SECTION

1.	HONEY is coded of	as JQPGA, which word i	s code as VCTIGVU	? (N-2018)
	a) CARPETS	b) TRAPETS	c) TARGETS	d) UMBRELU
2.	In a certain lang	uage, MADRAS is coded	l as NBESBT, How i	s BOMBAY coded in that
	language? (J-19)			
	a) CPNCBX	b) CPNCBZ	c) CPOCBZ	d) CQOCBZ
3.	In a certain cod	e language, COMPUTR	ONE is written as	5 PMOCTUENOR. How is
	ADVANTAGES wri	tten in that same code?	ß	
	a) ADVANSEGAS	b) ADTANSEAG	c) AVDANTAGES	d) AVDATNSEGA
				/
4.	In a certain code	e language EARTH is w	vritten as JVTCG, t	hen how will GLOBE be
	written in that la	nguage?	V ice	,
	a) GDQNI	b) GDQIN	c) GDNIQ	d) GDIQN
		/9	Enter	
5.	In a certain langu	lage FAME is written as	LGGY then how w	ill LION be coded in that
	language?			
	a) RHIO	b) ROIH	c) RHOI	d) RIOH
6.		-		en as ABC and MANGO is
		. How will ROSE writter		
	a) ABCS	b) ACBS	c) AZSC	d) AZCS
7.		0 0	written as IZORNR	H, how will NATURAL be
	written in that la		\ 0715714C	
	a) OZIFGZM	b) OZIFGMZ	c) OZIFZMG	d) OZIFMZG
0	If is a contain a l			
8.		e language GO IS writte	en as FHNP, then ho	ow will SUN be written in
	that language?			
	a) RTTOMV	b) RTTOVM	c) RTTVOM	d) RTTVMO

J.K. SHAH C L A S S E S a Veranda Enterprise

al	/@randa Enterprise			
9.	If in a certain co	de RAMAN is coded as	; 18113114, then ho	w will KAPILA be coded in
	that language?			
	a) 111196112	b) 111169112	c) 111169121	d) 116119121
10.	In a certain cod	e RIPPLE is written as	613382 and LIFE is	s written as 8192. How is
	PILLER written in	n that code? <mark>(M-2018</mark>	;)	
	a) 318826	b) 318286	c) 618826	d) 338816
11.	If PLAY is coded	as 8123 and RHYME is	s coded as 49367. W	hat will be code of MALE?
	(N-18)			
	a) 6217	b) 6198	c) 6395	d) 6285
12.	If LOSE is coded	as 1357 and GAIN coo	ded as 2468, what a	do figure 82146 for?
	(M-2018)			
	a) NGLAI	b) NGLIA	c) GNLIA	d) GNLA
				2
13.	In a certain cod	e language, DOME is v	written as 8943 and	MEAL is written as 4321.
	What group of l	etters can be formed f	for the code 38249?	
 	a) EOADM	b) MEDOA	c) EMDAO	d) EDAMO
			30 -	
 14.				written as 4925400, then
		e written in that langı		
 	a) 400529522	b) 400529225	c) 400925225	d) 400225925
15.		= 47 then MAT = ?		
	a) 40	b) 66	c) 34	d) 51
16.		T = 6720 then PICK?		I) / 750
	a) 4137	b) 4590	c) 4032	d) 4752
4 -				
17.				is written as \$ 3 2 @ then
		be written in that lang		
	a) 3 * 5 \$	b) 3 * \$ 5	c) 3 \$ * 5	d) 3 5 * \$

		ASSES		CA FOUNDA	TION LOGICAL REASONING
_		dranda Enterprise	RIACK RIACK is calle		alled RED, RED is called
_	10.		is called ORANGE, the		
_		a) RED	b) BLACK	c) GREEN	d) WHITE
_			D) DEACK	c) anella	
_	19.	If LION is called FI	ISH. FISH is called PARR	OT. PARROT is calle	ed RAT, RAT is called CAT,
_			R, then which of the fo	-	
_		a) FISH	b) PARROT	c) RAT	d) TIGER
		·	·		
	Dire	ctions (Q. no. 20 to	23)		
		In a certain code	language 461 means '	where are you', 16	i9 means 'you are good'
		and 8652 means	'flowers are not bad'.		
	20.	What is the code	for 'not'?		
		α) 6	b) 8	c) 2	d) 8 or 5 or 2
	21.	What is the code	for 'good'?	/9	
		a) 4	b) 9	c) 6	d) 6 or 1
				Suprise	
	22.	How will 'where r	not are good flowers' be	e written in coded	language?
		a) 68954	b) 46598	c) 45698	d) Data inadequate
			, d(d)		
	23.	-	where' be written in th		
		a) 614	b) 163	c) 618	d) 168
	24.				e are bad' and 358 mens
		-	/hich of the following re	•	
		a) 2	b) 5	c) 8	d) 3
	<u></u> ۲	If in a cortain and	o languago "Cachin is -	roat' is written as "	ag ma ra' fic he poer' is
	25.				ga ma ra'. 'is he poor' is
			a', then find the code for b) ma		d) ra
		a) ta	b) IIIu	c) ga	d) ra
_					
_					

HOMEWORK SECTION

1.	6, 11, 21, 36, 56	?				
	(a) 42	(b)	51	(c) 81	(d)	91
2.	10 , 100, 200, 31	0?				
	(a) 400	(b)	410	(c) 420	(d)	430
3.	11, 13, 17, 19, 23	3, 25	?			
	(a) 33	(b)	27	(c) 29	(d)	49
				®		
4.	6, 12, 21, 33 ?					
	(a) 33	(b)	38	(c) 40	(d)	48
				/9		
5.	2, 5, 9, 14, ? , 27		6	V		
	(a) 20	(b)	16	(c) 18	(d)	24
			/9	(c) 18 Entern		
6.	6, 11, 21, ? , 56,		P d			
	(a) 42	(b)	36 1010	(c) 91	(d)	51
			ave			
7.	10, 18, 28, 40, 54	4, ?, 8	38			
	(a) 70	(b)	86	(c) 87	(d)	98
8.	120, 99, ?, 63, 48	3, 35				
	(a) 80	(b)	36	(c) 45	(d)	40
9.	22, 24, 28, 36, ?	, 84				
	(a) 44	(b)	52	(c) 38	(d)	54
10.	4832, 5840, 6848	8, 78	56 ?			
	(a) 8864	(b)	8815	(c) 8846	(d)	8887
11.	10, 100, 200, 310), 430	2?			
	(a) 560	(b)	540	(c) 550	(d)	590

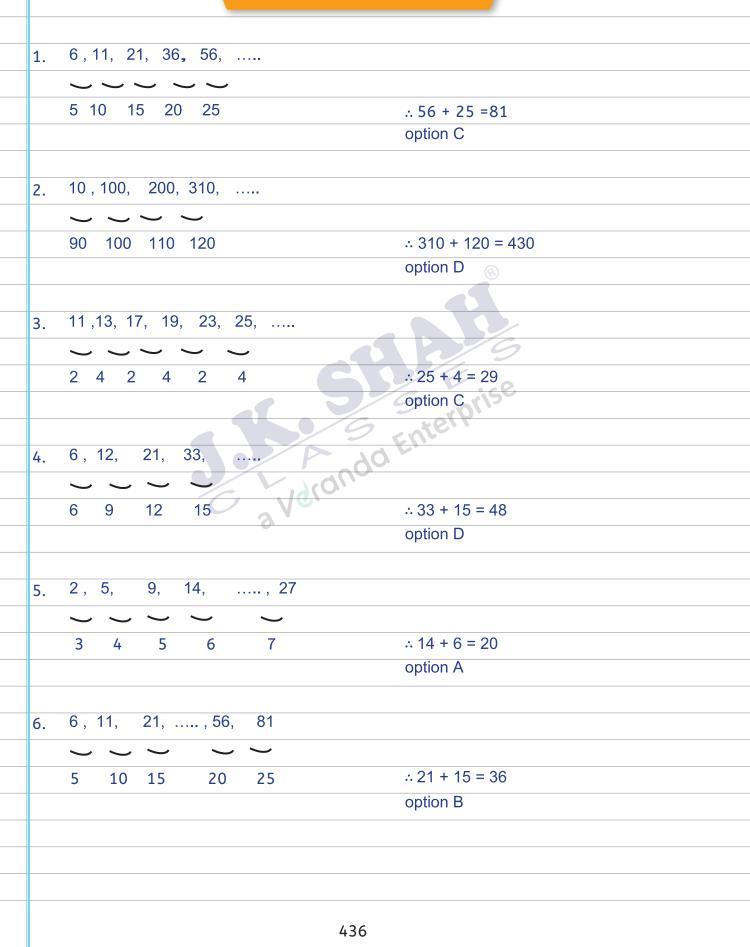
J.K. SHAH C L A S S E S a Veranda Enterprise

a	Veranda Enterprise					
12.	28, 33, 31, 36, 34	+?				
	(a) 38	(b)	39	(c) 40	(d)	42
13.	120, 80, 40, 45, ?	' , 5				
	(a) 15	(b)	20	(c) 25	(d)	30
14.	2, 15, 41, 80, 132	2?				
	(a) 184	(b)	144	(c) 186	(d)	197
15.	6, 17, 39, ?, 116					
	(a) 72	b)	75	(c) 85	(d)	80
16.	1, 4, 10, 22, ?, 94	•		®		
	(a) 46	(b)	48	(c) 49	(d)	47
17.	4, 9, 25, 49, ? , 1	69, 2	89, 361	29	7	
	(a) 120	(b)	121	(c) 122	(d)	164
				Storige		
18.	4, 12, 36, ? , 324		19	Enteri		
	(a) 107	(b)	109	(c) 108	(d)	110
			Verana			
19.	1, 1, 4, 8 , 9, ? , 1		3			
	(a) 27	(b)	28	(c) 32	(d)	40
 20.	5760, 960, 192, ?					
	(a) 47	(b)	48	(c) 52	(d)	50
21.	1, 2, 6, 7, 21, 22,					
	(a) 69	(b)	68	(c) 67	(d)	69
22.	48, 24, 96 , ? 192					
	(a) 48	(b)	47	(c) 44	(d)	54
23.	165, 195, 255, 28	35, ?,	435			
	(a) 345	(b)	390	(c) 335	(d)	395

J.K. SHAH C L A S S E S a Veranda Enterprise

al	∕dra∩da Enterprise					
24.	2, 3, 3, 5, 10, 13,	39, ?	, 172, 177			
	(a) 42	(b)	44	(c) 43	(d)	40
25.	7, 26, 63, 124, 21	5, ?,	511			
	(a) 342	(b)	343	(c) 441	(d)	421
26.	3, 7, 15, 31, ? 127	7				
	(a) 62	(b)	63	(c) 64	(d)	65
27.	8, 28, 116, 584, ?					
	(a) 1752	(b)	3502	(c) 3504	(d)	3508
28.	6, 13, 28, 59, ?			B		
	(a) 122	(b)	114	(c) 113	(d)	112
29.	2, 7, 27, 107, 427	', ?		2/9		
	(a) 1707	(b) 4	4027	(c) 4207	(d)	1207
				Sublis		
30.	5, 2, 7, 9, 16, 25,	41?	N /9	Enterp		
	(a) 65	(b)	66	(c) 67	(d)	68
		4	L'acoli			
31.	In a certain langu	age,	MADRAS is coded	NBESBT, how DELH	ll is co	oded in that code?
	(a) EMMJI	(b)	EFMIJ	(c) EMFIJ	(d)	JIFEM
32.	If RAMAN is writte			H as 675489 how H	HAMA	M is written?
	(a) 92323	(b)	92233	(c) 93233	(d)	93292
33.	If RED is coded as	672	0 then GREEN wou	ld be coded as		
	(a) 9207716	(b)	167129	(c) 1677209	(d)	1672091
34.	If A = 1, FAT = 27,	FAIT	H = ?			
	(a) 44	(b)	45	(c) 46	(d)	36
35.	If BROTHER is cod	led a	s 2456784, SISTER	R is coded as 9196	84, w	hat is the code for
	BORBEES?					
	(a) 2542889	(b) 2	2542898	(c) 2454889	(d)	2524889

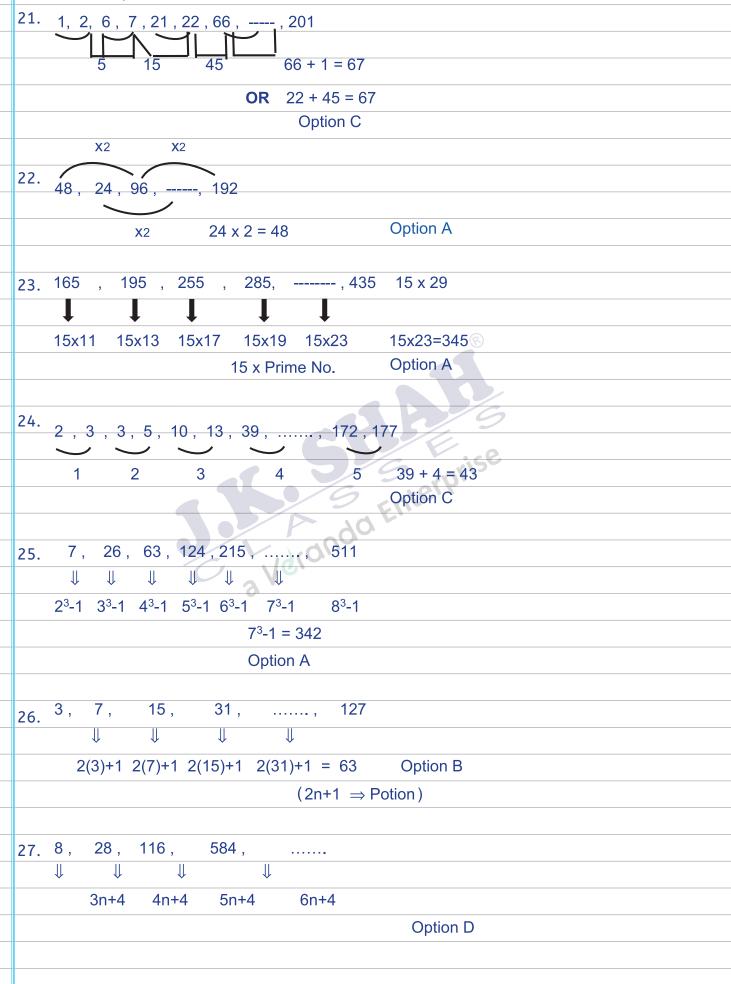
J. C L	ASSES			CA FO	DUNDATION	LOGICAL REASON	ING
 	Veranda Enterprise						
36.				UTTA as 82589662,			d?
	(a) 5279431	(b)	5978213	(c) 8251896	(d)	8543962	
37.	If CLOCK is code	ed 3423	35 and TIME	is 8679, what will	be code of	MOTEL?	
	(a) 72894	(b)	77684	(c) 72964	(d)	27894	
38.	If PALE is coded	l as 213	34 and EAR1	TH is coded as 4159	0, how is P	ERAL coded?	
	(a) 29530	(b)	24153	(c) 25430	(d)	254313	
39.	If LOSE is coded	d as 13	57 and GAII	N is coded as 2468,	what do f	igure 82146 sta	nds
	for?						
	(a) NGLAI	(b)	NGLIA	(c) GNLIA	(d)	GNLIA	
40.	If MEKLF is code	ed as 9	1782 and Ll	LJK as 88867, how	can IHJED	is coded?	
	(a) 97854	(b)	64512	(c) 54610	(d)	75632	
					19		
 41.	If in a certain	code la	anguage NA	AME is written as 4	258 then	what is coded	as
	MEAN ?			2/9 0	rise		
 	(a) 2458	(b)	5842	(c) 8524	(d)	5824	
			P	70 FI			
 42.	If GOLD is writt	en as lo	QNF, how W	IND can be written i	in that cod	e?	
	(a) YKPF	(b)	VHCM	(c) XJOE	(d)	DNIW	
			-0-				
43.	If ROSE is writte	en as T	QUG, how B	ISCUIT can be writte	en in that c	ode?	
 	(a) DKUEWKV			(b) CJTDV	/JU		
	(c) DKVEWKV			(d) DKUE	WKY		
 LETT	ER: C Z N V R S	WFDO	CODE				
DIGI	T: 8 6 4 7 2 9 3 5	5 1 (Q. I	no. 44 to 46)			
 In ec	ach of the follow	ing que	estions find	out the correctly co	ded alterno	ative from amon	igst
 	given four alterr	· · ·		-			
 	5		,,, .	•			
44.	ZDRCVF						
 	(a) 612875	(b)	619875	(c) 612845	(d)	612835	
 		~/~/		(0, 0120.0	(-)		
				())			


J.K. SH CA FOUNDATION LOGICAL REASONING a Veranda Enterprise 45. WNCSZV (a) 348267 (b) 318267 (c) 348957 (d) 348967 46. RDNFVS (a) 21679 (b) 216549 (c) 214579 (d) 218579 47. If DELHI is coded as CCIDD, how would you encode BOMBAY? (a) AJMTVT (b) AMJXVS (c) MJXVSU (d) WXYZAX 48. In a certain code, RIPPLE is written as 613382 and LIFE is written as 8192. How is PILLER written in that code? (a) 318826 (c) 618826 (b) 318286 (d) 338816 49. If PALAM could be given the code number 43, what code number can be given to SANTACRUZ? (c) 120 (a) 123 (b) 85 (d) 125 Directions: The number in each question below is to be codified in the following code: 7 2 5 Digit 1 3 9 8 6 4 Μ S J Letter W L Т Ν D В 50. 184632 (a) MDJBSI MDJBIL (c) MDJBWL (d) MDBJIL (b) 51. In a certain code '256' means 'you are good', '637' means 'we are bad' and '358' means 'good and bad'. Which of the following represents 'and' in that code? (a) 2 (d) 3 (b) 5 (c) 8 Directions: Find odd man out of the following (52 - 61): 52. 3, 5, 7, 15, 17, 19 (a) 15 (b) 17 (c) 19 (d) 7 53. 10, 14, 16, 18, 23, 24, 26 (a) 26 23 (c) 24 (d) 18 (b)

J.K. SHAH C L A S S E S a Veranda Enterprise

	· · · · · · · · · · · · · · · · · · ·					
54.	1, 4, 9, 16, 24, 2	25, 36				
	(a) 9	(b)	24	(c) 25	(d)	36
55.	41, 43, 47, 53, 6	51, 71	, 73, 75			
	(a) 75	(b)	73	(c) 71	(d)	53
56.	16, 25, 36, 73, 1	44, 1	96, 225			
	(a) 36	(b)	73	(c) 196	(d)	225
57.	1, 4, 9, 16, 19, 3	6, 49				
	(a) 19	(b)	9	(c) 49	(d)	16
58.	1, 5, 14, 30, 49,	55, 9	1			
	(a) 49	(b)	30	(c) 55	(d)	91
59.	835, 734, 642, 7	'51, 8	53, 981, 532		2	
	(a) 751	(b)	853	(c) 981	(d)	532
				Suprise		
60.	4, 5, 7, 10, 14, 1	.8, 25	, 32 / 9	Enterp		
	(a) 7	(b)	14 14	(c) 18	(d)	33
			L'Id(dile			
61.	52, 51, 48, 43, 3	4, 27	, 16			
	(a) 27	(b)	34	(c) 43	(d)	48

