

ONE SHOT REVISION Chp14 Central Tendency and Dispersion

CA FOUNDATION DEC 2023 CA. PRANAV POPAT

SESSION LINK:

https://www.youtube.com/live/SQE9X uER8is?si=yMVDYLAKP0vBTfWS

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

Chapter 14

Measures of Central Tendency and Dispersion

Past Trends								
Attempt	Theory	Practical	Total					
May 2018	4	3	7					
Nov 2018	2	10	12					
Jun 2019	3	9	12					
Nov 2019	7	10	17					
Nov 2020	5	4	9					
Jan 2021	5	4	9					
Jul 2021	1	11	12					
Dec 2021	5	6	11					
Jun 2022	3	6	9					
Dec 2022	3	13	16					
June 2023	0	15	15					

Central Tendency - Basics

	• Central Tendency is the tendency of a given set of observations to
Meanino	ciuster arouna a single central or miaale value.
meaning	• The <i>single value</i> that <i>represents</i> the given set of observations is
	described as a measure of central tendency.
D:House	• Arithmetic Mean (AM)
Dijjerent Mazawa af	Median (Me)
Meusures of	Mode (Mo)
Central Tou dou ou	Geometric Mean (GM)
Tendency	• Harmonic Mean (HM)
Types of	Discrete Observations
Formula based	Simple Frequency Distribution
Questions	Grouped Frequency Distribution

	Arithmetic Mean			
Discrete Observations	$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \qquad \overline{x} = \frac{\sum x}{n}$			
Frequency Distribution	$\overline{x} = \frac{\sum fx}{N}$ In case of simple frequency distribution In case of grouped frequency distribution	x = individual values x = mid-point of class		
	N = total number of observations	$\frac{intervals}{N = \sum f}$		
Assumed Mean / Step-Deviation Method	AM using assumed mean / step deviation method $\overline{x} = A + \frac{\sum fd}{N} \times C$ where $d = \frac{x - A}{C}$, A is assumed mean, C is class length			
Property 1	If all the observations are constant, AM is also constant			
Property 2	the algebraic sum of deviations of a set of ob	servations from their AM is zero		
Property 3	<i>AM</i> is affected both due to change of origin If $y = a + bx$ then $\overline{y} = a + b\overline{x}$	and scale		
Property 4	Combined AM $\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$			
General Review	 AM is best measure of central tende AM is based on all observations AM is affected by sampling fluctual AM is amenable to mathematical pr AM cannot be used in case of open of 	ency tions roperty end classification		

					ICAI SM, MTP Nov 20
(1)	Two variał	ples assume the values 1,2, 3, 5	with frequ	encies as 1	, 2, 3,5 , then what is the
Α	AM ?				
	а.	11/3	<i>b</i> .	15/8	
	С.	4.86	d.	10	
					PYQ May 18
(2)	If each iten	1 is reduced by 15 A. M is			
Α	а.	Reduced by 15			
	<i>b</i> .	Increased by 15			
	С.	Reduced by 10			
	<i>d</i> .	None of these			

				PYQ Jun 23
(3)	Find the mean of th	e following data		
В	Class interval	Frequency		
	10-20	9		
	20-30	13		
	30-40	6		
	40-50	4		
	50-60	6		
	60-70	2		
	70-80	3		
	a. 23.7		Ь.	35.7
	с. 39.7		d.	43.7
				PYQ Nov. 18
(4)	The mean of 20 item	s of a data is 5 and if eac	ch item is	multiplied by 3, then the new mean
С	will be			10
	a. 5		<i>b</i> .	10
	с. 15		d.	20 MTD Mar 10 ICAL (N
(5)	If the relationship he	tznam tzno zariablac u a	nd zi ara o	$\frac{1}{1} \frac{1}{1} \frac{1}$
(J) C	of u is 10 then the A	M of v is	nu o ure g	iven by 2u + v + v = 0 unu ij the Alvi
e	a. 17	11109010	b.	-17
	с27		d.	27
				PYQ Nov. 18
(6)	The algebraic sum og	f the deviation of a set of	^r values fro	om their arithmetic mean is
В	<i>a.</i> >0		Ь.	= 0
	<i>c.</i> <0		d.	None of these
(—)	B 1 1 1 4 1 1			MTP Oct 22
(7)	Pooled Mean is also	called		
C	a. Mean	tuis Massa		
	o. Geome	tric Ivieun ed Mean		
	d Group	eu Ivieun		
	и. попе			MTP Nov 19, ICAI SN
(8)	The average salary o	f a group of unskilled w	orkers is I	Rs.10,000 and that of a group of
A	skilled workers is Rs	.15,000. If the combined	l salary is	Rs.12,000, then what is the
	percentage of skilled	workers?	0	
	a. 40%		<i>b</i> .	50%
	с. 60%		d.	None of these

