

EDNOYATE

BATCH: CAFC

SUBJECT: Mathematics , LR & Statistics

INDEX

Sr. No.	Chapter	Question Nos.
1	Directions	1 - 3
2	Number series , Coding and Decoding	4 - 7
3	Blood Relations	8 - 11
4	Seating Arrangement	12 - 13
5	Permutations and Combinations	14 - 53
6	Sets Relations and Function	54 - 75
7	Probability	76 - 118
8	Theoretical Distribution	119 - 156
9	Statistical Description of Data	157 - 183
10	Ratio and Proportion , Indices & Logarithm	184 – 233
11	Measures of Central Tendency and Dispersion	234 - 263
12	Correlation and Regression	264 - 294
13	Calculus	295 – 303
14	Sequences and Series	304 - 333
15	Equation	334 - 348
16	Inequalities	349 - 355
17	Time Value of Money	356 - 408
18	Index Number	409 - 418

EDNOYATE

LOGICAL REASONING

1. DIRECTION TEST

- 1. Laxman left his home for a run and ran 15 km in the Northern direction. Then he turned left and ran 10 km. Then he turned another left and ran 5 km. Finally, he took a turn to the East and ran 10 km. In which direction is his current location with respect to his home?
 - (a) North (b) South
 - (c) Northwest (d) South-East
- 2. X walks southwards and then turns right then left and then right. In which direction is he moving now ?
 - (a) South (b) North (c) West (d) South-west
- 3. I stand with my right hand extended side-ways towards South. Towards which direction will my back be?
 - (a) East (b) South (c) North (d) West

2. NUMBER SERIES

- 4. In a certain code, RIPPLE is written as 613382 and LIFE is written as 8192. How is PILLER written in that code?
 (a) 318826
 (b) 318286
 (c) 618826
 (d) 338816
- 5. If LOSE is coded as 1357 and GAIN is coded as 2468, what do figure 82146 for? (a) NGLAI (b) NGLIA (c) GNLIA (d) GNLA
- 6. Find out the next number in the following series 7, 11, 13, 17, 19, 23, 25, 29 ?
 (a) 30
 (b) 31
 (c) 32
 (d) 33

7. 7, 23, 47, 119, 167 (a) 211 (b) 223 (c) 287 (d) 319

3. Blood Relation

- 8. Vinod introduce Vishal as the son of the only brother of his father's wife. How is Vinod related to Vishal ?
 - (a) Cousin (b) Brother (c) Son (d) Uncle
- 9. Pointing to a man in a photo- graph, a woman said, "the father of his brother is the only son of my grand- father", how is the woman related to the man in the photograph?
 - (a) Mother (b) Aunty (c) Daughter (d) Sister

ebno zaarthi			EDNOVATE		
CA Foundation 10. Pointing to a picture, Sumit said, she is the mother of my son's wife's daughter. How is lady related to the Sumit ?					
(a) Uncle	(b). Cousin	(c) Daughter	(d) None		
11.Vicky introduces John as the son of the only brother of his father's wife. How is Vicky related to John?					
(a) Cousin	(b) Son	(c) Brother	(d) Uncle		
		4. Seating Arrange	ment		
Ashokan, Mr. Lokes	sh in a flat below Mr.		. Mr. Manu lives in a flat above Mr. In lives in a flat below Mr. Gaurav and top most flat ?		
(a) Mr. Lokesh	(b) Mr. Gaurav	(c) Mr. Ma	anu (d) Mr. Rakesh		
left to D. C and F	are immediate neigh	nbours, but C is not	E sits second right to D. H sits fourth immediate neighbour of A. G is not ne persons on left end and right end		
(a) G and E	(b) B and E	(c) Hand	E (d) G and B		
14 The number of tria		tions and Combina	i tions the vertices from a set of 12 points,		
seven of which lie o	n the same straight I	line, is :			
(a) 185	(b) 175	(c) 115	(d) 105		
to borrow Mathema		athematics part-I is a	library. Of these , 8 he does not want lso borrowed? In how many ways can		
(a) 41	(b) 51	(c) 61	(d) 71		
16.A supreme court be division?	ench consists of 5 ju	dges . In how many	ways , the bench can give a majority		
(a) 10	(b) 5	(c) 15	(d) 16		
17.The number of ways not together is:	17. The number of ways in which n books can be arranged on a shelf so that two particular books are not together is:				
(a) $n-2 \times n-1$. !	(b) $n-2 \times n$	2+1 !		
(c) $n-1 \times n+1$!	(d) $n-2 \times n$	<i>n</i> +2 !		
18. Five bulbs of which three are defective are to be tried in two lights points in a dark room. In how					
many trials the roon (a) 10	(b) 7	(c) 3	(d) None of these		

EDNO			EDNOVATE
CA Foundation			
	f combination of the l	etters of the word CO	LLEGE taken four together:
(a) 18	(b) 16	(c) 20	(d) 26
20. How many numbe	rs greater than a mill	ion can be formed wit	h the digits 4,5, 0,4,5,3 ?
(a) 260	(b) 360	(c) 280	(d) 380
		alls and five green b	alls. In how many ways can they be
arranged in a row?		() <u>-</u>	
(a) 26,720	(b) 27,720	(c) 27,820	(d) 26,620
22 Six agets of articl	ad alarka ara yaaar	t in a 'Chartarad Ar	equatent Firm' Llow menu different
		out of 10 candidates?	ccountant Firm'. How many different
(a) 216			(d) None
(4) 210	(0) 210	(0) 220	
23. How many six digit	t telephone numbers	can be formed by usi	ng 10 distinct digits ?
(a) 10^6	•	(c) ${}^{10}C_6$	•
(4) 10	(\mathbf{O})	$(0) \mathbf{C}_6$	
24. Number of ways of	f nainting a face of a	cube by 6 colours is	
(a) 36	(b) 6	(c) 24	
(u) 00	(5) 6	(0) 24	
25.A code word is to	consist of two English	sh alphabets followed	by two distinct numbers from 1 to 9
	ode words are there	-	
(a) 6, 15,800	(b) 46,800	(c) 7, 19,500	(d) 4, 10,800
26. Given: $P(7,k) = 60$	P(7, k-3). Then:		
(a)k = 9		(c) $k = 5$	(d) k = 0
			()
27. In how many ways	s can the letters of th	e word FAILURE be	arranged so that the consonants may
occupy only odd p	ositions?		-
(a) 576	(b) 476	(c) 376	(d) 276
		he letters of the word	'ORIENTAL' so that A and E always
occupy odd places		(a) 0.400	
(a) 540	(b) 8640	(c) 8460	(d) 8450
29 Six persons A B	C D E and E are to h	a seated at a circular	table. In how many ways can this be
-			B must always have either C or D on
his right?			
(a) 3	(b) 6	(c) 12	(d) 18
30.7 books are to be	arranged in such a v	vay so that two partic	ular books are always at first and last
Final the number of	of arrangements.		
(a) 60	(b) 120	(c) 240	(d) 480

zaarthi			EDNOVATE
CA Foundation			
	-		ne word 'MONDAY' be arranged so that
	ned begin with 'M' and		
(a) 720	(b) 120	(c) 96	(d) None
32. The number of way	/s of arranging 6 boys	s and 4 girls in a ro	ow so that all 4 girls are together is:
(a) 61. 4!	(b) 2 (71. 4!)		(d) 2. (61. 4!)
33. How many numbe repetition is not allo	-	00 can be made f	rom the digits 1,2, 3, 4, 5, 6, 7, 8, 9 if
(a) 364	(b) 585	(c) 728	(d) 819
	g 6 tall trees in a row in order to pose for a	•	ays can 5 children stand, one in a gap
(a) 24	(b) 120	(c) 720	(d) 30
35. If ${}^{11}c_x = {}^{11}c_{2x-4}$ and z	$x \neq 4$ than the value o	$f^{7}c_{x} =$	
(a) 20	(b) 21	(c) 22	(d) 23
36.Out of 6 Boys & 4 there is exactly two	-	er of ways for se	lecting 5 members committee in which
(a) 120	(b) 1440	(c) 720	(d) 71
- .	men and 4 women, 4 there on the committe (b) 168	•	e selected to form a committee so that at vays can it be done? (d) 220
38.A business houses ways these elevation		eously elevate two	o of its six branch heads. In how many
(a) 12	(b) 3	(c) 6	(d) 15
39.A multiple - choice different answer ke	•	uestions and each	has four possible options. How many
(a) 20	(b) 120	(c) 256	(d) 1024
40. The number of way	s 4 boys and 3 girls o	can be seated in a	row so that they are alternate is:
(a) 12	(b) 288	(c) 144	(d) 256
	(b) 200	(0) 144	(0) 200
41. If ${}_{^{13}C_6 + 2^{13}C_5 + {}^{13}C_4 = }$.₁₅ _{Cx} then, x =	·	
(a) 6	(b) 7	(c) 8	(d) 9
			· ·
$15_{C_{2}} = {}^{15}_{C_{2}} = {}^{15}_{C_{2}}$			
42. If ${}^{15}c_{3r} = {}^{15}c_{r+3}$, $r =$			
(a) 2	(b) 3	(c) 4	(d) 5

EDNO Saarthi			EDNOVATE	
CA Foundation				
43.A regular polygon	-			
(a) 8	(b) 9	(c) 10	(d) 11	
44. If ${}^{n}p_{r} = 3024$ and n	$c_r = 126$, then find n	and r		
(a) 9, 4	(b) 10, 3	(c) 12, 4	(d) 11, 4	
are collinear?	·		an be formed by these points if 5 points	
(a) 9550	(b) 560	(c) 1130	(d) 1140	
Then the total num	nber of hands shake	is:	ake hand with all the remaining guests.	
(a) 780	(b) 840	(c) 1,560	(d) 1,600	
on a stoke side an	d 2 row on the other	side is:	anged so that if 3 of crew can row only	
(a) 1728	(b) 256	(c) 164	(d) 126	
48.Six points are on a (a) 30	a circle. The number (b) 360	of quadrilaterals tha (c) 15	t can be formed are: (d) None of the above	
40 Which of the follow	ving is a correct stat	omont		
49. Which of the follow	ving is a correct stat			
(a) ${}^{n}p_{n} = {}^{n}p_{n-1}$		(b) ${}^{n}p_{n} = {}^{2n}p_{n-2}$		
(c) $p_n = {}^{3n} p_{n-3}$		(d) ${}^{n}p_{n} = {}^{n(n+1)}p_{n}$	\mathcal{P}_{n-1}	
be made so that a		-	es. How many selections of 3 fruits can	
(a) 120 ways		(b) 35 ways		
(c) 168 ways		(d) 70 ways		
51. Eight Chairs are numbered from 1 to 8. Two women and three men are to be seated by allowing one Chair for each. First, the women choose the chairs from the chairs numbered 1 to 4 and then men select the chairs from the remaining. The number of possible arrangement is				
(a)120	(b) 288	(c) 32	(d) 1440	
52. There are ten flights operating between city A 'and city B. The number of ways in which a person can travel from city A to city B and return by different flight is				
(a)90	(b) 95	(c) 8C	(d) 78	
53.How many odd nu (a)150	mbers of four digit c (b) 300	an be formed with di (c) 120	igit 0, 1, 2, 3, 4, 7 and 8? (d) 210	
	(3) 000		(4) 210	

