

THEORY HAI ZAROORI NOTES

SESSION 1

CA. PRANAV POPAT

SESSION LINK:

https://www.youtube.com/live/58T5 v LBbl8?si=V-tknpZDGvRO-GX1

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

THEORY WEIGHTAGE

Chapter	13. Statistical Description of Data	14. Central Tendency & Dispersion	15. Probability	16. Theoretical Distribution	17. Correlation & Regression	18. Index Numbers	Total
May 18	2	4	2	3	6	8	25
Nov 18	6	1	0	0	2	3	12
Jun 19	5	3	1	0	1	5	15
Nov 19	1	7	0	2	2	5	17
Nov 20	8	5	0	4	3	6	26
Jan 21	10	5	1	2	2	4	24
Jul 21	6	1	0	0	1	. 0	8
Dec 21	3	5	0	0	2	4	14
Jun 22	9	3	0	1	4	6	23
Dec 22	4	3	1	2	1	3	14
Jun 23	2	0	0	0	0	2	4

THEORY CONCEPTS

Statistical Description of Data – Basics of Statistics

Definition of Statistics	 Plural Sense: Any data – quantitative or qualitative used for statistical analysis. Singular Sense: Scientific method of collecting, analyzing, and presenting data to draw statistical inferences. It is also called as Science of Averages or Science of Counting 			
Origin of Word	Language Latin Italian German French	LatinStatusLatusItalianStatistaPastaGermanStatisticBreadstick		
Publication		Koutilya's Arthashastra Record of Birth and Deaths Chandragupta's reign 4th Century B.C Abu Fezal's Ain-i-Akbari Record on Agriculture Akbar Reign 16th Century A.D.		
Application of Statistics	Business Manage not intuitionIndustry and Cor		ng using quantitative techni	
Limitation of Statistics	 Quantitative dat be converted int Projections are be that will change Sampling based 	It deals with aggregate data and not individual data Quantitative data can only be used, however for qualitative — it needs to be converted into quantitative Projections are based on conditions/ assumptions and any change in that will change the projection. Example: Future projections of sales Sampling based conclusions are used, improper sampling leads to improper results. Random Sampling is must.		
Data	Quantitative InfoPrimary: first time	Quantitative Information shown as number Primary: first time collected by agency/ investigator Secondary: collected data used by different person/ agency		

	Measurable Data – Value can vary		
Variable	When a variable assumes a finite or count ably infinite isolated values. Variable Example: no. of petals in a flower, no. of road accident in locality When a variable assumes any value from the given interval (can also be in decimals, fractions). Example: height, weight, sale, money		
Attribute	Qualitative Characteristics. Example: gender of a baby, the nationality of		
	a person, the colour of a flower etc.		
Collection of	Method Details Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey		
Primary Data – Interview Method	Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident		
	Telephone Interview • Data is collected over phone • Quick and non-expensive method • Low Accuracy – High Coverage		
Collection of Primary Data – Mailed Questionnaire Method	 In this method well drafted and soundly sequenced questionnaire, covering all the important aspects of the data requirement is sent to respondent for filling. Here coverage is wide but amount of non-responses will be maximum 		
Collection of Primary Data – Observation Method	 In this method data is collected by direct observation or using instrument. For example: data on height and weight for a group of students. Although more accurate but it is time consuming, low coverage and laborious method. 		
Collection of Primary Data – Questionnaire Filled and sent by Enumerators	 Mix of Interview and Mailed Questionnaire Enumerator means a Person who directly interacts with respondent and fills the questionnaire. It is generally used in case of Surveys and Census. 		

Sources of Secondary Data	International Sources Government Sources Private or Quasi-	Monetary Fund (I Organization (ILO In India – Central Agricultural Statis National Sample S RBI, SEBI, RERA, II Indian Statistical I	Statistics Office (CSO), Indian tics by the Ministry of Food and Agr Survey Office- NSSO, Regulators – RDA nstitute (ISI), Indian Council of	ri,
Scrutiny of Data	There is no rule experience whInternal Consis	ile scrutinizing the	cy of data apply his intelligence, patience and given information. or more series of related data are g	
Presentation of Data – Classification / Organization of Data	_	• Arrang • Examp compa	ata in a neat, precise, and condense analysis, more understandable. rranged based on Time ole: Revenues YoY i.e year on year gement based on regions ole: Country wise Revenue of a global on some attribute on some attribute on some variable ole: Frequency Distribution of a Data	al
Mode of Presentation of Data – Textual Mode of Presentation of Data –	several paragra This is not a su non-comparab When data is s Useful in easy Complicated	aphs. itable mode of pre le. hown in the form	red	
Tabular Form		ssible without tab f Table rt ribing columns		
Components of Table	Left part of the t rows Main Data of Ta Source of Data a Table	ble	Stub Body Footnote	

