CHAPTER 1 RATIO & PROPORTION HOME WORK

If A : E (a)							65 : 75
If a : b (a)	= 3 : 4, then 1 : 2	(6a +b) (b)) : (4a + 5b) is 3 : 5	(c)	7:8	(d)	11 : 16
	*				$1-\sqrt{3}$	(d)	$\sqrt{3}+3$
If X ar	nd Y shared ₹	1100 ii	n the ratio 1 :	10, hov	w much did X	get ?	
(a)	₹ 99	(b)	₹100 (c)	₹ 101	(d) ₹ 110		
If 2x = (a)				(c)	6:4:3	(d)	3:4:2
If <i>x</i> : <i>y</i> (a)					28 : 36 : 35	(d)	None
The fo	ourth proportion		_		_		
(a)	35	(b)	$\frac{7}{5}$	(c)	$\frac{5}{7}$	(d)	12.6
Mean (a)	proportional t 17.5	o 3. 5 a (b)	and 87.5 is : 12	(c)	14	(d)	16
	· · · · · · · · · · · · · · · · · · ·						
(a)	6√3	(b)	10.5	(c)	16	(d)	None
What (a)	must be adde 3	d to ea	ch term of the 5	ratio 4 (c)	19 : 68 so that 8	it beco	omes 3 : 4 ? 9
		must b	pe added to e	ach on	e of 6, 14, 18	3, 38 to	make them in
(a)	1	(b)	2	(c)	3	(d)	4
					each of the nu	ımbers	14, 17, 34, 42
so tha	t remainders 0	may be (b)	proportional 1	(c)	2	(d)	7
	(a) If a: b (a) If $\sqrt{2}$: (a) If X ar (a) If $2x = (a)$ If $x: y$ (a) The form (a) Mean (a) Third (a) What proport (a) What so that	(a) $50:60$ If $a:b=3:4$, then (a) $1:2$ If $\sqrt{2}:(1+\sqrt{3})=\sqrt{6}:3$ (a) $\sqrt{3}-3$ If X and Y shared \P (a) \P 99 If $2x=3y=4z$, then (a) $2:3:4$ If $x:y=7:9$ and y (a) $7:45:36$ The fourth proportional to (a) 35 Mean proportional to (a) 17.5 Third proportional to (a) $6\sqrt{3}$ What must be added (a) 3 What least number proportion? (a) 1 What least number so that remainders	(a) $50:60$ (b) If a: b = 3: 4, then $(6a + b)$ (a) $1:2$ (b) If $\sqrt{2}:(1+\sqrt{3})=\sqrt{6}:x$, then (a) $\sqrt{3}-3$ (b) If X and Y shared \P 1100 if (a) \P 99 (b) If $2x = 3y = 4z$, then $x:y:(a) = 2:3:4$ (b) If $x:y=7:9$ and $y:z=5$ (a) $7:45:36$ (b) The fourth proportional to 3. 5 a (a) 17.5 (b) What must be added to ea (a) 3 (b) What least number must be proportion? (a) 1 (b) What least number must be only the so that remainders may be so that re	(a) $50:60$ (b) $55:72$ If a: b = 3: 4, then $(6a + b): (4a + 5b)$ is (a) $1:2$ (b) $3:5$ If $\sqrt{2}:(1+\sqrt{3})=\sqrt{6}:x$, then x is equal to (a) $\sqrt{3}-3$ (b) $1+\sqrt{3}$ If X and Y shared \P 1100 in the ratio 1: (a) \P 99 (b) \P 100 (c) If $2x = 3y = 4z$, then $x: y: z$ is: (a) $2:3:4$ (b) $4:3:2$ If $x: y = 7: 9$ and $y: z = 5: 4$, then $x: y$ (a) $7: 45: 36$ (b) $35: 45: 36$ The fourth proportional to 3.5 and 87.5 is: (a) 35 (b) $\frac{7}{5}$ Mean proportional to 9 and 12 is: (a) $6\sqrt{3}$ (b) 10.5 What must be added to each term of the (a) 3 (b) 5 What least number must be added to exproportion? (a) 1 (b) 2 What least number must be subtracted so that remainders may be proportional	(a) $50:60$ (b) $55:72$ (c) If $a:b=3:4$, then $(6a+b):(4a+5b)$ is: (a) $1:2$ (b) $3:5$ (c) If $\sqrt{2}:(1+\sqrt{3})=\sqrt{6}:x$, then x is equal to: (a) $\sqrt{3}-3$ (b) $1+\sqrt{3}$ (c) If X and Y shared \P 1100 in the ratio 1:10, how (a) \P 99 (b) \P 100 (c) \P 101 If $2x=3y=4z$, then $x:y:z$ is: (a) $2:3:4$ (b) $4:3:2$ (c) If $x:y=7:9$ and $y:z=5:4$, then $x:y:z$ is: (a) $7:45:36$ (b) $35:45:36$ (c) The fourth proportional to 3.5 and 87.5 is: (a) 35 (b) $\frac{7}{5}$ (c) Mean proportional to 9 and 9 is: (a) 9 and 9 is: (b) 9 and 9 is: (a) 9 and 9 is: (b) 9 and 9 is: (c) What must be added to each term of the ratio 9 and 9 is: (a) 9 and 9 is: (b) 9 and 9 is: (c) What least number must be added to each or proportion? (a) 9 and 9 is: (b) 9 and 9 is: (c) What least number must be subtracted from 9 so that remainders may be proportional?	(a) $50:60$ (b) $55:72$ (c) $60:70$ If $a:b=3:4$, then $(6a+b):(4a+5b)$ is: (a) $1:2$ (b) $3:5$ (c) $7:8$ If $\sqrt{2}:(1+\sqrt{3})=\sqrt{6}:x$, then x is equal to: (a) $\sqrt{3}-3$ (b) $1+\sqrt{3}$ (c) $1-\sqrt{3}$ If X and Y shared \P 1100 in the ratio 1:10, how much did X (a) \P 99 (b) \P 100 (c) \P 101 (d) \P 110 If $2x=3y=4z$, then $x:y:z$ is: (a) $2:3:4$ (b) $4:3:2$ (c) $6:4:3$ If $x:y=7:9$ and $y:z=5:4$, then $x:y:z$ is: (a) $7:45:36$ (b) $35:45:36$ (c) $28:36:35$ The fourth proportional to 3.5 and 87.5 is: (a) 35 (b) $\frac{7}{5}$ (c) $\frac{5}{7}$ Mean proportional to 9 and 12 is: (a) $6\sqrt{3}$ (b) 10.5 (c) 14 Third proportional to 9 and 12 is: (a) $6\sqrt{3}$ (b) 10.5 (c) 16 What must be added to each term of the ratio 49:68 so that (a) 3 (b) 5 (c) 8 What least number must be added to each one of 6, 14, 18 proportion? (a) 1 (b) 2 (c) 3	If a: b = 3: 4, then $(6a + b)$: $(4a + 5b)$ is: (a) 1:2 (b) 3:5 (c) 7:8 (d) If $\sqrt{2}$: $(1+\sqrt{3})=\sqrt{6}$: x , then x is equal to: (a) $\sqrt{3}-3$ (b) $1+\sqrt{3}$ (c) $1-\sqrt{3}$ (d) If X and Y shared ₹ 1100 in the ratio 1: 10, how much did X get? (a) ₹ 99 (b) ₹ 100 (c) ₹ 101 (d) ₹ 110 If $2x = 3y = 4z$, then $x : y : z$ is: (a) $2:3:4$ (b) $4:3:2$ (c) $6:4:3$ (d) If $x: y = 7:9$ and $y: z = 5:4$, then $x: y: z$ is: (a) $7:45:36$ (b) $35:45:36$ (c) $28:36:35$ (d) The fourth proportional to 3.5 and 87.5 is: (a) 35 (b) $\frac{7}{5}$ (c) $\frac{5}{7}$ (d) Mean proportional to 9 and 12 is: (a) 17.5 (b) 12 (c) 14 (d) Third proportional to 9 and 12 is: (a) $6\sqrt{3}$ (b) 10.5 (c) 16 (d) What must be added to each term of the ratio 49: 68 so that it becomes 66 (d) What least number must be added to each one of 6 , 14, 18, 38 to proportion? (a) 1 (b) 2 (c) 3 (d) What least number must be subtracted from each of the numbers so that remainders may be proportional?

: 538 :

,				0.1 .1	. 1017	IIILMAIIOO	<u> </u>	1101100
13.	A frac	ction bears the	e same	ratio to $\frac{1}{27}$ a	$s \frac{3}{7} dc$	pes to $\frac{5}{9}$. The	fractio	n is :
						$\frac{45}{7}$		
14.	and o	ne-sixth of C'	part ar	e equal. Ther	n, B's p	art is :		nird of B's part
	(a)	₹ 660	(b)	₹ 360	(c)	₹ 1080	(d)	₹ 540
15.	A has	Rs. 800, the	n C has	3:				ney as 2 : 3 and
	(a)	₹ 1000	(b)	₹ 1200	(c)	₹ 1500	(d)	₹ 2000
16.	eighth	n part of the se	econd	are in the ration	3:4.	The first part	is:	he first and the
	(a)	27	(b)	30	(c)	36	(d)	48
17.	₹ 136	0 have been	divided	d among A, B	, C suc	ch that A gets	$\frac{2}{3}$ of v	vhat B gets and
	B gets	s $\frac{1}{4}$ of what C	gets.	Then, B's sha	re is :			
		т —				₹ 240	(d)	₹ 320
18.	₹ 770	have been d	ivided	among A, B, (C such	a way that A	receive	es $\frac{2}{9}$ th of what
				Then A's sha				9
	(a)	₹ 140	(b)	₹ 154	(c)	₹ 165	(d)	₹ 170
19.	by₹1			-				s be diminished 3:4:5. Then,
	(a)		(b)	₹ 1610	(c)	₹ 1626.66		(d) ₹ 1600
20.	are in	the ratio 2						ares of A and B 5. The amount
	(a)	ved by C is : ₹ 2600	(b)	₹2800	(c)	₹ 3000	(d)	₹ 3900
21.			gets ₹8	3 more than w	hat C g	gets. The ratio	of thei	s ₹ 7 more than r shares is : 15 : 8 : 30
22.							d 25-pa	aise coins in the
	ratio 3 (a)	3 : 4 : 12. The 600	numbe (b)	er of 25-paise 900	coins i	s : 1200	(d)	1376

23.				d among A, B iisa. If C's sha				e A gets, B gets
	(a)	₹ 2400	(b)	₹ 2800	(c)	₹3200	(d)	₹3600
24.	and (C together re	ceive		es one	-fourth of wh		f as much as B and C together
	(a)	₹ 750	(b)	₹775	(c)	₹1500	(d)	₹1600
25.		tain amount w), the total am			X and	Y in the ratio	4 : 3. l	f Y's share was
	(a)	₹11200	(b)	₹6400	(c)	₹ 19200	(d)	₹ 39200
26.				oys and girls admitted to r 120				ts is 7: 5. How 240
	` '		()		,		` ,	
27.	shado	w 5.4 m long	. The h	eight of the bu	uilding i	is:		ouilding casts a
	(a)	4.63 m	(b)	3.21 m	(c)	6.3 m	(d)	5.6 m
28.				are in the ratio en B's income		and their expe	enditure	es in the ratio5 :
	(a)	₹ 6000	(b)	₹ 4500	(c)	₹ 3000 (d)	₹ 7500)
29.				nd a moped ar		e ratio 9 : 5. If	f a scoo	oter costs₹6800
	(a)	₹ 17000	(b)	₹ 13600	(c)	₹ 15300	(d)	None
30.	the ra	tio of 5 : 3 : 1.	If the i	materials cost	₹ 6.90,	the cost of th	e articl	
	(a)	₹13.80	(b)	₹ 12.42	(c)	₹ 11.56(d)	₹ 9.8	3
				WEIN	EDS			

ANSWERS

1.	(b)	2.	(d)	3.	(d)	4.	(b)	5.	(c)	6.	(b)
7.	(a)	8.	(c)	9.	(c)	10.	(c)	11.	(b)	12.	(c)
13.	(b)	14.	(d)	15.	(c)	16.	(b)	17.	(c)	18.	(a)
19.	(b)	20.	(c)	21.	(b)	22.	(b)	23.	(c)	24.	(a)
25.	(a)	26.	(b)	27.	(c)	28.	(a)	29.	(c)	30.	(b)

: 540 :

CHAPTER 2 INDICES, SURDS AND LOGARITHM HOME WORK

INDICES And SURDS:

- The value of $\left(\sqrt{8}\right)^{\!\!1/3}\,$ is :
- (a) 2 (b) 4 (c) $\sqrt{2}$ (d) 8
- The value of $5^{1/4} \times (125)^{0.25}$ is : 2.
- (a) $\sqrt{5}$ (b) $5\sqrt{5}$ (c) 5 (d) 25
- The value of $\left(\frac{32}{243}\right)^{-4/5}$ is :

- (a) $\frac{4}{9}$ (b) $\frac{9}{4}$ (c) $\frac{16}{81}$ (d)

- **4.** $\left(\frac{1}{216}\right)^{-2/3} \div \left(\frac{1}{27}\right)^{-4/3} = ?$
 - (a) $\frac{3}{4}$ (b) $\frac{2}{3}$ (c) $\frac{4}{9}$ (d) $\frac{1}{8}$

- 5. $\frac{2^{n+4}-2\cdot 2^n}{2\cdot 2^{n+3}}+2^{-3}$ is equal to:

 - (a) 2^{n+1} (b) $-2^{n+1} + \frac{1}{8}$ (c) $\frac{9}{8} 2^n$
- (d) 1

12

- If $5\sqrt{5} \times 5^3 \div 5^{-3/2} = 5^{a+2}$, the value of *a* is : (a) 4 (b) 5 (c) 6 (d) 6.

- If $\sqrt{2^n}$ = 64, then the value of *n* is : (a) 2 (b) 4 (c) 7.

- (d)
- $\frac{(0.6)^{0} (0.1)^{-1}}{\left(\frac{3}{2^{3}}\right)^{-1} \cdot \left(\frac{3}{2}\right)^{3} + \left(-\frac{1}{3}\right)^{-1}} \text{ is equal to :}$ 8.
 - (a) $-\frac{3}{2}$ (b) $-\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{2}$

If $\frac{9^n \times 3^5 \times (27)^3}{3 \times (81)^4} = 27$, then *n* equals : 9.

- (a) 0 (b) 2 (c) 3 (d) 4

If $\frac{9^{n}(3^{2})(3^{-n/2})^{-2}-27^{n}}{3^{3m}(2^{3})}=\frac{1}{27}$, then 10.

- (a) m-n=2 (b) m-n=1 (c) m-n=-2 (d) m-n=-1

If $(\sqrt{3})^5 \times 9^2 = 3^{\alpha} \times 3\sqrt{3}$, then α equals: (a) 2 (b) 3 (c) 4 (d)

- 5

The simplified form of $\frac{x^{7/2} \cdot \sqrt{y^3}}{x^{5/2} \cdot \sqrt{y}}$ is :

- (a) $\frac{x^2}{v}$ (b) $\frac{x^3}{v^2}$ (c) $\frac{x^6}{v^3}$ (d) xy

13. $\left(\frac{1}{1+x^{n-m}}+\frac{1}{1+x^{m-n}}\right)$ is equal to :

(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) x^{m+n}

If x, y, z are real numbers, then the value of :

$$\sqrt{x^{^{-1}}\,y}\cdot\sqrt{y^{^{-1}}\,z}\cdot\sqrt{z^{^{-1}}\,x}$$
 is :

- (a) xyz (b) \sqrt{xyz} (c) $\frac{1}{xyz}$ (d) 1

 $\frac{1}{1+\mathbf{v}^{(b-a)}+\mathbf{v}^{(c-a)}} + \frac{1}{1+\mathbf{v}^{(a-b)}+\mathbf{v}^{(c-b)}} + \frac{1}{1+\mathbf{v}^{(b-c)}+\mathbf{v}^{(a-c)}} = ?$

- (a) x^{a-b-c} (b) 1 (c) 0 (d) 3

16. $\left(\frac{x^b}{x^c}\right)^{(b+c-a)} \cdot \left(\frac{x^c}{x^a}\right)^{(c+a-b)} \cdot \left(\frac{x^a}{x^b}\right)^{(a+b-c)} = ?$

- (a) x^{abc} (b) x^{a+b+c} (c) $x^{ab+bc+ca}$

17. If pqr = 1, then $\left(\frac{1}{1+p+q^{-1}} + \frac{1}{1+q+r^{-1}} + \frac{1}{1+r+p^{-1}}\right) = ?$

- (a) 0 (b) $\frac{1}{pq}$ (c) pq (d) 1

: 542 :

18.
$$\left(\frac{x^a}{x^b}\right)^{(a+b)} \times \left(\frac{x^b}{x^c}\right)^{(b+c)} \times \left(\frac{x^c}{x^a}\right)^{(c+a)} = ?$$

- (a) 0 (b) x^{abc} (c) x^{a+b+c} (d) 1

19.
$$\left(\frac{x^a}{x^b}\right)^{1/ab} \times \left(\frac{x^b}{x^c}\right)^{1/bc} \times \left(\frac{x^c}{x^a}\right)^{1/ca} = ?$$

- (a) 1 (b) $x^{1/abc}$ (c) $x^{1/(ab+bc+ca)}$ (d)
- None.

20. If
$$2^{x+4} - 2^{x+2} = 3$$
, then x is equal to :

- (a) 0 (b) 2 (c) -1 (d) -2

21. If
$$2^{x-1} + 2^{x+1} = 320$$
, then x is equal to :

- (a) 6 (b) 8 (c) 5 (d) 7

22. If
$$2^{2x-1} = \frac{1}{8^{x-3}}$$
, then the value of x is :

- (a) 3 (b) 2 (c) 0
- (d) -2

23. If
$$\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$$
, then x is equal to :

- (a) 1 (b) $\frac{1}{2}$ (c) 2 (d) $\frac{7}{2}$

24. If
$$2^x \times 8^{1/5} = 2^{-1/5}$$
, then x is equal to:
(a) $\frac{1}{5}$ (b) $-\frac{1}{5}$ (c) $\frac{2}{5}$ (d) $-\frac{2}{5}$

25. If
$$\sqrt{5+\sqrt[3]{x}} = 3$$
, then *x* is equal to :

- (a) 125 (b) 64 (c) 27
- (d)

26. If
$$5^{x+3} = (25)^{3x-4}$$
, then the value of x is :

- (a) $\frac{5}{11}$ (b) $\frac{11}{5}$ (c) $\frac{11}{3}$ (d)

27. If
$$\sqrt[3]{32} = 2^x$$
, then *x* is equal to :

- (a) 5 (b) 3 (c) $\frac{3}{5}$ (d)

If $a^x = b^y = c^z$ and $b^2 = ac$, then y equals : 28.

(a)
$$\frac{xz}{x+z}$$
 (b) $\frac{xz}{2(x-z)}$ (c) $\frac{xz}{2(z-x)}$ (d) $\frac{2xz}{(x+z)}$

(c)
$$\frac{xz}{2(z-x)}$$

(d)
$$\frac{2xz}{(x+z)}$$

If $2^x = 3^y = 6^{-z}$, then $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$ is equal to :

$$\frac{3}{2}$$

(a) 0 (b) 1 (c) $\frac{3}{2}$ (d) $-\frac{1}{2}$

If $x = y^a$, $y = z^b$ and $z = x^c$, then the value of abc is: 30. (a) 4 (b) 3 (c) 2 (d)

 $\sqrt{2}$, $\sqrt[3]{4}$ and $\sqrt[4]{6}$ in ascending order are : 31.

(a)
$$\sqrt{2}, \sqrt[3]{4}, \sqrt[4]{6}$$

(a)
$$\sqrt{2}$$
, $\sqrt[3]{4}$, $\sqrt[4]{6}$ (b) $\sqrt[4]{6}$, $\sqrt{2}$, $\sqrt[3]{4}$ (c) $\sqrt[4]{6}$, $\sqrt[3]{4}$, $\sqrt[3]{4}$, $\sqrt[3]{4}$

If m and n are whole numbers such that $m^n = 121$, then the value of 32. $(m-1)^{n+1}$ is:

(b)

1000

If $1 - x^8 = 65$ and $1 - x^4 = 64$, the value of x is : 33.

(a)
$$\pm \frac{1}{\sqrt{2}}$$
 (b) $\pm \sqrt{2}$ (c) $\pm \frac{1}{2\sqrt{2}}$ (d) $\pm 2\sqrt{2}$

$$\pm\sqrt{2}$$
 (c)

34. If $\left[3^{m^2} \div \left(3^m\right)^2\right]^{1/m} = 81$, the value of *m* is :

If $2^a + 3^b = 17$ and $2^{a+2} - 3^{b+1} = 5$, the values of a and b respectively are: (a) 2, 3 (b) -2, 3 (c) 2, -3 (d) 3, 2 35.

Show that $\frac{16(32)^x - 2^{3x-2} \cdot 4^{x+1}}{15(2)^{x-1}(16)^x} - \frac{5(5)^{x-1}}{\sqrt{5^{2x}}}$ (a) 1 (b) -1 (c) 4 (d) 0 36.

 $x^{a^2b^{-1}c^{-1}}.x^{b^2c^{-1}a^{-1}}.x^{c^2a^{-1}b^{-1}}$ - x³ would reduce to zero if a + b + c is given by 37. (a) 1 (b) -1 (c) 0 (d) None

The value of z is given by the following if $z^{z\sqrt{z}} = (z\sqrt{z})^z$ 38.

(b)
$$\frac{3}{2}$$
 (c) $\frac{3}{2}$ (d) $\frac{9}{4}$

If $ax^{2/3}+bx^{1/3}+c=0$ then the value of $a^3x^2+b^3x+c^3$ is given by 39.

(b) -3abcx (c) 3abc (d) -3abc

- If $a^P = b$, $b^q = c$, $c^r = a$ the value of pqr is given by

- (a) 0 (b) 1 (c) -1 (d)
- If $2^a = 3^b = (12)^c \operatorname{then} \frac{1}{c} \frac{1}{b} \frac{2}{a} \operatorname{reduces} \operatorname{to}$ (a) 1 (b) 0 (c) 2 (d) None

- If $3^a = 5^b = (75)^c$ then the value of ab-c(2a +b) reduces to 42. (a) 1 (b) 0 (c) 3 (d) 5

- If $2^a = 4^b = 8^c$ and abc = 288 then the value $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by 43.

- (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$
- **44.** If $a^b = b^a$ then the value of $\left(\frac{a}{b}\right)^{\frac{a}{b}} a^{\frac{a}{b}-1}$ reduces to (a) a (b) b (c) 0 (d) N

- If P + $\sqrt{3}Q$ + $\sqrt{5}R$ + $\sqrt{15}S$ = $\frac{1}{1+\sqrt{3}+\sqrt{5}}$ then the value of P is 45.

- (a) 7/11 (b) 3/11 (c) -1/11 (d) -2/11

ANSWERS

1.	(c)	2.	(c)	3.	(d)	4.	(c)	5.	(d)
6.	(a)	7.	(d)	8.	(a)	9.	(c)	10.	(b)
11.	(d)	12.	(d)	13.	(b)	14.	(d)	15.	(b)
16.	(d)	17.	(d)	18.	(d)	19.	(a)	20.	(d)
21.	(d)	22.	(b)	23.	(c)	24.	(d)	25.	(b)
26.	(b)	27.	(d)	28.	(d)	29.	(a)	30.	(d)
31.	(d)	32.	(d)	33.	(c)	34.	(b)	35.	(d)
36.	(a)	37.	(c)	38.	(d)	39.	(a)	40.	(b)
41.	(b)	42.	(b)	43.	(c)	44.	(c)	45.	(a)

LOGARITHM

If $a^x = b$, then:

(a) $\log_b x = a$ (b) $\log_a x = b$ (c)

 $\log_{x} a = b$

(d) $\log_a b = x$

2. If $\log_a b = c$, then:

(a) $b^c = a$

 $a^c = b$ (b)

(c) $a^b = c$

(d) $b^a = c$

3. $\log_a(pq)$ is equal to :

 $(\log_a p)(\log_a q)$

(b) $\log_a p + \log_a q$

(c) $\log_a p - \log_a q$ (d) $\log_n a + \log_a a$

 $\log_a \left(\frac{p}{a} \right)$ is equal to :

(a) $\log_a p - \log_a q$

(b) $(\log_a p) \div (\log_a q)$

(c) $\log_a p + \log_a q$

 $\log_a q - \log_a p$ (d)

 $\log_a 4 = \frac{1}{4}$, then a is equal to: 5.

(b) 64

128 (c)

(d) 256

3

The value of $\log_{27} 9$ is : 6.

(a) $\frac{1}{3}$ (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d)

The value of $\log_5\left(\frac{1}{625}\right)$ is : 7.

(a)

4

(b) -4 (c) $\frac{1}{4}$ (d) $-\frac{1}{4}$

The value of $\log_{\sqrt{2}} 16$ is : 8.

(a)

4

(b) 8 (c) 16 (d) $\frac{1}{8}$

If $\log_8 x = \frac{2}{3}$, then the value of x is:

(a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) 4

(d) 3

10. If $\log_x \left(\frac{9}{16}\right) = -\frac{1}{2}$, then the value of x is:

(a) $-\frac{3}{4}$ (b) $\frac{3}{4}$ (c) $\frac{81}{256}$

(d)

: 546 :

If $\log_{10} x = -2$, then x is: 11.

(a)
$$\sqrt{10}$$
 (b) $\frac{1}{\sqrt{10}}$ (c)

(b)
$$\frac{1}{\sqrt{10}}$$

(c)
$$\frac{1}{20}$$

(d)
$$\frac{1}{100}$$

If $\log_{10000} x = -\frac{1}{4}$, then the value of x is :

(a)
$$\frac{1}{10}$$

(a)
$$\frac{1}{10}$$
 (b) $-\frac{1}{100}$ (c)

(c)
$$\frac{1}{1000}$$

(d)
$$\frac{1}{10000}$$

The value of $\,log_{.01}(1000)\,$ is : 13.

(a)
$$\frac{1}{3}$$
 (b) $-\frac{1}{3}$ (c)

(b)
$$-\frac{1}{3}$$

(d)
$$-\frac{3}{2}$$

The value of $\log_2\left(\log_5{625}\right)$ is : 14.

15. The value of $\log_{10} 0.00001$ is :

(a)
$$-4$$
 (b) -5 (c) $-\frac{1}{4}$

(d)
$$-\frac{1}{4}$$

If $\log_x 0.1 = -\frac{1}{3}$, then the value of x is:

(d)
$$\frac{1}{1000}$$

The value of $25^{\log_5^4}$ is : 17.

18. If $\log_{10} \lceil \log_{10} (\log_{10} x) \rceil = 0$, then the value of x is :

(b)
$$10^2$$

(c)
$$10^3$$

(d)
$$10^{10}$$

The value of $\log_2 \lceil \log_2 \log_2 \log_2 (65536) \rceil$ is : 19.

If $\log_2 \lceil \log_3 (\log_2 x) \rceil = 1$, then x is equal to : 20.

If $\log_{10} 2x = 1$, the value of x is : 21.

(a)
$$\frac{1}{5}$$

 $[\log_{\scriptscriptstyle 10} 10 + \log_{\scriptscriptstyle 10} 100 + \log_{\scriptscriptstyle 10} 1000 + \log_{\scriptscriptstyle 10} 10000 + \log_{\scriptscriptstyle 10} 100000]$ is : 22.

(b)
$$\log_1 11111$$
 (c)

(c)
$$\log_{10} 1111$$

(d)
$$14\log_{10} 100$$

: 547 :

- The value of $\left(\log \frac{3}{5} + \log \frac{5}{36} + \log 12\right)$ is equal to :
 - (a) $\log 5$
- (b) log 3
- (c) log 2
- (d)

- **24.** $\left(\log \frac{11}{5} + \log \frac{14}{3} \log \frac{22}{15}\right)$ is equal to :
 - (a) $\log 2$
- (b) $\log 3$ (c)
 - log 5
- (d) log 7
- The value of $\left(\frac{1}{3}\log_{10}125 2\log_{10}4 + \log_{10}32\right)$ is:
- (a) 0 (b) $\frac{4}{5}$ (c) 2 (d) 1
- The value of $7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right)$ is : 26.
 - (a) log 2
- (b) log 4
- log 6
- (d) log8

- $\log_{1/3} 81$ is equal to : 27.
 - (a) -27 (b) -4 (c) 4 (d)

- 27

- $\log_{2\sqrt{3}}1728~$ is equal to : 28.

 - (a) 3 (b) 5
- (c) 6
- (d)
- If $\log_{10} x + \log_{10} y = z$, then x is equal to : 29.