HOMEWORK SOLUTIONS



J.K. SHAH®
CLASSES
a Vergoda Enterprise

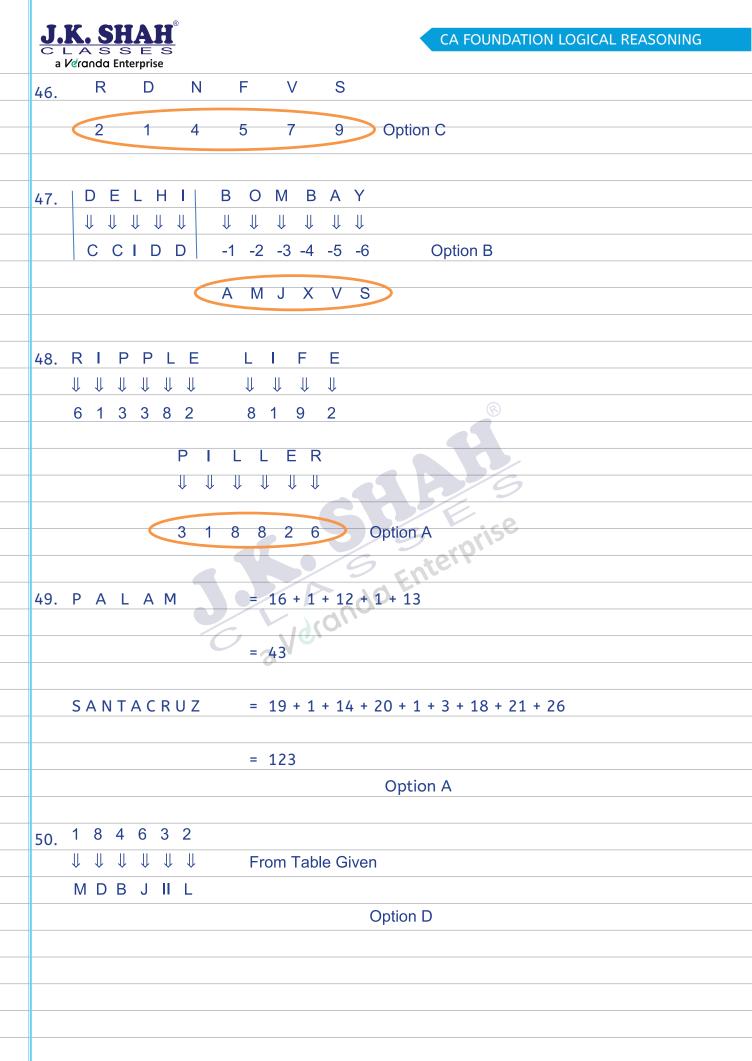
а	Veranda Enterprise	
7.	10 , 18, 28, 40, 54, 88	
	$ \ \ $	
	8 10 12 14 16 18	∴ 54 + 16 = 70
		option A
8.	120 , 99, , 63, 48, 35	
	· · · · · ·	
	21 19 17 15 13	∴ 99 - 19 = 80
		option A
 9.	22, 24, 28, 36,, 84,	
	\sim \sim \sim \sim	
	2 4 8 16 32	∴ 36 + 16 = 5 2
		option B
10.	4832, 5840, 6848, 7856,	2/9
	~~~~ <b>C</b>	E
	1008 1008 1008 1008	·· 7856 + 1088 = 8864
	19	option A
	70	
11.	10 , 100, 200, 310, 430,	
	90 100 110 120 130	∴ 430 + 130 = 560
		option A
12.	28, 33, 31, 36, 34,	
	$\sim$ $\sim$ $\sim$ $\sim$	
	+5 -2 +5 -2 +5	∴ 34 + 5 = 39
		option B
	$\frown$	
13.	120 , 80 , 40 , 45 ,, 5	option C
	$\frac{120+40}{2}$ , $\frac{45+5}{2}$ = 25	
	2 2 = 25	

option $6, 17, 39, \dots, 116$ $2, 2, \dots, 34$ $3, 44$ $3, 39 + 1$ $3, 44$ $3, 39 + 1$ $3, 44$ $3, 6, 12, 24, 48$ $22, 32, 52, 49, \dots, 169, 289, 361 / 11^2$ $22, 32, 52, 72, 112, 132, 172, 192$ $3, 6, 12, 24, 48, \dots, 169, 289, 361 / 11^2$ $22, 32, 52, 72, 112, 132, 172, 192$ $32, 72, 112, 132, 172, 192$	33 = 72 A 24 = 46
option $6, 17, 39, \dots, 116$ $2, 2, \dots, 116$ $11 22 33 44$ $39 + 1$ $11 22 33 44$ $39 + 1$ $0ption 1$ $1, 4, 10, 22, \dots, 34$ $2, 24 48$ $22 + 24$ $0ption 1$ $4, 9, 25, 49, \dots, 169, 289, 361 / 11^2$ $2^2 3^2 5^2 7^2 11^2 13^2 17^2 19^2$	D 33 = 72 A 24 = 46
option $6, 17, 39, \dots, 116$ $2, 2, \dots, 116$ $11 22 33 44$ $39 + 1$ $11 22 33 44$ $39 + 1$ $0ption 1$ $1, 4, 10, 22, \dots, 34$ $2, 24 48$ $22 + 24$ $0ption 1$ $4, 9, 25, 49, \dots, 169, 289, 361 / 11^2$ $2^2 3^2 5^2 7^2 11^2 13^2 17^2 19^2$	D 33 = 72 A 24 = 46
$6$ , 17, 39,, 116 $11$ $22$ $33$ $44$ $\therefore 39 + 3$ $11$ $22$ $32$ $52$ $, 34$ $22$ $24$ $48$ $\therefore 22 + 3$ $$	33 = 72 A 24 = 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 24 = 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 24 = 46
option $.$ 1, 4, 10, 22,, 34 	A 24 = 46
option $.$ 1, 4, 10, 22,, 34 	A 24 = 46
1, 4, 10, 22,, 34 $\sim$ $\sim$ 3       6       12       24       48 $\therefore$ 22 + 3 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ 4, 9, 25, 49,, 169, 289, 361 / 11 ² 22 3 ² 5 ² 7 ² 11 ² 13 ² 17 ² 19 ² option	24 = 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
option 4, 9, 25, 49,, 169, 289, 361 / 11 ² 2 ² 3 ² 5 ² 7 ² 11 ² 13 ² 17 ² 19 ² option	
option 4, 9, 25, 49,, 169, 289, 361 / 11 ² 2 ² 3 ² 5 ² 7 ² 11 ² 13 ² 17 ² 19 ² option	
4, 9, 25, 49,, 169, 289, 361 / $11^2$ ; $2^2$ $3^2$ $5^2$ $7^2$ $11^2$ $13^2$ $17^2$ $19^2$ option	
2 ² 3 ² 5 ² 7 ² 11 ² 13 ² 17 ² 19 ² option	
2 ² 3 ² 5 ² 7 ² 11 ² 13 ² 17 ² 19 ² option	= 121
Square of Prime Number	
Square of Prime Number	erpi
4, 12, 36,, 324,	h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
x3 x3 x3 x3 ∴ 36 x3	3 = 108
option	
I, 1, 4, 8, 9,, 16, 64	
$1^{2}$ $1^{3}$ $2^{2}$ $2^{3}$ $3^{2}$ $(3^{3})$ $4^{2}$ $4^{3}$ $(3^{3})$ = 2	27
option	
5760,960,192,,16,8	
$\underbrace{)}_{00}, \underbrace{900}, \underbrace{192}, \underbrace{, 10}, 0$	
$5760 = 6$ $960 = 5$ $^{16}/_8 = 2$	
5760/960 = 6 960/192=5 192/4 = 48 Opt	ion R








a Veranda Enterprise
28. 6, 13, 28, 59,
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
2n+1 2n+2 2n+3 2n+4
Option A
29. 2, 7, 27, 107, 427,
5 20 80 320 1280 427 + 1280
= 1707
x4 x4 x4 x4 Option A
30. 5, 2, 7, 9, 16, 25, 41,
$\checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \bigcirc \otimes$
5+2 2+7 7+9 9+16 16+25 25+41
 = 66
Option B
31. Word $\Rightarrow$ MADRAS DELHIS
$+1 \hspace{0.1cm} \downarrow 0.1c$
$Code \Rightarrow N B E S B T E F M D J$
Code ⇒ N B E S B T E F M DJ Option B
32. RAMAN DINESH
$\uparrow \uparrow \uparrow \downarrow \downarrow$
1 2 3 2 5 6 7 5 4 8 9
HAMAM
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
9 2 3 2 3 Option A
440

#### J.K. SHAH CLASSES a Veranda Enternrise

a Veranda Enterprise	
 33. R = 18 + 2 = 20	G = 7 + 2 = 9
E = 5 + 2 = 7	R = 18 + 2 = 20
D = 4 + 2 = 6	E = 5 + 2 = 7
	E = 5 + 2 = 7
6720	N = 14 + 2 = 16
	1677209
	Option C
34. A = 1	
 F A T = 27	
 F A I	ТН
 <u> </u>	$20 \pm 9 = 44$ Ontion A
 6 + 1 + 9 +	20 + 8 = 44 Option A
 35. BROTHER SI	
 2456784 91	$\begin{array}{c c} B & O & R & B & E & E & S \\ \hline 9 & 6 & 8 & 4 & \downarrow & \downarrow$
	2 5 4 2 8 8 9 Option A
	Option A
 36   DELHI  CALC	UTTAL CALICUT
 36. DELHICALC	
 73541 8258	9662 8251896
	Option C
	- 1
 37. CLOCK TIME	ΜΟΤΕΙ
	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
 3 4 2 3 5 8 6 7 9	7 2 8 9 4
	Option A
_{38.}   PALE   EAR ⁻	TH PEARL
	$\uparrow \uparrow \downarrow \downarrow$
2 1 3 4 4 1 5 9	0 0 2 4 1 5 3
	Option B









а	Veranda E	nterprise								
51.	2	5	6	$\Rightarrow$	You		are	Good		
	6	3	7	$\Rightarrow$	We		are	Bad		
 				From o	hserva	tion 6	are		 	
	3	5	8	⇒	Good		and	Bad	 	
	0	0	0		0000	A	and	Dau	 	
					5	$\Rightarrow$	Good			
					3	$\Rightarrow$	Bad		 	
		∴ 8 r	eprese	ents 'an	d'			Option C	 	
<b>F</b> 2	0				47	4.0		~		
 52.	3,	5,	7,	(15),	17 _,	19		©		
					rime N	10.		Option A	 	
 53.	10	14,	16,	18,	23),	24,	26	16	 	
 55.	10,	17,	10,	10,	20,	27,	20			
					Not E	Even No	/9	Option B		
					$\mathbf{S}$		Ent	SIL		
54.	1,	4,	9,	16,	24,	25,	30			
			Optio	on B	Not F	Perfect	Square			
 	_			<u> </u>	2 V ~				 	
 55.	Except	75 re	maini	ng all a	re prir	ne nun	nber Optio	Δ nc	 	
							Οριία		 	
 56.	16, 25	, 36, 7	73, 14	14, 196	225				 	
			Not I	Perfect	Square	)				
								Option B		
 57.	1, 4, 9	9, 16,								
			Not	Perfect \$	Square	9				
								Option A		
						44	4			

J.K. SHAH [°]	CA FOUNDATION LOGICAL REASONING
CLASSES a Veranda Enterprise	CATOUNDATION LOUICAE REASONING
58. 1 5 14 30 (49) 55 91	
Odd Number	
4 9 16 25 36	Option A
59. 835, 734, 642, 751, 853, 981, 532	
Odd Number	
8-3=5 7-3=4 6-4=2 8-5=3 9-8=1 5-3=2	Option A
60. 4 5 7 10 14 18 25 32	
1 2 3 4 5 6 7	Option C
1 2 3 4 5 6 7	Option C
61. 52 51 48 43 34 27 16	
-1 -3 -5 -7 -9 -11	Option B
	2 orise
6	ater P.
Adt	nterprise
Veranac	
C No.	
<u> </u>	
_	
445	



### SELF ASSESSMENT

1.	10, 7, 12, 9, 14	, 11,			
	a) 16	b) 1	5	c) 18	d) 17
2.	0, 1, -1, 0, -2,	-1,			
	a) 3	b) -	3	c) -2	d) -1
3.	1, 6, 16, 36,				
	a) 74	b)	76	c)66	d) None of these
				B	
4.	3, 4, 7, 16, 43,				
	a) 120	b)	124	c) 126	d) 130
				29	2
5.	1000, 100, 200	, 20, 40	), 6	V. ce	
	a) 4	b)	400	c) 20 01150	d) None of these
			5/9	Enterp	
6.	2, 7, 17, 37,			0 -	
	a) 66	b)	75 varand	c) 77	d) 80
			3		
7.	BCB, DED, FGF,				
	a) HJH	b)	JKJ	c) KJK	d) HKH
8.	D2E, H4J, L6O,				
	a) T10Y	b)	U5V	c) L7O	d) X10Y
<u> </u>			( <b>1</b> )		
9.					R can be coded as?
	a) QDFHS	b)	QDFSH	c) QDHFS	d) DQFSH
4.5			4	00500440	
10.					n CALICUT be coded?
	a) 8251986	b)	2851896	c) 8251896	d) None of these

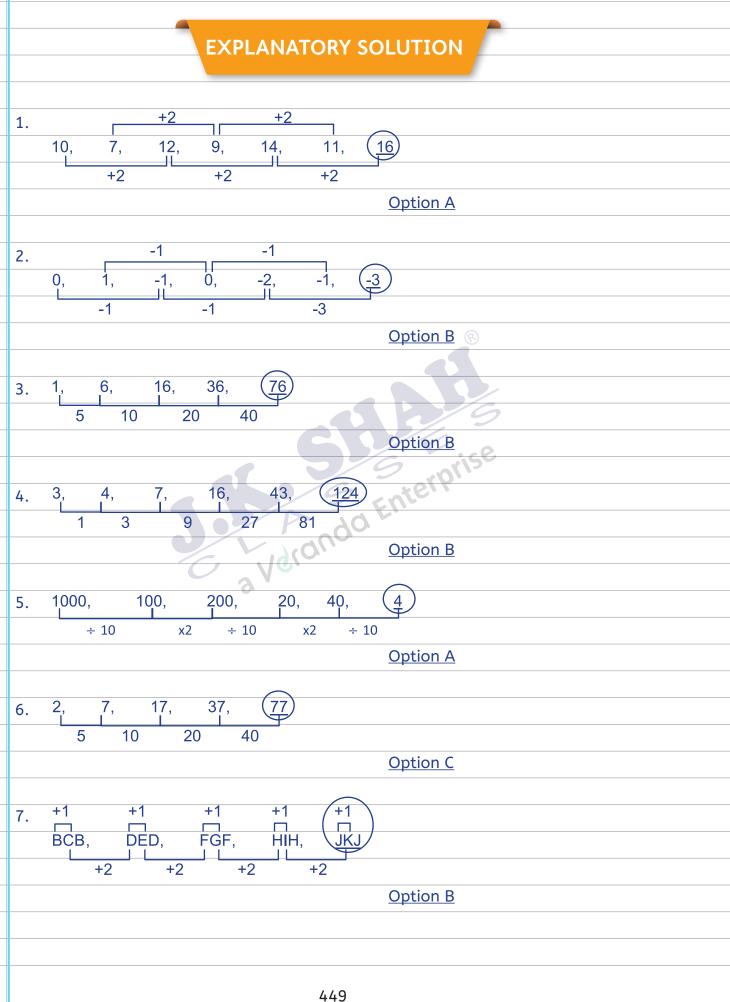
J.K. SHAH CLASSES a Veranda Enterprise

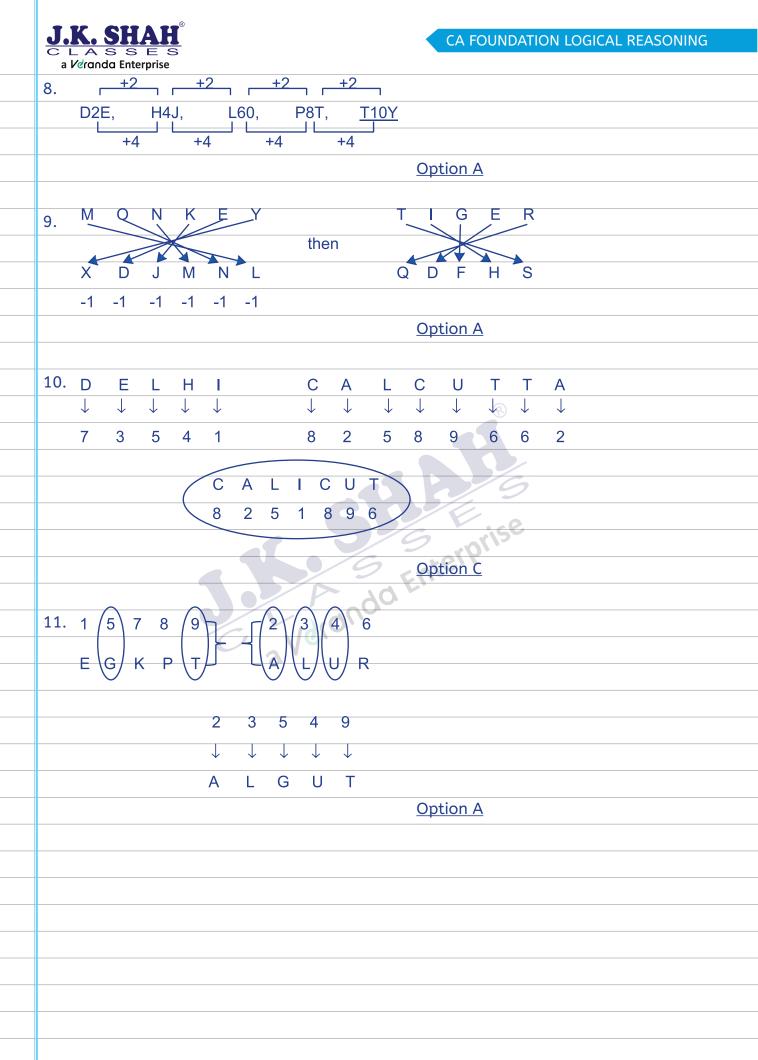
11. In a system 15789 is coded as EGKPT and 2346 is coded as ALUR. How 23549 can be coded? a) ALGUT c) LATUG b) ALTUG d) LAUTG 12. In a certain code "Pit dar na" means "You are good" "Dar tok pa" means "good and bad" "Tim na tok" means "they are bad" Then "they stands for a) Tim b) dar c) tok d) None of these 13. In a coding "256" means "you are good" "637" means "we are bad" "358" means "good and bad" Then and coded as a) 6 b) 8 c) 7 d) 5 14. If LOSE is coded as 1357 and GAIN coded as 2468, what do figure 82146 coded for? c) GNLIA a) NGLAI b) NGLIA d) GNLA 15. AB, BA, ABC, CBA, ABCD, a) DCBA b) DCAB c) ABDC d) BACD 16. Odd man out 15, 21, 63, 81, 69 a) 15 b) 21 c) 63 d) 81 17. 1, 2, 6, 15, 31, 56, 91 a) 6 c) 56 d) 91 b) 31 18. 22, 33, 66, 77, 121, 279, 594 a) 22 b) 66 c) 121 d) 279 19. 2, 3, 7, 9, 11 a) 2 b) 7 c) 9 d) 11

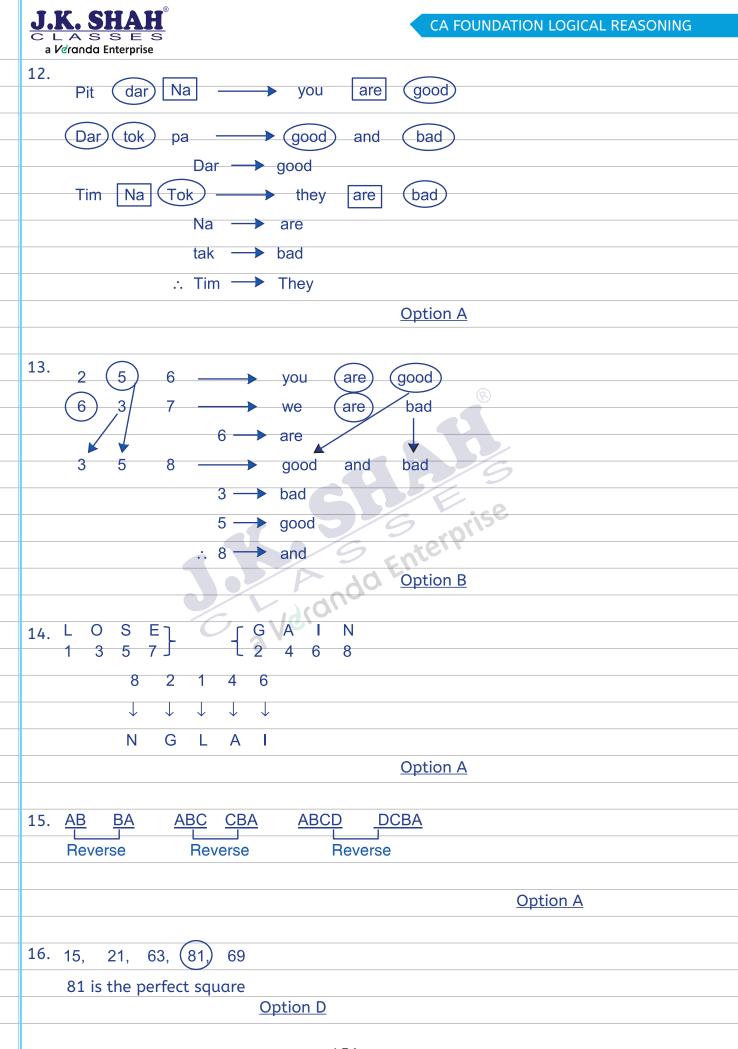
**J.K. SHAH** CLASSES a Veranda Enterprise

CA FOUNDATION LOGICAL REASONING

20. 3, 6, 18, 39, 108, 216


	a) 18	b) 216	c) 39	d) 108	
--	-------	--------	-------	--------	--


#### ANSWER


				-
1.	А	2.	В	
 3.	В	4.	В	
5.	А	6.	С	
7.	В	8.	А	
 9.	А	10.	С	
 11.	А	12.	А	
 13.	В	14.	А	
 15.	А	16.	D	
17.	D	18.	D	
19.	С	20.	С	
				-

Ando Enterprist









**J.K. SHAH** CLASSES a Veranda Enterprise

1, 2, 6, 15, 31, 56, 91 it should be 92
1 4 9 16 25 36
Option D
$\sim$
18. 22, 33, 66, 77, 121, (279,) 594
Other all are multiple of 11
Option D
19. 2, 3, 7, 9, 11
All other are Prime Number
Option C
®
3, 6, 18, 39, 108, 216
6 6
∴ Odd man out is number 39 <u>Option C</u>
S prise
Ando Enterprise
, d(dn
 1 aver
/ 52



#### **DIRECTION TESTS**

Direction is a measurement of position of one thing with respect to another thing or a reference point.

Ada Enterprise

Types :

- 1. Finding direction only
- 2. Find the distance only
- 3. Finding both the distance and direction.





### **CLASS WORK SECTION**

_						
	1.	A girl is going to	wards West, then she	turned left, then t	urned 90 degree in clockwise	
		direction. In whi	ch direction is she goi	ing now?		
		a) East	b) West	c) North	d) None of these	
	2.	If south west be	comes North, then w	hat will North-Ea	st be?	
		a) North	b) South-East	c) South	d) East	
	3.	At sunrise, Amit	and Deepak are havir	ng conversation st	anding in front of each other.	
		The shadow of [	Deepak is formed tow	ards the right ha	nd of Amit. What direction is	
		Deepak facing?				
		a) North-East	b) South	c) East	d) North	
					9	
	4.	One evening bef	ore sun set, two friend	ds Raman and Arj	un were talking to each other	
		face to face. If	Raman's shadow wa	s exactly to his le	eft side, which direction was	
		Arjun facing?		Scnterr		
		a) West	b) East	c) North	d) South	
			, d (dh			
	5.	The time on the	watch is 9.15 and the	hour hand points	towards West. The direction	
		of the minute ho	and is towards.			
		a) North	b) South	c) East	d) West	
	6.	A clock is so plo	ace that at 12 noon i	ts minute hand p	oints towards North East. In	
		which direction	does its hour hand po	pint at 1.30 pm.		
		a) North	b) South	c) East	d) West	
	7.	Samar wants to	o go college which is	situated in a dir	ection opposite to that of a	
		mall. He starts	from his house, whicl	n is in the east ar	nd comes at four-way place.	
		His left side roo	id goes to the mall a	and straight in fro	ont is the railway station. In	
		which direction i	is the college located	?		
		a) North	b) North-East	c) South	d) East	

al	/@randa Enterprise						
8.	Ram walks 10m South from his house, turns left and walks 25m, again turns left						
	and walks 40m, then turns right and walks 5m to reach the school. In which direction						
	is the school from	n his house?					
	a) North	b) South-West	c) North-East	d) East			
9.	Rashmi goes tow	ards East from a point	P then turns left. S	She walks some distance			
	and turns to her	right. Which direction is	she facing now?				
	a) North	b) East	c) West	d) South			
10.	A man goes 5 kn	n east, then he turns ri	ight and goes 4km	, then he turns left and			
	goes 5 km. Which	n direction is he facing r	iow?				
	a) North	b) East	c) West	d) South			
			®				
11.	Laxman went 15	kms to North then he	turned west and c	overed 10 kms. Then he			
	turned South and	l covered 5 kms, finally	turning to East he	covered 10 kms. In which			
	direction he is no	w moving? (M-2018)	/9				
	a) East	b) West	c) North	d) South			
			S rorise				
12.	A man is facing E	ast, then he turns left	and goes to 10 me	eter then turns right and			
	goes 5 meter ther	n goes 5meter to the so	uth and from their	5meter to West. In which			
	direction is he fro	m his original place?	(M-2018)				
	a) East	b) West	c) North	d) South			
13.	Raman starts fro	om his house and goes	towards 15m Nor	rth, then he turns to his			
	right and walks 3	0 m before taking right	turn and moving o	again upto 30 m to reach			
	temple. In which	direction is the temple	with respect to Ra	man's house?			
	a) North-West	b) South	c) South-East	d) West			
14.	X walks southwar	rds and turns right then	left and then righ	t. In which direction is he			
	moving now? (M	-18)					
	a) South	b) North	c) West	d) South – west			
15.		rn right, then right the	n go to the left. In	which direction are you			
	now?						
	a) South	b) East	c) West	d) North			

J.K. SHAH

a Veranda Enterprise 16. Surbhi is facing east, she turns 100degree in the clockwise direction and then 145 degree in the anti-clockwise direction. Which direction is she facing now? a) West b) North-East c) North d) South-West 17. The time in a clock is quarter past twelve. If the hour hand points to the East, which is the direction opposite to the minute hand? a) South-West b) South d) North c) West 18. A train runs 120km in West direction, then 30km in South direction and then 80 km in East direction before reaching the station. In which direction is the station from the train's starting point? c) South-East a) South-West b) North-West d) South 19. If X stands on his head with his face towards South, to which direction will his left hand point? c) South a) East b) West d) North 20. A and B start walking in opposite direction. A covers 3 km and B covers 4 km then A turns right and walks 4 km while B turns left and walks 3 km. How far is A from the starting point? Agrar b) 8 km c) 5 km a) 10km d) 4 km Shreya started from point P and walked 2m towards West. She, then took a right 21. turn and walked 3m before taking a left turn and walking 5m. She finally took a left turn, walked 3m and stopped at appoint Q. How far is point Q from point P? a) 2m b) 6m c) 7m d) 8m 22. Vinod Starts from his house and travels 4km in East direction, after that he turns towards left and moves 4km. Finally, he turns towards left and moves 4km. At what distance and in which direction he finally stands from his starting point? a) North, 4km b) North-East 4km c) South 12km d) West 4km



	23.	Two buses start from	m the opposite points	of a main road, 1	50km apart. The first bus
		runs for 25km and t	takes a right turn and	l then runs for 15	km. It then turns left and
		runs for another 25	km and takes the dir	ection back to rea	ach the main road. In the
		meantime, due to th	ne minor break down	the other bus has	run only 35km along the
		main road. What we	ould be the distance	between the two	buses at this point?
		a) 65km b	o) 80km	c) 75km	d) 85km
	24.	A man started to w	valk East. After movir	ng a certain dista	nce, he turns to his right.
		After moving some	distance, he turns to	o his right again.	After moving a little he
		turns now to his lef	t, currently he is goin	g in dire	ection.
		a) West b	) East	c) North	d) South
	25.	Raghu is at point A.	He walks 3km to the	North and then t	urns to his left. He walks,
		4km in this direction	n. He turns left again	and walks 6 km. I	f he wishes to reach point
		A again, in which di	rection should he be	walking and wha	t distance will he have to
		cover?		/9	2
		a) South-East, 5km	6	b) South-East, 4	km
		c) North-East, 5 km		d) North-East, 4	km.
			5/9	cnterr	
				) E.	
			L'I'QUA		
		C	- No.		
+					



# HOMEWORK SECTION

1.	Mohan starts from	m po	int A and walks 1	l km towards sou	th, tu	Irns left and walks	
	1km. Then he turr	ns lef	t again and walks	1 km. Now he is f	acing		
	(a) East	(b)	West	(c) North	(d)	South-west	
2.	Suresh starts from	n a po	oint, walks 2 miles	towards south, tu	rns ri	ght and walks 11/2	
	miles, turns left a	nd w	alks ½ miles and t	hen he turns back.	. Wha	t is the direction he	
	is facing now?						
	(a) East	(b)	West	(c) South	(d)	North	
				R			
3.	A man starts from	n a p	ooint, walks 4 mile	es towards north c	ınd tı	urns left and walks	
	6 miles, turns rig	nt an	d walks for 3 mile	es and again turns	right	and walks 4 miles	
	and takes rest for	r 30 i	minutes. He gets u	up and walks strai	ght 2	? miles in the same	
	direction and turr	ns rig	ht and walks one I	mile. What is the c	lirecti	on he is facing?	
	(a) North	(b)	South	(c) South-east	(d)	West	
			19	cnterr			
4.	Arun started from	n poir	nt A and walked 1	0 km East to point	B, th	en turned to North	
	and walked 3 km	to p	oint C and then tu	irned West and wo	alked	12 kms to point D,	
	then again turned	l Sou	th and walked 3 k	ms to point E. In w	/hich	direction is he from	