				MTP Nov 21
(9)	At ABC lt	d, the average age of employees is 3	6. Avera	ge age of male employees is 38 and
С	that of fem	ales is 32. Find the ratio of female t	o male in	<i>1 the company.</i>
	а.	1:3	<i>b</i> .	2:1
	С.	1:2	d.	3:1
				PYQ June 19
(10)	The AM of	15 observation is 9 and the AM of	first 9 ob	pservation is 11 and then AM of
В	remaining	observation is		
*	а.	11	<i>b</i> .	6
	С.	5	d.	9
				PYQ June 22
(11)	When each	value does not have equal importa	nce then	
D	а.	AM		
	<i>b</i> .	GM		
	С.	HM		
	<i>d</i> .	Weighted Average		
				PYQ June 22
(12)	The mean	of 20 observation is 38. If two obser	vation a	re taken as 84 and 36 instead of 48
С	and 63 find	d new means.		
*	а.	38.45	<i>b</i> .	41.15
	С.	37.55	d.	40.05
				MTP Nov 19
(13)	The averag	e weight of 8 person increases by 1	.5 kg, if a	a person weighing 65 kg replaced by
С	a new pers	on, what would be the weight of the	e new per	rson?
*	а.	76 kg	<i>b</i> .	80 kg
	C	77 kg	d.	None of these

Median						
Discrete	• 1	f n = odd, then m	iddle term			
Observations	• 1	f n = even, averag	ge of two middl	e terms		
Simple Frequency	• I	First make colum	ı of less than cı	umulative frequer	ісу	
Distribution	• 1	Apply same formi	ıla as discrete		0	
	Median i	n case of grouped	frequency dist	ribution		
	Step 1	Prepare a less th	ian type cumul	lative frequency d	istribution	
	Step 2	Calculate $\frac{N}{2}$ and check between which class boundaries it falls				
		and call it as Median Class				
	Step 3	l_1	$N_{_{u}}$	N_l	С	
Grouped Frequency		LCB of	Cum Freq.	Cum. Freq. of	Class length	
Distribution		Median	of Median	Pre-Median	of Median	
		Class	Class	Class	Class	
	Step 4	Apply Formula				
		$Me = l_1 + \left(\frac{\frac{N}{2} - N_l}{N_u - N_l}\right) \times C$				
	For a set	of observations, t	he sum of abso	lute deviations is	minimum, when	
Property 1	the devia	tions are taken fr	om the median.			
			$\sum x - Me $ is r	ninimum		
Property 2	Median i	s also affected by	both change of	origin and scale.		
	• 1	Median is also cal	led as positiond	al average		
	• 1	Median is not bas	ed on all observ	vations		
General Review	• 1	Median is not affe	cted by sampli	ng fluctuations		
	• 1	Median is best me	asure of centra	l tendency in case	e of open-end	
	C	lassification				

								PYQ Jun 23
(14)	For a giv	en data set:	5, 10, 3, 6, 4, 8,	9, 3, 15, 2, 9	9, 4, 19	9, 11, 4; ;	what is the	e median?
В	а.	8		i	<i>b</i> .	6		
	С.	4			d.	9		
								PYQ Nov. 18
(15)	The media	an of the data	a 5, 6, 7, 8, 9, 10), 11, 12, 15,	18, 18	8 and 19	is	
Α	а.	10.5		<i>b</i> .		10		
	С.	11		d.		11.5		