edno zaarthi			EDNOVATE	
CA Foundation	6 6 6	- Polotions and Euroti		
	6. Set	s Relations and Funct	ions	
		ke to take tea and 14 lil	ke coffee. Assume that each one likes ee and tea:	
(a) 2	(b) 3	(c) 4	(d) 28	
	• • •	k Hindi, 33 speak Eng both English as well Hin	glish and 10 speak neither Hindi nor idi:	
(a) 13	(b) 19	(c) 18	(d) 28	
56. Let $f: R \rightarrow R$ be s	uch that $f(x) = 2^x$,	equal:		
(a) $f(x) + f(y)$		(b) $f(x).f(y)$		
(c) $f(x) + f(y)$		(d) None of these		
r_7 if $f(x) = x^2 + x = 4$	and $Af(y) = f(0y)$	the set final (s.)		
57. If $f(x) = x^2 + x - 1$				
(a) 4/3	(b) 3/2	(c) -3/4	(d) None of these	
58. $x = \{x, y, w, z\}, y =$	$\{1, 2, 3, 4\}, H = \{(x, 1)\}$;(y,2);(y,3);(z,4);(x,4)}	}	
(a) H is function fr	-	(b) H is not a function f	rom x to y	
(c) H is relation fro	om y to x	(d) None of these		
59. Given the functior	f(x) = (2x+3), th	en the value of $f(2x)$ -	2f(x)+3 will be:	
(a) 3	(b) 2	(c) 1	(d) 0	
60. If $f(x) = 2x + h$ the	n find $f(x+h)-2f$	(x)		
		(c) 2x + h	(d) None of these	
61. If F: A \rightarrow R is a real	al valued function	defined by $f(x) = \frac{1}{x}$		
(a) R	(b) R-{1}	(c) R - {0}	(d) R – N	
62. In the set N of all natural numbers the relation R defined by a R b" if and only if , a divide b" then the relation R is :				
(a) Partial order re (c) Symmetric rela		(b) Equivalence (d) None of thes		
63. For any two sets	A and B, A∩(A'∪	∠B)=, where A	A' represent the compliment of the set	
A : (a) A ∩ B	(b) A ∪ B	(c) A ∪ B	(d) None of these	

EDNO Saarthi CA Foundation			EDNOVATI	Ξ	
$f(x-1) = x^2$	-4x+8 f(x+1) =			
64. If $(x^{2}+8)$	-4x+8, then f(x+1 (b) x ² +7	$(c) x^2 + 4$	(d) $x^2 - 4x$		
(0) x +0		(0) X 1 4	(u) x +x		
passed in bo	65. There are 40 students, 30 of them passed in English, 25 of them passed in Maths and 15 of them passed in both. Assuming that every Student has passed at least in one subject. How many student's passed in English only but not in Maths.				
(a) 15	(b) 20	(c) 10	(d) 25		
	$, B = \{1, 4, 9\}$ AND $F =$	={(2,4),(-2,4),(3,9)),(-3,4)}		
Then "F' is de		D			
	e function from A into e function from A ont				
()	ne function from A or				
(d) Many to or	ne function from A in	to 8.			
67. If f(x) $\frac{x}{\sqrt{1+x^2}}$	and $g(x) = \frac{x}{\sqrt{1 - x^2}}$ Fi	nd fog?			
(a) x	(b) $\frac{1}{x}$	(c) $\frac{x}{\sqrt{1-x^2}}$	(d) $x\sqrt{1-x^2}$		
68 f(x) = 3 + x F(x)	or -3 <x<0and 3-2<="" td=""><td>x for 0 < x < 3 Then</td><td>value of f (2) will be</td><td></td></x<0and>	x for 0 < x < 3 Then	value of f (2) will be		
(a) -1	(b) 1	(c) 3	(d) 5		
× ×	5),B= $(2,4)$ and C= $($		Bis		
	4),(4,2),(4,4),(5,2),				
(b) {(1,2),(1,4	4),(3,2),(3,4),(5,2),((5,4)}			
(c) {(2,2),(4,2	2),(4,4),(4,5)}				
(d) {(2,2),(2,-	4),(4,2),(4,4)}				
70. For any two s (a) B-A	ets A and B the set((b) A-B	A ∪ B') is Equal to (c) A'-B'	(where' de- notes compliment of the set) (d) B'-A'		
		1			
	the function f: $N \rightarrow N$;	``			
(a) {0,-1}	(b) {1,-1}	(c) {1,0}	(d) {1,0,-1}		
Furthermore 4	72. For a group of 200 persons, 100 are interested in music, 70 in photograph and 40 in swimming, Furthermore 40 are interested in both music photography, 30 in both music and swimming, 20 in photography and swimming and 10 in all the three. How many are interested in photography by				
(a) 30	(b) 15	(c) 25	(d) 20		

ebno saarthi			EDNOVATE	
CA Foundation 73. If f: $R \rightarrow R$ is a	function. defined by f	(x) = 10x-7. if g(x) =	$f^{-1}(x)$ then the value of $g(x)$ is equal to	
	(b) $\frac{1}{10x+7}$			
74. The No. of ele (a) One	ements in range of cor (b) Zero	nstant function is (c) Infinite	(d) None	
70 had a crec card, 30 had	lit card and 140 had a	mobile phone 40 of nd mobile phone, 6	tion at call center, 100 had a two wheeler, them had both a two wheeler and a credit 50 had both a two wheeler and a mobile had none of them? (d) 18	
		7. Probability		
	probability that they are		E and another is taken out from the word : (d) ³ ⁄ ₄	
random. The	probability that they a	re of same colour is:		
(a) $\frac{3}{27}$	(b) $\frac{20}{31}$	(c) $\frac{5}{84}$	(d) None	
 78. A card is drawn from a well shuffled pack of 52 cards. Let E, "a king or a queen is drawn" & E₂ : "a queen or a jack is drawn", then: (a) E₁ and E₂ are not independent (b) E₁ and E₂ are mutually exclusive (c) E₁ and E₂ are independent (d) None of these 				
79. If A and B are	e two events and $P(A)$	$=\frac{3}{8}, P(B)=\frac{1}{2}, P(A c)$	$(\cap B) = \frac{1}{4}$, then the value of $P(A' \cup B')$ is	
(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{8}$	(d) $\frac{5}{4}$	
	ne first is a diamond a	nd the second is kin	replaced before the second is drawn. The g is:	
(a) $\frac{1}{52}$	(b) $\frac{3}{2704}$	(c) $\frac{4}{13}$	(d) $\frac{3}{52}$	
81. The theory of (a) $P(A \cap B)$:	compound probability = $P(A) \times P(B)$	states that for any t	two events A and B:	
,	$= P(A) \times P(B / A)$			
	$= P(A) \times P(B / A)$,		
(d) $P(A \cup B)$	$= P(A) + P(B) - P(A \cap$	B)		

- (a) $\frac{1}{50}$ (b) $\frac{1}{25}$ (c) $\frac{13}{50}$ (d) $\frac{49}{50}$
- 83. A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made without replacement. The probability that the first draw will produce 3 white balls and second 3 red balls is:
 - (a) $\frac{6}{255}$ (b) $\frac{5}{548}$ (c) $\frac{7}{429}$ (d) $\frac{3}{233}$
- 84. Three identical dice are rolled. The probability that the same number will appear on each of them is:
 - (a) 1/6 (b) 1/12 (c) 1/36 (d) 1
- 85. Among the examinees in an examination 30%, 35% and 45% failed in Statistics, in Mathematics and in at least one of the subjects respectively. An examinee is selected at random. Find the probability that he failed in Mathematics only:
 - (a) 0.245 (b) 0.25 (c) 0.254 (d) 0.55
- 86. An. article consists of two parts A and B. The manufacturing process of each part is, such that probability of defect in A is 0.08 and that in B is 0.05. What is the probability that the assembled product will not have any defect?
 - (a) 0.934 (b) 0.864 (c) 0.85 (d) 0.874
- 87. If 10 men, among whom are A and B, stand in a row, what is the probability that there will be exactly 3 men between A and B?
 - (a) 11/15 (b) 4/15 (c) 1/15 (d) 2/15
- 88. The probability of an event can assume any value between:(a) 0 and 1(b) -1 and 0(c) -1 and 1(d) None of these
- 89. The odds are 9:5 against a person who is 50 years living till he is 70 and 8:6 against a person who is 60 living till he is 80. Find the probability that at least one of them will be alive after 20 years:
 - (a) $\frac{11}{14}$ (b) $\frac{22}{49}$ (c) $\frac{31}{49}$ (d) $\frac{35}{49}$

90. If P(A) = P and P(B) = q, then:

(a) P(A/B)≤q/p	(b) P(A/B)≥p/q
(c) $P(A/B) \le p/q$	(d) P(A/B)≥q/p

EDNO -				
şaarthi		EDNOVATE		
CA Foundation				
earns more than ₹ 20,000 per mor and remained with the company or	oth is 0.4. The probabi who earns more than	y is 0.8. The probability that an employee ility that an employee, who was a trainee n ₹: 20,000 per month is 0.9. What is the per month given that he is a trainee, who		
(a) 5/8 (b) 3/8	(c) 1/8	(d) 7/8		
92. The limiting relative frequency of pr	obability is:			
(a) Axiomatic	(b) classical			
(c) statistical	(d) Mathematical			
	(u) Mathematical			
93. If A and B are two independent eve	ents and $P(A \cup B) = 2/$	(5; P(B) = 1/3 Find P(A))		
(a) 2/9 (b) -1/3	(c) 2/10	(d) 1/10		
94. A bag contains 12 balls of which 3 5 balls 3 are red.	are red 5 balls are dra	awn at random Find the probability that in		
(a) 3/132 (b) 5/396	(c) 1/36	(d) 1/22		
95.P(A) =2/3; PB) = 3/5; P(AUB)= 5/6.	Find P (B/A)			
(a) 11/20 (b) 13/20	(c) 13/18	(d) None		
96. If $P(A \cap B) = P(A) \times P(B)$, then the	events are:			
(a) Independent events	(b) Mutually exclusi	ve events		
(c) Exhaustive events	(d) Mutually inclusiv	ve events		
97. In a pack of playing cards with two	jokers probability of ge	etting king of spade is		
(a) 4/13 (b) 4/52	(c) 1/52	(a) 1/54		
98.Consider two events A and	B not mutually	exclusive, such that $P(A) = 1/4$,		
$P(B) = 2/5, P(A \cup B) = 1/2, then P$	· · · ·			
$(D)^{-2/3,1}$ (AOD) - 1/2, then '	is			
(a) 3/7 (b) 2/10	(c) 1/10	(d) None of them		
99. If x be the sum of two numbers ob	tained when two dice	are thrown simultaneously then $P(x \ge 7)$		
is				
(a) 5/12 (b) 7/12	(c) 11/15	(d) 3/8		
100. If $P(A/B) = P(A)$, then A and B are				
(a) Mutually exclusive events (b) Dependent events				
(c) Independent events	(d) Composit			
101 The odds in favour of A solving a r	oroblem is 5.7 and Od	ds against B solving the same problem is		
9:6. What is the probability that if b				
(a) 117/180 (b) 181/200				