 - (a) $\frac{z}{v}$ (b) $\frac{10^z}{v}$ (c) yz (d) $(10^z) y$

- **30.** $\log\left(\frac{a^2}{bc}\right) + \log\left(\frac{b^2}{ac}\right) + \log\left(\frac{c^2}{ab}\right)$ is:

- (d) abc
- 31. $\frac{1}{(\log_a bc)+1} + \frac{1}{(\log_b ca)+1} + \frac{1}{(\log_c ab)+1}$ is equal to :

- (a) 1 (b) 2 (c) 3 (d) $\frac{3}{2}$
- $\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)}$ is equal to :
 - (a) 1
- (b)
- 2 (c)
- (d)

33.	(a)	value of 0	, -	-		,	(d)	a+b	+ <i>c</i>		
34.		$(a) \times (\log a)$	(b) is (b)		o : (c)	0	(d)	1			
35.	(a)	ch of the $\log_{10} 1 = \log_{10} 10$	= 0	(b)	log(1	+2+3)	$=\log 1+$	-log 2+	log3		
36.	If log	g(x+y)=	$= \log x +$	log y a	and <i>x</i> =	1.1568	33, ther	the va	alue of	<i>y</i> is :	
	(a)	7.736	(b)	7.376	6 (c)	3.456	6 (d)	1.234	ļ		
37.	Give (a)	n that lo 0.3241		0.3010, 0.691		ue of 1 (c)	og ₁₀ 5 is 0.699		(d)	0.752	25
38.		g ₁₀ 2=0.36 69897	0103, th				,50 is: 69897		30103		
39.	If log (a)	$g_{10} 2 = 0.3$ 1.9030			_	80 is (c)		30	(d)	None	of these
40.	The	value of	$(\log_9 2)$	$7 + \log_8$	32) is	· ·					
	(a)	4	(b)	7	(c)	$\frac{7}{2}$		(d)	$\frac{19}{6}$		
41.	If log (a)	$g_{10} 2 = 0.3$ 1.5050		en the (b)	value c 1.398		25 is: (c)	1.204	0	(d)	0.6020
42.	If log (a) 2	g2=0.301	10 and		0, then 72		=	: (d) 1			
43.	(log ₁ (a)	₀ 40000 –	-log ₁₀ 4)	equal	s : 10000)	(c)	\log_{10}	39996	(d)	39996
44.	1. 3.	($\frac{1}{10}^2 + \log \frac{1}{10}$	$g_{10} 10 \cdot 1$ $g_{10} \sqrt{10} =$	og ₁₀ 100 = 1		2.	\log_{10}	log ₁₀ 10	=1	
	(a) (c)		3 are co	orrect		(b) (d)		are co			

: 549 :

 $(\log_5 3) \times (\log_3 625)$ equal: 45.

(a) 1

(b)

2

(c)

(d) 4

46. If $\log_{10} 2 = 0.3010$ and $\log_{10} 3 = 0.4771$, then the value of $\log_{100} (.72)$ is:

1.9286 (b)

1.8573 (c)

1.8572

3

(d) .9286

47. The value of $\log_{10} 0.02$ lies between :

(a) 0 and 1

(b) -2 and -1

0 & -1 (c)

(d) -2 & -3

48. If a, b, c are three consecutive integers, then $\log(ac+1)$ has the value :

(a) $(\log b)^2$

(b) $\log b$ (c) $2 \log b$ (d) log 2b

49. Given $\log_{10} 2 = 0.3010$, and $\log_{10} 3 = 0.4771$, then the value of $\log_{10} 1.5$ is :

(a) 0.7161 (b)

0.1761

(c) 0.7116 (d) 0.7611

Given $\log 2 = 0.30103$, the number of digits in 5^{20} is: **50**.

(a) 14

(b) 16 (c) 18 (d) 25

51. Value of $\log_{10} 1$ is:

(a)

1

(b) 0 (c) 0.1 (d)

0.01

Which one of the following is not true in general? **52**.

> (a) $\log x + \log y = \log xy$

(b) $\log x + \log y = \log(x + y)$

 $\log x - \log y = \log \left(\frac{x}{y}\right)$ (c)

(d) $\log x^y = y \log x$

Which of the following is correct? **53**.

> $\log m^n = (\log m)^n$ (a)

(b) $(\log_a b) \times (\log_b a) = 1$

(c) $\log(m \times n) = (\log m \times \log n)$ (d) $\log(m-n) = \log m - \log n$

54. The value of $(\log_b a)(\log_a b)(\log_a c)$ is :

(a)

0

(b) 1 (c)

(d) log(abc)

If $\log_{e} x + \log_{e} (1+x) = 0$, then: 55.

 $x^2 + x - 1 = 0$

 $x^2 + x + 1 = 0$ (b)

10

 $x^2 + x - e = 0$ (c)

2

 $x^2 + x + e = 0$ (d)

If $\log_4(x^2 + x) - \log_4(x + 1) = 2$, then the value of x is : **56**.

(b)

4

(c)

5

(d)

If $\log_8 x + \log_8 \frac{1}{6} = \frac{1}{3}$, then x is equal to :

(a)

12 (b) 16 (c) 18

(d) 24

The value of $\left(\frac{1}{\log_3 60} + \frac{1}{\log_4 60} + \frac{1}{\log_5 60}\right)$ is :

(a)

If $\log_{10} 125 + \log_{10} 8 = x$, then x is equal to : 59.

(a)

–3 (b)

3 (c) $\frac{1}{2}$ (d)

.064

If $\log a + \log b = \log (a + b)$, then: **60**.

(a) a = b (b) $b = \frac{1}{a}$ (c) $b = \left(\frac{a-1}{a}\right)$ (d) $b = \left(\frac{a}{a-1}\right)$

61. If $\log \frac{m}{n} + \log \frac{n}{m} = \log(m+n)$, then:

(a) m+n=1 (b) $\frac{m}{n}=1$ (c) m-n=1 (d) $m^2-n^2=1$

62. The value of:

 $(\log_3 4)(\log_4 5)(\log_5 6)(\log_6 7)(\log_7 8)(\log_8 9)$ is:

(a) 2 (b) 7 (c) 8 (d)

33

63. If $\log(x+1) + \log(x-1) = \log 3$, then x is equal to :

(a) 1

(b) 2 (c) 3

64. If $\frac{\log 8}{\log 2} = x$, then x is equal to :

(a) 2

3

(c)

(d)

The value of x satisfying $\log_{32} x = 0.8$ is : 65.

(b)

(a)

25.6 (b)

16 (c) 10

12.8 (d)

66. If $\log_{10} x = 1.9675$, then $\log_{10} (1000 x)$ is:

(a)

19.675

(b) 4.9675 (c)

 1.9675×3

1/2

(d) 1975.5

The mantissa of log 3274 is .5150. The value of log 0.3274 is : 67.

(a)

0.5150

(b) 1.5150

(c) 1.5150

(d) 2.5150

- The characteristic in log (6.7432×10^{-5}) is : 68.
- (a) -5 (b) -4 (c) 1
- (d) 5
- If $\log_{10} 2 = .3010$, then $\log_2 10$ is: 69.

 - (a) .3322
- (b) 3.2320
- (c) 3.3222
- (d) 5

- If $\log_{10}(.1)=-1$, then $\log_{10}(.001)$ is: **70**.

 - (a) -1.3
- (b) -2
- (c) -2.3 (d) -3
- If $\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b}$, then the value of $a^a b^b c^c$ is:
 - (a)
 - abc

- (b) $\frac{1}{abc}$ (c) 1 (d) $\log (abc)$
- $16^{\log_4^{5}}$ equals : **72**.
 - (a)

 - 5 (b) 16

- (c) 25 (d) $\frac{5}{64}$
- $\log_5 5 \cdot \log_4 9 \cdot \log_3 2$ simplifies to : **73**.
 - (a)
- 2
- 5 (b) 1 (c)
- (d)

- 74. $\log_2 7$ is:
 - an integer (a)
- (b) a prime number
- a rational number
- (d) an irrational number
- **75**. If log a, log b, log c are in A.P., then:
 - (a) a, b, c are in G.P.
- (b) a^2, b^2, c^2 are in G.P.
- (c) a, b, c are in A.P.
- (d) $\log a^2, \log b^2, \log c^2$ are in G.P.
- The value of $\left[\frac{1}{\log_{(q/p)} x} + \frac{1}{\log_{(q/r)} x} + \frac{1}{\log_{(r/p)} x}\right]$ is: 76.
 - (a)

- (b) 2 (c) 1 (d) 0
- If $\log_4 x + \log_2 x = 6$, then the value of x is:
- (a) 2 (b) 4 (c) 8 (d)
- 16

- The value of $3^{-\frac{1}{2}\log_3 9}$ is : **78**.

- (a) -1 (b) $-\frac{1}{3}$ (c) $\frac{1}{3}$ (d)
- If $10^x = 1.73$ and $\log_{10} 1730 = 3.2380$, then x equals : 79.
 - (a)
- 1.2380 (b)
- 0.2380
- (c) 2.380
- (d)

2.2380

- $a^{logb-logc} \times b^{logc-loga} \times c^{loga-logb}$ has a value of (a) 1 (b) 0 (c) -1 (c) 80.

- None
- 81.

- None

(d)

- The value of $(bc)^{\log b/c}$. $(ca)^{\log c/a}$. $(ab)^{\log a/b}$ is (a) 0 (b) 1 (c) -1 (d) Non 82.

- If $\frac{\log a}{y-z} = \frac{\log b}{z-x} = \frac{\log c}{x-y}$ the value of abc is

 (a) 0 (b) 1 (c) -1 (d) 83.

- None
- If $a = b^2 = c^3 = d^4$ then the value of log_a (abcd) is

 (a) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$ (b) $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}$ 84.

- (c) 1+2+3+4 (d)
- None
- If $\log \frac{a+b}{3} = \frac{1}{2} (\log a + \log b)$ then the value of $\frac{a+b}{b+a}$ is (a) 2 (b) 5 (c) 7 (d) 3 85.

- If $a^2 + b^2 = 7ab$ then the value of is $\log \frac{a+b}{3} \frac{\log a}{2} \frac{\log b}{2}$ (a) 0 (b) 1 (c) -1 (d) 7 86.

- If $a^3 + b^3 = 0$ then the value of $log(a + b) \frac{1}{2}(loga + logb + log3)$ is equal to (a) 0 (b) 1 (c) -1 (d) 3 87.

- If $x^{2a-3} y^{2a} = x^{6-a} y^{5a}$ then the value of alog(x/y) is 88.

- (a) 3 logx (b) logx (c) 6 logx (d) 5 logx

ANSWERS

1.	(d)	2.	(b)	3.	(b)	4.	(a)	5.	(d)	6.	(c)
7.	(b)	8.	(b)	9.	(c)	10.	(d)	11.	(d)	12.	(a)
13.	(d)	14.	(a)	15.	(b)	16.	(c)	17.	(a)	18.	(d)
19.	(b)	20.	(a)	21.	(c)	22.	(a)	23	(d)	24.	(d)
25.	(d)	26.	(a)	27.	(b)	28.	(c)	29.	(b)	30.	(b)
31.	(a)	32.	(b)	33.	(b)	34.	(d)	35.	(d)	36.	(b)
37.	(c)	38.	(c)	39.	(a)	40.	(d)	41.	(b)	42.	(b)
43.	(a)	44.	(a)	45.	(d)	46.	(a)	47.	(b)	48.	(c)
49.	(b)	50.	(a)	51.	(b)	52.	(b)	53.	(b)	54.	(b)
55.	(a)	56.	(d)	57.	(a)	58.	(d)	59.	(b)	60.	(d)
61.	(a)	62.	(a)	63.	(b)	64.	(b)	65.	(b)	66.	(b)
67.	(c)	68.	(a)	69.	(c)	70.	(d)	71.	(c)	72.	(c)
73.	(b)	74.	(d)	75.	(a)	76.	(d)	77.	(d)	78.	(c)
79.	(b)	80.	(a)	81.	(b)	82.	(b)	83.	(b)	84.	(a)
85.	(c)	86	(a)	87.	(a)	88.	(a)				

CHAPTER-3 EQUATIONS HOME WORK

1.	Solution (a)	on of the equ 6, 8	uations i (b)	s <i>x</i> – 8, 6	y = -2	& 2 <i>x</i> + (c)	3 <i>y</i> = 36 3, 5	Sis	(d)	none
2.	The va	alue of <i>x</i> and 2, 5	d <i>y</i> in <i>x</i> (b)	+ <i>y</i> = 7 5, 2	7 and 3	3 <i>x</i> – 2 <i>y</i> (c)	′ = 11 is 3, 4	3	(d)	None
3.	The va	alue of x and $2,5$		(+ 2 <i>y</i> = 5, 2	= 11 an		- 3 <i>y</i> = 4 5, -2	is	(d)	none
4.	The g (a)	raphs of the intersecting		n 3 <i>x</i> + parall	-	and 2: (c)	x – y = coinci		(d)	none
5.	The g	raphs of the intersecting	•	n 3 <i>x</i> + parall	-	and 9 (c)	x + 18) coinci		are (d)	none
6.	The g	raphs of the intersecting	•	n 4 <i>x</i> – parall	-	and 8 <i>x</i> (c)	r – 10 <i>y</i> coinci		(d)	none
7.	The va	alue of p for 1	which g (b)	raphs o	of 2x +	py = 7 (c)	and 4 <i>x</i> 7	: + 2y =	: 14 are (d)	coincident none
8.	The s (a) (c)	system of equ unique solu no solution		x – 4y (b) (d)		d 3 <i>x</i> – 2 e soluti	-	have		
9.	The sy (a) (c)	ystem of equ unique Solu no solution		(– 17 <u>)</u> (b) (d)		and 36. te Solu		′ = 115	have	
10.		rice of 9 per s ₹ 61. The p	price of		cils and	d 3 pen		the pr	ice of (5 pencils and 4 none
11.	If 4 is	added to the	e numer	ator of	a frac	tion the	e fractio	n becc	mes e	qual to 1. If 1 is
	subtra	acted from th	e denor	ninator	, the fr	action I	become	es equa	al to $\frac{1}{2}$	The fraction is
	(a)		(b)						2	

- 12. The income of two persons are in the ratio 9:7 and their expenditure are in the ratio 4 : 3. If both of them save ₹ 200 per month. Find the monthly income of both.
 - **₹**1700, **₹** 1200
- (b) ₹ 1600, ₹ 1200
- ₹ 1800, ₹ 1400 (c)
- (d) none
- If 4 is added to the numerator of a fraction the fraction becomes equal to $\frac{1}{2}$. If 5 is 13. subtracted from the denominator. The fraction becomes equal to $\frac{1}{2}$. The fraction

is

- (b) $\frac{3}{14}$ (c) $\frac{3}{11}$
- (d) none
- There are two numbers. If we add one to each number their ratio becomes 2:3. If 14. 1 be decreased from each no. their ratio become 1: 2. The numbers are
 - (a) 3, 1
- (b) 1.3
- (c) 1.5
- (d) none
- A father's age is equal to the ages of 5 children. In fifteen years, his age will be 15. only half of their united age. Find his present age.
 - 40 years
- (b) 45 years
- 42 years
- (d) none

- The roots of equation $x^2 6x + 8 = 0$ are 16.
- 4, 2
- 3, 1 (c)
- (d) none
- The value of c for which the equation $2x^2 9x + c = 0$ have equal roots 17.
- $\frac{8}{81}$ (c) (b)
- (d) none
- The positive value of m for $6x^2 mx + 5 = 0$ have roots in the ratio 1 : 2 is 18.
 - 15 $\sqrt{3}$ (b) 3 $\sqrt{15}$
- (c) $\sqrt{15}$
- (d) none
- The quadratic equation whose roots are 3 + $\sqrt{5}$ and 3 $\sqrt{5}$ is 19.
- $x^{2} 6x + 2 = 0$ (b) $x^{2} 4x + 6 = 0$ $x^{2} 6x + 4 = 0$ (d) none
 - (c)
- 20. The quadratic equation whose one of the roots is 6 + $\sqrt{11}$
 - $x^2 12x + 25 = 0$
 - $x^2 25x + 12 = 0$ (b)
 - $x^2 18x + 15 = 0$
- (d) none
- Factor of $x^2 + 4\sqrt{2} x + 6$ are 21.
 - (a) $(x + 3\sqrt{2})(x + \sqrt{2})$
- (b) $(x + \sqrt{2}) (x + \sqrt{3})$
- (c) $(x + 2\sqrt{2})(x 2\sqrt{3})$
- (d) none

: 556 :

Factor of $x^2 - 2x - 6$ are 22.

- $(x + 1 + \sqrt{2})(x + 2 + \sqrt{2})$
- (b) $(x + 1 + \sqrt{2})(x + 1 \sqrt{2})$
- $(x + 2 + \sqrt{2})(x + 2 \sqrt{2})$ (c)
- (d) none

The roots in $x^4 - 26x^2 + 25 = 0$ are 23.

- (a) $\pm 1, \pm 5$ (b) $\pm 1, \pm 3$
- (c) $\pm 2, \pm 5$
- (d) none

The roots of $2x + \frac{4}{x} = 9$ are 24.

- (a) 4, 2 (b) 4, 3 (c) 4, $\frac{1}{2}$
- (d) none

Value of x in $\sqrt{x} + 2x = 1$ is 25.

- (a) 4 (b) $\frac{1}{4}$ (c) 2
- (d) none

In 6 $(x^2 + \frac{1}{x^2}) - 25 (x - \frac{1}{x}) + 12 = 0$. The value of x are 26.

- (a) 3, 4, 5, 6 (b) 3, $\frac{1}{3}$, 2, $\frac{1}{2}$ (c) 3, $-\frac{1}{3}$, 2 $\frac{1}{2}$ (d)

27. Product of Anokhi age five year ago to her age after 9 year is 51. The present age of Anokhi is

- 9 year (a)
- (b) 8 year
- (c) 7 years
- (d) none

28. The sides of a right triangle containing the right angle are 4x and 5x - 4. If the area of triangle is 210 m². Find the sides of triangle

- 8, 15, 17
- 20, 21, 29 (b)
- (c) 3, 4, 5
- (d) None

29. The sum of squares of two consecutive natural numbers is 841. The smaller number is

- (a) 20
- 21 (b)
- (c) 19
- (d) none

30. A fast train takes 30 hour less than a slow train for a journey of 600 km. If the speed of slow train is 10 km/h less than that of the fast train. Find the speed of fast train.

- (a) 20
- (b) 30
- (c) 40
- (d) none

: 557 :

31. In a cricket match Anil took one wicket more than the thrice the number of wicket taken by Sachin. If the product of the number of wickets taken by both is 14. Find the number of wickets taken by Sachin.

3 (a)

7 (b)

(c) 2 (d) none

If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$. The value of 32. $\alpha^3 + \beta^3$ is

(a) $\frac{3abc-b^3}{a^3}$ (b) $\frac{3abc-a^3}{c^3}$ (c) $\frac{3abc-c^3}{a^3}$ (d) none

If α and β are the roots of the equal square. $ax^2 + bx + c = 0$. Then the value of 33. $\alpha^2 + \beta^2$ is

(a) $\frac{b^2 - ac}{a^2}$ (b) $\frac{b^2 - 2ac}{a^2}$ (c) $\frac{b^2 - a^2}{a^2}$

none

x = 4 is a solution of the equation $3x^2 + (k-1)x + 16 = 0$ if k has value : 34.

(a) 17

(b) -17

(c) 15

35. The quadratic polynomial in x whose zeros are a, 2a is:

(a)

(x + a) (x - 2a) (b) (x - 2a) (x + 2a)

(x + a) (x + 2a)(c)

(d) (x - a) (x - 2a)

The solution of $2 - x = \frac{x-2}{x}$ would include : 36.

-2

-2, -1 (b) 2, -1

(c) -4, 2 (d)

The common root of the equations $x^2 - 7x + 10 = 0$ and $x^2 - 10x + 16 = 0$ is : 37.

(a)

(b)

3

(c) 5 (d)

If the product of the roots of x^2 - 3x + k = 10 is -2 the value of k is : 38.

(a) -2

(b) 8 (c) 12 (d) -8

If one root of the equation $2x^2 - ax + 6 = 0$ is 2 then a equals : 39.

(a)

(b) $\frac{7}{2}$ (c) -7 (d) $-\frac{7}{2}$

The ratio of the sum and the product of the roots of $7x^2 - 12x + 18 = 0$ is : 40.

(a) 7:12

7

(b)

3:2 (d) 7:18 (c)

The roots of $2x^2 - 6x + 3 = 0$ are : 41.

real, unequal and rational (b)

real, unequal and irrational

real and equal (c)

(d) imaginary

The equation $x^2 + 4x + k = 0$ has real roots. Then: 42.

(b) $k \leq 4$

 $k \leq 0$

(d) $k \ge 0$

43. Roots of $ax^2 + b = 0$ are real and distinct if

ab> 0

(b) ab< 0 a, b > 0

(d) a. b< 0

If $log_{10}(x^2 - 6x + 45) = 2$, then the values of x are : 44.

(b) -7, 2

(c) 10, 5

(d) 11, -5

The roots of $\frac{x+4}{x-4} + \frac{x-4}{x+4} = \frac{10}{3}$ are : 45.

> ± 4 (a)

(b) ± 6 (c) ± 8 (d) $2 \pm \sqrt{3}$

If the ratio between the roots of the equations $lx^2 + nx + n = 0$ is p : q, then the 46. value of $\sqrt{\frac{p}{a}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}}$ is:

(a) 1 (b) 3 (c) 0 (d) -1

The value of in the equation $\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = 2\frac{1}{6}$ is : 47.

(a) $\frac{5}{13}$ (b) $\frac{7}{13}$ (c) $\frac{9}{13}$ (d) None

The value of x in the equation $8\left(x^2 + \frac{1}{x^2}\right) - 42\left(x - \frac{1}{x}\right) + 29 = 0$ is : 48.

(a) 4 (b) -2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$

The value of x in the equation $\sqrt{4x-3} + \sqrt{2x+3} = 6$ is : 49.

(b) 1 (c) 100 (d) 111

The roots of the equation $4^x - 3(2^{x+2}) + 32 = 0$ would include : (a) 1, 2 & 3 (b) 1 & 2 (c) 1 & 3 (c) **50**.

2 & 3

The solution set of the equation $5^{x+1} + 5^{2-x} = 126$ is: 51.

(b) $\{-1,2\}$ (c) $\{1,-2\}$ (d) $\{-1,-2\}$

The sum of a number and its reciprocal is $2\frac{1}{20}$. The number is : 52.

(a) $\frac{5}{4}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$ (d) $\frac{1}{6}$

- Solving equation z^2 -6z + 9 = $4\sqrt{z^2 6z + 6}$ following following roots are 53. obtained
 - $3 + 2\sqrt{3}$, $3 2\sqrt{3}$ (b) 5, 1 (a)
 - (c) all the above
- (d) None
- Solving equation (2x+1)(2x+3)(x-1)(x-2) = 150 the roots available are 54.
 - (a) $\frac{1 \pm \sqrt{129}}{4}$ (b) $\frac{7}{2}$ -3 (c) $-\frac{7}{2}$, 3
- (d) None
- Solving equation (2x+3)(2x+5)(x-1)(x-2) = 30 the roots available are 55.

 - (a) $0, \frac{1}{2}, \frac{-11}{4}, \frac{9}{4}$ (b) $0, -\frac{1}{2}, \frac{-1 \pm \sqrt{105}}{4}$
 - (c) $0, -\frac{1}{2}, -\frac{11}{4}, \frac{9}{4}$ (d) None
- Solving equation $\sqrt{y^2 + 4y 21} + \sqrt{y^2 y 6} = \sqrt{6y^2 5y 39}$ following roots 56. are obtained
 - (a)
- 2, 3, 5/3 (b) 2, 3, -5/3 (c) -2, -3, 5/3 (d) -2, -3, -5/3

ANSWERS

1.	(a)	2.	(b)	3.	(c)	4.	(a)	5.	(c)	6.	(b)	7.	(a)
8.	(a)	9.	(c)	10.	(b)	11.	(c)	12.	(c)	13.	(b)	14.	(d)
15.	(b)	16.	(b)	17.	(a)	18.	(b)	19.	(c)	20.	(a)	21.	(a)
22.	(d)	23.	(a)	24.	(c)	25.	(b)	26.	(c)	27.	(b)	28.	(b)
29.	(a)	30.	(a)	31.	(c)	32.	(a)	33.	(b)	34.	(d)	35.	(d)
36.	(b)	37.	(d)	38.	(b)	39.	(a)	40.	(b)	41.	(b)	42.	(b)
43.	(b)	44.	(d)	45.	(c)	46.	(c)	47.	(c)	48.	(a)	49.	(a)
50.	(d)	51.	(b)	52.	(a)	53.	(c)	54.	(a)	55.	(b)	56.	(b)

CHAPTER-4 CO-ORDINATE GEOMETRY HOME WORK

1.	(a)	•	, ,	2, 4) an (b)	•	•	e vertic	equilateral	d) (d)	other
2.	The po (a) (c)	oints (2 right a equila	ingled	5, 2) ar	nd (-6, - (b) (d)	-9) are isosc other		rtices of a tria	ingle wh	nich is
3.	The po (a) (c)	right a	ingled	5, 2) ar	nd (-4, 9 (b) (d)	9) are t isosce other		tices of a tria	ngle wh	ich is
4.	The po (a) (c)	oints (2 right a equila	ingled	5, 3) an	d (-2, 4 (b) (d)	isosce	eles	ces of a trian		ch is
5.	The po (a) (c)	oints (1 right a equila	ngled		√3) and (b) (d)			ne vertices of	a triang	gle which is
6.	(4, 3)	are						gle with vertion	-	-2) (-6, 5) and (3, -3)
7.	The co	entroid (0, 0)		_		-		-5, 3) and (7, (-1, 1)		
8.	The ra	atio in v 1:1		ne poin 2:1	-	-	les the (d)	joint of points None	s (3, 4)	and (7, 11) is
9.	The aris (a)	rea of a	a triano (b)	gle with	vertice		(d)	and (-3, 4) ii	n terms	of square units

10.	The a	rea of a	a triang (b)		vertice (c)		(1, 2) (d)	and (-1, 2) is None	•	
11.	The a	rea of t		-		ces (4, -1		-1) and (2, 1) None	is	
12.	The a	rea of t	the triai	-		ces (<i>p,</i> -1		n, r+ p) and (r None	r, p+q) i	S
13.				•		collinea (b)		$^{1}/_{q} = 1$		
	(c)	$^{1}/_{p}$ +	$^{1}/_{q} =$	0		(d)	$^{1}/_{p}$ –	$^{1}/_{q}=0$		
14.	(a)	equatior 4x+3y 4x-3y	/-1=0		(b)	_	+1=0	s (1, -1) and (-2, 3) is	given by
15.	2x+3y	/-5=0 a	nd 7x-8	5y-2=0	is			and the poir $3x+y+4=0$		ersection of None
16.		x-5y-2=	=0 and	paralle	I to the	lines 2	x-3y+1	oint of interse 4=0 is 3x+2y+1=0		•
17.		x-5y-2=	=0 and	perper	dicular	to the	lines 2	point of inte x-3y+14=0 is 2x-3y+5=0	;	n of 2x+3y-5=0 2x-3y-5=0
18.		nes x-y Concı	v-6=0 ,	6x+5y+	-8=0 ar	nd 4x-3		•	rent	·
19.	The li			-	-	2) and t lue of <i>k</i>		ijoining (1, 2) and (2	2, k) are parallel
	(a)	1	(b)	0	(c)	-1	(d)	None		

20. The lining joining (-1, 1) and (2, -2) and the line joining (1, 2) and (2, k) are perpendicular to each other for the following value of *k* (a) 1 (b) 0 (c) -1 (d) A factory products 300 units and 900 units at a total cost of ₹ 6800/- and ₹10400/-21. respectively. The liner equation of the total cost line is y=6x+1,000 (a) (b) y=5x+5,000(c) y=6x+5,000(d) None 22. If an investment of ₹ 1000 and ₹100 yield an income of ₹ 90 ₹ 20 respectively for earning ₹ 50 investment of ₹ _____ will be required. (a) less than ₹ 500 (b) over ₹ 500 (c) ₹ 485 (d) ₹ 486 23. If an investment of ₹ 60000 and ₹ 70000 respectively yields an income of ₹ 5750 ₹ 6500 an investment of ₹ 90000 would yield income of ₹_ 7500 0008 (c) 7750 (d) 7800 (a) (b)

ANSWERS

1.	(a)	2.	(d)	3.	(b)	4.	(d)	5.	(c)	6.	(a)
7.	(d)	8.	(b)	9.	(c)	10.	(a)	11.	(a)	12.	(a)
13.	(a)	14.	(a)	15.	(b)	16.	(a)	17.	(b)	18.	(a)
19.	(a)	20.	(d)	21.	(c)	22.	(d)	23	(b)		

