ONE SHOT REVISION

Chp14 Central Tendency and Dispersion

CA FOUNDATION DEC 2023

 CA. PRANAV POPAT
SESSION LINK:

 https://www.youtube.com/live/SQE9X uER8is?si=yMVDYLAKPOvBTfWS JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:
https://telegram.me/learnwithpranav

Chapter 14

Measures of Central Tendency and Dispersion

Past Trends

Attempt	Theory	Practical	Total
May 2018	4	3	7
Nov 2018	2	10	12
Jun 2019	3	9	12
Nov 2019	7	10	17
Nov 2020	5	4	9
Jan 2021	5	4	9
Jul 2021	1	11	12
Dec 2021	5	6	11
Jun 2022	3	6	9
Dec 2022	3	13	16
June 2023	0	15	15

Central Tendency - Basics

Meaning	- Central Tendency is the tendency of a given set of observations to cluster around a single central or middle value. - The single value that represents the given set of observations is described as a measure of central tendency.
Different Measures of Central Tendency	- Arithmetic Mean (AM) - Median (Me) - Mode (Mo) - Geometric Mean (GM) - Harmonic Mean (HM)
Types of Formula based Questions	- Discrete Observations - Simple Frequency Distribution - Grouped Frequency Distribution

Arithmetic Mean

Discrete Observations	$\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n} \quad \bar{x}=\frac{\sum x}{n}$	
Frequency Distribution	$\bar{x}=\frac{\sum f x}{N}$	
	In case of simple frequency distribution	$x=$ individual values
	In case of grouped frequency distribution	$x=$ mid-point of class intervals
	$N=$ total number of observations	$N=\Sigma f$
Assumed Mean / Step-Deviation Method	AM using assumed mean / step deviation method $\bar{x}=A+\frac{\sum f d}{N} \times C$ where $d=\frac{x-A}{C}, A$ is assumed mean, C is class length	
Property 1	If all the observations are constant, AM is also constant	
Property 2	the algebraic sum of deviations of a set of observations from their AM is zero	
Property 3	$A M$ is affected both due to change of origin and scale If $y=a+b x$ then $\bar{y}=a+b \bar{x}$	
Property 4	Combined AM $\quad \bar{x}_{c}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}$	
General Review	- $A M$ is best measure of central tend - $A M$ is based on all observations - AM is affected by sampling fluctua - AM is amenable to mathematical p - AM cannot be used in case of open	ncy ions operty end classification

ICAI SM, MTP Nov 20

(1) Two variables assume the values $1,2,3, . .5$ with frequencies as $1,2,3, . .5$, then what is the $A \quad A M$?
a. $\quad 11 / 3$
b. $15 / 8$
c.
4.86
d. 10

PYQ May 18
(2) If each item is reduced by $15 \mathrm{~A} . \mathrm{M}$ is

A
a. \quad Reduced by 15
b. Increased by 15
c. \quad Reduced by 10
d. None of these
(3) Find the mean of the following data

B

Class interval	Frequency
$10-20$	9
$20-30$	13
$30-40$	6
$40-50$	4
$50-60$	6
$60-70$	2
$70-80$	3

a. $\quad 23.7$
b. $\quad 35.7$
$\begin{array}{ll}\text { c. } & 39.7\end{array}$
d. $\quad 43.7$

PYQ Nov. 18
(4) The mean of 20 items of a data is 5 and if each item is multiplied by 3, then the new mean C will be
a.
5
b. 10
c.
15
d. 20

MTP May 19, ICAI SM
(5) If the relationship between two variables u and v are given by $2 u+v+7=0$ and if the $A M$ C of u is 10, then the $A M$ of v is
a. 17
b. $\quad-17$
c.
-27
d. 27

PYQ Nov. 18
(6) The algebraic sum of the deviation of a set of values from their arithmetic mean is

