RATIO

Meaning of Ratio	Division of two quantities a and b of same units. Denoted by a:b		
Inverse Ratio	b:a is inverse ratio of a:b		
Compound Ratio	Compound ratio of a:b and c:d is ac:bd		
Duplicate Ratio	Duplicate ratio of a:b is a ² :b ²		
Sub-duplicate Ratio	Duplicate ratio of a:b is $\sqrt[2]{a}$: $\sqrt[2]{b}$		
Triplicate Ratio	Triplicate ratio of a:b is a ³ :b ³		
Sub-triplicate Ratio	Triplicate ratio of a:b is $\sqrt[3]{a}$: $\sqrt[3]{b}$		
Commensurate	If ratio can be expressed in the form of integers		
Incommensurate	If ratio cannot be expressed in the form of integers		
Continued Ratio	Ratio of three or more quantities e.g. a:b:c		

PROPORTION

Proportion	a,b,c,d are in proportion if a:b = c:d [it is an equality of two ratios]		
Term/ Proportional	first = a, second = b, third =c, fourth = d		
Mean Proportional	In a continued proportion a:b=b:c, b ² =ac, b is called mean proportional		
Cross Product Rule	If a:b=c:d, then ad = bc		
Invertendo	If a:b=c:d, then b:a = d:c		
Alternendo	If a:b=c:d, then a:c = b:d		
Componendo	If a:b=c:d, then (a+b):b = (c+d):d		
Dividendo	If a:b=c:d, then $(a-b)$:b = $(c-d)$:d		
Componendo and	If a:b=c:d, then $(a+b):(a-b) = (c+d):(c-d)$ or $(a-b):(a+b) = (c-d):(c+d)$		
Dividendo	cforming a ctu donate to Disofaccionale		
Addendo	If a:b = c:d = e:f = = k, then also (a+c+e+):(b+d+f+) = k		

INDICES

Index / Indices	Here in 4 ² , 4 is base and 2 is power or index. Plural of index is indices		
Basic 1	a^0 = 1, any number raised to power zero equals to 1		
Basic 2	$\sqrt{a} = a^{1/2}, \sqrt[3]{a} = a^{1/3}$		
Law 1	$a^m \times a^n = a^{(m+n)}$		
Law 2	$a^m / a^n = a^{(m-n)}$		
Law 3	$a^{(m)^n} = a^{m \times n} = (a^m)^n$		
Law 4	$(ab)^n = a^n b^n$		

LOG

Basic	If 2^4 =16 [2 is base, 4 is power], then $\log_2 16 = 4$ (i.e log of 16 base 2)			
How to remember?	2 should be raised to what power so that it becomes 16			
	2 ka kitna power karne wo 16 ho jaye, ans is 4			
Standard Result	$\log_a a = 1, \log_a 1 = 0$			
Law 1	$\log_a(mn) = \log_a m + \log_a n$			
Law 2	$\log_a(\frac{m}{n}) = \log_a m - \log_a n$			
Law 3	$\log_a m^n = n \log_a m$			
Change of Base	$\log_b m = \frac{\log_a m}{\log_a b}$			

EQUATIONS - BASICS

Equation Means	mathematical statement of equality		
Identity Equation	If equality is true for all the values of variable, ex. $2x + 3 = x + x + 3$		
Conditional Equation	If the equality is true for certain value of the variable ex. $2x + 1 = 3$		
Solution or Root	It is the value of variable that satisfies the equation		
Degree	Highest power of variable in equation		

SIMPLE EQUATION

Туре	Linear equation with one unknown	Linear equation with two unknowns	Quadratic Equation	Cubic Equation
Form	ax + b = 0, where a and b are constants	ax + by + c = 0 a,b,c are constants	$ax^2 + bx + c = 0$ a,b,c are constants with $a \ne 0$	$ax^3 + bx^2 + cx + d = 0$
Degree	1 (One)	1	2	3
Roots	1 (One)	1 each for both	2 (α, β)	3
Remarks	NA	Need minimum two equations to get roots	Trial Error/ Formula based	Trial and Error
Methods for solution	NA	Elimination Cross Multiplication	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	NA
o=Learn with CA. Pranav				

LINEAR EQUATIONS WITH TWO UNKNOWNS

Elimination	Eliminate one variable by algebraic operations on given equations, and then calculate the value of variable that remains. Using this value, find out the value of other root.	
Cross Multiplication	$a_1x + b_1y + c_1 = 0, a_2x + b_2y + c_2 = 0$ Solution is given by: $\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$	