	his starting point?	?					
	(a) East	(b)	South	(c) West	(d)	North	
5.	A starts from a po	oint a	ind walks 5 kms no	orth, then turns lef	t and	l walks 3 kms. Then	
	again turns left a	nd w	alks 5 km. Point o	ut the direction in	which	n he is going now.	
	(a) North	(b)	South	(c) East	(d)	West	
6.	A rat run 20 towa	irds E	ast and turns to r	ight runs 10 and t	urns t	o right runs 9 and	
	again turns to lef	t runs	s 5 and then turns	to left runs 12 and	l fina	lly turns to left and	
	rusn 6. Now what	dire	ction is the rat faci	ing?			-
	(a) East	(b)	North	(c) West	(d)	South	-

J.K. SHAH
CLASSES
a Vơranda Enterprise

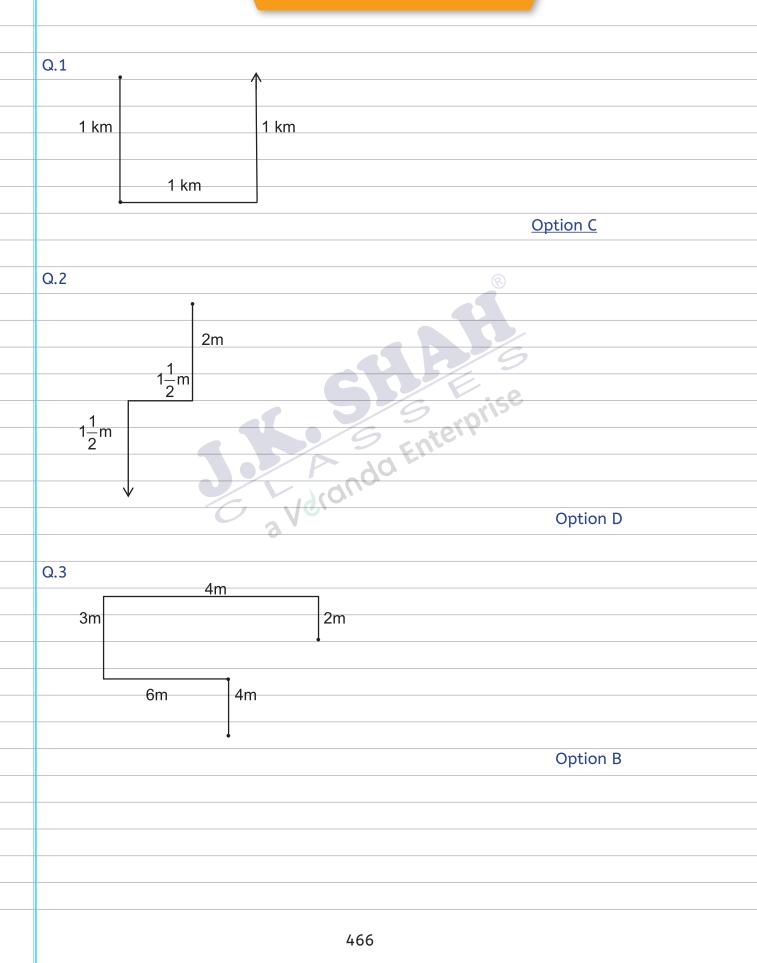
a	/dranda Enterprise								
7.	A driver left his	s villag	ge and drove I	North for 20 km,	after wl	hich he stopped	l for		
	breakfast. Then he turned left and drove another 30 km, when he stopped for lunch. After some rest, he again turned left and drove 20 kms before stopping for evening tea. Once more he turned left and drove 30 kms to reach the town where he had								
	supper. After evening tea in which direction did he drive?								
	(a) West	(b)	East	(c) North	(d)	South			
8.	A man is facing	East, t	hen he turns le	eft and goes 10 m,	then tu	rns right and go	es 5		
	m then goes 5 m to the South and from there 5 m to West. In which direction is be								
	from his original place?								
	(a) East	(b) '	West	(c) North	(d)	South			
9.	From her home	Prernc	ι wishes to go t	o school. From ho	me she	goes towards N	orth		
	and then turns	left a	nd then turns	right, and finally	she tur	ns left and rea	ches		
	school. In which	direct	ion her school	is situated with res	spect to	her home?			
	(a) North-East	(b)	North-West	(c) South-East	t (d)	South-West			
			C		.0.				
10.	A child walks 25	i feet t	owards North,	turns right and wa	lks 40 fe	et, turns right a	gain		
	and walks 45 feet. He then turns left and walks 20 feet. He turns left again walks								
	20 feet. Finally, he turns to his left to walks another 20 feet. In which direction is the								
	child from his starting point?								
	(a) North	(b)	South	(c) West	(d)	East			
			-						
11.	Raju facing Nor	th and	moves 20 km,	then he turned to	his righ	it and moves 20	) km		
	and then he mo	ves 10	km in North-E	ast, then he turne	d to his	right and move	s 20		
	km and then he	turneo	l to his right an	d moves 20 km an	d again	he turned to his	left		
	and moves 20 k	m. Nov	w in which dire	ction Raju is facing	?				
	(a) South-East	(b)	North-East	(c) South-Wes	st (d)	North-West			
12.	K is a place which	ch is lo	cated 2 km aw	ay in the north-we	st direct	ion from the ca	pital		
	P. R is another p	olace t	hat is located 2	2 km away in the s	outh-we	est direction fro	m K.		
	M is another pla	ace an	d that is locate	d 2 km away in th	e north-	west direction f	from		
	R. T is yet anoth	er pla	ce that is locate	ed 2 km away in th	e south-	west direction f	from		
	M. In which dire	ction is	s T located in re	elation to P?					
	(a) South-west	(b)	North-west	(c) West	(d)	North			

	ASSES			CA FC	DUNDATION	LOGICAL REASONING			
 	Veranda Enterprise	• •		: 200					
 13.									
	direction. Joseph is Rahim's neighbour and his house is located 200 meter away								
	in the south-west direction. Gopal is Joseph's neighbour and he stays 200 meters								
	away in the south-east direction. Roy is Gopal's neighbour and his house is located								
				ection. Then v	where is th	e position of Roys'			
	house in relation	to Bo	abu's?						
	(a) South-east	(b)	south-west	(c) North	(d)	North-east			
14.	A tourist drives 10	) km	towards west and	turns to left o	and takes o	a drive of another 4			
	km. He then drive	s tov	vards east another	4 km and the	en turns to	his right and drives			
	5 km. Afterwards	he t	urns to his left and	l travels 6 km	. In which	direction is he from			
	the starting point	?							
	(a) North	(b)	East	(c) West	(d)	South			
15.	A man started w	alkin	g West. He turned	l right, then r	ight again	and finally turned			
	left. Towards whi	ch di	rection was he wa	lking now?	9				
	(a) North	(b)	South	(c) West	(d)	East			
				9.0	(150				
16.	.6. One evening, Raja started to walk toward the Sun. After walking a while, he turned								
	to his right and o	ıgain	to his right. After	walking a wl	hile, he ag	ain turned right. In			
	which direction is	he fo	acing?						
	(a) South	(b)	East	(c) West	(d)	North			
			<u> </u>						
17.	7. Five boys A, B, C, D, E, are sitting in a park in a circle. A is facing South-West,								
	D is facing South	-Eas	t, B and E are rig	ht opposite A	A and D re	spectively and C is			
	equidistant betwe	een D	and B. Which dire	ection is C faci	ing?				
	(a) West	(b)	South	(c) North	(d)	East			
18.	8. If a man on a moped starts from a point and rides 4 km South then turns left and								
	rides 2 km and turn again to the right. Which direction is he moving ?								
	(a) North	(b)	West	(c) East	(d)	South			
			460						

	T V OTLATE									
		ASSES			CA FOUND	ATION	LOGICAL REASONING			
		Veranda Enterprise				• •				
	<ul> <li>19. A man starts from a point, walk 8 km towards North, turns right and walks 12 km, turns left and walks 7 km turns and walks 20 km towards South, turns right and walks 12 km. In which direction is he from the starting point?</li> </ul>									
		(a) North	(b)	South	(c) West	(d)	East			
	20.	Daily in the mor	ning t	the shadow of Go	l Gumbaz falls on	Bara	Kaman and in the			
		evening the shade	ow of	Bara Kaman falls	on Gol Gumbaz exc	ictly. S	So in which direction			
		is Gol Gumbaz to	Barc	ı Kaman?						
		(a) Easter side	(b)	Western side	(c) Northern side	(d)	Southern side			
	21.	Ashok went 8 km	ok went 8 km South and turned West and walked 3 km again he turned North							
		and walked 5 km	s. He	took a final turn to	o East and walked	3 kms	s . In which direction			
		was Ashok from	the st	arting point?	$(\mathbb{S})$					
		(a) East	(b)	North	(c) West	(d)	South			
						/				
	22.	If X stands on his	s hea	d with his face tov	vards south, to wh	nich d	irection will his left			
		hand point ?		A						
		(a) East	(b)	West	(c) North	(d)	South			
				1/6	- nterp					
	23.	I drove East for 5	mile	s then drove North	n 3 miles, then tur	ned to	o my left and drove			
					Which direction ar		· · · · · · · · · · · · · · · · · · ·			
		(a) South		North	(c) West	(d)	North-west			
			<b>v</b> - <b>v</b>	3		<b>V</b> = 17				
	24.	24. If A stands on his head with his face towards north. In which direction will his left								
		hand point?								
		(a) North-East	(b)	North	(c) East	(d)	North-West			
			(67			(0)				
	25.	A car travelling	from	south covers a di	stance of 8 km th	nen ti	irns right and runs			
	25. A car travelling from south covers a distance of 8 km, then turns right and runs another 9 kms and again turns to the right and was stopped. Which direction does									
		it face now?								
		(a) South	(b)	North	(c) West	(d)	East			
			(D)	North		(u)	Lust			
	461									
				401						

**J.K. SHAH** C L A S S E S a Veranda Enterprise

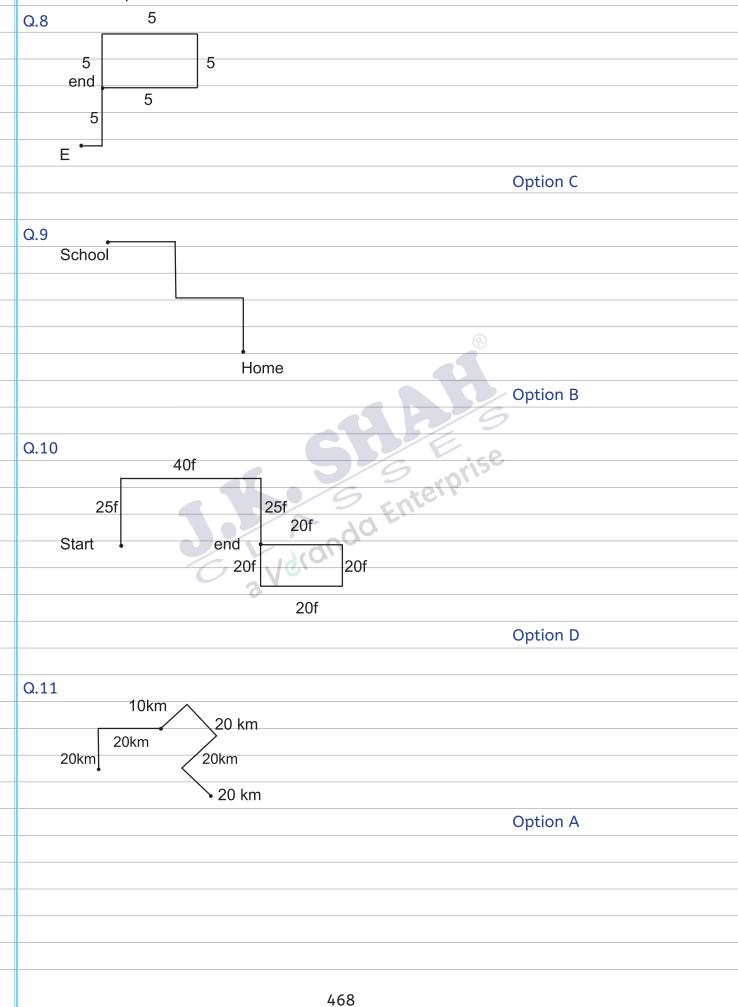
26.	A taxi driver con	nmenced his journey	r from a point and	drove 10 km toward north					
	and turned to his left and drove another 5 km. After waiting to meet a friend here,								
	he turned to his right and continued to drive another 10 km. He has covered a								
	distance of 25 km so far, but in which direction would he be now?								
	(a) South	(b) North	(c) East	(d) South-east					
27.	A walks 3 kms no	orthward and then h	e turns left and go	es 2 km. He again turns left					
	and goes 3 km.	He turns right and v	valks straight. In w	hich direction is he walking					
	now?								
	(a) East	(b) West	(c) North	(d) South					
28.	A walks southwo	ards, then turns right	t, then left and the	n right. In which direction is	;				
	he from the starting point?								
	(a) Southwest	(b) East	(c) West	(d) North					
29.	A man starts fro	m a point, walks 15	metres towards Ea	ast, turns left and walks 10	)				
	metres, turns right again and walks. Towards which direction is he now waking?								
	(a) North	(b) East	(c) West	(d) South					
			9 enterr						
30.	A boy starts wall	king towards West, h	e turns right and a	gain he turns right and then					
	turns left at last. Towards which direction is he walking now?								
	(a) West	(b) North	(c) South	(d) East					
31.	I stand with my	right hand extend	ed side-ways towo	ards South. Towards which					
	direction will my	back be ?							
	(a) North	(b) West	(c) East	(d) South					
32.	If a person moves 4 km towards west, then turns right and moves 3 km and then								
	turns right and moves 6 km, which is the directions in which he is now moving?								
	(a) East	(b) West	(c) North	(d) South					
33.	If Mohan sees the rising sun behind the temple and the setting sun behind the								
	railway station from his house, what is the direction of the temple from the railway								
	station?								
	(a) South	(b) North	(c) East	(d) West					


<b>•</b>					
	ASSES		CA FOU	NDATION LOGICAL REASONING	
	Veranda Enterprise	lum to Nouth the -		d severed 10 lines. Their l	
34.				d covered 10 kms. Then he	
			illy turning to East	he covered 10 kms. In which	
	direction he is fro				
	(a) East	(b) West	(c) North	(d) South	
25	A		lee Nexthat a start	hte stalst med sould be 11	
35.		•	-	his right and walks 2 miles,	
	3	0		ns to his right and walks 2	
		irection would he be		5.	
	(a) North	(b) South	(c) East	(d) West	
26		alou uo a uo a di ta di		Cup Afferrandition C	
36.				Sun. After walking for some	
		my left. Then I turn	ea to my right. In	which direction was I going	
	then ?	(b) ) (c) = = =			
	(a) East	(b) West	(c) North	(d) South	
27	I alcalaret i 11 - 1	O fundamental da f			
37.				nd took a turn to left and	
				he turned left and reached	
		n direction is she fac			
	(a) West	(b) North	(c) South	(d) North	
20			,00	· · · · · · · · · · · · · · · · · · ·	
38.				right, then right again, then	
		ection would you be	<u> </u>		
	(a) East	(b) West	(c) South	(d) East	
2.2			1.1.1		
39.				left, then to South covering	
	•		o reach Sohan's h	ouse, in which direction is	
	Ahmed's house no		()	(1) 1	
	(a) East	(b) South	(c) North	(d) West	
			• • • •		
40.		n right, then right a	gain and then go t	o the left. In which direction	
	are you now?		<b>/                                    </b>		
	(a) South	(b) East	(c) West	(d) North	
41.	•	•		s west, turns left and walks	
				ection she is now facing?	
	(a) South	(b) West	(c) East	(d) North	

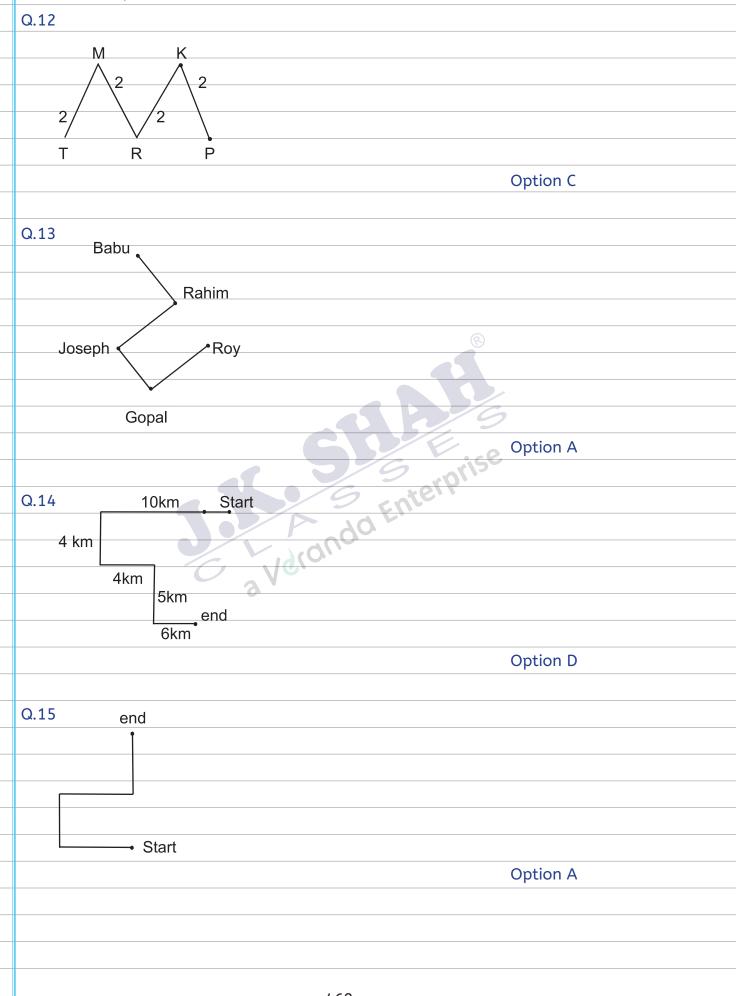
•								
	ASSES				CA FOUNDATIO	ON LOO	GICAL REASON	ING
al	dranda Enterprise							
42.	A man starts his	s jour	ney facing th	ie sun early i	morning. He	then	turns right	and
	walks 2 km. He t	hen v	valks 3 km af	ter turning rig	ht again. Wh	nich is	the direction	n he
	is facing now?							
	(a) North-East	(b)	North	(c) Wes	t (c	l) Sc	uth	
43.	Roy walks 2 km	to Eo	ast, then turr	s North-Wes	t and walks	3 km	. Then he tu	urns
	South and walks	5 km	n. Then again	he turns Wes	t and walks	2 km.	Finally he tu	urns
	North and walks	6 km	. In which dire	ection, is he fi	om the start	ting po	oint?	
	(a) South-West	(b)	South-East	(c) Nort	h-West (c	l) No	orth-East	
44.	Seeta starts from	n a p	oint, walks 2	km towards r	north, turns t	towar	ds her right	and
	walks 2 km, turn	s righ	it again and v	valks. What is	the directio	n she	is facing nov	v?
	(a) East	(b)	West	(c) Sout	:h 🕓 (c	l) No	orth	
45.	Shyam was facin	g Eas	t. He walked	5 km forward	and then af	ter tur	ning to his r	ight
	walked 3 km. Ag	jain h	e turned to h	nis right and v	walked 4 km	. Afte	r this he tur	ned
	back. Which dired	ction	was he facing	at that time				
	(a) East	(b)	West	(c) Nort	h (c	l) Sc	uth	
				9 cnt				
46.	Raju is standing	facing	) north. He go	es 30 metres	ahead and t	urns l	eft and goes	s for
	15 metres. Now	he tu	rns right and	goes for 50 m	netres and fir	nally t	urns to his r	ight
	and walks. In wh	nich di	irection is he l	neading?				
	(a) North	(b)	East	(c) Sou	th (c	l) W	est	
47.	Sanmitra starts f	from	his house and	walks 3 km t	owards nort	h. The	en he turns r	ight
	and walks 2 km	and t	hen turns rigł	nt and walks !	5 km, then tu	urns ri	ght and wal	ks 2
	km and then ago	in tu	rns right and	walks 2 km. V	Vhich direction	on is h	e facing nov	v?
	(a) North	(b)	South	(c) Wes	t (c	l) Ea	st	
48.	Raju is Ramu's ne	eighbo	our and he sto	iys 100 metre	s away towa	rds so	utheast. Ver	nu is
	Raju's neighbour	and h	ne stays 100 m	netres away to	wards south	west.	Khader is Ve	nu's
	neighbour and h	e stay	ys 100 metres	s away towar	ds, north-we	est. Th	en where is	the
	position of Khade	er's h	ome in relatio	on to Ramu's?				
	(a) South-East	(b)	South-West	(c) Nort	h-West (c	l) Ea	st	

CA FOUNDATION LOGICAL REASONING a Veranda Enterprise 49. Ramesh walked 3 km, towards West and turned to his left and walked 2 km. He, then turned to his right and walked 3 km. Finally, he turned to his right again and walked another 2 km. In which direction is Ramesh from his starting point now? (a) East (c) North (b) West (d) South 50. Deepa starts walking towards north and after a while she turns to her right. After walking some distance, she turns to her left and walks a distance of 1 km. She then turns to her left again. In which direction she moving now? (a) North (b) West (c) East (d) South 51. Raman starts walking in the morning facing the Sun. After sometime, he turned to the left later again he turned to his left. At what direction is Raman moving now? (a) East (b) West (c) South (d) North 52. A starts walking towards North turns left, again turns left, turns right, again turns right once again turns left. In which direction is A walking now? South (a) East (c) West South-East (b) (d) 53. X walks southwards and then turns right, then left and then right,. In which direction is he moving now? (a) South (b) North (c) West (d) South-West 54. A man started to walk East. After moving a distance, he turned to his right. After moving a distance, he turned to his right again. After moving a little he turned in the end to his left. In which direction was he going now.? (a) North (b) South (c) East (d) West




# HOMEWORK SOLUTION

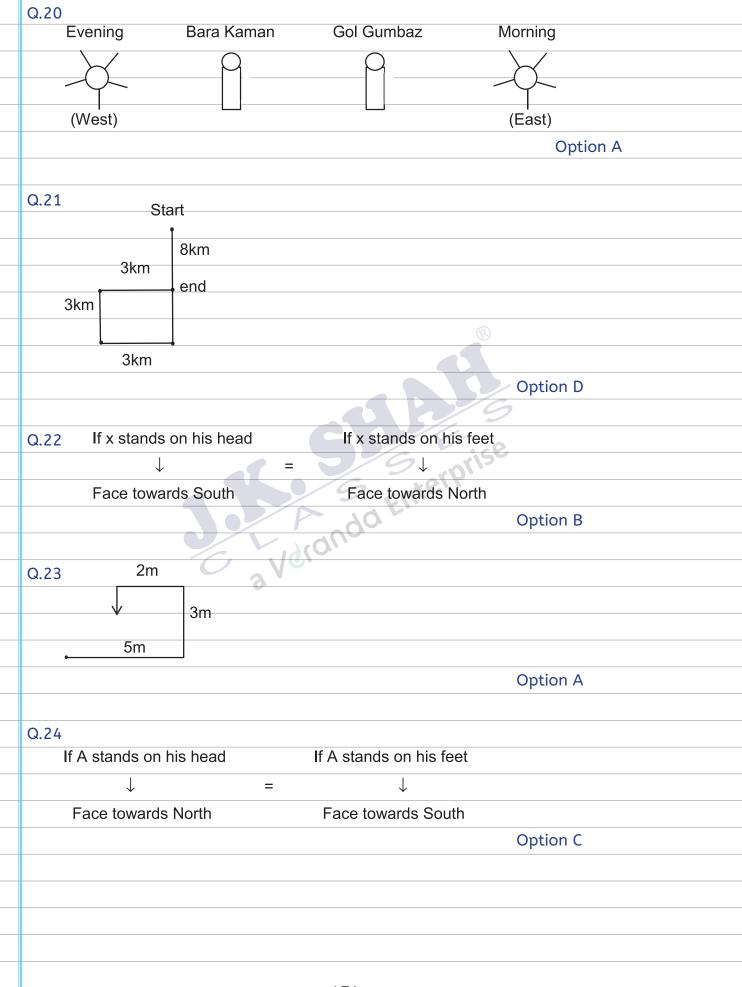




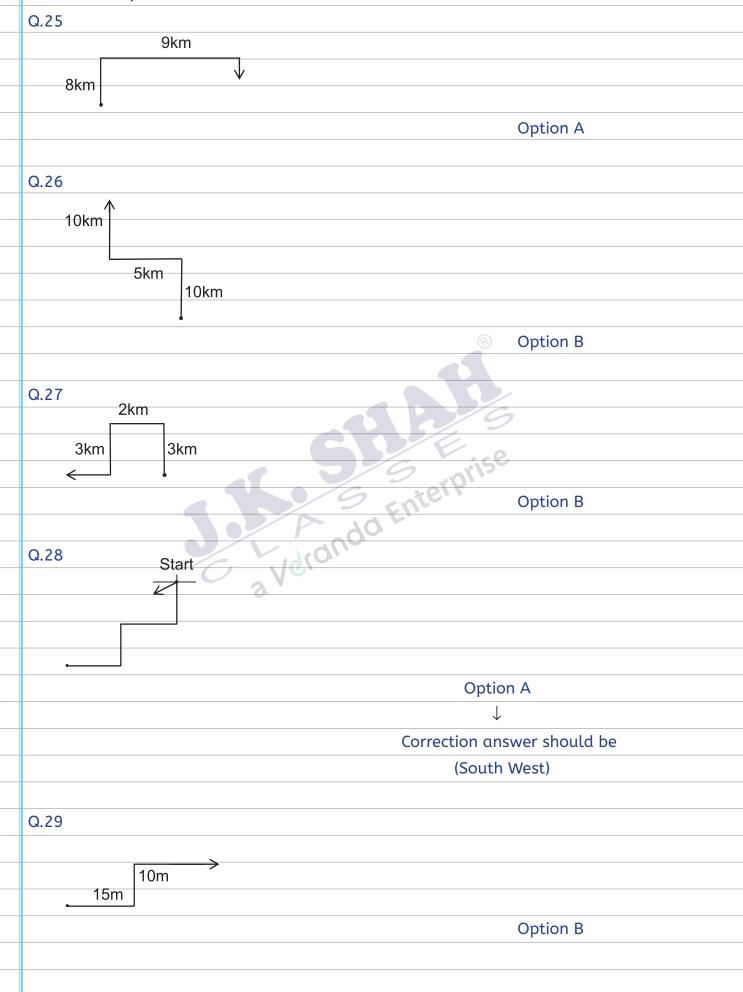

Q.4 D	12	С	
3		3	
E	A 10	В	
		Option C	
Q.5	3km		
		]	
5km		5km	
		8	
		Option B	
		2/9	
Q.6	20	<u> </u>	
		10 Senterprise	
	9	SENTER	
	5	Vidcon 6	
		12	
		Option B	
 0.7			
Q.7 Lunch	1	Breakfast	
20km		20km	
Теа	↓> 30 kn	n l	
		Option B	
		467	



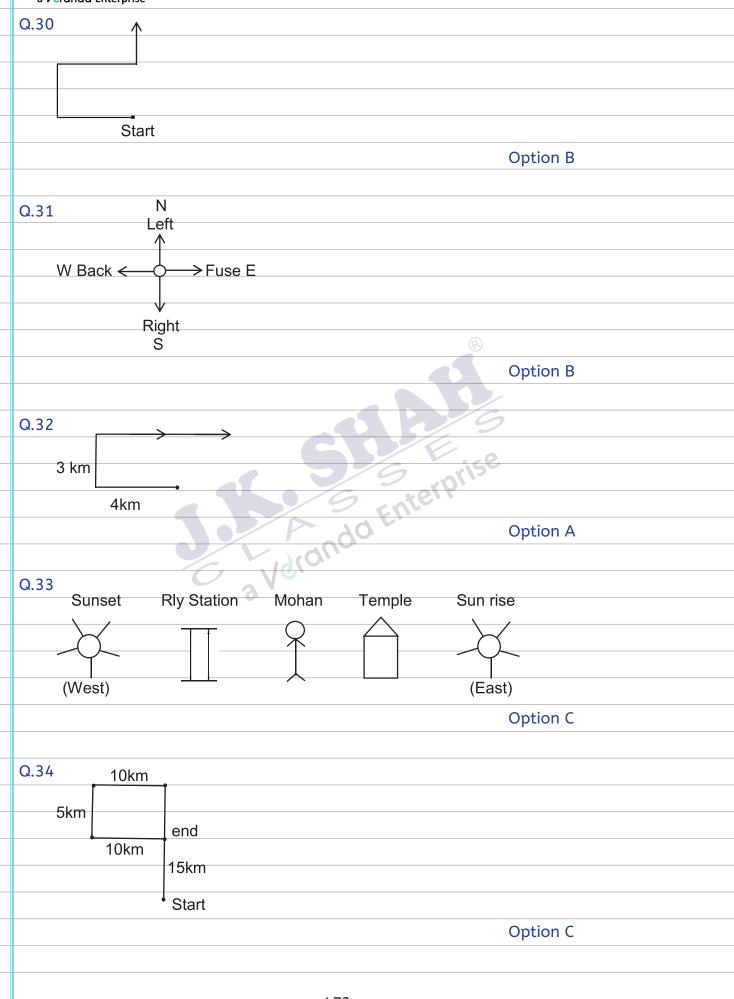




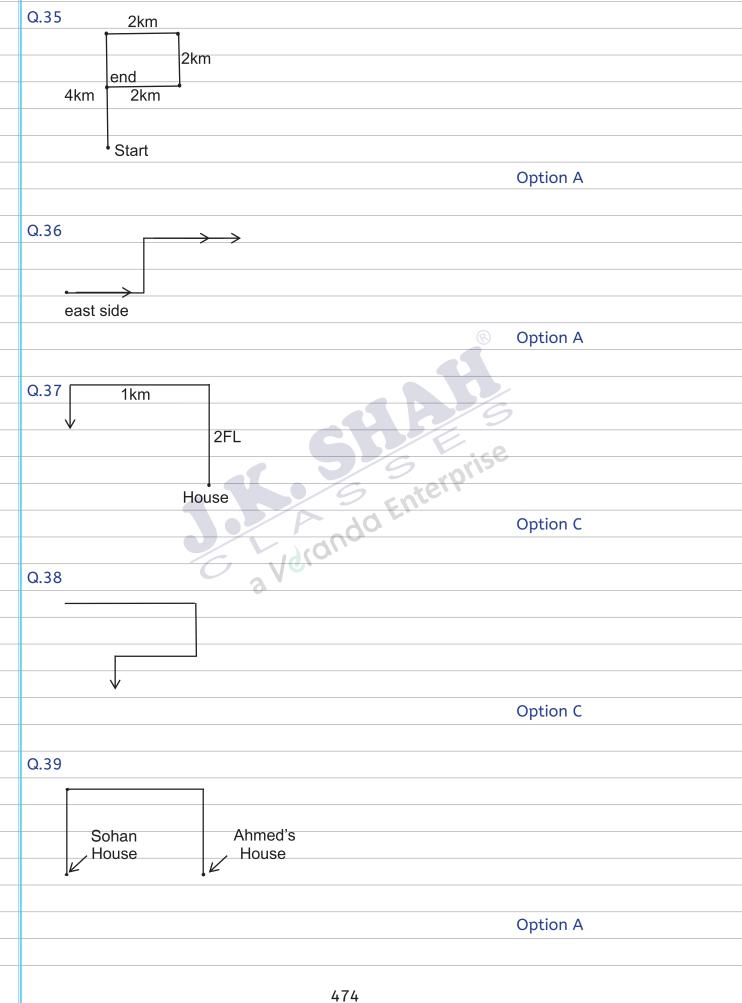



Q.16		
		]
		end
		* Start
		Option A
Q.17		
R		7
	E E	
	C	
	A C	®
K		
		Option D
Q.18		Scorise
St	art	9 Enteri
4km		Ada Enterprise
4611		
	2km	
		•
	I	
		Option D
Q.19	7km	
 8km	12 km	
Start		20km
end	12km	
		Option B
		470



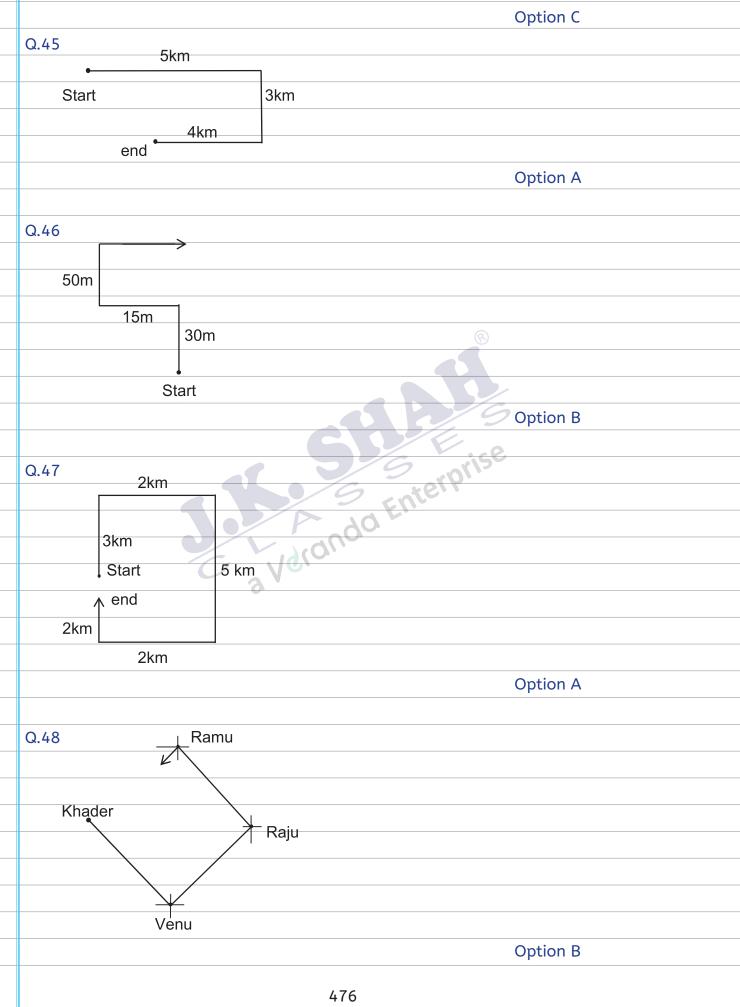


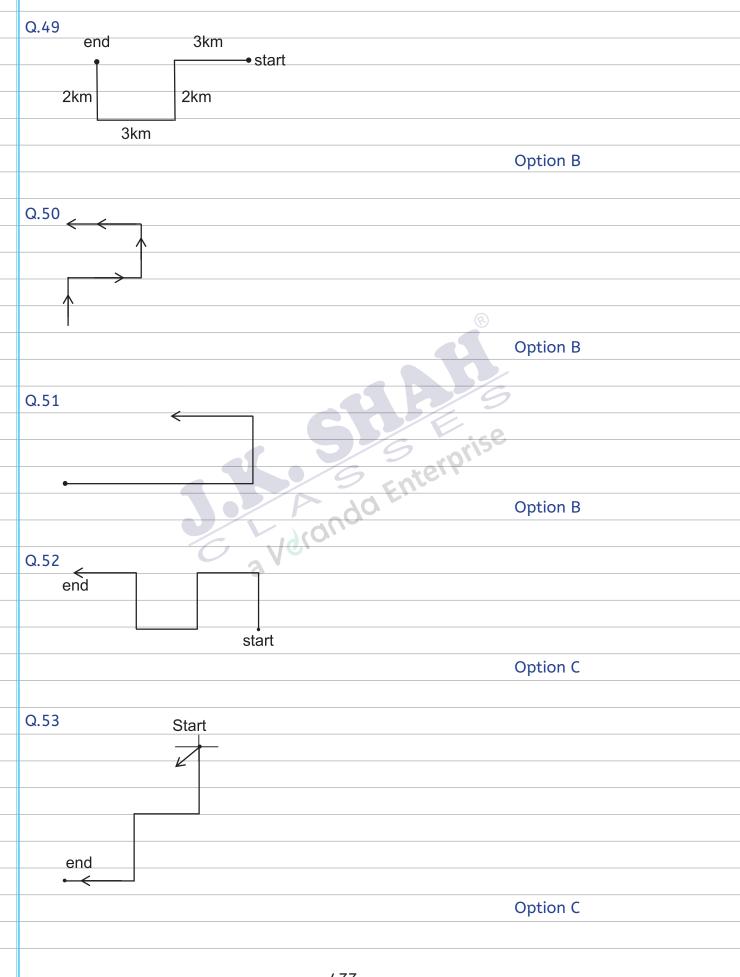









Q.40		
	$\checkmark$	
Ţ		
		Option B
Q.41		
	15	5m
	12m	
$\rightarrow$		
		Option B
		®
Q.42		
•		
		2km
	3km	G G G E .ce
		Option C
		Serprise Option C
Q.43		
er 1	ia	
		3km
6km	Start	
	+	2km
	5km	
	2km	
		Option C
Q.44	2km	
		$\checkmark$
2km		
Sta	art	











Q.54
Start
end
Option B
®
6 7/9
Source
do Enterprise
 Anda Entern
 O No.
V
478



#### **SELF ASSESSMENT**

Aditya walked 20 m towards North. Then he turned right and walks 30 m. Then he turns right and walk 35 m. Then he turns left and walk 15 m. finally he turns left and walk 15 m. In which direction and how many meters is he from the starting point?
 a) 15 m West b) 30 m East c) 30 m West d) 45 m East
 Jay (Starts from A) walked 5m towards West, then turned left and walked 5m. Again turned left and walked 5 m. again turned left and walked 6 m. How far he is from A.

a) 1m (b) 2 m c) 3 m d) 4 m