B
a.
>0
b. $=0$
c.
<0
d. None of these

MTP Oct 21
(7) Pooled Mean is also called

C

a.	Mean
b.	Geometric Mean
c.	Grouped Mean
d.	none

MTP Nov 19, ICAI SM
(8) The average salary of a group of unskilled workers is Rs.10,000 and that of a group of

A skilled workers is Rs.15,000. If the combined salary is Rs.12,000, then what is the percentage of skilled workers?
a. 40%
b. 50%
c. 60%
d. None of these
(9) At ABC ltd, the average age of employees is 36. Average age of male employees is 38 and C that of females is 32 . Find the ratio of female to male in the company.
a. $\quad 1: 3$
b. $\quad 2: 1$
c.
1:2
d. $\quad 3: 1$

PYQ June 19
(10) The AM of 15 observation is 9 and the $A M$ of first 9 observation is 11 and then $A M$ of B remaining observation is
疎
a. 11
b. 6
c.
5
d. $\quad 9$

PYQ June 22
(11) When each value does not have equal importance then

D

a.	AM
b.	$G M$
c.	$H M$
d.	Weighted Average

PYQ June 22
(12) The mean of 20 observation is 38. If two observation are taken as 84 and 36 instead of 48 C and 63 find new means.
B
a.
38.45
b. $\quad 41.15$
c.
37.55
d. $\quad 40.05$

MTP Nov 19
(13) The average weight of 8 person increases by 1.5 kg , if a person weighing 65 kg replaced by C a new person, what would be the weight of the new person?
ab
a. $\quad 76 \mathrm{~kg}$
b. $\quad 80 \mathrm{~kg}$
c. $\quad 77 \mathrm{~kg}$
d. None of these

Median					
Discrete Observations	- If $n=o d d$, then middle term - If $n=$ even, average of two middle terms				
Simple Frequency Distribution	- First make column of less than cumulative frequency - Apply same formula as discrete				
Grouped Frequency Distribution	Median in case of grouped frequency distribution				
	Step 1 Prepare a less than type cumulative frequency distribution				
	Step 2	Calculate $\frac{N}{2}$ and check between which class boundaries it falls and call it as Median Class			
	Step 3	l_{1}	N_{u}	N_{l}	C
		LCB of Median Class	Cum Freq. of Median Class	Cum. Freq. of Pre-Median Class	$\begin{gathered} \text { Class length } \\ \text { of Median } \\ \text { Class } \end{gathered}$
	Step 4	Apply Formula$M e=l_{1}+\left(\frac{\frac{N}{2}-N_{l}}{N_{u}-N_{l}}\right) \times C$			
Property 1	For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median. $\sum\|x-M e\|$ is minimum				
Property 2	Median is also affected by both change of origin and scale.				
General Review	- Median is also called as positional average - Median is not based on all observations - Median is not affected by sampling fluctuations - Median is best measure of central tendency in case of open-end classification				

(14)
B
a.
8
b. 6
c.
4
d. $\quad 9$ For a given data set: $5,10,3,6,4,8,9,3,15,2,9,4,19,11,4 ;$ what is the median?

PYQ Nov. 18
(15) The median of the data $5,6,7,8,9,10,11,12,15,18,18$ and 19 is
A
a.
10.5
b. 10
c.
11
d. $\quad 11.5$

x	1	2	3	4	5	6
f	6	9	10	14	12	8

The value of median is
a.
3.5
b. 3
c.
4
d. 5

PYQ Nov. 19
(17) Find the median of the following:

B

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Freq.	5	15	28	10	2

a.	10.57	b.	23.57
c.	25	d.	None of these

ICAI SM
(18)

Find the median of the following:
D

Marks	$5-14$	$15-24$	$25-34$	$35-44$	$45-54$	$55-64$
Freq.	10	18	32	26	14	10

a.

28
b. 30
$\begin{array}{ll}\text { c. } & 33.69\end{array}$
d. $\quad 32.94$

MTP Nov 19
(19) For open-end classification, which of the following is the best measure of central tendency?