ା ଙ୍	aarthi			EDNOVATE
	Foundation			
102.	Consider Urn 1:	2white balls, 3 bla	ack balls; Urn II:4 whi	te balls, 6 black balls. One ball is randomly
				awn from II Um. The probability that drawn
	ball is white is		,	
		(b) 22/46	(c) 22/55	(d) 21/45
	(d) 22/00	(0) 22/40	(0) 22/00	(d) 21740
	- (-) - (、 、	
103.	If $P(A \cup B) = P($	A), Find $P(A \cap B)$). (b) P(A)+ P(B)	
	(a) P(A) P(B)	-	(b) $P(A) + P(B)$	
	$(a) \cap (7,0) \cap (D)$			
	(c) 0		(d) P(B)	
104.	-			n Balls. If the random Probability of picking
	two green balls	is 1/7. What is the	e No. of green Balls (m)
	(a) 5	(b) 7	(c) 6	(d) None of above
105	The probability	of Girl aetting scl	holarshin is 0.6 and t	he same probability for Boy is 0.8 Find the
100.			e categories getting so	
	(a) 0.32	(b) 0.44	(c) 0.92	(d) None of these
		_		
106.	A coin is tossed	d S times, what is	the probability that ex	actly 3 heads will occur.
	(a) $\frac{5}{16}$	1	5	3
	(a) $\frac{16}{16}$	(b) $\overline{32}$	(c) $\frac{5}{36}$	(d) $\frac{32}{32}$
		(~)		(4)
107		oppoor for op int	anvious for two secon	size. The probability of Arup's collection is
107.		••		cies. The probability of Arun's selection is
			•	bility at only one of them will be selected.
	(a) 2/5	(b) 4/5	(c) 6/5	(d) 8/5
108.	A company em	ployed 7CA's, 6	MBA's and 3 Engine	er's. In how many ways the company can
			e has two members	
	(a) 900	(b) 1,000	(c) 787	(d) 945
		(2) 1,000		
100	Two dias are f	brown together	Find the probability	of gotting a multiple of an and disc and
109.		-	ring the propability	of getting a multiple of2 on one dice and
	multiple of 3 on		(
	(a) 2/3	(b) 1/6	(c) 1/3	(d) None of the above
110.	A bag contains	6 red balls and s	ome blue balls. If the	e probability of drawing a blue ball from the
	bag is twice that	t of a red ball, find	d the number of blue	balls in the bag
	(a) 10	(b) 12	(c) 14	(d) 16
		()	(•)	(-)
	The edde thet	h a a le suill h a sa a		independent reviewers are 5 to 0, 0 to 4, 4
111.				independent reviewers are 5 to 2, 3 to 4, 4
		ely, then the pr	obability that out of	3 critics the majority will be favorable
	is	•••	200	200
	209	(b) $\frac{209}{434}$	(c) $\frac{209}{443}$	209
	(a) ³⁴³	(b) ⁴³⁴	(c) ⁴⁴³	(d) ³⁵⁰

F				
Ę	aarthi			EDNOVATE
СА	Foundation			
	•	bility of drawing space draws are without r		secutive draws from a well shuffled pack of
			-	4
	(a) $\frac{2}{51}$	(b) 51	(c) $\frac{4}{51}$	(d) $\frac{4}{51}$
113.	lf P(A) = 0.45, F	P(B) = 0.35, P(A and	B) = 0.25 then P(A	/B)
	(a) 1.4	(b) 1.8		(d) 0.556
114.	Two coins are to	ossed simultaneousl	y then the probabili	ty of getting exactly one head is
	3	2	1	1
	(a) $\frac{3}{4}$	(b) $\frac{2}{3}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$
115.	For any two eve	ents		
ļ	$A_1, A_2; let P(A_1)$	$=\frac{2}{3}$, P(A ₂) = $\frac{3}{8}$,		
F	$P(A_1 \cap A_2) = \frac{1}{4} t l$	hen A_1, A_2 are		
		clusive but not indep	andont avonte	
((b) Mutually Exc	clusive but not independ but not Mutually Exc	ent events	
((d) None			
116.	If a pair of dice	is thrown what is the	probability of occu	rring neither 7 nor 11 ?
	(a) $\frac{1}{6}$	(b) $\frac{1}{8}$	(c) $\frac{2}{9}$	(d) $\frac{7}{9}$
	6	(-) 8	(** 9	(") 9
117.	If 6 coins are to	ssed simultaneously	then the probability	y of obtaining exactly 2 heads is
	(a) $\frac{1}{64}$	(b) $\frac{63}{64}$	(c) $\frac{15}{64}$	(d) None
	` 64	64	64	
	-	-		number are selected at random without
	•	d multiplied. Find the		
(;	a) $\frac{420}{1001}$	(b) $\frac{409}{1001}$	(c) $\frac{70}{1001}$	(d) $\frac{505}{1001}$

	zaarthi			EDN	IOVATE
(CA Foundation				
12			•	arks is 50 and S.D of ma /en that area under the n	
	(a) 1	(b) 2	(c) 3	(d) 4	
	 9. If a variate X has, M (a) Binomial (b) Poisson (c) Normal (d) t-distribution 				
13	0. Mean & variance of	a Binomial 4 va	riate are $\frac{4}{3}$ and r	espectively then $P(x \ge 1)$	will be
	(a) $\frac{728}{729}$	(b) $\frac{1}{729}$	U		
	(c) $\frac{723}{729}$	(d) None			
13				F(x) = P(x ≤ x), then F(5 x ≤ 5) (d) P(2 < x < 5	
13	2. For a Binomial distr (a) 5/2	ibution mean is ((b) 7/4	4 and variance is (c) 3/2	3 then, 3rd central mome (d) 1/3	nt is
13	 In the Binomial distract (a) Between 0 and n (b) Between 0 and n (c) Between 0 and 1 (d) Between 0 and ∞ 	n both inclusive	meters are n and	p, then X assumes value	S
13	4. In dist	ribution Mean –	Variance		
10	(a) Binomial		(b) Poisson		
	(c) Normal		(d) t		
13	 Wages paid to work (a)Binominal distrib (b)Poisson distribut (c)Normal (d)Chi-Square 	ution			
13	6. For a Binominal dis (a) 5 and 6	tribution, the par (b) 5.5	ameters are 15 a (c) 5	nd 1/3 Find mode: (d) 6	

_	Foundation			EDNOVATE
137.	Standard Deviation of (a) npq (b) (np	Binominal distribu pq) ² (c)		(d) n²p²q²
138.	The Normal curve is (a) Positively skewed (c) Symmetrical			
139.	For a poisson variate 2 (a) 1	X, P(X=1) = P(X = (b) 3/2		mean of X? (d) 5/2
140.	is/are Bi-p (a) Binomial			(d) Both (a) & (c)
141.	In Poisson distribution (a) 2 (c) $\frac{2}{3}$	$ \mu_4 = 2, \text{ then find } \mu_4 $ (b) 4 (d) $\frac{1}{2}$	J ₂ .	
142.	The second & third mo (a) (12, 0)			0, 2, 4, 6) are (d) (0, 16)
143.	If X & Y are two independent of the formula of the	$f(x + Y \text{ follows}_{2}) = 0$ $= \sigma_{1}^{2} + \sigma_{2}^{2}$ $+ \sigma_{2}^{2}$	riates with mear	is μ_1 and μ_2 and standard deviations σ_1 &
144.	In distributi (a) Binomial	on, mean = variar (b) Poisson		(d) None
145.	In Binomial distribution (a) $1, \frac{1}{2}$	n, if variance = me (b) 1,1	an ² then n & p a (c) $2, \frac{1}{2}$	(d) $3, \frac{1}{2}$
146.	If X~N (50, 16) then w (a) P(X60)=0.30 (c) P(X60)=0.40	hich of the followir (b) P(X50) (d) P(X50)	0.50	e.

E		`						EDNO	VATE
CA CA	Foundation								
147.	The distribu	ution of der	nand is as	follows:					
	Demand	5	6	7			Э	10	
	Probability	0.05	0.1	0.3	0.4	4	D.1	0.05	
	The mean i	s given by	(1)			_			
	(a) 7.55		(b) 7.85		(c) 1.2	5	(C	I) 8.35	
148.	An example (a) Binomia (c) Normal	I distributio	on	iscrete pro	(b) Poi		istributio	n	
149.	In Normal d	distribution	95% obse	rvation lie	s betwee	en	&	•	
	(a) (μ - 2σ,μ	u+2σ)			(b) (µ ·	· 3σ, μ⊦	-3σ)		
	(c) (µ - 1.96	δ0, <mark>μ +1.96</mark>	σ)		(d) (µ -	2.58 c	σ, <mark>μ +</mark> 2.5	8σ)	
150.	If x is a pois	sson variat	e with x-m	mean m f	then z=	$\frac{x-m}{\sqrt{m}}$ f	ollows	distributio	n:
	(a) Normal				(b) Bin				
	(c) Bernoull	li			(d) No	ne of th	ne above		
151.	The mean of (a) np (1-p) (c) $\sqrt[n]{p(1-p)}$)	al distribut	ion is :	(b) np (d) No	ne of th	ie above		
152.	Mean of po (a) 6 (c) 4	isson distri	bution is 6	then varia	(b)	√6 3	:		
153.	The mean o	of the Bino	mial distrib	ution B ($4\frac{1}{3}$, is e	equal to)		
	(a) $\frac{3}{5}$		(b) $\frac{4}{3}$		(c) $\frac{8}{3}$		(c	$\frac{3}{4}$	
154.	If for a Nor (a) 12.17	mal distrib	ution Q ₁ = { (b) 66.69		Q ₃ = 78. (c) 39			dian of the distributi I) None of these	on is,
155.	4 coins wer at a time? (a) 1600 e ⁻			s. What is (c)10	-	-	that all 4 (d) e ⁻¹⁶⁰⁰	coins do not turn l	nead upward
156.	(a) p > q	d variance	(b) p -	< q	-	n relatio	on betwe	en p and q is:	

edno eaarthi						EDNOVATE	
CA F	oundation						
	Statistical Description of Data						
457					ľ		
157.	Which of the follo	-	t a two din		-		
	(a) Square diagra				ne diagram		
	(c) Rectangular c	liagram		(d) Pie	e-chart		
150	From which grop	highl ropro	ontation		laulata parti	tion voluce?	
150.	From which grap (a) Lorenz curve	nical repres	sentation,		jive curve	lion values?	
				.,		201/0	
	(c) Histogram			(u) Nu	one of the at	Jove	
159	The data given b	elow refers	to the ma	urks dained	l by a group	of students.	
100.	The data given s	Below	Below	Below	Below	Below	
	Marks	10	20	30	40	50	
	No. of students	15	38	65	84	100	
160.	Then the No. of s	-	-				
	(a) 50	(b) 53		(c) 35		(d) 62	
161.	-	k 23 units	respective	ely. The d	lifference be gar is	labour, direct production and others etween their central angles for the (d) 56 ⁰	
162.	What is a exclusi (a) In which both (b) In which lowe (c) In which upp (d) None of the a	n upper and er limit is no er limit is no	ot included	l in class fr	equency.	lass frequency.	
163.	The pair of avera	aes whose	value car	n be detern	nined graph	icallv?	
	(a) Mean & Medi	-			ode & Mean	-	
	(c) Mode & Media			()	one of the at		
164.	The difference be	etween upp	er limit an	d lower lim	nit of a class	is called:	
	(a) Class Interval			(b) Cla	ass Bounda	ries	
	(c) Mid-value			(d) Fre	equency		
165.	If the class interv	als are 10-	14, 15-19,	20-24	Then t	he first class boundaries are:	
	(a) 9.5-14.5	(b) 10	-15	(c) 9-1	15	(d) 10.5-15.5	