QUADRATIC EQUATION

Formula	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
Sum of Roots	$\alpha + \beta = -\frac{b}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^2}$			
Product of Roots	$\alpha \times \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$			
How to construct a quadratic equation	x^2 – (sum of roots: $\alpha + \beta$) x + Product of Roots: $\alpha \times \beta = 0$			
Nature of Roots	$\begin{array}{c c} \textbf{Condition} & \textbf{Nature of Roots} \\ b^2-ac=0 & \textbf{Real and Equal } (\alpha=\beta) \\ b^2-ac>0 & \textbf{Real and Unequal} \\ b^2-ac<0 & \textbf{Imaginary} \\ b^2-ac \text{ is a perfect square} & \textbf{Real, Unequal and Rational} \\ b^2-ac>0 \text{ but not perfect square} & \textbf{Real, Unequal and Irrational} \\ \end{array}$			
Irrational Roots	If one root is $(m+\sqrt{n})$, then other root will be $(m-\sqrt{n})$			

MATRICES

Matrix	A rectangular array of numbers (real/complex) with m rows and n columns			
Order of Matrix	Order is m × n where m= no. of rows and n = no. of columns			
Row Matrix	Matrix having only one row [1 4 2]			
Column Matrix	Matrix having only one column $\begin{bmatrix} 1\\4\\2 \end{bmatrix}$			
Zero/ Null Matrix	If all the elements of matrix (any order) are zero $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$			
Square Matrix	If in a matrix, no. of columns = no. of rows $\begin{bmatrix} 1 & 3 \\ 9 & 2 \end{bmatrix}$			
Rectangular Matrix	If in a matrix, no. of columns \neq no. of rows $\begin{bmatrix} 1 & 3 & 2 \\ 9 & 2 & 5 \end{bmatrix}$			
Leading Diagonal	Diagonal elements starting from top left to bottom right			
Diagonal Matrix	A square matrix where all the elements except leading diagonal elements are zero. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$			
Scalar Matrix	A diagonal square matrix where all the leading elements are equal $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$			
Unit Matrix	A scalar matrix whose leading diagonal elements are equal to $1\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$			
Upper Triangle Matrix	A matrix whose all the elements below the leading diagonal are zero $\begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 9 \\ 0 & 0 & 5 \end{bmatrix}$			
Lower Triangle Matrix	A matrix whose all the elements above the leading diagonal are zero $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ 2 & 8 & 5 \end{bmatrix}$			
Sub Matrix	The matrix obtained by deleting one or more rows or columns or both of a matrix is called its sub matrix.			
Equal Matrices	Two matrices are are equal matrices if order of both is same and corresponding elements are same			
Addition/ Subtraction	All the corresponding elements will be added/ subtracted to make a new matrix. (only possible when both matrix are of same order)			
Properties of Addition/ Subtraction	a . $A+B=B+A$ [Commutative], b . $(A+B)+C=A+(B+C)$ [Associative], c . $k(A+B)=kA+kB$, k is constant			
Multiplication	Multiplication of two matrices is possible only when no. of columns of first matrix = no. of rows of second matrix. [To understand how to do multiplication – refer page 2.40 Example 3]			
Properties of Multiplication	a. In general, $A \times B \neq B \times A$, b. $(A \times B) \times C = A \times (B \times C)$ if defined, c. $A(B+C) = AB + AC$ also, $(A+B)C = AC+BC$, d. if $AB = AC$ then $B \neq C$ in general, e. $A \times O = O$ [O means null matrix], f. $A \times I = IA = O$ [I means Unit Matrix],			

Transpose of a Matrix	A matrix obtained by changing rows and columns of a matrix $\bf A$ is called as Transpose Matrix of $\bf A$. It is denoted by - $\bf A^T$ or $\bf A'$				
Properties of Transpose	a. $A = (A')'$ b. $(A+B)' = A' + B'$ c. $(KA)' = K.A'$ d. $(AB)' = B' \times A'$				
Symmetric Matrix	If after transposing also there is no change in matrix. A'=A				
Skew Symmetric	If after transposing a matrix, it becomes its negative. A'=-A				