ONE SHOT REVISION | Chapter 14 CTND | DEC 2023

				PYQ June 19
(16)	For the distribut	ıtion		
С	x 1 2	2 3 4	5 6	
	f 6 9	9 10 14	12 8	
	The value of me	edian is		
	a. 3.5	5	<i>b</i> .	3
	<i>c.</i> 4		d.	5
				PYQ Nov. 19
(17)	Find the median	n of the following:		
В	Class 0-10	10-20 20-30 30	-40 40-50	
	Freq. 5	15 28 10) 2	
	a. 10.	.57	<i>b</i> .	23.57
	<i>c</i> . 25	;	<i>d</i> .	None of these
				ICAI SM
(18)	Find the median	n of the following:		
D	Marks 5-14 1	15-24 25-34 35-44	4 45-54 55-64	
	Freq. 10 1	18 32 26	14 10	2.2
	a. 28		Ь.	30
	с. 33.	.69	d.	32.94
(12)				MTP Nov 19
(19)	For open-end clu	lassification, which	of the following is	the best measure of central tendency?
С	a. AN	M	<i>b</i> .	GM
	c. Me	edian	<i>d</i> .	Mode

Partition Values

- These may be defined as *values dividing* a given *set of observations* into number of *equal parts*
 - When we want to divide the given set of observations into two equal parts, we consider median, similarly there are quartiles, deciles, percentiles

Meaning	Name of PV	No. of equal parts	No. of PVs	Symbol
	Median	2	1	Me
	Quartile	4	3	Q_1, Q_2, Q_3
	Decile	10	9	$D_1, D_2,, D_9$
	Percentile	100	99	$P_1, P_2,, P_{99}$

Value of p depends on partition value#MedianQuartileDecilePercentileFirst1/21/41/101/100Second2/42/102/100Image: Second2/42/10Last3/49/1099/100Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.Image: Second Image: Second	
Formula – Discrete Observations#Median MedianQuartile QuartileDecile Percentile 1/2Percentile PercentileFirst $1/2$ $1/4$ $1/10$ $1/100$ Second $2/4$ $2/10$ $2/100$ Last $3/4$ $9/10$ $99/100$ Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.Ist QuartileGrouped Frequency Distribution: Steps are like median with $Modifications.$ Percentile $Modifications.QuartileFind Q_1 class using \frac{N}{4}\left(\frac{N}{4}-N\right)Gauss using \frac{3N}{4}\left(\frac{3N}{4}-N\right)$	-
Discrete ObservationsFirst $1/2$ $1/4$ $1/10$ $1/100$ Second $2/4$ $2/10$ $2/100$ Last $3/4$ $9/10$ $99/100$ Last $3/4$ $9/10$ $99/100$ Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.Ist QuartileGrouped Frequency Distribution: Steps are like median with $Modifications.Prind Q1 class using \frac{N}{4}Find Q2 class using \frac{3N}{4}\left(\frac{N}{2} - N\right)\left(\frac{3N}{4} - N\right)$	
ObservationsSecond $2/4$ $2/10$ $2/100$ Last $3/4$ $9/10$ $99/100$ Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.Ist QuartileFind Q ₁ class using $\frac{N}{4}$ Find Q ₂ class using $\frac{3N}{4}$ $\left(\frac{N}{4} - N\right)$ $\left(\frac{3N}{4} - N\right)$	_
$unicode Last$ $3/4$ $9/10$ $99/100$ Last $3/4$ $9/10$ $99/100$ Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications.QuartileIst QuartileFind Q_1 class using $\frac{N}{4}$ Find Q_2 class using $\frac{3N}{4}$ $\left(\frac{N}{4} - N\right)$ $\left(\frac{3N}{4} - N\right)$	_
Last $3/4$ $9/10$ $99/100$ Quartiles in case of Grouped Frequency Distribution: Steps are like median with modifications. 1^{st} Quartile 3^{rd} QuartileQuartiles Grouped FD 1^{st} Quartile 3^{rd} Quartile 3^{rd} QuartileFind Q_1 class using $\frac{N}{4}$ $\left(\frac{N}{4}-N\right)$ 5^{rd} Quartile $3N_4$	_
Quartiles Grouped FDQuartiles in case of Grouped Frequency Distribution: Steps are like median with modifications. 1^{st} Quartile 3^{rd} QuartileFind Q_1 class using $\frac{N}{4}$ Find Q_3 class using $\frac{3N}{4}$ $\left(\frac{N}{2}-N\right)$ $\left(\frac{3N}{2}-N\right)$	
Quartiles Grouped FD 1^{st} Quartile 3^{rd} Quartile $\left(\frac{N}{4} - N \right)$ $\left(\frac{3N}{4} - N \right)$	few
Quartiles 1^{st} Quartile 3^{rd} QuartileQuartilesFind Q_1 class using $\frac{N}{4}$ Find Q_3 class using $\frac{3N}{4}$ $\left(\frac{N}{4} - N\right)$ $\left(\frac{3N}{4} - N\right)$	
Quartiles Grouped FDFind Q_1 class using $\frac{N}{4}$ Find Q_3 class using $\frac{3N}{4}$ $\left(\frac{N}{4} - N\right)$ $\left(\frac{3N}{4} - N\right)$	
Grouped FD $\left(\frac{N}{2}-N\right)$ $\left(\frac{3N}{2}-N\right)$	
$Q_1 = l_1 + \left \frac{4}{N_1 - N_1} \right \times C Q_3 = l_1 + \left \frac{4}{N_1 - N_1} \right \times C$	
Deciles in case of Grouped Frequency Distribution: Steps are like median with fo	v
modifications.	
1 st Decile 9 th Decile	
Deciles Find D_1 class using $\frac{N}{10}$ Find D_9 class using $\frac{9N}{10}$	
$D_{1} = l_{1} + \left(\frac{N}{10} - N_{l}}{N_{u} - N_{l}}\right) \times C D_{9} = l_{1} + \left(\frac{9N}{10} - N_{l}}{N_{u} - N_{l}}\right) \times C$	
Percentiles in case of Grouped Frequency Distribution: Steps are like median wi	<u> </u>
few modifications.	L
1 st Percentile 99 th Percentile	
<i>Percentiles</i> Find P_1 class using $\frac{N}{100}$ Find P_{99} class using $\frac{99N}{10}$	
Grouped FD $P_{1} = l_{1} + \left(\frac{N}{100} - N_{l}}{N_{u} - N_{l}}\right) \times C \qquad P_{99} = l_{1} + \left(\frac{99N}{10} - N_{l}}{N_{u} - N_{l}}\right) \times C$	