3. Shivam started from his house towards West. After walking a distance of 15 km he turned to the right and walked 10 km. He again turned to the right and walked 5 km. After this he is to turn right at 135° and covered 10 km. In which direction should be go?

a) South b) S-W

CONOC) S-E

d) North

After walking 6 km, I turned to the right and then walked 2 km. After then I turned to the left and walked 10 km. In the end, I was moving towards the North. From which direction did I start my Journey?

a) North b) South c) East d) West

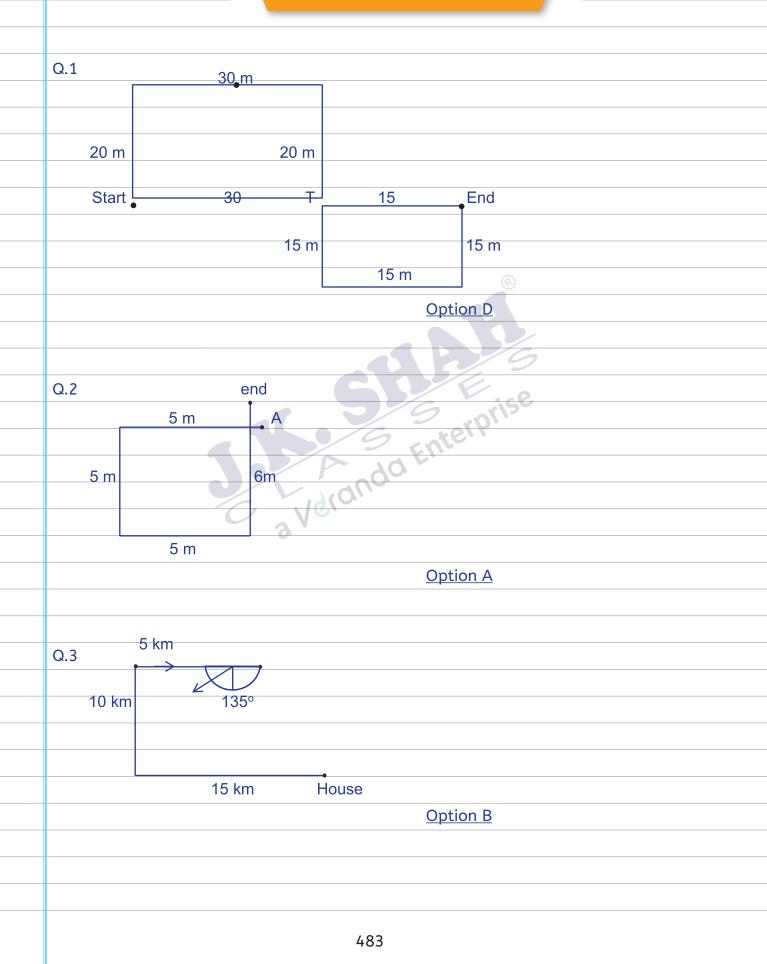
- 5. Reena walked from A to B in the East 10 Feet. The she turned to the right and walked 3 Feet. Again she turned to the right and walked 14 Feet. How far is she from A?
  a) 4 FT
  b) 5 FT
  c)12 FT
  d) 13 FT
- 6. 'If A xB means A is to the South of B.A + B means A is to the North of B, A% B means A is to East of B, A B means A is to the West of B, then in P% Q + R S, S is in which direction with respect to Q?
  a) S-W
  b) S-E
  c) N-E
  d) N-W

J.K. SHAH CLASSES a Veranda Enterprise

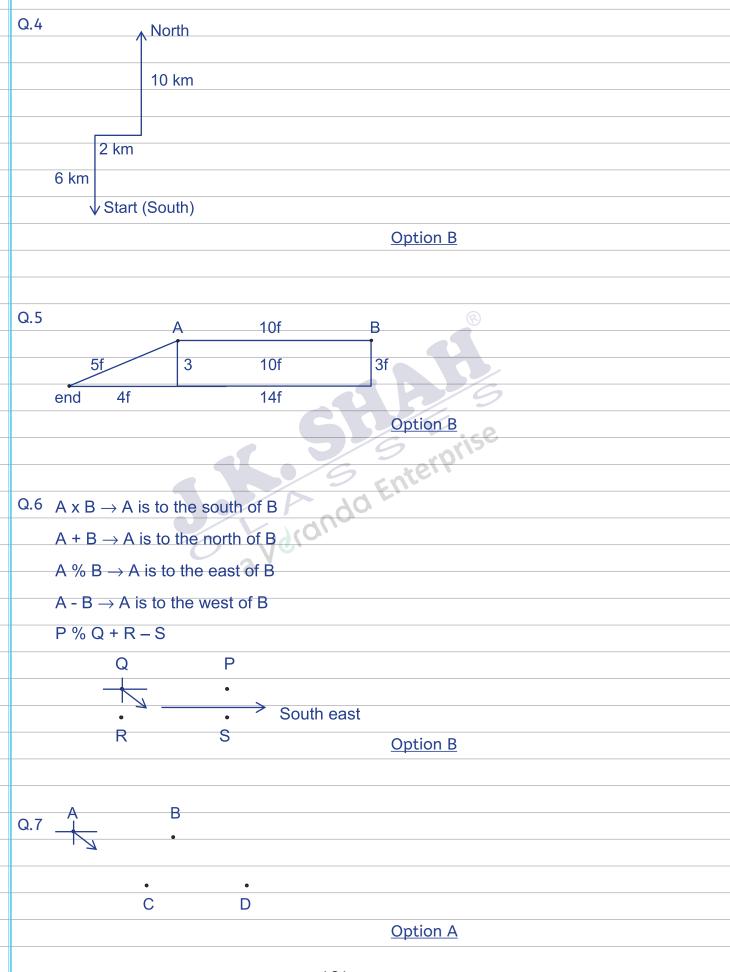
al	a Veranda Enterprise						
7.	Four friends A, B, C, D live in a same locality. The house of B is in the East ofA's house						
	but in the North of C's house. The house of C is in the West of D's house. D's house						
	is in which direc	tion of A's house?					
	a) S-E	b) N-E	c) East	(d) North			
8.	Mohan starts fro	om point A and walk	1 km towards Sou	th, turns left and walk 1 km.			
	Then he turns le	eft again and walk 1	km. Now he is faci	ng.			
	a) East	b) West	c) North	d) South			
9.	Dev walks20m	towards North. He th	nen turns left and	walks 40 m. He again turns			
	left and walks a	20 m. Further, he mo	ved 20 m after tur	ming to the right. How far is			
	he from his orig	inal position?					
	a) 20 m	b) 30 m	c) 50 m	📀 d) 60 m			
10.	A walks Southw	vards, then turn right	, then left and the	en right. In which direction is			
	he from the star	rting point?		9			
	a) South West	b) West	c) East	d) North			
			19 ror				
11.	A is located to t	he West of B, C is loc	ated at North in b	etween A and B. D is exactly			
	to the South of	B and also in line wit	th B. In which direc	tion of C is D located?			
	a) South	b) S-E	c) West	d) S-W			
		o vo.					
12.	A man is facing	East, then he turns l	eft and goes to 10	) meter then turns right and			
	goes 5 meter th	nen goes 5 meter to	the south and fro	m their 5 meter to West. In			
	which direction	is he from his origina	l place?				
	a) East	b) West	c) North	d) South			
13.	I stand with m	y right-hand extend	ed side-ways tow	ards South. Towards which			
	direction will m	y back be?					
	a) North	b) West	c) East	d) South			
14.	Manu wants to	go to the market. He	starts from his hou	use towardsNorth reaches at			
	a crossing after	30m. He turns towar	rds East, goes 10m	till the second crossing and			
	turns again, mo	ves towards South st	raight for 30m who	ere marketing complex exits.			
	In which direction	on is the market from	his house?				
	a) North	b) East	c) South	d) West			

-					
	ASSES		CA FOUN	NDATION LOGICAL REASONING	
	/dranda Enterprise	a diata - C.Z.Z.			
 15.				She then turned to the left	
		-		80m. Finally she turned to	
		ngle of 45°. In wl	hich direction was she	5 5	
	a) South – East		b) South – Wes		
	c) North - West		d) North – East	t	
 16.		•		urns towards his right and	
	-	5 5		ection nowhe is facing?	
	a) South	b) North	c) West	d) East	
 17.	•			ked towards East upto 10	
		0		to 10 km, again he moved	
	towards West an	nd reached at sta	rt point. What is the vo	lue of n.	
	a) 10 km	b) 20 km	c) 1 km	d) 2 km	
				/	
18.	One morning Suj	ata started to wo	alk towards the sun. Af	ter covering some distance	
	she turned to rig	ght then again to	o the right and after o	overing some distance she	
	again turn to the	e right. Now in wh	nich direction is she fac	ing.	
	a) North	b) South	9 c) N-E	d) S-W	
		P	dar		
19.	Ramu is going to	owards North from	m his house. After cove	ering a distance of 6 km he	
	turned towards l	left and covered	a distance of 8 km. Wi	nat is the shortest distance	
	now from his hou	use?			
	a) 15 km	b) 10 km	c) 25 km	d) 20 km	
20.	You go North, tu	rn right, then righ	nt again and then go to	left. In which direction are	
	you now?				
	a) South	b) East	c) West	d) North	
			481		




#### ANSWER

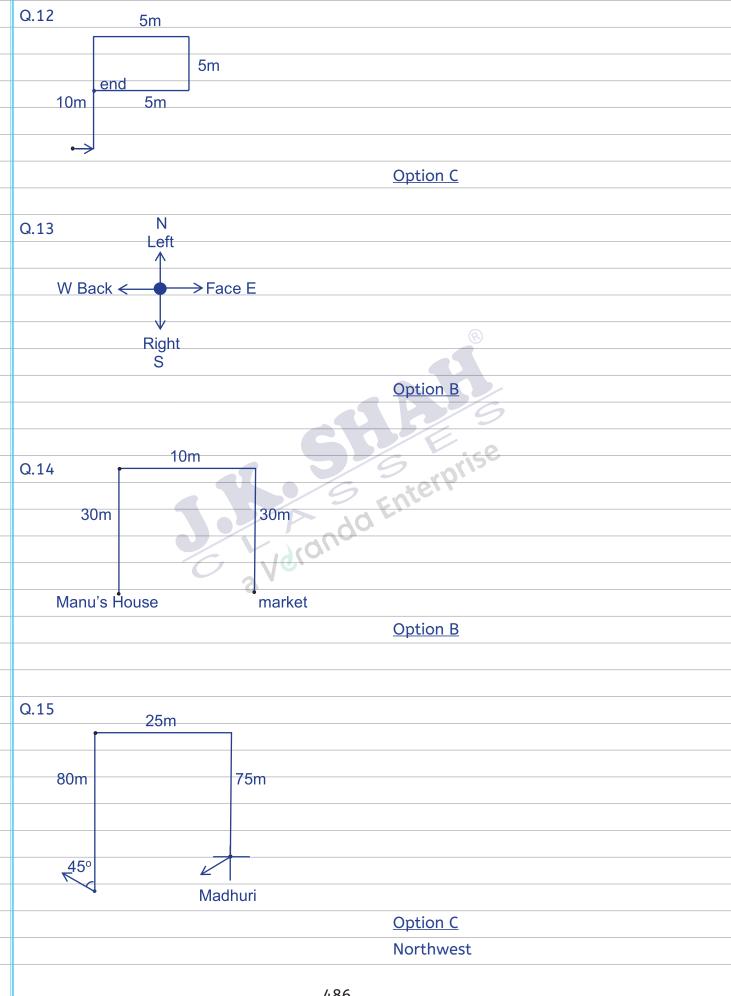
1.	D	2.	А	
3.	В	4.	В	
5.	В	6.	В	
7.	А	8.	С	
 9.	D	10.	А	
 11.	В	12.	С	
 13.	В	14.	В	
 15.	С	16.	А	
 17.	А	18.	А	
 19.	В	20	В	


Ada Enterpris

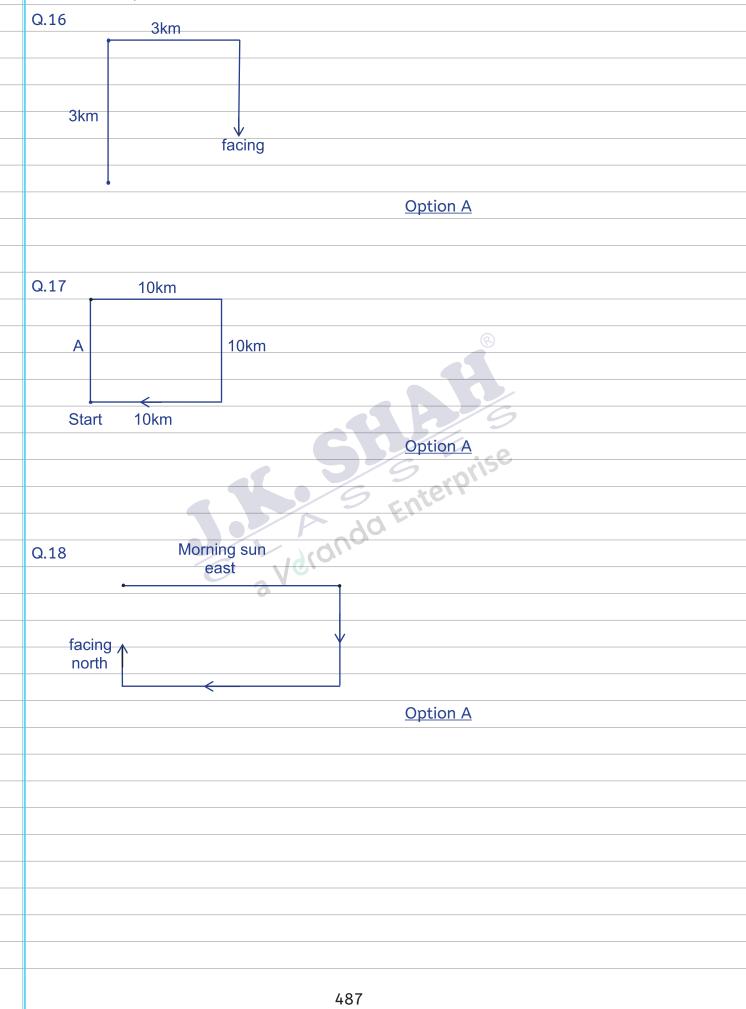


## Explanatory solutions

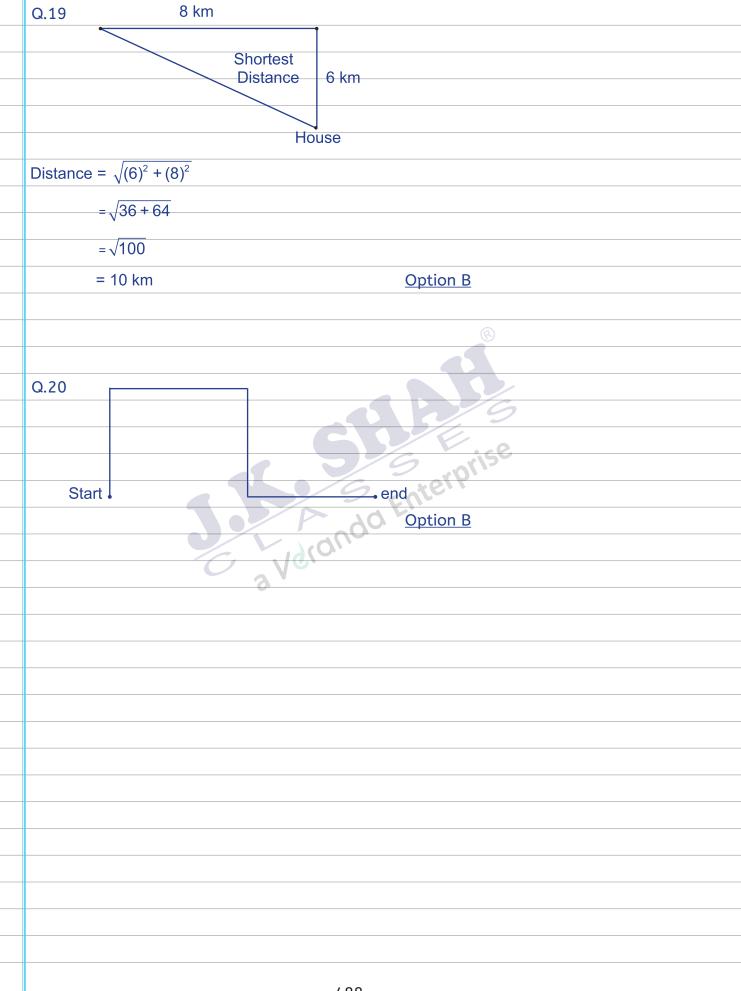







Q.8 A		facing north ↑			
 1 1/100	4				
 1 km_		km			
	1 km				
			<u>C</u>	ption C	
 Q.9		40m_			
				20m 🛞	
 end	20m				
 •	20m +	40m		Dev Srated	
	20111	60m		Devolated	
				ption D	
			S Er	terr	
	Start		90 r.		
 Q.10					
	KC	3			
		L C	South w	est	
end					
	•		<u>_</u>	ption D	
	С				
 • Q.11 A	B				
	•				
	D			Nation D	
			<u>C</u>	ption B	
			485		
















### SEATING ARRANGEMENT

Sitting arrangement questions are based on the sitting sequence pattern, direction, facing outside or inside etc.

Ada Enterprise

Different types of Questions covered.

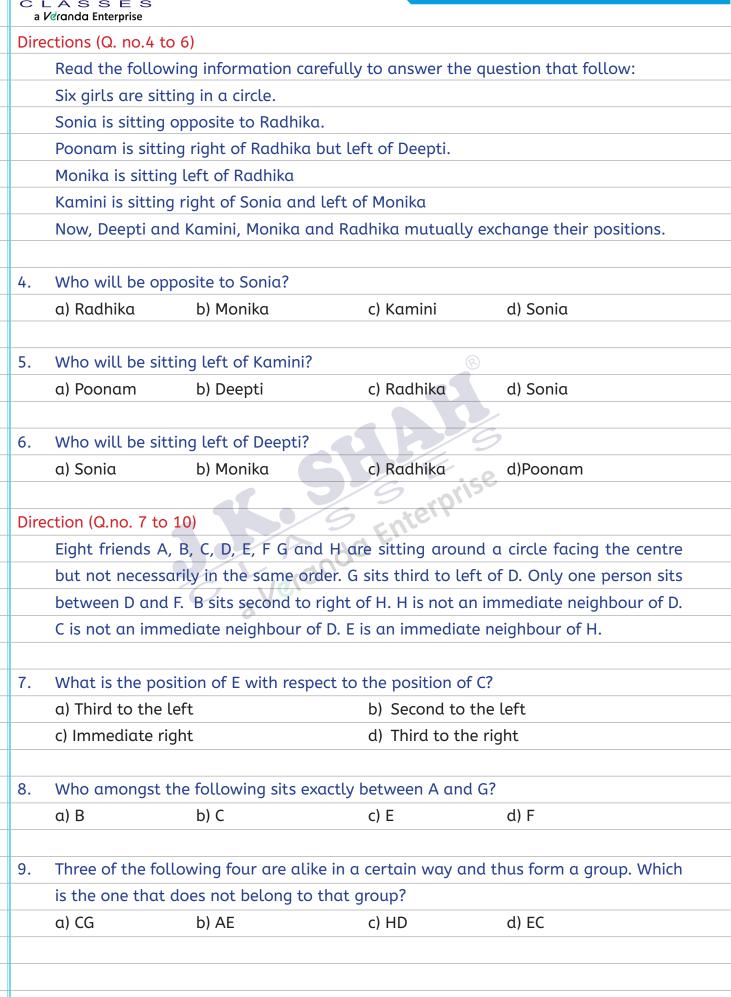
- 1. Linear arrangement
- 2. Circular arrangement
- 3. Polygonal arrangement





## **CLASS WORK SECTION**

#### LINEAR ARRANGEMENT


1.	Four girls are see	ated f	or a photograph s	Shikha is left of Re	eena. Manju is to the right
	of Reena. Reeta i	s bet	ween Reena and M	1anju. Who is the s	second left in photograph.
	(J-2019)				
	a) Reena	b)	Manju	c) Reeta	d) Shikha
2.	5 friends are sitt	ing or	n a bench. A is to t	he left of B but or	n the right of C. D is to the
	right of B but on	the l	eft of E. Who are	at the extremes?	
	a) A, B	b)	A, D	c) B, D 🛞	d) C, E
3.	Five students A,	B, C,	D and E are stand	ding in a row. D is	on the right of E, B is on
	the left of E but	on th	e right of A. D is n	ext to C on his lef	The student in middle is
	(N-2018)		6		2
	a) B	b)	E	Gic orist	d) A
			/9	cnterr	
4.	Five children are	sittin	g in α row. S is sti	ng next to P but n	ot T. K is sitting next to R,
	who is sitting on	the e	extreme left and T	is not sitting next	to K. Who is/are adjacent
	to S? (M-2018)	$\mathcal{O}$	210.		
	a) K and P	b)	R and P	c) only P	d) P and T.
5.	Five boys are sto	andin	g in a row facing	East, Pavan is to	the left of Tavan, Vipin,
	Chavan. Tavan,	Vipin	and Chavan are to	o the left of Nakul.	Chavan is between Tavan
	and Vipin. If Vipi	n is fo	ourth from the lef	t, then how far is	Tavan from the right?
	a) First	b)	Second	c) Third	d) Fourth
6.					Muan lives in a flat above
					Mr. Ashokan lives in a flat
	above Mr. Gaura	v anc	l Mr. Rakesh lives	in a flat below Mr	r. Lokesh. Who lives in the
	topmost flat? (M	-201	8)		
	a) Mr. Lokesh	b)	Mr. Gaurav	c) Mr. Muan	d) Mr. Rakesh

	<u>J.</u> ]	<u>K. SHAH</u> °	CA FOUNDATION LOGICAL REASONING					
	al	dranda Enterprise						
	7.	Five boys A, B, C, D and E are sitting on a stair in the following way						
		E is above A						
		D is under B						
		B is under A						
		D is between B and C						
		Who is at the lowest position of the stair	r?					
		a) A b) C	c) E d) B					
	8.	Six children A, B, C, D E and F are standing	ng in α row.					
		B is between F and D.						
		E is between A and C						
		A does not stand next to F or D.						
		C does not stand next to D.	®					
		F is between which of the following pairs	s of children? (M-2018)					
		a) B and E b) B and C	c) B and D d) B and A					
			2/9					
	9.	Eight persons A, B, C, D, E, F, G and H are	e sitting in α line.					
		E is second right to D.	Suprise					
		H sits fourth left to D.	Enteri					
		C and F are immediate neighbors, but C	is not immediate neighbor of A.					
		G is not neighbor of E						
		Only two person sit between A and E.						
		The persons on left end and right end re	spectively are					
		a) G and E b) B and E	c) H and E d) G and B					
	10.	There are eight books kept one over the	e other. Two books are on Organisational					
		Behaviour, two books on TQM, three bo	ooks on Industrial Relations and one book					
		is on Economics, counting from the top,	, the second, fifth and sixth books are on					
		Industrial Relations. Two books on Indus	strial Relations are between two books on					
		TQM. One book of Industrial Relations	is between two books on Organisational					
		Behaviour while the book above the boo	k of Economics is book of TQM. Which book					
		is the last book from the top?						
		a) Economics	b) TQM					
		c) Industrial Relations	d) Organisational Behaviour					
Ĩ								

	®								
J. CL	ASSES Granda Enterprise			CA FOUNDA	TION LOGICAL REASONING	ì			
uv	Directions: (Q. n	o. 11 to 15)							
	Read the following information carefully to answer the given questions.								
A, B, C, D, E, F, G and H are seated in straight line facing North.									
	C sits fourth to left of G.								
	D sits seconds to right of G.								
	Only two people		and A.						
			rs of each other.						
	B is not an imm								
	H is not an imm	ediate neighbou	ır of D.						
11.	Who amongst t	he following sit	s exactly in the r	middle of t	the persons who sit fifth	I			
	from the left an	d the person wh	no sits sixth from	the right?					
	a) C	b) H	c) E	B	d) F				
12.	Who amongst th	he following sits	s third to the righ	t of C?	P				
	a) B	b) F	c) A	79	d) E				
			602	V.ce					
13. Which of the following represents persons seated at the two extreme ends of the									
	line?		9 Ent	C					
	a) C, D	b) A, B	<b>C</b> ) B, G		d) D, H				
			<u>(</u> 0,,						
14.	What is the pos	ition of H with r	espect to F?						
	a) Third to the le	eft	b) Imm	nediate rig	ht				
	c) Second right		d) Fou	rth to left					
 15.			petween A and E						
	a) One	b) Two	c) Three	е	d) Four				
 Diro	stions (O no 16	to 20)							
 Directions (Q. no. 16 to 20)									
 Read the following information carefully and answer the following questions based on it.									
 Ten students – A, B, C, D, E, F, G, H, I and J are sitting in a row facing West. B and F are not sitting on either of the edges.									
		3		of					
G is sitting to the left of D and H is sitting to the right of J There are four persons between E and A.									
			F immediate is to	the South	n of D				
			middle of E and F						
 5 15 1									
			492						



The	ere are two persons between H and C.								
me									
16.	Who is sitting at the seventh-place counting from left?								
	a) H	b) C	c) J	d) Either H or C					
17.	Who among the following is definitely sitting at one of the ends?								
	a) C	b) H	c) E	d) Cannot be determined					
18.		liate neighbours o							
	a) BC	b) BH	c) AH	d) (a) or (b)					
10									
19.	3								
	a) G	b) F	c) E	S (p S					
20.	If G and A inter	change their positi	ions then who becom	e the immediate neighbours					
20.	of E?	change then positi	ions, chen who becom		2				
	a) G and F b) Only F c) Only A d) J and H								
			5/9	se and and a					
		Circul	ar Arrangement						
1.									
	front of each other, which of the following is definitely true?								
	a) A and D are in front of each other								
	b) A is not between B and C								
	c) D is to the left of C								
	d) A is to the left of C								
2.				od is sitting to the right of					
			-	is to the left of Brejesh and	1				
	Rajan is to right of Brejesh. Who is sitting to the left of Naveen?								
	a) Pramod	b) Raju	c) Brejesh	d) Rajan					
3.	Six persons are	sittina in a circle	facing the centre of t	he circle. Parikh is betweer	 ו				
	•	5	3	aj. Chitra is to the immediate					
			ediate right of Babita?	<b>.</b>					
	a) Parikh	b) Pankaj	c. Narendra	d. Chitra					
		-							



**J.K. SHAH** CLASSES a Vergndg Enterprise

10.	Who amonast th								
	who amongst th	. Who amongst the following sits third to the left of F?							
	a) A	b) B	c) C	d) G					
		Polygonal A	rrangement						
1.	Four boys and fo	our girls are sitting aro	und a square facin	g the centre. One person					
	is sitting at each	o corner and at the mic	lpoint of each side	of the square. Madhu is					
	sitting diagonally opposite to Usha who is to the right of Geeta. Ram who is to the								
	left of Geeta is diagonally opposite to Gopi who is to the left of Bose. Position of								
	Suma is not to th	ne right off Madhu but	in front of Prema. \	Who is sitting opposite to					
	Bose?								
	a) Geeta	b)Prema	c) Suma	d) Madhu					
			8						
2.	Five children A,	B, C D and E are sittin	g along the corner	rs of a pentagonal table					
	facing the centre. B is between E and C. D is to the right of E. Who is to the left of								
	C?		/9						
	a) B	b) A	c) D	d) C					
			Srorise						
Directions (Q. no.3 to 6)									
	Read the following information carefully to answer the question that follow:								
	Six people A, B, C, D, E and F are sitting on the ground in a hexagonal shape. All the								
	sides of hexagon so formed are of same length. A is not adjacent to B or C. D is not								
	adjacent to C or E. B and C are adjacent. F in the middle of D and C.								
3.	Which of the foll	owing is not a correct r	neighbour pair?						
	a) A and F	b) D and F	c) B and E	d) C and F					
4.	Who is at the sa	me distance from D as	E is from D?						
	a) B	b) C	c) D	d) F					
5.	Which of the foll	owing group has the co	orrect order of arra	ngement?					
	a) A,F, B	b) F, A, E	c) B, C, F	d) D, A, B					
6.	If one neighbour	of A is D, who is the ot	her one?						
	a) B	b) C	c) E	d) F					
	L. 2. Dire 3.	<ul> <li>a) A</li> <li>Four boys and for is sitting diagonally left of Geeta is of Suma is not to the Bose?</li> <li>a) Geeta</li> <li>a) Geeta</li> <li>Five children A, facing the centro C?</li> <li>a) B</li> <li>Directions (Q. no.3 to Read the followi Six people A, B, G sides of hexagon adjacent to C or</li> <li>Which of the foll a) A and F</li> <li>Who is at the same a) B</li> <li>Which of the foll a) A, F, B</li> <li>If one neighbour</li> </ul>	a) A b) B Polygonal A Polygonal A Polygon	a) A       b) B       c) C         Polygonal Arrangement         Polygonal Arrangement         I. Four boys and four girls are sitting around a square facin is sitting at each corner and at the midpoint of each side sitting diagonally opposite to Usha who is to the right of C left of Geeta is diagonally opposite to Gopi who is to the Suma is not to the right off Madhu but in front of Prema. Y Bose?         a) Geeta       b)Prema       c) Suma         @       C       C         2. Five children A, B, C D and E are sitting along the corner facing the centre. B is between E and C. D is to the right of C?       G         a) B       b) A       c) D         Directions (Q. no.3 to 6)       Read the following information carefully to answer the qu Six people A, B, C, D, E and F are Sitting on the ground in a sides of hexagon so formed are of same length. A is not an adjacent to C or E. B and C are adjacent. F in the middle o         3. Which of the following is not a correct neighbour pair?       a) A and F       b) D and F       c) B and E         4. Who is at the same distance from D as E is from D?       a) B       b) C       c) D         5. Which of the following group has the correct order of arraa a) A,F, B       b) F, A, E       c) B, C, F         5. If one neighbour of A is D, who is the other one?					



Directions (Q. no.7 to 10)								
	Read the following information carefully to answer the question that follow:							
	Eight friends P, Q, R, S, T, V, W and Y are sitting around a square table. Out of eight,							
	four persons are sitting at the corners of the table and the other four are sitting at							
	the mid-points of each side of the table. Persons at the corners are facing the centre							
	while the persons at the mid-points of side are facing outside. S is third to the right							
	of P. P is facing the centre, Y is not sitting beside P or S. T is third to the right of R. R							
