	Stats								
	24 May 20	24 09:	50						
	0								
	Stats								
	Formula.	•							
									1

CA. PRANAV POPAT

FORMULA MARATHON STATS SESSION LINK:

https://www.youtube.com/watch?v= XXv5wRqso7w

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

U

	Class Boundary					
	Mutually Exclusive 10-20	UCB = UCL				
Formula	Classification -30					
1	90 - 40	LCB = LCL				
-	Mutually Inclusive 10-19	UCB = UCL+0.5				
	Classification 40 -29	LCB = LCL- 0.5				
	_					
Formula	Mid-Point / Class Mark of Class II	ICB+UCB				
2	2	or <u>LCB + 0 CB</u>				
Formula	Class Length / Width of Class / Si	ze of Class: UCB - LCB only				
3		ores cos uning				
Formula	Frequency Density of a Class:	class frequency				
4		class length				
	Relative Frequency:					
	Relative Frequency:	and				
Formula	Total Freq	des and				
5	Percentage Frequency:					
	Total freq X 100					
	AM of Discrete Distribution/Serie					
Formula	AN OF DISCIPLE DISTINGUISH, SCHO	es: $y_1 + x_2 + x_3 + + x_n = \sum_{i=1}^{n} x_i + x_i + x_i + x_i + x_i = x_i + $				
6		ท				
	AM of Frequency Distribution:	Σfχ N- SC				
_		N= EF				
Formula 7	In case of ungrouped distribution	on x = individual value				
,	In case of grouped frequency	x = mid-point of class interval				
	distribution	X = Title point of class litter var				
	AM using assumed mean / step of	deviation method				
Formula	A + ZfdxC					
8						
	where $d = \frac{x - A}{C}$, A is assumed mo	ean, C is class length				
Formula	The algebraic sum of deviations of a set of observations from their AM is					
9	~40					

Formula 10	Combined AM: $\overline{\chi}_c = \frac{n_1 \overline{\chi}_1 + n_2 \overline{\chi}_2}{n_1 + n_2}$					
Formula 11	If numbe odd	case of discrete of observations of observations	are Medi	Median is and of two middle femus		
		nula is used for ur	ngrouped fr <mark>e</mark>	<mark>quenc</mark> y d <mark>istribu</mark>		
	ivieulari in	case of grouped t	n equency as	SUIDULION		
	Step 1 Prepare a less than type cumulative frequency distribution					
	Step 2 Calculate $\frac{N}{2}$ and check between which class boundaries it falls and call it as Median Class				boundaries it	
Formula 12	Step 3	LCB of Median Class	N _u Cum Freq. of Median Class	N _I Cum. Freq. of Pre-Median Class	C Class length of Median Class	
	Step 4	Appy Formula Median = l ₁	$+\left(\frac{\frac{N}{2}-N}{N_{4}-N}\right)$	1	- N _J = F	
Formula	For a set of observations, the sum of absolute deviations is					
13	$-\sum (x-\overline{x})=0$		Z X-Me	diam is min	imum	
Farmer de		n case of discrete	observation Second Qua		hird Quartile	
Formula 14	_ (Quartile -1 × $\frac{1}{4}$ $\frac{1}{4}$ term $\frac{1}{4}$	Second Qua $\frac{Q_2}{Q_2} = \left((n+1) \times \frac{2}{4} \right)$	term Q ₃ =	(3)th	

