CA	Foundation EDNOVATE
	6 SEQUENCE AND SERIES –ARITHMETIC AND GEOMETRIC PROGRESSIONS
	TRY YOURSELF - 1
1. Sol.	For what value of k is the sequence $2k+4, 3k-7, k+12$ an arithmetic sequence. (a) $k=10$. (b) $k=9$. (c) $k=8$. (d) None of these If a, b, c are in A.P., then $2b = a+c$.
	$\therefore \qquad 2(3-7) = 2k + 4 + k + 12$ $\implies \qquad 6k - 14 = 3k + 16$ $\implies \qquad 3k = 30$ $\implies \qquad k = 10.$ $\therefore (a) \text{ is correct}$
2. Sol.	Find arithmetic mean between 7 and 15. (a) 8 (b) 11 (c) 5 (d) None of these Here $a = 7, b = 15$
	The arithmetic mean between <i>a</i> and <i>b</i> is $\frac{a+b}{2}$ \therefore The required arithmetic mean = $\frac{7+15}{2} = 11$ \therefore (b) is correct
3.	Insert 4 arithmetic means between 4 and 29.(a)9, 14, 19 and 29(b)9, 14, 20 and 25(c)9, 14, 25 and 35(d)none of these
Sol.	If <i>d</i> is the common difference, then $d = \frac{b-a}{n+1} = \frac{29-4}{5} = 5$ The arithmetic means are $4+5, 4+2\times5, 4+3\times5$ and $4+4\times5$ i.e. 9, 14, 19 and 29 are required arithmetic means.
4.	The tenth term of an arithmetic progression is 25 and the fifteenth term is 40. Find the first term and common difference and then find the fifth term.
	(a) 5 (b) 15 (c) 10 (d) none of these

Sol. It is given that $t_{10} = 25, t_{15} = 40$, where t_n denotes the *n*th term. By using arithmetic progression, $t_n = a + (n-1)d$, where a = first term and d = common difference. It is given that 25 = a + 9d(1) 40 = a + 14d(2) From (1) and (2), we get 5d = 15 or d = 3 $d = 3 \Rightarrow a = -2$. Hence $t_n = -2 + (n-1).3$ Fifth term $= t_5 = -2 + 4 \times 3 = 10$. \therefore (c) is correct

- **5.** The third term of an Arithmetic progression is 7 and its seventh term is 2 more than thrice of its third term. Find the first term, common difference and the sum of first 20 terms of the progression.
- 180 740 190 (d) (a) (b) (c) none of these **Sol.** Let the A.P. be $a, a+d, a+2d, \dots, a+(n-1)d, \dots$; a being first term, and d the common difference According to the question, $t_3 = 7i.e, a = (3-1)d = 7 \text{ or}, a+2d = 7 \dots$ (i) $t_7 = 2 + 3t_3$ and i.e., $a + 6d = 2 + 3 \times 7$ [using (i)] or, a + 6d = 23...(ii) (ii)....(i) gives, 4d = 16 i.e., d = 4. Substituting this value of d, in (i), we find a = -1. Also, sum to 20 terms, $S_{20} = 20/2 \{2 \times (-1) + (20-1) \times 4\}$ $=10(-2+76) = 10 \times 74 = 740$
 - : (b) is correct
- 6. Find the increasing arithmetic progression, the sum of whose first three term is 27 and the sum of their squares is 275.
 - (a) 5, 9, 13. (b) 5, 10, 13. (c) 5, 10, 14. (d) none of these

Sol. Let the first three terms of the programmes be
$$a-d$$
, a , $a+d$.
By the description of the problem.
 $(a-d)^2 + a^2 + (a+d)^2 = 275$ (ii)
and $(a-d)^2 + a^2 + (a+d)^2 = 275$ (iii)
From (i), $3a^2 + 2d^2 = 275$ (iii)
From (ii), $3a^2 + 2d^2 = 275$
or, $2d^2 = 275 - 3 \times 81$ [Using (iii)]
or, $2d^2 = 275 - 243 = 32$ i.e., $d = \pm 4$
Using $a = 9$ and $d = 4$, we get the required increasing arithmetic progression
 $9-4,9,9+4$ i.e., $5, 9, 13$.
 \therefore (a) is correct
7. Divide 20 into 4 parts which are in arithmetic progression such that the product of the
first and fourth is to be the product of the second and third in the ratio 2:3.
(a) 2, 4, 6, 8. (b) 8, 4, 6, 8.
(c) 2, 4, 5, 8. (d) none of these
Sol. Let four parts in A.P. be $x \cdot 3d, x - d, x + 3d = 20$ i.e., $x = 5$.
Product of 1st and 4th parts is $x^2 - d^2$.
By the given condition, $\frac{x^2 - 9d^2}{x^2 - d^2} = \frac{2}{3}$
Or, $3x^2 - 27d^2 = 2x^2 - 2d^2$
Substituting $x = 5$, we get
 $75 - 27d^2 = 50 - 2d^2$
 $d^2 = 1$ i.e., $d = \pm 1$
 \therefore (a) is correct
8. Give the correct answer with reasons for the following question:
If x, y, z be the p^{th}, q^{th}, r^{th} terms respectively of an Arithmetic progression, then
 $x(q-r) + y(r-p) + z(p-q)$ is equal to
(a) 0 (b) xyz (c) pqr (d) $p+q+r$

Sol. If a be the first term and d the common difference of the A.P. then

EDNOYATE

$$x = a + (p-1)d, y = a + (q-1)d, z = a + (r-1)d$$

$$\therefore x(q-r) + y(r-p) + z(p-q)$$

$$= \{a + (p-1)d\}(q-r) + \{a + (q-1)d\}(r-p) + \{a + (r-1)d\}\{p-q\}$$

$$= a(q-r+r-p+p-q) + d\{(p-1)(q-r) + (q-1)(r-p) + (r-1)(p-q)\}$$

$$= a \times 0 + d \times 0 = 0$$

$$\therefore \text{ (a) is correct}$$

9. Find the sum of all numbers between 100 and 1,000 which are divisible by 13.

(a) 37,654 (b) 35,674 (c) 37,674 (d) none of these

Sol. The numbers divisible by 13 form an arithmetic series. The series starts at 104 and ends at 988.

The last term is a + (n-1)d. Here a = 104, d = 13,

$$\therefore \qquad 988 = 104 + (n-1) \quad 3 \times n = 69$$

Sum of these numbers is given by

$$S = \frac{n}{2} \{ 2a + (n-1)d \}$$

= $\frac{69}{2} \{ 208 + 68 \times 13 \} = \frac{69}{2} \times 1092 = 37,674$

: (c) is correct

- **10.** The sum of a certain number of terms in arithmetic progression is 5500. The first and the last terms are 100 and 1000. Find the number of terms.
- (a) 10
 (b) 12
 (c) 16
 (d) none of these
 Sol. Let the number of terms be n, S the sum, a the first term, and l the last term of the progression.

It is given that = S = 5,000; a = 100; l = 1,000.

We know

 $S = \frac{n}{2}(a+l)$

∴ or, $5,500 = \frac{n}{2} (100 + 1,000)$

 $11,000 = n \times 1100$ i.e., n = 10

Therefore, the required number of terms is 10.

: (a) is correct

11. The sum of the first *n* terms of an A.P. is $3n^2 - 2n + 1$. The common difference is (a) -4 (b) 4 (c) -5 (d) 5

Sol. The sum of the first *n* terms is = $3n^2 - 2n + 1$ Putting n = 1, we get the first term = $3.1^2 - 2.1 + 1 = 2$: Putting n = 2, we get the sum of the two terms = $3.2^2 - 2.2 + 1 = 9$; Second term is therefore given by =9-2=7and common difference = second term - first term = 7-2=5; . (d) is correct The sum of the digits of a three digit number is 12. The digits are in arithmetic 12. progression. If the digits are reversed, then the number is diminished by 396. Find the number. (a) 121 (b) 124 (c) 642 (d) none of these **Sol.** Let the digits be x, y, z. The number is 100x+10y+z. From the question x + y + z = 12...(1) 2y = x + z...(2) (100x+10y+z)-(100z+10y+x)=396and 99(x-z) = 396or x-z=4... ...(3) From (1) and (2), $x+z+\frac{1}{2}(x+2)=12$ Or, x + z = 8...(4) From (3) and (4), x = 6z = 2 v = 4From (2). Therefore the number is 642. : (c) is correct

- 13. A piece of equipment cost a certain factory ₹ 6,00,000. If it depreciates in value 15% in the first year, 13¹/₂% the next year, 12% the third year and so on, what will be its value at the end of 10 years, all percentages applying to the original cost?
 (a) ₹105,000
 (b) ₹102,000
 - (c) ₹115,000 (d) none of these

Sol. Cost of piece of equipment = ₹ 6,00,000 Its depreciation in 1st year = $\frac{6,00,000 \times 15}{100}$ = ₹ 90,000 Its depreciation in next year = $6,000 \times \frac{27}{2}$ = ₹ 81,000 Its depreciation in third year = $6,000 \times 12$ = ₹ 72,000... and so on Depreciation: 90,000, 81,000, 72,000 ... It is in A.P. with common difference d = -9,000 \therefore Total depreciation in 10 years $=\frac{10}{2}\{2 \times = 90,000 + (10-1) (-9,000)\} = 5(180,000 - 81,000)$ $= 5 \times 99,000 = ₹ 4,95,000$

∴Required value at the end of 10 years = 6,00,000 - 4,95,000 = ₹105,000.

- : (a) is correct
- 14. A house with a present value of ₹1,00,000 has to be depreciated over a period of 25 years. 4% of the present value is deducted each year. Find an equation to express the depreciated value as an arithmetic sequence and find the value after 10 years.

EDNOYATE

- (a) ₹60,000 (b) ₹55,000
- (c) $\gtrless 15,000$ (d) none of these

Sol.
$$d = -(4\% \text{ of } \gtrless 1,00,000) = (1,00,000 \times \frac{4}{100}) = -4,000$$

Hence $t_n = 1,00,000 \cdot (n \cdot 1) 4,000$, where t_n denotes depreciated value of the machine at the beginning of *n*th year. The value of machine after 10 years is $t_n = 1,00,000 - 10 \times 4,000 = \texttt{F}60,000$.

: (a) is correct

- 15. The Cricket Control Board of India decides to raise a cricketer's beneficiary fund of ₹ 5 crores. A start is made with ₹ 10 lacs and every year an additional worth ₹ 3 lakhs is made. In how many years will the fund reach the desired value? What should be the last year's contribution to make up the desired fund?
 - (a) 15,00,000 (b) 35,00,000 (c) 45,00,000 (d) none of these

Sol. a = 10 lakhs: d = 3 lakhs

s = 500 lakhs

$$500,00,000 = \frac{n}{2} (2 \times 10,00,000 + (n-1)3,00,000]$$

 $3n^2 + 17n - 1.000 = 0$

Or

$$1000 = n [20 + 3n - 3]$$

Or

$$n = \frac{-17 \pm \sqrt{17^2 + 4 \times 3 \times 1000}}{2 \times 3}$$

= 15.64 neglecting the negative value.

Thus, the fund will be raised in 16 years. Last years contribution is equal to

$$= 500,00,000 - \frac{15}{2} \left[2 \times 10,00,000 + (15-1) 3,00,000 \right]$$
$$= 500,00,000 - \frac{15}{2} (20,00,000 + 42,00,000)$$
$$= 35,00,000.$$

: (b) is correct

A pile of bricks is stacked so that there are 24 bricks in the bottom layer and each 16. successive layer contains one brick less. The top layer contains 6 bricks. How many bricks are there in the whole pile.

285 (b) 100 (c) 125 (d) none of these (a) Sol. This is a problem in Arithmetic progression. The first term and the last term is given. We have to find the whole sum. Obviously, here d = -1, a = 24, I - 6. To find n, we proceed as 24 + (n-1)(-1) = 6

⇒

(n-1) = 24 - 6 = 18n = 19.Therefore, since $S_n = \frac{n}{2}(a+1) = \frac{19}{2}(24+6) = 15 \times 19 = 285$.

: (a) is correct

The annual salary increment of a monthly salaries person is in the arithmetic 17. progression. It is known that he drew monthly salary of ₹ 10,000 in the year 2003 and ₹ 14,000 in the year 2019. He started his service in the year 1990 and shall attain the edge of superannuation in the year 2029. Calculate the monthly salary with which he started the job in the year 1990 and also the monthly salary in the year of his super annuation.

₹13,500 ₹16,500 ₹16,100 (d) none of these (a) (b) (c)

Sol. Let the starting monthly salary of the person be a and annual increment be d.

Then, Salary in 2003 = $a + (14-1)d = 10,000 \Rightarrow a + 13d = 10,000$

Salary in 2019 = $a + (30 - 1)d = 14,000 \Rightarrow a + 29d = 14,000$

 $\therefore 16 \ d = 4,000 \Rightarrow d = 250 \text{ and } a = 10,000 - 13 \times 250 = 6,750$

Monthly salary of the person in 1990 = 6,750

Salary in the year of superannuation (2029)

= 6,750+ (40 - 1)250

- = 6,750 + 9,750 = ₹ 16,500
- : (b) is correct
- 18. A man repays a loan of ₹ 3,250 by paying ₹ 20 in the first month and then increases the payment by ₹ 15 every month. How many months approximately will it take to clear his loan?

(a) 20 (b) 11 (c) 15 (d) none of these **Sol.** Payment in the first month = ₹ 20

Payment in the second month = ₹ (20 + 15) = ₹ 35

Payment in the third month = $\overline{\ast}$ (35 + 15) = 50

Thus the repayments from an A .P., with first term a = 20 common difference d = 15; the sum being $S_n = 3,250$. We are to find *n*, the no. of terms.

Since,

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$
, we may write

$$3,250 = \frac{n}{2} [2 \times 20 + (n-1)15]$$
or,
$$6,500 = n [40 + (n-1)15]$$

$$= 15n^{2} + 25n$$

 $3n^2 + 5n - 1,300 = 0$

Transposing.

$$15n^2 + 25n - 6,500 = 0,$$

Or,

[Dividing throughout by 5]

EDNOYATE

$$n = \frac{-5 \pm \sqrt{5^2 + 4 \times 3 \times 1,300}}{2 \times 3}$$
$$= \frac{-5 \pm \sqrt{25 + 15, 600}}{6}$$
$$= \frac{-5 \pm 125}{6} = \frac{120}{6} \text{ or } \frac{-130}{6}$$

Neglecting the negative value, $n = \frac{120}{6} = 20$.

Hence, the required answer = 20 months 1 year 8 months.

: (a) is correct

EDNOYATE

19. A man borrows ₹ 1,00,000 from a firm and under the agreement he agrees to pay ₹ 5,000 at the end of each 6 months together with an interest 1% on the opening balance of each period. Find the total interest which he pays on clearing the loan.

(b)

10,100

- (a) 10,500
 - (c) 10,200 (d) none of these

Sol. Interest paid after first period = $1,00,000 \times 0.01 = 1.000$

Interest paid after second period = (1,00,000-5,000)0.01=950

Interest paid after third period and so on = $(1,00,000-2\times5,000)0.01=900$

The stream of interest payments from an decreasing A.P. with 1,000 as first term -50 is common difference and $\frac{1,00,000}{5,000}$ = 20th number of terms.

The total interest paid is given by

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$
$$= \frac{20}{2} [2 \times 1000 + (20-1)(-50)]$$

= 10 [2000 - 950] = 10, 500

: (a) is correct

- 20. A person agrees to pay-off a debt of ₹ 36,000 in 40 annual instalments, which form an A.P. When 30 instalments are paid he dies leaving one-third of the debt unpaid. Find the value of first instalment.
- (a) 100 (b) 110 (c) 510 (d) none of these
- **Sol.** Let the value of 1^{st} instalment be a. The no. of instalments being 40, we may write

*S*₄₀=₹36,000

By the given condition,
$$S_{30} = 36,000 - \frac{1}{3} \times 36,000 = 24,000$$

Since

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we may write

$$S_{40} = \frac{40}{2} (2a + 39d) = 36,000$$

or $2a + 39d$

or
$$2a+39d = 1800...(1)$$

Also $S_{30} = \frac{30}{2}(2a+29d) = 2400$

or
$$2a + 29d = 1,600...(ii)$$

Subtracting (ii) from (i),

10d = 200 i.e. d = 20

EDNOVATE

Putting the value of d in (ii) $a = \frac{1600 - 29 \times 20}{2} = 510 = \text{Required value of first instalment.}$ \therefore (c) is correct

21. On 1st January every year, a person buys NSCs. (National Savings Certificates) of value exceeding that of his last year's purchase by ₹ 100. After 10 years, he finds that the total value of the certificates held by him, is ₹ 54,500. Find the value of the certificates purchased by him.

(i) in the first year

(ii) in the eighth year

(a) 2,700 (b) 5,700 (c) 1,700 (d) none of these

Sol. The investment made by the person form a arithmetic progression with common difference as 100 and sum of first 10 terms as 54,500.

$$S_{n} = \frac{n}{2} = \left[2a + (n-1)d \right]$$

54,500 = $\frac{10}{2} \left[2a + (10-1)100 \right]$
54,500

or

$$\frac{54,500}{5} = 2a + 900$$
$$a = \frac{10,900 - 900}{2} = 5,000$$

In first year he has purchased NSCs worth ₹ 5,000.

$$t_8 = 5,000 + (8-1)100 = 5,700$$

In eight year he has purchased NSCs worth ₹ 5,700.

: (b) is correct

22. Find the 7th term of the A.P. 8, 5, 2, -1, -4,
(a) 11 (b) -10 (c) 12 (d) none of these
Sol. Here
$$a = 8, d = 5 - 8 = -3$$

Now $t_7 = 8 + (7 - 1) d$
 $= 8 + (7 - 1) (-3)$
 $= 8 + 6 (-3)$
 $= 8 - 18$
 $= -10$
 \therefore (b) is correct
23. Which term of the AP $\frac{3}{\sqrt{7}}, \frac{4}{\sqrt{7}}, \frac{5}{\sqrt{7}}, \dots, \dots, \text{is } \frac{17}{\sqrt{7}}$?
(a) $\frac{17}{\sqrt{7}}$ (b) $\frac{18}{\sqrt{7}}$ (c) $\frac{22}{\sqrt{7}}$ (d) none of these

Sol. $a = \frac{3}{\sqrt{7}}, d = \frac{4}{\sqrt{7}} - \frac{3}{\sqrt{7}} = \frac{1}{\sqrt{7}}, t_n = \frac{17}{\sqrt{7}}$ We may write $\frac{17}{\sqrt{7}} = \frac{3}{\sqrt{7}} + (n-1) \times \frac{1}{\sqrt{7}}$ or, 17 = 3 + (n - 1)or, n = 17 - 2 = 15 Hence, 15th term of the A.P. is $\frac{17}{\sqrt{7}}$. : (a) is correct If 5th and 12th terms of an A.P. are 14 and 35 respectively, find the A.P. 24. (a) 2, 5, 8, 11, 14, (b) 2, 5, 8, 11, 15, 2, 5, 7, 11, 14, (d) none of these (C) Sol. Let a be the first term & d be the common difference of A.P. $t_5 = a + 4d = 14$ $t_{12} = a + 11d = 35$ On solving the above two equations, 7d = 21 = i.e., d = 3and $a = 14 - (4 \times 3) = 14 - 12 = 2$ Hence, the required A.P. is 2, 5, 8, 11, 14, : (a) is correct 25. Divide 69 into three parts which are in A.P. and are such that the product of the first two parts is 483. (a) 21, 24, 25 (b) 21, 23, 25. (c) 12, 16, 18 (d) none of these Sol. Given that the three parts are in A.P., let the three parts which are in A.P. be a d, a, a + d..... Thus a - d + a + a + d = 69or 3a = 69or a = 23So the three parts are 23 - d, 23, 23 + d Since the product of first two parts is 483, therefore, we have 23(23 - d) = 48323 - d = 483 / 23 = 21 or d = 23 - 21 = 2or Hence, the three parts which are in A.P. are 23 - 2 = 21, 23, 23 + 2 = 25 Hence the three parts are 21, 23, 25. : (b) is correct

26. Find the arithmetic mean between 4 and 10. (a) 7 (b) 9 (C) 12 (d) none of these **Sol.** We know that the A.M. of a & b is = (a + b)/2Hence, The A. M between 4 & 10 = (4 + 10)/2 = 7: (a) is correct 27. Insert 4 arithmetic means between 4 and 324. 68,132,196,260 58,132,196,160 (a) (b) (c) 28,132,196,220 (d) none of these **Sol.** Here a=4, d = ? n = 2 + 4 = 6, $t_n = 324$ $t_n = a + (n - 1)d$ Now 324= 4 + (6 - 1) d or or 320= 5d i.e., = i.e., d = 320 / 5 = 64 So the $1^{st} AM = 4 + 64 = 68$ 2^{nd} AM = 68 + 64 = 132 3^{rd} AM = 132 + 64 = 196 $4^{\text{th}} \text{AM} = 196 + 64 = 260$: (a) is correct

EDNOVATE

EDNOYATE **CA** Foundation **TRY YOURSELF - 2** For what values of k is the sequence $\{k-4, k-2, k+2\}$ a geometric progression. 1. (d) none of these (b) k = 6k = 5(a) k = 1(c) Sol. Since in a geometric progression, square of the middle term equals the product of the preceding and succeeding terms, we should have, $(k-2)^2 = (k-4)(k+2)$ $k^{2}-4k+4=k^{2}-2k-8$ ⇒ 2k - 12⇒ k = 6or, Therefore, for k = 6, the terms $\{k-4, k-2, k+2\} = \{2, 4, 8\}$ follows a geometric progression. : (b) is correct Find the G.P. whose 4th term is 8 and 8th term is $\frac{128}{625}$. 2. (a) 125, 50, 20, 8, $\frac{16}{5}$ (b) 125, 50, 20, $8, \frac{2}{5}$ (c) 125, 50, 20, $8, \frac{11}{5}$ (d) none of these **Sol.** If a is the first term and r is the common ratio of a G.P., then $8 = t_n = ar^3$ and $\frac{128}{625} = t_8 = ar^7$. $\Rightarrow \qquad \frac{ar^3}{ar^3} = \frac{128}{625} \times \frac{1}{8} \qquad \Rightarrow \qquad$ $r^4 = \frac{16}{625}$ $r = \pm \frac{2}{5}$ When $r = \frac{2}{5}, a\left(\frac{2}{5}\right)^3 = 8 \implies a = \frac{8 \times 125}{8} = 125$ $a = \frac{8 \times 125}{-8} = -125$ When $r = -\frac{2}{5}, a\left(-\frac{2}{5}\right)^3 = 8 \Rightarrow$ \therefore required G.P. is either 125, 50, 20, 8, $\frac{16}{5}$ -125, 50 - 20, 8, $\frac{-16}{5}$, or

: (a) is correct

3.

4.

Find the geometric mean between 3 and 27. (a) 7 (b) 12 (c) 9 (d) none of these **Sol**. Here a = 3, b = 27. The geometric mean between a and b is \sqrt{ab} . :The geometric mean between 3 and 27 is $\sqrt{3 \times 27} = 9$. : (c) is correct Insert 3 geometric means between $\frac{1}{9}$ and 9. $-\frac{1}{3}, 1, -3$ (b) $\frac{1}{3}, 2, +3$ (c) $-\frac{1}{3}, 2, -4$ (d) none of these (a) Sol. If n geometric means are to be inserted between a and b, then common ratio $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$ is given by Here, r = 1/9, b = 9, n = 3 $\therefore r = \left(\frac{\frac{9}{1}}{\frac{9}{9}}\right)^{\frac{1}{4}} = (81)^{\frac{1}{4}} = (\pm 3)^{\frac{1}{4}}$ $r = \pm 3$. Therefore required geometric means are $\frac{1}{9} \times 3, \frac{1}{9} \times 3^2, \frac{1}{9} \times 3^3$

EDNOVATE

r

or

i.e.

$$\frac{1}{9} \times (-3), \frac{1}{9} \times (-3)^2, \frac{1}{9} \times (-3)^3$$

either $\frac{1}{3}, 1, 3$ or $-\frac{1}{3}, 1, -3$.

: (a & b) is correct

5. Prove that the A.M. of two positive numbers is greater or equal to their geometric mean.

(b) $\frac{a+b}{2} \ge \sqrt{ab}$ (a) $\frac{a+b}{1} \ge \sqrt{ab}$ (C) $\frac{a+b}{2} \le \sqrt{ab}$ (d) none of these

Sol. Let the two numbers be *a* and *b* Arithmetic mean = $\frac{a+b}{2}$, Geometric mean = \sqrt{ab} To prove $\frac{a+b}{2} \ge \sqrt{ab}$ i.e. $a+b \ge 2\sqrt{ab}$ i.e. $a+b-2\sqrt{ab} \ge 0$ i.e. $(\sqrt{a}-\sqrt{b})^2 \ge 0$

Now the expression $(\sqrt{a} - \sqrt{b})^2 \ge 0$ is true (square of a number is always positive). Hence $\frac{a+b}{2} \ge \sqrt{ab}$ is also true. \therefore (b) is correct

6. 57 Find three numbers in G.P. whose sum is $\frac{57}{2}$ and whose product is 729.

(a) 6, 9, $\frac{20}{2}$ (b) 6, 9, $\frac{15}{2}$ (c) 6, 9, $\frac{27}{2}$ (d) none of these

Sol. Let the three numbers be $\frac{a}{r}$, *a*, *ar*.

Given, $\frac{a}{r}$. a. ar = 729or, $a^3 = 729 = 27^2 = (3^3)^2 = (3^2)$ i.e., a = 9

It is also given that $\frac{a}{r} + a + ar = \frac{57}{2}$

or, $a\left(\frac{1}{r}+1+r\right) = \frac{57}{2}$

or.
$$1+r+r^2 = \frac{57}{2 \times 9}r = \frac{19r}{6}$$

or, $6r^2 - 13r + 6 = 0$

or,
$$(3r-2)(2r-3) = 0$$
 or, $r = 2/3, 3/3$

Therefore, the required numbers are either $\frac{27}{2}$, 9, 6, or, 6, 9, $\frac{27}{2}$. \therefore (c) is correct

7. Give the correct answer with reasons for the following questions: If $a^{1/x} = b^{1/y} = c^{1/z}$ and a, b, c are in G.P., then x, y, z are in (a) A.P. (b) G.P (c) M.P (d) none of these

2

EDNOVATE

Sol. If $a^{1/x} = b^{1/y} = c^{1/z} = k$ then $a = k^x, b = k^y; c = k^z$ Since a, b, c are in G.P., $b^2 = ac$ $=k^{2y}=k^{x}k^{z}$ i.e., $=k^{2y}=k^{x+z}$ or, 2y = x + z and so x, y, z are in A.P. or. : (a) is correct

If a, b, c, d are in geometric progression, show that: $(b-c)^2 + (c-a)^2 + (d-b)^2 = ?$ 8.

(a)
$$(a+d)^2$$
 (b) $(a-d)^2$ (c) $(a-d)^3$ (d) none of these
Let the the common ratio Since a, b, c, d are in C. P. $b = ar, c = ar^2, d = ar^3$

Sol. Let *r* be the common ratio. Since *a*, *b*, *c*, *d* are in G.P., b = ar, $c = ar^2$, $d = ar^3$.

Now,
$$(b-c)^{2} + (c-a)^{2} + (d-b)^{2}$$

$$= (ar-ar^{2})^{2} + (ar^{2}-a)^{2} + (ar^{3}-ar)^{2}$$

$$= a^{2} [(r-r^{2})^{2} + (r^{2}-1)^{2} + (r^{3}-r)^{2}]$$

$$= a^{2} [r^{6} - 2r^{3} + 1]$$

$$= a^{2} (r^{3} - 1)^{2} \qquad \dots (1)$$
Also $(a-d)^{2} = (a-ar^{3})^{2} = a^{2} (1-r^{3})^{2} \qquad \dots (2)$

Also

CA Foundation

EDNOYATE

From (1) and (2), we can observe that $(b-c)^{2} + (c-a)^{2} + (d-b)^{2} = (a-d)^{2}.$

Which is to be proved. : (b) is correct

If S be the sum, P the product and R the sum of the reciprocals of first n terms in a 9. geometric progression, prove that $P^2 R^n = ?$

(a) P^4 (b) P^0 (d) none of these (c) S^n

Sol. Let the *n* terms in G.P. be *a*, *ar*, ar^{2} ,..., ar^{n-1}

Then

$$S = \frac{a\left(1 - r^n\right)}{1 - r}$$

$$P = (a)(ar)(ar^{2})....(ar^{n-1})$$

= $a^{n}r^{1+2+3+...+(n-1)} = a^{n}r^{n(n-1)/2}$
$$P^{2} = a^{2n}r^{n(n-1)}$$

$$R = \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^{2}}... + \frac{1}{ar^{n-1}}$$

EDNOVATE

CA Foundation

$$=\frac{\frac{1}{a}\left[\left(\frac{1}{r}\right)^{n}-1\right]}{\frac{1}{r}-1}=\frac{r(1-r^{n})}{a(1-r)r^{n}}=\frac{1-r^{n}}{ar^{n-1}(1-r)}$$
$$\frac{S}{R}=\frac{a(1-r^{n})}{(1-r)}\times\frac{ar^{n-1}(1-r)}{(1-r^{n})}=a^{2}r^{n-1}$$
$$\frac{S^{n}}{R^{n}}=\left(a^{2}r^{n-1}\right)^{n}=a^{2n}r^{n(n-1)}=P^{2}$$

Hence,

Thus, we have $P^2 R^n = S^n$ \therefore (c) is correct

- **10.** Find the missing numbers and on using suitable formula give the sum of the following: 1+3+9+*+81+243+*+2187.
- (a) 3280 (b) 3192 (c) 3320 (d) none of these **Sol.** Given 1+3+9*+81+243+*+2187, we may write the sum,

$$S = 1 + 3 + 3^2 + * + 3^4 + 3^5 + * + 3^7$$

Number of terms 8, and the series is in G.P. with Common ratio 3.