					MTP May 19
(20)	What is the	e value of the first quartile for observ	vations 1	5, 18, 10, 20, 23, 28,	12, 16?
С	а.	17	<i>b</i> .	16	
	С.	12.75	d.	12	

									PYQ June 22
(21)	The 3 rd decil	The 3 rd decile for the numbers							
В	15,10, 20, 25	5, 18, 11, 9, 12 is	5						
	а.	13			<i>b</i> .	10.2	70		
	С.	11.00			d.	11.5	50		
									MTP Nov 21
(22)	Find D_6 for	the following ob	servat	ions. 7, 9	9, 5, 4, 1	0, 15, 14	<u>18, 6, 1</u>	20	
В	а.	11.40			<i>b</i> .	12.4	40		
	С.	13.40			d.	13.8	80		
									ICAI SM
(23)	The third qu	artile and 65^{th} p	ercenti	ile for th	e followi	ng data i	are		
Α		Profits	<10	10-19	20-29	30-39	40-49	50-59	
		No. of firms	5	18	38	20	9	2	
	а.	33.5 & 29.184			<i>b</i> .	33 (& 28.68		
	С.	33.6 & 29			d.	33.2	25 & 29.	25	

Mode					
Meaning	Mode is the value that occurs the maximum number of times				
Special Thing about Mode	 If two or more observations are having maximum frequency then there are multiple modes [multimodal distribution] If there are exactly two modes then distribution is called as Bimodal Distribution If all observations are having same frequency then distribution has no mode We can say that Mode is not rigidly defined 				
Grouped Frequency Distribution	• Find Modal Class: Class with highest frequency and obtain below values $ \begin{array}{c c} f_{int} & f_{int} \\ \hline f_{i$				
Property 1	<i>If all the observations are constant, mode is also constant</i>				
Property 2	Mode is also affected both due to change of origin and scale				
General Review	 Mode is not based on all observations Mode is not rigidly defined Mode is not amenable to Mathematical Property 				

									PYQ Nov. 19
(24)	Find th	e mode o	of the fo	llowing.	:				
В	0-10	10-20	20-30	30-40	40-50	50-60			
	7	14	22	34	20	19			
	а.	32					<i>b</i> .	34.61	
	С.	25.	42				d.	35	
									PYQ Jan. 21
(25)	From t	he recor	d on siz	es of she	oes sold	in a she	op, one	e can compute	the following to
С	determ	ine the i	most pro	eferred s	shoe size	2.	•		, 0
\$	а.	M	ean				b.	Median	
	С.	M	ode				d.	Range	
								U	MTP Oct 21
(26)	If x and	l y are re	elated bi	y x–y–1	0 = 0 a n	ıd mode	of x is	s known to be	23, then the mode of y is
B	a.	20	·	/ 5			b.	13	, , , , , , , , , , , , , , , , , , , ,
	С.	3					d.	23	
		0						20	MTP Iune 2023 Series I
(27)	Mode i	s:							j
(,	a	J.	past frea	uent ma	lue				
C	u. h		iddle M	loet valı	10				
	0.	1/1	lost free	uont Val	ne Ino				
	С.		losi freq	uerit Vü 	шие				
	а.	IN	one of th	iese					

