CA Intermediate

## Paper 4

Cost \&
Management
Accounting
Chapter-wise compilation
of RTP, MTP and PYP
May'24

NEW Modified as per new scheme
Amended as per May'24


Attempts Compilation

## CA Finalist

(Once you print this write your name in this blank to give you the much-needed motivation. Remember what you see is what you achieve!)

## Disclaimer:

While we have made every attempt to ensure that the information contained in this compilation has been obtained from reliable sources (from the answers given by the Institute of Chartered Accountants of India), Vivitsu is not responsible for any errors or omissions, or for the results obtained from the use of this information. All information on this site is provided "as is," with no guarantee of completeness, accuracy, timeliness, or of the results obtained from the use of this information, and without warranty of any kind, express or implied, including, but not limited to warranties of performance, merchantability, and fitness for a particular purpose.

In no event will Vivitsu, its related partnerships or corporations, or the partners, agents, or employees thereof be liable to you or anyone else for any decision made or action taken in reliance on the information on this site or for any consequential, special, or similar damages, even if advised of the possibility of such damages.

This compilation is presented for informational and educational purposes and should not be considered a formal book or publication.

It is essential to use critical thinking and judgment when applying the knowledge and information provided in this compilation. The compiler does not endorse or promote any specific products, services, or organizations mentioned in this compilation.

By using this compilation, readers agree to accept full responsibility for their actions and decisions based on the information and content provided, and they acknowledge the limitations and potential risks associated with any compilation of educational materials.

## GETTING THE MOST FROM THIS BOOK

## A OUICK GUIDE



1INITIAL READING
After your initial reading of a particular chapter in your study material, go through the questions in our 3, 5, and 11 attempt's compilations, focusing on the chapter you've just covered. Make note of challenging questions for later reference.

## KEEP GOING WITH THE REVISIONS

Repeat the reading and revision process as often as possible before your exams. Each iteration will enhance your confidence and knowledge.

## Frequently Asked Questions

1. Why RTP's, MTP's and PYP's?

RTP's, MTP's, and PYP's are extremely important to ensure that you reproduce ICAI language. These questions train you to understand what is important and what is expected of you.
At least 41\% of questions* are asked from previous RTP's, MTP's and PYP's.
2. What is included?

In this compiler, all questions from the last 3,5 or 11 attempts depending on the one you have selected will be available. There will be references to the marks and the attempt from which they were asked. Identical or similar questions have been removed and references for both attempts are mentioned.
3. What is the benefit of Chapter-wise?

We have categorized each and every question from all Old RTPs, MTP's, and PYP's into chapters. This means that you don't have to wait until you've completed your entire syllabus to tackle an RTP, MTP, or past paper. You can start solving these questions to check your conceptual clarity right after finishing a particular chapter.
4. What does amended for the latest attempt mean?

When we reviewed all the questions from the past 11 attempts of RTP, MTP, and PYP'S, we didn't just segregate them Chapterwise; we also updated them to reflect the latest provisions. All the answers provided in the compilation are applicable for the May 2024 examination. So, there's no need to stress about outdated or incorrect information.
5. How are Old RTP's, MTP's \& PYP's beneficial for me?

All old RTPs, MTPs, and PYPs have been organized according to the new syllabus issued by ICAI. This means that if a specific chapter from the old scheme is not included in the new scheme, it has been omitted. If a particular chapter in the new scheme is based on concepts from two or more chapters in the old scheme, it has been adapted to align with how the chapter should be in the new scheme. If a chapter is only partially included in the new scheme, the questions related to those specific concepts are only included in the corresponding chapter of the new scheme. A comprehensive reconciliation of the chapters between the new scheme and the old scheme is provided on the following page.
6. What if a new attempt is added post my purchase?

If you have purchased materials for the May 2024 attempt, you will receive a file with the questions segregated Chapterwise specifically for that attempt.
7. What does N/A mean?

It could mean any of the following:

1. No questions from that chapter have been included in the selected attempts.
2. The chapter is newly introduced, and as a result, no questions have been previously asked in RTP's, MTP's, or PYP's.

## Cost and Management Accounting

Reconciliation of chapters of the new scheme (May'24) with old course

| New <br> Chapter <br> No. |  | Paper No. as per <br> Old Course |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Introduction to Cost and Management Accounting | Same |
| $\mathbf{2}$ | Material Cost | Same |
| $\mathbf{3}$ | Employee Cost and Direct Expenses | Same |
| $\mathbf{4}$ | Overheads - Absorption Costing Method | Same |
| $\mathbf{5}$ | Activity Based Costing | Same |
| $\mathbf{6}$ | Cost Sheet | Same |
| $\mathbf{7}$ | Cost Accounting Systems | Same |
| $\mathbf{8}$ | Unit \& Batch Costing | Same |
| $\mathbf{9}$ | Job Costing | Same |
| $\mathbf{1 0}$ | Process \& Operation Costing | Same |
| $\mathbf{1 1}$ | Joint Products and By Products | Same |
| $\mathbf{1 2}$ | Service Costing | Same |
| $\mathbf{1 3}$ | Standard Costing | Same |
| $\mathbf{1 4}$ | Marginal Costing | Same |
| $\mathbf{1 5}$ | Budgets and Budgetary Control | Same |

Note:
Contract Costing as per the Old Syllabus has been removed in the New Syllabus.

## Table of Contents

| Sr. | Particulars | Page <br> Number |
| :--- | :--- | :--- |
| No |  | $1.1-1.15$ |
| 1 | Introduction to Cost and Management Accounting | $2.1-2.41$ |
| 2 | Material Cost | $3.1-3.38$ |
| 3 | Employee Cost and Direct Expenses | $4.1-4.42$ |
| 4 | Overheads - Absorption Costing Method | $5.1-5.54$ |
| 5 | Activity Based Costing | $6.1-6.40$ |
| 6 | Cost Sheet | $7.1-7.27$ |
| 7 | Cost Accounting Systems | $8.1-8.15$ |
| 8 | Unit \& Batch Costing | $9.1-9.10$ |
| 9 | Job Costing | $10.1-10.42$ |
| 10 | Process \& Operation Costing | $11.1-11.27$ |
| 11 | Joint Products and By Products | $12.1-12.49$ |
| 12 | Service Costing | $13.1-13.45$ |
| 13 | Standard Costing | $14.1-14.53$ |
| 14 | Marginal Costing | $15.1-15.34$ |
| 15 | Budgets and Budgetary Control |  |

21 MTPs: March'18, April'18, Aug'18, Oct'18, May'19, April'19, Oct'19, May'20, Oct'20, March'21, April'21, Oct '21, Nov '21, March '22, April '22, Sep '22, Oct '22, March '23, April '23, Sep '23 \& Oct '23

11 PYPs: May'18, Nov'18, May'19, Nov'19, Nov'20, Jan'21, July '21, Dec '21, May'22, Nov '22, May '23

12 RTPs: May'18, Nov'18, May'19, Nov'19, May'20, Nov'20, May'21, Nov '21, May '22, Nov '22, May '23, Nov '23

# Chapter 1 <br> Introduction to Cost and Management Accounting 

## Question 1

Discuss the impact of Information Technology in Cost Accounting. (MTP 5 Marks March '19 \& April ' 23
\& Sep '23, PYP 5 Marks Jan '21, RTP May '20, RTP May'22)

## Answer 1

The impact of IT in cost accounting may include the followings:
(i) After the introduction of ERPs, different functional activities get integrated and as a consequence a single entry into the accounting system provides custom made reports for every purpose and saves an organization from preparing different sets of documents. Reconciliation process of results of both cost and financial accounting systems become simpler and less sophisticated.
(ii) A move towards paperless environment can be seen where documents like Bill of Material, Material Requisition Note, Goods Received Note, labour utilization report etc. are no longer required to be prepared in multiple copies, the related department can get e-copy from the system.
(iii) Information Technology with the help of internet (including intranet and extranet) helps in resource procurement and mobilization. For example, production department can get materials from the stores without issuing material requisition note physically. Similarly, purchase orders can be initiated to the suppliers with the help of extranet. This enables an entity to shift towards Just-in-Time (JIT) approach of inventory management and production.
(iv) Cost information for a cost center or cost object is ascertained with accuracy in timely manner. Each cost center and cost object is codified and all related costs are assigned to the cost object or cost center. This process automates the cost accumulation and ascertainment process. The cost information can be customized as per the requirement. For example, when an entity manufacture or provide services, it can know information job -wise, batch-wise, process-wise, cost center wise etc.
(v) Uniformity in preparation of report, budgets and standards can be achieved with the help of IT. ERP software plays an important role in bringing uniformity irrespective of location, currency, language and regulations.
(vi) Cost and revenue variance reports are generated in real time basis which enables the management to take control measures immediately.
(vii) IT enables an entity to monitor and analyse each process of manufacturing or service activity closely to eliminate non value added activities.

The above are examples of few areas where Cost Accounting is done with the help of IT.

## Question 2

Discuss the four different methods of costing along with their applicability to concerned industry? (MTP March '18, 5 Marks)

## Answer 2

Four different methods of costing along with their applicability to concerned industry have been discussed as below:
(i) Job Costing: The objective under this method of costing is to ascertain the cost of each job order. A job card is prepared for each job to accumulate costs. The cost of the job is determined by adding all costs against the job it has incurred. This method of costing is used in printing press, foundries and general engineering workshops, advertising etc.
(ii) Batch Costing: This system of costing is used where small components/ parts of the same kind are required to be manufactured in large quantities. Here batch of similar products is treated as a job and cost of such a job is ascertained as discussed under (1), above. If in a cycle manufacturing unit, rims are produced in batches of 2,500 units each, then the cost will be determined in relation to a batch of 2,500 units.
(iii) Contract Costing: If a job is very big and takes a long time for its completion, then method used for Prakshal Shah $\mid 87797986465$ is known as Contract Costing. Here the cost of each contract is ascertained separately. It is
suitable for firms engaged in the construct ion of bridges, roads, buildings etc.
(iv) Operating Costing: The method of Costing used in service rendering undertakings is known as operating costing. This method of costing is used in undertakings like transport, supply of water, telephone services, hospitals, nursing homes etc.

## Question 3

Discuss the prerequisite of installing cost accounting system. (MTP Aug '185 Marks)

## Answer 3

Before setting up a system of cost accounting the under mentioned factors should be studied:
(i) Objective: The objective of costing system, for example whether it is being introduced for fixing prices or for insisting a system of cost control.
(ii) Nature of Business or Industry: The Industry in which business is operating. Every business industry has its own peculiarity and objectives. According to its cost information requirement cost accounting methods are followed. For example, an oil refinery maintains process wise cost accounts to find out cost incurred on a particular process say in crude refinement process etc.
(iii) Organizational Hierarchy: Costing system should fulfil the information requirement s of different levels of management. Top management is concerned with the corporate strategy, strategic level management is concerned with marketing strategy, product diversification, product pricing etc. Operational level management needs the information on standard quantity to be consumed, report on idle time etc.
(iv) Knowing the product: Nature of product determines the type of costing system to be implemented. The product which has by -products requires costing system which account for by-products as well. In case of perishable or short self - life, marginal costing method is required to know the contribution and minimum price at which it can be sold.
(v) Knowing the production process: A good costing system can never be established without the complete knowledge of the production process. Cost apportionment can be done on the most appropriate and scientific basis if a cost accountant can identify degree of effort or resources consumed in a particular process. This also includes some basic technical know -how and process peculiarity.
(vi) Information synchronization: Establishment of a department or a system requires substantial amount of organizational resources. While drafting a costing system, information needs of various other departments should be taken into account. For example, in a typical business organization accounts department needs to submit monthly stock statement to its lender bank, quantity wise stock details at the time of filing returns to tax authorities etc.
(vii) Method of maintenance of cost records: The manner in which Cost and Financial accounts could be inter-locked into a single integral accounting system and how the results of separate sets of accounts i.e. cost and financial, could be reconciled by means of control accounts.
(viii) Statutory compliances and audit: Records are to be maintained to comply with statutory requirements and applicable cost accounting standards to be followed.
(ix) Information Attributes: Information generated from the Costing system should possess all the attributes of information i.e. complete, accurate, timeliness, relevant etc. to have an effective management information system (MIS).

## Question 4

Discuss the essential features of a good cost accounting system. (MTP Oct ‘19, 5 Marks, Old \& New SM)
Answer 4
The essential features, which a good cost accounting system should possess, are as follows:
(a) Informative and simple: Cost accounting system should be tailor-made, practical, simple and capable of meeting the requirements of a business concern. The system of costing should not sacrifice the utility by introducing inaccurate and unnecessary details.
(b) Accurate and authentic: The data to be used by the cost accounting system should be accurate and authenticated; otherwise it may distort the output of the system and a wrong decision may be taken.

reporting of cost data and related information. This is required for benchmarking and comparability of the results of the system for both horizontal and vertical analysis.
(d) Integrated and inclusive: The cost accounting system should be integrated with other systems like financial accounting, taxation, statistics and operational research etc. to have a complete overview and clarity in results.
(e) Flexible and adaptive: The cost accounting system should be flexible enough to make necessary amendment and modifications in the system to incorporate changes in technological, reporting, regulatory and other requirements.
(f) Trust on the system: Management should have trust on the system and its output. For this, an active role of management is required for the development of such a system that reflects a strong conviction in using information for decision making.

## Question 5

State the limitations of cost and management accounting. (MTP Oct '18 5 Marks, RTP Nov'21)

## Answer 5

Like other branches of accounting, cost and management accounting is also having certain limitations. The limitations of cost and management accounting are as follows:

1. Expensive: It is expensive because analysis, allocation and absorption of overheads require considerable amount of additional work, and hence additional money.
2. Requirement of Reconciliation: The results shown by cost accounts differ from those shown by financial accounts. Thus Preparation of reconciliation statements is necessary to verify their accuracy.
3. Duplication of Work: It involves duplication of work as organization has to maintain two sets of accounts i.e. Financial Account and Cost Account.
4. Inefficiency: Costing system itself does not control costs but its usage does.

## Question 6

DISCUSS the steps to be followed to exercise control over cost. (MTP 5 Marks Oct'20)

## Answer 6

To exercise control over cost, following steps are followed:
(i) Determination of pre-determined standard or results: Standard cost or performance targets for a cost object or a cost centre is set before initiation of production or service activity. These are desired cost or result that need to be achieved.
(ii) Measurement of actual performance: Actual cost or result of the cost object or cost centre is measured. Performance should be measured in the same manner in which the targets are set i.e. if the targets are set up operation-wise, and then the actual costs should also be collected and measured operation-wise to have a common basis for comparison.
(iii) Comparison of actual performance with set standard or target: The actual performance so measured is compared against the set standard and desired target. Any deviation (variance) between the two is noted and reported to the appropriate person or authority.
(iv) Analysis of variance and action: The variance in results so noted are further analysed to know the reasons for variance and appropriate action is taken to ensure compliance in future. If necessary, the standards are further amended to take developments into account.

## Question 7

DISCUSS the Standard and Discretionary Cost Centres (MTP 5 Marks March'21 \& Oct '23, Old \& New SM)

## Answer 7

(i) Standards Cost Centre: Cost Centre where output is measurable and input required for the output can be specified. Based on a well-established study, an estimate of standard units of input to produce a unit of output is set. The actual cost for inputs is compared with the standard cost. Any deviation
(variance) in cost is measured and analysed into controllable and uncontrollable cost. The manager of the cost centre is supposed to comply with the standard and held responsible for adverse cost variances. The input-output ratio for a standard cost centre is clearly identifiable.
(ii) Discretionary Cost Centre: The cost center whose output cannot be measured in financial terms, thus input-output ratio cannot be defined. The cost of input is compared with allocated budget for the activity. Example of discretionary cost centers are Research \& Development department, Advertisement department where output of these department cannot be measured with certainty and co-related with cost incurred on inputs.

## Question 8

DISTINGUISH between cost control and cost reduction (MTP 5 Marks, Apr'21, Apr 19, Aug 18 \& Oct '23) (RTP (Nov '21, May 19, Nov '18 \& Nov '22 \& May '23) (PYP May '19 5 Marks, PYP 5 Marks Dec '21)

## Answer 8

Difference between Cost Control and Cost Reduction

| Cost Control | Cost Reduction |
| :--- | :--- | :--- |
| 1. Cost control aims at maintaining the costs in <br> accordance with the established standards. | 1. Cost reduction is concerned with reducing <br> costs. It challenges all standards and <br> endeavours to improvise them continuously |
| 2. $\quad$Cost control seeks to attain lowest possible <br> cost under existing conditions. | 2.Cost reduction recognises no condition as <br> permanent, since a change will result in <br> lower cost. |
| 3. In case of cost control, emphasis is on past |  |
| and present |  | 3. In lase of cost reduction, it is on present | and future. |
| :--- |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this theoretical question on 'Cost control and Cost reduction', below average performance of the examinees was observed.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

The theory question required knowledge of the concepts of two terms Cost Control and Cost Reduction to identify differences between them. Most of the examinees answered partly correct. Performance of the examinees was below average.

## Question 9

EXPLAIN the difference between Cost Accounting and Management Accounting (MTP 5 Marks, Oct '21 \& March '23) (RTP Nov'19, May '20 \& Nov '22) (PYP 5 Marks Nov 20)

## Answer 9

Difference between Cost Accounting and Management Accounting

|  | Basis | Cost Accounting | Management Accounting |
| :--- | :--- | :--- | :--- |
| (i) | Nature | It records the quantitative <br> aspect only. | It records both qualitative and <br> quantitative aspect. |
| (ii) | Objective | It records the cost of <br> producing a product and <br> providing a service. | It Provides information to <br> management for planning and <br> co-ordination. |


| (iii) | Area | It only deals with cost <br> Ascertainment. | It is wider in scope as it includes <br> financial accounting, budgeting, <br> taxation, planning etc. |
| :--- | :--- | :--- | :--- |
| (iv) | Recording of data | It uses both past and <br> present figures. | It is focused with the projection of <br> figures for future. |
| (v) | Development | Its development is related <br> to industrial revolution. | It develops in accordance to the <br> need of modern business world. |
| (vi) | Rules and <br> Regulation | It follows certain principles <br> and procedures for recording <br> costs of different products. | It does not follow any specific <br> rules and regulations. |

## Question 10

How do you deal with the following in cost accounts?
(i) Fringe benefits
(ii) Bad debts. (MTP 5 Marks, Oct'21)

## Answer 10

(i) Fringe benefits: These are the additional payments or facilities provided to the workers apart from their salary and direct cost-allowances like house rent, dearness and city compensatory allowances. These benefits are given in the form of overtime, extra shift duty allowance, holiday pay, pension facilities etc. These indirect benefits stand to improve the morale, loyalty and stability of employees towards the organization. If the amount of fringe benefit is considerably large, it may be recovered as direct charge by means of a supplementary wage or labour rate; otherwise, these may be collected as part of production overheads.
(ii) Bad debts: There is no unanimity among different authors of Cost Accounting about the treatment of bad debts. One view is that 'bad debts' should be excluded from cost. According to this view bad debts are financial losses and therefore, they should not be included in the cost of a particular job or product. According to another view it should form part of selling and distribution overheads, especially when they arise in the normal course of trading. Therefore, bad debts should be treated in cost accounting in the same way as any other selling and distribution cost. However extra ordinarily large bad debts should not be included in cost accounts.

## Question 11

DISCUSS cost classification based on variability and controllability. (MTP 5 Marks Nov '21 \& March '18) (RTP May '21 \& May '19, Old \& New SM)

## Answer 11

Cost classification based on variability
(i) Fixed Costs - These are the costs which are incurred for a period, and which, within certain output and turnover limits, tend to be unaffected by fluctuations in the levels of activity (output or turnover). They do not tend to increase or decrease with the changes in output. For example, rent, insurance of factory building etc., remain the same for different levels of production.
(ii) Variable Costs - These costs tend to vary with the volume of activity. Any increase in the activity results in an increase in the variable cost and vice-versa. For example, cost of direct labour, etc.
(iii) Semi-variable Costs - These costs contain both fixed and variable components and are thus partly affected by fluctuations in the level of activity. Examples of semi variable costs are telephone bills, gas and electricity etc.

## Cost classification based on controllability

(i) Controllable Costs - Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre. For example, direct costs comprising direct labour, direct material, direct expenses and some of the overheads are generally controllable by the shop level management.
(ii) Uncontrollable Costs - Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs. For example, expenditure incurred by, say, the tool room is controllable by the foreman in-charge of that section but the share of the tool-room expenditure which is apportioned to a machine shop is not to be controlled by the machine shop foreman.

## Question 12

STATE Direct Expenses with examples. (MTP 5 Marks April '19)

## Answer 12

Expenses other than direct material cost and direct employee cost, which are incurred to manufacture a product or for provision of service and can be directly traced in an economically feasible manner to a cost object. The following costs are examples for direct expenses:
(a) Royalty paid/ payable for production or provision of service;
(b) Hire charges paid for hiring specific equipment;
(c) Cost for product/ service specific design or drawing;
(d) Cost of product/ service specific software;
(e) Other expenses which are directly related with the production of goods or provision of service.

## Question 13

EXPLAIN the difference between product cost and period cost. (5 Marks April '19, Oct’22)

## Answer 13

Product costs are those costs that are identified with the goods purchased or produced for resale. In a manufacturing organisation they are attached to the product and that are included in the inventory valuation for finished goods, or for incomplete goods. Product cost is also known as inventoriable cost. Under absorption costing method it includes direct material, direct labour, direct expenses, directly attributable costs (variable and non-variable) and other production (manufacturing) overheads. Under marginal costing method Product Costs includes all variable production costs and the all fixed costs are deducted from the contribution.

Periods costs are the costs, which are not assigned to the products but are charged as expense against revenue of the period in which they are incurred. General Administration, marketing, sales and distributor overheads are recognized as period costs.

## Question 14

Some of the items of PR Company, a manufacturer of corporate office furniture, are provided below. As the company is in the process of developing a formal cost accounting system, you are required to CLASSIFY the items into three categories namely: (i) Cost tracing (ii) Cost allocation (iii) Nonmanufacturing item. Carpenter wages, Depreciation - office building, Glue for assembly, Lathe department supervisor, Metal brackets for drawers, Factory washroom supplies, Lumber, Samples for trade shows, Lathe depreciation, Lathe operator wages. (MTP 4 Marks March '22)

Answer 14

| Item | Cost Tracing | Cost Allocation | Non-manufacturing |
| :--- | :---: | :---: | :---: |
| Carpenter wages | $\mathbf{V}$ |  |  |
| Depreciation - office building |  |  | $\mathbf{V}$ |
| Glue for assembly |  | $\mathbf{V}$ |  |
| Lathe department supervisor |  | $\mathbf{V}$ |  |
| Metal brackets for drawers | $\mathbf{V}$ |  |  |
| Factory washroom supplies |  | $\mathbf{V}$ |  |
| Lumber | $\mathbf{V}$ |  | $\mathbf{V}$ |
| Samples for trade shows |  |  |  |


| Lathe depreciation |  | V |  |
| :--- | :--- | :--- | :--- |
| Lathe operator wages |  | V |  |

## Question 15

STATE the method of costing for the following industries:
(i) Sugar manufacturing
(ii) Bridge Construction
(iii) Advertising
(iv) Car Assembly (MTP 4 Marks April '22)

## Answer 15

| S. No. | Industry | Method of costing |
| :--- | :--- | :--- |
| (i) | Sugar manufacturing | Process costing |
| (ii) | Bridge Construction | Contract Costing |
| (iii) | Advertising | Job costing |

## Question 16

DEFINE cost units? WRITE the cost unit basis against each of the following Industry/ProductAutomobile, Steel, Cement, Chemicals, Power and Transport. (5 Marks March '23)(RTP Nov '22)

## Answer 16

Cost units are usually the units of physical measurement like number, weight, area, volume, length, time and value.

| Industry or Product | Cost Unit Basis |
| :--- | :--- |
| Automobile | Number |
| Steel | Ton |
| Cement | Ton/ per bag etc. |
| Chemicals | Litre, gallon, kilogram, ton etc. |
| Power | Kilo-watt hour (kWh) |
| Transport | Passenger- kilometer |

## Question 17

DISCUSS short notes on (i) Discretionary Cost Centre and (ii) Investment Centre (RTP Nov 20 \& May '18)

## Answer 17

(i) Discretionary Cost Centre: The cost centre whose output cannot be measured in financial terms, thus input-output ratio cannot be defined. The cost of input is compared with allocated budget for the activity. Example of discretionary cost centres are Research \& Development department, Advertisement department where output of these department cannot be measured with certainty and co-related with cost incurred on inputs.
(ii) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres are measured on the basis of Return on Investment (ROI) besides profit. Examples of investment centres are Maharatna, Navratna and Miniratna companies of Public Sector Undertakings of Central Government.

## Question 18

DESCRIBE Operation costing with two examples of industries where operation costing is applied. (RTP Nov '20)

## Answer 18

This product costing system is used when an entity produces more than one variant of final product
for all the product variants but materials differ significantly. Operation Costing method is also known as Hybrid product costing system as materials costs are accumulated by job order or batch wise but conversion costs i.e. labour and overheads costs are accumulated by department, and process costing methods are used to assign these costs to products. Moreover, under operation costing, conversion costs are applied to products using a predetermined application rate. This predetermined rate is based on budgeted conversion costs. The two examples of industries are Ready made garments and Jeweler making.

## Question 19

DEFINE Controllable Cost and Uncontrollable Cost. (RTP Nov '18) (MTP 5 Marks March '19, April '23 \& Sep '23)

Or
EXPLAIN the difference between controllable \& uncontrollable costs? (RTP May '22)

## Answer 19

(i) Controllable Costs: - Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre. For example, direct costs comprising direct labour, direct material, direct expenses and some of the overheads are generally controllable by the shop level management.
(ii) Uncontrollable Costs - Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs. For example, expenditure incurred by, say, the tool roomis controllable by the foreman in-charge of that section but the share of the tool-room expenditure which is apportioned to a machine shop is not to be controlled by the machine shop foreman.

## Question 20

SUGGEST the unit of cost for following industries: (RTP May 23)
(a) Transport
(b) Power
(c) Hotel
(d) Hospital
(e) Steel
(f) Coal mining
(g) Professional Services
(h) Gas
(i) Engineering
(j) Oil

## Answer 20

## Cost units are as follows:

| Industry or Product | Cost Unit Basis |
| :--- | :--- |
| Transport | Passenger- kilometer |
| Power | Kilo-watt hour (kWh) |
| Hotel | Room |
| Hospitals | Patient day |
| Steel | Ton |
| Coal mining | Tonne/ton |
| Professional services | Chargeable hour, job, contract |
| Gas | Cubic feet |


| Engineering | Contract, job |
| :--- | :--- |
| Oil | Barrel, tonne, litre |

## Question 21

Narrate the objectives of cost accounting. (Nov '23)

## Answer 21

The main objectives of introduction of a Cost Accounting System in a manufacturing organization are as follows:
(i) Ascertainment of cost: The main objective of a Cost Accounting system is to ascertain cost for cost objects. Costing may be post completion or continuous but the aim is to arrive at a complete and accurate cost figure to assist the users to compare, control and make various decisions.
(ii) Determination of selling price: Cost Accounting System in a manufacturing organisation enables to determine desired selling price after adding expected profit margin with the cost of the goods manufactured.
(iii) Cost control and Cost reduction: Cost Accounting System equips the cost controller to adhere and control the cost estimate or cost budget and assist them to identify the areas of cost reduction.
(iv) Ascertainment of profit of each activity: Cost Accounting System helps to classify cost on the basis of activity to ascertain activity wise profitability.
(v) Assisting in managerial decision making: Cost Accounting System provides relevant cost information and assists managers to make various decisions.

## Question 22

Mention the Cost Unit of the following Industries:
(i) Electricity
(ii) Automobile
(iii) Cement
(iv) Steel
(v) Gas
(vi) Brick Making
(vii) Coal Mining
(viii) Engineering
(ix) Professional Services (PYP Nov'19,5 Marks)

Answer 22
Cost Unit of Industries:

| S. No. | Industry | Cost Unit Basis |
| :--- | :--- | :--- |
| (i) | Electricity | Kilowatt-hour (kWh) |
| (ii) | Automobile | Number |
| (iii) | Cement | Ton/ per bag etc. |
| (iv) | Steel | Ton |
| (v) | Gas | Cubic feet |
| (vi) | Brick-making | 1,000 bricks |
| (vii) | Coal mining | Tonne/ton |
| (viii) | Engineering | Contract, job |
| (ix) | Professional services | Chargeable hour, job, contract |
| (x) | Hospitals | Patient day |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question based on cost unit in industries. Performance of the examinees was Average.

## Question 23

Why are cost and management accounting information are required by the staff at operational level? Describe. (PYP May '18, 5 Marks)

## Answer 23

Operational level staffs- The operational level staffs like supervisors, foreman, team leaders are requiring information
(i) to know the objectives and performance goals for them
(ii) to know product and service specifications like volume, quality and process etc.
(iii) to know the performance parameters against which their performance is measured and evaluated.
(iv) to know divisional (responsibility centre) profitability etc.

## Question 24

Mention and explain types of responsibility centers. (PYP Nov '18, 5 Marks)

## Answer 24

There are four types of responsibility centres:
(i) Cost Centres: The responsibility centre which is held accountable for incurrence of costs which are under its control. The performance of this responsibility centre is measured against pre-determined standards or budgets. The cost centres are of two types:
(a) Standard Cost Centre and (b) Discretionary Cost Centre
(ii) Revenue Centres: The responsibility centres which are accountable for generation of revenue for the entity. Sales Department for example, is the responsible for achievement of sales target and revenue generation. Though, revenue centres does not have control on the all expenditures it incurs but some time expenditures related with selling activities like commission to sales person etc. are incurred by revenue centres.
(iii) Profit Centres: These are the responsibility centres which have both responsibility of generation of revenue and incurrence of expenditures. Since, managers of profit centres are accountable for both costs as well as revenue, profitability is the basis for measurement of performance of these responsibility centres. Examples of profit centres are decentralised branches of an organisation.
(iv) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres is measured based on Return on Investment (ROI) besides profit.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question on responsibility centres. Below average performance was observed.

## Question 25

State the Method of Costing to be used in the following industries: ". (PYP 5 Marks Nov '20)
(i) Real Estate
(ii) Motor repairing workshop
(iii) Chemical Industry
(iv) Transport service
(v) Assembly of bicycles
(vi) Biscuits manufacturing Industry
(vii) Power supply Companies
(viii) Car manufacturing Industry
(ix) Cement Industry
(x) Printing Press

Answer 25
Method of costing used in different industries:

| S. No. | Industries | Method of Costing |
| :--- | :--- | :--- |
| (i) | Real Estate | Contract Costing |
| (ii) | Motor Repairing Workshop | Job Costing |
| (iii) | Chemical Industry | Process Costing |
| (iv) | Transport Service | Service/Operating Costing |
| (v) | Assembly of Bicycles | Unit/ Single/Output/Multiple Costing |
| (vi) | Biscuits Manufacturing Industry | Batch Costing |
| (vii) | Power Supply Companies | Service/Operating Costing |
| (viii) | Car Manufacturing Industry | Multiple Costing |
| (ix) | Cement Industry | Unit/Single/Output Costing |
| (x) | Printing Press | Job Costing |

## Question 26

State the method of costing that would be most suitable for:
(i) Oil Refinery
(ii) Interior Decoration
(iii) Airlines Company
(iv) Advertising
(v) Car Assembly. (PYP 5 Marks Jan '21)

Answer 26
Method of Costing

| S.No. | Industry | Method of Costing |
| :--- | :--- | :--- |
| (i) | Oil Refinery | Process Costing |
| (ii) | Interior <br> Decoration | Job Costing |
| (iii) | Airlines Company | Operation/ Service Costing |
| (iv) | Advertising | Job Costing |
| (v) | Car Assembly | Multiple Costing |

## Question 27

Specify the types of Responsibility centres under the following situations:
(i) Purchase of bonds, stocks, or real estate property.
(ii) Ticket counter in a Railway station.
(iii) Decentralized branches of an organization.
(iv) Maharana, Navratna and Miniratna public sector undertaking (PSU) of Central Government.
(v) Sales Department of an organization. (PYP 5 Marks July 21)

## Answer 27

| Particulars | Types of <br> Responsibility Centre |
| :--- | :--- | ---: |
| Prakshal Shah 1877979 Gi 646 Ticket counter in a Railway station. | Investment Centre |
| (i) Purchase of bonds, stocks, or real estate property. | Revenue Centre |


| (iii) Decentralized branches of an organization. | Profit Centre |
| :--- | ---: |
| (iv) Maharatna, Navratna and Miniratna public sector <br> undertaking (PSU) of Central Government. | Investment Centre |
| (v) Sales Department of an organization. | Revenue Centre |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a theoretical question requiring examinees to specify the type of responsibility centre for the given five statements. Majority of the examinees failed to give clear responses to the statements. Performance of the examinees was below average.

## Question 28

Explain Direct Expenses and how these are measured and their treatment in cost accounting. (PYP May '19 5 Marks)

## Answer 28

Direct Expense: Expenses other than direct material cost and direct employee cost, which are incurred to manufacture a product or for provision of service and can be directly traced in an economically feasible manner to a cost object. The following costs are examples for direct expenses:
(i) Royalty paid/ payable for production or provision of service;
(ii) Hire charges paid for hiring specific equipment;
(iii) Cost for product/ service specific design or drawing;
(iv) Cost of product/ service specific software;
(v) Other expenses which are directly related with the production of goods or provision of service. The above list of expenses is not exhaustive; any other expenses which are directly attributable to the production or service are also included as direct expenses.

## Measurement of Direct Expenses

The direct expenses are measured at invoice or agreed price net of rebate or discount but includes duties and taxes (for which input credit not available), commission and other directly attributable costs. In case of sub-contracting, where goods are get manufactured by job workers independent of the principal entity, are measured at agreed price. Where the principal supplies some materials to the job workers, the value of such materials and other incidental expenses are added with the job charges paid to the job workers.

## Treatment of Direct Expenses

Direct Expenses forms part the prime cost for the product or service to which it can be directly traceable and attributable. In case of lump-sum payment or one-time payment, the cost is amortized over the estimated production volume or benefit derived. If the expenses incurred are of insignificant amount. i.e. not material, it can be treated as part of overheads.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theoretical question was related to 'Direct Expenses'. Poor performance of the examinees was observed.

## Question 29

Briefly explain the 'techniques of costing'. (PYP 5 Marks Dec '21)

Answer 29

| Techniques | Description |
| :---: | :---: |
| Uniform Costing | When a number of firms in an industry agree among themselves to follow the same system of costing in detail, adopting common terminology for various items and processes they are said to follow a system of uniform costing. <br> Advantages of such a system are: <br> i. A comparison of the performance of each of the firms can be made with that of another, or with the average performance in the industry. <br> ii. Under such a system, it is also possible to determine the cost of production of goods which is true for the industry as a whole. It is found useful when taxrelief or protection is sought from the Government. |
| Marginal Costing | It is defined as the ascertainment of marginal cost by differentiating between fixed and variable costs. It is used to ascertain effect of changes in volume or type of output on profit. |
| Standard Costing an <br> d Variance <br> Analysis | It is the name given to the technique whereby standard costs are pre-determined and subsequently compared with the recorded actual costs. It is thus a technique of cost ascertainment and cost control. This technique may be used in conjunction with any method of costing. However, it is especially suitable where the manufacturing method involves production of standardized goods of repetitive nature. |
| Historical Costing | It is the ascertainment of costs after they have been incurred. This type of costing has limited utility. <br> - Post Costing: It means ascertainment of cost after production is completed. <br> - Continuous costing: Cost is ascertained as soon as the job is completed or even when the job is in progress. |
| Absorption Costing | It is the practice of charging all costs, both variable and fixed to operations, processes or products. This differs from marginal costing where fixed costs are excluded. |
| Direct costing | Direct costing is a specialized form of cost analysis that only uses variable costs to make decisions. It does not consider fixed costs, which are assumed to be associated with the time periods in which they are incurred. |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theory question on technique of costing was not answered well. Examinees answered different methods of costing instead of techniques. Performance of the examinees was poor.

## Question 30

Identify the methods of costing from the following statements:
(i) Costs are directly charged to a group of products.
(ii) Nature of the product is complex and method cannot be ascertained.
(iii) Costs ascertained for a single product.
(iv) All costs are directly charged to a specific job.
(v) Costs are charged to operations and averaged over units produced. (PYP 5 Marks May'22)

## Answer 30

Method of costing followed:

| Situation | Method of costing |
| :--- | :--- |
| (i) Costs are directly charged to a group of products. | Batch costing |
| (ii) Nature of the product is complex and method cannot be | Multiple costing |

(iii) Cost is ascertained for a single product.
(iv) All costs are directly charged to a specific job.
(v)Costs are charged to operations and averaged over units produced.

Unit/ Single/Output costing Job costing Process costing

## Question 31

Mention the cost units (physical measurements) for the following Industry/product:
(i) Automobile
(ii) Gas
(iii) Brick works
(iv) Power
(v) Steel
(vi) Transport (by road)
(vii) Chemical
(viii) Oil
(ix) Brewing
(x) Cement (PYP 5 Marks Nov 22)

Answer 31

| Industry or Product | Cost Units |
| :--- | :--- |
| Automobile | Number |
| Gas | Cubic feet |
| Brick works | 1,000 bricks |
| Power | Kilo-watt hour (kWh) |
| Steel | Tonne |
| Transport (by road) | Passenger- kilometer or Tonne-kilometer |
| Chemical | Litre, gallon, kilogram, tonne etc. |
| Oil | Barrel, tonne, litre |
| Brewing | Barrel |
| Cement | Ton/ per bag etc. |

## Question 32

Explain: Opportunity cost (PYP 2 Marks May '18)

## Answer 32

Opportunity Cost - This cost refers to the value of sacrifice made or benefit of opportunity foregone in accepting an alternative course of action. For example, a firm financing its expansion plan by withdrawing money from its bank deposits. In such a case the loss of interest on the bank deposit is the opportunity cost for carrying out the expansion plan.

## Question 33

Define cost objects and give examples of any four cost objects. (PYP 5 Marks, May '23)

## Answer 33

## Definition of cost objects

Cost object is anything for which a separate measurement of cost is required. Cost object may be a product, a service, a project, a customer, a brand category, an activity, a department or a programme etc.

Examples of cost objects

| Product | Smart phone, Tablet computer, SUV Car, Book etc. |
| :--- | :--- |
| Service | An airline flight from Delhi to Mumbai, Concurrent audit <br> assignment, Utility bill payment facility etc. |


| Project | Metro Rail project, Road projects etc. |
| :--- | :--- |
| Activity | Quality inspection of materials, Placing of orders etc. |
| Process | Refinement of crudes in oil refineries, melting of billets or ingots in <br> rolling mills etc. |
| Department | Production department, Finance \& Accounts, Safety etc. |

## Chapter 2 <br> Material Cost

## Question 1

DISTINGUISH clearly between Bin cards and Stores Ledger. (MTP 4 Marks March '22 \& March '23, Old \& New SM)
Answer 1
Difference between Bin Card \& Stores Ledger

| Bin Card | Stores Ledger |
| :--- | :--- |
| It is maintained by the storekeeper in the <br> store. | It is maintained in cost accounting <br> department. |
| It contains only quantitative details of <br> material received, issued and returned to <br> stores. | It contains information both in quantity and <br> value. |
| Entries are made when transaction takes <br> place. | It is always posted after the <br> transaction. |
| Each transaction is individually <br> posted. | Transactions may be summarized and then <br> posted. |
| Inter-department transfers do not appear in <br> Bin Card. | Material transfers from one job to another <br> job are recorded for costing purposes. |

## Question 2

A Ltd. produces a product 'Exe' using a raw material Dee. To produce one unit of Exe, $\mathbf{2} \mathbf{~ k g}$ of Dee is required. As per the sales forecast conducted by the company, it will able to sale 20,000 units of Exe in the coming year. The following is the information regarding the raw material Dee:
(i) The Re-order quantity is $\mathbf{2 0 0} \mathbf{~ k g}$. less than the Economic Order Quantity (EOQ).
(ii) Maximum consumption per day is $\mathbf{2 0} \mathbf{k g}$. more than the average consumption per day.
(iii) There is an opening stock of $2,000 \mathrm{~kg}$.
(iv) Time required to get the raw materials from the suppliers is $\mathbf{4}$ to $\mathbf{8}$ days.
(v) The purchase price is Rs. 125 per kg.

There is an opening stock of 1,800 units of the finished product Exe. The rate of interest charged by bank on Cash Credit facility is $\mathbf{1 3 . 7 6 \%}$.
To place an order company has to incur Rs. $\mathbf{7 2 0}$ on paper and documentation work. From the above information COMPUT $E$ the followings in relation to raw material Dee:
(a) Re-order Quantity
(b) Maximum Stock level
(c) Minimum Stock level
(d) Impact on the profitability of the company by not ordering the EOQ.
[Take 364 days for a year] (MTP April '19, 10 Marks)(RTP May'19)(Same concept different figures RTP May 21)

## Answer 2

## Working Notes:

(i) Computation of Annual consumption \& Annual Demand for raw material 'Dee':

| Sales forecast of the product 'Exe' | 20,000 units |
| :--- | :--- |
| Less: Opening stock of 'Exe' | 1,800 units |
| Fresh units of 'Exe' to be produced | 18,200 units |
| Raw material required to produce 18,200 units of 'Exe' (18,200 units $\times 2$ | $36,400 \mathrm{~kg}$. |


| kg.) |  |
| :--- | :--- |
| Less: Opening Stock of 'Dee' | $2,000 \mathrm{~kg}$. |
| Annual demand for raw material 'Dee' | $34,400 \mathrm{~kg}$. |

Computation of Economic Order Quantity (EOQ):

$$
\begin{aligned}
& \mathrm{EOQ}=\frac{\sqrt{2 \text { X Annual Consumption of "Dee। }}}{\text { Carrying Cost Per Unit Per annum }}=\sqrt{\frac{2 X 34,400 \mathrm{~kg} \cdot X \mathrm{Rs} .720}{\text { Rs. } 125 \times 13.76 \%}} \\
& =\frac{\sqrt{2 \times 34,400 \mathrm{~kg} \cdot X \text { Rs. } 720}}{\text { Rs. } 17.2}=1,697 \mathrm{~kg} .
\end{aligned}
$$

(ii) Re- Order level:
$=$ (Maximum consumption per day $\times$ Maximum lead time $)$
$=\left\{\left(\frac{\text { Annual Consumption of } 1 \text { Deeı }}{364 \text { Days }}+20 \mathrm{~kg}.\right) X 8\right.$ days $\}$
$=\left\{\left(\frac{36,400 \mathrm{~kg} .}{364 \text { Days }}+20 \mathrm{~kg}.\right) X 8\right.$ days $\}=960 \mathrm{~kg}$.
(iii) Minimum consumption per day of raw material 'Dee':

AverageConsumptionperday $\quad=100 \mathrm{~kg}$.
Hence, Maximum Consumption per day $\quad=100 \mathrm{~kg} .+20 \mathrm{~kg} .=120 \mathrm{~kg}$.
So, Minimum consumption per day will be
Average Consumption $=\quad$ Min.consumption + Max.consumption $/ 2$
Or, $100 \mathrm{~kg} .=$ Min.consumption 120kg. / 2
Or, Min. consumption $=200 \mathrm{~kg}-120 \mathrm{~kg} .=80 \mathrm{~kg}$.
(a) Re-order Quantity:

$$
\mathrm{EOQ}-200 \mathrm{~kg} .=1,697 \mathrm{~kg} .-200 \mathrm{~kg} .=1,497 \mathrm{~kg} .
$$

(b) Maximum Stock level:
$=$ Re-order level + Re-order Quantity - (Min. consumption per day $\times$ Min. lead time)
$=960 \mathrm{~kg} .+1,497 \mathrm{~kg} .-(80 \mathrm{~kg} . \times 4$ days $)$
$=2,457 \mathrm{~kg} .-320 \mathrm{~kg} .=2,137 \mathrm{~kg}$.
(c) Minimum Stock level:
$=$ Re-order level - (Average consumption per day $\times$ Average lead time)
$=960 \mathrm{~kg} .-(100 \mathrm{~kg} . \times 6$ days $)=360 \mathrm{~kg}$.
(d) Impact on the profitability of the company by not ordering the EOQ.


Cost saved by not ordering EOQ = Rs. 29,714.20-Rs. 29,434.20 = Rs. 280.

## Question 3

A store keeper has prepared the below list of items kept in the store of the factory.

| Item | Units | Unit cost (₹ ) |
| :---: | ---: | ---: |
| A | 12,000 | 30.00 |
| B | 18,000 | 3.00 |
| C | 6,000 | 35.00 |
| D | 750 | 220.00 |
| E | 3,800 | 75.00 |
| F | 400 | 105.00 |
| G | 600 | 300.00 |
| H | 300 | 350.00 |
| I | 3,000 | 250.00 |
| J | 20,000 | 7.50 |
| K | 11,500 | 27.50 |
| L | 2,100 | 75.00 |

The store keeper requires your help to classify the items for prioritization. You are required to APPLY ABC analysis to classify the store items as follows:
Store items which constitutes approx. $\mathbf{7 0 \%}, \mathbf{2 0 \%}$ and $10 \%$ of total value as $A, B$ and $C$ respectively. (MTP March '18, 10 Marks)

## Answer 3

Statement of Total Cost and Ranking

| Item | Units | \% ofTotal <br> units | Unit cost (₹) | Total cost (₹ ) | \% Total cost | Ranking |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| A | 12,000 | $15.30 \%$ | 30.00 | $3,60,000$ | $12.97 \%$ | 2 |
| B | 18,000 | $22.94 \%$ | 3.00 | 54,000 | $1.95 \%$ | 11 |
| C | 6,000 | $7.65 \%$ | 35.00 | $2,10,000$ | $7.57 \%$ | 5 |
| D | 750 | $0.96 \%$ | 220.00 | $1,65,000$ | $5.95 \%$ | 7 |
| E | 3,800 | $4.84 \%$ | 75.00 | $2,85,000$ | $10.27 \%$ | 4 |
| F | 400 | $0.51 \%$ | 105.00 | 42,000 | $1.51 \%$ | 12 |
| G | 600 | $0.76 \%$ | 300.00 | $1,80,000$ | $6.49 \%$ | 6 |
| H | 300 | $0.38 \%$ | 350.00 | $1,05,000$ | $3.78 \%$ | 10 |
| I | 3,000 | $3.82 \%$ | 250.00 | $7,50,000$ | $27.03 \%$ | 1 |
| J | 20,000 | $25.49 \%$ | 7.50 | $1,50,000$ | $5.41 \%$ | 9 |
| K | 11,500 | $14.66 \%$ | 27.50 | $3,16,250$ | $11.40 \%$ | 3 |
| L | 2,100 | $2.68 \%$ | 75.00 | $1,57,500$ | $5.68 \%$ | 8 |
|  | 78,450 | $100.00 \%$ |  | $27,74,750$ | $100.00 \%$ |  |

Statement of classification of Inventory


VIVITSU
STRIVING TOWARDS KNOWLEDGE

| 5 | C | $7.65 \%$ | $2,10,000$ | $7.57 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total |  | $\mathbf{4 6 . 2 7 \%}$ | $\mathbf{1 9 , 2 1 , 2 5 0}$ | $\mathbf{6 9 . 2 4 \%}$ | A |
| 6 | G | $0.76 \%$ | $1,80,000$ | $6.49 \%$ |  |
| 7 | D | $0.96 \%$ | $1,65,000$ | $5.95 \%$ |  |
| 8 | L | $2.68 \%$ | $1,57,500$ | $5.68 \%$ |  |
| 9 | J | $25.49 \%$ | $1,50,000$ | $5.41 \%$ |  |
| Total |  | $\mathbf{2 9 . 8 9 \%}$ | $\mathbf{6 , 5 2 , 5 0 0}$ | $\mathbf{2 3 . 5 3 \%}$ | B |
| 10 | H | $0.38 \%$ | $1,05,000$ | $3.78 \%$ |  |
| 11 | B | $22.94 \%$ | 54,000 | $1.95 \%$ |  |
| 12 | F | $0.51 \%$ | 42,000 | $1.51 \%$ |  |
| Total |  | $\mathbf{2 3 . 8 4 \%}$ | $100 \%$ | $\mathbf{2 , 0 1 , 0 0 0}$ | $\mathbf{7 . 2 4}$ |
|  | 12 | $27,74,750$ | $100 \%$ | C |  |

## Question 4

The annual demand for an item of raw material is 4,000 units and the purchase price is expected to be Rs. 90 per unit. The incremental cost of processing an order is Rs. 135 and the annual cost of storage is estimated to be Rs. 12 per unit. COMPUTE the optimal order quantity and total relevant cost of this order quantity? Suppose that Rs. 135 as estimated to be the incremental cost of processing an order is incorrect and should have been Rs. 80. All other estimates are correct. ESTIMATE the difference in cost on account of this error? Assume at the commencement of the period that a supplier offers 4,000 units at a price of Rs. 86. The materials will be delivered immediately and placed in the stores. Assume that the incremental cost of placing the order is zero and original estimate of Rs. 135 for placing an order for the economic batch is correct. ANALYSE, should the order be accepted? (MTP Aug '18, 10 Marks)
Answer 4
(i) Optimal order quantity i.e. E.O.Q. $=\frac{\sqrt{2 \times 4,000 \times 135}}{12}=\sqrt{90,000}$

$$
=300 \text { units }
$$

Relevant Cost ofthis order quantity
Ordering Cost $=\frac{4,000}{300} 13.33$ say 14 orders at Rs. 135
Carrying Cost $=\frac{1}{2} \times 300 \times 12$
Relevantcost
(ii) Revised EOQ $=\sqrt{\frac{2 \times 4,000 \times 80}{12}}=231$ units

Ordering Cost $=\frac{4,000}{231}=17.32$ say 18 orders at Rs. 80
Carrying Cost $=\frac{1}{2} \times 231 \times 12$

1,800

Rs.
1,890

Different in cost on account of this error =3,690-2,826=Rs. 864
(iii) In case of discount in purchase price, the total cost of Purchase cost, ordering cost and carrying cost should be compared.

| OriginalofferatRs.90per <br> unit |  | Supplier offered at Rs. 86 <br> per unit |  |
| :--- | :--- | :--- | ---: |
|  | Rs. |  | Rs. |

VIVITSU

| Purchase Cost | $3,60,000$ | Purchase cost $4,000 \times 86$ | $3,44,000$ |
| :--- | ---: | :--- | ---: |
| Ordering cost | 1,890 | Ordering cost | Nil |
| Carrying cost | 1,800 | Carrying cost $1 / 2 \times 4,000 \times 12$ | 24,000 |
| Total cost | $3,63,690$ |  | $3,68,000$ |

This special offer at Rs. 86 per unit should not be accepted as its total cost is higher by Rs. 4,310 (3,68,000-3,63,690).as compared to original offer.

## Question 5

A Ltd. manufactures a product $X$ which requires two raw materials $A$ and $B$ in a ratio of 1:4. The sales department has estimated a demand of $5,00,000$ units for the product for the year. To produce one unit of finished product, 4 units of material $A$ is required.

Stock position at the beginning of the year is as below:

Product-X
Material A
Material B

12,000 units
24,000 units
52,000 units

To place an order the company has to spend Rs.15,000. The company is financing its working capital using a bank cash credit @13\% p.a.
Product $X$ is sold at Rs.1,040 per unit. Material $A$ and $B$ are purchased at Rs. 150 and Rs. 200 respectively.
Required:
COMPUTE economic order quantity (EOQ):
(i) If purchase order for the both materials is placed separately.
(ii) If purchase order for the both materials is not placed separately. (MTP Oct. '19, 5 Marks)

Answer 5

## Workings:

Annual production of Product $X=$ Annual demand - Opening stock
$=5,00,000-12,000=4,88,000$ units
Annual requirement for raw materials $=$ Annual production $\times$ Material per unit - Opening stock of material

Material $A=4,88,000 \times 4$ units $-24,000$ units $=19,28,000$ units
Material $B=4,88,000 \times 16$ units $-52,000$ units $=77,56,000$ units
(i) Computation of EOQ when purchase order for the both materials is placed separately

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{EOQ}=\sqrt{\frac{2 \times \text { Annual Requirement for material } \times \text { Ordeing cost }}{\text { Carrying Cost per unit per annum }}} \\
& \text { Material } \mathrm{A}=\sqrt{\frac{2 \times 19,28,000 \text { units } \times \text { Rs. } 15,000}{13 \% \text { of Rs. } 150}} \\
&=\sqrt{\frac{38,56,000 \times \text { Rs. } 15,000}{\text { Rs. } 19.5}} \\
&=54,462 \text { units }
\end{aligned} \\
& \begin{aligned}
\text { Material } B & =\sqrt{\frac{2 \times 77,56,000 \text { units } \times \text { Rs. } 15,000}{13 \% \text { of Rs. } 200}} \\
& =\sqrt{\frac{1,55,12,000 \times \text { Rs. } 15,000}{R s .26}} \\
& =94,600 \text { units }
\end{aligned}
\end{aligned}
$$

(ii) Computation of EOQ when purchase order for the both materials is not placed separately

VIVITSU

$$
\left.\begin{array}{l}
\text { Material A \& B }=\sqrt{\frac{2 \times 19,28,000 \text { units }+77,56,000) \text { units } \times R s .15,000}{13 \% \text { of Rs. } 190 *}} \\
\qquad=\sqrt{\frac{1,93,68,000 \times R s .15,000}{R s .24 .7}} \\
=1,08,452 \text { units }
\end{array} ~ \begin{array}{rl}
\text { Material } A=\frac{1,08,452 \times 19,28,000}{96,84,000}=21,592 \text { units }
\end{array}\right] \begin{aligned}
& \text { Material } A=\frac{1,08,452 \times 77,56,000}{96,84,000}=86,860 \text { Units } \\
& =\frac{*(R s .150 \times 19,28,000)(R s .200 \times 77,56,000)}{(19,28,00077,56,000)}=\text { Rs. } 190
\end{aligned}
$$

## Question 6

Distinguish between Bill of Materials and Material Requisition Note. (MTP Oct. '19, Oct'20 5 Marks) Answer 6

|  | Bills of Material | Material Requisition Note |
| :--- | :--- | :--- |
| 1. | It is document or list of materials <br> prepared by the engineering/ <br> drawing department. | It is prepared by the foreman of the consuming <br> department. |
| 2. | It is a complete schedule of <br> component parts and raw materials <br> required for a particular job or work <br> order. | It is a document authorizing <br> Store-Keeper to issue material to the consuming <br> department |
| 3. | It often serves the purpose of a <br> Store Requisition as it shows the <br> complete schedule of materials <br> required for a particularjobi.e.it <br> canreplacestores requisition. | It cannot replace a bill of material. |
| 4 | It can be used for the <br> purpose of quotation. | It is usefulinarriving historical costonly. |
| 5 | It helps in keeping a quantitative <br> control on materials drawn through <br> Stores Requisition. | Itshowsthematerial actually drawn from stores. |

## Question 7

A company manufactures a product from a raw material, which is purchased at Rs. 180 per kg. The company incurs a handling cost of Rs.1,460 plus freight of Rs. 940 per order. The incremental carrying cost of inventory of raw material is Rs. 2.5 per kg per month. In addition, the cost of working capital finance on the investment in inventory of raw material is Rs.18per kg per annum. The annual production of the product is $1,00,000$ units and 2.5 units are obtained from one kg. of raw material. Required:
(i) CALCULATE the economic order quantity of raw materials.
(ii) DETERMINE, how frequently company should order for procurement be placed.
(iii) If the company proposes to rationalize placement of orders on quarterly basis, DETERMINE the percentage of discount in the price of raw materials should be negotiated? Assume 360 days in a year. (MTP 10 Marks May 20, RTP May'23) (Same concept different figures MTP 5 Marks Oct'18)
Answer 7
(i) Calculation of Economic Order Quantity (E.O.Q)

Annual requirement (usage) of raw material in $\mathrm{kg} .(A)=1,00,000$ units $/ 2.5$ units per $\mathrm{kg} .=40,000 \mathrm{~kg}$.

Ordering Cost (Handling \& freight cost) (O) = Rs.1,460 + Rs. $940=$ Rs. 2,400
Carrying cost per unit per annum (C) i.e. inventory carrying cost + working capital cost

$$
=(\text { Rs. } 2.5 \times 12 \text { months })+\text { Rs. } 18=\text { Rs. } 48 \text { per kg. }
$$

E.O.Q. $=\sqrt{\frac{2 A O}{C}}=\sqrt{\frac{2 \times 40,000 \mathrm{~kg} . \times R \mathrm{Rs.2,400}}{R s .48}}=2,000 \mathrm{~kg}$.
(ii) Frequency of placing orders for procurement:

Annual consumption (A) $=40,000 \mathrm{~kg}$.
Quantity per order (E.O.Q) $=2,000 \mathrm{~kg}$.
No. of orders per annum $\left(\frac{A}{\text { E.O.Q }}\right)=\frac{40.000 \mathrm{~kg} .}{2,000 \mathrm{~kg} .}=20$ orders
Frequency of placing orders( in days) $=\frac{360 \text { days }}{20 \text { orders }}=18$ days
(iii) Percentage of discount in the price of raw materials to be negotiated:

| Particulars | On Quarterly Basis | On E.O.Q Basis |
| :---: | :---: | :---: |
| 1. Annual Usage (in Kg.) | $40,000 \mathrm{~kg}$. | $40,000 \mathrm{~kg}$. |
| 2. Size of the order | $10,000 \mathrm{~kg}$. | 2,000 kg. |
| 3. No. of orders ( $1 \div 2$ ) | 4 | 20 |
| 4. Cost of placing orders or Ordering cost <br> (No. of orders $\times$ Cost per order) | $\begin{gathered} \text { Rs.9,600 } \\ (4 \text { order } \times \text { Rs2,400) } \end{gathered}$ | $\begin{gathered} \text { Rs. } 48,000 \\ (20 \text { orders } \times \text { Rs } 2,400 \text { ) } \end{gathered}$ |
| 5. Inventory carrying cost (Average inventory $\times$ Carrying cost per unit) | $\begin{gathered} \text { Rs. } 2,40,000 \\ (10,000 \mathrm{~kg} \cdot \times 1 / 2 \times \text { Rs. } 48) \end{gathered}$ | $\begin{gathered} \text { Rs. } 48,000 \\ (2,000 \mathrm{~kg} . \times 1 / 2 \times \text { Rs. } 48) \end{gathered}$ |
| 6. Total Cost ( $4+5$ ) | Rs.2,49,600 | Rs.96,000 |

When order is placed on quarterly basis the ordering cost and carrying cost increased by Rs.1,53,600 (Rs.2,49,600-Rs.96,000).

So, discount required $=$ Rs.1,53,600
Total annual purchase $=40,000 \mathrm{~kg} . \times$ Rs. $180=$ Rs. $72,00,000$. So, Percentage of discount to be negotiated

## Question 8

Joy Toy Limited deals in trading of 'superhero' toy figure. The annual demand for the toy car is 14,400 units. The company incurs fixed order placement and transportation cost of ₹212 each time an order is placed. Each toy costs ₹ 450 and the trader has a carrying cost of 25 percent p.a. The company has been offered a quantity discount of $8 \%$ on the purchase of 'superhero' toy figure provided the order size is 5,000 units at a time.

## Required:

(i) COMPUTE the economic order quantity
(ii) STATE whether the quantity discount offer can be accepted. (MTP 5 Marks March '23 \& Oct 20, Old \& New SM)

## Answer 8

$$
\begin{aligned}
& \text { i.Calculation of Economic Order Quantity (EOQ) }=\sqrt{\frac{2 A O}{C}} \\
& =\sqrt{\frac{2 \times 14,400 \text { units XRs. } 212}{R s .450 \times 25 \%}}=233 \text { units }
\end{aligned}
$$

ii.Evaluation of Profitability of Different Options of Order Quantity

| (A) | When EOQ is ordered | (₹) |
| :---: | :---: | ---: |
| Purchase Cost | $(14,400$ units $\times$ Rs. 450$)$ | $64,80,000$ |
| Ordering Cost | $[(14,400$ units/233 units $) \times$ Rs. | 13,102 |
|  | $212]$ | 13,106 |
| Carrying Cost | $(233$ units $\times 1 / 2 \times 450 \times 25 \%)$ | $65,06,208$ |
| Total Cost |  |  |

(B) When Quantity Discount of $8 \%$ is accepted

|  |  | (₹) |
| :--- | :--- | ---: |
| Purchase Cost | $(14,400$ units $\times$ Rs. 414 $)$ | $59,61,600$ |
| Ordering Cost | $[(14,400$ units/5,000 units $) \times$ Rs212 $]$ | 611 |
| Carrying Cost | $(5,000$ units $\times 1 / 2 \times$ Rs.414 $\times 25 \%)$ | $2,58,750$ |
| Total Cost |  | $62,20,961$ |

Advise - The total cost of inventory is lower if quantity discount is accepted. The company would save Rs. 2,85,247 (Rs. 65,06,208-Rs. 62,20,961).

Note: Figures may change slightly because of approximation and decimals)

## Question 9

A company manufactures 10,000 units of a product per month. The cost of placing an order is ₹200. The purchase price of the raw material is $₹ 20$ per kg . The re-order period is 4 to 8 weeks. The consumption of raw materials varies from 200 kg to 900 kg per week, the a verage consumption being 550 kg . The carrying cost of inventory is $20 \%$ per annum.

## You are required to CALCULATE:

(i) Re-order quantity
(ii) Re-order level
(iii) Maximum level
(iv) Minimum level
(v) Average stock level (MTP 5 Marks April 23 \& March '21) (Same concept different figures PYP 5 Marks Nov'18)
Answer 9
(i) Reorder Quantity (ROQ) $=1,691 \mathrm{~kg}$. (Refer to working note)
(ii) Reorder level (ROL) $=$ Maximum usage $\times$ Maximum re-order period $=\quad 900 \mathrm{~kg} . \times 8$ weeks $=7,200 \mathrm{~kg}$.
(iii) Maximum level $=\quad$ ROL + ROQ $-($ Min. usage $\times$ Min. re-order period $)$

$$
\begin{aligned}
& =\quad 7,200 \mathrm{~kg} \cdot+1,691 \mathrm{~kg} .-(200 \mathrm{~kg} . \times 4 \text { weeks }) \\
& =\quad 8,091 \mathrm{~kg} .
\end{aligned}
$$

(iv) Minimum level $=$ ROL - (Normal usage $\times$ Normal re-order period)

$$
\begin{aligned}
& =\quad 7,200 \mathrm{~kg} .-(550 \mathrm{~kg} . \times 6 \text { weeks }) \\
& =\quad 3,900 \mathrm{~kg} .
\end{aligned}
$$

(v) Average stock level $=1 / 2$ (Maximum level + Minimum level)
$=1 / 2(8,091 \mathrm{~kg} .+3,900 \mathrm{~kg})=5,.995.5 \mathrm{~kg}$.
OR
$=$ Minimum Level $+1 / 2$ ROQ
$=3,900 \mathrm{~kg} .+1 / 2 \times 1,691 \mathrm{~kg} .=4,745.5 \mathrm{~kg}$.

VIVITSU

Annual consumption of raw material $(A)=(550 \mathrm{~kg} . \times 52$ weeks $)=28,600 \mathrm{~kg}$.
Cost of placing an order (O) =₹ 200
Carrying cost per kg. Per annum $(\mathrm{c} \times \mathrm{i})=₹ 20 \times 20 \%=₹ 4$
Economic order quantity $(E O Q)=\sqrt{\frac{2 A O}{C X i}}$
$=\sqrt{\frac{2 \times 28,600 \mathrm{kgs.X} \text { Rs. } 200}{\text { Rs. } 4}}=1,691 \mathrm{~kg}$. (Approx)

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this question, performance of the examinees was below average. Most of the examinees have made mistake by taking output instead of raw material consumed figure for calculation of re order quantity.

## Question 10

EXPLAIN the advantages that would accrue in using the LIFO method of pricing for the valuation of raw material stock. (MTP 5 Marks, April'21)

## Answer 10

The advantages that would accrue in using the LIFO method of pricing for the valuation of raw material stock are as follows:

- The cost of materials issued will be either nearer to and or will reflect the current market price. Thus, the cost of goods produced will be related to the trend of the market price of materials. Such a trend in price of materials enables the matching of cost of production with current sales revenues.
- The use of the method during the period of rising prices does not reflect undue high profit in the income statement as it was under the first-in-first-out or average method. In fact, the profit shown here is relatively lower because the cost of production takes into account the rising trend of material prices.
- In the case of falling prices profit tends to rise due to lower material cost, yet the finished products appear to be more competitive and are at market price.
- Over a period, the use of LIFO helps to iron out the fluctuations in profits.
- In the period of inflation LIFO will tend to show the correct profit and thus avoid paying undue taxes to some extent.


## Question 11

The yearly production of a company's product which has a steady market is 40,000 units. Each unit of a product requires 1 kg . of raw material. The cost of placing one order for raw material is ₹ 1,000 and the inventory carrying cost is ₹ 20 per annum. The lead time for procurement of raw material is 36 days and a safety stock of $1,000 \mathrm{~kg}$. of raw materials is maintained by the company. The company has been able to negotiate the following discount structure with the raw material supplier:

| Order quantity (kg.) | Discount (₹) |
| :--- | ---: |
| Up to 6,000 | NIL |
| $6,001-8,000$ | 4,000 |
| $8,001-16,000$ | 20,000 |
| $16,001-30,000$ | 32,000 |
| $30,001-45,000$ | 4,0000 |

## You are REQUIRED to:

(i) Calculate the re-order point considering $\mathbf{3 0}$ days in a month.
(ii) Prepare a statement showing the total cost of procurement and storage of raw material after considering the discount of the company elects to place one, two, four or five orders in the year.
(iii) State the number of orders which the company should place to minimize the costs after taking EOQ also into consideration. (MTP 10 Marks, Oct '21)

## Answer 11

(a) Working notes

1. Annual production $=40,000$ units
2. Raw material required for 40,000 units ( 40,000 units $\times 1 \mathrm{~kg}$.) $=40,000 \mathrm{~kg}$.
3. $\mathrm{EOQ}=\sqrt{2 \times 40,000 \mathrm{kgs} . \times R s .1,000 / R s .20}=2,000 \mathrm{kgs}$.
4. Total cost of procurement and storage when the order size is equal to EOQ or
$2,000 \mathrm{~kg}$. No. of orders ( $40,000 \mathrm{~kg} . \div 2,000 \mathrm{~kg}$.)

$$
\begin{aligned}
= & 20 \text { times } \\
= & \text { ₹ } 20,000 \\
= & \text { ₹ } 20,000 \\
& ₹ 40,000
\end{aligned}
$$

Ordering cost ( 20 orders $\times ₹ 1,000$ )
Carrying cost (₹) (1/2 $\times 2,000 \mathrm{~kg} . \times ₹ 20)$
Total cost
(i) Re-order point = Safety stock + Lead time consumption

$$
\begin{aligned}
& =1,000 \mathrm{~kg} .+40,000 \mathrm{~kg} \cdot \times 36 \text { days } \\
& =\quad 1,000 \mathrm{~kg} \cdot+4,000 \mathrm{~kg} . \quad=5,000 \mathrm{~kg} .
\end{aligned}
$$

(ii) statement showing the total cost of procurement and storage of raw materials (after considering the discount)

| Order <br> size | No. of <br> orders | Total cost of <br> procurement | Average <br> stock | Total cost of <br> storage of raw <br> materials | Discount | Total cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kg. |  | $(₹)$ | Kg. | $(₹)$ | $(₹)$ | $(₹)$ |
| $(1)$ | $(2)$ | $(3)=(2) \times ₹ 1,000$ | $(4)=1 / 2 \times(1)$ | $(5)=(4) \times ₹ 20$ | $(6)$ | $(7)=[(3)+(5)-(6)$ |
| 40,000 | 1 | 1,000 | 20,000 | $4,00,000$ | 40,000 | $3,61,000$ |
| 20,000 | 2 | 2,000 | 10,000 | $2,00,000$ | 32,000 | $1,70,000$ |
| 10,000 | 4 | 4,000 | 5,000 | $1,00,000$ | 20,000 | 84,000 |
| 8,000 | 5 | 5,000 | 4,000 | 80,000 | 4,000 | 81,000 |

(iii) Number of orders which the company should place to minimize the costs after taking EOQ also into consideration is 20 orders each of size $2,000 \mathrm{~kg}$. The total cost of procurement and storage in this case comes to ₹ 40,000 , which is minimum. (Refer to working notes 3 and 4)

## Question 12

The annual demand for an item of raw material is 48,000 units and the purchase price is ₹ 80 per unit. The cost of processing an order is ₹ $\mathbf{1 , 3 5 0}$ and the annual cost of storage is ₹ $\mathbf{1 5}$ per unit.
(i) DETERMINE is the optimal order quantity and total relevant cost for the order?
(ii) If the cost of processing an order is ₹ 800 and all other data remain same, then DETERMINE the differential cost?
(iii) If the supplier offers bulk purchase of 48,000 units at a price of $₹ 72$ and cost of placing the is Nil, SHOULD the order be accepted? (MTP 5 Marks Nov '21)

## Answer 12

(i) Optimal order quantity i.e. E.O.Q.

$$
=\sqrt{\frac{2 \times 48,000 \times 1,350}{15}}=\sqrt{86,40,000} \quad=2,939 \text { units }
$$

VIVITSU

| Relevant Cost of this order quantity | $₹$ |
| :--- | ---: |
| Ordering cost $=48,000 / 2,939 \quad=16.33$, say 17 <br> orders at $₹ 1,350$ | $22,950.00$ |
| Carrying Cost $=1 / 2 \times 2,939 \times 15$ | $22,042.50$ |
| Relevant cost | $\mathbf{4 4 , 9 9 2 . 5 0}$ |

(ii) Revised EOQ $=\sqrt{\frac{2 \times 48,000 \times 800}{15}} \quad=2,263$ units

| Relevant Cost of this order quantity | $₹$ |
| :--- | ---: |
| Ordering cost $=48,000 / 2,2,63$ 21.21, say 22 orders at ₹ | $17,600.00$ |
| 800 | $\times 2,263 \times 15$ |
| Carrying cost $=1 / 2 \times 16,972.50$ |  |
| Relevant cost | $\mathbf{3 4 , 5 7 2 . 5 0}$ |

Differential cost $=44,992.50-34,572.50=₹ \mathbf{1 0 , 4 2 0}$
(iii) In case of discount in purchase price, the total cost of Purchase cost, ordering cost and carrying cost should be compared.

| Original offer at ₹ $\mathbf{8 0}$ per unit |  | Supplier offered at ₹ $\mathbf{7 2}$ per unit |  |
| :--- | ---: | :--- | :--- |
|  | ₹ |  | $₹$ |
| Purchase Cost $(48,000 \times 80)$ | $38,40,000.00$ | $\begin{array}{l}\text { Purchase cost } \\ (48,000 \times 72)\end{array}$ | $34,56,000.00$ |
| Ordering cost | $22,950.00$ | Ordering cost | 0.00 |
| Carrying cost | $22,042.50$ | Carrying cost | $3,60,000.00$ |
|  |  | $38,84,992.50$ |  |
| $1 / 2 \times 48,000 \times$ |  |  |  |
| 15 |  |  |  |$)$

This special offer at ₹ 72 per unit should be accepted as it saves ₹ $68,992.50$ as compared to original offer.