	is not sitting at the mid-point of any side of the table. R is also not beside Y. There							
	is only one person between P and V. Q is not sitting beside V.							
7.	Which of the following is true regarding Y?							
	a) T is not sitting beside Y							
	b) Y is sitting at the midpoint of side							
	c) R is second to the left of Y							
	d) P and V are beside Y							
8.	Who is forth to the left of V?							
	a) Y b) R c) T d) Q							
	a) Y b) R c) T d) Q							
9.	What is the position of Q in respect of R?							
	a) Immediate right							
	b) Second to the left							
	c) Third to the left							
	d) Third to the right							
10.	Who is third to the right of W?							
	a) R b) S c) Q d) Y							



## HOMEWORK SECTION

1.	Five boys A, B, C, D and E are sitting in a row A is to the right of B and E is to the left							
	of B but to the right of C. A is to the left of D. Who is second from the left end?							
	(U.P.B.Ed 2013)							
	(a) D	(b) A	(c) E	(d) B				
2	There are five di	fferent houses A	to E in a row A is to	the right of B and E is	s to the			

- There are five different houses, A to E, in a row. A is to the right of B and E is to the ۷. left of C and right of A, B is to the right of D. Which of the houses is in the middle? IB CA (IO) 2013)
- (a) A (b) B (c) C (d) D
- Five friends P, Q, R, S and T are sitting in a row facing North. Here, S is between T 3. and Q and Q is to the immediate left of R. P is to the immediate left of T. Who is in the middle? (SSC (Multi Task) 2014)
  - (c) Q (a) S (b) T (d) R
- Six children A, B, C, D, E and F are standing in a row. B is between F and D. E is 4. between A and C. A does not stand next to F or D. C does not stand next to D. F is between which of the following pairs of children? (SSC (FCI) 2012) (a) B and E (c) B and D (b) B and C (d) B and A
- 5. There are eight books kept one over the other. Two books are on Organisation Behaviour, two books on TQM, three books on Industrial Relations and one book is on Economics. Counting from the top, the second, fifth and sixth books are on Industrial Relations. Two books on Industrial Relations are between two books on TQM. One book of Industrial Relations is between two books on Organizational Behaviour while the book above the book of Economics is a book of TQM. Which book is the last book from the top? (MAT 2011) (a) Economics (b) TQM
  - (c) Industrial Relations (d) Organizational Behaviour

<b>•</b>										
	ASSES			CAI	FOUNDATION	LOGIC	AL REASONING	â		
	Veranda Enterprise									
 6.				ng East. Pavan is						
	to the left of Nakul. Chavan is between Tavan and Vipin. Vipin is fourth from the									
	left, then how f	ar is To	avan from the	e right? (CLAT 201	L4)					
	(a) First	(b)	Second	(c) Third	(d)	Four	th			
7.				sitting in two row						
	Both the row ar	e in fr	ont of each c	other. Q is not at	the end of a	ny ro	w. P is second	<u>t</u> t		
	the left of R. O is the neighbour of Q and diagonally opposite to P. N is the neighbour									
	of R. Who is in f	ront of	f N? (UPSC (C	SAT) 2011)						
	(a) R	(b)	Q	(c) P	(	d)	Μ			
8.	Six persons A, B	s, C, D,	E and F are	sitting in two row	, three in ea	ch rov	w. (MAT 2011	)		
	(I) E is not at t	he end	of any row		B					
	(II) D is second	to the	left of F		5					
	(III) C, the neigh	bor of	E, is sitting d	liagonally opposi	te to D					
	(IV) B is the neig	hbor o	of F.		<u> </u>					
	Which of the fol	lowing	g are in one c	of the two rows?						
	(a) D, B and F	(b)	C, E and B	(c) A, E and	dF (d)	F, B,	C			
				9 Enter						
				information care						
that	follows. Five bo	ys A1,	A2, A3, A4 o	ind A5 are sitting	in a stair in	the fo	ollowing way	•		
(RRE	3 (TC/CC) 2010)		3							
I.	A5 is above A1									
II.	A4 is under A2									
III.	A2 is under A1									
IV.	A4 is between A	2 and	A3.							
9.	Who is at the lo	west p	position of th	e stair?						
	(a) A1	(b)	A3	(c) A5	(	d) A2				
10.	Five children are	e sittin	g in a row. S i	is sitting next to P	) but not T. K	is sit	ting next to R	,		
	who is sitting or	n the e	xtreme left a	Ind T is not sitting	next to K. ۱	Who is	/are adjacent	t		
	to S? (NIFT (UG)	2014)								
	(a) K and P	(b)	R and P	(c) Only P	(d)	Pan	d T			

-						
	<b>K. SHAH</b> ASSES Veranda Enterprise			CA FOUN	IDATION LOGICAL REASONING	
 11.	•	ns ar	living in a mult	i-storeved buildir	ng. Mr. Muan lives in a flat	
 ***			5		v, Mr. Ashokan lives in a	
		-			w Mr. Lokesh. Who lives in	
	the topmost flat			ives in a rut bett	W MI. LOKESH. WHO LIVES III	
	(a) Mr. Lokesh	(b)		(c) Mr. Muan	(d) Mr. Rakesh	
		(0)				
12.	In a gathering se	even r	nembers are sitti	ng in a row. 'C' is s	sitting left to 'B' but on the	
	right to 'D'. 'A' is	sitting	g right to 'B', 'F; is	sitting right to 'E'	' but left to 'D'. 'H' is sitting	
	left to 'E'. Find th	e per	son sitting in the	middle (SSC (10+2	2) 2013)	
	(a) C	(b)	D	(c) E	(d) F	
Dire	ctions (Q. no. 13	to 1	7): Study the foll	owing informatio	n carefully to answer the	
give	n questions. A to	H are	seated in straigh	nt line facing Nort	h. C sits fourth left of G. D	
sits	second to right o	f G. O	nly two people s	it between D and	A. B and F are immediate	
neig	hbours of each ot	her. E	s is not an immed	iate neighbour of	A. H is not neighbour of D.	
(GIC	2012)				9	
			6		0.	
13.	Who amongst th	ne fol	lowing sits exact	ly in the middle o	f the persons who sit fifth	
	from the left and	the	person who sit si	xth from the right	?	
	(a) C	(b)	H	(c) E	(d) F	
		//	L'acone			
14.	Who amongst th	e foll	owing sits third to	o the right of C?		
	(a) B	(b)	F	(c) A	(d) E	
15.	Which of the fol	lowin	g represents pers	sons seated at the	e two extreme ends of the	
	line?					
	(a) C, D	(b)	А, В	(c) B, G	(d) D, H	
16.	What is the posit	ion o	f H with respect t	:o F?		
	(a) Third to the l	.eft		(b) Immedia	te right	
	(c) Second to rig	Jht		(d) Fourth to	left	
 17.	5.		e seated betweer			
	(a) One	(b)	Two	(c) Three	(d) Four Directions	

**J.K. SHAH** C L A S S E S a Veranda Enterprise

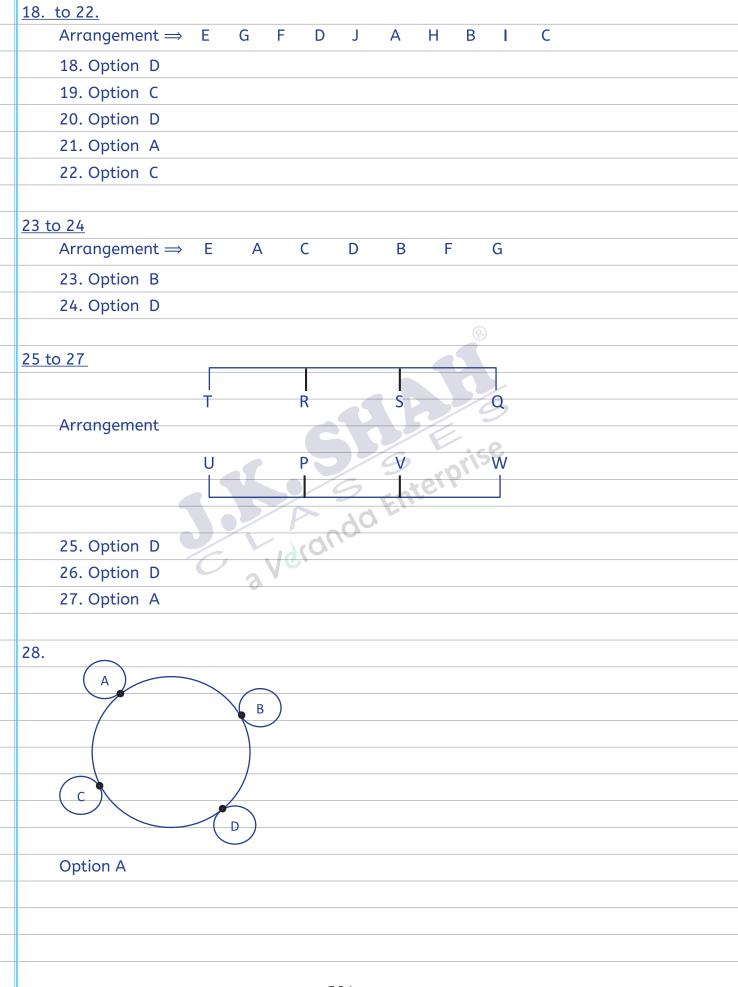
(Q. N	No. 18-22) (MA	AT 2012)					
 Stuc	ly the followin	g informo	ation caref	ully to answer the gi	iven questi	ons.	
Ten	students are A	to J are	sitting in a	row facing west.			
١.	B and F are n	ot sitting	on either	of the edges.			
П.	G is sitting lef	ft of D an	d H is sitti	ng to the right of J.			
Ш.	There are fou	r persons	between E	E and A			
IV.	I is immediate	e north of	FB and F is	s immediate south of	f D.		
V.	J is in middle	of A and	D and G is	in middle of E and I	F.		
VI.	There are two	persons	between H	I and C.			
18.	Who is sitting	at the se	eventh plac	ce counting from lef	t?		
	(a) H	(b)	С	(c) J	(	d) Either H o	r C
					®		
19.	Who among t	the follow	ving is de	nitely sitting at one	e of the end	ls?	
	(a) C			(b) H			
	(c) E			(d) Cannot b	be determin	ned	
				SDE			
20.	Who are imm	ediate ne	ighbours c		ris-		
	(a) BC		$\mathbf{S}$	9 (b) BH			
	(c) AH		P	(d) BC or BH	1		
			Vids	0///			
21.	Who is sitting						
	(a) G	(b)	F	(c) E	(	d) J	
 22.		erchange	their posi	tions, then who becc	ome the imi	mediate neig	hbours
	of E?			() ~			
	(a) G and F	(b)	Only F	(c) Only A	(d)	J and H	
				500			



**J.K. SHAH** C L A S S E S a Veranda Enterprise

Dire	rections (Q. no. 23 & 24) Read the following information carefully and then answer the										
ques	stions that follow.	A group of singers	, facing the audience, a	re standing in line on the							
stag	je as follows.										
١.	D is to the right t	o C									
П.	F is standing besi	de G.									
Ш.	B is immediate le	ft of F									
IV.	E is immediate le	ft of A									
V.	C and B have one	e person between t	hem								
VI.	A and D have one	e person between t	:hem								
23.	Who is on the sec	cond extreme right	?								
	(a) D	(b) F	(c) G	(d) E							
			8								
24.	If we start counti	ng from the left, o	n which number is B?								
	(a) 1st	(b) 2nd	(c) 3rd	(d) 5th							
			0/9	2							
Dire	ctions (Q. No. 25-	27): Study the follo	owing information care	fully to answer the given							
ques	stions. Eight perso	ns P to W are sittin	ng in front of one anoth	er in two rows. Each row							
has	four persons. P is	between U and V	and facing North. W is	opposite to Q, who is to							
the	immediate left of	S. R is between T a	and S and W is to the im	nmediate right of V. (UCO							
Ban	k 2011)	, did									
		o ave									
25.	Who is sitting in f	ront of R?									
	(a) U	(b) Q	(c) V	(d) P							
26.	Who is to the imr	nediate right of R?									
	(a) S	(b) U	(c) S or Q	(d) None of these							
27.	In which of the fo	llowing pairs, pers	sons are sitting in front	of each other?							
	(a) SV	(b) RV	(c) TV	(d) UR							
28.	Four girls A, B, C,	, D are sitting arou	and a circle facing the c	entre. B and C infront of							
	each other, which	of the following is	s definitely true? (MAT 2	2009)							
	(a) A and D infro	nt of each other	(b) A is not betwe	een B and C							
	(c) D is left of C		(d) A is left of C								




# HOMEWORK SOLUTION

	1.	Arrangement	$\Rightarrow$	С	Е	В	Α	D	
		Option C							
	2.	Arrangement	$\Rightarrow$	D	В	Α	E	С	
		Option A							
	2	Arrangement	$\Rightarrow$	Р	т	S	Q	R	
	3.	Option A		1	1	5	G	1	
_		90000							®
	4.	Arrangement	$\Rightarrow$	А	Е	С	F	В	D
		Option B							
									6
	5.	$1 \rightarrow OB$						E.	e.
		$2 \rightarrow IR$				/	SEnt	197	12-
		$3 \rightarrow OB$				9	Ent	6.,	
		$4 \rightarrow TQM$	1			40			
		$5 \rightarrow IR$	-4						
		$6 \rightarrow IR$		3 1					
		$7 \rightarrow TQM$							
		$8 \rightarrow \text{ECO}$	)						
		Option A							
_									
	6.	Arrangement	→ Pavan	Τανα	ın Cl	navan	Vipul	. Nak	ul
		Option D							
	7.								
		M Q	)						
				<u> </u>					
		<b>D</b>							
		P N		R			0	D	
							Opti	on B	
						502			



8.												
	I I A E											
			<u> </u>									
	D B		F									
	Option A											
9.	[	<b>A</b> 5										
		A ₁										
	Arrangement -	<b>A</b> ₂										
		<b>A</b> 4						B				
	L	A ₃										
	Option B											
								9				
10	. Arrangement	$\Rightarrow$	R	K	P	S	T					
	Option D		1			9	102	19				
					9	SEnt	6.,					
11	· [	Mr Muc			90							
		Mr Ash	iokan	20								
	Arrangement	Mr Gau										
		Mr Loke										
	l	TH NGR	2511									
	Option C											
12	. Arrangement	$\Rightarrow$	Н	E	F	D	С	В	Α			
	Option B											
<u>13</u>	<u>. to 17.</u>											
	Arrangement	$\Rightarrow$	Н	С	В	F	Α	G	E	D		
	13. Option D											
	14. Option C											
	15. Option D											
	16. Option A											
	17. Option A											

#### **J.K. SHAH** C L A S S E S a Veranda Enterprise





### **SELF ASSESSMENT**

1.	Five senior citize	ens are living in a n	nulti-storeyard buil	ding. Mr Muan lives a flat	
	above Mr. Ashok	kan, Mr. Lokesh in a fl	at below Mr. Gaura	r, Mr. Ashokan lives in a flat	
	above Mr. Gauro	av and Mr. Rakesh liv	ves in a flat below N	Ir. Lokesh. Who lives in the	
	top most flat?				
	a) Mr. Lokesh	b) Mr. Gaurav	c) Mr. Muan	d) Mr. Rakesh	
2.	Five children are	e sitting in a row, S is	sitting next to P but	t not T.K is sitting next to R,	
	who is sitting or	n the extreme left an	d T is not sitting nex	t to K. Who is/are adjacent	
	to S.		B		
	a) K+P	b) R+P	c) Only P	d) P and T	
3.	Five students A,	B, C, D and E are sta	nding in a row. D is a	on the right of E, B is on the	
	left of E but on	the right of A. D is ne	ext to C on his left. T	The student in middle is	
	a) B	b) E	c) C	d) A	
			Senteri		
4.	In a straight lin	e there are six perso	on sitting in a row?	B is between F and D. E is	
	between A and	C. A does not stand	next to F or D, C do	es not stand next to D. F is	
	between which o	of the following pers	on?		
	a) B and E	b) B and C	c) B and D	d) B and A	
5.	Five boys A, B, C	C, D, E are sitting in a	ι row A is the right c	f B and E is to the left to B	
	but to the right	of C. A is to the left	to D. Who is second	from the left end?	
	a) D	b) A	c) E	d) B	
6.	Six Persons M N	O P Q and R are sitt	ting in two row with	three persons in each row.	
	Both the row ar	e in front of each ot	her. Q is not at the o	end of any row. P is second	
	the left of R. O i	is the neighbor of Q	and diagonally opp	osite to P. N is the neighbor	
	of R. Who is in f	ront of N?			
	a) R	b) Q	c) P	d) M	

**J.K. SHAH**[®] C L A S S E S a Veranda Enterprise

 a 1	verundu Enterprise				
Dire	ction to solve Q	. No. 7 to 15			
А, В	, C, D and E are	five men sitting in a	line facing to South-	while M, N, O, P and Q are	
the	five ladies sittin	g in a second line par	rallel to the first line	and are facing to North.	
a) B	who is just next	t to the right of D, is o	opposite to Q.		
b) C	and N are diago	onally opposite to eac	ch other.		
c) P	who is just to th	ne left of O, is opposit	te to D.		
d) M	l is at one end o	f the line			
e) E	is opposite to O	)			
7.	Who is sitting b	petween M and P			
	a) Q	b) P	c) E	d) D	
8.	Which of the fo	ollowing pair is diago	nally opposite to eac	th other?	
	a) EQ	b) BO	c) AN	d) AM	
9.	Who is the extr	reme left of E?		9	
	a) D	b) A	c) E	e d) O	
			19 roris		
10.	In the original	arrangement who is s		to N?	
	a) B	b) A	Cc) C	d) D	
		V d(d	1-		
11.	How many per	sons are there betwee	en N & P?		
	a) 1	b) 2	c) 3	d) 4	
12.	Who among th	e following sit next to	o each other ?		
	a) C and D	b) N and P	c) M and Q	d) D and A	
13.	Who among th	e following sit on the	e immediate right of	D?	
	a) G	b) E	c) F	d) B	
14.	Who among th	e following sits third	to the right of A?		
	a) C	b) G	c) B	d) E	
15.	Which is true w	vith regard to B?			
	a) B is second t	to the right of A	b) B is fourth to	o the left of N.	
	c) B sits betwee	en C and D	d) B sits at the	extreme left	
		Ľ	506		



av	eranaa Enterprise					
Instr	uctions to solve (Q.16	to 20)				
	I) P, Q, R, S, T, U and	d V are sitting on a v	vall and all of them	are facing	g West.	
	II) S is the immediat	e left of R.				
	III) T is at an extrem	e end and has Q as h	nis neighbour			
	IV) V is between Q a	nd U.				
	V) S is sitting third f	rom the north end.				
16.	Who is the sitting to	the left of S?				
	a) Q b)	U	c) T d)	) R	e) P	
17.	Which of the followin	g pairs of people are	e sitting at the extre	me ends?		
	a) TQ b)	PR	c) TP d)	) ST	e) VP	
			®			
18.	Name the person wh	no should change pl	aces with R such th	at he get	s the fourth	
	place from the South	end?				
	a) P b)	S	c) Q d)	) T	e) U	
		61	E			
19.	Immediately betweer	n which of the follow	ing pairs of people S	5 is sitting	?	
	a) UR b)	PQ 9	c) VP d)	) TU	e) RV	
		P . 10	E.			
20.	Which of the condition	ns given above are r	not required to find a	out the pla	ace in which	
	P is sitting?	A.				
	a) I b)		c) IV			
	d) III e)	All required				
		ANSWE	ER			
	1.	С	2.		D	
	3.	В	4.		В	
	5.	С	6.		В	
	7.	Α	8.		D	
	9.	В	10.		В	
	11.	Α	12.		C	
	13.	D	14.		C	
	15.	C	16.		B	
	17.	C	18.		E -	
	19.	Α	20		E	



# Explanatory Solution

	Q.1					
		Mr. Muar	۱			
	Arrangement 🔾	Mr. Asho	kan			
		Mr. Gaur	av			
		Mr. Lokes	sh			
		Mr. Rake	sh		Option C	
	Q.2 Arrangement –	→ R K P	S T		Option D	
					8	
	Q.3 Arrangement –	→ A B E I	DC		Option B	
	Q.4 Arrangement –	→ A E C L	F B D		Option B	
					V:se	
	Q.5 Arrangement –	→ C E B A	4 D		Option C	
				9	Option Collise Option Collise Option B	
_	Q.6 ↓ ↓ M Q	•		-0	0	
			190	<u>, , , , , , , , , , , , , , , , , , , </u>		
_	P N 水 水	R A			Outline D	
_					Option B	
_	<u>Q.7 to Q.15</u>					
_						
_		North				
_			Ā	$\downarrow$		
_		<u><u> </u></u>	N	<u>,</u>		
_						
_		South				
	Q.7 $\rightarrow$ Option .	A				
	$Q.8 \rightarrow Option$	D				
-1						



$Q.9 \rightarrow Option B$	
$Q.10 \rightarrow Option B$	
$Q.11 \rightarrow Option A$	
$Q.12 \rightarrow Option C$	
$Q.13 \rightarrow Option D$	
Q.14 $\rightarrow$ Option C	
$Q.14 \rightarrow Option C$	
Q.15 $\rightarrow$ Option C	
Q.16 to Q.20	
Arrangement	
West	
$\rightarrow$ South <u>T</u> <u>Q</u> <u>V</u> <u>U</u> <u>S</u> <u>R</u> <u>P</u> North	
East Schie	
Q.16 $\rightarrow$ Option B	
id come	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$Q.18 \rightarrow Option E$	