C
a.
AM
c.
Median
b. GM
d. Mode

Partition Values

| -These may be defined as values dividing a given set of observations into
 Mumber of equal parts
 -
 When we want to divide the given set of observations into two equal parts,
 we consider median, similarly there are quartiles, deciles, percentiles |
| :---: | :---: |
| \qquadName of PV No. of equal
 parts No. of PVs Symbol
 Median 2 1 $M e$
 Quartile 4 3 Q_{1}, Q_{2}, Q_{3}
 Decile 10 9 $D_{1}, D_{2}, \ldots, D_{9}$
 Percentile 100 99 $P_{1}, P_{2}, \ldots, P_{99}$ |

MTP May 19
(20)

What is the value of the first quartile for observations $15,18,10,20,23,28,12,16$?
C
a. $\quad 17$
b. 16
c.
12.75
d. 12
(21) The $3^{\text {rd }}$ decile for the numbers

B $15,10,20,25,18,11,9,12$ is
a.
13
b. $\quad 10.70$
c.
11.00
d. $\quad 11.50$

MTP Nov 21
(22) Find D_{6} for the following observations. 7, 9, 5, 4, 10, 15, 14, 18, 6, 20
B
a.
11.40
b. $\quad 12.40$
c.
13.40
d. $\quad 13.80$

ICAI SM
(23) The third quartile and $65^{\text {th }}$ percentile for the following data are

A

Profits	<10	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
No. of firms	5	18	38	20	9	2

a.
33.5 \& 29.184
b. $\quad 33 \mathcal{E} 28.68$
c. $\quad 33.6 \& 29$
d. $\quad 33.25 \& 29.25$

Mode

Meaning	Mode is the value that occurs the maximum number of times		
Special Thing about Mode	- If two or more observations are having maximum frequency then there are multiple modes [multimodal distribution] - If there are exactly two modes then distribution is called as Bimodal Distribution - If all observations are having same frequency then distribution has no mode - We can say that Mode is not rigidly defined		
	- Find Modal Class: Class with highest frequency and obtain below values		
	f_{-1}	f_{0}	f_{1}
Grouped Frequency Distribution	frequency of pre modal class	frequency of the modal class	frequency of the post modal class
	- Apply Formula$M o=l_{1}+\left(\frac{f_{0}-f_{-1}}{2 f_{0}-f_{-1}-f_{1}}\right) \times C$		
Property 1	If all the observations are constant, mode is also constant		
Property 2	Mode is also affected both due to change of origin and scale		
General Review	- Mode is not based on all observations - Mode is not rigidly defined - Mode is not amenable to Mathematical Property		

(24) Find the mode of the following:

B

$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
7	14	22	34	20	19

a. $\quad 32$
b.
34.61
c.
25.42
d.
35

PYQ Jan. 21
(25) From the record on sizes of shoes sold in a shop, one can compute the following to C determine the most preferred shoe size.
3
$\begin{array}{ll}\text { a. } & \text { Mean } \\ \text { c. } & \text { Mode }\end{array}$
b. Median
d. Range

MTP Oct 21
(26) If x and y are related by $x-y-10=0$ and mode of x is known to be 23, then the mode of y is

B
a. 20
b. 13
c.
3
d.
23

MTP June 2023 Series I
(27)

Mode is:
C
a. Least frequent value
b. Middle Most value
c. Most frequent Value
d. None of these

Relationship between Mean, Median and Mode

In case of Symmetric Distribution	Mean $=$ Median $=$ Mode
In case of Moderately Skewed	Mean - Mode $=3$ (Mean - Median)
Distribution (Empirical relationship)	OR Mode $=3$ Median -2 Mean

PYQ May 18
(28) Relation between mean, median and mode is
$D \quad$ a. mean-mode $=2($ mean-median $)$
b. mean-median $=3$ (mean-mode)
c. mean-median $=2$ (mean-mode)
d. mean-mode $=3$ (mean-median)

PYQ Nov. 18
(29) If in a moderately skewed distribution, the values of mode and mean are 32.1 and 35.4