## Question 13

M/s SE Traders is a distributor of an electronic items. A periodic inventory of electronic items on hand is taken when books are closed at the end of each quarter. The following information is available for the quarter ended on 30th September, 2021:

| Sales | $₹ 2,19,30,000$ |
| :--- | :--- |
| Opening Stock | 12,500 units @ ₹ 600 per unit |
| Administrative Expenses | $₹ 5,62,500$ |

Purchases (including freight inward):

- July 1, 2021
- September 30, 2021

Closing stock- September 30, 2021

25,000 units @ ₹ 573 per unit
12,500 units @ ₹ 630 per unit
16,000 units

You are required to COMPUTE the following by WAM (Weighted Average Method), FIFO method and LIFO method assuming issue/ consumption pattern was even throughout the quarter:
(i) Value of Inventory on 30th September, 2021.
(ii) Profit or loss for the quarter ended 30th September, 2021. (MTP 10 Marks April '22)

Answer 13

| Date | Particulars | Units | WAM (₹) | FIFO (₹) | LIFO (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01-07-21 | Opening Stock | 12,500 | $\begin{array}{r} 75,00,000 \\ \text { (₹ } 600 \times 12,500 \text { ) } \\ \hline \end{array}$ | $\begin{array}{r} 75,00,000 \\ (₹ 600 \times 12,500) \\ \hline \end{array}$ | $\begin{array}{r} 75,00,000 \\ (₹ 600 \times 12,500) \\ \hline \end{array}$ |
| 01-07-21 | Purchases | 25,000 | $\begin{array}{r} 1,43,25,000 \\ (₹ 573 \times 25,000) \end{array}$ | $\begin{array}{r} 1,43,25,000 \\ (₹ 573 \times 25,000) \\ \hline \end{array}$ | $\begin{array}{r} 1,43,25,000 \\ (₹ 573 \times 25,000) \\ \hline \end{array}$ |
| 30-09-21 | Purchases | 12,500 | $\begin{array}{r} 78,75,000 \\ (₹ 630 \times 12,500) \end{array}$ | $\begin{array}{r} 78,75,000 \\ (₹ 630 \times 12,500) \end{array}$ | $\begin{array}{r} 78,75,000 \\ (₹ 630 \times 12,500) \end{array}$ |
| $\begin{gathered} 01-07-21 \\ \text { to } \\ 30-09-21 \end{gathered}$ | Issues/ <br> Consumption <br> (Balancing <br> figure) | 34,000 | 2,01,96,000* | 1,98,19,500** | 2,01,94,500*** |
| 30-09-21 | Closing Stock | 16,000 | 95,04,000 | 98,80,500 | 95,05,500 |

Weighted average rate $=\frac{R s .75,00,000+\text { Rs.1,43,25,000 }+ \text { Rs. } 78,75,000}{(12,500+25,000+12,500) \text { units }}=$ Rs. 594

| $*$ | $₹ 594 \times 34,000=₹ 2,01,96,000$ |
| :--- | ---: |
| $* *$ | $₹ 600 \times 12,500+₹ 573 \times 21,500=₹ 1,98,19,500$ |
| $* * *$ | $₹ 630 \times 12,500+₹ 573 \times 21,500=₹ 2,01,94,500$ |

(ii) Computation of Profit or Loss for the Quarter ended 30th September 2021

| Particulars | WAM (₹) | FIFO (₹) | LIFO (₹) |
| :--- | ---: | ---: | ---: |
| Sales | $2,19,30,000$ | $2,19,30,000$ | $2,19,30,000$ |
| Less: Consumption | $2,01,96,000$ | $1,98,19,500$ | $2,01,94,500$ |
| Less: Administrative Exp. | $5,62,500$ | $5,62,500$ | $5,62,500$ |
| Profit or Loss | $11,71,500$ | $15,48,000$ | $11,73,000$ |

## Question 14

A company produces a product 'AB' by using two raw materials - 'Material Ae' and 'Material Be' in the ratio of 5:3.
A sales volume of $\mathbf{5 0 , 0 0 0} \mathrm{kgs}$ is estimated for the month of December by the managers expecting the trend will continue for entire year. The ratio of input and output is 8:5.
Other Information about Raw Material Ae is as follows:
Purchase Price ₹ 150 per kg
Re-order period 2 to 3 days
Carrying Cost 12\%
Note: Material Ae is perishable in nature and if not used within 3.5 days of purchase it becomes obsolete. To place an order for material 'Ae', the company has to incur an administrative cost of ₹ 375 per order. At present, material 'Ae' is purchased in a lot of $7,500 \mathrm{kgs}$. to avail the discount on purchase. Company works for $\mathbf{2 5}$ days in a month and production is carried out evenly.
You are required to CALCULATE:
(i) Economic Order Quantity (EOQ) for Material Ae;
(ii) Maximum stock level for Material Ae. (MTP 5 Marks Sep'22)

Answer 14
(i) Monthly production of $\mathrm{AB}=50,000$ kgs

Raw material required $=50,000 / 5 \times 8=80,000 \mathrm{kgs}$ Material Ae and Material Be ratio $=5: 3$
Therefore
8779794646 material $\mathrm{Ae}=80,000 / 8 \times 5=50,000 \mathrm{kgs}$

Calculation of $\mathrm{EOQ}=\sqrt{\frac{(2 \mathrm{x} \text { (Annual demand } \mathrm{x} \text { cost per order })}{\text { Annual holding cost per unit }}}$
$E O Q=\sqrt{\frac{2 \times 50,000 \mathrm{kgs} \times 12 \times 375}{12 \% \text { of } ₹ 150}}=5,000 \mathrm{kgs}$
(ii) Calculation of maximum stock level of Material Ae which is perishable in nature and is required to be used within 3.5 days.
(a) Stock equals to 3.5 days consumption $=50,000 \mathrm{kgs} / 25$ days $\times 3.5$ days $=7,000 \mathrm{kgs}$
(b) Maximum stock level for Material Ae

Maximum stock $=$ Reorder quantity + reorder level $-($ minimum consumption $x$ minimum lead time $)$
Where, reorder quantity $=7,500 \mathrm{kgs}$
Reorder level = maximum consumption* x maximum lead time
$=50,000 / 25 \times 3$ days $=6,000 \mathrm{kgs}$
Now, Maximum stock level $=7,500 \mathrm{kgs}+6,000 \mathrm{kgs}-(50,000 / 25$ days $\times 2$ days $)=9,500 \mathrm{kgs}$
Stock required for 3.5 days consumption is lower than the maximum stock level calculated above. Therefore, maximum stock level will be 7,000 kgs.
(*since production is processed evenly throughout the month hence material consumption will also be even.)

## Question 15

BRIEF the treatment of following while calculating purchase cost of material: Trade Discount, Cash Discount, Penalty, Insurance charges, Commission paid. (MTP 5 Marks Sep' 22)
Answer 15

| Trade Discount | Trade discount is deducted from the purchase price if it is not shown as <br> deduction in the invoice. |
| :--- | :--- |
| Cash Discount | Cash discount is not deducted from the purchase price. It is treated as <br> interest and finance charges. It is ignored. |
| Penalty | Penalty of any type is not included with the cost of purchase |
| Insurance charges | Insurance charges are paid for protecting goods during transit. It is <br> added with the cost of purchase. |
| Commission paid | Commission or brokerage paid is added with the cost of purchase. |

## Question 16

The following are the details of receipts and issues of a material of stores in a manufacturing company for the period of three months ending 30th June, 2022:
Receipts:

| Date | Quantity (kg.) | Rate per kg. (₹) |
| :--- | :---: | :---: |
| April 10 | 1,600 | 50.00 |
| April 20 | 2,400 | 49.00 |
| May 5 | 1,000 | 51.00 |
| May 17 | 1,100 | 52.00 |
| May 25 | 800 | 52.50 |
| June 11 | 900 | 54.00 |
| June 24 | 1,400 | 55.00 |

There was $1,500 \mathrm{~kg}$. in stock at April 1, 2022 which was valued at ₹ 48.00 per kg. Issues:
Date

VIVITSU

| April 4 | 1,100 |
| :--- | :--- |
| April 24 | 1,600 |
| May 10 | 1,500 |
| May 26 | 1,700 |
| June 15 | 1,500 |
| June 21 | 1,200 |

Issues are to be priced on the basis of weighted average method.
The stock verifier of the company reported a shortage of 80 kgs. on 31st May, 2022 and 60 kgs. on 30th June, 2022.
You are required to PREPARE a Stores Ledger Account. (MTP 10 Marks Oct’22)
Answer 16
Stores Ledger Account for the three months ending 30th June, 2022 (Weighted Average Method)

|  | Receipts |  |  |  | Issues |  |  |  | Balance |  | Rate for further Issue (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | GRN <br> No. | Qty. (Kg.) | Rates (Rs.) | Amounts | MR No. | Qty. (Kg.) | Rates (Rs.) | Amount (Rs.) | Qty. (Kg.) | Amount (Rs.) |  |
| April 1 |  |  |  |  |  |  |  |  | 1,500 | 72,000 | 48.00 |
| April 4 |  |  |  |  |  | 1,100 | 48.00 | 52,800 | 400 | 19,200 | 48.00 |
| April 10 |  | 1,600 | 50.00 | 80,000 |  |  |  |  | 2,000 | 99,200 | $\frac{99,200}{2,000}=49.60$ |
| April 20 |  | 2,400 | 49.00 | 1,17,600 |  |  |  |  | 4,400 | 216,800 | $\frac{2,16,800}{4,400}=49.30$ |
| April 24 |  |  |  |  |  | 1,600 | 49.30 | 78,880 | 2,800 | 137,920 | $\frac{1,37,920}{2,800}=49.30$ |
| May 5 |  | 1,000 | 51.00 | 51,000 |  |  |  |  | 3,800 | 188,920 | $\frac{1,88,920}{3,800}=49.70$ |
| May 10 |  |  |  |  |  | 1,500 | 49.70 | 74,550 | 2,300 | 114,370 | $\frac{1,14,370}{2,300}=49.70$ |
| May 17 |  | 1,100 | 52.00 | 57,200 | [1 | 12.8 | - | -1. | 3,400 | 171,570 | $\frac{1,71,570}{3,400}=50.50$ |
| May 25 |  | 800 | 52.50 | 42,000 |  |  |  |  | 4,200 | 213,570 | $\frac{2,13,570}{4,200}=50.90$ |
| May 26 |  |  |  |  |  | 1,700 | 50.90 | 86,530 | 2,500 | 127,040 | $\frac{1,27,040}{2,500}=50.90$ |
| May 31 |  |  |  |  | Shortage | 80 |  |  | 2,420 | 127,040 | $\frac{1,27,040}{2,420}=52.50$ |
| June 11 |  | 900 | 54.00 | 48,600 |  |  |  |  | 3,320 | 175,640 | $\frac{1,75,640}{3,320}=49.60$ |
| June 15 |  |  |  |  |  | 1,500 | 52.90 | 79,350 | 1,820 | 96,290 | $\frac{99,200}{2,000}=52.90$ |
| June 21 |  |  |  |  |  | 1,200 | 52.90 | 63,480 | 620 | 32,810 | $\frac{32,810}{620}=52.90$ |
| June 24 |  | 1,400 | 55.00 | 77,000 |  |  |  |  | 2,020 | 109,810 | $\frac{1,09,810}{2,020}=54.40$ |
| June 30 |  |  |  |  | Shortage | 60 |  |  | 1,960 | 109,810 | $\frac{1,09,810}{1,960}=56.00$ |

## Question 17

$P$ Limited produces product ' $P$ '. It uses annually 60,000 units of a material 'Rex' costing ` 10 per unit. Other relevant information are:

Cost of placing an order : `800 per order

Carrying cost
Re-order period
Safety stock
: $\quad 15 \%$ per annum of average inventory
: $\quad 10$ days
: $\quad 600$ units

The company operates 300 days in a year.
You are required to calculate:
(i) Economic Order Quantity for material 'Rex'.
(ii) Re-order Level.
(iii) Maximum Stock Level.
(iv) Average Stock Level. (MTP 5 Marks, Oct '23)

## Answer 17

## I. Economic Order Quantity (E.O.Q)

$$
\begin{aligned}
& =\sqrt{\frac{2 \mathrm{X} \mathrm{Annual} \mathrm{requiremnet} \mathrm{of} \mathrm{Rex'X} \mathrm{Ordering} \mathrm{cost} \mathrm{per} \mathrm{order}}{\text { Annual Carrying cost per unit per annum }}} \\
& =\sqrt{\frac{2 \times 60,000 \text { units } \times R s .800}{R s .10 \times 15 \%}}=\sqrt{\frac{9,60,00,000}{R s .1 .5}}=8,000 \text { Units }
\end{aligned}
$$

II. Re-order Level = Safety Stock + (Normal daily Usage $\times$ Re-order period)
$=600+\left(\frac{60,000 \text { units }}{300 \text { days }} X 10\right.$ Days $)$
$=600+2,000$
$=2,600$ units
III. Maximum Stock Level = E.O.Q (Re-order Quantity) + Safety Stock
$=8,000$ units +600 units
$=8,600$ units
IV. Average Stock Level_= Minimum Stock level $+\frac{1}{2} \operatorname{Re}-$ order Quantity
$=600^{*}+\frac{1}{2} 8,000$ units
$=4,600$ units

## OR

Average Stock Level $=\frac{\text { Maximum Stock level }+ \text { Minimum Stock Level }}{2}$
$=\frac{8,600 \text { units }+600 \text { units }}{2}=4,600$ units

* Minimum Stock Level $=$ Re- Order Level - (Normal daily usage $\times$ Re-order period)
$=2,600-\left(\frac{60,000 \text { units }}{300 \text { days }} X 10\right.$ Days $)$
$=2,600-2,000$
$=600$ units
OR
Minimum Stock Level = Safety Stock level = 600 units


## Question 18

Arnav Electronics manufactures electronic home appliances. It follows weighted average Cost method for inventory valuation. Following are the data of component X :

| Date | Particulars | Units | Rate per |
| :--- | :--- | :--- | :---: |
|  |  |  | unit (₹ ) |
| 15-12-19 | Purchase Order-008 | 10,000 | 9,930 |
| 30-12-19 | Purchase Order-009 | 10,000 | 9,780 |
| $01-01-20$ | Opening stock | 3,500 | 9,810 |
| 05-01-20 | GRN*-008 (against the Purchase Order- 008) | 10,000 | - |
| 05-01-20 | MRN**-003 (against the Purchase Order- 008) | 500 | - |


| 06-01-20 | Material Requisition-011 | 3,000 | - |
| :--- | :--- | :--- | :---: |
| 07-01-20 | Purchase Order- 010 | 10,000 | 9,750 |
| 10-01-20 | Material Requisition-012 | 4,500 | - |
| $12-01-20$ | GRN-009 (against the Purchase Order- 009) | 10,000 | - |
| 12-01-20 | MRN-004 (against the Purchase Order- 009) | 400 | - |
| 15-01-20 | Material Requisition-013 | 2,200 | - |
| 24-01-20 | Material Requisition-014 | 1,500 | - |
| 25-01-20 | GRN-010 (against the Purchase Order- 010) | 10,000 | - |
| 28-01-20 | Material Requisition-015 | 4,000 | - |
| $31-01-20$ | Material Requisition-016 | 3,200 | - |

*GRN- Goods Received Note; **MRN- Material Returned Note Based on the above data, you are required to CALCULATE:
(i) Re-order level
(ii) Maximum stock level
(iii) Minimumstocklevel
(iv) PREPARE Store Ledger for the period January 2020 and DETERMINE the value of stock as on 31-01-2020.
(v) Value of components used during the month of January, 2020.
(vi) Inventory turnover ratio. (RTP May'20)

## Answer 18

Workings:
Consumption is calculated on the basis of material requisitions:
Maximum component usage $=4,500$ units (Material requisition on 10-01-20) Minimum component usage $=1,500$ units (Material requisition on 24-01-20)

Lead time is calculated from purchase order date to material received date
Maximum lead time $=21$ days (15-12-2019 to 05-01-2020)
Minimum lead time $=14$ days (30-12-2019 to 12-01-2020)

## Calculations:

(i) Re-order level
$=$ Maximum usage $\times$ Maximum lead time
$=4,500$ units $\times 21$ days $=94,500$ units
(ii) Maximum stock level
$=$ Re-order level + Re-order Quantity $-($ Min. Usage $\times$ Min. lead time)
$=94,500$ units $+10,000$ units $-(1,500$ units $\times 14$ days $)$
$=1,04,500$ units $-21,000$ units $=83,500$ units
(iii) Minimum stock level
$=$ Re-order level - (Avg. consumption $\times$ Avg. lead time)
$=94,500$ units $-(3,000$ units $\times 17.5$ days $)$
$=94,500$ units $-52,500$ units
$=42,000$ units
(iv) Store Ledger for the month of January 2020:

| Date | Receipts | Issue | Balance |
| :--- | :--- | :--- | :--- |

VIVITSU

|  | GRN/ <br> MRN | Units | $\begin{array}{r} \text { Rate } \\ \hline \end{array}$ | $\begin{array}{r} \text { Amt. } \\ \text { ( } ₹ \text { ‘000 } \text { ) } \end{array}$ | MRN/ MR | Units | Rate $\qquad$ | $\begin{array}{r} \text { Amt. } \\ \text { ( } ₹ \text { ‘ } 000 \text { ) } \end{array}$ | Units | Rate $\qquad$ | Amt. ( $\mathrm{F}^{\prime} \mathrm{O} 00$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01-01-20 | - | - | - | - | - | - | - | - | 3,500 | 9,810 | 34,335 |
| 05-01-20 | 008 | 10,000 | 9,930 | 99,300 | 003 | 500 | 9,930 | 4,965 | 13,000 | 9,898 | 1,28,670 |
| 06-01-20 | - | - | - | - | 011 | 3,000 | 9,898 | 29,694 | 10,000 | 9,898 | 98,980 |
| 10-01-20 | - | - | - | - | 012 | 4,500 | 9,898 | 44,541 | 5,500 | 9,898 | 54,439 |
| 12-01-20 | 009 | 10,000 | 9,780 | 97,800 | 004 | 400 | 9,780 | 3,912 | 15,100 | 9,823 | 1,48,327 |
| 15-01-20 | - | - | - | - | 013 | 2,200 | 9,823 | 21,611 | 12,900 | 9,823 | 1,26,716 |
| 24-01-20 | - | - | - | - | 014 | 1,500 | 9,823 | 14,734 | 11,400 | 9,823 | 1,11,982 |
| 25-01-20 | 010 | 10,000 | 9,750 | 97,500 | - | - | - | - | 21,400 | 9,789 | 2,09,482 |
| 28-01-20 | - | - | - | - | 015 | 4,000 | 9,789 | 39,156 | 17,400 | 9,789 | 1,70,326 |
| 31-01-20 | - | - |  | - | 016 | 3,200 | 9,789 | 31,325 | 14,200 | 9,789 | 1,39,001 |

Note: Decimal figures may be rounded-off to the nearest rupee value wherever required)
Value of stock as on 31-01-2020 ('000) = ₹ 1,39,001
(v) Value of components used during the month of January 2020:

Sum of material requisitions 011 to 016 ('000)
$=₹ 29,694+₹ 44,541+₹ 21,611+₹ 14,734+₹ 39,156+₹ 31,325=₹ 1,81,061$
(vi) Inventory TurnoverRatio

$$
\begin{aligned}
& =\frac{\text { Value of materials used }}{\text { Average stock value }} \\
& =\frac{\text { Rs. } 1,81,061}{(1,3,001+34,335) / 2}=\frac{\text { Rs. } 1,81,061}{\text { Rs. } 86,668}=2.09
\end{aligned}
$$

## Question 19

HBL Limited produces product ' $M$ ' which has a quarterly demand of 20,000 units. Each product requires 3 kg . and 4 kg . of material $X$ and $Y$ respectively. Material $X$ is supplied by a local supplier and can be procured at factory stores at any time, hence, no need to keep inventory for material $X$. The material $Y$ is not locally available, it requires to be purchased from other states in a specially designed truck container with a capacity of 10 tons. The cost and other information related with the materials are as follows: (RTP Nov'19)

| Particulars | Material -X | Material-Y |
| :--- | ---: | ---: |
| Purchase price per kg. (excluding GST) | $₹ \mathbf{1 4 0}$ | $₹ 640$ |
| RateofGST | $\mathbf{1 8 \%}$ | $\mathbf{1 8 \%}$ |
| Freight per trip (fixed, irrespective of quantity) | - | $\mathbf{2 8 , 0 0 0}$ |
| Loss ofmaterials intransit* | - | $\mathbf{2 \%}$ |
| Loss in process* | $\mathbf{4 \%}$ | $\mathbf{5 \%}$ |
| *On purchased quantity |  |  |
| Other information: |  |  |
| - The company has to pay 15\% p.a. to bank for cash credit facility. |  |  |
| - Input credit is available on GST paid on materials. |  |  |
| Required: |  |  |
| (i) CALCULATE cost per kg. of material X and Y |  |  |
| (ii) CALCULATE the Economic Order quantity for both the materials. |  |  |

## Answer 19

| Working Notes:(a) Annual purchase quantity for material $X$ and $Y$ : |  |  |
| :--- | ---: | ---: |
| Annual demand for product $\mathrm{M}-20,000$ units $\times 4=80,000$ units |  |  |
| Particulars | Mat-X | Mat-Y |
| Quantity required for per unit of product M | 3 kg. | 4 kg. |

VIVITSU
STRIVING TOWARDS KNOWLEDGE

| Net quantity for materials required | $2,40,000 \mathrm{~kg} .3,20,000 \mathrm{~kg}$. |  |
| :--- | ---: | ---: |
| Add: Loss in transit | $-2,881 \mathrm{~kg}$. |  |
| Add: Lossinprocess | $10,000 \mathrm{~kg}$. | $17,204 \mathrm{~kg}$ |
| Purchase quantity | $2,50,000 \mathrm{~kg}$. | $3,44,085 \mathrm{~kg}$ |

Note - Input credit on GST paid is available; hence, it will not be included in cost of material.

*No.oftrucks $=\frac{3,44,085 \mathrm{~kg}}{10 \text { ton } \times 1,000}=34.40$ trucks or 35 trucks
Therefore, total freight $=35$ trucks $\times{ }^{\prime} 28,000=‘ 9,80,000$
(ii) Calculation of Economic Order Quantity (EOQ) for Mat.-X and Y:
$\mathrm{EOQ}=\sqrt{\frac{2 \times \text { Annual Requirement Order cost }}{\text { Carrying cost per unit p.a }}}$

| Particulars | Mat-X | Mat- |
| :--- | :---: | :---: |
| Annual Requirement | $2,50,000 \mathrm{~kg}$. | $3,44,085 \mathrm{~kg}$. |
| Ordering cost | 0 | $' 28,000$ |
| Cost per unit | $' 145.83$ | $' 691.23$ |
| Carrying cost | $15 \%$ | $15 \%$ |
| Carrying cost per unit p.a. | $0^{*}$ | $' 103.68$ |
| EOQ | 0 | $13,632.62 \mathrm{~kg}$. |

## Question 20

Rounak Ltd. is the manufacturer of monitors for PCs. A monitor requires 4 units of Part-M. The following are the details of its operation during 20X8:

| Average monthly market demand | 2,000 Monitors |
| :--- | :---: |
| Ordering cost | $₹ 1,000$ per order |
| Inventory carrying cost | $20 \%$ per annum |
| Cost of Pat | $₹ 350$ per part |
| Normal usage | 425 parts per week |
| Minimum usage | 140 parts per week |
| Maximum usage | $\mathbf{7 1 0}$ parts per week |
| Lead timeto supply | $3-5$ weeks |

## COMPUTE from the above:

(i) EconomicOrderQuantity(EOQ).Ifthesupplieriswillingtosupplyquarterly30,000unitsofPart- M at a discount of $5 \%$, is it worth accepting?
(ii) Reorder level
(iii) Maximum level of stock
(iv) Minimum level of stock. (RTP Nov'18)

## Answer 20

A = Annual usage of parts $=$ Monthly demand for monitors $\times 4$ parts $\times 12$ months
$=2,000$ monitors $\times 4$ parts $\times 12$ months $=96,000$ units $O=$ Ordering cost per order $=₹ 1,000 /-$ per order
C1 $=$ Cost per part $=₹ 350 /-$
iC1 = Inventory carrying cost per unit per annum
$=20 \% \times ₹ 350=₹ 70 /-$ per unit, perannum Economic order quantity (EOQ):
E.O.Q $=\sqrt{\frac{2 A O}{i C 1}}=\sqrt{\frac{2 \times 96,000 \text { units } X 1,000}{" 70}}$
$=1,656$ parts (approx.)
The supplier is willing to supply 30,000 units at a discount of $5 \%$, therefore cost of each part shall be $₹ 350-5 \%$ of $350=₹ 332.5$

Total cost (when order size is $\mathbf{3 0 , 0 0 0}$ units):
$=$ Cost of 96,000 units + Ordering cost + Carrying cost.
$=(96,000$ units $\times ₹ 332.50)+\left(96,000\right.$ units $/ 30,000$ units $\left.\times^{\prime} 1,000\right)+1 / 2(30,000$ units $\times 20 \% \times ₹$ 332.50)
$=₹ 3,19,20,000+₹ 3,200 *+₹ 9,97,500=₹ 3,29,20,700$
Total cost (when order size is 1,656 units):
$=(96,000$ units $\times ₹ 350)++\left(96,000\right.$ units $/ 1,656$ units $\left.\times^{\prime} 1,000\right)+1 / 2(1,656$ units $\times 20 \% \times ₹ 350)$
$=₹ 3,36,00,000+₹ 57,970^{*}+₹ 57,960=₹ 3,37,15,930$
Since, the total cost under the supply of 30,000 units with $5 \%$ discount is lower than that when order size is 1,656 units, therefore the offer should be accepted.

Note: While accepting this offer consideration of capital blocked on order size of 30,000 units has been ignored.
*Order size can also be taken in absolute figure.
(1) Reorder level
$=$ Maximum consumption $\times$ Maximum re-order period
$=710$ units $\times 5$ weeks $=3,550$ units
(2) Maximum level ofstock
$=$ Re-order level + Reorder quantity - (Min. usage $\times$ Min. reorder period)
$=3,550$ units $+1,656$ units $-(140$ units $\times 3$ weeks $)=4,786$ units.
(3) Minimum level of stock
$=$ Re-order level - Normal usage $\times$ Average reorder period
$=3,550$ units $-(425$ units $\times 4$ weeks $)=1,850$ units.

## Question 21

Aditya Brothers supplies surgical gloves to nursing homes and polyclinics in the city. These surgical gloves are sold in pack of $\mathbf{1 0}$ pairs at price of $₹ \mathbf{2 5 0}$ per pack.

For the month of April 2018, it has been anticipated that a demand for 60,000 packs of surgical gloves will arise. Aditya Brothers purchases these gloves from the manufacturer at ₹ 228 per pack within a 4 to $\mathbf{6}$ days lead time. The ordering and related cost is ₹ $\mathbf{2 4 0}$ per order. The storage cost is $10 \%$ p.a. of average inventory investment.

## Required:

(i) CALCULATE the Economic Order Quantity (EOQ)
(ii) CALCULATE the number of orders needed every year
(iii) CALCULATE the total cost of ordering and storage of the surgical gloves.
(iv) DETERMINE when should the next order to be placed. (Assuming that the company does maintain a safety stock and that the present inventory level is 10,033 packs with a year of 360 working days). (RTP May 18)

## Answer 21

(i) Calculation of Economic Order Quantity:

$$
\mathrm{EOQ}=\sqrt{\frac{2 X A X O}{C i}}=\sqrt{\frac{2 X(60,000 \text { packs } \times 12 \text { months }) \times 1240}{\prime 228 \times 10 \%}}
$$

$=3,893.3$ packs or 3,893 packs.
(ii) Number of orders per year

Annual requirements
$\frac{\text { Annual requirements }}{\text { E.O.Q. }}=\frac{7,20,000 \text { packs }}{3,893 \text { packs }}=184.9$ or185orders a year
(iii) Ordering and storage costs
(₹)
Ordering costs:-185ordersx₹ 240
Storage cost: $-1 / 2(3,893$ packs $\times 10 \%$ of ₹ 228 )
Total cost of ordering \& storage
88,780.20
(iv) Timing of next order
(a) Day's requirement served by each order.

Number of day requirements $=\frac{\text { No.of working days }}{\text { No.of order in a year }}=\frac{360 \text { days }}{185 \text { orders }}=1.94$ days supply. This implies that each order of 3,893 packs supplies for requirements of 1.94 days only.
(b) Days requirement covered by inventory
$=\frac{\text { Units in inventory }}{\text { Economic order quantity }} \mathrm{x}$ (Day's requirement served by an order)
$\therefore \frac{10,033 \text { packs }}{3,893 \text { packs }} \times 1.94$ days $=5$ days requirement
(c) Time interval for placing next order

Inventory left for day's requirement - Average lead time of delivery 5 days -5 days $=0$ days

This means that next order for the replenishment of supplies has to be placed immediately.

## Question 22

A company uses four raw materials $A, B, C$ and $D$ for a particular product for which the following data apply :-

| Raw Material | Usage per unit of product (Kg.) | Re-order Quantity (Kg.) | Price per Kg. <br> (₹) | Delivery period (in weeks) |  |  | Reorder level (Kg.) | Minimum level (Kg.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Minimum | Average | Maximum |  |  |
| A | 12 | 12,000 | 12 | 2 | 3 | 4 | 60,000 | ? |
| B | 8 | 8,000 | 22 | 5 | 6 | 7 | 70,000 | ? |
| C | 6 | 10,000 | 18 | 3 | 5 | 7 | ? | 25,500 |
| ${ }_{9}{ }^{\text {D }}$ | 5 | 9,000 | 20 | 1 | 2 | 3 | ? | ? |

Weekly production varies from 550 to 1,250 units, averaging 900 units of the said product. What would be the following quantities:-
(i) Minimum Stock of A?
(ii) Maximum Stock of B?
(iii) Re-order level of C ?
(iv) Average stock level of A?
(v) Re-order level of $D$ ?
(vi) Minimum Stock level of D? (RTP Nov '20) (Same concept different figures MTP 5 Marks, April '21, Old \& New SM)

## Answer 22

(i) Minimum stock of A

Re-order level - (Average consumption $\times$ Average time required to obtain delivery)

$$
=60,000 \mathrm{~kg} .-(900 \text { units } \times 12 \mathrm{~kg} . \times 3 \text { weeks })=27,600 \mathrm{~kg} .
$$

(ii) Maximum stock of $B$

Re-order level + Re-order quantity $-($ Min. Consumption $\times$ Min. Re-order period)
$=70,000 \mathrm{~kg} .+8,000 \mathrm{~kg}-$ ( 550 units $\times 8 \mathrm{~kg} \times 5$ weeks).
$=78,000-22,000=56,000 \mathrm{~kg}$.
(iii) Re-order level of C

Maximum re-order period $\times$ Maximum Usage
$=7$ weeks $\times(1,250$ units $\times 6 \mathrm{~kg})=52,.500 \mathrm{~kg}$.
OR
$=$ Minimum stock of $C+$ (Average consumption $\times$ Average delivery time)
$=25,500 \mathrm{~kg} .+[(900$ units $\times 6 \mathrm{~kg}) \times$.5 weeks $]=52,500 \mathrm{~kg}$.
(iv) Average stock level of $A$

$$
\begin{aligned}
& \left.=\frac{\text { Minimum Stock }+ \text { Maximum }}{\text { Stock } 2} \text { (Refer to Working Note }\right) \\
& =\frac{27,600+58,800}{2}=43,200 \mathrm{~kg} .
\end{aligned}
$$

## Working note

Maximum stock of $A=R O L+R O Q-$ (Minimum consumption $\times$ Minimum re-order period)
$=60,000 \mathrm{~kg} .+12,000 \mathrm{~kg} .-[(550 \mathrm{units} \times 12 \mathrm{~kg}) \times$.2 weeks $]=58,800 \mathrm{~kg}$.
(v) Re-order level of D

Maximum re-order period $\times$ Maximum Usage

$$
=3 \text { weeks } \times(1,250 \text { units } \times 5 \mathrm{~kg} .)=18,750 \mathrm{~kg}
$$

(vi) Minimum stock of $D$

Re-order level - (Average consumption $\times$ Average time required to obtain delivery)

$$
=18,750 \mathrm{~kg} .-(900 \text { units } \times 5 \mathrm{~kg} . \times 2 \text { weeks })=9,750 \mathrm{~kg} .
$$

## Question 23

The following data are available in respect of material $X$ for the year ended 31st March, 2021:

|  | (Rs.) |
| :--- | ---: |
| Opening stock | $9,00,000$ |
| Purchases during the year | $1,70,00,000$ |

VIVITSU

| Closing stock | $11,00,000$ |
| :--- | ---: |

(i) CALCULATE:
(a) Inventory turnover ratio, and
(b) The number of days for which the average inventory is held.
(ii) INTERPRET the ratio calculated as above if the industry inventory turnover rate is 10. (RTP Nov '21, Old \& New SM)
Answer 23
(i)
(a) Inventory turnover ratio (Refer to working note)
$=\frac{\text { Cost of Stock of raw material Consumed }}{\text { Average stock of raw material }}$
$=\frac{R s .1,68,00,000}{R s .10,00,000}=16.8$
(b) Average number of days for which the average inventory is held

$$
=\frac{365}{\text { Inventory turnover ratio }}=\frac{365 \text { days }}{16.8}=21.73 \text { days }
$$

Working Note:

| Particulars | (₹) |
| :--- | ---: |
| Opening stock of raw material | $9,00,000$ |
| Add: Material purchases during the year | $1,70,00,000$ |
| Less: Closing stock of raw material | $11,00,000$ |
|  | $1,68,00,000$ |

(ii) The Inventory turnover ratio for material X is 16.8 which mean an inventory item takes only 21.73 or 22 days to issue from stores for production process. The rate is better than the industry rate which is 10 time or 36.5 days. This inventory turnover ratio indicates better inventory management system and good demand for the final product in market.

## Question 24

Sky \& Co., an unregistered supplier under GST, purchased material from Vye Ltd. which is registered under GST. The following information is available for one lot of 5,000 units of material purchased:

Listed price of one lot
Trade discount
CGST and SGST (Credit Not available)
₹ $\mathbf{2 , 5 0 , 0 0 0}$
@ 10\% on listed price
12\% (6\% CGST + 6\% SGST) Cash discount @ 10\%
(Will be given only if payment is made within $\mathbf{3 0}$ days.)

Toll Tax paid
₹ 5,000
Freight and Insurance ₹ 17,000
Demurrage paid to transporter
Commission and brokerage on purchases
containers
the container
Other Expenses
₹ $\mathbf{5 , 0 0 0}$
₹ 10,000 Amount deposited for returnable
$₹ 30,000$ Amount of refund on returning
₹ $\mathbf{2 0 , 0 0 0}$
@ 2\% of total cost
$\mathbf{2 0 \%}$ of material shortage is due to normal reasons.
The payment to the supplier was made within 21 days of the purchases. You are required to

CALCULATE cost per unit of material purchased by Sky \& Co. (RTP May '22, Old \& New SM) (Same concept different figures MTP 5 Marks March '22 \& Sep '23)

## Answer 24

Calculation of cost per unit:


## Note:

1. GST is payable on net price i.e., listed price less discount.
2. Cash discount is treated as interest and finance charges; hence it is ignored.
3. Demurrage is penalty imposed by the transporter for delay in uploading or off -loading of materials. It is an abnormal cost and not included.
4. Shortage due to normal reasons should not be deducted from cost to ascertain total cost of good units.

## Question 25

M/s Tanishka Materials Private Limited produces a product which names "ESS". The consumption of raw material for the production of "ESS" is 210 Kgs to 350 Kgs per week. Other information is as follows:

Procurement Time:
Purchase price of Raw Materials:
Ordering Cost per Order:
Storage Cost:
365 days a year.
You are required to CALCULATE:
(a) Economic Order Quantity
(b) Re-Order Level (ROL)
(c) Maximum Stock Level
(d) Minimum Stock Level
(e) Average Stock Level
(f) Number of Orders to be placed per year
(g) Total Inventory Cost
(h) If the supplier is willing to offer 1\% discount on purchase of total annual quantity in two orders, whether offer is acceptable?
(i) If the Answer is no, what should be the counteroffer w.r.t. percentage of discount? (RTP Nov'22)

## Answer 25

As procurement time is given in days, consumption should also be calculated in days:

Maximum Consumption per Day: $\frac{350}{7}=50 \mathrm{kgs}$

Minimum Consumption per Day $\frac{210}{7}=30 \mathrm{kgs}$
Average Consumption per Day $\frac{(50+30)}{2}=40 \mathrm{kgs}$
(a) Calculation of Economic Order Quantity (EOQ)

Annual consumption of Raw Materials (A): 40 Kgs $\times 365$ days $=14,600$ Kgs Storage or Carrying Cost per unit per annum (C):(₹ $100 \times 1 \% \times 12$ months) $+₹ 2$ = ₹ 14
Ordering Cost (O): ₹ 200 per Order
$\mathrm{EOQ} \sqrt{\frac{2 \times A \times 0}{c}}$
$\sqrt{\frac{2 \times 14,600 \times 200}{14}}=646 \mathrm{Kgs}$.
(b) Re-Order Level $($ ROL $)=($ Maximum consumption Rate $\times$ Maximum Procurement Time $)$
$=50 \mathrm{kgs}$ per day $\times 9$ days
$=\quad 450 \mathrm{kgs}$
(c) Maximum Stock Level =Recorder Level + Recorder Quantity - (Minimum Consumption Rate $\times$ Minimum Procurement Time)
$=\quad 450 \mathrm{kgs}+646 \mathrm{kgs}-(30 \mathrm{kgs} \times 5$ days $)=946 \mathrm{kgs}$
(d) Minimum Stock Level $=$ Recorder Level - (Average consumption Rate $\times$ Average Procurement Time)

$$
=\quad 450 \mathrm{kgs}-(40 \mathrm{kgs} \times 7 \text { days })=\quad 170 \mathrm{kgs}
$$

(e) Average Stock Level $=\frac{\text { Maximum Stock Level }+ \text { Minimum Stock Level }}{2}$

$$
=\frac{946 \mathrm{kgs}+170 \mathrm{kgs}}{2}=558 \mathrm{kgs}
$$

(f) Number of Orders to be placed per year

$$
\begin{gathered}
=\frac{\text { Annual Consumption of Raw Materials }}{E O Q} \\
=\frac{14600 \mathrm{kgs}}{646 \mathrm{kgs}}=22.60 \text { Orders or } 23 \text { Orders }
\end{gathered}
$$

(g) Total Inventory Cost

Cost of Materials (A x Purchase Price) (14600 kgs x ₹ 100)=₹ 14,60,000

Total Ordering Cost (No. of Orders x O) (23 Orders $x$ 200) $=$ ₹ 4,600
Total Carrying Cost (EOQ / 2 x C) ( $646 \mathrm{kgs} / 2 \times ₹ 14$ )=₹4,522
Total Inventory Cost =₹ 14,69,122
(h) If the supplier is willing to offer 1\% discount on purchase of total annual quantity in two orders:

| Offer Price | = ₹ $100 \times 99 \%$ | = ₹ 99 |
| :---: | :---: | :---: |
| Revised Carrying Cost $=(₹ 99 \times 1 \% \times 12$ months $)+$ ₹ 2 |  | = ₹ 13.88 |
| Revised Order Quantity $=14600 \mathrm{kgs} / 2$ Orders |  | $=7300 \mathrm{kgs}$ |
| Total Inventory Cost at Offer Price |  |  |
| Cost of Materials (A x Purchase Price) (14600 kgs $\times$ ₹ 99) |  | = ₹ 14,45,400 |
| Total Ordering Cost (No. of Orders x O) (2 Orders x 200) |  | $=\quad ₹ 400$ |
| Total Carrying Cost (EOQ / $2 \times \mathrm{C}$ ) (7300 kgs / $2 \times ₹ 13.88$ ) |  | $=₹ 50,662$ |
| Total Inventory Cost |  | ₹ $14,96,462$ |

Advice: As total inventory cost at offer price is ₹ $27,340(14,96,462-14,69,122)$ higher, offer should not be accepted.
(i) Counter-offer:

Let Discount Rate $=\mathrm{z} \%$
Counter-Offer Price = ₹ $100-\mathrm{z} \%=₹ 100-\mathrm{z}$
Revised Carrying Cost $=[(₹ 100-z) \times 1 \% \times 12$ months $]+₹ 2=₹ 12-0.12 z+₹ 2=₹ 14-0.12 z$
Total Inventory Cost at Counter-Offer Price
Cost of Materials (A x Purchase Price) $[14600 \mathrm{kgs} \times(₹ 100-z$ )] =₹ 14,60,000-14,600z
Total Ordering Cost (No. of Orders x O) (2 Orders $\times 200$ ) =₹ 400
Total Carrying Cost (EOQ / $2 \times \mathrm{C}$ ) [7300 kgs / $2 \times(₹ 14-0.12 \mathrm{z}$ )] = ₹ 51,100-438z Total Inventory Cost ₹ $15,11,500$ - 15038z

$$
₹ 14,69,122=\text { ₹ } 15,11,500-15038 z \text { Or } 15038 z=42,378
$$

Or
$z=2.82$
Therefore, discount should be at least $2.82 \%$ in offer price.

## Question 26

Following details are related to a manufacturing concern:

| Re-order Level | $\mathbf{1 , 6 0 , 0 0 0}$ units |
| :--- | ---: |
| Economic Order Quality | 90,000 |
| Minimum Stock Level | $1,00,000$ units |
| Maximum Stock Level | $\mathbf{1 , 9 0 , 0 0 0}$ units |
| Average Lead Time | 6 days |
| Difference between minimum lead time and Maximum lead <br> time | 4 days |

## Calculate:

(i) Maximum consumption per day
(ii) Minimum consumption per day (Nov '23)

Difference between Minimum lead time Maximum lead time
$=4$ days Max. lead time - Min. lead time $=4$ days
Or, Max. lead time $=$ Min. lead time +4 days.
Average lead time is given as 6 days i.e.
$\frac{\text { Max.leadtime }+ \text { Min.lead time }}{2}=6$ Days
Putting the value of (i) in (ii),
$\frac{\text { Min.lead time }+4 \text { Days }+ \text { Min.lead Time }}{2}=6$ Days
Or, Min. lead time +4 days + Min. lead time $=12$ days
Or, 2 Min. lead time = 8 days

Or, Minimum lead time $=\frac{8 \text { days }}{2}=4$ Days
Putting this Minimum lead time value in (i), we get
Maximum lead time $=4$ days +4 days $=8$ days
(i) Maximum consumption per day:

Re-order level $=$ Max. Re-order period $\times$ Maximum Consumption per day 1,60,000 units
$=8$ days $\times$ Maximum Consumption per day
Or, Maximum Consumption per day $=\frac{1,60,000 \text { units }}{8 \text { days }}=20,000$ units
(ii) Minimum Consumption per day:

Maximum Stock Level =
Re-order level + Re-order Quantity - (Min. lead time $\times$ Min. Consumption per day) Or, $1,90,000$ units $=1,60,000$ units $+90,000$ units $-(4$ days $\times$ Min. Consumption per day) Or, 4 days $\times$ Min. Consumption per day $=2,50,000$ units $-1,90,000$ units

Or, Minimum Consumption per day $=\frac{60,000 \text { units }}{4 \text { days }}=15,000$ units

## Question 27

Define Inventory Control and give its objectives.
List down the basis to be adopted for Inventory Control. (PYP Nov'19, 5 Marks)

## Answer 27

Inventory Control: The Chartered Institute of Management Accountants (CIMA) defines Inventory
Control as "The function of ensuring that sufficient goods are retained in stock to meet all requirements without carrying unnecessarily large stocks."
The objective of inventory control is to make a balance between sufficient stock and over - stock. The stock maintained should be sufficient to meet the production requirements so that uninterrupted production flow can be maintained. Insufficient stock not only pause the production but also cause a loss of revenue and goodwill. On the other hand, Inventory requires some funds for purchase, storage, maintenance of materials with a risk of obsolescence, pilferage etc. A trade-off between Stock-out and Over-stocking is required. The management may employ various methods of Inventory control to have a balance. Management may adopt the following basis for Inventory control:


## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question relating to the topic 'Material cost' to calculate EOQ and Total Inventory cost. Performance of the examinees was good.

## Question 28

Surekha Limited Produces $\mathbf{4 0 0 0}$ Litres of paints on a quarterly basis. Each Litre requires $\mathbf{2}$ kg of raw material. The cost of placing one order for raw material isRs. 40 and the purchasing price of raw material is Rs. 50 per kg. The storage cost and interest cost is $\mathbf{2 \%}$ and $\mathbf{6 \%}$ per annum respectively. The lead time for procurement of raw material is 15 days. Calculate Economic Order Quantity and Total Annual Inventory Cost in respect of the above raw material. (PYP Nov’19,5 Marks)

## Answer 28

## Working:

Calculation of Annual demand of raw material
$=4,000$ Litres (per quarter) $\times 4$ (No. of Quarter in a year) $\times 2 \mathrm{~kg}$. (rawmaterial required for each Litre of paint) $=$ $32,000 \mathrm{~kg}$.

## Calculation of Carrying cost

Storagerate $\quad=\quad 2 \%$

Interest Rate $=6 \%$
Total $=8 \%$ per annum
Carrying cost per unit per annum $=\quad 8 \%$ of Rs. $50=$ Rs. 4 per unit perannum
$\sqrt{\frac{2 \times \text { Annual demand }(A) \times \text { Ordering Cost per order }(O)}{\text { Carrying Cost per unit per annum }(C)}}$
(i) $\mathrm{EOQ}=\sqrt{\frac{2 \times 32,000 \mathrm{~kg} \cdot \times 140}{14}}=800 \mathrm{Kg}$
(ii) Total Annual Inventory Cost

$$
\begin{array}{lll}
\text { Purchasing cost of } 32,000 \mathrm{~kg} @ \text { Rs. } 50 \text { per kg } & = & \text { Rs. } 16,00,000 \\
\text { Ordering Cost }\left(\frac{32,000 \mathrm{~kg}}{800 \mathrm{~kg}} \times \text { Rs. } 40\right) & = & \text { Rs.1,600 } \\
\text { Carrying Cost of Inventory }\left(\frac{15 \text { days }}{30 \text { days }} \times 800 \mathrm{~kg} \times \text { Rs. } 40\right. & = & \text { Rs. 1,600 }
\end{array}
$$

Rs. 16,03,200

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question based on Inventory Control. Below Average performance was observed by the examinees.

## Question 29

The following are the details of receipt and issue of material 'CXE' in a manufacturing Co. during the month of April 2019:

| Date | Particulars | Quantity (kg) | Rate per kg |
| :--- | :--- | ---: | ---: |
| April 4 | Purchase | $\mathbf{3 , 0 0 0}$ | ₹ 16 |
| April8 | Issue | 1,000 |  |
| April15 | Purchase | 1,500 | ₹ 18 |
| April 20 | Issue | 1,200 |  |
| April 25 | Return to supplier out of purchase made on April 15 | 300 |  |
| April 26 | Issue | 1,000 |  |
| April 28 | Purchase | 500 | ₹ 17 |

Opening stock as on 01-04-2019 is 1,000 kg @Rs. 15 per kg.
On 30th April, 2019 it was found that 50 kg of material 'CXE' was fraudulently misappropriated by the store assistant and never recovered by the Company.

Required:
(i) Prepare a store ledger account under each of the following method of pricing the issue:
(a) Weighted Average Method
(b) LIFO
(ii) What would be the value of material consumed and value of closing stock as on 30-04-2019 as per these two methods? (PYP May '19, 10 Marks)

## Answer 29

(i) (a)Stores Ledger Account for the month of April, 2019 (Weighted Average Method)

|  | Receipt |  | Issue |  |  | Balance |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
| $1-4-19$ | - | - | - | - | - | - | 1,000 | 15.00 | 15,000 |
| $4-4-19$ | 3,000 | 16.00 | 48,000 | - | - | - | 4,000 | 15.75 | 63,000 |
| $8-4-19$ | - | - | - | 1,000 | 15.75 | 15,750 | 3,000 | 15.75 | 47,250 |
| $15-4-19$ | 1,500 | 18.00 | 27,000 | - | - | - | 4,500 | 16.50 | 74,250 |
| $20-4-19$ | - | - | - | 1,200 | 16.50 | 19,800 | 3,300 | 16.50 | 54,450 |
| $25-4-19$ | - | - | - | 300 | 18.00 | 5,400 | 3,000 | 16.35 | 49,050 |
| $26-4-19$ | - | - | - | 1,000 | 16.35 | 16,350 | 2,000 | 16.35 | 32,700 |
| $28-4-19$ | 500 | 17.00 | 8,500 | - | - | - | 2,500 | 16.48 | 41,200 |
| $30-4-19$ | - | - | - | 50 | 16.48 | 824 | 2,450 | 16.48 | 40,376 |

(b) Stores Ledger Account for the month of April, 2019 (LIFO)

| Date | Qty Units | Rate | Amount Qty | Units | Rate | Amount | Qty Units | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (') | (') |  | (') | (') |  | (') | $\left.{ }^{\prime}\right)$ |
| 1-4-19 | - | - | - | - | - | - | 1,000 | 15 | 15,000 |
| 4-4-19 | 3,000 | 16 | 48,000 | - | - | - | 1,000 | 15 | 15000 |
|  |  |  |  |  |  |  | 3,000 | 16 | 48,000 |
| 8-4-19 | - | - | - | 1,000 | 16 | 16,000 | 1,000 | 15 | 15,000 |
|  |  |  |  |  |  |  | 2,000 | 16 | 32,000 |
| 15-4-19 | 1,500 | 18 | 27,000 | - | - | - | 1,000 | 15 | 15,000 |
|  |  |  |  |  |  |  | 2,000 | 16 | 32,000 |
|  |  |  |  |  |  |  | 1,500 | 18 | 27,000 |
| 20-4-19 | - | - | - | 1,200 | 18 | 21,600 | 1,000 | 15 | 15,000 |
|  |  |  |  |  |  |  | 2,000 | 16 | 32,000 |
|  |  |  |  |  |  |  | 300 | 18 | 5,400 |
| 25-4-19 | - | - | - | 300 | 18 | 5,400 | 1,000 | 15 | 15,000 |


|  |  |  |  |  |  |  | 2,000 | 16 | 32,000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $26-4-19$ | - | - | $\ldots$ | 1,000 | 16 | 16,000 | 1,000 | 15 | 15,000 |
|  |  |  |  |  |  |  | 1,000 | 16 | 16,000 |
| $28-4-19$ | 500 | 17 | 8,500 | - |  |  | - | 1,000 | 15 |
|  |  |  |  |  |  |  | 15,000 |  |  |
|  |  |  |  |  |  |  | 1,000 | 16 | 16,000 |
| $30-4-19$ | - | - | - | 50 | 17 | 850 | 1,000 | 15 | 15,000 |
|  |  |  |  |  |  |  | 1,000 | 16 | 16,000 |
|  |  |  |  |  |  |  | 450 | 17 | 7,650 |

(ii) Value of Material Consumed and Closing Stock

| Opening stock as on 01-04-2019 | Weighted Average method (₹) | LIFO method(₹) |
| :--- | ---: | ---: |
|  | 15,000 | 15,000 |
| Add: Purchases | $\underline{83,500}$ | $\underline{83,500}$ |
|  | 98,500 | 98,500 |
| Less: Return to supplier | 5,400 | 5,400 |
| Less: Abnormal loss | 824 | 850 |
| Less:ClosingStockason30-04-2019 | $\underline{40,376}$ | $\underline{\mathbf{3 8 , 6 5 0}}$ |
| Value of Material Consumed | 51,900 | 53,600 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical question to 'Material' students were asked to prepare Store ledger account under Weighted Average method and LIFO method. Only few numbers of students attempted this question correctly.

## Question 30

$\mathrm{M} / \mathrm{s}$. X Private Limited is manufacturing a special product which requires a component "SKY BLUE".
The following particulars are available for the year ended 31st March, 2018:
Annual demand of "SKY BLUE" 12000 Units Cost of placing an order
₹ 1,800
Cost per unit of "SKY BLUE
₹ 640
Carrying cost per annum 18.75\%
The company has been offered a quantity discount of 5 on the purchases of "SKY BLUE" provided the order size is 3000 components at a time.
You are required to:
(i) Compute the Economic Order Quantity.
(ii) Advise whether the quantity discount offer can be accepted. (PYP May '18, 5 Marks)

Answer 30
(i) Calculation of Economic Order Quantity

$$
\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C}}}=\sqrt{\frac{2 \times 12,000 \text { units } \times \text { Rs. } 1,800}{\text { Rs. } 640 \times 18.75 / 100}}=600 \text { units }
$$

(ii) Evaluation of Profitability of Different Options of Order Quantity

When EOQ is ordered
Purchase Cost (12,000 units $\times$ Rs. 640)
Ordering Cost $[A / Q \times O-(12,000$ units/ 600 units $) \times$ Rs. 1,800]
Carrying Cost ( $\mathrm{O} / 2 \times \mathrm{C} \times \mathrm{i}-600$ units $\times$ Rs. $640 \times 1 / 2 \times 18.75 / 100$ )
Total Cost
(₹)
76,80,000
36,000
36,000
77,52,000

When Quantity Discount is accepted

|  |  | () |
| :---: | :---: | :---: |
| Purchase Cost | (12,000 units X`608) & 72,96,000 \\ \hline Ordering Cost & (12,000 units/3,000 units) X` 1,800] | 7,200 |
| $\left[\frac{A}{Q} \times \mathrm{O}\right.$ |  |  |
| Carrying Cost $\left[\frac{Q}{2} \times \subset \times i\right.$ | (3,000 units X ` $608 \times 1 / 2 \mathrm{X}^{\text {P 18.75/100) }}$ ] | 1,71,000 |
| Total Cost |  | 74,74,200 |

Advise - The total cost of inventory is higher if EOQ is adopted. If $\mathrm{M} / \mathrm{s}$. X Private Limited getsa discount of $5 \%$ on the purchases of "SKY BLUE" (if order size is 3,000 components at a time), there will be financial benefit of ${ }^{`} 2,77,800(77,52,000-74,74,200)$. However, order size of big quantity will increase volume of average inventory to 5 times. There may be risk of shrinkage, pilferage and obsolescence etc., of inventory due to increase in the average volume of inventory holding. This aspect also has to be taken into consideration before opting the discount offer and taking final decision.

## Question 31

Explain ‘Just In Time’ (JIT) approach of inventory management. (PYP May '18, 5 Marks)

## Answer 31

## Just in Time (JIT) Inventory Management

JIT is a system of inventory management with an approach to have a zero inventories in stores. According to this approach material should only be purchased when it is actually required for production.
JIT is based on two principles
(i) Produce goods only when it is required and
(ii) the products should be delivered to customers at the time only when theywant.

It is also known as 'Demand pull' or 'Pull through' system of production. In this system, production process actually starts after the order for the products is received. Based on the demand, production processstarts and the requirement for raw materials is sent to the purchase department for purchase. This can be understood with the help of the following diagram:


## Question 32

Explain: FIFO and LIFO method of stores issue. (PYP May '18, 2 Marks)

## Answer 32

First-in First-out (FIFO) method: It is a method of pricing the issues of materials, in the order in which they are purchased. In other words, the materials are issued in the order in which they arrive in the store or the items longest in stock are issued first. Thus each issue of material only recovers the purchase price which does not reflect the current market price. This method is considered suitable in times of falling price because the material cost charged to production will be high while the replacement cost of materials will be low.
Last-in-First-out (LIFO) method: It is a method of pricing the issues of materials. This method is based on the assumption that the items of the last batch (lot) purchased are the first to be issued. Therefore,
under this method the prices of the last batch (lot) are used for pricing the issues, until it is exhausted, and so on. If however, the quantity of issue is more than the quantity of the latest lot than earlier (lot) and its price will also be taken into consideration. During inflationary period or period of rising prices, the use of LIFO would help to ensure that the cost of production determined on the above basis is approximately the current one.

## Question 33

Explain obsolescence and circumstances under which materials become obsolete. State the steps to be taken for its treatment. (PYP Nov '18, 5 Marks)

## Answer 33

Obsolescence: Obsolescence is defined as "the loss in the intrinsic value of an asset due to its supersession".
Materials may become obsolete under any of the following circumstances:
(i) where it is a spare part, or a component of a machinery used in manufacture and that machinery becomes obsolete;
(ii) where it is used in the manufacture of a product which has become obsolete;
(iii) where the material itself is replaced by another material due to either improved quality or fall in price.

Treatment: In all three cases, the value of the obsolete material held in stock is a total loss and immediate steps should be taken to dispose it off at the best available price. The loss arising out of obsolete materials on abnormal loss does not form part of the cost of manufacture.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question on obsolescence of material. Below average performance was observed.

## Question 34

An automobile company purchases 27,000 spare parts for its annual requirements. The cost per order is ₹ 240 and the annual carrying cost of average inventory is $\mathbf{1 2 . 5 \%}$. Each spare part costs ₹ 50. At present, the order size is $\mathbf{3 , 0 0 0}$ spare parts. (Assume that number of days in a year $=\mathbf{3 6 0}$ days) Find out:
(i) How much the company's cost would be saved by opting EOQ model?
(ii) The Re-order point under EOQ model if lead time is $\mathbf{1 2}$ days.
(iii) How frequently should orders for procurement be placed under EOQ model? (PYP 10 Marks Nov 20)

## Answer 34

## Working Notes:

Annual requirement $(A) \quad=27,000$ units
Cost per order (O) = ₹ 240
Inventory carrying cost (i) $=12.5 \%$
Cost per unit of spare (c) = ₹ 50
Carrying cost per unit $(i \times c) \quad=₹ 50 \times 12.5 \%=₹ 6.25$
Economic Order Quantity (EOQ) $=\sqrt{\frac{2 \times \mathrm{A} \times \mathrm{O}}{\mathrm{C} \times \mathrm{i}}}=\sqrt{\frac{2 \times 27,000 \times 240}{6.25}}=1440$ Units
(i) Calculation of saving by opting EOQ:

|  | Existing Order policy | EOQ Model |
| :--- | :---: | :---: |
| No. of orders | 9 | 18.75 or 19 |
|  | $\left(\frac{27,000}{3,000}\right)$ | $\left(\frac{27,000}{1,440}\right)$ |


|  |  |  |
| :--- | :---: | :---: |
| A. Ordering Cost (₹) | $\mathbf{2 , 1 6 0}$ <br> $(₹ 240 \times 9)$ | $\left\{R s .240 \times\left(\frac{27,000}{1,440}\right)\right\}$ |
| B. Carrying cost (₹) | $\left(\frac{3,000 \times R s .6 .25}{2}\right)$ | $\left(\frac{\mathbf{1 , 4 4 0} \times \mathbf{R s . 6 . 2 5}}{\mathbf{2}}\right)$ |
| Total cost (A+B) (₹) | $\mathbf{1 1 , 5 3 5}$ | $\mathbf{9 , 0 0 0}$ |

Savings of Cost by opting EOQ Model = ₹ 11,535-₹ 9,000 = ₹ 2,535
(ii) Re-order point under EOQ:

Re-order point/ Re-order level $=$ Maximum consumption $\times$ Maximum lead time

Consumption per day $=\frac{27,000 \text { units }}{360 \text { days }}=75$ units
Re-order point/ Re-order level $=75$ units $\times 12$ days $=\mathbf{9 0 0}$ units
(iii) Frequency of Orders (in days):
$\frac{360 \text { days }}{\text { No.of orders a year }}=\frac{360 \text { days }}{19}=18.95$ days or 19 days

## Question 35

State how the following items are treated in arriving at the value of cost of material purchased:
(i) Detention Charges/Fines
(ii) Demurrage
(iii) Cost of Returnable containers
(iv) Central Goods and Service Tax (CGST)
(v) Shortage due to abnormal reasons. (PYP 5 Marks Jan 21)

## Answer 35

Treatment of items in arriving at the value of cost of material Purchased

| S. No. | Items | Treatment |
| :---: | :--- | :--- |
| (i) | Detention charges/ Fine | Detention charges/ fines imposed for non- compliance of <br> rule or law by any statutory authority. It is an abnormal cost <br> and not included with cost of purchase. |
|  | (ii) | Demurrage |
| (iii) | Cost of returnable <br> containers | Demurrage is a penalty imposed by the transporter for <br> delay in uploading or offloading of materials. It is an <br> abnormal cost and not included with cost of purchase. |
| Treatment of cost of returnable containers are as follows: |  |  |
| Returnable Containers: If the containers are returned and |  |  |
| their costs are refunded, then cost of |  |  |
| containers should not be considered in the cost of purchase. |  |  |
| If the amount of refund on returning the container is less |  |  |
| than the amount paid, then, only the short fall is added |  |  |
| with the cost of purchase. |  |  |


|  |  | buyer. It is excluded from the cost of purchase if the input <br> credit is available for the same. Unless mentioned <br> specifically CGST is not added with the cost of purchase. |
| :---: | :--- | :--- |
| (v) | Shortage due to <br> abnormal reasons | Shortage arises due to abnormal reasons such as material <br> mishandling, pilferage, or due to any avoidable reasons are <br> not absorbed by the good units. Losses due to abnormal <br> reasons are debited to costing profit and loss account. |

## Question 36

MM Ltd. has provided the following information about the items in its inventory.

| Item Code Number | Units | Unit Cost (₹) |
| :--- | :---: | :---: |
| 101 | 25 | 50 |
| 102 | 300 | 01 |
| 103 | 50 | 80 |
| 104 | 75 | 08 |
| 105 | 225 | 02 |
| 106 | 75 | 12 |

MM Ltd. has adopted the policy of classifying the items constituting 15\% or above of Total Inventory Cost as 'A' category, items constituting 6\% or less of Total Inventory Cost as 'C' category and the remaining items as ' $B$ ' category.

You are required to:
(i) Rank the items on the basis of \% of Total Inventory Cost.
(ii) Classify the items into A, B and C categories as per ABC Analysis of Inventory Control adopted by MM Ltd. (PYP 5 Marks July 21)

## Answer 36

(i) Statement of Total Inventory Cost and Ranking of items

| Item <br> code no. | Units | \% of Total <br> units | Unit <br> cost <br> (₹) | Total Inventory <br> cost (₹) | \% of Total <br> Inventory cost | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 1}$ | 25 | 3.33 | 50 | 1,250 | 16.67 | $\mathbf{2}$ |
| $\mathbf{1 0 2}$ | 300 | 40.00 | 1 | 300 | 4.00 | $\mathbf{6}$ |
| $\mathbf{1 0 3}$ | 50 | 6.67 | 80 | 4,000 | 53.33 | $\mathbf{1}$ |
| $\mathbf{1 0 4}$ | 75 | 10.00 | 8 | 600 | 8.00 | $\mathbf{4}$ |
| $\mathbf{1 0 5}$ | 225 | 30.00 | 2 | 450 | 6.00 | $\mathbf{5}$ |
| $\mathbf{1 0 6}$ | 75 | 10.00 | 12 | 900 | 12.00 | $\mathbf{3}$ |
|  | 750 | 100 | 153 | 7,500 | 100 |  |

(ii) Classifying items as per ABC Analysis of Inventory Control

Basis for ABC Classification as \% of Total Inventory Cost

| $15 \% ~ \& ~ a b o v e$ | -- | $' A '$ items |
| :--- | :--- | :--- |
| $7 \%$ to $14 \%$ | -- | $' B$ ' items |
| $6 \% ~ \& ~ L e s s ~$ | -- | 'C' items |


| Ranking | Item code <br> No. | \% of Total <br> units | Total Inventory <br> cost (₹) | \% of Total <br> Inventory Cost | Category |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 103 | 6.67 | 4,000 | 53.33 |  |
| $\mathbf{2}$ | 101 | 3.33 | 1,250 | 16.67 |  |
| Total | 2 | 10.00 | 5,250 | 70.00 | A |
| $\mathbf{3}$ | 106 | 10.00 | 900 | 12.00 |  |


| $\mathbf{4}$ | 104 | 10.00 | 600 | 8.00 |  |
| :--- | :---: | ---: | ---: | ---: | :---: |
| Total | 2 | 20.00 | 1,500 | 20.00 | B |
| $\mathbf{5}$ | 105 | 30.00 | 450 | 6.00 |  |
| $\mathbf{6}$ | 102 | 40.00 | 300 | 4.00 |  |
| Total | 2 | 70.00 | 750 | 10.00 | C |
| Grand Total | 6 | 100 | 7,500 | 100 |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem on inventory control for assigning ranks based on inventory cost percentage. The second part was related to $A B C$ classification by following the criteria given in the question. Most of the examinees answered in the correct line. Above average performance was observed.

## Question 37

Write a short note on VED analysis of Inventory Control. (PYP 5 Marks July '21)

## Answer 37

Vital, Essential and Desirable (VED): Under this system of inventory analysis, inventories are classified on the basis of its criticality for the production function and final product. Generally, this classification is done for spare parts which are used for production.
(i) Vital- Items are classified as vital when its unavailability can interrupt the production process and cause a production loss. Items under this category are strictly controlled by setting re-order level.
(ii) Essential- Items under this category are essential but not vital. The unavailability may cause sub standardization and loss of efficiency in production process. Items under this category are reviewed periodically and get the second priority.
(iii) Desirable- Items under this category are optional in nature; unavailability does not cause any production or efficiency loss.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a theoretical question requiring examinees to write a short note on the concept of VED analysis of Inventory Control. Performance of the examinees was below average.

## Question 38

The following details are provided by M/s. SKU Enterprises for the year ended 31st March, 2018:

| Particulars | Material-M (₹) | Material-N (₹) |
| :--- | ---: | ---: |
| Stock as on 01-04-2017 | $\mathbf{6 , 0 0 , 0 0 0}$ | $10,00,000$ |
| Stock as on 31-03-2018 | $4,50,000$ | $\mathbf{7 , 2 5 , 0 0 0}$ |
| Purchases during the year | $\mathbf{9 , 5 0 , 0 0 0}$ | $18,40,000$ |

You are required to:
(i) Calculate Turnover Ratio of both the materials.
(ii) Advise which of the two materials is fast moving. (Assume 360 days in a year). (PYP 5 Marks May '18) (Same concept different figures PYP Dec'21 5 Marks)

## Answer 38

| Material M | Material N |
| :--- | :--- |
| Turnover ratio | Turnover ratio |
| Cost of stock of raw material consumed / <br> Average stock of raw material | Cost of stock of raw material consumed / <br> Average stock of raw material |


| $\begin{aligned} & =₹ 6,00,000+₹ 9,50,000-₹ 4,50,000 / \\ & (6,00,000+4,50,000) / 2=2.09 \end{aligned}$ | $\begin{aligned} & =₹ 10,00,000+₹ 18,40,000-₹ 7,25,000 . / \\ & (10,00,000+7,25,000) / 2=2.45 \end{aligned}$ |
| :---: | :---: |
| Average number of days for which the average inventory is held | Average number of days for which the average inventory is held |
| $=360$ / Inventory turnover ratio | $=360$ / Inventory turnover ratio |
| $=360$ days $/ 2.09=172.25$ days | = 360 days $/ 2.45=146.94$ days |

(ii) Advice

Comparatively Material $M$ is slower than Material $N$ since Inventory holding period of ' $M$ ' is 172.25 days in Comparison to ' N ' i.e. 146.94 days. Infact, both materials have slow inventory turnover. Though, different business has their own expected rates for inventory turnover like food shops have fast inventory turnover, shop selling furniture etc. will have slower inventory turnover while manufacturers of large items of plant will have very long inventory turnover. If it is not as per the Industry Standard, then a slow turnover may indicate that excessive inventory is held and risk of obsolete or spoiled inventory will increase. Large quantity of slow moving material means that capital is locked up in business and not earning revenue. It is advisable to make proper investigations into slow moving materials and take steps to minimize the loss arises therefrom as it may impact overall financial health of the organisation.

## Question 39

What is Bill of Material? Describe the uses of Bill of Material in following departments:
(i) Purchases Department
(ii) Production Department
(iii) Stores Department
(iv) Cost/Accounting Department (PYP 5 Marks Dec '21)

## Answer 39

Bill of Material: It is a detailed list specifying the standard quantities and qualities of materials and components required for producing a product or carrying out of any job.

Uses of Bill of Material in different department:

| Purchase <br> Department | Production <br> Department | Stores <br> Department | Cost/ Accounting <br> Department |
| :--- | :--- | :--- | :--- |
| Materials are <br> procured <br> (purchased) on <br> the basis of <br> specifications <br> mentioned in it. | Production is planned <br> according to the nature, <br> volume of the materials <br> required to be used. <br> Accordingly, material <br> requisition lists are <br> prepared. | It is used as a <br> reference document <br> while issuing materials <br> to the requisitioning <br> department. | It is used to estimate cost <br> and profit. Any purchase, <br> issue and usage are <br> compared/ verified <br> against this document. |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theory question on Bill of Material was not answered in the correct line. Most of the students had written the concept of invoicing of material instead of bill of material. Performance of the examinees was poor.

## Question 40

A Limited a toy company purchases its requirement of raw material from S Limited at ₹ 120 per kg. The company incurs a handling cost of $₹ 400$ plus freight of $₹ 350$ per order. The incremental carrying cost of inventory of raw material is $₹ 0.25$ per kg per month. In addition the cost of working capital finance on the investment in inventory of raw material is ₹ $\mathbf{1 5}$ per kg per annum. The annual
production of the toys is 60,000 units and 5 units of toys are obtained from one kg. of raw material. Required:
(i) Calculate the Economic Order Quantity (EOQ) of raw materials.
(ii) Advise, how frequently company should order to minimize its procurement cost. Assume $\mathbf{3 6 0}$ days in a year.
(iii) Calculate the total ordering cost and total inventory carrying cost per annum as per EOQ. (PYP 5 Marks May'22)

## Answer 40

Annual requirement of raw material in kg . $(A)=\frac{60,000 \text { units }}{5 \text { units per } \mathrm{kg}}=12,000 \mathrm{~kg}$.
Ordering Cost (Handling \& freight cost) (O) = ₹ $400+₹ 350=₹ 750$
Carrying cost per unit per annum i.e. inventory carrying cost + working capital cost (c $\times$ i)
$=(₹ 0.25 \times 12$ months $)+₹ 15=₹ 18$ per kg
(i) E.O.Q. $=\sqrt{\frac{2 \times 12,000 \mathrm{kgs} \times ₹ 750}{₹ 18}}=1,000 \mathrm{~kg}$.
(ii) Frequency of orders for procurement:

Annual consumption $(A)=12,000 \mathrm{~kg}$.
Quantity per order $(E O Q)=1,000 \mathrm{~kg}$.
No. of orders per annum
$\left[\frac{A}{E O Q}\right]=\frac{12,000 \mathrm{~kg}}{1,000 \mathrm{~kg}}=12$
Frequency of placing orders (in months) $\frac{12 \text { months }}{12 \text { orders }}=1$ months
Or, $($ in days $)=\frac{360 \text { days }}{12 \text { orders }}=30$ days
(iii) Calculation of total ordering cost and total inventory carrying cost as per EOQ:

|  | Amount/Quantity |
| :--- | ---: |
| Size of the order | $1,000 \mathrm{~kg}$. |
| No. of orders | 12 |
| Cost of placing orders | ₹ 9,000 (12 orders $\times ₹ 750$ ) |
| Inventory carrying cost | $₹ 9,000(1,000 \mathrm{~kg} . \times 1 / 2 \times ₹ 18)$ |
| Total Cost | $₹ 18,000$ |

## Question 41

Write down the treatment of following items associated with purchase of materials.
(i) Cash discount
(ii) IGST
(iii) Demurrage
(iv) Shortage
(v) Basic Custom Duty (PYP 5 Marks May'22)

Answer 41
Treatment of items associated with purchase of materials is tabulated as below

| S. <br> No. | Items | Treatment |
| :--- | :--- | :--- |
| (i) | Cash Discount | Cash discount is not deducted from the purchase price. It is treated <br> as interest and finance charges. It is ignored. |
| 8779794646 |  |  |


| (ii) | Integrated Goods and <br> Service Tax (IGST) | Integrated Goods and Service Tax (IGST) is paid on inter- state <br> supply of goods and provision of services and collected from the <br> buyers. It is excluded from the cost of purchase if credit for the <br> same is available. Unless mentioned specifically it should not form <br> part of cost of purchase. |
| :--- | :--- | :--- |
| (iii) | Demurrage | Demurrage is a penalty imposed by the transporter for delay in <br> uploading or offloading of materials. It is an abnormal cost and not <br> included with cost of purchase |
| (iv) | Shortage | Shortage in materials are treated as follows: <br> Shortage due to normal reasons: Good units absorb the cost of <br> shortage due to normal reasons. Losses due to breaking of bulk, <br> evaporation, or due to any unavoidable conditions etc. are the <br> reasons of normal loss. <br> Shortage due to abnormal reasons: Shortage arises due to abnormal <br> reasons such as material mishandling, pilferage, or due to any <br> avoidable reasons are not absorbed by the good units. Losses due <br> to abnormal reasons are debited to costing profit and loss account. |
| (v) | Basic Custom Duty | Basic Custom duty is paid on import of goods from outside India. It <br> is added with the purchase cost. |

## Question 42

MM Ltd. uses 7500 valves per month which is purchased at a price of ₹ 1.50 per unit. The carrying cost is estimated to be $20 \%$ of average inventory investment on an annual basis. The cost to place an order and getting the delivery is $₹ 15$. It takes a period of 1.5 months to receive a delivery from the date of placing an order and a safety stock of $\mathbf{3 2 0 0}$ valves is desired.