Q.19 $\rightarrow$ Option A	
$Q.20 \rightarrow Option E$	



### **BLOOD RELATION**

Blood relation between two individuals is defined as a relation between them by the virtue of their birth rather than by their marriage or any other reasons.

Ada Enterprise

Different Types of Blood Relation questions

1. Blood relation based on Conversation

- 2. Blood relation based on Puzzles
- 3. Symbolically Coded Blood Relationship



# **CLASS WORK SECTION**

### Type 1. Blood relation based on Conversation

1.	Pointing towards a woman, Suresh said, "She is the daughter of my father's sister".									
	How is the woman re	lated to Suresh?								
	a) Brother	b) Cousin	c) Uncle	d) Sister						
2.	Vinod introduces Vish	al as the son of the o	only brother of his	father's wife. How is						
	Vinod related to Vish	al?	(M-2018)							
	a) Cousin	b) Brother	c) Son 🛛 🛞	d) Uncle						
3.	Suresh introduces a r	nan as "he is the son	of the woman w	ho is the mother of the						
	husband of my moth	er". How is Suresh rel	ated to the man?	(M-2018)						
	a) Brother in law	b) Son	c) Brother	d) Father.						
			S rolls							
4.	Pointing to a picture, Summit said, she is the mother of my son's wife's daughter.									
	How is lady related t	o the Summit.		(J-2019)						
	a) Uncle	b) Cousin	c) Daughter	d) None						
5.	Mathew told his frier	d Sham, pointing to	a photograph, "He	er father is the only son						
	of my mother." The p	notograph is of whom	iom?							
	a) Mathew's niece		b) Mathew's mother							
	c) Mathew's daughte	ſ	d) Mathew's sister							
6.	Introducing Amrita, R	aj said "Her mother is	the only daughte	r of my Mother-in Law".						
	How is Raj related to	Amrita?								
	a) Husband	b) Father	c) Wife	d) Uncle						
7.	Pointing to a lady Ris	hi said, "The son of h	er brother is the b	rother of my wife". How						
	is this lady related to	Rishi?								
	a) Mother-in Law		b) Mother's siste	er						
	c) Sister of Father-in	Law	d) None of the d	above.						

	<b>J.</b> C L	K. SHAH ASSES Wanda Enterprise		CA FOUN	DATION LOGICAL REASONING	
	аи 8.	•	boy Veena said "He	e is son of only son	of my grandfather". How is	
		that boy related to				
		a) Uncle	b) Brother	c) Cousin	d) Data inadequate	_
	9.	A prisoner introduc	ed a boy who can	ne to visit him to t	he jailor as "Brothers and	
		sisters I have none,	he is my father's s	son's son". Who is t	he boy?	
		a) Nephew	b) Son	c) Cousin	d) Uncle	
	10.	Pointing towards a	girl, Anurag says,	"This girl is the da	ughter of the only child of	
		my father". What is	the relation of An	urag's wife with the	e girl?	
		a) Sister	b) Aunt	c) Daughter	d) Mother	
				ß		
			Type 2. Blood rela	tion based on Puzz	le	
		ctions (Q. no.1 to 4)			2	
		d the following inform			6	
		re are six children pla	aying football, nar	nely, P, Q, R, S, T ar	hd U.	
		nd T are brothers,		2 ENTE		
		the sister of T.		70 -		
		the only son of P's Po				
_	Q ar	nd S are the daughte	rs of the only brot	her of R's father.		
	4		112			
	1.	How is R related to			d) Linele	
		a) Cousin	b) Brother	c) Son	d) Uncle	
	2.	How many male pla	avers are there?			
	۷.	a) One	b) Three	c) Four	d) Five	_
				c/ i oui		
	3.	How many female p	lavers are there?			
_	5.	a) One	b) Two	c) Three	d) Four	-
		.,	_,	.,		-
	4.	How is S related to	P?			
		a) Uncle	b) Sister	c) Niece	d) Cousin	_
			·			
						_

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

5.	Six persons are	seen together in a g	group. They are A,	B, C, D, E and	d F.	
	B is brother of	D, but D is not broth	er of B,			
	F is brother of I	3.				
	C and A are mo	arried together.				
	F is son of C, bu	ut C is not mother of	FF.			
	E is brother of A	۹.				
	The number of	female member in t	he group is		(N-2018)	
	a)1	b) 2	c) 3	d) 4		
6.	P and Q are bro	others R and S are s	isters, P's son is R	's brother. Ho	w is Q related to	
	R? (M-2018)					
	a) Uncle	b) Brother	c) Father	d) Gran	dfather	
				®		
7.	P's father is Q's	son. M is the paterr	nal uncle of P and	N is the broth	er of Q. How is M	
	related to N?					
	a) Nephew		b) Cousir	19		
	c) Data inadequ	uate	d) None	of these		
			19 ro	(15		
8.	T, S and R are	three brothers. T's	son Q is married	to K and the	y have one child	
	Rahul blessed	to them. M the son	of S is married to	H and this	couple is blessed	
	with a daughte	r Madhvi. R has dau	ghter N who is mo	rried to P. Th	is couple has one	
	daughter Karur	na born to them. Ho	w is Madhvi relate	d to S?		
	a) Daughter		b) Niece			
	c) Granddaught	ter	d) None of t	hese		
9.		Ibh are the children				
	children of Mr	and Mrs Mehra. Sa	urabh and Ritu a	re married to	each other and	
	two daughter N	1ukti and Shruti are	born to them. Sho	ıkti is married	l to Rina and two	
		sh and Reshma are		v is Arti relate	ed to Shruti?	
	a) Mother	b) Mother-in L	.aw c) Sister	d)	Aunt	
10.		ere are seven persor				
		ne grandson of K. M				
		w of J, who is the m	other of R and th	e grandmoth	er of D. How is D	
	related to M?					
	a) Son	b) Son in law	c) Nephew or	Niece d	) Brother	
1						



### Type 3. Symbolically Coded Blood Relation

Directions (Q. no.1 & 2)	
Read the following information carefully to answer the question that follow:	
'P x Q' means 'P is sister of Q'.	
'P + Q' means 'P is mother of Q'	
'P – Q' means 'P is father of Q'	
'P ÷ Q' means 'P is brother of Q'	
1. Which of the following represents 'M is the nephew of R'?	
a) M ÷ T – R b) R ÷ T – M c) R × T + M × J d) R ÷ T – M ÷ J	
®	
2. Which of the following represents W is the grandfather of H?	
a) W + T - H b) W ÷ T - H c) W × T + H d) None of these	
2/9	
3. If P + Q means P is the mother of Q.	
P ÷ Q means p is the father of Q.	
P – Q means P is the sister of Q.	
Then which of the following relationship shows that M is the daughter of R?	
(N-2018)	
a) R ÷ M + N b) R + N ÷ M c) R - M ÷ N d) None of these	
4. If 'A x D' means 'A is sister of D',	
'A + D' means 'D is the daughter of A'	
'A ÷ D' means 'A is the mother of D,	
Then how will N is the aunt of M be denoted?	
a) M + L × N b) M ÷ L + N c) L × N ÷ M d) N × L ÷ M	
5. S x T means that S is the mother of T	
S + T means that S is father of T	
S – T means that S is the sister of T	
On the basis of this information, you have to select the option which shows that A	
is the grandfather of T?	
a) A + S + B - T b) A × B + C - T	
c) A + B – C × T d) (a) & (c) both	



Dire	ction	s (Q. no.6 to 1	0)			
Rea	Read the following information carefully to answer the question that follow:				follow:	
'A +	B' m	eans 'A is the f	father of B'			
ʻA x	B' m	eans 'A is the s	ister of B'			
'A \$	B' m	eans 'A is the v	wife of B'			
ʻA %	B'n	neans 'A is the	mother of B	,		
ʻA÷	B' m	eans 'A is the s	son of B.'			
6.	Wh	at should come	e in place of	the question ma	rk, to establish tl	nat J is the brother
	of T	in the express	ion?			
	J÷	P % H ? T % L				
	a) x		b) ÷	c) \$	d	) Either + or x
					B	
7.	Whi	ch among the	given expres	ssion indicate tha	t M is the daught	er of D?
	a) L	% R \$ D + T x	М			
	b) L	+ R \$ D + M x	Т		29	
	c) L	% R % D + T ÷	Μ	692	E.e.	
	d) L	\$ D ÷ R % M ÷	Т	79	rorise	
				19 cnt	e	
8.	Whi	ch among the	following o	ptions is true, if	the expression 'I	+ T % J x L ÷ K' is
	defi	nitely true?				
	a) L	is the daughte	er of T			
	b) K	is the son in l	aw of I			
	c) l	is the grandmo	other of L			
	d) J	is the brother	of L			
9.	Whi	ch among the	following ex	pressions is true,	if Y is the son of >	( is definitely false?
	α)	W % L × T × Y		-		
	b)	W + L × T × Y	÷Χ			
	c)	X + L × T × Y	÷ W			
	d)	W \$ X + L + Y	′ + T			
	•	-				
10.	Wh	at should come	e in the place	e of the auestion I	mark, to establish	n that T is the sister
		aw of Q in the			,	
		T x P ? Q + V	<u> </u>			
	a) +		b) %	c) ×	d) \$	
	~ 1		- , • -	-/ · ·		





# HOMEWORK SECTION

1.	A is B's brother. C is A's mother. D is C's	father, E is B's son. How is D related to A?
	(a) Son	(b) Grandson
	(c) Grandfather	(d) Great Grandfather
2.	As is B's brother. C is A's father. D is C's s	ister and E is D's mother. How is B related
	to E?	
	(a) Grand-daughter	(b) Great grand daughter
	(c) Grandaunt	(d) Daughter
3.	A is B's Sister. C is B's Mother. D is C's Fat	ther. E is D's Mother. Then how is A related
	to D?	
	(a) Grandmother	(b) Grandfather
	(c) Daughter	(d) Grand-daughter
		Suprise
4.	A is the father of B. C is the daughter of	B. D is the brother of B. E is the son of A.
	What is the relationship between C and I	2
	(a) Brother and sister	(b) Cousins
	(c) Niece and uncle	(d) Uncle and aunt
5.	If P is the husband of Q and R is the mot	her of S and Q. What is R to P?
	(a) Mother	(b) Sister
	(c) Aunt	(d) Mother-in Law
6.	P and Q are brothers. R and S are sister. F	's son is S's brother. How is Q related to R?
	(a) Uncle	(b) Brother
	(c) Father	(d) Grandfather
7.	X is the husband of Y. W is the daughter	of X. Z is husband of W. N is the daughter
	of Z. What is the relationship of N to Y?	
	(a) Cousin	(b) Niece
	(c) Daughter	(d) Grand-daughter

**J.K. SHAH** C L A S S E S a Veranda Enterprise

а	Veranda Enterprise			
8.	A reads a book and find the name of	the author familiar. The author 'B' is the		
	paternal uncle of C. C is the daughter of A. How is B related to A?			
	(a) Brother	(b) Sister		
	(c) Father	(d) Uncle		
9.	A's mother D is sister of B and D has a	daughter C who is 21 years old. How is B		
	related to C?			
	(a) Uncle	(b) Maternal Uncle		
	(c) Niece	(d) Son		
10.	A is B's brother. C is A's mother. D is C's	father. F is A's son. How is F related to D?		
	(a) Son	(b) Grandson		
	(c) Grand-grandson	(d) Grand-daughter		
11.	A is B's brother. C is A's mother. D is C's	father. E is B's son. How is B related to D?		
	(a) Son	(b) Grand-daughter		
	(c) Grandfather	(d) Great grandfather		
		Scoris		
12.	A is B's brother. C is A's mother. D is C's	father. F is B's son. How is B related to F's		
	child?	0 -		
	(a) Aunt	(b) Cousin		
	(c) Nephew	(d) Grandfather		
	<u> </u>			
13.	A is B's daughter. B is C's mother. D is C's	s brother. How is D related to A?		
	(a) Father	(b) Grandfather		
	(c) Brother	(d) Son		
14.	A is D's brother. D is B's father. B and C o	are sisters. How is C related to A?		
	(a) Cousin	(b) Niece		
	(c) Aunt	(d) Nephew		
15.	A is B's brother. C is A's mother, D is C's f	ather. E is B's son. How is D related to E ?		
	(a) Grandson	(b) Great Grandson		
	(c) Great Grandfather	(d) Grandfather		

J.K. SHAH
CLASSES
a Veranda Enterprise

16.	X and Y are the children of A. A is the far	ther of X but Y is not his son. How is Y
	related to A?	
	(a) Sister	(b) Brother
	(c) Son	(d) Daughter
17.	A is B's brother. C is A's mother. D is C's f	ather. E is B's son. How is E related to A?
	(a) Cousin	(b) Nephew
	(c) Uncle	(d) Grandson
18.	Based on the statements given below, fi	nd out who is the uncle of P? (i) K is the
	bother of J (ii) M is the sister of K (iii) P is	the brother of N (iv) N is the daughter of J $$
	(a) K (b) J	(c) N (d) M
		®
19.	A and B are sisters. A is mother of D. B h	as a daughter C who is married to F. G is
	the husband of A. How is C related to D?	
	(a) Cousin	(b) Niece
	(c) Aunt	(d) Sister-in-law
		Suprise
20.	R and S are brothers. X is the sister of Y	and X is mother of R. What is Y to S?
	(a) Uncle	(b) Brother
	(c) Father	(d) Mother
21.	A is B's brother. C is A's mother. D is C's f	ather. B is D's grand-daughter. How is B
	related to C.	
	(a) Daughter	(b) Cousin
	(c) Niece	(d) Grandaunt
22.	A is the son of B while B and C are sister	s to one another. E is the mother of C. If D
	is the son of E, which of the following sto	
	(a) D is the maternal uncle of A	(b) E is the brother of B
	(c) D is the cousin of A	(d) B and D are brothers
23.		M. M is the daughter of K. What is P to K?
	(a) Father	(b) Father-in Law
	(c) Brother	(d) Son-in Law

**J.K. SHAH**[®] C L A S S E S a Veranda Enterprise

24.	A and B are brothers. E is the daugh	ter of F. F is the wife of B. What is the relation
	of E to A?	
	(a) Sister	(b) Daughter
	(c) Niece	(d) None of these
25.	M and F are a married couple. A and	B are sisters. A is the sister of F. Who is B to
	M?	
	(a) Sister (b) Sister-in-law	
	(c) Niece (d) Daughter	
26.	If A is the mother of D. B is not the so	on of C. C is the father of D, D is the sister of B,
	then how is A related to B?	
	(a) Mother	(b) Brother 🔣
	(c) Step son	(d) Sister
27.	A and B are brother and sister respec	ctively. C is A's father. D is C's sister and E is
	D's mother. How is B related to E?	
	(a) Grand-daughter	(b) Great grand-daughter
	(c) Aunt	🥑 (d) Daughter
		, da -
28.	Q is the son of P. X is the daughter of	Q. R is the aunty (Bua) of X and L is the son of
	R, then what is L to P?	
	(a) Grandson	(b) Grand-daughter
	(c) Daughter	(d) Nephew
29.		ters. P's son is S's brother. How is Q related to
	R?	
	(a) Uncle	(b) Brother
	(c) Father	(d) Grandfather
30.		is the mother of B but A is not the daughter of
	C, then what is the relationship betw	
	(a) Nephew and Aunty	(b) Brother and Sister
	(c) Mother and Son	(d) Niece and Aunty

**J.K. SHAH** C L A S S E S a Veranda Enterprise

31.	. A is the mother of D and sister of B. B has a daughter C who is married to F. G is the		
	husband of A. How is G related to D?		
	(a) Uncle	(b) Husband	
	(c) Son	(d) Father	
32.	Pointing towards A, B said "your mother	is the younger sister of my mother". How is	
	A related to B?		
	(a) Uncle	(b) Cousin	
	(c) Nephew	(d) Father	
33.	A is B's wife's husband's brother. C and E	) are sisters of B. How is A related to C?	
	(a) Brother	(b) Sister-in-law	
	(c) Wife	(d) Sister 💿	
34.	A and B are brothers. C and D are sisters	s. A's son is D's brother. How is B related	
	to C?	19	
	(a) Father	(b) Brother	
	(c) Uncle	(d) Son	
		Entern	
35.	A is B's sister. C is B's mother. D is C's fat	her. E is D's mother. Then how is A related	
	to D?		
	(a) Grandmother	(b) Grandfather	
	(c) Daughter	(d) Grand-daughter	
36.	P, Q, R, S, T, U are 6 members of a fami	ly in which there are two married couples.	
	T, a teacher is married to a doctor w	ho is mother of R and U. Q the lawyer is	
	married to P. P has one son and one gro	andson. Of the two married ladies one is a	
	housewife. There is also one student and	d one male engineer in the family. Which of	
	the following is true about the grand-do	aughter of the family?	
	(a) She is a lawyer	(b) She is an engineer	
	(c) She is a student	(d) She is a doctor	

J.K. SH CA FOUNDATION LOGICAL REASONING a Veranda Enterprise 37. Six members of a family namely A, B, C, D, E and F are travelling together. 'B' is the son of C but C is not the mother of B. A and C are married couple. E is the brother of C. D is the daughter of A. F is the brother of B. How many male members are there in the family? (a) 3 (c) 4 (d) 1 (b) 2 38. A's mother is sister of B and has a daughter C. How can A be related to B from among the following? (a) Niece (b) Uncle (c) Daughter (d) Father 39. Rajiv is the brother of Atul. Sonia is the sister of Sunil. Atul is the son of Sonia. How is Rajiv related to Sonia? (a) Nephew (b) Son (c) Brother (d) Father 40. Sita is the niece of Ashok. Ashok's mother is Lakshmi. Kalyani is Lakhshmi's mother. Kalyani's husband is Gopal. Parvathi is the Mother-in Law of Gopal. How is Sita related to Gopal? (a) Great grandson's daughter (b) Gopal's Sita's father (c) Sita is Gopal's great grand-daughter (d) Grand niece 41. Seema is the daughter-in-law of Sudhir and sister-in-law of Ramesh. Mohan is the son of Sudhir and only brother of Ramesh. Find the relation between Seema and Mohan. (a) Sister-in-law (b) Aunt (c) Cousin (d) Wife 42. Suresh introduces a man as, "He is the son of the woman who is the mother of the husband of my mother". How is Suresh related to the man? (a) Uncle (b) Son

 (d) Grandson

 (c) Cousin

 (d) Grandson