Mode of Presentation of Data – Diagrams	 Can be used by educated and uneducated section of society Hidden trend can be traced If priority is accuracy, then tabulation is better
Line Diagram	 Time Series is generally in x axis For wide fluctuation – log chart or ratio chart is used Two or more series of same unit – Multiple Line Chart Two or more series of different unit – Multiple Axis Chart
Bar Diagram	 Bar means rectangle of same width and of varying length drawn horizontally or vertically For comparable series – multiple or grouped bar diagrams can be used For data divided into multiple components – subdivided or component bar diagrams For relative comparison to whole, percentage bar diagrams or divided bar diagrams Vertical Bar Diagram: Useful for Data varying over Time and Quantitative Data Horizontal Bar Diagram: Useful for Data varying over Space and Qualitative Data
Pie Chart	 Used for circular presentation of relative data (% of whole) Summation of values of all components/segments are equated to 360 Degree (total angle of circle) Segment angle = (segment value x 360°) (total value)

Statistical Description of Data – Frequency Distribution

	Frequency means number of times a particular observation is			
	repeated.			
	Frequency Distribution is table which contains observation or class			
	intervals in one column and corresponding frequency in the other.			
Frequency and	 Definition: A frequency distribution may be defined as a 			
Distribution	 tabular representation of statistical data, usually in an 			
	asce <mark>nding o</mark> rder,			
	 relating to a measurable characteristic 			
	 according to individual value or a group of values of the 			
	characteristic under study.			

Types of Frequency Distribution	Ungrouped/ Simple Frequency Distribution Grouped Frequency Distribution •	observations, frequency can be assigned to each one of them. This distribution is simple
Class Limit	interval may o Minimum Val	erval CL is the minimum and maximum value the class contain ue – Lower Class Limit ue – Upper Class Limit Frequency LCL UCL 10 10 19 5 20 29 8 30 39
Classification of Grouped of Frequency Distribution	Mutually Exclusive / Overlapping Classification Class LCL UCL 10-20 10 20 20-30 20 30 40 40 40 Mutually Inclusive / Overlapping Classification Class LCL UCL 10-19 10 20 30 20 30 30-39 30 40 5	 two intervals. This is usually applicable to discrete variable. All observation including UCL and LCL will be taken in the same class interval as
Class Boundary	In case of Exclusive / Overlapping Classification In case of Inclusive / Overlapping Classification	Class Boundary = Class Limit Class

Mid Doint / Class		LCL+UC	L		LCB+UCB		
Mid-Point / Class Mark / Mid Value	2						
of Class Interval	Useful in calculation of AM, GM, HM, SD in case of grouped frequency						
	dis	tribution					
Class Length/ Width or Size	UCB – LCB only						
	• Les	s than typ	e: It show	s no. of obse	ervations less th	nan UCB	
	More than type: It shows no. of observations more than UCB						
	Class	Funa	UCB	Less than	More than	Total of	1
	Interval	Freq.	ОСВ	type CF	type CF	both CF	
Cumulative	44-48	3	48.5	3	33	36	
Frequency	49-53	4	53.5	7	29	36	
	54-58	5	58.5	12	24	36	
	59-63	7	63.5	19	17	36	
	64-68	9	68.5	28	8	36	
	69-73	8	73.5	36	0	36	
	Total	36					
Frequency				Class Freque	ency		
Density	Class Length of class						
Relative	Class frequency						
Frequency	Total Frequency						
requency	Its can have values between 0 and 1						
Percentage			_	ass frequency	- X 100		
Frequency				tal Frequency	У		
Frequency Dist.				to represent			
Diagram –	Comparison between frequency of two different classes possible						
Histogram Mea d							
Frequency					equency distri		
Polygon					nly if class leng		
Ogives/					pe of Cumulativ	e Frequency	and
Cumulative			_	ve or More t	_		
Frequency				ulating quarti			Dalue - :-
		-		_	(Histogram) o		
Frequency Curve	It is obtained by drawing smooth and free hand curve though the mid points						
	pointsMost used curve is Bell Shaped						
	- 1010	ost useu tt	AL VC 13 DEI	Tonapeu			