You are required to determine:
(i) The Economic Order Quantity (EOQ) and the frequency of orders.
(ii) The re-order point.
(iii) The Economic Order Quantity (EOQ) if the valve cost ₹ 4.50 each instead of 1.50 each.
(Assume a year consists of 360 days) (PYP 5 Marks Nov 22)

## Answer 42

(i) Calculation of Economic Order Quantity

Annual requirement $(A) \quad=7500 \times 12=90,000$ Valves
Cost per order (O) = ₹ 15
Inventory carrying cost (i) = 20\%
Cost per unit of spare (c) = ₹ 1.5
Carrying cost per unit ( $\mathrm{i} \times \mathrm{c}$ ) $=₹ 1.5 \times 20 \%=₹ 0.30$
Economic Order Quantity (EOQ) $=\sqrt{\frac{2 \times A \times O}{i \times c}}$
$=\sqrt{\frac{2 \times 90,000 \times 15}{0.3}}=3,000$ Valves
Frequency of order or Number of Orders $=90,000 / 3,000=30$ orders.
So Order can be placed in every 12 (360days/30) days
(ii) Re-order Quantity $=\{$ Maximum Consumption X Maximum lead time $\}+$ safety Stock

$$
=\{7500 \times 1.5\}+3200=14,450 \text { Valves }
$$

(iii) Calculation of Economic Order Quantity if valve costs ₹ 4.50

Carrying cost is $20 \%$ of ₹ $4.50=₹ 0.90$

$$
\begin{aligned}
& \text { Economic Order Quantity }(\mathrm{EOQ})=\sqrt{\frac{2 \times A \times O}{i \times c}} \\
& =\sqrt{\frac{2 \times 90,000 \times 15}{0.9}} \\
& =1732.0508 \text { units or } 1733 \text { Valves }
\end{aligned}
$$

## Question 43

Which system of inventory management is known as 'Demand pull' or 'Pull through' system of production? Explain. Also, specify the two principles on which this system is based. (PYP 5 Marks Nov 22)

## Answer 43

Just in Time (JIT) Inventory Management is also known as 'Demand pull' or 'Pull through' system of production. In this system, production process actually starts after the order for the products is received. Based on the demand, production process starts and the requirement for raw materials is sent to the purchase department for purchase.
It is a system of inventory management with an approach to have a zero inventories in stores. According to this approach material should only be purchased when it is actually required for production.

JIT is based on two principles
(i) Produce goods only when it is required and
(ii) the products should be delivered to customers at the time only when they want.

## Question 44

The following information pertains to ZB Limited for the year:

| Profit volume ratio | $30 \%$ |
| :--- | :--- |
| Margin of Safety (as \% of total sales | $25 \%$ |
| Fixed cost | $12,60,000$ |

## You are required to calculate:

(i) Break even sales value (').
(ii) Total sales value (`) at present,
(iii) Proposed sales value (') if company wants to earn the present profit after reduction of $10 \%$ in fixed cost,
(iv) Sales in value (') to be made to earn a profit of $20 \%$ on sales assuming fixed cost remains unchanged,
(v) New Margin of Safety if the sales value at present as computed in (ii) decreased by 12.5\%. (PYP 5 Marks, May '23)

## Answer 44

i) Calculation of Break-even sales in value:
$=$ Fixed Cost $\div \mathrm{P} / \mathrm{V}$ Ratio
$={ }^{`} 12,60,000 \div 30 \%=` 42,00,000$
ii) Calculation of Total Sales value:

Sales value (S) = Break-even Sales + Margin of Safety
Or, $S=42,00,000+0.25 S$
Or, $0.75 \mathrm{~S}=42,00,000$
Or, $S=42,00,000 \div 0.75$
Or, Sales = ` 56,00,000
iii) Calculation of proposed sales value to earn present profit:

Present profit $=$ Sales - Variable cost - Fixed Cost
$=` 56,00,000-70 \%$ of $56,00,000-` 12,60,000$
$=` 56,00,000-` 39,20,000-` 12,60,000$
$=` 4,20,000$
Proposed Sales value $(S)=0.7 S+\left(90 \%\right.$ of $\left.{ }^{\prime} 12,60,000\right)+4,20,000$
$S=0.7 S+11,34,000+4,20,000$
$S=15,54,000 \div 0.3=` 51,80,000$
iv) Calculation of sales value to earn $\mathbf{2 0 \%}$ on sales:

Sales Value $(S)=0.7 S+12,60,000+0.2 S$
$S=12,60,0000 \div 0.10={ }^{`} 1,26,00,000$
v) New Margin of Safety:
$=($ Sales - BES $) \div$ Sales
$=(87.5 \%$ of $56,00,000-42,00,000) \div(87.5 \%$ of $56,00,000)$
$=(49,00,000-42,00,000) \div 49,00,000=7,00,000 \div$
$49,00,000=14.29 \%$
Or

$$
\begin{aligned}
& =(\text { Sales }- \text { BES }) \\
& =(87.5 \% \text { of } 56,00,000-42,00,000) \\
& ={ }^{`} 7,00,000
\end{aligned}
$$

## Question 45

A Limited has furnished the following information for the months from 1st January to 30th April, 2023:

|  | January | February | March | April |
| :--- | :--- | :--- | :--- | :--- |
| Number of Working days | 25 | 24 | 26 | 25 |
| Production (in units) per working day | 50 | 55 | 60 | 52 |
| Raw Material Purchases (\% by weights <br> to total of 4 months) | $21 \%$ | $26 \%$ | $30 \%$ | $23 \%$ |
| Purchase price of raw material (per kg) | `10 & \(` 12\) | ${f4fef4ab1-96c0-4d5f-932d-21cfa892c2de} 11$ |  |  |

Quantity of raw material per unit of product: 4 kg .
Opening stock of raw material on 1stJanuary: $6,020 \mathrm{~kg}$. (Cost ` 63,210 )
Closing stock of raw material on 30thApril: 5,100 kg.
All the purchases of material are made at the start of each month.

## Required:

(i) Calculate the consumption of raw materials (in kgs) month-by- month and in total.
(ii) Calculate the month-wise quantity and value of raw materials purchased.
(iii) Prepare the priced stores ledger for each month using the FIFO method. (PYP 10 Marks, May '23)

## Answer 45

i) Calculation of consumption of Raw Material (in kgs) month by month and total

| Particulars | Jan | Feb | March | April | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. of working days | 25 | 24 | 26 | 25 | - |
| Production (Per day) | 50 | 55 | 60 | 52 | - |
| Production | 1,250 | 1,320 | 1,560 | 1,300 | 5,430 |
| Raw Material Consumed (in kgs) | 5,000 | 5,280 | 6,240 | 5,200 | 21,720 |

Calculation of Raw Material Purchased

| Purchased | $(\mathbf{K g})$ |
| :--- | :--- |
| Closing stock on 30th April | 5,100 |
| Add: Raw Material consumed | 21,720 |
| Less: Opening stock on 1st January | $(6,020)$ |
| Raw Material purchased | 20,800 |

ii) Calculation of month wise quantity and value of raw material purchased

|  | $\%$ | Purchased (Kg) | Price (`) & Value (`) |  |
| :--- | :--- | :--- | :--- | :--- |
| January | 21 | 4,368 | 10 | 43,680 |
| February | 26 | 5,408 | 12 | 64,896 |
| March | 30 | 6,240 | 13 | 81,120 |
| April | 23 | 4,784 | 11 | 52,624 |
| Total |  | 20,800 |  | $2,42,320$ |

iii) Store Price Ledger by using FIFO method.

| Months | Particulars | Receipts |  |  | $\begin{array}{\|l\|} \hline \text { Issue } \\ \hline \text { Qty } \end{array}$ | Rate | Amount () | Balance Qty | Rate | Amount () |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Qty | Rate | Amount () |  |  |  |  |  |  |
| Jan | Opening |  |  |  |  |  |  | 6,020 | 10.5 | 63,210 |
|  | Purchases | 4,368 | 10 | 43,680 |  |  |  | 6,020 | 10.5 | 63,210 |
|  | Consumption |  |  |  |  |  |  | 4,368 | 10 | 43,680 |
|  |  |  |  |  | 5,000 | 10.5 | 52,500 | 1,020 | 10.5 | 10,710 |
|  |  |  |  |  |  |  |  | 4,368 | 10 | 43,680 |
| Feb | Purchases | 5,408 | 12 | 64,896 |  |  |  | 1,020 | 10.5 | 10,710 |
|  |  |  |  |  |  |  |  | 4,368 | 10 | 43,680 |
| March | Consumption <br> Purchase | 6,240 | 13 | 81,120 |  |  |  | 5,408 | 12 | 64,896 |
|  |  |  |  |  | 1,020 | 10.5 | 10,710 | 108 | 10 | 1,080 |
|  |  |  |  |  | 4,260 | 10 | 42,600 | 5,408 | 12 | 64,896 |
|  |  |  |  |  |  |  |  | 108 | 10 | 1,080 |
|  |  |  |  |  |  |  |  | 5,408 | 12 | 64,896 |
| April | Consumption | 4,784 | 11 |  |  |  |  | 6,240 | 13 | 81,120 |
|  |  |  |  |  | 108 | 10 | 1,080 |  |  |  |
|  |  |  |  |  | 5,408 | 12 | 64,896 |  |  |  |
|  |  |  |  |  | 724 | 13 | 9,412 | 5,516 | 13 | 71,708 |
|  | Purchases |  |  | 52,624 |  |  |  | 5,516 | 13 | 71,708 |


| Consumption | $\square$ |  |  |  |  |  | 4,784 | 11 | 52,624 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 5,200 | 13 | 67,600 | 316 | 13 | 4,108 |
|  |  |  |  |  |  |  | 4,784 | 11 | 52,624 |
|  |  |  |  |  |  |  |  |  | 56,732 |

## Chapter 3 <br> Employee Cost and Direct Expenses

## Question 1

$A, B$ and $C$ are three industrial workers working in Sports industry and are experts in making cricket pads. A, B and C are working in Mahi Sports, Virat Sports and Sikhar Sports companies respectively. Workers are paid under different incentive schemes. Company wise incentive schemes are as follows:

| Company | Incentive scheme |
| :--- | :--- |
| Mahi Sports | Emerson's efficiency system |
| Virat Sports | Merrick differential piece rate system |
| Sikhar Sports | Taylor's differential piece work system |

The relevant information for the industry is as under:

Standard working hours
Standard output per hour (in units)
Daily wages rate
No. of working days in a week

8 hours a day
2
Rs. 360
6 days

Actual outputs for the week are as follows:

| A | B | C |
| :--- | :--- | :--- |
| 132 units | 108 units | 96 units |

You are required to calculate effective wages rate and weekly earnings of all the three workers. (MTP March '19, 10 Marks)

## Answer 1

Calculation of effective wages rate and weekly earnings of the workers A, B and C

| Workers | A | B [1] [ | C $\mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| Standard Output | 96 units | 96 units | 96 units |
|  | ( 8 hrs. $\times 2$ units $\times 6$ days) | (8 hrs. $\times 2$ units $\times$ 6 days) | $\begin{aligned} & \text { (8 hrs. } \times 2 \text { units } \times 6 \\ & \text { days) } \end{aligned}$ |
| Actual Output | 132 units | 108 units | 96 units |
| Efficiency (\%) | $\begin{aligned} & \frac{132 \text { Units }}{96 \text { Units }} \\ & \times 100=137.5 \end{aligned}$ | $\begin{array}{r} \frac{108 \text { Untis }}{96 \text { Units }} \\ \times 100=112.5 \end{array}$ | $\frac{96 \text { Units }}{96 \text { Units }} \times 100=100$ |
| Daily wages Rate | Rs. 360 | Rs. 360 | Rs. 360 |
| Incentive system | Emerson's Efficiency System | Merrick differential piece rate system | Taylor's differential piece work system |
| Rate of Bonus | 57.5\% of time rate $(20 \%+37.5 \%)$ | $20 \%$ of ordinary piece rate | 25\% of ordinary piece rate |
| Effective Wage Rate | Rs. 70.875 per hour | Rs. 27 per piece | Rs. 28.125 per piece |
|  | $\left(\frac{\text { Rs. } 360}{8 \text { Hours }} 157.5 \%\right)$ | $\left(\frac{\text { Rs. } 360}{16 \text { Units }} 120 \%\right)$ | $\left(\frac{\text { Rs. } 360}{16 \text { Units }} 125 \%\right)$ |
| Total weekly earnings | Rs. 3,402 | Rs. 2,916 | Rs. 2,700 |


|  | (8 hours $\times 6$ days $\times$ <br> Rs.70.875) | $(108$ units $\times$ Rs. 27) | $(96$ units $\times$ Rs. <br> $28.125)$ |
| :--- | :--- | :--- | :--- |

## Question 2

Discuss the accounting treatment of Idle time and overtime wages. (MTP May'20, April '19, 5 Marks, RTP May'19, Old \& New SM)

## Answer 2

Accounting treatment of idle time wages $\&$ overtime wages in cost accounts: Normal idle time is treated as a part of the cost of production. Thus, in the case of direct workers, an allowance for normal idle time is built into the labour cos $t$ rates. In the case of indirect workers, normal idle time is spread over all the products or jobs through the process of absorption of factory overheads.

## Under Cost Accounting, the overtime premium is treated as follows:

If overtime is resorted to at the desire of the customer, then the overtime premium may be charged to the job directly.
If overtime is required to cope with general production program or for meeting urgent orders, the overtime premium should be treated as overhead cost of particular depart ment or cost center which works overtime.

Overtime worked on account of abnormal conditions should be charged to costing Profit \& Loss Account. If overtime is worked in a department due to the fault of another department the overtime premium should be charged to the latter department.

## OR

Normal idle time: It is the time which cannot be avoided or reduced in the normal course of business. It is treated as a part of cost of production. Thus, in the case of direct workers an allowance for normal idle time is considered setting of standard hours or standard rate.

In case of indirect workers, normal idle time is considered for the computation of overhead rate.
Abnormal idle time: Apart from normal idle time, there may be factors which give riseto abnormal idle time. Abnormal idle time cost is not included as a part of production cost and is shown as a separate item in the Costing Profit and Loss Account. The cost of abnormal idle time should befurther categorized into controllable and uncontrollable. For each category, the break-up of cost due to various factors should be separately shown. This would help the management in fixing responsibility for controlling idle time. Management should aim at eliminating controllable idle time and on a long- term basis reducing even the normal idle time. This would require a detailed analysis of the causes leading to suchidle time.

Causes of Overtime and Treatment of Overtime premium in cost accounting

| Causes | Treatment |
| :---: | :---: |
| (1) The customer may agree to bearthe entire <br> charge of overtimebecause urgency of <br> work. | (1) If overtime is resorted to at thedesire of the <br> customer, then overtime premium may be <br> chargedto the job directly. |
| (2) Overtime may be called for to make up <br> any shortfall inproduction due to some <br> unexpected development. | (2) If overtime is required to cope with general <br> production programmes orfor meeting urgent <br> orders, the overtime premium should be <br> treated as overhead cost of the particular <br> department or cost centre which works <br> overtime. |
| (3) Overtime work may be necessary to <br> make up shortfallin production due to <br> some faultof management. | (3) If overtime is worked in adepartment due to the <br> fault of another department, the overtime <br> premium should be charged to the latter <br> department. |

(4) Overtime work may be resorted to, to secure an out-turn in excess of the normal output to take advantage of an expandingmarket or of rising demand
(4) Overtime worked on account of abnormal conditions such as flood, earthquake etc., should not be charged to cost, but to Costing Profit and Loss Account.

## Question 3

Anirban Ltd. wants to ascertain the profit lost during the year 20X8-X9 due to increased labour turnover. For this purpose, they have given you the following information
(1) Training period of the new recruits is 50,000 hours. During this period their productivity is 60\% of the experienced workers. Time required by an experienced worker is $\mathbf{1 0}$ hours per unit.
(2) $20 \%$ of the output during training period was defective. Cost of rectification of a defective unit was Rs. 25.
(3) Potential productive hours lost due to delay in recruitment were 1,00,000 hours.
(4) Selling price per unit is Rs. 180 and $P / V$ ratio is $20 \%$.
(5) Settlement cost of the workers leaving the organization was Rs.1,83,480.
(6) Recruitment cost was Rs.1,56,340
(7) Training cost was Rs.1,13,180.

You are required to CALCULATE the profit lost by the company due to increased labour turnover during the year 20X8-X9. (MTP 5 Marks ,April '19 \& Sep '23 , RTP May '18)
Answer 3
Output by experienced workers in 50,000 hours $=50,000 / 10=5,000$ units
Output by new recruits $=60 \%$ of $5,000=3,000$ units
Less of output $=5,000-3,000=2,000$ units
Total loss of output $=10,000+2,000=12,000$ units
Contribution per unit $=20 \%$ of $180=$ Rs. 36
Total contribution cost $=36 \times 12,000=$ Rs. 4,32,000
Cost of repairing defective units $=3,000 \times 0.2 \times 25=$ Rs. 15,000
Profit forgone due to labour turnover

|  | (Rs.) |
| :--- | ---: |
| Loss of Contribution | $4,32,000$ |
| Cost of repairing defective units | 15,000 |
| Recruitment cost | $1,56,340$ |
| Training cost | $1,13,180$ |
| Settlement cost of workers leaving | $1,83,480$ |
| Profit forgone in 20X8-X9 | $9,00,000$ |

## Question 4

Two workers ' $A$ ' and ' $B$ ' produce the same product using the same material. Their normal wage rate is also the same. ' $A$ ' is paid bonus according to Rowan scheme while ' $B$ ' is paid bonus according to Halsey scheme. The time allowed to make the product is 120 hours. ' $A$ ' takes 90 hours while ' $B$ ' takes 100 hours to complete the product. The factory overhead rate is Rs. 50 per hour actually worked. The factory cost of product manufactured by ' $A$ ' is Rs. 80,200 and for product manufactured by ' $B$ ' is Rs. 79,400.

## Required:

(i) COMPUTE the normal rate of wages.
(ii) CALCULATE the material cost.
(iii) PREPARE a statement comparing the factory cost of the product as made by two workers. (MTP March '18, 5 Marks) (Same concept different figures Old \& New SM)

## Answer 4

Let $x$ be the cost of material and $y$ be the normal rate of wage/hour

|  | Worker A (Rs. ) | Worker B (Rs.) |
| :--- | :--- | :--- |
| Material cost | x | x |
| Labour wages | 90 y | 100 y |
| Bonus | Rowan system | Halsey system |

$\frac{\text { Time Saved }}{\text { Time allowed }} \times$ hour worked $\times$ rate $\quad$ Hours Saved
$\times 50 \% \times$ rate

| Overheads | $\begin{aligned} & \frac{30}{120} \times 90 \times Y=22.5 y \\ & 90 \times \text { Rs. } 50=4,500 \end{aligned}$ | $\begin{aligned} & 20 \times \frac{1}{2} \times y=10 y \\ & 100 \times \text { Rs. } 50=5,000 \end{aligned}$ |
| :---: | :---: | :---: |
| Factory cost | $\begin{align*} & x+112.5 y+4,500=80,200 \\ & \therefore x+112.5 y=75,700 \tag{1} \end{align*}$ | $\begin{aligned} & x+110 y+5,000= \\ & 79,400 \\ & \therefore x+110 y= \\ & 74,400 \ldots .(2) \end{aligned}$ |

Solving (1) and (2) we get $x=$ Rs. 17,200 and $y=$ Rs. 520


## Question 5

Corrs Consultancy Ltd. is engaged in BPO industry. One of its trainee executives in the Personnel department has calculated labour turnover rate $\mathbf{2 4 . 9 2 \%}$ for the last year using Flux method.

Following is the some data provided by the Personnel department for the last year:

| Employees | At the beginning | Joined | Left | At the end |
| :--- | :---: | :---: | :---: | :---: |
| Data <br> Processors | 540 | 1,080 | 60 | 1,560 |
| Payroll <br> Processors | $?$ | 20 | 60 | 40 |
| Supervisors | $?$ | 60 | --- | $?$ |
| Voice Agents | $?$ | 20 | 20 | $?$ |
| Assistant <br> Managers | $?$ | -- | 30 |  |


| Senior Voice Agents | 4 | --- | --- | 12 |
| :---: | :---: | :---: | :---: | :---: |
| Senior Data Processors | 8 | --- | --- | 34 |
| Team Leaders | ? | --- | --- | ? |
| Employees transferred from the Subsidiary Company |  |  |  |  |
| Senior Voice Agents | --- | 8 | --- | --- |
| Senior Data Processors | --- | 26 | --- | --- |
| Employees transferred to the Subsidiary Company |  |  |  |  |
| Team Leaders | --- | --- | 60 | --- |
| Assistant Managers | - | --- | 10 | --- |

At the beginning of the year there were total 772 employees on the payroll of the company. The opening strength of the Supervisors, Voice Agents and Assistant Managers were in the ratio of 3 : 3 : 2. The company has decided to abandon the post of Team Leaders and consequently all the Team Leaders were transferred to the subsidiary company.

The company and its subsidiary are maintaining separate set of books of account and separate Personnel Department.
You are required to CALCULATE:
(a) Labour Turnover rate using Replacement method and Separation method.
(b) Verify the Labour turnover rate calculated under Flux method by the trainee executive of the Corrs Consultancy Ltd. (MTP Aug '18, 10 Marks)

## Answer 5

## Working Notes:

(i) Calculation of no. of employees at the beginning and end of the year

|  | At the Beginning <br> of the year | At the end <br> of the year |
| :--- | :---: | :---: |
| Data Processors | 540 | 1,560 |
| Payroll Processors [Left- 60 + Closing- 40 - <br> Joined- 20] | 80 | 40 |
| Supervisors* | 30 | 90 |
| Voice Agents* | 30 | 30 |
| Assistant Managers* | 20 | 30 |
| Senior Voice Agents | 4 | 12 |
| Senior Data Processors | 8 | 34 |
| Team Leaders | $\mathbf{7 7 2}$ | 0 |
| Total |  | $\mathbf{1 , 7 9 6}$ |

(*) At the beginning of the year:
Strength of Supervisors, Voice Agents and Asst.Managers =
[772-\{540 + 80 + 4 + 8 + 60\} employees] or [772-692 = 80 employees]

$$
\begin{aligned}
{[\{\text { Supervisors }} & -80 \times \frac{3}{8}=30, \text { Voice Agents }-80 \times \frac{3}{8}=30 \& \text { Asst. Managers }-80 \times \frac{2}{8} \\
& =20\} \text { employees }]
\end{aligned}
$$

## At the end of the year :

[Supervisor-(Opening- $30+60$ Joining) $=90$; Voice Agents- (Opening- $30+20$ Joined -20 Left) = 30]
(ii) No. of Employees Separated, Replaced and newly recruited during the year

| Particulars | Separations | New <br> Recruitment | Replacement | Total Joining |
| :---: | :---: | :---: | :---: | :---: |
| Data <br> Processors | 60 | 1,020 | 60 | 1,080 |
| Payroll <br> Processors | 60 | -- | 20 | 20 |
| Supervisors | -- | 60 | -- | 60 |
| Voice Agents | 20 | -- | 20 | 20 |
| Assistant Managers | 10 | 10 | 10 | 20 |
| Sr. Voice <br> Agents | -- | 8 | -- | 8 |
| Sr. Data Processors | -- | 26 | -- | 26 |
| Team Leaders | 60 | -- | -- | -- |
| Total | 210 | 1,124 | 110 | 1,234 |

(Since, Corrs Consultancy Ltd. and its subsidiary are maintaining separate Personnel Department, so transfer-in and transfer -out are treated as recruitment and separation respectively.)
(a) Calculation of Labour Turnover:

Replacement Method $=\frac{\text { No.of employees replace During the year }}{\text { Average no.of employees onroll }} \times 100$

$$
\frac{110}{(772+1,796) / 2} \times 100=\frac{100}{1,284} \times 100=8.57 \%
$$

Separation Method $=\frac{\text { No.of employees separate during the year }}{\text { Average no.of employees onroll }} \times 100$
$=\frac{210}{1,284} \times 100=16.36 \%$
(b) Labour Turnover under Flux Method
$=\frac{\text { No.of employees }(\text { Joined Separated }) \text { during the year }}{\text { Average no.of employees onr }} \times 10$
$=\frac{\text { No.of employees (Re Placed New recruited Separated )during the year }}{\text { Average no.of employees onroll }} \times 100$
$\frac{1,234+210}{1,284} \times 10=112.46 \%$
Labour Turnover calculated by the executive trainee of the Personnel department is incorrect as it has not taken the No. of new recruitment while calculating the labour turnover under Flux method.

## Question 6

Discuss the remedial steps to be taken to minimize the labour turnover. (MTP Oct'19, 5 Marks)

## Answer 6

The following steps are useful for minimizing labour turnover:
(a) Exit interview: An interview to be arranged with each outgoing employee to ascertain the reasons of his leaving the organization.
(b) Job analysis and evaluation: to ascertain the requirement of each job.
(c) Organization should make use of a scientific system of recruitment, placement and promotion for
employees.
(d) Organization should create healthy atmosphere, providing education, medical and housing facilities for workers.
(e) Committee for settling workers grievances.

## Question 7

RST Company Ltd. has computed labour turnover rates for the quarter ended 31st March, 2017 as $\mathbf{2 0 \%}, \mathbf{1 0 \%}$ and 5\% under flux method, replacement method and separation method respectively. If the number of workers replaced during that quarter is 50 .

## Calculate:

(i) Workers recruited and joined
(ii) Workers left and discharged and
(iii) Average number of workers on roll. (MTP Oct'18, 5 Marks) (Same concept different figures MTP 5 Marks Mar'21, MTP 5 Marks Oct'22)

## Answer 7

Labour Turnover Rate (Replacement Method) $=\frac{\text { No.of Workers replaced }}{\text { Average no.of workers }} \times 100$
Or, $\frac{10}{100}=\frac{50}{\text { Average no.of workers }}$
Thus, Average No. of workers $=500$
Labour Turnover Rate (Separation Method) $=\frac{\text { No.of workers replaced }}{\text { Average no.of workers }} \times 100$
Or, $\frac{5}{100}=\frac{\text { Number of workers separated }}{50}$
Thus, No. of workers separated $=25$
Labour Turnover Rate (Flux Method)
$=\frac{\text { No.of Separations }+ \text { No.of Accession (Joinings) }}{\text { Average no.of workers }} \times 100$
Or, $=\frac{20}{100}=\frac{25+\text { No.of accessions }(\text { joinings })}{500}$
Or, 100(25+No.of Accessions) $=10,000$
Or, 25+No. of Accessions = 100
Thus, No. of Accessions $=100-25=75$
Accordingly,
(i) Workers recruited and Joined $=75$
(ii) Workers left and discharged = 25
(iii) Average number of workers on roll $=500$

## Question 8

A company is undecided as to what kind of wage scheme should be introduced. The following particulars have been compiled in respect of three workers, which are under consideration of the management.

|  | I | II | III |
| :--- | ---: | ---: | ---: |
| Actual hours worked | $\mathbf{3 8 0}$ | $\mathbf{1 0 0}$ | 540 |
| Hourly rate of wages (in Rs.) | $\mathbf{4 0}$ | 50 | 60 |
| Productions in units: |  |  |  |
| - Product A | $\mathbf{2 1 0}$ | - | 600 |
| - Product B | 360 | - | 1350 |
| - Product C | 460 | 250 | - |
| Standard time allowed per unit of each product is: |  |  |  |


|  | A | B | C |
| :--- | :---: | :---: | :---: |
| Minutes | 15 | 20 | 30 |

For the purpose of piece rate, each minute is valued at Rs. 1/- You are required to COMPUTE the wages of each worker under:
(i) Guaranteed hourly rate basis.
(ii) Piece work earning basis, but guaranteed at $75 \%$ of basic pay (Guaranteed hourly rate if his earnings are less than $50 \%$ of basic pay.)
(iii) Premium bonus basis where the worker received bonus based on Rowan scheme. (MTP 5 Marks May '20, RTP May'19)(Same concept different figures MTP 5 Marks Nov'21)

## Answer 8

(i) Computation of Wages of Each Worker Under Guaranteed Hourly Rate Basis

| Worker | Actual hours worked <br> (Hours) | Hourly wage rate (Rs.) | Wages (Rs.) |
| :---: | :---: | :---: | :---: |
| I | 380 | 40 | 15,200 |
| II | 100 | 50 | 5,000 |
| III | 540 | 60 | 32,400 |

(ii) Computation of Wages of each worker under piece work earning basis

| Product | Piece rate <br> per unit <br> (Rs.) | Worker-I |  | Worker-II |  | Worker-III |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Units | Wages <br> (Rs.) | Units | Wages <br> (Rs.) | Units | Wages <br> (Rs.) |  |
| A | 15 | 210 | 3,150 | - | - | 600 | 9,000 |
| B | 20 | 360 | 7,200 | - | - | 1,350 | 27,000 |
| C | 30 | 460 | 13,800 | 250 | 7,500 | - | - |
| Total |  |  | 24,150 |  | 7,500 |  | 36,000 |

Since each worker's earnings are more than $50 \%$ of basic pay. Therefore, worker -I, II and III will be paid the wages as computed i.e. Rs. 24,150 , Rs. 7,500 and Rs. 36,000 respectively.

## Working Note:

a. Piece rate per unit

| Product | Standard time per <br> unit in minute | Piece rate each <br> minute (Rs.) | Piece rate per unit <br> (Rs.) |
| :---: | :---: | :---: | :---: |
| A | 15 | 1 | 15 |
| B | 20 | 1 | 20 |
| C | 30 | 1 | 30 |

(ii) Computation of wages of each worker under Premium bonus basis (where each worker receives bonus based on Rowan Scheme

| Worker | Time <br> Allowed <br> (Hr.) | Time <br> Taken <br> (Hr.) | Time <br> saved <br> (Hr.) | Wage <br> Rate per <br> hour (Rs.) | Earnings <br> (Rs.) | Bonus <br> (Rs.)* | Total <br> Earning <br> (Rs.) |
| :---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| I | 402.5 | 380 | 22.5 | 40 | 15,200 | 850 | 16,050 |
| II | 125 | 100 | 25 | 50 | 5,000 | 1,000 | 6,000 |
| III | 600 | 540 | 60 | 60 | 32,400 | 3,240 | 35,640 |

## Working Note:

1. Time allowed to each worker

| Worker | Product-A | Product-B | Product-C | Total Time (Hours) |
| :---: | :---: | :---: | :---: | :---: |
| I | 210 units $\times 15$ | 360 units $\times 20$ | 460 units $\times 30$ | $24,150 / 60$ |
|  | $=3,150$ | $=7,200$ | $=13,800$ | $=402.50$ |
| II | - | - | 250 units $\times 30$ | $7,500 / 60$ |


|  |  |  | $=7,500$ | $=125$ |
| :---: | :---: | :---: | :---: | :---: |
| III | 600 units $\times 15$ | 1,350 units $\times 20$ | - | $36,000 / 60$ |
|  | $=9,000$ | $=27,000$ |  | $=600$ |

Time Taken / Time Allowed X Time Saved $\times$ Wage Rate

$$
\begin{aligned}
& \text { Worker-I }=\frac{380}{402.5} \times 22.5 \times 40=850 \\
& \text { Worker-II }=\frac{100}{125} \times 25 \times 50=1,000 \\
& \text { Worker-III }=\frac{540}{600} \times 60 \times 60=3,240
\end{aligned}
$$

## Question 9

In a factory, the basic wage rate is Rs. $\mathbf{3 0 0}$ per hour and overtime rates are as follows:

| Before and after normal working hours | $180 \%$ of basic wage rate |
| :---: | :---: |
| Sundays and holidays | $230 \%$ of basic wage rate |
| During the previous year, the following hours were worked |  |
| - Normal time | $1,00,000$ hours |
| - Overtime before and after working hours | 20,000 hours |
| Overtime on Sundays and holidays | $\underline{5,000}$ hours |
| Total | $\underline{1,25,000}$ hours |

The following hours have been worked on job ' $A$ '

|  | Normal | 1,000 hours |
| :---: | :---: | ---: |
|  | Overtime before and after working hrs. | $\mathbf{1 0 0}$ hours. |
|  | Sundays and holidays | $\mathbf{2 5}$ hours. |
|  | Total | 1,125 hours |

You are required to CALCULATE the labour cost chargeable to job ' $A$ ' and overhead in each of the following instances:
(i) Where overtime is worked regularly throughout the year as a policy due to the workers' shortage.
(ii) Where overtime is worked irregularly to meet the requirements of production.
(iii) Where overtime is worked at the request of the customer to expedite the job. (MTP 10 Marks, Oct.'20) (Same concept different figures RTP Nov'21, Old \& New SM)

## Answer 9

Workings Basic wage rate:300 per hour Overtime wage rate before and after working hours : $300 \times$ $180 \%=540$ per hour Overtime wage rate for Sundays and holidays: Rs. $300 \times 230 \%=690$ per hour

Computation of average inflated wage rate (including overtime premium):

| Particulars | Amount (Rs.) |
| :--- | ---: |
| Annual wages for the previous year for normal time (1,00,000 hrs. $\times$ Rs. 300) | $3,00,00,000$ |
| Wages for overtime before and after working hours (20,000 hrs. $\times$ Rs. 540) | $1,08,00,000$ |
| Wages for overtime on Sundays and holidays (5,000 hrs. $\times$ Rs. 690) | $34,50,000$ |
| Total wages for 1,25,000 hrs. | $\mathbf{4 , 4 2 , 5 0 , 0 0 0}$ |

(i) Where overtime is worked regularly as a policy due to workers' shortage:

The overtime premium is treated as a part of employee cost and job is charged at an inflated wage
rate. Hence, employee cost chargeable to job ' A '
$=$ Total hours $\times$ Inflated wage rate $=1,125 \mathrm{hrs} . \times$ Rs. $354=$ Rs. 3,98,250
(ii) Where overtime is worked irregularly to meet the requirements of production:

Basic wage rate is charged to the job and overtime premium is charged to factory overheads as under:
Employee cost chargeable to Job ' $A$ ': 1,125 hours @ Rs. 300 per hour = Rs.3,37,500 Factory overhead:
$\{100 \mathrm{hrs} . \times$ Rs. $(540-300)\}+\{25 \mathrm{hrs} . \times$ Rs. $(690-300)\}$
$=\{$ Rs. $24,000+$ Rs. 9,750$\}=$ Rs. 33,750
(iii) Where overtime is worked at the request of the customer, overtime premium is also charged to the job as under:

| Job'A'Employee cost | 1,125 hrs. @ Rs. 300 | $=$ | $3,37,500$ |
| :--- | ---: | ---: | ---: |
| Overtime premium | 100 hrs. @ Rs. $(540-300)$ | $=$ | 24,000 |
|  | $25 \mathrm{hrs}$. @ Rs. $(690-300)$ | $=$ | $\underline{9,750}$ |
| Total |  |  | $\mathbf{3 , 7 1 , 2 5 0}$ |

## Question 10

From the following information, CALCULATE employee turnover rate using - (i) Separation Method, (ii) Replacement Method, (iii) New Recruitment Method, and (iv) Flux Method:

No. of workers as on $01.04 .2020=3,800$ No. of workers as on 31.03.2021 $=\mathbf{4 , 2 0 0}$
During the year, 40 workers left while 160 workers were discharged and 600 workers were recruited during the year; of these, 150 workers were recruited because of exits and the rest were recruited in accordance with expansion plans. (MTP 5 Marks, Apr'21, RTP May 23) (Same concept but different figures as RTP May'20, PYP 10 Marks May'18)

## Answer 10

(i) Separation Method:

$$
\begin{aligned}
& \text { no. of workers left }+ \text { no. of workers discharge } \\
& \text { average no. of workers }
\end{aligned} 100
$$

(ii) Replacement method

$$
\frac{\text { no.of workers replced }}{\text { average no.of workers }} * 100=\frac{150}{4000} * 100=3.75 \%
$$

(iii) New recruitment method

$$
\begin{gathered}
\frac{\text { no.of workers newly recruted }}{\text { average no. of workers }} * 100 \\
\frac{\text { no. of recrutments }- \text { no. of replacement }}{\text { average no. of workers }} * 100 \\
\frac{600-150}{4000} * 100=\frac{450}{4000} * 100=11.25 \%
\end{gathered}
$$

(iv) Flux method:

$$
\begin{aligned}
& \frac{\text { no. of seperation }+ \text { no. of accession }}{\text { average no. of workers }} * 100 \\
& \frac{(200+600)}{(3800+4200) / 2} * 100=\frac{800}{4000} * 100=20 \%
\end{aligned}
$$

3.11

## Question 11

ABC Ltd. has its factory at two locations viz Noida and Patparganj. Rowan plan is used at Noida factory and Halsey plan at Patparganj factory.

Standard time and basic rate of wages are same for a job which is similar and is carried out on similar machinery. Normal working hours is 9 hours per day in a 5 day week.

Job at Noida factory is completed in 36 hours while at Patparganj factory it has taken 33 hours 45 minutes. Conversion costs at Noida and Patparganj are Rs. 6,084 and Rs. 5,569 respectively. Overheads account for Rs. 25 per hour. (MTP 10 Marks, Oct'21, PYP Nov'19 10 Marks)

## REQUIRED:

(i) To find out the normal wage; and
(ii) To compare the respective conversion costs.

## Answer 11

| Particulars | Noida | Patparganj |
| :--- | :---: | :---: |
| Hours worked | 36 hr. | 33.75 hr. |
| Conversion Costs | Rs. 6,084 | Rs. 5,569 |
| Less: Overheads | Rs. 900 <br> (Rs. $25 \times 36 \mathrm{hr}$. ) | Rs.Rs.844 <br> (Rs. $25 \times 33.75 \mathrm{hr}$.) |
| Labour Cost | Rs.5,184 | Rs.Rs.4,725 |

(i) Finding of Normal wage rate:

Let Wage rate be Rs. R per hour, this is same for both the Noida and Patparganj factory.
Normal wage rate can be found out taking total cost of either factory.
Noida: Rowan Plan
Total Labour Cost $=$ Wages for hours worked + Bonus as per Rowan plan
Rs. 5184 = hours worked $\quad *$ rate per hour $+\left(\frac{\text { Time saved }}{\text { Time allowed }} *\right.$ Hours worked $*$ Rate per hour $)$
Or, Rs. 5184 $=$ Hours worked * Rate per hour $+\left(\frac{45-36}{45} * 36 * R\right)$
Or, Rs. $5184=36 R+7.2 R$
$R=120$
Normal wage $=36$ hours * Rs. $120=$ Rs. 4,320
OR

## Patparganj: Halsey Plan

Total Labour Cost $=$ Wages for hours worked + Bonus as per Halsey plan

| Rs. 4,725 | $=$ Hours worked $\times$ Rate per hour $+(50 \% \times$ Hours saved $\times$ Rate per hour $)$ |
| :--- | :--- |
| Rs. 4,725 | $=33.75 \mathrm{hr} . \times \mathrm{R}+50 \% \times(45 \mathrm{hr} .-33.75 \mathrm{hr}) \times R$. |
| Rs. 4,725 | $=39.375 \mathrm{R}$ |
|  | R $=$ Rs. 120 |
| Normal Wage | $=33.75 \mathrm{hrs} \times$ Rs. $120=$ Rs. 4,050 |

(ii) Comparison of conversion costs:

| Particulars | Noida (Rs.) | Patparganj (Rs.) |
| :--- | :---: | :---: |
| Normal Wages $(36 \times 120)$ | 4,320 |  |
| $(33.75 \times 120)$ |  | 4,050 |
| Bonus $(7.2 \times 120)$ | 864 | 675 |
| $(5.625 \times 120)$ |  |  |


| Overhead | 900 | 844 |
| :---: | :---: | :---: |
|  | 6,084 | 5,569 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question relating to the topic 'Employee Cost'. The question comprised of two parts viz. (i) to find out normal wage rate using Rowan / Halsey plan and (ii) to compare the respective conversion costs. Very well answered by some of the examinees and these examinees have obtained full marks. Overall performance of the examinees in this question was average.

## Question 12

The standard time allowed for a certain piece of work is $\mathbf{2 4 0}$ hours. Normal wage rate is ₹ $\mathbf{7 5}$ per hour.

The bonus system applicable to the work is as follows:

| Percentage of time saved to time allowed (slab <br> rate) | Bonus |
| :--- | :--- |
| (i) Up to the first $20 \%$ of time allowed | $\mathbf{2 5 \%}$ of the corresponding saving in time. |
| (ii) For and within the next $30 \%$ of time allowed | $\mathbf{4 0 \%}$ of the corresponding saving in time. |
| (iii) For and within the next $30 \%$ of time allowed | $\mathbf{3 0 \%}$ of the corresponding saving in time. |
| (iv) For and within the next $\mathbf{2 0 \%}$ of time allowed | $\mathbf{1 0 \%}$ of the corresponding saving in time. |

CALCULATE the total earnings of a worker over the piece of work and his earnings per hour when he takes-
(a) 256 hours,
(b) 120 hours, and
(c) 24 hours respectively. (MTP 10 Marks March '22)

## Answer 12

Calculation of total earnings and earnings per hour:

|  | Particulars | (a) Time taken is <br> $\mathbf{2 5 6}$ hours | (b) Time taken is <br> $\mathbf{1 2 0}$ hours | (c) Time taken is <br> $\mathbf{2 4}$ hours |
| :--- | :--- | ---: | ---: | ---: |
| A. | Time Allowed | 240 hours | 240 hours | 240 hours |
| B. | Time taken | 256 hours | 120 hours | 24 hours |
| C. | Time Saved (A-B) | Nil | 120 hours | 216 hours |
| D. | Bonus hours (Refer <br> workings) | 40.80 hours | 64.80 hours |  |
| E. | Hours to be paid (B+D) | 256 hours | 160.80 hours | 88.80 hours |
| F. | Wages rate per hour | ₹ 75 | ₹ 75 | ₹ 75 |
| G. | Total earnings (E×F) | $₹ 19,200$ | $₹ 12,060$ | $₹ 6,660$ |
| H. | Earnings per hour (G $\div$ B) | $₹ 75$ | $₹ 100.50$ | $₹ 277.50$ |

## Working Notes:

Calculation of bonus hours:

|  | Time saved 120 <br> hours | Time saved 216 hours |
| :--- | :---: | :---: |
| For first 20\% of time allowed i.e. 48 hours | 12 <br> (25\% of 48 hours) | 12 <br> (25\% of 48 hours) |
| For next 30\% of time allowed i..e. 72 hours | 28.80 <br> (40\% of 72 hours) | 28.80 <br> (40\% of 72 hours) |
| For next 30\% of time allowed i..e. 72 hours | - | 21.60 |


|  |  | (30\% of 72 hours) |
| :--- | :---: | :---: |
| For next 20\% of time allowed i..e. 48 hours | - | 2.40 <br> $(10 \%$ of 24 hours) |
| Bonus hours | 40.80 | 64.80 |

## Question 13

R Ltd. is facing increasing employee turnover in the factory and before analyzing the causes and taking remedial steps; the management wants to have an idea of the profit foregone as a result of employee turnover in the last year. Last year sales amounted to ₹ $99,63,960$ and $P / V$ ratio was $20 \%$.
The total number of actual hours worked by the direct employee force was 5.34 lakhs. The actual direct employee hours included 36,000 hours attributable to training new recruits, out of which half of the hours were unproductive. As a result of the delays by the Personnel Department in filling vacancies due to employee turnover, 1,20,000 potentially productive hours (excluding unproductive training hours) were lost. The costs incurred consequent on employee turnover revealed, on analysis, the following: Settlement cost due to leaving ₹ $\mathbf{5 2 , 5 8 4}$

| Recruitment costs | $₹ 32,088$ |
| :--- | :--- |
| Selection costs | $₹ 15,300$ |
| Training costs | $₹ 36,588$ |

Assuming that the potential production lost as a consequence of employee turnover could have been sold at prevailing prices, FIND the profit foregone last year on account of employee turnover. (MTP 5 Marks April '22) (Same concept different figures Old \& New SM)
Answer 13
Workings:

| (i) | Computation of productive hours |  |
| :--- | :--- | ---: |
|  | Actual hours worked | $5,34,000$ |
|  | Less: Unproductive training hours | 18,000 |
|  | Actual productive hours | $5,16,000$ |
| (ii) | Productive hours lost: |  |

Loss of potential productive hours + Unproductive training hours
$=1,20,000+18,000=1,38,000$ hours
(iii) Loss of contribution due to unproductive hours:

Sales value / Actual productive hours $\times$ Total unproductive hours $=$
₹ $99,63,960 / 5,16,000 \mathrm{hrs} \times 1,38,000$ hours = ₹ $26,64,780$
Contribution lost for 1,38,000 hours = Rs. 26,64,780/100 $\times 20=₹ 5,32,956$
Computation of profit forgone on account of employee turnover

|  | (₹) |
| :--- | ---: |
| Contribution foregone (as calculated above) | $5,32,956$ |
| Settlement cost due to leaving | 52,584 |
| Recruitment cost | 32,088 |
| Selection cost | 15,300 |
| Training costs | 36,588 |
| Profit foregone | $6,69,516$ |

## Question 14

3.14

Answer 14

| Advantages |  | Disadvantages |
| :--- | :--- | :--- |
| 1.Time rate is guaranteed while there is <br> opportunity for increasing earnings by <br> increasing production. | 1.Incentive is not so strong as with piece rate <br> system. In fact the harder the worker works, the <br> lesser he gets per piece. |  |
| 2.The system is equitable in as much as the <br> employer gets a direct return for his efforts <br> in improving production methods and <br> providing better equipment. | 2.The sharing principle may not be liked by <br> employees. |  |

## Question 15

Archika Tyre Manufacturing Private Limited has four workers Ram, Shyam, Mohan \& Kundan who are paid wages on the basis of ₹ 100 per day, ₹ 120 per day, ₹ 130 per day \& ₹ 2500 per month respectively. Standard working days in a week are six of 8 hours per day. For the month of October 2022, there was only one holiday other than Sunday for which no payment was made to employees except Kundan who was paid for full month. Sundays are considered paid holidays i.e. employees are paid for Sunday also even there is no working on that day. Provident fund contribution is $8 \%$ of monthly wages by employer and employee each. ESI contribution is $5 \%$ of monthly wages by employer and $4 \%$ of monthly wages by employee.
On the basis of above information, you are required to CALCULATE (regarding the month of October 2022):
(i) Amount of net wages receivable by each employee from the employer.
(ii) What is the total amount of Provident Fund required to be deposited by employer?
(iii) What is the total amount of ESI required to be deposited by employer?
(iv) What is the total labour cost to employer?
(v) If total material cost is ₹ $\mathbf{2 0 , 0 0 0}$ for October 2022 and overheads are charged equal to labour cost, calculate total cost for the month. (MTP 10 Marks Sep'22)

## Answer 15

(i) Calculation of net wages receivable by each employee from the employer (October 2022):

|  | Ram (₹) | Shyam <br> (₹) | Mohan <br> (₹) | Kundan <br> (₹) | Total <br> (₹) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Wages for October 2022 | 3,000 <br> $(₹ 100 x$ <br> 30 days) | 3,600 <br> $(₹ 120 x$ <br> 30 days) | 3,900 <br> $(₹ 130 x$ <br> 30 days) | 2,500 | 13,000 |
| Less: Employee <br> Contribution to PF @ 8\% <br> Less: Employee | 240 | 288 | 312 | 200 | 1,040 |
| Contribution to ESI @ 4\% | 120 | 144 | 156 | 100 | 520 |
| Net Wages Receivable | 2,640 | 3,168 | 3,432 | 2,200 | 11,440 |

(ii) Calculation of total amount of Provident Fund required to be deposited by employer (October 2022):

|  | (₹) |
| :--- | ---: |
| Total Wages for the month | 13,000 |
| Employer's Contribution to Provident Fund @8\% of ₹ 13,000 | 1,040 |
| Add: Employee's Contribution to Provident Fund @8\% of ₹ 13,000 | 1,040 |
| Total amount of Provident Fund required to be deposited by <br> employer | $\mathbf{2 , 0 8 0}$ |

(iii) Calculation of total amount of ESI required to be deposited by employer (October 2022):

| Total Wages for the month | 13,000 |
| :--- | ---: |
| Employer's Contribution to ESI @5\% of ₹ 13,000 | 650 |
| Add: Employee's Contribution to ESI @4\% of ₹ 13,000 | 520 |
| Total amount of ESI required to be deposited by employer | $\mathbf{1 , 1 7 0}$ |

(iv) Total labour cost to employer (October 2022):

|  | $(₹)$ |
| :--- | ---: |
| Total Wages for the month | 13,000 |
| Add: Employer's Contribution to Provident Fund @8\% of ₹ 13,000 | 1,040 |
| Add: Employer's Contribution to ESI @5\% of ₹ 13,000 | 650 |
| Total labour cost to employer | $\mathbf{1 4 , 6 9 0}$ |

(v) Calculation of Total Cost for October 2022

|  | $(₹)$ |
| :--- | ---: |
| Total Material Cost | 20,000 |
| Total Labour Cost | 14,690 |
| Total Overheads (Equal to Labour Cost) | 14,690 |
| Total Cost | $\mathbf{4 9 , 3 8 0}$ |

## Question 16

STATE various causes of and treatment of Overtime Premium in Cost Accounting. (MTP 5 Marks Oct'22)
Answer 16
Causes and Treatment of Overtime premium in cost accounting

| Causes | Treatment |
| :---: | :---: |
| (1) The customer may agree to bear the <br> entire charge of overtime because <br> urgency of work. | (1) If overtime is resorted to at the desire of the <br> customer, then overtime premium may be <br> charged to the job directly. |
| (2) Overtime may be called for to make up <br> any shortfall in production due to some <br> unexpected development. | (2) If overtime is required to cope with general <br> production programmes or for meeting urgent <br> orders, the overtime premium should be <br> treated as overhead cost of the particular <br> department or cost centre which works <br> overtime. |
| (3) Overtime work may be necessary to make |  |
| up a shortfall in production due to some |  |
| fault of management. | (3) If overtime is worked in a department due to the <br> fault of another department, the overtime <br> premium should be <br> charged to the latter department. |
| (4) Overtime work may be resorted to, to |  |
| secure an out-turn in excess of the |  |
| normal output to take advantage of an |  |
| expanding market or of rising demand |  |$\quad$| (4)Overtime worked on account of abnormal <br> conditions such as flood, earthquake etc., <br> should not be charged to cost, but to Costing <br> Profit and Loss Account. |
| :--- |

## Question 17

The rate of change of labour force in a company during the year ending 31st March, 2023 was calculated as $13 \%, 8 \%$ and $5 \%$ respectively under 'Flux Method', 'Replacement method' and 'Separation method'. The number of workers separated during the year is 40.

You are required to calculate:
(i) Average number of workers on roll.
(ii) Number of workers replaced during the year.
(iii) Number of new accessions i.e. new recruitment.

Number of workers at the beginning of the year.(MTP 5 Marks Oct '23)

## Answer 17

(i) Labour Turnover Rate(Separation Method)

$$
\begin{aligned}
& =\frac{\text { No.of workers separated }}{\text { Average no.of workers on roll }} \\
& \text { Or, } \frac{5}{100}=\frac{40}{\text { Average no.of workers on roll }} \\
& \text { Or, Average no. of workers on roll }=800
\end{aligned}
$$

(ii) Labour Turnover Rate (Replacement method)
$=\frac{\text { No.of workers replaced }}{\text { Average no.of workers on roll }}$

$$
\begin{aligned}
& \text { Or, } \quad \frac{8}{100}=\frac{\text { No.of workers replaced }}{800} \\
& \text { Or, } \quad \text { No. of workers replaced }=64
\end{aligned}
$$

(iii) Labour Turnover Rate (Flux Method)

$$
\frac{\text { No. of Separations }+ \text { No. of accessions (New recruitments) }}{\text { Average No.of workers on roll }}
$$

$$
\begin{aligned}
\text { Or, } \frac{13}{100} & =\frac{40+\text { No.of accessions (New recruitments) }}{800} \\
\text { Or, } & 100(40+\text { No. of Accessions })=10,400 \\
\text { Or, } & \text { No. of new accessions }
\end{aligned}=64
$$

(iv) No. of workers at the beginning of the year

Let workers at the beginning of the year were ' $X$ '
Average no. of workers on roll $=\frac{\text { workers at the begining }+ \text { workers at the end }}{2}$
$800=\frac{X+(X+\text { New accessions }- \text { Separations })}{2}$
$800=\frac{X+(X+64-40)}{2}$
$800=\frac{X+(X+24)}{2}$
$2 \mathrm{X}=1,600-24$ or, $\mathrm{X}=788$ workers

## Question 18

ADV Pvt. Ltd. manufactures a product which requires skill and precision in work to get quality products. The company has been experiencing high labour cost due to slow speed of work. The management of the company wants to reduce the labour cost but without compromising with the quality of work. It wants to introduce a bonus scheme but is indifferent between the Halsey and Rowan scheme of bonus. For the month of November 2019, the company budgeted for $\mathbf{2 4 , 9 6 0}$ hours of work. The workers are paid ' 80 per hour.

Required:
CALCULATE and suggest the bonus scheme where the time taken (in \%) to time allowed to complete the works is (a) $\mathbf{1 0 0 \%}$ (b) $\mathbf{7 5 \%}$ (c) $\mathbf{5 0 \%}$ \& (d) $\mathbf{2 5 \%}$ of budgeted hours. (RTP Nov'19)

## Answer 18

The Cost of labour under the bonus schemes are tabulated as below:

| Time Allowed | Time taken | Wages (₹) | Bonus (₹) |  | Total Wages (₹) |  | Earning per hour (₹) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Halsey* | Rowan** | Halsey | Rowan | Halsey | Rowan |
| (1) | (2) | $\begin{aligned} &(3) \\ &=(2) \times ₹ 80 \\ & \hline \end{aligned}$ | (4) | (5) | (6) $=(3)+(4)$ | $\begin{gathered} (7) \\ =(3)+(5) \\ \hline \end{gathered}$ | $\begin{aligned} & (8) \\ = & (6) /(2) \end{aligned}$ | $\begin{gathered} \hline(9) \\ =(7) /(2) \end{gathered}$ |


| 24,960 | 24,960 | $19,96,800$ | - | - | $19,96,800$ | $19,96,800$ | 80.00 | 80.00 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 24,960 | 18,720 | $14,97,600$ | $2,49,600$ | $3,74,400$ | $17,47,200$ | $18,72,000$ | 93.33 | 100.00 |
| 24,960 | 12,480 | $9,98,400$ | $4,99,200$ | $4,99,200$ | $14,97,600$ | $14,97,600$ | 120.00 | 120.00 |
| 24,960 | 6,240 | $4,99,200$ | $7,48,800$ | $3,74,400$ | $12,48,000$ | $8,73,600$ | 200.00 | 140.00 |

* Bonus under Halsey Plan $=50 \%$ of (Time Allowed - Time Taken) $\times$ Rate per hour
** Bonus under Rowan Plan=
$\frac{\text { Time taken }}{\text { Time allowed }}$ Time saved $\times$ Rate per hour
Rowan scheme of bonus keeps checks on speed of work as the rate of incentive increases only upto $50 \%$ of time taken to time allowed but the rate decreases as the time taken to time allowed comes below $50 \%$. It provides incentives for efficient workers for saving in time but also puts check on careless speed. On implementation of Rowan scheme, the management of ADV Pvt. Ltd. would resolve issue of the slow speed work while maintaining the skill and precision required maintaining the quality of product.


## Question 19

A job can be executed either through workman A or B. A takes 32 hours to complete the job while B finishes it in 30 hours. The standard time to finish the job is $\mathbf{4 0}$ hours.
The hourly wage rate is same for both the workers. In addition workman $A$ is entitled to receive bonus according to Halsey plan (50\%) sharing while B is paid bonus as per Rowan plan. The works overheads are absorbed on the job at ₹ 7.50 per labour hour worked. The factory cost of the job comes to ₹ $\mathbf{2 , 6 0 0}$ irrespective of the workman engaged.
INTERPRET the hourly wage rate and cost of raw materials input. Also show cost against each element of cost included in factory cost. (RTP Nov.'18)

## Answer 19

Calculation of:

1. Time saved and wages:

| Workmen | A | B |
| :--- | :---: | :---: |
| Standard time (hrs.) | 40 | 40 |
| Actual time taken (hrs.) | 32 | 30 |
| Time saved (hrs.) | 8 | 10 |
| Wages paid @ ₹ x per hr. (₹ ) | $32 x$ | $30 x$ |

2. Bonus Plan:

|  | Halsey | Rowan |
| ---: | ---: | ---: |
| Time saved (hrs.) | 8 | 10 |
| Bonus (₹) | 4 x | $7.5 \times$ |
|  | $\left\lfloor\frac{8 h r s \times X}{2}\right\rfloor$ | $10\left\lfloor\frac{h r s}{40 h r s} \times 30 h r s . \times^{\prime} X\right\rfloor$ |

## 3.Total wages:

Workman A: $32 x+4 x=₹ 36 x$
Workman B: $30 x+7.5 x=₹ 37.5 x$
Statement of factory cost of the job

| Workmen | A (₹) | B (₹) |
| :--- | ---: | ---: |
| Material cost (assumed) | y | y |
| Wages (shown above) | 36 x | 37.5 x |
| Works overhead | $\underline{\mathbf{2 4 0}}$ | $\underline{\mathbf{2 2 5}}$ |
| Factory cost (given) <br> The above relations can be written as follows: | $\underline{\mathbf{2 , 6 0 0}}$ |  |

$$
\begin{align*}
& 36 x+y+240=2,600  \tag{i}\\
& 37.5 x+y+225=2,600 \\
& \text { Subtracting (i) from (ii) we get } 1.5 x-15=0 \\
& \text { Or, } 1.5 x=15 \\
& \text { Or, } x=₹ 10 \text { per hour }
\end{align*}
$$

On substituting the value of $x$ in (i) we get $y=₹ 2,000$
Hence the wage rate per hour is ₹ 10 and the cost of raw material is ₹ 2,000 on the job.

## Question 20

GZ Ld. pays the following to a skilled worker engaged in production works. The following are the employee benefits paid to the employee:

| (a) | Basic salary per day | ₹1,000 |
| :---: | :---: | :---: |
| (b) | Dearness allowance (DA) | 20\% of basic salary |
| (c) | House rent allowance | 16\% of basic salary |
| (d) | Transport allowance | ₹50 per day of actual work |
| (e) | Overtime | Twice the hourly rate (considers basic and DA), only if works more than 9 hours a day otherwise no overtime allowance. If works for more than 9 hours a day then overtime is considered after $8^{\text {th }}$ hours. |
| (f) | Work of holiday and Sunday | Double of per day basic rate provided works atleast 4 hours. The holiday and Sunday basic is eligible for all allowances and statutory deductions. |
| (h) | Earned leave \& Casual leave | These are paid leave. |
| (h) | Employer's contribution to Provident fund | 12\% of basic and DA |
| (i) | Employer's contribution to Pension fund | 7\% of basic and DA |

The company normally works 8 -hour a day and 26-day in a month. The company provides $\mathbf{3 0}$ minutes lunch break in between.
During the month of August 2020, Mr.Z works for 23 days including 15 th August and a Sunday and applied for 3 days of casual leave. On $15^{\text {th }}$ August and Sunday he worked for 5 and 6 hours respectively without lunch break.
On $5^{\text {th }}$ and $13^{\text {th }}$ August he worked for 10 and 9 hours respectively. During the month Mr. Z worked for 100 hours on Job no.HT200. You are required to CALCULATE:
(i) Earnings per day
(ii) Effective wages rate per hour of Mr. Z.
(iii) Wages to be charged to Job no.HT200. (RTP Nov '20)

## Answer 20

## Workings:

1. Normal working hours in a month $=$ (Daily working hours - lunch break) $\times$ no. of days $=(8$ hours -0.5 hours $) \times 26$ days $=195$ hours
2. Hours worked by Mr.Z = No. of normal days worked + Overtime + holiday/ Sunday worked

$$
\begin{aligned}
& =(21 \text { days } \times 7.5 \text { hours })+(9.5 \text { hours }+8.5 \text { hours })+(5 \text { hours }+6 \text { hours }) \\
& =157.5 \text { hours }+18 \text { hours }+11 \text { hours }=186.50 \text { hours } .
\end{aligned}
$$

(i) Calculation of earnings per day

| Particulars | Amount (₹) |
| :--- | ---: |
| Basic salary (₹1,000 $\times 26$ days) | 26,000 |
| Dearness allowance (20\% of basic salary) | 5,200 |
|  | 31,200 |
| House rent allowance (16\% of basic salary) | 4,160 |
| Employer's contribution to Provident fund (12\% × ₹31,200) | 3,744 |
| Employer's contribution to Pension fund (7\% $\times$ ₹31,200) | 2,184 |
|  | 41,288 |
| No. of working days in a month (days) | 26 |
| Rate per day | 1,588 |
| Transport allowance per day | 50 |
| Earnings per day | $\mathbf{1 , 6 3 8}$ |

(ii) Calculation of effective wage rate per hour of Mr. Z:

| Particulars | Amount (₹) |
| :--- | ---: |
| Basic salary (₹1,000 $\times 26$ days) | 26,000 |
| Additional basic salary for Sunday \& holiday (₹1,000 $\times 2$ days) | 2,000 |
| Dearness allowance (20\% of basic salary) | 5,600 |
|  | 33,600 |
| House rent allowance (16\% of basic salary) | 4,480 |
| Transport allowance (₹50 $\times 23$ days) | 1,150 |
| Overtime allowance ( $₹ 160 \times 2 \times 2$ hours)* | 640 |
| Employer's contribution to Provident fund (12\% $\times ₹ 33,600)$ | 4,032 |
| Employer's contribution to Pension fund (7\% $\times$ ₹33,600) | 2,352 |
| Total monthly wages | 46,254 |
| Hours worked by Mr. Z (hours) | 186.5 |
| Effective wage rate per hour | 248 |

$$
\begin{aligned}
& *(\text { Daily Basic }+ \text { DA }) \div 7.5 \text { hours } \\
& =(1,000+200) \div 7.5=₹ 160 \text { per hour }
\end{aligned}
$$

(iii) Calculation of wages to be charged to Job no. HT200

$$
=₹ 248 \times 100 \text { hours = ₹ } 24,800
$$

## Question 21

JBL Sisters operates a boutique which works for various fashion houses and retail stores. It has employed 26 workers and pays them on time rate basis. On an average an employee is allowed 8 hours for boutique work on a piece of garment. In the month of December 2020, two workers M and J were given 15 pieces and 21 pieces of garments respectively for boutique work. The following are the details of their work:

|  | M | J |
| :--- | :---: | :---: |
| Work assigned | 15 pcs. | 21 pcs. |
| Time taken | 100 hours | 140 hours |

Workers are paid bonus as per Halsey System. The existing rate of wages is ₹ $\mathbf{6 0}$ per hour. As per the new wages agreement the workers will be paid ₹ 72 per hour w.e.f. $1^{\text {st }}$ January 2021 . At the end of the month December 2020, the accountant of the company has wrongly calculated wages to these two workers taking ₹ 72 per hour.

## Required:

(i) CALCULATE the loss incurred due to incorrect rate selection.
(ii) CALCULATE the loss incurred due to incorrect rate selection, had Rowan scheme of bonus payment followed.
(iii) CALCULATE the loss/ savings if Rowan scheme of bonus payment had followed.
(iv) DISCUSS the suitability of Rowan scheme of bonus payment for JBL Sisters? (RTP May '21)

## Answer 21

## Workings Notes:

Calculation of Total hours saved:

|  | M | J |
| :--- | ---: | ---: |
| No. of garments assigned (Pieces.) | 15 | 21 |
| Hour allowed per piece (Hours) | 8 | 8 |
| Total hours allowed (Hours) | 120 | 168 |
| Hours Taken (Hours) | 100 | 140 |
| Hours Saved (Hours) | 20 | 28 |

(i) Calculation of loss incurred due to incorrect rate selection:
(While calculating loss only excess rate per hour has been taken)

|  | M <br> (₹) | J <br> (₹) | Total <br> (₹) |
| :--- | :---: | :---: | :---: |
| Basic Wages | 1,200 <br> $(100 \mathrm{Hrs}. \times ₹ 12)$ | 1,680 <br> $(140 \mathrm{Hrs}. \times ₹ 12)$ | 2,880 |
| Bonus (as per Halsey Scheme) <br> (50\% of Time Saved $\times$ Excess Rate) | 120 | 168 | 288 |
| (50\% of $20 \mathrm{Hrs}. \times ₹ 12)$ | $(50 \%$ of $28 \mathrm{Hrs} \times ₹ 12)$ |  |  |
| Excess Wages Paid | 1,320 | 1,848 | 3,168 |

(ii) Calculation of loss incurred due to incorrect rate selection had Rowan scheme of bonus payment followed:

|  | $\mathbf{M}$ <br> (₹) | J <br> (₹) | Total (₹) |
| :--- | :---: | :---: | :---: |
| Basic Wages | 1,200 <br> $(100 \mathrm{Hrs}. \times ₹ 12)$ | 1,680 <br> $(140 \mathrm{Hrs}. \times ₹ 12)$ | 2,880 |
| Bonus (as per Rowan Scheme) <br> $\left(\frac{\text { Time Taken }}{\text { Time Allowed }} \times\right.$ Time Saved <br> $\times$ Excess Rate $)$ | 200 | 280 | 480 |
|  | $\left(\frac{100}{120} \times 20 \times R s .12\right)$ | $\left(\frac{140}{168} \times 28 \times R s .12\right)$ |  |
| Excess Wages Paid |  | 1,400 | 1,960 |

(iii) Calculation of amount that could have been saved if Rowan Scheme were followed

|  | M | J | Total (₹) |
| :--- | :---: | :---: | :---: |
| (₹) | (₹) |  |  |
| Wages paid under Halsey Scheme | 1,320 | 1,848 | 3,168 |
| Wages paid under Rowan Scheme | 1,400 | 1,960 | 3,360 |
| Difference (loss) | $(80)$ | $(112)$ | $(192)$ |

(iv) Rowan Scheme of incentive payment has the following benefits, which is suitable with the nature of business in which JBL Sisters operates:
(a) Under Rowan Scheme of bonus payment, workers cannot increase their earnings or bonus by merely increasing its work speed. Bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore, they work at such a speed which helps them to maintain the quality of output too.
(b) If the rate setting department commits any mistake in setting standards for time to be taken to complete the works, the loss incurred will be relatively low.

## Question 22

A total of 108 labour hours have been put in a particular job card for repair work engaging a semiskilled and skilled labour (Mr. Deep and Mr. Sam respectively). The hours devoted by both the workers individually on daily basis for this particular job are given below:

| Monday | Tuesday | Wednesday | Thursday | Friday |
| :---: | :---: | :---: | :---: | :---: |
| 10.5 | 8.0 | 10.5 | 9.5 | 10.5 |

The skilled labour also worked on Saturday for $\mathbf{1 0}$ hours.
Sunday is a weekly holiday and each worker has to work for 8 hours on all week days and 5 hours on Saturdays; the workers are however paid full wages for Saturday (8 hours for 5 hours worked).

Semi-skilled and skilled worker is paid ordinary wage @ ₹ 400 and ₹ 600 respectively per day of 8 hours labour. Further, the workers are also paid dearness allowance @ 20\%.

Extra hours worked over and above 8 hours are also paid at ordinary wage rate however, overtime premium of $100 \%$ of ordinary wage rate is paid if a worker works for more than 9 hours in a day AND 48 hours in a week.

You are required to COMPUTE the wages payable to Mr. Deep (Semi-skilled) and Mr. Sam (Skilled). (RTP May '22)
Answer 22
Calculation of total normal hours to be paid for Mr. Deep (Semi-skilled):

| Day | Normal <br> hours | Extra <br> hours | Overtime <br> hours | Equivalent <br> normal hours for <br> overtime worked | Total normal <br> hours |
| :--- | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D = C $\times 2$ | E = A+B+D |  |
| Monday | 8 | 1 | $11 / 2$ | 3 | 12 |
| Tuesday | 8 | -- | -- | - | 8 |
| Wednesday | 8 | 1 | $11 / 2$ | 3 | 12 |
| Thursday | 8 | 1 | $1 / 2$ | 1 | 10 |
| Friday | 8 | 1 | $11 / 2$ | 3 | 12 |
| Saturday | -- | -- | -- | -- | -- |
| Total | 40 | 4 | 5 | 10 | 54 |

Calculation of total normal hours to be paid for Mr. Sam (Skilled):

| Day | Normal <br> hours | Extra <br> hours | Overtime <br> hours | Equivalent normal hours <br> for overtime worked | Total normal <br> hours |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | $\mathbf{D = C \times 2}$ | E = A+B+D |
| Monday | 8 | 1 | $11 / 2$ | 3 | 12 |
| Tuesday | 8 | -- | --- | -- | 8 |
| Wednesday | 8 | 1 | $11 / 2$ | 3 | 12 |
| Thursday | 8 | 1 | $1 / 2$ | 1 | 10 |


| Friday | 8 | 1 | $11 / 2$ | 3 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Saturday | 5 | $3^{*}+1$ | $1 * *$ | 2 | 11 |
| Total | 45 | 8 | 6 | 12 | 65 |

*Mr. Sam will be paid for equivalent 8 normal working hours at ordinary wage rate, though 5 hours of working is required on Saturday. Further, extra $9^{\text {th }}$ hour worked will also be paid at ordinary wage rate.
** Overtime of 1 hour worked over and above 9 hours will be paid at overtime rate.
Wages payable:

|  | Mr. Deep | Mr. Sam |
| :--- | ---: | ---: |
| Basic Wages per hour (₹ 400/8, ₹ 600/8) (₹) | 50 | 75 |
| Dearness allowance per hour (@ 20\%) (₹) | 10 | 15 |
| Hourly rate (₹) | 60 | 90 |
| Total equivalent normal hours | 54 | 65 |
| Total Wages payable (₹) | $\mathbf{3 , 2 4 0}$ | $\mathbf{5 , 8 5 0}$ |

## Question 23

HR Ltd. is progressing in its legal industry. One of its trainee executives, Mr. H, in the Personnel department has calculated labour turnover rate $\mathbf{2 4 . 9 2 \%}$ for the last year using Flux method.

Following is the data provided by the Personnel department for the last year:

| Employees | At the beginning | Joined | Left | At the end |
| :---: | :---: | :---: | :---: | :---: |
| Records clerk | 810 | 1,620 | 90 | 2,340 |
| Human Resource Manager | ? | 30 | 90 | 60 |
| Legal Secretary | ? | 90 | --- | ? |
| Staff Attorney | ? | 30 | 30 | ? |
| Associate Attorney | ? | 30 | --- | 45 |
| Senior Staff Attorney | 6 | --- | --- | 18 |
| Senior Records clerk | 12 | --- | --- | 51 |
| Litigation attorney | ? | --- | --- | ? |
| Employees transferred from the Subsidiary Company |  |  |  |  |
| Senior Staff Attorney | --- | 12 | --- | --- |
| Senior Records clerk | --- | 39 | --- | --- |
| Employees transferred to the Subsidiary Company |  |  |  |  |
| Litigation attorney | --- | --- | 90 | --- |
| Associate Attorney | --- | --- | 15 | --- |

At the beginning of the year there were total 1,158 employees on the payroll of the company. The opening strength of the Legal Secretary, Staff Attorney and Associate Attorney were in the ratio of $3: 3$
: 2.
The company has decided to abandon the post of Litigation attorney and consequently all the Litigation attorneys were transferred to the subsidiary company.