ED Ç	oundation							EDNOVATE	
166.	The following data	elated to th	e marks	of group	o of st	udents			
	Marks		No. of	students					
	More than 70%		7						
	More than 60%		18						
	More than 50%		40						
	More than 40%		60						
	More than 30%		75						
	More than 20%		100						
	How many students	have got n	narks les	ss than 5	0%?				
	(a) 60	(b) 82 .		(c) 40)		(d) 53	3	
167.	The less than Ogive	e" is a:							
	(a) U-shaped curve			、 ,	•	ed curv			
	(c) S- shaped curve			(d) B	ell-sh	aped c	urve		
168.	The most appropri	ate diagram	n to repi	esent 5	year	plan c	outlay of	India in different economic	2
	(a) Pie diagram			(b) H	istogr	am			
	(c) Line diagram			(d) Fi	reque	ncy po	lygon		
169.	For construction of (a) Equal (c) Either Equal or I	-	he class		nequa		cy distrib	oution is	
170.	The number of obs	ervations be	etween 1	50 and 2	200 b	ased o	n the foll	owing data is:	
		than Mor 150	e than					5	
	No. of observations	70							
	(a) 46	(b) 35		(c) 28	3	(d)	23		
171.	 71. The curve obtained by joining the points, whose X-coordinates are the upper limits of the class-intervals and Y-coordinates are the corresponding cumulative frequencies is called (a) Ogive (b) Histogram (c) Frequency Polygon (d) Frequency Curve 						-		
172.	Histogram is used f (a) Time series (c) Discrete series	or the prese	entation	(b) C	ontinu		equency		
173.	Data collected on re	eligion from	the cens	sus repo	rts ar	е			
	(a) Primary data	(b) Secor	ndary da	ta	(c) \$	Sample	e data	(d) (a) or (b)	

ED	NO					EDNOVATE		
Search EPROVALE CA Foundation EPROVALE								
174. Which of the following is not a two dimensional diagram?								
	(a) Square diagram			diagrar	•			
	(c) Rectangular diagra		(d) Pie-	-				
175.	From which graphical	representation	n, we ca	an calcu	late partitio	on values?		
	(a) Lorenz curve		(b) Ogiv	ve curve)			
	(c) Histogram		(d) Non	e of the	above			
176.	A pie diagram used to	o represent the	e followi	na data				
	Source	Customers	Excis	е	Income	Wealth		
					Тах	Тах		
	Revenue in Millions	120	180		240	180		
177.	The central angles co	rresponding to	Incom	e Tax a	nd Wealth	Tax are		
	(a) 90°,120°		(b) 120°	°,90°				
	(c) 60°,120°		(d) 90°,	60°				
178.	The pair of averages	whose value c			• •	ally?		
	(a) Mean & Median		`	,	e & Mean			
	(c) Mode & Median		(d) None	e of the abo	ve		
170	If the close intervals a	ro 10 14 15 1	0 20 2	1	Thon the	first class boundaries are:		
179.	If the class intervals a (a) 9.5-14.5			4 c) 9-15		e first class boundaries are: (d) 10.5-15.5		
	(a) 9.5-14.5	(b) 10-13	(0) 9-13		(d) 10.5-13.5		
180.	100 persons are divid	ed into numbe	er of ma	le/fema	le and emp	loyed/un- employed it refers to		
	(a) Cardinal Data				nal Data			
	(c) Spatial Data		-		ooral Data			
	(-)		(
181.	Which is most commo	on diagrammat	tic repre	esentatio	on for grou	ped frequency distribution.		
	(a)Histogram	(b) Ogive	(c) Both	(a) & (b)	(d) None of these		
182.	Classification is of							
	(a) One	(b) two	(c) three		(d) Four		
400								
183.	Divided Bar Chart is c		(
	(a) Comparing differe	-						
	(b) The relation of dif	terent compon	ients to	the tab	е			
	(c) (a) or (b)							
	(d) (a) and (b)							

EDNO Searthi CA Foundation			EDNOVATE						
Ratio & Proportion , Indices & Logarithm : a) Ratio & Proportion :									
184. Two numbers a The number are	184. Two numbers are in the ratio of 2:3 and the difference of their squares is 320.								
(a) 12,18		(c) 14,21	(d) None						
	185. If p:q is the sub-duplicate ratio of $p - x^2$: $q - x^2$, then x^2 is :								
(a) $\frac{p}{p+q}$	(b) $\frac{q}{p+q}$	(c) $\frac{q_P}{p-q}$	(d) None						
186. Two numbers a are:	re in the ratio 7:8 If 3 i	s added to each of t	hem ratio Becomes 8:9.The numbers						
	(b) 24,27	(c) 21,24	(d) 16,18						
paise coin is de		5 paise coins and f	paise and 25 paise. The number of 50 our times the numbers of one rupee						
(a) 64	(b) 32	(c) 16	(d)14						
the arrangemer		-	ntal car. If one person withdraws from of the car, then the share of each of						
	(b) $\frac{1}{8}$	(c) $\frac{1}{7}$	(d) $\frac{7}{8}$						
	-	-	A increase by 50% and those of B 3:7. What is A's earning ?						
(a) ₹21,000	(b) ₹26,000	(c) ₹28,000	(d) Data inadequate						
190. The third propo	rtional between $(a^2 - b^2)$	a^{2}) and $(a+b)^{2}$ is :							
(a) $\frac{a+b}{a-b}$	(b) $\frac{a-b}{a+b}$	(c) $\frac{\left(a-b\right)^2}{a+b}$	(d) $\frac{\left(a+b\right)^3}{a-b}$						
of the year profi (a) ₹ 72,600; ₹ 4	t is ₹2,42,000 then th 48,400; ₹1,21,000	e share of each is: (b) ₹ 48,4	84,000 and ₹2,10,000. If at the end 00 ; ₹ 1,21,000; ₹ 72,600 00: ₹ 1,21,400; ₹ 72,600						
192. If $\frac{p}{q} = -\frac{2}{3}$ then t	he value of $\frac{2p+q}{2p-q}$ is :								
	(b) $-\frac{1}{7}$	(c) $\frac{1}{7}$	(d) 7						

EDI	NO			EDNOVATE
	artn			
	oundation Fourth proportional t	o x. 2x.(x+1) is :		
	(a) x + 2	. ,	(c) (2x + 2)	(d) (2x - 2)
194. \	Which of the number	rs are not in proporti	on?	
((a) 6,8,5,7	(b) 7,14,6,12	(c) 18,27,12, 18	(d) 8,6,12,9
	Find two numbers s between them is 144	•	oportional between	them is 18 and third proportional
	(a) 9 ; 36	(b) 8 ; 32	(c) 7 ; 28	(d) 6;14
196	The mean proportior	between 24 and 54	is	
	(a) 33	(b) 34	(c) 35	(d) 36
1	• •	17.60 with a profit		type of rice of cost ₹ 15.54, the price then in which proportion the
	(a) 3:7	(b) 5:7	(c) 7:9	(d) 91:
198.	What must be addec	to each of the num	oers 10, 18, 22, 38 to	o make them proportional:
	(a) 5	(b) 2	(c) 3	(d) 9
		b) Indices :	
199. \	Value of $(a^{1/8} + a^{-1/8})($	$(a^{1/8} - a^{-1/8})(a^{1/4} + a^{-1/4})$	$)(a^{1/2}+a^{-1/2})$ is :	
	(a) $a + \frac{1}{a}$	(b) $a - \frac{1}{a}$	(c) $a^2 + \frac{1}{a^2}$	(d) $a^2 - \frac{1}{a^2}$
200. 3	Simplification of $\frac{x^{m3n}}{x}$	$\frac{n}{6m-6n}$. x^{4m-9n} is:		
	(a) x^m	(b) x ^{-m}	(c) x ⁿ	(d) x^{-n}
201.	If $4^x = 5^y = 20^z$ then z	z is equal to:		
		$\frac{x+y}{2}$	(c) $\frac{1}{xy}$	(d) $\frac{xy}{x+y}$
	(a) xy	(b) ^{xy}	(c) xy	(d) $x + y$
202.	$\left(\frac{\sqrt{3}}{9}\right)^{5/2} \left(\frac{9}{3\sqrt{3}}\right)^{7/2} \times 9$	is equal to :		
	(a) 1	(b) $\sqrt{3}$	(c) 3√3	(d) $\frac{3}{9\sqrt{3}}$
	If 2 ^x – 2 ^{x–1} = 4 then th (a) 2	ne value of x ^x is: (b)1	(c) 64	(d) 27