Relationship between Mean, Median and Mode

In case of Symmetric Distribution	Mean = Median = Mode
In case of Moderately Skewed	Mean – Mode = 3 (Mean – Median)
Distribution (Empirical relationship)	OR Mode = 3 Median – 2 Mean

					PYQ May 18
(28)	Relation b	etween mean, median and mode is	3		
D	а.	mean-mode = 2 (mean-median)			
	<i>b</i> .	mean-median = 3 (mean-mode)			
	С.	mean-median = 2 (mean-mode)			
	<i>d</i> .	mean-mode = 3 (mean-median)			
					PYQ Nov. 18
(29)	If in a mod	erately skewed distribution, the v	alues of i	mode and mean are 32.	1 and 35.4
Α	respectivel	y, then the value of the median is			
	а.	34.3	<i>b</i> .	33.3	
	С.	34	d.	33	

ONE SHOT REVISION | Chapter 14 CTND | DEC 2023

				PYQ June 19	
For a symmetric distribution					
а.	Mean = Median = Mode				
<i>b</i> .	Mode = 3 Median = 2 Mean				
С.	$Mode = \frac{1}{3}$ $Median = \frac{1}{2}$ $Mean$				
<i>d</i> .	None of these				
				PYQ Dec. 21	
For a moderately skewed distribution the median is twice the mean, then the mode is					
	times the median.				
а.	3	<i>b</i> .	2		
С.	2/3	d.	3/2		
				MTP June 22	
If the differ	rence between mean and mode is 3	3, then t	he difference between N	Aean and	
Median wi	ill be				
а.	63	<i>b</i> .	31.5		
C	11	d	None of these		
	For a symma. a. b. c. d. For a mode a. c. If the differ Median with a. c.	For a symmetric distributiona.Mean = Median = Modeb.Mode = 3 Median = 2 Meanc.Mode = $\frac{1}{3}$ Median = $\frac{1}{2}$ Meand.None of theseFor a moderately skewed distribution the median.a.3c.2/3If the difference between mean and mode is 3Median will bea.63c.11	For a symmetric distributiona.Mean = Median = Modeb.Mode = 3 Median = 2 Meanc. $Mode = \frac{1}{3}$ Median = $\frac{1}{2}$ Meand.None of theseFor a moderately skewed distribution the median is to	For a symmetric distribution a. Mean = Median = Mode b. Mode = 3 Median = 2 Mean c. Mode = $\frac{1}{3}$ Median = $\frac{1}{2}$ Mean d. None of these For a moderately skewed distribution the median is twice the mean, then the	

Geometric Mean

Definition	For a given set of n positive observations , the geometric mean is defined as the n^{th} root of the product of the observations
Formula – Discrete	$G = \left(x_1 \times x_2 \times \ldots \times x_n\right)^{1/n}$
Formula – Frequency Distribution	$G = \left(x_1^{f_1} \times x_2^{f_2} \times \dots \times x_n^{f_n}\right)^{1/N}$
Property 1	Logarithm of G for a set of observations is the AM of the logarithm of the observations $\log G = \frac{1}{n} \sum \log x$
Property 2	If all the observations are constant, GM is also constant
Property 3	If $z = xy$, then GM of $z = GM$ of $x \times GM$ of y
Property 4	If $z = x/y$, then GM of $z = \frac{GM \text{ of } x}{GM \text{ of } y}$

					PYQ Nov. 18
(33)	The Geometric mean of 3, 6, 24 and 48 is				
В	а.	8	<i>b</i> .	12	
	С.	24	d.	6	