 $\therefore t_4$, the 4th term = $3^3 = 27$, t_7 , the 7th term = $3^6 = 729$

$$\left\lfloor \therefore t_n = ar^{n} \right\rfloor$$

.: Required missing numbers are 27, 729; and

the sum,
$$S = \frac{a(r^n - 1)}{r - 1} = \frac{1(3^8 - 1)}{3 - 1} = \frac{6561 - 1}{2} = \frac{6560}{2} = 3280.$$

- 11. A man borrows ₹ 8,000 the simple interest rate of 2.76% per annum. It is decided that the principal and the interest are to be paid in 10 monthly instalments. If each instalments is double of the preceding instalment, find the value of the first and the last instalment.
 - (a) ₹ 4296
 (b) ₹ 4096
 (c) ₹ 4196
 (d) none of these

Sol. Interest to be paid = $\frac{2.76 \times 10 \times 8,000}{100 \times 2} = ₹184$

Total amount to be paid in 10 monthly instalments 8000+ 184 = ₹ 8184

Let a be the first instalment. Since instalments are in G.P. with common ratio 2, we have

8184 =
$$\frac{a(2^{10}-1)}{2-1}$$

Hence, $a = \frac{8184}{1023} = ₹ 8$ (First instalment)

The last instalment = $8 \times 2^9 = 8 \times 512 = ₹4096$. : (b) is correct

- 12. A person decides to save ₹ 2.00 in January, ₹ 4.00 in February, ₹ 8.00 in March, ₹ 16.00 in April and so on up to the end of year. Determine:
 - (i) How much amount he will save during the whole year?
 - (ii) What will he save in the month of October?
 - (a) ₹ 1024 (b) ₹ 2056
 - (c) ₹ 4552 (d) none of these
- **Sol.** According to question, person saves
 - ₹ 2, ₹ 4, ₹ 8 ... in respective months Clearly, it is G.P., where first term is 2 and common ratio is also 2.

- (i) Total saving up to end of year $=\frac{2(2^{12}-1)}{2-1}=2(4096-1)=₹8,190$
- (ii) Saving in October 10th term, of G.P. = $2 \times 2^{10-1} = ₹1,024$.
- : (a) is correct
- Three numbers are in arithmetic progression and their sum is 21. If 1, 5, 15 be added 13. to them respectively, they form a geometric progression. Find the numbers.
 - d = -16; 23, 7 and -9(a) (b) d = -16; 23, 7 and -8
 - d = -16; 23, 7 and -10 none of these (c) (d)
- **Sol.** Let the three numbers in Arithmetic Progression be a-d, a, a+d. Then by the given condition,

$$(a-d)+a+(a+d) = 21$$
$$3a = 21 \times a = 7$$

or

By adding 1, 5, 15 the numbers become, 8-d, 12, 22+d

Since, it is given that these are in geometric progression, we have

$$12^2 - (8-d)(22+d)$$

or,

$$144 = 176 - 22d + 8d - d^2$$

 $d^{2} + 14d - 32 = 0$ or.

(d+16)(d-2)=0or,

or,

d = -16 or 2.

Hence the numbers are,

When d = 2; 5, 7 and 9; or when d = -16; 23, 7 and -9. : (a) is correct

- **14.** If *a*, *b*, *c* are in arithmetic progression and *x*, *y*, *z* are in geometric progression, prove that x^{b-c} , y^{c-a} , $z^{a-b} = ?$
 - (a)
 1
 (b)
 5

 (c)
 4
 (d)
 none of these

Sol. If a, b, c are in A.P. then $b = \frac{a+c}{2}$ and x, y, z are in G.P. then $y^2 = xz$ L.H.S. $= x^{\frac{a+c}{2}-c} (xz)^{\frac{c-a}{2}} z^{\frac{a-a+c}{2}}$

$$= x^{\frac{a+c}{2}-c} x^{\frac{c-a}{2}} z^{\frac{a-a+c}{2}}$$
$$= x^{\frac{a-c}{2}+\frac{c-a}{2}} z^{\frac{c-a}{2}} z^{\frac{a-a+c}{2}}$$
$$= x^{0} z^{0} = 1 = \text{R.H.S.}$$

: (a) is correct

Give the correct answer for the following with reasons: 15. If $\frac{a^{n+1}+b^{n-1}}{a^n+b^n}$ is arithmetic mean and a and b, $a \neq b$, then n is equal to (c) $\frac{1}{2}$ (b) -1 (a) 1 (d) 0 **Sol.** Given $\frac{a^{n+1}+b^{n-1}}{a^n+b^n} = \frac{a+b}{2}$ $2(a^{n+1}+b^{n+1}) = a^{n+1}+ab^{n}+ba^{n}+b^{n+1}$ or, $a^{n+1} + b^{n+1} = ab^n + ba^n$ or, $a^n(a-b) = b^n(a-b)$ or, $a^n = b^n \left(\therefore a \neq b \right)$ or, $\left(\frac{a}{b}\right)^n = 1 = \left(\frac{a}{b}\right)^0 \qquad \therefore n = 0$ or, : (d) is correct

- **16.** If the sum of an infinite Geometric progression is 20 and the sum of the squares of its terms is 100, find the Progression.
 - (a) $8, \frac{24}{5}, \frac{72}{25}, \dots$ (b) $5, \frac{24}{5}, \frac{72}{25}, \dots$ (c) $2, \frac{24}{5}, \frac{72}{25}, \dots$ (d) none of these

Sol.	Let G.P. be a, ar, ar^2, \dots	
	Given, $20 = a + ar + ar^2 + \infty$, clearly, $r < 1$.	
	and $100 = a^2 + a^2r^2 + a^2r^4 + \dots \infty$	
	$\Rightarrow \qquad 20 = \frac{a}{1-r} \text{ and } 100 = \frac{a^2}{1-r^2}$	
	i.e., $400 = \frac{a^2}{(1-r)^2}$ (1) and $100 = \frac{a^2}{1-r^2}$	(2)
	Dividing (1) by (2), $4 = \frac{a^2}{(1-r)^2} \times \frac{1-r^2}{a^2} = \frac{1+r}{1-r}$	
	or, $4(1-r) = 1 + r \Longrightarrow 5r = 3$ i.e., $r = \frac{3}{5}$.	
	Consequently, $20 = \frac{a}{1 - \frac{3}{5}}$ or, $5a = 40$ i.e., $a = 8$.	
	Hence, required progression is $8, \frac{24}{5}, \frac{72}{25}, \dots$	
	∴ (a) is correct	

17. By expressing as an infinite geometric series find the value of 0.2175.

(a)
$$\frac{159}{1650}$$
 (b) $\frac{359}{1650}$ (c) $\frac{259}{1650}$ (d) none of these
Sol. 0.2175 = 0.21757575.... = 0.21+.0075+000075+.0000075+....
= $0.21 + \frac{75}{10^4} + \frac{75}{10^6} + \frac{75}{10^8} + = 0.21 + \frac{75}{10^4} \left(1 + \frac{1}{10^2} + \frac{1}{10^4} +\right)$
= $0.21 + \frac{75}{10^4} \left(\frac{1}{1 - \frac{1}{10^2}}\right) = 0.21 + \frac{75}{10^4} \times \frac{100}{99} = \frac{21}{100} + \frac{3}{4} \times \frac{1}{99} = \frac{21}{100} + \frac{1}{132}$
= $\frac{693 + 25}{3300} = \frac{718}{3300} = \frac{359}{1650}$.
 \therefore (b) is correct

18. Find the sum of the series. 3+33+333+...+ to *n* terms

(a)
$$\frac{10}{27} (10^n - 1) + \frac{n}{3}$$
 (b) $\frac{10}{27} (10^n - 1) = \frac{n}{3}$
(c) $\frac{10}{27} (10^n - 1) - \frac{n}{3}$ (d) none of these

EDNOVATE

Sol. Sun to *n* terms = 3+33+333+...+ to *n* terms

$$= \frac{1}{3} \{9 + 99 + 999 + \dots \text{ to } n \text{ terms} \}$$

= $\frac{1}{3} \{(10 - 1) + (10^{2} - 1) + (10^{3} - 1) + \dots (10^{n} - 1)) \}$
= $\frac{1}{3} \{10 + 10^{2} + \dots + 10^{n} - n)$
= $\frac{1}{3} \{\frac{10(10^{n} - 1)}{10 - 1} - n\}$
= $\frac{10}{27} (10^{n} - 1) - \frac{n}{3}$
 \therefore (c) is correct

19. Find the sum *n* to terms the series .8+.88+.888+...

(a)
$$\frac{1}{9} \left[n - \frac{1}{9 \times 10^n} (10^n - 1) \right]$$

(c) $\frac{8}{9} \left[n + \frac{1}{9 \times 10^n} (10^n - 1) \right]$

(d) none of these

(b)

 $\frac{8}{9}\left[n-\frac{1}{9\times10^n}\left(10^n-1\right)\right]$

Sol. Let
$$S_n$$
 be the sum of the first *n* terms. Then
 $S_n = .8 + .88 + .888 + +to n terms
 $= 8(.1 + .11 + .111 +to n terms)$
 $= \frac{8}{9}(.9 + .99 + 999 +to n terms)$
 $= \frac{8}{9}[(1 - .1) + (1 - .01) + (1 - .001) +to n terms]$
 $= \frac{8}{9}[(1 - 10^{-1}) + (1 - 10^{-2}) + ... + (1 - 10)^{-n}]$
 $= \frac{8}{9}[n - (10^{-1} + 10^{-2} + + 10^{-n})]$
 $= \frac{8}{9}[n - (10^{-1} + 10^{-2} + + 10^{-n})]$
 $= \frac{8}{9}[n - 10^{-1}\left(\frac{1 - (10^{-1})^n}{1 - \frac{1}{10}}\right)]$
 $= \frac{8}{9}[n - \frac{1}{10} \times \frac{10}{9}\left(\frac{(10^n - 1)}{10^n}\right)]$
 $= \frac{8}{9}[n - \frac{1}{9 \times 10^n}(10^n - 1)]$$

EDNOVATE

20. Sum to *n* terms 6+27+128+629+...

(a)
$$\frac{5}{4}(5^n-1) - \frac{n(n+1)}{2}$$

(c) $\frac{5}{4}(5^n-1) + \frac{n(n+1)}{2}$

(b)
$$\frac{5}{4}(5^n-1) = \frac{n(n+1)}{2}$$

none of these

EDNOYATE

(d)

Sol. The given series may be written as $(5+1)+(5^2+2)+(5^3+3)+(5^4+4)+....$ to *n* terms Required sum = $(5+5^2+5^3+5^4+....$ to terms)+(1+2+3+.... to *n* terms)

$$= \frac{5(5^{n}-1)}{5-1} + \frac{n(n+1)}{2}$$
$$= \frac{5}{4}(5^{n}-1) + \frac{n(n+1)}{2}$$

: (c) is correct

21. Sum to first *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is:

(a)
$$2^{n} - n - 1$$
 (b) $n + 2^{n} - 1$ (c) $2^{n} - 1$ (d) none of these
Sol. $t_{1} = \frac{1}{2} = 1 - \frac{1}{2}$
 $t_{2} = \frac{3}{2} = 1 - \frac{1}{4} = 1 - \frac{1}{2^{2}}$
 $t_{3} = \frac{7}{8} = 1 - \frac{1}{8} = 1 - \frac{1}{2^{3}}$
 $t_{n} = 1 - \frac{1}{2^{n}}$

Thus $t_1 + t_2 + \dots + t_n = (1 + 1 + 1 + \dots + 1 + n \text{ terms}) - (\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n})$

$$= n - \frac{1}{2} \left\{ \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \right\} = n - \left\{ 1 - \left(\frac{1}{2}\right)^n \right\}$$
$$= n + 2^{-n} - 1.$$

: (b) is correct

- **22.** If a, ar, ar^2 , ar^3 , be in G.P. Find the common ratio.
 - (a) r (b) d (c) n (d) none of these

EDNOVATE

Sol. 1^{st} term = a, 2^{nd} term = ar Ratio of any term to its preceding term = ar/a = r = common ratio. : (a) is correct **23.** Which term of the progression 1, 2, 4, 8, ... is 256? (a) 256 (b) (c) 155 (d) none of these 119 **Sol.** a = 1, r = 2/1 = 2, $n = ? t_n = 256$ $t_n = ar^{n-1}$ $256 = 1 \times 2^{n-1}$ i.e., $2^8 = 2^{n-1}$ or, n - 1 = 8 i.e., n = 9or Thus 9th term of the G. P. is 256 : (a) is correct 24. Insert 3 geometric means between 1/9 and 9. (a) 1/3,1,3 (b) -1/3,1,-3 (c) +1/3, -1, 3(d) none of these **Sol.** 1/9, -, -, -, 9 $a = 1/9, r = ?, n = 2 + 3 = 5, t_n = 9$ we know $t_n = ar^{n-1}$ or $1/9 \times r^{5-1} = 9$ or $r^4 = 81 = 3^4 \implies r = 3$ Thus 1^{st} G.M = $1/9 \times 3 = 1/3$ 2^{nd} G.M = 1/3 × 3 = 1 3^{rd} G. M = 1 × 3 = 3 : (a) is correct 25. Find the G.P where 4th term is 8 and 8th term is 128/625 (a) 125, 50, 20, 8, 16/5, (b) 125, 50, 20, 2, 16/5, 125, 50, 20, 5, 16/5, (c) (d) none of these **Sol.** Let a be the 1st term and r be the common ratio. By the question $t_4 = 8$ and $t_8 = 128/625$ So $ar^3 = 8$ and $ar^7 = 128 / 625$ Therefore $ar^7 / ar^3 = \frac{128}{625 / 8} \Rightarrow r^4 = 16 / 625 = (\pm 2/5)^4 \Rightarrow r = 2/5 \text{ and } -2/5$ Now $ar^3 = 8 \Rightarrow a \times (2/5)^3 = 8 \Rightarrow a = 125$ Thus the G. P is 125, 50, 20, 8, 16/5, When r = -2/5, a = -125 and the G.P is -125, 50, -20, 8, -16/5, Finally, the G.P. is 125, 50, 20, 8, 16/5, or, -125, 50, -20, 8, -16/5, : (a) is correct

26. Find the sum of 1 + 2 + 4 + 8+ ...to 8 terms. (a) 125 (b) 255 (c) 455 (d) none of these **Sol.** Here a = 1, r = 2/1 = 2, n = 8Let S = 1 + 2 + 4 + 8 + to 8 terms $= 1 (2^8 - 1) / (2 - 1) = 2^8 - 1 = 255$: (b) is correct **27.** Find the sum to n terms of 6 + 27 + 128 + 629 +..... $\{5(5^{n}-1)/4\} + \{n(n+1)/2\}$ (b) $\{6(5^{n}-1)/4\} + \{n(n+1)/2\}$ (a) $\{8 (5^n - 1) / 4\} + \{n (n + 1) / 2\}$ (d) none of these (c) **Sol.** Required Sum = $(5 + 1) + (5^2 + 2) + (5^3 + 3) + (5^4 + 4) + ...$ to n terms $= (5 + 5^2 + 5^3 + \dots + 5^n) + (1 + 2 + 3 + \dots + n \text{ terms})$ $= \{5 (5^{n} - 1) / (5 - 1)\} + \{n (n + 1)/2\}$ $= \{5 (5^{n} - 1) / 4\} + \{n (n + 1) / 2\}$: (a) is correct 28. Find the sum to n terms of the series 3 + 33 + 3333 + 3333 + 333 + 333 + 333 $\frac{5}{27}$ (10ⁿ⁺¹ - 9n - 10) (b) $\frac{1}{27}$ (10ⁿ⁺¹ - 9n - 10) (a) $\frac{11}{27}$ (10ⁿ⁺¹ - 9n - 10) (C) (d) none of these **Sol.** Let S denote the required sum. i.e. S = 3 + 33 + 333 + to n terms = 3 (1 + 11 + 111 + to n terms) $=\frac{3}{9}(9+99+999+....$ to n terms) $= \frac{3}{9} \{ (10-1) + (10^{2}-1) + (10^{3}-1) + \dots + (10^{n-1}) \}$ $=\frac{3}{9}\left\{(10+10^2+10^3+\ldots+10^n)-n\right\}$ $=\frac{3}{9}$ {10 (1 + 10 + 10² + ... + 10ⁿ⁻¹) - n} $=\frac{3}{9}[\{10(10^{n}-1)/(10-1)\}-n]$ $=\frac{3}{81}(10^{n+1}-10-9n)$ $=\frac{1}{27}(10^{n+1} - 9n - 10)$: (b) is correct 29. Find the sum of n terms of the series $0.7 + 0.77 + 0.777 + \dots$ to n terms

EDNOYATE

(a) $\frac{5}{81} \{9n - 1 + 10^{-n}\}$ (b) $\frac{7}{81} \{9n - 1 + 10^{-n}\}$ (c) $\frac{27}{81} \{9n - 1 + 10^{-n}\}$ (d) none of these

EDNOYATE

CA Foundation Sol. Let S denote the required sum. i.e. S = 0.7 + 0.77 + 0.777 +to n terms $= 7 (0.1 + 0.11 + 0.111 + \dots \text{ to n terms})$ $=\frac{7}{2}(0.9 + 0.99 + 0.999 + ... \text{ to n terms})$ $= \frac{7}{9} \left\{ (1 - 1/10) + (1 - 1/10^2) + (1 - 1/10^3) + \dots + (1 - 1/10^n) \right\}$ $=\frac{7}{9}\left(n-\frac{1}{10}\left(1+1/10+1/10^{2}+....+1/10^{n-1}\right)\right)$ So S = $\frac{7}{9}$ {n - $\frac{1}{10}$ (1 - 1/10ⁿ)/(1 - 1/10)} $=\frac{7}{9}\{n - (1 - 10^{-n}) / 9)\}$ $=\frac{7}{81}$ {9n - 1 + 10⁻ⁿ} : (b) is correct 30. Evaluate 0.2175 using the sum of an infinite geometric series. 359/1650 265/1650 (a) (b) (c) 444/1650 (d) none of these **Sol.** 0.2175 = 0.2175757575 $0.2175 = 0.21 + 0.0075 + 0.000075 + \dots$ $= 0.21 + 75 (1 + 1/10^{2} + 1/10^{4} + ...) / 10^{4}$ $= 0.21 + 75 \{1 / (1 - 1/10^2) / 10^4\}$ $= 0.21 + (75/10^4) \times 10^2 / 99$ $= 21/100 + (\frac{3}{4}) \times (1/99)$ = 21/100 + 1/132= (693 + 25)/3300 = 718/3300 = 359/1650 : (a) is correct 31. Find three numbers in G. P whose sum is 19 and product is 216. (a) 9, 6, 4 (b) 9, 5, 4 (C) 9, 2, 4 (d) none of these **Sol.** Let the 3 numbers be a/r, a, ar. According to the question $a/r \times a \times ar = 216$ or $a^3 = 6^3 = a = 6$ So the numbers are 6/r, 6, 6r Again 6/r + 6 + 6r = 196/r + 6r = 13or $6 + 6r^2 = 13r$ or $6r^2 - 13r + 6 = 0$ or $6r^2 - 4r - 9r + 6 =$ 0 or 2r(3r - 2) - 3(3r - 2) = 2or (3r - 2)(2r - 3) = 0 or, r = 2/3, 3/2or So the numbers are

EDNOVATE

 $6/(2/3), 6, 6 \times (2/3) = 9, 6, 4$ or $6/(3/2), 6, 6 \times (3/2) = 4, 6, 9$ \therefore (a) is correct

C	A Foundation				EDN	ΟΥΛΤΕ
			НОМИ	E WORK-1		
1.	Divide 144 into the smallest, the smallest					rgest is twice the
	(a) 40	(0)	50	(0) 13	(d)	[June 2010]
Sol	Let $t_1 = a$ and $cd = a$ $\therefore a+a+d+a+2d=$ or $3a + 3d = 144$ or $3(a + d) = 144$ or $a+d = \frac{144}{3} = 48$ $\therefore a+d=48 = $ $\therefore Largest = 2x Sm$ $\therefore a+2d=2a$ 2d = a d = a/2 From (1) a $a + \frac{a}{2} = 48$ Or $\frac{3}{2}a = 48 \therefore a = 48$ $\therefore a = 32$ \therefore (d) is correct Tricks:- GBC	144 (1) allest				
2.	If the sum of n terms & 1st term	s of an	A.P. is 2n²	+ n. What is the di	fference betwe	een its 10th term
	(a) 207	(b)	36	(c) 90	(d)	63 [June 2011]
Sol.	$S_n = 2n^2 + n$					
	:. $t_1 = s_1 = 2 \times 1^2 + 1 =$ $s_2 = 2 \times 2^2 + 2 = 10$:. $d = s_2 - 2s_1 = 10 - 2$					
	$\therefore t_{10} - t_1 = a + 9d - a$ $= 36$					
	∴ (b) is correct					

Geometric mean of P, p², p³, pⁿ will be 3. (b) $p^{\left(\frac{1+n}{2}\right)}$ (c) $p\frac{n(n+1)}{2}$ (d) None of the above $p^{(n+1)}$ (a) [June 2011] **Sol.** $GM = (p.p^2.p^3....p^n)^{1/n}$ $=(p^{1+2+3+\dots+n})^{1/n}$ $= \left\lceil p \frac{n(n+1)}{2} \right\rceil = p^{(n+1/2)}$ Tricks :- Put n=3 $GM = (p.p^2, p^3)^{1/3} = p^2$ For (a) $GM = p^{3+1} \neq p^2$ (b) $GM = p \frac{1+3}{2} = p^2$: (b) is correct. 4. Find the number whose arithmetic mean is 12.5 and geometric mean is 10. (a) 20 and 5 (b) 10 and 5 (c) 5 and 4 (d) None of these [Dec. 2011] Sol. Tricks:- Go by choices For (a) $AM = \frac{20+5}{2} = 12.5$ and GM= $\sqrt{20\times5}$ =10 : 20 & 5 satisfy both given condition in qts. : (a) is correct. If sum 3 arithmetic mean between "a" and 22 is 42, then "a"=____ 5. (a) 14 (b) 11 (C) 10 (d) 6 [Dec. 2011] **Sol.** Tricks:- It *A*₁; *A*₂;*A*₃;.....;*An* are "n" AMS $A_1 + A_2 + A_3 + \dots + A_n = n \left(\frac{a+b}{2} \right)$ = n.(AM of a and b) $\therefore 3\left(\frac{a+22}{2}\right) = 42 \therefore a = 6$: (d) is correct.

CA I	Foundation			E	DN	ΟΥΛΤΕ			
 If each month ₹100 increases in any sum then find out the total sum after 10 months, if the sum of first month is ₹2,000. 									
	a) ₹24,500	(b) ₹24,00		₹50,000	(d)	₹60,000 [Dec. 2011]			
Sol. S	$Sum = \frac{10}{2} \Big[2 \times 2000 + $	(10-1).100]							
	= ₹ 24,500. '. (a) is correct.								
7. 8 th	term of an A.P is 1	5, then sum o	f its 15 terms	is					
,	a) 15	(b) 0	(c)	225	(d)	225/2 [June 2012]			
	$a_8 = a + 7d = 15$	1.7							
S	$S_{15} = \frac{15}{2} \Big[2a + (15 - 1)a \Big]$	$d\Big] = \frac{15}{2} \times 2(a + $	7d)						
	$=15 \times 15 = 225$								
•	: (c) is correct.								
8. F	Find the sum of the	infinite terms	$2, \frac{4}{y}, \frac{8}{y^2}, \frac{16}{y^3}, \dots$; If $y > 2$					
(;	a) $\frac{2y}{y-2}$	(b) $\frac{4y}{y-2}$	(c)	$\frac{3y}{y-2}$	(d)	None of these			
	<i>y</i> –	<u> </u>		, –		[June 2012]			
	$= \frac{a}{1-r} = \frac{2}{1-\frac{2}{y}} = \frac{2y}{y-2}$: (a) is correct.								
•	. (a) is conect.								
	The 4th term of an A erm by 1. Find the fi				excee	eds twice the third			
(8	a) a = 3,d=2	(b)	a=4,d=3	(c) a=5,d	=4	(d) a=6,d=5 [June 2012]			
Sol. $t_4 = 3t_1 \Rightarrow a + 3d = 3a \therefore 2a = 3d; a = \frac{3d}{2}$									
	$t_7 = 2t_3 + 1$								
	or $a + 6d = 2(a + 2d)$								
	r a + 6d=2a + 4d + 1	1							
	r 2d-a=1								
0	$r \ 2d - \frac{3}{2}d = 1 \Longrightarrow \frac{d}{2} = 1$	1:.d = 2							

and $a = \frac{3}{2} \times 2 = 3$ Tricks :- Go by choices : (a) is correct. 10. In an A.P., if common difference is 2, Sum of n terms is 49, 7th term is 13 then n =____ (a) 0 (b) 5 (c) 7 (d) 13 [Dec. 2012] **Sol.** $t_7 = a + 6 \times 2 = 13$. a = 1 $s_n = \frac{n}{2} [2 \times 1 + (n-1).2] = 49$ or $\frac{n}{2} \cdot 2 \left[1 + (n-1) \cdot 2 \right] = 49$ or $n^2 = 49 : n = 7$: (c) is correct. The first term of a GP. When second term is 2 and sum of in term is 8 will be 11. (a) 6 (b) 3 (c) 4 (d) 1 [Dec. 2012] **Sol.** $t_2 = ar = 2 \Longrightarrow r = \frac{2}{a}$ $S_{\infty} = \frac{a}{1-r} = 8$ **Or** a = 8(1-r)or $a = 8 \left(1 - \frac{2}{a} \right)$ or $a^2 = 8(a-2)$ or $a^2 - 8a + 16 = 0$ or $(a-4)^2 = 0 \Longrightarrow a = 4$ Tricks :- Go by choices For (c) 4r = 2 : $r = \frac{1}{2}$ $S = \frac{9}{1-r} = \frac{4}{1-1/2} = 8$ (Which is correct) : (c) is correct. 12. If the sum of n terms of an A.P be 2n² + 5n, then its 'nth' term is (a) 4n-2 (b) 3n-4 (c) 4n+3 (d) 3n+4 [Dec. 2012]

EDNOVATE

Sol.	$\therefore S_n = 2n^2 + 5n$									
	$\therefore S_1 = t_1 = 2 \times 1^2 + 5 \times 1 = 7 = a$									
	$d = S_2 - 2S_1$									
	$=2\times 2^{2}+5\times 2-2\times 7=4$									
	$t_n = a + (n-1)d = 7 + (n-1)4 = 4n+3$									
	Tricks :- Go by choices For (a) $S_1 = t_1 = 4 \times 1 - 2 = 2 \neq 7$									
	(c) $t_1 = 4 \times 1 + 3 = 7$									
	$t_2 = 4 \times 2 + 3 = 11$									
	$s_2 = t_1 + t_2 = 7 + 11 = 18$	3								
	and $S_2 = 2 \times 2^2 + 5 \times 2$ \therefore (c) Satisfies it \therefore (c) is correct.	=18								
13.	In an A.P. if $s_n = 3n^2$	² -n a	ind its common	differe	nce is 6 then fir	st teri	m is			
	(a) 2	(b)	3	(c)	4	(d)	6 [June 2013]			
Sol.	$S_n = 3n^2 - n$									
	$S_1 = 3 \times 1^2 - 1 = 2 = t_1$									
	∴1st term =2									
14.	In an A. P if the sum	n of 4	th & 12th term is	s 8 the	n sum of first 15	5 term	ı is			
	(a) 60	(b)	120	(c)	110	(d)	150			
							[June 2013]			
Sol.	Given, $t_4 + t_{12} = 8$									
	or a+3d+1+11d=8	3								
	or $2a + 14d = 8$									
	$\therefore s_{15} = \frac{15}{2} [2a + (15 - 15)]$	1)d]								
	$=\frac{15}{2} \times 8 = 60$									
	∴ (a) is correct									
15.	There are 'n' AMs be	etwee	n 7 & 71 and 5tl	n AM i	s 27 then 'n' =					
	(a) 15	(b)	16	(c)	17	(d)	18 [June 2013]			

Sol. c.d =
$$\frac{b-a}{n+1}$$
 (Tricks)
= $\frac{71-7}{n+1} = \frac{64}{n+1}$
 $A_5 = a+5d$ (Tricks)
= $7+5 \times \frac{64}{n+1} = 27$
or $\frac{5 \times 64}{n+1} = 20$
or $20n+20=320$
or $20n=300 \therefore n=15$
 \therefore (a) is correct

16. An AP has 13 terms whose sum is 143. The third term is 5, then first term is(a) 4(b) 7(c) 9(d) 2

Sol. :
$$t_3 = a + 2d = 5$$
 (1)

$$\therefore 2d = 5 - a$$

$$s_{13} = \frac{13}{2} [2a + (13 - 1)d] = 143$$
or $2a + 12d = \frac{143 \times 2}{13} = 22$
or $a + 6d = 11$
or $a + 3 \times 2d = 11$
or $a + 3 (5 - a) = 11$
or $a + 15 - 3a = 11$
or $4 = 2a \therefore a = 2$
Tricks :- Go by choices
[Solve mentally by calculator]
 \therefore (d) is correct

17. GM of a,b,c,d is 3 then GM of
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$$
 is
(a) $\frac{1}{3}$ (b) 3 (c) $\frac{1}{81}$ (d) 81
[Dec. 2013]

Sol. G = 3(*abcd*)^{1/4} (1)
New GM =
$$\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}\right)^{\frac{1}{2}} = \frac{1}{3}$$

Tricks :- GM of a,b,c,d = 3
GM of their Reciprocals = $\frac{1}{3}$
 \therefore (a) is correct
18. The value of 1³+2³+3³+...... +m³ is equal to
(a) $\left[\frac{m(m+1)}{2}\right]^{3}$ (b) $\frac{m(m+1)(2m+1)}{6}$
(c) $\left[\frac{m(m+1)}{2}\right]^{2}$ (d) None
[June 2014]
Sol. Formula = $\left\{\frac{m(m+1)}{2}\right\}^{2}$
 \therefore (c) is correct
19. The sum of the infinite GP 1+ $\frac{1}{3}$ + $\frac{1}{9}$ + $\frac{1}{27}$ +......∞ is equal to
(a) 1.95 (b) 1.5 (c) 1.75 (d) None
[June 2014]
Sol. $S_{\infty} = \frac{a}{1-r} = \frac{1}{1-\frac{1}{3}} = \frac{3}{2} = 1.5$
 \therefore (b) is correct
20. The sum of m terms of the series is 1+11+111+..... is equal to
(a) $\frac{1}{81} [10^{m+1} - 9m - 10]$ (b) $\frac{1}{2} [10^{m+1} - 9m - 10]$
(c) $[10^{m+1} - 9m - 10]$ (d) None of these

[June 2014, June 2015]

EDNOVATE

EDNOVATE

CA Foundation Sol. Tricks :- Go by choices For (a) put m = 1; we get $s = \frac{1}{21} \left[10^{1+1} - 9 \times 1 - 10 \right] = 1 = 1$ st term Put m-2;S = $\frac{1}{81} [19^{2+1} - 9 \times 2 - 10] = 12$ = 1 + 11 =Sum of 1st 2 terms : (a) is correct 21. If the sum of first 'n' terms of an A.P is 6n²+6n, then the fourth term of the series: (a) 120 (b) 72 (c) 48 (d) 24 [Dec. 2014] **Sol.** S_n=Sum of 1st n terms of as AP. $=6n^{2}+6n$ $a = t_1 = s_1 = 6 \times 1^2 + 6 \times 1 = 12$ $s_2 = 6 \times 2^2 + 6 \times 2 = 36$ $c, d = d = s_2 - 2s_1 = 36 - 2 \times 12 = 12$ $\therefore t_4 = a + (4-1)d = 12 + 3 \times 12 = 48$: (c) is correct 22. If $S_n = n^2 p$ and $S_m = m^2 p$; $(m \neq n)$ is the sum of A.P., then $S_p =$ _____ (b) **p**³ (d) p⁴ (c) $2p^3$ (a) p^2 [Dec. 2014] **Sol.** $\therefore s_n = n^2 p$ $s_m = m^2 p$ $\therefore s_p = p^2 \cdot p = p^3$: (b) is correct 23. If x, y, z are the terms in GP then the terms $x^2 + y^2$, xy + yz, $y^2 + z^2$ are in: (a) A.P (b) GP (c) H.P None of these (d) [Dec. 2014] **Sol.** $\therefore x; y; z$ are in G.P Tricks:- Let x = 1; y=2; z=4 make a GP $x^{2} + y^{2} = 1^{2} + 2^{2} = 5$ $xy + yz = 1 \times 2 + 2 \times 4 = 10$ $v^2 + z^2 = 2^2 + 4^2 = 20$ $\therefore x^2 + y^2; xy + yz; y^2 + z^2 =$ 5,10,20..... clearly are in G.P.