ED Ç	NO arthi oundation			EDNOYATE
204.	If $\mathbf{x} = \mathbf{y}^a, \mathbf{y} = \mathbf{z}^b$ and \mathbf{z}	$z = x^c$ then abc is:		
	(a) 2	(b) 1	(c)3	(d) 4
205.	$\frac{2^{n} + 2^{n-1}}{2^{n+1} - 2^{n}}$ (a) $\frac{1}{2}$	(b) ^{3/2}	(c) ^{2/3}	(d) ^{1/3}
206.	If $2^{x} \times 3^{y} \times 5^{z} = 360 \text{ T}$ (a) 3,2,1		e of x, y, z. ? (c) 2,3,1	(d) 1,3,2
207.	The recurring decima (a) 24/9	al 2.7777c (b) 22/9	an be expressed as (c) 26/9	(d) 25/9
208.	Find the value of X, I	f x. (x) ^{1/3} = $(x^{1/3})^x$		
	(a) 3	(b) 4	(c) 2	(d) 6
209.	If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$;	hen find the value of	$\left[\frac{a+b+c}{3}\right]^3 =$	
	(a) 9abc	(b) <u>1</u> 9 <i>abc</i>	(c) abc	(d) $\frac{1}{abc}$
210.	The value of $\left(\frac{y^a}{y^b}\right)^{a^2+1}$			(d) Nono
	(a) y	(b) -1	(c) 1	(d) None
211.	If $\mathbf{p}^x = \mathbf{q}, \mathbf{q}^y = \mathbf{r}, \mathbf{r}^z = \mathbf{p}^z$	⁶ then the value of x	yzis	
	(a) 0	(b) 1	(c) 3	(d) 6
212.	The value of $\frac{x^2 - (y - y)}{(x + z)^2}$	$\frac{z^{2}}{-y^{2}} + \frac{y^{2} - (x - z)^{2}}{(x + y)^{2} - z^{2}} + \frac{z}{(y)^{2}}$	$\frac{x^{2} - (x - y)^{2}}{(y + z)^{2} - x^{2}} =$	
	(a) 0	(b) 1	(c) -1	(d) ∞
213.	If $a = \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}}, b = \frac{\sqrt{6}}{\sqrt{6}}$			
	(a) 486	(b) 484	(c) 482	(d) 500

c) Logarithm:

ED Sea	arthi		EDNOVATE
224.	The value of $2^{\log x} + 2^{\log x^2} + 2^{\log x}$	x^{3} +	be
	$n(n+1)\log x$	(b) $n(n+1) \log x$	
	(c) $n^2 \log x$	(d) none of these	
225.	If $n = m!$ where ('m' is a positive i $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_4 n}$		e of:
	(a) 1 (b) 0	(c) -1	(d) 2
226.	If $log_x Y=100$ and $log_2 x=10$, then (a) 2^{10} (b) 2^{100}	the value of 'Y' is (c) 2 ^{1,000}	(d)2 ^{10,000}
227.	Which of the following is true. If $\frac{1}{a}$	$\frac{1}{b} + \frac{1}{ba} + \frac{1}{ca} = \frac{1}{aba}$	
	(a) $\log(ab+bc+ca) = abc$	(b) $\log\left(\frac{1}{a} + \frac{1}{b}\right)$	$\left(+\frac{1}{c}\right) = abc$
	(c) $\log(abc) = 0$	(d) $\log(a+b+)$	c) = 0
228.	Find Value of [log _y x .log _z y.log _x z] ³ (a) 0 (b) -1	= (c) 1	(d) 3
229.	Find the value of Log ₄ 9.Log ₃ 2 = (a) 3 (b) 9	(c) 2	(d) 1
230.	lf X=log ₂₄ 12; y=log ₃₆ 24; z=log ₄₈ 36 (a) 2xy (b) 2zx	then xyz+1=? (c) 2yz	(d) 2
231.	If $x^{2} + y^{2} = 7xy$ then $\log \frac{1}{3}(x+y)$	=	
	(a) logx+logy	(b) $\frac{1}{2} (\log x + \log y)$	
	(c) $\frac{1}{3} (\log x + \log y)$	(d) $\frac{1}{3} (\log x \cdot \log y)$	
232.	If log x = a-b ; log y=a+b then log	$\left(\frac{10x}{y^2}\right)$	
	(a) 1-a-3b (b) a-1+3b		(d) 1-b+3a
233.	Number of digits in the numeral for (a) 18 digits (b) 19 digits	or 2^{64} [Given log 2 = 0.3010] (c) 20 digits	

ED Sa	arthi		EDNOVATE
CA Fo	oundation		
004		sures of Central Tendency	•
234.		• •). Later on it is discovered that the salary of tead of ₹7,800. The corrected mean salary
	(a) 5,854	(b) 5,846	
	(c) 5,650	(d) None of the above	
005	lf the mode of a data is 4		
235.	(a) 18 (b) 2	8 mean is 24 then median 24 (c) 22	(d) 21
		.+ (0) 22	
236.	For data on frequency di	stribution of weights:	
	70, 73, 49, 57, 56, 44, 56	6, 71, 65, 62, 60, 50, 55, 49	, 63 and 45
		h as 5, the number of class	
	(a) 5 (b) 6	6 (c) 7	(d) 8
237.	The point of intersection	of the "less then "and "mor	e then "Ogives correspond to
237.		Mode (c) Median	
238.	_	a to Gwalior at an average per hour. What is his avera (b) 40 km per hou (d) 35 km per hou	r
239.	•	easures of central tendency /ledian (c) Mode	/ cannot be shown by graphical method? (d) Quartiles
0.40			
240.	GM of 8,4,2 is (a) 4 (b) 2	(c) 8	(d) None
	(a) 4 (b) 2	. (0) 0	
241.	Which of the following sta (a) Median is based on a (b) The Mode is the mid (c) The Median is the 2nd (d) The Mode is the 5th o	ll observations value d Quartile	
242.	For two numbers A.M.=1	0 and G.M.=8; the H.M…?	
	(a) 9 (b) 8	3.9 (c) 6.4	(d) None
243.	The 3rd decile for the val (a) 13 (b) 1	ues 15, 10, 20, 25, 18, 11, 0.7 (c) 11	9, 12 is (d) 11.5
244.	The A.M. of square of firs	st '2n' natural number is	
	(a) $\frac{1}{6}(2n+1)(4n-1)$	(b) $\frac{1}{6}(2n-1)(4n-1$	1)
	(a) $\frac{1}{6}(2n+1)(4n-1)$ (c) $\frac{1}{6}(2n-1)(4n+1)$	(b) $\frac{1}{6}(2n-1)(4n-1$	-1)

ED Solution CA Fo	NO arthi pundation			EDNOYATE
245.	A Random variab distribution is	les x follows uniforr	m distribution in th	ne interval [-3, 7]. Then the mean of
	(a) 2	(b) 4	(c) 5	(d) 6
246.		idents in a class. 10 Find the average m (b) 25		rage marks were 2.5. The total marks ho passed? (d) 86
247.				an is 24 then what will be those two
277.	numbers?			
	(a) 36 and 24 (c) 48 and 12		30 and 30 None of these	
		(d) 1		
248.		a is 55.6 and he mod		
	(a) 50.4	(b) 40.7	(c) 52.4	(d) None
249.		ordering the size of o	-	
	(a) Mean	(b) Median	(c) Mode	(d) None
250.	The mean of 6, 4, is	1, 5, 6, 10 and 3 is	5. If each numbe	r is added with 2, then the new mean
	(a) 7	(b) 5	(c) 6	(d) 10
251.		•		erent markets. You are to find average . What is the suitable form of average
	(a) AM	(b) GM	(c) HM	(d) None
				ax+b
252.	If Standard devia	tion of X is σ , then	n Standard deviat	ion of $\frac{ax+b}{c}$, where a, b and c are
	arbitrary constants		a	
	(a) σ	(b) $\frac{ac+b}{c}$	(c) $\frac{a}{c}$.	σ (d) $\left \frac{a}{c}\right \sigma$
253.	Which of the follow two series?	ving measures of dis	spersion is used fo	r calculating the consistency between
	(a) Quartile dev			Deviation
	(c) Coefficient		(d) None of t	
254.	$\sum x^2 = 3390, n = 30$	σ , σ = 7; then \overline{X} =		
	(a) 113	(b) 210	(c) 8	(d) None

	-			
<mark>ED</mark> ଟ୍ସ	arthi			EDNOVATE
CA Fo 255.	oundation If the mean of free	quency distribution is	s 100 and coefficien	t of variation is 45% then standard
200.	deviation is			
	(a) 45	(b) 0.45	(c) 0.045	(d) None
256.	Coefficient of mean 200	n deviation about me	ean for the first 9 nati 400	ural numbers is:
	(a) 9	(b) 80	(c) 9	(d) 50
257.	Mean=5 SD=26	Median 5, Q.D 1.5 tl	hen coefficient of Q I) is:
2011	(a) 35	(b) 39	(c) 30	(d) 32
258.	262 The formula f	or range of middle 50	0% itoms of a sorios	ic
230.		(b) $Q_3 - Q_2$		(d) $\frac{Q_3 - Q_1}{2}$
	(a)	(b)	(0) 12 11	(d) ${2}$
259.	1st quartile is 142	Semi-inter Quartile 1	8. Then median is	
	(a) 151	(b) 160	(c) 178	(d) None
260.	Co-efficient of QD	is equal to		
2001			$\frac{QD}{\times 100}$	
	(a) <i>M</i> ~100	(b) $\frac{QD}{x} \times 100$	(c) Z	(d) None
261.	lf everv observatio	n is increased by 5 tl	hen	
	-	by 5 (b) N		
	(c) QD increases b	y 5 (d) N	lone affected	
262.	Find the range of 6	3,5,4,3,1, 3,6,10,8.		
	(a) 6	(b) 3	(c) 9	(d) 10
263.	If $V(x) = 23$ Find var	riance of (2x+10:)		
	(a) 104	(b) 110	(c) 92	(d) 85

EDNO Saarthi CA Foundation			EDNOVATE
	C	orrelation & Regression	n :
264. In Spearman's (variables shall be		efficient, the sum of th	e differences of ranks between two
(a) 0	(b) 1	(c) -1	(d) None of them
V are 3X + 5U = 3	8 and -8Y - 7V =	= 44, what is the coefficie	0.38. The linear relation between U & ent of correlation between U & V?
(a) 0.38	(b) -0.38	(c) 0.40	(d) None of them
266. Two variables X is	and Y are re	elated as 4x + 3y = 7	7 then correlation between x and y
(a) Perfect positi (c) Zero	ve	(b) Perfect negative (d) None of these	
267. If r is the karl pe lines are at right a			ivariate distribution the two regression
(a) $r = \pm 1$	(b) r = 0	(c) $r = \pm \infty$	(d) None
268. If r = 0.28, Cov. (x			
(a) 8.75	(b) 9.04	(c) 6.25	(d) None
269. Price and Deman	•		
(a) No correlation (c) Negative corre		(b) Positive cor (d) None of the	
270. Determine the co		elation between x and y s	series
Number of items	X-Series 15	Y-Series 15	
Arithmetic mean	25	18	
Sum of Square of deviation of mean		138	
•		d Y series from mean = $\frac{1}{2}$	
(a) -0.89	(b) 0.89	(c) 0.69	(d) -0.69
272. Correlation coeffi + 1 is.	cient between x		ion coefficient between x - 2 and (-y/2)
(a) 1	(b) -1	(c) -1/2	(d) 1/2
	-	rofits and the No. of clair	
(a) Positive correl		(b) Negative co	
(c) No correlation		(d) None of the	se

