Formula 1Class Boundary Mutually Exclusive ClassificationUCB = UCL and LCB = LCL Mutually Inclusive ClassificationFormula 2Mid-Point / Class Mark of Class Interval: $\frac{LCL + UCL}{2}$ or $\frac{LCB + UCB}{2}$ Formula 3Class Length / Width of Class / Size of Class: UCB-LCBFormula 4Frequency Density of a Class:Frequency of the class Class length of the classFormula 5Relative Frequency: Percentage Frequency:Frequency of the class Total Frequency of distribution Percentage Frequency: $\frac{Frequency of distribution}{Total Frequency of distribution} \times 100$ Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distributionx = individual value x = mid-point of class interval
Mutually Inclusive ClassificationUCB = UCL + 0.5 and LCB = LCL - 0.5Formula 2Mid-Point / Class Mark of Class Interval: $\frac{LCL + UCL}{2}$ or $\frac{LCB + UCB}{2}$ Formula 3Class Length / Width of Class / Size of Class: UCB - LCBFormula 4Frequency Density of a Class: $\frac{Frequency of the class}{Class length of the class}$ Formula 5Relative Frequency: $\frac{Frequency of the class}{Total Frequency of distribution}$ Percentage Frequency: $\frac{Frequency of the class}{Total Frequency of distribution} \times 100$ Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x = individual value$
Formula 2Mid-Point / Class Mark of Class Interval: $\frac{LCL + UCL}{2}$ or $\frac{LCB + UCB}{2}$ Formula 3Class Length / Width of Class / Size of Class: $UCB - LCB$ Formula 4Frequency Density of a Class: $\frac{Frequency of the class}{Class length of the class}$ Formula 5Relative Frequency: $\frac{Frequency of the class}{Total Frequency of distribution}$ Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ $\overline{x} = individual value$
Formula 4Frequency Density of a Class:Frequency of the class Class length of the classFormula 5Relative Frequency:Frequency of the class Total Frequency of distribution Percentage Frequency:Frequency of the class Total Frequency of distributionFormula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ $\overline{x} = \frac{\ln individual value}{\ln case of grouped distribution}$
Formula 4Frequency Density of a Class:Frequency of the class Class length of the classFormula 5Relative Frequency:Frequency of the class Total Frequency of distribution Percentage Frequency:Frequency of the class Total Frequency of distributionFormula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ $\overline{x} = \frac{\ln individual value}{\ln case of grouped distribution}$
Formula 4Frequency Density of a Class: Class length of the class Class length of the classFormula 5Relative Frequency: Total Frequency of distribution Percentage Frequency: Total Frequency of distributionFormula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: In case of ungrouped distribution In case of grouped frequency distribution
Formula 5Relative Frequency:Total Frequency of distribution Frequency of the class Total Frequency of distributionFormula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ $\overline{x} = \frac{individual value}{in case of grouped distribution}$ $x = individual value$
Formula 7Frequency:Frequency of the class Total Frequency of distribution×100Formula 7AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x =$ individual value $x =$ mid-point of class interval
Formula 6Percentage Frequency: $ \frac{\text{Frequency of the class}}{\text{Total Frequency of distribution}} \times 100 $ Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x = \text{ individual value}$ In case of grouped frequency distribution $x = \text{mid-point of class interval}$
Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x = individual value$ In case of grouped frequency distribution $x = mid-point of class interval$
Formula 6AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$ Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x = individual value$ In case of grouped frequency distribution $x = mid-point of class interval$
Formula 7AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution $x = individual value$ In case of grouped frequency distribution $x = mid$ -point of class interval
In case of ungrouped distribution x = individual value In case of grouped frequency distribution x = mid-point of class interval
AM using assumed mean / step deviation method
Formula 8 $\overline{x} = A + \frac{\sum fd}{N} \times C$ where $d = \frac{x - A}{C}$, A is assumed mean, C is class length
Formula 9 The algebraic sum of deviations of a set of observations from their AM is zero $\sum (x - \overline{x}) = 0$
Formula 10 Combined AM: $\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$
Median in case of discrete distribution
Formula 11 If number of observations are odd Median is middle term
If number of observations are even AM of two middle terms
Same formula is used for ungrouped frequency distribution
Median in case of grouped frequency distribution
Step 1 Prepare a less than type cumulative frequency distribution
Step 2 Calculate $\frac{N}{2}$ and check between which class boundaries it falls and call it
as Median Class
Step 3 Find I ₁ (LCB of median class), N ₁ (cumulative frequency of median class),
Formula 12 N ₁ (cumulative frequency of pre-median class), C (class length of median
class)
Step 4 Appy Formula
$Me = I_1 + \left(\frac{\frac{N}{2} - N_1}{N_u - N_1}\right) \times C$