EDNOVATE

: (b) is correct

24.	The sum of n terms (a) 25	of an (b)		vhich (c)	last term is 164. 29	(d)	31 [Dec. 2015]
Sol.	S _n = 3n ² + 5n $a = t_1 = S_1 = 3 \times 1^2 + 5 \times 2^2 = 3 \times 2^2 + 5 \times 2 = 22^2$ $d = S_2 - 2S_1 = 22 - 2 \times 2^2$ $n = \frac{t_n - a}{d} + 1 = \frac{164 - 8}{6}$ ∴ (b) is correct	$2 \\ 8 = 6$	27				[Dec. 2013]
25.	Three No's a,b,c are (a) a	in A.F (b)		(c)	b	(d)	c [Dec. 2015]
Sol.	let a = 1;b=2; c = 3 r $\therefore a-b+c=1-2+3=$ \therefore (c) is correct		an A.P.				[]
26.	Find the numbers w						17 and 10
	(a) 12 and 13	(D)	13.09 and 1.91	(C)	14 and 11	(d)	17 and 19 [Dec. 2015]
Sol.	Tricks: Go by Choice $GM = \sqrt{13.09 \times 1.51} =$ $AM = \frac{13.09 + 1.91}{2} = \frac{13}{2}$ \therefore (b) is correct	=5.(ap	pprox.)				
27. If $\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}$ in Arithmetic Progression then a^2, b^2, c^2 are in							
	(a) Arithmetic Prog	gressi		(b)	Geometric Prog		
	(c) Both A.P & GP	,		(d)	None of these		[June 2016]

	Tricks:- a^2, b^2, c^2 are in a=1,b=5,c=7 Make it in let $\therefore \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ in A $\frac{1}{5+7}, \frac{1}{7+1}, \frac{1}{1+5}$ $\left[\frac{1}{12}, \frac{1}{8}, \frac{1}{6}\right] \times 24$ 2, 3, 4 is also in AP. \therefore Our assumption is c	n AP \P			
	: (b) is correct				
28.	2.353535 = 2.2 (a) $\frac{233}{99}$ ((b) $\frac{234}{99}$	(c) $\frac{232}{99}$	(d)	None [Dec. 2016]
Sol.	Tricks: Go by choices [Divide 233 by 99 we g ∴ (a) is correct				
29.	The number of terms		eded for the sum	of the se	ries 50 +45+40+
	(a) 22 ((b) 21	(c) 20	(d)	None [Dec. 2016]
Sol.	Tricks: Go by choices Let (b) is correct. $S_{21} = \frac{21}{2} \Big[2 \times 50 + (21 - 1) \Big]$ $= 0$ \therefore (b) is correct.)×(-5)]			
30.	A person received the increment of ₹15,000 (a) ₹56,75,000 (· · · · · · · · · · · · · · · · · · ·	sum of the salary h	ne takes in	

CA	Foundation						
Sol.	$S_{10} = \frac{10}{2} [2 \times 5,00,000]$ = ₹56,75,000. ∴ (a) is correct.	+(10-3	1)×15000]				
31.	Find the sum of all r is: (a) 44,550		numbers betwe 66,770		100 and 1000 wh 55,440	ich a (d)	re divisible by 11 33,440
Sol.	Series S= 110+121+132 +. $n = \frac{1-a}{d} + 1 = \frac{990-11}{11}$ $S = \frac{n}{2}(a+1) = \frac{81}{2}(110)$ \therefore (a) is correct.	$\frac{0}{-} + 1 = 3$	81				[Dec. 2017]
32.	If pth, qth, rth terms o log c=						
Sol	(a) 0 Tricks: It is in cyclic	(b)	1	(c)	2	(d)	None [June 2018]
001	∴ (a) is correct.						
33.	If a, b, c, d are in GP (a) (a-b) ²		b-c) ² +(c+a) ² + (a-d) ²			(d)	0 [June 2018]
	a, b, c, d →in GP let a=1; b=2; c=4; d= \therefore (b-c) ² + (c-a) ² + (c = (2-4) ² + (4-1) ² + (8- = 4+9+36= 49 = 7 ² GBC For (b) (a-d) ² = (1-8) ² \therefore (b) is correct	l-b)² ∙2)²	4				
34.	If the n th term of a s		$a_n = 3^n - 2^n$ ther		-		
	(a) $\frac{3}{2}(3^n - 1) + 1(n + 1)(n +$				$\frac{3}{2}(3^{n}+1)-1(n+2)$ $\frac{3}{2}(3^{n}+1)-1(n-2)$		
	2 , , , , , ,	,		. /	2 , , , , ,	,	

EDNOYATE

EDNOYATE

[June 2018]

[May 2018]

Sol. $\because a_n = 3^n - 2^n$ $a_1 = 3^1 - 2^1 = 1$ $a_2 = 3^2 - 2^2 = 5$ $s_2 = a_1 + a_2 = 1 + 5 = 6$ Tricks: Go by choices (GBC) for (c) let $s_n = \frac{3}{2}(3^n - 1) - n(n+1)$ $s_1 = \frac{3}{2}(3^1 - 1) - 1(1+1) = \frac{3}{2}2 - 2 = 1 = a_1$ (True) Now $s_n = \frac{3}{2}(3^2 - 1) - 2(2 + 1)$ $= \frac{3}{2} \times 8 - 6 = 12 - 6 = 6 = a_1 + a_2$ (True) \therefore (c) is correct

35. A person pays Rs. 975 in monthly instalments, each instalment is less than former by Rs. 5. The amount of 1st instalment is ₹100. In what time will be entire amount be paid?

(a) 26 months (b) 15 months (c) Both (a) & (b) (d) 18 months

Sol. Tricks:- Go by choices (GBC)

Series $S = 100 + 9590 + \dots$ to n months (let) = 975.1st check for n = 15 months $S = \frac{15}{2} [2 \times 100 + (15 - 1) - (-5)]$

If loan is paid off in n = 15 months, then no need of other instalments.

36. If the sum of n terms of an AP is (3n-n) and its common difference is 6, then its first term is:

(a) 3 (b) 2 (c) 4 (d) 1 [May 2018] Sol. $S_n = 3n^2 - n$ Tricks:-

 $\therefore t_1 = S_1 = 3 \times 1^2 - 1 = 2$

= sum of 1st 1 term.

: (b) is correct.

(a) 132, 196

38. If the Pth term of an A.P. is 'q' and the qth term is 'p', then its rth term is (b) p+q-r (c) p-q-r (a) p+q+r (d) p + q

Sol. Tricks:-

(a) 2

$$c.d = \frac{q-p}{p-q} = \frac{(p-q)}{p-q} = -1$$

∴ $t_r = t_p + (r-p)d$

$$= q+(r-p).(-1)$$

$$= q+p-r$$

The 3rd term of a GP. is $\frac{2}{3}$ and the 6th term is $\frac{2}{81}$, then the 1st term is 39.

(b) 6 (c) 9 (d)
$$\frac{1}{3}$$

[Nov. 2018]

Sol.
$$t_3 = ar^2 = \frac{2}{3}; t_6 = ar^5 = \frac{2}{81}$$

or $ar^2 \cdot r^3 = \frac{2}{81}$
or $\frac{2}{3}r^3 = \frac{2}{81} \Rightarrow r^3 = \left(\frac{1}{3}\right)^3$
 $\therefore ar^2 = \frac{2}{3}$
or $a \cdot \left(\frac{1}{3}\right)^2 = \frac{2}{3}$
or $a = 6$
 \therefore (b) is correct.

40. The sum of the series -8, -6, -4,...n terms is 52. The number of terms n is (a) 10 (b) 11 (c) 13 (d) 12

Sol. Series S = -8-6-4..... to n terms first term-=-8; c.d = d = 2 Tricks :- Go by choices (Use calculator) \therefore option (c) $S_{13} = \frac{13}{2} [2 \times (-8) + (13-1) \times 2] = 52$

41. The value of K, for which the terms 7K + 3, 4K - 5, 2K + 10 are in A.P., is (a) -13 (b) -23 (c) 13 (d) 23

[Nov. 2018]

EDNOYATE

Sol. Formula 2A=a+b

∴ 2(4k-5) = 7k+3+2k+10Or 8k-10 = 9k+13Or k = -23∴ (b) is correct.

42. The ratio of sum of n terms of the two AP's is (n+1) then the ratio of their mth terms is

- (a) (m + 1): 2m
- (b) (m+1): (m 1)
- (c) (2m-1): (m + 1) (d) m: (m-1)

[June 2019]

Sol. Given that

$$\frac{S_n^1}{S_n^{11}} = \frac{n+1}{n-1}$$

Tricks:-

To find the ratio of rth term; put n = 2r - 1 \therefore Put n = 2m - 1 Ratio of mth term 2m-1+1 2m

$$= \frac{2m}{2m-1-1} = \frac{2m}{2m-2}$$
$$= \frac{2m}{(2m-2)} = \frac{m}{m-1}$$
$$\therefore (d) \text{ is correct.}$$

43. In a G.P. if the fourth term is '3' then the product of first seven terms is

(a)	3 ⁵	(b)	37	(C)	3 ⁶	(d)	3 ⁸
							[June 2019]

EDNOVATE

Sol. Tricks:-Product of 1st (2r-1) terms of a G.P =(t), 2r-1 $\therefore t_4 = 3$ So; Product of 1st 2x4-1=7 terms $=(t_r)^{2\times 4-1}=3^7$: (b) is correct. Details:-: Product of 1st 7 terms $= a.ar.ar^2.ar^3.\ldots.ar^6$ $= a^7 r^{1+2+3+\dots+6}$ $= a^7 . r^{\frac{6}{2}(6+1)} = a^7 . r^{21}$ $=(ar^3)^7=3^7$ 44. If 2+6+10+14+18+....+ x = 882 then the value of x (b) 80 (c) 82 (a) 78 (d) 86 [June 2019] **Sol.** $S = 2 + 6 + 10 + 14 \dots + x$ (to n terms) = 882 $\therefore \frac{n}{2} [2+x] = 882$ (1) Where x = Last termLast term = $x = 2 + (n-1) \times 4$ x = 4n - 2or 4n = x + 2or $n = \frac{x+2}{4}$ From (1); we get $\frac{(x+2)}{4\times 2}(x+2) = 882$ or $(x+2)^2 = 8 \times 882 = 84^2$ $\therefore x + 2 = 84 \Longrightarrow x = 82$ Tricks:-Let $t_n = x$ or 2 + (n-1) - 4 = xor 4n-2=xor $n \frac{x+2}{4}$ For GBC

(c)) If
$$x = 82 \Rightarrow n = \frac{82+2}{4} = 21$$

 $\therefore S = \frac{n}{2}(a+1) = \frac{21}{2}(2+x)$
 $= \frac{21}{2}(2+82) = 882$
 \therefore (c) is correct.
45. If $y = 1 + x + x^2 + \dots \infty$ then $x =$
(a) $\frac{y-1}{y}$ (b) $\frac{y+1}{y}$ (c) $\frac{y}{y+1}$

(d)
$$\frac{y}{y-1}$$

[June 2019]

Sol. $y = 1 + x + x^2 + \dots \infty$ are in G.P

$$\therefore y = \frac{1}{1-x} \text{ Where } c.r = x$$

or $1-x = \frac{1}{y}$
or $x = 1 - \frac{1}{y} = \frac{y-1}{y}$
 $x = 1 - \frac{1}{y} = \frac{y-1}{y} \cdot \left[\therefore S_{\infty} = \frac{a}{1-r} \right]$
 \therefore (a) is correct.

46. In the series 25, 5, 1, 1/3125 which term is 1/3125?

- (a) 8th term
- (c) 15th term

- (b) 9th term
- (d) None of these

[Dec. 2019]

$$t_{n} = \frac{1}{3125}.$$

∴ 25. $\left(\frac{1}{5}\right)^{n-1} = \frac{1}{5^{5}}$
or $5^{2} \cdot \frac{1}{5^{n-1}} = \frac{1}{5^{5}}$
or $5^{n-1} = 5^{7} \Rightarrow n-1 = 7$
∴ n = 8

: (a) is correct.

CA	Foundation			EDN	ΟΥΛΤΕ
47.	The sum of five terr	ms of AP is 75 find	the 3rd term i	S.	
	(a) 20	(b) 30	(c) 15	(d)	None of these [Dec. 2019]
Sol.	$\mathbf{t}_3 = a + (3 - 1)d = a + $	+2d.			
	$S_5 = \frac{5}{2} \Big[2a + (5-1)d \Big]$	[]=75			
	or $\frac{5}{\cancel{2}}$. $\cancel{2}[a+2d] = 75$	i			
	or $a + 2d = \frac{75}{5} = 15$				
	So, $t_3 = 15$.				
	: (c) is correct.				
48.	(c+a-b)/b, (a+b-c)/c (a) AP	;, (b+c-a)/a are in A (b) GP	AP then a,b,c a (c) HP	are in (d)	None of these [Dec. 2019]
Sol.	Adding 2 to each te	erm: we get			[200.2010]
	$\frac{c+a-b}{b}+2;\frac{c+b-c}{c}$	-			
		a			
	are also in AP	a + b + a			
	$\Rightarrow \frac{a+b+c}{b}; \frac{a+b+c}{c}$	$\frac{a+b+c}{a}$			
	are in AP				
	Dividing all terms b	y (a+b+c); we get			
	$\frac{1}{b}, \frac{1}{c}; \frac{1}{a}$ are also in A	AP.			
	\Rightarrow b; c; a are in HP				
	OR a, c; b are in H	P.			
	but a; b; c are not i	n HP.			
	∴ (d) is correct.				
49.	The 20th term of a	arithmetic progres	sion whose 6 ^t	th term is 38 and	d 10 th term is 66

(a)	136	(D) 118	(C) 178	(a)	210
					[Dec. 2020]

Sol.	Tricks						
	Common difference						
	$= d = \frac{t_{10} - t_6}{10 - 6}$						
	$=\frac{66-38}{4}=7$						
	Tricks						
	$t_{20} = a + 19d$						
	$= \left[a + (6-1)d\right] + 14d$						
	= 38 +14 × 7						
	= 136						
	∴ (a) is correct.						
50.	Three numbers in G.F	D varitk	n their sum is 13	10 an	d their product is	27 O	00 are
50.			10,30,90		(a) & (b) Both		
		(-)	-,,	(-)		(-)	[Dec. 2020]
Sol.	Tricks: GBC (Go by	choi	ces)				
	* (a) & (b) both follow						
	* sum of terms = 90+3			ows)			
	* Their product = 90 × Which is also satisfied		$\times 10 = 27000/-$				
	.: option (c) is correct						
51.	Divide 69 into 3 parts is 460	whic	ch are in A.P an	d are	such that the p	roduc	t of first two parts
	(a) 20, 23, 26	(b)	21, 23, 25	(c)	19, 23, 27	(d)	22, 23, 24
							[Dec. 2020]
Sol.	Tricks : GBC (Go by c		es)				
	* All options are in A.F * Only in option (a)	Ρ.					
	Product of 1st two ter	ms					
	= 20 x 23=460 (True)	_					
	: (a) is correct						
52.	The nth terms of the s					(_1)	-3 - 0
	(a) 4n-1	(b)	n² + 2n	(C)	n² + n + 1	(d)	n³ +2 [Jan. 2021]
							[Jan. 2021]

EDNOYATE

Sol. ricks In such type of Questions always find answer by GBC (Go by choices).

For $n=1 \Rightarrow t_1=3$ for $n=2 \Rightarrow t_2=7$ and $n=3 \Rightarrow t_3=13$ Putting n=1 in all options, we get $t_1=3$ So, Here, we cannot decide any option. Now putting n=2 in all options we get in (a) $t_2=4 \times 2 - 1=7 = t_2$ (True) (b) $t_2=2^2+2 \times 2=8 \pm t_2$ (False) (c) $t_2=2^2+2 \times 2=8 \pm t_2$ (False) (d) $t_2=2^3+2=10 \pm t_2$ (False) Hence, we conclude that option (a) or (c) should be answer. (Both same) So check for n=3 in (a) & (c); we get (a) $t_3=4 \times 3 - 1 - 11 \pm 13 = t_3$ (False) (c) $t_3=3^2+3+1=13=t_3$ (True)

 \therefore (c) should be correct.

53. In a geometric progression the 3rd and 6th terms are respectively 1 and -1/8. The first term (a) and common ratio are respectively.

(a) $4 \text{ and } \frac{1}{2}$ (b) $4 \text{ and } \frac{-1}{4}$ (c) $4 \text{ and } \frac{-1}{2}$ (d) $4 \text{ and } \frac{1}{4}$ [Jan. 2021]

Sol. Tricks GBC [Go by choices]

From (a)
$$t_3 =, ar^{3-1} = 4\left(\frac{1}{2}\right)^2 = 1$$
 (True)
and $t_6 =, ar^{6-1} = \left(\frac{1}{2}\right)^5 = \frac{1}{8} \neq \frac{1}{8}$ (False)
So (a) is False
(b) $t_3 = ar^2 = 4\left(-\frac{1}{4}\right)^2 = 4\frac{1}{16} = \frac{1}{4} \neq 1$
(It is also False)
(c) $t_3 = ar^2 = 4\left(-\frac{1}{2}\right)^2 = 4\frac{1}{4} = 1$ (True)
 $t_6 =, ar^5 = 4\left(-\frac{1}{2}\right)^5 = 4\left(-\frac{1}{32}\right) = -\frac{1}{8}$ (True)
 \therefore (c) is correct

54.	The number of terr	ns of tl	ne series: 5+7+9)+	must be taken so	o that	the sum may be
	480 (a) 20	(b)	10	(c)	15	(d)	25 [July 2021]
Sol.	Let S=5+7+9+ Tricks: Go by choid For (a) at n = 20 S = $\frac{20}{2}$ [2×5+(20- =10(10+38=480) ∴ (a) is correct	ces (GE 1).2]	3C)				
55.	If the sum of 'n' terr (a) 20	ms of a (b)			gression) is 2n², 18	the fif (d)	th term is 25 [July 2021]
Sol.	Qt ₅₌ S ₅ 'S ₄ [i.e. sum = 2 × 5 ² - 2 × 4 ² = 50-32=18 ∴ (c) is correct	n of 1st	5 terms sum of	1st 4	terms]		[]
56.	The sum of square (a) 1	of any (b)		antiti (c)		(d)	
Sol.	Let a positive no. = From question, Two nos. are x ² & Its Arithmetic mean = A = $\frac{x^2 + \frac{1}{x^2}}{2}$ and Its Geometric F G = $\sqrt{x^2 \frac{1}{x^2}} = \sqrt{1} = 1$ We know that A ≥ G or $\frac{x^2 + \frac{1}{x^2}}{2} \ge 1$	$\frac{1}{x^2}$					

EDNOYATE

EDNOYATE or $x^2 + \frac{1}{r^2} \ge 2$ Minimum value of $x^2 + \frac{1}{r^2}$ is 2 : (b) is correct 57. The sum of series $7+14+21+\ldots$ to 17th term is: (a) 1071 (b) 971 (c) 1171 (d) 1271 [Dec. 2021] **Sol.** S=7+14+21... to 17 terms = 7 [1+2+3.... to 17 terms] $=7.\frac{17(17+1)}{2}=1071$ [∴ 1+2+3+.... to *n* terms] $=\frac{n(n+1)}{2}$: (a) is correct 58. The sum of first n terms of an AP is $3n^2 + 5n$. The series is: (a) 8, 14, 20, 26.....(b) 8, 22, 42, 68,... (c) 22, 68, 114,... (d) 8, 14, 28, 44,... [Dec. 2021] **Sol.** : $S_n = 3n^2 + 5n$ $S_1 = 3 \times 1^2 + 5 \times 1 = 8$ $S_2 = 3 \times 2^2 + 5 \times 2 = 22$ $S_3 = 3 \times 3^2 + 5 \times 3 = 42$ GBC (A) $S_1 = 8$ (True) S₂=8+14=22 (True) S₃=8+14+20= 42 (True) \therefore (a) is correct. **Details** $a=t_1=S_1=3 \times 1^2+5 \times 1=8$ $S_{2}=3 \times 2^{2}+5 \times 2 = 22$ c.d=d=S₂-2S₁,=22-2×8=6 $t_n=a+(n-1)d$ =8+(n-1).6=8+6n-6=6n+2 $t_1 = 6 \times 1 + 2 = 8$

EDNOYATE $t_{2}=6x^{2}+2=14$ $t_3 = 6 \times 3 + 2 = 20$: (a) is correct 59. The largest value of n for which $\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} < 0.998$ is _____. (c) 7 (a) 9 (b) 6 (d) 8 [Dec. 2021] **Sol** . $S = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} < 0.998$ $\mathbf{S} = \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^n \right]}{1 - \frac{1}{2}} = \frac{\frac{1}{2} \left[1 - \frac{1}{2^n} \right]}{\frac{1}{2}} < 0.998$ $=1-\frac{1}{2^n} < 0.998$ or $1 - 0.998 < \frac{1}{2^n}$ or $0.002 < 2^{-n}$ Calculator Trick Press 2 ÷ button = button 9 times = 0.00195(Makes True) : n = 9 : (a) is correct

60. If the nth term of the arithmetic progression 9, 7, 5... is same as the nth term of the arithmetic progression 15, 12, 9 ..., then n will be

(a) 7	(b) 9	(c) 15	(d) 11
			[June 2022]

Sol. t_n of $1^{st} AP = t_n$ of $2^{nd} AP$ \therefore 9+ (n-1)(-2) = 15+ (n-1) (-3) or; 9-2n+2 = 15-3n+3 or 3n-2n=18-11 or n = 7: (a) is correct

- 61. In a geometric progression, the second term is 12 and the sixth term is 192. Find the 11th term.
 - (b) 1,536 (c) 12,288 (d) 6,144 (a) 3,072

EDNOVATE

[June 2022]

Sol.Given

 $t_2 = ar = 12.....(1)$ $t_6 = ar^5 = 192....(2)$ Eqn. (2)÷(1); we get

$$\frac{t_6}{t_2} = \frac{ar^5}{ar} = \frac{192}{12}$$
Or; $r^4 = 16 = 2^4$
 \therefore r = 2
Now $t_{11} = ar^{11-1} = ar^{10}$
 $= ar^5 \cdot r^5$
 $= 192 \times 2^5$ (From (2))
 $= 6144$
 \therefore (d) is correct

62. The first and last terms of an arithmetic progression are 5 and 905. Sum of the terms is 45,955. The number of terms is

(a)	99	(b)	100	(c) 101	(d)	102
						[June 2022]

Sol.Let No. of terms = n.

S_n = $\frac{n}{2}(a+l) = 45,955$ Where a = 1st term; *l* = last term $\frac{n}{2}(5+905) = 45955$ or $\frac{n}{2} \times \frac{455}{910} = 45955$ or 455n = 45955 or; n = $\frac{45955}{455} = 101$ ∴ (c) is correct.

- 63. The sum of first eight terms of geometric progression is five times the sum of the first four terms. The common ratio is
 - (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) 4 (d) 2 [June 2022]

Sol.Given

Sum of 1st 8 terms = 5 (sum of 1st 4 terms) $Or \frac{a(r^8 - 1)}{r - 1} = \frac{5 \cdot a(r^4 - 1)}{r - 1}$ or; $r^{8} - 1 = 5 (r^4 - 1)$ or; $(r^4)^2 - 1^2 = 5(r^4 - 1)$ or; $(r^4 - 1) \cdot (r^4 + 1) = 5 (r^4 - 1)$ or; $r^4 + 1 = 5$ or; $r^4 = 5 - 1 = 4 = 2^2$ or, $(r^2)^2 = 2^2$ or $r^2 = 2 \therefore r = \sqrt{2}$ \therefore (a) is correct.

64. If *p*th term of an AP is *q* and its *q*th term is *p*, then what will be the value of (p+q)th term?

(a)	0	(b) 1	(c) <i>p</i> + <i>q</i> -1	(d)	2(<i>p</i> + <i>q</i> -1)
					[Dec. 2022]

Sol. Detail: **SEQUENCE & SERIES** Let t_1 , = a and common difference = d $\therefore c \times d = d = \frac{t_p - t_q}{p - q} = \frac{q - p}{-(q - p)}$ =-1 Tricks: $t_{p+q} = t_p + (p+q-p)d$ =q+(q)(-1)= q - q = 0: (d) is correct. 65. In a G.P, 5th term is 27 and 8th term is 729. Find its 11th term. (c) 2,187 (a) 729 (b) 6,561 (d) 19,683 [Dec.2022]

Sol. Let $t_1 = a$ and $c \times r = r$ $\therefore \frac{t_8}{t_5} = \frac{ar^7}{ar^4} = \frac{729}{27}$ Or; $r^3 = 27 = 3^3$ $\therefore r = 3$ $\therefore t_{11} = t_8 \times r^3 = 729 \times 3^3 = 729 \times 27$ =19,683. : (d) is correct. 66. How many number between 74 and 25,556 are divisible by 5? (b) 5097 (c) 5095 (a) 5090 (d) 5075 [June 2023] Sol. Series S=75+80+85+....+25,555 Total No. of Nos. divisible by 5 $=\frac{1-a}{d}+1=\frac{25,555-75}{5}+1=5097$ Where a 1st term 1 =last term : (b) is correct. 67. If 9th and 19th term of an Arithmetic Progression are 35 and 75, respectively, then its 20th term is: (a) 78 (b) 79 (c) 80 (d) 81 [June 2023] **Sol.** = d = $\frac{A_{19} - A_9}{19 - 9} = \frac{75 - 35}{10}$ $=\frac{40}{10}=4$ $t_{20} = t_{19} + cd = 75 + 4 = 79$: (b) is correct. 68. If 4th, 7th and 10th terms of a Geometric Progression are *p*, *q* and *r*, respectively then: (C) $q^2 = pr$ (a) $p^2 = q^2 + 2$ (b) $p^2 = qr$ (d) pqr + pq + 1 = 0**Sol.**Let $t_1 = a$ and c.r = x $t_4 = ax^3 = p$ $t_7 = ax^6 = q$

 $t_{10} = ax^9 = r$ Clearly; q² = pr $(ax^6)^2 = ax^3 \times ax^9$ ⇒ a²X¹² = a² × X³⁺⁹ = a²X¹² (True) ∴ (b) is correct.