The company and its subsidiary are maintaining separate set of books of account and separate Personnel Department.

You are required to:
(a) CALCULATE Labour Turnover rate using Replacement method and Separation method.
(b) VERIFY the Labour turnover rate calculated under Flux method by Mr. H (RTP Nov'22)

## Answer 23

(i) Calculation of no. of employees at the beginning and end of the year

|  | At the Beginning of the <br> year | At the end of <br> the year |
| :--- | :---: | :---: |
| Records clerk | 810 | 2,340 |
| Human Resource Manager [Left- 90 + Closing- 60 - <br> Joined- 30] | 120 | 60 |
| Legal Secretary* | 45 | 135 |
| Staff Attorney* | 45 | 45 |
| Associate Attorney* | 30 | 45 |
| Senior Staff Attorney | 6 | 18 |
| Senior Records clerk | 12 | 51 |
| Litigation attorney | 90 | 0 |
| Total | 1,158 | 2,694 |

(*) At the beginning of the year:
Strength of Legal Secretary, Staff Attorney and Associate Attorney =
[1158- \{810 + 120 + 6 + 12 + 90\} employees] or [1158-1038 = 120 employees]
[\{Legal Secretary - $120 \times \frac{3}{8}=45$, Staff Attorney $-120 \times \frac{3}{8}=45$ \& Associate Attorney $\left.-120 \times \frac{3}{8}=30\right\}$ employees]

## At the end of the year:

[Legal Secretary -(Opening $45+90$ Joining) $=135$; Staff Attorney - (Opening $45+30$ Joined -30 Left) $=$ 45]
(ii) No. of Employees Separated, Replaced and newly recruited during the year

| Particulars | Separations | New <br> Recruitment | Replacement | Total <br> Joining |
| :--- | ---: | ---: | ---: | ---: |
| Records clerk | 90 | 1,530 | 90 | 1,620 |
| Human Resource Manager | 90 | -- | 30 | 30 |
| Legal Secretary | -- | 90 | -- | 90 |
| Staff Attorney | 30 | -- | 30 | 30 |
| Associate Attorney | 15 | 15 | 15 | 30 |
| Senior Staff Attorney | --- | 12 | -- | 12 |
| Senior Records clerk | -- | 39 | -- | 39 |
| Litigation attorney | 90 | -- | -- | 165 |
| Total | 315 | 1,686 | 1,851 |  |

(Since, HR Ltd. and its subsidiary are maintaining separate Personnel Department, so transfer-in and transfer-out are treated as recruitment and separation respectively.)
(a) Calculation of Labour Turnover rate:

Replacement Method=

$$
\begin{aligned}
& \frac{\text { No. of employeesreplacedduringthe yea }}{\text { Averageno. of employeesonroll }} \times 10 \\
& \frac{165}{(1,158+2,694) / 2} \times 100=\frac{165}{1,926} \times 100=8.57 \%
\end{aligned}
$$

Separation Method=

$$
\begin{aligned}
& \text { No. of employees separatedduringthe yea } \\
& \text { Averageno. of employeesonroll } \\
& \text { Chapter } 3 \text { Employee Cost and Direct Expenses }
\end{aligned}
$$

$$
\frac{315}{1,926} \times 100=16.36 \%
$$

(b) Labour Turnover rate under Flux Method:

$$
\begin{aligned}
& \qquad \frac{\text { No. of employees(Joined }+ \text { Separated)duringthe year }}{\text { Averageno. of employees on roll }} \times 10 \\
& \frac{\text { No. of employees (Replaced }+ \text { New recruited }+ \text { Separated) during the year }}{\text { Average no. of employees on roll }} \times 100 \\
& \frac{1,851+315}{1,926} \times 100=112.46 \% \\
& \text { Labour Turnover rate calculated by Mr. H is incorrect as it seems he has not taken the No. of new } \\
& \text { recruitment while calculating the labour turnover rate under Flux method. }
\end{aligned}
$$

## Question 24

A skilled worker is paid a guaranteed wage rate of ` 120 per hour. The standard time allowed for a job is 6 hour. He took 5 hours to complete the job. He is paid wages under Rowan Incentive Plan.
(i) Calculate his effective hourly rate of earnings under Rowan Incentive Plan.
(ii) If the worker is placed under Halsey Incentive Scheme (50\%) and he wants to maintain the same effective hourly rate of earnings, calculate the time in which he should complete the job.(RTP Nov '23)

## Answer 24

(i) Effective hourly rate of earnings under Rowan Incentive Plan

Earnings under Rowan Incentive plan =
(Actual time taken X wage rate) $+\frac{\text { Time saved }}{\text { Time Allowed }} \times$ Time taken $\times$ Wage rate
$=(5$ hours X Rs. 120$)+\left(\frac{1 \text { hour }}{6 \text { hours }} \times 5\right.$ hours $\times$ Rs. 120$)$
= Rs. 600 +Rs. $100=$ Rs. 700
(ii) Let time taken $=X$
$\therefore$ Effective hourly rate $=\frac{\text { Earnings under Halsay Scheme }}{\text { Time taken }}$
Or, Effective hourly rate under Halsey Incentive plan =
$\frac{(\text { Time taken } \times \text { Rate })+50 \% \text { of Rate } \times(\text { Time allowed-Time taken })}{\text { Time taken }}$
Or, Rs. $140=\frac{(X \times R s .120)+50 \% \text { of Rs. } 120 \times(6-X)}{X}$
Or, 140X = 120X + $360-60 X$
Or, 80X = 360
Or, $X=\frac{360}{80}=4.5$ hours
Therefore, to earn effective hourly rate of ` 140 under Halsey Incentive Scheme worker has to complete the work in 4.5 hours.

## Question 25

How would you account for idle capacity cost in Cost Accounting? (RTP Nov '23)

## Answer 25

Idle capacity costs are treated in the following ways in Cost Accounts:
(i) If the idle capacity cost is due to unavoidable reasons: A supplementary overhead rate may be used to recover the idle capacity cost. In this case, the costs are charged to the production capacity utilised.
(ii) If the idle capacity cost is due to avoidable reasons: Such as faulty planning, etc. the cost should be charged to Costing Profit and Loss Account.
(iii) If the idle capacity cost is due to trade depression, etc.: Being abnormal in nature the cost should also be charged to the Costing Profit and Loss Account.
(iv) If the idle capacity cost is due to seasonal factors, then the cost should be charged to cost of production by inflating overhead rate.

## Question 26

Explain the treatment of over and under absorption of overheads in cost accounts. (RTP Nov '23)

## Answer 26

Treatment of over and under absorption of overheads are:
(i) Writing off to costing P\&L A/c: Small difference between the actual and absorbed amount should simply be transferred to costing P\&L A/c, if difference is large then investigate the causes and after that abnormal loss/ gain shall be transferred to costing P \& A/c.
(ii) Use of supplementary Rate: Under this method the balance of under and over absorbed overheads may be charged to cost of W.I.P., finished stock and cost of sales proportionately with the help of supplementary rate of overhead.
(iii) Carry Forward to Subsequent Year: Difference should be carried forward in the expectation that next year the position will be automatically corrected.

## Question 27

Distinguish between cost allocation and cost absorption. (RTP Nov '23)

## Answer 27

## Distinguish between Cost allocation and Cost absorption:

Cost allocation is the allotment of whole item of cost to a cost centre or a cost unit. In other words, it is the process of identifying, assigning or allowing cost to a cost centre or a cost unit.

Cost absorption is the process of absorbing all indirect costs or overhead costs allocated or apportioned over particular cost center or production department by the units produced.

## Question 28

M/s Zeba Private Limited allotted a standard time of 40 hours for a job and the rate per hour is ₹ 75. The actual time taken by a worker is $\mathbf{3 0}$ hours.
You are required to calculate the total earnings under the following plans:
(i) Halsey Premium Plan (Rate 50\%)
(iii) Time Wage System
(v) Emerson Plan (PYP May '19, 5 Marks)
(ii) Rowan Plan
(iv) Piece Rate System

## Answer 28

(i) Halsey Premium plan:

$$
\begin{aligned}
= & (\text { Time taken } \times \text { Rate per hour })+\left(\frac{1}{2} \times \text { Time saved } \times \text { Rate per hour }\right) \\
& (30 \text { hours } \times ₹ 75)+\left(\frac{1}{2} \times 10 \text { hours } \times ₹ 75\right) \\
= & ₹ 2,250+₹ 375=₹ 2,625
\end{aligned}
$$

(ii) Rowan Premium plan:

$$
=(\text { Time taken } \times \text { Rate per hour })+\left(\frac{\text { Time Saved }}{\text { Time allowed }} \times \text { Time saved } \times \text { Rate per hour }\right)
$$

VIVITSU

$$
\begin{aligned}
& =(30 \text { hours } \times ₹ 75)+(40 \times 30 \times ₹ 75) \\
& =₹ 2,250+₹ 375=₹ 2,625 \\
& =₹ 2,250+₹ 562.5=₹ 2,812.5 \text { or } ₹ 2,813
\end{aligned}
$$

(iii) Time wage system :
$=$ Time taken $\times$ Rate per hour
$=30 \times ₹ 75$ = ₹ 2,250
(iv) Piece Rate System :
$=$ Std. Time $\times$ Rate per hour
$=40 \times ₹ 75=₹ 3,000$
(v) Emerson plan:

Efficiency level $=40 / 30=133.33 \%$ Time taken $\times(120 \%+33.33 \%)$ of Rate
$=30$ hours $\times 153.33 \%$ of $₹ 75$
= ₹ 3,450

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical problem of 'Employee Cost' students were asked to calculate earnings under various plans. Candidate failed to calculate earnings in job/piece rate system and Emerson's plan. Performance of the examinees was average.

## Question 29

Following data have been extracted from the books of $\mathrm{M} / \mathrm{s}$. ABC Private Limited:
(i) Salary (each employee, per month) ₹ 30,000
(ii) Bonus 25\% of salary
(iii) Employer's contribution to PF, ESI etc. 15\% of salary
(iv) Total cost at employees' welfare activities ₹ 6,61,500 per annum
(v) Total leave permitted during the year 30 days
(vi) No. of employees 175
(vii) Normal idle time $\quad 70$ hours per annum
(viii) Abnormal idle time (due to failure of power supply) 50 hours
(ix) Working days per annum 310 days of 8 hours

You are required to calculate:

1. Annual cost of each employee
2. Employee cost per hour
3. Cost of abnormal idle time, per employee
(PYP Nov '18, 5 Marks)
Answer 29
4. 

Annual cost of each employee

1. Salary $(30,000 \times 12)$
2. Bonus ( $25 \%$ of Salary) 90,000
3. Employees Contribution to PF (15\% of Salary) 54,000
4. Employers welfare (661500/175)

Total Annual Cost
₹

$$
3,60,000
$$

$$
90,000
$$

3,780
5,07,780
2.

Employee Cost per hour $\frac{507780}{2170}=$ Rs. 234
*It is assumed 310 working days are without taking leave permitted into consideration
3. Cost of abnormal idle time per employee $=₹ \mathbf{2 3 4 \times 5 0}$ hours $=₹ \mathbf{1 1 7 0 0}$ Alternative solution for Part (2) and (3)
(2) Calculation of Employee cost per hour:

Working hours per annum 2,480 *
Less: Normal Idle time hours 70
Effective hours 2,410
Employee cost 5,07,780
Employee cost per hour 210.70
*It is assumed 310 working days are after adjusting leave permitted during the year.
(3) Cost of Abnormal idle time per employee:

Abnormal Idle time hours 50
$\begin{array}{ll}\text { Employee cost per hour } & 210.70\end{array}$
Cost of Abnormal idle time ( $210.70 \times 50$ ) 10,534.85

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

The Sub part (i) was numerical question on employees cost. Most of the examinees did not answer in the correct line.

## Question 30

A worker takes 15 hours to complete a piece of work for which time allowed is $\mathbf{2 0}$ hours. His wage rate is $₹ 5$ per hour. Following additional information are also available:
$\begin{array}{ll}\text { Material cost of work } & ₹ 50 \\ \text { Factory overheads } & 100 \% \text { of wages }\end{array}$
Calculate the factory cost of work under the following methods of wage payments:
(i) Rowan Plan
(ii) Halsey Plan (PYP May '18, 5 Marks)

Answer 30
(i) Rowan Plan: Normal time wage $=15$ hours @ ₹ $5=$
Bonus $=$ Time saved $/$ Time allowed $\times($ Time taken $\times$ Time rate $)$
$=5 / 20 \times(15 \times 5)$
18.75
93.75
(ii) Halsey Plan: Normal time wage = 15 hours @ ₹ 5 = 75

Bonus $=50 \%$ of $($ Time saved $x$ Time rate $)=50 \%$ of $(5 \times 5)=12.5$

Statement of Comparative Factory cost of work

|  | Rowan Plan | Halsey Plan |
| :--- | :---: | ---: |
| Materials | $₹$ | $₹$ |
| Direct Wages | 50 | 50 |
| Prime Cost | 93.75 | 87.5 |
| M | 143.75 | 137.5 |

Factory Overhead (100\% of Direct wages)
Factory Cost
93.75
87.5

Factory Cost
237.5

225

## Question 31

Following are the particulars of two workers 'R' and 'S' for a month:

| Particulars | R | S |
| :--- | ---: | ---: |
| (i) Basic Wages (₹) | 15,000 | $\mathbf{3 0 , 0 0 0}$ |
| (ii) Dearness Allowance | $\mathbf{5 0 \%}$ | $\mathbf{5 0 \%}$ |
| (iii) Contribution to EPF (on basic wages) | $\mathbf{7 \%}$ | $\mathbf{7 . 5 \%}$ |
| (iv) Contribution to ESI (on basic wages) | $\mathbf{2 \%}$ | $\mathbf{2 \%}$ |
| (v) Overtime (hours) | $\mathbf{2 0}$ | - |

The normal working hours for the month are 200 hrs . Overtime is paid at double the total of normal wages and dearness allowance. Employer's contribution to State Insurance and Provident Fund are at equal rates with employees' contributions.

Both workers were employed on jobs A, B and C in the following proportions:

| Jobs | A | B | C |
| :--- | ---: | ---: | ---: |
| R | $75 \%$ | $10 \%$ | $15 \%$ |
| S | $40 \%$ | $20 \%$ | $40 \%$ |

Overtime was done on job 'A'. You are required to :
(i) Calculate ordinary wage rate per hour of ' $R$ ' and ' S '.
(ii) Allocate the worker's cost to each job 'A', 'B' and 'C'. (PYP 6 Marks Nov 20, Old \& New SM)

## Answer 31

(i) Calculation of Net Wages paid to Worker ' $R$ ' and ' $S$ '

| Particulars | R (₹) | S (₹) |
| :--- | ---: | ---: |
| Basic Wages | $15,000.00$ | $30,000.00$ |
| Dearness Allowance (DA) (50\% of Basic Wages) | $7,500.00$ | $15,000.00$ |
| Overtime Wages (Refer to Working Note 1) | $4,500.00$ | ---- |
| Gross Wages earned | $27,000.00$ | $45,000.00$ |
| Less: Provident Fund (7\% $\times$ ₹ 15,000 ); (7.5\% $\times$ ₹ 30,000$)$ | $(1,050.00)$ | $(2,250.00)$ |
| Less: ESI $(2 \% \times ₹ 15,000) ;(2 \% \times ₹ 30,000)$ | $(300.00)$ | $(600.00)$ |
| Net Wages paid | $\mathbf{2 5 , 6 5 0 . 0 0}$ | $\mathbf{4 2 , 1 5 0 . 0 0}$ |

Calculation of ordinary wage rate per hour of Worker ' $R$ ' and ' $S$ '

|  | $\mathbf{R ~ ( ₹ )}$ | $\mathbf{S}$ (₹) |
| :--- | ---: | ---: |
| Gross Wages (Basic Wages + DA) <br> (excluding overtime) | $22,500.00$ | $45,000.00$ |
| Employer's contribution to P.F. and E.S.I. | $1,350.00$ | $2,850.00$ |
|  | $23,850.00$ | $47,850.00$ |
| Ordinary wages Labour Rate per hour | $\mathbf{1 1 9 . 2 5}$ | $\mathbf{2 3 9 . 2 5}$ |
| (₹ 23,850 $\div 200$ hours); (₹ 47,850 $\div 200$ hours) |  |  |

(ii) Statement Showing Allocation of workers cost to each Job

|  | Total <br> Wages | Jobs |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | B | C |  |  |
| Worker R |  |  |  |  |  |
| Ordinary Wages (15:2:3) | $23,850.00$ | $17,887.50$ | $2,385.00$ | 3577.50 |  |


| Overtime | 4500.00 | $\mathbf{4 5 0 0 . 0 0}$ | - | -- |
| :--- | ---: | ---: | ---: | ---: |
| Worker S |  |  |  |  |
| Ordinary Wages (2:1:2) | $47,850.00$ | $19,140.00$ | $9,570.00$ | $19,140.00$ |
|  | $\mathbf{7 6 , 2 0 0 . 0 0}$ | $\mathbf{4 1 , 5 2 7 . 5 0}$ | $\mathbf{1 1 , 9 5 5 . 0 0}$ | $\mathbf{2 2 , 7 1 7 . 5 0}$ |

## Working Note:

Normal Wages are considered as basic wages.
Over Time $=\frac{2 \times(\text { Basic wage }+ \text { D.A. }) \times 20 \text { hours }}{20 \text { hours }}=2 \times \frac{\text { Rs. } 22,500}{200} \times 20$ hours $=$ Rs. 4,500

## Question 32

Discuss any four objectives of 'Time keeping' in relation to attendance and payroll procedures. (PYP 4 Marks Nov 20)

## Answer 32

The objectives of time-keeping in relation to attendance and payroll procedures are as follows:
(i) For the preparation of payrolls.
(ii) For calculating overtime.
(iii) For ascertaining and controlling employee cost.
(iv) For ascertaining idle time.
(v) For disciplinary purposes.
(vi) For overhead distribution

## Question 33

Z Ltd is working by employing 50 skilled workers. It is considering the introduction of an incentive scheme - either Halsey Scheme (with 50\% Bonus) or Rowan Scheme - of wage payment for increasing the labour productivity to adjust with the increasing demand for its products by $40 \%$. The company feels that if the proposed incentive scheme could bring about an average $\mathbf{2 0 \%}$ increase over the present earnings of the workers, it could act as sufficient incentive for them to produce more and the company has accordingly given assurance to the workers. Because of this assurance, an increase in productivity has been observed as revealed by the figures for the month of April, 2020:

| Hourly rate of wages (guaranteed) | ₹ 50 |
| :--- | ---: |
| Average time for producing one unit by one worker at the <br> previous | 1.975 hours |
| performance (this may be taken as time allowed) |  |
| Number of working days in a month | $\mathbf{2 4}$ |
| Number of working hours per day of each worker | 8 |
| Actual production during the month | 6,120 units |

Required:
(i) Calculate the effective increase in earnings of workers in percentage terms under Halsey and Rowan scheme.
(ii) Calculate the savings to Z Ltd in terms of direct labour cost per unit under both the schemes.
(iii) Advise Z Ltd about the selection of the scheme that would fulfil its assurance of incentivizing workers and also to adjust with the increase in demand. (PYP 10 Marks Jan 21) (Same concept different figures Old \& New SM)

## Answer 33

Working Notes:

1. Total time wages of $\mathbf{5 0}$ workers per month:
$=$ No. of working days in the month $\times$ No. of working hours per day of each worker $\times$ Hourly rate of wages $\times$ No. of workers
$=24$ days $\times 8$ hrs. $\times ₹ 50 \times 50$ workers $=₹ 4,80,000$
2. Time saved per month:

Time allowed per unit to a worker 1.975 hours

No. of units produced during the month by 50 workers time allowed to produce 6,120 units ( $6,120 \times 1.975 \mathrm{hrs}$ )

6,120 units Total 12,087 hours Actual time taken to produce 6,120 units ( 24 days $\times 8 \mathrm{hrs} . \times 50$ workers) 9,600 hours Time saved (12,087 hours - 9,600 hours) 2,487 hours
3. Bonus under Halsey scheme to be paid to 50 workers: Bonus $=(50 \%$ of time saved $) \times$ hourly rate of wages

$$
=50 / 100 \times 2,487 \text { hours } \times ₹ 50=₹ 62,175
$$

Total wages to be paid to 50 workers are ( $₹ 4,80,000+₹ 62,175$ ) ₹ $5,42,175$, if $Z$ Ltd. considers the introduction of Halsey Incentive Scheme to increase the worker productivity.
4. Bonus under Rowan Scheme to be paid to $\mathbf{5 0}$ workers:

Bonus $=\frac{\text { Time taken }}{\text { Time allowed }} \times$ Time Saved $\times$ hourly rate
$=\frac{9,600 \text { hours }}{12,087 \text { hours }} \times 2,487$ hours $\times$ Rs. $50=$ Rs. 98,764
Total wages to be paid to 50 workers are ( $₹ 4,80,000+₹ 98,764$ ) $₹ 5,78,764$, if $Z$ Ltd. considers the introduction of Rowan Incentive Scheme to increase the worker productivity.
(i) (a) Effective hourly rate of earnings under Halsey scheme:
(Refer to Working Notes 1, 2 and 3)
$=\frac{\text { Total time wages of } 50 \text { workers }+ \text { Total bonus under Halsey scheme }}{\text { Total hours worked }}$
$=\frac{R s .4,80,000+R s .62,175}{9,600 \text { hours }}=$ Rs. 56.48
Effective increase in earnings of worker(in \%) $=\frac{R s .56 .48-R s .50}{R s .50} \times 100=2.96 \%$
(b) Effective hourly rate of earnings under Rowan scheme:
(Refer to Working Notes 1, 2 and 4)
$=\frac{\text { Total time wages of } 50 \text { workers }+ \text { Total bonus under Halsey scheme }}{\text { Total hours worked }}$
$=\frac{\text { Rs. } 4,80,000+\text { Rs. } 96,875}{9,600 \text { hours }}=$ Rs. 60.29
Effective increase in earnings of worker(in \%) $=\frac{R s .60 .29-R s .50}{R s .50} \times 100=20.58 \%$
(ii) (a) Saving in terms of direct labour cost per unit under Halsey scheme: (Refer to Working Note 3)

Labour cost per unit (under time wage scheme)
$=1.975$ hours $\times ₹ 50=₹ 98.75$
Labour cost per unit (under Halsey scheme)
$=\frac{\text { Total wages paid under the schem }}{\text { Total number of units produced }}=\frac{R s .5,42,175}{6,120}=$ Rs. 88.60

Saving per unit = ₹ 98.75 -₹ 88.60 = ₹ 10.15
(b) Saving in terms of direct worker cost per unit under Rowan Scheme: (Refer to Working Note 4)
Labour cost per unit under Rowan scheme $=₹ 5,78,764 / 6,120$ units $=₹ 94.57$ Saving per unit = ₹ 98.75 - ₹ 94.57 =₹ 4.18
(iii) Calculation of Productivity:

| Normal Production Hours worked/Unit per Hour | 4,861 |
| :--- | :--- |
| $(9,600 / 1.975)$ Actual Production Units | 6,120 |
| Increase in labour productivity | 1,259 |
| \% Productivity i.e. increase in production/Normal <br> production | $\mathbf{2 5 . 9 \%}$ |

Advice: Rowan plan fulfils the company's assurance of $20 \%$ increase over the present earnings of workers. This would increase productivity by $25.9 \%$ only. It will not adjust with the increase in demand by $40 \%$.

## Question 34

Following information is given of a newly setup organization for the year ended on 31st March, 2021.

| Number of workers replaced during the period | $\mathbf{5 0}$ |
| :--- | ---: |
| Number of workers left and discharged during the period | 25 |
| Average number of workers on the roll during the period | $\mathbf{5 0 0}$ |

## You are required to:

(i) Compute the Employee Turnover Rates using Separation Method and Flux Method.
(ii) Equivalent Employee Turnover Rates for (i) above, given that the organization was setup on 31st January, 2021. (PYP 5 Marks July '21)

## Answer 34

(i) Employee Turnover rate:

Using Separation method:
$=\frac{\text { Number of employees Separated during the period }}{\text { Averange number of employees during the period on roll }} \times 100$
$=\frac{25}{500} \times 100=5 \%$
Using Flux method:
$=\frac{\text { Number of employees Separated }+ \text { Number of employees Replaced During the Period }}{\text { Average number of employees during the period on roll }} \times 100$
$=\frac{50+25}{500} \times 100=15 \%$
(ii) Equivalent Employee Turnover Rate:
$=\frac{\text { Employee Turn over rate for the period }}{\text { Number of Days in the period }} \times 365$
Using Separation method $=5 / 60 \times 365=30.42 \%$
Or, $=5 / 60 \times 360=30 \%$
Or, $5 / 2 \times 12=30 \%$
Using Flux method $=15 / 60 \times 365=91.25 \%$
Or, $=15 / 60 \times 360=30 \%$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem requiring computation of Employee turnover rates and Equivalent employee turnover rates by using separation method and flux method. Most of the examinees were not well acquainted with the concept of equivalent employee turnover rates. Performance of the examinees was below average.

## Question 35

Rowan Premium Bonus system does not motivate a highly efficient worker as a less efficient worker and a highly efficient worker can obtain same bonus under this system. Discuss with an example. (PYP 5 Marks July 21)

## Answer 35

Rowan Premium Plan: According to this system a standard time allowance is fixed for the performance of a job and bonus is paid if time is saved.
Under Rowan System, the bonus is that proportion of the time wages as time saved bears to the standard time.

$$
\text { Bonus }=\frac{\text { Time taken }}{\text { Time allowed }} \times \text { Time Saved } \times \text { hourly rate }
$$

Example explaining highly efficient worker and less efficient worker obtaining same bonus:


From the above example, it can be concluded that a highly efficient worker may obtain same bonus as less efficient worker under this system.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a theoretical question on Rowan Premium Bonus Plan testing the knowledge of the examinees that in what situation efficient and less efficient workers will get the same bonus. Majority of examinees did not answer properly. Performance of the examinees was below average.

## Question 36

A skilled worker is paid a guaranteed wage rate of ₹ 150 per hour. The standard time allowed for a job is 10 hours. He took $\mathbf{8}$ hours to complete the job. He has been paid the wages under Rowan Incentive Plan.

You are required to:
(i) Calculate an effective hourly rate of earnings under Rowan Incentive Plan.
(ii) Calculate the time in which he should complete the job, if the worker is placed under Halsey Incentive Scheme (50\%) and he wants to maintain the same effective hourly rate of earnings. (PYP 5 Marks

## Dec '21)

## Answer 36

(i) Calculation of Effective hourly rate of earnings under Rowan Incentive Plan: Standard time allowed = 10 hours

Time taken $=8$ hours; Time saved $=2$ hours

|  | Particulars | Amount (₹) |
| :--- | :--- | ---: |
| A | Basic guaranteed wages (₹150 $\times 8$ hours) | 1,200 |
| B | Add: Bonus for time saved $(2 / 10 \times 8 \times ₹ 150)$ | 240 |
| C | Total earnings (A+B) | 1,440 |
| D | Hours worked | 8 hours |
| E | Effective hourly rate (C $\div$ D) | 180 |

(ii) Let the time taken to complete the job is " $T$ " and the time saved is 10-T Effective hourly rate under the Halsey Incentive scheme

$$
\begin{aligned}
& =\frac{(\text { Rate } \times \text { Hours Worked })+(\text { Rate } \times 50 \% \text { of Time Saved })}{\text { Hours Worked }}=₹ 180 \\
& \frac{(\text { Rs. } 150 \times T)+\text { Rs. } 150 \times 50 \%(10-T)}{T}=\text { Rs. } 180 \\
& 150 \mathrm{~T}+750-75 \mathrm{~T}=180 \mathrm{~T} \\
& 180 \mathrm{~T}-75 \mathrm{~T}=750 \\
& \mathrm{~T}=\frac{750}{105}=7.14 \text { hours }
\end{aligned}
$$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical question tested the conceptual knowledge of examinees under Rowan incentive plan for the calculation of effective hourly rates. On the basis of calculated effective hourly rate, examinees had to calculate time required to complete job under Halsey incentive scheme. Most of the examinees did will in the first part but failed to equate with the effective hourly rate in the second part of the question. The performance was above average.

## Question 37

Discuss the steps involved in setting labour time standards. (PYP 5 Marks Dec '21)

## Answer 37

## Procedure of Setting Labour Time Standards

The following are the steps involved in setting labour standards:
(a) Standardization: Products to be produced are decided based on production plan and customer's order.
(b) Labour specification: Types of labour and labour time is specified. Labour time specification is based on past records and it takes into account normal wastage of time.
(c) Standardization of methods: Selection of proper machines to use proper sequence and method of operations.
(d) Manufacturing layout: A plan of operation for each product listing the operations to be performed is prepared.
(e) Time and motion study: It is conducted for selecting the best way of completing the job or motions to be performed by workers and the standard time which an average worker will take for each job. This also takes into account the learning efficiency and learning effect.
(f) Training and trial: Workers are trained to do the work and time spent at the time of trial run is noted
down.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theory question to discuss steps involved in setting Labour Time Standards. Majority of the examinees were unable to answer it correct. Performance of the examinees was poor.

## Question 38

PQR Limited has replaced 72 workers during the quarter ended 31st March 2022. The labour rates for the quarter are as follows:

| Flux method | $16 \%$ |
| :--- | :---: |
| Replacement method | $8 \%$ |
| Separation method | $5 \%$ |

## You are required to ascertain:

(i) Average number of workers on roll (for the quarter),
(ii) Number of workers left and discharged during the quarter,
(iii) Number of workers recruited and joined during the quarter,
(iv) Equivalent employee turnover rates for the year. (PYP 5 Marks May'22, Old \& New SM)

## Answer 38

Working Note:
(i) Average number of workers on roll (for the quarter): Employee Turnover rate using Replacement method
$=\frac{\text { No of replacements }}{\text { Average number of workers on roll } \times} \times 100$
Or, $\frac{8}{10}=\frac{72}{\text { Average number of workers on roll } \times} \times 100$
Or, Average number of workers on roll $\frac{72 \times 100}{=\text { Average number of workers on roll } \times}=900$
(ii) Number of workers left and discharged:

Employee turnover rate (Separation method
$\frac{\text { No of Separations(S) }}{=\text { Average number of workers on roll } \times} \times 100=\frac{5}{10}=\frac{S}{900}$ Or, $S=45$ Hence, number of workers left and discharged comes to 45
(iii) Number of workers recruited and joined:

Employee turnover rate (Flux method)

$$
\frac{\text { No. of Separations } *(\mathrm{~S})+\text { No. of Accessions }(\mathrm{A})}{\text { Average number of workers on roll }}
$$

$$
\text { Or , } \frac{16}{10}-\frac{45+A}{900} \text { Or, }\left[\frac{1,44,00}{100}-45\right]=99
$$

Using Flux method $=\frac{16 \%}{1} \times 4=64 \%$

Using Replacement method $=\frac{8 \%}{1} \times 4=32 \%$
Using Separation method $=\frac{5 \%}{1} \times 4=20 \%$

## Question 39

Explain the treatment of Overtime Premium in following situations:
(i) SV \& Co. wants to grab some special orders, and overtime is required to meet the same.
(ii) Dept. X has to work overtime to make up a shortfall in production due to some fault of management in dept. Y.
(iii) S Ltd. has to work overtime regularly throughout the year as a policy due to the workers' shortage.
(iv) Due to flood in Odisha, RS Ltd. has to work overtime to complete the job.
(v) A customer requested the company MN Ltd. to expedite the job because of his urgency of work. (PYP 5 Marks May'22)

## Answer 39

Treatment of Overtime premium in different situations

| Situation | Treatment |
| :--- | :--- |
| (i) SV \& Co. wants to grab some special |  |
| orders, and overtime is required to meet <br> the same. | If overtime is required to cope with general production <br> programmes or for meeting urgent orders, the overtime <br> premium should be treated as overhead cost of the <br> particular department or cost centre which works <br> overtime. |
| (ii) Dept. X has to work overtime to make up |  |
| a shortfall in production due to some |  |
| fault of management in dept. Y. |  |$\quad$| If overtime is worked in a department due to the fault of |
| :--- |
| another department, the overtime premium should be |
| charged to the latter |
| department (Y). |

## Question 40

A skilled worker, in PK Ltd., is paid a guaranteed wage rate of $₹ \mathbf{1 5 . 0 0}$ per hour in a 48-hour week. The standard time to produce a unit is 18 minutes. During a week, a skilled worker -Mr. ' $A$ ' has produced $\mathbf{2 0 0}$ units of the product. The Company has taken a drive for cost reduction and wants to reduce its labour cost.

You are required to:
(i) Calculate wages of Mr. ' $A$ ' under each of the following methods:
(A) Time rate,
(B) Piece -rete with a guaranteed weekly wage,
(C) Halsey Premium Plan
(D) Rowan Premium Plan
(ii) Suggest which bonus plan i.e. Halsey Premium Plan or Rowan Premium Plan, the company should follow. (PYP 6 Marks Nov 22)
(i) Calculation of wages of Mr . ' $A$ ' under different wage schemes:
A. Time rate

$$
\begin{aligned}
\text { Wages } & =\text { Time Worked } \times \text { Rate for the time } \\
& =48 \text { hours } \times ₹ 15 \\
& =₹ 720
\end{aligned}
$$

B. Piece rate with a guaranteed weekly wage

$$
\begin{aligned}
& \begin{aligned}
\text { Wages } & =\text { Number of units produced } \times \text { Rate per unit } \\
& =200 \text { units } \times ₹ 4.50^{*} \\
& =₹ 900
\end{aligned} \\
& * \text { (₹ } 15 \text { / } 60 \text { minutes) } \times 18 \text { minutes }=₹ 4.50
\end{aligned}
$$

C. Halsey Premium Plan

$$
\begin{aligned}
& \text { Wages }=\begin{aligned}
\text { Wages } & =\text { Time taken } \times \text { Time rate }+50 \% \text { of time saved } \times \text { Time rate } \times \text { Time rate }+50 \% \text { (Standard time }- \text { Actual time) } \times \text { Time rate } \\
& =(48 \text { hours } \times ₹ 15)+50 \% \text { of ( } 60 \text { hours\# }-48 \text { hours) } \times ₹ 15 \\
& =₹ 720+₹ 90 \\
& =₹ 810
\end{aligned}
\end{aligned}
$$

\#(200 units x 18 minutes) / 60 minutes = 60 hours
D. Rowan Premium Plan

Wages $=$ Time taken $\times$ Rate per hour $+\frac{\text { Time Saved }}{\text { Time Allowed }} \times$ Time taken $X$ Rate per hour
$=(48$ hours X Rs. 15$)+\left(\frac{60-48 \text { hours }}{60 \text { hours }} \times 48\right.$ hours X Rs. 15 $)$
$=$ Rs. $720+$ Rs. 144
= Rs. 864
(ii) The company may follow Halsey Premium Plan over Rowan Premium Bonus Plan as the total wages paid is lower than that of Rowan Premium Bonus Plan.

## Question 41

SMC Company Limited is producing a particular design of toys under the following existing incentive system:

Normal working hours in the week Late shift hours in the week

Rate of payment

48 hours
12 hours
Normal working: `150 per hour Late shift:` 300 per hour

Average output per operator for 60 hours per week (including late shift hours): 80 toys.
The company's management has now decided to implement a system of labour cost payment with either the Rowan Premium Plan or the Halsey Premium Plan in order to increase output, eliminate late shift overtime, and reduce the labour cost.

The following information is obtained:
The standard time allotted for ten toys is seven and half hours.

Time rate: ` 150 per hour (as usual).
Assuming that the operator works for 48-hours in a week and produces 100 toys, you are required to calculate the weekly earnings for one operator under-
(i) The existing Time Rate,
(ii) Rowan Premium Plan and,
(iii) Halsey Premium Plan (50\%). (5 Marks, May '23)

## Answer 41

## Working Notes:

(1) Effective rate per hour:

Incentive for 60 hours $=(` 150 \times 48$ hours + $300 \times 12$ hours)
$=7,200+3,600=` 10,800$
$=` 10,800 \div 60$ hours $=` 180$ per hour
(2) Time taken/ Allowed to produce 100 toys:
$=(\mathbf{6 0}$ hours $\div \mathbf{8 0}$ toys $) \times \mathbf{1 0 0}$ toys $=\mathbf{7 5}$ hours
(3) Time saved $=$ Time Allowed - Time Taken
$=75$ hours -48 hours $=27$ hours
(i) Calculation of weekly earnings for one operator under the existing time rate:
$=\left(48\right.$ hours $\left.x^{`} 150\right)+\left(12\right.$ hours $\left.x^{`} 300\right)=` 10,800$
Alternative solution
$=$ Effective rate per hour (WN-1) $\times$ Time required for 100 toys (WN-2)
$=` 180 \times 75$ hours $=` 13,500$
(ii) Calculation of weekly earnings for one operator under Rowan Premium plan:
(Time taken $\times$ Rate per hour) + (Time Saved/ Time Allowed $\times$ Time taken $\times$ Rate per hour)
$=(48$ hours $\times ` 150)+[(27 \div 75) \times 48 \times ` 150]$
$=7,200+2,592=` 9,792$
(iii) Calculation of weekly earnings for one operator under Halsey Premium plan:
(Time taken $\times$ Rate per hour) $+(50 \%$ of Time Saved $\times$ Rate per hour)
$=(48$ hours $\times$ `150\()+(50 \%\) of 27 hours \(\times\)` 150$)$
$={ }^{`} 7,200+{ }^{`} 2,025=` 9,225$

## Question 42

How does the high employee turnover increase the cost of production? Explain. (5 Marks, May '23)

## Answer 42

## High Employee Turnover increases the cost of production

Replacement costs are the costs which arise due to employee turnover. If employees leave soon after they acquire the necessary training and experience of good work, additional costs will have to be incurred on new workers, i.e., cost of recruitment, training and induction, abnormal breakage and scrap and extra wages and overheads due to the inefficiency of new workers.

It is obvious that a company will incur very high replacement costs if the rate of employee turnover is high. Similarly, only adequate preventive costs can keep Employee turnover at a low level. Each company must, therefore, work out the optimum level of Employee turnover keeping in view its personnel policies and the behaviour of replacement cost and preventive costs at various levels of Employee turnover rates.

## Chapter 4 <br> Overheads-Absorption Costing Method

## Question 1

From the details furnished below you are required to COMPUTE a comprehensive machine -hour rate:

Original purchase price of the machine (subject to depreciation at 10\% per annum on original cost)

> Rs. 6,48,000

Normal working hours for the month 200 hours
(The machine works for only 75\% of normal capacity)
Wages to Machine-man Rs. 400 per day (of 8 hours)
Wages to Helper (machine attendant)
Rs. 275 per day (of 8 hours)
Power cost for the month for the time worked
Rs. 65,000
Supervision charges apportioned for the machine center for the month
Rs.18,000
Electricity \& Lighting for the month
Rs. 9,500
Repairs \& maintenance (machine) including Consumable stores per month Rs.17,500
Insurance of Plant \& Building (apportioned) for the year
Rs. 18,250
Other general expense per annum
Rs. 17,500
The workers are paid a fixed Dearness allowance of Rs. 4,575 per month. Production bonus payable to workers in terms of an award is equal to $33.33 \%$ of basic wages and dearness allowance. Add 10\% of the basic wage and dearness allowance against leave wages and holidays with pay to arrive at a comprehensive labour-wage for debit to production. (MTP 10 Marks ,March'19 \& Sep '23)
Answer 1
Effective machine hours $=\mathbf{2 0 0}$ hours $\times \mathbf{7 5 \%}=\mathbf{1 5 0}$ hours
Computation of Comprehensive Machine Hour Rate

| Fixed cost | Permonth <br> (Rs.) | Per hour <br> (Rs.) |
| :--- | :---: | :---: |
| Supervision charges | $18,000.00$ |  |
| Electricity and lighting | $9,500.00$ |  |
| Insurance of Plant and building (Rs.18,250 $\div 12$ ) | $1,520.83$ |  |
| Other General Expenses (Rs.17,500 $\div 12$ ) | $1,458.33$ |  |
| Depreciation (Rs.64,800 $\div 12$ ) | $5,400.00$ |  |
| Direct Cost | $35,879.16$ | 239.19 |
| Repairs and maintenance | $17,500.00$ | 116.67 |
| Power | $65,000.00$ | 433.33 |
| Wages of machine man |  | 139.27 |
| Wages of Helper |  | 109.41 |
| Machine Hour rate (Comprehensive) |  | $1,037.87$ |

Wages per machine hour

|  | Machine man | Helper |
| :--- | :---: | :---: |
| Wages for 200 hours |  |  |
| Machine-man (Rs.400 $\times 25$ ) | Rs.10,000.00 | --- |
| Helper (Rs.275 $\times 25$ ) | --- | Rs.6,875.00 |
| Dearness Allowance (DA) | Rs.4,575.00 | Rs.4,575.00 |
|  | Rs. 14,575.00 | Rs. 11,450.00 |
| Production bonus (1/3 of Basic and DA) | $4,858.33$ | $3,816.67$ |
| Leave wages (10\% of Basic and DA) | $1,457.50$ | $1,145.00$ |


|  | $20,890.83$ | $16,411.67$ |
| :--- | :--- | :--- |
| Effective wage rate per machine hour | Rs.139.27 | Rs.109.41 |

## Question 2

A machine shop cost centre contains three machines of equal capacities.
To operate these three machines nine operators are required i.e. three operators on each machine. Operators are paid ₹ $\mathbf{2 0}$ per hour. The factory works for forty eight hours in a week which includes 4 hours set up time. The work is jointly done by operators. The operators are paid fully for the fourty eight hours. In additions they are paid a bonus of 10 per cent of productive time. Costs are reported for this company on the basis of thirteen four-weekly period. The company for the purpose of computing machine hour rate includes the direct wages of the operator and also recoups the factory overheads allocated to the machines. The following details of factory overheads applicable to the cost centre are available:

- Depreciation $10 \%$ per annum on original cost of the machine. Original cost of the each machine is ₹ 52,000.
- Maintenance and repairs per week per machine is ₹ 60 .
- Consumable stores per week per machine are ₹ 75.
- Power : $\mathbf{2 0}$ units per hour per machine at the rate of $\mathbf{8 0}$ paise per unit.
- Apportionment to the cost centre : Rent per annum ₹ 5,400, Heat and Light per annum ₹ 9,720, foremani's salary per annum ₹ 12,960 and other miscellaneous expenditure per annum ₹ 18,000.
Required:
(i) CALCULATE the cost of running one machine for a four-week period.
(ii) CALCULATE machine hour rate. (MTP March '18,10 Marks)


## Answer 2

Effective Machine hour for four-week period
$=$ Total working hours - unproductive set-up time
$=\{(48$ hours $\times 4$ weeks $)-\{(4$ hours $\times 4$ weeks $)\}=(192-16)$ hours $)=176$ hours.
(i) Computation of cost of running one machine for a four-week period

| Standing charges (per annum) | (₹) | (₹) |
| :--- | :--- | :--- |
| (A) |  |  |
| Rent | $5,400.00$ |  |
| Heat and light | $9,720.00$ |  |
| Forman's salary | $12,960.00$ |  |
| Other miscellaneous expenditure | $18,000.00$ |  |
| Standing charges (per annum) | $46,080.00$ |  |
| $\begin{array}{l}\text { Total expenses for one machine for four week period } \\ \text { ₹46,080 }\end{array}$ |  | $1,181.54$ |
| 3 machines $\times 13$ four - week period |  |  |$)$

(ii) Machine hour rate $=\frac{17,513.54}{176 \text { hours }}=99.51$

## Question 3

Explain Single and Multiple Overhead Rates. (MTP March '18, 5 Marks, Old \& New SM)
Answer 3
Single and Multiple Overhead Rates:

Single overhead rate: It is one single overhead absorption rate for the whole factory.
It may be computed a s follows:
Single overhead rate $=\frac{\text { Overhead costs for the entire factory }}{\text { Total quantity of the base selected }}$
The base can be total output, total labour hours, total machine hours, etc.
The single overhead rate may be applied in factories which produces only one major product on a continuous basis. It may also be used in factories where the work performed in each department is fairly uniform and standardized. Multiple overhead rate: It involves computation of separate rates for each production department, service department, cost center and each product for both fixed and variable overheads. It may be computed as follows:
Multiple overhead rate $=\frac{\text { overhead allocated / apportioned to each department } / \text { cost centre or product }}{\text { Corresponding base }}$
Under multiple overhead s rate, jobs or products are charged with varying amount of factory overheads depending on the type and number of departments through which they pass.
However, the number of overheads rate which a firm may compute would depend upon two opposing factors viz. the degree of accuracy desired and the clerical cost involved.

## Question 4

In a factory, a machine is considered to work for 208 hours in a month. It includes maintenance time of $\mathbf{8}$ hours and set up time of $\mathbf{2 0}$ hours. The expense data relating to the machine are as under:
Cost of the machine is Rs. 5,00,000. Life 10 years. Estimated scrap value at the end of life is Rs. 20,000. (Rs.)

- Repairs and maintenance per annum 60,480
- Consumable stores per annum 47,520
- Rent of building per annum
(The machine under reference occupies $1 / 6$ of the area)
72,000
- Supervisor's salary per month (Common to three machines)

6,000

- Wages of operator per month per machine
- General lighting charges per month allocated to the machine

1,000

- Power 25 units per hour at Rs. 2 per unit

Power is required for productive purposes only. Set up time, though productive, does not require power. The Supervisor and Operator are permanent. Repairs and maintenance and consumable stores vary with the running of the machine.
Required
COMPUTE a two-tier machine hour rate for (a) set up time, and (b) running time. (MTP Aug.'18, 10 Marks)

## Answer 4

## Working Notes:

1. (i) Effective hours for standing charges ( 208 hours -8 hours) $=200$ hours
(ii) Effective hours for variable costs (208 hours -28 hours) $=180$ hours
2. Standing Charges per hour

|  | Cost per month <br> (Rs.) | Cost per hour (Rs.) <br> (Cost per month $\div \mathbf{2 0 0}$ <br> hours) |
| :--- | :--- | :--- |
| Supervisor's salary $\left(\frac{\text { Rs.6,000 }}{3 \text { machines }}\right)$ | 2,000 | 10.00 |
| Rent of building $\left(\frac{1}{6} \times \frac{\text { Rs.72,000 }}{12 \text { month }}\right)$ | 1,000 | 5.00 |
| General lighting | 1,000 | 5.00 |
| Total Standing Charges | 4,000 | 20.00 |

3. Machine running expenses per hour
\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Cost per month } \\
\text { (Rs.) }\end{array} & \text { Cost per hour (Rs.) } \\
\hline \begin{array}{c}\text { Depreciation } \\
\left(\frac{\text { Rs. }(5,00,000-20,000)}{10 \text { years }} \times \frac{1}{12 \text { months }}\right)\end{array}
$$ \& 4,000 \& 20.00 <br>

\left(\frac{R s .4,000}{200 h o u r s}\right)\end{array}\right]\)| Wages | 2,500 | 12.50 |
| :--- | :--- | :--- |


|  |  | $\left(\frac{R s .2,500}{200 \text { hour } s}\right)$ |
| :--- | :--- | :--- |
| Repairs \& Maintenance $\left(\frac{\text { Rs. 60,480 }}{12 \text { Months }}\right)$ | 5,040 | 28.00 |
| $\left(\frac{\text { Rs. 47,520 }}{12 \text { Months }}\right)$ |  | $\left(\frac{R s .5,040}{180 \text { hours }}\right)$ |
| Consumable stores | 3,960 | 22.00 |
| Power (25 units $\times$ Rs. $2 \times 180$ hours $)$ |  | $\left(\frac{\text { Rs. } 3,960}{180 \text { hours }}\right)$ |
| Total Machine Expenses | 9,000 | 50.00 |


| Computation of Two - tier machine hour rate | Set up time rate per <br> machine hour | Running time rate per <br> machine hour |
| :--- | :--- | :--- |
|  | (Rs.) | (Rs.) |
| Standing Charges | 20.00 | 20.00 |
| Machine expenses : |  |  |
| Depreciation | 20.00 | 20.00 |
| Repair and maintenance | - | 28.00 |
| Consumable stores | - | 22.00 |
| Power | - | 50.00 |
| Machine hour rate of overheads | 40.00 | 140.00 |
| Wages | 12.50 | 12.50 |
| Comprehensive machine hour rate | 52.50 | 152.50 |

## Question 5

V Ltd. manufactures luggage trolleys for airports. The factory, in which the company undertakes all of its production, has two production departments- 'Fabrication' and 'Assembly', and two service departments- 'Stores' and 'Maintenance'.
The following information have been extracted from the company's budget for the financial year ended 31st March, 2019:

| Particulars <br> Allocated Overhead Costs <br> Fabrication Department |  | Rs.$15,52,000$ |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| Assembly Department |  | 7,44,000 |
| Stores Department |  | 2,36,000 |
| Maintenance Department Other Overheads |  | 1,96,000 |
| Factory rent |  | 15,28,000 |
| Factory building insurance |  | 1,72,000 |
| Plant \& machinery insurance |  | 1,96,000 |
| Plant \& Machinery Depreciation |  | 2,65,000 |
| Subsidy for staffs' canteen Direct Costs | Rs. | $4,48,000$ |
| Fabrication Department: |  |  |
| Material | 63,26,000 |  |
| Labour | 8,62,000 | 71,88,000 |
| Assembly Department: |  |  |
| Material | 1,42,000 |  |
| Labour | 13,06,000 | 14,48,000 |

The following additional information is also provided:

|  | Fabrication <br> Department | Assembly <br> Department | Stores <br> Department | Maintenance <br> Department |
| :--- | :--- | :--- | :--- | :--- |


| Floor area <br> (square meters) | 24,000 | 10,000 | 2,500 | 3,500 |
| :--- | :--- | :--- | :--- | :--- |
|  <br> machinery (Rs.) | $16,50,000$ | $7,50,000$ | 75,000 | $1,75,000$ |
| No. of stores <br> requisitions | 3,600 | 1,400 | - | - |
| Maintenance <br> hours required | 2,800 | 2,300 | 400 | - |
| No. of employees | 120 | 80 | 38 | 12 |
| Machine hours | $30,00,000$ | 60,000 |  |  |
| Labour hours | 70,000 | $26,00,000$ |  |  |

Required:
(i) PREPARE a table showing the distribution of overhead costs of the two service departments to the two production departments using step method; and
(ii) Calculate the most appropriate overhead recovery rate for each department.
(iii) Using the rates calculated in part (ii) above, CALCULATE the full production costs of the following job order:
Job number IGI2019
Direct Materials
Rs. 2,30,400

Direct Labour:
Fabrication Department 240 hours @ Rs. 50 per hour Assembly Department 180 hours @ Rs. 50 per hour
Machine hours required:
Fabrication Department 210 hours
Assembly Department 180 hours (MTP Oct. '19 \& April '23 10 Marks)
Answer 5
(i) Table of Primary Distribution of Overheads

| Particulars | Basis of Apportionment | Total Amount | Production Department |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Fabrication | Assembly | Stores | Maintenance |
| Overheads <br> Allocated |  | 27,28,000 | 15,52,000 | 7,44,000 | 2,36,000 | 1,96,000 |
| Direct Costs Other Overheads: | Actual | 86,36,000 | 71,88,000 | 14,48,000 | - | - |
| Factory rent | Floor Area (48:20:5:7) | 15,28,000 | 9,16,800 | 3,82,000 | 95,500 | 1,33,700 |
| Factory building insurance | $\begin{aligned} & \text { Floor Area } \\ & \text { (48:20:5:7) } \end{aligned}$ | 1,72,000 | 1,03,200 | 43,000 | 10,750 | 15,050 |
| Plant \& Machinery insurance | Value of Plant \& Machinery (66:30:3:7) | 1,96,000 | 1,22,038 | 55,472 | 5,547 | 12,943 |
|  <br> Machinery Depreciation | Value of Plant \& Machinery (66:30:3:7) | 2,65,000 | 1,65,000 | 75,000 | 7,500 | 17,500 |
| Canteen Subsidy | No. of Employees (60:40:19:6) | 4,48,000 | 2,15,040 | 1,43,360 | 68,096 | 21,504 |
|  |  | 1,39,73,000 | 1,02,62,078 | 28,90,832 | 4,23,393 | 3,96,697 |

Re-distribution of Service Departments' Expenses:

| Particulars | Basis of <br> Apportionment | Production <br> Department | Service <br> Departments |
| :---: | :---: | :---: | :---: |

striving towards knowledge

|  |  | Fabrication | Assembly | Stores | Maintenance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Overheads <br> as per Primary <br> distribution | As per Primary <br> distribution | $1,02,62,078$ | $28,90,832$ | $4,23,393$ | $3,96,697$ |
| Maintenance <br> Department <br> Cost | Maintenance <br> Hours <br> (28:23:4:-) | $2,01,955$ | $1,65,891$ | 28,851 | $(3,96,697)$ |
|  |  | $1,04,64,033$ | $30,56,723$ | $4,52,244$ | - |
| Stores <br> Department | No. of Stores <br> Requisition <br> $(18: 7:-:-)$ | $3,25,616$ | $1,26,628$ | $(4,52,244)$ |  |
|  |  | $1,07,89,649$ | $31,83,351$ | - | - |

(ii) Overhead Recovery Rate

| Department | Apportioned <br> Overhead (Rs.) <br> (I) | Basis of Overhead <br> Recovery Rate <br> (II) | Overhead Recovery Rate (Rs.) |
| ---: | :--- | :--- | :--- | :--- |
| Fabrication | $1,07,89,649$ | $30,00,000$ Machine Hours | 3.60 per Machine Hour |
| Assembly | $31,83,351$ | $26,00,000$ Labour Hours | 1.22 per Labour Hour |

(iii)

| Calculation of full production costs of Job no. IGI2019. <br> Particulars | Amount (Rs.) |
| :--- | :--- |
| Direct Materials | $2,30,400$ |
| Direct Labour: |  |
| Fabrication Deptt. (240 hours $\times$ Rs.50) | 12,000 |
| Assembly Deptt. (180 hours $\times$ Rs.50) | 9,000 |
| Production Overheads: | 756 |
| Fabrication Deptt. (210 hours $\times$ Rs. 3.60) | 220 |
| Assembly Deptt. (180 hours $\times$ Rs. 1.22) | $2,52,376$ |
| Total Production Cost |  |

## Question 6

You are given the following information of the three machines of a manufacturing department of $X$ Ltd.:

Preliminary estimates of expenses (per annum)

|  | Total (Rs.) |  | Machines |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A (Rs.) | B (Rs.) | C (Rs.) |
| Depreciation | 20,000 | 7,500 | 7,500 | 5,000 |
| Spare parts | 10,000 | 4,000 | 4,000 | 2,000 |
| Power | 40,000 |  |  |  |
| Consumable stores | 8,000 | 3,000 | 2,500 | 2,500 |
| Insurance of machinery | 8,000 |  |  |  |
| Indirect employee cost | 20,000 |  |  |  |
| Building maintenance expenses | 20,000 |  |  |  |
| Annual interest on capital outlay | 50,000 | 20,000 | 20,000 | 10,000 |
| Monthly charge for rent and rates | 10,000 |  |  |  |
| Salary of foreman (per month) | 20,000 |  |  |  |
| Salary of Attendant (per month) | 5,000 |  |  |  |

(The foreman and attendant control all the three machines and spend equal time on each of them.)
The following additional information is also available:

Machines

|  | A | B | C |
| :--- | :--- | :--- | :--- |
| Estimated Direct Labour Hours | $1,00,000$ | $1,50,000$ | $1,50,000$ |
| Ratio of K.W. Rating | 3 | 2 | 3 |
| Floor space (sq. ft.) | 40,000 | 40,000 | 20,000 |

There are 12 holidays besides Sundays in the year, of which two were on Saturdays. The manufacturing department works 8 hours in a day but Saturdays are half days. All machines work at $\mathbf{9 0 \%}$ capacity throughout the year and $2 \%$ is reasonable for breakdown.
You are required to:
CALCULATE predetermined machine hour rates for the above machines after taking into consideration the following factors:

- An increase of $\mathbf{1 5 \%}$ in the price of spare parts.
- An increase of $\mathbf{2 5 \%}$ in the consumption of spare parts for machine ' $B$ ' \& ' $C$ ' only.
- 20\% general increase in wages rates. (MTP Oct. '18, 10 Marks, RTP Nov 20)


## Answer 6

Computation of Machine Hour Rate

|  |  | Basis of apportionment | Total (₹) |  | Machines | C (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (A) | Standing Charges |  |  | A (₹) | B (₹) |  |
|  | Insurance | Depreciation Basis |  |  |  |  |
|  | Indirect employee cost | (3:3:2) <br> Direct Labour hours | 8,000 | 3,000 | 3,000 | 2,000 |
|  |  | (2:3:3) | 7 24,000 | ( 6,000 | 9,000 | 9,000 |
|  | Building maintenance expenses | $\begin{gathered} \text { Floor Space } \\ (2: 2: 1) \end{gathered}$ | 20,000 | - 8,000 | 8,000 | 4,000 |
|  | Rent and Rates | Floor Space (2:2:1) | 1,20,000 | - 48,000 | 48,000 | 24,000 |
|  | Salary of foreman | Equal | 2,40,000 | - 80,000 | 80,000 | 80,000 |
|  | Salary of attendant | Equal | 60,000 | - 20,000 | 20,000 | 20,000 |
|  | Total standing charges |  | 4,72,000 | (1,65,000 | - 1,68,000 | 1,39,000 |
| Hourly rate for standing charges |  |  | 84.70 |  | 86.24 | 71.36 |
| (B) | Machine Expenses: |  |  |  |  |  |
|  | Depreciation | Direct | 20,000 | 7,500 | 7,500 | 5,000 |
|  | Spare parts | Final estimates | 13,225 | 4,600 | 5,750 | 2,875 |
|  | Power | K.W. rating (3:2:3) | 40,000 | 15,000 | 10,000 | 15,000 |
|  | Consumable Stores | Direct | 8,000 | 3,000 | 2,500 | 2,500 |
|  | Total Machine expenses |  | 81,225 | 30,100 | 25,750 | 25,375 |
| Hourly Rate for Machine expenses |  |  |  | 15.45 | 13.22 | 13.03 |
| Total ( $\mathrm{A}+\mathrm{B}$ ) |  |  | 553,225 | 1,95,100 | 1,93,750 | 1,64,375 |
| Machine Hour rate |  |  |  | 100.15 | 99.46 | 84.38 |

## Working Notes:

(i) Calculation of effective working hours:

No. of full off-days $=$ No. of Sunday + No. of holidays

$$
=52+12=64 \text { days }
$$

No. of half working days $=52$ days -2 holidays $=50$ days
No. of full working days
$=365$ days -64 days -50 days $=251$ days
Total working Hours
$=\{(251$ days $\times 8$ hours $)+(50$ days $\times 4$ hours $)\}$
$=2,008$ hours $+200=2,208$ hours.
Total effective hours = Total working hours $\times 90 \%-2 \%$ for break-down
$=2,208$ hours $\times 90 \%-2 \%$ ( 2,208 hours $\times 90 \%$ )
$=1,987.2$ hours -39.74 hours
$=1947.46$ or Rounded up to 1948 hours.
(ii) Amount of spare parts is calculated as under:

|  | A (₹) | B (₹) | C (₹) |
| :--- | :---: | :---: | :--- |
| Preliminary estimates | 4,000 | 4,000 | 2,000 |
| Add: Increase in price @ 15\% | 600 | 600 | 300 |
|  | 4,600 | 4,600 | 2,300 |
| Add: Increase in consumption @ 25\% | - | 1,150 | 575 |
| Estimated cost | 4,600 | 5,750 | 2,875 |

(iii) Amount of Indirect employee cost is calculated as under:

| Preliminary estimates | 20,000 |
| :--- | ---: |
| Add: Increase in wages @ 20\% | 4,000 |
|  | 24,000 |

(iv) Interest on capital outlay is a finance cost, therefore it has been excluded from the cost accounts.

## Question 7

EXPLAIN the difference between Allocation and Apportionment of expenses. (MTP Oct. '18, 5 Marks, Old \& New SM)

## Answer 7

The difference between the allocation and apportionment is important to understand because the purpose of these two methods is the identification of the items of cost to cost units or centers. However, the main difference between the above methods is given below.
(1) Allocation deals with the whole items of cost, which are identifiable with any one department. For example, indirect wages of three departments are separately obtained and hence each department will be charged by the respective amount of wages individually.
On the other hand, apportionment deals with the proportions of an item of cost for example; the cost of the benefit of a service department will be divided between those departments which has availed those benefits.
(2) Allocation is a direct process of charging expenses to different cost centres whereas apportionment is an indirect process because there is a need for the identification of the appropriate portion of an expense to be borne by the different departments benefited.
(3) The allocation or apportionment of an expense is not dependent on its nature, but the relationship between the expense and the cost centre decides that whether it is to be allocated or apportioned.
(4) Allocation is a much wider term than apportionment.

## Question 8

A Ltd. manufactures two products- $A$ and $B$. The manufacturing division consists of two production departments $P_{1}$ and $P_{2}$ and two service departments $S_{1}$ and $S_{2}$. Budgeted overhead rates are used in the production departments to absorb factory overheads to the products. The rate of Department $P_{1}$ is based on direct machine hours, while the rate of Department $P_{2}$ is based on direct Labour hours. In applying overheads, the pre-determined rates are multiplied by actual hours.
Marks, Oct.'2020)
For allocating the service department costs to production departments, the basis adopted is as follows:
(i) Cost of Department $S_{1}$ to Department $P_{1}$ and $P_{2}$ equally, and
(ii) Cost of Department $S_{2}$ to Department $P_{1}$ and $P_{2}$ in the ratio of 2:1 respectively. The following budgeted and actual data are available: Annual profit plan data:

Factory overheads budgeted for the year:

| Departments | $P_{1}$ | $27,51,000$ | $S_{1}$ | $8,00,000$ |
| :--- | :--- | :--- | :--- | :--- |
|  | $P_{\mathbf{2}}$ | $24,50,000$ | $\mathrm{~S}_{\mathbf{2}}$ | $6,00,000$ |

Budgeted output in units: Product A 50,000; B 30,000.
Budgeted raw-material cost per unit: Product A ₹ 120; Product B ₹ 150.
Budgeted time required for production per unit:
Department $\mathrm{P}_{1}$ :
Product A: 1.5 machine hours
Product B: 1.0 machine hour
Department $\mathbf{P}_{\mathbf{2}}$ :
Product A: 2 Direct Labour hours
Product B : 2.5 Direct Labour hours
Average wage rates budgeted in Department $\mathbf{P}_{\mathbf{2}}$ are:
Product A - ₹ 72 per hour and Product B-₹ 75 per hour. All materials are used in Department $P_{1}$ only.

Actual data (for the month of Jan, 2020):
Units actually produced: Product A : 4,000 units
Product B : 3,000 units
Actual direct machine hours worked in Department $\mathrm{P}_{1}$ :
On Product A 6,100 hours, Product B 4,150 hours. Actual direct Labour hours worked in Department $P_{2}$ :

On Product A 8,200 hours, Product B 7,400 hours.

| Costs actually incurred: |  | Product A |  | Product B |
| :--- | :--- | :--- | ---: | ---: |
| Raw materials |  | $₹ 4,89,000$ | $₹ 4,56,000$ |  |
| Wages |  | $5,91,900$ |  | $5,52,000$ |
| Overheads: Department | $P_{1}$ | $2,50,000$ | $S_{1}$ | 80,000 |
|  | $P_{2}$ | $2,25,000$ | $\mathrm{~S}_{\mathbf{2}}$ | 60,000 |

You are required to:
(i) COMPUTE the pre-determined overhead rate for each production department.
(ii) PREPARE a performance report for Jan, 2020 that will reflect the budgeted costs and actual costs.
(MTP 10 Marks, Oct'20) (Same concept different
figures Old \& New SM)

## Answer 8

(i) Computation of pre-determined overhead rate for each production department from budgeted data

|  | Production Department |  | Service Department |  |
| :---: | :---: | :---: | :---: | :---: |
|  | P1 | P2 | S1 | S2 |
| Budgeted factory overheads for the year (₹) | 27,51,000 | 24,50,000 | 8,00,000 | 6,00,000 |
| Allocation of service department $S_{1}$ 's costs to production departments $\mathrm{P}_{1}$ and $P_{2}$ equally ( $₹$ ) | 4,00,000 | 4,00,000 | $(8,00,000)$ | -- |
| Allocation of service department $\mathrm{S}_{2}$ 's costs to production departments $\mathrm{P}_{1}$ and $P_{2}$ in the ratio of 2:1 (₹) | 4,00,000 | 2,00,000 | - | (6,00,000) |
| Total | 35,51,000 | 30,50,000 | -- | -- |

VIVITSU

| Budgeted machine hours in <br> department $P_{1}$ (working note-1) | $1,05,000$ | -- |  |  |
| :--- | ---: | ---: | ---: | :--- |
| Budgeted labour hours in department <br> $P_{2}$ (working note-1) | -- | $1,75,000$ |  |  |
| Budgeted machine/ labour hour rate | 33.82 | 17.43 |  |  |

(ii) Performance report for Jan, 2020
(When 4,000 and 3,000 units of Products A and B respectively were actually produced)

|  | Budgeted <br> (₹) | Actual (₹) |
| :---: | :---: | :---: |
| Raw materials used in Dept. $\mathrm{P}_{\mathbf{1}}$ : |  |  |
| A : 4,000 units $\times$ Rs. 120 | 4,80,000 | 4,89,000 |
| B : 3,000 units $\times$ Rs. 150 | 4,50,000 | 4,56,000 |
| Direct Labour cost <br> (on the basis of Labour hours worked in department $\mathrm{P}_{2}$ ) |  |  |
| A : 4,000 units $\times 2 \mathrm{hrs} . \times$ Rs. 72 | 5,76,000 | 5,91,900 |
| B : 3,000 units $\times 2.5 \mathrm{hrs} \times$ Rs. 75 | 5,62,500 | 5,52,000 |
| Overhead absorbed on machine hour basis in Dept. $\mathrm{P}_{1}$ : |  |  |
| A : 4,000 units $\times 1.5 \mathrm{hrs} . \times$ Rs. 33.82 | 2,02,920 | 1,96,420* |
| B : 3,000 units $\times 1 \mathrm{hr} . \times$ Rs. 33.82 | 1,01,460 | 1,33,630* |
| Overhead absorbed on Labour hour basis in Dept. $\mathrm{P}_{\mathbf{2}}$ : |  |  |
| A : 4,000 units $\times 2$ hrs. $\times$ Rs. 17.43 | 1,39,440 | 1,49,814** |
| B : 3,000 units $\times 2.5 \mathrm{hrs} . \times$ Rs. 17.43 | 1,30,725 | 1,35,198** |
|  | 26,43,045 | 27,03,962 |

* (Refer to working note 4) ** (Refer to working note 5)


## Working notes

1. 

|  | Product A | Product B | Total |
| :--- | ---: | ---: | :---: |
| Budgeted output (units) | 50,000 | 30,000 |  |
| Budgeted machine hours in Dept. <br> $P_{1}$ | 75,000 | 30,000 | $1,05,000$ |
| Budgeted Labour hours in Dept. $P_{2}$ | $(50,000 \times 1.5 \mathrm{hrs})$. | $(30,000 \times 1 \mathrm{hr})$. |  |

2. 

|  | Product A | Product B | Total |
| :--- | :---: | :---: | :---: |
| Actual output (units) | 4,000 | 3,000 |  |
| Actual machine hours utilized in Dept. $\mathrm{P}_{1}$ | 6,100 | 4,150 | 10,250 |
| Actual labour hours utilised in Dept. $\mathrm{P}_{2}$ | 8,200 | 7,400 | 15,600 |

3. Computation of actual overhead rates for each production department from actual data

|  | Production Department |  | Service Department |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{1}$ | $\mathrm{P}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ |
| Actual factory overheads for the month of Jan, 2020 (₹) | 2,50,000 | 2,25,000 | 80,000 | 60,000 |
| Allocation of service Dept. $S_{1}$ 's costs to production Dept. $P_{1}$ and $P_{2}$ equally ( $₹$ ) | 40,000 | 40,000 | $(80,000)$ | ? |


| Allocation of service Dept. S2's costs to production | 40,000 | 20,000 | (60,000) |  |
| :--- | ---: | ---: | ---: | ---: |
| Dept. $P_{1}$ and $P_{2}$ in the ratio of 2:1 (₹) |  |  |  |  |
| Total | $3,30,000$ | $2,85,000$ | -- | -- |
| Actual machine hours in Dept. $P_{1}$ (working note 2) | 10,250 | -- |  |  |
| Actual labour hours in Dept. $P_{2}$ (working note 2) | -- | 15,600 |  |  |
| Actual machine/ labour hour rate (₹) | 32.20 | 18.27 |  |  |

4. Actual overheads absorbed (based on machine hours)

A : 6,100 hrs $\times$ Rs. $32.20=1,96,420$
B : 4,150 hrs $\times$ R s. 32.20 $=1,33,630$
5. Actual overheads absorbed (based on labour hours)

A: 8,200 hrs $\times$ Rs. $18.27=1,49,814$
B: 7,400 hrs $\times$ Rs. $18.27=1,35,198$

## Question 9

The following account balances and distribution of indirect charges are taken from the accounts of a manufacturing concern for the year ending on 31st March 2021

| Item | Total Amount | Production Departments |  |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (Rs.) | X (Rs.) | Y (Rs.) | Z (Rs.) | A (Rs.) | B (Rs.) |
| Indirect Material | 2,50,000 | 40,000 | 60,000 | 90,000 | 50,000 | 10,000 |
| Indirect Labour | 5,20,000 | 90,000 | 1,00,000 | 1,40,000 | 1,20,000 | 70,000 |
| Supervisor's Salary | 1,92,000 | - | - | 1,92,000 | - | - |
| Fuel \& Heat | 30,000 | [10 |  |  | - 5 ) 5 |  |
| Power | 3,60,000 |  |  |  |  |  |
| Rent \& Rates | 3,00,000 |  |  |  |  |  |
| Insurance | 36,000 |  |  |  |  |  |
| Canteen Charges | 1,20,000 |  |  |  |  |  |
| Depreciation | 5,40,000 |  |  |  |  |  |

The following departmental data are also available:

|  | Production Departments |  |  | Service Departments |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ | $\mathbf{A}$ | B |
| Area (Sq. ft.) | 4,400 | 4,000 | 3,000 | 2,400 | 1,200 |
| Capital Value of Assets <br> (Rs.) | $40,00,000$ | $60,00,000$ | $50,00,000$ | $10,00,000$ | $20,00,000$ |
| Kilowatt Hours | 3,500 | 4,000 | 3,000 | 1,500 | - |
| Radiator Sections | 20 | 40 | 60 | 50 | 30 |
| No. of Employees | 60 | 70 | 120 | 30 | 20 |

Expenses charged to the service departments are to be distributed to other departments by the following percentages:

|  | X | Y | Z | A | B |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Department A (\%) | 30 | 30 | 20 | - | 20 |
| Department B (\%) | 25 | 40 | 25 | 10 | - |

PREPARE an overhead distribution statement to show the total overheads of production departments after re-apportioning service departments' overhead by using simultaneous equation method. Show all the calculations to the nearest rupee. (MTP 10 Marks, Mar 21)(Same concept
4.12

STRIVING TOWARDS KNOWLEDGE

## different figures MTP 10 Marks Nov'21)

## Answer 9

Primary Distribution of Overheads

| Item | Basis | Total Amount (Rs.) | Production Departments |  |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X (Rs.) | Y (Rs.) | Z (Rs.) | A (Rs.) | B (Rs.) |
| Indirect Material | Actual | 2,50,000 | 40,000 | 60,000 | 90,000 | 50,000 | 10,000 |
| Indirect Labour | Actual | 5,20,000 | 90,000 | 1,00,000 | 1,40,000 | 1,20,000 | 70,000 |
| Supervisor's Salary | Actual | 1,92,000 | - |  | 1,92,000 |  |  |
| Fuel \& Heat | Radiator Sections \{2:4:6:5:3\} | 30,000 | 3,000 | 6,000 | 9,000 | 7,500 | 4,500 |
| Power | Kilowatt Hours $\{7: 8: 6: 3:-\}$ | 3,60,000 | 1,05,000 | 1,20,000 | 90,000 | 45,000 | - |
| Rent \& Rates | $\begin{aligned} & \text { Area (Sq. ft.) } \\ & \{22: 20: 15: 12: 6\} \end{aligned}$ | 3,00,000 | 88,000 | 80,000 | 60,000 | 48,000 | 24,000 |
| Insurance | Capital Value of Assets \{4:6:5:1:2\} | 36,000 | 8,000 | 12,000 | 10,000 | 2,000 | 4,000 |
| Canteen Charges | No. of Employees \{6:7:12:3:2 \} | 1,20,000 | 24,000 | 28,000 | $48,000$ | 12,000 | 8,000 |
| Depreciation | Capital Value of Assets $\{4: 6: 5: 1: 2\}$ | 5,40,000 | 1,20,000 | 1,80,000 | 1,50,000 | 30,000 | 60,000 |
| Total overheads |  | 23,48,000 | 4,78,000 | 5,86,000 | 7,89,000 | 3,14,500 | 1,80,500 |

## Re-distribution of Overheads of Service Department A and B

Total overheads of Service Departments may be distributed by simultaneous equation.
Let, the total overheads of $A=a$ and the total overheads of $B=b \quad a=3,14,500+0.10 b$
(i) or, $10 \mathrm{a}-\mathrm{b}=31,45,000[(\mathrm{i}) \mathrm{x} 10]$

$$
\begin{gathered}
b=1,80,500+0.20 a \\
\text { or, }-0.20 a+b=1,80,500
\end{gathered}
$$

Solving equation (i) \& (ii) $10 \mathrm{a}-\mathrm{b}=31,45,000$
$-0.20 a+b=1,80,500$
$9.8 a=33,25,500$
$a=$ Rs. $3,39,337$
Putting the value of ' $a$ ' in equation (ii), we get $b=$
$1,80,500+0.20 \times 3,39,337$
$b=$ Rs. $2,48,367$
Secondary Distribution of Overheads

|  | Production Departments |  |  |
| :--- | :---: | :---: | ---: |
|  | X (Rs.) | Y (Rs.) | Z (Rs.) |
| Total overhead as per primary distribution | $4,78,000$ | $5,86,000$ | $7,89,000$ |
| Service Department A (80\% of Rs.3,39,337) | $1,01,801$ | $1,01,801$ | 67,867 |


| Service Department B (90\% of Rs.2,48,367) | 62,092 | 99,347 | 62,092 |
| :--- | ---: | ---: | ---: |
| Total | $6,41,893$ | $7,87,148$ | $9,18,959$ |

## Question 10

The following particulars refer to process used in the treatment of material subsequently, incorporated in a component forming part of an electrical appliance:
(i) The original cost of the machine used (Purchased in June 2013) was Rs. 1,00,000. Its estimated life is 10 years, the estimated scrap value at the end of its life is Rs. 10,000, and the estimated working time per year ( 50 weeks of 44 hours) is $\mathbf{2 , 2 0 0}$ hours of which machine maintenance etc., is estimated to take up 200 hours.