					MTP Nov 18
(34) A な	The Geomer a.	tric mean of the series $1, k, k^2, k^3, \dots$ $k^{\frac{(n+1)}{2}}$, k ⁿ w b.	here k is constant is $k^{n+0.5}$	
	С.	k^{n+1}	d.	k^{n+2}	
					MTP March 21
(35) ☆ A	G.M is a bo a. b. c. d.	etter measure than others when, Ratios and percentages given Interval of scale is given Both (a) and (b) Either (a) or (b)			
					MTP Nov 21
(36) C	If the rates average rat	return from three different shares te of return will be.	are 10(0%, 200% and 400%	respectively. The
\$	а. с.	350% 200%	b. d.	233.33% 300%	

Harmonic Mean						
Definition	For a given set of non-zero observations, harmonic mean is defined as					
Definition	the reciprocal of the AM of the reciprocals of the observation					
Formula – Discrete	$H = \frac{n}{\Sigma(\frac{1}{x})}$					
Formula - Frequencu	$H = \frac{N}{N}$					
Distuikuti su	$II = \frac{1}{\Sigma f}$					
Distribution	$\frac{2(-)}{x}$					
Property 1	If all observations are constant HM is also constant					
Property 2	Combined HM = $\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$					

ULTIMATE CA

				PYQ Nov. 20	
(37) C ☆	Given the weighted I a.	weights for the numbers 1, 2, 3 HM is 2n + 1	n are	respectively 1 ² ,2 ² ,3 ² n ² then	
		4			
	b.	$\frac{2n+1}{6}$			
	С.	2 <i>n</i> +1			
		3			
	<i>d</i> .	2n+1			
		2			
				PYQ Nov. 20	
(38)	The harmo	nic mean A and B is 1/3 and harm	onic med	an of C and D is 1/5. The harmonic	
BX	mean of A	BCD 1s	7	14	
	<i>a</i> .	8/15	b.	1/4	
	С.	1/15	а.	5/3 MTD M 40	
(20)	A	male from Dellei to Aore at an arrow		MIP May 18	
(39) D	A man tra	ivels from Delni to Agra at an aver	age spee	a of 30km per nour and back at an	
D	uveruge sp	4.9 here/ler	uveruge	AD hundlen	
	и.	48 Km/nr	U.	40 km/nr	
	С.	45 Km/nr	а.	35 Km/nr	
(40)	TC there are	the superior with 75 and 65 as has		MIP NOV 20	
(40)	<i>If there are two groups with 75 and 65 as harmonic means containing 15 and 13</i>				
A	observatio	n, then combined HIVI is given by	1.	72.25	
	и.	70	0. J	72.20	
	C.	78	а.	/0	

Use of GM and HM				
Both	Both are used for calculating average rates			
GM	Appropriate for rates having percentages			
HM	Appropriate for rates other than percentages			

Relationship between AM, GM, and HM

	Scenario	Relation
D.1.4'	When all the observations are same	AM = GM = HM
Kelation	When observations are distinct	AM > GM > HM
	In question is silent	$AM \ge GM \ge HM$

Special Relation If there are only two observations: $AM \times HM = (GM)^2$	
---	--

					MTP May 19
(41)	Which of th	he following results hold for a set o	f distinc	t positive observations	?
С	а.	$AM \ge GM \ge HM$			
	<i>b</i> .	$HM \ge GM \ge AM$			
	С.	AM > GM > HM			
	<i>d</i> .	GM > AM > HM			
					PYQ Nov. 20
(42)	If the AM i	and HM of two numbers are 6 and	9 respe	ctively, then GM is	
A	а.	7.35	<i>b</i> .	8.5	
	С.	6.75	d.	None of these	

	Weighted Average					
When to use	<i>If the observations are not of equal importance and we need to treat observations according to their hierarchical importance, then we use Weighted Average</i>					
Formulas	Weighted AM $\sum w$ Weighted GM $\left(x_1^{w_1} \times x_2^{w_2} \times x_3^{w_3} \times \dots \times x_n^{w_n}\right)^{\frac{1}{\Sigma w}}$ Weighted HM $\sum w$ $\sum \left(\frac{w}{x}\right)$					

Measures of Dispersion						
Meaning of Measure of Dispersion	 Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency 					

	Absolute Measures of Dispersion	 These are with units These are not useful for comparison of two variables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile Deviation
Types of Measure of Dispersion	Relative Measures of Dispersion	 These are unit free measures These are useful for comparison of two variables with different units. Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of variation, Coefficient of Quartile Deviation