HOME WORK-2

- 1. If a, b, c are in A.P. as well as in G.P. then -
 - (a) They are also in H.P. (Harmonic Progression) (b) Their reciprocals are in A.P.
 - (c) Both (a) and (b) are true (d) Both (a) and (b) are false

Sol.

2.

```
a, b, c are in A.P.
       ∴a+c = 2b
       ⇒ b = (a+c)/2 ---(i)
       a, b, c are in G.P.
       ∴ b<sup>2</sup> = ac ---(ii)
       Reciprocals are 1/a, 1/b, 1/c
       \frac{1}{-+-} = \frac{a+c}{-+-}
       a c ac
       from (i) and (ii)
       \frac{1}{a} + \frac{1}{c} = \frac{2b}{b^2} = \frac{2}{b}
         ∴ 1/a, 1/b, 1/c are in A.P.
         ∴ a, b, c are also H.P.

    Answer : (c)
      If a, b, c be respectively p^{th}, q^{th} and r^{th} terms of an A.P. the value of a(q - r) + b(r - p) + c(r - p)
      c(p - q) is_____
                                 (b) 1
                                                             (c) -1
      (a) 0
                                                                                        (d) None
Sol.
       ap = a \cdot aq = b, ar = c
```

Let 1st term be A and difference be 'd

```
\therefore A + (p-a)d = a ---(1)
aq= b
A + (a-1)d = b ----(2)
ar = c
A + (r - 1)d = c ---(3)
Replacing value of a,b and c
a(q-r) + b(r-p) + c(p-q)
= [A + pd - d](q-r) + (A + qd - d) (r - p) + (A + rd - d) (p-q)
```

= A[q - r + r - p + p - q] - d[p - r + r - p + p - q] + d[p(q - r) + q]

EDNOVATE

q(r - p) + r(p - q)]= 0 - 0 + d(pq - pr + qr - pq + pr - qr)= 0 Answer : (a) If the pth term of an A.P. is q and the qth term is p the value of the rth term is _____ 3. (b) p + q - r (a) p-q-r (c) p + q + r(d) None Sol. ap = q, aq = p ar = ?Let a be 1st term and d is common difference ap = q a + (p - 1) d = q ---(i) aq = p a + (q - 1)d = p ---(ii)(i) - (ii) \Rightarrow (p - q)d = q - p $d = \frac{-(p-q)}{(p-q)} = -1$ Substituting value of 'd' we get a + (p - 1) (-1) = q a = q + p - 1 Now ar = a + (r - 1)dar = (p + q - 1) + (r - 1) (-1)ar = p + q -1 - r +1 ar = p + q - rAnswer : (b) If the p^{th} term of an A.P. is q and the q^{th} term is p the value of the $(p + q)^{th}$ term is 4. (a) 0 (b) 1 (c) -1 (d) None Sol. ap = q, aq = p ar = ?Let a be 1st term and d is common difference ap = q a + (p - 1) d = q ---(i)

aq = p

EDNOYATE

a + (q - 1)d = p ---(ii)(i) - (ii) \Rightarrow (p - q)d = q - p $d = \frac{-(p-q)}{(p-q)} = -1$ Substituting value of 'd' we get a + (p - 1) (-1) = q a = q + p - 1 ap + q = a + (p + q - 1)dap + q = p + q - 1 + (p + q - 1)(-1)ap + q = p + q - 1 - p - q + 1 ap + q = 0Answer : (a) 5. The sum of first **n** natural number is . (a) (n/2)(n + 1)(b) (n/6)(n + 1)(2n + 1)(c) $[(n/2)(n + 1)]^2$ (d) None Sol. By formula, sum of n natural number = (n/2)(n+1)Answer: (a) 6. The sum of square of first **n** natural number is _____ (a) (n/2)(n + 1)(b) (n/6)(n + 1)(2n + 1)(c) $[(n/2)(n + 1)]^2$ (d) None Sol. Sum of squares of n natural numbers $= 1^{2} + 2^{2} + 3^{2} + \dots n^{2}$ = (n/6)(n+1)(2n+1) by formula Answer: (b) 7. The sum of cubes of first n natural number is _____ (a) (n/2)(n + 1)(b) (n/6)(n + 1)(2n + 1)(c) $[(n/2)(n + 1)]^2$ (d) None

Sol.

Sum of cubes of n natural numbers

= 1³ + 2³ + 3³ +n³

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4} = \left[\frac{n(n+1)}{2}\right]^{2}$$
∴ Answer: (c)

8. The sum of a series in A.P. is 72 the first term is 17 and the common difference -2. The number of terms is _____.

(a) 6 (b) 12 (c) 6 or 12 (d) None
Sol.

$$S_n = 72, a = 17, d = -2$$

 $S_n = \frac{n}{2} [2a + (n-1)d]$
 $72 = \frac{n}{2} [2(17) + (n-1)(-2)]$
 $144 = n(34 - 2n + 2)$
 $144 = 36n - 2n^2$
 $2n^2 - 36n + 144 = 0$
 $n^2 - 18n + 72 = 0$
 $(n-12)(n-6) = 0$
 $n = 12, n = 6$
 \therefore Answer: (c)

9. Find the sum to **n** terms of $(1-1/n) + (1-2/n) + (1-3/n) + (a) \frac{1}{2}(n-1)$ (b) $\frac{1}{2}(n+1)$ (c) (n-1) (d) (n+1)

Sol.

$$\left(1+\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\dots$$

$$\left(1+1+\dots n \ term\right)-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}\dots n \ term\right)$$

$$=n-\frac{1}{n}\left(1+2+3\dots n \ terms\right)$$

$$=n-\frac{1}{n}\cdot\frac{n(n+1)}{2}$$

$$=\frac{2n-n-1}{2}$$

$$=\frac{n-1}{2}$$

$$\therefore \text{ Answer: (a)}$$

10. If S_n the sum of first n terms in a series is given by $2n^2 + 3n$ the series is in _____ (a) A.P. (b) G.P. (c) H.P. (d) None

 $S_n = 2n^2 + 3n$ $S_1 = 2 + 3 = 5$ $S_2 = 8 + 6 = 14$ $S_3 = 18 + 9 = 27$ $a_2 = S_2 - S_1 = 14 - 5 = 9$ $a_3 = S_3 - S_2 = 27 - 14 = 13$ 5, 9, 13, Difference is same so it is A.P. Answer : (a)

11. The sum of all natural numbers between 200 and 400 which are divisible by 7 is

(a) 7	7,730	(b)	8,729	(C)	7,729	(d)	8,730
-------	-------	-----	-------	-----	-------	-----	-------

Sol.

Numbers are between 200 and 400 and divisible by 7

are 203, 210, ---- 399 a = 203, d= 7 and a_n = 399 a_n = a + (n-1)d 399 = 203 + (n-1)7

n-1 = 196/7 = 28 n = 29 $S_n = (n/2) (a + d)$ $S_n = (29/2) (203 + 399)$ $S_n = 29 \times 301$ $S_n = 8729$ Answer : (b)

12. The sum of natural numbers upto 200 excluding those divisible by 5 is .

(a)	20,100	(b)	4,100	(c)	16,000	(d)	None
-----	--------	-----	-------	-----	--------	-----	------

Sol.

natural numbers upto 200 divisible by 5 are

EDNOYATE

S_a = b Answer: (a) 14. If S₁, S₂, S₃ be the respectively the sum of terms of n, 2n, 3n an A.P. the value of S₃ \div $(S_2 - S_1)$ is given by (b) (c) 3 (d) (a) 1 2 None Sol. S₁ = Sum of n term of A.P. S₂ = Sum of 2n term of A.P. S₃ = Sum of 3n term of A.P. $S_1 = \frac{n}{2} \left[2a + (n-1)d \right]$ $S_2 = \frac{2n}{2} \left[2a + (2n-1)d \right]$ $S_3 = \frac{3n}{2} \left[2a + (3n-1)d \right]$ $S_2 - S_1 = \frac{2n}{2} \left[2a + (2n-1)d \right] - \frac{n}{2} \left[2a + (n-1)d \right]$ $=\frac{n}{2}\left[4a+4nd-2d-2a-nd+d\right]$ $=\frac{n}{2}[2a+3nd-d]$ $=\frac{n}{2}\left[2a+(3n-1)d\right]$ $\frac{S_3}{S_2 - S_1} = \frac{\frac{3n}{2} \left[2a + (3n-1)d \right]}{\frac{n}{2} \left[2a + (3n-1)d \right]}$ $\frac{S_3}{S_2 - S_1} = 3$: Answer: (c)

15. The sum of **n** terms of two A.P.s are in the ratio of (7n-5)/(5n+17). Then the ______ term of the two series are equal.

(a) 12 (b) 6 (c) 3 (d) None

Let there are two A.P. with 1st term a and difference "d"

and second A.P. with first term A and difference D

$$\frac{S_n}{S_N} = \frac{7n-5}{5n+17}$$
$$\frac{n}{2} \begin{bmatrix} 2\alpha + (n-1)d \end{bmatrix}}{\begin{bmatrix} 2\alpha + (n-1)d \end{bmatrix}} = \frac{7n-5}{5n+17}$$

EDNOYATE

 $a + \left(\frac{n-1}{2}\right)d$ 7n-5 $A + \left(\frac{n-1}{2}\right)$ 5n + 17 $\perp D$ Terms are equal so there ratio is 1 $1 = \frac{7n-5}{2}$ 5n + 17 = 7n - 5 22 = 2n n = 11 Replacing n=11 we get $\frac{a+5d}{A+5D} = \frac{72}{72}$ it is 6th term Answer : (b) 16. Find three numbers in A.P. whose sum is 6 and the product is -24 (a) -2, 2, 6 (b) -1, 1, 3 (c) 1, 3, 5 (d) 1, 4, 7 Sol. Let the three numbers of A.P. be a-d, a and a+c a-d+a+a+d = 6 3a = 6 ∴ a = 2 Product = -24 (a-d)a(a+d) = -24 $a(a^2 - d^2) = -24$ $2(4 - d^2) = -24$ $4 - d^2 = -12$ $d^2 = 16 : d = \pm 4$ a = 2 and d = 4 then numbers are -2, 2, 6 Answer: (a)

17. Find three numbers in A.P. whose sum is 6 and the sum of whose square is 44. (a) -2, 2, 6 (b) -1, 1, 3 (c) 1, 3, 5 (d) 1, 4, 7

EDNOVATE

Sol.

Let three numbers of A.P. be a-d, a and a+d Sum = 6 a-d+a+a+d = $6 \therefore a = 2$ Sum of squares = 144 $(a-d)^2 + a^2 + (a+d)^2 = 44$ $(2-d)^2 + 2^2 + (2+d)^2 = 44$ $4 - 4d + d^2 + 4 + 4 + 4d + d^2 = 44$ $2d^2 = 32 \therefore d = \pm 4$ So numbers are -2, 2, 6 \therefore Answer: (a)

18 Find three numbers in A.P. whose sum is 6 and the sum of their cubes is 216.
(a) -2, 2, 6
(b) -1, 1, 3
(c) 1, 3, 5
(d) 1, 4, 7

Sol.

8)	3 NOS IN APAN 27JUNA Sum = 6
~	Sum = 6
1	Som of Cuber = 200 216
	Ð
a)	-2,2,6 = A.P.
)	-2+2+6 = 6 (0+A)
	2 2 1
24	$(-2)^3 + (2)^3 + (6)^3$
	=-8+84216 10 912 =
	= 2(6 21 00 1

19. Divide 12.50 into five parts in A.P. such that the first part and the last part are in the ratio of 2:3

- (a) 2, 2.25, 2.5, 2.75, 3
- (c) 4, 4.5, 5, 5.5, 6
- (b) -2, -2.25, -2.5, -2.75, -3
- (d) -4, -4.5, -5, -5.5, -6

Sol.

Let five parts be a-2d, a-d, a, a+d, a+2d \therefore Sum of five parts = 12.5 \therefore a-2d+a-d+a+a+d+a+2d =12.5 5a = 12.5 \therefore a = 2.5 Ratio of first and last term = 2 : 3

 $\frac{a-2d}{a+2d} = \frac{2}{3}$ 3a - 6d = 2a +4d 10d = a 10d = 2.5 ∴ d = 0.25 Terms are 2, 2.25, 2.5, 2.75, 3 ∴ Answer : (a)

20. If **a**, b, **c** are in A.P. then the value of (a³+ 4b³+ c³)/[b(a² + c²)] is
(a) 1
(b) 2
(c) 3
(d) None
Sol.

a,b,c are in A.P

$$\frac{a+c}{2} = b$$

$$\frac{a^{3}+4b^{3}+c^{3}}{b(a^{2}+c^{2})}$$

$$= \frac{a^{3}+4\left(\frac{a+c}{2}\right)^{3}+c^{3}}{\left(\frac{a+c}{2}\right)\left[a^{2}+c^{2}\right]}$$

$$= \frac{a^{3}+\frac{a^{3}+c^{3}+3a^{2}c+3ac^{2}}{2}+c^{3}}{\left(\frac{a+c}{2}\right)(a^{2}+c^{2})}$$

$$= \frac{\frac{1}{2}\left[2a^{3}+a^{3}+c^{3}+3a^{2}c+3ac^{2}+2c^{3}\right]}{\left(\frac{a+c}{2}\right)(a^{2}+c^{2})}$$

$$= \frac{3a^{2}+3a^{2}c+3ac^{2}+3c^{3}}{(a+c)(a^{2}+c^{2})}$$

$$= \frac{3(a+c)(a^{2}+c^{2})}{(a+c)(a^{2}+c^{2})}$$

$$= 3$$
∴ Answer: (c)

21. If a, b, c are in A.P. then the value of $(a^2 + 4ac + c^2)/(ab + bc + ca)$ is (a) 1 (b) 2 (c) 3 (d) None

EDNOVATE

Sol.

a, b,c are in A.P. $\frac{a+c}{2} = b$ $\frac{a^2 + 4ac + c^2}{ab + bc + ca}$ $= \frac{a^2 + 4ac + c^2}{b(a+c) + ca}$ $= \frac{a^2 + 4ac + c^2}{\left(\frac{a+c}{2}\right)(a+c) + ca}$ $= \frac{2(a^2 + 4ac + c^2)}{a^2 + 2ac + c^2 + 2ac}$ $= \frac{2(a^2 + 4ac + c^2)}{(a^2 + 4ac + c^2)} = 2$ $\therefore \text{Answer: (b)}$

22. If a, b, c are in A.P. then (a/bc) (b + c), (b/ca) (c + a), (c/ab) (a + b) are in ______
(a) A.P.
(b) G.P.
(c) H.P.
(d) None

Sol.

a, b, c are in A.P.

$$\frac{a+c}{2} = b$$
Now

$$\frac{a}{bc}(b+c) + \frac{c}{ab}(a+b)$$

$$= \frac{a^2(b+c)}{abc} + c^2(a+b)$$

$$= \frac{a^2b+a^2c+ac^2+bc^2}{abc}$$

$$= \frac{b(a^2+c^2)+ac(a+c)}{abc}$$

$$= \frac{b(a^2+c^2)+ac(2b)}{abc}$$

$$= \frac{a^2+c^2+2ac}{abc}$$

$$= \frac{1}{ac}(a+c)^2$$

$$= \frac{(a+c)(a+c)}{ac}$$

$$= \frac{2b(a+c)}{ac}$$

$$= 2\left[\frac{b(a+c)}{ac}\right]$$

$$= 2\left[\frac{b(a+c)}{ac}\right]$$

$$\therefore \frac{a}{bc}(b+c), \frac{b}{ac}(a+c), \frac{c}{ab}(a+b)$$
are in A.P.

$$\therefore \text{ Answer: (a)}$$
23. If a, b, c are in A.P. then a²(b+c), b²(c+a), c²(a+b) are in _____.
(a) A.P. (b) G.P. (c) H.P. (d) None
Sol.
a, b, c are in AP

$$\therefore a+c = 2b$$
Now a² (b+c) + c²(a+b)

$$= a2b + a2c + ac2 + b2c$$

$$= b(a2 + c2) + ac(a+c)$$

$$= b(a2 + c2) + ac(a+c)$$

$$= b(a2 + c2) + ac(2b)$$

$$= b(a+c)2$$

$$= b(a+c)(a+c)$$

=b(2b)(a+c)=2b²(a+c) =2[b²(a+c)] $\Rightarrow a^{2}(b+c), b^{2}(a+c), c^{2}(a+b) \text{ given are in}$ A.P.

Answer : (a)

24. If $(b + c)^{-1}$, $(c + a)^{-1}$, $(a + b)^{-1}$ are in A.P. then a^2 , b^2 , c^2 are in _____. (a) A.P. (b) G.P. (c) H.P. (d) None Sol. $(b + c)^{-1}$, $(c + a)^{-1}$, $(a + b)^{-1}$ are in A.P. $\frac{1}{c+a} - \frac{1}{b+c} = \frac{1}{a+b} - \frac{1}{c+a}$ $\frac{b+c-c-a}{(c+a)(b+c)} = \frac{c+a-a-b}{(a+b)(c+a)}$

 $\frac{b-a}{(c+a)(b+c)} = \frac{c-b}{(a+b)(c+a)}$ $a^2 - b^2 = b^2 - c^2$ $2b^2 = a^2 + c^2$ $a^2, b^2, c^2 \text{ are in A.P.}$ $\therefore \text{ Answer: (a)}$

25. If a², b², c² are in A.P. then (b + c), (c + a), (a + b) are in _____.
(a) A.P.
(b) G.P.
(c) H.P.
(d) None

EDNOYATE

26. If a², b², c² are in A.P. then a/(b + c), b/(c + a), c/(a + b) are in _____.
(a) A.P.
(b) G.P.
(c) H.P.
(d) None

Sol.

$$a^{2} + c^{2} = 2b^{2}$$

$$\frac{a^{2} + c^{2}}{b+c} + \frac{c}{a+b} = \frac{a(a+b)+c(b+c)}{(b+c)(a+b)}$$

$$\frac{a}{b+c} + \frac{c}{a+b} = \frac{a^{2}+ab+bc+c^{2}}{(b+c)(a+b)}$$

$$\frac{a}{b+c} + \frac{c}{a+b} = \frac{2b^{2}+ab+bc}{ab+b^{2}+ac+bc}$$

$$\frac{a}{b+c} + \frac{c}{a+b} = \frac{b(2b+a+c)}{ab+\frac{a^{2}+c^{2}}{2}+ac+bc}$$

$$\frac{a}{b+c} + \frac{c}{a+b} = \frac{2b(2b+a+c)}{2ab+a^{2}+c^{2}+2ac+2bc}$$

EDNOYATE

 $\frac{a}{b+c} + \frac{c}{a+b} = \frac{2b(2b+a+c)}{2ab+(a+c)^2+2bc}$ $\frac{a}{b+c} + \frac{c}{a+b} = \frac{2b(2b+a+c)}{2b(a+c)+(a+c)^2}$ $\frac{a}{b+c} + \frac{c}{a+b} = 2\frac{b}{a+c}$ $\frac{a}{b+c}, \frac{b}{a+c}, \frac{c}{a+b} = are in A.P.$ Answer : (a)

Sol.

(b + c - a)/a, (c + a - b)/b, (a + b - c)/c are in A.P.

$$\frac{b+c-a}{a} + \frac{a+b-c}{c} = \frac{2(c+a-b)}{b}$$

LCM = abc

bc(b+c-a) + ab(a+b+c) = 2ac(c+a-b) $b^{2}C+BC^{2}-bac+a^{2}b+ab^{2}-abc=$

```
2ac^2+2a^2c-2abc
b^2c+bc^2+a^2b+ab^2=2ac^2+2c^2c
```

```
a^{2}b-a^{2}c+ab^{2}-ac^{2} = a^{2}c-bc^{2}+ac^{2}-b^{2}c
```

```
a^{2}(b-c) + a(b-c)(b+c) = c^{2}(a-b) + c(a-b)
```

```
(a+b)
```

```
a(b-c)[a+b+a] = c(a-b)[c+a+b]
```

```
a(b-c) = c(a-b)
```

ab-ac = ac -bc

```
ab+bc = 2ac
```

Divide by abc

1/c + 1/a = 2/b

 \Rightarrow a, b, c are in H.P

```
Answer : (c)
```

CA Foundation	EDNOVATE
28. If (b - c) ² , (c - a) ² , (a - b) ² are in A.P. then (b - c), (c - a)	. (a - b) are in .
(a) A.P. (b) G.P. (c) H.P.	(d) None
Sol.	
$(b - c)^{2}, (c - a)^{2}, (a - b)^{2} = AP$	
$\int_{a}^{a} ((-a)^{2} - (b-c)^{2} = (a-b)^{2} - (c-a)^{2}$	
C2-2ac+a2-b2+2bc-C2 = a2-vab+b2-c2+2ac-a.	
$a^{2}-2b^{2}+c^{2}+2ab+2bc-44c=0$	
$\frac{2}{(-\alpha)} = \frac{\alpha - b + b - c}{(b - c)(\alpha - b)}$	
$(b-y'(-c)'(-a))$ $a(ab-(a-b^2+bc)=(a-c)(-a))$	
$\frac{2}{(-\alpha)} \frac{1}{(b-c)} \frac{1}{(\alpha-b)} \frac{2}{(a-b)} \frac{2}{$	
29. If a b c are in A.P. then (b + c), (c + a), (a + b) are in	
(a) A.P. (b) G.P. (c) H.P.	(d) None
Sol.	
a, b, c are in A.P.	
\therefore a+c = 2b	
Now b+c+a+b = 2b+a+c	
b+c+a+b = (a+c) + (a+c)	
b+c+a+b = = 2(a+c) (b + c), (c + a), (a + b) are in A.P.	
• Answer : (a)	
30. Find the number which should be added to the sum of a	any number of terms of the A.P.
3, 5, 7, 9, 11resulting in a perfect square.	
(a) -1 (b) 0 (c) 1	(d) None
Sol.	
3, 5, 7, 9, 11	
a = 3, d = 2	
$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
$S_n = \frac{n}{2} \left[6 + 2n - 2 \right]$	
$S_n = \frac{n}{2}(2n+4)$	
$S_n = n^2 + 2n$	
To get perfect (n ² +2n+1)	
1 is to be added	
Answer : (c)	
31. The sum of n terms of an A.P. is $2n^2 + 3n$. Find the n th	term.
(a) 4n + 1 (b) 4n - 1 (c) 2n + 1	(d) 2n – 1

 $S_{n} = 2n^{2} + 3n$ $a_{n} = S_{n} - S_{n-1}$ $a_{n} = (2n^{2} + 3n) - [2(n-1)^{2} + 3(n-1)]$ $a_{n} = (2n^{2} + 3n) - [2n^{2} - 4n + 2 + 3n - 3]$ $a_{n} = 2n^{2} + 3n - 2n^{2} + n + 1$ $a_{n} = 4n + 1$ Answer : (a)

32. The pth term of an A.P. is 1/q and the qth term is 1 /p. The sum of the pqth term is

$$\overline{(a) \quad \frac{1}{2}(pq+1)} \quad (b) \quad \frac{1}{2}(pq-1) \quad (c) \quad pq+1 \quad (d) \quad pq-1$$
Sol.
 $a_p = 1/q \text{ and } a_q = 1/p$
 $s_{pq} = ?$
 $a_p = 1/q$
 $a + (p-1)d = 1/q -..(1)$
 $a_q = 1/p$
 $a (q-1)d = 1/p -..(2)$
 $(1) - (2)$
 $\Rightarrow (p-q)d = \frac{p-q}{qp}$
 $d = \frac{1}{qp}$
Replace "d" in equation (1)
 $a + (p-1)\frac{1}{qp} = \frac{1}{q}$
 $a + \frac{1}{q} - \frac{1}{qp} = \frac{1}{q}$
 $a = \frac{1}{qp}$
 $s_{pq} = \frac{pq}{2} [2a + (pq-1)d]$

$$S_{pq} = \frac{pq}{2} \left[\frac{2}{pq} + (pq-1) \frac{1}{pq} \right]$$
$$S_{pq} = \frac{pq}{2} \left(\frac{pq+1}{pq} \right) = \frac{pq+1}{2}$$
$$\therefore \text{Answer: (a)}$$

33. The sum of p terms of an A.P. is q and the sum of q terms is p. The sum of p + q terms is

(a)
$$-(p+q)$$
 (b) $p+q$ (c) $(p-q)^2$ (d) p^2-q^2
Sol.
 $S_p = q, S_q = P, S_{p+q} = ?$
 $S_p = \frac{p}{2} [2a+(p-1)d] = q - - - (1)$
 $S_q = \frac{q}{2} [2a+(q-1)d] = p - - - (2)$
(1) - (2)
 $a(p-q) + \frac{p}{2}(p-1)d - \frac{q}{2}(q-1)d = q - p$
 $a(p-q) + \frac{d}{2} [p^2 - p - q^2 + q] = q - p$
 $a(p-q) + \frac{d}{2} [(p+q)(p-q) - (p-q)] = q - p$
 $(p-q) [a + \frac{d}{2}(p-q-1)] = -(p-q)$
 $2a + d(p+q-1) = -2$
 $S_{p+q} = \frac{p+q}{2} [2a + (p+q-1)d]$
 $S_{p+q} = \frac{p+q}{2} [-2) = -(p+q)$

34. If S₁, S₂ S₃ be the sums of **n** terms of three A.P.s the first term of each being unity and the respective common differences 1, 2, 3 then (S₁ + S₃) / S₂ is _____.

(a) 1 (b) 2 (c) -1 (d) None

Sol.

Three A.P. have a = 1Common difference $d_1 = 1$, $d_2 = 2$ and $d_3 = 3$ $S_1 = Sum \text{ of } n \text{ terms of first A.P.}$ $S_1 = \frac{n}{2} [2\alpha + (n-1)d_1]$ $S_1 = \frac{n}{2} [2 + (n-1)1]$ $S_1 = \frac{n}{2} [n+1]$ $S_1 = \frac{n}{2} [n+1]$

 S_2 = Sum of n terms of second A.P.

$$S_{2} = \frac{n}{2} \Big[2a + (n-1)d_{2} \Big]$$

$$S_{2} = \frac{n}{2} \Big[2 + (n-1)2 \Big]$$

$$S_{2} = \frac{n}{2} \cdot 2n = n^{2}$$

$$S_{3} = \text{Sum of n terms of third A.P.}$$

$$S_{3} = \frac{n}{2} \Big[2a + (n-1)d_{3} \Big]$$

$$S_{3} = \frac{n}{2} \Big[2 + (n-1)3 \Big]$$

$$S_{3} = \frac{n}{2} \Big[2 + (n-1)3 \Big]$$

$$S_{3} = \frac{n}{2} \Big[3n - 1 \Big]$$

$$Now \frac{S_{1} + S_{3}}{S_{2}}$$

$$\frac{S_{1} + S_{3}}{S_{2}} = \frac{\frac{n}{2} (n+1) + \frac{n}{2} (3n-1)}{n^{2}}$$

$$\frac{S_{1} + S_{3}}{S_{2}} = \frac{\frac{n}{2} (n+1) + n}{n^{2}} = 2$$

$$Answer : (b)$$

35. The sum of all natural numbers between 500 and 1000, which are divisible by 13, is

(a) 28,400 (b) 28,405 (c) 28,410 (d) None

Sol.