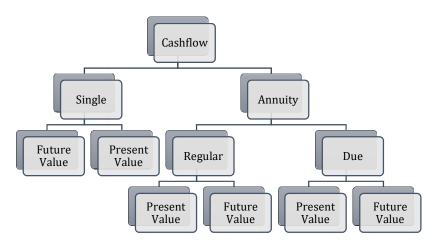
DETERMINANTS

Determinants	It is a valuation of a matrix using some rules. It only applies for square matrix				
Denote	It is denoted by det A or A or Δ				
2 × 2 Matrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} =$	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$			
3 × 3 Matrix	$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$ $M_{ij} = \text{Minor of the element located in } i^{\text{th}} \text{ row and } j^{\text{th}} \text{ column. It is equal to determinant of } j^{\text{th}} = j^{\text{th}} j^{\text{th}} + j^{\text{th}} j^{\text{th}} j^{\text{th}} j^{\text{th}} j^{\text{th}} + j^{\text{th}} j^{\text{th}} j^{\text{th}} j^{\text{th}} + j^{\text{th}} j^$				
Minor	sub matrix obtained after	er i th row and i th column			
Cofactor	insjorming stude cij = [-	1)i+iMij			
3 × 3 Formula using Cofactors	$a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$				
Properties	a. Δ remains unaltered if its rows or columns are interchanged. c. If any two rows or columns of a determinant are identical, then Δ =0 e. If some or all of the elements of a row or column of a determinant are expressed as sum, then Δ is expressed as sum of Δ s	columns interchanges d. If each element of matrix is multiplied by constant k, Δ will also get multiplied by k f. Δ will remain same if equi-multiple of any row or column is added to each			
Singular Matrix	if det A = 0, then singular matrix otherwise n	non-singular matrix			
Adjoint Matrix	Adjoint of A Matrix is the transpose of the Co	ofactor Matrix			
Inverse Matrix	If A is a square matrix, and det A \neq 0 (non-singular), then $A^{-1} = \frac{1}{ A } \times Adj$. A				
Cramer's rule to find solution of linear eq. in 3 variables	$x=rac{\Delta x}{\Delta}$, $y=rac{\Delta y}{\Delta}$, $z=rac{\Delta z}{\Delta}$, provided $\Delta \neq 0$ [Δx means determinant of matrix by replacing first column of matrix with RHS values of equations] See Example				
Properties of Cramer's	a. If $\Delta \neq 0$, the system has unique solution b. If $\Delta = 0$ and at least one of Δx , Δy , $\Delta z \neq 0$, then system has no solution and it is inconsistent c. If $\Delta = 0$ and all of Δx , Δy , $\Delta z \neq 0$, then system may or may not have solution,. If it has solution, equations are dependent and there will be infinite no. of solutions. If it doesn't have solution, equations are inconsistent.				

SEQUENCE AND SERIES

Sequence	An ordered collection of numbers arranged as per some definite rule or pattern. $a_1, a_2, a_3,, a_n$ is a sequence if you are able to identify pattern and there by the value of a_n (n th term)				
Examples of Sequence	Collection 1, 4, 9, 17, 18, 20, 17, 4, 3, 1, 1, 4, 7, 10, 13, 20, 10, 5, 5/2,	Ordered Yes Yes Yes Yes	Rule/ Pattern No No Yes +3 on each term Yes ÷2 on each term	Conclusion Not a sequence Not a sequence Yes Sequence Yes Sequence	
Terms	$a_1,a_2,a_3,,a_n$ are called as $1^{\rm st}$ Term, $2^{\rm nd}$ Term, $3^{\rm rd}$ Termnth term respectively				
General Term	a_n is called as the $n^{ ext{th}}$ t	erm of the s	sequence or General Term		
Types of sequence		Finite Sequence – sequence having finite elements $\{a_i\}_{i=1}^n$ Infinite Sequence – sequence having infinite elements $\{a_i\}_{i=1}^n$			
Series	Sum of the elements of the sequence is called as Series. $S_n = \sum_{i=1}^n a_i$ $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ $S_1 = a_1$, $S_2 = a_1 + a_2$, $S_3 = a_1 + a_2 + a_3$				
Arithmetic Progression (A.P.)	AP is a sequence in which each next term is obtained by adding a constant 'd' to the preceding term. This constant 'd' is called as common difference. Let say $a = $ first term and $d = $ common difference, then AP can be written as $-a$, $a+d$, $a+2d$, $a+3d$ $a+(n-1)d$				
Common Difference 'd'	d = any term – preceding term or $\{oldsymbol{t_n-t_{n-1}}\}$				
nth term of an AP	$t_n = a + (n-1)d$				
Insert AMs between two numbers	If there is a problem to find out AMs between two number, consider it as an AP with first number as first term of AP and other number as last term of AP. Number of AMs required = no. of terms between first term and last term Example: If 3 AMs between a and b is asked, form an AP as below: a,,, b				
Sum of first n terms of an AP	$S_n=rac{n(a+t_n)}{2}$ or $S_n=rac{n}{2}\left\{2a+(n-1)d ight\}$				
Other Useful Formulas					