CHAPTER-5 LINEAR INEQUALITIES

- 1. The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as
 - (a) $y \ge x/5$
- (b) $5y \le x$
- (c) $5 y \ge x$
- (d) Both (a) and (c)
- **2.** The union however forbids him to employ less than 2 experienced person to each fresh person. This situation can be expressed as
 - (a) $x \le y/2$
- (b) $y \le x/2$
- (c) $y \ge x/2$
- (d) x > 2y

ANSWERS

1. (d) Both (a) and (c) **2**. (b)

CHAPTER-6

SEQUENCES AND SERIES (PROGRESSIONS) HOME WORK

1.	3+5+	-7 <i>up</i> i	to n ter	$rms = \dots$								
	(a)	n^2	(b)	(n+1))2	(c) n^2	+ 2 <i>n</i>	(d)	none (of (a),(b),	(c)	
2.	(-49) · (a)				up t - 49			49	(d)	none of	(a),(b),	(c)
3.	50+48 (a)			•	51 tern			(d)	none	of (a),(b),	(c)	
4.					rms is					rst 20 ter none o		
5.	(a)	m(2n	-1)	(b) <i>i</i>	n(2n+1))		um of fir	st 2 <i>n</i> -	1 terms i	s	
	(C) -	$\frac{1}{2}(2n-1)$	1)	(d)	none of	f (a),(b)),(C)					
6							-	the sur		st <i>m</i> term	IS ,	
	(a)	m + n	(b)	0	(c) m	$\frac{+n}{2}$	(0	d) non	e of (a)	,(b),(c)		
7.		<i>mth</i> ter	m of ar	n A.P.	is $\frac{1}{n}$	and the	e <i>n</i> th	term is	$\frac{1}{m}$ th	nen its (mn) th	term
	is (a)	1	(b)	0	(c)	(d)	none o	of (a),(b)	,(c)			
8.	If the	ratio of	the su	m of n	n terms	and su	ım of <i>n</i>	terms o	f an A.l	P. is $\frac{m^2}{n^2}$, then	
	the ratio of their m^{th} and n^{th} terms is											
	(a)	$\frac{2m-1}{2n-1}$	$\frac{1}{2}$ (b) $\frac{2n}{2}$	$\frac{n+1}{n+1}$	(c)	$\frac{m}{n}$	(d)	none	of (a),(b	o),(c)		

: 565 :

9. If for two A.P.s the ratio of their sum of n terms is $\frac{2n+1}{3n-1}$ then the ratio of their fifth terms is

(a) $\frac{17}{25}$ (b) $\frac{19}{26}$ (c) $\frac{21}{29}$ (d) none of (a),(b),(c)

10. If for an A.P. the sum of its first m terms is n and the sum of its first n terms is mthen the sum of first m + n terms is

(a) m + n (b) 0 (c) -(m + n) (d) none of (a),(b),(c)

11. If the m^{th} term of an A.P. is $\frac{1}{n}$ and the n^{th} term is $\frac{1}{m}$ then the sum of its firstmn terms is

(a) $\frac{1}{mn}$ (b) $\frac{1}{2}$ (mn-1) (c) $\frac{1}{2}$ (mn+1) (d) none of (a),(b),(c)

12. The sum of any finite number of terms of G.P. $1+\frac{1}{2}+\frac{1}{4}+\dots$ is.......

(a)<2 (b) >2 (c) 2 (d) none of (a),(b),(c)

13. The sum of any finite number of terms of G.P. $1+\frac{1}{3}+\frac{1}{9}+\dots$ is.........

(a) $<\frac{3}{2}$ (b) $>\frac{3}{2}$ (c) $\frac{3}{2}$ (d) none of (a),(b),(c)

14. The least value of *n* such that $1+3+3^2+3^3+.....up$ to *n* terms > 7000 is

(a) 8 (b) 9 (c) 10 (d) none of (a),(b),(c)

15. The greatest value of n such that $\frac{1}{2} + \frac{1}{4} + \dots + to n \text{ terms} < .999$ is

(a) 8 (b) 9 (c) 10 (d) none of (a),(b),(c)

(a) mn (b) \sqrt{mn} (c) $\sqrt{m/n}$ (d) none of (a),(b),(c)

17. If $x = 1 + a + a^2 + \dots \infty$, $y = 1 + b + b^2 + \dots \infty$ then $1 + ab + a^2b^2 + \dots \infty$ =

(a) xy (b) $\frac{xy}{xy-1}$ (c) $\frac{xy}{x+y-1}$ (d) none of (a),(b),(c)

If sum to infinity of G.P. $p,1,\frac{1}{n},\dots$ is $\frac{25}{4}$ then $p = \dots$ (18.

- (a)
- 5
- (b)

5/4

- (c) 5 or 5/4 (d) none of (a),(b),(c)

If the p^{th} , q^{th} and r^{th} terms of a G.P. be x, y and z respectively then 19.

 $x^{q-r}y^{r-p}z^{p-q} = \dots$

- (b) 1 (c) 2 (d) none of (a),(b),(c)

20. If the *n*th terms of G.P. 1280,640,320,..... and 5,10,20,....be same then n = 100

- (a)

5

- (b)
- (c) 7
- (d) none of (a),(b),(c)

21. A tennis ball when dropped to the ground rebounds to half of its height from which it falls. It is dropped from a height of 16 meters . Then the total distance traveled by the ball when it rests on the ground is

- 48 m (a)
- (b) 32 m
- (c) 64 m
- (d) $47\frac{15}{16}$ m

The sum of 10 terms of an A. P. is 230 and the sum of its 4 terms is 44, the sum 22. of its 14 terms is

- (a) 344 (b)
- - 434 (c) 343 (d)

none of them

23. The sum of an A. P. is 30. If its common difference and the last term are 2 and 10 respectively, the number of terms are

- 5 or 6
- (b)
- 5 or 7 (c) 6 or 7
- (d) none of them

24. The sum of numbers between 200 and 400 exactly divisible by 7 is

- 8729 (a)
- (b) 3187
- (c) 3287
- (d) none of them

25. The sum of numbers between 1 and 100 which are exactly divisible by 3 or 5 is

- 4285 (a)
- (b)
- 3200 (c) 2318
- (d) none of them

26. The 6th term of an A. P. in 121, the sum of its first 11 terms is

- 1210 (a)
- 1331 (b)
- (c) 1330
- (d) none of them

27. The sum of 2*n* terms of the series

1-2+3-6+5-10+7-14+.... is

- $-n^2$ (b) n^2 (c) $-n^3$ (d) n^3

: 567 :

28.	The sum of four numbers in A. P. is 20 and the sum of their squares is 120, the
	product of the numbers is

(a) 1220 (b) 3840 (c) 384 (d) 288

29. The sum of five numbers in A. P. is 15 and the sum of their squares is 55, the product of the numbers is

(a) 100 (b) 120 (c) 240 (d) 50

30. The sum of five numbers in A. P. is 30, and the product of the first and the last is 20, the sum of last two numbers is

(a) 15 (b) 30 (c) 18 (d) 20

31. A class consists of a number of boys whose ages are in A. P. the common difference being 4 months. If the youngest boy of the class be only 8 years old and the sum of the ages of all the boys of the class be 168 years, the number of boys in the class are

(a) 15 (b) 14 (c) 13 (d) 16

32. A class consists of a number of boys whose ages are in A. P. the common difference being 4 months. If the youngest boy of the class be only 8 years old and the sum of the ages of all the boys of the class be 168 years, the age of the eldest boy in the class is

(a) 15 (b) 14 (c) 13 (d) 16

33. A person travels 15 kilometers on a cycle in the first hour and diminishes his speed by $^{1}/_{2}$ kilometer every hour. What time will he take to travel 156 kilometers?

(a) 15 hours (b) 13 hours (c) 14 hours (d) 16 hours

34. The sum of three numbers in G. P. is 35 and their product is 1000, the sum of squares of the numbers is

(a) 500 (b) 512 (c) 525 (d) 550

35. The sum of first four terms of a G. P. is 65 and the sum of its last two terms is 45, the sum of its first and last number is

(a) 45 (b) 51 (c) 44 (d) 35

36. The sum of *n* terms of the series 2 + 11 + 101 + 1001is

(a) $(10^n - 1) + n$ (b) $(10^{2n} - 1) + n$

(c) $(9)(10^n - 1) + n$ (d) $(1/9)(10^n - 1) + n$

37.If we insert 4 geometric means between 1/2 and 512, the 3rd G.M. is 16 (c) 64 (d)

(a) 32 (b)

none of them

38. A refrigerator passes through three stages before it reaches to a customer from the manufacturer. At each stage the cost is increased by 10%. If the manufacturer's cost is ₹ 4000, the amount a customer will have to pay for it is

5324 (b) (a)

4400 (c) 4840 (d) none of them

39. If a, b, c are in G.P. and x, y by the arithmetic means between a, b and b, c respectively then a/x + c/y is

(a)

0

(b)

2 (c)

1 (d) none of them

40. If the arithmetic mean between a and b is twice as large as their geometric mean, the ratio between the numbers can be written as

 $2 + \sqrt{3} : 2 - \sqrt{3}$

(b) $2 - \sqrt{3} : 2 + \sqrt{3}$

 $4 + \sqrt{3} : 4 - \sqrt{3}$ (c)

(d) none of them

The arithmetic mean of two positive numbers is to their 41. geometric mean.

<

(a)

>

(c)

(d)

42. The sum of all 2 digit numbers is:

(b)

4750 (a)

4905 (b)

(c) 3776 (d) 4680

43. If (k + 1), 3k and (4k + 2) be any three consecutive terms of an A.P., then the value of *k* is:

1

(a)

3

(b) 0 (c)

(d) 2

44. The sides of a right angled triangle are in A.P. The ratio of sides is:

1:2:3 (a)

2:3:4 (b)

3:4:5 (c)

5:8:3 (d)

If a, b, c are in G.P. and $a^{1/x} = b^{1/y} = c^{1/z}$, then x, y, z are in : 45.

(a)

A.P. (b) G.P. (c) H.P. (d)

None

 $6^{1/2} \cdot 6^{1/4} \cdot 6^{1/8} \dots \infty = ?$ 46.

(a)

6

(b) ∞

(c)

216 (d) 36

 $1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \dots = ?$ 47.

- (a) $\frac{1}{2}$ (b) $\frac{1}{6}$ (c) $\frac{3}{4}$ (d) $\frac{4}{9}$

The tenth term of the series $\sqrt{3}$, $\sqrt{12}$, $\sqrt{27}$,..... 48.

- (a)
- $\sqrt{200}$ 510 (b)
- (c) $\sqrt{300}$
- (d) $\sqrt{312}$

The sum of the series $1^2 + 1 + 2^2 + 2 + 3^2 + 3 + \dots + n^2 + n$ is equal to 49.

- (a)
 - $\frac{7n^2 + n^3}{14}$ (b) $\frac{8n^2 + 9n + 6}{2}$
- $\frac{5n^3 + 9n^2 + 9n}{6} \qquad \text{(d)} \qquad \frac{6n^2 + 7n}{8} \quad \text{(e)} \frac{n(n+1)(n+2)}{3}$

The nth element of the sequence -1, 2, -4, 8 is **50**.

- (a) $(-1)^n 2^{n-1}$ (b) 2^{n-1} (c) 2^n (d) none of these

The number of the terms of the series $10 + 9\frac{2}{3} + 9\frac{1}{3} + 9 + \dots$ will amount to 51. 155 is

- (a)
- 30
- (b) 31
- (c) 32
- (d) (a) and (b) both

The two arithmetic means between -6 and 14 is **52**.

- (a) 2/3, 1/3

- (b) $2/3,7\frac{1}{3}$ (c) $-2/3,-7\frac{1}{2}$ (d) none of these

53. The pth term of an AP is (3p - 1)/6. The sum of the first n terms of the AP is

- (a) n(3n + 1)
- (b) n/12 (3n + 1)
- (c) n/12 (3n - 1)
- (d) none of these

The first term of an A.P is 14 and the sums of the first five terms and the first ten 54. terms are equal is magnitude but opposite in sign. The 3rd term of the AP is

- (a) $6\frac{4}{11}$ (b) 6 (c) 4/11 (d) none of these

The sum of the series $\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}}$ to 18 terms is 55.

- $9841\frac{(1+\sqrt{3})}{\sqrt{3}}$ (a)

- (b) 9841 (c) $\frac{9841}{\sqrt{3}}$ (d) none of these

Four geometric means between 4 and 972 are **56**.

- 12, 36, 108, 324 (a)
- (b) 12, 24, 108, 320
- 10, 36, 108, 320 (c)
- (d) none of these

: 570 :

ANSWERS

1.	(c)	2.	(b)	3.	(a)	4.	(b)	5.	(a)	6.	(b)	7.	(a)
8.	(a)	9.	(b)	10.	(c)	11.	(c)	12.	(a)	13.	(a)	14.	(b)
15.	(b)	16.	(b)	17.	(c)	18.	(c)	19.	(b)	20.	(a)	21.	(a)
22.	(b)	23.	(a)	24.	(a)	25.	(c)	26.	(b)	27.	(a)	28.	(c)
29.	(b)	30.	(c)	31.	(d)	32.	(c)	33.	(b)	34.	(c)	35.	(d)
36.	(d)	37.	(a)	38.	(a)	39.	(b)	40.	(a)	41.	(a)	42.	(b)
43.	(a)	44.	(c)	45.	(a)	46.	(a)	47.	(c)	48.	(c)	49.	(e)
50.	(a)	51.	(d)	52.	(b)	53.	(b)	54.	(a)	55.	(a)	56.	(a)

CHAPTER-7 MATHEMATICS OF FINANCE HOME WORK

1.	A machine is depreciated at the rate of 20% on reducing balance. The original cost of the machine was ₹ 100000 and its ultimate scrap value was ₹ 30000. The effective life of the machine is											
	(a) (c)	4.5 years (a 5 years (ap		(b) (d)	5.4 ye	•						
2.	If A = ₹ 1000, n = 2 years, R = 6% p.a compound interest payable half-yearly, the principal (P) is											
	(a)	₹ 888.80	(b)	₹ 885		(c)	800	(d)	none	of these		
3.	The population of a town increases every year by 2% of the population at beginning of that year. The number of years by which the total increase population be 40% is											
	(a)	7 years		(b)	10 yea							
	(c)	17 years (a	pp)	(d)	none o	of thes	se					
4.		The useful life of a machine is depreciation is 10% p.a. The so (a) ₹3486 (b) ₹43					-	f its life		f 10000. Ra		
5.	The annual birth and death rates per 1000 are 39.4 and 19.4 respectively. The number of years in which the population will be doubled assuming there is no immigration or emigration is											
	(a)	35 yrs.	(b)	30 yrs	i.	(c)	25 yrs	;	(d)	none of th	ese	
6.	The C.I on ₹ 4000 for 6 months at 12% p.a payable quarterly is											
-	(a)		(b)	₹ 240	· · = / • •	(c)	243		(d)	none of th	ese	
7.	The	The amount of an annuity certain of ₹ 150 for 12 years at 3.5% p.a C.I is										
	(a)	₹ 2190.28	(b)	₹ 1290	0.28	(c)	₹2180	0.28	(d)	none of th	ese	
8.	A loan of ₹ 10,000 is to be paid back in 30 equal installments. The amount of each installment to cover the principal and at 4% p.a CI is										each	
	(a)	₹ 587.87	•	•		•		.3	(d)	478.3		

: 572 :

9.	A company borrows ₹ 10000 on condition to repay it with compound interest at 5% p.a by annual installments of ₹ 1000 each. The number of years by which the debt will be clear is											
	(a)	14.2 yrs.	(b)	10 yrs.	(c)	12 yrs.	(d)	none of the	hese			
10.		Paul borrows Ilments of ₹ 2			-	•	-					
	(a)	10 yrs.	(b)	12 yrs.	(c)	11 yrs.	(d)	none of the	hese			
11.	10% made	rson invests p.a C.I. anr e his yearly in	nually. T nvestme	he amounent for the	t standing 12th time i	y to his cred s.	dit one y	ear after he	e has			
	(a)	₹ 11761.3	(b)	₹ 10000	(c)	₹ 12000	(d)	none of the	nese			
12.	A person bought a house paying ₹ 20000 cash down and ₹ 4000 at the end of each year for 25 yrs. at 5% p.a. C.I. The cash down price is											
	(a)	₹ 75000	(b)	₹ 76000	(c)	₹ 76375.7	7 (d)	none of the	nese.			
13.	purcl comp is pa	an purchased hase and a counded half aid after six Ilment is [Giv ₹ 8719.66 ₹ 7893.13	greed to yearly months yen log	to pay the in 20 equa is from the 10.6 = 1.02 (b) ₹	e balance I half year date of	with interesty with installme purchase the g 31.19 = 1.	est at 1 nts. If the nen the	2% per ai e first install	nnum Iment			
14.	The difference between compound and simple interest at 5% per annum for 4 years on ₹ 20000is ₹											
	(a)	250	(b)	277	(c)	300	(d)	310				
15.		compound ir						for the firs	t and			
	(a)	2200	(b)	2287	(c)	2285	(d)	2291				
16.	The present value of ₹ 10000 due in 2 years at 5% p.a. compound interest when the interest is paid on yearly basis is ₹											
	(a)	9070	(b)	9000	(c)	9061	(d)	None				

17.		resent value terest is paid (ompoun	d interest when
	(a)	9070	(b)	9069	(c)	9061	(d)	None
18.	that hi	son left ₹ 1000 is minor sons ve equally afte nuch each son 50000	Tom, I r attair	Dick and Harry ning the age 2	y aged 5 years	9, 12 and 19 s. The rate o	5 years s	should each
19.	In how (a) (c)	v many years 15 years 3 m 14 years 3 m	nonths	sum of money (b) (d)	14 ye	e at 5% p.a. ars 2 monthe ars 2 monthe	S	nd interest?
20.		v many years Ifyearly basis' 18 years 7 m 18 years 8 m	? nonths	of money tree (b) (d)	18 yea	5% p.a. con ars 6 month ars 3 months	S	nterest payable
21.	and s	•	realize	ed at the tin	ne of	sale being	₹ 232	year. The cost 40 and₹ 9000 10 years
22.		chine worth ₹ its value wou 4 years 6 mo 4 years 5 mo	ıld redu onths		00? 4 yea	5% on its opers 7 months	_	alue each year. mately
23.		chine worth ₹ its value wou 11 years 6 m 11 years 8 m	ıld redu nonths	•	11 yea	5% of its op ars 7 months ars 2 months	s	alue each year. imately
24.	install			_				in 20 annual annual payment 52320

J.K.SHAH CLASSES

25.	A sinking fund is created for redeeming debentures worth ₹ 5 lakhs at the end of
	25 years. How much provision needs to be made out of profits each year provided
	sinking fund investments can earn interest at 4% p.a.?

(a) 12006

(b) 12040

(c) 12039

(d) 12035

26. A machine costs ₹ 520000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of ₹25000. What amount should be set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a.?

(a) 16000

(b) 16500

(c) 16050

(d) 16005

27. Raja aged 40 wishes his wife Rani to have Rs.40 lakhs at his death. If his expectation of life is another 30 years and he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?

(a) 84448

(b) 84450

(c) 84449

(d) 84077

28. Appu retires at 60 years receiving a pension of 14400 a year paid in half-yearly installments for rest of his life after reckoning his life expectation to be 13 years and that interest at 4% p.a. is payable half-yearly. What single sum is equivalent to his pension?

(a) 145000

(b) 144871

(c) 144800

(d) 144700

1.	(b)	2.	(a)	3.	(c)	4.	(a)	5.	(a)	6.	(a)	7.	(a)
8.	(c)	9.	(a)	10.	(d)	11.	(a)	12.	(c)	13.	(a)	14.	(d)
15.	(d)	16.	(a)	17.	(c)	18.	(d)	19.	(b)	20.	(d)	21.	(c)
22.	(d)	23.	(d)	24.	(c)	25.	(a)	26.	(c)	27.	(d)	28.	(b)

CHAPTER-8 PERMUTATIONS HOME WORK

1.		aminati come t				_		-		best a	nd worst papers
	(a)	9 8	(b)	10	(c)	8 9		(d)	none	of thes	se
2.	togeth	ner. The	numb	er of s	such an	rangem	ents is	}			es never come
	(a)	(n–2) <u> </u>	n – 1	(D)	(n-1)	n – 2	(C)	<u>ln</u>	(d)	none	of these
3.	The s	um of a 13333	_	git num (b)	ber cor 12222	-	the di (c)	gits 2, 2133		withou (d)	ut repetitions is 133320
4.		number 'angle' v	-				word "	Triangl	e" to b	e arrar	nged so that the
	(a)	20		(b)	60		(c)	24		(d)	32
5.		es and ladies	•						so that	t any tv	wo and only two
	(a)	70		(b)	27		(c)	72		(d)	none of these
6.		number ular thir		•		10 diffe	erent th	nings t	aken 4	at a tir	me in which one
	(a)	2015		(b)	2016		(c)	2014		(d)	none of these
7.		number ular thir				10 diffe	erent th	ings ta	aken 4	at a tir	ne in which one
	(a)	3020		(b)	3025		(c)	3024		(d)	none of these
8.		number 0,8,9 is		nbers I	ying be	etween	10 and	1000	can be	forme	d with the digits
	(a)	124		(b)	120		(c)	125		(d)	none of these
9.	The to	otal nun	nber of	f 9 digi	t numb	ers of c	differen	t digits	is		
	(a)	10 9		(b)	89		(c)	9 9		(d)	none of these

10.		otal nur uch tha		-					·' signs	can b	e arranged	d in a
	(a)	7/3		(b)	6 × 7	/ 3	(c)	35		(d)	none of the	hese
11.	-	ght– sid		e short	est per	son; th	e num	-	such ar	rangen	on is alwa nents is	ys on
12.	012	97	?	nes coi	nnectio	ns may	/ be all	otted w	ith 8 d		m the nun	nbers
	(a)	10 ⁸	(b)	10!	(c)	¹0C ₈		(d)	¹⁰ P ₈			
13.	digits	0 1 2	9 le	ading t	o unsu	ccessf	ul even	ts?	combin	ne whe	n each ring	g has
	(a)	999	(b)	10 ³	(c)	10!	(d)	997				
14.	How	many c	hoices	are op	en to y	ou?			terns a	and 5 d	ifferent col	ours.
	(a)	2	(b)	7	(c)	20	(d)	10				
15.		w many are adja	-		-						ole so that	no 2
	(a)	4! × 5	!	(b)	5! × 6	!	(c)	⁶ P ₆	(d)	5 × ⁶ F	6	
16.		w many so that						-	men	be sea	ited at a r	ound
	(a)	4! × 3	!	(b)	⁴ P ₄		(c)	3 × ⁴ P	4	(d)	⁴ C ₄	
17.	How (a)	many n 420	umber	s highe (b)	er than 360	a millio	n can l	oe form 7!	ed with	h the di (d)	gits 04455 None	53?
18.	The t	otal nu	mber d	of num	bers le	ss thar	ո 1000	and di	visible	by 5 f	ormed wit	h 0 1
	29 (a)	9 such t 150	hat ea	ch digit (b)	does r 152	not occ	ur mor (c)	e than o	once ir	each (d)	number is None	
19.		-	our digi	its num	bers ca	an be f	ormed	by usin	g 1 2 .	7 wl	nich are gr	eater
	than (a)	3400? 500		(b)	550		(c)	560		(d)	None	

20.		tickets may b		,		•		s of single first one station to
	(a)	2500	(b)	2450	(c)	2400	(d)	None
21.	How r	many numbers	s greate	er than 23000	can be	e formed with	1, 2,	5?
	(a)	3024	(b)	60	(c)	78	(d)	90
22.				etters be post				
	(a)	49	(b)	4 ⁵	(c)	⁹ P ₄ (d)	⁹ C₄	
23.		he permutation			he wor	d "chalk" are	written	in a dictionary
	(a)	30	(b)	31	(c)	32	(d)	None

1.	(c)	2.	(a)	3.	(d)	4.	(c)	5.	(c)	6.	(b)
7.	(c)	8.	(c)	9.	(c)	10.	(c)	11.	(a)	12.	(a)
13.	(a)	14.	(c)	15.	(b)	16.	(a)	17.	(b)	18.	(c)
19.	(c)	20.	(b)	21.	(d)	22.	(a)	23.	(c)		

CHAPTER-9 COMBINATIONS HOME WORK

1.	-	son ha m to a			he nun	nber of	ways	in whic	h he m	ay invi	te one	or more
	(a)	250	(b)	255	(c)	200	(d)	none	of these	9		
2.				s : T.V		erator,		ing Mad	se one chine and of these	nd a co		the four
3.	If ⁿ c ₁₀ (a)	= ⁿ c ₁₄ , 24			(c)	1	(d)	none	of these	e		
4.	The n (a)	umber 30	of diag (b)	onals i 35	n a ded (c)	cagon i 45	s (d)	none	of these	Э		
5.			•	•	rams th three p	oarallel			om a se	et of fo	ur para	allel lines
6.		umber nd 4 th 1250	•		ely is				into th		·	ontaining
7.	is	umber 5775	of way						ally div			e groups
8.	stude	nts is							•	•		among 3
9.	obtain	ned by j	oining	these i	n pairs	is					nber c	f chords
	(a)	25	(b)	27	(c)	28	(d)	none	of these	7		

,	7	<u> </u>				<u> </u>	1117	THE MIATION & STATISTI	
10.		-			e a ma		ecisio	cision upholding a lower reversing the lower court 226.	
	. ,		,		. ,		` ,		
11.	•	•	•		•			aving an alternative. one or more questions is	
	(a)	720	(b)	728		729	(d)	none of these	
	. ,		, ,		. ,				
12.							•	rearranging the letters of	the word
	(a)	18	(b)	35	(c)	36	(d)	ear alternate is none of these	
	(-)		(-)		(-)		(-)		
13.					•			are to be predicted. The	number of
	αiπer (a)	ent fore 316	ecasts (b)	contair 214	•	actiy 6		results is none of these	
	(a)	310	(D)	217	(0)	112	(u)	none of these	
14.	The r	number	of diff	erent fa	actors t	the num	nber 7	600 has is	
	(a)	120	(b)	121	(c)	119	(d)	none of these	
15.				•		can con		to a fund out of 1 ten-rup	ee note, 1
	(a)	15	(b)	25	(c)	0	(d)		
	()		()		()		()		
16.					_	reater t	han 30	0 can be formed with the	digits 1, 2,
	3, 4, (a)	5 witho 110	out repe (b)			111	(d)	none of these	
	(u)	110	(5)	112	(0)		(u)	none of these	
17.								exes. The number of ways	the letters
		•	•			are in e			
	(a)	119	(b)	120	(C)	121	(d)	none of these	
18.	Out	of 8 diff	erent b	alls tak	en thre	ee at a	time w	thout taking the same thre	ee
	•			n once	for hov	v many	numb	er of times you can select a	3
	partio	cular ba		80	(0)	$^{7}P_{2}$	(4)	⁸ P ₃	
	(a)	C_2	(D)	C ₃	(6)	F ₂	(u)	Γ3	
19.	Out	of 10	consoi	nants a	and 4	vowels	how	many words can be for	med each
		aining 6		nant a	nd 3 vo		10 -	4	
	(a)	¹⁰ C ₆ >		.401		(b)		× ⁴ C ₃ ×9!	
	(c)	C_6	× ⁴ C ₃ ×	10!		(d)	None		

: 580 :

- **20.** The number of words which can be formed with 2 different consonants and 1 vowel out of 7 different consonants and 3 different vowels the vowel to lie between 2 consonants is
 - (a) $3 \times 7 \times 6$
- (b) $2 \times 3 \times 7 \times 6$
- (c) $2 \times 3 \times 7$
- (d) None
- **21.** How many combinations can be formed of 8 counters marked 1 2 ...8 taking 4 at a time there being at least one odd and even numbered counter in each combination?
 - (a) 68
- (b)
- 66
- (c) 64
- (d) 62

1.	(b)	2.	(a)	3.	(b)	4.	(b)	5.	(b)	6.	(b)	7.	(a)
8.	(b)	9.	(c)	10.	(a)	11.	(b)	12.	(c)	13.	(c)	14.	(c)
15.	(a)	16.	(c)	17.	(b)	18.	(a)	19.	(b)	20.	(a)	21.	(a)