Number between 500 and 1000 divisible by 13 are 507, 520,.....988

a = 507, d = 13, and l = 988
I = a + (n-1)d
988 = 507 + (n-1)13
n-1 = 481/13
n-1 = 37
n = 38

$$S_n = \frac{n}{2}[a+l]$$

 $S_n = \frac{38}{2}[507+988]$
 $S_n = 19(1495)$

EDNOYATE

S_n = 28405 Answer : (b)

36. The sum of all natural numbers between 100 and 300, which are divisible by 4, is

(a) 10,200 (b) 30,000 (c) 8,200 (d) 2,200 Sol. Number from 100 and 300 divisible by 4 are 100, 104, 108 300 a = 104, d = 4, l = 296 l = a + (n-1)d 300 = 100 + (n-1)4 n = 51 $S_n = \frac{n}{2}(a+l)$

 $S_n = \frac{51}{2} (100 + 300)$ Answer : (a)

37. The sum of all natural numbers from 100 to 300 excluding those, which are divisible by 4, is

(a) 10,200 (b) 30,000 (c) 8,200 (d) 2,200 **Sol.**

Number from 100 and 300 divisible by 4 are

a = 104, d = 4, l = 296 l = a + (n-1)d 300 = 100 + (n-1)4 n = 51 $S_n = \frac{n}{2}(a+l)$ $S_n = \frac{51}{2}(100+300)$

100, 104, 108 300

Sum of the all numbers between 100 and 300

$$S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]$$

EDNOVATE

 $S_n = \frac{201}{2} [400]$ $S_{s} = 40200$ Sum of number NOT divisible by 4 =40200 - 10,200 = 30,000 Answer: (b) 38. The sum of all natural numbers from 100 to 300, which are divisible by 5, is . (a) 10,200 (b) 30,000 (c) 8,200 (d) 2,200 Sol. From 100 to 300 divisible by 5 not are 100, 105, 110....300 a = 100, d = 5, l = 300 I = a + (n-1)d300 = 100 + (n-1)5n = 41 $S_n = \frac{n}{2} (a+l)$ $S_{\pi} = \frac{41}{2} (100 + 300)$ $S_{n} = 8200$ Answer: (c) 39. The sum of all natural numbers from 100 to 300, which are divisible by 4 and 5, is . (a) 10,200 (b) 30,000 (c) 8,200 (d) 2,200 Sol. From 100 and 300 divisible by 4 and 5 are 100, 120, 140....300 120, 140, ... 300 a = 100, d = 20, l = 300 I = a + (n-1)d300 = 100 + (n-1)20n = 11 $S_n = (n/2) (a+l)$ $S_n = (11/2) (100 + 300) = 2200$ Answer : (d) 40. The sum of all natural numbers from 100 to 300, which are divisible by 4 or 5, is . (a) 10,200 (b) 8,200 (c) 2,200 (d) 16,200

Sol.

Sum of numbers from 100 to 300 divisible by 4 or 5.

First we will find sum of number divisible by 4, then sum of number divisible by 5 and sum of

numbers divisible by 4 and 5

sum of all natural numbers between 100 and

300, which are divisible by 4

Number from 100 and 300 divisible by 4 are

100, 104, 108 300

$$a = 104, d = 4, | = 296$$

$$| = a + (n-1)d$$

$$300 = 100 + (n-1)4$$

$$n = 51$$

$$S_n = \frac{n}{2}(a+l)$$

 $S_{\varkappa} = \frac{51}{2} (100 + 300)$ sum of all natural numbers from 100 to 300,

which are divisible by 5 From 100 to 300 divisible

by 5 not are 100, 105, 110, ... 300

$$a = 100, d = 5, l = 300$$

 $l = a + (n-1)d$
 $300 = 100 + (n-1)5$
 $n = 41$
 $S_n = \frac{n}{2}(a+l)$
 $S_n = \frac{41}{2}(100 + 300)$
 $S_n = 8200$

The sum of all natural numbers from 100 to 300, which are divisible by 4 and 5,

From 100 and 300, divisible by 4 and 5 are , 100,

120, 140, ...300

a = 100, d = 20, l = 300

I = a + (n-1)d 300 = 100 + (n-1)20 n = 11 $S_n = (n/2) (a+1)$ $S_n = (11/2) (100 + 300) = 2200$ Sum of number divisible by 4 or 5 = Sum of number divisible by 4 + Sum of numberdivisible by 5 - Sum of number divisible by 4 and 5 = 10,200 + 8200 - 2200 = 16,200Answer : (d)

41. If the n terms of two A.P.s are in the ratio (3n+4) : (n+4) the ratio of the fourth term is

(a) 2	(b) 3	(c) 4	(d) None
Sol.			

$$\frac{a_n}{A_n} = \frac{3n+4}{n+4}$$
$$\frac{a_4}{A_4} = \frac{3(4)+4}{4+4}$$
$$\frac{a_4}{A_4} = \frac{16}{8} = 2$$

42. If a, b, c, d are in A.P. then

(a) $a^2-3b^2+3c^2-d^2=0$ (b) $a^2+3b^2+3c^2+d^2=0$ (c) $a^2+3b^2+3c^2-d^2=0$ (d) None

Sol.

```
a, b, c and d are in A.P.

b-a = k; c-b=k; d-c=k

\therefore b = a+k; c = a+2k; d = a +3k

a^2 - 3b^2 + 3c^2 - d^2

= a^2 - 3(a+k)^2 + 3(a+2k)^2 - (a+3k)^2

= a^2 - 3a^2 - 6ak - 3k^2 + 3a^2 + 12ak + 12k^2 - a^2 - 6ak + 9k^2

= 0

Answer : (a)
```

```
EDNOYATE
     If a, b, c, d, e are in A.P. then
43.
    (a) a - b - d + e = 0 (b) a - 2c + e = 0 (c) b - 2c + d = 0
                                                                (d) all the above
Sol.
     a, b, c, d, e are in A.P.
    b = a+k, c = a + 2k, d = a+3k, e = a+4k
     a+e = a + a + 4k
      a+e = 2a + 4k
      a+e = (a+k)+(a+3k)
      a+e = b+d
      \therefore a – b – d + e = 0 Option a is true
      b+d = a+k + a+3k = 2a+4k
     b+d = 2(a+2k) = 2c option b is true
     \therefore b – 2c + d = 0 Option c is true
      : All the above is answer
     Answer: (d)
44. The three numbers in A.P. whose sum is 18 and product is 192 are ____
    (a) 4, 6, 8
                        (b) -4, -6, -8
                                       (c) 8, 6, 4
                                                                (d) both (a) & (c)
Sol.
    Let numbers be a-d,a+d
     Sum = 18
     a-d+a+a+d= 18
     3a=18
      a = 6
     Product = 192
     a(a-d)(a+d) = 192
     6(36-d^2) = 192
     36 - d^2 = 32
     d = \pm 2
     If d = 2, numbers are 4, 6, 8
      If d = -2, numbers are 8, 6, 4
     Answer: (d)
45. The three numbers in A.P., whose sum is 27 and the sum of their squares is 341, are
```

(a) 2, 9, 16 (b) 16, 9, 2 (c) both (a) and (b) (d) -2, -9, -16


```
Sol.
     Let numbers be a-d, a, a+d
     Sum = 27
     a-d+a+a+d = 27
     3a = 27
     a = 9
      Sum of the squares are 341
     (a-d)^2+a^2+(a+d)^2=341
     (9-d)^2+9^2+(9+d)^2=341
     81-18d+d<sup>2</sup>+81+81+18d+d<sup>2</sup>=341
     2d<sup>2</sup>=341-243=98
     d^2 = 49
     d=+7
     If = 7 numbers are 2.9.16
     If d = -7 numbers are 16, 9,2
     Answer: (c)
    The four numbers in A.P., whose sum is 24 and their product is 945, are
46.
    (a) 3, 5, 7, 9
                        (b) 2, 4, 6, 8
                                             (c) 5, 9, 13, 17
                                                                 (d) None
Sol.
     Let numbers be a-3d, a-d, a+d, a+3d
     Sum = 24
     a-3d+a-d+a+d+a+3d = 24
     4a=24
     a=6
     Product = 945
     (a-3d)(a-d)(a+d)(a+3d) = 945
     (a^2-9d^2)(a^2-d^2)=945
     (36-9d^2)(36-d^2) = 945
     1296 - 360d^2 + 9d^4 = 945
     9d^4 - 360d^2 + 351 = 0
      9d^4 - 360d^2 + 351 = 0
     d^4 - 40d^2 + 39 = 0
      d^2 = 39 and d = 1
     If d = 1 numbers are
     a-3d = 6-3=3
      a-d = 6-1=5
     a+d = 6+1=7
```

EDNOYATE

a+3d = 6+3 = 9Numbers are 3, 5, 7, 9 Answer: (a) 47. The four numbers in A.P., whose sum is 20 and the sum of their squares is 120, are 3, 5, 7, 9 (b) 2, 4, 6, 8 (c) 5, 9, 13, 17 (d) None (a) Sol. Let numbers be a-3d, a-d, a+d, a+3d Sum = 20a-3d+a-d+a+d+a+3d =20 4a = 20 : a = 5Sum of squres = 120 \Rightarrow (a-3d)²+(a-d)² +(a+d)²+(a+3d)²=120 $\Rightarrow (5-3d)^2 + (5-d)^2 + (5+d)^2 + (5+3d)^2 = 120$: 25-30d+9d²+25- $10d+d^{2}+25+10d+d^{2}+25+30d+9d^{2} = 120$ $\Rightarrow 20d^2 = 120 - 100 = 20$ d = 1 So a-3d = 5 - 3 = 2 a-d = 5-1 = 4 a+d = 5+1 = 6a+3d = 5+3 = 8Answer : (b) 48. The four numbers in A.P. with the sum of second and third being 22 and the product of the first and fourth beinf 85 are

(a) 3, 5, 7, 9 (b) 2, 4, 6, 8 (c) 5, 9, 13, 17 (d) None

Sol.

Let numbers be a-3d, a-d, a+d and a+3d $a_2+a_3 = 22$ a = 11 $a_1a_4 = 85$ (a-3d) (a+3d) = 85 $a^2 - 9d^2 = 85$

 $121 - 9d^2 = 85$ $9d^2 = 36$ d = 2Numbers are a-3d = 11 - 6 = 5 a - d = 11 - 2 = 9 a + d = 11 + 2 = 13 a+3d = 11 + 6 = 17 Numbers are 5, 9, 13, 17 Answer : (c)

49. The five numbers in A.P. with their sum 25 and the sum of their squares 135 are

(a) 3, 4, 5, 6, 7 (b) 3, 3.5, 4, 4.5, 5 (c) -3, -4, -5, -6, -7 (d) -3, -3.5, -4, -4.5, -5 Sol. Let five terms of A.P. be a-2d, a-d, a, a+d, a+2d Sum = 25 \therefore a-2d+ a-d + a + a+d + a+2d = 25 5a = 25 a = 5 Sum of their squares = 135 $\therefore (a-2d)^2 + (a-d)^2 + a^2 + (a+d)^2 + (a+2d)^2 = 135$ $a^2 - 4ad + 4d^2 + a^2$ - $2ad+d^{2}+a^{2}+a^{2}+2ad+d^{2}+a^{2}+4ad+d^{2} = 135$ $5a^2 + 10d^2 = 135$ $a^2+2d^2 = 27$ $\therefore 25+2d^2 = 27$ $2d^2 = 2$ ∴ d = ± 1 If d = 1, a-2d = 3, a-d = 4., a+d = 6, a+2d = 7 Numbers are 3, 4, 5, 6, 7 If d = -1 a-2d = 7, a-d = 6, a+d = 4, a+2d = 3 So numbers are 7,6,5, 4, 3 ∴ numbers rae 3,4,5,6,7 Answer : (a)

EDNOYATE

50. The five numbers in A.P. with the sum 20 and product of the first and last 15 are (a) 3, 4, 5, 6, 7 (b) 3, 3.5, 4, 4.5, 5 (c) -3, -4, -5, -6, -7 (d) -3, -3.5, -4, -4.5, -5 Sol. Let numbers be a - 2d, a-d, a, a+d, a+2d Sum =20 a - 2d + a - d + a + a + d + a + 2d = 205a = 20a = 4 Product of (a-2d) and (a+2d) is 15 (a-2d)×(a+2d)=15 $a^2 - 4d^2 = 15$ Substituting the value of a in above equation, we aet 16 - 4d² = 15 $-4d^2 = 15-16$ $d^2 = 1/4$ d = 1/2 or 0.5Therefore numbers are 3, 3.5, 4, 4.5 and 5 Answer: (b) 51. The sum of **n** terms of 2, 4, 6, 8is (b) (n/2)(n + 1) (c) n(n - 1) (d) (n/2)(n - 1)(a) n(n + 1)Sol. 2, 4, 6, 8..... a=2, d=2 $S_n = \frac{n}{2} \left[2\alpha + (n-1)d \right]$ $S_n = \frac{n}{2} \left[4 + (n-1)2 \right]$ $S_n = \frac{n}{2} \left[4 + 2n - 2 \right]$ $S_n = \frac{n}{2} (2n+2)$ $S_n = n(n+1)$ Answer: (a)

52. The sum of n terms of a+b, 2a, 3a-b,is (a) n(a-b)+2b (b) n(a+b) (C) both the above (d) None Sol. a+b, 2a, 3a–b, a₁ = a+b d = 2a - a - b = a - b $S_n = \frac{n}{2} \left[2a_1 + (n-1)d \right]$ $S_n = \frac{n}{2} \left[2(a+b) + (n-1)(a-b) \right]$ $S_{n} = \frac{n}{2} \Big[2a + 2b + (n-1)(a-b) - a + b \Big]$ $S_n = \frac{n}{2} \left[a + 3b + n(a - b) \right]$ Answer: (d) 53. The sum of **n** terms of $(x + y)^2$, $(x^2 + y^2)$, $(x - y)^2$,is (a) $(x + y)^2 - 2(n - 1)xy$ $n(x + y)^{2} - n(n - 1)xy$ (b) (c) both the above (d) None Sol. $(x + y)^2$, $(x^2 + y^2)$, $(x - y)^2$ $a = (x+y)^2$ and $d = x^2 + y^2 - (x - y)^2 = -2xy$ $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $S_n = \frac{n}{2} \left[2(x+y)^2 + (n-1)(-2xy) \right]$ $S_n = n \left[\left(x + y \right)^2 + \left(n - 1 \right) \left(-xy \right) \right]$ $S_n = n(x+y)^2 - n(n-1)(xy)$ Answer: (b)

EDNOYATE

54. The sum of **n** terms of (1/n)(n - 1), (1/n)(n - 2), (1/n)(n - 3)is (a) 0 (b) (1/2)(n - 1) (c) (1/2)(n + 1) (d) None

Sol.

$$\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n}$$

$$a = \frac{n-1}{n}$$

$$d = \frac{n-2}{n} - \frac{n-1}{n} = \frac{-1}{n}$$

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$S_n = \frac{n}{2} \left[2\left(\frac{n-1}{n}\right) + (n-1)\left(\frac{-1}{n}\right) \right]$$

$$S_n = \frac{n}{2} \cdot \frac{1}{n} \left[2n - 2 - n + 1 \right]$$

$$S_n = \frac{n-1}{2} = \frac{1}{2} (n-1)$$

Answer : (b)

55. The sum of **n** terms of 1.4, 3.7, 5.10 Is (a) $(n/2)(4n^2+5n-1)$ (b) $n(4n^2+5n-1)$ (c) $(n/2)(4n^2-5n-1)$ (d) None

Sol.

1.4, 3.7, 5.10.....
First take all 1st digit
1, 3, 5, is AP with a =- 1 and d = 2

$$a_i = a + (i-1)d$$

 $a_i = 1 + (i-1)2 = 2i - 1$
Now will take 2_{nd} digit
4, 7, 10, ... it is A.P
 $a = 4$ and $d = 3$
 $a_i = a + (i-1)d$
 $a_i = 4 + (i-1)3 = 3i + 1$
So ith term of series is
 $a_i = (2i-1)(3i+1)$
 $a_i = 6i^2 - i - 1$
 $S_n = \sum a_i$

$$S_{n} = \sum_{i=1}^{n} \left(6i^{2} - i - 1 \right)$$

$$S_{n} = 6 \sum_{i=1}^{n} i^{2} - \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1$$

$$S_{n} = \frac{6n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} - n$$

$$S_{n} = \frac{n}{2} [2(n+1)(2n+1) - (n+1) - 2]$$

$$S_{n} = \frac{n}{2} [4n^{2} + 6n + 2 - n - 1 - 2]$$

$$S_{n} = \frac{n}{2} [4n^{2} + 5n - 1]$$
Answer : (a)

56. The sum of **n** terms of 1^2 , 3^2 , 5^2 , 7^2 ,is (a) (n/3)(4n²-1) (b) (n/2)(4n²-1) (c) (n/3)(4n²+1) (d) None

EDNOYATE

Sol.

1², 3², 5², 7²,.....
1, 3, 5, 7 is AP with a = 1 and d = 2
a_i = a +)i-1)d
a_i = 1 +)i-1) 2 = 2i - 1
1², 3², 5², 7² = (2i-1)²
1², 3², 5², 7² = 4i² - 4i + 1
S_n =
$$\sum_{i=1}^{n} \alpha_i$$

S_n = $\sum_{i=1}^{n} \alpha_i$
S_n = $4\sum_{i=1}^{n} i^2 - 4\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$
S_n = $\frac{4n(n+1)(2n+1)}{6} - \frac{4n(n+1)}{2} + n$
S_n = $\frac{n}{3} [2(n+1)(2n+1) - 6(n+1) + 3]$
S_n = $\frac{n}{3} [4n^2 + 6n + 2 - 6n - 6 + 3]$

EDNOVATE

```
S_n = \frac{n}{2} \left( 4n^2 - 1 \right)
      Answer: (a)
57. The sum of n terms of 1, (1 + 2), (1 + 2 + 3) ......is
     (a) (n/3)(n + 1)(n - 2)
                              (b) (n/3)(n + 1)(n + 2)
     (c) n(n + 1)(n + 2)
                                                      (d) None
Sol.
      Answer: (d)
58. The sum of n terms of the series \frac{1^2}{1+(1^2+2^2)}/2+(1^2+2^2+3^2)}/3+\dots
     (a) (n/36)(4n^2 + 15n + 17)
                                                     (b) (n/12)(4n^2+15n+17)
     (c) (n/12)(4n^2 + 15n + 17)
                                                     (d) None
Sol.
     \frac{1^2}{1} + \frac{1^2 + 2^2}{2} + \frac{1^2 + 2^2 + 3^2}{3} \dots
      a<sub>i</sub> of Numerator
      1^2, 1^2+2^2, 1^2+2^2+3^2....
      a_i = 1^2 + 2^2 + 3^2 + \dots + i^2
     a_i = \sum i^2
     a_i = \frac{i\left(i+1\right)\left(2i+1\right)}{\epsilon}
     For denominator 1, 2, 3, ...
        a_i = i
     i^{th}term = \frac{i(i+1)(2i+1)}{\epsilon_i}
    i^{th}term = \frac{2i^2 + 3i + 1}{6}
     S_n = \sum a_i
     S_n = \sum_{i=1}^n \frac{2i^2 + 3i + 1}{6}
```

$$S_{n} = \frac{2}{6} \sum_{i=1}^{n} i^{2} + \frac{3}{6} \sum_{i=1}^{n} i + \frac{1}{6} \sum_{i=1}^{n} 1$$

$$S_{n} = \frac{2}{6} \frac{n(n+1)(2n+1)}{6} + \frac{3}{6} \frac{n(n+1)}{2} + \frac{1}{6}n$$

$$S_{n} = \frac{n}{36} [2n(n+1)(2n+1) + 9(n+1) + 6]$$

$$S_{n} = \frac{n}{36} [4n^{2} + 6n + 2 + 9n + 9 + 6]$$

$$S_{n} = \frac{n}{36} (4n^{2} + 15n + 17)$$
Answer: (a)

59. The sum of n terms of the series 2.4.6 + 4.6.8 + 6.8.10 +is

- (a) $2n(n^3+6n^2+11n+6)$
- (c) n(n3+6n2+11n+6)

Sol.

2.4.6 + 4.6.8 + 6.8.10 + First all 1st digit of series 2, 4, 6, It is AP a=4 and d=2 $a_i = a + (i-1)d = 2 + (i-1)2 = 2i$ Now 2nd digit 4, 6, 8, It is AP a=4, d = 2 $a_i = a + (i-1)d = 4 + (i-1)2 = 2i+2$ 3rd digits 6, 8, 10, It is AP a = 6, d = 2 a_i = a + (i-1)d = 6 + (i-1)2 = 2i+4 So i^{th} is $a_i = 2i(2i+2)(2i+4)$ $a_i = 8i(i+1)(i+2)$ $a_i = 8i (i^2 + 3i + 2)$ $a_i = 8i^3 + 24i^2 + 16i$ $S_n = \sum a_i$ $S_n = \sum \left(8i^3 + 24i^2 + 16i\right)$ $S_n = 8\sum_{i=1}^n i^3 + 24\sum_{i=1}^n i^2 + 16\sum_{i=1}^n i$

- (b) $2n(n^3-6n^2+11n-6)$
- (d) n(n3+6n2+11n-6)

EDNOVATE

$$= \frac{8 \cdot n^{2} (n+1)^{2}}{4} + \frac{24 \cdot n (n+1)(2n+1)}{6} + \frac{16 \cdot n (n+1)}{2}$$

= $2n (n+1) [n (n+1) + 2(2n+1) + 4]$
= $2n (n+1) (n^{2} + n + 4n + 2 + 4)$
= $2n (n+1) (n^{2} + 5n + 6)$
= $2n (n^{3} + 6n^{2} + 11n + 6)$
Answer : (a)

60. The sum of **n** terms of the series 1.3^2+4 , $4^2+7.5^2+10.6^2+$ is

- (a) $(n/12)(n + 1)(9n^2+49n+44)-8n$ (b) $(n/12)(n + 1)(9n^2+49n+44)+8n$
- (c) $(n/6)(2n + 1)(9n^2 + 49n + 44) 8n$
- (d) None

Sol.

 $1.3^2 + 4.4^2 + 7.5^2 + 10.6^2 +$ First digits are 1, 4, 7, 10. It is AP a = 1 and d = 3 $a_i = a + (i-1)d = 1 + (i-1)3 = 3i-2$ Now Second degits are 3^2 , 4^2 , 5^2 , 6^2 Now 3, 4, 5, 6 ... are in AP a = 3 and d=1 $a_i = a + (i-1)d = 3+(i-1)1 = i+2$ ∴ ith term is (i+2)² ith term of series is $a_i = (3i-2)(i+2)^2$ $a_i = (3i-2)(i^2+4i+4)$ $a_i = 3i^3 + 12i^2 + 12i - 2i^2 - 8i - 8i$ $a_i = 3i^3 + 10i^2 + 4i - 8$ $S_n = \sum a_i$ $S_n = \sum_{i=1}^n \left(3i^3 + 10i^2 + 4i - 8 \right)$ $S_n = 3\sum_{i=1}^{n} i^3 + 10\sum_{i=1}^{n} i^2 + 4\sum_{i=1}^{n} i - 8\sum_{i=1}^{n} 1$ $=\frac{3n^{2}(n+1)^{2}}{4}+\frac{10n(n+1)(2n+1)}{6}+\frac{4n(n+1)}{2}-8n$

EDNOYATE

$$= \frac{n(n+1)}{12} [9n(n+1)+20(2n+1)+12] - 8n$$

$$= \frac{n(n+1)}{12} [9n^{2}+9n+40n+20+24] - 8n$$

$$= \frac{n(n+1)}{12} (9n^{2}+49n+44) - 8n$$

Answer: (a)

61. The sum of **n** terms of the series 4 + 6 + 9 + 13is

(a) $(n/6)(n^2+3n+20)$

(b) (n/6)(n + 1)(n + 2)

EDNOYATE

(c) (n/3)(n + 1)(n + 2)

(d) None

Sol.

$$\begin{split} & S_n = 4 + 6 + 9 + 13 \dots + a_n - (1) \\ & S_n = +4 + 6 + 9 + 13 \dots + a_n - (2) \\ & (1) - (2) \\ & 0 = 4 + (2 + 3 + 4 + \dots (n - 1) \text{ terms}) - a_n \\ & a_n = 4 + (2 + 3 + 4 + \dots (n - 1) \text{ terms}) \\ & 2, 3, 4, \dots \text{ is A.P. with } a = 2 \text{ and } d = 1 \\ & a_n = 4 + \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} 1 \\ & a_n = 4 + \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} 1 \\ & a_n = 4 + \frac{(n-1)n}{2} + (n-1) \\ & a_n = \frac{n^2 + n + 6}{2} \\ & a_n = \frac{n^2 + n + 6}{2} \\ & S_n = \sum a_n \\ & S_n = \sum \frac{n^2 + n + 6}{2} \\ & = \frac{1}{2} \sum n^2 + \frac{1}{2} \sum n + 3 \sum 1 \\ & = \frac{1}{2} \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{4} + 3n \\ & = \frac{n}{12} [(n+1)(2n+1) + 3(n+1) + 36] \\ & = \frac{n}{12} (2n^2 + 6n + 40) \end{split}$$

EDNOYATE

 $=\frac{n}{12}\cdot 2\left(n^2+3n+20\right)$ $=\frac{n}{6}\left(n^2+3n+20\right)$ Answer: (a) 62. The sum to **n** terms of the series 11, 23, 59, 167is 3ⁿ⁺¹+5n - 3 (b) $3^{n+1}+5n+3$ (c) 3^n+5n-3 (a) (d) None Sol. 11, 23, 59,167..... $S_n = 11 + 23 + 59 + 167 + \dots + a_n - (1)$ $S_n = +11 + 23 + 59 + 167 + \dots + a_n - - - (2)$ (1) - (2) $0 = 11 + (12 + 36 + 108 +) - a_n$ ∴ a_n = 11 + (12 +36 + 108 +(n-1) terms) 12, 36, 108 are in G.P a = 12 and r = 3 $12+36+18+\ldots = \frac{12(3^{n-1}-1)}{2-1}$ $= 6(3^{n-1}-1) = (2 \cdot 3^n - 6)$ $a_n = 11 + 2 \cdot 3^n - 6$ $a_n = 5 + 2(3^n)$ $S_n = \sum a_n$ $S_n = \sum (5 + 2 \cdot 3^n)$ $S_{n} = \sum 5 + 2\sum 3^{n}$ $S_n = 5n + 2[3 + 3^2 + 3^3 + \dots 3^n]$ 3. 3². 3³ ... in G.P. a = 3, r = 3 > 1 $3+3^2+3^3+\ldots+3^n = \frac{3(3^n-1)}{3-1} = \frac{3(3^n-1)}{2}$ $S_n = 5n + 2\frac{3(3^n - 1)}{2}$ $S_n = 5n + 3^{n+1} - 3$ $S_n = 3^{n+1} + 5n - 3$

EDNOVATE

Answer: (a)

```
63. The sum of n terms of the series 1/(4.9)+1/(9.14)+1/(14.19)+1/(19.24)+ .....is
        (a)
                 (n/4)(5n+4)^{-1}
                                         (b)
                                                   (n/4)(5n+4) (c) (n/4)(5n-4)^{-1} (d) None
 Sol.
       \frac{1}{4.9} + \frac{1}{9.14} + \frac{1}{14.19} + \frac{1}{19.24} + \dots
          1st digit of denominator are
         4, 9, 14, 19, ... It is AP
          a = 4 and d=5
         a_i = a + (i-1)d
          a_i = 4 + (i-1)5
        a; = 5i - 1
        2<sup>nd</sup> diigit of fenominator are
         9, 14, 19, 24, ... It is AP
        a = 9 and d= 5
         a_i = a + (i-1)d
         a_i = 9 + (i-1)5 = 5i + 4
        i<sup>th</sup> term of series
       a_i = \frac{1}{(5i-1)(5i+4)}
        S_n = \sum a_i
       S_n = \sum_{i=1}^n \frac{1}{(5i-1)(5i+4)}
       S_n = \frac{1}{5} \sum_{i=1}^n \frac{(5i+4) - (5i-1)}{(5i-1)(5i+4)}
       =\frac{1}{5}\left[\sum_{i=1}^{n}\frac{1}{5i-1}-\sum_{i=1}^{n}\frac{1}{5i+4}\right]
       =\frac{1}{5}\left[\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{14}+...+\frac{1}{5n-1}\right)-\left(\frac{1}{9}+\frac{1}{14}+...+\frac{1}{5n+4}\right)\right]
       =\frac{1}{5}\left[\frac{1}{4}-\frac{1}{5^{n}+4}\right]
```

EDNOYATE

	$=\frac{1}{5}\left[\frac{5n+4-4}{4(5n+4)}\right]$ $=\frac{n}{4(5n+4)}$ Answer : (a)							
64.	The sum of n terms	of the s	series 1 + 3 + 5	+	ls			
	(a) n ²	(b)	2n ²	(c)	$n^{2}/2$	(d)	None	
	(a) 11	(0)	211	(0)	11 / 2	(u)	None	
Sol.								
	1+3+15+ It is AP a= 1 and d=2							
	$a_i = a + (i-1)d = 1 + (i-1)d$	$1)2 = 2i_{-}$	1					
	$a_i = a + (i-1)d = 1 + (i-1)2 = 2i-1$							
	$S_n = \sum_{i=1}^n (2i - 1)$							
	$S_n = 2\sum_{i=1}^n i - \sum_{i=1}^n 1$							
	$S_n = \frac{2n(n+1)}{2} - n$							
	o							
	$S_n = n^2 + n - n = n^2$							
	Answer : (a)							
65.	The sum of n terms	of the se	eries 2 + 6 + 10) +	is			
	(a) 2n ²	(b) r	1 ²	(C)	n²/2	(d)	4n ²	
Sol.		(-)		(-)	-	(-)		
301.								
	2 + 6 + 10 +							
	2(1+3+5+)							
	$S_n = 2\sum_{i=1}^n (2i-1)$							
	$S_n = 2\left(2\sum_{i=1}^n i - \sum_{i=1}^n 1\right)$							
	$S_n = 2\left(\frac{2n(n+1)}{2} - n\right)$							
	$S_n = 2(n^2 + n - n)$							
	$S_n = 2n^2$							
	Answer : (a)							

66. The sum of **n** terms of the series $1.2 + 2.3 + 3.4 + \dots$ Is (n/3)(n + 1)(n + 2)(b) (n/2)(n + 1)(n + 2)(a) (c) (n/3)(n + 1)(n - 2)None (d) Sol. 1.2 + 2.3 + 3.4 + 1st digit are 1, 2, 3, ..., It is AP a = 1 and d = 1a_i = a + (i-1)d = 1+ (i-1)1 = i 2nd digits are 2, 3, 4, It is AP a =2 and d=1 $a_i = a + (i-1)d = 2 + (i-1)1 = i + 1$ ith term of series is $a_i = i(i+1) = i^2 + i$ $S_n = \sum a_i$ $S_n = \sum_{i=1}^n (i^2 + i)$ $S_n = \sum_{i=1}^n i^2 + \sum_{i=1}^n i$ $S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$ $=\frac{n(n+1)}{6}[2n+1+3]$ $=\frac{n(n+1)(2n+4)}{6}$ $=\frac{n(n+1)(n+2)}{3}$ Answer: (a) 67. The sum of **n** terms of the series $1.2.3 + 2.3.4 + 3.4.5 + \dots$ is (a) (n/4)(n + 1)(n + 2)(n + 3)(b) (n/3)(n + 1)(n + 2)(n + 3)(c) (n/2)(n + 1)(n + 2)(n + 3)(d) None Sol. 1.2.3 + 2.3.4 + 3.4.5 + 1st digit number = 1, 2, 3, It is AP a = 1 and d=1 a_i = a + (i-1)d = 1 + (i-1)1 = i 2nd digits are 3, 4, 5 , It is AP a=3 and d=1 $a_i = a + (i-1)d = 3 + (i-1)d = i + 2$

EDNOVATE

∴ ith term of series

$$a_i = i(i+1) (i+2)$$

 $a_i = i(i^2 + 3i + 2)$
 $a_i = i^3 + 3i^2 + 2i$
 $S_n = \sum a_n$
 $S_n = \sum a_n$
 $S_n = \sum_{i=1}^n (i^3 + 3i^2 + 2i)$
 $S_n = \sum_{i=1}^n i^3 + 3\sum_{i=1}^n i^2 + 2\sum_{i=1}^n i$
 $= \frac{n^2(n+1)^2}{4} + \frac{3n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$
 $= \frac{n(n+1)}{4} [n(n+1) + 2(2n+1) + 4]$
 $= \frac{n(n+1)}{4} (n^2 + n + 4n + 2 + 4)$
 $= \frac{n(n+1)}{4} (n^2 + 5n + 6)$
 $= \frac{n(n+1)(n+2)(n+3)}{4}$

Answer : (a)

68. The sum of **n** terms of the series $1.2+3.2^2+5.2^3+7.2^4+\ldots$ is (a) $(n-1)2^{n+2}-2^{n+1}+6$ (b) $(n+1)2^{n+2}-2^{n+1}+6$ (c) $(n-1)2^{n+2}-2^{n+1}-6$ (d) None

Sol.