	GP is a sequence of terms where each term is a constant multiple of preceding		
Geometric	term. This constant multiplier is called as common ratio.		
Progression (G.P.)	Let say $a = $ first term and $r = $ common ratio then GP can be written as		
	a , ar , ar^2 , ar^3 ,, ar^{n-1}		
nth term of a GP	$t_n = ar^{(n-1)}$		
Common Ratio 'r'	$r = \frac{\text{any term}}{\text{preceding term}} = \frac{t_n}{t_{n-1}}$		
Insert GMs between two numbers	If there is a problem to find out GMs between two number, consider it as a GP with first number as first term of GP and other number as last term of GP. Number of GMs required = no. of terms between first term and last term Example: If 3 GMs between a and b is asked, form an GP as below: a,,, b		
Sum of first n terms of a GP	$S_n = \frac{a(1-r^n)}{(1-r)}$ when r<1, $\frac{a(r^n-1)}{(r-1)}$ when r>1		
Sum of infinite GP	$S_{\infty} = \frac{a}{(1-r)}$ [only possible when r<1]		



M Transforming students to Professionals

TIME VALUE OF MONEY

		y received in future is less valuable than it is today en today is more valuable than Rs. 100 note given a year us reasons:			
	Risk Factor	Risk that payer will not give money			
D :	Liquidity	Cash given today will be immediately available for			
Basics	Preference	spending, hence more valuable			
	Inflation	In general, as the time goes on purchasing power of			
		the money gets reduced			
	Opportunity	Cash given today could be invested to a better			
	Cost	investment that could appreciate its value			
n 1	Name of Parties	Treatment of Interest			
Partied	Lender	Income			
involved in Financial	Borrower	Expense			
Transaction	Investor	Income			
Transaction	Investee	Expense			
	=H.earn	with CA. Pranav			
		P.r.t			
	Formula	$S.I. = \frac{2.1110}{100}$			
	<i>Panstormi</i>				
Simple		pal means amount of money invested or loan taken Rate of simple interest per annum			
Interest	r t	Time of loan / investment in years			
	Accumulated Amount under SI = Principal + Simple Interest				
	Amount under SI	(amount is also called as Balance)			
	Amount and is a factor of the				
	Simple Inter	rest Compound Interest			
	→ Interest earned i				
	every time it is e				
Compound	→ No re-investmen				
Interest vs. Simple	earned in earlier	periods earned will be done			
Interest	→ Amount includes				
inter est	Interest on that	•			
		interest on interest earned in			
		the earlier periods			
	Meaning	The rate of interest stated in question does not			
	Meaning	always mean that effectively interest charged/			
		received will be same % when compared at annual			
		level. Effectiveness depends on Compounding.			
Effective Rate	Higher the compounding	ησ			
of Interest	for a rate of interest	Higher the effective rate for the year			
	Formula	$E = [(1+i)^n - 1]$			
	n	here n means no. of periods in one years			
		considering the compounding			

	Compounding Frequency and Conversion Periods	It means no. of times interest is compounded in a year or no. of conversions in a year. Compounding means calculation of interest by bank. For e.g. Conversion Period Compounding Frequency			
	Formula for Accumulated Amount of CI	$A = P(1+i)^n$			
	A P	Accumulated amount as per CI Principal means amount of money invested or loan taken			
Compound Interest	Lear	Interest rate (adjusted as per compounding) e.g. If rate of interest given is $r=10\%$ and if compounding is half- yearly, $i=\frac{10\%}{2}=5\%=0.05$			
	Transformi	It means no. of periods (not necessarily no. of years). It depends on type of compounding. E.g. if compounding is quarterly and $t = 2$ years, it means we will have $2 \times 4 = 8$ no. of periods. $n=8$			
	Shortcut in calculator to calculate amount Direct Formula of Amount in Calculator How to calculate CI?	Example: $P=1000$, $i=10\%$, $n=3$ then Calculator Steps: Write P i.e 1000 then press $+10\%$ $+10\%$ $+10\%$ (three times because n=3)			
		Example: P=1000, $i = 10\% = 0.1$, n=3 then Calculator Steps: $\boxed{1+0.1} \times \boxed{\equiv} \boxed{\text{(first equal will be considered)}}$ as power 2, second as 3 and so on) \times 1000 (Principal)			
		$A = P + CI \Rightarrow CI = A - P$ $CI = P(1+i)^{n} - P$ $CI = P[(1+i)^{n} - 1]$			
Annuity	Definition Annuity Regula				
Future Value	Annuity Due Installment commencing from the beginning of the period Future value is the cash value of an investment at some time in the future. It is tomorrow's value of today's money compounded at the rate of interest.				
Present Value	Present value is today's value of tomorrow's money discounted at the interest rate.				