ED					
	aarlhi				EDNOVATE
	Foundation If r = 0.6 then the co	efficient of non	n-determina	tion is	
	(a) 0.4	(b) -0.6		0.36	
275.	If the sum of the squ then the coefficient of				of 10 students in two students is 44,
	(a) 0.78	(b) 0.73		0.87	(d) None
276.	Coefficient of correl resultant coefficient			0.6. If both	X and Y are multiplied by -1. Then
	(a) 0.6	(b) Negative	(C)	1/0.6	(d) None
277.	280.If there is a cons (a) Convex		in the serie oncave	s then the ob	ained graph is:
	(c) Parabola	(d) Sti	raight line fi	rom left to righ	nt
278.	If the plotted points i	n a scatter dia	gram are ev	venly distribut	ed, then the correlation is
	(a) Zero	(b) Negative	(C)	Positive	(d) (a) or (b)
279.	The covariance betw	veen two varial	bles is		
	() 31		(b) Strictly	•	
	(c) Always Zero		(a) Either	positive of he	gative or zero
280.	If the regression lin between 'x' and 'y' is		y + 66 = 0 a	and $40x - 18x$	-18y = 214, the correlation coefficient
	(a) 1	(b) 0.6	(c) ·	-0.6	(d) -1
281.	The coefficients of regression.	correlation b	etween two	o variables)	K and Y is the simple of the two
	(a) Arithmetic Mean		(b) Geome		
	(c) Harmonic Mean		(d) None c	of the above	
282.	If 2 variables are une	correlated, the	ir regressio	n lines are:	
	(a) Parallel		(b) Perper		
	(c) Coincident		(a) incline	d at 45 degree	es
283.			2		lard the deviations, b_{xy} ; b_{yx} denote the vely, then the point of intersection of
	regression lines X or			-	
	(a) $(\overline{X};\overline{Y})$	(b) σ_x, σ_y		(C) $\left(\sigma_{x},\sigma_{y} ight)$	(d) $\left(\sigma_x^2, \sigma_y^2\right)$
284.	For certain x and y s 5x-6y+9=0	eries which ar	e correlated	d, the two line	of regression are
	15x - 8y - 130 = 0	The c	orrelation c	oefficient is	
	(a) 4/5	(b) 3/4		(c) 2/3	(d) 1/2

ED				EDNOVATE
Ş õ	arini			EVRUMIE
CA F	oundation			
285.	If Y=18X+ 5 is the r	egression line of X c	on Y; The value of b_j	_{vy} is
	(a) 5/18	(b) 18	(c) 5	(d) 1/18
				(),
286.	8x - 3y + 7 = 0, -7y +	6 = 0 are two regress	sion equation then t	he correlation coefficient, r =
	(a) 0.86	(b) -0.86	(c) 0.45	(d) -0.45
	(u) 0.00	(6) 0.00	(0) 0.40	(d) 0.40
297	If r = +1 or - 1 then	the two regression li	nos	
207.		-		
		between them		gle between them
	(c) Coincide		(d) Perpendicular	
000		lines of respectors		
288.				22 + y and 64x = 24+ 45y. then the
	value of regression			
	(a) F	$\frac{1}{5}$	(c) $\frac{64}{45}$	
	(a) 5	(D) ³	(C) 45	(d) 05
000	T	an fan a birariata	data ana o r	could the contract the
289.			e data are $2x - 5y$	y + 6 = 0 and $5x - 4y + 3 = 0$. Then the
	coefficient correlatio		·	_
	$\underline{-2\sqrt{2}}$	2	(c) $\frac{+2\sqrt{2}}{5}$	$\frac{\sqrt{2}}{\sqrt{2}}$
	(a) $\frac{-2\sqrt{2}}{5}$	(b) 5	(c) ⁵	(d) ⁵
290.	Two regression equ	ations are x +y=6 ar	nd $x + 2y = 10$ then	correlation coefficient between X any
	Y is			
				1
	(a) -1/2	(b) 1/2	(c) $\sqrt{2}$	(d) $\sqrt{2}$
291.	Which of the followi	na is true :		
_	_	-	σ	
	(a) $b_{xy} = r \cdot \frac{\sigma_y}{\sigma_x}$	(b) <i>l</i>	$b_{xy} = r \cdot \frac{\sigma_x}{\sigma_y}$	
	X			
	(c) $b_{xy} = \pi \cdot \frac{\sum xy}{\sigma_x}$	(d) /	$b_{xy} = \pi \cdot \frac{\sum xy}{\sigma_y}$	
	σ_x		σ_{y}	
292.	The two lines of reg	ression become ide	ntical when	
	(a) r = 1	(b) r = -1	(c) $r = 0$	(d) (a) or (b)
293.	Regression lines ar	e passes through the	9	points.
	(a) Mean		Standard deviation	F
	(c) Both (a) & (b)	(d) (d)		
		(u) i		
201	$5_{v} - 9_{r} - 22 \ \& 20_{r} - 9_{r}$	$-9_{\rm W} + 350$ are two rec	ression lines Find	the correlation coefficient between x
207.	•	$-y_y + 350$ and two reg		
	& y:	(b) 0 1	(c)-0 0	(d) -0 1
	(a)0.9	(b) 0.1	(c)-0.9	(d) -0.1

ED Se	no arthi			EDNOVATE
CA F	oundation	Diffe	rential Calcus :	
295.				$xy+y^2 - 4 = 0$ is given by
	(a) 0	(b) 1	(c) -1	(d) None
296.	$x = 2 t + 5 and y = t^{2}$	$\frac{dy}{dx} = ?$		
	(a) t	(b) -1/t	(c) 1/t	(d) 0
297.	If $f(x) = x^k$ and f' (1) = 10 then the value	e of k is	
		, (b) -10	(c) 1/10	(d) None
		dy		
298.	Given $x = 2^t + 5$; y =	$=$ t ² – 2 , then $\frac{dy}{dx}$ is c	alculated as :	
	(a) t	(b) 1/t	(c) -1/t	(d) None
299.	If $f(x) = {}^{x}C_{3}$; then	f'(1) = ?		
200.			5	5
	(a) $\frac{1}{6}$	(b) ⁻⁶	(c) $\frac{5}{6}$	$\frac{-5}{6}$
	d			
300.	$\frac{\mathrm{d}}{\mathrm{d}x} \left[2^{\log 2x} \right] = \underline{\qquad}$			
	(a) 1	(b) 0	(c) 1/2	(d) $2^x \cdot \log_2 x$
		der		
301.	If $y = e^{a \log x} + e^{x \log a}$, the second	hen $\frac{dy}{dx} =$		
	(a) X ^a + a ^x		(b) a. X ^{a-1} + a ^{<i>x</i>} log	а
	(c) aX ^{a-1} + Xa ^{x - 1}		(d) $X^{x} + a^{a}$	
302.				00 and the demand function for the when 18 items are sold is
	(a) 751	(x) = 1300 - x, the (b) 571	(c) 676	(d) 875
303.	If $y = x^2$, then dy/ dx	at $x = 1$ is equal to		
	(a) ()	(b) 1	(c) -1	(d) 2

(a) 0 (b) 1 (c) -1 (d) 2

Sequence & Series:

304. The first terms is:	and the last terms of an A	P, are - 4 and 146. Th	ne sum of terms is 7171. The number of
(a) 101	(b) 100	(c) 99	(d) None
	of square of first n natura		
(a) <u>n(n⊣</u> 2		(b) $\frac{n(n+1)(2n+1)}{6}$	
(c) <u>n(n –</u>	<u>1)(n – 1)</u> 6	(d) $\frac{n(n+1)(2n+2)}{6}$	
306. The sum	of all natural numbers be	tween 100 and 1000 w	hich are multiple of 5 is:
(a) 98,45	0 (b) 96,450	(c) 97,450	(d) 95,450
307. Find the (a) 1,56,3		between 250 and 1,00 (c) 1,65,375	00 which are exactly divisible by 3 : (d) 1,65,357
308. If the sur	n of n terms of an A.P is (3n ² - n) and its commo	n difference is 6, then its first term is
(a) 3	(b) 2	(c) 4	(d) 1
309. If the sur (a) 207	n of n terms of an A.P is 2 (b) 36	n ² + n. what is the diff (c) 90	erence between its 10 th term & 1 st term (d) 63
310. The sum progress		rm of an A.P is 8. Fir	nd the sum of the first 11 terms of the
(a) 44	(b) 22	(c) 19	(d) 11
311. 8 th term o	of A.P is 15, then sum of it	ts 15 terms is	
(a) 15	(b) 0	(c) 225	(d) 225/2
312. An AP ha	as 13 terms whose sum is	143. The third terms i	s 5, then first term is
(a) 4	(b) 7	(c) 9	(d) 2
313. If the sur	n of first 'n' terms of an A.	P is 6n ² +6n, then fourt	h term of the series:
(a) 120	(b) 72	(c) 48	(d) 24
314. If x, y, z a	are the terms in G.P then	the terms X ² +Y ² , XY+ ^v	$(Z, Y^2+Z^2 \text{ are in:}$
(a) A.P		(c) H.P	(d) None of these
315. The sum	of the infinite GP $1 + \frac{1}{3} + \frac{1}{3}$	1 9 + 1/27 +∞is equa	l to
(a) 1.95	(b) 1.5	(c) 1.75	(d) None

ED	NO aprilibi				EDNOVAT	F
CA F	oundation					
326.		v many terms of the	e sequence	e 256, 128,		
	(a) 8	(b) 9	(c))7	(d) None of these	
327.	(x+1), 3x, (4x+2)) are in A.P Find th	e value of	x		
	(a) 2	(b) 3	(c)		(d) 5	
328.		ers whose A.M is 1				
	(a) [10, 10]	(b) [16, 4]	(C)) [18, 2]	(d) [14, 6]	
	$\sum n^2$					
329.	$\sum n^2$ defines:	N. AND	/			
	(a) $\frac{n(n+1)(2n+1)}{6}$	-1)	(b) $\frac{n(n+1)}{2}$	1)		
	0		Z			
	(c) $\left[\frac{n(n+1)}{2}\right]^2$		(d) None	of these		
330.	The sum of an <i>i</i>	AP, whose first terr	n is -4 and	l last term i	s 146 is 7171. Find the value of n.	
		(b) 100	(c) 101		(d) 102	
331.		-	-	s: 1 – 1 + 1	- 1 + 1 − 1∞	
	(a) 1 ((b) ∞	(c) ½		(d) Does not exist	
332	If a a a repres	sent first second a	and third te	erm of an	A.P respectively, the first term is 2 a	nd
002.		inimum, then the co				na
	(a) 5/2 ((c) 2/5		(d) -2/5	
		. ,				
333.	33. Divide 144 into three parts which are in AP. and such that the largest is twice the smallest,				he	
		e number will be :	(a)			
	(a) 48 ((b) 36	(C) 13		(d) 32	
			Quadratic	Equations	3:	
334	On solving $\int x$	$\frac{1}{x} + \sqrt{\frac{1-x}{x}} = 2\frac{1}{6}$, we	o dot opo v	value of v a		
554.	•					
	$\frac{4}{12}$	(b) $\frac{1}{13}$		$\frac{2}{1}$	3	
	(a) ¹³	(b) ¹³	(C))13	(d) ¹³	
335.	Find the positiv	e value of k for w	hich the ea	quations: >	$x^{2}+kx+64=0$ and $x^{2}-8x+k=0$ will ha	ve
	real roots:			•		
	(a) 12	(b) 16	(c)) 18	(d) 22	
336.		equation is $2+\sqrt{5}$				
	(a) $x^2 + 4x - 1 =$		()) x² - 4x - 1) x² - 4x + 1		
	(c) $x^2 + 4x + 1 =$	= 0	(d)) x 4x + 1		

337. A man starts his job with a certain monthly salary and earns a fixed increment every year. If his salary was ₹ 1,500 after 4 years of service and ₹ 1,800 after 10 years of service, what was his starting salary and what is the annual increment in rupees?