A respectively, then the value of the median is
a.
34.3
b. $\quad 33.3$
c. 34
d. 33
(30) For a symmetric distribution

A
a. \quad Mean $=$ Median $=$ Mode
b. \quad Mode $=3$ Median $=2$ Mean
c. \quad Mode $=\frac{1}{3}$ Median $=\frac{1}{2}$ Mean
d. None of these

PYQ Dec. 21
(31) For a moderately skewed distribution the median is twice the mean, then the mode is

B ___ times the median.
a.
3
b. 2
c.
2/3
d. $3 / 2$

MTP June 22
(32)
If the difference between mean and mode is 33 , then the difference betw
C
Median will be
a.
a.

c. 11 | | | |
| :--- | :--- | :--- |
| | 63 | b. |

Geometric Mean

Definition	For a given set of n positive observations, the geometric mean is defined as the $n^{\text {th }}$ root of the product of the observations
Formula - Discrete	$G=\left(x_{1} \times x_{2} \times \ldots \times x_{n}\right)^{1 / n}$
Formula - Frequency Distribution	$G=\left(x_{1}{ }^{f_{1}} \times x_{2}{ }^{f_{2}} \times \ldots \times x_{n}{ }^{f_{n}}\right)^{1 / N}$
Property 1	Logarithm of G for a set of observations is the $A M$ of the logarithm of the observations $\log G=\frac{1}{n} \sum \log x$
Property $\mathbf{2}$	If all the observations are constant, $G M$ is also constant
Property 3	If $z=x y$, then $G M$ of $z=G M$ of $x \times G M$ of y
Property $\mathbf{4}$	If $z=x / y$, then $G M$ of $z=\frac{G M \text { of } x}{G M \text { of } y}$

B
a.
8
b. 12
c.
24
d. 6
(34) The Geometric mean of the series $1, k, k^{2}, k^{3}, \ldots, k^{n}$ where k is constant is

A	a.	$k^{\frac{(n+1)}{2}}$	b.	$k^{n+0.5}$
A	c.	k^{n+1}	d.	k^{n+2}

MTP March 21
(35) G.M is a better measure than others when,
is a. Ratios and percentages given
A b. Interval of scale is given
c. Both (a) and (b)
d. Either (a) or (b)

MTP Nov 21
(36) If the rates return from three different shares are $100 \%, 200 \%$ and 400% respectively. The C average rate of return will be.
ふ
a. 350%
b. 233.33%
c. 200%
d. 300%

Harmonic Mean

Definition	For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the AM of the reciprocals of the observation
Formula - Discrete	$H=\frac{n}{\Sigma\left(\frac{1}{x}\right)}$
Formula - Frequency Distribution	$H=\frac{N}{\Sigma\left(\frac{f}{x}\right)}$
Property 1	If all observations are constant HM is also constant
Property 2	Combined $H M=\frac{n_{1}+n_{2}}{\frac{n_{1}}{H_{1}}+\frac{n_{2}}{H_{2}}}$

Special Relation	If there are only two observations:

MTP May 19
(41) Which of the following results hold for a set of distinct positive observations?
$C \quad a$.
$A M \geq G M \geq H M$
b. $\quad H M \geq G M \geq A M$
c. $\quad A M>G M>H M$
d. $\quad G M>A M>H M$

PYQ Nov. 20
(42) If the AM and HM of two numbers are 6 and 9 respectively, then GM is
A
a.
7.35
b. 8.5
c. $\quad 6.75$
d. None of these

Weighted Average

When to use	If the observations are not of equal importance and we need to treat observations according to their hierarchical importance, then we use Weighted Average	
Formulas	Weighted $A M$	$\frac{\sum w x}{\sum w}$
	$\left(x_{1}{ }^{w_{1}} \times x_{2}{ }^{w_{2}} \times x_{3}{ }^{w} \times \ldots \times x_{n}{ }^{w_{n}}\right)^{\frac{1}{\Sigma w}}$	
	Weighted $H M$	$\frac{\sum w}{\sum\left(\frac{w}{x}\right)}$