Dil Se Re 🤎 Instagram: @ca_pranav Telegram @learnwithpranav

	Note: about formula giv	or the term I	Tinal value +	o ha calcul	atad basad an	
	Note: above formula gives the term. Final value to be calculated based on the term					
		Deciles in case of discrete observations:				
	First Decile	Second	Decile	Ninth Decile		
Formula 15	$\frac{D_1}{D_1} = \left((n+1) \times \frac{1}{10} \right)^{th} term$	$\frac{D_2}{D_2} = \left((n+1) \times \right)$	$\left(\frac{2}{10}\right)^{th}$ term	$D_9 = \left((n+1) \right)$	$(1) \times \frac{9}{10}$ term	
	Note: above formula giv	es the term. I	inal value t	o be calcul	ated based on	
	the term		0			
	Percentiles in case of dis			a a th a		
<u></u>	First Percentile		ercentile	99 th P		
Formula 16	$\frac{P_1}{P_1} = \left((n+1) \times \frac{1}{100} \right)^{th} term$					
	Note: above formula giv	es the term. I	inal value t	o be calcul	ated based on	
	the term		Distribut	i ci		
	Quartiles in case of Groumedian with few modific	11	cy Distribut	ion: Steps a	аге пке	
	1 st Quartile 3 rd Quartile					
		class using	100			
Formula	N N		3N	using .		
17	4		4			
		$\left(\begin{array}{c} N \\ -N_{l} \end{array}\right)$	(3N	-N,		
	$Q_1 = I_1 +$	$\begin{pmatrix} \frac{N}{4} - N_1 \\ \frac{A}{N_1} - N_1 \end{pmatrix} \times C$	$Q_3 = I_1 + \begin{vmatrix} \frac{4}{N_u} - \frac{4}{N_u} \end{vmatrix}$	$-N_1$ $\times C$		
)	101 10	
	Deciles in case of Group with few modifications.	ea Frequency	Distributio	n: Steps are	e like median	
		Decile	Qth D	ecile	7	
			Find D ₉ clas			
Formula		idaa darrig	9N	3 d3111B		
18	$\frac{N}{10}$		10			
		$N - N_i$	(9N	$\left(-N_{i}\right)$		
	$D_{1} = I_{1} + \left \frac{1}{1} \right $	$\begin{pmatrix} N \\ LO \\ N_u - N_l \end{pmatrix} \times C$	$D_9 = I_1 + \frac{10}{N}$	$\frac{1}{-N} \times C$		
		-u ·-	('')		
	Percentiles in case of Gr		ency Distrib	ution: Step	s are like	
<u></u>	median with few modifie			00 a -		
Formula		ercentile	99 th Per		-	
19	Find P ₁ cl	ass using	Find P ₉₉ clas	ss using		
	N 100		99N 10			
	100		10			

	$P_{1} = I_{1} + \left(\frac{\frac{N}{100} - N_{1}}{N_{u} - N_{1}}\right) \times C \qquad P_{99} = I_{1} + \left(\frac{\frac{99N}{10} - N_{1}}{N_{u} - N_{1}}\right) \times C$						
Formula 20	Mode in case of discrete observation: observation repeating for maximum no. of times or observation with highest frequency Note: There can be multiple modes also. If all observations are having same frequency, then there is no mode.						
	Mode in case of grouped frequency distribution: Find Modal Class (Class with highest frequency) then apply below formula						
Formula 21	Mode = $\sqrt{\frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_1}} \times C$ $\sqrt{\frac{20 - 30}{f_{-1}}} \sqrt{\frac{30 - 40}{40 - 50}} $						
	where, I_1 = LCB of modal class I_0 = frequency of modal class, I_{-1} = frequency of pre-modal class, I_1 = frequency of post modal class, I_2 = class length of modal class						
Formula 22	Relationship between Mean, Median and Mode in case of Symmetrical Distribution: Mean = Median = Mode						
Formula 23	Relationship between Mean, Median and Mode in case of moderately skewed distribution: Mean - Mode = 3 (Meon - Median) Mode = 3 Median - 2 Mean						
Formula 24	Geometric Mean in case of discrete positive observations:						
Formula 25	Geometric Mean in case of frequency distribution:						
Formula 26	Harmonic Mean in case of discrete observations: $HM = \frac{\eta}{\Sigma(1/x)}$						