1.2 + 3.2² + 5.2³ + 7.2⁴ +..... 1st digits are 1, 3, 5, 7 ... are AP a = 1 and d = 2 $a_i = a + (i-1)d$ $a_i = 1 + (i-1)2 = 2i-1$ 2^{nd} digits are 2, 2², 2³ It is GP a = 2 and r=2 > 1 $a_i = ar^{i-1} = 2(2)^{i-1} = 2^i$ ith term of sequence is $a_i = (2i - 1) \cdot 2^i$ $a_i = (2^{i+1} \cdot i - 2^i)$ Answer : (d)

EDNOVATE

```
The sum of n terms of the series 1/(3.8)+1/(8.13)+1/(13.18)+.....is
69.
        (a) (n/3)(5n + 3)^{-1}
                                     (b) (n/2)(5n + 3)^{-1} (c) (n/2)(5n - 3)^{-1} (d) None
Sol.
        1.2 + 3.2^2 + 5.2^3 + 7.2^4 + \dots
        1<sup>st</sup> digits are 1, 3, 5, 7 ... are AP
         a = 1 and d = 2
         a_i = a + (i-1)d
        a_i = 1 + (i-1)2 = 2i-1
         2<sup>nd</sup> digits are 2, 2<sup>2</sup>, 2<sup>3</sup> .... It is GP
        a = 2 and r=2 > 1
           a_i = ar^{i-1} = 2(2)^{i-1} = 2^i
        ith term of sequence is
         a<sub>i</sub> = (2i - 1). 2<sup>i</sup>
         a_i = (2^{i+1} \cdot i - 2^i)
         Answer: (d)
70. The sum of n terms of the series 1/1+1/(1+2)+1/(1+2+3)+ .....is
                                  (b) n(n+1)
                                                                (c) 2n(n-1)⁻¹
        (a) 2n(n + 1)^{-1}
                                                                                                           (d)
                                                                                                                   None
Sol.
       \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3}
        TErms in denominator are 1, (1+2), (1+2+3), .....
         a_i = (1+2+3+...+i)
       a_i = \sum i = \frac{i(i+1)}{2}
         i<sup>th</sup> term of series is
       a_i = \frac{1}{\underline{i(i+1)}} = \frac{2}{i(i+1)}
       S_n = \sum a_i = \sum \frac{2}{i(i+1)}
       =2\sum \frac{1}{i(i+1)}
       =2\sum\left[\frac{(i+1)-i}{i(i+1)}\right]
       =2\left[\sum_{i=1}^{n}\frac{1}{i}-\sum_{i=1}^{n}\frac{1}{i+1}\right]
       = 2\left[\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}\right)\right]
```

EDNOVATE

 $=2\left[1-\frac{1}{n+1}\right]$ $=2\left[\frac{n+1-1}{n+1}\right]$ $=\frac{2n}{n+1}=2n(n+1)^{-1}$ Answer: (a) 71. The sum of n terms of the series $2^2+5^2+8^2+\ldots$ is (a) $(n/2)(6n^2+3n-1)$ (b) $(n/2)(6n^2-3n-1)$ (c) $(n/2)(6n^2+3n+1)$ (d) None Sol. $2^2 + 5^2 + 8^2 + \dots$ Numbers are 2, 5, 8, It is AP a = 2 and d = 3a_i = a + (i-1)d = 2 + (i-1)3 = 3i-1 ith term of series $a_i = (3i-1)^2 = 9i^2 - 6i + 1$ $2^2 + 5^2 + 8^2 + \dots$ Numbers are 2, 5, 8, It is AP a = 2 and d = 3 $a_i = a + (i-1)d = 2 + (i-1)3 = 3i-1$ ith term of series $a_i = (3i-1)^2 = 9i^2 - 6i + 1$ $S_n = \sum a_i$ $=\sum (9i^2 - 6i + 1)$ $=9\sum_{n=1}^{N}i^{2}-6\sum_{n=1}^{N}i+\sum_{n=1}^{N}1$ $=\frac{9n(n+1)(2n+1)}{6}-\frac{6n(n+1)}{2}+n$ $=\frac{n}{2}[3(n+1)(2n+1)-6(n+1)+2]$ $=\frac{n}{2}\left[3\left(2n^{2}+3n+1\right)-6n-6+2\right]$ $=\frac{n}{2}\left(6n^2+3n-1\right)$

72. The sum of **n** terms of the series $1^2+3^2+5^2+$ is (a) $\frac{n}{3}(4n^2-1)$ (b) $n^2(2n^2+l)$ (c) n(2n-1) (d) n(2n+1)

Sol.

 $1^2 + 3^2 + 5^2 + \dots$ Numbers are 1, 3, 5, It is AP a = 1 and d=2 $a_i = a + (i-1)d = 1 + (i-1)2 = 2i-1$ ith term of series is $a_i = (2i-1)^2 = 4i^2 - 4i + 1$ $S_n = \sum a_i$ $S_n = \sum \left(4i^2 - 4i + 1\right)$ $=4\sum i^2-4\sum i+\sum 1$ $=\frac{4n(n-1)(2n+1)}{6}-\frac{4n(n+1)}{2}+n$ $=\frac{n}{3}\left[2(n+1)(2n+1)-6(n+1)+3\right]$ $=\frac{n}{3}(4n^2+6n+2-6n-6+3)$ $=\frac{n}{3}(4n^2-1)$ Answer: (a)

73. The sum of **n** terms of the series 1.4 + 3.7 + 5.10 +is (a) $(n/2)(4n^2+51)$ (c) $(n/2)(4n^2+5n+1)$ (d) None Sol. 1.4 + 3.7 + 5.10 + First digit are 1, 3, 5, It is AP a = 1 and d=2 $a_i = a + (i-1)d = 1 + (i-1)2 = (2i-1)$ Second digits are 4, 7, 10 It is AP a = 4,d = 3 $a_i = a + (i-1)d = 4 + (i-1)d = 4 + (i-1)3 = (3i+1)$ ist term of series $a_i = (2i-1)(3i+1)$ $a_i = 6i^2 - i - 1$ S_n = ∑a_i $S_n = \sum (6i^2 - i - 1) S_n = 6 \sum i^2 - \sum i - \sum 1$ $S_n = \frac{6n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} - n$

(b) $(n/2)(5n^2+4n-1)$

 $S_{n} = \frac{n}{2} \Big[2(n+1)(2n+1) - (n+1) - 2 \Big]$ $S_n = \frac{n}{2} \Big[4n^2 + 6n + 2 - n - 1 + 2 \Big]$ $S_n = \frac{n}{2} \left(4n^2 \right)$ Answer: (a) 74. The sum of **n** terms of the series $2.3^2 + 5.4^2 + 8.5^2 + \dots$ is (b) $(n/12)(9n^3-62n^2+123n-22)$ (a) $(n/12) (9n^3 + 62n^2 + 123n + 22)$ (c) $(n/6) (9n^3 + 62n^2 + 123n + 22)$ (d) None Sol. 1st digits are 2, 5, 8, ... It is AP a =2 and d= 3 $a_i = a + (i-1)d = 2 + (i-1)3 = 3i-1$ 2nd digits are 3, 4, 5, ... It is AP a = 3 and d = 1 $a_i = a + (i-1)d = 3 + (i-1)1 = i+2$ ith term of series $a_i = (3i-1)(i+2)^2$ $a_i = (3i-1)(i^2 + 4i + 4)$ $a_i = 3i^3 + 12i^2 + 12i - i^2 - 4i - 4$ $a_i = 3i^3 + 11i^2 + 8i - 4$ $S_n = \sum a_i$ $S_n = \sum (3i^3 + 11n^2 + 8i - 4)$ $S_n = 3\sum_{i=1}^{3} + 11\sum_{i=1}^{3} + 8\sum_{i=1}^{3} - 4\sum_{i=1}^{3} 1$ $=\frac{3n^{2}(n+1)^{2}}{4}+\frac{11n(n+1)(2n+1)}{6}+\frac{8n(n+1)}{2}-4n$ $=\frac{n}{12}\left[9n(n+1)^{2}+22(n+1)(2n+1)+48(n+1)-48\right]$ $=\frac{n}{12}\left[9n\left(n^{2}+2n+1\right)+22\left(2n^{2}+3n+1\right)+48n+48-48\right]$ $=\frac{n}{12}\left[9n^{3}+18n^{2}+9n+44n^{2}+66n+22+48n\right]$ $=\frac{n}{12}(9n^3+62n^2+123n+22)$ Answer: (a) 75. The sum of **n** terms of the series $1 + (1 + 3) + (1 + 3 + 5) + \dots$ is

(a) (n/6)(n + 1)(2n + 1) (b) (n/6)(n + 1)(n + 2)

- (a) (n/6)(n + 1)(2n + 1)(c) (n/3)(n + 1)(2n + 1)
- (d) None

Sol.

 $1 + (1 + 3) + (1 + 3 + 5) + \dots$ $a_{i} = (1 + 3 + 5 + \dots)i \text{ It is AP}$ a = 1 and d = 2 $a_{i} = \sum [a + (i - 1)d]$ $a_{i} = \sum [1 + (i - 1)2]$ $a_{i} = \sum [1 + (i - 1)2]$ $a_{i} = \sum (2i - 1)$ $a_{i} = 2\sum i - \sum 1$ $S_{\pi} = \frac{2n(n + 1)}{2} - n$ $S_{\pi} = n(n + 1 - 1) = n^{2}$ $S_{\pi} = \sum a_{i} = \sum n^{2}$ $S_{\pi} = \frac{n(n + 1)(2n + 1)}{6}$ Answer: (a)

76. The sum of **n** terms of the series $1^2+(1^2+2^2)+(1^2+2^2+3^2)+\dots$ is

- (a) $(n/12)(n + 1)^2 (n + 2)$
- (c) $(n/12)(n^2 1)(n + 2)$

(b) (n/12)(n - 1)² (n + 2)

(d) None

Sol.

 $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$

ith term

$$\begin{aligned} a_{i} &= 1^{2} + 2^{2} + 3^{2} + \dots + i^{2} \\ a_{i} &= \sum i^{2} \\ a_{i} &= \frac{i(i+1)(2i+1)}{6} \\ S_{n} &= \sum a_{i} \\ S_{n} &= \frac{1}{6} \sum i(i+1)(2i+1) \\ S_{n} &= \frac{1}{6} \sum (2i^{3} + 3i^{2} + i) \\ S_{n} &= \frac{2}{6} \sum i^{3} + \frac{3}{6} \sum i^{2} + \frac{1}{6} \sum i \\ &= \frac{2}{6} \frac{n^{2}(n+1)^{2}}{4} + \frac{3}{6} \frac{n(n+1)(2n+1)}{6} + \frac{1}{6} \frac{n(n+1)}{2} \\ &= \frac{n(n+1)}{12} [n(n+1) + 2n + 1 + 1] \end{aligned}$$

$$= \frac{n(n+1)}{12} [n^{2} + n + 2n + 2]$$

= $\frac{n(n+1)}{12} (n^{2} + 3n + 2)$
= $\frac{n(n+1)(n+2)(n+1)}{12}$
= $\frac{n(n+1)^{2}(n+2)}{12}$
Answer : (a)

77. The sum of **n** terms of the series $1+(1+1/3)+(1+1/3+1/3^2)+\dots$ is

(a) (3/2) (1-3⁻ⁿ)

(c) Both

- (b) (3/2)[n-(1/2)(1-3⁻ⁿ)]
- (d) None

Sol.

$$1 + \left(1 + \frac{1}{3}\right) + \left(1 + \frac{1}{3} + \frac{1}{3^2}\right) + \dots$$

$$a_i = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{i-1}}$$
It is G.P. a = 1 and r = 1/3

$$a_i = \frac{a\left(1 - r^n\right)}{1 - r}$$

$$a_i = \frac{\left[1 - \left(\frac{1}{3}\right)^i\right]}{\frac{2}{3}}$$

$$a_i = \frac{3}{2} \left[1 - \left(\frac{1}{3}\right)^i\right]$$

$$S_n = \sum a_i$$

$$S_n = \sum \frac{3}{2} \left[1 - \left(\frac{1}{3}\right)^i\right]$$

$$S_n = \sum \frac{3}{2} \left[1 - \left(\frac{1}{3}\right)^i\right]$$
It is G.P. a=1/3 aand r = 1/3

$$S_n = \frac{3}{2} \left[\frac{a\left(1 - r^n\right)}{1 - r}\right]$$

$$S_{u} = \frac{3u}{2} - \frac{9}{4} \cdot \frac{1}{3} \left[1 - \left(\frac{1}{3}\right)^{u} \right]$$

$$S_{u} = \frac{3u}{2} - \frac{3}{4} \left[1 - (3)^{-u} \right]$$

$$S_{u} = \frac{3}{2} \left[u - \frac{1}{2} (1 - 3^{-3}) \right]$$
Answer : (b)
78. The sum of n terms of the series n.1+(n-1).2+(n-2).3+.....is
(a) (n/6)(n + 1)(n + 2) (b) (n/3)(n + 1)(n + 2) (c) (n/2)(n + 1)(n + 2) (d) None
Sol.
n.1+(n-1).2+(n-2).3+...
First numbers are n, n-1, n-2 It is AP
a = n and d = -1
a_{i} = a + (i-1)d = n + (i-1)(-1)
a_{i} = n + 1 - i
2^{nd} numbers are 1, 2, 3, It is A.P.
a = 1 and d = 1
ith terms of series
a_{i} = (n+1-i)i
a_{i} = ni + i - i^{2}
S_{n} = \sum a_{i}
S_{n} = \sum (ni + i - i^{2})
S_{n} = n\sum i + \sum i - \sum i^{2}
$$S_{u} = \frac{u^{2}(n+1)}{2} + \frac{u(n+1)}{2} - \frac{u(n+1)(2n+1)}{6}$$

$$= \frac{u(n+1)}{6} (3u+3-2n-1)$$

$$= \frac{u(n+1)}{6} (n+2)$$

$$= \frac{u(n+1)(n+2)}{6}$$

EDNOVATE

Answer: (a) 79. The sum of n terms of the series 1 + 5 + 12 + 22 +is (a) $(n^2/2)(n + 1)$ (b) n(n+1) (c) $(n^2/2)(n-1)$ (d) None Sol. $S_n = 1 + 5 + 12 + 22 + \dots a_n ---(1)$ $S_n = 1 + 5 + 12 + 22 + \dots + a_n - - - (2)$ (1) - (2) $\Rightarrow 0 = 1 + (4 + 7 + 10 + ..., a_{n-1}) - a_n$ $a_n = 1 + (4 + 7 + 10 + \dots (n-1) \text{ terms})$ 4, 7, 10, is A.P. with a = 4, d = 3 $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $4 + 7 + 10 + \dots (n-1)$ $=\frac{n-1}{2}[2(4)+(n-1-1)3]$ $=\frac{n-1}{2}[8+3n-6]$ $=\frac{n-1}{2}(3n+2)$ Use formula $a_n = 1 + \frac{(n-1)(3n+2)}{2}$ $a_n = \frac{2 + 3n^2 + 2n - 3n - 2}{2}$ $a_n = \frac{3n^2 - n}{2}$ $S_n = \sum a_n$ $S_n = \sum \left(\frac{3n^2 - n}{2}\right)$ $S_n = \frac{3}{2} \sum n^2 - \frac{1}{2} \sum n$ $S_n = \frac{3}{2} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{1}{2} \cdot \frac{n(n+1)}{2}$

EDNOYATE

$$S_n = \frac{n(n+1)}{4} [2n+1-1]$$
$$S_n = \frac{n(n+1)2n}{4}$$
$$S_n = \frac{n^2(n+1)}{2}$$
Answer : ()

80. The sum of **n** terms of the series 4 + 14 + 30 + 52 + 80 +is

(b) $n(n-1)^2$ (c) $n(n^2-1)$ (a) $n(n + 1)^2$ (d) None Sol. 4 + 14 + 30 + 52 + 80 + $S_n = 4 + 14 + 30 + 52 + 80 + ... + a_n ----(1)$ $S_n = 4 + 14 + 30 + 52 + 80 + ... + a_{n-1} + a_n ---(2)$ (1) - (2)⇒ 0 = 4 +10 + 16 +22+28+ ... -a_n a_n = 4 + (10+16+22+28+...n-1) 10+16+22+28+...n-1 It is A.P. a = 10 and d = 6 $a_n = 4 + \frac{n-1}{2}(6n+8)$ $a_n = 4 + (n-1)(3n+4)$ $a_n = 4 + 3n^2 + n - 4$ $a_n = 3n^2 + n$ $S_n = \sum a_n = \sum (3n^2 + n)$ $S_n = \frac{3n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$ $=\frac{n(n+1)}{2}(2n+1+1)$ $=\frac{n(n+1)2(n+1)}{2}$ $=n(n+1)^2$ Answer: (a)

(a)

81.

Sol.

EDNOYATE The sum of **n** terms of the series 3 + 6 + 11 + 20 + 37 +is (b) $2^{n+1} + (n/2)(n+1)-1$ $2^{n+1} + (n/2)(n + 1) - 2$ (c) $2^{n+1} + (n/2)(n-1)-2$ (d) None 3 + 6 + 11 + 20 + 37 + =(2+1)+(4+2)+(8+3)+(16+4)+....

$$=(2+4+8+16+...)+(1+2+3+4...)$$

$$2+4+8+16+... \text{ is G.P a=2 and } r = 2>1$$

$$S_{n} = \frac{a(r^{n}-1)}{r-1} = \frac{2(2^{n}-1)}{1}$$

$$S_{n} = 2^{n+1} - 2$$

$$1+2+3+... \text{ is AP a=1 and } d = 1$$

$$S_{n} = \frac{n}{2}[2+(n-1)1]$$

$$S_{n} = \frac{n}{2}[2+n-1]$$

$$S_{n} = \frac{n}{2}[n(n+1)]$$

$$S_{n} = 2^{n+1} - 2 + \frac{n}{2}(n+1)$$
$$S_{n} = 2^{n+1} + \frac{n}{2}(n+1) - 2$$
Answer : (a)

82. The nth terms of the series is $1/(4.7) + 1/(7.10) + 1/(10.13) + \dots$ is

- (a) $(1/3)[(3n + 1)^{-1}-(3n+4)^{-1}]$ (b) $(1/3)[(3n-1)^{-1}-(3n+4)^{-1}]$
- (c) $(1/3) [(3n+1)^{-1} (3n-4)^{-1}]$ (d) None

Sol.

1st number of denominator = 4, 7, 10, a = 4 and d = 3 $a_i = a + (i-1)d = 4 + (i-1)3 = 3i+1$ Second number of denominator = 7, 10, 13 It is AP a=7 and d= 3 $a_i = a + (i-1)d = 7 + (i-1)3 = 3i+4$ ith term of series

$$a_{i} = \frac{1}{(3i+1)(3i+4)}$$

$$a_{i} = \frac{1}{3} \left[\frac{(3i+4) - (3i+1)}{(3i+1)(3i+4)} \right]$$

$$= \frac{1}{3} \left[\frac{1}{3i+1} - \frac{1}{3i+4} \right]$$

$$= \frac{1}{3} \left[(3i+1)^{-1} - (3i+4)^{-1} \right]$$
Answer: (a)

83. In question No.(82) the sum of the series upto n is
(a) (n/4)(3n+4)⁻¹
(b) (n/4)(3n-4)⁻¹
(c) (n/2)(3n+4)⁻¹
(d) None
Sol.

$$\frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \frac{1}{10 \cdot 13} + \dots$$

$$1^{\text{St}} \text{ number of denominator } = 4, 7, 10, \dots$$

$$a = 4 \text{ and } d = 3$$

$$a_i = a + (i-1)d = 4 + (i-1)3 = 3i+1$$
Second number of denominator = 7, 10, 13 \dots 13 \dots 14
It is AP a=7 and d= 3
$$a_i = a + (i-1)d = 7 + (i-1)3 = 3i+4$$

$$i^{\text{th}} \text{ term of series}$$

$$\alpha_i = \frac{1}{(3i+1)(3i+4)}$$

$$S_n = \sum \alpha_i$$

$$S_n = \sum \frac{\alpha_i}{(3i+1)(3i+4)}$$

$$S_n = \frac{1}{3} \sum \frac{(3i+4) - (3i+1)}{(3i+1)(3i+4)}$$

$$= \frac{1}{3} \left[\sum_{i=1}^n \frac{1}{3i+1} - \sum_{i=1}^n \frac{1}{3i+4} \right]$$

1

$$\begin{vmatrix} \frac{1}{3} \left[\left(\frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n+1} \right) - \left(\frac{1}{7} + \frac{1}{10} + \dots + \frac{1}{3n+4} \right) \right] \\ = \frac{1}{3} \left[\frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n+1} - \frac{1}{7} + \frac{1}{10} + \dots + \frac{1}{3n+4} \right] \\ = \frac{1}{3} \left[\frac{1}{4} - \frac{1}{3n+4} \right] \\ = \frac{1}{3} \left[\frac{3n+4-4}{4(3n+4)} \right] \\ = \frac{n}{4(3n+4)} \\ \text{Answer : (a)} \end{aligned}$$

84. The sum of n terms of the series 1²/1+(1² +2²)/(1+2)+(1² +2² +3²)/(1+2+3)+is (a) (n/3)(n + 2) (b) (n/3)(n + 1) (c) (n/3)(n + 3) (d) None
Sol.

$$\frac{1^{2}}{1} + \frac{1^{2} + 2^{2}}{1 + 2} + \frac{1^{2} + 2^{2} + 3^{2}}{1 + 2 + 3} + \dots + i^{2}$$

$$a_{i} = \frac{1^{2} + 2^{2} + 3^{2} + \dots + i^{2}}{1 + 2 + 3 + \dots + i}$$

$$a_{i} = \frac{\sum i^{2}}{\sum i}$$

$$a_{i} = \frac{\frac{\sum i^{2}}{n(n+1)(2n+1)}}{\frac{6}{2}}$$

$$a_{i} = \frac{1}{3}(2n+1)$$

$$a_{i} = \frac{2}{3}i + \frac{1}{3}$$

$$S_{n} = \sum a_{i}$$

EDNOVATE

$$S_n = \sum \left(\frac{2}{3}i + \frac{1}{3}\right)$$

$$S_n = \sum a_i$$

$$S_n = \sum \left(\frac{2}{3}i + \frac{1}{3}\right)$$

$$S_n = \frac{2}{3}\sum i + \frac{1}{3}\sum 1$$

$$S_n = \frac{2}{3} \cdot \frac{n(n+1)}{2} + \frac{1}{3}n$$

$$S_n = \frac{n}{3}(n+1+1)$$

$$S_n = \frac{n}{3}(n+2)$$
Answer : (a)

85. The sum of n terms of the series $1^3/1+(1^3+2^3)/2+(1^3+2^3+3^3)/3+...$ is

- (a) (n/48)(n + 1)(n + 2)(3n+5)
- (c) (n/48)(n + 1)(n + 2)(5n + 3)
- Sol.

$$\begin{aligned} \frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{2} + \frac{1^{3} + 2^{3} + 3^{3}}{3} + \dots \\ a_{i} &= \frac{1^{3} + 2^{3} + 3^{3} + \dots i^{3}}{i} \\ a_{i} &= \frac{\sum i^{3}}{i} = \frac{i^{2} (i+1)^{2}}{4 \cdot i} \\ a_{i} &= \frac{1}{4} i \left(i^{2} + 2i + 1 \right) \\ a_{i} &= \frac{1}{4} i^{3} + \frac{2}{4} i^{2} + \frac{1}{4} i \\ S_{n} &= \sum a_{i} \\ S_{n} &= \sum \left(\frac{1}{4} i^{3} + \frac{2}{4} i^{2} + \frac{1}{4} i \right) \\ S_{n} &= \frac{1}{4} \sum i^{3} + \frac{2}{4} \sum i^{2} + \frac{1}{4} \sum i^{2} + \frac{1}{4} i \end{aligned}$$

(b)
$$(n/24)(n + 1)(n + 2)(3n+5)$$

EDNOVATE

$=\frac{n^{2}(n+1)^{2}}{4}+\frac{2}{4}\frac{n(n+1)(2n+1)}{6}+\frac{1}{4}\frac{n(n+1)}{2}$ $=\frac{n(n+1)}{48}[3n(n+1)+4(2n+1)+6]$ $S_n = \sum a_i$ $S_{n} = \sum \left(\frac{1}{4}i^{3} + \frac{2}{4}i^{2} + \frac{1}{4}i \right)$ $S_n = \frac{1}{4} \sum i^3 + \frac{2}{4} \sum i^2 + \frac{1}{4} \sum i$ $=\frac{n^{2}(n+1)^{2}}{\frac{4}{4}}+\frac{2}{4}\frac{n(n+1)(2n+1)}{6}+\frac{1}{4}\frac{n(n+1)}{2}$ $=\frac{n(n+1)}{42}[3n(n+1)+4(2n+1)+6]$ $=\frac{n(n+1)}{4^{\circ}}[3n^{2}+3n+8n+4+6]$ $=\frac{n(n+1)}{42}[3n^2+11n+10]$ $=\frac{n(n+1)}{42}[3n^2+6n+5n+10]$ $=\frac{n(n+1)}{48}[3n(n+2)+5(n+2)]$ $=\frac{n(n+1)}{48}(n+2)(3n+5)$ Answer: (a)

86. The value of $n^2 + 2n[1+2+3+ + (n - 1)]$ is (a) n^3 (b) n^2 (c) n

(d) None

EDNOVATE

Sol.