No other loss of working time expected, setting up time, estimated at 100 hours, is regarded as productive time. (Holiday to be ignored).
(ii) Electricity used by the machine during production is 16 units per hour at cost of a 90 paisa per unit. No current is taken during maintenance or setting up.
(iii) The machine required a chemical solution which is replaced at the end of week at a cost of Rs. 200 each time.
(iv) The estimated cost of maintenance per year is Rs. 12,000.
(v) Two attendants control the operation of machine together with five other identical machines. Their combined weekly wages, insurance and the employer's contribution to holiday pay amount Rs. 1,200.
(vi) Departmental and general works overhead allocated to this machine for the current year amount to Rs. 20,000.

You are required to CALCULATE the machine hour rate of operating the machine. (MTP 5 Marks, Apr.'2021)(RTP Nov '23)

## Answer 10

Working Notes:
(i) Total Productive hours = Estimated Working hours - Machine Maintenance hours

$$
=2,200 \text { hours }-200 \text { hours }=2,000 \text { hours }
$$

(ii) Depreciation per annum = Rs. 1,00,000 - Rs. 10,000 / 10years = Rs. 9000
(iii) Chemical solution cost per annum $=$ Rs. $200 \times 50$ weeks $=$ Rs. 10,000
(iv) Wages of attendants (per annum)=Rs. 1,200 $\times 50$ weeks $/ 6$ machines $=$ Rs.10,000

Calculation of Machine hour rate

| Particulars | Amount (Rs.) <br> (per annum) | Amount (Rs.) <br> (per hour) |
| :--- | ---: | ---: |
| A. Standing Charge |  |  |
| (i) Wages of attendants | 10,000 |  |
| (ii) Departmental and general works overheads | 20,000 |  |
| Total Standing Charge | 30,000 |  |
| Standing Charges per hour (30,000/2,000) |  | 15.00 |
| B. Machine Expense | 9,000 |  |
| (iii) Depreciation |  | 4.50 |
| (iv) Electricity $\left(\frac{\text { Rs.0.9 } \times 16 \text { units } \times 1,900 \text { hours }}{2,000 \text { hours }}\right)$ |  | 13.68 |


| (v) Chemical solution | 10,000 | 5.00 |
| :--- | ---: | ---: |
| (vi) Maintenance cost | 12,000 | 6.00 |
| Machine operating cost per hour (A + B) |  | $\mathbf{4 4 . 1 8}$ |

## Question 11

Mix Soap Pvt. Ltd., manufactures three brands of soap - Luxury, Herbal and Beauty. The following information has been obtained for the period from June 1 to June 30, 2021 relating to three brands: (10 Marks, Apr.'2021)

|  | Luxury | Herbal | Beauty |
| :--- | ---: | ---: | ---: |
| Actual Production (units) | 6,750 | 14,000 | 77,500 |
| Wages paid (Rs.) | 7,500 | 18,750 | $1,15,000$ |
| Raw materials consumed (Rs.) | 20,000 | 47,000 | $2,40,000$ |
| Selling price per unit (Rs.) | 25 | 15 | 8 |

Other data are:

| Factory overheads | Rs. 80,000 |
| :--- | :--- |
| General \& administration overheads (equal for all | Rs. 48,000 |
| Selling overheads | $20 \%$ of Works cost |

If the company limits the manufacture to just one brand of soap adopting a single brand production, then monthly production will be:

|  | Units |
| :--- | ---: |
| Luxury | 5,000 |
| Herbal | 15,000 |
| Beauty | 30,000 |

Further, factory overheads are to be allocated to each brand on the basis of the units which could have been produced when single brand production was in operation.
You are required to:
(i) FIND out the Factory overhead rate for all the brands.
(ii) PREPARE a cost statement for the month of June showing the various elements of cost and also the profit earned. (MTP 10 Marks, Apr.'21)

## Answer 11

(i) Calculation of Factory overhead rate.

If the single brand production was in operation, then 1 unit of Luxury $=3$ units of Herbal $=6$ units of Beauty. Therefore, the factory overhead ratio in the reverse order would be 5,000:15,000: 30,000 or 1:3:6.
The overhead rate will be lowest in case of brand which will be produced in high number. Therefore, in case of Beauty soap brand, the overhead rate will be:

$$
\begin{aligned}
& =\frac{80,000}{6 \times 6,750+3 \times 14,000+1 \times 77,500} \\
& =\frac{80,000}{40,500+42,000+77,500} \\
& =80,000 / 1,60,000=0.5
\end{aligned}
$$

So, the overhead rate will be:
Luxury $=0.5 \times 6=$ Rs. 3
Herbal $=0.5 \times 3=$ Rs. 1.5
Beauty $=0.5 \times 1=$ Rs. 0.5
(ii) Statement of Cost of Mix Soap Pvt. Ltd. for the month of June 2021:

|  | Luxury (Rs.) | Herbal (Rs.) | Beauty (Rs.) | Total (Rs.) |
| :---: | :---: | :---: | :---: | :---: |
| Raw material consumed | 20,000 | 47,000 | 2,40,000 | 3,07,000 |
| Add: Wages paid | 7,500 | 18,750 | 1,15,000 | 1,41,250 |
| Prime cost | 27,500 | 65,750 | 3,55,000 | 4,48,250 |
| Add: Factory overheads | 20,250 | 21,000 | 38,750 | 80,000 |
|  | (Rs. $3 \times 6,750$ ) | (Rs.1.5 x 14,000) | (Rs.0.5 x 77,500) |  |
| Works cost | 47,750 | 86,750 | 3,93,750 | 5,28,250 |
| Add: General \& administration overheads (1:1:1) | 16,000 | 16,000 | 16,000 | 48,000 |
| Add: Selling expenses | 9,550 | 17,350 | 78,750 | 1,05,650 |
|  | $\begin{array}{r} (\text { Rs. } 47,750 \mathrm{x} \\ 0.20) \\ \hline \end{array}$ | $\begin{array}{r} (R s .86,750 \mathrm{x} \\ 0.20) \\ \hline \end{array}$ | $\begin{array}{r} \text { (Rs. 3,93,750 x } \\ 0.20) \\ \hline \end{array}$ |  |
| Cost of sales | 73,300 | 1,20,100 | 4,88,500 | 6,81,900 |
| Profit (Balancing figure) | 95,450 | 89,900 | 1,31,500 | 3,16,850 |
| Sales | 1,68,750 | 2,10,000 | 6,20,000 | 9,98,750 |
|  | (Rs. $25 \times 6,750$ ) | (Rs. $15 \times 14,000$ ) | (Rs. $8 \times 77,500$ ) |  |

## Question 12

A machine costing ₹ 10 lakhs, was purchased on 01-04-2021. The expected life of the machine is 10 years. At the end of this period its scrap value is likely to be ₹ $\mathbf{1 0 , 0 0 0}$. The total cost of all the machines including new one was ₹ 90 lakhs.

The other information is given as follows:
(i) Working hours of the machine for the year was 4,200 including 200 non-productive hours.
(ii) Repairs and maintenance for the new machine during the year was ₹ 6,000 .
(iii) Insurance Premium was paid for all the machine ₹ 9,000 .
(iv) New machine consumes 8 units of electricity per hour, the rate per unit being ₹ 3.75
(v) The new machine occupies $1 / 10^{\text {th }}$ area of the department. Rent of the department is Rs. 2,400 per month.
(vi) Depreciation is charged on straight line basis.

COMPUTE machine hour rate for the new machine. (MTP 5 Marks, Oct.'21)

## Answer 12

Computation of machine hour rate of new Machine

| Computation of machine hour rate of new Machine |  |  |  |  |
| :--- | ---: | ---: | :---: | :---: |
| A. Standing Charges <br> I. Insurance Premium ₹ $9,000 * 1 / 9$ <br> (₹) | Per hour (₹) |  |  |  |
| II. Rent $1 / 10 \times ₹ 2,400 \times 12$ months | 1,000 |  |  |  |
| B. Machine expenses | 2,880 |  |  |  |
| I. Repairs and Maintenance (₹ 6,000 $\div 4,000$ hours) | 3,880 | $\mathbf{0 . 9 7 *}$ |  |  |
| Depreciation =10,00,000-10,000/ 10 years* 4000 hr |  | 1.50 |  |  |
| III. Electricity (8 units x ₹ 3.75) |  | 24.75 |  |  |
| Machine hour rate |  | 30.00 |  |  |

## Working Note

Calculation of productive Machine hour rate

| Total hours | 4,200 |
| :--- | :--- |
| Less: Non-Productive hours | $\underline{200}$ |
| Effective machine hours | $\underline{4,000}$ |

* ₹ $3,880 \div 4,000$ hours $=₹ 0.97$


## Question 13

M/s Avyukt Automobile Parts has four identical machines in its factory. Cost of each machine is ₹ $5,00,000$ with expected scrap value of $10 \%$ at the end of its effective life ( 9 years). The expected annual running hours of machine is expected to run for $\mathbf{2 , 2 0 0}$ hours. The other details in respect of the machine shop are:
(I) Factory Rent ₹ 5,000 per month
(II) Lighting of Factory ₹ 3,000 per month
(III) Operator Wages (Two operators and each operator is in charge of two machines) ₹10,000 per month (per Operator)
(IV) Fixed repairs and maintenance charges per machine 2,000 per quarter
(V) Insurance premium for the machine (Annual) 3\% of cost
(VI) Forman's salary (Devoted 1/6th of his time to this factory)₹ $\mathbf{2 , 5 0 0}$ per month
(VII) Other factory overhead (Annual) ₹40,000
(VIII) Power Consumption per machine per hour 80 units
(IX) Rate of Power ₹ 150 for 100 units
(X) Unproductive Hours lost during repairs $\mathbf{5 0}$ per annum
(XI) Unproductive Hours Lost while Job Setting 650 per annum

You are required to COMPUTE a comprehensive machine hour rate assuming power is used during operating time only. (MTP 10 Marks April '22)

## Answer 13

Computation of Comprehensive Machine Hour Rate per Machine

| Particulars | Per Annum (₹) | Per Hour (₹) |
| :--- | :--- | :--- |
| Standing Charges: |  |  |
| Depreciation (Working Note 2) | 50,000 |  |
| Factory Rent (₹ $5,000 \times 12$ months / 4) | 15,000 |  |
| Lighting of Factory (₹ $3,000 \times 12$ months / 4) | 9,000 |  |
| Operator Wages (₹ $10,000 \times 12$ months / 2) | 60,000 |  |
| Repairs and maintenance (₹ $2,000 \times 4$ ) | 8,000 |  |
| Insurance premium (₹ $5,00,000 \times 3 \%)$ | 15,000 |  |
| Forman's salary (₹ $2,500 \times 12 \times 1 / 6 / 4$ ) | 1,250 |  |
| Other factory overhead (₹ $40,000 / 4$ ) | 10,000 |  |
|  | $1,68,250$ | 112.17 |
| Standing Charges per hour (₹ $1,68,250 / 1,500$ hours) |  |  |


| Running Charges: |  |  |
| :--- | :--- | :--- |
| Power (80 units x ₹ 150 / 100) |  | 120.00 |
| Comprehensive Machine Hour Rate |  | 232.17 |

## Working Notes:

1. Computation of Total Operative Hours

Total Running Hours: 2,200
Less: Unproductive hours lost during repairs 50
Less: Unproductive hours Lost while Job Setting 650
Total Operative Hours 1,500 per annum
2. Calculation of Annual Depreciation

Annual Depreciation $=\frac{\text { Purchase Cost-Estimated Scrap Value }}{\text { Effective life in years }}$
$=\frac{R s .5,00,000-R s .50,000}{9 \text { Years }}=$ Rs. 50,000

## Question 14

PM Ltd. has three Production Departments P1, P2, P3 and two Service Departments S1 and S2 details pertaining to which are as under:

|  | P1 | P2 | P3 | S1 | S2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Direct wages (₹) | 60,000 | 40,000 | 60,000 | 30,000 | 3,900 |
| Working hours | 3,070 | 4,475 | 2,419 |  |  |
| Value of machines (₹) | $12,00,000$ | $16,00,000$ | $20,00,000$ | $1,00,000$ | $1,00,000$ |
| H.P. of machines | 60 | 30 | 50 | 10 |  |
| Light points | 10 | 15 | 20 | 10 | 5 |
| Floor space (sq. ft.) | 2,000 | 2,500 | 3,000 | 2,000 | 500 |

The following figures extracted from the accounting records are relevant:

|  | (₹) |
| :--- | :--- |
| Rent and Rates | $1,00,000$ |
| General Lighting | 12,000 |
| Indirect Wages | 38,780 |
| Power | 30,000 |
| Depreciation on Machines | $2,00,000$ |
| Sundries | $1,93,900$ |

The expenses of the service departments are allocated as under:

|  | P1 | P2 | P3 | S1 | S2 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S1 | $20 \%$ | $30 \%$ | $40 \%$ | - | $10 \%$ |
| S2 | $40 \%$ | $20 \%$ | $30 \%$ | $10 \%$ | - |

DETERMINE the total cost of product $X$ which is processed for manufacture in Departments $\mathbf{P 1} 1, P 2$ and P3 for 4,5 and 3 hours respectively, given that its Direct Material Cost is ₹ 1,000 and Direct Labour Cost is ₹ 600. (MTP 10 Marks March '22) (Same concept different figures PYP 10 Marks Nov'20 \& Old \& New SM)
Answer 14
Statement Showing Distribution of Overheads of PM Ltd.

| Particulars | Basis | Total | Production Departments |  |  | Service <br> Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | P1 | P2 | P3 | S1 | S2 |
|  |  | (₹) | (₹) | (₹) | (₹) | (₹) | (₹) |
| Direct wages | Actual | 33,900 | - | - | - | 30,000 | 3,900 |
| Rent \& rates | Area | 1,00,000 | 20,000 | 25,000 | 30,000 | 20,000 | 5,000 |
| General lighting | Light points | 12,000 | 2,000 | 3,000 | 4,000 | 2,000 | 1,000 |
| Indirect wages | Direct wages | 38,780 | 12,000 | 8,000 | 12,000 | 6,000 | 780 |
| Power | H.P. | 30,000 | 12,000 | 6,000 | 10,000 | 2,000 |  |
| Depreciation of machines | Value of machines | 2,00,000 | 48,000 | 64,000 | 80,000 | 4,000 | 4,000 |
| Sundries | Direct wages | 1,93,900 | 60,000 | 40,000 | 60,000 | 30,000 | 3,900 |
|  |  | 6,08,580 | 1,54,000 | 1,46,000 | 1,96,000 | 94,000 | 18,580 |

Redistribution of Service Department's Expenses over Production Departments

|  | P1 <br> (₹) | P2 <br> (₹) | P3 <br> (₹) | S1 <br> (₹) | S2 <br> (₹) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Total overhead distributed as above | $1,54,000$ | $1,46,000$ | $1,96,000$ | 94,000 | 18,580 |
| Dept. S1 Overheads apportioned <br> $(20: 30: 40:-: 10)$ | 18,800 | 28,200 | 37,600 | $(94,000)$ | 9,400 |
| Dept. S2 overheads apportioned <br> (40:20:30:10:-) | 11,192 | 5,596 | 8,394 | 2,798 | $(27,980)$ |
| Dept. S1 Overheads apportioned <br> $(20: 30: 40:-: 10)$ | 560 | 839 | 1,119 | $(2,798)$ | 280 |
| Dept. S2 overheads apportioned <br> $(40: 20: 30: 10:-)$ | 124 | 63 | 93 |  | $(280)$ |
|  | $1,84,676$ | $1,80,698$ | $2,43,206$ |  | - |
| Working hours | 3,070 | 4,475 | 2,419 |  | - |
| Rate per hour | 60.16 | 40.38 | 100.54 |  |  |

Determination of total cost of Product ' X '

|  | $(₹)$ |
| :--- | ---: |
| Direct material cost | $1,000.00$ |
| Direct labour cost | 600.00 |
| Overhead cost (See working note) | 744.14 |
|  | $2,344.14$ |

## Working Note:

Overhead cost = (₹ $60.16 \times 4 \mathrm{hrs}$. $)+(₹ 40.38 \times 5 \mathrm{hrs}$. $)+(₹ 100.54 \times 3 \mathrm{hrs}$. $)=₹ 240.62+₹ 201.90+$ ₹ 301.62 = ₹ 744.14

## Question 15

A work-shop has 8 identical machines operated by 6 operators. The machine cannot work without an operator wholly engaged on it. The original cost of all the 8 machines works out to ₹ $\mathbf{6 4 , 0 0 , 0 0 0}$. The following particulars are furnished for a six months' period:

Normal available hours per operator

1,248

Absenteeism (without pay) hours per operator
Leave (with pay) hours per operator
Normal unavoidable idle time-hours per operator
Production bonus estimated

18
20
10
$10 \%$ on wages

| Power consumed | $₹ 80,500$ |
| :--- | :--- |
| Supervision and Indirect Labour | $₹ \mathbf{3 3 , 0 0 0}$ |
| Lighting and Electricity | $₹ \mathbf{1 2 , 0 0 0}$ |
| Average rate of wages per day of $\mathbf{8}$ hours per operator | $₹ \mathbf{2 0 0}$ |
| The following particulars are given for a year: |  |
| Insurance | $₹ \mathbf{7 , 2 0 , 0 0 0}$ |
| Sundry work Expenses | $₹ \mathbf{1 , 0 0 , 0 0 0}$ |
| Management Expenses allocated | $₹ 10,00,000$ |
| Depreciation | $\mathbf{1 0 \%}$ on the original cost |

Repairs and Maintenance (including consumables): 5\% of the value of all the machines. Prepare a statement showing the comprehensive machine hour rate for the machine shop.
(MTP 10 Marks Sep'22)

## Answer 15

Workings:

| Particulars | Six months 6 operators (Hours) |
| :---: | :---: |
| Normal available hours half yearly (1,248 $\times 6$ operators) | 7,488 |
| Less: Absenteeism hours (18x6 operators) | (108) |
| Paid hours (A) | 7,380 |
| Less: Leave hours ( $20 \times 6$ operators) | (120) |
| Less: Normal idle time ( $10 \times 6$ operators) | (60) |
| Effective working hours | 7,200 |
| Computation of Comprehensive Machine Hour Rate |  |


| Particulars | Amount for six <br> months (₹) |
| :--- | ---: |
| Operators' wages (7,380/8 x200) | $1,84,500$ |
| Production bonus (10\% on wages) | 18,450 |
| Power consumed | 80,500 |
| Supervision and indirect labour | 33,000 |
| Lighting and Electricity | 12,000 |
| Repair and maintenance $\{(5 \% \times ₹ 64,00,000) / 2\}$ | $1,60,000$ |
| Insurance (₹ $7,20,000 / 2)$ | $3,60,000$ |
| Depreciation $\{(₹ 64,00,000 \times 10 \%) / 2\}$ | $3,20,000$ |
| Sundry Work expenses (₹ $1,00,000 / 2)$ | 50,000 |
| Management expenses (₹ $10,00,000 / 2)$ | $5,00,000$ |
| Total Overheads for 6 months | $17,18,450$ |
| Comprehensive Machine Hour Rate $=₹ 17,18,450 / 7,200$ hours | $₹ 238.67$ |

## Question 16

Madhu Ltd has calculated a predetermined overhead rate of ₹22 per machine hour for its Quality Check (QC) department. This rate has been calculated for the budgeted level of activity and is considered as appropriate for absorbing overheads. The following overhead expenditures at various activity levels had been estimated.

| Total <br> overheads | Number of machine <br> hours |
| :---: | :---: |
| $₹ 3,38,875$ | 14,500 |
| F3,47,625 | 15,500 |
| $₹ 3,56,375$ | 16,500 |

You are required to:

VIVITSU
(i) COMPUTE the variable overhead absorption rate per machine hour.
(ii) COMPUTE the estimated total fixed overheads.
(iii) CALCULATE the budgeted level of activity in machine hours.

CALCULATE the amount of under/over absorption of overheads if the actual machine hours were 14,970 and actual overheads were ₹ $3,22,000$. (MTP Oct'22, MTP May’20, April '19, 5 Marks)

## Answer 16

(i) Computation of variable overhead absorption rate:

Variable overhead absorption rate $=$

$$
\begin{gathered}
\frac{\text { Difference in Total Overheads }}{\text { Difference in levels in terms of machine hours }} \\
=\frac{R s .3,47,625-\text { Rs. } 3,38,875}{15,500 \text { hours }-14 \text { hours }} \\
=₹ 8.75 \text { per Machine hour. }
\end{gathered}
$$

(ii) Computation of Total fixed overheads

| Total overheads at 14,500 hours | $3,38,875$ |
| :--- | ---: |
| Less: Variable overheads (Rs. $8.75 \times 14,500)$ | $(1,26,875)$ |
| Total fixed overheads | $2,12,000$ |

(iii) Calculation of Budgeted level of activity in machine hours: Let budgeted level of activity $=\mathrm{X}$ Then,

$8.75 X+$ Rs. $2,12,000=22 X$
$13.25 \mathrm{X}=2,12,000$
$X=16,000$
Thus, budgeted level of activity $=16,000$ machine hours.
(iv) Calculation of Under / Over absorption of overheads:

|  | (Rs.) |
| :--- | ---: |
| Actual overheads | $3,22,000$ |
| Absorbed overheads $(14,970$ hours $\times$ Rs. 22 per <br> hour) | $3,29,340$ |
| Over-absorption $(3,29,340-3,22,000)$ | 7,340 |

## Question 17

STATE Direct Expenses with examples. (MTP 5 Marks Oct’22)

## Answer 17

Expenses other than direct material cost and direct employee cost, which are incurred to manufacture a product or for provision of service and can be directly traced in an economically feasible manner to a cost object. The following costs are examples for direct expenses:
(a) Royalty paid/ payable for production or provision of service;
(b) Hire charges paid for hiring specific equipment;
(c) Cost for product/ service specific design or drawing;
(d) Cost of product/ service specific software;
(e) Other expenses which are directly related with the production of goods or provision of service.

## Question 18

PLR Ltd. manufacturers a single product and recovers the overheads by adopting a single blanket rate based on machine hours. The budgeted production overheads of the factory for the FY 2019-20are Rs.

50,40,000 and budgeted machine hours are 6,000.
For a period of first six months of the financial year 2019?20, following information were extracted from the books:

| Actual production overheads | Rs. $34,08,000$ |
| :--- | ---: |
| Amount included in the production overheads: | Rs. 4,50,000 |
| Paid as per court's order | Rs. 1,00,000 |
| Expenses of previous year booked in current year | Rs. 4,20,000 |
| Paid to workers for strike period under an award | Rs. 36,000 |
| Obsolete stores written off |  |
| Production and sales data of the concern for the first six months are as under: <br> Production: | $\mathbf{1 , 1 0 , 0 0 0 \text { units }}$ |
| Finished goods | 80,000 units |
| Works-in-progress <br> (50\% complete in every respect) |  |
| Sale: | 90,000 units |
| Finished goods |  |

The actual machine hours worked during the period were 3,000 hours. It is revealed from the analysis of information that $40 \%$ of the over/under-absorption was due to defective production policies and the balance was attributable to increase in costs.

## You are required:

(i) to determine the amount of over/ under absorption of production overheads for the period,
(ii) to show the accounting treatment of over/ under-absorption of production overheads, and
(iii) to apportion the over/ under-absorbed overheads over the items. (RTP Nov'19, PYP 10 Marks Nov'19) (Same concept different figures RTP May'18)

## Answer 18

(i) Amount of over/ under absorption of production overheads during the period of first six months of the year 2019-20:

|  | Amount (Rs. ) | Amount (Rs. ) |
| :--- | ---: | ---: |
| Total production overheads actually incurred during the period <br> Less: Amount paid to worker as per court order | $4,50,000$ | $34,08,000$ |
| Expenses of previous year booked in the current year | $1,00,000$ |  |
| Wages paid for the strike period under an award | $4,20,000$ |  |
| Obsolete stores written off | $\underline{36,000}$ | $\underline{10,06,000}$ |
|  |  | $\underline{24,02,000}$ |
| Less: Production overheads absorbed as permachine hourrate <br> $(3,000$ hours $\times$ Rs. $840 *)$ |  | $\underline{25,20,000}$ |
| Amount of over absorbed production overheads |  | $1,18,000$ |

*BudgetedMachine hour rate (Blanket rate) $=50,40,000 / 6,000$ hours $=$ Rs. 840 per hour
(ii) Accounting treatment of over absorbed production overheads: As, 40\% of the over absorbed overheads were due to defective production policies, this being abnormal, hence should be credited to Costing Profit and Loss Account.

Amount to be credited to Costing Profit and Loss Account = Rs. 1,18,000×40\% = Rs. 47,200.
Balance of over absorbed production overheads should be distributed over Works in progress, Finished goods and Cost of sales by applying supplementary rate*. Amount to be distributed = Rs. 1,18,000×60\%

VIVITSU
4.22

STRIVING TOWARDS KNOWLEDGE

= Rs. 70,800
Supplementary rate $=\frac{\text { Rs. } 70,800}{1,50,000 \text { units }}=$ Rs. 0.472 per unit
(iii) Apportionment ofover absorbed production overheads over WIP, Finished goods and Cost of sales:

|  | Equivalent <br> completed units | Amount <br> (Rs.) |
| :--- | ---: | ---: |
| Work-in-Progress $(80,000$ units $\times 50 \%$ <br> $\times 0.472)$ | 40,000 | 18,880 |
| Finished goods $(20,000$ units $\times 0.472)$ | 20,000 | 9,440 |
| Cost of sales (90,000 units $\times 0.472)$ | 90,000 | 42,480 |
| Total | $1,50,000$ | 70,800 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Overhead'. The question required to ascertain under absorbed production overhead, treatment and apportionment of the same. Performance of the examinees was above average.

## Question 19

The Union Ltd. has the following account balances and distribution of direct charges on $31^{\text {st }}$ March, 2019.

|  | Total | Production Depts. |  | Service Depts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Machine Shop | Packing | General <br> Plant | Stores |
| Allocated Overheads: | (Rs.) | (Rs.) | (Rs.) | (Rs.) | (Rs.) |
| Indirect labour | 29,000 | 8,000 | 6,000 | 4,000 | 11,000 |
| Maintenance Material | 9,900 | 3,400 | 1,600 | 2,100 | 2,800 |
| Misc. supplies | 5,900 | 1,500 | 2,900 | 900 | 600 |
| Supervisor's salary | 16,000 | -- | -- | 16,000 | - |
| Cost \& payroll salary | 80,000 | -- | -- | 80,000 | - |

Overheads to be apportioned:

| Power | $\mathbf{7 8 , 0 0 0}$ |
| :--- | ---: |
| Rent | $\mathbf{7 2 , 0 0 0}$ |
| Fuel and Heat | 60,000 |
| Insurance | $\mathbf{1 2 , 0 0 0}$ |
| Taxes | 8,400 |
| Depreciation | $\mathbf{1 , 2 0 , 0 0 0}$ |

The following data were compiled by means of the factory survey made in the previous year:

|  | Floor Space | Radiator <br> Section | No. of <br> employees | Investment | H.P. <br> hours |
| :--- | ---: | :---: | :---: | :---: | ---: |
| Machine Shop | 2,000 Sq. ft. | 45 | 20 | $8,00,000$ | 3,500 |
| Packing | 800 Sq. ft. | 90 | 12 | $2,40,000$ | 500 |
| General Plant | 400 Sq. ft. | 30 | 4 | 80,000 | - |
| Stores <br> maintenance | 1,600 Sq. ft. | 60 | 8 | $1,60,000$ | 1,000 |

Expenses charged to the stores departments are to be distributed to the other departments by the following percentages:

## Machine shop 50\%; Packing 20\%; General Plant 30\%;

General Plant overheads is distributed on the basis of number of employees.
(a) PREPARE an overhead distribution statement with supporting schedules to show computations and basis of distribution.
(b) DETERMINE the service department distribution by simultaneous equation method.(RTP May '19) (Same concept different figures Old \& New SM)

## Answer 19

(a) Overhead Distribution Statement

|  | Production Departments |  |  | Service Departments |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
|  | Machine <br> Shops | Packing | General <br> Plant | Stores |  |
| Allocated Overheads: | (Rs. ) | (Rs.) | (Rs.) | (Rs.) |  |
| Indirect labour | 8,000 | 6,000 | 4,000 | 11,000 |  |
| Maintenance Material | 3,400 | 1,600 | 2,100 | 2,800 |  |
| Misc. supplies | 1,500 | 2,900 | 900 | 600 |  |
| Supervisor's salary | - | - | 16,000 | - |  |
| Cost \& payroll salary | - | - | 80,000 | - |  |
| Total allocated overheads <br> Add: Apportioned Overheads (As <br> per Schedule below) | 12,900 | 10,500 | $1,03,000$ | 14,400 |  |
|  | $1,84,350$ | 70,125 | $\mathbf{2 2 , 7 7 5}$ | $\mathbf{7 3 , 1 5 0}$ |  |

## Schedule of Apportionment of Overheads

| Item of Cost | Basis | Production Departments |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Machine Shops (Rs.) | Packing (Rs.) | General Plant (Rs.) | Stores (Rs.) |
| Power | HP hours (7:1:-:2) | 54,600 | 7,800 | -- | 15,600 |
| Rent | Floor space $(5: 2: 1: 4)$ | 30,000 | 12,000 | 6,000 | 24,000 |
| Fuel \& Heat | Radiator sec. $(3: 6: 2: 4)$ | 12,000 | 24,000 | 8,000 | 16,000 |
| Insurance | Investment $(10: 3: 1: 2)$ | 7,500 | 2,250 | 750 | 1,500 |
| Taxes | Investment $(10: 3: 1: 2)$ | 5,250 | 1,575 | 525 | 1,050 |
| Depreciation | Investment $(10: 3: 1: 2)$ | 75,000 | 22,500 | 7,500 | 15,000 |
|  |  | 1,84,350 | 70,125 | 22,775 | 73,150 |

(b) Re-distribution of Overheads of Service Departments to Production Departments:

Let, the total overheads of General Plant = ' $a$ ' and the total overheads ofStores= ' $b$ '
$a=1,25,775+0.3 b$
$b=87,550+0.2 a$
Putting the value of ' $b$ ' in equation no. (i) $a=1,25,775+0.3(87,550+0.2 a)$
Or a = 1,25,775 + 26, $265+0.06 a$
Or 0.94a = 1,52,040 Or $a=1,61,745$ (appx.)

Putting the value of $a=1,61,745$ in equation no. (ii) to get the value of ' $b$ ' $b=87,550+0.2 \times 1,61,745=1,19,899$

## Secondary Distribution Summary

| Particulars | Total (Rs.) | Machine Shops (Rs.) | Packing (Rs.) |
| :--- | ---: | ---: | ---: |
| Allocated and Apportioned <br> overheads as per Primary <br> distribution | $2,77,875$ | $1,97,250.00$ | $80,625.00$ |
| $-\quad$ General Plant | $1,61,745$ | $80,872.50$ | $48,523.50$ |
|  |  | $\left(1,61,745 \times \frac{5}{10}\right)$ | $\left(1,61,745 \times \frac{3}{10}\right)$ |
| Stores |  |  |  |
|  | $1,19,899$ | $(1,19,899 \times 50 \%)$ | $(1,19,899 \times$ |
|  |  | $2,38,072.00$ | $1,53,128.30$ |

## Question 20

SreeAjeet Ltd. having fifteen different types of automatic machines furnishes information as under for 20X8-20X9
(i) Overhead expenses: Factory rent Rs. 1,80,000 (Floor area 1,00,000 sq. ft.), Heat and gas Rs. 60,000 and supervision Rs. 1,50,000.
(ii) Wages of the operator are Rs. 200 per day of 8 hours. Operator attends to one machine when it is under set up and two machines while they are under operation.
In respect of machine B (one of the above machines) the following particulars are furnished:
(i) Cost of machine Rs. 1,80,000, Life of machine- 10 years and scrap value at the end of its life Rs. 10,000
(ii) Annual expenses on special equipment attached to the machine are estimated as Rs. 12,000
(iii) Estimated operation time of the machine is $\mathbf{3 , 6 0 0}$ hours while set up time is $\mathbf{4 0 0}$ hours per annum
(iv) The machine occupies 5,000 sq. ft. of floor area.
(v) Power costs Rs. 5 per hour while machine is in operation.

ESTIMATE the comprehensive machine hour rate of machine B. Also find out machine costs to be absorbed in respect of use of machine $B$ on the following two work orders

| Work order-1 | Work order-2 |
| :---: | :--- |
| 15 | 30 |
| 100 | 190 |

Machine set up time (Hours)
Machine operationtime (Hours)

100
190
(RTP Nov.'18)

## Answer 20

Sree Ajeet Ltd.
Statement showing comprehensive machine hour rate of Machine B
(Rs.)
Standing Charges:

| Factory rent \{(Rs. 1,80,000/1,00,000 sq. ft.) $\times 5,000$ Sq. ft. $\}$ | 9,000 |
| :--- | :---: |
| Heat and Gas (Rs. 60,000/15 machines) | 4,000 |
| Supervision (Rs. 1,50,000/ 15 machines) | 10,000 |
| Depreciation [(Rs. 1,80,000 - Rs. 10,000)/ 10 years] | 17,000 |
| Annual expenses on special equipment | $\underline{12,000}$ |
|  | $\underline{52,000}$ |
| Fixed cost per hour (Rs. 52,000/4,000 hrs.) | $13 /-$ |
|  | Set up rate |


|  | Per hour (Rs. ) | Per hour (Rs.) |
| :--- | :---: | ---: |
| Fixed cost | 13.00 | 13.00 |
| Power | - | 5.00 |
| Wages | 25.00 | 12.50 |
| Comprehensive machine hourrateperhr. | 38.00 | 30.50 |

Statement of ' $B$ ' machine costs
to be absorbed on the two work orders
Work order-1
Work order-2

|  | Hours | Rate | Amount | Hours | Rate | Amount |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | Rs. | Rs. | Rs. | Rs. | Rs. |
| Set up time cost | 15 | 38 | 570 | 30 | 38 | 1,140 |
| Operation time cost | 100 | 30.5 | $\underline{3,050}$ | 190 | 30.5 | $\underline{5,795}$ |
| Total cost |  |  | $\underline{3,620}$ |  |  | $\underline{6,935}$ |

## Question 21

A manufacturing unit has purchased and installed a new machine at a cost of Rs. 24,90,000 to its fleet of 5 existing machines. The new machine has an estimated life of 12 years and is expected to realise Rs. 90,000 as scrap value at the end of its working life.
Other relevant data are as follows:
(i) Budgeted working hours are 2,496 based on 8 hours per day for 312 days. Plant maintenance work is carried out on weekends when production is totally halted. The estimated maintenance hours are 416. During the production hours machine set -up and change over works are carried out. During the set-up hours no production is done. A total 312 hours are required for machine set-ups and change overs.
(ii) An estimated cost of maintenance of the machine is Rs. 2,40,000 p.a.
(iii) The machine requires a component to be replaced every week at a cost of Rs. $\mathbf{2 , 4 0 0}$.
(iv) There are three operators to control the operations of all the 6 machines. Each operator is paid Rs. $\mathbf{3 0 , 0 0 0}$ per month plus $\mathbf{2 0 \%}$ fringe benefits.
(v) Electricity: During the production hours including set-up hours, the machine consumes 60 units per hour. During the maintenance the machine consumes only 10 units per hour. Rate of electricity per unit of consumption is Rs. 6.
(vi) Departmental and general works overhead allocated to the operation during last year was Rs. $5,00,000$. During the current year it is estimated to increase by $10 \%$.
Required:
COMPUTE the machine hour rate. (RTP May '21)

## Answer 21

## Working Note:

1. Effective machine hour:
= Budgeted working hours - Machine Set-up time
$=2,496$ hours -312 hours $=2,184$ hours .
2. Operators' salary per annum:

| Salary (3 operators $\times$ Rs. $30,000 \times 12$ months) | Rs. $10,80,000$ |
| :--- | ---: |
| Add: Fringe benefits $(20 \%$ of Rs.10,80,000) | Rs. $2,16,000$ |
|  | Rs. $12,96,000$ |

3. Depreciation per annum
$\frac{\text { Rs. } 24,90,000-\text { Rs } .90,000}{12 \text { Years }}=$ Rs. 2,00,000

Computation of Machine hour Rate

|  | Amount p.a. (Rs.) | Amount per hour (Rs.) |
| :---: | :---: | :---: |
| Standing charges |  |  |
| Operators' Salary $\left(\frac{\text { Rs. } 12,96,000}{6 \text { machines }} \times \frac{1}{2,184 \text { hours }}\right)$ | 12,96,000 | 98.90 |
| Departmental and general overheads: |  |  |
| $\begin{aligned} & (\text { Rs. } 5,00,000 \times 110 \%) \\ & \qquad\left(\frac{\text { Rs. } 5,50,000}{6 \text { machines }} \times \frac{1}{2,184 \text { hours }}\right) \end{aligned}$ | 5,50,000 | 41.97 |
| (A) | 18,46,000 | 140.87 |
| Machine Expenses |  |  |
| Depreciation $\left(\frac{\text { Rs. } 2,00,000}{2,184 \text { hours }}\right)$ | 2,00,000 | 91.58 |
| Electricity: |  |  |
| During working hours ( 2,496 hours $\times 60$ units $\times$ Rs.6) | 8,98,560 | 411.43 |
| During maintenance hours (416 hours $\times 10$ units $\times$ Rs.6) | 24,960 | 11.43 |
| Component replacement cost ( $2,400 \times 52$ weeks) | 1,24,800 | 57.14 |
| Machine maintenance cost | 2,40,000 | 109.89 |
| (B) | 14,88,320 | 681.47 |
| Machine Hour Rate ( $A+B)$ |  | 822.34 |

## Question 22

PL Ltd. has three production departments P1, P2 and P3 and two service departments S1 and S2. The following data are extracted from the records of the company for the month of October, 2020:

|  | (Rs.) |
| :--- | ---: |
| Rent and rates | $12,50,000$ |
| General lighting | $1,50,000$ |
| Indirect Wages | $3,75,000$ |
| Power | $5,00,000$ |
| Depreciation on machinery | $10,00,000$ |
| Insurance of machinery | $4,00,000$ |

Other Information:

|  | P1 | P2 | P3 | S1 | S2 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Direct wages (Rs.) | $7,50,000$ | $5,00,000$ | $7,50,000$ | $3,75,000$ | $1,25,000$ |
| Horse Power of <br> Machines used | 60 | 30 | 50 | 10 | - |
| Cost of machinery <br> (Rs.) | $60,00,000$ | $80,00,000$ | $1,00,00,000$ | $5,00,000$ | $5,00,000$ |
| Floor space (Sq. ft) | 2,000 | 2,500 | 3,000 | 2,000 | 500 |
| Number of light <br> points | 10 | 15 | 20 | 10 | 5 |


| Production hours <br> worked | 6,225 | 4,050 | 4,100 | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |

Expenses of the service departments $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are reapportioned as below:

|  | P1 | P2 | P3 | S1 | S2 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S1 | $20 \%$ | $30 \%$ | $40 \%$ | - | $10 \%$ |
| S2 | $40 \%$ | $20 \%$ | $30 \%$ | $10 \%$ | - |

Required:
(i) COMPUTE overhead absorption rate per production hour of each production department.
(ii) DETERMINE the total cost of product $X$ which is processed for manufacture in department P1, P2 and P 3 for 5 hours, 3 hours and 4 hours respectively, given that its direct material cost is Rs. 12,500 and direct labour cost is Rs. 7,500. (RTP Nov '21)(Same concepts different figures RTP May'20)
Answer 22
Primary Distribution Summary

| Item of cost | Basis of apportionment | Total (Rs.) | $\begin{gathered} \text { P1 } \\ \text { (Rs.) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { P2 } \\ \text { (Rs.) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { P3 } \\ \text { (Rs.) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { S1 } \\ \text { (Rs.) } \end{gathered}$ | $\begin{gathered} \text { S2 } \\ \text { (Rs.) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct wages | Actual | 5,00,000 | -- | -- | -- | $\begin{array}{r} 3,75,00 \\ 0 \end{array}$ | 1,25,000 |
| Rent and Rates | Floor area $(4: 5: 6: 4: 1)$ | 12,50,000 | 2,50,000 | 3,12,500 | 3,75,000 | $\begin{array}{r} 2,50,00 \\ 0 \end{array}$ | 62,500 |
| General lighting | Light points $(2: 3: 4: 2: 1)$ | 1,50,000 | 25,000 | 37,500 | 50,000 | 25,000 | 12,500 |
| Indirect wages | Direct wages (6 $: 4: 6: 3: 1)$ | 3,75,000 | 1,12,500 | 75,000 | 1,12,500 | 56,250 | 18,750 |
| Power | Horse Power of machines used $(6: 3: 5: 1)$ | 5,00,000 | 2,00,000 | 1,00,000 | 1,66,667 | 33,333 | - |
| Depreciation of machinery | Value of machinery (12 : 16:20:1:1) | 10,00,000 | 2,40,000 | 3,20,000 | 4,00,000 | 20,000 | 20,000 |
| Insurance of machinery | Value of machinery (12 : 16:20:1:1) | 4,00,000 | 96,000 | 1,28,000 | 1,60,000 | 8,000 | 8,000 |
|  |  | 41,75,000 | 9,23,500 | 9,73,000 | 12,64,167 | $\begin{array}{r} 7,67,58 \\ 3 \end{array}$ | 2,46,750 |

Overheads of service cost centres
Let S1 be the overhead of service cost centre S1 and S2 be the overhead of service cost centre S2.
$S 1=7,67,583+0.10 S 2$
$S 2=2,46,750+0.10 S 1$
Substituting the value of S 2 in S 1 we get $\mathrm{S} 1=7,67,583+0.10(2,46,750+0.10 \mathrm{~S} 1)$
$S 1=7,67,583+24,675+0.01 S 1$
0.99 S1 $=7,92,258$

S1 = Rs. 8,00,260
S2 $=2,46,750+0.10 \times 8,00,260$
$=$ Rs. 3,26,776
Secondary Distribution Summary

| Particulars | Total (Rs.) | $\boldsymbol{P}_{\mathbf{1}}(\boldsymbol{r s})$. | $\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{r s})$. | $\boldsymbol{P}_{\mathbf{3}}(\boldsymbol{r} \boldsymbol{s})$. |
| :--- | :--- | :--- | :--- | :---: |
| Allocated and Apportioned | $31,60,667$ | $9,23,500$ | $9,73,000$ | $12,64,167$ |


| over-heads as per primary <br> distribution |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
| $S_{1}$ | $8,00,260$ | $1,60,052$ | $2,40,078$ | $3,20,104$ |
| $S_{2}$ | $3,26,776$ | $1,30,710$ | 65,355 | 98,033 |
|  |  | $\mathbf{1 2 , 1 4 , 2 6 2}$ | $\mathbf{1 2 , 7 8 , 4 3 3}$ | $\mathbf{1 6 , 8 2 , 3 0 4}$ |

(i) Overhead rate per hour

|  | P1 | P2 | P3 |
| :--- | ---: | ---: | ---: |
| Total overheads cost (Rs.) | $12,14,262$ | $12,78,433$ | $16,82,304$ |
| Production hours worked | 6,225 | 4,050 | 4,100 |
| Rate per hour (Rs.) | $\mathbf{1 9 5 . 0 6}$ | $\mathbf{3 1 5 . 6 7}$ | $\mathbf{4 1 0 . 3 2}$ |

(ii) Cost of Product X

|  | (Rs.) |  |
| :--- | ---: | ---: |
| Direct material | $12,500.00$ |  |
| Direct labour | $7,500.00$ |  |
| Prime cost | P1 | 5 hours X Rs. $195.06=9975.30$ |
| Production on overheads | P2 | 3 hours X Rs. $315.67=$ |
|  | 947.01 |  |
|  | P3 4 hours X Rs. $410.32=1,641.28$ | $3,563.59$ |
| Factory cost |  | $\mathbf{2 3 , 5 6 3 . 5 9}$ |

## Question 23

Pretz Ltd. is a manufacturing company having two production departments, ' $A$ ' \& ' $B$ ' and two service departments ' X ' \& ' Y '. The following is the budget for March, 2022:

|  | Total (₹) | A (₹) | B (₹) | X (₹) | Y (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Direct material |  | 2,00,000 | 4,00,000 | 4,00,000 | 2,00,000 |
| Direct wages |  | 10,00,000 | 4,00,000 | 2,00,000 | 4,00,000 |
| Factory rent | 9,00,000 |  |  |  |  |
| Power (Machine) | 5,10,000 |  |  |  |  |
| Depreciation | 2,00,000 |  |  |  |  |
| General Lighting | 3,00,000 |  |  |  |  |
| Perquisites | 4,00,000 |  |  |  |  |
| Additional information: |  |  |  |  |  |
| Area (Sq. ft.) |  | 500 | 250 | 250 | 500 |
| Capital value of assets (₹ lakhs) |  | 40 | 80 | 20 | 20 |
| Light Points |  | 10 | 20 | 10 | 10 |
| Machine hours |  | 1,000 | 2,000 | 1,000 | 1,000 |
| Horse power of machines |  | 50 | 40 | 15 | 25 |

A technical assessment of the apportionment of expenses of service departments is as under:

|  | A | B | $\mathbf{X}$ | $\mathbf{Y}$ |
| :--- | :---: | :---: | :---: | :---: |
| Service Dept. ' $X$ ' (\%) | 55 | 25 | - | 20 |
| Service Dept. ' $\mathbf{Y}$ ' (\%) | 60 | 35 | 5 | - |

## You are required to:

(a) PREPARE a statement showing distribution of overheads to various departments.
(b) PREPARE a statement showing re-distribution of service departments expenses to production departments using-
(i) Simultaneous equation method
(ii) Trial and error method
(iii) Repeated Distribution Method. (RTP May '22)

## Answer 23

(a) Primary Distribution of Overheads

|  | Basis | Total (₹) | $\mathbf{A}(₹)$ | $\mathbf{B}(₹)$ | $\mathbf{X}(₹)$ | $\mathbf{Y}(₹)$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Direct materials | Direct | $6,00,000$ | - | - | $4,00,000$ | $2,00,000$ |
| Direct wages | Direct | $6,00,000$ | - | - | $2,00,000$ | $4,00,000$ |
| Factory rent <br> $(2: 1: 1: 2)$ | Area | $9,00,000$ | $3,00,000$ | $1,50,000$ | $1,50,000$ | $3,00,000$ |
| Power <br> $($ Machine $)$ <br> $(10: 16: 3: 5)^{*}$ | H.P. $\times$ Machine <br> Hrs. | $5,10,000$ | $1,50,000$ | $2,40,000$ | 45,000 | 75,000 |
| Depreciation <br> $(2: 4: 1: 1)$ | Capital value | $2,00,000$ | 50,000 | $1,00,000$ | 25,000 | 25,000 |
| General <br> Lighting <br> $(1: 2: 1: 1)$ | Light Points | $3,00,000$ | 60,000 | $1,20,000$ | 60,000 | 60,000 |
| Perquisites <br> $(5: 2: 1: 2)$ | Direct Wages | $\mathbf{4 , 0 0 , 0 0 0}$ | $2,00,000$ | 80,000 | 40,000 | 80,000 |
|  |  | $\mathbf{3 5 , 1 0 , 0 0 0}$ | $\mathbf{7 , 6 0 , 0 0 0}$ | $\mathbf{6 , 9 0 , 0 0 0}$ | $\mathbf{9 , 2 0 , 0 0 0}$ | $\mathbf{1 1 , 4 0 , 0 0 0}$ |

*\{(1000×50): $(2000 \times 40):(1000 \times 15):(1000 \times 25)\}$
(50000: $80000: 15000: 25000)$
(10:16:3:5)
(b) (i) Redistribution of Service Department's expenses using 'Simultaneous equation method'

| $X$ |  | $=$ |
| :--- | :--- | :--- |
| $Y$ | $=$ | $11,40,00000+0.05 \mathrm{Y}$ |
| Y |  |  |

Substituting the value of $X$,

| Y | $=$ | $11,40,000+0.20(9,20,000+0.05 \mathrm{Y})$ |
| :--- | :--- | :--- |
|  | $=$ | $13,24,000+0.01 \mathrm{Y}$ |
| $\mathrm{Y}-0.01 \mathrm{Y}$ | $=$ | $13,24,000$ |
| Y | $=$ | $13,24,000 / 0.99$ |
| Y | $=$ | $₹ 13,37,374$ |

The total expense of $\mathbf{Y}$ is ₹ $\mathbf{1 3 , 3 7 , 3 7 4}$ and that of $\mathbf{X}$ is ₹ $9,86,869$ i.e., $₹ 9,20,000+(0.05 \times ₹ 13,37,374)$.
Distribution of Service departments' overheads to Production departments

|  | Production <br> Departments |  |
| :--- | ---: | ---: |
|  | A (₹) | B (₹) |
|  | $7,60,000$ | $6,90,000$ |
| Dept- $X(55 \%$ and $25 \%$ of ₹ $9,86,869)$ | $5,42,778$ | $2,46,717$ |
| Dept- $Y(60 \%$ and $35 \%$ of ₹ $13,37,374)$ | $8,02,424$ | $4,68,081$ |
|  | $\mathbf{2 1 , 0 5 , 2 0 2}$ | $\mathbf{1 4 , 0 4 , 7 9 8}$ |

(ii) Redistribution of Service Department's expenses using 'Trial and Error Method':

|  | Service <br> Departments |  |
| :--- | ---: | ---: |
|  | $\mathbf{X}(₹)$ | $\mathbf{Y}$ (₹) |
| Overheads as per primary distribution | $9,20,000$ | $11,40,000$ |


| (i) Apportionment of Dept-X expenses to Dept-Y ( $20 \%$ of ₹ $9,20,000$ ) | --- | 1,84,000 |
| :---: | :---: | :---: |
|  | --- | 13,24,000 |
| (ii) Apportionment of Dept-Y expenses to Dept-X (5\% of ₹ $13,24,000$ ) | 66,200 | --- |
| (i) Apportionment of Dept-X expenses to Dept-Y ( $20 \%$ of ₹ 66,200 ) | --- | 13,240 |
| (ii) Apportionment of Dept-Y expenses to Dept-X (5\% of ₹ 13,240 ) | 662 | --- |
| (i) Apportionment of Dept-X expenses to Dept-Y (20\% of ₹ 662) |  | 132 |
| (ii) Apportionment of Dept-Y expenses to Dept-X (5\% of ₹ 132) | 7 |  |
| Total | 9,86,869 | 13,37,372 |

Distribution of Service departments' overheads to Production departments

|  | Production Departments |  |
| :--- | ---: | ---: |
|  | $\mathbf{A}(₹)$ | $\mathbf{B ~ ( ₹ ) ~}$ |
| Overhead as per primary distribution | $7,60,000$ | $6,90,000$ |
| Dept- X (55\% and 25\% of ₹ $9,86,869)$ | $5,42,778$ | $2,46,717$ |
| Dept- $\mathrm{Y}(60 \%$ and $35 \%$ of ₹ $13,37,372)$ | $8,02,423$ | $4,68,080$ |

(iii) Redistribution of Service Department's expenses using 'repeated distribution method':

|  | A (₹) | B (₹) | X (₹) | Y (₹) |
| :---: | :---: | :---: | :---: | :---: |
| Overhead as per primary distribution | 7,60,000 | 6,90,000 | 9,20,000 | 11,40,000 |
| Dept. X overhead apportioned in the ratio (55:25:-:20) | 5,06,000 | 2,30,000 | $(9,20,000)$ | 1,84,000 |
| Dept. Y overhead apportioned in the ratio (60:35:5: -) | 7,94,400 | 4,63,400 | 66,200 | $(13,24,000)$ |
| Dept. X overhead apportioned in the ratio (55:25:-:20) | 36,410 | 16,550 | $(66,200)$ | 13,240 |
| Dept. Y overhead apportioned in the ratio (60:35:5: -) | 7,944 | 4,634 | 662 | $(13,240)$ |
| Dept. X overhead apportioned in the ratio (55:25:-:20) | 364 | 166 | (662) | 132 |
| Dept. Y overhead apportioned in the ratio (60:35:5: -) | 79 | 46 | 7 | (132) |
| Dept. X overhead apportioned in the ratio (55:25:-:20) | 4 | 3 | (7) | - |


|  | $21,05,201$ | $14,04,799$ | - | - |
| :--- | :--- | :--- | :--- | :--- |

## Question 24

SE Limited manufactures two products- A and B. The company had budgeted factory overheads amounting to ` $36,72,000$ and budgeted direct labour hour of $1,80,000$ hours. The company uses predetermined overhead recovery rate for product costing purposes.

The department-wise break-up of the overheads and direct labour hours were as follows:

| Particulars | Budgeted overheads | Budgeted direct labour hours | Rate per direct labour hour |
| :---: | :---: | :---: | :---: |
| Department Pie | 25,92,000 | 90,000 hours | 28.80 |
| Department Qui | - 10,80,000 | 90,000 hours | 12.00 |
| Total | -36,72,000 | 1,80,000 hours |  |

Additional Information:
Each unit of product A requires 4 hours in department Pie and 1 hour in department Qui. Also, each unit of product B requires 1 hour in department Pie and 4 hours in department Qui.

This was the first year of the company's operation. There was no WIP at the end of the year. However, 1,800 and 5,400 units of Products $A$ and $B$ were on hand at the end of the year.

The budgeted activity has been attained by the company. You are required to:
(i) DETERMINE the production and sales quantities of both products ' $A$ ' and ' $B$ ' for the above year.
(ii) ASCERTAIN the effect of using a pre-determined overhead rate instead of department-wise overhead rates on the company's income due to its effect on stock value.
(iii) CALCULATE the difference in the selling price due to the use of pre-determined overhead rate instead of using department-wise overhead rates. Assume that the direct costs (material and labour costs) per unit of products A and B were`25 and` 40 respectively and the selling price is fixed by adding 40\% over and above these costs to cover profit and selling and administration overhead. (RTP Nov'22)

## Answer 24

i. Computation of production and sales quantities:

The products processing times are as under -

| Product | A | B | Total |
| :---: | :---: | :---: | :---: |
| Department Pie | 4 hours | 1 hour | 90,000 hours |
| Department Qui | 1 hour | 4 hours | 90,000 hours |

Let $X$ and $Y$ be the number of units (production quantities) of the two products. Converting these into equations, we have -
$4 X+Y=90,000 \& X+4 Y=90,000$
Solving the above, we get $X=18,000 ; Y=18,000$
Hence, the Production and Sales Quantities are determined as under -

| Product | Production Quantity | Closing Stock (Given) | Sales Quantity <br> (Balancing Figure) |
| :--- | :---: | :---: | :---: |
| A | 18,000 units | 1,800 units | 16,200 units |
| B | 18,000 units | 5,400 units | 12,600 units |

ii. Effect of using pre-determined rate of overheads on the company's profit

| Produc <br> t | Closing <br> Stock | Overhead included <br> using pre- | Overhead included using <br> department rate | Difference in <br> overhead in |
| :--- | :---: | :---: | :---: | :---: |


|  | Quantity | detesrmined rate |  | closing stock value / Effect on closing stock value |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\begin{aligned} & 1,800 \\ & \text { units } \end{aligned}$ | $\begin{gathered} 1,800 \times 5 \text { hours } \\ \times {fa9d46605-03ed-4969-ac23-2edf77f553ce} 1,83,600 \end{gathered}$ | $\begin{aligned} & \text { Pie }=1,800 \text { units } \times 4 \text { hours } x {f704cbf70-1f43-4a70-96a4-a684256f1dc9} 2,07,360 \\ & \text { Qui }=1,800 \text { units } \times 1 \text { hour } x {f0700b7b7-fe6c-4877-ad72-a4e39e0df5aa} 45,360 \\ \hline B & \[ \begin{gathered} 5,400 \\ \text { units } \end{gathered}$ | $\begin{gathered} 5,400 \times 5 \text { hours } \\ \times {f1578a6f2-e771-4bc7-b399-6a735b3dcb62} 5,50,800 \end{gathered}$ | $\begin{gathered} \text { Pie }=5,400 \text { units } \times 1 \text { hour } x {fa306b617-dfd4-431a-8c11-10c24fce8ab6} 1,55,520 \end{gathered}$ | (+) `1,36,080 \\ \hline & & & \[ \begin{aligned} \text { Qui }=5,400 & \text { units } \times 4 \text { hours } \times` 12 |
|  | =`2,59,200 \end{aligned} \] & \\ \hline Total & & 7,34,400 & 6,43,680 & (+)` 90,720 |  |  |  |  |  |

Use of pre-determined overhead rate has resulted in over valuation of stock by `90,720 due to which the company's income would be affected (increase) by` 90,720 . Profit would be affected only to the extent of Overhead contained in closing finished goods and closing WIP, if any.
iii. Effect of using pre-determined on the products' selling prices

| Particulars | Product A | Product B |
| :--- | :---: | :---: |
| Selling Price per unit if pre-determined overhead rate is used | ${f4708e2e4-6779-48ff-9986-2aa99e75a39b} 198.80$ |  |
| Selling Price per unit if department wise rate is used | ${f480ce845-71e9-4c8c-85ff-51ec75578335} 163.52$ |  |
| Difference | ${fa4c304ba-56eb-4a7f-9fcd-53ed51d54914} 35.28$ |  |
|  | Under-Priced | Over-Priced |

Workings:

1. Pre-determined overhead recovery rate $=\frac{` 36,72,000}{1,80,000 \text { hours }}=` 20.40$ per direct labour
2. If pre-determined recovery rate is used

| Particulars | Product A in `& Product B in` |  |
| :--- | ---: | ---: |
| Materials \& Labour | 25.00 | 40.00 |
| Add: Production Overhead | 102.00 | 102.00 |
| A $=5$ hours x`20.40 per hour B = 5 hours x ` 20.40 per hour |  |  |
| Cost of production | 127.00 | 142.00 |
| Add: 40\% of margin | 50.80 | 56.80 |
|  | 177.80 | 198.50 |

(1) If department-wise recovery rate is used

| Particulars | Product A in `& Product B in` |  |
| :--- | ---: | ---: |
| Materials \& Labour | 25.00 | 40.00 |
| Add: Production Overhead | 127.20 | 76.80 |
| A $=$ Pie $=4$ hours x`28.80 Qui = 1 hour x`12 |  |  |
| B $=$ Pie $=1$ hour x`28.80 & & \\ Qui \(=4\) hours x`12 |  |  |
| Cost of production | 152.20 | 116.80 |
| Add: 40\% of margin | 60.88 | 46.72 |
| Selling Price per unit | 213.08 | 163.52 |

## Question 25

SANDY Ltd. is a manufacturing company having three production departments, ' $A$ ', ' $B$ ' and ' $C$ ' and two service departments ' $X$ ' and ' $Y$ '. The following is the budget for December 2022:

|  | Total (') | A (') | B (') | C ( ) | X (`) & Y(`) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct material |  | 1,60,000 | 3,20,000 | 6,40,000 | 3,20,000 | 1,60,000 |
| Direct wages |  | 8,00,000 | 3,20,000 | 12,80,000 | 1,60,000 | 3,20,000 |
| Factory rent | 6,40,000 |  |  |  |  |  |
| Power | 4,00,000 |  |  |  |  |  |
| Depreciation | 1,60,000 |  |  |  |  |  |
| Other overheads | 14,40,000 |  |  |  |  |  |
| Additional information: |  |  |  |  |  |  |
| Area (Sq. ft.) |  | 800 | 400 | 800 | 400 | 800 |
| Capital value of assets (') lakhs) |  | 32 | 64 | 32 | 16 | 16 |
| Machine hours |  | 1,600 | 3,200 | 6,400 | 1,600 | 1,600 |
| Horsepower of machines |  | 80 | 64 | 32 | 24 | 40 |

Apportionment of expenses of service departments is as under:

|  | A | B | C | $\mathbf{X}$ | $\mathbf{Y}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Service Dept. ' $\mathbf{X}$ ' | 72 | 24 | 48 | - | 16 |
| Service Dept. ${ }^{\prime} \mathrm{Y}$ ' | 96 | 56 | - | 8 | - |

## Required:

(i) PREPARE a statement showing distribution of overheads to various departments.
(ii) PREPARE a statement showing re-distribution of service departments expenses to production departments using Repeated Distribution method. Also CALCULATE machine hour rate of the production departments ' $A$ ', ' $B$ ', 'C'. (RTP May 23)

## Answer 25

(i) Overhead Distribution Summary

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& Basis \& Total (`) \& A ( ) \& B ( ) \& C (') \& X ( ) \& Y ( ) <br>
\hline Direct materials \& Direct \& - \& - \& - \& - \& 3,20,000 \& 1,60,000 <br>
\hline Direct wages \& Direct \& - \& - \& - \& - \& 1,60,000 \& 3,20,000 <br>

\hline | Factory | rent |
| :--- | :--- |
| (2:1:2:1:2) |  | \& Area \& 6,40,000 \& 1,60,000 \& 80,000 \& 1,60,000 \& 80,000 \& 1,60,000 <br>

\hline \[
$$
\begin{aligned}
& \text { Power } \\
& (10: 16: 16: 3: 5)^{*}
\end{aligned}
$$

\] \& | H.P. $\quad \times$ |
| :--- |
| Machine Hrs. | \& 4,00,000 \& 80,000 \& 1,28,000 \& 1,28,000 \& 24,000 \& 40,000 <br>

\hline Depreciation (2:4:2:1:1) \& Capital value of assets \& 1,60,000 \& 32,000 \& 64,000 \& 32,000 \& 16,000 \& 16,000 <br>
\hline Other overheads

$$
(1: 2: 4: 1: 1)
$$ \& Machine hrs. \& 14,40,000 \& 1,60,000 \& 3,20,000 \& 6,40,000 \& 1,60,000 \& 1,60,000 <br>

\hline
\end{tabular}

| Total |  | $26,40,000$ | $4,32,000$ | $5,92,000$ | $9,60,000$ | $7,60,000$ | $8,56,000$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

*\{(1600×80) : $(3200 \times 64):(6400 \times 32):(1600 \times 24):(1600 \times 40)\}$
(1,28,000 : 2,04,800 : 2,04,800 : 38,400 : 64,000)
(10:16:16:3:5)
(ii) Redistribution of service department's expense using repeated distribution Method:

|  | A (') | B ( ) | C (') | X (`) & \(Y(`)\) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total overheads | 4,32,000 | 5,92,000 | 9,60,000 | 7,60,000 | 8,56,000 |
| Dept. X overhead apportioned in the ratio (72:24:48: -:16) | 3,42,000 | 1,14,000 | 2,28,000 | -7,60,000 | 76,000 |
| Dept. Y overhead apportioned in the ratio (96:56: -:8: -) | 5,59,200 | 3,26,200 | - | 46,600 | -9,32,000 |
| Dept. X overhead apportioned in the ratio (72:24:48: -:16) | 20,970 | 6,990 | 13,980 | -46,600 | 4,660 |
| Dept. $Y$ overhead apportioned in the ratio (96:56: -:8: -) | 2,796 | 1,631 | - | 233 | -4,660 |
| Dept. X overhead apportioned in the ratio (72:24:48: -: 16) | 105 | 35 | 70 | -233 | 23 |
| Dept. $Y$ overhead apportioned in the ratio (96:56: -:8: -) | 15 | Le 8 | ) 6 | FBEE ${ }^{-}$ | -23 |
|  | 13,57,086 | 10,40,864 | 12,02,050 | - | - |

Calculation of machine hour rate

|  |  | A | B | C |
| :--- | :--- | :---: | :---: | :---: |
| A | Total overheads (`) | $13,57,086$ | $10,40,864$ | $12,02,050$ |
| B | Machine hours | 1,600 | 3,200 | 6,400 |
| C | Machine hour rate ( ${ }^{\prime}$ ) $[\mathrm{A} \div \mathrm{B}]$ | 848.18 | 325.27 | 187.82 |

## Question 26

M/s. NOP Limited has its own power plant and generates its own power. Information regarding power requirements and power used are as follows:

|  | Production Dept. |  | Service Dept. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | B | X | Y |
|  | (Horse power hours) |  |  |  |
| Needed capacity production | 20,000 | 25,000 | 15,000 | 10,000 |
| Used during the quarter ended September 2018 | 16,000 | 20,000 | 12,000 | 8,000 |

During the quarter ended September 2018, costs for generating power amounted to ₹ $\mathbf{1 2 . 6 0}$ lakhs out of which ₹ 4.20 lakhs was considered as fixed cost.

Service department $X$ renders services to departments $A, B$, and $Y$ in the ratio of 6:4:2 whereas department $Y$ renders services to department $A$ and $B$ in the ratio of 4: 1.

The direct labour hours of department A and B are 67500 hours and 48750 hours respectively.
Required:
1 Prepare overheads distribution sheet.
2 Calculate factory overhead per labour hour for the dept. A and dept. B. (PYP Nov '18, 5 Marks)
Answer 26
(1) Overheads distribution Sheet

| Item | Basis | Total Amount (₹) | Production Departments |  | Service Departments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A (₹) | B (₹) | X (₹) | Y (₹) |
| Variable overheads | Horse Power | 8,40,000 | 2,40,000 | 3,00,000 | 1,80,000 | 1,20,000 |
| (₹ 12.60 lakhs-₹ 4.20 lakhs) | hours used |  |  |  |  |  |
| Fixed Overheads | Horse power for Capacity production | 4,20,000 | 1,20,000 | 1,50,000 | 90,000 | 60,000 |
| Total Overheads |  | 12,60,000 | 3,60,000 | 4,50,000 | 2,70,000 | 1,80,000 |
| Service dept $X$ <br> allocated to $A, B \& Y$ | As per the ratiogiven6:4:2 | $(2,70,000)$ | 1,35,000 | 90,000 |  | 45,000 |
| Service dept Y allocated to A \& B | As per the ratio of $4: 1$ | $\begin{array}{\|c\|} \hline(1,80,000+4 \\ 5000=2,25,000) \end{array}$ | 1,80,000 | 45,000 |  |  |
| Total Overheads of Production departments |  | $\square$ | $6,75,000$ | $5,85,000$ |  |  |

(2) Calculation of Factory overhead per labour hour Item Production Departments

|  | A (₹) | B (₹) |
| :--- | :---: | :---: |
| Total overheads | $6,75,000$ | $5,85,000$ |
| Direct labour hours | 67,500 | 48,750 |
| Factory overheads per hour | 10 | 12 |

## Question 27

State the bases of apportionment of following overhead costs:
(i) Air-conditioning
(ii) Time keeping
(iii) Depreciation of plant and machinery
(iv) Power/steam consumption
(v) Electric power (Machine operation) (PYP Nov'18, 5 Marks)

Answer 27

| Overhead Cost | Bases of Apportionment |
| :--- | :--- |
| (i) Air- conditioning | Floor area, or volume of department |
| (ii) Time keeping | Number of workers |
| (iii) Depreciation of plant and <br> machinery | Capital values |
| (iv) Power/steam consumption | Technical estimates |
| (v) Electric power (machine | Horse power of machines, or Number of machine <br> hour, or value of machines or units consumed. <br> Kilo-watt hours. |

## Question 28

Explain Blanket Overhead Rate and Departmental Overhead Rate. How they are calculated? State the conditions required for the application of Blanket Overhead Rate. (PYP 5 Marks Jan 21, Old \& New SM)

## Answer 28

Blanket Overhead Rate: Blanket overhead rate refers to the computation of one single overhead rate for the whole factory.

This overhead rate is computed as follows:
Blanket Rate $=$ Total overheads for the factory / Total number of units of base for the factory
Departmental Overhead Rate: It refers to the computation of one single overhead rate for a particular production unit or department.

This overhead rate is determined by the following formula:
Departmental overhead Rate $=$ Overheads of department or cost centre / Corresponding base
Conditions required for the Application of Blanket Overhead:
A blanket rate should be applied in the following cases:
(1) Where only one major product is being produced.
(2) Where several products are produced, but
(a) All products pass through all departments; and
(b) All products are processed for the same length of time in each department.

## Question 29

SNS Trading Company has three Main Departments and two Service Departments. The data for each department is given below:

| Departments | Expenses (in ₹) | Area in (Sq. Mtr) | Number of <br> Employees |
| :--- | :---: | :---: | :---: |
| Main Department: |  | 12 | 800 |
| Purchase Department | $5,00,000$ | 15 | 1700 |
| Packing Department | $8,00,000$ | 7 | 700 |
| Distribution Department | $3,50,000$ |  |  |
| Service Departments: |  | 4 | 200 |
| Maintenance Department | $6,40,000$ | 6 | 250 |
| Personnel Department | $3,20,000$ |  |  |

The cost of Maintenance Department and Personnel Department is distributed on the basis of 'Area in Square Metres' and 'Number of Employees' respectively.