a Veranda Enterprise 43. Pointing to a lady in a photograph. Meera said, "Her father's son's wife is my Motherin Law". How is Meera's husband related to that lady in the photo? (a) Nephew (b) Uncle (c) Son (d) Father 44. Pointing to a photograph Vikas said, "She is the daughter of my grandfather's only son". How is she related to Vikas in the photograph? (a) Father (b) Brother (c) Sister (d) Mother 45. Suresh's sister is the wife of Ram. Ram is Rani's brother. Ram's father is Madhur. Sheetal is Ram's grandmother. Rema is Sheetal is daughter-in-law. Rohit is Rani's brother's son. Who is Rohit to Suresh? (a) Brother-in-law (b) Son (c) Brother (d) Nephew 46. Vinod introduces Vishal as the son of the only brother of his father's wife. How is Vinod related to Vishal? (b) Brother (a) Cousin (d) Uncle (c) Son 47. Among her children, Ganga's favourites are Ram and Rekha. Rekha is the mother of Sharat, who is loved most by his maternal uncle Mithun. The head of the family is Ram Lal, who is succeeded by his sons Gopal and Mohan. Gopal and Ganga have been married for 35 years and have 3 children. What is the relation between Mithun and Mohan? (a) Uncle (b) Son (d) No relation (c) Brother 48. Rahul and Robin are brothers. Promod is Rohin's father. Sheela is Pramod's sister. Prema is Promod's niece. Shubha is Sheela's grand-daughter. How is Rahul related to Shubha? (a) Brother (b) Cousin (c) Uncle (d) Nephew

a Vergoda Enterprise 49. Preeti has a son, named Arun. Ram is Preeti's brother. Neeta too has a daughter named Reema. Neeta is Ram's sister. What is Arun's relationship to Reema? (a) Brother (b) Nephew (d) Uncle (c) Cousin 50. There are 2 film stars. One is the father of the other's son. What is the relationship of the two with each other? (a) Grandfather and Grandson (b) Grandfather and son (c) Husband and wife (d) Father and Son 51. Ramu's mother said to Ramu,"My mother has a son whose son is Achyut". How is Achyut relation to Ramu? (a) Uncle (b) Cousin (c) Brother (d) Nephew 52. Ravi's father has a son Rohit who has an aunt Laxmi who has a husband Rao whose Father-in Law is Mohan. What is the relation of Mohan to Ravi? (a) Nephew (b) Grandfather (d) Uncle (c) Son 53. Vijay says, "Ananda's mother is the only daughter of my mother". How is Ananda relation to Vijay? (a) Brother (b) Father (c) Nephew (d) Grandfather 54. Introducing a man, a woman said, "His wife is the only daughter of my mother." How is the woman related with the man? (a) Sister-in-law (b) Wife (d) Mother-in Law (c) Aunt 55. A prisoner introduced a boy who came to visit him to the jailor as "Brothers and sisters I have none, he is my father's son's son". Who is the boy? (b) Son (a) Nephew (d) Uncle (c) Cousin



# HOMEWORK SOLUTION

- D (Grand Father) C (Mother) A & B (Children) E (Grand Son)
   D is Grand Father of A, Option C
- E (Grand Mother) C (Father) D (Father's Sister) A (Male) & B (Children)
  B is grand child of E. No mention is there regarding the gender of B. So B can be
  Grand Son or Grand Daughter of E. In the four options given, only Grand Daughter
  is given and there is no mention of Grand Son. So we chose Grand Daughter. Option

Kindly Note: General answer of these type of missing link question is Can't be determined. If option D is open, i.e., None of the above or Can't be determined, than its advised that you chose Option D – None of the above or Can't be determined.

- 3. E (Great Grand Mother) D (Grand Father) C (Mother) A (Female) & B (Children) A is Grand Daughter of D. Option D
- A (Father) E (Male), B & D(Male) (Children) C (Grand Daughter, Daughter of B)
   C is daughter of B and E is brother of B. C is niece of E, E is uncle of C. Option C
- 5. R (Mother of Q & S) P (Husband) + Q (Wife) S (Brother/Sister of Q) R is Mother-in Law of P. Option D
- P (Father) Q(Brother of P) P (Son) R (Daughter) S (Daughter)
   Q is brother of R's father. Q is uncle of R. Option A
- 7. X (Husband) + Y (Wife) W (Daughter) + Z (Daughter's husband) N (Grand Daughter)
   N is Grand Daughter of Y.
   Option D
- 8. A (Father) + B (Uncle of C) C (Daughter)
  B is uncle of C. B is male. B is brother of A.
  Option A

J.K. SHAH
CLASSES
a Veranda Enterprise

9. Correct Question is: A's mother is sister of B and she has a daughter C who is 21 years old. How is B related to C?

Solution:

A and C are siblings - B is maternal uncle/aunt of both A and C.

Again in options only maternal uncle is given and all other options are closed. We chose Ma-ternal Uncle. Option B

- 10. D (Grand Father) C (Mother) A (Male) & B (Children) F (Grand Son, son of A) F is Grand-grandson of D. Option C
- D (Grand Father) C (Mother) A (Male) & B (Children) E (Grand Son, son of B)
  B is grand child of D. B is either male or female (no clue given). Again as per options
  given, B is grand-daughter of D. Option B
- 12. D (Grand Father) C (Mother) A (Male) & B (Children) F (Grand Son, son of B)
  B shall be grand-father / mother of F's child. Again in option only grand-father is
  there. We select Option D

13. B (Father / Mother) - A (Daughter), D (Male) & C (Children).D is brother of A. Option C

14. A (Male) & D - B & C (Daughters of D).A is uncle of C. C is niece of A. Option B

D (Grandfather) - C (Mother) - A (Male) & B (Children) - E (Son of B).
 D is great grandfather of E. Option C

16. A - X & Y (Daughter) (Children)

Y is daughter of A.

Option D

17. D (Grandfather) – C (Mother) – A (Male) & B (Children) – E (Son of B)

A is uncle of B. B is Nephew of A.

Option B

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	a Veranda Enterprise		
18.	M (Female), K (Male) & J – N (Daughter of J) & P (Son of J)		
	K is uncle of P.		
	Option A		
19.	A (Female, Mother), G (Husband of A), B (Female, sister of A ) – D (Child of A, G) – C		
	(Daughter of B) + F (Husband of C)		
	C is cousin of D.		
	Option A.		
 20.	X (Mother), Y (Brother / Sister of X) – R + S (Brother) (Son of X)		
	Y is maternal uncle / aunt of S.		
	Option A		
	ß		
21.	D (Grandfather) – C (Mother of A) – A (Son) + B (Daughter of C)		
	B is daughter of C		
	Option A		
	S S S S S S S S S S S S S S S S S S S		
22.	E (Mother) – D (Brother) + B & C (Sisters) – A (Son of B)		
	D is maternal uncle of A		
	Option A		
23.	K (Grandfather / mother, related to M) – P (Father) + M (Mother) – T (Daughter)		
 	P is Son-in Law of K		
	Option D		
 24.	A + B (Brothers), F (wife of B) – E (Daughter of B & F)		
 	A is uncle of E. E is niece of A.		
 	Option C		
 25.	M & F (Couple), A & B (Sisters of F)		
 	If M is male, than B is sister-in-law of M		
 	If M is female, than B is sister of M's husband, i.e. F, again B is sister-in-law of M		
	Option B		
 26.	A (Mother) & C (Father) – D (Female) & B (Female) (Children)		
 	A is mother of B		
	526		

J.K. a Veranda Enterprise

Option A

27. E (Grandmother) – C (Father), D (Sister of C) – A (Male) + B (Female) (Children of C) B is grand-daughter of E

Option A

28. P – Q (Son of P), R (Daughter of P) – X (Daughter of Q), L (Son of R)

L is grandson of P

Option A

29. P & Q (Brother) - R & S (Daughter of P) Q is uncle of R

**Option A** 

- 30. C (Mother) A (Son), B (Children) C is mother of A. A is son of C.
  - Option C
- 31. A (Mother, G is husband), B (Brother of A) D (Child of A & G), C (Daughter of B, F is Veranda hus-band)

G is father of D

Option D

32. A's mother is the younger sister of B's mother.

A and B are cousins

**Option B** 

33. A & B (Brothers), C & D (Sisters)

A is brother of C

**Option A** 

#### 34. A & B (Brothers) – C & D (Daughters of A)

B is uncle of C

Option C

J.K. SHAH CLASSES a Vergndg Enterprise

CA FOUNDATION LOGICAL REASONING

35. E (Great grandmother) – D (Grandfather) – C (Mother) – A (sister of B, female) A is grand-daughter of D Option D 36. Q (Lawyer) + P (Housewife)  $\rightarrow$  T (Teacher, Mother) + S (Doctor, Father)  $\rightarrow$  R & U (Children) (one male Engineer, one female Student) The grand-daughter of the family is a Student Option C 37. A (Mother) + C (Father), E (Brother of C) – B (Son), D (Daughter), F (Son) Male members are = C, E, B, F = 4Option C 38. Mother, Sister/Brother (B) – C (Daughter), A (Children) A is either Nephew or Niece of B. **Option A** 39. Sonia (Mother), Sunil (Brother of Sonia) - Atul (Son), Rajiv (Son) tranda Ente Rajiv is son of Sonia **Option B** 40. Parvathi (Mother of Kalyani) - Kalyani (Grandmother) + Gopal (Grandfather) -Lakshmi (Mother) - Ashok (Son) - Sita (Niece of Ashok) Sita is great grand-daughter of Gopal. Option C 41. Sudhir (Father) - Seema (Daughter-in-law), Ramesh (Son), Mohan (Husband of Seema) Seema is wife of Mohan. Option D 42. A is the son of the woman who is the mother of the husband of Suresh's mother = A is the son of the woman who is mother of Suresh's father = A is the son of Suresh's grand-mother = A is either father or uncle of Suresh = Suresh is either son or nephew of A **Option B** 

**J.K. SHAH** C L A S S E S a Veranda Enterprise

- 43. Lady's father's only son's wife is Meera's Mother-in Law.
  - = Lady's brother's wife is Meera's Mother-in Law

= Lady's sister-in-law is Meera's Mother-in Law

Now, Meera's husband is son of lady's sister-in-law

Thus, Meera's husband is lady's nephew

Option A

- 44. A is the daughter of Vikas's grandfather's only son
  - = A is the daughter of Vikas's father
  - = A is the sister of Vikas. Option C

45. Sheetal (Grandmother of Ram) – Madhur (Father of Ram) + Reema (Mother of Ram)
– Suresh, Ram (Husband) + Wife (Suresh's sister), Rani (Ram is Rani's brother) – Rohit (Ram's Son)

Rohit is Ram's Son = Rohit is Suresh's sister's son = Rohit is Nephew of Suresh

Option D

46. Vishal is the son of the only brother of Vinod's father's wife.

= Vishal is the son of only brother of Vinod's mother.

= Vishal is the son of Vinod's maternal uncle.

= Vishal is the cousin of Vinod

Option A

47. Ram Lal (Head of the family) – Gopal & Mohan (Sons), Ganga (Wife of Gopal) – Ram, Rekha (Female), Mithun (Male) (Children of Gopal & Ganga) – Sharat (Rekha is the

mother)

Mithun is son of Gopal. Mohan is brother of Gopal.

Mithun is Nephew of Mohan or Mohan is uncle of Mithun

Option A

48. Pramod (Father), Sheela (Sister of Pramod) – Rahul & Robin (Sons of Pramod), Prema
(Daugh-ter of Sheela) – Shubha (Daughter of Prema)

Shubha is daughter of Prema. Rahul is cousin of Prema. Rahul is uncle of Shubha.

Option C

J.K. SHAH C L A S S E S a Veranda Enterprise

49. Preeti (Mother), Ram (Preeti's brother), Neeta (Sister of Ram & Preeti) - Arun (Son of Preeti), Reema (Daughter of Neeta) Arun and Reema are Cousins. **Option C** 50. A is father of B's son, i.e. C. A is father of C. C is B's son too. B is the mother of C. A and B are Husband and Wife. Option C 51. Ramu's Mother = X X's mother has a son whose son is Achyut. Ramu's grandmother has a son whose son is Achyut Ramu's maternal uncle;s son is Achyut Ramu and Achyut are cousins **Option B** 52. Mohan (Grandfather) - Father, Laxmi (Sister of Father) + Rao (Husband of Lakshmi) icanda Enterpr - Ravi & Rohit (Son) Mohan is grandfather of Ravi Option B 53. Ananda's mother is the only daughter of Vijay's mother = Ananda's mother is Vijay's sister = Ananda is Nephew / Niece of Vijay (Vijay is maternal uncle/aunt of Ananda) Option C 54. A's wife is the only daughter of Lady's mother = A's wife is the Lady Lady is the wife of A (the man) Option B 55. Brothers and Sisters I have none, he is my father's son's son. = He is MY (my father's son = myself) son **Option B** 





## **SELF ASSESSMENT**

1.	Pointing to a ph	otograph, a man said	"His mother husba	nd's sister is my aunt". Then			
	what is relation between the man and the person?						
	a) Son	b) Uncle	c) Nephew	d) Brother			
2.	. introducing a boy, a girl said, "He is the son of the daughter of the father of my						
	uncle." How is the boy related to the girl?						
	a) Brother	b) Nephew	c) Uncle	d) Son-in Law			
3.	Pointing to a pl	notograph. Bajpai said	d, "He is the son o	daughter of father of my			
	brother" How Bajpai is related to the man in the photograph?						
	a) Nephew	b) Brother	c) Father	d) Maternal uncle			
				9			
4.	Pointing a photograph, X said to his friend Y, "she is the only daughter of the father						
	of my mother",	How X is related to th	e person of photog	Jraph?			
	a) Daughter	b) Son	c) Nephew	d) Cannot be decided			
			da L.				
5.	. Pointing toward a man, a woman said 'His mother is the only daughter of my						
	mother". How is the woman related to the man?						
	a) Mother	b) Grandmother	c) Sister	d) Daughter			
6.	Pointing to a pho	otograph. Anjali said, "	He is the son of the	only son of my grandfather".			
	How is the man in photograph related to Anjali?						
	a) Brother	b) Uncle	c) Son	(d) Data is inadequate			
7.	A's son B is mar	ried with C whose sist	er D is married to I	E the brother of B. How D is			
	related to A?						
	a) Sister		b) Daughter in	law			
	c) Sister in law		d) Cousin				

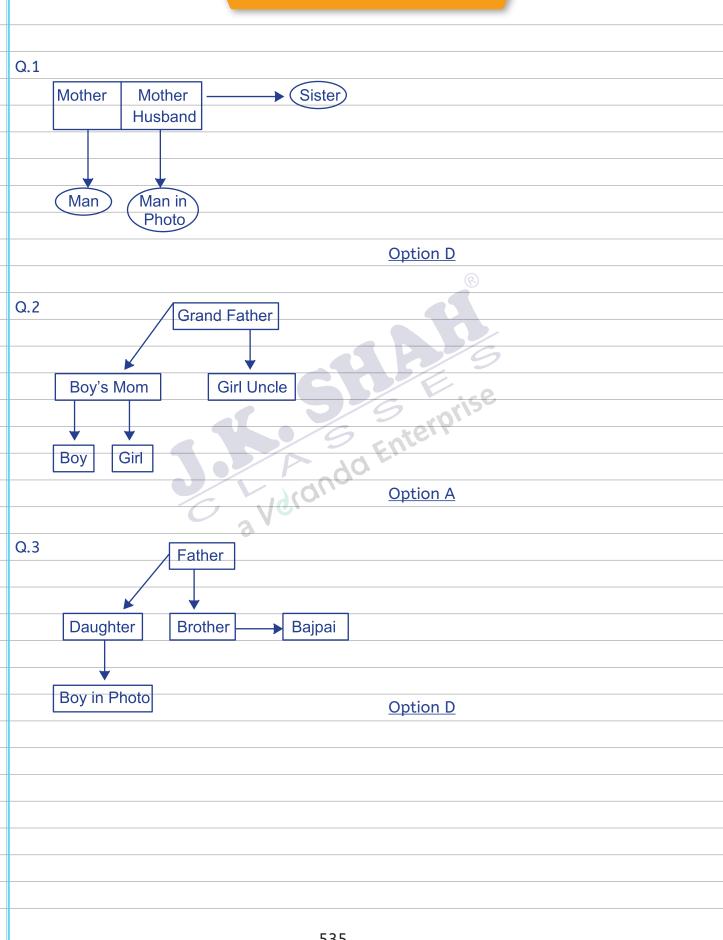
a Vergoda Enterprise If M x N means M is the daughter of N, M + N means M is the father of N. M % N 8. means M is the mother of N and M - N means M is the brother of N then P % Q + R - T x K indicates which relation of P to K? a) Daughter-in-law b) Sister-in-law d) None of these c) Aunty Directions (Q. no. 9 to 11): R is the father of P, who is a son- in- law of M and S is the mother of G.S is a sister of K, who is a brother-in-law of P and H is the daughter of T, who is a grandmother of G. How is G related to P? 9. a) Son b) Daughter d) Cannot be determined c) grandson 10. It M is a female, then how is H related to S? b) Sister in law a) Sister c) Niece d) Cannot be determined 11. If K married to N, then how is N related to M? b) Daughter-in-law a) Son-in Law c) Mother-in Law d) Father-in Law 12. Pointing a boy. Ram said 'He is the only is son of my grandfather's son' How is the boy related to Ram? a) Brother b) Son c) Cousin d) Data inadequate Q 13 to 15Directions: P x Q means P is brother of Q.  $P \div Q$  means Q is mother of P. P - Q means P is father of Q. P + Q means Q is sister of P. 13. Which of the following means M is the daughter of T? a) M + N ÷ J - T b) T-JxR + M c) M - J x T ÷ K d) M + W  $\times$  R  $\div$  T

J.K. SH

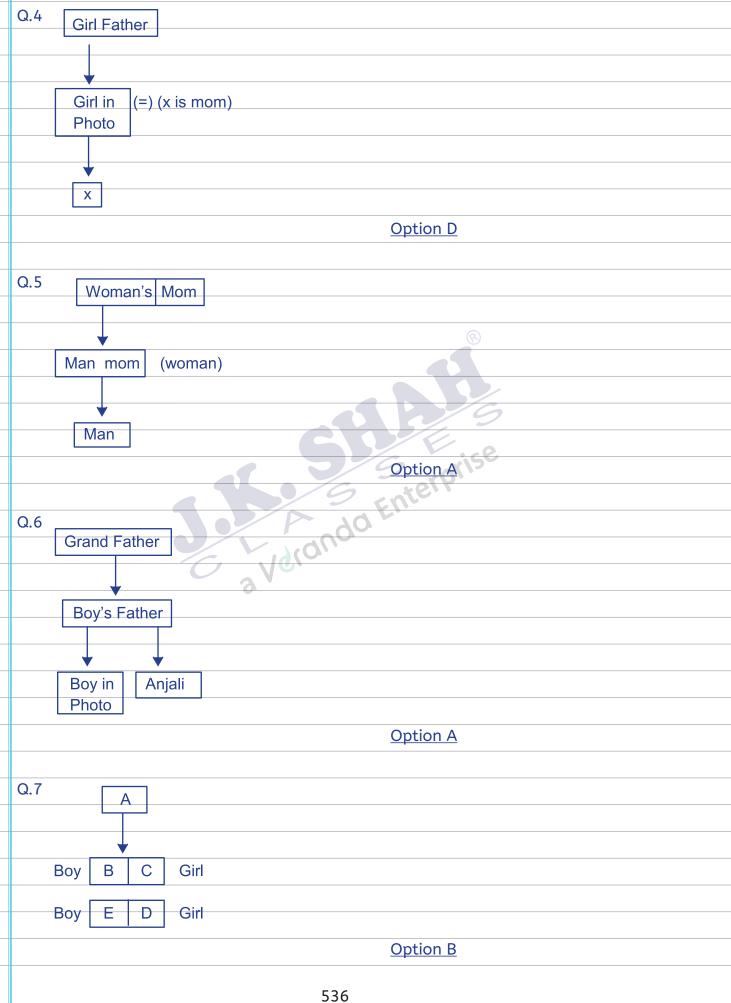
-							
	ASSES		CA FOUN	DATION LOGICAL REASONING			
 a Veranda Enterprise 14. How is K related to R in the expression R ÷ T + K?							
 17.	a) Daughter	b) Sister	c) Niece	d) None of these			
	a) Daughter	5) 513(21					
 15.	5. Which of the following means D us grandfather of W?						
	a) D – K x T – W	5	b) D ÷ K x T ÷ W	,			
	c) D – K x T ÷ W		d) D ÷ K x T – V				
 16.	If P + Q means F	is the mother of	⁻ Q.				
	P÷ Q means P i	is the father of Q	•				
	P - Q means P is	s the sister of Q.					
	Then which of th	ne following relat	ionship shows that M is	the daughter of R?			
	a) R ÷ M + N	b) R + N ÷ M	c) R – M ÷ N	d) None of the above			
			R	)			
 17.	Pointing in a pho	otograph, Sonia s	aid, "His mother's daugh	nter's is my mother".How is			
	Sonia related to	that man?		1			
	a) Nephew	b) Sister	c) Wife	d) Niece			
			GDE	0			
 18.	.8. If A \$ B means A is the brother of B. A @ B means A is the wife of B, A # B means						
	A is the daughter of B and A * B means A is the father of B. Which of the following						
	indicates that U	is the Father-in					
	a) P @ Q \$ T # U * W b) P @ W \$ Q * T # U d) P @ Q \$ T # W * U						
	c) P @ Q \$ W * T	ſ#U	d) P @ Q \$ T #	W * U			
19.	P is the sister of	Q. R is the father	r of S, who is the brothe	r of Q. R married to T, How			
	is Q related to T	?					
	a) Son		b) Daughter				
	c) Either son or o	daughter	d) Data in adeq	uate			
20.	20. Pointing a girl, Prasan said, she is the only granddaughter of my wife's grandfather's						
	only child. How is the girl relate to Prasan?						
	a) Sister		b) Niece				
	c) Daughter		d) Cannot be de	etermined			
			533				
			555				



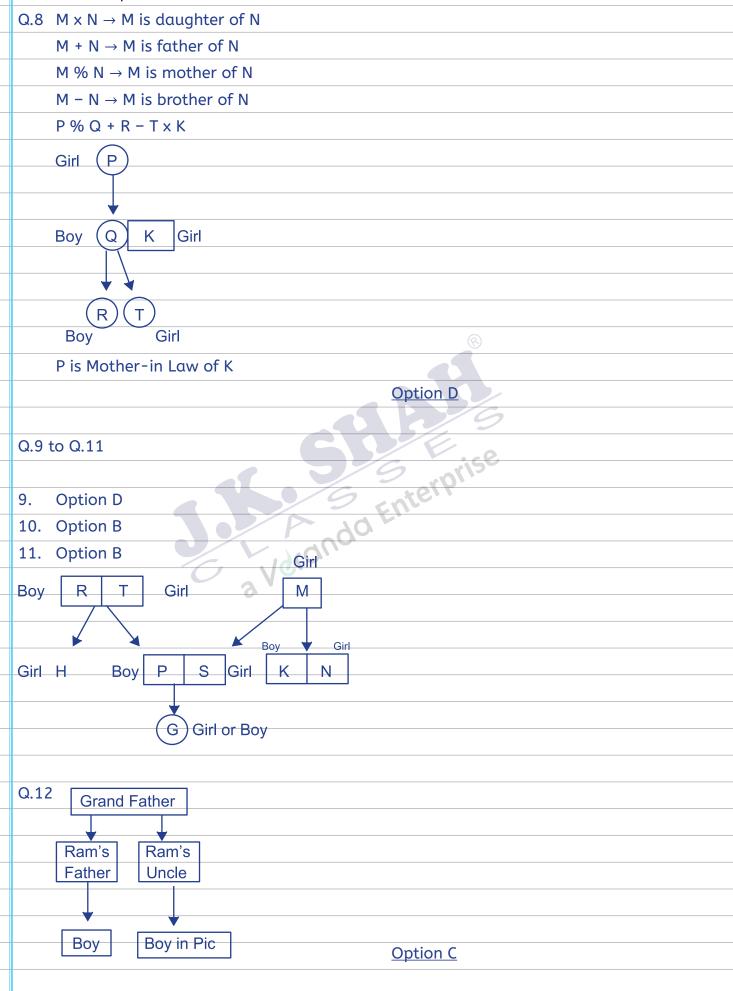
#### ANSWER


1.	D	2.	А	
3.	D	4.	В	
 5.	А	6.	А	
 7.	В	8.	D	
 9.	D	10.	В	
 11.	В	12.	С	
 13.	В	14.	D	
 15.	А	16.	А	
 17.	D	18.	А	
 19.	С	20	С	

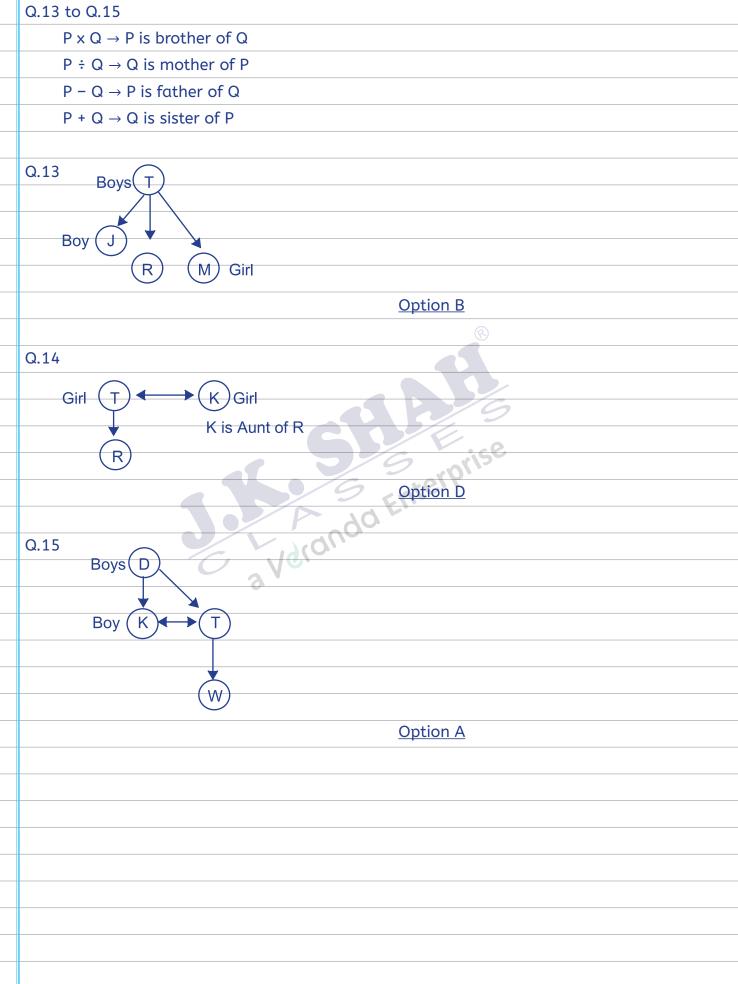
Anda Enterpris