Index Numbers

Practical Examples of Index Numbers	 Index numbers are convenient devices for measuring relative changes (generally in %) of differences from time to time or from place to place Series of numerical figures which show relative position Index Numbers show percentage changes rather than absolute amounts of change 			
Data Selection	 It depends on the purpose for which the index is used. Index numbers are often constructed from the sample. Random sampling, and if need be, a stratified random sampling can be used to ensure that sample is representative. Data should be comparable by ensuring consistency in selection method. 			
Base Period	 It is a point of reference in comparing various data. Standard point of comparison. The period should be normal. It should be relatively recent Choice of suitable base period is a temporary solution 			
Use of Averages	 The geometric mean is better in averaging relatives, But for most of the index's arithmetic mean is used because of its simplicity 			
Price/ Quantity/ Value Relative	For Individual Commodity, Current Period Price/ Quantity/ Value Base Period Price/ Quantity/ Value			
Link Relative	$\frac{P_1}{P_0}, \frac{P_2}{P_1}, \frac{P_3}{P_2}, \cdots, \frac{P_n}{P_{n-1}}$ Same can be created for quantities also			
Chain relatives	When the above relatives are in respect to a fixed base period these are also called the chain relatives $\frac{P_1}{P_0}, \frac{P_2}{P_0}, \frac{P_3}{P_0}, \dots, \frac{P_n}{P_0}$			
Formula for Chain Index (when direct data is not available)	Link relative of current year × Chain Index of previous year 100 The chain index is an unnecessary complication unless of course where data for the whole period are not available or where commodity basket or the weights have to be changed.			
Limitations of Index Numbers	 Chances of errors due to Sampling It gives broad trend not real picture Due to many methods, at times it creates confusion 			
Usefulness of Index Numbers	 Index numbers are very useful in deflating (eg. Nominal wages into real) 			

	 They are used in time series analysis to study long-term trend, seasonal variations and cyclical developments
Formula for	Current Value
Deflated Value	Deflated Value = Current Value Price Index of the current year
Shifted Price	Original Price Index
Index	Price Index of the year on which it has to be shifted × 100
	This test requires that the formula should be independent of the unit
Unit Test	in which or for which prices and quantities are quoted.
Offic rest	 Except for the simple (unweighted) aggregative index all other
	formulae satisfy this test.
	It is a test to determine whether a given method will work both ways
Time Reversal	in time, forward and backward.
Test	• $P_{01} \times P_{10} = 1$
rest	 Laspeyres' method and Paasche's method do not satisfy this test, but
	Fisher's Ideal Formula does.
	 This holds when the product of price index and the quantity index
	should be equal to the corresponding value index.
Factor Reversal	Symbolically
Test	$P_{01} \times Q_{01} = V_{01}$
	 Fisher's Index Number is ideal as it satisfies Unit, Time Reversal and
	Factor Reversal Test
	 This property therefore enables us to adjust the index values from
	period to period without referring each time to the original base.
	It is an extension of time reversal test
	 The test of this shiftability of base is called the circular test.
Circular Test	 This test is not met by Laspeyres, or Paasche's or the Fisher's ideal
Circular rest	index.
	The weighted GM of relative, simple geometric mean of price
	relatives and the weighted aggregative with fixed weights meet this
	test.
	(These methods are not in syllabus)
	CLI is defined as the weighted AM of index numbers of few groups of
Cost of Living	basic necessities.
Index (also	AM of group indices gives the General Index
called General	Generally, for calculating CLI; food, clothing, house rent, fuel &
Index)	lightning and miscellaneous groups are taken into consideration.
	Examples of CLI: WPI, CPI, etc.
	• P_{01} is the index for time 1 on 0
Symbol	 P₁₀ is the index for time 0 on 1

Measures of Central Tendency

Arithmetic Mean

Property 1	If all the observations are constant, AM is also constant		
Property 2	the algebraic sum of deviations of a set of observations from their AM		
Property 2	is zero		
Dromonto 2	AM is affected both due to change of origin and scale		
Property 3	If $y=a+bx$ then $\overline{y}=a+b\overline{x}$		
	Combined AM		
Property 4	$\overline{X}_{c} = \frac{n_{1}\overline{X}_{1} + n_{2}\overline{X}_{2}}{n_{1}\overline{X}_{1} + n_{2}\overline{X}_{2}}$		
	$n_1 + n_2$		
	AM is best measure of central tendency		
	AM is based on all observations		
General Review	 AM is affected by sampling fluctuations 		
	AM is amenable to mathematical property		
	AM cannot be used in case of open end classification		