	For a set of observations, the	e sum of absolute deviations	is minimum, when the		
Formula 13	deviations are taken from the median. $\sum(x-\overline{x})=0$ is minimum				
	Quartiles in case of discrete observations:				
	First Quartile	Second Quartile	Third Quartile		
Formula 14		$Q_2 = \left((n+1) \times \frac{2}{4} \right)^{\text{th}} \text{term}$			
	Note: above formula gives the term. Final value to be calculated based on th				
	Deciles in case of discrete observations:				
Formula 15	First Decile	Second Decile	Ninth Decile		
		$D_2 = \left((n+1) \times \frac{2}{10} \right)^{\text{th}} \text{term}$			
		Note: above formula gives the term. Final value to be calculated based on the term			
	Percentiles in case of discret		a oth p		
		Second Percentile			
Formula 16	$P_1 = \left((n+1) \times \frac{1}{100} \right)^{\text{th}} \text{term}$				
	Note: above formula gives the	ne term. Final value to be cal	culated based on the term		
	Quartiles in case of Grouped	Frequency Distribution: Step	os are like median with few		
	modifications.	ard a			
	1 st C	Quartile 3 rd Qua	rtile		
Formula 17		Quartile 3^{rd} Quaass using $\frac{N}{4}$ Find Q_3 class u			
	$Q_1 = I_1 + $	$\left(\frac{N}{4} - N_{I}\right) \times C \left Q_{3} = I_{1} + \left(\frac{3N}{4} - N_{I}\right)\right $	$\left(\frac{-N_{1}}{-N_{1}}\right) \times C$		
	Deciles in case of Grouped Frequency Distribution: Steps are like median with few modifications.				
		Decile 9 th D	ecile		
Formula 18	Find D ₁ cla	ss using $\frac{N}{10}$ Find D ₉ class	using — 10		
	$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $	$\left(\frac{N}{0}-N_{1}\right)$	$-\mathbf{N}_{\mathbf{I}}$		
	$D_1 = I_1 + \begin{bmatrix} \pm \\ N \end{bmatrix}$	$\left \begin{array}{c} \frac{N}{O} - N_{I} \\ \frac{1}{O} - N_{I} \end{array} \right \times C \qquad \left \begin{array}{c} D_{9} = I_{1} + \left(\begin{array}{c} \frac{9N}{10} \\ \frac{10}{N_{u}} \end{array} \right) \right $	$\left -\mathbf{N}_{\mathrm{I}} \right \times \mathbf{C}$		
	Percentiles in case of Grouped Frequency Distribution: Steps are like median with				
	modifications.	· ·	·		
Formula 19	1 st Pe	ercentile 99 th Per			
	Find P_1 clas	ss using $\frac{N}{100}$ Find P ₉₉ class	using $\frac{99N}{10}$		

	$P_{1} = I_{1} + \left(\frac{\frac{N}{100} - N_{I}}{N_{u} - N_{I}}\right) \times C \qquad P_{99} = I_{1} + I_{1} + I_{2} + I_{2} + I_{3} + I_{3}$	$+\left(\frac{\frac{99N}{10}-N_{1}}{N_{u}-N_{1}}\right)\times C$	
Formula 20	Mode in case of discrete observation: observation repeating for maximum no. of times or observation with highest frequency Note: There can be multiple modes also. If all observations are having same frequency, then there is no mode.		
Formula 21	Mode in case of grouped frequency distribution: Find Modal Class (Class with highest frequency) then apply below formula $Mo = l_1 + \left(\frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_1}\right) \times C$ where, $l_1 = LCB$ of modal class f_0 = frequency of modal class, f_{-1} = frequency of pre- modal class, f_1 = frequency of post modal class, C = class length of modal class		
Formula 22	Relationship between Mean, Median and Mode in case of Symmetrical Distribution: Mean = Median = Mode		
Formula 23	Relationship between Mean, Median and Mode in case of moderately skewed distribution: Mean – Mode = 3 (Mean – Median)		
Formula 24	Geometric Mean in case of discrete positive observations: $G = (x_1 \times x_2 \times \times x_n)^{1/n}$		
Formula 25	Geometric Mean in case of frequency distribution: $G = \left(x_1^{f_1} \times x_2^{f_2} \times \times x_n^{f_n}\right)^{1/N}$		
Formula 26	$G = (x_1^{l_1} \times x_2^{l_2} \times \times x_n^{l_n})$ Harmonic Mean in case of discrete observations: $H = \frac{n}{\sum \left(\frac{1}{x}\right)}$		
Formula 27	Harmonic Mean in case of frequency distribution: H	$=\frac{N}{\sum(\frac{f}{x})}$	
Formula 28	Combined HM = $\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$		
Formula 29	Relationship between AM, GM and HM Situation When all the observations are identical / same When all the observations are distinct / different In General	Relationship $AM = GM = HM$ $AM > GM > HM$ $AM \ge GM \ge HM$	
Formula 30	Range in case of discrete observations: L – S where L = Largest Observation, S = Smallest Observa	tion	
Formula 31	Range in case of Grouped Frequency Distribution: L - L = UCB of last class interval, S = LCB of first-class interval	– S	
Formula 32	Coefficient of Range $\frac{L-S}{L+S} \times 100$		