	Meaning	Payment / Receipt one time at the beginning. No other payment/ receipt till maturity
Single cash flow	Formula of Future Value Formula for Present Value	$FV = PV (1+i)^{n}$ $PV = \frac{FV}{(1+i)^{n}}$
	ransforkemarkg s	Both the above formulas are similar to formula of Amount of compound interest. Principal is taken as PV and Amount is taken FV
Future value of Annuity	Formula for FV of Annu	$FVA = A_I \times [FVAF(n, i)]$ $FVA = A_I \left[\frac{(1+i)^n - 1}{i} \right]$ $A_I = \text{amount of installment or Annuity}$
	Formula for FV of An	$FVA \ Due = FVA \times (1+i)$

		$PVA = A_I \times [PVAF(n, i)]$
		$PVA = A_I \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$
	Formula for PV of Annuity Regular Formula for PV of Annuity Due	or
Present Value		$PVA = \frac{A_I}{i} \left[1 - \frac{1}{(1+i)^n} \right]$
of Annuity		$A_{\rm I} =$ amount of installment or Annuity
		PVA Regular for one shorter period + Initial Cashflow
	Calculator Trick of PVAF (Present Value Annuity Factor)	$\boxed{1+i}$ \rightleftharpoons $\boxed{\equiv}$ n times $\boxed{\text{GT}}$

	Particulars	Particulars Application Future Value of		Remark		
	Sinking Fund Annuity is the amount which is required in future and annuity amounts are the regular savings		Sinking fund means a fund created for specific purpose where a big amount of money is required at any specific point in future. An annuity is set aside and invested so that it will mature on that specific date giving the required amount.			
	Leasing	Present Value of Annuity (Lease Rentals) are compared with Asset Cash down	Lessor	Owner of Asset, who gives asset on rent. Lease Rentals are income for Lessor User of the asset who has taken asset on rent. Lease		
		price		Rentals are expense for Lessee		
Applications of Time Value of Money	Capital Expenditure	Present value of savings and benefits are compared with purchase value of	Capital Expendit			
	Investment Decision		Future Benefits	and other benefits or savings derived from a capital investment		
	Valuation of Bond	Present value of interest income and maturity value is compared with the issue price of bond	Bond	It is a debt security. Type of loan taken by company from public. Like debentures		
			Face Value	Value written on the document of bond. This value is used to calculate Interest Amount		
			Issue Price	Actual payment made to purchase the bond		
			Maturity value	Amount to be received on redemption or maturity of bond		
	Meaning		Perpe	finite period of time is called as etuity.		
Perpetuity	Formula Perpetuity	Pres	ent Value of Perpetuity = $\frac{A_I}{i}$			
	Formula Growing Perpetuity	Present Val	ue of Growing Perpetuity = $\frac{A_I}{(i-g)}$ g is constant growth rate			
Net Present Value		NPV = Present Value of Cash Inflows – Present Value of Cash Outflows If NPV ≥ 0, accept the proposal, If NPV < 0, reject the proposal				
Nominal Rate of Return	Real Rate of Return = Nominal Rate of Return – Rate of Inflation					
CAGR	_			rest rate we used in Compound vestment on yearly basis		
				· · ·		