You are required to:
(i) Prepare a Statement showing the distribution of expenses of Service Departments to the Main Departments using the "Step Ladder method" of Overhead Distribution.
(ii) Compute the Rate per hour of each Main Department, given that, the Purchase Department, Packing Department and Distribution Department works for 12 hours a day, 24 hours a day and 8 hours a day respectively. Assume that there are 365 days in a year and there are no holidays. (PYP 5 Marks July 21)

## Answer 29

(i) Schedule Showing the Distribution of Expenses of Service Departments using Step ladder method.

|  | Main Department | Service Department |
| :--- | :--- | :--- |


|  | Purchase <br> (₹) | Packing (₹) | Distribution (₹) | Maintenance (₹) | Personnel (₹) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Expenses | 00,000 | $8,00,000$ | $3,50,000$ | $6,40,000$ | $3,20,000$ |
| Distribution of <br> Maintenance Department <br> $(12: 15: 7:-: 6)$ |  |  |  |  |  |
| Distribution of Personnel <br> Department <br> (800:1700:700:-:-) | $1,92,000$ | $2,40,000$ | $1,12,000$ | $(6,40,000)$ | 96,000 |
| Total |  |  |  |  |  |

(ii) Calculation of Expenses rate per hour of Main Department

|  | Purchase | Packing | Distribution |
| :--- | ---: | ---: | ---: |
| Total apportioned expenses (₹) | $7,96,000$ | $12,61,000$ | $5,53,000$ |
| Total Hours worked | 4,380 | 8,760 | 2,920 |
|  | $(12 \times 365)$ | $(24 \times 365)$ | $(8 \times 365)$ |
| Expenses rate per hour (₹) | $\mathbf{1 8 1 . 7 4}$ | $\mathbf{1 4 3 . 9 5}$ | $\mathbf{1 8 9 . 3 8}$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem was based on distribution of overheads by using step ladder method and calculation of rate per hour. Many examinees faced hardship to understand the concept of step ladder method; hence the overhead distribution was not done correctly leading to wrong calculation of overhead rate per hour. Performance of the examinees was below average.

## Question 30

XYZ Ltd. manufactures a single product. It recovers factory overheads at a pre - determined rate of ₹ 20 per man-day.

During the year 2020-21, the total factory overheads incurred and the man-days actually worked were ₹ $\mathbf{3 5 . 5 0}$ lakhs and 1.50 lakh days respectively. Out of the amount of ₹ $\mathbf{3 5 . 5 0}$ lakhs, ₹ 2.00 lakhs were in respect of wages for stick period and ₹ 1.00 lakh was in respect of expenses of previous year booked in this current year. During the period, 50,000 units were sold. At the end of the period, 12,000 completed units were held in stock but there was no opening stock of finished goods. Similarly, there was no stock of uncompleted units at the beginning of the period but at the end of the period there were $\mathbf{2 0 , 0 0 0}$ uncompleted units which may be treated as $65 \%$ complete in all respects.

On investigation, it was found that $40 \%$ of the unabsorbed overheads were due to factory inefficiency and the rest were attributable to increase in the cost of indirect materials and indirect labour. You are required to:
(i) Calculate the amount of unabsorbed overheads during the year 2020-21.
(ii) Show the accounting treatment of unabsorbed overheads in cost accounts and pass journal entry. (PYP 10 Marks Dec '21)
Answer 30
(i) Amount of under-absorption of overheads during the year 2020-21

| (₹) |  |  |
| :---: | ---: | ---: |
| Total production overheads actually incurred during the year 2020-21 |  | $35,50,000$ |
| Less: Wages paid during strike period | $₹ 2,00,000$ |  |
| Wages of previous year booked in current year | ₹ $1,00,000$ | $3,00,000$ |


| Net production overheads actually incurred: (A) |  |
| :--- | ---: |
| Production overheads absorbed by 1.50 lakh man-days @ ₹ 20 per <br> man-day: (B) | $32,50,000$ |
| Amount of under-absorption of production overheads: [(A)-(B)] | $2,50,000$ |

(ii) Accounting treatment of under absorption of production overheads: It is given in the statement of the question that 62,000 units ( 50,000 sold $+12,000$ closing stock -0 opening stock) were completely finished and 20,000 units were $65 \%$ complete, $40 \%$ of the under-absorbed overheads were due to factory inefficiency and the rest were attributable to increase in cost of indirect materials and indirect labour.

|  | (₹) |
| :--- | ---: |
| 1. (40\% of ₹2,50,000) i.e. ₹ 1,00,000 of under - absorbed overheads were due <br> to factory inefficiency. This being abnormal, should be debited to the <br> Costing Profit and Loss A/c | $1,00,000$ |
| 2. Balance (60\% of ₹ 2,50,000) i.e. ₹ 1,50,000 of under - absorbed overheads <br> should be distributed over work-in- progress, finished goods and cost of <br> sales by using supplementary rate | $1,50,000$ |
| Total under-absorbed overheads | $2,50,000$ |

Apportionment of unabsorbed overheads of $₹ 1,50,000$ over work-in-progress, finished goods and cost of sales.

|  | Equivalent <br> Completed units | (₹) |
| :--- | ---: | ---: |
| Work-in-progress (13,000 units $\times$ ₹ 2) (Refer to <br> Working Note) | $20000 * 65 \%=13,000$ | 26,000 |
| Finished goods (12,000 units $\times$ ₹ 2) | 12,000 | 24,000 |
| Cost of sales (50,000 units $\times$ ₹ 2) | 50,000 | $1,00,000$ |
|  | 75,000 | $1,50,000$ |

## Journal entry:

| Work-in-progress control A/c | Dr. | ₹ 26,000 |  |
| :--- | :--- | :--- | :--- |
| Finished goods control A/c | Dr. | ₹ 24,000 |  |
| Cost of Sales A/c | Dr. | ₹ $1,00,000$ |  |
| Costing Profit \& Loss A/c | Dr. | ₹ $1,00,000$ |  |
| To Overhead control A/c |  |  |  |
|  |  | ₹ 2,50,000 |  |

## Working Note:

Supplementary overhead absorption rate $=\frac{R s .1,50,000}{75,000 \text { units }}=$ Rs. 2 per unit

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

The question tested the knowledge of examinees on the treatment of unabsorbed Overheads in cost accounting. Examinees had to calculate unabsorbed overheads and pass journal entry after allocating them to Cost of Sales, WIP, and Finished stock by using supplementary rate. Performance of the examinees was above average.

## Question 31

In a manufacturing company, the overhead is recovered as follows: Factory Overheads: a fixed percentage basis on direct wages and Administrative overheads: a fixed percentage basis on factory cost.

The company has furnished the following data relating to two jobs undertaken by it in a period.

|  | Job 1(₹) | Job 2(₹) |
| :--- | ---: | ---: |
| Direct materials | $1,08,000$ | 75,000 |
| Direct wages | 84,000 | 60,000 |
| Selling price | $3,33,312$ | $2,52,000$ |
| Profit percentage on total cost | $12 \%$ | $20 \%$ |

You are required to:
(i) Compute the percentage recovery rates of factory overheads and administrative overheads.
(ii) Calculate the amount of factory overheads, administrative overheads and profit for each of the two jobs.
(iii) Using the above recovery rates, determine the selling price to be quoted for job 3. Additional data pertaining to Job $\mathbf{3}$ is as follows:

| Direct materials | $₹ 68,750$ |
| :--- | :--- |
| Direct wages | $₹ 22,500$ |
| Profit percentage on selling price | $15 \%$ |

(PYP 10 Marks May'22) (Same concept different figures Old \& New SM) (MTP 10 Marks Oct '23)

## Answer 31

Computation of percentage recovery rates of factory overheads and administrative overheads.
Let the factory overhead recovery rate as percentage of direct wages be $F$ and administrative overheads recovery rate as percentage of factory cost be A.

## Factory Cost of Jobs:

Direct materials + Direct wages + Factory overhead For Job $1=₹ 1,08,000+₹ 84,000+₹ 84,000 F$
For Job $2=₹ 75,000+₹ 60,000+₹ 60,000 F$
Total Cost of Jobs:
Factory cost + Administrative overhead
For Job 1 = ( $₹ 1,92,000+₹ 84,000 F)+(₹ 1,92,000+₹ 84,000 F) A=₹ 2,97,600 *$ For Job-2 $=(₹ 1,35,000$ $+₹ 60,000 F)+(₹ 1,35,000+₹ 60,000 F) A=₹ 2,10,000^{* *}$

The value of $F \& A$ can be found using following equations

| $1,92,000+84,000 F+1,92,000 A+84,000 A F$ | $=$ | $₹ 2,97,600$ | $\ldots \ldots . . . . . e q n(i)$ |
| :--- | :--- | :--- | :--- |
| $1,35,000+60,000 F+1,35,000 A+60,000 A F$ | $=$ | $₹ 2,10,000$ | $\ldots . . . . . . . . e q n(i i)$ |

Multiply equation (i) by 5 and equation (ii) by 7

| $9,60,000+4,20,000 F+9,60,000 \mathrm{~A}+4,20,000 \mathrm{AF}$ | $=$ | $₹ 14,88,000$ | ...eqn (iii) |
| :--- | :--- | :--- | :--- |
| $9,45,000+4,20,000 \mathrm{~F}+9,45,000 \mathrm{~A}+4,20,000 \mathrm{AF}$ | $=$ | $₹ 14,70,000$ | ...eqn (iv) |
| - | - |  | - |
| $15,000+15,000 \mathrm{~A}$ | $=$ | $₹ 18,000$ |  |

$15,000 \mathrm{~A}=18,000-15,000$
$\mathrm{A}=\mathbf{0 . 2 0}$
Now putting the value of $A$ in equation (i) to find the value of $F$
$1,92,000+84,000 F+(1,92,000 \times 0.20)+(84,000 F \times 0.20)=₹ 2,97,600$
Or
$1,92,000+84,000 F+38,400+16,800 F=₹ 2,97,600$
1,00,800 F = 67,200
$F=0.667$
On solving the above relations: $F=0.667$ and $A=0.20$ Hence, percentage recovery rates of:

Factory overheads $=66.7 \%$ or $2 / 3$ rd of wages and Administrative overheads $=20 \%$ of factory cost.
Working note:
Total Cost $=\frac{\text { Selling price }}{(100 \%+\text { Percentage of profit })}$
*For Job 1 =
$\frac{₹ 3,33,312}{(100 \%+12 \%)}=₹ 2,97,600$
**For Job 2
$\frac{₹ 2,52,000}{(100 \%+10 \%)}==₹ 2,10,000$
(ii) Statement of jobs, showing amount of factory overheads, administrative overheads and profit:

|  | Job 1 | Job 2 |
| :--- | ---: | ---: |
|  | (₹) | (₹) |
| Direct materials | $1,08,000$ | 75,000 |
| Direct wages | 84,000 | 60,000 |
| Prime cost | $1,92,000$ | $1,35,000$ |
| Factory overheads |  |  |
| 2/3rd of direct wages | 56,000 | 40,000 |
| Factory cost | $2,48,000$ | $1,75,000$ |
| Administrative overheads |  |  |
| 20\% of factory cost | 49,600 | 35,000 |
| Total cost | $2,97,600$ | $2,10,000$ |
| Profit (12\% \& 20\% respectively) | 35,712 | 42,000 |
| Selling price | $3,33,312$ | $2,52,000$ |

(iii) Selling price of Job 3

|  | (₹) |
| :--- | :--- |
| Direct materials | 68,750 |
| Direct wages | 22,500 |
| Prime cost | 91,250 |
| Factory overheads (2/3rd of Direct Wages) | 15,000 |
| Factory cost | $1,06,250$ |
| Administrative overheads (20\% of factory cost) | 21,250 |
| Total cost | $1,27,500$ |
| Profit margin (balancing figure) | 22,500 |
| Selling price $\left(\frac{\text { Total Cost }}{85 \%}\right)$ | $1,50,000$ |

USP Ltd. is the manufacturer of 'double grip motorcycle tyres'. In the manufacturing process, it undertakes three different jobs namely, Vulcanising, Brushing and Striping. All of these jobs require the use of a special machine and also the aid of a robot when necessary. The robot is hired from outside and the hire charges paid for every six months is₹ $\mathbf{2 , 7 0 , 0 0 0}$. An estimate of overhead expenses relating to the special machine is given below:

- $\quad$ Rent for a quarter is $₹ \mathbf{1 8 , 0 0 0}$.
- The cost of the special machine is ₹ $19,20,000$ and depreciation is charged @10\% per annum on straight line basis.
- Other indirect expenses are recovered at $20 \%$ of direct wages.

The factory manager has informed that in the coming year, the total direct wages will be ₹ $\mathbf{1 2 , 0 0 , 0 0 0}$ which will be incurred evenly throughout the year.
During the first month of operation, the following details are available from the job book: Number of hours the special machine was used

| Jobs | Without the aid of the <br> robot | With the of the <br> robot |  |
| :--- | :--- | :--- | :--- |
| Vulcanising | 500 | 400 |  |
| Brushing | 1000 | 400 |  |
| Striping |  | 1200 |  |

You are required to:
(i) Compute the Machine Hour Rate for the company as a whole for a month (A) when the robot is used and (B) when the robot is not used.
(ii) Compute the Machine Hour Rate for the individual jobs i.e. Vulcanising, Brushing and Striping. (PYP 10 Marks Nov 22, Old \& New SM)
Answer 32
Working notes:
(I) Total machine hours use

3,500
$(500+1,000+400+400+1,200)$
(II) Total machine hours without the use of robot

1,500
(500 + 1,000)
(III) Total machine hours with the use of robot 2,000 $(400+400+1,200)$
(IV) Total overheads of the machine per month Rent ( $₹ 18,000 \div 3$ months) 6,000 Depreciation [(₹ 19,20,000 x 10\%) $\div 12$ months] Indirect expenses [(₹ $12,00,000 \times 20 \%) \div 12$ months]

Total
(V) Robot hire charges for a month
₹ 45,000 (₹ $2,70,000 \div 6$ months)
(VI) Overheads for using machines without robot $=\frac{R s .42,000}{3,500 \text { hrs. }} \times 1,500 \mathrm{hrs} .=$

Rs. 18,000
(VII) Overheads for using machines with robot
$=\frac{R s .42,000}{3,500 \mathrm{hrs}} \times 1,500 \mathrm{hrs} .=$
Rs. 18,000
(i) Computation of Machine hour rate for the individual job
4.42
(A) When the robot was used : $\frac{\text { Rs. } 69,000}{2,000 \text { hours }}=$ Rs. 34.50 per hour
(B) When the robot was not used: $\frac{\text { Rs. } 18,000}{1500 \text { hours }}=$ Rs. 12 Per hour
(ii)

|  | Rate per hour$(₹)$ | Job |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Vulcanising |  | Brushing |  | Striping |  |
|  |  | Hrs. | (₹) | Hrs. | (₹) | Hrs. | (₹) |
| Overheads |  |  |  |  |  |  |  |
| Without robot | 12.00 | 500 | 6,000 | 1,000 | 12,000 |  | - |
| With robot | 34.50 | 400 | 13,800 | 400 | 13,800 | 1,200 | 41,400 |
| Total |  | 900 | 19,800 | 1,400 | 25,800 | 1,200 | 41,400 |
| Machine hour rate |  |  | 22 |  | 18.43 |  | 34.50 |

VIVITSU
5.1

STRIVING TOWARDS KNOWLEDGE

## Chapter 5 <br> Activity Based Costing

## Question 1

RST Limited specializes in the distribution of pharmaceutical products. It buys from the pharmaceutical companies and resells to each of the three different markets.
(i) General Supermarket Chains
(ii) Drugstore Chains
(iii) Chemist Shops

The following data for the month of April in respect of RST Limited has beenreported:

|  | General <br> Supermarket <br> Chains | Drugstore <br> Chains | Chemist <br> Shops |
| :--- | ---: | ---: | ---: |
| (`) & (`) | $(`)$ |  |  |
| Average revenue per delivery | 84,975 | 28,875 | 5,445 |
| Average cost of goods sold perdelivery | 82,500 | 27,500 | 4,950 |
| Number of deliveries | 330 | 825 | 2,750 |

In the past, RST Limited has used gross margin percentage to evaluate therelative profitability of its distribution channels. The company plans to use activity -based costing for analysing the profitability of its distribution channels.

The Activity analysis of RST Limited is as under:

| Activity Area | Cost Driver |
| :--- | :--- |
| Customer purchase order processing | Purchase orders by customers |
| Line-item ordering | Line-items per purchase order |
| Store delivery | Store deliveries |
| Cartons dispatched to stores | Cartons dispatched to a store perdelivery |
| Shelf-stocking at customer store | Hours of shelf-stocking |

The April month's operating costs (other than cost of goods sold) of RST Limited are ` $8,27,970$. These operating costs are assigned to five activity areas. The cost in each area and the quantity of the cost allocation basis usedin that area for the month of April are as follows:

| Activity Area | Total costs (') | Total Units of CostAllocation <br> Base |
| :--- | ---: | ---: |
| Customer purchase orderprocessing | $\mathbf{2 , 2 0 , 0 0 0}$ | $\mathbf{5 , 5 0 0}$ orders |
| Line-item ordering | $\mathbf{1 , 7 5 , 5 6 0}$ | $\mathbf{5 8 , 5 2 0}$ line items |
| Store delivery | $1,95,250$ | $\mathbf{3 , 9 0 5}$ store deliveries |
| Cartons dispatched tostore | $2,09,000$ | $\mathbf{2 , 0 9 , 0 0 0}$ cartons |
| Shelf-stocking <br> customer store at | 28,160 | 1,760 hours |

Other data for the month of April include the following:

|  | General <br> Supermarket <br> Chains | Drugstore <br> Chains | Chemist <br> Shops |
| :--- | ---: | ---: | ---: |
| Total number of orders | 385 | 990 | 4,125 |
| Average number of line itemsper <br> order | 14 | 12 | 10 |
| Total number of store deliveries | 330 | 825 | 2,750 |
| Average number of cartons | 300 | 80 | 16 |

5.2

| shipped per store delivery |  |  |  |
| :--- | ---: | ---: | ---: |
| Average number of hours of shelf- <br> stocking per storedelivery | 3 | 0.6 | 0.1 |

## Required:

(i) COMPUTE gross-margin percentage for each of its three distributionchannels and compute RST Limited's operating income.
(ii) COMPUTE the rate per unit of the cost-allocation base for each of thefive activity areas.
(iii) COMPUTE the operating income of each distribution channel using the activity-based costing information. Comment on the results. What new insights are available with the activity-based cost information?
(iv) DESCRIBE four challenges one would face in assigning the total operating costs of ${ }^{`} 8,27,970$ to five activity areas. (Old \& New SM) (Same concept different figures RTP May'22) (MTP 10 Marks Sep '23)

## Answer 1

(i) RST Limited's

Statement of operating income and gross margin percentagefor each of its three distribution channel

| Particulars | General Super Market Chains | DrugstoreChains | Chemist Shops | Total |
| :---: | :---: | :---: | :---: | :---: |
| Revenues: (`) & \[ \begin{array}{r} 2,80,41,750 \\ (330 \times ` 84,975) \end{array} \] | $\begin{array}{r} 2,38,21,875 \\ (825 \times \cdot 28,875) \end{array}$ | $\begin{array}{r} 1,49,73,750 \\ (2,750 \times {facf6a1fb-6931-48d2-aa83-b47b39a7fd43}) & \[ \begin{array}{r} 2,72,25,000 \\ (330 \times {fb530bf4b-1970-4a6c-a5d5-6c21e0769eb6} 27,500) \end{array}$ | $\begin{array}{r} 1,36,12,500 \\ (2,750 \times \div 4,950) \end{array}$ | 635,25,000 |
| Gross Margin:(`) & 8,16,750 & 11,34,375 & 13,61,250 & 33,12,375 \\ \hline Less: Other operating costs: (`) |  |  |  | 8,27,970 |
| Operating income: (`) & & & & 24,84,405 \\ \hline Gross Margin & 2.91\% & 4.76 \% & 9.09\% & 4.96\% \\ \hline Operatingincome \% & & & & 3.72 \\ \hline \end{tabular} (ii) Computation of rate per unit of the cost allocation base foreach of the five activity areas for the month of April \begin{tabular}{\|l|l|} \hline & \multicolumn{1}{c|}{ (`) } |  |  |  |  |
| Customer purchase order processing(`2,20,000/5,500 orders) & 40 per order \\ \hline \begin{tabular}{l}  Line item ordering \\ (`1,75,560/58,520 line items) |  |  |  |  | \& 3 per line item order <br>


\hline | Store delivery |
| :--- |
| (`1,95,250/3,905 store deliveries) \end{tabular} & 50 per delivery \\ \hline \begin{tabular}{l}  Cartons dispatched \\ (` 2,09,000/ 2,09,000 dispatches) | \& 1 per dispatch <br>

\hline Shelf-stocking at customer store (`)(`28,160/ 1,760 hours) \& 16 Per hour <br>
\hline
\end{tabular}

(iii) Operating Income Statement of each distribution channel in April (Using the Activity based Costing information)

| General | Drugstore <br> Chains | Chemist <br> Shops |
| :--- | ---: | ---: |
| Market |  |  |

\begin{tabular}{|l|r|r|r|}
\hline \& \multicolumn{1}{|l|}{ Chains } \& \& \\
\hline \begin{tabular}{l} 
Gross margin (') : (A) \\
(Refer to (i) part of the answer)
\end{tabular} \& \(8,16,750\) \& \(11,34,375\) \& \(13,61,250\) \\
\hline \begin{tabular}{l} 
Operating cost (`): (B) (Refer \\
to working note)
\end{tabular} \& \(1,62,910\) \& \(1,90,410\) \& \(4,74,650\) \\
\hline Operating income (`): (A-B) \& \(6,53,840\) \& \(9,43,965\) \& \(8,86,600\) \\
\hline \begin{tabular}{l} 
Operating income (in \%) (Operating \\
income/Revenue) \(\times 100\)
\end{tabular} \& 2.33 \& 3.96 \& 5.92 \\
\hline
\end{tabular}

Comments and new insights: The activity-based cost information highlights, how the 'Chemist Shops' uses a larger amount of RST Ltd.'s resources per revenue than do the other two distribution channels. Ratio of operating costs to revenues, across these markets is:

| General supermarket chains <br> (`\(1,62,910 /` 2,80,41,750) \times 100\) | $0.58 \%$ |
| :--- | :---: |
| Drug store chains <br> (`\(1,90,410 /` 2,38,21,875) \times 100\) | $0.80 \%$ |
| Chemist shops <br> (`\(4,74,650 /` 1,49,73,750) \times 100\) | $3.17 \%$ |

Working note:
Computation of operating cost of each distribution channel:

|  | General Super Market Chains (') | Drugstore Chains | Chemist Shops |  |
| :---: | :---: | :---: | :---: | :---: |
| Customer purchase orderprocessing | $\begin{array}{r} 15,400 \\ \text { ({f766730de-0b0d-4e2b-a50a-a4ef9cf12b99} } 40 \times 990 \\ \text { orders) } \end{array}$ | $\begin{array}{r} 1,65,000 \\ \text { ( } 40 \times 4125 \\ \text { orders) } \end{array}$ |  |  |
| Line ordering | $\begin{array}{r} 16,170 \\ \left(\begin{array}{r} 3 \times 14 x \\ 385) \end{array}\right. \end{array}$ | $\begin{array}{r} 35,640 \\ \binom{3 \times 12 x}{990} \end{array}$ | $\begin{array}{r} 1,23,750 \\ \left(\begin{array}{r} 3 \times 10 \times \\ 4125) \end{array}\right. \end{array}$ |  |
| Store delivery | $\begin{array}{r} 16,500 \\ \text { ({f9a66a8d5-0424-4b19-99aa-62e2a9ba51c3} } 50 \times 825 \\ \text { deliveries) } \end{array}$ | $\begin{array}{r} 1,37,500 \\ \text { ( } 50 \times 2750 \\ \text { deliveries) } \\ \hline \end{array}$ |  |  |
| Cartons dispatched | $\begin{array}{r} 99,000 \\ (1 \times 300 \\ \text { cartons } \times 300 \\ \text { deliveries) } \end{array}$ | $\begin{array}{r} 66,000 \\ (1 \times 80 \\ \text { cartons } \times 825 \\ \text { deliveries }) \end{array}$ | $\begin{array}{r} 44,000 \\ ({f9b127842-5694-4a18-86e0-66cea477ab14} 16 \times 330 \\ \text { deliveries } \times 3 \\ \text { Av. hrs.) } \end{array}$ | \[ \begin{array}{r} 7,920 |
| (` 16 \times 825 \\ \text { deliveries } \times \\ 0.6 \mathrm{Av} . \mathrm{hrs}) \end{array} \] & 4,400 \((` 16 \times 2,750\) deliveries $\times 0.1$ $\mathrm{Av} . \mathrm{hrs}$ ) |  |  |  |  |
| Operating cost | 1,62,910 | 1,90,410 | 4,74,650 |  |

(iv) Challenges faced in assigning total operating cost of ${ }^{\mathbf{8}, \mathbf{8 7}, \mathbf{9 7 0}}$

- Choosing an appropriate cost driver for activity area.
- Developing a reliable data base for the chosen cost driver.
- Deciding, how to handle costs that may be common acrossseveral activities.
- Choice of the time period to compute cost rates per costdriver.


## Question 2

Linex Limited manufactures three products $P, Q$ and $R$ which are similar in nature and are usually produced in production runs of 100 units. Product $P$ and $R$ require both machine hours and assembly hours, whereas product $Q$ requires only machine hours. The overheads incurred by the company during the first quarter are as under:

| Machine Department expense | $\mathbf{1 8 , 4 8 , 0 0 0}$ |
| :--- | :---: |
| Assembly Department expenses | $\mathbf{6 , 7 2 , 0 0 0}$ |
| Setup costs | $\mathbf{9 0 , 0 0 0}$ |
| Stores receiving cost | $\mathbf{1 , 2 0 , 0 0 0}$ |
| Order processing and dispatch | $1,80,000$ |
| Inspect and Quality control cost | 36,000 |

The date related to the three products during the period are as under:

|  | P | R |  |
| :---: | :---: | :---: | :---: |
| Units produced and sold | 15,000 | 12,000 | 18,000 |
| Machine hours worked | $30,000 \mathrm{hrs}$. | $48,000 \mathrm{hrs}$. | $54,000 \mathrm{hrs}$. |
| Assembly hours worked (direct labour hours) | $15,000 \mathrm{hrs}$. | - | $27,000 \mathrm{hrs}$. |
| Customers' orders executed (in numbers) | 1,250 | 1,000 | 1,500 |
| Number of requisitions raised on the stores | 40 |  |  |

## Required

PREPARE a statement showing details of overhead costs allocated to each product type using activity based costing. (MTP March '19, 10 Marks)

## Answer 2

| Cost Pool | Cost <br> (Rs.) <br> $[$ [A] | Cost Driver <br> [B] | Cost Driver <br> Rate (Rs.) <br> [C] $=[\mathrm{A}] \div[\mathrm{B}]$ |
| :--- | ---: | :--- | ---: |
| Machine Department <br> Expenses | $18,48,000$ | Machine Hours <br> $(1,32,000$ hrs.) |  |
| Assembly Department <br> Expenses | $6,72,000$ | Assembly Hours <br> $(42,000$ hrs.) | 14.00 |
| Setup Cost | 90,000 | No. of Production Runs (450*) | 200.00 |
| Stores Receiving Cost | $1,20,000$ | No. of Requisitions Raised <br> on the Stores (120) | $1,000.00$ |
| Order Processing and <br> Dispatch | $1,80,000$ | No. of Customers Orders <br> Executed (3,750) | 48.00 |
| Inspection and Quality <br> Control Cost | 36,000 | No. of Production Runs (450*) | 80.00 |
| Total (Rs.) | $29,46,000$ |  |  |

*Number of Production Run is $450(150+120+180)$
Statement Showing "Overheads Allocation"

| Particulars of Cost | Cost Driver | P | Q | R | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Machine | Machine | $4,20,000$ | $6,72,000$ | $7,56,000$ | $18,48,000$ |
| Department | Hours | $(30,000 \times$ | $(48,000 \times$ | $(54,000 \times$ |  |
| Expenses |  | Rs.14 $)$ | Rs.14) | Rs.14) |  |
| Assembly | Assembly | $2,40,000$ | --- | $4,32,000$ | $6,72,000$ |


| Department Expenses |  | $\begin{gathered} (15,000 \times \\ \text { Rs. } 16) \\ \hline \end{gathered}$ |  | $\begin{gathered} (27,000 \times \\ \text { Rs. } 16) \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Setup Cost | No. of | 30,000 | 24,000 | 36,000 | 90,000 |
|  | Production Runs | (150 $\times$ Rs. 200 ) | $(120 \times$ Rs.200 $)$ | (180 $\times$ Rs. 200 ) |  |
| Stores <br> Receiving Cost | No. of Requisitions Raised on the Stores | $\begin{gathered} 40,000 \\ (40 \times \text { Rs.1,000 }) \end{gathered}$ | $\begin{gathered} 30,000 \\ (30 \times R s .1,000) \end{gathered}$ | $\begin{gathered} 50,000 \\ (50 \times R s .1,000) \end{gathered}$ | 1,20,000 |
| Order Processing and Dispatch | No. of Customers Orders Executed | $\begin{gathered} 60,000 \\ (1,250 \times \\ \text { Rs. } 48) \end{gathered}$ | $\begin{gathered} 48,000 \\ (1,000 \times \text { Rs. } 48) \end{gathered}$ | $\begin{gathered} 72,000 \\ (1,500 \times \text { Rs. } 48) \end{gathered}$ | 1,80,000 |
| Inspection and Quality Control Cost | No. of Production Runs | $\begin{gathered} 12,000 \\ (150 \times \text { Rs. } 80) \end{gathered}$ | $\begin{gathered} 9,600 \\ (120 \times \mathrm{Rs} .80) \end{gathered}$ | $\begin{gathered} 14,400 \\ (180 \times \text { Rs. } 80) \end{gathered}$ | 36,000 |
| Overhead (Rs.) |  | 8,02,000 | 7,83,600 | 13,60,400 | 29,46,000 |

## Question 3

Bank of Surat operated for years under the assumption that profitability can be increased by increasing Rupee volume. But that has not been the case. Cost analysis has revealed the following:

| Activity | Activity Cost (₹) | Activity Driver | Activity <br> Capacity |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| Providing ATM Service | $1,00,000$ | No. of Transactions | $2,00,000$ |  |  |
| Computer Processing | $10,00,000$ | No. of Transactions | $25,00,000$ |  |  |
| Issuing Statements | $8,00,000$ | No. of Statements | $5,00,000$ |  |  |
| Customer Inquiries | $3,60,000$ | Telephone Minutes | $6,00,000$ |  |  |
| The following annual information on three products was also made available: |  |  |  |  |  |


| Activity Driver | Checking | Personal Loans | Gold Visa |
| :--- | :--- | :--- | :---: |
|  | Accounts |  | 10,000 |
| Units of Product | 30,000 | 5,000 | 20,000 |
| ATM Transactions | $1,80,000$ | 0 | $3,00,000$ |
| Computer <br> Transactions | $20,00,000$ | 50,000 | $1,50,000$ |
| Number of <br> Statements | $3,50,000$ | 90,000 | $1,60,000$ |
| Telephone Minutes <br> Required |  |  |  |

(i) CALCULATE rates for each activity.
(ii) Using the rates computed in requirement (i), Calculate the cost of each product. (MTP March '18, 5 Marks)
Answer 3
(i) Statement Showing "Activity Rate"

| Activity | Activity <br> Cost [a] <br> (₹) | Activity Driver | No. of Units <br> of Activity <br> Driver [b] | Activity <br> Rate <br> $[\mathrm{a}] /[\mathrm{b}]$ <br> (₹) |
| :--- | :--- | :--- | :--- | :--- |
| Providing ATM Service | $1,00,000$ | No. of ATM Transactions | $2,00,000$ | 0.50 |


| Computer <br> Processing | $10,00,000$ | No. of Computer <br> Transactions | $25,00,000$ | 0.40 |
| :--- | :--- | :--- | :--- | :--- |
| Issuing Statements | $8,00,000$ | No. of Statements | $5,00,000$ | 1.60 |
| Customer Inquiries | $3,60,000$ | Telephone Minutes | $6,00,000$ | 0.60 |

## (ii) Statement Showing "Cost of Product"

| Activity | Checking Accounts (₹) | Personal Loans (₹) | Gold Visa (₹) |
| :---: | :---: | :---: | :---: |
| Providing ATM Service | $\begin{gathered} 90,000 \\ (1,80,000 \text { tr. } \times \text { ₹ } 0.50) \end{gathered}$ | --- | $\begin{gathered} 10,000 \\ (20,000 \text { tr. } \times ₹ 0.50) \end{gathered}$ |
| Computer <br> Processing | $\begin{gathered} 8,00,000 \\ (20,00,000 \text { tr. } \times ₹ 0.40) \end{gathered}$ | $\begin{gathered} 80,000 \\ (2,00,000 \text { tr. } \times \text { ₹ } 0.40) \end{gathered}$ | $\begin{gathered} 1,20,000 \\ (3,00,000 \text { tr. } \times \text { ₹ } 0.40) \end{gathered}$ |
| Issuing Statements | $\begin{gathered} 4,80,000 \\ (3,00,000 \text { st. } \times ₹ 1.60) \end{gathered}$ | $\begin{array}{r} 80,000 \\ (50,000 \mathrm{st} . \times ₹ 1.60) \end{array}$ | $\begin{gathered} 2,40,000 \\ (1,50,000 \text { st. } \times ₹ 1.60) \end{gathered}$ |
| Customer Inquiries | $\begin{gathered} 2,10,000 \\ (3,50,000 \mathrm{~min} . \times ₹ 0.60) \end{gathered}$ | $\begin{gathered} 54,000 \\ (90,000 \mathrm{~min} . \times ₹ 0.60) \end{gathered}$ | $\begin{gathered} 96,000 \\ (1,60,000 \mathrm{~min} . \times ₹ 0.60) \end{gathered}$ |
| Total Cost [a] | ₹ 15,80,000 | ₹ 2,14,000 | ₹ 4,66,000 |
| Units of Product [b] | 30,000 | 5,000 | 10,000 |
| Cost of each Product [a] / [b] | 52.67 | 42.80 | 46.60 |

## Question 4

Asian Mfg. Co. has decided to increase the size of the store. It wants the information about the probability of the individual product lines: Lemon, Grapes and Papaya. It provides the following data for the 2018 for each product line:

| Particulars | Lemon | Grapes | Papaya |
| :--- | ---: | ---: | ---: |
| Revenues (Rs.) | $\mathbf{7 9 , 3 5 0}$ | $\mathbf{2 , 1 0 , 0 6 0}$ | $\mathbf{1 , 2 0 , 9 9 0}$ |
| Cost of goods sold (Rs.) | $\mathbf{6 0 , 0 0 0}$ | $\mathbf{1 , 5 0 , 0 0 0}$ | $\mathbf{9 0 , 0 0 0}$ |
| Cost of bottles returned (Rs.) | $\mathbf{1 , 2 0 0}$ | $\mathbf{0}$ | 0 |
| Number of purchase orders placed | $\mathbf{3 6}$ | $\mathbf{8 4}$ | $\mathbf{3 6}$ |
| Number of deliveries received | 30 | $\mathbf{2 1 9}$ | $\mathbf{6 6}$ |
| Hours of shelf stocking time | 54 | 540 | $\mathbf{2 7 0}$ |
| Items sold | $\mathbf{1 2 , 6 0 0}$ | $\mathbf{1 , 1 0 , 4 0 0}$ | $\mathbf{3 0 , 6 0 0}$ |

Asian Mfg. Co. also provides the following information for the year 2018:

| Activity | Description of Activity | Total Costs <br> (Rs.) | Cost Allocation Basis |
| :--- | :--- | ---: | :--- |
| Bottle returns | Returning of empty bottles to <br> the store | Direct tracing to <br> product line |  |
| Ordering | Placing of orders of purchases | 15,600 | 156 purchase orders |
| Delivery | Physical delivery and the <br> receipts of merchandise | 25,200 | $\mathbf{3 1 5}$ deliveries |
| Self- stocking | Stocking of merchandise on <br> store shelves and ongoing <br> restocking | 17,280 | 864 hours of time |
| Customer <br> support | Assistance provided to <br> customers including bagging <br> and checkout | $\mathbf{3 0 , 7 2 0}$ | $\mathbf{1 , 5 3 , 6 0 0}$ items sold |

## Required

(i) Asian Mfg. Co. currently allocates store support costs (all costs other than the cost of goods sold) to the product line on the basis of the cost of goods sold of each product line. CALCULATE the operating income and operating income as the percentage of revenue of each product line.
(ii) If Asian Mfg. Co. allocates store support costs (all costs other than the cost of goods sold) to the product lines on the basis of ABC system, CALCULATE the operating income and operating
income as the percentage of revenue of each product line.
(iii) SHOW a comparison statement. (MTP Oct. '19, 10 Marks)

## Answer 4

(i) Absorption Costing System Operating Income-

| Particulars | Lemon | Grapes | Papaya | Total |
| :---: | :---: | :---: | :---: | :---: |
| Revenue | 79,350 | $2,10,060$ | $1,20,990$ | $4,10,400$ |
| Less: Cost of Goods Sold | 60,000 | $1,50,000$ | 90,000 | $3,00,000$ |
| Less: Store Support Cost | 18,000 | 45,000 | 27,000 | 90,000 |
| Operating Income | 1,350 | 15,060 | 3,990 | 20,400 |
| Operating Income (\%) | 1.70 | 7.17 | 3.30 | 4.97 |

(ii) ABC System Overhead Allocation Rate-

| Activity | Total Costs (Rs.) | Quantity of Cost <br> Allocation Base | Overhead <br> Allocation Rate <br> (Rs.) |
| :---: | :---: | :---: | :---: |
| Ordering | 15,600 | 156 Purchase Orders | 100.00 |
| Delivery | 25,200 | 315 Delivering Orders | 80.00 |
| Shelf Stocking | 17,280 | 864 Self Stocking Hours | 20.00 |
| Customer Support | 30,720 | $1,53,600$ Items Sold | 0.20 |

Store Support Cost-

| Particulars | Cost Driver | Lemon | Grapes | Papaya | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bottle Returns | Direct | 1,200 | 0 | 0 | 1,200 |
| Ordering | Purchase Orders | 3,600 | 8,400 | 3,600 | 15,600 |
| Delivery | Deliveries | 2,400 | 17,520 | 5,280 | 25,200 |
| Self-Stocking | Hours of time | 1,080 | 10,800 | 5,400 | 17,280 |
| Customer Support | Items Sold | 2,520 | 22,080 | 6,120 | 30,720 |
| Grand Total |  | 10,800 | 58,800 | 20,400 | 90,000 |

Operating Income-

| Particulars | Lemon | Grapes | Papaya | Total |
| :---: | :---: | :---: | :---: | :---: |
| Revenue | 79,350 | $2,10,060$ | $1,20,990$ | 410,400 |
| Less: Cost of Goods Sold | 60,000 | $1,50,000$ | 90,000 | 300,000 |
| Less: Store Support Cost | 10,800 | 58,800 | 20,400 | 90,000 |
| Operating Income | 8,550 | 1,260 | 10,590 | 20,400 |
| Operating Income (\%) | 10.78 | 0.60 | 8.75 | 4.97 |

(iii) Comparison

| Particulars | Lemon | Grapes | Papaya | Total |
| :---: | :---: | :---: | :---: | :---: |
| Under Traditional Costing System | $1.70 \%$ | $7.17 \%$ | $3.30 \%$ | $4.97 \%$ |
| Under ABC System | $10.78 \%$ | $0.60 \%$ | $8.75 \%$ | $4.97 \%$ |

## Question 5

Wool mark Ltd. manufactures three types of products namely $P, Q$ and $R$. The data relating to a period are as under:

| Particulars | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ |
| :--- | :--- | :--- | :--- |


| Machine hours per unit | 10 | 18 | 14 |
| :--- | :--- | :--- | :--- |
| Direct Labour hours per unit @ Rs. 20 | 4 | 12 | 8 |
| Direct Material per unit (Rs.) | 90 | 80 | 120 |
| Production (units) | 3,000 | 5,000 | 20,000 |

Currently the company uses traditional costing method and absorbs all production overheads on the basis of machine hours. The machine hour rate of overheads is Rs. 6 per hour. The company proposes to use activity based costing system and the activity analysis is as under:

| Particulars | P | Q | R |
| :--- | :--- | :--- | :--- |
| Batch size (units) | 150 | 500 | 1,000 |
| Number of purchase orders per batch | 3 | 10 | 8 |
| Number of inspections per batch | 5 | 4 | 3 |
| The total production overheads are <br> analyzed as under: <br> Machine set up costs |  |  |  |
| Machine operation costs | $20 \%$ |  |  |
| Inspection costs | $30 \%$ |  |  |
| Material procurement related costs <br> Required: | $10 \%$ |  |  |

(i) Calculate the cost per unit of each product using traditional method of absorbing all production overheads on the basis of machine hours.
(ii) Calculate the cost per unit of each product using activity based costing principles. (MTP Oct.'18, 10 Marks, Old \& New SM)(Same concept different figures MTP 10 Marks Mar'22)

## Answer 5

(i) Statement Showing "Cost per unit - Traditional Method"

| Particulars of Costs | P <br> (Rs.) | $\mathbf{Q}$ <br> (Rs.) | $\mathbf{R}$ <br> (Rs.) |
| :---: | :---: | :---: | :---: |
| Direct Materials | 90 | 80 | 120 |
| Direct Labour [(4, 12, 8 hours) X Rs.20] | 80 | 240 | 160 |
| Production Overheads [(10, 18, 14 hours) X Rs.6] | 60 | 108 | 84 |
| Cost per unit | 230 | 428 | 364 |

(ii) Statement Showing "Cost per unit - Activity Based Costing"

| Products | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ |
| :--- | ---: | ---: | ---: |
| Production (units) | 3,000 | 5,000 | 20,000 |
|  | $($ Rs. $)$ | (Rs.) | (Rs.) |
| Direct Materials (90, 80, 120) | $2,70,000$ | $4,00,000$ | $24,00,000$ |
| Direct Labour (80, 240, 160) | $2,40,000$ | $12,00,000$ | $32,00,000$ |
| Machine Related Costs @ Rs.1.80 per hour <br> (30,000, 90,000, 2,80,000) | 54,000 | $1,62,000$ | $5,04,000$ |
| Setup Costs @ Rs.9,600 per setup (20, 10, 20) | $1,92,000$ | 96,000 | $1,92,000$ |
| Inspection Costs @ Rs.4,800 per inspection <br> (100, 40, 60) | $4,80,000$ | $1,92,000$ | $2,88,000$ |
| Purchase Related Costs @ Rs.750 per purchase <br> (60, 100, 160) | 45,000 | 75,000 | $1,20,000$ |
| Total Costs | $12,81,000$ | $21,25,000$ | $67,04,000$ |
| Cost per unit(Total Cost $\div$ Units) | 427.00 | 425.00 | 335.20 |

## Workings

Number of Batches, Purchase Orders, and Inspections-

|  | Particulars | P | Q | R | Total |
| :---: | :--- | ---: | ---: | ---: | ---: |
| A. | Production (units) | 3,000 | 5,000 | 20,000 |  |
| B. | Batch Size (units) | 150 | 500 | 1,000 |  |
| C. | Number of Batches | [A $\div$ B] | 20 | 10 | 20 |
| D. | Number of Purchase Order per batch | 3 | 10 | 8 |  |
| E. | Total Purchase Orders $\quad$ [C $\div$ D] | 60 | 100 | 160 | 320 |
| F. | Number of Inspections per batch | [C $\div$ F] | 100 | 40 | 60 |
| G. | Total Inspections |  | 200 |  |  |

Total Machine Hours-

|  | Particulars | P | Q | R |
| :---: | :--- | ---: | ---: | ---: |
| A. | Machine Hours per unit | 10 | 18 | 14 |
| B. | Production (units) | 3,000 | 5,000 | 20,000 |
| C. | Total Machine Hours | [A T B] | 30,000 | 90,000 |

Total Machine Hours $=4,00,000$
Total Production Overheads-

$$
=4,00,000 \text { hrs. X Rs. } 6=\text { Rs. } 24,00,000
$$

Cost Driver Rates-

| Cost Pool | $\%$ | Overheads | Cost Driver | Cost Driver Rate |
| :--- | :---: | ---: | ---: | :---: |
|  |  | (Rs.) | (Units) | (Rs.) |
| Setup | $20 \%$ | $4,80,000$ | 50 | 9,600 per Setup |
| Inspection | $40 \%$ | $9,60,000$ | 200 | 4,800 per Inspection |
| Purchases | $10 \%$ | $2,40,000$ | 320 | 750 per Purchase |
| Machine Hours | $30 \%$ | $7,20,000$ | $4,00,000$ | 1.80 per Machine Hour |

## Question 6

ZA Ltd. is a manufacturer of a range of goods. The cost structure of its different products is as follows:

| Particulars | Product | Product | Product |  |
| :--- | :---: | :---: | :---: | :---: |
|  | A | B | C |  |
| Direct Materials | 100 | 80 | 80 | Rs./u |
| Direct Labour @Rs.10/ hour | 30 | 40 | 50 | Rs./u |
| Production Overheads | 30 | 40 | 50 | Rs./u |
| Total Cost | 160 | 160 | 180 | Rs./u |
| Quantity Produced | 20,000 | 40,000 | 60,000 | Units |

ZA Ltd. was absorbing overheads on the basis of direct labour hours. A newly appointed management accountant has suggested that the company should introduce ABC system and has identified cost drivers and cost pools as follows:

| Activity Cost Pool | Cost Driver | Associated Cost (Rs.) |
| :--- | :--- | ---: |
| Stores Receiving | Purchase Requisitions | $\mathbf{5 , 9 2 , 0 0 0}$ |
| Inspection | Number of Production Runs | $\mathbf{1 7 , 8 8 , 0 0 0}$ |
| Dispatch | Orders Executed | $\mathbf{4 , 2 0 , 0 0 0}$ |
| Machine Setup | Number of Setups | $\mathbf{2 4 , 0 0 , 0 0 0}$ |

The following information is also supplied:

| Details | Product A | Product B | Product C |
| :--- | :---: | :---: | :---: |
| No. of Setups | 360 | 390 | 450 |
| No. of Orders Executed | 180 | 270 | 300 |
| No. of Production Runs | 750 | 1,050 | 1,200 |
| No. of Purchase Requisitions | 300 | 450 | 500 |

Required:
CALCULATE activity based production cost of all the three products. (MTP 10Marks May '20, RTP May 18)

## Answer 6

The total production overheads are Rs.52,00,000: Product A: 20,000 x
Rs. $30=$
Rs.6,00,000 Product B: 40,000 $\times$
Rs. $40=$
Rs.16,00,000 Product C: 60,000 ×
Rs. $50=$
Rs.30,00,000
On the basis of ABC analysis this amount will be apportioned as follows: Statement Showing
"Activity Based Production Cost"

| Activity Cost Pool | Cost Driver | Ratio | Total Amount <br> (Rs.) | A (Rs.) | B (Rs.) | C (Rs.) |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Stores Receiving | Purchase <br> Requisition | $6: 9: 10$ | $5,92,000$ | $1,42,080$ | $2,13,120$ | $2,36,800$ |
| Inspection | Production <br> Runs <br> Orders <br> Executed | $5: 7: 8$ | $17,88,000$ | $4,47,000$ | $6,25,800$ | $7,15,200$ |
| Dispatch | $6: 9: 10$ | $4,20,000$ | $1,00,800$ | $1,51,200$ | $1,68,000$ |  |
| Machine Setups | Setups | $12: 13: 15$ | $24,00,000$ | $7,20,000$ | $7,80,000$ | $9,00,000$ |
| Total Activity Cost |  |  | $14,09,880$ | $17,70,120$ | $20,20,000$ |  |
| Quantity Produces |  |  |  |  |  |  |
| Unit Cost (Overheads) |  | 20,000 | 40,000 | 60,000 |  |  |
| Add: Conversion Cost (Material + Labour) |  | 70.49 | 44.25 | 33.67 |  |  |
| Total |  |  |  |  |  |  |

## Question 7

BABYSOFT is a global brand created by Bio-organic Ltd. The company manufactures three range of beauty soaps i.e. BABYSOFT- Gold, BABYSOFT- Pearl, and BABYSOFT- Diamond. The budgeted costs and production for the month of December, 2019 are as follows:

|  | BABYSOFT- Gold |  | BABYSOFT- Pearl |  | BABYSOFT- Diamond |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Production of soaps (Units) |  | 4,000 |  | 3,000 |  | 2,000 |
| Resources per Unit: | Qty | Rate | Qty | Rate | Qty | Rate |
| - Essential Oils | 60 ml | ₹ 200 / 100 ml | 55 ml | ₹ 300 / 100 ml | 65 ml | ₹ 300 / 100 ml |
| Cocoa Butter | 20 g | ₹ 200 / 100 g | 20 g | ₹ 200 / 100 g | 20 g | ₹ 200 / 100 g |
| - Filtered Water | 30 ml | ₹ 15 / 100 ml | 30 ml | ₹ 15 / 100 ml | 30 ml | ₹ 15 / 100 ml |
| - Chemicals | 10 g | ₹ $\mathbf{3 0} / \mathbf{1 0 0 ~ g ~}$ | 12 g | ₹ 50 / 100 g | 15 g | ₹ 60 / 100 g |
| - Direct Labour | $30$ <br> minutes | ₹ 10 / hour | $40$ <br> minutes | ₹ 10 / hour | 60 <br> minutes | ₹ 10 / hour |

Bio-organic Ltd. followed an Absorption Costing System and absorbed its production overheads, to its products using direct Labour hour rate, which were budgeted at ₹ 1,98,000.

Now, Bio-organic Ltd. is considering adopting an Activity Based Costing system. For this, additional information regarding budgeted overheads and their cost drivers is provided below:

| Particulars | (₹) | Cost drivers |
| :--- | ---: | :--- |
| Forklifting cost | $\mathbf{5 8 , 0 0 0}$ | Weight of material lifted |
| Supervising cost | $\mathbf{6 0 , 0 0 0}$ | Direct labour hours |
| Utilities | $\mathbf{8 0 , 0 0 0}$ | Number of Machine operations |

The number of machine operators per unit of production are 5, 5, and 6 for BABYSOFT- Gold, BABYSOFT- Pearl, and BABYSOFT- Diamond respectively.
(Consider (i) Mass of 1 litre of Essential Oils and Filtered Water equivalent to 0.8 kg and $1 \mathbf{k g}$ respectively (ii) Mass of output produced is equivalent to the mass of input materials taken together.) You are requested to:
(i) PREPARE a statement showing the unit costs and total costs of each product using the absorption costing method.
(ii) PREPARE a statement showing the product costs of each product using the ABC approach.
(iii) STATE what are the reasons for the different product costs under the two approaches? (MTP 10 Marks, Oct.'2020, Old \& New SM)
Answer 7
Traditional Absorption Costing

|  | BABYSOFT <br> - Gold | BABYSOFT- <br> Pearl | BABYSOFT- <br> Diamond | Total |
| :--- | :---: | :---: | :---: | :---: |
| (a)Production of soaps (Units) | 4,000 | 3,000 | 2,000 | 9,000 |
| (b) Direct Labour (minutes) | 30 | 40 | 60 | - |
| (c)Direct Labour hours $(\mathrm{a} \times \mathrm{b}) / 60$ <br> minutes | 2,000 | 2,000 | 2,000 | 6,000 |

Overhead rate per direct Labour hour:
= Budgeted overheads / Budgeted Labour hours
= Rs.1,98,000 / 6,000 hours
$=$ Rs. 33 per direct Labour hour
Unit Costs:

|  | BABYSOFT- Gold <br> (Rs.) | BABYSOFT- Pearl <br> (Rs.) | BABYSOFT- Diamond <br> (Rs.) |
| :--- | :---: | :---: | :---: |
| Direct costs | 5.00 | 6.67 | 10.00 |
| Direct Labour | $\left(\frac{10 * 30}{60}\right)$ | $\left(\frac{10 * 40}{60}\right)$ | $\left(\frac{10 * 60}{60}\right)$ |
| Direct Material <br> (refer working note 1) | 167.50 | 251.50 | 248.50 |
| Production overhead | 16.50 | $\left(\frac{33 * 30}{60}\right)$ | 22.00 |
| ( $23 * 40$ |  |  |  |
| Total unit costs | 189.00 | 244.17 | 33.00 |
| Number of units | 4,000 | 3,000 | $\left(\frac{33 * 60}{60}\right)$ |
| Total costs | $\mathbf{7 , 5 6 , 0 0 0}$ | $\mathbf{7 , 3 2 , 5 1 0}$ | 291.50 |

Working note-1
Calculation of Direct material cost

|  | BABYSOFT- Gold <br> (₹) | BABYSOFT- Pearl (₹) | BABYSOFT- Diamond |
| :---: | :---: | :---: | :---: |
| (₹) |  |  |  |


| Essential oils | $(200 * 60) / 100$ | $(300 * 55) / 100$ | $(300 * 65) / 100$ |
| :--- | :---: | :---: | :---: |
| Cocoa Butter | 40.00 |  |  |
| $(200 * 20) / 100$ | $(200 * 20) / 100$ | 40.00 |  |
| $(200 * 20) / 100$ |  |  |  |

Activity Based Costing

|  | BABYSOFT- Gold | BABYSOFT- Pearl | BABYSOFT- <br> Diamond | Total |
| :---: | :---: | :---: | :---: | :---: |
| Quantity (units) | 4,000 | 3,000 | 2,000 | - |
| Weight per unit (grams) | $\begin{gathered} 108 \\ \{(60 \times 0.8)+20+30+10\} \end{gathered}$ | $\begin{gathered} 106 \\ \{(55 \times 0.8)+20+30+12\} \end{gathered}$ | $\begin{gathered} 117 \\ \{(65 \times 0.8)+20+30+15\} \\ \hline \end{gathered}$ | - |
| Total weight (grams) | 4,32,000 | 3,18,000 | 2,34,000 | 9,84,000 |
| Direct Labour (minutes) | 30 | 40 | 60 | - |
| Direct Labour hours | $\begin{gathered} 2,000 \\ \left(4,000^{*} 30\right) / 60 \end{gathered}$ | $\begin{array}{r} 2,000 \\ (3,000 * 40) / 60 \end{array}$ | $\begin{array}{r} 2,000 \\ (2,000 * 60) / 60 \end{array}$ | 6,000 |
| Machine operations per unit | 5 | 5 | - 6 | - |
| Total operations | 20,000 | 15,000 | 12,000 | 47,000 |


| Forklifting rate per gram | $=$ | Rs. 58,000/9,84,000 grams = Rs.0.06 per <br> gram |
| :--- | ---: | :--- |
| Supervising rate per direct Labour hour | $=$ | Rs. $60,000 / 6,000$ hours <br> Labour hour $=$ Rs. 10 per |
| Utilities rate per machine operations | $=$ | Rs. 80,000/47,000 machine operations |
|  |  | $=$ Rs. 1.70 per machine operations |

Unit Costs Under ABC:

|  | BABYSOFT- Gold (Rs.) | BABYSOFT- <br> Pearl (Rs.) | BABYSOFT- <br> Diamond (Rs.) |
| :---: | :---: | :---: | :---: |
| Direct Costs: | 5.00 | 6.67 | 10.00 |
| - Direct Labour |  |  |  |
| - Direct material | 167.50 | 215.50 | 248.50 |
| Production Overheads: | $\begin{gathered} 6.48 \\ (0.06 * 108) \end{gathered}$ | $\begin{gathered} 6.36 \\ (0.06 * 106) \end{gathered}$ | $\begin{gathered} 7.02 \\ (0.06 * 117) \end{gathered}$ |
| Forklifting cost |  |  |  |
| Supervising cost | $\begin{gathered} 5.00 \\ \left(10^{*} 30\right) / 60 \end{gathered}$ | $\begin{gathered} 6.67 \\ (10 * 40) / 60 \end{gathered}$ | $\begin{gathered} 10.00 \\ (10 * 60) / 60 \end{gathered}$ |
| Utilities | $\begin{gathered} 8.50 \\ (1.70 * 5) \end{gathered}$ | $\begin{gathered} 8.50 \\ (1.70 * 5) \end{gathered}$ | $\begin{gathered} 10.20 \\ (1.70 * 6) \end{gathered}$ |


| Total unit costs | 192.48 | 243.70 | 285.72 |
| :--- | :---: | :---: | :---: |
| Number of units | 4,000 | 3,000 | 2,000 |
| Total costs | $\mathbf{7 , 6 9 , 9 2 0}$ | $\mathbf{7 , 3 1 , 1 0 0}$ | $\mathbf{5 , 7 1 , 4 4 0}$ |

(ii) Comments: The difference in the total costs under the two systems is due to the differences in the overheads borne by each of the products. The Activity Based Costs appear to be more precise.

## Question 8

$A B Y$ Ltd. manufactures four products, namely $A, B, C$ and $D$ using the same plant and process. The following information relates to production period December, 2020:

| Product | A | B | C | D |
| :--- | ---: | ---: | ---: | ---: |
| Output in units | 1,440 | 1,200 | 960 | 1,008 |
| Cost per unit: |  |  |  |  |
| Direct Materials | Rs. 84 | Rs. 90 | Rs. 80 | Rs. 96 |
| Direct Labour | Rs. 20 | Rs. 18 | Rs. 14 | Rs. 16 |
| Machine hours per unit | 4 | 3 | 2 | 1 |

The four products are similar and are usually produced in production runs of 48 units per batch and are sold in batches of $\mathbf{2 4}$ units. Currently, the production overheads are absorbed using machine hour rate. The production overheads incurred by the company for the period December, 2020 are as follows:

|  | (Rs.) |
| :--- | ---: |
| Machine department costs: |  |
| Rent, deprecation and supervision | $\mathbf{2 , 5 2 , 0 0 0}$ |
| Set-up Costs | $\mathbf{8 0 , 0 0 0}$ |
| Store receiving costs | 60,000 |
| Inspection | 40,000 |
| Material handling and dispatch | 10,368 |

During the period December, 2020, the following cost drivers are to be used for allocation of overheads cost:

| Cost | Cost driver |
| :--- | :--- |
| Set-up Costs | Number of production runs (batches) |
| Stores receiving | Requisition raised |
| Inspection | Number of production runs (batches) |
| Material handling and <br> dispatch | Orders executed |

It is also determined that:
(i) Machine department costs should be apportioned among set-up, stores receiving and inspection activities in proportion of 4:3:2.
(ii) The number of requisitions raised on stores is $\mathbf{5 0}$ for each product. The total number of material handling and dispatch orders executed during the period are 192 and each order being for a batch size of 24 units of product.
Required:
i. CALCULATE the total cost of each product, if all overhead costs are absorbed on machine- hour rate basis.
ii. CALCULATE the total cost of each product using activity-based costing (MTP $\mathbf{1 0}$ Marks, Mar 2021)

## Answer 8

(i) Total Overhead $=$ Rs. $(2,52,000+80,000+60,000+40,000+10,368)=$ Rs. 4,42,368

Total machine hours $=1,440 \times 4+1,200 \times 3+960 \times 2+1,008 \times 1$

$$
=5,760+3,600+1,920+1,008=12,288 \mathrm{M} . \mathrm{Hrs}
$$

$\therefore$ Overhead recovery rate/M.H. $=\frac{\text { Rs. } 4,42,369}{12,228 \text { M./hours }}=$ Rs. 36
Cost Statement when overheads are absorbed on machine hours rate basis

| Product | A | B | C | D |
| :--- | :---: | :---: | :---: | :---: |
| Output in units | 1,440 | 1,200 | 960 | 1,008 |
| Cost per unit: | (Rs.) | (Rs.) | (Rs.) | (Rs.) |
|  |  |  |  |  |
| Direct material | 84 | 90 | 80 | 96 |
| Direct labour | 20 | 18 | 14 | 16 |
| Overhead (@ Rs. 36) | 144 | 108 | 72 | 36 |
|  | $(4 \times$ Rs.36) | $(3 \times$ Rs.36) | $(2 \times$ Rs.36) | (1×Rs.36) |
| Total cost per unit | 248 | 216 | 166 | 148 |
| Total cost | $3,57,120$ | $2,59,200$ | $1,59,360$ | $1,49,184$ |

(ii) (1) Machine department costs of Rs. 2,52,000 to be apportioned to set-up cost, store receiving and inspection in 4: 3: 2 i.e. Rs. 1,12,000, Rs. 84,000 and Rs. 56,000 respectively.
(2) One production run $=48$ units. Hence, the number of production runs of different products:
$A=\frac{1,440}{48}=30, B=\frac{1,200}{48}=25, C=\frac{960}{48}=20, D=\frac{1,008}{48}=21$, OR TOTAL RUN 96
(3) One batch order is of 24 units. So the number of batches of different products:
$\mathrm{A}=\frac{1,440}{24}=60, \mathrm{~B}=\frac{1,200}{24}=50, \mathrm{C}=\frac{960}{24}=40, \mathrm{D}=\frac{1,008}{24}=42$
Or total 192 batches.
(4) Computation of Cost driver rates

| Activity | Activity Cost (Rs.) | Cost driver | Quantity | Cost driver rate |
| :--- | :--- | :--- | ---: | :--- |
| Set-up | $80,000+1,12,000$ <br> $=1,92,000$ | No. of <br> production run | Rs. 2,000 per <br> production run |  |
| Store- <br> receiving | $60,000+84,000$ <br> $=1,44,000$ | Requisition raised | $50 * 4=200$ | Rs. 720 per <br> requisition |
| Inspection | $40,000+56,000$ <br> $=96,000$ | No. of <br> production run | 96 | Rs. 1,000 per <br> production run |
| Material <br> handling | 10,368 | Orders executed (No. <br> of batches) | 192 | Rs. 54 per batch |

(5) Cost statement under Activity Based Costing:

| Product | A | B | C | D |
| :---: | :--- | :---: | :---: | :---: |
| Output in units | 1,440 | 1,200 | 960 | 1,008 |
|  | (Rs.) | (Rs.) | (Rs.) | (Rs.) |
| Material | $1,440 * 84$ | $1,200 * 90$ | $960 * 80$ | $1,008 * 96$ |
|  | $=1,20,960$ | $=1,08,000$ | $=76,800$ | $=96,768$ |


| Labour | $\begin{gathered} 1,440 * 20 \\ =28,800 \end{gathered}$ | $\begin{gathered} 1,200 * 18 \\ =21,600 \end{gathered}$ | $\begin{aligned} & 960 * 14 \\ & =13,440 \end{aligned}$ | $\begin{gathered} 1,008 * 16 \\ =16,128 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 1,49,760 | 1,29,600 | 90,240 | 1,12,896 |
| Overhead cost: |  |  |  |  |
| Set up | $\begin{gathered} 2,000 * 30 \\ =60,000 \\ \hline \end{gathered}$ | $\begin{gathered} 2,000 * 25 \\ =50,000 \\ \hline \end{gathered}$ | $\begin{gathered} 2,000 * 20 \\ =40,000 \end{gathered}$ | $\begin{gathered} 2,000 * 21 \\ =42,000 \end{gathered}$ |
| Store receiving | $\begin{aligned} & 720 * 50 \\ & =36,000 \end{aligned}$ | $\begin{aligned} & 720 * 50 \\ & =36,000 \end{aligned}$ | $\begin{aligned} & 720 * 50 \\ & =36,000 \\ & \hline \end{aligned}$ | $\begin{aligned} & 720 * 50 \\ & =36,000 \end{aligned}$ |
| Inspection | $\begin{gathered} 1,000 * 30 \\ =30,000 \end{gathered}$ | $\begin{gathered} 1,000 * 25 \\ =25,000 \end{gathered}$ | $\begin{gathered} 1,000 * 20 \\ =20,000 \\ \hline \end{gathered}$ | $\begin{gathered} 1,000 * 21 \\ =21,000 \\ \hline \end{gathered}$ |
| Material handling | $\begin{aligned} & 54 * 60 \\ & =3,240 \end{aligned}$ | $\begin{aligned} & 54 * 50 \\ & =2,700 \end{aligned}$ | $\begin{aligned} & 54 * 40 \\ & =2,160 \end{aligned}$ | $\begin{aligned} & 54 * 42 \\ & =2,268 \end{aligned}$ |
| Total overhead cost | 1,29,240 | 1,13,700 | 98,160 | 1,01,268 |
| Total cost | 2,79,000 | 2,43,300 | 1,88,400 | 2,14,164 |
| Total cost per unit (Total cost / Output) | 193.75 | 202.75 | 196.25 | 212.46 |

## Question 9

RVP Cinema provides the following data for the year 2020-21:

| Particulars | Premium <br> Hall <br> (Rs.) | Recliner <br> Hall <br> (Rs.) | 7D <br> Hall <br> (Rs.) | Cafeteria <br> (Rs.) |
| :--- | ---: | ---: | ---: | ---: |
| Revenue | $11,55,000$ | $18,75,000$ | $9,30,000$ | $5,25,000$ |
| Cost of Goods sold | - | - | - | $4,51,125$ |
| Digital media cost | $6,19,800$ | $9,46,875$ | $4,02,900$ | - |
| Number of Credit Card <br> transactions | 75,000 | 90,000 | 60,000 | 45,000 |
| Number of Tests | $\mathbf{1 2 , 0 0 0}$ | 18,000 | 15,000 | $\mathbf{7 , 5 0 0}$ |
| Number of Setups | 225 | 450 | 150 | 75 |
| Area in Square feet | $2,62,500$ | $3,00,000$ | $1,50,000$ | 37,500 |
| Number of Customer contacts | $2,10,000$ | $2,47,500$ | $1,20,000$ | 22,500 |
| Number of Customer online <br> orders |  |  | 750 |  |

Cost analysis has revealed the following:

| Activity | Activity <br> Cost (Rs.) | Activity Driver | Activity <br> Capacity |
| :--- | ---: | :--- | ---: |
| Marketing Expenses | $\mathbf{2 , 2 5 , 0 0 0}$ | Number of Customer contacts | $\mathbf{7 , 5 0 , 0 0 0}$ |
| Website Maintenance | $\mathbf{1 , 5 0 , 0 0 0}$ | Number of Customer online | $\mathbf{6 , 0 0 , 0 0 0}$ |
| Expenses |  | orders |  |
| Credit Card Processing Fees | $1,35,000$ | Number of Credit Card | $\mathbf{2 , 7 0 , 0 0 0}$ |
|  |  | transactions |  |
| Cleaning Equipment Cost | $\mathbf{3 , 1 5 , 0 0 0}$ | Number of square feet | $\mathbf{1 0 , 5 0 0}$ |
| Inspecting and testing costs | $\mathbf{2 , 6 2 , 5 0 0}$ | Number of tests | 52,500 |
| Setting up machine's costs | $\mathbf{4 , 5 0 , 0 0 0}$ | Number of set-ups | $\mathbf{9 0 0}$ |

## Required:

(i) If RVP Cinema allocates all costs (other than Cost of Goods sold and Digital Media costs) to the departments on the basis of Activity Based Costing system, CALCULATE the operating income and percentage of operating income of each department.
(ii) RVP Cinema operated for years under the assumption that profitability can be increased by increasing net revenue from Cafeteria. However, the Supervisor of RVP Cinema wants to shut down Cafeteria. On the basis of (i) above, STATE whether the contention of the Supervisor is valid or not. (MTP 10 Marks, Apr.'2021)

## Answer 9

| Computation showing Rates for each Activity |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Activity | Activity Cost (Rs.) <br> (A) | Activity driver | Activity <br> Capacity <br> (B) | Activity <br> Rate <br> (A/B) |
| Marketing Expenses | 2,25,000 | Number of Customer Contacts | 7,50,000 | 0.30 |
| Website Maintenance Expenses | 1,50,000 | Number of Customer Online orders | 6,00,000 | 0.25 |
| Credit Card Processing Fees | 1,35,000 | Number of Credit card transactions | 2,70,000 | 0.50 |
| Cleaning Equipment Cost | 3,15,000 | Number of Square Feet | 10,500 | 30.00 |
| Inspecting and Testing Cost | 2,62,500 | Number of Tests | 52,500 | 5.00 |
| Setting up machine's cost | 4,50,000 | Number of set-ups | 900 | 500.00 |

Activity based Cost for each Department

| Activity | Premium Hall (Rs.) | Recliner Hall (Rs.) | 7D Hall (Rs.) | Cafeteria (Rs.) |
| :---: | :---: | :---: | :---: | :---: |
| Marketing Expenses | 78,750 | 90,000 | 45,000 | 11,250 |
|  | $(2,62,500 \times 0.3)$ | $(3,00,000 \times 0.3)$ | $(1,50,000 \times 0.3)$ | $(37,500 \times 0.3)$ |
| Website | 52,500 | 61,875 | 30,000 | 5,625 |
| Maintenance Expenses | $(2,10,000 \times 0.25)$ | $(2,47,500 \times 0.25)$ | (1,20,000 x 0.25) | (22,500 x 0.25) |
| Credit | 37,500 | 45,000 | 30,000 | 22,500 |
| Card <br> Processing Fees | ( $75,000 \times 0.5$ ) | (90,000 $\times 0.5$ ) | $(60,000 \times 0.5)$ | $(45,000 \times 0.5)$ |
| Cleaning Equipment | 90,000 | 1,35,000 | 67,500 | 22,500 |
| Cost | $(3,000 \times 30)$ | $(4,500 \times 30)$ | $(2,250 \times 30)$ | ( $750 \times 30$ ) |
| Inspecting | 60,000 | 90,000 | 75,000 | 37,500 |
| and | $(12,000 \times 5)$ | $(18,000 \times 5)$ | $(15,000 \times 5)$ | $(7,500 \times 5)$ |


| Testing Cost |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Setting | $1,12,500$ | $2,25,000$ | 75,000 | 37,500 |
|  | $(225 \times 500)$ | $(450 \times 500)$ | $(150 \times 500)$ | $(75 \times 500)$ |
|  | $4,31,250$ | $6,46,875$ | $3,22,500$ | $1,36,875$ |

(i) Statement of Operating Income and Operating Income percentage for each Department

| Particulars | Premium <br> Hall <br> (Rs.) | Recliner <br> Hall <br> (Rs.) | 7D <br> Hall <br> (Rs.) | Cafeteria <br> (Rs.) |
| :--- | ---: | ---: | ---: | ---: |
| Revenues (Given) (A) | $11,55,000$ | $18,75,000$ | $9,30,000$ | $5,25,000$ |
| Cost of Goods Sold (given) (B1) | - | - | - | $4,51,125$ |
| Digital Media Cost (given) (B2) | $6,19,800$ | $9,46,875$ | $4,02,900$ | - |
| Activity Based Cost (as per Workings) (B3) | $4,31,250$ | $6,46,875$ | $3,22,500$ | $1,36,875$ |
| Operating Cost (B) (B1+ B2 + B3) | $10,51,050$ | $15,93,750$ | $7,25,400$ | $5,88,000$ |
| Operating Income/(Loss) (C = A - B) | $1,03,950$ | $2,81,250$ | $2,04,600$ | $(63,000)$ |
| Percentage of profit/(loss) on sales | $\mathbf{9 \%}$ | $\mathbf{1 5 \%}$ | $\mathbf{2 2 \%}$ | $\mathbf{( 1 2 \% )}$ |

(ii) Contention of Supervisor is valid as operating income of Cafeteria is negative i.e. (Rs. 63,000 ) or percentage of profit/loss is (12\%).