CHAPTER-10 SET THEORY AND RELATION HOME WORK

1.			of subs			-	-	none	of thes	e,		
2.			is repre (b)		•	Φ	(d)	none	of thes	e		
3.			7} , B { (b)							of thes	e	
4.	(a)	{0, 1,	<x<5} re<br="">2, 3, 4, 3, 4, 5</x<5}>	5}	(b)	{1, 2,		•	e integr	al valu	es only	
5.	(a)	{2x 0	2, 4, 6, 8 0 <x <5}<br="">0<u><</u>x<u><</u>5}</x>	-	(b)		<x<5}< th=""><th>e</th><th></th><th></th><th></th><th></th></x<5}<>	e				
6.	(a)	a finite	ubes of e set, set		tural nu (b) (d)	an infi	s nite se of these	•				
7.			all inte				(d)	none	of thes	e		
8.			positiv	e even	numbe	er and	O is a	set of p	ositive	odd n	umbers, the	en E
		set of	whole of ratio				(b) (d)	N, none	of thes	e		
9.	If R is (a)		t of pos	sitive ra (b)	itional i R ⊂E			is the E ⊂R		real nu (d)	mbers then none of the	
10.	If N is (a)		t of nat	ural nu (b)	mbers N⊂I,		s the se (c)	-		ntegers (d)		ese
11.	If R is then	the se	et of iso	sceles	right a	ngled t	riangle	es and	l is set	of isos	celes trianç	gles,
	(a)	R = I		(b)	R⊃I,		(c)	R⊂I		(d)	none of the	ese
12.	(A∪B) (a)	ı' is equ (A∩ B		(b)	A ∪B'	(c)	A'∩ B'	',	(d)	none	of these	

: 582 :

13.	(A∩B)' is equ	ual to								
	(a)	(A' ∪E	3)'	(b)	A' ∪B'	•	(c)	A'∩ B',	(d)	none of th	nese
14.	A∪E i	s equa	l to (E	is a sup	perset o	of A)					
	(a)	Α,	(b) E,		(c)	φ,	(d)	none of thes	e		
15.	If AΔ	B = (A-	-B) ∪(E	B–A) ar	nd A = {	[1, 2, 3	, 4}, B :	= {3,5,7} than	AΔB is	3	
	(a)	{1, 2,	4, 5, 7	}		(b)	{3}				
	(c)	{1, 2,	3, 4, 5,	7}		(d)	none	of these			
16.	"Is sm	naller th	nan" ov	er the s	set of e	ggs in	a box i	s			
	(a)	Trans	itive (T	·)	(b)	Symn	netric (S	S)			
	` '	Reflex	,	,	` ,	•	•	•			
17.	"Is eq	ual to"	over th	ie set o	f all rat	ional n	umbers	s is			
	(a)				(c)			E			
18.	"has t	he sam	ne fathe	er as" .	OV	er the s	set of c	hildren			
	(a)	R						none of thes	e		
19.	"is pe	rpendio	cular to	" over	the set	of stra	iaht lin	es in a given	plane i	s	
	(a)	R			(c)		_				
20.	"is th	e recipi	rocal o	f"	. over t	the set	of non-	-zero real nur	nbers is	S	
	(a)	s	(b)		(c)	Т	(d)				
21.	"Is the	e squar	e of" o	ver n s	et of re	al num	bers is				
	(a)	R	(b)					none of thes	e		
22.	In a o	roup of	f 20 chi	ildren. 8	8 drink	tea bu	t not co	offee and 13 li	ike tea.	The numb	er of
		en ḋrinl									
	(a)	6	(b)	7	(c)	1	(d)	none of thes	e		
23.		ets V = er if x i			R={x / :	x ² +2x=	0} and	$S = \{x : x^2 + x - x^2 +$	–2=0} a	ire equal to	one
		–2	•		(c)	1/2	(d)	none of thes	e		
	(/	-	(~)	_	(-)	· 583	. ,		-		

- **24.** Given $A = \{2, 3\}$, $B = \{4, 5\}$, $C = \{5, 6\}$ then $A \times (B \cap C)$ is
 - (a) $\{(2, 5), (3, 5)\}$
- (b) {(5, 2), (5, 3)}
- (c) $\{(2, 3), (5, 5)\}$
- (d) none of these
- **25.** Following set notations represent: $-A \subset B$; $x \notin A$; $A \supset B$; $\{0\}$; $A \not\subset B$
 - (a) A is a proper subset of B; x is not an element of A; A contains B; singleton with an only element zero; A is not contained in B
 - (b) A is a proper subset of B; x is an element of A; A contains B; singleton with an only element zero; A is contained in B
 - (c) A is a proper subset of B; x is not an element of A; A does not contains B; contains elements other than zero; A is not contained in B
 - (d) None
- 26. Represent the following sets in set notation: Set of all alphabets in English language, set of all odd integers less than 25, set of all odd integers, set of positive integers x satisfying the equation x2+5x+7=0:-
 - (a) A={x:x is an alphabet in English}, I={x:x is an odd integer>25}, I={2, 4, 6, 8} $I={x: x^2+5x+7=0}$
 - (b) A={x:x is an alphabet in English}, I={x:x is an odd integer<25}, I={1, 3, 5, 7} I={x: $x^2+5x+7=0$ }
 - (c) A={x:x is an alphabet in English}, I={x:x is an odd integer £ 25}, I={1, 3, 5, 7} $I={x: x^2+5x+7=0}$
 - (d) None
- What is the relationship between the following sets? A={x:x is a letter in the word flower} B={x:x is a letter in the word flow} C={x:x is a letter in the word wolf} D={x:x is a letter in the word follow}
 - (a) B=C=D and all these are subsets of the set A
 - (b) $B=C\neq D$
 - (c) B≠C≠D
 - (d) None
- **28.** State whether the following sets are finite, infinite or empty: (i) $X = \{1, 2, 3,500\}$ (ii) $Y = \{y: y = a^2 ; a \text{ is an integer } \}$ (iii) $A = \{x:x \text{ is a positive integer multiple of 2}}$ (iv) $B = \{x:x \text{ is an integer which is a perfect root of } 26 < x < 35\}$
 - (a) finite, infinite, infinite, empty
- (b) infinite, infinite, finite, empty
- (c) infinite, finite, infinite, empty
- (d) None

- 29. A sample of income group of 1172 families was surveyed and noticed that for income groups <₹ 6000/-, ₹ 6000/- to ₹ 10999/-, ₹ 11000/-, to ₹15999/-, ₹ 16000 and above no TV set is available to 70, 50, 20, 50 families, one set is available to 152, 308, 114, 46 families and two or more sets are available to 10, 174, 84, 94 families. If A = {x|x is a family owning two or more sets}, B = {x|x is a family with one set, }C = {x|x is a family with income less than ₹6000/-}, D = {x|x is a family with income ₹ .6000/- to ₹ 10999/-}, E = {x|x is a family with income ₹ 11000/- to ₹ 15999/-}, find the number of families in each of the following sets (i) C ∩ B
 - (ii) A∪E
 - (a) 152, 580
- (b) 152, 20
- (c) 152, 50
- (d) 152, 496
- **30.** If four members a, b, c, d of a decision making body are in a meeting to pass a resolution where rule of majority prevails list the wining coalitions. Given that a, b, c, d own 50% 20% 15% 15% shares each.
 - (a) {a, b} {a, c} {a, d} {a, b, c} {a, b, d} {a, b, c, d}
- (b) {b, c, d}
- (c) $\{b, c\} \{b, d\} \{c, d\} \{a, c, d\} \{b, c, d\} \{a\} \{b\} \{c\} \{d\} \phi$
- (d) None
- **31.** If A = $\{2, 3\}$, B = $\{4, 5\}$, C = $\{5, 6\}$ then A × (B \cup C) is
 - (a) $\{(2, 4) (2, 5) (2, 6) (3, 4) (3, 5) (3, 6)\}$
 - (b) $\{(2,5)(3,5)\}$
 - (c) $\{(2, 4) (2, 5) (3, 4) (3, 5) (4, 5) (4, 6) (5, 5) (5, 6)\}$
 - (d) None

<u>ANSWERS</u>

1.	(b)	2.	(c)	3.	(a)	4.	(b)	5.	(c)	6.	(b)	7.	(c)
8.	(b)	9.	(b)	10.	(a)	11.	(c)	12.	(b)	13.	(b)	14.	(a)
15.	(a)	16.	(a)	17.	D (ALL)	18.	D (ALL)	19.	(b)	20.	(a)	21.	(d)
22.	(b)	23.	(a)	24.	(a)	25.	(a)	26.	(b)	27.	(a)	28.	(a)
29.	(d)	30.	(a)	31.	(a)					·			

CHAPTER-11

: 585 :

FUNCTION HOME WORK

					: 586	:				
12.		= 1/1-x an	nd g(x) = ((b)			7	-x		(d)	none of these
11.		= (x-1)/x,	g(-½) is (b)	2		(c)	3/2		(d)	3
10.		= 1/1–x, f(- 0 (b)	•		(c)	0	(d)	none	of thes	e
9.	(a)	e domain of $f(x) = x^2$, of $f(x) = x^2 + \frac{1}{2}$	y(x) = x			(b)	f(a) = x	x, g(x)	= 1-x	are equal to 1
8.	The d (a) (c)	omain and (reals, nat (reals, rea	ural numl	{(x, y) : bers)	$y = x^2$	} where (b) (d)	(reals,	positiv		s)
7.	The ra	ange of {(3, {0, 0}			0,0)} is	(c)	{0, 0, 0	0, 0}	(d)	none of these
6.		lomain of { (1, 6)				(c)	(1, 2)		(d)	{6, 7}
5.	(a)	x <y} where<br="">not a func one-one n</y}>	tion	is	(b) (d)	a fund	ction of these	e		
4.	(a)), y=x²} who not a func inverse m	tion	(b)	a func	tion of these	e			
3.	{(x , y (a) (c)	r) x = 4} wh not a func one-one n	tion	(b)	function	on of these	e			
2.		x+y = 5} wh not a func one-one n	tion			posite of these	function e	n		
1.	(a)	= {x, y, z}, {n, p), (x, y), {(y, p), (y, y)	q), (y, r), ((z, s)},	(b)	{(x, s), (y, s),	(z, s)}		iction.

- 13. If f(x) = 1/1-x and g(x) = (x-1)/x, then g(x) = (x-1)/x, then g(x) = (x-1)/x is (a) x-1 (b) x (c) 1/x (d) none of these
- 14. The function $f(x) = 2^x$ is

 (a) one-one mapping
 (b) one-many
 (c) many-one
 (d) none of these
- The range of the function $f(x) = \log_{10}(1 + x)$ for the domain of real values of x when $0 \le x \le 9$ is

 (a) (0,1) (b) {0, 1, 2} (c) {0, 1} (d) none of these
- 16. The Inverse function f^{-1} of f(x) = 2x is

 (a) 1/2x (b) $\frac{x}{2}$ (c) 1/x (d) none of these
- 17. If f(x) = x+3, $g(x) = x^2$, then fog(x) is

 (a) $x^2 + 3$ (b) $x^2 + x + 3$ (c) $(x+3)^2$ (d) none of these
- **18.** If f(x) = x+3, $g(x) = x^2$ then f(x).g(x) is

 (a) $(x+3)^2$ (b) x^2+3 (c) x^3+3x^2 (d) none of these
- 19. The Inverse h^{-1} when $h(x) = \log_{10} x$ is

 (a) $\log_{10} x$ (b) 10^{x} (c) $\log_{10}(1/x)$ (d) none of these
- **20.** For the function $h(x) = 10^{1+x}$ the domain of real values of x where $0 \le x \le 9$, the range is
 - (a) $10 \le h(x) \le 10^{10}$ (b) $0 \le h(x) \le 10^{10}$ (c) 0 < h(x) < 10 (d) none of these

1.	(b),(d)	2.	(c)	3.	(a)	4.	(b)	5.	(a)
6.	(c)	7.	(b)	8.	(b)	9.	(a)	10.	(b)
11.	(d)	12.	(a)	13.	(b)	14.	(a)	15.	(a)
16.	(b)	17.	(a)	18.	(c)	19.	(b)	20.	(a)

CHAPTER-12

: 587 :

LIMIT AND CONTINUITY **HOME WORK**

1.
$$\lim_{x \to 1} \frac{(1-x^{-1/3})}{(1-x^{-2/3})}$$
 is equal to

- (a) -1/2 (b) 1/2 (c) 2 (d) none of these

2.
$$\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$$
 is equal to

- (a) -3 (b) 1/3 (c) 3 (d) none of these

3.
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$
 is equal to

- (a) 3 (b) -1/3 (c) -3 (d) none of these

4.
$$\frac{(1+x)^6-1}{(1+x)^2-1}$$
 then $\lim_{x\to 0} f(x)$ is equal to

- (a) -1 (b) 3 (c) 0 (d) none of these

5.
$$\lim_{x\to 0}\frac{\log(1+px)}{e^{3x}-1} \text{is equal to}$$
 (a) p/3 (b) p (c) 1/3 (d) none of these

6.
$$\lim_{x \to \infty} \frac{1}{x^3 + x^2 + x + 1}$$
 is equal to

- (a) 0 (b) e (c) $-e^6$ (d) none of these

7.
$$\lim_{x \to 2} \frac{4 - x^2}{3 - \sqrt{x^2 + 5}}$$
 is equal to

- (a) 6 (b) 1/6 (c) -6 (d) none of these

8.
$$\lim_{x \to \sqrt{2}} \frac{x^{3/2} - 2^{3/4}}{\sqrt{x} - 2^{1/4}}$$
 exists and is equal to a finite value which is

- (a) -5 (b) 1/6 (c) $3\sqrt{2}$ (d) none of these

9.
$$\lim_{x\to 0} \left(\frac{1}{x}\right) \log (1-x/2)$$
 is equal to

-1/2 (b) $\frac{1}{2}$ (c) 2 (d)

none of these

 $\lim_{x \to \infty} \left[\frac{1^3 + 2^3 + 3^6 + \dots + x^3}{x^4} \right]$ is equal to

(a)

1/4

(b) $\frac{1}{2}$ (c) -1/4 (d) none of these

= x+1 when $x \le 1$ A function f(x) defined as follows f(x)11.

3 - px when x > 1

The value of p for which f(x) is continuous at x = 1 is

(a) -1 (b) 1 (c) 0 (d) none of these.

f(x) = x-1 when x > 012. $= -\frac{1}{2}$ when x = 0 x+1 when x<0

f(x)is

(a)

Continuous at x = 0 (b) undefined at x = 0 Discontinuous (d) none of these.

 $\lim_{x\to 0} \frac{(e^{2x}-1)}{x}$ is equal to

(a) $\frac{1}{2}$ (b) 2 (c) 0 (d) none of these

 $\lim_{x\to\infty}\frac{e^{x}+1}{e^{x}+2}$ is evaluated to be

(a) 0 (b) -1 (c) 1 (d) none of these

If $\lim_{x \to 3} \left(\frac{x^n - 3^n}{x - 3} \right) = 108$ then the value of n is

(a) 4 (b) -4 (c) 1 (d) none of these

 $f(x) = (x^2 - 1) / (x^3 - 1)$ is undefined at x = 1the value of f(x) at x = 1 such that it is 16. continuous at x=1 is

(a)

3/2

(b) 4/3

(b) 2/3 (c) -3/2 (d) none of these

f(x) = 3, when x < 217.

 $f(x) = Kx^2$, when $x \ge 2$ is continuous at x = 2, then the value of k is

(c) 1/3 (d) none of these

 $f(x) = \frac{x^2 - 3x + 2}{x - 1} x \neq 1 \text{ becomes continuous at } x = 1. \text{ Then the value of } f(1) \text{ is}$ (a) 1 (b) -1 (c) 0 (d) none of these

: 589 :

 $\lim_{x\to 0} \frac{e^{x^2-1}}{x^2}$ is evaluated to be 19.

- (a) 1
- (b)

1/2

- (c) -1 (d)

none of these

 $\lim_{x \to 1} \left(\frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)$ is evaluated to be 20.

- (a)
- 1/9 (b) 9
- (c) -1/9 (d)
- none of these

 $\lim_{n\to\infty} \left[\frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \cdots + \frac{1}{6^n} \right]$ is 21.

- (a)
- 1/5
- (b) 1/6 (c) -1/5 (d)
- none of these

 $\lim_{x \to 0} \frac{x}{\log(1+x)}$ is equal to 22.

- (a) 1
- 2 (b)
- (c)
- none of these -0.5 (d)

23. The value of the limit when *n* tends to infinity of the expression $(7n^3-8n^2+10n-7)\div(8n^3-9n^2+5)$ is

- (a) 7/8 (b) 8/7 (c) 1

- (d) None

24. The value of the limit when *n* tends to infinity of the expression $(n^4 - 7n^2 + 9) \div (3n^2 + 5)$ is

- (a) 0 (b) 1
- (c) -1
- (d)

The value of the limit when *n* trends to infinity of the expression 25. $(3n^3 + 7n^2 - 11n + 19) \div (17n^4 + 18n^3 - 20n + 45)$ is

- (a) 0 (b) 1
- (c) -1 (d)
- 1/2

The value of the limit when *n* tends to infinity of the expression 26. $n^{1/3} (n^2+1)^{1/3} (2n^2+3n+1)^{-1/2}$ is

- (b) 1 (c)
 - -1
- $1/\sqrt{2}$ (d)

The value of the limit when *n* tends to infinity of the expression $\left(1+\frac{1}{n}\right)^n$ is 27.

- (a) e
- (b)
- 0
 - (c)

28. The value of the limit when x tends to zero of the expression $[(1+x)^n - 1] \div x$ is

- (a)
- (b)

- n + 1 (c) n 1 (d) n(n 1)

The value of the limit when x tends to 3 of the expression $(x^2+2x-15)/(x^2-9)$ is 29.

- 4/3
- (b)
- 3/4
- (c)
- 1/2 (d) indeterminate

30.	The va	alue of 2) ^{1/2} -(a	the lim	it when 1∸v² is	x tend	s to ze	ro of th	e expression
	(a)	a ^{-1/2}	(b)	a ^{1/2}	(c)	а	(d)	a ⁻¹

31. The value of the limit when x tends to unity of the expression $[(3+x)^{1/2} - (5-x)^{1/2}] \div (x^2 - 1)$ is

(a) 1/4 (b) 1/2 (c) -1/4 (d) -1/2

32. The value of the limit when n tends to infinity of the expression

 $2^{-n} (n^2+5n+6)[(n+4)(n+5)]^{-1}$ is

(a) 1 (b) 0 (c) -1 (d) None

33. Find $\lim_{n \to \infty} [(n^3+1)^{1/2} - n^{3/2}] \div n^{3/2}$ (a) 1/4 (b) 0 (c) 1 (d) None

34. Find $\lim_{n \to \infty} (2^n - 2)(2^n + 1)^{-1}$

(a) 1/4 (b) 1/2 (c) 1 (d) None

35. Find $\lim_{n \to \infty} (2n-1)2^n (2n+1)^{-1}2^{1-n}$

(a) 2 (b) 1/2 (c) 1 (d) None

36. Find $\lim_{n \to \infty} (n^2 + 1)[(n+1)^2 + 1]^{-1}5^{n+1}5^{-n}$

(a) 5 (b) e^{-1} (c) 0 (d) None

37. Find $\lim_{n \to \infty} [n^n . (n+1)!] \div [n! (n+1)^{n+1}]$

(a) 5 (b) e⁻¹ (c) 0 (d) None

38. Find $\lim_{n \to \infty} [\{1.3.5...(2n-1)\}(n+1)^4] \div [n^4 \{1.3.5...(2n-1)(2n+1)\}]$ (a) 5 (b) e^{-1} (c) 0 (d) None

39. Find $\lim_{n \to \infty} n^n (1+n)^{-n}$

(a) e^{-1} (b) e (c) 1 (d) -1

40. $3x^2+2x-1$ is continuous

(a) at x = 2 (b) for every value of x

(c) both (a) and (b) (d) None

1.	(b)	2.	(c)	3.	(a)	4.	(b)	5.	(a)
6.	(a)	7.	(a)	8.	(c)	9.	(a)	10.	(a)
11.	(b)	12.	(c)	13.	(b)	14.	(c)	15.	(a)
16.	(b)	17.	(a)	18.	(b)	19.	(a)	20.	(c)
21.	(a)	22.	(a)	23.	(a)	24.	(d)	25.	(a)
26.	(d)	27.	(a)	28.	(a)	29.	(a)	30.	(a)
31.	(a)	32.	(b)	33.	(b)	34.	(c)	35.	(a)
36.	(a)	37.	(b)	38.	(c)	39.	(a)	40.	(c)

CHAPTER-13

: 592 :

none of these

DIFFERENTIAL CALCULUS **HOME WORK**

1.	The gradient of the curve	$y = 2x^3 - 3x^2 -$	12x + 8 at $x = 0$ is
	The gradient of the our to	, -	I = X · O GL X

-12 (b) 12 (d) (a) (c) 0

The gradient of the curve $y = 2x^3 - 5x^2 - 3x$ at x = 0 is 2.

(b) -3 (c) 1/3 (d) none of these

The derivative of $y = \sqrt{x+1}$ is 3.

 $1/\sqrt{x+1}$ (b) $-1/\sqrt{x+1}$ (c) $1/2\sqrt{x+1}$ (d) none of these

The gradient of the curve y - xy + 2px + 3qy = 0 at the point (3, 2) is $\frac{-2}{3}$. 4.

The values of p and q are

(b) (2, 2) (c) (-1/2, -1/2) (d) (1/2, 1/6)(a) (1/2, 1/2)

The curve $y^2 = ux^3 + v$ passes through the point P(2, 3) and $\frac{dy}{dx} = 4$ at P. 5.

The values of u and v are

7.

(a) (u = 2, v = 7) (b) (u = 2, v = -7)(c) (u = -2, v = -7) (d) (0, -1)

The gradient of the curve y + px + qy = 0 at (1, 1) is 1/2. The values of p and q are 6. (a) (-1, 1) (b) (2, -1) (c) (1, 2) (d) (0, -1)

The derivative of the function $\sqrt{x + \sqrt{x}}$ is (a)

 $\frac{1}{2\sqrt{x+\sqrt{x}}}$ (b) $1 + \frac{1}{2\sqrt{x}}$

(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$ (d) none of these

8.

Given $e^{-xy} - 4xy = 0$, $\frac{dy}{dx}$ can be proved to be

(a) -y/x (b) y/x (c) x/y (d) none of these

If $\log (x / y) = x + y$, $\frac{dy}{dx}$ may be found to be 9.

(a) $\frac{y(1-x)}{x(1+y)}$ (b) $\frac{y}{x}$ (c) $\frac{1-x}{1+y}$ (d) none of these

If $f(x,y) = x^3 + y^3 - 3axy = 0$, $\frac{dy}{dx}$ can be found out as

(a) $\frac{ay - x^2}{y^2 + ax}$ (b) $\frac{ay - x^2}{y^2 - ax}$ (c) $\frac{ay + x^2}{y^2 + ax}$ (d) none of these

The slope of the tangent to the curve $y = \sqrt{4 - x^2}$ at the point, where the ordinate 11. and the abscissa are equal, is

-1 (b) 1

(c)

0 (d) none of these

The slope of the tangent to the curve $y = x^2 - x$ at the point, where the line y = 212. cuts the curve in the 1st quadrant, is

(a) 2

(b)

3 (c) -3

(d) none of these

For the curve $x^2 + y^2 + 2gx + 2hy = 0$, the value of $\frac{dy}{dx}$ at (0, 0) is 13.

(a) -g/h (b) g/h (c) h/g

(d) none of these

If $x^3 - 2x^2 y^2 + 5x + y - 5 = 0$ then $\frac{dy}{dx}$ at x = 1, y = 1 is equal to

(a) 4/3 (b) -4/3 (c) 3/4 (d) none of these

If $f(x) = \left\{ \frac{(a+x)}{(1+x)} \right\}^{a+1+2x}$ the value of f'(0) is

(a) a^{a+1} (b) $a^{a+1} \left[\frac{1-a^2}{a} + 2 \log a \right]$ (c) 2 log a (d) none of these

Let $f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$ then f' (2) is equal to
(a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (c) 0 (d) none of these 16.

If $f(x) = x^2 - 6x + 8$ then f'(5) - f'(8) is equal to

(a) f'(2) (b) 3f'(2)

(d) none of these

If y = $(x + \sqrt{x^2 + m^2})^n$ then dy/dx is equal to (a) ny (b) ny/ $\sqrt{x^2 + m^2}$ (c) -ny/ $\sqrt{x^2 + m^2}$ (d) none of these 18.

If $f(x) = x^k$ and f'(1) = 10 the value of k is 19.

(a) 10 (b) -10 (c) 1/10 (d) none of these

If $y = \sqrt{x^2 + m^2}$ then $y y_1$ (where $y_1 = dy/dx$) is equal to 20.

(a) -x (b) x (c) 1/x (d) none of these

If $y = e^x + e^{-x}$ then $\frac{dy}{dx} - \sqrt{y^2 - 4}$ is equal to (a) 1 (b) -1 (c) 0 (d) none of these 21.

If $y = e^{\sqrt{2x}}$ then $\frac{dy}{dx}$ is equal to _____. (a) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$ (b) $e^{\sqrt{2x}}$ (c) $\frac{e^{\sqrt{2x}}}{2\sqrt{x}}$ (d) none of these 22.

If $y = \sqrt{x}^{\sqrt{x}}$ then $\frac{dy}{dx}$ is equal to ______. 23.

- (a) $\frac{y^2}{2 y \log x}$ (b) $\frac{y^2}{x(2 y \log x)}$ (c) $\frac{y^3}{\log x}$ (d)

none of these

 $f(x) = x^2/e^x$ then f'(1) is equal to _____ 24. (d)

- (a) -1/e (b) 1/e (c) e

none of these

25. If y=(x+1)(2x-1)/(x-3) then dy/dx is

- (a) $2(x^2-6x-1)/(x-3)^2$ (b) $2(x^2+6x-1)/(x-3)^2$ (c) $2(x^2+6x+1)/(x-3)^2$ (d) None

If $y=(x^{1/2}+2)/x^{1/2}$ then dy/dx is 26.

- (a) $-x^{-3/2}$ (b) $x^{-3/2}$
- $x^{3/2}$ (c)
- (d) None

If $y=(3x^2-7)^{1/2}$ then dy/dx is 27.

- (a) $3x(3x^2-7)^{-1/2}$ (b) $6x(3x^2-7)^{-1/2}$
- $3x(3x^2-7)^{1/2}$ (d) (c)
 - None

If $y=(3x^3-5x^2+8)^3$ then dy/dx is 28.

- (a) $3(3x^3-5x^2+8)^2(9x^2-10x)$
- (b) $3(3x^3-5x^2+8)^2(9x^2+10x)$
- $3(3x^3 5x^2 + 8)^2 (10x^2 9x)$ (c)
- (d) None

If $y=(6x^5-7x^3+9)^{-1/3}$ then dy/dx is 29.

- (a) $(-1/3)(6x^5-7x^3+9)^{-4/3}(30x^4-21x^2)$
- $(1/3)(6x^5 7x^3 + 9)^{-4/3} (30x^4 21x^2)$
- $(-1/3)(6x^5 7x^3 + 9)^{4/3}(30x^4 21x^2)$ (c)
- (d) None

If $v=[(x^2+a^2)^{1/2}+(x^2+b^2)^{1/2}]^{-1}$ then dy/dx is 30.

- $x(a^2-b^2)^{-1}[(x^2+a^2)^{-1/2}-(x^2+b^2)^{-1/2}]$
- $(a^2-b^2)^{-1}[(x^2+a^2)^{1/2}-(x^2+b^2)^{1/2}]$ (b)
- (c) $x(a^2-b^2)^{-1}[(x^2+a^2)^{1/2}+(x^2+b^2)^{1/2}]$
- (d) $(a^2-b^2)^{-1}[(x^2+a^2)^{1/2}+(x^2+b^2)^{1/2}]$

If $y=(x^{1/3}-x^{-1/3})^3$ then dy/dx is 31.