	Harmonic Mean in case of frequency distribu	ıtion:				
Formula	N					
27	Σ (f/x)					
	Combined HM:					
Formula	$H = \frac{n_1 + n_2}{n_1 + n_2}$					
28	n_1 n_2					
	$\frac{1}{H_1} + \frac{1}{H_2}$					
	Relationship between AM, GM and HM					
	Situation	Relationship				
	When all the observations are identical /					
	same	AM = GM = HM				
Formula						
29	When all the observations are distinct /	AM > GM > HM				
	different	7				
	In General					
	III General	AM 2 GM 2 HM				
	Range in case of discrete observations:					
Formula	L—S					
30		W. 188				
	where L = Largest Observation, S = Smallest Observation					
Formula	Range in case of Grouped Frequency Distribution: L – S					
31	L = UCB of last class interval, S = LCB of first-	ciass interval				
Formula	Coefficient of Range					
32	L-3 x100					
J <u>L</u>						
	Mean Deviation in case of discrete observati	ons				
Communic	(abs dev)	<- <u>v</u>				
Formula 33	$\Sigma X-A $ ΣX					
33	n					
	where A is any appropriate central tendence					
	Mean Deviation (in case of grouped frequen	cy distributions)				
Formula	$MD = \frac{1}{2} \sum f[v = A]$	$\Sigma f_{\mathbf{z}}$				
34	$MD_{A} = \frac{1}{N} \Sigma f x - A $ $N = \Sigma f$	N				
	where A is any appropriate central tendency	(as given)				
	, , , , ,	• • • • • • • • • • • • • • • • • • • •				

	Coefficient of Many Deviction				
Formula 35	Coefficient of Mean Deviation: MD about A A 100				
Formula 36	Standard Deviation in case of discrete observations: or shorter formula $ \frac{\sum (x - \bar{x})^2}{n} $				
Formula 37	Standard Deviation in case of grouped frequency observations $\sigma_{x} = SD_{x} = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{N}} \text{ or shorter formula } \sigma_{x} = SD_{x} = \sqrt{\frac{\sum fx^{2}}{N} - (\overline{x})^{2}}$				
Formula 38	Coefficient of Variation:				
Formula 39	If there are only two observations, then SD is half of range $SD = \frac{Range}{2}$				
Formula 40	Standard Deviation of first n natural numbers: $\sqrt{\frac{n^2 - 1}{12}}$				
Formula 41	Combined SD: $S_{c} = \sqrt{\frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2} + n_{1}d_{1}^{2} + n_{2}d_{2}^{2}}{n_{1} + n_{2}}}$ $\overline{x}_{c} = \sqrt{\frac{n_{1}\overline{x_{1}} + n_{2}\overline{x_{2}}}{n_{1} + n_{2}\overline{x}}}$ $d_{1} = \overline{x}_{c} - \overline{x}_{1} \text{ and } d_{2} = \overline{x}_{c} - \overline{x}_{2}$				
Formula 42	If all the observations are constant, then SD/ MD/ Range is				
Formula 43	Change of Origin and Scale: No effect of change of origin but affected by change of scale in the magnitude (ignore sign) $SD_y = b SD_x$ Note: same thing will apply to all the measures of dispersion				

SDy = SDx x | chg of scale |

Dil Se Re 🚳 Instagram: @ca_pranav Telegram @learnwithpranav

Formula 44	Quartile Deviation: $QD = \frac{Q_3 - Q_1}{2}$						
Formula 45	Coefficient of Quartile Deviation: $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$						
Formula 46	Relationship between SD, MD and QD 4SD=5MD=6QD OR SD:MD:QD=15:12:10						
Formula 47	Basic Formula of Probability: $P(A) = \frac{No. \text{ of favorable events to A}}{\text{Total no. of events}}$						
Formula 48	Odds in favour of Event A:						
Formula 49	Odds against an Event A: no- of unfav events no of fav events						
Formula 50	Number of total outcomes of a random experiment: If an experiment results in <u>p</u> outcomes and if it is repeated <u>q</u> times, then Total number of outcomes						
Formula 51	Relative Frequency Probability no. of times the event occurred during experimental trials total no. of trials $= \frac{f_A}{n}$						
Formula 52	Set Based Probability: $P(A) = \frac{\text{no.of sample points in A}}{\text{no.of sample points in S}} = \frac{n(A)}{n(S)}$ here A is Event Set and S is Sample Space						
Formula 53	Addition Theorem 1: In case of two mutually exclusive events A and B $P(A \cup B) = P(A + B) = P(A \text{ or } B) = P(A) + P(B)$						
Formula 54	Addition Theorem 2: In case of two or more mutually exclusive events $P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$						