Measures of Dispersion

Meaning of Measure of Dispersion

- Dispersion for a given set of observations may be defined as
- the amount of deviation of the observations,
- usually, from an appropriate measure of central tendency

Types of Measure of Dispersion	Absolute Measures of Dispersion	- These are with units - These are not useful for comparison of two variables with different units. - Example: Range, Mean Deviation, Standard Deviation, Quartile Deviation
	Relative Measures of Dispersion	- These are unit free measures - These are useful for comparison of two variables with different units. - Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of variation, Coefficient of Quartile Deviation

Range

Discrete - Formula	$L-S$ where L: Largest Observation, S: Smallest Observation
Grouped Frequency Distribution - Formula	where Largest Observation $=$ UCB of last class interval, Smallest Observation $=$ LCB of first-class interval
Coefficient of Range	$\frac{L-S}{L+S} \times 100$

MTP May 19 Series II

(43) The range of $15,12,10,9,17,30$ is

D
a.
5
b. 12
c.

13
d. 21

MTP Mar 21, MTP Apr 21
(44) What is the coefficient of range for the following distribution?

D

Class	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
Freq.	11	25	16	7	3

a.
22
b. $\quad 50$
$\begin{array}{ll}\text { c. } & 75.82\end{array}$
d. $\quad 72.46$

PYQ July 21
(45) If the relationship between x and y is given by $2 x+3 y=10$ and the range of y is 10, then $D \quad$ what is the range of x ?
a.
10
b. 18
c.
8
d. 15

PYQ Nov. 18
(46) If the range of a set of values is 65 and maximum value in the set is 83 , then the minimum C value in the set is
a. $\quad 74$
b. $\quad 9$
c. 18
d. None of these

Mean Deviation

Meaning	- Mean deviation is defined as the - arithmetic mean of the - absolute deviations of the observations - from an appropriate measure of central tendency
Formula - Discrete	$M D_{A}=\frac{1}{n} \sum\|x-A\|$ where, $A=$ Appropriate Central Tendency Measure
Formula - Frequency Distribution	$M D_{A}=\frac{1}{N} \Sigma f\|x-A\|$
Coefficient of Mean Deviation	$\text { Coefficient of Mean Deviation: } \frac{\text { Mean Deviation about } A}{A} \times 100$
Property 1	Mean Deviation takes its minimum value when deviations are taken from Median
Property 2	Change of Origin - No Affect, Change of Scale - Affect of value not sign
General Review	- Based on all observations - Improvement over Range - Difficult to compute - Not amenable to Mathematical Property because of usage of Modulus

a.
8.7
b. $\quad 4.2$
c.
3.1
d. $\quad 9.8$
(48) Mean Deviation of data 3, 10, 10, 4, 7, 18, 5 from mode is

C
a.
4.3
b. 4.70
c.
4.14
d. 5.24

ICAI SM
(49) Mean Deviation of data 82, 56, 75, 70, 52, 80, 68 from median is
C
a.
16.49
b. $\quad 12.45$
c.
87.14
d. $\quad 78.45$

MTP Dec 22 - Series I
(50) Which measure of dispersion is based on the absolute deviation only?

C
a. Range
b. Standard Deviation
c. Mean Deviation
d. Quartile Deviation

ICAI SM
(51) What is the mean deviation about median for the following data?

D

x	3	5	7	9	11	13	15
f	2	8	9	16	14	7	4

a.
2.50
b. 2.46
c.
2.43
d. $\quad 2.37$

Standard Deviation

Meaning	\bullet - Improvement over Mean Deviation It is defined as the root mean square deviation when the deviations are taken from the AM of the observations
Formula - Discrete	$\sigma_{x}=S D_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
$\sigma_{x}=S D_{x}=\sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}}$	
Formula - Frequency Distribution	$\sigma_{x}=S D_{x}=\sqrt{\frac{\sum f(x-\bar{x})^{2}}{N}}$
Coefficient of Variation	$\sigma_{x}=S D_{x}=\sqrt{\frac{\sum f x^{2}}{N}-(\bar{x})^{2}}$
SD for any two numbers	
SD for first n natural numbers	