 $n^{2} + 2n[1+2+3+....+(n-1)]$ For 1+2+3+....+(n-1) use formula for summation

$$S_n = \frac{n(n+1)}{2}$$

Thus total summation

$$S_{n-1} = n^{2} + 2n \left[\frac{(n-1)n}{2} \right]$$
$$S_{n-1} = n^{2} + n(n-1)(n)$$
$$S_{n-1} = n^{2} + n^{3} - n^{2}$$

EDNOVATE

 $S_{n-1} = n^3$ Answer: (a) 87. 2^{4n} - 1 is divisible by (a) 15 (b) 4 (c) 6 (d) 64 Sol. $n^{2} + 2n[1+2+3+....+(n-1)]$ For 1+2+3++(n-1) use formula for summation $S_n = \frac{n(n+1)}{2}$ Thus total summation $S_{n-1} = n^2 + 2n \left[\frac{(n-1)n}{2} \right]$ $S_{n-1} = n^2 + n(n-1)(n)$ $S_{n-1} = n^2 + n^3 - n^2$ $S_{n-1} = n^3$ Answer: (a) 88. 3^n - 2n - 1 is divisible by (a) 15 (b) 4 (c) 6 (d) 64 Sol. 3ⁿ - 2n - 1 $3^{n} = (1+2)^{n}$ $=^{n}C_{0} + {}^{n}C_{1}(2) + {}^{n}C_{2}(2)^{2} + \dots + {}^{n}C_{n}2^{n}$ $=1+n(2)+{}^{n}C_{2}(2)^{2}+...+{}^{n}C_{n}2^{n}$ $3^{n} - 2n - 1 = 2^{2} [{}^{n}C_{2} + {}^{n}C_{3}(2) + {}^{n}C_{4}(2)^{2} + ... + {}^{n}C_{n}(2)^{n-2}]$ $3^{n} - 2n - 1 = 4 [{}^{n}C_{2} + {}^{n}C_{3}(2) + {}^{n}C_{4}(2)^{2} + ... + {}^{n}C_{n}(2)^{n-2}]$ ∴ Divisible by 4 Answer: (b) 89. n(n-1) (2n-1) is divisible by (a) 15 (b) (c) 6 4 (d) 64

EDNOYATE **CA** Foundation Sol. n(n-1)(2n-1) n = 1, n(n-1)(n-2) = 0n = 2, n(n-1)(n-2) = 6n = 3, n(n-1)(n-2) = 6It is divisible by 6 Answer: (c) 90. 7²ⁿ+16n-1 is divisible by (a) 15 (b) 4 (c) 6 (d) 64 Sol. 7²ⁿ + 16n -1 $n = 1 \Rightarrow 49+16-1 = 64$ $n = 2 \Rightarrow 2401 + 32 - 1 = 2432 = 38 \times 64$ ∴ It is divisble by 64 Answer: (d) 91. The sum of n terms of the series whose n^{th} term $3n^2 + 2n$ is is given by (a) (n/2)(n + 1)(2n + 3)(b) (n/2)(n + 1)(3n + 2)(c) (n/2)(n + 1)(3n - 2)(d) (n/2)(n + 1)(2n - 3)Sol. $a_n = 3n^2 + 2n$ S_n = ∑a_n $S_{n} = \sum (3n^{2} + 2n)$ $S_n = 3\sum n^2 + 2\sum n$ $S_n = 3\frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2}$ $S_n = \frac{n(n+1)}{2} \left[2n+1+2 \right]$ $S_n = \frac{n(n+1)(2n+3)}{2}$ Answer: (a)

92. The sum of n terms of the series whose nth term n.2ⁿ is is given by

(a) $(n - 1)2^{n+1}+2$ (b) $(n + 1)2^{n+1}+2$ (c) $(n - 1)2^{n}+2$ (d) None **Sol.** Answer (a)

EDNOVATE

- 93. The sum of **n** terms of the series whose n^{th} term $5 \cdot 3^{n+1} + 2n$ is is given by(a) $(5/2) (3^{n+2} 9) + n(n+1)$ (b) $(2/5) (3^{n+2} 9) + n(n+1)$ (c) $(5/2) (3^{n+2} + 9) + n(n+1)$ (d) None
- Sol.

$$5.3^{n+1}+2n$$

$$S_{n} = \sum a_{n}$$

$$S_{n} = \sum (5.3^{n+1}+2n)$$

$$S_{n} = 5\sum 3^{n+1}+2\sum n$$

$$S_{n} = 5[3^{2}+3^{3}+...,3^{n+1}]+2[n(n+1)/2]$$

$$S_{n} = 5[3^{2}+3^{3}+...,3^{n+1}]+n(n+1)$$

$$3^{2}+3^{3}+...,3^{n+1} \text{ is G.P. with}$$

$$a = 9, r = 3 > 1$$

$$3^{2}+3^{3}+...,3^{n+1} = \frac{9(3^{n}-1)}{3-1}$$

$$3^{2}+3^{3}+...,3^{n+1} = \frac{9(3^{n}-1)}{2}$$

$$S_{n} = 5\left[\frac{9}{2}(3^{n}-1)\right]+n(n+1)$$

$$S_{n} = \frac{5}{2}\left[3^{2}(3^{n}-1)\right]+n(n+1)$$

$$S_{n} = \frac{5}{2}(3^{n+2}-9)+n(n+1)$$
Answer : (a)

- 94. If the third term of a G.P. is the square of the first and the fifth term is 64 the series would be _____.
 - (a) 4 + 8 + 16 + 32 +

- (b) 4 8 + 16 32 +
- (d) None

Sol.

Let "a" be the 1st term and ratio be "r"

$$a_3 = a_1^2$$

 $a_5 = 64$
∴ $ar^2 = (a)^2$
 $r^2 = a$
 $a_5 = 64$
 $ar^4 = 64$

(c) both

EDNOVATE

 $r^6 = 3^6$ \Rightarrow r = 2 G.P 4+8+16+32+ Answer: (a) 95. Three numbers whose sum is 15 are in A.P. but if they are added by 1, 4, 19 respectively they are in G.P. The numbers are _____ (a) 2, 5, 8 26, 5, -16 (d) None (b) (c) Both Sol. Let terms be a-d, a, a+d a-d+a+a+d = 153a = 15 a = 5 When 1, 4, 19 is added from G.P. So, numbers will be a-d+1, a+4, a+d+19 will be in G.P. \therefore (a+4)² = (a-d+1) (a+d+19) Replace a = 5 $(5+4)^2 = (5-d+1)(5+d+19)$ 81 = (6-d)(24+d) $81 = 144 + 6d - 24d - d^2$ d^2 + 18d - 63 = 0 (d-21)(d+3) = 0d = 21 or d = -3If d= 21, numbers are -16, 5, 26 If d = -3, then numbers are 8, 5, 2 BOTH Answer : (c) If a, b, c are the pth, qth and rth terms of a G.P. respectively the value of a^{q-r}.b^{r-p}.c^{p-q} is 96.

(a) 0 (b) 1 (c) -1 (d) None

EDNOYATE

Sol.

 $a_p = a$, $a_q = b$, $a_r = c$ Let 1st term be A and rate be 'R' $AR^{p-1} = a, AR^{q-1} = b, AR^{r-1} = c$ Now a^{q-r} b^{r-p} c^{p-q} $= (AR^{p-1})^{q-r} (AR^{q-1})^{r-p} (AR^{r-1})^{p-q}$ $= A^{q-r} (R^{(p-1)(q-r)} A^{r-p} R^{(q-1)(r-p)} A^{p-q} R^{(r-1)(p-q)}$ $= A^{q-r+r-p+p-q} R^{pq-pr-q+r+pr-pq-r+p+pr-qr-p+q}$ $= A^0 R^0$ =1 Answer : (b) If a, b, c are in A.P. and x, y, z in G.P. then the value of x^{b-c}.y^{c-a}.z^{a-b} is 97. 1 (c) (a) 0 (b) -1 (d) None Sol. a, b, c are in A.P. ∴ a+c = 2b x, y, z in G.P. $v^2 = xz$ \Rightarrow y =(xz)^{1/2} $= x^{b-c} y^{c-a} z^{a-b}$ $= x^{b-c} (x)^{(c-a)/2} z^{(c-a)/2} z^{a-b}$ $= x^{b-c+\frac{c-a}{2}} \cdot z^{\frac{c-a}{2}+a-b}$ $= x^{\frac{2\delta - 2c + c - a}{2}} \cdot z^{\frac{c - a + 2a - 2\delta}{2}}$ $= x^{\frac{2\delta - c - a}{2}} \cdot z^{\frac{c + a - 2\delta}{2}}$ $= x^{0}z^{0}$ = 1Answer: (b) 98. If a, b, c are in A.P. and x, y, z in G.P. then the value of (x^b.y^c.z^a)÷(x^c.y^a.z^b) is

(a) 0 (b) 1 (c) -1 (d) None

Sol. a, b, c are in A.P. ∴ a+c = 2b x, y, z in G.P. $y^2 = xz$ \Rightarrow y =(xz)^{1/2} (x^b. y^c . z^a) ÷ x^c y^a z^b = x^{b-c} y^{c-a} z^{a-b} x^{b-c} (xz)^{(c-a)/2} z^{a-b} $= x^{b-c} (x)^{(c-a)/2} z^{(c-a)/2} z^{a-b}$ $= x^{\delta - c + \frac{c-a}{2}} \cdot z^{\frac{c-a}{2} + a - \delta}$ $= x^{\frac{2\delta - 2c + c - a}{2}} \cdot z^{\frac{c - a + 2a - 2\delta}{2}}$ $= x^{\frac{2\delta-c-a}{2}} \cdot z^{\frac{c+a-2\delta}{2}}$ $= x^{0}z^{0}$ = 1. Answer : (b) The sum of **n** terms of the series $7 + 77 + 777 + \dots$ is 99. (a) (7/9) [(1/9) (10ⁿ⁺¹-10)-n]

- (b) (9/10) [(1/9) (10ⁿ⁺¹-10)-n]
- (c) $(10/9) [(1/9) (10^{n+1}-10)-n]$
- (d) None

Sol.

$$7 + 77 + 777 + \dots$$

=7(1+11+111+...)
= $\frac{7}{9}(9+99+999+\dots)$
= $\frac{7}{9}[(10-1)+(100-1)+(1000-1)+\dots]$
= $\frac{7}{9}[(10+10^2+10^3+\dots n term)-(1+1+1+\dots n term)]$
= $\frac{7}{9}\left[\frac{10(10^n-1)}{10-1}-n\right]$
= $\frac{7}{9}\left[\frac{10(10^n-1)}{10-1}-n\right]$

Answer : (a)

100. The least value of n for which the sum of n terms of the series $1 + 3 + 3^2 + \dots$ is greater than 7000 is _____. (a) 9 (b) 10 (c) 8 (d) 7

 $\frac{(3^{n}-1)}{2} > 7000$ $3^{n} - 1 > 14000$ $3^{n} > 14001$ $3^{9} > 14000$ $n \ge 9$

Least value is n = 9 \therefore Answer : (a)

101. If 'S' be the sum, 'P' the product and 'R' the sum of the reciprocals of n terms in a G.P. then 'P' is the _____ of Sⁿ and R⁻ⁿ.

- (a) Arithmetic Mean
- (c) Harmonic Mean

(b) Geometric Mean

EDNOYATE

(d) None

Sol.

Let series is G.P. with 1st term a and ration r S is sum of n terms $S = \frac{a(r^{n} - 1)}{r - 1}$ P is product ar.ar².ar³arⁿ⁻¹ =a^{1+1+...n times} r^{1+2+3+...n-1}

$$=a^{n}$$
. $r^{(n-1)n/2}$

$$R = sum of reciprocals$$

$$R = \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \dots + \frac{1}{ar^{n-1}}$$
$$R = \frac{r^{n-1} + r^{n-2} + \dots + r + 1}{ar^{n-1}}$$

$$R = \frac{1+r+r^{2}+...+r^{n-1}}{ar^{n-1}}$$

$$R = \frac{(r^{n}-1)}{r-1} \times \frac{1}{ar^{n-1}}$$

$$R = \frac{(r^{n}-1)}{r-1} \left[\frac{r^{n}-1}{r-1} \right]^{n}$$
Now Sⁿ. Rⁿ

$$= \left[\frac{a(r^{n}-1)}{r-1} \right]^{n} \left[\frac{r^{n}-1}{(r-1)ar^{n-1}} \right]^{n}$$

$$= \frac{a^{n}(r^{n}-1)^{n}}{(r-1)^{n}} \cdot \frac{(r^{n}-1)^{-n}}{(r-1)^{-n}a^{-n}r^{-n(n-1)}}$$

$$= a^{2n} \cdot r^{n(n-1)}$$

$$= \left[a^{n} \cdot r^{-2} \right]^{2}$$

$$= I^{2^{2}}$$

$$\therefore P \text{ ia G.M. of S^{n} R^{-n}}$$
Answer: (b)
102. Sum upto ∞ of the series $8 + 4\sqrt{2} + 4 + \dots$...is
(a) $8(2+\sqrt{2})$ (b) $8(2-\sqrt{2})$ (c) $4(2+\sqrt{2})$ (d) $4(2-\sqrt{2})$
Sol.
 $8 + 4\sqrt{2} + 4 + \dots$...
 $a = 8, r = (4\sqrt{2})/8 = 1/\sqrt{2}$
 $S_{\infty} = \frac{a}{1-r}$
 $S_{\infty} = \frac{8}{1-\frac{1}{\sqrt{2}}}$
 $S_{\infty} = \frac{8\sqrt{2}}{\sqrt{2}-1}$

 $S_{\infty} = \frac{8\sqrt{2}(\sqrt{2}+1)}{2-1}$ S_{\infty} = 8\sqrt{2}(\sqrt{2}+1) S_{\infty} = 8(2+\sqrt{2}) Answer : (a)

103. Sum upto ∞ of the series $1/2+1/3^2+1/2^3+1/3^4+1/2^5+1/3^6 + \dots$ (a) 19/24(b) 24/19(c) 5/24(d) None

EDNOVATE

$$\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{2^5} + \frac{1}{3^6} + \dots$$

$$= \left(\frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots\right) + \left(\frac{1}{3^2} + \frac{1}{3^4} + \dots\right)$$

$$\frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots$$

$$a_1 = \frac{1}{2}, r_1 = \frac{\frac{1}{2^3}}{\frac{1}{2}} = \frac{1}{4}$$

$$\frac{1}{3^2} + \frac{1}{3^4} + \dots$$

$$a_2 = \frac{1}{9}, r_2 = \frac{\frac{1}{81}}{\frac{1}{9}} = \frac{1}{9}$$

$$S_{\infty} = \frac{a_1}{1 - r_1} + \frac{a_2}{1 - r_2}$$

$$= \frac{\frac{1}{2}}{1 - \frac{1}{4}} + \frac{\frac{1}{9}}{1 - \frac{1}{9}}$$

$$= \frac{1}{2} \times \frac{4}{3} + \frac{1}{9} \times \frac{9}{8}$$

$$= \frac{2}{3} + \frac{1}{8}$$

$$= \frac{19}{24}$$
Answer : (a)

```
EDNOVATE
```

104. If $1+a+a^2 + = x$ and $1+b+b^2 + = y$ then $1 + ab + a^2b^2 + = x$ is given by (a) (xy)/(x+y-1) (b) (xy)/(x-y-1) (c) (xy)/(x+y+1) (d) None Sol. 1+a+a² +.....∞ $x = \frac{1}{1 - a}$ x - ax = 1x-1 = ax $a = \frac{x-1}{2}$ 1+b+b² +.....∞ a=1 and r = b $y = \frac{1}{1-b}$ y - by = 1y-1=by $b = \frac{y-1}{y}$ $1 + ab + a^2b^2 + \dots$ a = 1 and r=ab $S_{\omega} = \frac{1}{1 - ab}$ $S_{\infty} = \frac{1}{1 - \left(\frac{x-1}{x}\right)\left(\frac{y-1}{x}\right)}$ $S_{\infty} = \frac{xy}{xy - (xy - x - y + 1)}$ $S_{\infty} = \frac{xy}{xy - xy + x + y - 1}$ $S_{\infty} = \frac{xy}{x+y-1}$ Answer : (a)

EDNOVATE

	20, 10, 5	(b)	5, 10, 20	(c)	both	(d)	None
	numbers in C , a, ar	G.P. be					
	+ a + ar = 3						
	d a/r×a×ar = a ³ or a ³ = 1						
\Rightarrow	a = 10						
Nc							
	-a + ar = 35						
r							
10	+10+10r = 33	5					
r	110 1107 = 0.						
10	+10 <i>r</i> - 25 =	n					
r	1107 257	× i					
10r	² - 20r - 5r +10	0 = 0					
10	r(r-2) -5(r-2)	= 0					
	2,and 10r-5=						
	2 and $r = 1/2$	2					
	r = 2, a = 0						
	= 10/2 = 5						
	= 10(2) = 20						
	=1/2, a = 10						
a/r	- = 20						
a=	=10, ar =5						
	So number		10 and 20 /	Answer			
is	both a and b	C					
. A	nswer : (c)						
6. If th	e sum of thre	e numb	ers in G.P. i	s 21 an	d the sum	of their so	quares is 189 th

105. If the sum of three numbers in G.P. is 35 and their product is 1000 the numbers are

(a) 3, 6, 12 (b) 12, 6, 3 (c) both (d) None

Sol.

Let number be a, ar and ar² $a + ar + ar^2 = 21$ $\therefore a(1+r+r^2) = 21$ Squaring $a^{2}[1+r+r^{2}]^{2} = (21)^{2}$ $a^{2}(1+r+r^{4}+2r+2r^{3}+2r^{2}) = 441$ $a^{2}(1+r^{2}+r^{4}) + 2a^{2}r(1+r^{2}+r) = 441 - ...(1)$ Now given sum of their squares is 189 $a^2 + ar^2 + a^2r^4 = 189$ $a^{2}(1+r^{2}+r^{4}=189)$ ----(2) Substituting (2) in (1) $189 + 2a^2r(1+r^2+r) = 441$ $2ar[a(1+r+r^2) = 441-189$ 2ar(21) = 252 $ar = \frac{252}{2 \times 21}$ ar = 6 $a = -\frac{6}{2}$ $a+6+ar^2 = 21$ $a + ar^2 = 15$ $\frac{6}{-}+\frac{6}{-}r^2=15$ $6+6r^2=15r$ 6r²-15r+6=0 $2r^2-5r+2=0$ $2r^2 - 4r - r + 2 = 0$ 2r(r-2) - (r-2) = 0r = 2 and r = 1/2If r =2 and a = 3Number are 3, 6, 12

EDNOVATE

If r = 1/2, a = 6a/r = 12.6. 3 .. ∴ 12, 6, 3 Anser is both a and b Answer: (c) 107. If a, b, c are in G.P. then the value of $a(b^2 + c^2)-c(a^2+b^2)$ is _____ (d) (a) 0 (b) 1 (c) -1 None Sol. a, b and c are in G.P. $b^2 = ac$ $a(b^2 + c^2) - c(a^2 + b^2)$ $=a(ac+c^2) - c(a^2+ac)$ =ac(a+c) - ac(a+c)=0 Answer: (a) 108. If a, b, c, d are in G.P. then the value of $b(ab-cd)-(c+a)(b^2-c^2)$ is _ (b) (c) -1 (d) (a) 0 1 None Sol. a, b, c and d are G.P. b = ar, c = ar², d = ar³ LHS= $b(ab - cd) - (c+a)(b^2 - c^2)$ $= ar(ar^2 - a^2r^5) - (ar^2 + a)(a^2r^2 - a^2r^4)$ $= a^{2}r^{3} - a^{3}r^{6} - a^{3}r^{4} + a^{3}r^{6} - a^{3}r^{2} - a^{3}r^{2} + a^{3}r^{4}$ = 0 Answer: (a) 109. If a, b, c, d are in G.P. then the value of $(ab+bc+cd)^2 - (a^2 + b^2 + c^2) (b^2 + c^2 + d^2)$ is (b) 1 (c) -1 (a) 0 (d) None Sol. a, b, c and d are G.P. $a = a. b = ar and c = ar^2. d = ar^3$ LHS $= (ab+bc+cd)^2 - (a^2+b^2+c^2)(b^2+c^2+d^2)$ $= [a^{2}r + a^{2}r^{3} + a^{2}r^{5})^{2} - (a^{2} + a^{2}r^{2} + a^{2}r^{4})$ $(a^{2}r^{2} + a^{2}r^{4} + c^{2}r^{6})$

 $= [a^{2}r(1+r^{2}+r^{4})]^{2} - a^{2}(1+r^{2}+r^{4})a^{2}r^{2}(1+r^{2}+r^{4})$ $= a^4 r^2 (1 + r^2 + r^4)^2 - a^4 r^2 (1 + r^2 + r^4)^2$ = 0 Answer: (a) 110. If a, b, c, d are in G.P. then a+b, b+c, c+d are in (a) A.P. (b) G.P. (c) H.P. (d) None Sol. a, b, c and d are in G.P. a. b = ar . c = ar^2 $\frac{b+c}{a+b} = \frac{ar^2 + ar^3}{a+ar^2}$ $\frac{b+c}{a+b} = \frac{ar(1+r)}{a(1+r)} = r$ $\frac{c+d}{b+c} = \frac{ar^2 + ar^3}{ar + ar^2}$ $=\frac{ar^2\left(1+r\right)}{ar\left(1+r\right)}=r$ Ratio is ame so a+b, b+c, c+d are in GP . Answer : (b) 111. If **a**, b, **c** are in G.P. then a^2+b^2 , ab+bc, b^2+c^2 are in (c) H.P. (a) A.P. (b) G.P. (d) None Sol. a, b, c and d are in G.P. $\therefore b^2 = ac$ $(a^2 + b^2) (b^2 + c^2)$ $= (a^{2}+ac)(ac+c^{2}) = (a)(a+c)(c)(a+c)$ $=ac(a+c)^{2}$ $=b^{2}(a+c)^{2}$ $=[b(a+c)](a+c)^{2}$ $= (ab+bc)(a+c)^2$ \therefore (a² +b²) , (ab+bc), (b² +c²) are in G.P. Answer: (b)

EDNOVATE

EDNOYATE 112. If a, b, x, y, z are positive numbers such that a, x, b are in A.P. and a, y, b are in G.P. and z=(2ab)/(a+b) then (a) x, y, z are in G.P. (b) $x \ge y \ge z$ (c) both (d) None Sol. a, x, b are in A.P. \therefore a+b = 2x a, y, b are in G.P. and z = 2ab/(a+b) $v^2 = ab$ $z = \frac{2ab}{a+b}$ $z = \frac{2y^2}{2x}$ $\therefore y^2 = xz$ \therefore x, y, z are in G.P. Answer: (a) 113. If a, b, c are in G.P. then the value of $(a-b+c)(a+b+c)^2 - (a+b+c)(a^2+b^2+c^2)$ is given by (a) 0 (b) 1 (c) -1 (d) None Sol. a,b, and c are in G.P. ∴ b² = ac $(a-b+c)(a+b+c)^2 - (a+b+c)(a^2+b^2+c^2)$ $= (a+b+c) [(a-b+c)(a+b+c) - (a^2+b^2+c^2)]$ = $(a+b+c)[(a+c)^2 - (b)^2 - ^2 - B^2 - C^2]$ as $ac = b^2$ $::=(a+b+c)(2b^2 - 2b^2)$ =(a+b+c)(0) = 0Answer: (a) 114. If a, b, c are in G.P. then the value of a $(b^2 + c^2)-c(a^2 + b^2)$ is given by (a) 0 (b) 1 (c) -1 (d) None Sol. a. b. c are G.P. \Rightarrow b² = ac $a(b^2 + c^2) - c(a^2 + b^2)$ $=a(ac+c^{2}) - c(a^{2} + ac)$ =ac(a+c) - ac(a+c) = 0 Answer: (a)

115. If a, b	o, c are in	G.P. then the	he value	of a ² b ² c ² (a ⁻³ +b ⁻³ +c ⁻³)-(a	³ +b ³ +c ³) is given by
(a)	0	(b)	1	(c) -1	(d) None

EDNOVATE

Sol.

a, b, and c are in G.P.

$$\therefore b^{2} = ac$$

$$a^{2}b^{2}c^{2}(a^{-3} + b^{-3} + c^{-3}) - (a^{3} + b^{3} + c^{3})$$

$$= a^{2}b^{2}c^{2}\left(\frac{1}{a^{3}} + \frac{1}{b^{3}} + \frac{1}{c^{3}}\right) - a^{3} - b^{3} - c^{3}$$

$$= \frac{b^{2}c^{2}}{a} + \frac{a^{2}c^{2}}{b} + \frac{a^{2}b^{2}}{c} - a^{3} - b^{3} - c^{3}$$

$$= c^{3} + b^{3} + a^{3} - a^{3} - b^{3} - c^{3}$$

$$= 0$$
Answer : (a)
116. If a, b, c, d are in G.P. then (a-b)², (b-c)², (c-d)² are in
(a) A.P. (b) G.P. (c) H.P. (d) None
Sol.
a, b, c, and d are in G.P.

$$\therefore a = a, b = ar, c = ar^{2}, d = ar^{3}$$

$$(a-b)^{2} (c-d)^{2} = [a-ar]^{2} [ar^{2} - ar^{3}]^{2}$$

$$= [a(1-r)]^{2} [ar^{2}(1-r)]^{2}$$

$$= a^{4}r^{4} (1-r)^{4}$$

$$(b-c)^{2} = [a-ar^{2}]^{2}$$

$$= [ar(1-r)]^{2} = a^{2}r^{2}(1-r)^{2}$$

$$\therefore [(b-c)^{2}]^{2} = [a^{2}r^{2}(1-r)^{2}]^{2}$$

$$= a^{4}r^{4} (1-r)^{4}$$

$$= (a-b)^{2}(c-d)^{2}$$

$$\therefore (a-b)^{2}, (b-c)^{2}, (c-d)^{2} are in G.P.$$
Answer: (b)

117. If a, b, c, d are in G.P. then the value of $(b-c)^2 + (c-a)^2 + (d-b)^2 - (a-d)^2$ is given by (b) 1 (c) -1 (d) None (a) 0 Sol. a, b, c, d are in G.P. \Rightarrow a =a , b = ar, c=ar² and d= ar³ $(b-c)^{2} + (c-a)^{2} + (d-b)^{2} - (a-d)^{2}$ $= (ar-ar^2)^2 + (ar^2 - a)^2 + (ar^3 - ar)^2 - (a-ar^3)^2$ $= [ar(1-r)]^2 + [a(r^2-1)]^2 + [ar(r^2-1)]^2 - [a(1-r^3)]^2$ $=a^{2}r^{2}(1-r^{2}) + a^{2}(r-1)^{2}(r+1)^{2} + a^{2}r^{2}(r-1)^{2}(r+1)^{2} - a^{2}(1-r^{3})^{2}$ $= a^{2}(1-r^{2}) [r^{2} + (r+1)^{2}] + a^{2}[(r-1)^{2}(r+1)^{2}r^{2} - (1-r)^{2}(1+r+r^{2})^{2}]$ $=a^{2}(1-r)^{2}[r^{2}+r^{2}+2r+1] + a^{2}(1-r)^{2}[r^{2}(r^{2}+2r+1) - (1+r+r^{2})^{2}]$ $=a^{2}(1-r)^{2}(2a^{2}+2r+1)+a^{2}(1-r)^{2}[r^{4}+2r^{3}+r^{2}-1-r^{2}-r^{4}-2r-2r^{3}-2r^{2}]$ $= a^{2} (1-r)^{2} [2r^{2}+2r+1-2r^{2}-2r-1]$ $=a^{2}(1-r^{2})(0)$ = 0 Answer: (a) 118. If (a-b), (b-c), (c-a) are in G.P. then the value of $(a+b+c)^2-3(ab+bc+ca)$ is given by (a) 0 (b) 1 (c) -1 (d) None Sol. (a-b), (b-c), (c-a) are in G.P. $(b-c)^2 = (a-b)(c-a)$ \rightarrow b² - 2bc +c² = ac - a² - bc +ab $\Rightarrow a^2 + b^2 + c^2$ -ab -bc -ca = 0 $(a+b+c)^2 - 3(ab+bc+ca)$ $= a^{2}+b^{2}+c^{2}+2ab+2bc+2ca-3ab-3bc-3ca$ $=a^{2}+b^{2}+c^{2}-ab-bc-ca$ =0Answer: (a) 119. If $a^{1/x}=b^{1/y}=c^{1/z}$ and a, b, c are in G.P. then x, y, z are in (a) A.P. (b) G.P. (c) H.P. (d) None

EDNOVATE

Sol.

 $a^{1/x} = b^{1/y} = c^{1/z} = k$ ∴ a = k^x, b = k^y, c = k^z a, b, c are in G.P. ∴ b² = ac (k^y)² = k^x k^z k^{2y} = k^{x+z} ⇒ 2y = x+z ∴ x, y, z are A.P. Answer : (a)

120. If $x = a + a/r + a/r^2 + \infty$, $y = b - b/r + b/r^2 - \infty$, and $z = c + c/r^2 + c/r^4 + \infty$, then the value of $\frac{xy}{z} - \frac{ab}{c}$ is (a) 0 (b) 1 (c) -1 (d) None

Sol.

$$x = a + \frac{a}{r} + \frac{a}{r^2} + \dots \infty$$

$$a = a, r = \frac{1}{r}$$

$$x = S_{\infty} = \frac{a}{1-r} = \frac{a}{1-\frac{1}{r}}$$

$$x = \frac{ar}{r-1}$$

$$y = b + \frac{b}{r} + \frac{b}{r^2} + \dots \infty$$

$$a = b, r = -\frac{1}{r}$$

$$y = S_{\infty} = \frac{a}{1-r}$$

$$y = \frac{b}{1+\frac{1}{r}} = \frac{br}{r+1}$$

$$z = c + \frac{c}{r^2} + \frac{c}{r^4} + \dots \infty$$
It is G.P.

$$a = c, r = \frac{1}{r^2}$$

$$z = S_{\infty} = \frac{a}{1-r} = \frac{c}{1-\frac{1}{r^2}}$$

$$z = \frac{cr^2}{r^2-1}$$

$$\frac{xy}{z} - \frac{ab}{c}$$

$$= \frac{\left(\frac{ar}{r-1}\right)\left(\frac{br}{r+1}\right)}{\frac{cr^2}{r^2-1}} - \frac{ab}{c}$$

$$= \frac{abr^2}{(r-1)(r+1)} \times \frac{(r-1)(r+1)}{cr^2} - \frac{ab}{c}$$

$$= \frac{ab}{c} - \frac{ab}{c}$$

$$= 0$$
Answer : (a)

121. If a, b, c are in A.P. a, x, b are in G.P. and b, y, c are in G.P then x², b², y² are in (a) A.P. (b) G.P. (c) H.P. (d) None
Sol.

a, b and c are in A.P.
∴ a+c = 2b

a, x, b in G.P.