Formula 55	Addition Theorem 3: For any two events $P(A \cup B) = P(A) + P(B) - P(A \cap B)$					
Formula 56	Addition Theorem 4: In case of any three events $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C)$ $- P(A \cap C) + P(A \cap B \cap C)$					
Formula 57	Conditional Probability of Event B when Event A is already occurred $ \frac{P(B/A) = P(A \cap B)}{P(A)} $ provided $P(A) \neq 0$					
Formula 58	Conditional Probability of Event A when Event B is already occurred $P(A/B) = P(AB)$ provided $P(B) \neq 0$					
Formula 59	Compound Theorem: In case of two dependent events $P(A \cap B) = P(B) \times P(A/B) \text{ or}$ $P(A \cap B) = P(A) \times P(B/A)$					
Formula 60	Compound Theorem: In case of two independent events $P(A \cap B) = P(A) \times P(B)$					
Formula 61	Expected value of a Probability Distribution: $ E(x) = \sum_{\mu \in \mathcal{F}} \sum_{\mu \in \mathcal{F}} X $ Also, $E(x) = \mu$ (here μ means mean of probability distribution)					
Formula 62	Variance of Probability Distribution: $V(x) = E(x - \mu)^2 = E(x^2) - (E(x))^2$					
Formula 63	Probability Mass Function in case of Binomial Distribution: $f(x) = P(X = x) = {}^{n}C_{x} p^{x}q^{n-x}$					

	Mean of Binomial Distribution:					
Formula	$\mu = \frac{n\rho}{n}$					
64	Variance of Binomial Distribution:					
	$\sigma^2 = \eta \rho q$					
	1 1					
	Mode in case of Binomial Distribution: Step 1 Calculate (n+1)p					
Formula	· Calculate (11 + 2/P					
65	Step 2A If $(n+1)p$ is an integer, there will be two modes: $\mu_0 = (n+1)p \& [(n+1)p-1]$					
	Step 2B If (n+1)p is a non-integer, there will be only one mode:					
	μ_0 = largest integer contained in (n+1)p					
_	Probability Mass Function in case of Poisson Distribution:					
Formula 66	$f(x) = P(X = x) = e^{-m} \cdot m^{x}$ $e = 2.71828$					
	×					
	Mean of Poisson Distribution: μ = \mathbf{m}					
Formula	Variance of Poisson Distribution: $\sigma^2 = m$					
67	SD of Poisson Distribution: $\sigma = \sqrt{m}$					
	Mode in case of Poisson Distribution:					
Formula	If m is an integer there will be two modes: $\mu_0 = m\&m-1$					
68	If m is a non- there will be only one mode: largest integer					
	integer contained in m					
	Probability Density Function in case of Normal Distribution					
Formula 69	$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{2}}$					
03	$I(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-x}$					
Formula	NAD D					
70	Mean Deviation in case of Normal Distribution: $MD = 0.8$					
	Quartiles in case of Normal Distribution:					
Formula	$Q_1 = 4 - 0.675 \sigma$					
71						
	$Q_3 = 2 + 0.675 \sigma$					

Formula 72	Quartile Deviation in case of Normal Distribution: $QD = 0.675\sigma$						
Formula 73	Points of Inflex of Normal Curve:						
Formula 74	In case of Normal Distribution, Ratio between QD: MD: SD = 10:12:15						
Formula 75	Conditions of Standard Normal Distribution: Mean = 0, SD = 1 $4=0$, $5=1$						
Formula 76	Z Score: $Z = \frac{\chi - 4}{5}$						
	Area under Normal Curve (Popular Intervals) From To Area under Normal Curve Probability						
Formula 77	μ $μ+σ$ 34.135% $μ+σ$ $μ+2σ$ 13.59% $μ+2σ$ $μ+3σ$ 2.14%						
Formula 78	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Formula 79	Karl Pearson's Product Moment Correlation Coefficient: $91 = \frac{\text{Cov}(x,y)}{\text{Sox} \text{SDy}}$						
Formula 80	Covariance between two variables: $cov(x,y) = \frac{\sum(x-\bar{x})(y-\bar{y})}{n} \propto \frac{\sum xy}{n} - \bar{x}$						