Property 1	If all the observations are constant, SD is ZERO
Property 2	No effect of change of origin but affected by change of scale in the magnitude (ignore sign)
Property 3	$S D_{c}=\sqrt{\frac{n_{1} s_{1}{ }^{2}+n_{2} s_{2}{ }^{2}+n_{1} d_{1}{ }^{2}+n_{2} d_{2}{ }^{2}}{n_{1}+n_{2}}}$
	$d_{1}=\bar{x}_{c}-\bar{x}_{1}, d_{2}=\bar{x}_{c}-\bar{x}_{2}$

PYQ Nov. 18
(52) Standard Deviation for the marks obtained by a student in monthly test in mathematic (out B of 50) as $30,35,25,20,15$ is
a. 25
b. $\quad \sqrt{50}$
c.
$\sqrt{30}$
d. 50

PYQ June 19
(53) S.D of first five consecutive natural numbers is

D
a.
$\sqrt{10}$
b. $\quad \sqrt{8}$
c.
$\sqrt{3}$
d. $\quad \sqrt{2}$

PYQ Nov. 19
(54) $S D$ from numbers $1,4,5,7,8$ is 2.45 . If 10 is added to each then $S D$ will be:

D
a. $\quad 12.45$
b. $\quad 24.5$
c. 12
d. Will not change

PYQ June 22
(55) Find the standard deviation and coefficient of variation for. 1, 9, 8, 5, 7

C
a.
2.828, 49.32
b. $\quad 2.828,48.13$
c.
2.828, 47.13
d. $\quad 2.828,50.13$

PYQ Dec 22
(56) If the sum of square of the values equals to 3390, Number of observations are 30 and

C Standard deviation is 7 , what is the mean value of the above observations?
a. 14
b. 11
c. 8
d. 5

MTP May 18
(57) If the mean and SD of X are a and b respectively, then the S.D of $\frac{x-a}{b}$ is
a. $\quad a / b$
b. -1
c. $\quad 1$
d. $a b$

Quartile Deviation

Formula	$Q D_{x}=\frac{Q_{3}-Q_{1}}{2}$
Calculation	Quartiles are calculated same as we studied in Central Tendency
Coefficient of Quartile Deviation	$\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{\mathrm{Q}_{3}+\mathrm{Q}_{1}} \times 100$
General Review	- It is the best measure of dispersion for open-end classification - It is also less affected due to sampling fluctuations - Like other measures of Dispersion, QD is also not affected by change of origin but affected by scale ignoring sign

$\left.\begin{array}{|l|c|}\hline \begin{array}{l}\text { Relationship between } \\ S D, M D \text { and } Q D\end{array} & 4 \mathrm{SD}=5 \mathrm{MD}=6 \mathrm{QD} \\ \text { or }\end{array}\right\}$

MTP May 19
(63) The quartiles of a variable are 45, 52 and 65 respectively. Its quartile deviation is

A
a.
10
25
b. 20
d. $\quad 8.30$

PYQ June 23
(64) If the first quartile is 42.75 and the third quartile is 74.25 , then the coefficient of quartile D deviation is:
a.
29.62
b. $\quad 15.75$
c.
17.57
d. 26.92

PYQ June 19
(65) Coefficient of quartile deviation is $1 / 4$ then Q_{3} / Q_{1} is

A	a.	$5 / 3$	b.	$4 / 3$
ab	c.	$3 / 4$	d.	$3 / 5$

(66) Interval Quartile Range is ___of Quartile Deviation

B	a.	Half	b.	Double
$\dot{\sim}$	c.	Triple	d.	Equal

(67) The approximate ratio of $S D, M D, Q D$ is

C
a. \quad 2:3:4
b. 3:4:5
c.

15:12:10
d. $\quad 5: 6: 7$