SET

Set means	Collection of well-defined distinct objects. It is usually denoted by capital letter				
Element	Each object of set is called as element. It is usually denoted by small letter				
Braces Form	When set shown as a list of elements within braces $\{\}$ e.g. $A = \{1,3,5,7\}$				
Descriptive Form	Set can be presented in statement form e.g. A = set of first four odd numbers				
Set-Builder or	Here Set is written in the algebraic form in this format -				
Algebraic form	$\{x: x \text{ satisfies some properties or rule}\}$. The method of writing this form is called as Property or Rule method				
Aigebraic for in					
Belongs to	It is den	It is denoted by '∈', a ∈ A means that element a is one of the element of Set A. ∉			
Delongs to		do not belong			
Subset			et B if all the elements of Set A also exist in Set B. It is		
		l as - A⊂B			
Proper Subset		-	f B if A is a subset of B and A≠B		
Improper Subset			proper subsets of each other		
Null Set			nts is called as Null or Empty Set. It is denoted by \phi		
No. of subsets			$ts = 2^n$, no. of proper subsets $= 2^{n}-1$		
Intersection			and B is a set that contains common elements between		
denoted by [A∩B] Union	both of		s a set that contains all the elements contained in both the		
denoted by [AUB]			g the common elements		
			ns all the elements under consideration in a particular		
Universal Set			universal set generally denoted by S		
			set P is a set that contains all the elements contained in		
Complement Set			in elements of P. It is denoted by P' or P ^c		
G . (4 P)	A-B is a set that contains elements of A other than those which are common in				
Set (A-B)	A and B. $[A-B=A-A\cap B]$				
De Morgan's Law	1. $(P \cup Q)' = P' \cap Q'$				
De Morgan S Law	2.	(P∩Q)' = P'∪Q	2		
	l				
		Universal	S		
		Set			
		Sec			
		Union Set	A B		
		AUB			
Venn Diagrams					
o o					
		Intersection	A B		
		Set A∩B	A D		
		Cot A D	A R		
		Set A-B	A B		
		Set A-B	A B		
2 sets - Formula		Set A-B			
2 sets – Formula 3 sets – Formula	n/ALI		$n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $-n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$		

	A or B, atleast A or B, either A or B	A∪B		
Venn Diagram	A and B, Both A and B A∩B			
related some	Only A means	A–B		
basics	Only B means	В-А		
	Neither A nor B	(A∪B)′		
Cardinal Number		finite Set A is called Cardinal Number.		
	For Set $A = \{4,6,8,3\}$,	cardinal no. $n(A) = 4$		
Equivalent Set	Two sets A and B are equivalent sets if $n(A) = n(B)$			
Power Set	Collection of all possible subsets of a given set A is called Power set of Set A. It			
	is denoted by P(A)			
Ordered Pair	Pair of two elements both taken from different Sets. E.g. if a∈A and b∈B then			
	ordered pair is (a,b) where first element will always from A and second always			
	from B in every pair			
Product of Sets	Also called as Cartesian Product. If A and B are two non-empty sets, then set of			
	all the ordered pairs such that a∈A and b∈B is called as Product Set. It is			
	denoted by $A \times B$. $[A \times B = \{(a:b): a \in A \text{ and } b \in B\}]$			
Why Product?	$n(A \times B) = n(A) \times n(B)$ i.e. cardinal no. of product set is equal to product of			
	cardinal no. of each set			

FUNCTION

Relation	Any subset of product set is called $A \times B$ is said to define relation from A to B.			
	It's any coll	ection of ordered pairs taken from a product set. ///////		
Function (set	A relation where no ordered pairs have same first elements is called Function.			
based definition)	First eleme	nt of the ordered should not be repeated in the relation set. (a,b) all		
	a should be	unique for different values of b		
Function (non set	A rule whic	h associate all elements of A to B is called function from A to B. It is		
based definition)	denoted by	$f: A \to B \text{ or } f(x) \text{ of } B$		
Image, Pre-image	f(x) is calle	ed the image of x and x is called the pre-image of $f(x)$		
	Pre-image i	s input and Image is output		
Domain, Co-	Let $f: A \to B$	B, then A is called domain of f and B is called the co-domain of f .		
domain, Range	Set of all t	he images (contained in B) of pre-images taken from A is called		
		nain is a set of all pre-images and Range is a set of all images. Also		
	Range is a s	subset of Co-domain.		
Types of	One-One	Let $f: A \to B$, if different elements in A have different images in B		
Functions	Function	then f is one-one or injective function or one-one mapping		
	Onto	·		
	Function A, then f is an onto or surjective function			
	Into Let $f: A \to B$, if even a single element in B is not having pre-image			
	Function in A, then it is said to be into function			
	Bijection	If a function is both one-one and onto it is called as Bijection		
	Function Function			
	Identity	If domain and co-domain are same then function is identity		
	Function	function Let $f: A \to A$ and $f(x) = x$		
	Constant	If all pre-images in A will have a single constant value in B then		
	Function	the function is constant function		
Equal Function	Two functions f and g are said to be equal function if both have same domain			
	and same range			
Inverse Function				
	Let $j: H \to 1$	B, is a one-one and onto function. Every value of x (preimage)will		