- (b) $1+x^{-2}+x^{-2/3}-x^{-4/3}$
- (a) $1-x^{-2}+x^{-2/3}-x^{-4/3}$ (c) $1+x^{-2}+x^{-2/3}+x^{-4/3}$
- (d) None

: 595 :

- If $y=(2x+1)(3x+1)(4x+1)^{-1}$ then dy/dx is 32.
 - (a) $(24x^2+12x+1)(4x+1)^{-2}$
- $(24x^2+12x+3)(4x+1)^{-2}$ (b)
- $(24x^2+12x+5)(4x+1)^{-2}$ (c)
- (d) None
- If $y=(ax^2+bx+c)^{1/2}$ then dy/dx is 33.
 - $(1/2)(2ax+b)(ax^2+bx+c)^{-1/2}$
- $(-1/2)(2ax+b)(ax^2+bx+c)^{-1/2}$ (b)
- $(1/2)(ax+2b)(ax^2+bx+c)^{-1/2}$ (c)
- (d) None
- If $y=(2x^4+3x^3-5x+6)^{-1/3}$ then dy/dx is 34.
 - $(-1/3)(2x^4+3x^3-5x+6)^{-4/3}(8x^3+9x^2-5)$
 - $(1/3)(2x^4+3x^3-5x+6)^{-4/3}(8x^3+9x^2-5)$ (b)
 - $(1/3)(2x^4+3x^3-5x+6)^{4/3}(8x^3+9x^2-5)$ (c)
 - (d) None
- If $y=\log[e^{3x}(5x-3)^{1/3}(4x+2)^{-1/3}]$ then dy/dx is 35.
 - (a) 3+(1/3)[5/(5x-3)-4/(4x+2)]
- (b) 3-(1/3)[5/(5x-3)-4/(4x+2)]
- (c) 3+(1/3)[5/(5x-3)+4/(4x+2)]
- (d) None
- If $y=x^{x^x}$ then the value of dy/dx is 36.
 - (a) $x^{x^x}[x^{x-1} + \log x.x^x(1 + \log x)]$ (b)
- x^{x^x} [x *-1+logx.(1+logx)]
- (c) $x^{x^x} [x^{x-1} + \log x. x^x (1 \log x)]$
- (d) $x^{x^x} [x^{x-1} + \log x.(1 \log x)]$
- If $y=e^{5/x} (2x^2 1)^{1/2}$ then the value of [dy/dx]/y is 37.
 - (a) $(2x^3 10x^2 + 5)x^{-2} (2x^2 1)^{-1}$
- $(2x^3 5x^2 + 10)x^{-2} (2x^2 1)^{-1}$ (b)
- $(2x^3+10x^2-5)x^{-2}(2x^2-1)^{-1}$ (c)
- (d) None
- If $y=(1+x)^{2x}$ then the value of [dy/dx]/y is 38.
 - $2[x(x+1)^{-1}+log(x+1)]$ (a)
- (b) $x(x+1)^{-1} + \log(x+1)$
- $2[x(x+1)^{-1} \log(x+1)]$ (c)
- (d) None
- If $x(1+y)^{1/2}+y(1+x)^{1/2}=0$ then dy/dx is 39.
 - (a) $-(1+x^2)^{-1}$ (b) $(1+x^2)^{-1}$
- (c) $-(1+x^2)^{-2}$ (d) $(1+x^2)^{-2}$

- If $x^2 y^2 + 3x 5y = 0$ then dy/dx is 40.
 - (a) $(2x+3)(2y+5)^{-1}$ (b) $(2x+3)(2y-5)^{-1}$
 - (c) $(2x-3)(2y-5)^{-1}$ (d)
- None
- If $x^3 xy^2 + 3y^2 + 2 = 0$ then dy/dx is (a) $(y^2 3x^2)/[2y(3-x)]$ (b) $(y^2 3x^2)/[2y(x-3)]$ (c) $(y^2 3x^2)/[2y(3+x)]$ (d) None 41.

- The slope of the tangent at the point (2, -2) to the curve $x^2+xy+y^2-4=0$ is given by 42.
 - (a) 0 (b) 1 (c) -1 (d) None

- If $x^2+y^2-2x=0$ then dy/dx is 43.
 - (a) (1-x)/y (b) (1+x)/y (c) (x-1)/y (d)

- None

- If $x^3+5x^2y+xy-5=0$ then dy/dx is 44.
 - (a) $-(3x^2+10xy+y)/[x(5x+1)]$ (b) $(3x^2+10xy+y)/[x(5x+1)]$
 - (c) $-(3x^2+10xy+y)/[x(5x-1)]$ (d) None

1.	(a)	2.	(b)	3.	(c)	4.	(d)	5.	(b)
6.	(d)	7.	(c)	8.	(a)	9.	(a)	10.	(b)
11.	(a)	12.	(b)	13.	(a)	14.	(a)	15.	(b)
16.	(a)	17.	(b)	18.	(b)	19.	(a)	20.	(b)
21.	(c)	22.	(a)	23.	(b)	24.	(b)	25.	(a)
26.	(a)	27.	(a)	28.	(a)	29.	(a)	30.	(a)
31.	(d)	32.	(a)	33.	(a)	34.	(a)	35.	(a)
36.	(a)	37.	(a)	38.	(a)	39.	(a)	40.	(a)
41.	(a)	42.	(b)	43.	(a)	44.	(a)		

CHAPTER-14 INTEGRATION CALCULUS **HOME WORK**

- Given $f(x) = 4x^3 + 3x^2 2x + 5$ and $\int f(x) dx$ is 1.

 - (a) $x^4 + x^3 x^2 + 5x$ (b) $x^4 + x^3 x^2 + 5x + k$ (c) $12x^2 + 6x 2x^2$ (d) none of these
- Evaluate $\int (x^2 1) dx$ 2.
 - (a) $x^5/5 2/3 x^3 + x + k$ (b) $\frac{x^3}{3} x + k$

(c) 2x

- (d) none of these
- 3.

- $\int \left[\sqrt{x} \frac{1}{\sqrt{x}}\right] dx$ is equal to
 - (a) $\frac{2}{3}x^{\frac{3}{2}} 2x^{\frac{1}{2}} + k$ (b) $\frac{2}{3}\sqrt{x} 2\sqrt{x} + k$
 - (c) $\frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} + k$
- (d) none of these
- 5. Use integration by parts to evaluate $\int x^2 e^{3x} dx$
 - $x^2 e^{3x}/3 2x e^{3x}/9 + 2/27 e^{3x} + k$
 - (b) $x^2 e^{3x} 2x e^{3x} + 2e^{3x} + k$
 - (c) $e^{3x}/3 x e^{3x}/9 + 2e^{3x} + k$
 - (d) none of these
- 6. $\int log x dx$ is equal to

 - (a) $x \log x + k$ (b) $x \log x x^2 + k$

 - (c) $x \log x + k$ (d) none of these
- xe^x dx is 7.
 - (a) $(x-1)e^x + k$ (b) $(x-1)e^x$ (c) $xe^x + k$ (d) none of these

 $\int (\log x)^2 dx \text{ and the result is}$

- $x (log x)^2 2 x log x + 2x + k$ (b) $x (log x)^2 2x + k$

 $2x \log x - 2x + k$

(d) none of these

Evaluate $\int (2x^2 - x^3) dx$ and the value is 9.

- (a) 4/3 + k (b) 5/12 (c) -4/3 (d) none of these

Evaluate $\int_{2}^{4} (3x - 2)^{2} dx$ and the value is 10.

- (a) 104 (b) 100 (c) 10
- (d) none of these.

Evaluate $\int_0^1 (x e^x) dx$ and the value is

- (a) -1 (b) 10 (c) 10/9 (d) +1

 $\int x^x (1 + \log x) dx$ is equal to 12.

- (a) $x^x \log x + k$ (b) $e^{x^2} + k$ (c) $\frac{x^2}{2} + k$ (d) $x^x + c$

If $f(x) = \sqrt{1 + x^2}$ then $\int f(x) dx$ is 13.

- (a) $\frac{2}{3}x(1+x^2)^{3/2}+k$ (b) $\frac{x}{2}\sqrt{1+x^2}+\frac{1}{2}log(x+\sqrt{x^2+1})+k$ (c) $\frac{2}{3}x(1+x^2)^{3/2}+k$ (d) none of these

14. $\int (e^x + e^{-x})^2 (e^x - e^{-x}) dx is$

- (a) $\frac{1}{3}(e^x + e^{-x})^3 + k$ (b) $\frac{1}{2}(e^x e^{x})^2 + k$

(c) $e^x + k$

(d) none of these

15. $\int xe^x / (x+1)^2 dx$ is equal to

- (a) $e^{x}/(x+1) + k$ (b) $e^{x}/x + k$ (c) $e^{x} + k$
- (d) none of these

 $\int (x^4 + 3/x) dx is equal to$

- (a) $x^5/5 + 3 \log |x|$ (b) $1/5 x^5 + 3 \log |x| + k$ (c) $1/5 x^5 + k$ (d) poss of the

: 599 :

Evaluate the integral $\int (1-x)^3 / x \, dx$ and the answer is equal to 17.

 $\log |x| - 3x + 3/2x^2 + k$

(b) $\log x - 2 + 3x^2 + k$

 $\log x + 3x^2 + k$ (c)

- (d) none of these
- The equation of the curve in the form y = f(x) if the curve passes through the point 18. (1, 0) and f'(x) = 2x - 1 is

- (a) $y = x^2 x$ (b) $x = y^2 y$ (c) $y = x^2$ (d) none of these
- Evaluate $\int_{1}^{4} (2x + 5) dx$ and the value is 19.

(a)

30 (d) none of these 3 (b) 10 (c)

20.

 $\int_{1}^{2} \frac{2x}{1+x^2} dx$ is equal to

(a) $log_e (5/2)$ (b) $log_e 5 - log_e 2 + k$

(c)

- log_e (2/5) (d) none of these
- $\int_0^4 \sqrt{3x+4} \, dx \text{ is equal to}$ 21.

(a) 9/112 (b)

112/9 (c) 11/9

(d) none of these

 $\int_0^2 \frac{x+2}{x+1} \, \mathrm{d}x \, \mathrm{is}$ 22.

(a) $2 + \log_e 2$ (b) $2 + \log_e 3$ (c) $\log_e 3$

(d) none of these

 $\int_0^4 \frac{(x+1)(x+4)}{\sqrt{x}} dx$ is equal to 23.

(a) $51\frac{1}{5}$ (b) 48/5

(c) 48

- (d) $55\frac{7}{15}$
- The equation of the curve which passes through the point (1, 3) and has the slope 24. 4x - 3 at any point (x, y) is 4x - 3 at any point (x, y) is (a) $y = 2x^3 - 3x + 4$ (b) $y = 2x^2 - 3x + 4$ (c) $x = 2y^2 - 3y + 4$ (d) none of these

- The value of $\int_2^3 f(5-x)dx \int_2^3 f(x)dx$ is 25.

- 1 (b) 0 (c) -1 (d) none of these
- $\int (x-1)e^x / x^2 dx$ is equal to 26.

- (a) $e^x/x + k$ (b) $e^{-x}/x + k$ (c) $-e^x/x + k$ (d) none of these

 $\int \frac{e^x(x \log x + 1)}{x} dx$ is equal to 27.

- (a) $e^x \log x + k$ (b) $e^x + k$ (c) $\log x + k$ (d) none of these

28. $\int \log x^2 dx$ is equal to

- (a) $x(\log x-1) + k$ (b) $2x(\log x-1) + k$ (c) $2(\log x-1) + k$ (d) none of these

 $\int_{1}^{2} x \log x \, dx$ is equal to 29.

- (a) $2 \log 2$ (b) -3/4 (c) $2 \log 2 \frac{3}{4}$ (d) none of these

Evaluate $\int_{1}^{2} \frac{x^{2}-1}{x^{2}} e^{x+\frac{1}{x}} dx$. The value is 30.

- (a) $e^2(e-1)$ (b) $e^2[\sqrt{e}-1]+k$ (c) $e^2\sqrt{e}$ (d) none of these

 $\int_0^2 3x^2 \, dx \, is$ 31.

- (a) 7 (b) -8 (c) 8 (d) none of these

Using integration by parts $\int x^3 \log x dx$ 32.

- (a) $x^4/16 + k$ (b) $x^4/16(4 \log x-1) + k$ (c) $4 \log x-1 + k$ (d) none of these

33. $\int \log(\log x) / x dx$ is

- $\log(\log x-1) + k$ (b) $\log x-1 + k$ (a)
- $[\log (\log x)-1]\log x + k$ (d) none of these (c)

Integrate w.r.t x, $(3-2x-x^4)$ 34.

- (a) $3x-x^2-x^5/5$ (b) $3x+x^2-x^5/5$ (c) $3x+x^2+x^5/5$ (d)
- None

Integrate w.r.t x, $(4x^3+3x^2-2x+5)$ 35.

- (a) $x^4+x^3-x^2+5x$ (b) $x^4-x^3+x^2-5x$ (c) $x^4+x^3-x^2+5$ (d) None

Integrate w.r.t x, $(x^2 - 3x + x^{1/3} + 7) x^{-1/2}$ 36.

- $(2/5)x^{5/2} 2x^{3/2} + (6/5)x^{5/6} 14x^{1/2}$
- $(5/2)x^{5/2} 2x^{3/2} + (5/6)x^{5/6} + 14x^{1/2}$ (b)
- $(2/5)x^{5/2}+2x^{3/2}+(6/5)x^{5/6}+14x^{1/2}$ (c)
- None (d)

- Integrate w.r.t x, $x(x^2+4)^5$ 37.
 - (a) $(1/12)(x^2+4)^6 + k$
- (b) $(1/6)(x^2+4)^6 + k$
- $6(x^2+4)^6+k$ (c)
- (d) None
- 38. Integrate w.r.t x, $1/[x(\log x)^2]$
 - $-1/\log x + k$ (b)
 - 1/logx +k
- (c) logx
- (d) None

- Integrate w.r.t x, $1/(2x^2 x 1)$ 39.
 - $(1/3)\log[2(x-1)/(2x+1)]+c$ (b) (a)
 - $-(1/3)\log[2(x-1)/(2x+1)] + c$
 - $(1/3)\log[2(1-x)/(2x+1)]$ (d) (c)
 - None
- Integrate w.r.t x, $(x+1)(3+2x-x^2)^{-1}$ 40.
 - $-(1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c$
 - $(1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c$ (b)
 - $-(1/2)\log(3+2x-x^2)+(1/2)\log[(x-3)/(x+1)]+c$ (c)
 - None (d)
- 41. Integrate w.r.t x, xⁿlogx
 - $x^{n+1}(n+1)^{-1}[\log x-(n+1)^{-1}] + c$ (a)
- (b) $x^{n-1}(n-1)^{-1}[\log x (n-1)^{-1}] + c$
- $x^{n+1}(n+1)^{-1}[\log x + (n+1)^{-1}] + c (d)$ (c)
- None
- Integrate w.r.t x, xe^x (x+1)⁻² 42.
- $e^{x}(x+1)^{-1}+c$ (b) $e^{x}(x+1)^{-2}$ (c) $xe^{x}(x+1)^{-1}+c$
- (d) None

- Integrate w.r.t x, $(x-x^3)^{-1}$ 43.
 - (a)
 - $(1/2)\log[x^2/(1-x^2)] + k$ (b) $(1/2)\log[x^2/(1-x)^2] + k$
 - $(1/2)\log[x^2/(1+x)^2]+k$ (c)
- (d) None
- Integrate w.r.t x, $(2x+3)^{1/2}$ from lower limit 3 to upper limit 11 of x 44.
 - (a) 33
- (b) 100/3
- (c) 98/3
- (d) None

1.	(b)	2.	(b)	3.	(c)	4.	(a)	5.	(a)
6.	(d)	7.	(a)	8.	(a0	9.	(b)	10.	(a)
11.	(d)	12.	(d)	13.	(b)	14.	(a)	15.	(a)
16.	(b)	17.	(d)	18.	(a)	19.	(c)	20.	(a)
21.	(b)	22.	(b)	23.	(d)	24.	(b)	25.	(b)
26.	(a)	27.	(a)	28.	(b)	29.	(c)	30.	(a)
31.	(c)	32.	(b)	33.	(c)	34.	(a)	35.	(a)
36.	(a)	37.	(a)	38.	(a)	39.	(a)	40.	(a)
41.	(a)	42.	(a)	43.	(a)	44.	(c)		

STATISTICS

CHAPTER-1

Introduction to Statistics and Statistical Data HOME WORK

1.	Graph (a) (c)		liagram agram	ı	(b) (d)	Bar di	•					
2.	Details (a)	s are s Charts	hown b	y (b)	Tabula	ar pres	entatio	n	(c)	both	(d)	none
3.	The re	elations Pictog	•	tween t (b)	wo var Histog		are sho	own in Bar di	agram	(d)	Line d	iagram
4.	In gen (a)	eral th	e numb (b)	er of ty three	-	tabula one	tion are	e four				
5.	A table	e has four	(b)	two	(c)	five	(d)	none ¡	oarts.			
6.	The n	umber one	of erro (b)	rs in St two	atistics (c)	are three	(d)	four				
7.	The n	umber two	of "Fre (b)	quency one	distrib (c)	ution" i five		four				
8.	(Class (a) (c)		ency)/(\ ency d	Width o	of the cl	ass) is (b) (d)		ed as ency di	stribut	ion		
9.	Tally r (a) (c)	narks (class class		nes	(b) (d)		bounda frequer					
10. 11.	(a)	graph d the n Single Group Cumu	umber frequenced fred	ency dis quency requen	freque ervatior stribution distribu	ency ns less on ution		Statist	ical Ta n value		(d) dis	stribution

: 604 :

12.	An are (a) (c)	ea diagram is Histogram Ogive	(b) (d)	Frequ none	ency P	olygon					
13.	When (a) (c)	all classes ha Pie Chart both	ave a c (b) (d)	Frequ	n width ency P is used	olygon					
14.	An ar (a) (c)	oproximate ide Ogive both	ea of th (b) (d)	_	e of fre ency P		-	e is give	en by		
15.	Ogive (a)	is a line diagram		(b)	Bar di	agram	(c)	both	(d)	none	
16.		ual widths of c construction o Ogive Histogram		(b) (d)	-	ncy dist			ot caus	e any d	lifficulty
17.	The g (a)	raphical repre Histogram	sentati (b)	on of a		ative fr (c)	equeno both	cy distr (d)	ibution none.	is calle	ed
18.		nost common oution is Ogive Frequency P			ammation (b) (d)	c repre Histog none		on of a	groupe	ed frequ	uency
19.	Vertic (a)	al bar chart m Histogram	ay app (b)		mewha ency P			(c)	both	(d)	none
20.	The n (a)	umber of type one (b)	s of cu	mulativ	/e frequ three	uency i	s (d)	four			
21.	-	resentative va ion, mean de class interva	viation		ss inter		the cal	culation class		ean, sta (d)	ndard
22.	. ,	umber of obse		` ,	ng withi		. ,	alled	none	(u)	TIONE
23.	,	es with zero for a contract of the contract of	` ,	cies ar	-	,	(c)	class		(d)	none
24.	. ,	etermining the mutually exc independent	class lusive					that the			

: 605 :

25.	Most (a) (c)	extreme value class limits class bounda		(b)		be inclu interva		a clas	s interv	al are	called
26.	The v	alue exactly a class mark				ss inte	rval is o		none		
27.	Differo (a)	ence between width	the lov (b)	wer and size	d the u	pper cla (c)	ass bou both	undarie (d)	s is none		
28.	classe							·	•		have
	(a)	equal width	(b)	unequ	ıal widt	:h	(c)	maxin	num	(d)	none
29.	(a) (b)	ency density Histogram Ogive Frequency P none when t	olygon								
30.	"Cumi (a)	ulative Freque less-than typ					rpe	(c)	both	(d)	none
31.	For th (a)	e construction class boundarboth	_	•	class	•		on			
32.	In all (a) (c)	Statistical cald class bounda both		(b)	diagrar class are use	value	Iving e	nd poir	nts of c	asses	
33.	Upper (a)	limit of any c same	lass is (b)	differe		m the I (c)	ower lii both		he next none	class	
34.	Upper (a)	boundary of true (b)	any cla false		ncides o		e Lowe none.	r boun	dary of	the ne	xt class.
35.		oting the first a limit of a clas true (b)				of the				y betw	een the
36.	The lo (a) (c)	ower extreme lower class I both		f a clas (b) (d)			oounda	ry			
37.	For th Use	e construction	of gro	uped fr	requen	cy dist	ribution	from ι	ıngroup	oed dat	a we
	(a)	class limits	(b)	class	bounda	aries	(c)	class	width	(d)	none

: 606 :

38. When one end of a class is not specified, the class							class is	called			
	(a)	closed- end	class	(b)	open-	end cl	ass	(c)	both	(d)	none
39.	Class (a)	boundaries s true	should I (b)	be cons false	sidered	to be to	the rea both	l limits (d)	for the none	class i	nterval.
40.	Differ (a)	ence betweer width	n the m (b)	aximun size	n & mir (c)	nimum range		of a give (d)	en data none	a is call	ed
41.		togram if the be proportion true			•			the hei	ghts of	the rec	ctangles
42.		all classes h merically equ class freque	ıal to th	ie		heights		rectan	igles in both (ram will
43.	Conse	ecutive rectar true (b)	ngles in false	a Histo	ogram (c)	have n both	o spac	e in be	tween none	ŕ	
44.	Histo(gram emphas false	izes the	e width: true	s of red	ctangle (c)	s between	een the	class (d)	bounda none	aries .
45.	To fin (a) (c)	d the mode g Ogive Histogram	raphica (b) (d)	Frequ	ency F may be						
46.		the width of e Histogram. True	all clas	ses is s	ame, f	requen	ocy poly	/gon ha		he sam	ne area
47.	For ol	otaining frequ sent the corre true	ency p	olygon		the su		ve poir		se abs	cissa
48.	(a) In rep (a) (c)	resenting sim Ogive Frequency F		quency	distrib (b) (d)	Histo	of a dis		none ⁄ariable	;	

: 607 :

49.	Diagrammatic representation of the cumulative frequency distribution is											
	(a)	a) Frequency Polygon					Ogive					
	(c)	Histo	gram			(d)	none	e				
50.	class	0—10	is							class	mark of the	
51.	class	ne non- 0—19	is	oping c		0—19			—59 th	e class	s mark of the	
	(a)	0	(b)	19	(c)	9.5	(d)	none				
52.		iency : ie class		5 30 , cur	10—2 8 mulativ (c)		20—30 15 uency i (d)		—40 6	40–	–50 4	
	. ,		, ,				, ,					
53.	An O	give ca 2	n be pı (b)	repared 3		4		differe_ none	nt ways	S.		
54.	limits	of the encies Ogive	s-interv	als an	•	s, whose x- coordinates are the upper oordinates are corresponding cumulati Histogram Frequency Curve						
		·	•			, ,		•				
55.	The b	readth Ogive		rectan (b)	•	equal to gram		ength of both		ss-inte none	rval in	
56.	In His	In Histogram, the classes are tal (a) overlapping (b) non-o					nina	(c)	both	(d)	none	
	(a)	OVCITE	ирріпід	(6)	11011-0	ovenap	ping	(0)	DOUT	(u)	HOLIC	
57 .	For o	verlapp same	•	ss-inte (b)	ervals the not sa		s limit (c)	& class zero	bound	ary are (d)	none	
5 8.	Class	ificatio	n is of									
	(a)	four		(b)	Three	Э	(c)	two		(d)	five kinds.	

1.	(a)	2.	(b)	3.	(d)	4.	(a)	5.	(c)	6.	(b)
7.	(a)	8.	(a)	9.	(d)	10.	(c)	11.	(c)	12.	(a)
13.	(b)	14.	(b)	15.	(a)	16.	(c)	17.	(b)	18.	(b)
19.	(a)	20.	(b)	21.	(c)	22.	(b)	23.	(b)	24.	(a)
25.	(c)	26.	(c)	27.	(c)	28.	(a)	29.	(a)	30.	(a)
31.	(b)	32.	(a)	33.	(b)	34.	(a)	35.	(a)	36.	(b)
37.	(a)	38.	(b)	39.	(a)	40.	(c)	41.	(a)	42.	(a)
43.	(a)	44.	(b)	45.	(c)	46.	(b)	47.	(b)	48.	(c)
49.	(b)	50.	(a)	51.	(c)	52.	(d)	53.	(a)	54.	(a)
55.	(b)	56.	(a)	57.	(a)	58.	(a)				

CHAPTER-2 Measure of Central Tendency HOME WORK

1.	(a)	G.M		most st H.M		all the	meası (d)	ures of none.	central	tendency.		
2.	Weigh (a)	nted A.N G.M	M is rel	ated to		ency	(c)	H.M	(d)	none.		
3.	Frequ (a)	encies True	are als	o calle (b)	d weig false	hts.	(c)	both	(d)	none		
4.	The a	lgebraio 2	c sum (of devia	ations (of obse 1	rvation (d)	s from 0	their A	.M is		
5.	G.M o	of a set n/2 th		servati (b)					their pr (d)			
6.	(a)	H.M			procal G.M	of the A	A.M of i	recipro		bservations none	S .	
7.		never True	less th	an G.N		(c)	both	(d)	none			
8.	G.M is	s less th true			(c)	both	(d)	none				
9.	Media (a)	ın is un true	affecte (b)	d by ex false		values both		none				
10.	The va	alue wh media		curs wi (b)	th the r mode		ım freq mean		is calle	ed		
11.	Simple (a) (c)		ige is s ted ave e avera	erage	nes cal	led (b) (d)	unwei	ghted a	average	e		
12.	When weigh (a)	ts.	luency (b)			s giver		frequer none	ncies th	nemselves	treated	as
13.	Simple	e & wei True		averag false		equal or both	nly whe	en all th none	ne weig	hts are equ	ıal.	

: 610 :

14.	The w		verage	" used	d in "sin	nple av	erage '	' and "\	weighte	ed aver	age " g	jenerally
	(a)	media	n	(b)	mode	(c)	A.M ,	G.M or	H.M	(d)	none	
15.		um of , whent							oservat	ions h	as the	smallest
	(a)	A.M		(b)	H.M		(c)	G.M		(d)	none	
16.		variable ants, th		_		ed that	z = ax	+ b for	each x	x = xi w	here a	& b are
	(a)	true	enz –	(b)	false		(c)	both		(d)	none	
17.	H.M is	s define 3	ed whe	n no ol 2	oservat (c)	ion is 1	(d)	0				
18.		ormula	of mod	-	-					— widt		
	(a)	equal		(b)	unequ	ıal	(c)	both		(d)	none	
19.	(a)	First	(b)		s know nd	n as Up (c)	oper qu Third	artile	(d)	none		
20.	Three (a)	quartil Pears				Bowle	ey"s for	mula	(c)	both	(d)	none
21.	There	are — 7	(b)	— dec 8	iles. (c)	9	(d)	10				
22.	10th բ (a)	percenti 1st de		qual to (b)		decile	(c)	9th de	ecile	(d)	none	
23.	7th de (a)	ecile is t 7N/10	the abs			point o	n the C 6N /10	•	hose o (d)	rdinate none	is	
24.		is e	equal to	the v	alue co	rrespo	nding to	o cumu	ılative f	requer	ncy k (ľ	N + 1)/10
	froms (a)	imple fr Media	•	cy dist (b)	ribution kth de		(c)	kth pe	ercentile	е	(d)	none
25.	find to		ılation gures,a	of Ind Issumi	dia at ng a co of avera	the m	iddle of rate of this cas	of the increas	period	by a	veragir	ou are to ng these
26.		nnumbe movin		em with age		ries is		as	each of	f which	is bas	sed on a

: 611 :

27.		averag	es is u	sed for	smootl	henina	a time series.			
		moving aver				_				
	(c)	•					3.3.9			
	. ,	·	Ū	, ,						
28.	Poole	ed Mean is als	o calle	ed						
	(a)	Mean (b)	Geor	netric M	lean	(c)	Grouped Me	an	(d)	none
29.							alues less tha	an the		
		Halfwill have \								
		mean, media					dian			
	(c)	mode ,mear	1	(d)	none.					
20			.		al:	:- 1- 41				
30.		n even numbe								
		•	wo mic	idle vall	ies		middle value	•		
	(c)	both				(d)	none			
31.	The	leviations fron	n medi	an are -			— if negative	eiane s	are iana	ored as
J 1.		paredto other						signs c	arc ignic	ncu as
	(a)						same	(d)	none	
	(α)	······································	(5)	maxiii	idiii	(0)	oame	(α)	110110	
32.	A dist	tribution is sai	d to be	svmme	etrical v	when t	he frequency r	ises &	falls fr	om the
		estvalue in the								
	(a)	unegual	(b)	egual		(c)	both	(d)	none	
	` ,	·	. ,	•		• ,		` ,		
33.		&		— cann	ot be o	calcula	ted if any obse	ervatio	n is zer	O.
	(a)	G.M & A.M	(b)	H.M 8	k A.M	(c)	H.M & G. M	(d)	one.	
34.		&								
	(a)	H.M & G.M	(b)	Н. М	& A.M	(c)	A.M & G.M	(d)	none	
	_		_		_					
35.			of var	ious siz	es for i	resale,	a ———	— sıze	will be	more
		priate.	/l= \		ı	(-)		(-1)		
	(a)	median	(D)	moda	I	(c)	mean	(a)	none	
36.	50%	of actual value	oc will	ha hala	w 8 50	10/ ₂ of 14	vill be above –			
30.							mean			
	(a)	mode	(D)	media	111	(0)	IIICali	(u)	HOHE	
37.		is us	sed wh	en rate	of arov	wth or	decline require	ed.		
0 7.	(a)	mode	(b)	A.M	or gro	(c)	G.M	(d)	none	
	(α)	mode	(5)	, vv.		(0)	O.IVI	(α)	110110	
38.		——— is used	d when	sampli	ng var	iability	should be leas	st.		
•••	(a)	Mode	(b)	Media	•	(c)	Mean	(d)	none	
	()		(-)			(-)		(-/		
39.	"The	sum of deviat	ions fro	om the r	mean i	s zero"	' —— is the m	athem	atical p	roperty
	of me									. ,
	(a)	True	(b)	false		(c)	both	(d)	none	

40.	of mea							ed" — is		athema	atica	l prope	rty
	(a)	True	(b)	false		(c)	both		(d)	none			
41.		ces of matica True				oes no	ot affe	ct the	actual	mean	n"— non	•	the
	` '			` ,			(-)			(-)			
42.	Mean (a)	of 0,3,9 4.9				5.6	(d)	none					
43.	Media (a)	n of 15 13	,12,6,1 (b)		5,8,9 is (c)	12	(d)	9					
44.	Media (a)	n of 0.3 7		,9,12,0 6		3	(d)	5					
45 .	Mode (a)	of 0,3,5	5,6,7,9 (b)		is (c)	3	(d)	5					
46.	Mode (a)	0f 15,1 15		,12,15, 12		,10,15 8	is (d)	9					
47.	Meası (a)	ures of 1 st	central (b)	tender 2nd		called	averaç (d)	ges of t none	:he —	ord	er.		
48.	Meası (a)	ures of 1 st	•		e called (c)		•	the —- none	—ord	ler.			
49.	of ite	urposes ms, va ures ca	arying n be us	centra sed.	l value	es or	units	of calo	culation	, only	•		no.
	(a)	absolu	ile	(D)	relativ	Е	(c)	both	(u)	none			
50.	If y = ! (a)	5 x - 20 130	& Mea	an of x (b)	= 30 th 140	en the	value (c)	of Mea 30	n of y is (d)	none			
51.	In a s	ymmetı	rical dis	stributio	on whe	n the 3	3rd qua	artile pl	us 1st	quartile	e is l	nalved,	the
	value (a)	would (mean	give	(b)	mode		(c)	media	n	(d)	non	е	
52.	In Zoo (a)	ology, – media		i	s used mean		(c)	mode		(d)	non	е	
53.	For ca	lculatio G.M	on of S	peed & (b)	Veloci A.M	ty (c)	H.M		(d)	none i	s us	ed.	