	Mean Deviation in case of discrete observations	
Formula 33	$MD_{A} = \frac{1}{n}\Sigma x-A $ where A is any appropriate central tendency (as given)	
	Mean Deviation (in case of grouped frequency distributions)	
Formula 34	$MD_A = \frac{1}{N} \Sigma f x - A $ where A is any appropriate central tendency (as given)	
Formula 35	Coefficient of Mean Deviation: $\frac{\text{Mean Deviation about A}}{A} \times 100$	
	Standard Deviation in case of discrete observations:	
Formula 36	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum(x - \overline{x})^{2}}{n}} \text{ or shorter formula } \sigma_{x} = SD_{x} = \sqrt{\frac{\sum x^{2}}{n} - (\overline{x})^{2}}$	
	Standard Deviation in case of grouped frequency observations	
Formula 37	$\sigma_x = SD_x = \sqrt{\frac{\sum f(x - \overline{x})^2}{N}}$ or shorter formula $\sigma_x = SD_x = \sqrt{\frac{\sum fx^2}{N} - (\overline{x})^2}$	
Formula 38	Coefficient of Variation: $\frac{SD_x}{\overline{x}} \times 100$	
	If there are only two observations, then SD is half of range	
Formula 39	$SD = \frac{ a-b }{2}$	
	2	
Formula 40	Standard Deviation of first n natural numbers: $s = \sqrt{\frac{n^2 - 1}{12}}$	
	Combined SD: $SD_c = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$	
Formula 41	$1 n_1 + n_2$	
	$d_1 = \overline{x}_c - \overline{x}_1$ and $d_2 = \overline{x}_c - \overline{x}_2$	
Formula 42	If all the observations are constant, then SD/ MD/ Range is ZERO	
Formaula 42	Change of Origin and Scale: No effect of change of origin but affected by change of	
Formula 43	scale in the magnitude (ignore sign) $SD_y = b SD_x$	
	Note: same thing will apply to all the measures of dispersion $Q_{2} - Q_{2}$	
Formula 44	Quartile Deviation: $QD_x = \frac{Q_3 - Q_1}{2}$	
Formula 45	Coefficient of Quartile Deviation: $\frac{Q_3 - Q_1}{Q_3 - Q_1} \times 100$	
Formula 45	$\frac{1}{Q_3 + Q_1} \times 100$	
Formula 46	Relationship between SD, MD and QD	
	4SD = 5MD = 6QD or SD:MD:QD = 15:12:10	
Formula 47	Basic Formula of Probability: $P(A) = \frac{No. of favorable events to A}{Total no. of events}$	
	no of favorable events	
Formula 48	Odds in favour of Event A: no. of unfavorable events	
Formula 40	no of unfavorable events	
Formula 49	Odds against an Event A: $1000000000000000000000000000000000000$	
Formula 50	Number of total outcomes of a random experiment:	
	If an experiment results in p outcomes and if it is repeated q times, then	