## Question 10

Breeze Ltd has decided to analyses the profitability of its five new customers. It buys soft drink bottles in cases at ₹ 54 per case and sells them to retail customers at a list price of $₹ \mathbf{6 4 . 8 0}$ per case.
The data pertaining to five customers are given below:

| Particulars | Customers |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | Aey | Bee | Cee | Dee | Eey |
| Number of Cases Sold | 9,360 | 14,200 | 62,000 | 38,000 | 9,800 |
| List Selling Price (₹) | 64.80 | 64.80 | 64.80 | 64.80 | 64.80 |
| Actual Selling Price (₹) | 64.80 | 64.08 | 58.80 | 60.24 | 58.32 |
| Number of Purchase Orders | 30 | 50 | 60 | 50 | 60 |
| Number of Customers visits | 4 | 6 | 12 | 4 | 6 |
| Number of Deliveries | 20 | 60 | 120 | 80 | 40 |
| Kilometers travelled per delivery | 40 | 12 | 10 | 20 | 60 |
| Number of expedite Deliveries | 0 | 0 | 0 | 0 | 2 |

Its five activities and their cost drivers are:

| Activity | Cost Driver |
| :--- | :--- |
| Order taking | ₹ 240 per purchase order |
| Customer visits | ₹ 360 per each visit |
| Deliveries | ₹ 4.80 per delivery km travelled |
| Product Handling | ₹ 2.40 per case sold |
| Expedited deliveries | ₹ 120 per such delivery |

You are REQUIRED to:
(i) Compute the customer level operating income of each of five retail customers by using the Cost Driver rates.
(ii) Examine the results to give your comments on Customer 'Dee' in comparison with Customer 'Cee' and on Customer 'Eye' in comparison with Customer 'Aye'. (MTP 10 Marks, Oct.'2021, PYP Nov '19, 10 Marks)

## Answer 10

Working note: Computation of revenues (at listed price), discount, cost of goods sold and customer level operating activities costs:

| Particulars | Customers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Aye | Bee | Cee | Dee | Eye |
| Cases sold: (a) | 9,360 | 14,200 | 62,000 | 38,000 | 9,800 |
| Revenues (at listed price) (₹): <br> (b) $\{(a) \times ₹ 64.80)\}$ | 6,06,528 | 9,20,160 | 40,17,600 | 24,62,400 | 6,35,040 |
| Discount (₹): (c) $\{(\mathrm{a}) \times$ Discount per case\} | - | $\begin{gathered} 10,224 \\ (14,200 \\ \text { cases } \times \\ ₹ 0.72) \end{gathered}$ | 3,72,000 <br> (62,000 cases $\times$ <br> ₹ 6) | $\begin{array}{r} 1,73,280 \\ (38,000 \\ \text { cases } \times \\ ₹ 4.56) \end{array}$ | $\begin{array}{r} 63,504 \\ (9,800 \text { cases } \\ \times \\ ₹ 6.48) \end{array}$ |
| Cost of goods sold (₹): (d) $\{(a) \times ₹ 54\}$ | 5,05,440 | 7,66,800 | 33,48,000 | 20,52,000 | 5,29,200 |
| Customer level operating activities costs |  |  |  |  |  |
| Order taking costs (₹): (No. of purchase $\times$ ₹ 240) | 7,200 | 12,000 | 14,400 | 12,000 | 14,400 |
| Customer visits costs <br> (₹) (No. of customer visits $\times \text { ₹ } 360 \text { ) }$ | 1,440 | 2,160 | 4,320 | 1,440 | 2,160 |
| Delivery vehicles travel costs (₹) (Kms travelled by delivery vehicles $\times$ ₹ 4.80 per km.) | 3,840 | 3,456 | 5,760 | 7,680 | 11,520 |
| Product handling costs (₹) $\{(a) \times ₹ 2.40\}$ | 22,464 | 34,080 | 1,48,800 | 91,200 | 23,520 |
| Cost of expediting deliveries ( $₹$ ) <br> \{No. of expedited deliveries $\times$ ₹ 120$\}$ | - | - | - | - | 240 |
| Total cost of customer level operating activities (₹) | 34,944 | 51,696 | 1,73,280 | 1,12,320 | 51,840 |

I. Computation of Customer level operating income

| Particulars | Customers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Aey (₹) | Bee (₹) | Cee (₹) | Dee (₹) | Eey (₹) |
| Revenues (At list price) <br> (Refer to working note) | 6,06,528 | 9,20,160 | 40,17,600 | 24,62,400 | 6,35,040 |
| Less: Discount <br> (Refer to working note) | - | 10,224 | 3,72,000 | 1,73,280 | 63,504 |
| Revenue <br> (At actual price) | 6,06,528 | 9,09,936 | 36,45,600 | 22,89,120 | 5,71,536 |
| Less: Cost of goods sold (Refer to working note) | 5,05,440 | 7,66,800 | 33,48,000 | 20,52,000 | 5,29,200 |
| Gross margin | 1,01,088 | 1,43,136 | 2,97,600 | 2,37,120 | 42,336 |
| Less: Customer level operating activities costs <br> (Refer to working note) | 34,944 | 51,696 | 1,73,280 | 1,12,320 | 51,840 |


| Customer level operating income | 66,144 | 91,440 | $1,24,320$ | $1,24,800$ | $(9,504)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

II. Comments

Customer Dee in comparison with Customer Cee: Operating income of Customer Dee is more than that of Customer Cee, despite having only $61.29 \%$ ( 38,000 units) of the units' volume sold in comparison to Customer Cee (62,000 units). Customer Cee receives a higher percent of discount i.e. 9.26\% (₹ 6) while Customer Dee receive a discount of $7.04 \%$ ( $₹ 4.56$ ). Though the gross margin of customer Cee ( $₹$ $2,97,600$ ) is more than that of Customer Dee ( $₹ 2,37,120$ ) but total cost of customer level operating activities of Cee ( $₹ 1,73,280$ ) is more in comparison to Customer Dee ( $₹ 1,12,320$ ). As a result, operating income is more in case of Customer Dee.

Customer Eey in comparison with Customer Aey: Customer Eey is not profitable while Customer Aey is profitable. Customer Eey receives a discount of $10 \%$ ( $₹ 6.48$ ) while Customer Aey doesn'treceiveany discount. Sales Volume of Customer Aey and Eey is almost same. However, total cost of customer level operating activities of Eey is far more ( $₹ 51,840$ ) in comparison to Customer Aey ( $₹ 34,944$ ). This has resulted in occurrence of loss in case of Customer Eey.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Concepts of Activity Based Costing (ABC)' which required preparing customer level operating income using cost driver rates and examining the result and commenting on the customer by comparison of result/ other parameters. Performance of the examinees was above average.

## Question 11

The following budgeted information relates to B Ltd. for the year 2021:

|  | Products |  |  |
| :--- | :---: | :---: | :---: |
|  | X | Y | Z |
| Production and Sales (units) | $1,00,000$ | 80,000 | 60,000 |
|  | (F) | (F) | (₹) |
| Selling price per unit | 45 | 90 | 70 |
| Direct cost per unit | 25 | 45 | 50 |
|  | Hours | Hours | Hours |
| Machine department (machine hours per <br> unit) | 3 | 4 | 5 |
| Assembly department (direct labour hours <br> per unit) | 6 | 4 | 3 |

The estimated overhead expenses for the year 2021 will be as below:
Machine Department ₹ 36,80,000 Assembly
Department 27,50,000
Overhead expenses are apportioned to the products on the following basis: Machine
Department
On the basis of machine hours
Assembly Department On the basis of labour hours
After a detailed study of the activities the following cost pools and their respective cost drivers are found:

| Cost Pool | Amount (₹) | Cost Driver | Quantity |
| :--- | ---: | :--- | ---: |
| Machining services | $32,20,000$ | Machine hours | $\mathbf{9 , 2 0 , 0 0 0}$ hours |
| Assembly services | $\mathbf{2 2 , 0 0 , 0 0 0}$ | Direct labour hours | $\mathbf{1 1 , 0 0 , 0 0 0}$ hours |
| Set-up costs | $4,50,000$ | Machine set-ups | $\mathbf{9 , 0 0 0}$ set-ups |


| Order processing | $\mathbf{3 , 6 0 , 0 0 0}$ | Customer orders | $\mathbf{7 , 2 0 0}$ orders |
| :--- | ---: | :--- | ---: |
| Purchasing | $\mathbf{2 , 0 0 , 0 0 0}$ | Purchase orders | $\mathbf{8 0 0}$ orders |

As per an estimate the activities will be used by the three products:

|  | Products |  |  |
| :--- | :---: | :---: | :---: |
|  | $\mathbf{X}$ | Y | Z |
| Machine set-ups | 4,500 | 3,000 | 1,500 |
| Customer orders | 2,200 | 2,400 | 2,600 |
| Purchase orders | 300 | 350 | 150 |

You are required to PREPARE a product-wise profit statement using:
(i) Absorption costing method;
(ii) Activity-based method. (MTP 10 Marks Nov '21) (RTP May '21)

## Answer 11

(i) Profit Statement using Absorption costing method:

|  | Particulars | Product |  |  | Total |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | $\mathbf{X}$ | Y | Z |  |
| A. | Sales Quantity | $1,00,000$ | 80,000 | 60,000 | $2,40,000$ |
| B. | Selling price per unit (₹) | 45 | 90 | 70 |  |
| C. | Sales Value (₹) [A×B] | $45,00,000$ | $\mathbf{7 2 , 0 0 , 0 0 0}$ | $\mathbf{4 2 , 0 0 , 0 0 0}$ | $\mathbf{1 , 5 9 , 0 0 , 0 0 0}$ |
| D. | Direct cost per unit (₹) | 25 | 45 | 50 |  |
| E. | Direct Cost (₹) [A×D] | $25,00,000$ | $36,00,000$ | $30,00,000$ | $91,00,000$ |
| F. | Overheads: |  |  |  |  |
| (i) | Machine department (₹) <br> (Working note-1) | $12,00,000$ | $12,80,000$ | $12,00,000$ | $36,80,000$ |
| (ii) | Assembly department (₹) <br> (Working note-1) | $15,00,000$ | $8,00,000$ | $4,50,000$ | $27,50,000$ |
| G. | Total Cost (₹) [E+F] | $\mathbf{5 2 , 0 0 , 0 0 0}$ | $\mathbf{5 6 , 8 0 , 0 0 0}$ | $\mathbf{4 6 , 5 0 , 0 0 0}$ | $\mathbf{1 , 5 5 , 3 0 , 0 0 0}$ |
| H. | Profit (C-G) | $\mathbf{( 7 , 0 0 , 0 0 0 )}$ | $\mathbf{1 5 , 2 0 , 0 0 0}$ | $\mathbf{( 4 , 5 0 , 0 0 0 )}$ | $\mathbf{3 , 7 0 , 0 0 0}$ |

(ii) Profit Statement using Activity based costing (ABC) method:

|  | Particulars | Product |  |  | Total |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |  |
| A. | Sales Quantity | $1,00,000$ | 80,000 | 60,000 |  |
| B. | Selling price per unit (₹) | 45 | 90 | 70 |  |
| C. | Sales Value (₹) [A×B] | $\mathbf{4 5 , 0 0 , 0 0 0}$ | $\mathbf{7 2 , 0 0 , 0 0 0}$ | $\mathbf{4 2 , 0 0 , 0 0 0}$ | $\mathbf{1 , 5 9 , 0 0 , 0 0 0}$ |
| D. | Direct cost per unit (₹) | 25 | 45 | 50 |  |
| E. | Direct Cost (₹) [A×D] | $25,00,000$ | $36,00,000$ | $30,00,000$ | $91,00,000$ |
| F. | Overheads: <br> working note-3) (Refer |  |  |  |  |
| (i) | Machining services (₹) | $10,50,000$ | $11,20,000$ | $10,50,000$ | $32,20,000$ |
| (ii) | Assembly services (₹) | $12,00,000$ | $6,40,000$ | $3,60,000$ | $22,00,000$ |
| (iii) | Set-up costs (₹) | $2,25,000$ | $1,50,000$ | 75,000 | $4,50,000$ |
| (iv) | Order processing (₹) | $1,10,000$ | $1,20,000$ | $1,30,000$ | $3,60,000$ |
| (v) | Purchasing (₹) | 75,000 | 87,500 | 37,500 | $2,00,000$ |
| G. | Total Cost (₹) [E+F] | $\mathbf{5 1 , 6 0 , 0 0 0}$ | $57,17,500$ | $\mathbf{4 6 , 5 2 , 5 0 0}$ | $\mathbf{1 , 5 5 , 3 0 , 0 0 0}$ |
| H. | Profit (₹) (C-G) | $\mathbf{( 6 , 6 0 , 0 0 0 )}$ | $\mathbf{1 4 , 8 2 , 5 0 0}$ | $\mathbf{( 4 , 5 2 , 5 0 0 )}$ | $\mathbf{3 , 7 0 , 0 0 0}$ |

Working Notes:
1.

|  |  | Products |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z |  |
| A. | Production (units) | 1,00,000 | 80,000 | 60,000 | 9,20,000 |
| B. | Machine hours per unit | 3 | 4 | 5 |  |
| C. | Total Machine hours [ $A \times B$ ] | 3,00,000 | 3,20,000 | 3,00,000 |  |
| D. | Rate per hour (₹) | 4 | 4 | 4 |  |
| E. | Machine Dept. cost [C×D] | 12,00,000 | 12,80,000 | 12,00,000 | 36,80,000 |
| F. | Labour hours per unit | 6 | 4 | 3 |  |
| G. | Total labour hours [A×F] | 6,00,000 | 3,20,000 | 1,80,000 | 11,00,000 |
| H. | Rate per hour (₹) | 2.5 | 2.5 | 2.5 |  |
| 1 | Assembly Dept. cost [ $\mathrm{G} \times \mathrm{H}$ ] | 15,00,000 | 8,00,000 | 4,50,000 | 27,50,000 |

Machine hour rate $=$ Rs. 36,80,000 / 9,20,000 hours = ₹ 4
Labour hour rate = Rs. 27,50,000 / 11,00,000 hours = ₹ 2.5

## 2. Calculation of cost driver rate

| Cost Pool | Amount (₹) | Cost Driver | Quantity | Driver <br> rate (₹) |
| :--- | ---: | ---: | ---: | ---: |
| Machining services | $32,20,000$ | Machine hours | $9,20,000$ hours | 3.50 |
| Assembly services | $22,00,000$ | Direct labour <br> hours | $11,00,000$ <br> hours | 2.00 |
| Set-up costs | $4,50,000$ | Machine set- <br> ups | 9,000 set-ups | 50.00 |
| Order processing | $3,60,000$ | Customer <br> orders | 7,200 orders | 50.00 |
| Purchasing | $2,00,000$ | Purchase <br> orders | 800 orders | 250.00 |

3. Calculation of activity-wise cost

|  |  | Products |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z |  |
| A. | Machining hours (Refer Working note-1) | 3,00,000 | 3,20,000 | 3,00,000 | 9,20,000 |
| B. | Machine hour rate (₹) (Refer Working note-2) | 3.5 | 3.5 | 3.5 |  |
| C. | Machining services cost ( $₹$ ) [ $A \times B$ ] | 10,50,000 | 11,20,000 | 10,50,000 | 32,20,000 |
| D. | Labour hours (Refer Working note-1) | 6,00,000 | 3,20,000 | 1,80,000 | 11,00,000 |
| E. | Labour hour rate (₹) (Refer Working note-2) | 2 | 2 | 2 |  |
| F. | Assembly services cost (F) [D×E] | 12,00,000 | 6,40,000 | 3,60,000 | 22,00,000 |
| G. | Machine set-ups | 4,500 | 3,000 | 1,500 | 9,000 |
| H. | Rate per set-up (₹) (Refer Working note-2) | 50 | 50 | 50 |  |
| I. | Set-up cost (₹) [G×H] | 2,25,000 | 1,50,000 | 75,000 | 4,50,000 |
| J. | Customer orders | 2,200 | 2,400 | 2,600 | 7,200 |


| K. | Rate per order (₹) (Refer <br> Working note-2) | 50 | 50 | 50 |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| L. | Order processing cost (₹) <br> $[J \times K]$ | $\mathbf{1 , 1 0 , 0 0 0}$ | $\mathbf{1 , 2 0 , 0 0 0}$ | $\mathbf{1 , 3 0 , 0 0 0}$ | $\mathbf{3 , 6 0 , 0 0 0}$ |
| M. | Purchase orders | 300 | 350 | 150 | 800 |
| N. | Rate per order (₹) (Refer <br> Working note-2) | $\mathbf{2 5 0}$ | 250 | 250 |  |
| $\mathbf{O . ~}$ | Purchasing cost (₹) $[\mathbf{M} \times \mathbf{N}]$ | $\mathbf{7 5 , 0 0 0}$ | $\mathbf{8 7 , 5 0 0}$ | $\mathbf{3 7 , 5 0 0}$ | $\mathbf{2 , 0 0 , 0 0 0}$ |

## Question 12

Discuss with example the level of activity method of segregating semi-variable costs into fixed and variable costs. (MTP Oct. '18, 5 Marks)

## Answer 12

Level of activity method: Under this method, the variable overhead may be determined by comparing two levels of output with the amount of expenses at those levels. Since the fixed element does not change, the variable element may be ascertained with the help of the following formula.

$$
\frac{\text { Change in the amount of expense }}{\text { Change in the quantity of output }}
$$

Suppose the following information is available:

|  | Production Units | Semi-variable expenses (₹ ) |
| :--- | :--- | :--- |
| January | 100 | 260 |
| February | 140 | 300 |
| Difference | 40 | 40 |

Thus, in January, the variable cost will be $100 \times$ Re. $1=₹ 100$ and the fixed cost element will be ( $₹ 260$ - ₹ 100 ) or ₹ 160 . In February, the variable cost will be $140 \times$ Re. $1=₹ 140$ whereas the fixed cost element will remain the same, i.e., ₹ 160.

## Question 13

'Humara - Apna' bank offers three products, viz., deposits, Loans and Credit Cards. The bank has selected 4 activities for a detailed budgeting exercise, following activity based costing methods.

The bank wants to know the product wise total cost per unit for the selected activities, sothat prices may be fixed accordingly.
The following information is made available to formulate the budget:

| Activity | Present Cost <br> (Rs.) | Estimation for the budget period |
| :--- | :--- | :--- |
| ATM Services: |  |  |
| (a) Machine <br> Maintenance | $4,00,000$ | All fixed, no change. |
| (b) Rents | $2,00,000$ | Fully fixed, no change. |
| (c) Currency | $1,00,000$ | Expected to double during budget <br> period. |
| Replenishment Cost | $7,00,000$ | (This activity is driven by no. of ATM <br> transactions) |


| Computer Processing | $5,00,000$ | Half this amount is fixed and no change <br> is expected. <br> The variable portion is expected to <br> increase to three times the current level. <br> (This activity is driven by the number of <br> computer transactions) |
| :--- | :--- | :--- |
| Issuing Statements | $18,00,000$ | Presently, 3 lakh statements are made. <br> In the budget period, 5 lakh statements <br> are expected. <br> For every increase of one lakh <br> statement, one lakh rupees is the <br> budgeted increase. <br> (This activity is driven by the number of <br> statements) |
| Computer Inquiries | $2,00,000$ | Estimated to increase by $80 \%$ during the <br> budget period. <br> (This activity is driven by telephone <br> minutes) |

The activity drivers and their budgeted quantifies are given below:

| Activity Drivers | Deposits | Loans | Credit <br> Cards |
| :--- | ---: | ---: | ---: |
| No. of ATM Transactions | $1,50,000$ | --- | 50,000 |
| No. of Computer Processing <br> Transactions | $15,00,000$ | $2,00,000$ | $3,00,000$ |
| No. of Statements to be issued | $3,50,000$ | 50,000 | $1,00,000$ |
| Telephone Minutes | $3,60,000$ | $1,80,000$ | $1,80,000$ |

The bank budgets a volume of 58,600 deposit accounts, 13,000 loan accounts, and 14,000 Credit Card Accounts.

Required
(i) CALCULATE the budgeted rate for each activity.
(ii) PREPARE the budgeted cost statement activity wise.
(iii) COMPUTE the budgeted product cost per account for each product using (i) and (ii) above. (MTP 10 Marks April '19 \& Oct '23, Old \& New SM) (Same concepts different figures MTP 10 Marks Apr'22)

## Answer 13

Statement Showing "Budgeted Cost per unit of the Product"

| Activity | Activity <br> Cost <br> (Budgeted <br> (Rs.) | Activity <br> Driver | No. of <br> Units of <br> Activity <br> Driver <br> (Budget) | Activity <br> Rate <br> (Rs.) | Deposits | Loans | Credit <br> Cards |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| ATM <br> Services | $8,00,000$ | No. of ATM <br> Transaction | $2,00,000$ | 4.00 | $6,00,000$ | --- | $2,00,000$ |
| Computer <br> Processing | $10,00,000$ | No. of <br> Computer <br> Transaction | $20,00,000$ | 0.50 | $7,50,000$ | $1,00,000$ | $1,50,000$ |
| Issuing <br> Statements | $20,00,000$ | No. of <br> Statements | $5,00,000$ | 4.00 | $14,00,000$ | $2,00,000$ | $4,00,000$ |


| Customer <br> Inquiries | $3,60,000$ | Telephone <br> Minutes | $7,20,000$ | 0.50 | $1,80,000$ | 90,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Budgeted <br> Cost | $41,60,000$ |  | $29,30,000$ | $3,90,000$ | $8,40,000$ |  |
| Units of Product (as estimated in the budget period) |  |  |  | 58,600 | 13,000 | 14,000 |
| Budgeted Cost per unit of the product |  | 50 | 30 | 60 |  |  |

Working Note

| Activity | Budgeted Cost (Rs.) | Remark |
| :---: | :---: | :---: |
| ATM Services: |  |  |
| (a) Machine Maintenance | 4,00,000 | - All fixed, no change. |
| (b) Rents | 2,00,000 | - Fully fixed, no change. |
| (c) Currency Replenishment Cost | 2,00,000 | - Doubled during budget period. |
| Total | 8,00,000 |  |
| Computer Processing | 2,50,000 | - Rs.2,50,000 (half of Rs. $5,00,000$ ) is fixed and no change is expected. |
|  | 7,50,000 | - Rs.2,50,000 (variable portion) is expected to increase to three times the current level. |
| Total | 10,00,000 |  |
| Issuing Statements | 18,00,000 | - Existing. |
|  | 2,00,000 | - 2 lakh statements are expected to be increased in budgeted period. For every increase of one lakh statement, one lakh rupees is the budgeted increase. |
| Total | 20,00,000 |  |
| Computer Inquiries | 3,60,000 | - Estimated to increase by $80 \%$ during the budget period. (Rs.2,00,000 x 180\%) |
| Total | 3,60,000 |  |

## Question 14

SMD Limited manufactures four products namely A, B, C and D using the same production and process facilities. The company has been following conventional method of costing and wishes to shift to activity-based costing system.
The data pertaining to four products are:

| Product | Units <br> produce <br> d | Material per unit <br> (₹) | Labour hours per unit <br> unit |  |
| :---: | :--- | ---: | ---: | ---: |
| A | 1,500 | 140 | 1 | Machine hours per |
| B | 2,500 | 90 | 3 | 2 |
| C | 10,000 | 180 | 2 | 6 |
| D | 6,000 | 150 | 1.5 | 4 |

The following activity volumes are associated to the production process for the relevant period -

|  | Number of <br> Inspections | Number of Material <br> Movements | Number of set-ups |
| :---: | :---: | :---: | :---: |
| A | 200 | 15 | 100 |


| B | 250 | 20 | 125 |
| :---: | :---: | :---: | :---: |
| C | 900 | 100 | 600 |
| D | 650 | 85 | 400 |

The cost data also states that:

- Direct Labour cost: ₹ $\mathbf{6 0}$ per hour
- Machine hour rate: ₹ $\mathbf{2 8 0}$ per hour
- Production overheads are absorbed on machine hour basis.
- For activity-based costing, a thorough, analysis of the production process revealed that:

Costs relating to set-ups and inspection bears the equal percentage while costs relating to machinery accounts for $\mathbf{2 0 \%}$ of the production overhead.
Costs relating to material handling stands at $50 \%$ of costs relating to machinery. You are required to:
(i) Prepare a statement showing the unit costs and total costs of each product using the absorption costing method.
(ii) Prepare a statement showing the unit costs and total costs of each product using activity - based costing

## system.

(MTP 10 Marks Sep'22)

## Answer 14

(i) Cost per unit - Conventional Costing: Absorption rate method

| Particulars | A (₹) | B (₹) | C (₹) | D (₹) |
| :--- | ---: | ---: | ---: | ---: |
| Material | 140 | 90 | 180 | 150 |
| Labour @ ₹ 60 per labour hour | 60 | 180 | 120 | 90 |
| Overheads @ ₹ 280 per machine hour | 840 | 560 | 1680 | 1120 |
| Cost per unit (in ₹) | 1,040 | 830 | 1,980 | 1,360 |
| No of units | 1,500 | 2,500 | 10,000 | 6,000 |
| Total cost (₹) | $15,60,000$ | $20,75,000$ | $1,98,00,000$ | $81,60,000$ |

(ii) Statement of apportionment of overheads:

| Type of Cost | Cost Driver | A | B | C | Amount ( $₹$ ) |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Setups | No of | $7,48,000$ | $9,35,000$ | $44,88,000$ | $29,92,000$ |
|  | Setups | $(100 \times 7,480)$ | $(125 \times 7,480)$ | $(600 \times 7,480)$ | $(400 \times 7,480)$ |
| Machinery | Machine | $2,52,000$ | $2,80,000$ | $33,60,000$ | $13,44,000$ |
|  | hours | $(4,500 \times 56)$ | $(5,000 \times 56)$ | $(60,000 \times 56)$ | $(24,000 \times 56)$ |
| Material Handling | No. of | $1,78,500$ | $2,38,000$ | $11,90,000$ | $10,11,500$ |
|  | Movements |  |  |  |  |
| of material | $(15 \times 11,900)$ | $(20 \times 11,900)$ | $(100 \times 11,900)$ | $(85 \times 11,900)$ |  |
| Inspection | No. of |  |  |  |  |
|  | Inspections | $9,16,300$ | $11,45,375$ | $41,23,350$ | $29,77,975$ |
| $(200 \times 4,581.50)$ | $(250 \times 4,581.50)$ | $(900 \times 4,581.50)$ | $(650 \times 4,581.50)$ |  |  |
| Total |  | $20,94,800$ | $25,98,375$ | $1,31,61,350$ | $83,25,475$ |
| Output Units |  | 1,500 | 2,500 | 10,000 | 6,000 |
| Overhead/ unit |  | $1,396.53$ | $1,039.35$ | $1,316.14$ | $1,387.58$ |

Statement showing Cost per unit and Total cost using Activity Based Costing

| Particulars | A (₹) | $\mathrm{B}(₹)$ | $\mathrm{C}(₹)$ | $\mathrm{D}(₹)$ |
| :--- | ---: | ---: | ---: | ---: |
| Material | 140.00 | 90.00 | 180.00 | 150.00 |
| Labour | 60.00 | 180.00 | 120.00 | 90.00 |
| Total | 200.00 | 270.00 | 300.00 | 240.00 |
| No. of units | 1,500 | 2,500 | 10,000 | 6,000 |
| Total cost (excluding overheads) | $3,00,000$ | $6,75,000$ | $30,00,000$ | $14,40,000$ |


| Add: Overheads (as calculated) | $20,94,800$ | $25,98,375$ | $1,31,61,350$ | $83,25,475$ |
| :--- | ---: | ---: | ---: | ---: |
| Total cost | $23,94,800$ | $32,73,375$ | $1,61,61,350$ | $97,65,475$ |
| Cost per unit | $1,596.53$ | $1,309.35$ | $1,616.14$ | $1,627.58$ |

## Working Notes:

1. Calculation of Total machine hours

| Particulars | A | B | C | D |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| (a) | Machine hours per unit | 3 | 2 | 6 | 4 |
| (b) | Production(units) | 1,500 | 2,500 | 10,000 | 6,000 |
| (c) | Total machine hours (a) $\times(b)$ | 4,500 | 5,000 | 60,000 | 24,000 |

Total Machine hours $=93,500$
Total production overheads $=93,500 \times 280=₹ 2,61,80,000$
2. Calculation of cost driver rate

| Cost pool | Amount of <br> cost (₹) | Cost Driver <br> (basis) | Cost Driver <br> (units) | Cost Driver Rate (₹) |
| :--- | ---: | :--- | :--- | :--- |
| Setups | $91,63,000$ | No. of Setups | 1,225 | 7,480 per set up |
| Machinery | $52,36,000$ | Machine Hrs. | 93,500 | 56 per machine hour |
| Material <br> Handlings | $26,18,000$ | No. of Material <br> Movements | 220 | 11,900 per material <br> movement |
| Inspection | $91,63,000$ | No. of Inspections | 2,000 | $4,581.50$ <br> inspection |
|  | $2,61,80,000$ |  |  |  |

## Question 15

WRITE DOWN the corresponding cost drivers related to the following activity cost pools:
Inspecting and testing costs, Setting-up machines cost, Machining costs, Supervising Costs, Ordering and Receiving Materials cost (MTP 5 Marks Sep'22)

## Answer 15

| Activity Cost Pools | Related Cost Drivers |
| :--- | :--- |
| Inspecting and testing costs | Number of tests |
| Setting up machines cost | Number of set-ups |
| Machining costs | Machine hours |
| Supervising Costs | Direct labour hours |
| Ordering and Receiving Materials cost | Number of purchase orders |

## Question 16

ANI Limited is a trader of a Product Z. It has decided to analyse the profitability of its five new customers. It buys $Z$ article at ₹5,400 per unit and sells to retail customers at a listed price of ₹6,480 per unit. The data pertaining to five customers are:

|  | Customers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E |
| Units sold | 4,500 | 6,000 | 9,500 | 7,500 | 12,750 |
| Listed Selling Price | ₹ 6,480 | ₹ 6,480 | ₹ 6,480 | ₹6,480 | ₹ 6,480 |
| Actual Selling Price | ₹ 6,480 | ₹ 6,372 | ₹ 5,940 | ₹6,264 | ₹5,832 |
| Number of Purchase orders | 15 | 25 | 30 | 25 | 30 |
| Number of Customer visits | 2 | 3 | 6 | 2 | 3 |
| Number of deliveries | 10 | 30 | 60 | 40 | 20 |
| Kilometers travelled per delivery | 20 | 6 | 5 | 10 | 30 |

5.27

| Number of expedited deliveries | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Its five activities and their cost drivers are:

| Activity | Cost Driver Rate |
| :--- | :--- |
| Order taking | $₹ 4,500$ per purchase order |
| Customer visits | $₹ 3,600$ per customer visit |
| Deliveries | $₹ 7.50$ per delivery Km travelled |
| Product handling | $₹ 22.50$ per case sold |
| Expedited deliveries | $₹ 13,500$ per expedited delivery |

Required:
(i) COMPUTE the customer-level operating income of each of five retail customers (A, B, C, D and E).
(ii) STATE the factors ANI Limited should consider in deciding whether to drop a customer.
(MTP 10 Marks Oct’22)

## Answer 16

Working note:
Computation of revenues (at listed price), discount, cost of goods sold and customer level operating activities costs:

|  | Customers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E |
| Units sold: (a) | 4,500 | 6,000 | 9,500 | 7,500 | 12,750 |
| Revenues (at listed price) (Rs.): (b) <br> $\{(\mathrm{a}) \times$ Rs. 6,480$)\}$ | 2,91,60,000 | 3,88,80,000 | 6,15,60,000 | 4,86,00,000 | 8,26,20,000 |
| Revenues (at listed price) (Rs.): (c) $\{(\mathrm{a}) \times$ Actual selling price) $\}$ | $\begin{gathered} 2,91,60,000 \\ (4,500 \times 6,480) \end{gathered}$ | $\begin{gathered} 3,82,32,000 \\ (6,000 \times 6,372) \end{gathered}$ | $\begin{gathered} 5,64,30,000 \\ (9,500 \times 5,940) \end{gathered}$ | $\begin{gathered} 4,69,80,000 \\ (7,500 \times 6,264) \end{gathered}$ | $\begin{array}{r} 7,43,58,000 \\ (12,750 \times 5,832) \end{array}$ |
| Discount (Rs.) (d) $\{(\mathrm{b})-(\mathrm{c})\}$ | 0 | 6,48,000 | 51,30,000 | 16,20,000 | 82,62,000 |
| Cost of goods sold (Rs.) : (d) <br> $\{(\mathrm{a}) \times$ Rs.5,400 $\}$ | 2,43,00,000 | 3,24,00,000 | 5,13,00,000 | 4,05,00,000 | 6,88,50,000 |
| Customer level operating activities costs |  |  |  |  |  |
| Order taking costs <br> (Rs.): <br> (No. of purchase orders $\times$ Rs. 4,500) | 67,500 | 1,12,500 | 1,35,000 | 1,12,500 | 1,35,000 |
| Customer visits costs (Rs.) <br> (No. of customer visits x Rs. 3,600) | 7,200 | 10,800 | 21,600 | 7,200 | 10,800 |
| Delivery vehicles travel costs (Rs.) <br> (Kms travelled by | 1,500 | 1,350 | 2,250 | 3,000 | 4,500 |
| delivery vehicles x Rs. 7.50 per km.) |  |  |  |  |  |
| Product handling costs (Rs.) <br> \{(a) X Rs. 22.50\} | 1,01,250 | 1,35,000 | 2,13,750 | 1,68,750 | 2,86,875 |


| Cost of expediting deliveries (Rs.) <br> \{No. of expedited deliveries x Rs. 13,500\} | - | - | - | - | 13,500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total cost of customer level operating activities (Rs.) | 1,77,450 | 2,59,650 | 3,72,600 | 2,91,450 | 4,50,675 |

(i) Computation of Customer level operating income

|  | Customers |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E |
|  | (Rs.) | (Rs.) | (Rs.) | (Rs.) | (Rs.) |
| Revenues (At <br> list price) <br> (Refer to working <br> note) | $2,91,60,000$ | $3,82,32,000$ | $5,64,30,000$ | $4,69,80,000$ | $7,43,58,000$ |
| Less: Cost of <br> goods sold <br> (Refer to working <br> note) | $(2,43,00,000)$ | $(3,24,00,000)$ | $(5,13,00,000)$ | $(4,05,00,000)$ | $(6,88,50,000)$ |
| Gross margin | $48,60,000$ | $58,32,000$ | $51,30,000$ | $64,80,000$ | $55,08,000$ |
| Less: Customer <br> level operating <br> activities costs <br> (Refer to working <br> note) |  |  |  |  |  |
| Customer level <br> operating income | $46,82,550$ | $55,72,350$ | $47,57,400$ | $61,88,550$ | $50,57,325$ |

(ii) Factors to be considered for dropping a customer:

Dropping customers should be the last resort to be taken by an entity. Factors to be considered should include:

- What is the expected future profitability of each customer?
- Are the currently least profitable or low profitable customers are likely to be highly profitable in the future?
- What costs are avoidable if one or more customers are dropped?
- Can the relationship with the "problem" customers be restructured so that there is at "win- win" situation


## Question 17

Bopanna Ltd. produces three products $\mathrm{Zm}, \mathrm{Rm}$ and Pm using the same plant and resources. It has given the following information for the year ended on 31st March 2022:

|  | Zm | Rm | Pm |
| :--- | :---: | :---: | :---: |
| Production Quantity (units) | 6000 | $\mathbf{7 2 0 0}$ | $\mathbf{9 8 4 0}$ |
| Cost per unit: |  |  |  |
| Direct Material (₹) | 450 | 420 | 880 |
| Direct Labour (₹) | 80 | 150 | 200 |

Budgeted direct labour rate was ₹40 per hour and the production overheads, shown in table below, were absorbed to products using direct labour hour rate.

Company followed Absorption Costing Method. However, the company is now considering adopting Activity Based Costing Method.

|  | Budgeted <br> Overheads (₹) | Cost Driver | Remarks |
| :--- | :---: | :---: | :--- |
| Material Procurement | $2,50,000$ | No. of orders | No. of orders was 30 units <br> for each product. |
| Set-up | $1,50,000$ | No. of production <br> Runs | All the three products are <br> produced in production <br> runs of 50 units. |
| Quality Control | $\mathbf{1 , 0 0 , 0 0 0}$ | No. of <br> Inspections | Done for each production <br> run. |
| Maintenance | $\mathbf{3 , 0 0 , 0 0 0}$ | Maintenance <br> hours | Total maintenance hours <br> were 10,000 and was <br> allocated in the ratio of <br> $2: 1: 2$ between X, Y \& Z. |

## Required:

(i) CALCULATE the total cost per unit of each product using the Absorption Costing Method.
(ii) CALCULATE the total cost per unit of each product using the Activity Based Costing Method. (MTP 10 Marks March '23)(Same concept different figures PYP 10 Marks Jan'21)
Answer 17

## (i) Traditional Absorption Costing

|  | Zm | Rm | Pm | Total |
| :--- | :---: | :---: | :---: | :---: |
| (a) Quantity (units) | 6,000 | 7,200 | 9,840 | 23,040 |
| (b) Direct labour per unit $(₹)$ | 80 | 150 | 200 | - |
| (c) Direct labour hours $(a \times b) / ₹ 40$ | 12,000 | 27,000 | 49,200 | 88,200 |

Overhead rate per direct labour hour = Budgeted overheads / Budgeted labour hours

$$
=(₹ 2,50,000+₹ 1,50,000+₹ 1,00,000+₹ 3,00,000) / 88,200 \text { hours }
$$

= ₹8,00,000 / 88,200 hours
= ₹9 per direct labour hour(approx.)
Calculation of Cost per Unit

|  | Zm | Rm | Pm |
| :---: | :---: | :---: | :---: |
| Direct Costs: |  |  |  |
| Direct Material | 450 | 420 | 880 |
| Direct Labour (₹) | 80 | 150 | 200 |
| Production Overhead: (₹) | 18 | 33.75 | 45 |
|  | $(80 \times$ | $(150 \times$ | $(200 \times$ |
|  | $9 / 40)$ | $9 / 40)$ | $9 / 40)$ |
| Total cost per unit (₹) | $\mathbf{5 4 8}$ | $\mathbf{6 0 3 . 7 5}$ | $\mathbf{1 1 2 5}$ |

(ii) Calculation of Cost-Driver level under Activity Based Costing

|  | $\mathbf{Z m}$ | Rm | Pm | Total |
| :--- | :---: | :---: | :---: | ---: |
| Quantity (units) | 6,000 | 7,200 | 9,840 | - |
| No. of orders (to be <br> rounded off for fraction) | 200 <br> $(6,000 /$ <br> $30)$ | 240 <br> $(7,200 /$ <br> $30)$ | 328 <br> $(9,840 / 30)$ | 768 |
| No. of production runs | 120 <br> $(6,000 /$ <br> $50)$ | 144 <br> $(7,200 /$ <br> $50)$ | 197 |  |


| No. of Inspections (done <br> for each production run) | 120 | 144 | 197 | 461 |
| :--- | :---: | :---: | :---: | ---: |
| Maintenance hours | 4,000 | 2,000 | 4,000 | 10,000 |

## Calculation of Cost-Driver rate

| Activity | Budgeted Cost <br> (₹) | Cost-driver <br> level | Cost Driver rate <br> (₹) |
| :--- | :---: | :---: | :---: |
|  | (a) | (b) | (c) = (a)/(b) |
| Material <br> procurement | $2,50,000$ | 768 | 325.5 |
| Set-up | $1,50,000$ | 461 | 325.5 |
| Quality control | $1,00,000$ | 461 | 217.0 |
| Maintenance | $3,00,000$ | 10,000 | 30.0 |

Calculation of total cost of products using Activity Based Costing

| Particulars | Product |  |  |
| :--- | :---: | :---: | :---: |
|  | Zm (₹) | Rm (₹) | Pm (₹) |
| Direct Material | 450 | 420 | 880 |
| Direct Labour | 80 | 150 | 200 |
| Prime Cost per unit (A) | 530 | 570 | 1080 |
| Material procurement | 10.85 | 10.85 | 10.85 |
| Set-up | $(325.5 \times 200 / 6000)$ | $(325.5 \times 240 / 7200)$ | $(325.5 \times 328 / 9840)$ |
| Quality control | 6.51 | 6.51 | 6.51 |
|  | $(325.5 \times 120 / 6000)$ | $(325.5 \times 144 / 7200)$ | $(325.5 \times 196.8 / 9840)$ |
| Maintenance | 4.34 | 4.34 | 4.34 |
|  | $(217 \times 120 / 6000)$ | $(217 \times 144 / 7200)$ | $(217 \times 196.8 / 9840)$ |
| Overhead Cost per unit <br> (B) | 20.0 | 8.3 | 12.2 |
| Total Cost per unit (A + B) | $\mathbf{5 7 1 . 7}$ | $(2000 \times 30 / 7200)$ | $(4000 \times 30 / 9840)$ |

## Question 18

KD Ltd. is following Activity based costing. Budgeted overheads, cost drivers and volume are as follows:

| Cost pool | Budgeted <br> overheads (₹) | Cost driver | Budgeted <br> volume |
| :--- | ---: | :--- | ---: |
| Material procurement | $18,42,000$ | No. of orders | 1,200 |
| Material handling | $8,50,000$ | No. of movement | 1,240 |
| Maintenance | $24,56,000$ | Maintenance hours | 17,550 |
| Set-up | $9,12,000$ | No. of set-ups | 1,450 |
| Quality control | $4,42,000$ | No. of inspection | 1,820 |

The company has produced a batch of 7,600 units, its material cost was ₹ $24,62,000$ and wages $₹ 4,68,500$. Usage activities of the said batch are as follows:Material orders56
Material movements ..... 84Maintenance hours1,420 hours
Set-ups 60
No. of inspections
18

Required:
(i) CALCULATE cost driver rates.
(ii) CALCULATE the total and unit cost for the batch. (MTP 5 Marks April '23) (Same concept different figures RTP Nov'20)

## Answer 18

(i) Calculation of cost driver rate:

| Cost pool | Budgeted <br> overheads (₹) | Cost driver | Cost driver rate <br> (₹) |
| :--- | ---: | ---: | ---: |
| Material procurement | $18,42,000$ | 1,200 | $1,535.00$ |
| Material handling | $8,50,000$ | 1,240 | 685.48 |
| Maintenance | $24,56,000$ | 17,550 | 139.94 |
| Set-up | $9,12,000$ | 1,450 | 628.97 |
| Quality control | $4,42,000$ | 1,820 | 242.86 |

(ii) Calculation of cost for the batch:

| Particulars | Amount (₹) | Amount (₹) |
| :--- | ---: | ---: |
| Material cost |  | $24,62,000.00$ |
| Wages |  | $4,68,500.00$ |
| Overheads: |  |  |
| - Material procurement (₹1,535×56 orders) | $85,960.00$ |  |
| - Material handling (₹685.48×84 movements) | $57,580.32$ |  |
| - Maintenance (₹139.94×1,420 hours) | $1,98,714.80$ |  |
| - Set-up (₹628.97×60 set-ups) | $37,738.20$ |  |
| - Quality control (₹242.86×18 inspections) | $4,371.48$ | $3,84,364.80$ |
| Total Cost |  | $33,14,864.80$ |
| No. of units |  |  |
| Cost per units |  | 7,600 |

## Question 19

Family Store wants information about the profitability of individual product lines: Soft drinks, Fresh produce and Packaged food. Family store provides the following data for the year 20X7-X8 for each product line:

|  | Soft drinks | Fresh produce | Packaged food |
| :--- | ---: | ---: | ---: |
| Revenues | $₹ 39,67,500$ | $₹ 1,05,03,000$ | $₹ 60,49,500$ |
| Cost of goods sold | $₹ 30,00,000$ | $₹ 75,00,000$ | $₹ 45,00,000$ |
| Cost of bottles returned | $₹ 60,000$ | $₹ 0$ | $₹ 0$ |
| Number of purchase orders placed | 360 | 840 | 360 |
| Number of deliveries received | 300 | 2,190 | 660 |
| Hours of shelf-stocking time | 540 | 5,400 | 2,700 |
| Items sold | $1,26,000$ | $11,04,000$ | $3,06,000$ |

Family store also provides the following information for the year 20X7-X8:

| Activity | Description of activity | Total Cost | Cost-allocation base |
| :--- | :--- | :--- | :--- |

VIVITSU
5.32

STRIVING TOWARDS KNOWLEDGE

| Bottles returns | Returning of empty bottles | $₹ 60,000$ | Direct tracing to soft |
| :--- | :--- | :--- | :--- |
|  |  |  | drink line |
| Ordering | Placing of orders for purchases | $₹ 7,80,000$ | 1,560 purchase orders |
| Delivery | Physical delivery and receipt of goods | $₹ 12,60,000$ | $\mathbf{3 , 1 5 0}$ deliveries |
| Shelf stocking | Stocking of goods on store shelves | $₹ 8,64,000$ | 8,640 hours of shelf- |
| Customer | and on-going restocking | $₹ 15,36,000$ | stocking time |
|  | $15,36,000$ items sold |  |  |
|  | customers including check-out |  |  |

Required:
(i) Family store currently allocates support cost (all cost other than cost of goods sold) to product lines on the basis of cost of goods sold of each product line. CALCULATE the operating income and operating income as a \% of revenues for each product line.
(ii) If Family Store allocates support costs (all costs other than cost of goods sold) to product lines using and activity based costing system, Calculate the operating income and operating income as a \% of revenues for each product line. (RTP Nov'18, RTP May'20, Nov'21, Old \& New SM)

## Answer 19

Statement of Operating income and Operating income as a percentage of revenues for each product line (When support costs are allocated to product lines on the basis of cost of goods sold of each product)

|  | Soft Drinks | Fresh <br> Produce | Packaged Foods | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | (₹) | (₹) | (₹) | (₹) |
| Revenues: (A) | 39,67,500 | 1,05,03,000 | 60,49,500 | 2,05,20,000 |
| Cost of Goods sold (COGS): (B) <br> Support cost ( $30 \%$ of COGS): (C) | 30,00,000 | 75,00,000 | 45,00,000 | 1,50,00,000 |
| (Refer working notes) | 9,00,000 | 22,50,000 | 13,50,000 | 45,00,000 |
| Total cost: $(\mathrm{D})=\{(\mathrm{B})+(\mathrm{C})\}$ | 39,00,000 | 97,50,000 | 58,50,000 | 1,95,00,000 |
| Operating income: $\mathrm{E}=\{(\mathrm{A})$-(D) $\}$ | 67,500 | 7,53,000 | 1,99,500 | 10,20,000 |
| Operating income as a percentage |  |  |  |  |
| of revenues: (E/A) × 100) | 1.70\% | 7.17\% | 3.30\% | 4.97\% |
| Working Notes <br> 1. Total support cost: |  |  |  |  |
|  | (₹) |  |  |  |
| Bottles returns | 60,000 |  |  |  |
| Ordering | 7,80,000 |  |  |  |
| Delivery | 12,60,000 |  |  |  |
| Shelf stocking | 8,64,000 |  |  |  |
| Customer support | 15,36,000 |  |  |  |
| Total support cost | 45,00,000 |  |  |  |

2. Percentage of support cost to cost of goods sold (COGS):

$$
\begin{aligned}
& =\frac{\text { Total support cost }}{\text { Total Cost of goods sold }} \times 100 \\
& =\frac{\text { Rs. } 45,00,000}{\text { Rs. } 1,50,00,000} \times 100=30 \%
\end{aligned}
$$

3. Cost for each activity cost driver:

| Activity | Total cost | Cost allocation base | Cost driver rate |
| :---: | :---: | :---: | :---: |
| (1) | (₹) | (2) | (4) $=[(\mathbf{2 )} \div$ (3)] |
| Ordering | $7,80,000$ | 1,560 purchase orders | $₹ 500$ perpurchaseorder |
| Delivery | $12,60,000$ | 3,150 deliveries | $₹ 400$ per delivery |
| Shelf-stocking | $8,64,000$ | 8,640 hours | $₹ 100$ per stocking hour |
| Customer support | $15,36,000$ | $15,36,000$ items sold | ₹ 1 per item sold |

(i) Statement of Operating income and Operating income as a percentage of revenues for each product line (When support costs are allocated to product lines using an activity-based costing system)

|  | Soft | Fresh | Packaged | Total |
| :--- | ---: | ---: | ---: | ---: |
|  | drinks (₹) | Produce (₹) | Food (₹) | (₹) |
| Revenues: (A) | $39,67,500$ | $1,05,03,000$ | $60,49,500$ | $2,05,20,000$ |
| Cost \& Goods sold | $30,00,000$ | $75,00,000$ | $45,00,000$ | $1,50,00,000$ |
| Bottle return costs | 60,000 | 0 | 0 | 60,000 |
| Ordering cost* | $1,80,000$ | $4,20,000$ | $1,80,000$ | $7,80,000$ |
| (360:840:360) |  |  |  |  |
| Delivery cost* | $1,20,000$ | $8,76,000$ | $2,64,000$ | $12,60,000$ |
| (300:2190:660) |  |  |  |  |
| Shelf stocking cost* | 54,000 | $5,40,000$ | $2,70,000$ | $8,64,000$ |
| (540:5400:2700) |  |  |  |  |
| Customer Support cost* | $1,26,000$ | $11,04,000$ | $3,06,000$ | $15,36,000$ |
| (1,26,000:11,04,000:3,06,000) |  |  |  |  |
| Total cost: (B) | $35,40,000$ | $1,04,40,000$ | $55,20,000$ | $1,95,00,000$ |
| Operating income C: $\{(\mathrm{A})-$ (B) $\}$ | $4,27,500$ | 63,000 | $5,29,500$ | $10,20,000$ |
| Operating income as a \% of revenues | $10.78 \%$ | $0,60 \%$ | $8.75 \%$ | $4,97 \%$ |
| * Refer to working note 3 |  |  |  |  |

## Question 20

SMP Pvt. Ltd. manufactures three products using three different machines. At present the overheads are charged to products using labour hours. The following statement for the month of September 2019, using the absorption costing method has been prepared:

| Particulars | Product X <br> (using machine A) | Product Y <br> (using machine B) | Product Z <br> (using machine C) |
| :--- | :---: | :---: | :---: |
| Production units | 45,000 | 52,500 | 30,000 |
| Material cost per unit (') | 350 | 460 | 410 |
| Wagesperunit @'80per hour | 240 | 400 | 560 |
| Overhead cost per unit (') | 240 | 400 | 560 |
| Total cost per unit (') | 830 | 1,260 | 1,530 |
| Selling price (') | $1,037.50$ | 1,575 | $1,912.50$ |

The following additional information is available relating to overhead cost drivers.

| Cost driver | Product $X$ | Product $Y$ | Product Z | Total |
| :--- | :---: | :---: | :---: | :---: |
| No. of machine set-ups | 40 | 160 | 400 | 600 |
| No. of purchase orders | 400 | 800 | $\mathbf{1 , 2 0 0}$ | $\mathbf{2 , 4 0 0}$ |
| No. of customers | 1,000 | 2,200 | 4,800 | 8,000 |

Actual production and budgeted production for the month is same. Workers are paid at standard rate. Out of total overhead costs, $30 \%$ related to machine set-ups, $30 \%$ related to customer order processing and customer complaint management, while the balance proportion related to material
ordering.
Required:
(i) COMPUTE overhead cost per unit using activity based costing method.
(ii) DETERMINE the selling price of each product based on activity-based costing with the same profit mark-up on cost. (RTP Nov'19)

## Answer 20

## Workings:

Total labour hours and overhead cost:

| Particulars | Product X | Product Y | Product Z | Total |
| :--- | :---: | :---: | :---: | :---: |
| Production units | 45,000 | 52,500 | 30,000 | $1,27,500$ |
| Hour per unit | 3 | 5 | 7 |  |
| Total hours | $1,35,000$ | $2,62,500$ | $2,10,000$ | $6,07,500$ |
| Rate per hour |  |  |  | $₹ 80.00$ |
| Total overhead |  |  |  | $₹ 4,86,00,000$ |

## Cost per activity and driver

| Activity | Machine <br> Set-up | Customer <br> order <br> processing | Customer <br> complaint <br> management | Total |
| :--- | ---: | ---: | ---: | ---: |
| Total overhead (₹) | $1,45,80,000$ | $1,45,80,000$ | $1,94,40,000$ | $4,86,00,000$ |
| No. of drivers | 600 | 2,400 | 8,000 |  |
| Cost per driver (₹) | 24,300 | 6,075 | 2,430 |  |

## (i) Computation of Overhead cost per unit:

| Particulars | Product X | Product Y | Product Z |
| :--- | :---: | :---: | :---: |
| No. of machine set-ups | 40 | 160 | 400 |
| Cost per driver (₹) | 24,300 | 24,300 | 24,300 |
| Total Machine set-up cost (₹)[A] | $9,72,000$ | $38,88,000$ | $97,20,000$ |
| No. of purchase orders | 400 | 800 | 1,200 |
| Cost per driver (₹) | 6,075 | 6,075 | 6,075 |
| Total order processing cost (₹) [B] | $24,30,000$ | $48,60,000$ | $72,90,000$ |
| No. of customers | 1,000 | 2,200 | 4,800 |
| Cost per driver (₹) | 2,430 | 2,430 | 2,430 |
| Total customer complaint management cost <br> (₹) [C] | $24,30,000$ | $53,46,000$ | $1,16,64,000$ |
| Total Overhead cost(₹)[A+B+C] | $58,32,000$ | $1,40,94,000$ | $2,86,74,000$ |
| Production units | 45,000 | 52,500 | 30,000 |
| Cost per unit (₹) | 129.60 | 268.46 | 955.80 |

Determination of Selling price per unit

| Particulars | Product X <br> (using machine A) | Product Y <br> (using machine B) | Product Z <br> (using machine C) |
| :--- | :---: | :---: | :---: |
| Material cost per unit (') | 350.00 | 460.00 | 410.00 |
| Wagesper unit @ '80 per hour | 240.00 | 400.00 | 560.00 |
| Overhead cost per unit (') | 129.60 | 268.46 | 955.80 |
| Total cost per unit (') | 719.60 | $1,128.46$ | $1,925.80$ |
| Profit (25\% profit mark-up)(') | 179.90 | 282.11 | 481.45 |
| Selling price (') | $\mathbf{8 9 9 . 5 0}$ | $\mathbf{1 , 4 1 0 . 5 7}$ | $\mathbf{2 , 4 0 7 . 2 5}$ |

## Question 21

MST Limited has collected the following data for its two activities. It calculates activity cost rates based on cost driver capacity.

| Activity | Cost Driver | Capacity | Cost (Rs.) |
| :--- | :--- | :--- | ---: |
| Power | Kilowatt hours | $\mathbf{5 0 , 0 0 0}$ kilowatt hours | $\mathbf{4 0 , 0 0 , 0 0 0}$ |
| Quality Inspections | Number of Inspections | $\mathbf{1 0 , 0 0 0}$ Inspections | $\mathbf{6 0 , 0 0 , 0 0 0}$ |

The company makes three products M, S and T. For the year ended March 31, 20X 9, the following consumption of cost drivers was reported:

| Product | Kilowatt hours | Quality Inspections |
| :---: | :---: | :---: |
| M | 10,000 | 3,500 |
| S | 20,000 | 2,500 |
| T | 15,000 | 3,000 |

Required:
(i) PREPARE a statement showing cost allocation to each product from each activity.
(ii) CALCULATE the cost of unused capacity for each activity.
(iii) STATE the factors the management considers in choosing a capacity level to compute the budgeted fixed overhead cost rate. (RTP May'19) (Same concept different figures Old \& New SM)

## Answer 21

Statement of cost allocation to each product from each activity

|  | Product |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | M (Rs.) | S (Rs.) | T (Rs.) | Total (Rs.) |
| Power | 8,00,000 | 16,00,000 | 12,00,000 | 36,00,000 |
| (Refer to working note) | $\begin{array}{r} (10,000 \mathrm{kWh} \times \\ \text { Rs. } 80) \end{array}$ | (20,000 kWh $\times$ Rs. 80 ) | $\begin{array}{r} (15,000 \mathrm{kWh} \times \\ \mathrm{Rs} .80) \end{array}$ |  |
| Quality Inspections | 21,00,000 | 15,00,000 | 18,00,000 | 54,00,000 |
| (Refer to working note) | $\begin{aligned} & (3,500 \\ & \text { inspections } \times \\ & \text { Rs.600) } \end{aligned}$ | $\begin{aligned} & (2,500 \text { inspections } \times \\ & \text { Rs.600) } \end{aligned}$ | $\begin{aligned} & \text { (3,000 inspections } \\ & \times \text { Rs.600) } \end{aligned}$ |  |

## Working Note:

Rate per unit of cost driver:
Power
$:($ Rs. $40,00,000 \div 50,000 \mathrm{kWh})=\mathrm{Rs} .80 / \mathrm{kWh}$
Quality Inspection
$:($ Rs. $60,00,000 \div 10,000$ inspections $)=$ Rs. 600 per inspection
(ii) Calculation of cost of unused capacity for each activity:

|  | (Rs.) |
| :--- | ---: |
| Power <br> (Rs.40,00,000 - Rs.36,00,000) | $4,00,000$ |
| Quality Inspections <br> (Rs.60,00,000 - Rs.54,00,000) | $6,00,000$ |
| Total cost of unused capacity | $10,00,000$ |

(ii) Factors management consider in choosing a capacity level to compute the budgeted fixed overhead cost rate:

- Effect on product costing \& capacity management
- Effect on pricing decisions.
- Effect on performance evaluation
- Effect on financial statements
- Regulatory requirements.
- Difficulties in forecasting for any capacity level.


## Question 22

The profit margin of BABY Hairclips Company were over $20 \%$ of sales producing BROWN and BLACK hairclips.
During the last year, GREEN hairclips had been introduced at 10\% premium in selling price after the introduction of YELLOW hairclips earlier five years back at 10/3\% premium. However, the manager of the company is disheartened with the sales figure for the current financial year as follows:

Traditional Income Statement
(in `)

|  | Brown | Black | Yellow | Green | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sales | $1,50,00,000$ | $1,20,00,000$ | $27,90,000$ | $3,30,000$ | $3,01,20,000$ |
| Material Costs | $50,00,000$ | $40,00,000$ | $9,36,000$ | $1,10,000$ | $1,00,46,000$ |
| Direct Labour | $20,00,000$ | $16,00,000$ | $3,60,000$ | 40,000 | $40,00,000$ |
| Overhead (3 times of direct | $60,00,000$ | $48,00,000$ | $10,80,000$ | $1,20,000$ | $1,20,00,000$ |
| labour) |  |  |  |  |  |
| Total Operating Income | $20,00,000$ | $16,00,000$ | $4,14,000$ | 60,000 | $40,74,000$ |
| Return on Sales (in\%) | $13.3 \%$ | $13.3 \%$ | $14.8 \%$ | $18.2 \%$ | $13.5 \%$ |

It is a known fact that customers are ready to pay premium amount for YELLOW and GREEN hairclips for their attractiveness; and the percentage returns are also high on new products.
At present, all of the Plant's indirect expenses are allocated to the products at 3 times of the direct labour expenses. However, the manager is interested in allocating indirect expenses on the basis of activity cost to reveal real earner.
He provides support expenses category-wise as follows:

| Support Expenses | ( $)$ |
| :--- | ---: |
| Indirect Labour | $\mathbf{4 0 , 0 0 , 0 0 0}$ |
| Labour Incentives | $\mathbf{3 2 , 0 0 , 0 0 0}$ |
| Computer Systems | $\mathbf{2 0 , 0 0 , 0 0 0}$ |
| Machinery depreciation | $\mathbf{1 6 , 0 0 , 0 0 0}$ |
| Machine maintenance | $\mathbf{8 , 0 0 , 0 0 0}$ |
| Energy for machinery | $\mathbf{4 , 0 0 , 0 0 0}$ |
| Total | $\mathbf{1 , 2 0 , 0 0 , 0 0 0}$ |

He provides following additional information for accomplishment of his interest: Incentives to be allocated @ 40\% of labour expenses (both direct and indirect).

Indirect labours are involved mainly in three activities. About half of indirect labour is involved in handling production runs. Another 40\% is required just for the physical changeover from one color hairclip to another because YELLOW hairclips require substantial labour for preparing the machine as compared to other colour hairclips. Remaining $10 \%$ of the time is spend for maintaining records of the products in four parts.

Another amount spent on computer system of ${ }^{\mathbf{2 0}} \mathbf{2 0 , 0 0 , 0 0 0}$ is for maintenance of documents relating to production runs and record keeping of the four products. In aggregate, approx.. 80\% of the amount expend is involved in the production run activity and approx.. $20 \%$ is used to keep records of the products in four parts. Other overhead expenses i.e. machinery depreciation, machine maintenance and energy for machinery are incurred to supply machine capacity to produce all the hairclips (practical capability of 20,000 hours).
Activity Cost Drivers:

| Particulars | Brown | Black | Yellow | Green | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sales Volume (units) | $\mathbf{1 , 0 0 , 0 0 0}$ | $\mathbf{8 0 , 0 0 0}$ | 18,000 | $\mathbf{2 , 0 0 0}$ | $\mathbf{2 , 0 0 , 0 0 0}$ |


| Selling Price (`) & 150 & 150 & 155 & 165 & \\ \hline Material cost (`) | 50 | 50 | 52 | 55 |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Machine hours per unit (Hrs) | 0.10 | 0.10 | 0.10 | 0.10 | 20,000 |
| Production runs | 100 | 100 | 76 | 24 | 300 |
| Setup time per run (Hrs) | 4 | 1 | 6 | 4 |  |

## You are required to -

(i) CALCULATE operating income and operating income as per percentage of sales using activitybased costing system.
(i) STATE the reasons for different operating income under traditional income system and activity-based costing system. (RTP Nov'22)

## Answer 22

Calculation of operating income using Activity Based Costing Calculation of Cost-Driver rate

| Activity | Overhead cost | Allocation | Overhead cost | Cost-driver level | Cost driver rate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ( ) |  | ( ${ }^{\circ}$ |  | ( ) |
| Indirect labour + 40\% for incentives | 56,00,000 | 50\% | 28,00,000 | $300$ <br> Production runs | 9,333.33 |
|  |  | 40\% | 22,40,000 | 1052* <br> Setup hours | 2,129.28 |
|  |  | 10\% | 5,60,000 | 4 Number of parts | 1,40,000 |
| Computer Systems | 20,00,000 | 80\% | 16,00,000 | $300$ <br> Production runs | 5,333.33 |
|  |  | 20\% | 4,00,000 | 4 <br> Number of parts | 1,00,000 |
| Machinery depreciation | 16,00,000 | 100\% | 16,00,000 | 20,000 <br> Machine hours | 80 |
| Machine Maintenance | 8,00,000 | 100\% | 8,00,000 | 20,000 <br> Machine hours | 40 |
| Energy for Machinery | 4,00,000 | 100\% | 4,00,000 | 20,000 <br> Machine hours | 20 |

* $(100 \times 4)+(100 \times 1)+(76 \times 6)+(24 \times 4)$
$=(400+100+456+96)=1052$ setup hours
Activity Based Costing

|  | Brown | Black | Red | Green | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Quantity (units) | 1,00,000 | 80,000 | 18,000 | 2,000 | 2,00,000 |
|  | ( ) | ( ) | ( ) | ( ) | ( ) |
| Sales | 1,50,00,000 | 1,20,00,000 | 27,90,000 | 3,30,000 | 3,01,20,000 |
| Less: Material Costs | 50,00,000 | 40,00,000 | 9,36,000 | 1,10,000 | 1,00,46,000 |
| $\begin{array}{ll} \text { Less: } & \text { Direct } \\ \text { labour } & \end{array}$ | 20,00,000 | 16,00,000 | 3,60,000 | 40,000 | 40,00,000 |
| Less: $40 \%$ incentives on direct labour | 8,00,000 | 6,40,000 | 1,44,000 | 16,000 | 16,00,000 |
| (A) | 72,00,000 | 57,60,000 | 13,50,000 | 1,64,000 | 1,44,74,000 |
| Overheads |  |  |  |  |  |
| Indirect labour + incentives |  |  |  |  |  |


| - 50\% based | 9,33,333 | 9,33,333 | 7,09,334 | 2,24,000 | 28,00,000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| on Production runs | (9,333.33 $\times 100$ ) | $\begin{array}{r} (9,333.33 x \\ 100) \end{array}$ | $\begin{array}{r} \hline(9,333.33 \times \\ 76) \end{array}$ | $\begin{array}{r} (9,333.33 \\ \times 24) \end{array}$ |  |
| - 40\% based | 8,51,711 | 2,12,928 | 9,70,951 | 2,04,410 | 22,40,000 |
| on Setup hours | $(2,129.28 \times 400)$ | $\begin{array}{r} (2,129.28 x \\ 100) \end{array}$ | $\begin{array}{r} (2,129.28 x \\ 456) \\ \hline \end{array}$ | $\begin{array}{r} (2,129.28 \\ \times 96) \\ \hline \end{array}$ |  |
| - $10 \%$ based | 1,40,000 | 1,40,000 | 1,40,000 | 1,40,000 | 5,60,000 |
| on number of parts | $(1,40,000 \times 1)$ |  |  |  |  |
| Computer Systems |  |  |  |  |  |
| - 80\% based | 5,33,333 | 5,33,333 | 4,05,334 | 1,28,000 | 16,00,000 |
| on Production runs | $(5,333.33 \times 100)$ | $\begin{array}{r} (5,333.33 x \\ 100) \end{array}$ | $\begin{array}{r} (5,333.33 x \\ 76) \end{array}$ | $\begin{array}{r} (5,333.33 \\ \times 24) \end{array}$ |  |
| - 20\% based | 1,00,000 | 1,00,000 | 1,00,000 | 1,00,000 | 4,00,000 |
| on number of parts | $(1,00,000 \times 1)$ |  |  |  |  |
| Machinery depreciation | $\begin{array}{r} 8,00,000 \\ (80 \times 0.1 \times \\ 1,00,000) \end{array}$ | $\begin{array}{r} 6,40,000 \\ (80 \times 0.1 \times \\ 80,000) \end{array}$ | $\begin{array}{r} 1,44,000 \\ (80 \times 0.1 \times \\ 18,000) \end{array}$ | $\begin{array}{r} 16,000 \\ (80 \times 0.1 \times \\ 2,000) \end{array}$ | 16,00,000 |
| Machine Maintenance | $\begin{array}{r} 4,00,000 \\ (40 \times 0.1 \times \\ 1,00,000) \end{array}$ | $\begin{array}{r} 3,20,000 \\ (40 \times 0.1 \times \\ 80,000) \end{array}$ | $\begin{array}{r} 72,000 \\ (40 \times 0.1 \times \\ 18,000) \end{array}$ | $\begin{array}{r} 8,000 \\ (40 \times 0.1 \times \\ 2,000) \end{array}$ | 8,00,000 |
| Energy <br> for Machinery | $\begin{array}{r} 2,00,000 \\ (20 \times 0.1 \times \\ 1,00,000) \end{array}$ | $\begin{array}{r} 1,60,000 \\ (20 \times 0.1 \times \\ 80,000) \end{array}$ | $\begin{array}{r} 36,000 \\ (20 \times 0.1 \times \\ 18,000) \end{array}$ | $\begin{array}{r} 4,000 \\ (20 \times 0.1 \times \\ 2,000) \end{array}$ | 4,00,000 |
| Total Overheads (B) | 39,58,377 | 30,39,594 | 25,77,619 | 8,24,410 | 1,04,00,000 |
| Operating Income (A-B) | 32,41,623 | 27,20,406 | $(12,27,619)$ | $(6,60,410)$ | 40,74,000 |
| Return on Sales (\%) | 21.61 | 22.67 | (44.00) | (200.12) | 13.53 |

The difference in the operating income under the two systems is due to the differences in the overheads borne by each of the products. The Activity Based Costs appear to be more accurate.