Range

Discusto Formula	L-S
Discrete – Formulu	where L: Largest Observation, S: Smallest Observation
Current Fundament	L-S
Groupeu Frequency	where Largest Observation = UCB of last class interval, Smallest
Distribution – Formula	<i>Observation = LCB of first-class interval</i>
Confficient of Down	$L-S_{1,100}$
Coefficient of Kange	$\frac{1}{L+S} \times 100$
	Not affected by change of origin
Duanantes 1	• Affected by change of scale (only value)
Property 1	• No impact of sign of change of scale
	• Note: Measure of Dispersion can never be negative
Cau anal Daritary	Not Based on All Observations
General Kevlew	Easy to Compute

									MTP May 19 Series II
(43)	The ran	ge of 15	, 12, 10	, 9, 17,	30 is				
D	а.	5					<i>b</i> .	12	
	С.	13					d.	21	
									MTP Mar 21, MTP Apr 21
(44)	What is	the coe	fficient	of range	for the	followiı	ıg disti	ribution?	
D	Class	10-19	20-29	30-39	40-49	50-59			
	Freq.	11	25	16	7	3			
	а.	22					<i>b</i> .	50	
	С.	75.	82				d.	72.46	

					P	YQ July 21
(45)	If the re	elationship betw	veen x and y is given	by 2x + b	3y = 10 and the range of y is	10, then
D	what is	the range of x?				
	а.	10		<i>b</i> .	18	
	С.	8		d.	15	
					PY	Q Nov. 18
(46)	If the ru	ange of a set of a	values is 65 and max	imum va	alue in the set is 83, then the	minimum
С	value in	n the set is				
	а.	74		<i>b</i> .	9	
	С.	18		d.	None of these	

Mean Deviation					
Meaning	 Mean deviation is defined as the arithmetic mean of the absolute deviations of the observations from an appropriate measure of central tendency 				
Formula – Discrete	$MD_{A} = \frac{1}{n}\Sigma x - A $ where, $A = Appropriate$ Central Tendency Measure				
Formula – Frequency Distribution	$MD_A = \frac{1}{N}\Sigma f \mid x - A \mid$				
Coefficient of Mean Deviation	Coefficient of Mean Deviation: $\frac{Mean Deviation about A}{A} \times 100$				
Property 1	Mean Deviation takes its <i>minimum value</i> when deviations are taken from <i>Median</i>				
Property 2	Change of Origin – No Affect, Change of Scale – Affect of value not sign				
General Review	 Based on all observations Improvement over Range Difficult to compute Not amenable to Mathematical Property because of usage of Modulus 				

				hPYQ July 21				
(47)	The mean d	deviation of the numbers 3, 10, 6, 2	11, 14, 1	7, 9, 8, 12 about the mean is (correct				
С	to one decimal place):							
	а.	8.7	<i>b</i> .	4.2				
	С.	3.1	d.	9.8				

					PYQ June 22
(48)	Mean Devid	ation of data 3, 10, 10, 4, 7, 18, 5	from mo	ode is	
С	а.	4.39	b.	4.70	
	С.	4.14	d.	5.24	
					ICAI SM
(49)	Mean Devid	ation of data 82, 56, 75, 70, 52, 8	0, 68 froi	m median is	
С	а.	16.49	b.	12.45	
	С.	87.14	d.	78.45	
				MTP L	Dec 22 – Series I
(50)	Which mea	sure of dispersion is based on the	absolute	e deviation only?	
С	а.	Range			
	<i>b</i> .	Standard Deviation			
	С.	Mean Deviation			
	d.	Quartile Deviation			
					ICAI SM
(51)	What is the	e mean deviation about median fo	or the foll	lowing data?	
D	x 3	5 7 9 11 13 1	5		
	f 2	8 9 16 14 7 4			
	<i>a</i> .	2.50	<i>b</i> .	2.46	
	С.	2.43	d.	2.37	

Standard Deviation

	Improvement over Mean Deviation			
Meaning	• It is defined as the root mean square deviation when the			
0	<i>deviations are <u>taken from the AM</u> of the observations</i>			
Formula – Discrete	$\sigma_x = SD_x = \sqrt{\frac{\sum(x - \overline{x})^2}{n}}$ $\sigma_x = SD_x = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2}$			
Formula – Frequency Distribution	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{N}}$ $\sigma_{x} = SD_{x} = \sqrt{\frac{\sum fx^{2}}{N} - (\overline{x})^{2}}$			
Coefficient of Variation	$\frac{SD_x}{\overline{x}} \times 100$			
SD for any two numbers	$SD = \frac{Range}{2}$			
SD for first n natural	n^2-1			
numbers	$s = \sqrt{-12}$			