Median

Property 1	For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median. $\sum \left \mathbf{x}_{_{i}}-\mathbf{Me}\right \qquad \qquad \mathbf{modulus}$		
Property 2	Median is also affected by both change of origin and scale.		
General Review	 Median is also called as positional average Median is not based on all observations Median is not affected by sampling fluctuations Median is best measure of central tendency in case of open end classification 		

Partition Values

Meaning	 These may be defined as values dividing a given set of observations into number of equal parts When we want to divide the given set of observations into two equal parts, we consider median, similarly there are quartiles, deciles, percentiles 				
ŭ		Name of PV	No. of equal parts	No. of PVs	Symbol
		Median	2	1	Me
		Quartile	4	3	Q_1,Q_2,Q_3

	Decile	10	9	D ₁ ,D ₂ ,,D ₉
	Percentile	100	99	P ₁ ,P ₂ ,,P ₉₉

Mode - Concept/ Formula

Meaning	Mode is the value that occurs the maximum number of times	
Special Thing about Mode	 If two or more observations are having maximum frequency then there are multiple modes [multimodal distribution] If there are exactly two modes then distribution is called as Bimodal Distribution If all observations are having same frequency then distribution has no mode We can say that Mode is not rigidly defined 	
Property 1	If all the observations are constant, mode is also constant	
Property 2	Mode is also affected both due to change of origin and scale	
General Review	 Mode is not based on all observations Mode is not rigidly defined Mode is not amenable to Mathematical Property 	

Relationship between Mean, Median and Mode

In case of <mark>Symmetri</mark> c Distribution	Mean = Median = Mode
In case of Moderately	
Skewed Distribution	Mean – Mode = 3 (Mean – Median)
(Empirical relationship)	

Geometric Mean

Definition	For a given set of n positive observations , the geometric mean is defined as the n^{th} root of the product of the observations
Property 1	Logarithm of G for a set of observations is the AM of the logarithm of the observations $log G = \frac{1}{n} \sum log x$
Property 2	If all the observations are constant, GM is also constant
Property 3	GM of $z = GM$ of $x \times GM$ of y
Property 4	$GM \text{ of } z = \frac{GM \text{ of } x}{GM \text{ of } y}$

Harmonic Mean

Definition	For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the AM of the reciprocals of the observation
Property 1	If all observations are constant HM is also constant

Use of GM and HM

Both	Both are used for calculating average rates	
GM	Appropriate for rates having percentages	
HM	Appropriate for rates other than percentages	

Measures of Dispersion

Meaning of Measure of Dispersion	 Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency 		
Types of Measure of Dispersion	Absolute Measures of Dispersion	 These are with units These are not useful for comparison of two variables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile Deviation 	
	Relative Measures of Dispersion	 These are unit free measures These are useful for comparison of two variables with different units. Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of variation, Coefficient of Quartile Deviation 	

Range

Property 1	 Not affected by change of origin Affected by change of scale (only value) No impact of sign of change of scale
	Note: Measure of Dispersion can never be negative
General Review	Not Based on All Observations
	Easy to Compute

Mean Deviation

Meaning	Mean deviation is defined as the
	arithmetic mean of the
	 absolute deviations of the observations
	 from an appropriate measure of central tendency
Property 1	Mean Deviation takes its minimum value when deviations are taken
	from Median

Property 2	Change of Origin – No Affect, Change of Scale – Affect of value not sign
General Review	 Based on all observations Improvement over Range Difficult to compute Not amenable to Mathematical Property because of usage of Modulus

Standard Deviation

Meaning	 Improvement over Mean Deviation It is defined as the root mean square deviation when the deviations are taken from the AM of the observations
Coefficient of Variation	$\frac{SD_x}{\overline{x}} \times 100$
SD for any two numbers	$SD = \frac{ a-b }{2}$
SD for first n natural numbers	$s = \sqrt{\frac{n^2 - 1}{12}}$
Property 1	If all the observations are constant, SD is ZERO
Property 2	No effect of change of origin but affected by change of scale in the magnitude (ignore sign)
Property 3	$SD_{c} = \sqrt{\frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2} + n_{1}d_{1}^{2} + n_{2}d_{2}^{2}}{n_{1} + n_{2}}}$ $d_{1} = \overline{x}_{c} - \overline{x}_{1}$ $d_{2} = \overline{x}_{c} - \overline{x}_{2}$