	give unique image $f(x)$ using f . If there is a function that takes value of images as input and gives pre-images as output, such function is called inverse function. It is denoted as f^{-1} : $B \to A$.			
Composite	A function of function is called composite function. Example: if			
Function	f and g are functions, then $f[g(x)]$ and $g[f(x)]$ are composite functions. Also called as $f \circ g \circ g \circ f$			

RELATION

Deletions	A Lord of and at anti- alled Audit and define alletter for a Augin			
Relations	Any subset of product set is called $A \times B$ is said to define relation from A to B.			
	It's any collec	tion of ordered pairs taken from a product set.		
Domain and	If R is a relati	ion from A to B, then set of all first elements of ordered pairs is		
Range	domain and so	et of all second elements of ordered pairs is range.		
	Reflexive If S is a universal set, $S = \{a,b,c\}$ then R is a relation from S to S. If this R contains all the ordered pairs in the form (a,a) in S×S, then it is a reflexive relation			
Types of Relation	SymmetricIf $(a,b) \in R$, then if $(b,a) \in R$ then R is called SymmetricTransitiveIf $(a,b) \in R$ and also $(b,c) \in R$, then if $(a,c) \in R$ such relation isTransitive. [if in a relation only (a,b) is present but (b,c) is notpresent we will consider it as transitive relation]			
,,				
Equivalence Relation	If a relation is Reflexive, Transitive and Symmetric as well, then it is called as Equivalence Relation			

Permutations and Combinations

Fundamental Principles of	Multiplication Rule AND → Multiply If one thing can be done in 'm' ways and when it has been done, another thing can be done in 'n' different ways then the total number of ways of doing both the things simultaneously = m × n			
Counting	OR → Add		ne jobs can be done in 'm' and 'n' way	
Factorial	It is written as n! or n] = $0! = 1, 1! = 1, 2! = 2 \times 1, 3$			
Permutations means	It is the ways of arrang regard being paid to or		things from a group of things with due gement or selection.	
Basic Example 1	Arranging three perso ACB, BAC, BCA, CAB, CB		roup photograph can be done as {ABC, of ways is 6	
Basic Example 2	Selecting two persons participants P,Q,R,S can	s as Winner an n be done as {PQ nys is 12 (here in	nd Runner-up for a contest having 4 b, PR, PS, QP, QR, QS, RP, RQ, RS, SP, SQ, in the set of arrangement first element is	
Theorem for Permutations	The number of permutations of n things chosen r at a time is given by ${}^{n}P_{r} = \frac{n!}{n-r!}$ or $n(n-1)(n-2)(n-r+1)$			
Basic Example 3	${}^5P_3 = \sqrt{\frac{5!}{(5-3)!}} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 5 \times 4 \times 3 = 60$ Or simply here $r = 3$, so do reverse multiplication of 5 up to three terms so it will be $5 \times 4 \times 3 = 60$			
Use of Theorem	We are able to find no. of ways manually also (as done in Basic Example 1 and 2) but that is easy for lower values of n and r. When there is a higher value of n, manually creating the set of arrangements will be tedious which requires the need of this theorem. Check Basic Example 1 and Example 2 using theorem			
Why 0! = 1	${}^{n}P_{n}=rac{n!}{(n-n)!}=rac{n!}{0!}$ also, ${}^{n}P_{n}=n!$, thus $rac{n!}{0!}=n!$, $0!=rac{n!}{n!}=1$			
Special Formula	$(n + 1)! - n! = n \cdot n!$ (for proof – refer Example 10 Study Mat Page 5.6)			
$ \begin{array}{ c c c c c c }\hline \textbf{Type} & \textbf{Remark} \\\hline \textbf{Calculate No. of words using letters} & \textbf{Simple} & ^nP_r \textbf{ Note: Meaning} \\\hline \textbf{of a particular word} & \textbf{has no relevance} \\\hline \textbf{Group Photograph} & ^nP_n \\\hline \end{array} $				
Question Patterns	Rank Awards first, sec	ond, third etc.	nP_r here r is no. of ranks	
with remarks	Theorem based calculation of n or r data	questions, with the given	Directly apply theorem	
	Selection of different unique designations/ positions from a group of persons nP_r here r is no. of unique designations/ positions			