: 613 :

ANSWERS

1.	(c)	2.	(b)	3.	(a)	4.	(d)	5.	(c)
6.	(a)	7.	(a)	8.	(b)	9.	(a)	10.	(b)
11.	(b)	12.	(a)	13.	(a)	14.	(c)	15.	(a)
16.	(a)	17.	(d)	18.	(a)	19.	(c)	20.	(d)
21.	(c)	22.	(a)	23.	(a)	24.	(b)	25.	(b)
26.	(a)	27.	(a)	28.	(c)	29.	(b)	30.	(a)
31.	(a)	32.	(b)	33.	(c)	34.	(a)	35.	(b)
36.	(b)	37.	(c)	38.	(c)	39.	(a)	40.	(a)
41.	(a)	42.	(a)	43.	(c)	44.	(d)	45.	(b)
46.	(a)	47.	(a)	48.	(b)	49.	(b)	50.	(a)
51.	(c)	52.	(c)	53.	(c)				

CHAPTER-3 MEASURE OF DISPERSION HOME WORK

1.	(a) (c)		- is lea ard dev		cted by	sampli (b) (d)	•	tuation le devi					
2.	Standa (a)	ard De absolu	viation ite mea		(b)	relativ	e meas	sure	(c)	both	(d)	none	е
3.	Coeffic (a)	cient of absolu	f variati ite mea		(b)	relativ	e meas	sure	(c)	both	(d)	none	е
4.	(a)	Perce		tion is (b)	called s Stand	semi-in ard	terquar (c)	tile rar Quarti		(d)	none		
5.	Quarti (a)	le Devi 3	ation for (b)	or the o	data 1,3 (c)	3,4,5,6, 6	6,10 is (d)	1.5					
6.	Coefficients (a) (b) (c) (d)	(Quart	ile Dev	/iation∶ /iation∶	iation i x 100)/ x 100)/ x 100)	Mediar Mean	1						
7.	If mea (a)	n = 5, 3 49	Standa (b)	rd devi 51	iation = (c)	2.6 the	en the (coeffici 52	ient of	variatio	n is		
8.	If med (a)	ian = 5 33	, Quar (b)	tile dev 35	riation = (c)	= 1. 5 tl 30	nen the	coeffic 20.	cient o	f quarti	le devi	ation	is
9.	In qua (a)	•	itrol — deviati		is used (b)	d as a s media		ite for s (c)	standa range		ation. none		
10.		e sam tionate true		ize ind false		s, ranç both	ge also	tend none.	ls to	increas	se tho	ugh	not
11.	As the	sampl decrea		increas (b)	ses, rar increa	nge als ise	o tends (c)	to same		(d)	none		
12.	When (a)	1st qua	artile = (b)	20, 3rd 4	d quart (c)	ile = 30 -5), the va (d)	alue of 5	quartil	e devia	ition is		

13.	The so (a) (c)	quare o varian mean			eviation (b) (d)		wn as ard de\	/iation				
14.	The v		f the s	standar	d devi	ation c	does n	ot dep	end up	on the	choice o	f the
	•	True	(b)	false	(c)	both	(d)	none				
15.	chang	jed.						ge if ar	ny one	of the	observatio	ns is
	(a)	True	(b)	false	(c)	both	(d)	none				
16.	When (a)	all the 2			qual the (c)		ance & (d)	standa 0	ırd dev	iation v	ould be	
17.	For va	alues lie big			mean, (c)			deviation (d)	ons are)		
18.		same arddevi chang	iation s	hall				ed fron both		ne valu	es, varian	ce &
19.	If the	same a	amount ecrease	t is add e by th	ded to	or subt —— an	racted	from a	` '		the mean	shall
20.	deviat		•	·					n devia	tion =	4/5 of star	ıdard
21.	deviat	tion/3	•	•					le devi	ation =	Standard	
	(a)	True	(D)	iaise	(c)	DOIN	(d)	none				
22.	In —— (a)	rar Time :	nge has series	•		use. y contro	ol	(c)	both	(d)	none	
23.	Whole (a)	e freque range	•	ble is r (b)	needed varian		calcul (c)	ation o both	f	(d)	none	
24.	Relati (a)	ve mea True	sures	of disp (b)	ersion false		deviation both		imilar ι none	units co	mparable.	
25.	Quart (a) (c)	_	ation is st 50 % st 25 %)	d on the (b) (d)	lowes	t 25 % e 50%	of the i	tem.			

: 616 :

- 26. Coefficient of variation is independent of the unit of measurement.
 - True (b) false (c) both (d) none
- 27. Coefficient of variation is a relative measure of
 - mean (b) deviation (c) range (d) dispersion (a)
- 28. If each item is reduced by 15 A.M is
 - reduced by 15
- (b) increased by 15
- (c) reduced by 10
- (d) none
- 29. If each item is reduced by 10, the range is
 - (a) increased by 10 (b)
- decreased by 10
 - (c) unchanged
- (d) none
- 30. If each item is reduced by 20, the standard deviation
 - increased
- (b)
- decreased (c) unchanged (d) none
- 31. The distribution, for which the coefficient of variation is less, is ——— consistent.
 - (a) less (b) more (c) moderate (d) none

ANSWERS

1.	(a)	2.	(a)	3.	(b)	4.	(c)
5.	(d)	6.	(a)	7.	(d)	8.	(c)
9.	(c)	10.	(a)	11.	(b)	12.	(d)
13.	(a)	14.	(a)	15.	(a)	16.	(d)
17.	(b)	18.	(b)	19.	(c)	20.	(b)
21.	(b)	22.	(b)	23.	(b)	24.	(b)
25.	(d)	26.	(a)	27.	(d)	28.	(a)
29.	(c)	30.	(c)	31.	(b)		

CHAPTER-4 CORRELATION HOME WORK

1.	Bivari	ate Dat	ta are t	he data	a collec	cted for	•		
	(a)	Two v	ariable	es					
	(b)	More	than to	wo vari	ables				
	(c)	Two v	ariable'	es at the	e same	point	of time		
	(d)	Two v	′ariable	es at dif	ferent	points	of time.		
2.	What	is spur	ious co	orrelatio	n?				
	(a)	It is a	bad re	lation b	etwee	n two v	ariables.		
	(b)	It is ve	ery low	correla	ation be	etween	two variable	es.	
	(c)	It is th	e corre	elation	betwee	n two	variables ha	ving no	causal relation.
	(d)	It is a	negati	ve corr	elation.	-			
3.	Scatte	er diagr	am is	conside	ered for	r meas	uring		
	(a)	Linea	r relatio	onship	betwee	n two	variables		
	(b)	Curvil	inear r	elations	ship be	tween	two variable	s	
	(c)	Neithe	er (a) n	or (b)					
	(d)	Both ((a) and	(b).					
4.		plotted ation is	•	in a sc	atter d	iagram	lie from upp	oer left to	o lower right, then the
	(a)	Positi		(b)	Zero	(c)	Negative	(d)	None of these.
	(α)	1 03111	VC	(6)	2010	(0)	ricgative	(u)	None of these.
5.	If the	plotted	points	in a so	atter d	iagram	are evenly	distribut	ed, then the
	correl	ation is	;						
	(a)	Zero	(b)	Nega	tive	(c)	Positive	(d)	(a) or (b).
6.	If all t	he plott	ted poi	nts in a	scatte	r diagr	am lie on a s	single lir	ne, then the correlation
	is								
	(a)	Perfe	ct posit	ive	(b)	Perfe	ct negative		
	(c)	Both ((a) and	(b)	(d)	Eithei	r (a) or (b).		
7.	The c	orrelati	on bet	ween s	hoe-siz	ze and	intelligence	is	
	(a)	Zero	(b)	Positi	ve	(c)	Negative	(d)	None of these.

(a)

Any value

(b)

J-12-	SHAH	CLASSES		C.F.T MATTIEMATICS & STATISTICS
8.	Pear (a) (b) (c) (d)	son's correlation co Correlation for an Correlation for line Correlation for cu Both (b) and (c).	y type o ear rela	f relation tion only
9.	Prod (a) (b) (c) (d)	uct moment correla Finding the nature Finding the amou Both (a) and (b) Either (a) and (b).	e of corr	
10.	Whe (a) (b) (c) (d)	On a straight line	directed	catter diagram would lie d from lower left to upper right d from upper left to lower right
11.	The (a) (c)	covariance betweer Strictly positive Always 0	two va (b) (d)	Strictly negative
12.	The (a) (b) (c) (d)	Can have any uni	t. ne prodi	tween two variables uct of units of the two variables
13.		inding the degree of uty Contest, we use Scatter diagram Coefficient of rand Coefficient of con Coefficient of con	c correla	
14.	If the	ere is a perfect disa	greeme	nt between the marks in Geography and

(c)

Only -1

(d)

(b) or (c)

Statistics, then what would be the value of rank correlation coefficient?

Only 1

15. If u + 5x = 6 and 3y - 7v = 20 and the correlation coefficient between x and y is 0.58 then what would be the correlation coefficient between u and v?

(a) 0.58 (b) -0.58

(c) -0.84 (d) 0.84

16. From the following data

x: 2 3 5 4 7 y: 4 6 7 8 10

Two coefficient of correlation was found to be 0.93. What is the correlation between uand v as given below?

u: -3 -2 0 -1 2

v: -4 -2 -1 0 2

(a) -0.93 (b) 0.93 (c) 0.57 (d) -0.57

17. If the sum of squares of difference of ranks, given by two judges A and B, of 8 Students is 21, what is the value of rank correlation coefficient?

(a) 0.7 (b) 0.65 (c) 0.75 (d) 0.8

18. If the rank correlation coefficient between marks in management and mathematics for a group of student in 0.6 and the sum of squares of the differences in ranks in 66, what is the number of students in the group?

(a) 10 (b) 9 (c) 8 (d) 11

19. While computing rank correlation coefficient between profit and investment for the last 6 years of a company the difference in rank for a year was taken 3 instead of 4. What is the rectified rank correlation coefficient if it is known that the original value of rank correlation coefficient was 0.4?

(a) 0.3 (b) 0.2 (c) 0.25 (d) 0.28

20. For 10 pairs of observations, No. of concurrent deviations was found to be 4. What is the value of the coefficient of concurrent deviation?

(a) $\sqrt{0}.2$ (b) - $\sqrt{0}.2$ (c) 1/3 (d) -1/3

21. What is the value of correlation coefficient due to Pearson on the basis of the following data:

-1 4 -5 -3 -2 0 1 2 3 5 X: **-4** 2 27 11 6 3 6 11 18 27 y: 18 (a) 1 (d) -0.5(b) -1(c) 0

: 620 :

22. The coefficient of correlation between x and y where

x: 64 60 67 59 69 y: 57 60 73 62 68

is

(a) 0.655

(b) 0.68

(c) 0.73

(d) 0.758

23. What is the coefficient of correlation between the ages of husbands and wives from the following data?

Age of husband (year): 46 45 42 40 38 35 32 30 27 25 Age of wife (year): 37 35 31 28 30 25 23 19 19 18

(a) 0.58

(b) 0.98

(c) 0.89

(d) 0.92

24. Given that for twenty pairs of observations, $\Sigma xu = 525$, $\Sigma x = 129$, $\Sigma u = 97$, $\Sigma x^2 = 687$, $\Sigma u^2 = 427$ and y = 10 - 3u, the coefficient of correlation between x and y is

(a) -0.7

(b) 0.74

(c) -0.74

(d) 0.75

25. Eight contestants in a musical contest were ranked by two judges A and B in the following manner:

Serial Number of the contestants: 1 2 3 4 5 6 7 8

Rank by Judge A: 7 6 2 4 5 3 1 8 Rank by Judge B: 5 4 6 3 8 2 1 7 The rank correlation coefficient is

(a) 0.65

(b) 0.63

(c) 0.60

(d) 0.57

26. Following are the marks of 10 students in Botany and Zoology:

Serial No.: 1 2 3 4 5 6 7 8 9 10 Marks in Botany: 58 43 50 19 28 24 77 34 29 75 Marks in 62 63 79 56 65 54 70 59 55 69 Zoology: The coefficient of rank correlation between marks in Botany and Zoology is 0.65 0.70 0.72 0.75 (a) (b) (c) (d)

27. What is the value of Rank correlation coefficient between the following marks in Physics and Chemistry:

Roll No .: 1 2 3 4 5 6 25 Marks in Physics: 30 46 30 55 80 Marks in Chemistry: 30 25 40 50 50 78 0.782 (b) 0.696 (c) 0.932

(2) (2)

(d) 0.857

28. What is the coefficient of concurrent deviations for the following data:

	Supply: Demand: (a) 0.82	68 65	43 60 (b)		78 61	66 35 (c)	83 75 0.89	38 45	23 40 (d)	83 6 85 8 –0.81	0 85
29.	What is the Year: 1996 Price:			99 200 40	00 20 33		s for the 2002 20 48 29		52	ta:	
	Demand: (a) -0.43			31 0.43			0.5	21	(d)	$\sqrt{2}$	
30.	association				h the m	neasur	ement c	of the	"strengt	h of	
	(a) corre	elation	(b)	regre	ssion	(c)	both	(d)	none		
31.	Correlation observation	S.		-			oice of b	oth o	rigin & th	ne scal	e of
	(a) True	(b)	false	(c)	both	(d)	none				
32.	Correlation (a) Scat	coeffici ter Diag				by Metho	od	(c)	both	(d)	none.
33.	Covariance (a) joint		res (b)		_ varia e				es. none		
34.	In calculatir Datashould (a) valid	be of n		al mea	sureme		he state	emen		ssary t	hat the
35.	Rank correl (a) 0 to (c) -1 to	1	oefficier (b) (d)				of these	e valu	es		
36.	In rank corr required. (a) false	elation (b)		ent onl (c)		creasi	ng/decre	easin	g relatio	nship i	S
37.	The sum of	f the dif	ference	of ran	ık is						
	(a) 1	(b)	–1	(c)	0	(d)	none.				
					_						

38. Age of Applicants for life insurance and the premium of insurance – correlation is

J.K.SHAH CLASSES

positive

(a)

C.P.T. - MATHEMATICS & STATISTICS

none

zero (d)

39.	"Une	mployment in	ndex an	d the purchas	sing pov	wer of th	ne con	nmon man"	·
	Corre	elationis							
	(a)	positive	(b)	negative	(c)	zero	(d)	none	

(c)

negative

- **40.** Variance may be positive, negative or zero.
 - (a) true (b) false (c) both (d) none

(b)

- **41.** Covariance may be positive, negative or zero.
 - (a) true (b) false (c) both (d) none
- 42. In case 'Insurance companies' profits and the no of claims they have to pay "----
 - (a) positive correlation(b) negative correlation(c) no correlation(d) none
- **43.** In Method of Concurrent Deviations, only the directions of change (Positive direction /Negative direction) in the variables are taken into account for calculation of
 - (a) coefficient of S.D (b) coefficient of regression.
 - (c) coefficient of correlation (d) none

ANSWERS

1.	(c)	2.	(c)	3.	(d)	4.	(c)	5.	(a)
6.	(d)	7.	(a)	8.	(b)	9.	(c)	10.	(a)
11.	(d)	12.	(c)	13.	(b)	14.	(c)	15.	(b)
16.	(b)	17.	(c)	18.	(a)	19.	(b)	20.	(d)
21.	(c)	22.	(a)	23.	(b)	24.	(c)	25.	(d)
26.	(d)	27.	(d)	28.	(c)	29.	(a)	30.	(a)
31.	(b)	32.	(b)	33.	(a)	34.	(a)	35.	(b)
36.	(a)	37.	(c)	38.	(a)	39.	(b)	40.	(b)
41.	(a)	42.	(b)	43.	(c)				

CHAPTER-5 REGRESSION ANALYSIS HOME WORK

1.	Since (a) (b) (c) (d)	The re	gressi gressi a) and	on equ on equ (b)	person lation of lation of	f Blood	l Press	ure on	age	d consider	
2.	The n (a) (c)	nethod a Least : Produc	square	es	eriving t (b) (d)	Conc		deviatio		known as	
3.	analy	sisis kn	own as	3						ted value in regres	sion
	(a)	Error	(b)	Resid	lue	(c)	Devia	tion	(d)	(a) or (b).	
4.	The (a)	errors in Positiv		of regr (b)	ession Nega	-	ons are		(d)	All these.	
5.	The to	wo lines r = 1	_			me idei (c)			(a) or	· (b).	
6.	What (a) (b) (c) (d)		it oe posi ositive	itive and th	ne othe	r negat	ive			cally less than unity	y .
7.	The ro	egression Shift o Both (a	f origir	า	(b)	Shift	of scale		а		
8.	y and 5a + 10a +	-) 95 on line y = 5				3x = 5	ed for d	derivin	g the regression lin	e of

9. If the regression line of y on x and of x on y are given by 2x + 3y = -1 and 5x + 6y = -1 then the arithmetic means of x and y are given by

(a) (1, -1)

(b)

(-1, 1)

(c) (-1, -1)

(d) (2, 3)

10. Given the regression equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x?

(a) 1st equation

(b) 2nd equation

(c) both (a) and (b)

(d) none of these.

11. Given the following equations: 2x - 3y = 10 and 3x + 4y = 15, which one is the regressionequation of x on y?

(a) 1st equation

(b) 2nd equation

(c) both the equations

(d) none of these

12. If 4y - 5x = 15 is the regression line of y on x and the coefficient of correlation between xand y is 0.75, what is the value of the regression coefficient of x on y?

(a) 0.45

(b) 0.9375

(c) 0.6

(d) none of these

13. If the regression line of y on x and that of x on y are given by y = -2x + 3 and 8x = -y + 3 respectively, what is the coefficient of correlation between x and y?

(a) 0.5

(b) -1/2

(c) -0.5 (d)

(d) none of these

14. If y = 3x + 4 is the regression line of y on x and the arithmetic mean of x is -1, what is the arithmetic mean of y?

(a) 1

(b)

–1

(c) 7

(d) none of these

15. The regression equation of y on x for the following data:

x 41 82 v 28 56

62

35

37 17 58 96 42 85 127 105

74

61

123 100

73

98

y 28 Is given by

(a) y = 1.2x - 15

(b) y = 1.2x + 15

(c) y = 0.93x - 14.64

(d) y = 1.5x - 10.89

16. The following data relate to the heights of 10 pairs of fathers and sons: (175, 173), (172, 172), (167, 171), (168, 171), (172, 173), (171, 170), (174, 173), (176, 175) (169, 170), (170, 173)

The regression equation of height of son on that of father is given by

(a) y = 100 + 5x

(b) y = 99.708 + 0.405x

(c) y = 89.653 + 0.582x

(d) y = 88.758 + 0.562x

17.	The	two reg	ression	n coeffi	cients f	or the	followir	ng data	1 :			
	X:	38	23	43	33	28						
	y:	28	23	43	38	8						
	are											
	(a)	1.2 aı	nd 0.4		(b)	1.6 a	nd 0.8					
	(c)		nd 0.8		(d)	1.8 a	nd 0.3					
18.	For \	/ = 25, v	vhat is	the es	timated	d value	of x, fr	om the	follow	ing dat	a:	
	X: ,	11	12	15	16	18	19	21		J		
	Y:	21	15	13	12	11	10	9				
	(a)	15		(b)	13.92		(c)	13.58	38	(d)	14.98	6
19.		n the fo	llowing	` '			(-)			(-)		
	Varia			X		у						
	Mea			80		98						
		ance:		4		9						
	Coef	ficient c	of corre	lation	= 0.6							
	Wha	t is the	most lil	kely va	lue of y	when	x = 90	?				
	(a)	90		(b)	103		(c)	104		(d)	107	
20.	The	two line	s of re	gressio	on are g	given b	y					
	8x +	10y = 2	25 and	16x +	5y = 12	respe	ctively.					
	If the	varian	ce of x	is 25,	what is	the sta	andard	deviat	ion of y	?		
	(a)	16		(b)	8		(c)	64		(d)	4	
21.	The	coeffic	ient of	f corre	lation	betwee	en cos	t of a	dvertise	ement	and sa	les of a
	prod	uct on t	hebasi	s of the	e follow	ing dat	a:					
	Ad c	ost (000) ₹):	75	81	85	105	93	113	121	125	
	Sale	s (000 C	000 ₹):	35	45	59	75	43	79	87	95	
	is	•	,									
	(a)	0.85		(b)	0.89		(c)	0.95		(d)	0.98	
00												
22.			•		athema			•	tne var			
	(a)	corre	lation	(b)	regre	ssion	(c)	both		(d)	none	
23.	The	lines o	f regre	ession	passes	throu	gh the	points	s, bear	ing		_ no. of
	point	s on bo	thsides	3								
	(a)	equal		(b)	uneq	ual	(c)	zero		(d)	none	
24.	In lin	ear equ	ıatione	Y = 2	+ hX ar	nd X= =	1 + hY	ʻaʻ je th	ie.			
	(a)	•			• (b)			(c)	both		(d)	none

: 626 :

25.	In line (a)	ar equa							he (c)	both	(d)	none
26.	The re	-	on equa						are bas		the me	thod of none
27.	Two i	regress true	ion line	es alwa (b)	ıys inte false	rsect a	t the m	neans. both		(d)	none	
28.	r, bxy (a)	, byx a differe		(b)	_ sign. same		(c)	both		(d)	none	
29.	The re	egression 2				ero if r 1	-					
30.	The re	egression +1	on lines (b)				equal to					
31.	The re	egression 0	on lines (b)	•	•	icular t -1			if r is e	qual to		
32.		oefficie r ² = 1 -					-		nula r² =	kpaline total	ed varia variano	ance ce
	(c)	both					(d)	none				
33.	In the to	line Y	= 19 –	5X/2 is	s the re	egresso	on equa	ation x	on y th	ien bxy	/ is, b _{yx}	is equal
	(a)	19/2		(b)	5/2		(c)	-5/2		(d)	-2/5	
34.	In the (a)	regres: -2/5	sion ec	uation (b)	x on y 35/8	, X = 3	5/8 – 2 ³ (c)	Y /5, b ₂ 2/5	_{xy} is eqı	ual to (d)	5/2	
35.	is equ	alto				•			n of the	other	variabl	e when r
	(a)	+ 1	(b)	– 1	(c)	0	(d)	none				
36.	The a (a) (c)	ngle be correla both	etween ation co	-		n lines (b) (d)	-		oefficie	nt		

: 627 :

37. Correlation coefficient r lie between the regression coefficients byx and bxy

(a)

true (b)

false (c)

both (d)

Since the correlation coefficient r cannot be greater than 1 numerically, the 38. product of theregression must

(a) not exceed 1 (b) exceed 1 (c)

be zero

(d) none

The correlation coefficient r is the _____ of the two regression coefficients 39. b_{vx} and_{bxv}

(a) A.M (b) G.M (c) H.M (d) none

40. The regression equation of Y on X is, 2x + 3Y + 50 = 0. The value of b_{YX} is

2/3 (a)

- 2/3 (b)

(c) -3/2

(d) none

ANSWERS

1.	(a)	2.	(a)	3.	(d)	4.	(d)	5.	(d)
6.	(d)	7.	(a)	8.	(c)	9.	(a)	10.	(b)
11.	(d)	12.	(a)	13.	(c)	14.	(a)	15.	(c)
16.	(b)	17.	(a)	18.	(c)	19.	(d)	20.	(b)
21.	(c)	22.	(b)	23.	(b)	24.	(a)	25.	(b)
26.	(b)	27.	(a)	28.	(b)	29.	(d)	30.	(c)
31.	(a)	32.	(c)	33.	(d)	34.	(a)	35.	(c)
36.	(a)	37.	(a)	38.	(a)	39.	(b)	40.	(b)

CHAPTER-6 INDEX NUMBER HOME WORK

- **1.** Each of the following statements is either True or False. Write your choice of the answer by writing T for True
 - (a) Index Numbers are the signs and guideposts along the business highway that indicate to the businessman how he should drive or manage.
 - (b) "For Construction index number, the best method on theoretical ground is not thebest method from practical point of view".
 - (c) Weighting index numbers makes them less representative.
 - (d) Fisher's index number is not an ideal index number.
- **2.** Each of the following statements is either True or False. Write your choice of the answer by writing F for false.
 - (a) Geometric mean is the most appropriate average to be used for constructing an index number.
 - (b) Weighted average of relatives and weighted aggregative methods render the same result.
 - (c) "Fisher's Ideal Index Number is a compromise between two well-known indices not a right compromise, economically speaking".
 - (d) "Like all statistical tools, index numbers must be used with great caution".

(b)

- 3. The best average for constructing an index numbers is
 - (a) Arithmetic Mean
- (b) Harmonic Mean
- (c) Geometric Mean
- (d) None of these.
- **4.** The time reversal test is satisfied by
 - (a) Fisher's index number
- Paasche's index number.
- (c) Laspeyre's index number (d)
- None of these.
- **5.** The factor reversal test is satisfied by
 - (a) Simple aggregative index number
- (b) Paasche's index number.
- (c) Laspeyre's index number
- (d) None of these.

- **6.** The circular test is satisfied by
 - (a) Fisher's index number
- (b) Paasche's index number
- (c) Laspeyre's index number (d)
- None of these

: 629 :

<i>J</i>	-944	O.I. I WATTEMATION & STATISTIC
7.	Fish	ner's index number is based on
	(a)	The Arithmetic mean of Laspeyre's and Paasche's index numbers.
	(b)	The Median of Laspeyre's and Paasche's index numbers.
	(c)	The Mode of Laspeyre's and Paasche's index numbers.
	(d)	None of these.
8.	Fish	ner's ideal index number is
	(a)	The Median of Laspeyre's and Paasche's index numbers
	(b)	The Arithmetic Mean of Laspeyre's and Paasche's index numbers
	(c)	The Geometric Mean of Laspeyre's and Paasche's index numbers

9. Time reversal Test is satisfied by following index number formula is

150

(a) Laspeyre's Index number.

None of these.

(b) Simple Arithmetic Mean of price relative formula

(b)

- (c) Marshall-Edge worth formula.
- (d) None of these.

125

(d)

(a)

10. If the prices of all commodities in a place have increased 1.25 times in comparison to the base period, the index number of prices of that place now is

(c)

225

(d)

None of these.

- **11.** If the index number of prices at a place in 1994 is 250 with 1984 as base year, then
 - the prices have increased on average by
 (a) 250% (b) 150% (c) 350% (d) None of these.
- **12.** If the prices of all commodities in a place have decreased 35% over the base period prices, then the index number of prices of that place is now
 - (a) 35 (b) 135 (c) 65 (d) None of these.

13. Each of the following statements is either True or False with your choice of the answer by writing F for False.

- (a) Base year quantities are taken as weights in Laspeyre's price Index number.
- (b) Fisher's ideal index is equal to the Arithmetic mean of Laspeyre's and Paasche's index numbers.
- (c) Laspeyre's index number formula does not satisfy time reversal test.
- (d) None of these.