 $\therefore x^2 = ab$ b, y, and c is G.P. $v^2 = bc$

$$x^{2} + y^{2} = ab + bc$$

= b(a+c)

=b(2b) = 2b²

 x^2 , b^2 , y^2 are in A.P.

Answer: (a)

EDNOVATE

 $n^{2}/2$

122. If a, b-a, c-a are in G.P. and a=b/3=c/5 then a, b, c are in (a) A.P. (b) G.P. (c) H.P. (d) None Sol. a, b-a, c-a are in G.P. $\therefore (b-a)^2 = a(c-a)$ a = b/3 = c/5 = k (say) a=k, b = 3k, c= 5k a+c = k+5k = 6ka+c = 2(3k) = 2b⇒ a+c = 2b a, b, c are in AP Answer: (a) 123. If a, b, (c+1) are in G.P. and $a = (b-c)^2$ then a, b, c are in (a) A.P. G.P. (c) H.P. (b) (d) None Sol. a, b, (c+1) are in G.P. and a = (b-c)² : $b^2 = a(c+1)$ $b^2 = (b-c)^2 (c+1)$ $b^2 = (b^2 - 2bc + c^2)(c+1)$ $b^2 = b^2c + b^2 - 2bc^2 - 2bc + c^3 + c^2$ $2bc^2 - b^2c + 2bc = c^3 + c^2$ $bc(2c - b + 2) = c^{2}(c+1)$ b(2c - b + 2) = c(c+1) $2bc - b^2 + 2b = c^2 + c$ $2b - c = c^2 + b^2 - 2bc$ $2b-c = (b-c)^2$ 2b - c = a 2b = a+c ∴ a, b, and c are in A.P. Answer: (a) 124. If S₁, S₂, S₃, S_n are the sums of infinite G.P.s whose first terms are 1, 2, 3n and whose common ratios are 1/2, 1/3,,1/(n+1) then the value of $S_1 + S_2 + S_3 + S$S_n is

(a) (n/2)(n+3) (b) (n/2)(n+2) (c) (n/2)(n+1) (d)

EDNOVATE

Sol.

S₁ = sum of infinite terms of G.P. with a = 1 and r = 1/2 S₁ = $\frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$ S₂ = sum of infinite terms of G.P. a = 2, r = 1/3 S₂ = $\frac{a}{1-r} = \frac{2}{1-\frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$ S₃ = $\frac{a}{1-r} = \frac{3}{1-\frac{1}{4}} = 4$ S_n = $\frac{a}{1-r} = \frac{n}{1-\frac{1}{n+1}} = n+1$ S₁ + S₂ + S₃ +S_n = 2 + 3 + 4 + ... (n+1) = [1 + 2 + 3 + (n+1)] - 1 = $\frac{(n+1)(n+2)}{2} - 1$ = $\frac{n^2 + 3n + 2 - 2}{2}$ Answer : (a)

125. The G.P. whose 3rd and 6th terms are 1, -1/8 respectively is

(a) 4, -2, 1 (b) 4, 2, 1 (c) 4, -1, 1/4 (d) None Sol. $a_3 = 1, a_6 = -1/8, \text{ It is G.P.}$ $\therefore ar^2 = 1 ---(1)$ $a_6 = -1/8$ $ar^5 = -1/8 ---(2)$ (2) \div (1) \Rightarrow $\frac{ar^5}{ar^2} = \frac{-1}{8}$ $r^3 = -\frac{1}{8}$ $r = -\frac{1}{2}$ $ar^2 = 1$ $a(-1/2)^2 = 1$

EDNOYATE

 $a/4 = 1 \Rightarrow a = 4$ G.P. is 4, -2, 1, -1/2 Answer: (a) 126. In a G.P. if the (p+ q)th term is m and the (p - q)th term is n then the pth term is (a) (mn)^{1/2} (b) mn (c) (m+n) (d) (m-n) Sol. It is G.P. $a_{p+q} = m, a_{p-q} = n$ $ar^{p+q-1} = m ---(1)$ a_{p-q} = n $ar^{p-q-1} = n ---(2)$ (2) ÷ (1) ⇒ $\frac{ar^{p-q-1}}{ar^{p+q-1}} = \frac{n}{m}$ $r^{-2q} = \frac{n}{-1}$ m $\frac{1}{r^{2q}} = \frac{n}{m}$ $r = \left(\frac{m}{n}\right)^{\frac{1}{2q}}$ $ar^{p+q-1} = m$ $a\left[\left(\frac{m}{n}\right)^{\frac{1}{2q}}\right]^{p+q-1}=m$ $a = \frac{m \times n^{\frac{p+q-1}{2q}}}{m^{\frac{p+q-1}{2q}}} = m^{\frac{q-p+1}{2q}} \cdot n^{\frac{p+q-1}{2q}}$ $a_p = ar^{p-1}$ $= m^{\frac{q-p+1}{2q}} \cdot n^{\frac{p+q-1}{2q}} \left[\left(\frac{m}{n} \right)^{\frac{1}{2q}} \right]^{p-1}$

$$= m^{\frac{q-p+1}{2q}} \cdot n^{\frac{p+q-1}{2q}} \cdot \frac{m^{\frac{p-1}{2q}}}{n^{\frac{p-1}{2q}}}$$
$$= m^{\frac{q-p+1+p-1}{2q}} \cdot n^{\frac{p+q-1}{2q}-\frac{p-1}{2q}}$$
$$= m^{\frac{q}{2q}} \cdot n^{\frac{q}{2q}}$$
$$= (mn)^{\frac{1}{2}}$$
Answer : (a)

127. The sum of **n** terms of the series is $1/\sqrt{3}+1+3/\sqrt{3}+\dots$

- (a) $(1/6) (3+\sqrt{3}) (3^{n/2}-1)$ (b) $(1/6) (\sqrt{3}+1) (3^{n/2}-1)$ (c) $(1/6) (3+\sqrt{3}) (3^{n/2}+1)$ (d) None

Sol.

$$\frac{\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}} + \dots}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \dots}$$

It is G.P. $a = \frac{1}{\sqrt{3}}, r = \sqrt{3} > 1$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$= \frac{1}{\sqrt{2}} \left[\frac{(\sqrt{3})^n - 1}{\sqrt{3} - 1} \right]$$

$$= \frac{\left(\sqrt{3}\right)^n - 1}{3 - \sqrt{3}}$$

$$= \frac{\left[(\sqrt{3})^n - 1 \right]}{9 - 3}$$

$$= \frac{1}{6} (3 + \sqrt{3}) \left(3^{\frac{n}{2}} - 1 \right)$$

Answer : (a)

128. The sum of **n** terms of the series $5/2-1 + 2/5 - \dots$ is

- (a) $(1/14) (5^{n} + 2^{n})/5^{n-2}$
- (b) $(1/14) (5^n 2^n)/5^{n-2}$

(c) both

(d) None

Sol.

$$\frac{5}{2}, -1, +\frac{5}{2}, \dots is \ G.P$$

$$a = \frac{5}{2}, r = \frac{-2}{5} < 1$$

$$S_n = \frac{a\left(1-r^n\right)}{1-r}$$

$$= \frac{5}{2} \left[1 - \left(\frac{-2}{5}\right)^n\right]$$

$$= \frac{5}{2} \left[1 - \left(\frac{-2}{5}\right)^n\right] \times \frac{1}{\frac{7}{5}}$$

$$= \frac{25}{14} \left[1 - \left(\frac{-2}{5}\right)^n\right]$$

$$= \frac{5^2}{14} \left[1 - \left(\frac{-2}{5}\right)^n\right]$$

$$= \frac{5^2}{14} \left[5^n - (-2)^n\right]$$

$$= \frac{1}{14} \times \frac{1}{5^{n-2}} \left[5^n - (-2)^n\right]$$

Answer : (c)

129. The sum of n terms of the series 0.3 + 0.03 + 0.003 +is (a) (1/3)(1-1/10ⁿ) (b) (1/3)(1+1/10ⁿ) (c) both (d) None

Sol.

 $0.3 + 0.03 + 0.003 \dots$ It is G.P. and a r = 0.03/0.3 = 0.1 < 1 $\alpha (1 - r^{n})$

$$S_{n} = \frac{\sqrt{1-r}}{1-r}$$
$$= \frac{0.3 \left[1 - (0.1)^{n}\right]}{1 - 0.1}$$
$$= \frac{0.3}{0.9} \left[1 - (0.1)^{n}\right]$$
$$= \frac{1}{3} \left(1 - \frac{1}{10^{n}}\right)$$

Answer : (a)

130. The sum of first eight terms of G.P. is five times the sum of the first four terms. The common ratio is _____.

(a)
$$\sqrt{2}$$
 (b) $-\sqrt{2}$ (c) both

(d) None

EDNOVATE

Sol.

It is G.P

$$S_8 = 5 S_4$$

$$S_n = \frac{a(r^8 - 1)}{r - 1} = 5 \frac{a(r^4 - 1)}{r - 1}$$

$$r^8 - 1 = 5(r^4 - 1)$$

$$(r^4 - 1)(r^4 + 1) = 5(r^4 - 1)$$

$$r^4 + 1 = 5$$

$$r^4 = 4$$

$$r = \pm \sqrt{2}$$
Answer : (c)

131. If the sum of n terms of a G.P. with first term 1 and common ratio 1/2 is 1+127/128, the value of n is _____.

(a) 8 (b) 5 (c) 3 (d) None **Sol.**

a = 1 and r = 1/2<1

$$S_n = 1 + \frac{127}{128}$$

 $S_n = \frac{a(1-r^n)}{1-r}$
 $1 + \frac{127}{128} = \frac{1\left[1 - \left(\frac{1}{2}\right)^n\right]}{1 - \frac{1}{2}}$
 $\left(\frac{128 + 127}{128}\right)\frac{1}{2} = 1 - \left(\frac{1}{2}\right)^n$
 $\frac{255}{256} = 1 - \left(\frac{1}{2}\right)^n$

$$\left(\frac{1}{2}\right)^{n} = 1 - \frac{255}{256}$$
$$\left(\frac{1}{2}\right)^{n} = \frac{1}{256}$$
$$\left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n}$$
$$\Rightarrow n = 8$$
Answer : (a)

132. If the sum of n terms of a G.P. with last term 128 and common ratio 2 is 255, the value of n is ______.

(b) 5 (c) 3 (a) 8 (d) None Sol. a_n = 128, r = 2 and S_n = 255 arⁿ⁻¹ = 128 $a(2)^{n-1} = 128$ $a = 128 / (2^{n-1})$ S_n = 255 $\frac{a\left(r^n-1\right)}{r-1} = 255$ $\frac{a(2^n-1)}{2-1} = 255$ $\frac{128}{2^{n-1}} (2^n - 1) = 255$ $\frac{2^7}{2^n} (2^n - 1) 2 = 255$ $\frac{\frac{2^8 2^{\varkappa}}{2^{\varkappa}} - \frac{2^8}{2^{\varkappa}}}{2^{\varkappa}} = 255$ $2^8 - 255 = \frac{2^8}{2^8}$ 256 - 255 = 2^{8-x} $1 = 2^{8-n}$ $2^0 = 2^{8-n}$ 0 = 8 - n

EDNOYATE

n = 8Answer: (a) 133. How many terms of the G.P. 1, 4, 16 are to be taken to have their sum 341? (b) 5 (c) 3 (d) None (a) 8 Sol. 1, 4, 16, are in G.P. a = 1 and r = 4 > 1, $S_n = 341$ $\frac{a\left(r^n-1\right)}{n-1} = 341$ $\frac{1(4^n-1)}{4-1} = 341$ $4^{n} - 1 = 1023$ $(2^2)^n = 1023 + 1 = 1024$ $(2)^{2n} = 2^{10}$ 2n = 10n = 5Answer: (b) 134. The sum of **n** terms of the series 5 + 55 + 555 +is (a) (50/81) (10ⁿ - 1)-(5/9)n (b) $(50/81)(10^{n} + 1) - (5/9)n$ (c) $(50/81)(10^{n} + 1) + (5/9)n$ (d) None Sol. 5 + 55 + 555 + 5[1+11+111+...] $=\frac{5}{6}[9+99+999+....]$ $=\frac{5}{9}\left[\left(10-1\right)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+...\right]$ $=\frac{5}{9}\left[\left(10+10^{2}+10^{3}+....\right)-\left(1+1+1+...n\ times\right)\right]$ $=\frac{5}{9}\left[\frac{10(10^{n}-1)}{10-1}-n\right]$ $=\frac{50}{81}(10^n-1)-\frac{5n}{9}$ Answer: (a)

EDNOVATE

135. The sum of **n** terms of the series 0.5 + 0.55 + 0.555 +is (b) $(5/9)n+(5/81)(1-10^{-n})$ (a) $(5/9)n-(5/81)(1-10^{-n})$ (c) $(5/9)n+(5/81)(1+10^{-n})(d)$ None Sol. 0.5 + 0.55 + 0.555 + 0.5 + 0.55 + 0.555 + $=\frac{5}{6}(0.9+0.99+0.999+....)$ $=\frac{5}{9}\left[\left(1-0.1\right)+\left(1-0.01\right)+\left(1-0.001\right)+...\right]$ $=\frac{5}{9}\left[\left(1+1+...\right)-\left(0.1+0.01+0.001+...\right)\right]$ $=\frac{5}{9}\left[\left(1+1+...\right)-\left(0.1+0.1^{2}+0.1^{3}+...\right)\right]$ $0.1 + 0.1^2 + 0.1^3 + \dots$ a = 0.1, r = 0.1 < 1 $S_{n} = \frac{a(1-r^{n})}{1-r^{n}} = \frac{0.1}{0.9} \left[1-(0.1)^{n}\right]$ $S_n = \frac{5}{9} \left[n - \frac{1}{9} \left[1 - (0, 1)^n \right] \right]$ $S_n = \frac{5n}{9} - \frac{5}{81} \left(1 - 10^{-n} \right)$ Answer: (a) 136. The sum of **n** terms of the series $1.03+1.03^2+1.03^3 + \dots$ is (a) $(103/3)(1.03^{n} - 1)$ (b) $(103/3)(1.03^{n}+1)$ (c) $(103/3)(1.03^{n+1}-1)$ (d) None Sol. $1.03+1.03^2+1.03^3+\ldots$ It is G.P. a = 1.03, r = 1.03>1 $S_n = \frac{a\left(r^n - 1\right)}{n - 1}$ $=\frac{1.03\left[\left(1.03\right)^{*}-1\right]}{1.03-1}$ $=\frac{103}{2}\left[(1.03)^n-1\right]$ Answer: (a)

EDNOVATE

137. The sum upto infinity of the series $1/2 + 1/6 + 1/18 + \dots$ is (a) 3/4 (b) 1/4 (c) 1/2 (d) None Sol. 1/2 + 1/6 + 1/18 + is G.P. with a=1/2, r = 1/3 < 1 $S_{\omega} = \frac{a}{1-r}$ $=\frac{\frac{1}{2}}{1-\frac{1}{3}}=\frac{\frac{1}{2}}{\frac{2}{3}}$ $=\frac{1}{2}\cdot\frac{3}{2}=\frac{3}{4}$ Answer: (a) 138. The sum upto infinity of the series $4 + 0.8 + 0.16 + \dots$ is (a) 5 (b) 10 (c) (d) 8 None Sol. 4 + 0.8 + 0.16 + is G.P. a = 4 and r = 0.2 < 1 $S_{\omega} = \frac{a}{1-r}$ $=\frac{4}{1-0.2}$ $=\frac{4}{0.8}=5$ Answer: (a) 139. The sum upto infinity of the series $\sqrt{2}+1/\sqrt{2}+1/(2\sqrt{2})+\ldots$ is (a) $2\sqrt{2}$ (b) 2 (c) 4 (d) None Sol. $\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + \dots is$ G.P., a= $\sqrt{2}$ and r = 1/2 < 1 $S_{\omega} = \frac{a}{1-r}$ $S_{\omega} = \frac{\sqrt{2}}{1 - \frac{1}{2}}$

EDNOVATE

 $S_{\omega}=2\sqrt{2}$

Answer : (a)

140. The sum upto infinity of the series 2/3 + 5/9 + 2/27 + 5/81 +is

(a)	11/8	(b)	8/11	(c)	3/11	(d)	None
Sol.							

$\frac{2}{3} + \frac{5}{9} + \frac{2}{27} + \frac{5}{81} + \dots$ $= \left(\frac{2}{3} + \frac{2}{27} + \dots\right) + \left(\frac{5}{9} + \frac{5}{81} + \dots\right)$ $= \left(\frac{2}{3} + \frac{2}{27} + \dots\right)$
$a_1 = \frac{2}{3}, r_1 = \frac{1}{9}$
$=\left(\frac{5}{9}+\frac{5}{81}+\right)$
$a_2 = \frac{5}{9}, r_2 = \frac{1}{9}$
$S_{\rm w} = \frac{a_1}{1-r_1} + \frac{a_2}{1-r_2}$
$S_{\infty} = \frac{\frac{2}{3}}{1 - \frac{1}{9}} + \frac{\frac{5}{9}}{1 - \frac{1}{9}}$
$\mathcal{S}_{\infty} = \frac{2}{3} \times \frac{9}{8} + \frac{5}{9} \times \frac{9}{8}$
$S_{\omega} = \frac{6}{8} + \frac{5}{8} = \frac{11}{8}$ Answer : (a)

141. The sum upto infinity of the series $(\sqrt{2}+1)+1+(\sqrt{2}-1)+\dots$ is (a) $(1/2)(4+3\sqrt{2})$ (b) $(1/2)(4-3\sqrt{2})$ (c) $4+3\sqrt{2}$ (d) None

Sol.

$$(\sqrt{2}+1)+1+(\sqrt{2}-1)+....$$

It is G.P. with
 $a = \sqrt{2}+1, r = \sqrt{2}-1$
 $S_{w} = \frac{a}{1-r}$
 $S_{w} = \frac{\sqrt{2}+1}{1-(\sqrt{2}-1)}$
 $S_{w} = \frac{\sqrt{2}+1}{2-\sqrt{2}}$
 $S_{w} = \frac{(\sqrt{2}+1)(2+\sqrt{2})}{4-2}$
 $S_{w} = \frac{1}{2}(2\sqrt{2}+2+2+\sqrt{2})$
 $S_{w} = \frac{4+3\sqrt{2}}{2}$
Answer : (a)

142. The sum upto infinity of the series (1+2⁻²)+(2⁻¹+2⁻⁴)+(2⁻²+2⁻⁶)+is (a) 7/3 (b) 3/7 (c) 4/7 (d) None

Sol.

$$(1+2^{-2})+(2^{-1}+2^{-4})+(2^{-2}+2^{-6})+\dots$$

= $(1+2^{-1}+2^{-2}+\dots^{\infty})+(2^{-2}+2^{-4}+2^{-6}+\dots)$
a₁ = 1, r₁ = 1/2; a₂ = 1/4, r₂ = 1/4
 $S_{\infty} = \frac{a_1}{1-r_1} + \frac{a_2}{1-r_2}$
 $S_{\infty} = \frac{1}{1-\frac{1}{2}} + \frac{\frac{1}{4}}{1-\frac{1}{4}}$
 $S_{\infty} = 2 + \frac{1}{3} = \frac{7}{3}$
Answer : (a)

143. The sum upto infinity of the series 4/7-5/7²+4/7³-5/7⁴+is (a) 23/48 (b) 25/48 (c) 1/2 (d) None

Sol.

A

$$\frac{4}{7} - \frac{5}{7^2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots \infty$$

$$\left(\frac{4}{7} + \frac{4}{7^3} + \frac{4}{7^5} + \dots\right) - \left(\frac{5}{7^2} + \frac{5}{7^4} + \dots\right)$$

$$a_1 = \frac{4}{7}, r_1 = \frac{1}{7^2}; a_2 = \frac{5}{49}, r_2 = \frac{1}{7^2}$$

$$S_{\infty} = \frac{a_1}{1 - r_1} - \frac{a_2}{1 - r_2}$$

$$S_{\infty} = \frac{\frac{4}{7}}{1 - \frac{1}{49}} - \frac{\frac{5}{49}}{1 - \frac{1}{49}}$$

$$S_{\infty} = \frac{4}{7} \times \frac{49}{48} - \frac{5}{49} \times \frac{49}{49}$$

$$= \frac{49}{48 \times 7} \left[4 - \frac{5}{7} \right]$$

$$= \frac{7}{48} \left(\frac{28 - 5}{7} \right)$$

$$= \frac{23}{48}$$
Answer : (a)

144. If the sum of infinite terms in a G.P. is 2 and the sum of their squares is 4/3 the series is

(a) 1, 1/2, 1/4
(b) (c) -1, -1/2, -1/4 (d) Non
Sol.
Let terms be a, ar, ar², ...

$$S_{\infty} = 2$$

 $a/(1-r) = 2$
 $a = 2(1-r)$
Square of terms of G.P.
 a^2 , a^2r^2 , a^4r^4 It is G.P. with $a_1 = a^2$ and $r_1 = r^2$
 $S_{\infty} = \frac{a_1}{1-r_1}$

1, -1/2, 1/4 ne

$$\frac{4}{3} = \frac{a^2}{1-r^2}$$

$$\frac{4}{3} = \frac{\left[2(1-r)\right]^2}{1-r^2}$$

$$\frac{4}{3} = \frac{4(1-r)^2}{(1-r)(1+r)}$$

$$1+r = 3(1-r)$$

$$1+r = 3 - 2r$$

$$4r = 2$$

$$r = 1/2$$
Replace r = 1/2
a = 2(1 - 1/2) = 1
So G.P. is 1, 1/2, 1/4,
Answer : (a)

145. The infinite G.P. with first term 1/4 and sum 1/3 is

= 1/3

- (a) 1/4, 1/16, 1/64 ...
- (c) 1/4, 1/8, 1/16
- (b) 1/4, -1/16, 1/64 ...
- (d) None

Sol.

a = 1/4 and S_∞

$$S_{\infty} = \frac{a}{1-r}$$

 $\frac{1}{3} = \frac{4}{1-r}$
 $1-r = \frac{3}{4}$
 $r = 1/4$
So G.P. is
 $\frac{1}{4}, \frac{1}{16}, \frac{1}{64}$
Answer : (a)

146. If the first term of a G.P. exceeds the second term by 2 and the sum to infinity is 50 the series is _____.
(a) 10, 8, 32/5 ... (b) 10, 8, 5/2 ... (c) 10, 10/3, 10/9 (d) None

Sol.

Let G.P. be a, ar, ar², $a_1 > a_2$ by 2, $S_{\infty} = 50$ a > ar by 2 \therefore a = ar + 2 a-ar = 2 a(1-r) = 2 $a = \frac{2}{1-r}$ $S_{\omega} = \frac{a}{1-r}$ $S_{\infty} = \frac{\frac{2}{1-r}}{1-r}$ $50 = \frac{2}{(1-r)^2}$ $(1-r)^2 = \frac{2}{50} = \frac{1}{25}$ $1 - r = \pm \frac{1}{5}$ $r = 1 \pm \frac{1}{5}$ or $r = 1 + \frac{1}{5} = \frac{6}{5}$ $r = 1 - \frac{1}{5} = \frac{4}{5}$ $a = \frac{2}{1-r} = \frac{2}{1-\frac{4}{5}} = 10$ Sp G.P. is 10, 8, 32/5,, Answer: (a)

Sol. Let terms ofg G.P. be a/r, a, ar $\frac{a}{r} + a + ar = 130$ and $\frac{a}{r} \times a \times ar = 27,000$ $a^3 = 27000$ a = 30Now $\frac{30}{r} + 30 + 30r = 130$ $\frac{30}{r} + 30r = 100$ and ar = 30(3) = 90 So numbers are 90, 30, 10 or 10, 30, 90 Answer : (c)

148. Three numbers in G.P. with their sum 13/3 and sum of their squares 91/9 are .

(a) 1/3, 1, 3 (b) 3, 1, 1/3 (c) both (d) None **Sol.**

Let three terms be a, ar, ar²

$$a + ar + ar^{2} = \frac{13}{3}$$

$$a(1+r+r^{2}) = \frac{13}{3} - --(1)$$
Sum of squares $= \frac{91}{9}$

$$a^{2} + a^{2}r^{2} + a^{2}r^{4} = \frac{91}{9}$$

$$a^{2}(1+r^{2}+r^{4}) = \frac{91}{9} - --(2)$$
Square
$$a^{2}(1+r+r^{2})^{2} = \frac{169}{9}$$

$$a^{2}(1+r^{2}+r^{4}+2r+2r^{3}+2r^{2}) = a^{2}(1+r^{2}+r^{4}) + 2a^{2}r(1+r^{2}+r)$$

$$\frac{91}{9} + 2ar[a(1+r^{2}+r)] = \frac{169}{9}$$

$$2ar(\frac{13}{3}) = \frac{169}{9} - \frac{91}{9}$$

 $2ar\left(\frac{13}{3}\right) = \frac{78}{9}$ $ar = \frac{78}{9} \times \frac{3}{2 \times 13}$ $ar = 1 \Longrightarrow a = \frac{1}{r}$ Now $\frac{1}{r} + 1 + \frac{1}{r} \cdot r^2 = \frac{13}{3}$ $\frac{1}{r} + r = \frac{13}{3} - 1$ $\frac{1+r^2}{r} = \frac{10}{3}$ $3r^2 + 3 = 10r$ $3r^2 - 10r + 3 = 0$ (3r - 1)(r - 3) = 0r = 1/3 or r = 3lfr = 1/3, a = 3 $ar^2 = 1/3$ Number are 3, 1, 1/3 If r = 3, then a = 1/3Number will be 1/3, 1, 3 Answer: (c)

149. Find five numbers in G.P. such that their product is 32 and the product of the last two is 108.

- (a) 2/9, 2/3, 2, 6, 18
- (c) both

- (b) 18, 6, 2, 2/3, 2/9
- (d) None

Sol.

Let the terms of G.P. be $\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$ | product of 3 = 27 $\frac{a}{r^2} \times \frac{a}{r} \times a \times ar \times ar^2 = 32$ $a^5 = 32$ a = 2Product of last two terms = 108 $a^2 r^3 = 108$ $a^2 r^3 = 108$ $r^3 = 27$ r = 3 $\frac{a}{r^2} = \frac{2}{9}, \frac{a}{r} = \frac{2}{3}$ so number are $\frac{2}{9}, \frac{2}{3}, 2, 6, 18$ Answer : (a)

150. If the continued product of three numbers in G.P. is 27 and the sum of their products in pairs is 39 the numbers are _____.

(a) 1, 3, 9 (b) 9, 3, 1 (c) both (d) None **Sol.**

Let the three terms G.P. be a/r, a, ar Product of three term = 27 (a/r) × a × ar = 27 $a^3 = 27$ $\Rightarrow a = 3$ Sum of product of pairs = 39 $\frac{a}{r} × a + a × ar + \frac{a}{r} × ar = 39$ $\frac{a^2}{r} + a^2r + a^2 = 39$ $\frac{9}{r} + 9r + 9 = 39$


```
\frac{9}{-}+9r=30
      9r^2 - 30r + 9 = 0
     3r^2 - 10r + 3 = 0
     (3r - 1)(r - 3) = 0
     r = 1/3 \text{ or } r = 3
     If r=1/3, a=3
     a/r = 2/(1/3) = 9, ar = 1
      So numbers are 9, 3, 1
     If r=3 and a=3 then a/r = 3/3 = 1, ar =9
      So number are 1, 3, 9
     Answer: (c)
151. The numbers x, 8, y are in G.P. and the numbers x, y, -8 are in A.P. The values of x, y
     are _
          16, 4
                          (b) 4, 16
                                                (c) both
                                                                      (d) None
     (a)
Sol.
     x, 7 and y are in G.P.
     \therefore xv = 8^2
      xy = 64
     x, y and -8 are in A.P.
     x + (-8) = 2y
     x - 8 = 24
     x = 2y + 8
     as xy = 64
     (2y+8)y = 64
     2y^2 + 4y - 32 = 0
     (y+8)(y-4) = 0
      y = -8 \text{ or } y = 4
      If y = -8,
      x = 2y + 8
      x = -16 +8 = -8
     If y = 4 then x + 2y + 8
     x = 8 + 8 = 16
     x = 16 anad y = 4
     or x = -8 and v = -8
     Answer : (a)
```