Circular Permutations	Above discussion was relevant for things that are arranged in a row. However when the things are arranged in a circle, the permutation is termed as circular.		
Theorem: Circular Permutations	The number of circular permutations of n different things chosen all at a time is (n-1)!		
Standard Results	number of ways of arranging n persons along a round table so that no person has the same two neighbors is the number of necklaces formed with n beads of different colors $\frac{1}{2}(n-1)!$		
Permutation with Restrictions Note: These two theorems are useful for formula based questions. For practical questions we will use logic. (explained in example)			
	when a particular object is always included in any arrangement is $^{(n-1)}P_{(r-1)}$		
Some tips useful while solving problems having restrictions	Requirement of Que. Calculate permutation when two or more objects are always together Calculate permutation when two or more objects will never come together When there are two types of objects and ask is to calculate the ways in which no two objects of one the category will be together Tips In that case consider that group of objects as 1 object for the purpose of **Pr* formula, then multiply factorial of no. of objects in the group Step 1: Calculate the no. of ways without restriction using **Pr* Step 2: Calculate Permutation of 2 or more thing always together (as per above point) Step 3: Result of Step 1 - Result of Step 2 In that case, that particular group of objects can be arranged in the alternate places as a neighbor of each object of other category Refer Example 10 Study Mat Page 5.13SS		
Standard Results	Permutations when some of the things are alike, taken all at a time $p = \frac{n!}{n_1! \times n_2! \times n_3!}$		
	Permutations when each thing may be repeated once, twice, upto r times in any arrangement. n^r		

Combinations	The number of ways in which smaller or equal number of things are arranged or selected from a collection of things where the order of selection or arrangement is not important , are called combinations. It is just a GROUPING		
Basic Example 1	Grouping of two persons out of three persons A,B,C for a group photograph can be done as {AB, BC, AC}, thus total no. of ways is 3. Here AB and BA are same group and will be counted once only, even though the sequence is not same. Sequence has no relevance while finding combinations.		
Basic Example 2	Selection of persons for a committee of 2 out of total 4 applicants P,Q,R,S can be done in {PQ, QR, RS, PS, PR, QS} – total 6 ways. Here we used combinations because in the committee of two there is no designations all are same so sequence of selection does not matter.		
Theorem of Combinations	${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ or ${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$		
Standard Results	${}^{n}\mathcal{C}_{0}=1$, ${}^{n}\mathcal{C}_{n}=1$		
Complimentary Combinations	${}^{n}C_{r} = {}^{n}C_{(n-r)}$ example: ${}^{5}C_{3} = {}^{5}C_{2}$		
Special Formulas	$n+1$ $C_r = {}^nC_r + {}^nC_{r-1}$ Memorize: Combination of (n+1) things when one thing is always included $[{}^nC_r]$ + Combination of (n+1) things when one thing is always excluded $[{}^nC_r]$ +		
Permutation	Combination of (n+1) things when one thing is always excluded [$^n\mathcal{C}_{r-1}$] $^nP_r={}^{n-1}P_r+r.{}^{n-1}P_{r-1}$		
Special formula	Memorize in the same way as above		
Standard Results	Combinations of n different things taking some or all of n things at a time $2^n - 1$ [1 is subtracted because we are removing all rejection case]		
	Туре	Remark	
	Different pocker hands in a pack of cards	When we play Poker, Teen Patti etc. only group of 5 cards, sequence in which it is picked does not matter hence we take combinations	
	Formation of triangles	We need three vertices to make a triangle. Now	
	points) are given	with group of three points to make a triangle and sequence of points does not matter, hence will use	
		combination. Example: Using eight points how	
Question Patterns	No. of ways of	many triangle can be formed - ${}^8C_3 = 56$ Here also sequence does not matter, hence will use	
with remarks invitation ways		combination	
	Selection of color balls	Here combination is used assuming that balls are	
	from box No. of ways of forming	of identical color Refer Example 6 – Page 5.25 Study Mat	
	words from n letter	, , ,	
	taking few letters and the letter are not		
	unique		
	Number of diagonals of	${}^{n}C_{2}-n$, here n means no. of side of polygon	
	a polygon	(refer Q.10 Exercise 5C)	