: 630 :

14.	(a)	Current	year	quant	ities	are	taken a	as v	weight	s in	Pa	ascl	ne's p	rice i	ndex	nun	nber.
									_			٠.	 -	_		_	

- (b) Edge worth Marshall's index number formula satisfies Time, Reversal Test.
- (c) The Arithmetic mean of Laspeyre's and Paasche's index numbers is called Bowely's index numbers.
- (d) None of these.
- **15.** With the base year 1960 the C. L. I. in 1972 stood at 250. X was getting a monthly Salary of ₹ 500 in 1960 and ₹ 750 in 1972. In 1972 to maintain his standard of living in 1960 x has to receive as extra allowances of
 - (a) ₹ 600/-
- (b) ₹ 500/-
- (c) ₹ 300/-
- (d) none of these.
- **16.** From the following data with 1966 as base year

Commodity	Quantity Units	Values (₹)
А	100	500
В	80	320
С	60	150
D	30	360

The price per unit of commodity A in 1966 is

- (a) ₹5
- (b) ₹6
- (c) ₹4
- (d) ₹ 12
- **17.** The index number in whole sale prices is 152 for August 1999 compared to August 1998. During the year there is net increase in prices of whole sale commodities to the extent of :
 - (a) 45%
- (b) 35%
- (c) 52%
- (d) 48%

- 18. Purchasing Power of Money is
 - (a) Reciprocal of price index number.
- (b) Equal to price index number.
- (c) Unequal to price index number.
- (d) None of these.
- 19. The cost of living Index (C.L.I.) is always:
 - (a) Weighted index
- (b) Price Index.
- (c) Quantity Index.
- (d) None of these.
- **20.** If the 1970 index with base 1965 is 200 and 1965 index with base 1960 is 150, the index 1970 on base 1960 will be :
 - (a) 700
- (b) 300
- (c) 500
- (d) 600

: 631 :

- 21. Circular Test is not met by:
 - (a) The simple Geometric mean of price relatives.
 - (b) The weighted aggregative with fixed weights.
 - (c) Laspeyre's or Paasche's or the fisher's Ideal index.
 - (d) None of these.

22. From the following data

Commodity	Base Year		Current Year			
	Price	Quantity	Price	Quantity		
А	4	3	6	2		
В	5	4	6	4		
С	7	2	9	2		
D	2	3	1	5		

Then the value ratio is:

- (a) $\frac{59}{52}$
- (b) $\frac{49}{47}$
- (c) $\frac{41}{53}$
- (d) $\frac{47}{53}$

- 23. The value index is equal to:
 - (a) The total sum of the values of a given year multiplied by the sum of the values of thebase year.
 - (b) The total sum of the values of a given year Divided by the sum of the values of thebase year.
 - (c) The total sum of the values of a given year plus by the sum of the values of the baseyear.
 - (d) None of these.
- 24. In 1996 the average price of a commodity was 20% more than in 1995 but 20% less thanin 1994; and more over it was 50% more than in 1997 to price relatives using 1995 as base(1995 price relative 100) Reduce the data is :
 - (a) 150, 100, 120, 80 for (1994–97) (b) 135, 100, 125, 87 for (1994–97)
 - (c) 140, 100, 120, 80 for (1994–97) (d) None of these.
- 25. The Bowley's Price index number is represented in terms of :
 - (a) A.M. of Laspeyre's and Paasche's Price index number.
 - (b) G.M. of Laspeyre's and Paasche's Price index number.
 - (c) A.M. of Laspeyre's and Walsh's price index number.
 - (d) None of these.

- The price index number using simple G.M. of the n relatives is given by :
- $$\label{eq:loglon} \begin{split} logl_{\rm on} = 2 \frac{1}{n} \sum log \, \frac{P_{\rm n}}{P_{\rm 0}} \end{split} \qquad (b) \qquad logl_{\rm on} = 2 + \frac{1}{n} \sum log \, \frac{P_{\rm n}}{P_{\rm 0}} \end{split}$$
 - $logl_{on} = \frac{1}{2n} \sum log \frac{P_n}{P_0}$ (d) None of these. (c)
- 27. The price of a commodity increases from ₹ 5 per unit in 1990 to ₹ 7.50 per unit in 1995 and the quantity consumed decreases from 120 units in 1990 to 90 units in 1995. The price and quantity in 1995 are 150% and 75% respectively of the corresponding price and quantity in 1990. Therefore, the product of the price ratio and quantity ratio is:
 - (a) 1.8
- (b) 1.125
- (c) 1.75 (d)
 - None of these.
- 28. Consumer price index number goes up from 110 to 200 and the Salary of a worker is also raised from ₹ 325 to ₹ 500. Therefore, in real terms, to maintain his previous standard of living he should get an additional amount of :
 - ₹85 (b)
- ₹ 90.91
- (c) ₹ 98.25
- (d) None of these.
- 29. The average price of certain commodities in 1980 was ₹ 60 and the average price of thesame commodities in 1982 was ₹ 120. Therefore, the increase in 1982 on the basis of 1980 was 100%. The decrease in 1980 with 1982 as base, comment on the above statement is:
 - The price in 1980 decreases by 60% using 1982 as base.
 - The price in 1980 decreases by 50% using 1982 as base.
 - The price in 1980 decreases by 90% using 1982 as base. (c)
 - (d) None of these.
- 30. Cost of living index (C.L.I.) numbers are also used to find real wages by the process of
 - Deflating of Index number. (a)
- Splicing of Index number. (b)

Base shifting. (c)

(d) None of these.

31. From the following data

Commodities	Α	В	С	D	
1992 Base	Price	3	5	4	1
	Quantity	18	6	20	14
1993	Price	4	5	6	3
Current	Quantity	15	9	26	15
Year					

The Passche price Index number is:

- 146.41 (a)
- 148.25 (b)
- (c) 144.25
- None of these. (d)

32. From the following data

Commodity	Base	Year	Current	Year
	Price	Quantity	Price	Quantity
А	7	17	13	25
В	6	23	7	25
С	11	14	13	15
D	4	10	8	8

The Marshall Edge Worth Index number is:

- (a) 148.25
- (b) 144.19
- (c) 147.25
- (d) None of these.

- **33.** The circular Test is an extension of
 - (a) The time reversal Test.
- (b) The factor reversal Test.
- (c) The unit Test.
- (d) None of these.
- **34.** Circular test, an index constructed for the year 'x' on the base year 'y' and for the year 'y' on the base year 'z' should yield the same result as an index constructed for 'x' on base year 'z' i.e. $I_{01} \times I_{12} \times I_{20}$ equal is:
 - (a)
- 3
- (b) 2
- (c) 1
- (d) None of these.
- **35.** Net monthly salary of an employee was ₹ 3,000 in 1980. The consumer price index number in 1985 is 250 with 1980 as base year. If the has to be rightly compensated then, 7th dearness allowances to be paid to the employee is :
 - (a) ₹4.800.00
- (b) ₹ 4,700.00
- (c) ₹4,500.0
- (d) None of these
- **36.** The consumer price Index for April 1985 was 125. The food price index was 120 and other items index was 135. The percentage of the food weight of the index is
 - (a) 66.67
- (b) 68.28
- (c) 90.25
- (d) None of these.
- 37. The total value of retained imports into India in 1960 was ₹71.5 million per month. The corresponding total for 1967 was ₹87.6 million per month. The index of volume of retained imports in 1967 composed with 1960 (= 100) was 62.0. The price index for retained inputs for 1967 over 1960 as base is
 - (a) 198.61
- (b) 197.61
- (c) 198.25
- (d) None of these.

ANSWERS

1.	(a), (b)	9.	(c)	17.	(c)	25.	(a)	33.	(a)
2.	(c)	10.	(c)	18.	(a)	26.	(b)	34.	(c)
3.	(c)	11.	(b)	19.	(a)	27.	(b)	35.	(c)
4.	(a)	12.	(c)	20.	(b)	28.	(b)	36.	(a)
5.	(a)	13.	(b)	21.	(c)	29.	(b)	37.	(b)
6.	(d)	14.	(d)	22.	(a)	30.	(a)		
7.	(d)	15.	(b)	23.	(b)	31.	(a)		
8.	(c)	16.	(a)	24.	(a)	32.	(b)		

CHAPTER-7 THEORY OF CHANCE (PROBABILITY) HOME WORK

1.		poor. 40 of them are	_	75 boys. 20 of them are What is the probability of (d) 0.64
	(a) 0.00	(D) 0.02	(6) 0.24	(u) 0.04
2.	A card is drawn at is	random from a pack	of 52 cards, the pro	obability of getting a club
	(a) 1/4	(b) 1/52	(c) 1/13	(d) none of them
3.	A card is drawn at r	random from a pack	of 52 cards, the prob	pability of getting a queen
	(a) 1/4	(b) 1/52	(c) 1/13	(d) 4/13
4.	A card is drawn at queen is	random from a pack	of 52 cards, the pro	obability of getting a club
	(a) 1/14	(b) 1/52	(c) 1/13	(d) 4/13
5.	A card is drawn at club or a queen is	random from a pack	of 52 cards, find th	ne probability of getting a
	(a) 1/14	(b) 1/52	(c) 1/13	(d) 4/13
6.		ack and 4 white balls		wn at random from it, the
	(a) 4/15	(b) 5/15	(c) 7/15	(d) 8/15
7.	Two cubical dice ar	e thrown simultaneo (b) 1/6	usly, the probability (of getting total '9' is (d) 1/36
	(4)	(5)5	(0)	(4)
8.	Two cubical dice ar	e thrown simultaneo	usly, the probability	of getting total at least '9'
	(a) 5/36	(b) 5/18	(c) 10/36	(d) 1/9
9.	•			contains 4 black and 5 that they are of different
	(a) 37/72	(b) 27/72	(c) 8/72	(d) 17/72

: 636 :

10.	10. Two dice are thrown simultaneously, the probability that the sum of the numbers divisible by 3 or 4 is						
	(a) 5/36	(b) 5/18	(c) 5/9	(d) 7/36			
11.	The probability of ge	etting total at the mos	st '6' when three cub	ical dice are thrown is			
	(a) 5/54	(b) 5/72	(c) 5/36	(d) 5/216			
12.	drawn, the probabili	•		ay. Then another card is			
	(a) 1/4	(b) 1/52	(c) 4/13	(d) 1/13			
13.	•	3 and C aim a targe 1/4, 1/2 . What is the (b) 3/8	•	of their hitting the target target will be hit? (d) 7/8			
14.	solving the example example will be solv	e correctly are respended is	ectively 1/2, 3/4, 1/4	C. Their probabilities of , the probability that the			
	(a)20/32	(b) 27/32	(c) 28/32	(d) 29/32			
15.	65 is 3 : 2. The age upto the age of 70 i 30 years is	of another person B s 4 : 1. The probabil	is 40 at present. The ity that atleast one o	his living upto the age of ne odds against his living of them will be alive after			
	(a) 17/30	(b) 17/25	(c) 18/72	(d) 7/25			
16.	girls, 4 boys and 1 taken at random, the	girl. A family is sel e probability that bot	ected at random an h are boys is	and 2 girls, 2 boys and 3 and from it 2 children are			
	(a) 1/3	(b) 2/3	(c) 3/7	(d) 7/72			
17.	•	7 men and some w he number of wome	-	ity of selecting 2 women			
	(a) 5	(b) 3	(c) 8	(d) 7			
18.	A number is taken number is divisible t		numbers 1 to 100	, the probability that the			
	(a) 45/100	(b) 43/100	(c) 47/100	(d) 51/100			

19.	1. A and B choose any one digit at random from the digits 0, 1, 2, 9. independently. The probability that the product of the two digits is zero is								
	(a) 0.20	(b) 0.22	(c) 0.18	(d) 0.19					
20.	The probabilities th		gives 2 red balls a	o balls are made from it. and the second drawing					
	(a) 5/62	(b) 5/108	(c) 5/63	(d) 5/72					
21.		the first drawing giv	•	o balls are made from it. ne second drawing gives					
	(a) 5/62	(b) 5/108	(c) 5/63	(d) 5/72					
22.	C, 20% read A and	B, 20% read A and	C, 25% read B and (nd 30% read newspaper C. Also 15% read papers of these newspapers is:					
	(a) 15%	(b) 55%	(c) 20%	(d) none of the above					
23.	made, the probabilit		oalls at first draw and	2 balls are successively d 2 black balls at second					
	(a) 3/49	(b) 1/49	(c) 9/49	(d) 2/49					
24.	The probability of tw	o persons being bor	ne on the same day	(ignoring date) is:					
	(a) 1/49	(b) 1/365	(c) 1/7	(d) none of the above					
25.	•	sons, there are 5 graphs	•	s are selected at random					
	(a) 115/228	(b) 135/228	(c) 225/228	(d) 137/228					
26.	6. One urn contains 4 red and 5 white balls and the second urn contains 6 red and 3 white balls. One of the urns is selected at random and two balls are drawn from it. The probability that both the balls are red is								
	(a) 5/24	(b) 5/48	(c) 7/48	(d) 7/24					
27.	An urn is selected a	nd a ball is drawn fro	om it, the probability	white and 4 black balls. that the ball is white is:					
	(a) 9/16	(b) 9/18	(c) 10/32	(d) 10/16					
	(a) 9/10	. ,	(C) 10/32 38:	(a) 10/10					

28.	Two dice are rolled throws more than A	• •	nd B. A throws total	10, the probability that B					
	(a) 1/12	(b) 1/36	(c) 1/18	(d) none of the above					
29.			•	ular type of operation. A ether the 10th patient on					
	(a) will survive	(b) will die (c) may	survive or may die	(d) none of the above					
30.			•	2 girls, 3 boys and 1 girl. of one boy and one girl					
	(a) 1/12	(b) 5/12	(c) 1	(d) ½					
31.	•	of six shots and Mr. 2 at least twice is :	Z, 3 times out of 4 s	times out of 5 shots and hots. The probability that					
	(a) 100/120	(b) 50/120	(c) 110/120	(d) 107/120					
32.	A and B toss a coi their winning are re-	spectively	ho gets head first v	vins. The probabilities of					
	(a) 2/3,1/3	(b) 1/2,1/2	(c) 3/4,1/4	(d) 5/6 , 1/6					
33.	can hit the target 3		s. If all the three try	2 times out of 5 trials; C simultaneously find the					
	(a) 0.63	(b) 0.5	(c) 0.69	(d) 0.65					
34.	Three dice are rolle (a) 1/64	d simultaneously. Th (b) 25/216	e probability of getti (c) 1/36	ng 12 spots is : (d) none of the above					
35.	 A number is selected randomly from each of the two sets 1, 2, 3, 4, 5, 6, 7, 8 2, 3, 4, 5, 6, 7, 8, 9 The probability that the sum of the numbers is equal to 9 is : 								
	(a) 8/64	(b) 8/72	(c) 14/81	(d) 7/64					
36.	-	white, 1 black and 3 obability of both the (b) 1		are drawn from the well (d) 1/9					
	. ,	` '	` '	. ,					

	probability th (a) 11/30	at the race (b) 1/3(n by A o (d) no		e ahove			
	(a) 1 1/00	(5) 1/0 (0, 1100	(4) 110		0 45010			
38.	The probabil probability the	at at least	one of the	m will su	rvive 20	years hen	ice is :		Γhe
	(a) 12/35	(b)	1/35	(c	:) 11/35		(d) 14/35	5	
39.	For a 60 year another 70 y probability th	ears old pe	erson surv	iving upto	o the ag	je of 80, it	is 5 : 2 a		
	(a) 15/42	(b)	39/84	(0) 49/84		(d) 40/84	1	
40.	If 7:6 is in f years more, (a) 86/104	the probab		l least on				years more	
41.	The chance probability th	at either of	the two w	ill stand	first in tl		:	him is 1/5. ⁻	The
	(a) 1/15	(b)	6/15	(C	3) 8/15		(d) 5/15		
42.	Four dice ar dice.	e thrown,	find the pi	obability	that 1	will appea	r on at le	east one of	the
	(a) 616/1296	(b)	308/1296	(c	;) 671/1:	296	(d) 72/12	296	
43.	3. A husband and his wife appear in an interview for two vacancies. The probability their selection are respectively1/4 and 1/3. What is the probability that only one them will be selected?								
	(a) 5/11	(b)	5/12	(c	5) 5/13		(d) 5/14		
44.	The probabil	ity that a le	ap year wi	II have 5	3 Sunda	ays is :			
	(a) 1/7	(b)	2/7	(c	:) 3/7		(d) 1/53		
45.	There are 10 random, what number great	at is the pro	bability th						
	(a) 0.5	0 (b) 0.40)	(c)	0.60	(d)	0.30	

37. The chance of winning the race of the horse A is 1/5 and that of horse B is 1/6. The

: 640 :

46. Following are the wages of 8 workers in rupees:

50, 62, 40, 70, 45, 56, 32, 45

If one of the workers is selected at random, what is the probability that his wage would be lower than the average wage?

- (a) 0.625
- (b) 0.500
- (c) 0.375
- (d) 0.450
- **47.** A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made without replacement. The probability that the first draw will produce 3 white balls and the second 3 red balls is
 - (a) 5/223
- (b) 6/257
- (c) 7/429
- (d) 3/548
- **48.** Tom speaks truth in 30 percent cases and Dick speaks truth in 25 percent cases. What is the probability that they would contradict each other?
 - (a) 0.325
- (b) 0.400
- (c) 0.925
- (d) 0.075
- **49.** 8 identical balls are placed at random in three bags. What is the probability that the first bag will contain 3 balls?
 - (a) 0.2731
- (b) 0.3256
- (c) 0.1924
- (d) 0.3443
- **50.** Four digits 1, 2, 4 and 6 are selected at random to form a four digit number. What is the probability that the number so formed, would be divisible by 4?
 - (a) 1/2
- (b) 1/5
- (c) 1/4
- (d) 1/3
- **51.** A card is drawn from each of two well-shuffled packs of cards. The probability that at least one of them is an ace is
 - a) $\frac{1}{69}$
- (b) $\frac{25}{169}$
- (c) $\frac{2}{13}$
- (d) None.

ANSWERS

1.	(b)	14.	(d)	27.	(a)	40.	(a)
2.	(a)	15.	(b)	28.	(a)	41.	(c)
3.	(c)	16.	(a)	29.	(c)	42.	(c)
4.	(b)	17.	(b)	30.	(b)	43.	(b)
5.	(d)	18.	(b)	31.	(d)	45.	(b)
6.	(d)	19.	(d)	32.	(a)	44.	(d)
7.	(c)	20.	(c)	33.	(a)	45.	(b)
8.	(b)	21.	(b)	34.	(b)	46.	(c)
9.	(a)	22.	(c)	35.	(d)	47.	(b)
10.	(c)	23.	(d)	36.	(a)	48.	(a)
11.	(a)	24.	(c)	37.	(a)	49.	(d)
12.	(d)	25.	(d)	38.	(c)	50.	(b)
13.	(d)	26.	(d)	39.	(b)		

CHAPTER-8 RANDOM VARIABLES AND MATHEMATICAL EXPECTATION HOME WORK

_					_								
1.	The pro		•									3	
		2	3	4	5	6	7	8		9	10		
	(0.05	.10	.30	.20	.05	.10	.05		10	.05		
	The me	ean of	x is										
	(a)	1.9		(b)	5.4	4	(c))	3.6			(d)	6.5
_					_	_							
2.	The pro		•				n varia	ble	ıs as	tollo	ows :		
	15	16	17	18	19	20							
	.04	.19	3р	.26	р	.07							
	The va	lue of	p is										
	(a)	0.11		(b)	0.	15	(c))	0.10)		(d)	none of them
2	1 00100			ing. Ita		مطاء بام		-td		.b.o.r	of bo	ada ia	
3.	4 coins		osseu s							ibei	oi ne		0
	(a)	1		(b)	2.	0	(c))	3			(d)	2
4.	Two co	oins a	re toss	ed sir	nulta	neously	/. A pe	erso	n red	ceive	es ₹	8 for e	each head and
			r each t			-	-						
	(a)	1		(b)	-2		(c)		3		3	(d)	-3
	(α)	•		(5)	_	•	(0)	,				(α)	· ·
5.	There	are 5	white a	nd 3 I	black	balls ir	n a box	c . 3	balls	are	take	en at ra	andom from the
	box. Th	ne exp	ected r	numbe	er of b	olack ba	alls is						
	(a)	2		(b)	6/9	9	(c))	3			(d)	9/8
6.													random from it.
	-											r each	black ball, the
			l expec			e amou			-	hım	IS		
	(a)	1		(b)	0		(c))	– 3			(d)	5
7.	Thoro	ara 2 l	black a	nd 2 v	vhito	halle in	a hov	2 1	alle	aro	takar	n from	it. ₹ 24 is given
٠.													ball so that the
	game i				۵٥	0.10	a.a 50	51.10	g	, 0,	- GOI		Jan 00 that the
	(a)	72		(b)	54		(c))	36			(d)	33
	\ - '/			(~)	0.		(0)	,				(-/	

: 643 :

J-12	.onai	H CLASSE	.D	C.F	. 1 1417-	KIIILIVIAI	103 & 3	IAIISII	<u> </u>	
8.			•	acket of whi			e. If 2 so	crews ar	e taken at	
	(a)	2	(b)	4	(c)	0.5	(d)	3		
9.		at random	from it, the	ox numbere e expectation		total of th	-	rs on the		
	(a)	7.2	(b)	5.4	(c)	3.2	(d)	3.3		
10.				lottery of I 30. A persor			-			
	(a)	2	(b)	4	(c)	-0.5	(d)	-0.2	2	
11.	. A person takes an insurance of ₹ 1000 and pays premium of ₹ 20. The probability that any person of his age group dies within a year is 0.01, the expected gain of the insurance company is									
	(a)	12	(b)	14	(c)	10	(d)	20		
12.				ndom from ton the		numbere	d from 1	to 5, the	e expected	
	(a)	7	(b)	5	(c)	36	(d)	6		
				ANG	MEDG	•				
				ANS	VERS	2				
1	l.	(b)	4.	(b)	7.	(c)	10.	(d)	
2	2.	(a)	5.	(d)	8.	(c)	11.	(c)	
	2	(d)	6	(h)	a	(0)	12	(d)	

CHAPTER-9 BINOMIAL DISTRIBUTION

HOME WORK

1.	Seven	coins are toss	ed sim	ultaneously th	າe prob	ability of at lea	ast five	heads is
	(a)	12/128	(b)	17/128	(c)	21/128	(d)	29/128
2.	=	obability that a	-	~	et is 1/	3, the probabi	ility tha	at he will hit the
	(a)	12/243	(b)	17/243	(c)	40/243	(d)	60/243
3.	-	d at random			-	-		/e persons are 4 of them are
	(a)	112 / 243	(b)	117/243	(c)	221/243	(d)	32/243
4.		•	_	rls are equall children, with	• .		nber of	families out of
	(a)	800	(b)	500	(c)	200	(d)	100
5.		,	_	rls are equall children, with	•	•	nber of	families out of
	(a)	50	(b)	100	(c)	800	(d)	25
6.		•	•	rls are equall 5 children, with	•		nber of	families out of
	(a)	800	(b)	600	(c)	1000	(d)	100
7.	1600 fa	milies each h	aving 5	children, with	n all ch	ildren of the sa	ame se	
	(a)	800	(b)	600	(c)	1000	(d)	100
8.				aneously for uencies of all t			umber	is regarded as
	(a)	8	(b)	16	(c)	3	(d)	32
9.				ich the proba	-	f winning of A	is 2/3	, the probability
	(a) 5°	12/ 2187	(b)	64/2187	(c)	32/2187	(d)	1024/2187

: 645 :

10.		an of Binomial						•
	(a) 0.	4	(b)	0.5	(c)	0.3	(d)	0.2
11.	The me	ean of Binomia	al distri	bution is 4 and	d its va	riance is 2.4,	the val	ue of <i>n</i> is
	(a) 4		(b)	5	(c)	8	(d)	10
12.	•	en that on an ain for at least	3 days		0 days	out of 30 day	s. The	probability that
	(a)	219/729	(b)	313/729	(c)	330/729	(d)	335/729
13.						•	•	d 2 end in a tie. three games is 1/8
14.		3 play 12 gam gree to play 3 5/36					-	d 2 end in a tie. d in a tie is 5/60
15.		3 play 12 gam gree to play 3 5/36				•	•	d 2 end in a tie. Iternatively is 5/60
16.							-	d 2 end in a tie. t one game is 5/27
17.		s the standar				of recoverie	s amo	ng 48 patients
	(a)	36	(b)	81	(c)	9	(d)	3
18.	X is a l		ble wit	h n = 20. Wh	at is th	e mean of X	if it is	known that x is
	(a)	5	(b)	10	(c)	2	(d)	8
19.	If X ~ B	ß (n, p), what v	vould b	e the greates	t value	of the varianc	e of x	when n = 16?
	(a)	2	(b)	4	(c)	8	(d)	$\sqrt{5}$
20.	If x is a		riate wi	th parameter	15 and	d 1/3, what is	the va	lue of mode of
	(a)	5 and 6	(b)	5	(c)	5.50	(d)	6

: 646 :

21. If the overall percentage of success in an exam is 60, what is the probability that out of agroup of 4 students, at least one has passed?

(a) 0.6525

(b) 0.9744

(c) 0.8704

(d) 0.0256

22. If it is known that the probability of a missile hitting a target is 1/8, what is the probabilitythat out of 10 missiles fired, at least 2 will hit the target?

(a)

0.4258

(b) 0.3968

(c) 0.5238

(d) 0.3611

23. X is a binomial variable such that 2 P(X = 2) = P(X = 3) and mean of X is known to be 10/3. What would be the probability that X assumes at most the value 2?

(a)

16/81

(b) 17/81

(c) 47/243

(d) 46/243

24. In 10 independent rollings of a biased die, the probability that an even number will appear5 times is twice the probability that an even number will appear 4 times. What is theprobability that an even number will appear twice when the die is rolled 8 times?