	Spearman's Rank Correlation Coefficient:				
Formula 81	$\mathfrak{A}_{R} = 1 - \frac{6 \xi d^{2}}{n (n^{2} - 1)}$				
Formula 82	here d means difference in ranks of both variables Spearman's Rank Correlation Coefficient (in case of tied values) $ r_{R} = 1 - \frac{6\left(\Sigma d^{2} + \frac{A}{A}\right)}{n(n^{2} - 1)} $ here A is adjustment value				
	$A = \frac{\Sigma(t^3 - t)}{12}$ where t = tie length (calculate t value for each of the ties)				
-	Coefficient of Concurrent Deviations $ \eta_{c} = \pm \int_{-\infty}^{\infty} \pm \left(\frac{Qc - m}{Qc - m} \right) \qquad \eta_{c} = + \frac{1}{2} \int_{-\infty}^{\infty} \frac{dc}{dc} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dc}{$				
Formula 83	where c is number of concurrent deviations (same direction)				
	m is number of pairs compared (equals to n-1)				
	Regression Coefficients:				
Formula 84	Y on X: $b_{YX} = 91 \frac{SDy}{SDx}$ $b_{YX} = \frac{Cov(x_{iy})}{var of x}$ $x on Y:$				
	$bxy = 91\frac{SDx}{SDy}$ $bxy = \frac{Cov(x,y)}{vay of y}$				
	Correlation Coefficient is the GM of regression coefficients:				
Formula 85	91xy = ± \(byx \times bxy				
	Note: r _{xy} , b _{yx} , b _{yx} all will have same sign				

	Change of Origin/ Scale for Regression Coefficients: Origin no impact,
	Scale impact of both magnitude and sign.
Formula	$b_{vu} = b_{yx} \times \frac{\text{change of scale of y}}{\text{change of scale of x}} b_{yy} b_{yx}$
86	· · · · · · · · · · · · · · · · · · ·
	$b_{vu} = b_{yx} \times \frac{c}{change \text{ of scale of } x}$ $b_{uv} = b_{xy} \times \frac{change \text{ of scale of } x}{change \text{ of scale of } y}$ $b_{uv} = b_{xy} \times \frac{change \text{ of scale of } x}{change \text{ of scale of } y}$
Formula 87	Two regression lines (if not identical) will intersect at the point
	(\bar{x},\bar{y})
Formula 88	Coefficient of Determination/ Explained Variance/ Accounted Variance:
	J7 ²
	Coefficient of Non-determination/ Un-explained Variance/ Un-accounted
Formula 89	Variance: $1-91^2$
	1' 31
Formula	Price Relatives: $\frac{P_n}{P_0}$, Quantity Relatives: $\frac{Q_n}{Q_0}$, Value Relatives: $\frac{V_n}{V_0}$
90	Cincula Appropriation Indov
Formula	Simple Aggregative Index:
91	ΣP _o ^
	Simple Average of Relatives – Method Index:
	<u> </u>
Formula 92	$\sum \frac{P_n}{P_0}$
J2	
	Laspeyres Index (weight – base year quantity weight)
Formula	
93	Σρηθο XI 60
	Zp.90 ?
	Paasche's Index (weight – current year quantity weight) 🆣
Formula	-09
94	<u>Σβηθη</u> χι ΑΟ
	₹ % 9n

Formula 95	Marshall-Edgeworth Index (weight – sum of both current and base quantity)
	$\frac{\Sigma P_{n}(Q_{0}+Q_{n})}{\Sigma P_{0}(Q_{0}+Q_{n})} \times 100$
	Fisher's Ideal Index: GM of Laspeyres Index and Paasche's Index
Formula 96	JLXP
	Bowley's Index: AM of Laspeyres Index and Paasche's Index
Formula	L+P
97	2

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 7+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se ♥)
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Ab mushkil nahi kuch bhi, nahi kuch bhi!!!

With Lots of Love

CA. Pranav Popat (P^2 SIR)