(a) ₹1,300, ₹50	(b) ₹ 1,100, ₹ 50
(c) ₹ 1,500, ₹ 30	(d) None

338. The sides of an equilateral triangle are shortened by 12 units, 13 units and 14 units respectively and a right angled triangle is formed. The side of the equilateral triangle is:

339. Area of a rectangular garden is 8000 square metres. Ratio in length and breadth is 5:4. A path of uniform width, runs all round the inside of the garden. If the path occupies 3200 m², what is its width?

340. The value of

$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots \dots \infty}}}}}$$

(a) $1 \pm \sqrt{2}$ (b) $2 \pm \sqrt{5}$ (c) $2 \pm \sqrt{3}$ (d) None

341. If $(2+\sqrt{3})$ is a root of a quadratic equation $x^2 + p x + q = 0$ then find the value of p and q.

(a) (4.-1) (b) (4.1) (c) (-4, 1) (d) (2, 3)

342. A straight line passes through the point (3,2). Find the equation of the straight line. (a) x + y = 1 (b) x + y = 3 (c) x + y = 5 (d) x + y = 2343. Positive value of 'k' for which the roots at equation $12x^2 + kx + 5 = 0$ are in ratio 3:2, is (a) 5/12 (b) 12/5 (c) $\frac{5\sqrt{10}}{2}$ (d) $5\sqrt{10}$ 344. If one root of the equation $x^2 - 3x + k = 0$ is 2, then value of k will be (a) -10 (b) 0 (c) 2 (d) 10

345. It roots of equation $x^2 + x + r = 0$ are ' α ' and ' β ' and $\alpha^3 + \beta^3 = -6$. Find the value of 'r'? (a) $\frac{-5}{3}$ (b) $\frac{7}{3}$ (c) $\frac{-4}{3}$ (d) 1

346. If one root of the Equation $px^2 + qx + r = 0$ is r then other root of the Equation will be

(a) 1/q (b) 1/r (c) 1/p (d) $\frac{1}{p+q}$

347. If arithmetic mean between roots of a quadratic equation is 8 and the geometric mean between them is 5, the equation is –

(a) $x^2 - 16x - 25 = 0$ (b) $x^2 - 16x + 25 = 0$ (c) $x^2 - 16x + 5 = 0$ (d) None of these

348. Roots of equation $2x^2 + 3x + 7 = 0$ are α and β . The value of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is (a) 2 (b) 3/7 (c) 7/2 (d) -19/14

Inequalities :

349. Graphs of Inequations are drawn below :

(

DNC

CA Foundation

aarlhi

350. The common region (shaded part) shown in the diagram refers to the inequalities:

$$(a) 5x + 3y \le 30$$
 $(b) 5x + 3y \ge 30$ $x + y \le 9$ $x + y \le 9$ $y \le \frac{1}{2}x$ $y \ge x/3$ $y \le x/2$ $y \ge x/2$ $x \ge 0, y \ge 0$ $x \ge 0, y \ge 0.$ (c) $5x + 3y > 30$ (d) $5x + 3y > 30$ $x + y \ge 9$ $x + y < 9$ $y \le x/3$ $y \ge 9$ $y \ge x/2$ $x \ge 0, y \ge 0.$ $x \ge 0, y \ge 0.$ $x \ge 0, y \ge 0.$

- 351. If $\left| x + \frac{1}{4} \right| > \frac{7}{4}$, then: (a) $x < \frac{-3}{2}$ or x > 2 (b) x < -2 or $x > \frac{3}{2}$ (c) $-2 < x < \frac{3}{2}$ (d) None of these
- 352. On solving the inequalities $6x + y \ge 18$; $x + 4y \ge 12$; $2x + y \ge 10$, we get the following situation;
 - (a) (0,18),(12,0),(4,2)&(7,6) (b) (3,0),(0,3),(4,2),&(7,6) (c) (5, 0), (0, 10), (4, 2) & (7, 6) (d) (0, 18), (12, 0), (4, 2), (0, 0) and (7, 6)
- 353. The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact is represented by : (Taking experienced person as x and fresh person as y)

(a)
$$y \ge \frac{x}{5}$$
 (b) $5y \le x$ (c) $5y \ge x$ (d) None

354. The shaded region represents:

- $x + y \le 10, x \ge 0, y \ge 0$
- (d) None of these.

355. The shaded region represents:

ebno saarthi			EDNOVATE
CA Foundation 361. A sinking fund is cr	eated for redeeming	udebentures worth ₹	5 lacs at the end of 25 years. How
much provision nee	eds to be made out		provided sinking fund investments
can earn interest at (a) 12,006	4% p.a.? (b) 12,040	(c) 12,039	(d) 12,035
	(2) 2,010	(0),000	(4)
362. Future value of an o		Γ	
$A(n,i) = A\left[\frac{(1+i)}{i}\right]$	<u>-1</u>	$A(n,i) = A\left[\frac{(1+i)^n + 1}{i}\right]$	
	(b) רייי		
$A(n,i) = A \left[\frac{1 - (1 - i)}{i} \right]$	+1)	$A(n,i) = A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$	
(c)	」 (d)		
			pound interest at 5% p.a. in annual
instalment of ₹ 2,00 (a) 10 years		mber of years in whic (c) 14 years	ch the debt would be paid off.
	(5) 12 yours	(0) 14 yours	
rate of interest is 6%	% compounding per.		he end of each year for 10 years. If
(given (1.06) ⁻¹⁰ = 0.5			
(a) ₹ 7360	(b) ₹ 8,360	(c) ₹ 12,000	(d) None of these
365. The future value of compounded annua	•	000 is made annuall	y for 8 years at interest rate of 9%
[Given that $(1.09)^8$ =	1.99256]		
(a) ₹ 55,142.22	(b) ₹ 65,142.22	(c) ₹ 65,532.22	(d) ₹ 57,425.22
		vested every year a ded annually at 10%	is to accumulate ₹ 6, 00,000 at the rate of interest?
(a) ₹ 37,467	(b) ₹ 37,476	(c) ₹ 37,647	(d) ₹ 37,674
367. The future value of compound annually	•	00 made annually for	r 5 years at the rate of interest 14%
(a) ₹ 5610	(b) ₹ 6610	(c) ₹ 6160	(d) ₹ 5160
sixteen years. You annum interest rate	deposit this amount	t in a bank as and v ally. What is the pres	ear starting from today for the next when you receive and get 8.5% per sent value of this money:[Given that
(a) 83,042	(b) 90,100	(c) 93,042	(d) 10,100
369. The future value of compounded annua	•	00 made annually fo	r 5 years at an interest rate of 10%
[Given that $(1.1)^5 = 1$.61051		
(a) 9517.56		(c) 9715.56	(d) 9175.65

- 370. What sum should be invested at the end of every year so as to accumulate an amount of ₹ 796870 at the of 10 years at the rate of interest 10% compounded annually, [given that A(10;0.1)=15.9374]
 - (a) 40,000 (b) 4,50,000 (c) 4,80,000 (d) 50,000
- 371. A person invests ₹ 2,000 at the end of each month @ of interest 6% compounding monthly, find the amount of annuity after the 10th interest is:

(a) ₹ 20,456 (b) ₹ 20,156 (c) ₹ 20,256 (d) ₹ 20,356

- 372. Determine the present value of perpetuity of ₹ 50,000 per month @ Rate of interest 12% p.a is______
 (a) ₹ 45, 00,000
 (b) ₹ 50, 00,000
 (c) ₹ 55, 00,000
 (d) ₹ 60, 00, 000
- 373. Let a person invest a fixed sum at the end of each month in an account paying interest 12% per year compounded monthly. It the future value of this annuity after the 12th payment is ₹ 55,000 then the amount invested every month is?

(a) ₹ 4,837 (b) ₹ 4,637 (c) ₹ 4,337 (d) ₹ 3337

- 374. ₹ 800 is invested at the end of each month in an. account paying interest 6% per year compounded monthly. What is the future value of this annually after 10 payment?
 (a) ₹ 4,444
 (b) ₹ 8,756
 (c) ₹ 3,491
 (d) ₹ 8,182
- 375. The present value of an Annuity immediate is the same as
 - (a) Annuity regular for (n -1) year plus the initial receipt in the beginning of the period
 - (b) Annuity regular for (n.-1) years
 - (c) Annuity regular for (n + 1) years
 - (d) Annuity regular for (n + 1) years plus the initial receipt in the beginning of the period
- 376. Find the future value of annuity of ? 1,000 made annually for 7 year at interest rate of 14% compounded annually (Given that 1.14⁷ = 2.5023)
 (a) ₹ 10,730.7
 (b) ₹ 5,365.35
 (c) ₹ 8,756
 (d) ₹ 9892.34

377. A loan of ₹ 1,02,000 is to be paid back in two equal annual instalments. If the rate of interest is 4% p.a., compounded annually, then the total interest charged (in ₹) under this instalment plan is

- (a) 6160 (b) 8120 (c) 5980 (d) 7560
- 378. If the nominal rate of growth is 17% and inflation is 9% for the five years. Let P be the Gross Domestic Product (GDP) amount at the present year then the projected real GDP after 6 years is

(a) 1.587 p (b) 1.921 p (c) 1.403 P (d) 2.51 p

- 379. If discount rate is 14% per annum, then how much a company has pay to receive ₹ 280 growing at 9% annually forever.
 - (a) ₹ 5,600 (b) ₹ 2,800 (c) ₹ 1,400 (d) ₹ 4,200
- 380. The Future value of annuity of ₹ 2,000 for 5 years at 5% compounded annually is given (in nearest ₹) as
 - (a) 51051 (b) 21021 (c) 15624 (d) 61254
- 381. Mr. X wants to accumulate ₹ 50,00,000 at the end of 10 years. Then how much amount is required to be invested every year if interest is compounded annually at 10% (Given that P(10,0.10) = 15.9374298)
 - (a) ₹ 3,13,726.87
 (b) ₹ 4,13,726.87
 (c) ₹ 3,53,726.87
 (d) ₹ 4,53,726.87
- 382. The present value of an annuity of ₹ 25,000 to be received after 10 years at 6% per annum compounded annually is ₹ _____.(1.06⁵ = 1.33823)
 - (a) ₹ 15,960 (b) ₹ 13,960 (c) ₹ 11,960 (d) ₹ 17,960
- 383. Find the future value annuity of ₹1,000 made annually for 7 years at interest rate 14% compounded annually. Give that (1.14)²=2.5023
 (a) ₹10,730.71
 (b) ₹ 5,365.35
 (c) ₹ 8,756
 (d) ₹ 9,892.34
- 384. ₹ 2,500 is paid every year for 10 years to pay off a loan. What is the loan amount if interest rate be 14% p.a. compounded annually?
 (a) ₹15,847.90
 (b) ₹ 13,040.27
 (c) ₹ 14,674.21
 (d) ₹ 16,345.11

5. Rai made an investment of ₹15.000 in a scheme and at the time of maturity the amount

385. Raj made an investment of ₹15,000 in a scheme and at the time of maturity the amount was ₹
 25,000. If Compound Annual Growth Rate (CAGR) for this CAGR for this Investment is 8.88%.
 Calculate the approximate number of years for which he has invested the amount.