(a)

0.0304

(b) 0.1243

(c) 0.2315

(d) 0

0.1926

ANSWERS

1.	(d)	6.	(c)	11.	(d)	16.	(a)	21.	(b)
2.	(c)	7.	(d)	12.	(b)	17.	(d)	22.	(d)
3.	(a)	8.	(c)	13.	(d)	18.	(b)	23.	(b)
4.	(b)	9.	(d)	14.	(b)	19.	(b)	24.	(a)
5.	(a)	10.	(a)	15.	(a)	20.	(b)		

: 647 :

CHAPTER-10POISSION DISTRIBUTION

HOME WORK

1.		ve. The proba			•		•	nt switches are e at most two
	(a)	2 e ⁻¹	(b)	e-1	(c)	2.5e ⁻¹	(d)	_{3e} –1
2.	' - '	on has some ility that on an 0.5533			_		·=	day is 3, the 0.0498) 0.2533
3.	contain	•	Jsing F	Poisson distrib	oution	we can say t	hat the	ach match box percentage of
	(a)	40	(b)	51	(c)	61	(d)	25
4.	contain		Jsing F	Poisson distrik	oution			ach match box percentage of
	(a)	40.5	(b)	50.5	(c)	75.5	(d)	30.5
5.	contain	•	Jsing F	Poisson distrib	oution	we can say t		ach match box percentage of
	(a)	8.5	(b)	7.63	(c)	8.75	(d)	10.25
6.	-	production of education of educ				=	-	of getting at the 3) 0.252
	(u)	0.200	(5)	0.700	(0)	0.070	(u)	0.202
7.		production of ve fuses in a b				•		ity of getting 3
	(a)	0.2952	(b)	0.1952	(c)	0.3952	(d)	0.4952
8.	pins are	e sold in boxe ve in a box. W	s of 10	00 and it is gu	arante	ed that not m	ore tha	e defective. The n 4 pins will be uarantee? (e^{-5}
	(a)	0.4480	(b)	0.5480	(c)	0.6480	(d)	0.4380

: 648 :

9.		oility that in a			•			ective, find the fective. $(e^{-3} =$
	(a)	0.2952	(b)	0.1008	(c)	0.2008	(d)	0.3008
10.	3 spec	cial rooms we ne probability	re vac	ant. If 50 pa	itients w	ere admitte	d in the	a particular day hospital on that met is (e ^{-1.5} =
	(a)	0.0658	(b)	0.1952	(c)	0.1304	(d)	0.1316
11.	having		2 misp	orints in tha	•	. •		umber of pages (Use Poisson
	(a)	3.31	(b)	4.31	(c)	2.31	(d)	5.31
12.	the pro 0.6065	oduction, the	probal	oility of getti	ng 2 or	more defec	ctive arti	es is taken from cles is (e ^{-0.5} =
	(a)	0.0902	(b)	0.1902	(c)	0.1302	(d)	0.1102
13.	_	om variable <i>x</i> = 0.1353)	follow	s Poisson di	stributio	n with mean	2 then F	P(X > 0) is equal
	(a)	0.1353	(b)	0.2706	(c)	0.8647	(d)	none of them
14.	The mo	ean of a Poiss	son var	iate is 0.81, 0.9	then its	S.D. is 0.8647	(d)	none of them
45	v io o F	Daiaaan variat	طویده ما	that D/v = 2) - D(v -	- 1) maan -		
15.	(a)	Poisson variat 2	(b)	•	(c)	= 4), mean = 4	(d)	none of them
16.	For a F	Poisson variat	te x its	P(x=1) = P((x = 2), v	/ariance is		
	(a)	2	(b)	3	(c)	1	(d)	none of them
17.	x is a F	Poisson variat	e such	that $P(x = 3)$) = P(<i>x</i> =	= 4), its S.D.	is	
	(a)	4		3			(d)	none of them
18.	If for a	Poisson varia	ate x, F	P(x=0) = P(x=0)	x = 1) =	<i>k</i> , then k =		
	(a)	0.3681	(b)	2.7183	(c)	0.5	(d)	none of them

19. x is a Poisson variate and P(x = 1) = P(x = 2), find P(x = 0) is

	(a)	e ⁻²	(b)	e-0.5	(c)	e-1	(d)	none	of them
20.	<i>x</i> is a F (a)	oisson variate 4	e and P (b)	P(x = 2) = 9.P((x = 4)	+ 90.P(1	x = 6) t (d)		mean is of them
21.	distribu		an 3. C	Out of 1000 to				•	follows poisson drivers with no
	(a)	40	(b)	30	(c)	50	(d)	none	of them
22.	distribu		n 3. Օւ	ıt of 1000 taxi				•	follows poission ers with at least
	(a)	477	(b)	377	(c)	177	(d)	none	of them
23.	minute	-	bability						ertain bank per nore customers
	(a)	0.32354	(b)	0.1353	(c)	1	(d)	none	of them
24.	If the st	tandard deviat 0.231	tion of a	a Poisson var 0.158.	iate X i (c)	s 2, wh 0.15.	at is P	(1.5 < (d)	X < 2.9)? 0.144.
25.	If the m (a)	nean of a Pois 0.456.	son vai (b)	riable X is 1, v 0.821.	what is (c)	P (X = 0.632.		the valu	ue at least 1)? 0.254.
26.		om) and its on only non-zerous.			n is 50, (c)	, what i	-	robabil (d)	lity that X would 0.976.
07			, ,					, ,	0.070.
27.	(a)	Poisson varial 2.	(b)	f(2) = 3 f(4), W 4.	nat is t (c)	ne vari $\sqrt{2}$	ance o	(d)	3.
28.		om variable x the value of l			ribution	and its	s coeffi	cient o	f variation is 50.
	(a)	0.1876	(b)	0.2341	(c)	0.925	4	(d)	0.8756
29.	dayfor		Poisso	n distribution	with m	nean 1.	20. Wł		of demands per he proportion of
	(a)	0.25	(b)	0.3012	(c)		,	(d) 0.0	03
				: 650	:				

ANSWERS

1.	(c)	11.	(c)	21.	(c)
2.	(b)	12.	(a)	22.	(d)
3.	(c)	13.	(c)	23.	(a)
4.	(d)	14.	(b)	24.	(d)
5.	(b)	15.	(c)	25.	(c)
6.	(a)	16.	(a)	26.	(b)
7.	(b)	17.	(c)	27.	(a)
8.	(d)	18.	(a)	28.	(c)
9.	(b)	19.	(a)	29.	(c)
10.	(a)	20.	(c)		

CHAPTER-11NORMAL DISTRIBUTION

HOME WORK

				•				
An ap	-						distributi	ion is :
(a)	3 Q.D. = 2	S. D.	(b)	4 Q.D	. = 5 \$	S. D.		
(c)	2 Q.D = 3	S. D.	(d)	5 Q. [). = 4	S. D.		
A app	roximate rela	ation bet	ween M	1. D. ab	out m	ean and S.D	. of a no	ormal distribution
(a)	4 M.D. = 5	S. D.	(b)	5 M.D). = 4 \$	S. D.		
(c)	(c) 3 M.D. = 3 S.D.			3 M.D). = 2 \$	S. D.		
The a	rea under the	e standa	rd norm	nal curv	e bev	ond the lines	± 1.96 i	s
(a)	95%	(b)	90%		(c)	99.73%	(d)	5%
		normal	variate,	the pr	oporti	on of items I	ying be	tween Z = - 0.5
(a)	0.5	(b)	0.191	15	(c)	0.3172	(d)	0.3072
S.D. : numb	= 10 of the version of the version of workers	workers having	in a fa income	ctory. 7	he to han ₹	tal number of 62.00 per da	of worke	
(u)	210	(5)	100		(0)	700	(u)	110
= 0.0	5. The tolera	nce limi	t of sha	ifts is 4	.90 to	5.10 cms. I		
(a)	15	(b)	9		(c)	20	(d)	25
• •	$z = 2.0, \phi(z)$. ,	72]		` ,		. ,	
- .	•			00	,		- .	
					d its v	ariance is 9	. The ar	rea between the
(a)	0.6247	(b)	0.285	57	(c)	0.0228	(d)	0.9332
					l its v	ariance is 9.	The ar	ea between the
(a)	0.6247	(b)			(c)	0.0228	(d)	0.9332
	(a) (c) A appris: (a) (c) The a (a) If Z is and Z (a) If X is S.D.: numb (a) Assur = 0.09 shafts (a) [Given The n values (a) The m values	(a) 3 Q.D. = 2 (c) 2 Q.D = 3 A approximate relation is: (a) 4 M.D. = 5 (c) 3 M.D. = 3 The area under the (a) 95% If Z is a standard and Z = -3.0 is (a) 0.5 If X is a normal vasual standard and Z = -3.0 is (a) 0.5 If X is a normal vasual standard and Z = -3.0 is (a) 1.5 If X is a normal vasual standard and Z = -3.0 is (a) 0.5 The mean of the variation is a normal values of the variation	 (a) 3 Q.D. = 2 S. D. (c) 2 Q.D = 3 S. D. A approximate relation bet is: (a) 4 M.D. = 5 S. D. (c) 3 M.D. = 3 S.D. The area under the standard (a) 95% (b) If Z is a standard normal and Z = -3.0 is (a) 0.5 (b) If X is a normal variate resolution of the workers number of workers having (a) 246 (b) Assume that distribution of ending the standard (a) 15 (b) [Given; z = 2.0, φ(z)=0.477 The mean of a normal variate of the variate 15.5 and (a) 0.6247 (b) The mean of a normal variates of the variate 14 and values of the values of the variate 14 and values of the value	 (a) 3 Q.D. = 2 S. D. (b) (c) 2 Q.D = 3 S. D. (d) A approximate relation between Mis: (a) 4 M.D. = 5 S. D. (b) (c) 3 M.D. = 3 S.D. (d) The area under the standard normal (a) 95% (b) 90% If Z is a standard normal variate, and Z = -3.0 is (a) 0.5 (b) 0.191 If X is a normal variate represent S.D. = 10 of the workers in a farea number of workers having income (a) 246 (b) 150 Assume that distribution of diamest end and the complex of the shafts out of (a) 15 (b) 9 [Given; z = 2.0, φ(z)=0.4772] The mean of a normal variate is values of the variate 15.5 and 21.3 (a) 0.6247 (b) 0.285 The mean of a normal variate is values of the variate 14 and 18.5 is values of the varia	(a) $3 \text{ Q.D.} = 2 \text{ S. D.}$ (b) 4 Q.D. (c) $2 \text{ Q.D} = 3 \text{ S. D.}$ (d) 5 Q.D. A approximate relation between M. D. abis: (a) $4 \text{ M.D.} = 5 \text{ S. D.}$ (b) 5 M.D. (c) $3 \text{ M.D.} = 3 \text{ S.D.}$ (d) 3 M.D. The area under the standard normal curv (a) 95% (b) 90% If Z is a standard normal variate, the prand $Z = -3.0$ is (a) 0.5 (b) 0.1915 If X is a normal variate representing the S.D. = 10 of the workers in a factory. The number of workers having income more to (a) 246 (b) 150 Assume that distribution of diameters of $= 0.05$. The tolerance limit of shafts is 4 shafts , the number of shafts out of tolerance (a) 15 (b) 9 [Given; $z = 2.0$, $\varphi(z) = 0.4772$] The mean of a normal variate is 20 and values of the variate $15.5 \text{ and } 21.5 \text{ is}$ (a) 0.6247 (b) 0.2857 The mean of a normal variate is 20 and values of the variate $14 \text{ and } 18.5 \text{ is}$	(a) 3 Q.D. = 2 S. D. (b) 4 Q.D. = 5 S. (c) 2 Q.D = 3 S. D. (d) 5 Q. D. = 4 A approximate relation between M. D. about mis: (a) 4 M.D. = 5 S. D. (b) 5 M.D. = 4 S. (c) 3 M.D. = 3 S.D. (d) 3 M.D. = 2 S. D. (e) 3 M.D. = 2 S. D. (f) 3 M.D. = 2 S. D. (h) 90% (c) The area under the standard normal curve beyond (a) 95% (b) 90% (c) (c) If Z is a standard normal variate, the proportion and Z = −3.0 is (a) 0.5 (b) 0.1915 (c) (c) If X is a normal variate representing the incomposed S.D. = 10 of the workers in a factory. The tonumber of workers having income more than ₹ (a) 246 (b) 150 (c) Assume that distribution of diameters of shafts = 0.05. The tolerance limit of shafts is 4.90 to shafts, the number of shafts out of tolerance limit (a) 15 (b) 9 (c) [Given; z = 2.0, φ(z)=0.4772] The mean of a normal variate is 20 and its values of the variate 15.5 and 21.5 is (a) 0.6247 (b) 0.2857 (c)	(a) 3 Q.D. = 2 S.D. (b) 4 Q.D. = 5 S.D. (c) 2 Q.D = 3 S.D. (d) 5 Q.D. = 4 S.D. A approximate relation between M. D. about mean and S.D. is: (a) 4 M.D. = 5 S.D. (b) 5 M.D. = 4 S.D. (c) 3 M.D. = 3 S.D. (d) 3 M.D. = 2 S.D. (e) 3 M.D. = 3 S.D. (f) 3 M.D. = 2 S.D. (f) 99.73% (g) 95% (h) 90% (h) 90% (h) 99.73% (h) 90% (h)	(c) 2 Q.D = 3 S. D. (d) 5 Q. D. = 4 S. D. A approximate relation between M. D. about mean and S.D. of a not is: (a) 4 M.D. = 5 S. D. (b) 5 M.D. = 4 S. D. (c) 3 M.D. = 3 S.D. (d) 3 M.D. = 2 S. D. The area under the standard normal curve beyond the lines ± 1.96 is (a) 95% (b) 90% (c) 99.73% (d) If Z is a standard normal variate, the proportion of items lying between and Z = −3.0 is (a) 0.5 (b) 0.1915 (c) 0.3172 (d) If X is a normal variate representing the income in ₹ per day with S.D. = 10 of the workers in a factory. The total number of worker number of workers having income more than ₹ 62.00 per day is (a) 246 (b) 150 (c) 738 (d) Assume that distribution of diameters of shafts as normal with mea = 0.05. The tolerance limit of shafts is 4.90 to 5.10 cms. In a conshafts, the number of shafts out of tolerance limits is: (a) 15 (b) 9 (c) 20 (d) [Given; z = 2.0, φ(z)=0.4772] The mean of a normal variate is 20 and its variance is 9. The an values of the variate 15.5 and 21.5 is (a) 0.6247 (b) 0.2857 (c) 0.0228 (d) The mean of a normal variate is 20 and its variance is 9. The an values of the variate 14 and 18.5 is

: 652 :

9.		ean of a nor 2 more than		ate is 20 an	d its vari	ance is 9. T	he area	for the values	ot
	(a)	0.6247	(b)	0.2857	(c)	0.0228	(d)	0.9332	
10 .	s.d. is	•	g that th	ne scores ai			•	ore is 42 and i	
	(a)	371	(b)	383	(c)	72.7	(d)	none of them	1
11.	₹ 120 normal	and a stan ly distributed	dard de d, what p	eviation of some	₹ 40. As of the acc	suming that counts are c	t accour over ₹ 15		
	(a)	25.5	(b)	22.66	(c)	72.7	(d)	46.49	
12.	₹ 120 a	and a stand	dard de	viation of	₹40. Ass	suming that	accoun	erage balance t balances a f100 and ₹150′ 46.49	re
13.		ing normal o		•				ion is 50 hour e more than 35 46.49	
14.	The av	erage life o	f a batte distribu	ery is 400 h	ours and	l its standaı	rd deviat	ion is 50 hour urs 25% of th	
	(a)	284	(b)	422	(c)	372	(d)	434	
15.	Assum	•	distribut	•				ion is 50 hour e time betwee	
	(a)	84.13	(b)	22.66	(c)	95.44	(d)	19.35	
16.		ormal distrib ations are le						and 89% of th	ıe
	(a)	63	(b)	35	(c)	89	(d)	none of them	1
17.		mal distribu						and 89% of th	ıe
	(a)	63	(b)	35	(c)	89	(d)	none of them	1
				: 6	53 :				

|x - 30| < 5 is

(a)

0.6826

(d)

0.7653

none of them

	5. The number of students getting more than 25 marks is 50. The number of students of that class is											
	(a)	682	(b)	653	(c)	315	(d)	none of them				
20.				variation of x, $e^{-(x-10)^2/32}$ for			e follo	wing probability				
	(a)	50.	(b)	60.			(d)	30.				
21.		Is the first quare $\frac{1}{72\pi}e^{-(x-10)^2/7}$		X having the fo	ollowing	g probability d	lensity	function?				
	(a)	4.	(b)	5.	(c)	5.95.	(d)	6.75.				
22.	In a sample of 800 students, the mean weight and standard deviation of weight are found to be 50 kg and 20 kg respectively. On the assumption of normality, what is the number of students weighing between 46 Kg and 62 Kg? Given area of the standard normal curve between $z = 0$ to $z = 0.20 = 0.0793$ and area between $z = 0$ to $z = 0.60 = 0.2257$.											
	(a)	250	(b)	244	(c)	240	(d)	260				
23.	averag	e salary of ₹ s receive sala	10,00	0 and standa re than ₹ 14	ard dev ,000, tl	viation of sala	ary as	ribution with an ₹ 2,000. If 50 workers in the 2,500				
24.	so that							s the value of k al curve? Given				
	(a)	740	(b)	750	(c)	760	(d)	800				
25.	havewe weight	eight 55 kg or	less. (•	•		eas 10 per cent the variance of				
	(a)	15.21	(b)	9.00	(c)	16.00	(d)	22.68				
				: 654	:							

18. The mean and S.D. of a normal variate are 30 and 5 respectively, the probability of

19. The distribution of marks of the students in a class is normal with mean 20 and s.d.

(c)

0.0013

(b)

ANSWERS

1.	(a)	6.	(b)	11.	(b)	16.	(b)	21.	(c)
2.	(b)	7.	(a)	12.	(d)	17.	(d)	22.	(b)
3.	(d)	8.	(b)	13.	(a)	18.	(a)	23.	(a)
4.	(d)	9.	(c)	14.	(d)	19.	(c)	24.	(c)
5.	(d)	10.	(c)	15.	(c)	20.	(c)	25.	(a)

CHAPTER-12 SAMPLING THEORY & THEORY OF ESTIMATION HOME WORK

1.	Samplin (a) (c)	ng is compuls blood test of testing of life	ation(s) (b) (d)	•						
2.	A samp (a) (c)	ole consists of 50% units of 10% units of	the po	•		(b) (d)			he pop of the p	ulation population
3.		lation is perfe would you pro 10% of popu A single item	•	popula		cteristi	c. What size of			
4.		ected items o iance of the s 1			sulted i	nto sar (c)	me valı 8	ıes pei		to a character.
5.	If the re (a) (c)	espondents do the problem both (a) and	of the r			red info	ormatio (b) (d)	non-s	proble ampling of (a) a	•
6.	The nu replace	•	sible s	amples	of siz	e n ou	ut of po	opulati	on of I	N units without
	(a)	N^{C_n}	(b)	(N) ⁿ		(c)	nN		(d)	∞
7.	Probab (a) SRS	ility of drawing SWR (b) SF	g a unit RSWOF		h seled (c) bo				n none of	f them
8.	Probab (a) (c)	ility of selection sampling with both (a) and	hout re			sequei (b) (d)	sampl		-	cement
9.	A popul (a) (c)	lation consisti an infinite po an imaginary	pulatio	n	al num (b) (d)	a finite	an exa e popul of the a	ation	of	
10.	An uno	rdered sample nN ways	e of siz (b)	e n can n! way		in (c)	one w	ay	(d)	N ⁿ ways

: 656 :

11.	Probability of any one sample of size n being drawn out of N units is:										
	(a)	n/N	(b)	1/N		(c)	N/n!	(d)	None		
12.	Probab	ility of includir	ng a sp	ecified	unit in	a sam	ple of siz	e n select	ed out of N uni	ts	
	(a)	I/N	(b)	l/n		(c)	n/N	(d)	none of them	1	
13.	A selection (a) (c)	ction procedur Judgment sa Purposive sa	mpling		having (b) (d)	Subje	olvement ctive sam above	•	oility is known a	S	
14.	include	d in the samp					, the san	ne sampli	ng unit may b	е	
	(a) (c)	once only twice only	(b)		than or of the a						
15.	A popu (a) (c)	lation consisti infinite popul hypothetical	ation		ems wh (b) (d)	real p	e physica opulation of the abo	•	t is called :		
16.		mple of 100 i population pro 0.02 to 0.10 0.04 to 0.16			fective 0.08 t		are	The 95% (confidence limi	ts	
17.	1000 fa	•	ean ar or the p	nd S.D.	were on mea	found	to be Rs. 3		nnual income of 9.5. The 95		
18.		d the S.D. is 4			nfidend	ce inter	val for the		opulation is 65 eight of student		
19.		ng regulations							ur of liberalizir all people are	•	
		to 0.75 (b) 0.4	40 to 0.	.55	(c)0.6	8 to 0.8	32 (0	d) none of	them		

: 657 :

20.	In a large consignment of oranges a random sample of 500 oranges revealed that
	65 oranges were bad. 99.73% of bad oranges in the consignment certainly lies
	between

- (a) 8.5 % and 17.5 %
- (b) 5.5% to 10%
- (c) 8.5% to 12.5%
- (d) none of them
- **21.** Circular systematic sampling is used as:
 - (a) N is a multiple of n
- (b) N is a whole number
- (c) N is not divisible by n
- (d) none of the above
- 22. Which of the following advantage of systematic sampling you approve?
 - (a) Easy selection of sample

- (b) Economical
- (c) Spread of sample over the whole population
- (d) All the above
- 23. Selected units of a systematic sample are
 - (a) not representing the whole population
- (b) easily locatable

(c) not easily locatable

- (d) all the above
- 24. A systematic sample does not yield good results if
 - (a) units at regular intervals are correlated(b) variation in units is periodic
 - (c) both (a) and (b)
- (d) none of (a) and (b)
- 25. Greatest drawback of systematic sampling is that
 - (a) one requires a large sample'
 - (b) data are not easily accessible
 - (c) no single reliable formula for standard deviation
 - (d) none of the above
- **26.** Which of the following statements is true?
 - (a) Population mean increases with the increase in sample size
 - (b) Population mean decreases with increase in sample size
 - (c) Population mean decreases with the decrease in sample size
 - (d) Population mean is a constant value
- **27.** Which of the following statements does not hold good?
 - (a) An increase in sample size reduces the standard error
 - (b) An increase in sample size decreases the sampling error
 - (c) Decrease in sample size results in the reduction of population standard deviation
 - (d) The precision of an estimate depends on sample size

28.	-	ole of 16 iten as 160. The s 1					•	nean is	•	
29.	the ave	om sample of erage diamet nce interval fo 0.25 to 0.30 0.35 to 0.36	er of	the articles verage of this (b) 0.20 t	is 0.3	54 with of 2000	n a S	.D. 0.0		
30.	complewithin :	vants to deter te a certain jo ± 2 days of e is 64 days. I 200	b so th	at he may be ie mean. As	95% o per th	confider ne avai	nt that lable i	the me ecord study?	an may	remain
31.	A pathologist wants to determine on the basis of sample study the mean time required to complete a certain analysis so that he may be 98% confident that the mean may remain within ± 3 days of the true mean. As per the available record the population variance is 81 days. What must be the size of the sample for the study? (Value of Z corresponding to 98% confidence interval is 2.33) (a) 49 (b) 100 (c) 60 (d) none of them									
32.	120. W	sample of 40 hat sample si ulation mean 200	ze wou	ıld be require	d so th	at we v				ent that
33.	records size so 2 days	wants to dete show that po that Mr. X ma of the average value of 'z' a 96	pulatio ay be 9 e.	on standard d 5% confident	eviation t that th	n is 10 ne samp	days. I ple ave	Determ rage re	ine the emains	sample within ± le)
34.	If the ovariance (a)	observations e is 3.5	recorde (b)	ed on five sa	ampled (c)	items 2.5	are 3,	4, 5,6, (d)	7 the 4.5	sample
35	Which (a) (b) (c) (d)		ndard e ndard e or is alv	error, better it error, better it vays zero						

: 659 :

36.	Which (a) (c)	of the following standard erro standard erro	or canno	ot be z	ero	е	(b) (d)		ard erro	or must be 1
37.	-	estimate of m	nean is							e size is 64, the
	(a)	22.5 to 25.5	(b)	20 to 2	22.5	(c)	19.3 to	o 20.7	(d)	none of them
38.	The 95°	% confidence	limits fo	or the p	opulat	ion me	an is			iation of 1.2 kg.
	(a)	7.2 to 7.6	(b)	8.2 to	9.2	(c)	5.2 to	6.2	(d)	none of them
39.	under t sample Sample Populat Sample	ypical weathe of 64 bottles mean tion S.D.	er condi of the d 20 m 3 m	tions. rug: onths onths 64 onfider	Follow nce lev	ing res	sults we	ere obt		particular drug from a random none of them
40.	The erro	ors in a surve sampling erro non-samplino	ors		ampling (b) (d)	planni	s are cangerroof the a	r		
41.	A functi (a)	on of variates estimate		mating estima		ameter (c)	is calle statist		(d)	none of them
42.	An estir (a) (c)	nator can pos value of para both (a) and	meter		(b) (d)	any va	alue r (a) no	or (b)		
43.	The mo (a) (c)	est important f the availabili heterogeneit	ty of res	ources	3	the size (b) (d)	purpos	•	ne surv	ey
44.	If the ite (a) (c)	ems are destro complete end both (a) and	umeratio		vestiga (b) (d)	sampl	e have ing stu r (a) no	dies	or	
45 .	Stratifie (a) (c)	ed sampling co unrestricted : purposive sa	samplin		e cate((b) (d)	subjec	ctive sa		I	

: 660 :

46. Systematic sampling means

selection of n continuous units

	(b)	selection of			•	ual dis	tances				
	(c)	selection of	•								
	(d) selection of <i>n</i> middle units in a sequence.										
47 .		number of popatic sampling			N is a	n integ	ıral multiple o	f samp	oling size n, the		
	(a)	linear systen				(b)	circular syste		sampling		
	(c)	random syst	ematic	sampli	ing	(d)	all the above	;			
48 .	Accord	ing to Neymai	n's allo	cation,	in strat	tified sa	ampling				
	(a) San	nple size is pr	oportio	nal to t	he pop	ulation	size				
	(b) San	nple size is pr	oportio	nal to t	the sam	iple SE)				
	` '	nple size is pr				•					
	(d) Pop	ulation size is	propo	rtional	to the s	sample	variance.				
49 .	For an	unknown nars	ameter	how n	nany in	terval 4	estimates exis	et?			
ŦJ.	(a)	Only one	(b)	Two	ilally ili	(c)	Three	(d)	Many		
	(α)	Offiny Office	(5)	1 110		(0)	111100	(u)	warry		
50.	The mo	st commonly	used c	confide	nce inte	erval is					
	(a)	95 percent	(b)	90 pe	rcent (d	c)	94 percent (d)	98 percent.		
51.	If n nu	mhers are dra	awn at	randoi	m witho	out ren	lacement from	n the s	set {1,2, 3,,m}		
		r.(x) would be		ranaoi	With With	out 10p	idociniciit iioi		000 (1,2, 0,,111)		
	(a)	(m+1) (m-n)	/12n	(b)	(m-1)	(m+ n)/12				
	(c)	(m–1) (m +n)/12n	(d)	(m-1)	(m+n)	/ 12m				
52.	ا ۱۵ اه	nsurance Poli	ciae in	a cami	ole of 1	nn taka	an out of 20.0	00 nali	cies were found		
<i>,</i>				•				•	hole lot can be		
							95% confider				
	(a)	1050 and 21	50	(b)	536 a	nd 266	4				
	(c)	1040 and 21	60	(d)	1023	and 20	57				
53.	Δlifρl	nsurance Cor	mnany	hae 1F	500 nol	icies a	veraging ₹ 20	100 on	lives at age 30.		
							• •		9,000 survive at		
	age 31	. What is the	lower v				_		I have to pay in		
		ce during the	-		_						
	(a)	₹ 6879	(b)	₹ 800	00	(c)	₹ 8200	(d)	₹ 8500		

: 661 :

54.	Under criteria		meth	od selection	is ofte	n based c	on certain	predetermined	
		ck or Cluster s	amplin	g					
		a sampling ota sampling							
	. ,	iberate, purpo	sive or	judgment sar	npling.				
55.	(a)	———— sam Judgment	_			mpling. Area	(d)	none	
	(ω)	oddgilloll	(5)	Quota	(0)	7 0	(4)		
56. A — distribution is a theoretical distribution that expre functional relation between each of the distinct values of the sample sta									
	pie statistic and								
	(a)	responding pr normal		Binomial	(c)	Poisson	(d)	sampling.	
57.	Sampli	ng distribution	is a fr	equency distri	bution.				
	(a)	true	(b)	false	(c)	both	(d)	none	
58.	Sampli	ng distributior	appro	aches ——		— distribu	ıtion whei	n the population	
		ition is not nor							
	(a)	Binomial	(b)	Normal	(c)	Poisson	(d)	none	
59.						d estimate	e for pop	ulation standard	
	deviation (a)	on in case of - small		moderately s	•	(c) lar	ae (d)	none	
	(α)	oman	(5)	moderatory c	JIZCU	(0)	ge (u)	none	
60.		ample standa on in case of -				estimator	of popu	llation standard	
	(a)			moderately s		(c) lar	ge (d)	none	
61.	For 2 s	ample values,	we ha	ve	– deare	e of freed	nm .		
•	(a)	2	(b)	1	(c)	3	(d)	4	
62.	For 5 s	ample values, 5	we na (b)		– aegre (c)		om. (d)	none	
	(-)		(-)		(-)	·	(-)		
63.	-			•	-			g a population In this case we	
	must kı	now ———	—— fa	ctors.		•			
	(a)	2	(b)	5	(c)	4	(d)	3	
64.				size for estir	nating	a populati	on mean	, the number of	
		must be know		2	(a)	-	(-1)	4	
	(a)	2	(b)	3	(c)	5	(d)	4	

: 662 :

65. In audit test Statistical Sampling methods are used. (a) true (b) false (c) both (d) none 66. Single, double, multiple and sequential are several types of Discovery sampling method (b) Acceptance sampling method (a) both (d) none (c) 67. sampling is absolutely free from the influence of human bias (a) multi – stage Random purposive none (b) (c) (d)

ANSWERS

1.	(d)	13.	(d)	25.	(c)	37.	(c)	49.	(d)	61.	(b)
2.	(d)	14.	(b)	26.	(d)	38.	(a)	50.	(a)	62.	(c)
3.	(c)	15.	(b)	27.	(c)	39.	(b)	51.	(a)	63.	(d)
4.	(b)	16.	(c)	28.	(a)	40.	(c)	52.	(b)	64.	(b)
5.	(a)	17.	(b)	29.	(c)	41.	(b)	53.	(a)	65.	(a)
6.	(a)	18.	(a)	30.	(c)	42.	(b)	54.	(d)	66.	(b)
7.	(a)	19.	(c)	31.	(a)	43.	(c)	55.	(c)	67.	(b)
8.	(a)	20.	(a)	32.	(c)	44.	(b)	56.	(d)		
9.	(a)	21.	(c)	33.	(a)	45.	(d)	57.	(a)		
10.	(b)	22.	(d)	34.	(c)	46.	(b)	58.	(b)		
11.	(d)	23.	(b)	35.	(a)	47.	(a)	59.	(c)		
12.	(a)	24.	(c)	36.	(c)	48.	(a)	60.	(a)		