Property	1	<i>If all the observations are constant, SD is</i> ZERO			
Property 2		No effect of change of origin but affected by change of scale in the			
		maonitude (ionore sion)			
				- 2	
			$SD_{1} = \sqrt{\frac{n_{1}s_{1} + n_{1}}{n_{1}s_{1}}}$	$s_2 s_2^- + n_1 a_1^- + n_2$	$a_2 a_2^{-}$
Property	3	$n_1 + n_2$			
			$d_1 = \overline{x}_c - \overline{x}_c$	$d_1, d_2 = \overline{x}_c - \overline{x}_2$	
			1 (1		
					PYQ Nov. 18
(52)	Standard Devia	tion for the marks o	btained by a stude	nt in monthly	test in mathematic (out
В	of 50) as 30, 35,	25, 20, 15 is	U U	C.	
	a. 25		Ь.	$\sqrt{50}$	
		_	4	4 00	
	<i>c</i> . √3	0	и.	50	
					PYQ June 19
(53)	S.D of first five	consecutive natura	l numbers is		
D	a. $\sqrt{10}$	0	<i>b</i> .	$\sqrt{8}$	
	c. $\sqrt{3}$		d.	$\sqrt{2}$	
	V 0			12	DVO Nov 10
(54)	SD from numb	are 1 1 5 7 8 is 2	45 If 10 is added t	to each then SI	a rill he:
(J 1)	3D JIOM NUMO	AE	.45. 1j 10 is uuueu i	o euch then SL	<i>)</i> will be.
D	u. 12.	.43 Г			
	0. 24	.0			
	c. 12				
	d. Wi	ill not change			
()					PYQ June 22
(55)	Find the standa	ard deviation and co	pefficient of variation	on for. 1, 9, 8, 1	5, 7
С	a. 2.8	28, 49.32	<i>b</i> .	2.828, 48.13	
	с. 2.8	28, 47.13	d.	2.828, 50.13	
					PYQ Dec 22
(56)	If the sum of sq	uare of the values e	equals to 3390, Nur	nber of observe	ations are 30 and
С	Standard devia	tion is 7, what is th	e mean value of the	e above observa	ations?
	a. 14		Ь.	11	
	с. 8		d.	5	
					MTP May 18
(57) C	If the mean and	SD of X are a and	b respectively, then	the S.D of $\frac{x}{x}$	$\frac{-a}{1}$ is
L	a		I.	1	U
	u. a/b		Ø.	-1	
	c. 1		d.	ab	

Quartile Deviation

Formula	$QD_{x} = \frac{Q_{3} - Q_{1}}{2}$		
Calculation	Quartiles are calculated same as we studied in Central Tendency		
Coefficient of Quartile Deviation	$\frac{Q_3-Q_1}{Q_3+Q_1}\times100$		
General Review	 It is the best measure of dispersion for open-end classification It is also less affected due to sampling fluctuations Like other measures of Dispersion, QD is also not affected by change of origin but affected by scale ignoring sign 		

	4SD = 5MD = 6QD
SD MD and OD	or
	SD:MD:QD=15:12:10

					MTP May 19		
(63)	The quartiles of a variable are 45, 52 and 65 respectively. Its quartile deviation is						
A	а.	10	<i>b</i> .	20			
	С.	25	d.	8.30			
					PYQ June 23		
(64)	If the first	quartile is 42.75 and the third qua	rtile is 7	4.25, then the coefficien	nt of quartile		
D	deviation i	is:					
	а.	29.62	<i>b</i> .	15.75			
	С.	17.57	d.	26.92			
					PYQ June 19		
(65)	<i>Coefficient of quartile deviation is 1/4 then</i> Q_3 / Q_1 <i>is</i>						
Α	а.	5/3	b.	4/3			
\$	С.	3/4	d.	3/5			
					MTP Apr 21		
(66)	Interval Q	uartile Range isof Quartile I	Deviation	1	-		
В	а.	Half	<i>b</i> .	Double			
\$	С.	Triple	d.	Equal			
				MTP D	ec 22 – Series I		
(67)	The appro:	ximate ratio of SD, MD, QD is					
С	а.	2:3:4	<i>b</i> .	3:4:5			
	С.	15:12:10	d.	5:6:7			