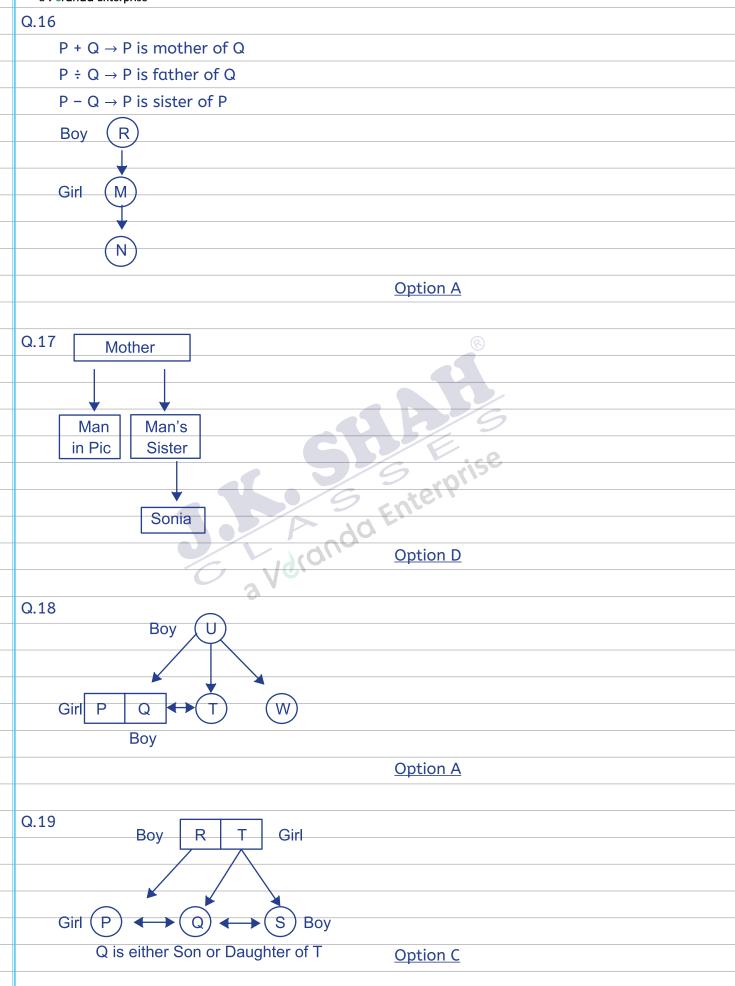

CA FOUNDATION LOGICAL REASONING


### **Explanatory Solution**

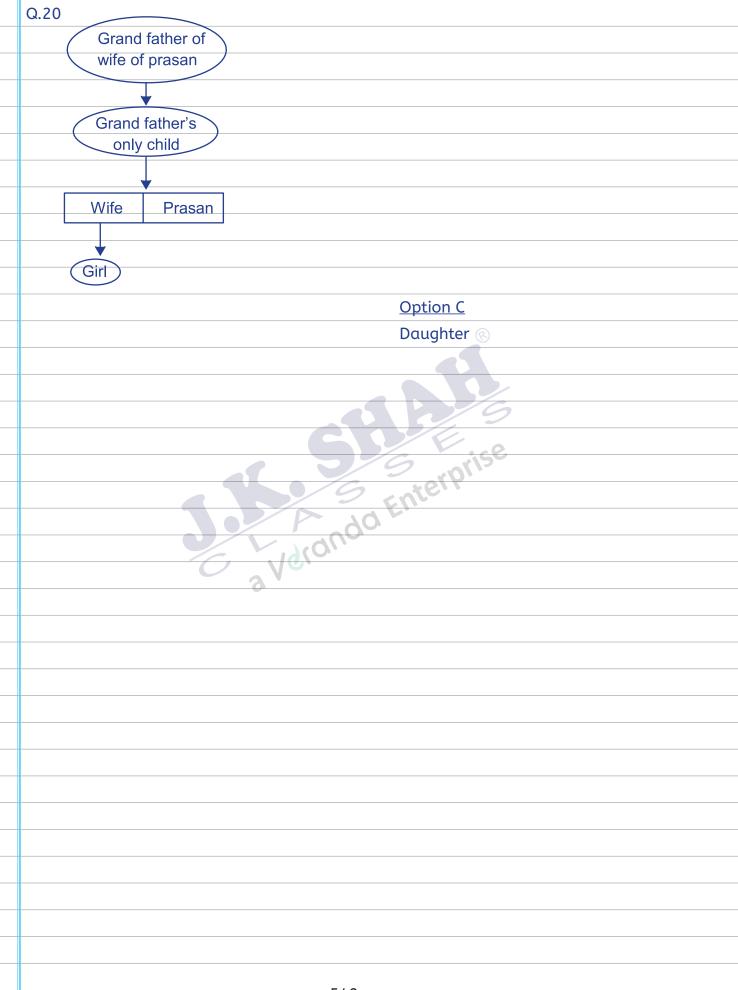





















# APPENDIX

0         1         2         3         4         5         6         7         8         9         1         2           10         0000         0043         0086         0128         0170	13       17         12       16         12       16         11       15         11       14         10       14	13     17       12     16       12     16       11     15       11     14	7 21 2 6 20 2 6 20 2 5 18 2	6 30 4 32 3 27	36 31	<b>9</b> 38 36 35	
0212 0253 0294 0334 0374 4 8	12     16       12     16       11     15       11     14       10     14	12     16       12     16       11     15       11     14	6 20 2 6 20 2 5 18 2	4 32 3 27	36 31	36	
	12       16         11       15         11       14         10       14	12 16 11 15 11 14	6 20 2 5 18 2	3 27	31		
11         0414         0453         0492         0531         0569         4         8	11     15       11     14       10     14	11 15 11 14	5 18 2			35	
	11 14 10 14	11 14					
0607 0645 0682 0719 0755 4 7	10 14		1. 10 2	2 26	29	33	
12         0792         0828         0964         0899         0934         3         7			4 10 Z	1 25	28	32	
0969 1004 1038 1072 1106 3 7	10 12	10 14	4 17 2	0 24	27	31	
13         1139         1173         1208         1239         1271         3         6	10 15	10 13	3 16 1	9 23	26	29	
1303 1335 1367 1399 1430 3 7	10 13	10 13	3 16 1	9 22	25	29	
14         1461         1492         1523         3         6	9 12	9 12	2 15 1	9 22	25	28	
1553 1584 1614 1644 1673 1703 1732 3 6	9 12	9 12	2 14 1	7 20	23	26	
15         1761         1790         1818         3         6	9 11	9 11	1 14 1	7 20	23	26	
1847         1875         1903         1931         1959         1987         2014         3         6	8 11	8 11	1 14 1	7 19	22	25	
16         2041         2068         2095         2122         2148         3         6	8 11	8 11	1 14 1	6 19	22	24	
2175 2201 2227 2253 2279 3 5	8 10	8 10	0 13 1	6 18	21	23	
17     2304     2330     2355     2380     2405     3     5	8 10	8 10	0 13 1	5 18	20	23	
2430 2455 2480 2504 2529 3 5	8 10	8 10	0 12 1	5 17	20	22	
18         2553         2577         2601         2625         2648         2         5	79	7 9	) 12 1	4 17	19	21	
2672 2695 2718 2742 2765 2 4	7 9	7 9	) 11 1	4 16	19	21	
19         2788         2810         2833         2856         2878         2         4	7 9	7 9	) 11 1	3 16	18	20	
2900 2923 2945 2967 2989 2 4	6 8	6 8	3 11 1	3 15	17	19	
20         3010         3023         3054         3075         3096         3116         3139         3160         3181         3201         2         4						19	
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2 4				<u> </u>		18	
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4				<u> </u>	_		
23         3617         3636         3655         3674         3692         3909         3927         3747         3766         3784         2         4           24         3802         3820         3838         3856         3874         3892         3909         3927         3945         3962         2         4						17 16	-
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3					14		
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3						15	
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3						14	
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3						14	
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3	4 6	4 6	5 7 9	10		13	İ
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3	4 6	4 6	579	10	11	13	
31         4914         4928         4942         4955         4969         4983         4997         5011         5024         5038         1         3	4 6	4 6	578	8 10	11	12	





	a	veranaa	Enterpri	se																	
	32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12	
	33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12	
	34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11	
	35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11	
	36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11	
	37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10	
	38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10	
	39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10	
	40	6021	631	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10	
	41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9	
	42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6235	1	2	3	4	5	6	7	8	9	
	43	6335	6345	6355	6365	6575	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9	
	44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9	
	45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9	
╢	46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8	
	47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8	
	48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8	
	49	6902	6911	6920	6928	6037	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8	

#### Example:

Log 2 = 0.3010: Log 20 = 1.3010: Log 200 = 2.3010: Log 2,000 = 3.3010 etc. Agrauga

Log 2 = 0.3010 - 1 - (-) 0.699

Log 0.02 = 0.3010 - 2 - (-) 1.699





	a	Veranda	Enterpri	se																	
		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
	50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8	
	51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8	
	52	7160	7166	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7	
	53	7243	7251	7259	7267	7275	7284	7292	7300	7306	7314	1	2	2	3	4	5	6	6	7	
_	54	7324	7332	7340	7348	7358	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7	
	55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7	
	56	7452	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7	
	57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7	
	58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7	
	59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7	
	60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7848	1	1	2	3	4	4	5	6	6	
	61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6	
	62	7924	7931	7938	7945	7952	7958	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6	
	63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6	
_	64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6	
_	65	8129	8136	8142	8149	8158	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6	
	66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6	
	67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6	
	68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6	
	69	8388	8395	8401	8407	8414	8420	8428	8432	8439	8445	1	1	2	2	3	4	4	5	6	
	70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6	
	71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5	
	72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5	
	73	8633	8639	8645	8651	8657		8669	8673	8681	8686	1	1	2	2	3	4	4	5	5	
	74	8692	8698	8704	8710	8716	8722	8727	8733	8738	8745	1	1	2	2	3	4	4	5	5	
_	75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5	
_	76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5	
	77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5	
	78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5	
	79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5	
	80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	2	3	4	4	5	
	81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	2	3	4	4	5	
	82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	2	3	4	4	5	
	83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	2	3	4	4	5	
	84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	2	3	4	4	5	
	85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5	
	86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5	
	87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4	
	88	9445	9450	9450	9455	9460	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4	



CA FOUNDATION - MATHEMATICS

	a	veranaa	Enterpri	se																	
	89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4	
	90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4	
	91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4	
-	92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4	
_	93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4	
_	94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4	
_	95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4	
	96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4	
	97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4	
	98	9912	9917	9921	9926	9930	9934	9939	9943	9945	9952	0	1	1	2	2	3	3	4	4	
	99	9958	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4	

randa Enterprist



## Table II - ANTILOGARITHM

					JDIE	11 -	AIN		GAI											
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
100	1000	1002	1005	1007	1009	1012	1014	1016	1018	1021	0	0	1	1	1	1	2	2	2	
101	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2	
102	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2	
103	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2	
 104	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2	
 105	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2	
 106	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2	
 107	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2	
 108	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3	
109	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3	
110	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3	
111	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3	
112	1381	1321	1324	1327	1330	1334	1337	1340	1342	1348	0	1	1	1	2	2	2	2	3	
113	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3	
114	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3	
115	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3	
 116	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3	
 117	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3	
 118	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3	
 119	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3	
 120	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3	
121	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3	
122	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3	
123	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4	
124	1738	1742	1746	1750	1754	1758	1762	1768	1770	1774	0	1	1	2	2	2	3	3	4	
125	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4	
126	1820	1824	1828	1832	1837	1841	1845	1849	1897	1858	0	1	1	2	2	3	3	3	4	
127	1862	1866	1871	1875	1879	1884	1888	1892	1941	1901	0	1	1	2	2	3	3	3	4	
128	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4	
129	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4	
 130	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4	
 131	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4	
 132	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4	
133	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4	
134	2188	2193	2198	2203	2206	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5	
135	2239	2244	2249	2254	2259	2265	2270	2275	2280	2256	1	1	2	2	3	3	4	4	5	
L			•												-	-	<u> </u>			



CA FOUNDATION - MATHEMATICS

	d 1/	anuu	Enterpris	e																	
I	136	2291	2286	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5	
	137	2344	2350	2355	2359	2366	2271	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5	
I	138	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5	
t	139	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5	
	140	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5	
	141	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5	
	142	2630	2636	2642	2649	2655	2661	2667	2673	2679	2624	1	1	2	2	3	4	4	5	6	
	143	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6	
	144	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6	
	145	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6	
+	146	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6	
+	147	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6	
	148	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6	
	149	3090	3097	3105	3112	3118	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6	
																					-

Anda Enterprist





	a V	dranda	Enterpris	se																	
		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
	150	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7	
	151	3236	3243	3251	3258	3268	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7	
	152	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7	
	153	3388	3396	3404	3412	3420	3428	3436	3442	3451	3459	1	2	2	3	4	5	6	6	7	
	154	3467	3475	3483	3491	3499	3508	3516	3524	3532	2540	1	2	2	3	4	5	6	6	7	
_	155	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	6	7	
	156	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8	
	157	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8	
	158	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8	
	159	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	4	5	6	7	8	
	160	3981	3990	3999	4009	4018	4027	4036	4046	4055	4065	1	2	3	4	5	6	6	7	8	
	161	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9	
	162	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9	-
	163	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9	
	164	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9	
	165	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9	
	166	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10	
	167	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10	
	168	4788	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10	
	169	4898	4909	4920	4932	4943	4955	4986	4977	4989	5000	1	2	3	5	6	7	8	9	10	
	170	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11	
	171	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11	
	172	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11	
	173	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11	
	174	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12	
	175	5632	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12	
	176	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12	
	177	5858	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12	
	178	6028	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13	
	179	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13	
	180	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13	
	181	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14	
	182	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14	
	183	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14	
	184	6918	6934	6950	6965	6982	6598	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15	
	185	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12		15	
-	186	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15	
-	187	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12		16	
	188	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16	



CA FOUNDATION - MATHEMATICS

	_	- C		$\sim$	$\sim$		-
а	Ve	ro	IN	da	Enter	pris	е

Ι	189	7762	7780	7796	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16	
T	190	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17	
t	191	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17	
╉	192	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17	
╉	193	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18	
	194	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18	
	195	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19	
	196	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19	
	197	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20	
	198	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20	
	199	9772	9795	9817	9840	9836	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20	

#### Example:

If Log x = 0.301. then x = Antilog 0.301 = 2

If Log x = 1.301. then  $x = (Antilog 0.301) \times 10 = 20$ 

If Log x = 2.301. then  $x = (Antilog 0.301) \times 100 = 200$ 

If Log x = (-) 0.699, then we can write Log x = (-1 + 0.301) : Thus x = Antilog (0.301) / 10 = 0.2

If Log x = (-) 1.699, then we can write Log x = (- 2 + 0.301) : Thus x = Antilog (0.301) / 100 = 0.02 <u>Verondo</u> Enterpri