- (a) 6 (b) 7.7 (c) 5.5 (d) 7
- 386. Madhu takes a loan of ₹50,000 from XYZ Bank. The rate of interest is 10% per annum. The first instalment will be paid at the end of year 5. Determine the amount (in ₹) of equal instalments, if Madhu wishes to repay the amount in five instalments.
 (a) ₹ 19,510
 (b) ₹19,430
 (c) ₹19,310
 (d) ₹19,630
- 387. Ramesh invests 20,000 per year in a stock index fund, which earns 9% per year, for the next ten years. What would be the closest value of the accumulated value of the investment upon payment of the last instalment? $(1.09^{10} = 2.36736)$
 - (a) ₹ 3,88,764,968
 (b) ₹ 3,03,858.594
 (c) ₹ 2,68,728.484
 (d) ₹ 4,08,178.364
- 388. A company creates a sinking fund of ₹ 2,00,000 in a bank account for 15 years bank offers interest rate 6% per annum the yearly payment to be paid by company is approximately ↔ (if

EDNC Şaar	गीन			EDNOVATE	
CA Found					
	d, use: 1.06 ¹⁴ = 2	,			
(a) ₹	8,945	(b) ₹ 8,145	(c) ₹ 9,345	(d) ₹ 9,645	
end		erest is compounded	•••	as to accumulate ₹ 5,00,000 at the Where A (12, 0.1)= 21.384284). (d) ₹ 28362.75	
Ass be t	uming that intere he future value of	st rate on this depo f this annuity? Given	sit is 7% per annum that (1+0.07) ¹² =2.2		
(a) ₹	\$ 5,40,526	(b) ₹ 3,82,813	(c) ₹ 6,43,483	(d) ₹ 3,57,769	
com	pounded annuall	y. What is future val	ue of the annuity?	terest rate of 8ne cent per annum	
(a) x	8 32,644	(D) < 32,404	(c) ₹ 34,4264	(d) < 30,442	
com		•	value of this annuity	aying interest @12% per annum just after making 11 th payment? (d) ₹ 57,100	
(a) (b) (c)	 Sinking fund factor is the reciprocal of: (a) Present value interest factor of a single cash flow (b) Present value interest factor of an annuity (c) Future value interest factor of an annuity (d) Future value interest factor of a single cash flow 				
		e of annuity of ₹50 y. Given that (1.14)		for 7 years interest rate of 14%	
(a) ₹	15635	(b) ₹10,730.74	(c) ₹16,535.	35 (d) ₹16,355.35	
	ermine the prese rest of 14% p.a.?	nt value of perpetuit	y 10 per month for i	nfinite period at an effective rate of	
(a) ₹	\$657	(b) ₹757	(c) ₹857	(d) ₹957	
(a) F (b) F (c) F	F.V of ordinary ar F.V of ordinary ar	g statement is true? nuity < F.V of annui nuity > F.V of annui nuity > P.V of annui	ty due		
		t ₹ 900 per month i money will you get a		pays 14.8% interest compounded	
	t 8,511	(b) ₹9,000	(c) ₹9,200	(d) ₹1,000	

- 398. ABC Ltd. wants to lease out an asset costing ₹ 3,60,000 for a five year period. It has fixed a rental of ₹ 1,05,000 per annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded annually on which money can be invested by the company. Is this agreement favourable to the company?
 - (a) Leasing is not favourable to the lessor.
 - (b) Leasing is favourable to the lessor.
 - (c) Both (a) and (b)
 - (d) None
- 399. A company is considering proposal of purchasing a machine either by making full payment of ₹ or by leasing it for four years at an annual rate of ₹ 1,250. Which course of action is 4.000 preferable if the company can borrow money at 14% compounded annually?
 - (a) Leasing is not favourable to the lessor.
 - (b) Leasing is favourable to the lessor.
 - (c) Both (a) and (b)
 - (d) None
- 400. A company may obtain a machine either by leasing it for 5 years (useful life) at an annual rent of ₹ 2,000 or by purchasing the machine for ₹ 8,100. If the company can borrow money at 18% per annum, which alternative is preferable?

(a) l	easing
-------	--------

(c) Can't say (d) None of these

401. A person wants to lease out a machine costing ₹ 5,00,000 for a 10 year period. It has fixed a rental of ₹ 51,272 per annum payable annually starting the end of first year. Suppose rate of interest is 10% per annum, compounded annually on which money can be invested. To whom this agreement is s favourable'

(a) Favour for lessee (b) Favour for lessor

(c) Not for both (d) can't be determined

(b) Purchasing

- 402. A machine can be purchased for 50000. Machine will contribute ` 12000 per year for the next five years. Assume borrowing cost is 10% per annum compounded annually. Determine whether machine should be purchased or not.
 - (a) Machine must be purchased.
 - (b) Machine must not be purchased.
 - (c) Both (a) and (b)
 - (d) None
- 403. Assuming that the discount rate is 7% per annum, how much would you pay to receive ₹ 50, growing at 5%, annually, forever?

(a) ₹ 1500 (b) ₹ 2000 (c) ₹ 2500 (d) ₹ 3000

404. Assuming that the discount rate is 7% per annum, how much would you pay to receive ₹200, growing at 5%, annually, forever? (a) ₹ 2500 (b)₹ 5000 (c) ₹ 7500 (d) ₹ 10000

ED	arth						ED	NOV	ATE			
CA Foundation												
405. If a person bought a house by paying ₹ 45, 00,000 down payment and ₹ 80,000 at the end of												
each year till the perpetuity, assuming the rate of interest as 16%, the present value of house (in₹) is given as												
	(a) ₹ 47,00,000	0 (c) ₹	₹ 57,80,0	00 (d) ₹ 50,00,000								
406. If discount rate is 14% per annum, then how much a company has pay to receive ₹ 280 growing at 9% annually forever.												
	(a) ₹ 5,600 (b) ₹ 2,800				₹ 1,400	(d) ₹ 4,200						
407. Suppose the revenues of a company for four years (t) in the above formula, have been												
	Year 2013		3	2014		2015		2016				
	Revenues	Revenues 100		120		160		210				
	Calculate Compound annual Growth Rate.											
	(a) 27.74	(b) 20	(c) 3	30	(d) None							
408.	Let the operating	profit of a m	anufac	cturer for fi	ve years	is given as	:					
	Year		1	2	3	4	5	6				
	Operating profit	(in Lakh ₹)	90	100	106.4	107.14	120.24	157.35				
	Then the operating profit of Compound Annual Growth Rate (CAGR) for year 6 with respect to											
	year 2 is given at											
	(a) 9% (b) 12%		(c) 11%		(d) 13%							
Index Number :												
409. If $\sum P_0 Q_0 = 116$, $\sum P_0 Q_1 = 140 \sum P_1 Q_0 = 97$, $\sum P_1 Q_1 = 117$ then Fisher's ideal index number is												
	(a) 184 (b) 83.59		(c) 119.66		(d) 120							
410.	Find the Paasch year.	ne's Index nu	umber	for price f	from the	following d	lata takii	ng 1970 as	the base			
	Commodity	Commodity 1970		1975								
		Price quar	ntity	Price qua	ntity							
	А	1 6		3 5								
	В	3 5		8 5								
	С	4 8		10 6								
	(a) 261.36	(b) 265	.48	(c) 274	4.32	(d) 28	32				
411. Net monthly of an employees was ₹ 3,000. The consumer price index number in 1985 is 250												
with rightly compensated then the additional dear- ness allowance to be paid to the employee is:												
	is: (a) ₹4,000	(b) ₹4,8	00	(c) ₹	\$5,500	(H)	₹4,500					
	(u) \7,000	(0) \4,0			0,000	(u)	、 , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

edno zaarthi					ED	NOVATE					
CA Foundation											
412. Time Reversal Test is satisfied by											
	(a) Fisher's ideal index (b) Dorbish Bowley's index										
(c) Laspeyre's index	(c) Laspeyre's index (d) None of these										
•	13. Bowley's Index Number = 150, Laspeyre's index = 180 then Paasche's index number is										
(a) 120	(b) 130		(c) 105)	(d) None						
414. In 2005 price index is 286 with base 1995 then how much price in- creased in 2005 with base 1995?											
(a) 286%				6	(d) 186%						
415. The index number for the year 2012 taking 2011 as base using simple average of price relatives method from data given below is:											
Commodity	A	B	C	D	E	-					
Price in $2011(P_0)$	115	108	95	80	$90 \sum P_0 = 488$	-					
Price in 2012 (P_1)	125	117	108	95	$95 \sum P_1 = 540$						
(a) 112 (b) 1	17	(c)1	20	((d) 111	-					
416. An index time series					-	s of time					
(a) Index	(a) Index (b) absol		(c) Rel	ative	(d) None						
417. Monthly salary of an employee was ₹10,000 in the year 2000 and it was increased to ₹20,000 in the year 2013 while the consumer price index number is 240 in year 2013 with the base year 2000, what should be his salary in comparison of consumer price index in the year 2013?											
(a) 2,000	(b) 16,00	(b) 16,000		000	(d) None						
418. $\sum p_1 q_0 = 1180, \sum p_0 q_0$	418. $\sum p_1 q_0 = 1180$, $\sum p_0 q_0 = 1170$, $\sum p_1 q_1 = 1064$, $\sum p_0 q_1 = 1100$, then Fisher ideal index number is										
(a) 96.73	(b) 98.79	(b) 98.795		77	(d) 100.8						