Show your love by using code **CAPRANAV** while taking Unacademy Subscriptions

	Total number of outcomes is p ^q	
	Relative Frequency Probability	
Formula 51	no. of times the event occurred during experimental trials $= \frac{f_A}{f_A}$	
	total no. of trials n	
	Set Based Probability: $P(A) = \frac{\text{no.of sample points in A}}{\text{no.of sample points in S}} = \frac{n(A)}{n(S)}$	
Formula 52	no.of sample points in S n(S)	
_	here A is Event Set and S is Sample Space	
Formula 53	Addition Theorem 1: In case of two mutually exclusive events A and B	
	$P(A\cup B) = P(A+B) = P(A \text{ or } B) = P(A) + P(B)$ Addition Theorem 2: In case of two or more mutually exclusive events	
Formula 54	Addition Theorem 2: For any two events Addition Theorem 3: For any two events	
	Addition Theorem 3: For any two events	
Formula 55	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	Addition Theorem 4: In case of any three events	
Formula 56	$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$	
	Conditional Probability of Event B when Event A is already occurred	
Formula 57	$P(B / A) = \frac{P(B \cap A)}{P(A)} \text{ provided } P(A) \neq 0$	
	Conditional Probability of Event A when Event B is already occurred	
Formula 58	$P(A / B) = \frac{P(B \cap A)}{P(B)} \text{ provided } P(B) \neq 0$	
	. (5)	
Formula 59	Compound Theorem: In case of two dependent events	
	$P(A \cap B) = P(B) \times P(A/B)$ or $P(A \cap B) = P(A) \times P(B/A)$	
Formula 60	Compound Theorem: In case of two independent events	
	$P(A \cap B) = P(A) \times P(B)$	
Formula 61	Expected value of a Probability Distribution: $E(x) = \sum p_i x_i$	
Formula OI	Also, $E(x) = \mu$ (here μ means mean of probability distribution)	
Formula 62	Variance of Probability Distribution: $V(x) = E(x - \mu)^2 = E(x^2) - [E(x)]^2$	
Formula C2	Probability Mass Function in case of Binomial Distribution:	
Formula 63	$f(x) = P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$	
Farmer La CA	Mean of Binomial Distribution: $\mu = np$	
Formula 64	Variance of Binomial Distribution: $\sigma^2 = npq$	
	Mode in case of Binomial Distribution:	
	Step 1 Calculate (n+1)p	
	Step 2A If (n+1)p is an integer, there will be two modes:	
Formula 65	$\mu_0 = (n+1)p \& [(n+1)p-1]$	
	Step 2B If (n+1)p is a non-integer, there will be only one mode:	
	μ_0 = largest integer contained in (n+1)p	
	$e^{-m}m^{x}$	
Formula 66	Probability Mass Function in case of Poisson Distribution: $f(x) = P(X = x) = \frac{e^{-x}m^2}{x!}$	
Formula 67	Mean of Poisson Distribution: $\mu = m$	

	Variance of Poisson Distribution: $\sigma^2 = m$		
	SD of Poisson Distribution: $\sigma = \sqrt{m}$		
	Mode in case of Poisson Distribution:		
Formula 68	If m is an integer there will be two modes: $\mu_0 = m\&m-1$		
	If m is a non-integer there will be only one mode: largest integer contained in m		
Formula 69	Probability Density Function in case of Normal Distribution $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{2}}$ Mean Deviation in case of Normal Distribution: MD = 0.8 σ		
Formula 70	Mean Deviation in case of Normal Distribution: MD = 0.8σ		
Formula 71	Quartiles in case of Normal Distribution: $Q_1 = \mu - 0.675\sigma \& Q_3 = \mu + 0.675\sigma$		
Formula 72	Quartile Deviation in case of Normal Distribution: $QD = 0.675\sigma$		
Formula 73	Points of Inflex of Normal Curve: $\mu - \sigma \& \mu + \sigma$		
Formula 74	In case of Normal Distribution, Ratio between QD: MD: SD = 10:12:15		
Formula 75	Conditions of Standard Normal Distribution: Mean = 0, SD = 1		
Formula 76	Z Score: $Z = \frac{(x - \mu)}{\sigma}$		
	Area under Normal Curve (Popular Intervals)		
	From To Area under Normal Curve		
	Probability		
Formula 77	μ $\mu+\sigma$ 34.135%		
	$\mu + \sigma$ $\mu + 2\sigma$ 13.59%		
	$\mu + 2\sigma$ $\mu + 3\sigma$ 2.14%		
	$\mu + 3\sigma + \infty$ 0.135%		
	For a $p \times q$ bivariate frequency distribution:		
Formula 78	Number of cells pq		
	Number of marginal distributions 2		
	Number of conditional distributions p+q		
	Karl Pearson's Product Moment Correlation Coefficient:		
Formula 79	$r_{xy} = \frac{\text{Cov}(x, y)}{(\sigma_x \times \sigma_y)}$		
	xy ($\sigma_{x} \times \sigma_{y}$)		
	Covariance between two variables:		
Formula 80	$\operatorname{Cov}(x,y) = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{n} \operatorname{or} \frac{\Sigma x y}{n} - \overline{x}.\overline{y}$		
	Spearman's Rank Correlation Coefficient:		
Formatile 01	spearman's Rank Correlation Coefficient:		
Formula 81	$r_{R} = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ here d means difference in ranks of both variables		
	Spearman's Rank Correlation Coefficient (in case of tied values)		
	$6(\Sigma d^2 + A)$		
Formula 82	$r_{R} = 1 - \frac{6(\Sigma d^{2} + A)}{n(n^{2} - 1)}$ here A is adjustment value		
	$A = \frac{\Sigma(t^3 - t)}{12}$ where t = tie length (calculate t value for each of the ties)		
	A =		
Formula 83	Coefficient of Concurrent Deviations		