Quartile Deviation

Meaning	It is semi-inter quartile range		
	 It is the best measure of dispersion for open-end classification 		
General Review	 It is also less affected due to sampling fluctuations 		
	 Like other measures of Dispersion, QD is also not affected by 		
	change of origin but affected by scale ignoring sign		

Correlation and Regression

Bivariate Data

Definition	 When data are collected on two variables simultaneously, they are known as bivariate data and the corresponding frequency distribution, derived from it, is known as Bivariate Frequency Distribution
Marginal Distribution	 It is the frequency distribution of one variable (x or y) across the other variable's full range of values Number of Marginal Distribution = 2
Conditional Distribution	 It is the frequency distribution of one variable (x or y) across a particular sub-population of the other variable. No. of Conditional Distributions = m + n m = no. of class interval of x n = no. of class interval of y

Scatter Diagram

0	It helps us to find Nature and Relative Strength of Correlation
	 It is useful for Non-Linear Correlation also
Concept Points	 It cannot be used to determine value
	Diagrams are time taking

Karl Pearson's Correlation Coefficient

How to Calculate	Correlation Coefficient is the ratio of covariance with product of standard deviations				
Property 1	The Coefficie	ent of C	orrelation is a ι	ınit-free measure	
Property 2	Value lies from -1 to +1				
	Change of Origin Change of Scale		No impact		
Property 3			No impact of value, but if change of scale of both variables are of different sign then sign of r will also change		
		Value of r		Interpretation	
				Perfect Negative	
		Betwee <mark>n -1 and 0</mark>		Negative	
		Closer to -1		Strong Negative	
Interpretation of Value		Far from -1		Weak Negative	
of r			0	No Correlation	
		Between 0 and 1		Positive	
	Far from +1		Weak Positive		
	Ne		Near to +1	Strong Positive	
			+1	Perfect Positive	

Spearman's Rank Correlation Coefficient

Usage	 find the level of agreement (or disagreement) between two judges so far as assessing a qualitative characteristic (attribute) is concerned Use in case of ranks 	
Ranking in case of Tie	In case of tie, simple average of ranking should be assigned to tied values	

Coefficient of Concurrent Deviations

	Lisage A v	A very quick, simple and casual method of finding correlation when
We are not serious about the magnitud	we are not serious about the magnitude of the two variables	

Regression Basics

Meaning	Estimation of one variable for a given value of another variable on the basis of an average mathematical relationship between the two variables		
Requirements	Estimation of Y when X is givenEstimation of X when Y is given		
General Points	Perfect Correlation • When linear relationship exists between two variables, correlation is perfect. • Perfect Correlation is represented by a linear equation and this equation can be used for regression purpose directly. • Same equation can be used in both ways Imperfect Correlation • In case of imperfect correlation there is no definite line and equation • We will use method of least square to estimate both regression lines		
Formula of Regression Equations/ Lines	Estimation of Y when X is given • Use Regression line of Y on X • Equation Format: $ Y - \overline{Y} = b_{yx} (X - \overline{X}) $ $ b_{yx} \text{ is regression coefficient of Y on X} $ • Use Regression line of X on Y • Equation Format: $ X - \overline{X} = b_{xy} (Y - \overline{Y}) $ $ b_{xy} \text{ is regression coefficient of X on Y} $		
Property 1	 Change of Origin and Scale Origin: No Impact Scale: If original pair is x, y and modified pair is u, v b_{vu} = b_{yx} × change of scale of y change of scale of x 		

	$b_{uv} = b_{xy} \times \frac{\text{change of scale of x}}{\text{change of scale of y}}$	
Property 2	perty 2 Two regression lines (if not identical) will intersect at the point [means] (\bar{x}, \bar{y})	
Property 3	Relation between Correlation and Regression Coefficients $r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$ $r_{xy}, b_{xy}, b_{yx} \text{ will always have same sign}$	

Probable Error

Use	 Correlation is calculated using sample, value for sample may differ from population, this difference is probable error If there is significant probable error, there is no evidence of real correlation 		
Limits of Sample Correlation Coefficient	r±PE		
	Case	Conclusion	
How to check evidence	If r is less than PE	There is no evidence of correlation	
of Correlation using PE	If r is greater than six times of PE	The presence of correlation is certain	
	Since r lies from -1 to +1	PE can never be negative	

Coefficient of Determination and Non-Determination

Coefficient of Determination Accounted Variance/ Explained Variance	r²
Coefficient of Non-Determination Unaccounted Variance/ Unexplained Variance	1-r ²