	$r_{c} = \pm \sqrt{\pm \left(\frac{2c-m}{m}\right)}$		
	where c is number of concurrent deviations (same direction)		
	m is number of pairs compared (equals to n-1)		
	Regression Coefficients: SD $cov(x, y)$		
Formula 84	Y on X: $b_{yx} = r. \frac{SD_y}{SD_x}$ or $b_{yx} = \frac{cov(x, y)}{(SD_x)^2}$		
	$x \text{ on } y$: $h = r \frac{SD_x}{x} \text{ or } h = \frac{cov(x, y)}{x}$		
	X on Y: $b_{xy} = r. \frac{SD_x}{SD_y}$ or $b_{xy} = \frac{cov(x, y)}{(SD_y)^2}$		
	Correlation Coefficient is the GM of regression coefficients:		
Formula 85	$r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$		
	Note: r_{xy} , b_{xy} , b_{yx} all will have same sign		
	Change of Origin/ Scale for Regression Coefficients: Origin no impact, Scale impact of		
	both magnitude and sign.		
	$b_{yu} = b_{yx} \times \frac{\text{change of scale of y}}{\text{change of scale of x}}$		
Formula 86			
	$b_{uv} = b_{xy} \times \frac{\text{change of scale of } x}{\text{change of scale of } y}$		
Formula 87	Two regression lines (if not identical) will intersect at the point $(\overline{x},\overline{y})$		
Formula 88	Coefficient of Determination/ Explained Variance/ Accounted Variance:		
FOITIUIA 66	$(\mathbf{r}_{xy})^2$		
	Coefficient of Non-determination/ Un-explained Variance/ Un-accounted Variance:		
Formula 89	$1 - (r_{xy})^2$		
Formula 90 Probable Error in correlation: $0.6745 \times \frac{1-r^2}{\sqrt{N}}$			
Formula 91	Error Limits of Population Correlation Coefficient: r±PE		
Formula 92	Price Relatives: $\frac{P_n}{P_0}$, Quantity Relatives: $\frac{Q_n}{Q_0}$, Value Relatives: $\frac{V_n}{V_0}$		
Formula 93	Simple Aggregative Index: $\frac{\Sigma P_n}{\Sigma P} \times 100$		
	ΔP ₀		
Formula 94	$\Sigma \frac{P_n}{P}$		
Formula 94	Simple Average of Relatives – Method Index: $\frac{P_0}{n}$		
	Laspeyres Index (weight – base year quantity weight)		
Formula 95	$\frac{\Sigma P_n Q_0}{\Sigma P_n Q_0} \times 100$		
	$\Sigma P_0 Q_0$		
-	Paasche's Index (weight – current year quantity weight)		
Formula 96	$\frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$		
Formula 97	کار Marshall-Edgeworth Index (weight – sum of both current and base quantity)		
	······································		

	$\frac{\Sigma P_n (Q_0 + Q_n)}{\Sigma P_0 (Q_0 + Q_n)} \times 100$
Formula 98	Fisher's Ideal Index: GM of Laspeyres Index and Paasche's Index $\sqrt{\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$
Formula 99	Bowley's Index: AM of Laspeyres Index and Paasche's Index $\frac{\sum P_n Q_0}{\sum P_0 Q_0} + \frac{\sum P_n Q_n}{\sum P_0 Q_n} \times 100$

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 5+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se♥)
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Rukenge Nahi!! Darenge Nahi!! Bas Fodenge !!

With Lots of Love

CA. Pranav Popat (P² SIR)