## Question 23

Hygiene Care Ltd. is a manufacturer of a range of goods. The cost structure of its different products is as follows:

| Particulars | Hand <br> Wash | Detergent <br> Powder | Dishwasher |
| :--- | :---: | :---: | :---: |
| Direct Materials (`/Pu) & 150 & 120 & 120 \\ \hline \begin{tabular}{l}  Direct Labour @`10/ hour (` / \\ Pu) \end{tabular} & 45 & 60 & 75 \\ \hline Production Overheads (`/Pu) | 40 | 50 | 40 |
| Total Cost (`/Pu) | 235 | 230 | 235 |
| Quantity Produced (Units) | 30,000 | 60,000 | 90,000 |

Hygiene Care Ltd. was absorbing overheads on the basis of direct labour hours. Management accountant has suggested that the company should introduce ABC system and has identified cost drivers and cost pools as follows:

\begin{tabular}{|l|l|c|}

\hline Activity Cost Pool \& Cost Driver \& | Associated Cost |
| ---: |
| (`) | <br>

\hline Goods Receiving \& Number of Dispatch Order \& $8,88,000$ <br>

\hline | Inspecting and Testing |
| :--- |
| costs | \& Number of Production Runs \& $26,82,000$ <br>

\hline Dispatching \& Number of dispatch order \& $6,30,000$ <br>

\hline Storage Cost \& | Number of Batches of |
| :--- |
| material | \& $36,00,000$ <br>

\hline
\end{tabular}

The following information is also supplied:

| Details | Hand Wash | Detergent <br> Powder | Dishwasher |
| :--- | :---: | :---: | :---: |
| Batches of material | 720 | 780 | 900 |
| Number of dispatch order | 360 | 540 | 600 |
| No. of Production Runs | 1,500 | 2,100 | 2,400 |
| Number of Dispatch Orders | 600 | 900 | 1,000 |

## Required:

CALCULATE activity-based production cost of all the three products. (RTP May 23)
Answer 23

1. The Total Production Overhead are $78,00,000$

| Items | Labour Hour | {Overheads allocation on the basis of <br> direct Labour Hour (`) \end{tabular}} \\ \hline Labour Hour Ratio & \((4.5: 6: 7.5)\) & & \\ \hline Hand Wash & \(1,35,000\) & & \(9,00,000\) \\ \hline Detergent Powder & \(3,60,000\) & & \(24,00,000\) \\ \hline Dishwasher & \(6,75,000\) & \(45,00,000\) \\ \hline Total & \(11,70,000\) & \(78,00,000\) \\ \hline \end{tabular} 2. On the basis of ABC analysis this amount will be apportioned as follows: Statement Showing "Activity Based Production Cost" \begin{tabular}{\|l|l|l|r|r|r|r|} \hline \begin{tabular}{l}  Activity Cost \\ Pool \end{tabular} & Cost Driver & Ratio & \begin{tabular}{r}  Total \\ Amount \\ (`) | Hand <br> Wash (`) \end{tabular} & \begin{tabular}{r}  Detergent \\ Powder \\ (`) | Dishwasher <br> () |  |  |
| :--- | ---: | ---: | ---: | :---: | :---: | :---: |
| Goods Receiving | Dispatch order | $06: 09: 10$ | $8,88,000$ | $2,13,120$ | $3,19,680$ | $3,55,200$ |
| Inspecting and <br> Testing costs | Production Runs | $05: 07: 08$ | $26,82,000$ | $6,70,500$ | $9,38,700$ | $10,72,800$ |
| Dispatching | Dispatch Order | $06: 09: 10$ | $6,30,000$ | $1,51,200$ | $2,26,800$ | $2,52,000$ |
| Storage Cost | Batches of <br> material | $12: 13: 15$ | $36,00,000$ | $10,80,000$ | $11,70,000$ | $13,50,000$ |
| Total Activity Cost |  |  |  | $21,14,820$ | $26,55,180$ | $30,30,000$ |
| Quantity <br> Produces |  |  | 30,000 | 60,000 | 90,000 |  |
| Unit Cost <br> (Overheads) |  |  |  | 70.49 | 44.25 | 33.67 |
| Add: Conversion <br> Cost (Material + <br> Labour) |  |  |  |  |  |  |
| Total |  |  |  | 195 |  | 180 |

Note: This question can also be solved by using cost driver rate

## Question 24

L Limited manufactures three products $P, Q$ and $R$ which are similar in nature and are usually produced in production runs of 100 units. Product $P$ and $R$ require both machine hours and assembly hours, whereas product $Q$ requires only machine hours. The overheads incurred by the company during the first quarter are as under:

|  |  |
| :--- | ---: |
| Machine Department expenses | $18,48,000$ |
| Assembly Department expenses | $6,72,000$ |
| Setup costs | 90,000 |
| Stores receiving cost | $1,20,000$ |
| Order processing and dispatch | $1,80,000$ |
| Inspect and Quality control cost | 36,000 |

The data related to the three products during the period are as under:

|  | P | Q | R |
| :--- | :---: | :---: | :---: |
| Units produced and sold | 15,000 | 12,000 | 18,000 |
| Machine hours worked | 30,000 <br> hrs. | 48,000 <br> hrs. | 54,000 <br> hrs. |
| Assembly hours worked (direct labour <br> hours) | 15,000 <br> hrs. | - | 27,000 <br> hrs. |
| Customers' orders executed (in <br> numbers) | 1,250 | 1,000 | 1,500 |
| Number of requisitions raised on the <br> stores | 40 | 30 | 50 |

Prepare a statement showing details of overhead costs allocated to each product type using activity-based costing. (RTP Nov '23)

## Answer 24

Calculation of "Activity Rate"

| Cost Pool | Cost (`) [A] & Cost Driver [B] & Cost Driver Rate (`) $[\mathrm{C}]=[\mathrm{A}] \div[\mathrm{B}]$ |  |  |
| :---: | :---: | :---: | :---: |
| Machine Department Expenses | 18,48,000 | Machine Hours (1,32,000 hrs.) | 14.00 |
| Assembly Department Expenses | 6,72,000 | Assembly Hours (42,000 hrs.) | 16.00 |
| Setup Cost | 90,000 | No. of Production Runs (450*) | 200.00 |
| Stores Receiving Cost | 1,20,000 | No. of Requisitions Raised on the Stores (120) | 1,000.00 |
| Order Processing and Dispatch | 1,80,000 | No. of Customers Orders Executed $(3,750)$ | 48.00 |
| Inspection and Quality Control Cost | 36,000 | No. of Production Runs (450*) | 80.00 |
| Total (') | 29,46,000 |  |  |

*Number of Production Run is $450(150+120+180)$
Statement Showing "Overheads Allocation"

| Particulars of Cost | Cost <br> Driver | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |

| Machine Department Expenses | Machine Hours | $\begin{gathered} 4,20,000 \\ (30,000 \times \\ {fd2487826-d16e-47fe-b230-869520b0b899} 14) \end{gathered}$ | $\begin{gathered} 7,56,000 \\ (54,000 \times \\ {fa26746af-4757-410b-8f78-2f399c8904bb} 16) \end{aligned}$ | --- | $\begin{gathered} 4,32,000 \\ (27,000 \times \\ {fe260d2ff-ecb4-4391-9501-90d1816a4073} 200) \end{aligned}$ | $\begin{aligned} & 24,000 \\ & (120 \times \\ & {f11b109de-5159-4dbe-80c9-b5532aca62b3} 200) \end{aligned}$ | 90,000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stores Receiving Cost | No. of Requisitions Raised on the Stores | $\begin{gathered} \hline 40,000 \\ (40 \times \\ 1,000) \end{gathered}$ | $\begin{gathered} \hline 30,000 \\ (30 \times \\ 11,000) \end{gathered}$ | $\begin{gathered} \hline 50,000 \\ (50 \times \\ 1,000) \end{gathered}$ | 1,20,000 |  |  |
| Order Processing and Dispatch | No. of Customers Orders Executed | $\begin{gathered} 60,000 \\ (1,250 \times \\ {fc8a5108c-81c6-48eb-8227-c466b0162b5a} 48) \end{gathered}$ | $\begin{gathered} 72,000 \\ (1,500 \times \\ {f7511df92-9e89-44e7-9e49-8726917bbdc3} 80) \end{gathered}$ | $\begin{gathered} 9,600 \\ (120 \times \\ {fa0d53142-1c42-4e61-b1d4-5c2ff2206ea8} 80) \end{gathered}$ | 36,000 |  |  |
| Overhead (`) |  | 8,02,000 | 7,83,600 | 13,60,400 | 29,46,000 |  |  |

## Question 25

MNO Ltd. manufactures two types of equipment $A$ and $B$ and absorbs overheads on the basis of direct labour hours. The budgeted overheads and direct labour hours for the month of March 2019 are $₹ \mathbf{1 5 , 0 0 , 0 0 0}$ and $\mathbf{2 5 , 0 0 0}$ hours respectively. The information about the company's products is as follows:

|  | Equipment |  |
| :---: | :---: | :---: |
|  | A | B |
| Budgeted Production Volume | 3,200 units | 3,850 units |
| Direct Material Cost | ₹ 350 per unit | $₹ 400$ per unit |
| Direct Labour Cost |  |  |
| A: 3 hours @ ₹ 120 per hour | ₹ 360 |  |
| B: 4 hours @ ₹ 120 per hour |  | ₹ 480 |

Overheads of ₹ $15, \mathbf{0 0}, \mathbf{0 0 0}$ can be identified with the following three major activities:

| Order Processing: | $₹ 3,00,000$ |
| :--- | :--- |
| Machine Processing: | $₹ \mathbf{1 0 , 0 0 , 0 0 0}$ |
| Product Inspection: | $₹ \mathbf{2 , 0 0}, \mathbf{0 0 0}$ |

These activities are driven by the number of orders processed, machine hours worked and inspection hours respectively. The data relevant to these activities is as follows:

|  | Orders processed | Machine hours worked | Inspection hours |
| :---: | ---: | ---: | ---: |
| A | 400 | 22,500 | 5,000 |
| B | 200 | 27,500 | 15,000 |
| Total | 600 | 50,000 | 20,000 |

## Required:

(i) Prepare a statement showing the manufacturing cost per unit of each product using the absorption
costing method assuming the budgeted manufacturing volume is attained.
(ii) Determine cost driver rates and prepare a statement showing the manufacturing cost per unit of each product using activity based costing, assuming the budgeted manufacturing volume is attained.
(iii) MNO Ltd.'s selling prices are based heavily on cost. By using direct labour hours as an application base, calculate the amount of cost distortion (under costed or over costed) for each equipment. (PYP May '19, 10 Marks) (Same concept different figures Old \& New SM)

## Answer 25

| (i) | Overheads application base: Direct labour hours | Equipment | Equipment |
| ---: | :--- | ---: | ---: |
|  |  | A (₹) | $\mathrm{B}(₹)$ |
|  | Direct material cost | 350 | 400 |
|  | Direct labour cost | 360 | 480 |
|  | Overheads* | 180 | 240 |
|  |  | 890 | 1120 |

*Pre-determined rate $=\frac{\text { Budgeted overheads }}{\text { Budgeted Direct labour hours }}=\frac{\text { Rs. } 15,00,000}{25,000 \text { hours }}=$ Rs. 60
(ii) Estimation of Cost-Driver rate

| Activity | Overhead cost | Cost-driver level | Costdriverrate |
| :---: | :---: | :---: | :---: |
|  | (₹) |  | (₹) |
| Order processing | 3,00,000 | 600 Orders processed | 500 |
| Machine processing | 10,00,000 | $50,000$ <br> Machine hours | 20 |
| Inspection | 2,00,000 | $\begin{aligned} & 15,000 \\ & \text { Inspection hours } \end{aligned}$ | 10 |
|  |  | Equipment | Equipment |
|  |  | A (₹) | B (₹) |
| Direct material cost |  | 350 | 400 |
| Direct labour cost |  | 360 | 480 |
| Prime Cost(A) |  | 710 | 880 |
| Overhead Cost |  |  |  |
| Order processing 400: 200 |  | 2,00,000 | 1,00,000 |
| Machine processing 22,500: 27,500 |  | 4,50,000 | 5,50,000 |
| Inspection 5,000: 15,000 |  | 50,000 | 1,50,000 |
| Total overhead cost |  | 7,00,000 | 8,00,000 |

(Overheads cost per unit for each overhead can also be calculated)

| Per unit cost | $\mathbf{A}$ (₹) | $\mathbf{B}$ (₹) |
| :--- | ---: | ---: |
| $7,00,000 / 3,200(B)-\mathbf{A}$ | 218.75 |  |
| $8,00,000 / 3,850(B)-B$ |  | 207.79 |
| Unit manufacturing cost (A+B) | 928.75 | $1,087.79$ |

(iii) Calculation of Cost Distortion

|  | Equipment | Equipment |
| :--- | :---: | :---: |
|  | $\mathbf{A}(₹)$ | $\mathbf{B}(₹)$ |
| Unit manufacturing cost-using direct labour <br> hours as an application base | 890.00 | $1,120.00$ |
| Unit manufacturing cost-using activity based <br> costing | 928.75 | $1,087.79$ |
| Cost distortion | -38.75 | $\mathbf{3 2 . 2 1}$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical question related to 'Activity Based Costing', students were asked to calculate cost per unit based on absorption costing \& Activity based costing method, cost distortion and cost driver. Performance of the students was above average in this question. Overall performance in this question was average

## Question 26

M/s. HMB Limited is producing a product in 10 batches each of 15000 units in a year and incurring following overheads their on:

|  | Amount (₹) |
| :--- | ---: |
| Material procurement | $22,50,000$ |
| Maintenance | $17,30,000$ |
| Set-up | $6,84,500$ |
| Quality control | $5,14,800$ |

The prime costs for the year amounted to ₹ 3,01,39,000.
The company is using currently the method of absorbing overheads on the basis of prime cost. Now it wants to shift to activity-based costing. Information relevant to Activity drivers for a year are as under:

| Activity Driver | Activity Volume |
| :--- | ---: |
| No. of purchase orders | 1500 |
| Maintenance hours | 9080 |
| No. of set-ups | 2250 |
| No. of inspections | 2710 |

The company has produced a batch of 15000 units and has incurred ₹ 26,38,700 and ₹ 3,75,200 on materials and wages respectively.
The usage of activities of the said batch are as follows:

| Materials orders | 48 orders |
| :--- | ---: |
| Maintenance hours | $\mathbf{8 1 0}$ hours |
| No. of set-ups | 40 |
| No. of inspections | 5 |
| You are required to: |  |

(i) find out cost of product per unit on absorption costing basis for the said batch.
(ii) determine cost driver rate, total cost and cost per unit of output of the said batch on the basis of activity based costing. (PYP Nov '18, 10 Marks)

## Answer 26

Working Note:
Overhead Absorption Rate $=\frac{51,79,300}{3,01,39,000} \times 100=17.18 \%$
(i) Cost of Product Under Absorption Costing Item of Cost

Material
Wages
Prime Cost
Overheads: $\frac{51,79,300}{3,01,39,000} \times 30,13,900$
Total Cost

Cost per unit 235.46
(ii) Cost driver rate, total cost and cost per unit on the basis of activity-based costing method Absorption Costing

Calculation of Cost Driver rate:

| Activity | ₹. | Activity <br> Volume | Cost Driver <br> Rate |
| :--- | ---: | ---: | ---: |
| Material Procurement | $22,50,000$ | 1500 | 1500 |
| Maintenance | $17,30,000$ | 9080 | 190.53 |
| Setup | $6,84,500$ | 2250 | 304.22 |
| Quality Control | $5,14,800$ | 2710 | 189.96 |

Calculation of total Cost and cost per unit:

| Item of Cost | Amount (₹ ) |
| :--- | ---: |
| Material | $26,38,700$ |
| Wages | $3,75,200$ |
| Prime Cost | $30,13,900$ |
| Material Purchase $22,50,000 / 1,500 \times 48$ | 72,000 |
| Maintenance $17,30,000 / 9,080 \times 810$ | $1,54,328$ |
| Setup $6,84,500 / 2,250 \times 40$ | 12,169 |
| Quality Control 5,14,800 / 2,710 $\times 25$ | 4,749 |
| Total Cost | $32,57,146$ |
| Unit | 15,000 |
| Cost per unit | 217.14 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this question, Part (i) was related to the calculation of cost per unit on absorption costing basis, in which most of the examinees did not understand the concept of calculation of absorption rate. Part (ii) is related to the Activity based costing and significant number of examinees answered in correct line and obtained 4 to 6 marks.

## Question 27

Explain 'Activity Based Budgeting'. (PYP Nov '18, 5 Marks)

## Answer 27

Activity Based Budgeting (ABB)

- Activity based budgeting analyse the resource input or cost for each activity.
- It provides a framework for estimating the amount of resources required in accordance with the budgeted level of activity.
- Actual results can be compared with budgeted results to highlight both in financial and non- financial terms those activities with major discrepancies from budget for potential reduction in supply of resources.
- It is a planning and control system which seeks to support the objectives of continuous improvement.
- It means planning and controlling the expected activities of the organization to derive a cost- effective budget that meet forecast workload and agreed strategic goals.
- $A B B$ is the reversing of the $A B C$ process to produce financial plans and budgets.


## Question 28

PQR Pens Ltd. manufactures two products - 'Gel Pen' and 'Ball Pen'. It furnishes the following data for the year 2017:

| Product | Annual Output <br> (Units) | Total Machine <br> Hours | Total number of <br> Purchase orders | Total number of <br> set-ups |
| :--- | :---: | ---: | ---: | ---: |
| Gel Pen | 5,500 | 24,000 | 240 | 50 |
| Ball Pen | 24,000 | 54,000 | 448 | 56 |
| The annual overheads are as under: | $₹$ |  |  |  |
| Particulars |  |  |  |  |
| Volume related activity costs | $4,75,020$ |  |  |  |
| Set up related costs | $5,79,988$ |  |  |  |
| Purchase related costs | $5,04,992$ |  |  |  |

Calculate the overhead cost per unit of each Product - Gel Pen and Ball Pen on the basis of: (i) Traditional method of charging overheads (ii) Activity based costing method and (iii) Find out the difference in cost per unit between both the methods. (PYP May '18, 10 Marks)

## Answer 28

(i) Statement Showing Overhead Cost per unit "Traditional Method"

|  | Gel Pen (₹) | Ball Pen (₹ ) |
| :--- | :---: | :---: |
| Units Overheads (₹) | 5,500 | 24,000 |
| (Refer to W.N.) | $4,80,000$ | $10,80,000$ |
|  | $(20 \times 24,000 \mathrm{hrs})$. | $(20 \times 54,000 \mathrm{hrs})$. |
| Overhead Rate per | 87.27 | 45 |
| unit (₹) | (₹ $4,80,000 / 5,500$ units) | (₹ $10,80,000 / 24,000$ units) |

Working Notes:
Overhead Rate per Machine Hour

$$
\begin{aligned}
& =\frac{\text { Total Overhead incurred by the Company }}{\text { Total Machine Hours }} \\
& =\frac{4,75,020+5,79,888+5,04,992}{24,000 \text { hours }+54,000 \text { hours }} \\
& =\frac{15,60,000}{78,000 \text { hours }} \\
& =₹ 20 \text { per machine hour }
\end{aligned}
$$

(ii) Statement Showing "Activity Based Overhead Cost"

\begin{tabular}{|l|l|r|r|r|r|}

\hline Activity Cost Pool \& \multicolumn{1}{|c|}{ Cost Driver } \& \multicolumn{1}{c|}{ Ratio } \& \multicolumn{1}{c|}{| Total |
| :---: |
| Amount (`) |} \& \multicolumn{1}{l|}{ Gel Pen (`) } & Ball Pen (`) <br>

\hline | Volume Related |
| :--- |
| Activity Costs | \& Machine hours \& $24: 54$ \& $4,75,020$ \& $1,46,160$ \& $3,28,860$ <br>


\hline | Setup Related |
| :--- |
| Costs | \& No. of Setups \& $30: 56$ \& $5,79,988$ \& $2,02,321$ \& $3,77,667$ <br>


\hline | Purchase Related |
| :--- |
| Costs | \& | No. of Purchase |
| :--- |
| Orders | \& $240: 448$ \& $5,04,992$ \& $1,76,160$ \& $3,28,832$ <br>

\hline Total Cost \& \& $5,24,641$ \& $10,35,359$ <br>
\hline Output (units) \& \& 5,500 \& 24,000 <br>
\hline Unit Cost (Overheads) \& \& 95.39 \& 43.13 <br>
\hline
\end{tabular}

(iii)

|  | Gel Pen (`) & Ball Pen (`) |  |
| :--- | :---: | :---: |
| Overheads Cost per unit (`) (Traditional Method) & 87.27 & 45 \\ \hline Overheads Cost per unit (`) (ABC) | 95.39 | 43.13 |
| Difference per unit | -8.12 | +1.87 |

(Volume related activity cost, set up related costs and purchase related cost can also be calculated under Activity Base Costing using Cost driver rate. However, there will be no changes in the final answer.)

## Question 29

ABC Ltd. is engaged in production of three types of Fruit Juices: Apple, Orange and Mixed Fruit. The following cost data for the month of March 2020 are as under:

| Particulars | Apple | Orange | Mixed Fruit |
| :--- | ---: | ---: | ---: |
| Units produced and sold | 10,000 | 15,000 | 20,000 |
| Material per unit (₹) | 8 | 6 | 5 |
| Direct Labour per unit (₹) | 5 | 4 | 3 |
| No. of Purchase Orders | 34 | 32 | 14 |
| No. of Deliveries | 110 | 64 | 52 |
| Shelf Stocking Hours | 110 | 160 | 170 |

Overheads incurred by the company during the month are as under:

|  | (₹) |
| :--- | ---: |
| Ordering costs | 64,000 |
| Delivery costs | $1,58,200$ |
| Shelf Stocking costs | 87,560 |

## Required:

- Calculate cost driver's rate.
- Calculate total cost of each product using Activity Based Costing. (PYP 6 Marks Nov 20)


## Answer 29

(i) Calculation Cost-Driver's rate

| Activity | Overhead cost (₹) | Cost-driver level | Cost driver rate (₹) |
| :---: | :---: | :---: | :---: |
|  | (A) | (B) | $(C)=(A) /(B)$ |
| Ordering | 64,000 | $34+32+14$ <br> $=80$ no. of purchase orders | 800 |
| Delivery | 1,58,200 | $\begin{gathered} 110+64+52 \\ =226 \text { no. of deliveries } \end{gathered}$ | 700 |
| Shelf stocking | 87,560 | $\begin{gathered} 110+160+170 \\ =440 \text { shelf stocking hours } \end{gathered}$ | 199 |

(ii) Calculation of total cost of products using Activity Based Costing

| Particulars | Fruit Juices |  |  |
| :--- | ---: | ---: | ---: |
|  | Apple (₹) | Orange (₹) | Mixed Fruit (₹) |
| Material cost | 80,000 | 90,000 | $1,00,000$ |
|  | $(10,000 \times ₹ 8)$ | $(15,000 \times ₹ 6)$ | $(20,000 \times ₹ 5)$ |
| Direct labour cost | 50,000 | 60,000 | 60,000 |
|  | $(10,000 \times$ ₹ 5$)$ | $(15,000 \times ₹ 4)$ | $(20,000 \times ₹ 3)$ |


| Prime Cost (A) | $1,30,000$ | $1,50,000$ | $1,60,000$ |
| :--- | ---: | ---: | ---: |
| Ordering cost | $\mathbf{2 7 , 2 0 0}$ | $\mathbf{2 5 , 6 0 0}$ | $\mathbf{1 1 , 2 0 0}$ |
|  | $(800 \times 34)$ | $(800 \times 32)$ | $(800 \times 14)$ |
| Delivery cost | $\mathbf{7 7 , 0 0 0}$ | $\mathbf{4 4 , 8 0 0}$ | $\mathbf{3 6 , 4 0 0}$ |
|  | $(700 \times 110)$ | $(700 \times 64)$ | $(700 \times 52)$ |
| Shelf stocking cost | $\mathbf{2 1 , 8 9 0}$ | $\mathbf{3 1 , 8 4 0}$ | $\mathbf{3 3 , 8 3 0}$ |
|  | $(199 \times 110)$ | $(199 \times 160)$ | $(199 \times 170)$ |
| Overhead Cost (B) | $1,26,090$ | $1,02,240$ | 81,430 |
| Total Cost (A+B) | $\mathbf{2 , 5 6 , 0 9 0}$ | $\mathbf{2 , 5 2 , 2 4 0}$ | $\mathbf{2 , 4 1 , 4 3 0}$ |

## Question 30

Describe the various levels of activities under 'ABC' methodology. (PYP 4 Marks Nov 20, Old \& New SM)

Answer 30
Various Level of Activities under ABC Methodology

| Level of Activities | Meaning |
| :--- | :--- |
| 1. Unit level activities | These are those activities for which the consumption of <br> resources can be identified with the number of units produced. |
| 2. Batch level activities | The activities such as setting up of a machine or processing a <br> purchase order are performed each time a batch of goods is <br> produced. The cost of batch related |
|  | activities varies with number of batches made, but is common (or <br> fixed) for all units within the batch. |
| 3. Product level activities | These are the activities which are performed to support different <br> products in product line. |
| 4. Facilities level activities | These are the activities which cannot be directly attributed to <br> individual products. These activities are necessary to sustain the <br> manufacturing process and <br> are common and joint to all products manufactured. |

## Question 31

PQR Ltd. is engaged in the production of three products $P, Q$ and $R$. The company calculates Activity Cost Rates on the basis of Cost Driver capacity which is provided as below:

| Activity | Cost Driver | Cost Driver Capacity | Cost (₹) |
| :--- | :--- | :--- | ---: |
| Direct Labour <br> hours | Labour hours | $\mathbf{3 0 , 0 0 0}$ Labour hours | $\mathbf{3 , 0 0 , 0 0 0}$ |
| Production runs | No. of Production runs | $\mathbf{6 0 0}$ Production runs | $\mathbf{1 , 8 0 , 0 0 0}$ |
| Quality Inspections | No. of Inspection | $\mathbf{8 0 0 0}$ Inspections | $\mathbf{2 , 4 0 , 0 0 0}$ |

The consumption of activities during the period is as under:

| Activity / Products | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ |
| :--- | ---: | ---: | ---: |
| Direct Labour hours | 10,000 | 8,000 | 6,000 |
| Production runs | 200 | 180 | 160 |
| Quality Inspection | 3,000 | 2,500 | 1,500 |

## You are required to:

(i) Compute the costs allocated to each Product from each Activity.
(ii) Calculate the cost of unused capacity for each Activity.
(iii) A potential customer has approached the company for supply of 12,000 units of a new product. ' $S$ ' to be delivered in lots of 1500 units per quarter. This will involve an initial design cost of ₹

30,000 and per quarter production will involve the following:

| Direct Material | $₹ 18,000$ |
| :--- | ---: |
| Direct Labour hours | 1,500 hours |
| No. of Production runs | 15 |
| No. of Quality Inspection | 250 |

Prepare cost sheet segregating Direct and Indirect costs and compute the Sales value per quarter of product ' S ' using ABC system considering a markup of 20\% on cost. (PYP 10 Marks July 21)

## Answer 31

(i) Statement of cost allocation to each product from each activity

|  | Product |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | P (₹) | Q (₹) | R (₹) | Total (₹) |
| Direct Labour hours (Refer to working note) | $\begin{aligned} & 1,00,000 \\ & (10,000 \text { Labour } \\ & \text { hours } \times ₹ 10) \\ & \hline \end{aligned}$ | $\begin{array}{r} 80,000 \\ (8,000 \text { Labour } \\ \text { hours } \times ₹ 10) \\ \hline \end{array}$ | $\begin{array}{r} 60,000 \\ (6,000 \text { Labour } \\ \text { hours } \times ₹ 10) \\ \hline \end{array}$ | 2,40,000 |
| Production runs (Refer to working note) | $\begin{aligned} & 60,000 \\ & \text { (200 Production } \\ & \text { runs } \times ₹ 300 \text { ) } \\ & \hline \end{aligned}$ | $\begin{aligned} & 54,000 \\ & \text { (180 Production } \\ & \text { runs } \times ₹ 300 \text { ) } \\ & \hline \end{aligned}$ | 48,000 (160 Production runs $\times ₹ 300$ ) | 1,62,000 |
| Quality Inspections (Refer to working note) | $\begin{array}{r} 90,000 \\ (3,000 \\ \text { Inspections } \times ₹ 30) \end{array}$ | $\begin{array}{r} 75,000 \\ (2,500 \\ \text { Inspections } \times ₹ 30) \end{array}$ | $\begin{array}{r} 45,000 \\ (1,500 \\ \text { Inspections } \times ₹ 30) \end{array}$ | 2,10,000 |

## Working note:

Rate per unit of cost driver

| Direct Labour hours | (₹ $3,00,000 / 30,000 \quad$ Labour hours) | $₹ 10$ per Labour hour |
| :--- | :--- | :--- |
| Production runs | (₹ $1,80,000 / 600 \quad$ Production runs) | $₹ 300$ per Production run |
| Quality Inspection | (₹ $2,40,000 / 8,000$ Inspections) | $₹ 30$ per Inspection |

(ii) Computation of cost of unused capacity for each activity

| Particulars | (₹) |
| :--- | ---: |
| Direct Labour hours [(₹ 3,00,000 - ₹ $2,40,000$ ) or (6,000 x ₹ 10)] | 60,000 |
| Production runs [(₹ 1,80,000 - ₹ 1,62,000) or ( $60 \times ₹ 300$ )] | 18,000 |
| Quality Inspection [(₹ 2,40,000 - ₹ 2,10,000) or (1,000 x ₹ 30)] | 30,000 |
| Total cost of unused capacity | $\mathbf{1 , 0 8 , 0 0 0}$ |

(iii) Cost sheet and Computation of Sales value per quarter of product ' S ' using ABC system

| Particulars | (₹) |
| :--- | ---: |
| $\mathbf{1 5 0 0}$ units of product 'S' to be delivered per quarter |  |
| Initial design cost per quarter (₹ 30,000 / 8 quarters) | 3,750 |
| Direct Material Cost | 18,000 |
| Direct Labour Cost (1,500 Labour hours x ₹ 10) | 15,000 |
| Direct Costs (A) | $\mathbf{3 6 , 7 5 0}$ |
| Set up Cost (15 Production runs × ₹ 300) | 4,500 |
| Inspection Cost (250 Inspections × ₹ 30) | $\mathbf{7 , 5 0 0}$ |
| Indirect Costs (B) | $\mathbf{1 2 , 0 0 0}$ |
| Total Cost (A + B) | $\mathbf{4 8 , 7 5 0}$ |
| Add: Mark-up (20\% on cost) | $\mathbf{9 , 7 5 0}$ |
| Sale Value | $\mathbf{5 8 , 5 0 0}$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem testing the knowledge of examinees on the topic Activity Based Costing, requiring examinees to identify cost of allocated capacity and unused capacity on three products. It also required examinees to find out sales value of the offered new product by segregating cost into direct and indirect cost. First two sub parts i.e. allocation of cost and determination of cost of unused capacity were answered well, but examinees failed to segregate cost into direct and indirect in the third sub part. Performance of the examinees was above average.

## Question 32

A Drug Store is presently selling three types of drugs namely 'Drug A', 'Drug B' and 'Drug C'. Due to some constraints, it has decided to go for only one product line of drugs. It has provided the following data for year 2020-21 for each product line:

|  | Drugs Types |  |  |
| :--- | ---: | ---: | ---: |
|  | A | B | C |
| Revenues (in ₹) | $74,50,000$ | $1,11,75,000$ | $1,86,25,000$ |
| Cost of goods sold (in ₹) | $41,44,500$ | $68,16,750$ | $1,20,63,750$ |
| Number of purchase orders placed (in nos.) | 560 | 810 | 630 |
| Number of deliveries received | 950 | 1,000 | 850 |
| Hours of shelf-stocking time | 900 | 1,250 | 2,350 |
| Units sold (in Nos.) | $1,75,200$ | $1,50,300$ | $1,44,500$ |

Following additional information is also provided:

| Activity | Description of activity | Total Cost <br> $(₹)$ | Cost-allocation base |
| :--- | :--- | ---: | :--- |
| Drug License fee | Drug License fee | $5,00,000$ | To be distributed in <br> ratio 2:3:5 between A, B <br> and C |
| Ordering | Placing of orders for <br> purchases | $8,30,000$ | 2,000 purchase orders |
| Delivery | Physical delivery and <br> receipt of foods | $18,20,000$ | $\mathbf{2 , 8 0 0}$ deliveries |
| Shelf stocking | Stocking of goods | $32,40,000$ | 4,500 hours of shelf- <br> stocking time |
| Customer Support | Assistance provided <br> to customers | $28,20,000$ | $4,70,000$ units sold |

You are required to:
(i) Calculate the operating income and operating income as a percentage (\%) of revenue of each product line if:
(a) All the support costs (Other than cost of goods sold) are allocated in the ratio of cost of goods sold.
(b) All the support costs (Other than cost of goods sold) are allocated using activity-based costing system.
(ii) Give your opinion about choosing the product line on the basis of operating income as a percentage (\%) of revenue of each product line under both the situations as above. (PYP 10 Marks Dec '21)

## Answer 32

(i)
(a) Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines on the basis of cost of goods sold of each product)

|  | Drug A (₹) | Drug B (₹) | Drug C (₹) | Total (₹) |
| :--- | ---: | ---: | ---: | ---: |
| Revenues: (A) | $74,50,000$ | $1,11,75,000$ | $1,86,25,000$ | $3,72,50,000$ |
| Cost of Goods sold (COGS): <br> (B) | $41,44,500$ | $68,16,750$ | $1,20,63,750$ | $2,30,25,000$ |
| Support cost (40\% of <br> COGS): (C) <br> (Refer working notes) | $16,57,800$ | $27,26,700$ | $48,25,500$ | $92,10,000$ |
| Total cost: (D) = \{(B) + (C) \} | $58,02,300$ | $95,43,450$ | $1,68,89,250$ | $3,22,35,000$ |
| Operating income: E $=$ <br> $\{(A)-(D)\}$ | $16,47,700$ | $16,31,550$ | $17,35,750$ | $50,15,000$ |
| Operating income as a <br> $\%$ of revenues: (E/A) $\times 100)$ | $22.12 \%$ | $14.60 \%$ | $9.32 \%$ | $13.46 \%$ |

## Working notes:

1. Total support cost:

|  | (₹) |
| :---: | :---: |
| Drug Licence Fee | 5,00,000 |
| Ordering | 8,30,000 |
| Delivery | 18,20,000 |
| Shelf stocking | 32,40,000 |
| Customer support | 28,20,000 |
| Total support cost | 92,10,000 |

2. Percentage of support cost to cost of goods sold (COGS):

$$
\begin{aligned}
& =\frac{\text { Total support cost }}{\text { Total cost of goods sold }} \times 100 \\
& =\frac{\text { Rs. } 92,10,000}{\text { Rs. } 2,30,25,000} \times 100=40 \%
\end{aligned}
$$

3. Cost for each activity cost driver:

| Activity | Total cost <br> (₹) <br> (2) | Cost allocation base <br> (3) | Cost driver rate <br> (4) $=[(2) \div(3)]$ |
| :--- | ---: | ---: | ---: |
| Ordering | $8,30,000$ | 2,000 purchase orders | $₹ 415$ per purchase order |
| Delivery | $18,20,000$ | 2,800 deliveries | $₹ 650$ per delivery |
| Shelf-stocking | $32,40,000$ | 4,500 hours | $₹ 720$ per stocking hour |
| Customer support | $28,20,000$ | $4,70,000$ units sold | $₹ 6$ per unit sold |

(b) Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines using an activity-based costing system)

|  | Drug A (₹) | Drug B (₹) | Drug C (₹) | Total (₹) |
| :--- | ---: | ---: | ---: | ---: |
| Revenues: (A) | $74,50,000$ | $1,11,75,000$ | $1,86,25,000$ | $3,72,50,000$ |
| Cost \& Goods sold | $41,44,500$ | $68,16,750$ | $1,20,63,750$ | $2,30,25,000$ |
| Drug Licence Fee | $1,00,000$ | $1,50,000$ | $2,50,000$ | $5,00,000$ |


| Ordering cost* (560:810:630) | $2,32,400$ | $3,36,150$ | $2,61,450$ | $8,30,000$ |
| :--- | ---: | ---: | ---: | ---: |
| Delivery cost* <br> (950:1000:850) | $6,17,500$ | $6,50,000$ | $5,52,500$ | $18,20,000$ |
| Shelf stocking cost* <br> (900:1250:2350) | $6,48,000$ | $9,00,000$ | $16,92,000$ | $32,40,000$ |
| Customer Support cost* <br> (175200:150300:144500) | $10,51,200$ | $9,01,800$ | $8,67,000$ | $28,20,000$ |
| Total cost: (B) | $67,93,600$ | $97,54,700$ | $1,56,86,700$ | $3,22,35,000$ |
| Operating income C: $\{(\mathrm{A})-$ <br> (B) $\}$ | $6,56,400$ | $14,20,300$ | $29,38,300$ | $50,15,000$ |
| Operating income as a \% of <br> revenues | $8.81 \%$ | $12.71 \%$ | $15.78 \%$ | $13.46 \%$ |

* Refer to working note 3
(i) Comparison on the basis of operating income as per the percentage (\%) of revenue:
(a) When support costs are allocated to product lines on the basis of cost of goods sold of each product

|  | Drug A (₹) | Drug B (₹) | Drug C (₹) | Total (₹) |
| ---: | ---: | ---: | ---: | ---: |
| Operating income <br> as a \% of revenues | $22.12 \%$ | $14.60 \%$ | $9.32 \%$ | $13.46 \%$ |

On comparing the operating income as a \% of revenue of each product, Drug $A$ is the most profitable product line, though its revenue is least but with highest units sold.
(b) When support costs are allocated to product lines using an activity -based costing system

|  | Drug A (₹) | Drug B (₹) | Drug C (₹) | Total (₹) |
| ---: | ---: | ---: | ---: | ---: |
| Operating income <br> as a \% of revenues | $8.81 \%$ | $12.71 \%$ | $15.78 \%$ | $13.46 \%$ |

On comparing the operating income as a \% of revenue of each product, Drug C is the most profitable product line, though its unit sold is least but with highest revenue.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical Question tested the knowledge of examinees on the topic Activity Based Costing. The first part of the question required apportionment of overheads cost on the basis of cost of goods sold ratio and to calculate income as percentage of revenue for three products. In the second part, allocation of overheads based on activity based cost drivers and to calculate income as percentage of revenue for three products. Finally choose the best product in both methods on the basis of income as percentage of revenue. Most of the students answered will in the second part of the question. Performance of the examinees was good.

## Question 33

Star Limited manufacture three products using the same production methods. A conventional product costing system is being used currently. Details of the three products for a typical period are:

| Product | Labour Hrs. <br> per unit | Machine Hrs. per <br> unit | Materials per <br> Unit1 | Volume in <br> Units |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AX | 1.00 | 2.00 |  | 35 | 7,500 |
| BX | 0.90 |  | 1.50 |  | 25 |
| CX | 1.50 |  | 2.50 |  | 45 |

Direct Labour costs ₹ $\mathbf{2 0}$ per hour and production overheads are absorbed on a machine hour basis. The overhead absorption rate for the period is ₹ $\mathbf{3 0}$ per machine hour.

## 1 Material cost per unit

Management is considering using Activity Based Costing system to ascertain the cost of the products.
Further analysis shows that the total production overheads can be divided as follows:

| Particulars | $\%$ |
| :--- | :--- |
| Cost relating to set-ups | 40 |
| Cost relating to machinery | 10 |
| Cost relating to material handling | 30 |
| Costs relating to inspection | 20 |
| Total production overhead | 100 |

The following activity volumes are associated with the product line for the period as a whole. Total activities for the period:

| Product | No. of set-ups | No. of movements of Materials | No. of inspections |
| :--- | :--- | :--- | :--- |
| AX | 350 | 200 | 200 |
| BX | 450 | 280 | 400 |
| CX | 740 | 675 | 900 |
| Total | 1,540 | 1,155 | 1,500 |

## Required:

(i) Calculate the cost per unit for each product using the conventional method.
(ii) Calculate the cost per unit for each product using activity based costing method. (PYP 10 Marks May'22)
Answer 33
I. Statement showing "Cost per unit" using "conventional method"

| Particulars of Costs | AX | BX | CX |
| :--- | :---: | :---: | :---: |
|  | (₹) | (₹) | (₹) |
| Direct Materials | 35 | 25 | 45 |
| Direct Labour | 20 | 18 | 30 |
| Production Overheads | 60 | 45 | 75 |
| Cost per unit | 115 | 88 | 150 |

II. Statement Showing "Cost per unit using "Activity Based Costing"

| Products | AX | BX | CX |
| :--- | :---: | :---: | :---: |
| Production (units) | 7,500 | 12,500 | 25,000 |
|  | (₹) | (₹) | (₹) |
| Direct Materials | $2,62,500$ | $3,12,500$ | $11,25,000$ |
| Direct Labour | $1,50,000$ | $2,25,000$ | $7,50,000$ |
| Machine Related Costs | 45,000 | 56,250 | $1,87,500$ |


| Products | $\mathbf{A X}$ | $\mathbf{B X}$ | $\mathbf{C X}$ |
| :--- | :--- | :--- | :--- |
| Setup Costs | $2,62,500$ | $3,37,500$ | $5,55,000$ |
| Material handling Cost | $1,50,000$ | $2,10,000$ | $5,06,250$ |
| Inspection Costs | 77,000 | $1,54,000$ | $3,46,500$ |
| Total Costs | $9,47,000$ | $12,95,250$ | $34,70,250$ |
| Cost per unit (Total Cost $\square$ Units) | 126.267 | 103.62 | 138.81 |

## Working Notes:

Calculation of Total Machine hours

| Particulars | AX | BX | X |
| :--- | :--- | :--- | :--- |


| (A) Machine hours per unit | 2 | 1.5 | 2.5 |
| :--- | :--- | :--- | :--- |
| (B) Production (units) | 7,500 | 12,500 | 25,000 |
| (C) Total Machine hours (A×B) | 15,000 | 18,750 | 62,500 |

Total Machine hours $=96,250$
Total Production overheads $=96,250 \times 30=₹ 28,87,500$
Calculation of Cost Driver Rate

| Cost Pool | $\%$ | Overheads <br> $(₹)$ | Cost Driver <br> (Basis) | Cost Driver Cost Driver Rate (₹) <br> (Units) |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Set up | 40 | $11,55,000$ | No of set ups | 1,540 | 750 per set up |
| Machine <br> Operation | 10 | $2,88,750$ | Machine hours | 96,250 | 3 per machine <br> hour |
| Material <br> Handling | 30 | $8,66,250$ | No of material <br> movement | 1,155 | 750 per material <br> movement |
| Inspection | 20 | $5,77,500$ | No of inspection | 1,500 | 385 <br> inspection |

## Question 34

XYZ Ltd. is engaged in manufacturing two products- Express Coffee and Instant Coffee. It furnishes the following data for a year:

| Product | Actual Output <br> (units) | Total <br> Machine <br> hours | Total Number <br> of Purchase <br> orders | Total Number <br> of |
| :--- | :--- | :--- | :--- | :---: |
| set ups |  |  |  |  |

The annual overheads are as under:

| Particulars |  |
| :--- | :--- |
| Machine Processing | $7,00,000$ |
| costs Set up related | $7,68,000$ |
| costs | $6,80,000$ |
| Purchase related costs |  |

## You are required to:

(i) Compute the costs allocated to each product - Express Coffee and Instant Coffee from each activity on the basis of Activity- Based Costing (ABC) method.
(ii) Find out the overhead cost per unit of each product - Express coffee and Instant coffee based on (i) above. (PYP 4 Marks Nov 22)

## Answer 34

(i) Estimation of Cost-Driver rate

| Activity | Overhead cost | Cost-driver level | Cost driver rate |
| :--- | ---: | :---: | ---: |
|  | $(₹)$ |  | (₹) |
| Machine processing | $7,00,000$ | $1,40,000$ <br> Machine hours | 5 |
| Set up Costs | $7,68,000$ | 64 <br> Number of set <br> up | 12,000 |
| Purchase related Costs | $6,80,000$ | 544 <br> Number of <br> purchase <br> order | 1250 |

VIVITSU
5.54

Cost Allocation under Activity based Costing

|  | Express Coffee | Instant Coffee |
| :--- | :---: | :---: |
|  | $(₹)$ | $(₹)$ |
| Overhead Cost |  | $5 \times 1,20,000=$ |
| Machine processing (Cost <br> Driver rate - ₹ 5) (or <br> $20,000: 1,20,000)$ | $5 \times 20,000=1,00,000$ | $6,00,000$ |
| Set up Costs (Cost Driver <br> rate <br> $-₹ 12,000)$ ) (or 20:44) | $12,000 \times 20=2,40,000$ | $12,000 \times 44=$ |
| Purchase related Costs <br> (Cost Driver rate - ₹ 1250) <br> (or 160:384) | $1,250 \times 160=2,00,000$ | $1,250 \times 384=$ |
| Total overhead cost |  | $4,80,000$ |

(ii) Overhead Cost per unit

| Per unit Overhead cost | (₹) | (₹) |
| :--- | ---: | ---: |
| $5,40,000 / 5,000$ | 108 |  |
| $16,08,000 / 60,000$ |  | 26.80 |

## Question 35

PP Limited is in the process of implementation of Activity Based Costing System in the organisation. For this purpose, it has identified the following Business Functions in its organisation:
(i) Research and Development
(ii) Design of Products, Services and Procedures
(iii) Customer Service
(iv) Marketing
(v) Distribution

You are required to specify two cost drivers for each Business Function Identified above.
(PYP 5 Marks Nov 22)

## Answer 35

| Business functions | Cost Driver |  |
| :--- | :--- | :--- |
| Research and Development | $\bullet$ | Number of research projects |
|  | $\bullet$ | Personnel hours on a project |
| Design of products, services and <br> procedures | $\bullet$ | Technical complexities of the project |

(Any two cost drivers of each business function)

## Chapter 6

## Cost Sheet

## Question 1

From the following figures, Calculate cost of production and profit for the month of March 20X9.

| Stockon1st March, 20X9 | Amount (Rs.) | Purchase of raw materials | Amount(Rs.) |
| :--- | ---: | :--- | ---: |
| $\mathbf{2 8 , 5 7 , 0 0 0}$ |  |  |  |
| - Raw materials | $6,06,000$ | Sale of finished goods | $1,34,00,000$ |
| - Finished goods | $\mathbf{3 , 5 9 , 0 0 0}$ | Direct wages | $37,50,000$ |
| Stock on 31st March, 20X9 |  | Factory expenses | $21,25,000$ |
| - Raw materials | $\mathbf{7 , 5 0 , 0 0 0}$ | Office and administration expenses | $\mathbf{1 0 , 3 4 , 0 0 0}$ |
| - Finished goods | $\mathbf{3 , 0 9 , 0 0 0}$ | Selling and distribution expenses | $\mathbf{7 , 5 0 , 0 0 0}$ |
| Work-in-process: |  | Sale of scrap | $\mathbf{2 6 , 0 0 0}$ |
| - On 1st March, 20X9 | $12,56,000$ |  |  |
| - On 31st March, 20X9 | $\mathbf{1 4 , 2 2 , 0 0 0}$ |  |  |

(MTP March '19,5 Marks, RTP May’18)
Answer 1


## Question 2

From the following data of A Ltd., Calculate
(i) Material Consumed; (ii) Prime Cost and (iii)Cost of production.
(i) Repair \& maintenance paid for plant \& machinery

Amount (Rs.)
9,80,500

| (ii) | Insurance premium paid for inventories | 26,000 |
| :--- | :--- | ---: |
| (iii) | Insurance premium paid for plant \& machinery | 96,000 |
| (iv) | Raw materials purchased | $64,00,000$ |
| (v) | Opening stock of raw materials | $2,88,000$ |
| (vi) | Closing stock of raw materials | $4,46,000$ |
| (vii) | Wages paid | $23,20,000$ |
| (viii) | Value of opening Work-in-process | $4,06,000$ |
| (ix) | Value of closing Work-in-process | $6,02,100$ |
| (x) | Quality control cost for the products in manufacturing process | 86,000 |
| (xi) | Research \& development cost for improvement in production process | 92,600 |
| (xii) | Administrative cost for: | $9,00,000$ |
| - Factory \& production | $11,60,000$ |  |
| - Others | 9,200 |  |
| (xiii) Amount realized by selling scrap generated during the manufacturing process | 10,200 |  |
| (xiv) Packing cost necessary to preserve the goods for further processing | $8,90,000$ |  |
| (xv)Salary paid to Director (Technical) |  |  |
| (MTP Oct. '19, 10 Marks, RTP May 20, Nov 18) |  |  |

Answer 2

| Calculation of Cost of Production of A Ltd. for the period..... |  |
| :--- | ---: |
| Particulars | Amount (Rs.) |
| Raw materials purchased | $64,00,000$ |
| Add: Opening stock | $2,88,000$ |
| Less: Closing stock | $(4,46,000)$ |
| Material consumed | $62,42,000$ |
| Wages paid | $23,20,000$ |
| Prime cost | $85,62,000$ |
| Repair and maintenance cost of plant \& machinery | $9,80,500$ |
| Insurance premium paid for inventories | 26,000 |
| Insurance premium paid for plant \& machinery | 96,000 |
| Quality control cost | 86,000 |
| Research \& development cost | 92,600 |
| Administrative overheads related with factory and production | $9,00,000$ |
|  | $1,07,43,100$ |
| Add: Opening value of W-I-P | $4,06,000$ |
| Less: Closing value of W-I-P | $(6,02,100)$ |
|  | $1,05,47,000$ |
| Less: Amount realised by selling scrap | $(9,200)$ |
| Add: Primary packing cost | 10,200 |
| Cost of Production | $1,05,48,000$ |
| Notes: | Other administrative overhead does not form part of cost of production. |
| (i) |  |
| (ii) Salary paid to Director (Technical) is an administrative cost. |  |
|  |  |

## Question 3

State the advantages of Cost-Sheets. (MTP Oct.' 18,5 Marks)

## Answer 3

Advantages of Cost sheet or Cost Statements

The main advantages of a Cost Sheet are as follows:
(i) It provides the total cost figure as well as cost per unit of production.
(ii) It helps in cost comparison.
(iii) It facilitates the preparation of cost estimates required for submitting tenders.
(iv) It provides sufficient help in arriving at the figure of selling price.
(v) It facilitates cost control by disclosing operational efficiency.

## Question 4

Following figures has been extracted from the books of M/s A\&R Brothers:

|  | Amount (Rs.) |
| :--- | ---: |
| Stock on 1st March, 2020 |  |
| - Raw materials | $\mathbf{6 , 0 6 , 0 0 0}$ |
| - Finished goods | $\mathbf{3 , 5 9 , 0 0 0}$ |
| Stock on 31st March, 2020 |  |
| - Raw materials | $\mathbf{7 , 5 0 , 0 0 0}$ |
| - Finished goods | $\mathbf{3 , 0 9 , 0 0 0}$ |
| Work-in-process: |  |
| - On 1st March, 2020 | $\mathbf{1 2 , 5 6 , 0 0 0}$ |
| - On 31st March, 2020 | $\mathbf{1 4 , 2 2 , 0 0 0}$ |
| Purchase of raw materials | $\mathbf{2 8 , 5 7 , 0 0 0}$ |
| Sale of finished goods | $\mathbf{1 , 3 4 , 0 0 , 0 0 0}$ |
| Direct wages | $\mathbf{3 7 , 5 0 , 0 0 0}$ |
| Factory expenses | $\mathbf{2 1 , 2 5 , 0 0 0}$ |
| Office and administration expenses | $\mathbf{1 0 , 3 4 , 0 0 0}$ |
| Selling and distribution expenses | $\mathbf{7 , 5 0 , 0 0 0}$ |
| Sale of scrap | $\mathbf{2 6 , 0 0 0}$ |

You are required to COMPUTE:
(i) Value of material consumed
(ii) Prime cost
(iii) Cost of production
(iv) Cost of goods sold
(v) Cost of sales
(vi) Profit/loss (MTP 10 Marks May 20 \& Oct '23)

Answer 4
Cost Sheet of M/s A\&R Brothers for the month ended March 2020:

\left.|  | Particulars | Amount (Rs.) | Amount (Rs.) |
| :--- | :--- | ---: | ---: |
| (i) | Materials consumed: |  |  |
|  | - Opening stock |  |  |$\right)$


|  | Factory cost |  | $84,22,000$ |
| :--- | :--- | :---: | ---: |
|  | Less: Sale of scrap |  | $(26,000)$ |
| (iii) | Cost of Production |  | $83,96,000$ |
|  | Add: Opening stock of finished goods |  | $3,59,000$ |
|  | Less: Closing stock of finished goods |  | $(3,09,000)$ |
| (iv) | Cost of Goods Sold |  | $84,46,000$ |
|  | Office and administration expenses |  | $10,34,000$ |
|  | Selling and distribution expenses |  | $7,50,000$ |
| (v) | Cost of Sales |  | $1,02,30,000$ |
| (vi) | Profit (balancing figure) |  | $31,70,000$ |
|  | Sales |  | $1,34,00,000$ |

## Question 5

Aloe Ltd. has the capacity to produce $\mathbf{2 , 0 0 , 0 0 0}$ units of a product every month. Its works cost at varying levels of production is as under:
(10 Marks,Oct.'2020)

| Level | Works cost per unit (Rs.) |
| :---: | :---: |
| $10 \%$ | 400 |
| $20 \%$ | 390 |
| $30 \%$ | 380 |
| $40 \%$ | 370 |
| $50 \%$ | 360 |
| $60 \%$ | 350 |
| $70 \%$ | 340 |
| $80 \%$ | 330 |
| $90 \%$ | 320 |
| $100 \%$ | 310 |

Its fixed administration expenses amount to Rs $3,60,000$ and fixed marketing expenses amount to Rs 4,80,000 per month respectively. The variable distribution cost amounts to ₹ 30 per unit.

It can sell $\mathbf{1 0 0 \%}$ of its output at ₹ $\mathbf{5 0 0}$ per unit provided it incurs the following further expenditure:
(i) It gives gift items costing ₹ $\mathbf{3 0}$ per unit of sale;
(ii) It has lucky draws every month giving the first prize of Rs. 60,000; $\mathbf{2}^{\mathrm{ND}}$ prize of Rs. 50,000, $\mathbf{3}^{\text {rd. }}$ prize of Rs. 40,000 and ten consolation prizes of Rs. 5,000 each to customers buying the product.
(iii) It spends Rs.2,00,000 on refreshments served every month to its customers;
(iv) It sponsors a television programmer every week at a cost of Rs.20,00,000 per month.

It can market 50\% of its output at ₹ 560 by incurring expenses referred from (ii) to (iv) above and 30\% of its output at ₹ 600 per unit without incurring any of the expenses referred from (i) to (iv) above. PREPARE a cost sheet for the month showing total cost and profit at $\mathbf{3 0 \%}, \mathbf{5 0 \%}$ and $\mathbf{1 0 0 \%}$ capacity level \& COMPARE its profit. (MTP 10 Marks,Oct.'2020) (Same concept different figures MTP 10 Marks Apr'22, Old \& New SM)

## Answer 5

Cost Sheet (For the month)

| Level of Capacity | 30\% |  | 50\% |  | 100\% |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 60,000 units |  | 1,00,000 units |  | 2,00,000 units |  |
|  | Per unit <br> (₹) | Total (₹) | Per unit <br> (₹) | Total (₹) | Per unit (₹) | Total (₹) |
| Works Cost | 380.00 | 2,28,00,000 | 360.00 | 3,60,00,000 | 310.00 | 6,20,00,000 |


| Add: Fixed administration expenses | 6.00 | 3,60,000 | 3.60 | 3,60,000 | 1.80 | 3,60,000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Add: Fixed marketing expenses | 8.00 | 4,80,000 | 4.80 | 4,80,000 | 2.40 | 4,80,000 |
| Add: Variable distribution cost | 30.00 | 18,00,000 | 30.00 | 30,00,000 | 30.00 | 60,00,000 |
| Add: Special Costs: |  |  |  |  |  |  |
| - Gift items costs | - | - | - |  | 30.00 | 60,00,000 |
| - Customers' prizes* | - | - | 2.00 | 2,00,000 | 1.00 | 2,00,000 |
| - Refreshments | - | - | 2.00 | 2,00,000 | 1.00 | 2,00,000 |
| - Television programme sponsorship cost | - | - | 20.00 | 20,00,000 | 10.00 | 20,00,000 |
| Cost of sales | 424.00 | 2,54,40,000 | 422.40 | 4,22,40,000 | 386.20 | 7,72,40,000 |
| Profit (Bal. fig.) | 176.00 | 1,05,60,000 | 137.60 | 1,37,60,000 | 113.80 | 2,27,60,000 |
| Sales revenue | 600.00 | 3,60,00,000 | 560.00 | 5,60,00,000 | 500.00 | 10,00,00,000 |

* Customers' prize cost:

| Particulars | Amount (₹) |
| :--- | ---: |
| $1^{\text {st }}$ Prize | 60,000 |
| $2^{\text {nd }}$ Prize | 50,000 |
| $3^{\text {rd }}$ Prize | 40,000 |
| Consolation Prizes (10 $\times$ ₹ 5,000) | 50,000 |
| Total | $\mathbf{2 , 0 0 , 0 0 0}$ |

## Comparison of Profit

| 30\% capacity | 50\% capacity | 100\% capacity |
| :--- | :---: | :---: |
| Rs. $176 /$ Rs. 600 <br> $\times 100$ | Rs. $137.6 /$ Rs. 560 <br> $\times 100$ | Rs. $113.8 /$ Rs. 500 <br> $\times 100$ |
| $\mathbf{2 9 . 3 3 \%}$ | $\mathbf{2 4 . 5 7 \%}$ | $\mathbf{2 2 . 7 6 \%}$ |

Profit (in value as well as in percentage) is higher at $30 \%$ level of capacity than that at $50 \%$ and $100 \%$ level of capacity.

## Question 6

A Ltd. has the following expenditures for the year ended 31 ${ }^{\text {st }}$ March 2021:

| SI. <br> No. |  | Amount <br> (Rs.) | Amount (Rs.) |
| :--- | :--- | ---: | ---: |
| (i) | Raw materials purchased |  | $10,00,00,000$ |
| (ii) | Freight inward |  | $\mathbf{1 1 , 2 0 , 6 0 0}$ |
| (iii) | Wages paid to factory workers |  | $29,20,000$ |
| (iv) | Royalty paid for production |  | $1,72,600$ |
| (v) | Amount paid for power \& fuel |  | $4,62,000$ |
| (vi) | Job charges paid to job workers | $8,12,000$ |  |
| (vii) | Stores and spares consumed |  | $1,12,000$ |
| (viii) | Depreciation on office building |  | 56,000 |


| (ix) | Repairs \& Maintenance paid for: <br> - Plant \& Machinery | 48,000 |  |
| :---: | :---: | :---: | :---: |
|  | - Sales office building | 18,000 | 66,000 |
| (x) | Insurance premium paid for: |  |  |
|  | - Plant \& Machinery | 31,200 |  |
|  | - Factory building | 18,100 | 49,300 |
| (xi) | Expenses paid for quality control check activities |  | 19,600 |
| (xii) | Research \& development cost paid for improvement in production process |  | 18,200 |
| (xiii) | Expenses paid for pollution control and engineering \& maintenance |  | 26,600 |
| (xiv) | Salary paid to Sales \& Marketing mangers: |  | 10,12,000 |
| (xv) | Salary paid to General Manager |  | 12,56,000 |
| (xvi) | Packing cost paid for: |  |  |
|  | - Primary packing necessary to maintain quality | 96,000 |  |
|  | - For re-distribution of finished goods | 1,12,000 | 2,08,000 |
| (xvii) | Fee paid to independent directors |  | 2,20,000 |
| (xviii) | Performance bonus paid to sales staffs |  | 1,80,000 |
| (xix) | Value of stock as on $1^{\text {st }}$ April, 2020: |  |  |
|  | - Raw materials | 18,00,000 |  |
|  | - Work-in-process | 9,20,000 |  |
|  | - Finished goods | 11,00,000 | 38,20,000 |
| (xx) | Value of stock as on 31 ${ }^{\text {st }}$ March, 2021: |  |  |
|  | - Raw materials | 9,60,000 |  |
|  | - Work-in-process | 8,70,000 |  |
|  | - Finished goods | 18,20,000 | 36,50,000 |

Amount realized by selling of scrap and waste generated during manufacturing process Rs. 86,000/-
From the above data you are requested to PREPARE Statement of cost for A Ltd. for the year ended 31 ${ }^{\text {st }}$ March, 2021, showing (i) Prime cost, (ii) Factory cost, (iii) Cost of Production, (iv) Cost of goods sold and (v) Cost of sales. (MTP 10 Marks, March '21 \& Sep '23, RTP May'21)(Same concept different figures MTP 10 Marks Nov’21 \& April '23)

## Answer 6

Statement of Cost of A Ltd. for the year ended 31 ${ }^{\text {st }}$ March, 2021:

| SI. No. | Particulars | Amount (Rs.) | Amount (Rs.) |
| :---: | :--- | ---: | ---: |
| (i) | Material Consumed: |  |  |
|  | $-\quad$ Raw materials purchased | $10,00,00,000$ |  |
|  | $-\quad$ Freight inward | $11,20,600$ |  |
|  | Add: Opening stock of raw materials | $18,00,000$ |  |
|  | Less: Closing stock of raw materials | $(9,60,000)$ | $10,19,60,600$ |
| (ii) | Direct employee (labour) cost: |  |  |
|  | $-\quad$ Wages paid to factory workers |  | $29,20,000$ |
| (iii) | Direct expenses: |  |  |
|  | $-\quad$ Royalty paid for production | $1,72,600$ |  |
|  | $-\quad$ Amount paid for power \& fuel | $4,62,000$ |  |


|  | - Job charges paid to job workers | 8,12,000 | 14,46,600 |
| :---: | :---: | :---: | :---: |
|  | Prime Cost |  | 10,63,27,200 |
| (iv) | Works/ Factory overheads: |  |  |
|  | - Stores and spares consumed | 1,12,000 |  |
|  | - Repairs \& Maintenance paid for plant \& machinery | 48,000 |  |
|  | - Insurance premium paid for plant \& machinery | 31,200 |  |
|  | - Insurance premium paid for factory building | 18,100 |  |
|  | - Expenses paid for pollution control and engineering \& maintenance | 26,600 | 2,35,900 |
|  | Gross factory cost |  | 10,65,63,100 |
|  | Add: Opening value of W-I-P |  | 9,20,000 |
|  | Less: Closing value of W-I-P |  | $(8,70,000)$ |
|  | Factory Cost |  | 10,66,13,100 |
| (v) | Quality control cost: |  |  |
|  | - Expenses paid for quality control check activities |  | 19,600 |
| (vi) | Research \& development cost paid for improvement in production process |  | 18,200 |
| (vii) | Less: Realisable value on sale of scrap and waste |  | $(86,000)$ |
| (viii) | Add: Primary packing cost |  | 96,000 |
|  | Cost of Production |  | 10,66,60,900 |
|  | Add: Opening stock of finished goods |  | 11,00,000 |
|  | Less: Closing stock of finished goods |  | $(18,20,000)$ |
|  | Cost of Goods Sold |  | 10,59,40,900 |
| (ix) | Administrative overheads: |  |  |
|  | - Depreciation on office building | 56,000 |  |
|  | - Salary paid to General Manager | 12,56,000 |  |
|  | - Fee paid to independent directors | 2,20,000 | 15,32,000 |
| (x) | Selling overheads: |  |  |
|  | - Repairs \& Maintenance paid for sales office building | 18,000 |  |
|  | - Salary paid to Manager- Sales \& Marketing | 10,12,000 |  |
|  | - Performance bonus paid to sales staffs | 1,80,000 | 12,10,000 |
| (xi) | Distribution overheads: |  |  |
|  | - Packing cost paid for re-distribution of finished goods |  | 1,12,000 |
|  | Cost of Sales |  | 10,87,94,900 |

## Question 7

Xim Ltd. manufactures two types of boxes 'Super' and 'Normal'. The cost data for the year ended 31 ${ }^{\text {st }}$ March, 2021 is as follows:

|  | (₹) |
| :--- | ---: |
| Direct Materials | $\mathbf{1 2 , 0 0 , 0 0 0}$ |
| Direct Wages | $\mathbf{6 , 7 2 , 0 0 0}$ |
| Production Overhead | $\mathbf{2 , 8 8 , 0 0 0}$ |
| Total | $\mathbf{2 1 , 6 0 , 0 0 0}$ |

There was no work-in-progress at the beginning or at the end of year. It is further ascertained that:

1. Direct materials cost per unit in 'Super' was twice as much of direct material in 'Normal'.
2. $2 \%$ cash discount was received for payment made within 30 days to the creditors of Direct materials.
3. Direct wages per unit for 'Normal' were $60 \%$ of those of 'Super'.
4. Production overhead per unit was at same rate for both the types of boxes.
5. Administration overhead was $200 \%$ of direct labour for each type.
6. Selling cost was ₹ 1 per 'Super' type.
7. Production and sales during the year were as follows:

| Production |  |  | Sales |  |
| :--- | ---: | :--- | :---: | :---: |
| Type | No. of units | Type | No. of units |  |
| Super | 60,000 | Super | 54,000 |  |
| Normal | $1,80,000$ |  |  |  |

8. Selling price was ₹ $\mathbf{3 0}$ per unit for 'Super'.
9. Company was also involved in a copyright infringement case related to the manufacturing process of 'Super' production. As per the verdict, it had to pay penalty of ₹ 50,000.

PREPARE Cost Sheet of Xim Ltd. for 'Super’ showing:
(i) Cost per unit and Total Cost
(ii) Profit per unit and Total Profit (MTP 10 Marks Oct 21, PYP 10 Marks Nov 20)

Answer 7

| Particulars | Per unit <br> (₹) | Total (₹) |
| :--- | ---: | ---: |
| Direct materials (Working note- (i)) | 8.00 | $4,80,000$ |
| Direct wages (Working note- (ii)) | 4.00 | $2,40,000$ |
| Prime cost | 12.00 | $7,20,000$ |
| Production overhead (Working note- (iii)) | 1.20 | 72,000 |
| Factory Cost | 13.20 | $7,92,000$ |
| Administration Overhead (200\% of direct wages) | 8.00 | $4,80,000$ |
| Cost of production | 21.20 | $12,72,000$ |
| Less: Closing stock (60,000 units - 54,000 units) | - | $1,27,200$ |
| Cost of goods sold i.e. 54,000 units | 21.20 | $11,44,800$ |
| Selling cost | 1.00 | 54,000 |
| Cost of sales/ Total cost | 22.20 | $11,98,800$ |
| Profit | 7.80 | $4,21,200$ |
| Sales value (₹ $30 \times 54,000$ units) | 30.00 | $16,20,000$ |

## Working Notes:

(i) Direct material cost per unit of 'Normal' = M Direct material cost per unit of 'Super' $=2 \mathrm{M}$
Total Direct Material cost $=2 \mathrm{M} \times 60,000$ units $+\mathrm{M} \times 1,80,000$ units

Or, Rs. 12,00,000 $=1,20,000 \mathrm{M}+1,80,000 \mathrm{M}$

$$
\text { Or, } \quad \mathrm{M} \quad=\frac{R s \cdot 12,00,000}{3,00,000}=\text { Rs. } 4
$$

Therefore, Direct material Cost per unit of 'Super' $=2 \times ₹ 4=₹ 8$

| Direct wages per unit for 'Super' | = W Direct |
| :---: | :---: |
| wages per unit for 'Normal' | $=0.6 \mathrm{~W}$ |
| So, (W x 60,000) + (0.6W x 1, 80, 000 ) | = ₹ 6,72,000 |
| $\mathrm{W}=$ ₹ 4 per unit |  |

(iii) Production overhead per unit $=₹ 2,88,000(60,000+1,80,000)=$ Rs. 1.20

Production overhead for 'Super' = ₹ $1.20 \times 60,000$ units $=₹ 72,000$

## Notes:

1. Administration overhead is specific to the product as it is directly related to direct labour as mentioned in the Question and hence to be considered in cost of production only.
2. Cash discount is treated as interest and finance charges; hence, it is ignored.
3. Penalty paid against the copyright infringement case is an abnormal cost; hence, not included

## Question 8

The following data relates to manufacturing of a standard product during the month of February, 2022:

| Particulars | Amount (in ₹) |
| :--- | :--- |
| Stock of Raw material as on 01-02-2022 | $1,20,000$ |
| Work in Progress as on 01-02-2022 | 75,000 |
| Purchase of Raw material | $3,00,000$ |
| Carriage Inwards | 30,000 |
| Direct Wages | $1,80,000$ |
| Cost of special drawing | 45,000 |
| Hire charges paid for Plant (Direct) | 36,000 |
| Return of Raw Material | 60,000 |
| Carriage on return | 9,000 |
| Expenses for participation in Industrial exhibition | 12,000 |
| Maintenance of office building | 3,000 |
| Salary to office staff | 37,500 |
| Legal charges | 3,750 |
| Depreciation on Delivery van | 9,000 |
| Warehousing charges | 2,250 |
| Stock of Raw material as on $28-02-2022$ | 45,000 |
| Stock of Work in Progress as on 28-02-2022 | 36,000 |

- Store overheads on materials are $10 \%$ of material consumed.
- Factory overheads are $\mathbf{2 0 \%}$ of the Prime cost.
- $10 \%$ of the output was rejected and a sum of $₹ 7,500$ was realized on sale of scrap.
- $10 \%$ of the finished product was found to be defective and the defective products were rectified at an additional expenditure which is equivalent to $20 \%$ of proportionate direct wages.
- The total output was 8,000 units during the month.

You are required to PREPARE a Cost Sheet for the above period showing the:
(i) Cost of Raw Material consumed.
(ii) Prime Cost

## (iii) Work Cost

## (iv) Cost of Production

(v) Cost of Sales (MTP 10 Marks March '22, PYP 10 Marks July '21)

## Answer 8

Statement of Cost for the month of February, 2022

| Particulars | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: |
| (i) Cost of Material Consumed: |  |  |
| Raw materials purchased ( $₹ 3,00,000$ - ₹ $60,000)$ | 2,40,000 |  |
| Carriage inwards | 30,000 |  |
| Add: Opening stock of raw materials | 1,20,000 |  |
| Less: Closing stock of raw materials | $(45,000)$ | 3,45,000 |
| Direct Wages |  | 1,80,000 |
| Direct expenses: |  |  |
| Cost of special drawing | 45,000 |  |
| Hire charges paid for Plant (Direct) | 36,000 | 81,000 |
| (ii) Prime Cost |  | 6,06,000 |
| Carriage on return | 9,000 |  |
| Store overheads (10\% of material consumed) | 34,500 |  |
| Factory overheads (20\% of Prime cost) | 1,21,200 |  |
| Additional expenditure for rectification of defective products (refer working note) | 3,240 | 1,67,940 |
| Gross factory cost |  | 7,73,940 |
| Add: Opening value of W-I-P |  | 75,000 |
| Less: Closing value of W-I-P |  | $(36,000)$ |
| (iii) Works/ Factory Cost |  | 8,12,940 |
| Less: Realisable value on sale of scrap |  | $(7,500)$ |
| (iv) Cost of Production |  | 8,05,440 |
| Add: Opening stock of finished goods |  | - |
| Less: Closing stock of finished goods |  | - |
| Cost of Goods Sold |  | 8,05,440 |
| Administrative overheads: |  |  |
| Maintenance of office building | 3,000 |  |
| Salary paid to Office staff | 37,500 |  |
| Legal Charges | 3,750 | 44,250 |
| Selling overheads: |  |  |
| Expenses for participation in Industrial exhibition | 12,000 | 12,000 |
| Distribution overheads: |  |  |
| Depreciation on delivery van | 9,000 |  |
| Warehousing charges | 2,250 | 11,250 |
| (v) Cost of Sales |  | 8,72,940 |

## Working Notes:

1. Number of Rectified units

| Total Output | 8,000 units |
| :--- | ---: |
| Less: Rejected 10\% | 800 units |
| Finished product | 7,200 units |

Rectified units (10\% of finished product) 720 units
2. Proportionate additional expenditure on 720 units
$=20 \%$ of proportionate direct wages
$=0.20 \times(₹ 1,80,000 / 8,000) \times 720$
= ₹ 3 ,240

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem required preparation of cost sheet. Various items were given for adjustment. Most of the examinees were confused about the treatment of some items like cost of special drawing, hire charges paid for plant, carriage on return and general overheads. Overall performance of the examinees was poor.

## Question 9

The following data relates to the manufacturing project received for the budgeted output of 19,600 units. You are required to CALCULATE the selling price per unit covering a profit of $\mathbf{2 5 \%}$ on the selling price.

| Direct materials: | 40 sq. m. per unit @ ₹ 10.60 per sq. m. |
| :--- | :--- |
| Direct wages: | Bonding department 48 hours per unit @ ₹ 25 per hour Finishing | department 30 hours per unit @ ₹ 19 per hour

Budgeted costs and hours per annum- Variable overhead:

|  | (₹) | Total hours |
| :--- | :--- | :--- |
| Bonding department | $15,00,000$ | $10,00,000$ |
| Finishing department | $6,00,000$ | $6,00,000$ |

Fixed overhead-

|  | (₹) |
| :--- | :--- |
| Production | $15,68,000$ |
| Selling and distribution | $7,84,000$ |
| Administration (General) | $3,92,000$ |

(10 Marks, March '22)

## Answer 9

Decision making Cost Sheet (per unit)

| Particulars | (Amount in ₹) | (Amount in ₹) |
| :--- | ---: | ---: |
| Direct materials 40 m 2 at ₹ 10.60 per m2 |  | 424 |
| Direct wages: |  |  |
| Bonding department- 48 hours at ₹ 25 per hour | 570 | 1,200 |
| Finishing department- 30 hours at ₹ 19 per hour |  | $\mathbf{2 , 1 9 4}$ |
| Prime Cost |  |  |
| Variable overhead:* | 72 |  |
| Bonding department- 48 hours at ₹ 1.50 per hour | 30 | 102 |
| Finishing department- 30 hours at ₹ 1.00 per hour |  | $\mathbf{2 , 2 9 6}$ |
| Variable production cost |  | 80 |
| Fixed production overhead\# |  | $\mathbf{2 , 3 7 6}$ |
| Total production cost |  |  |
| Selling and distribution cost\$ |  |  |


| Administration cost\$ | 20 | 60 |
| :--- | ---: | ---: |
| Total Cost |  | 2,436 |

Selling price per unit $=$ Rs. $2,436 \times \frac{100}{75}=$ Rs. 3,248

> Working Notes:
> * Variable overhead rates -
> Bonding : $\frac{15,00,000}{10,00,000 \text { hours }}=$ Rs. 1.50
> Finishing : $\frac{6,00,000}{6,00,000 \text { hours }}=$ Rs. 1.00
\# Fixed production overhead rate per unit of output $=\frac{15,68,000}{19,600 \text { hours }}=$ Rs. 80
$\$$ Selling and production cost per unit of output $=\frac{7,84,000}{19,600 \text { hours }}=$ Rs. 40

Administration cost per unit of output $=\frac{3,92,000}{19,600 \text { hours }}=$ Rs. 20

## Question 10

The following information pertains to A Limited for the year 1st April 2021 to 31st March 2022:

| Particulars | Amount (₹) |
| :--- | ---: |
| Sales | $\mathbf{5 0 , 0 0 , 0 0 0}$ |
| Direct labour | $10,50,000$ |
| Administrative overheads (relating to production activity) | $\mathbf{1 , 5 0 , 0 0 0}$ |
| Selling expenses | $\mathbf{2 , 5 0 , 0 0 0}$ |

Inventory details are as follows:

|  | As on 1st April 2021 <br> (Amount in ₹) | As on 31st March 2022 <br> (Amount in ₹) |
| :--- | ---: | ---: |
| Raw materials | $5,00,000$ | $6,30,000$ |
| Finished goods | $9,80,000$ | $10,50,000$ |
| Work in Progress | $6,00,000$ | $8,00,000$ |

Additional Information:

- Direct labour would be $175 \%$ of works overheads.
- Cost of goods sold would be ₹ $\mathbf{6 , 9 0 0}$ per unit
- $\quad$ Selling expenses would be ₹ $\mathbf{5 0 0}$ per unit.

You are required to PREPARE a cost sheet for the year ended 31st March, 2022 showing:
(i) Value of material purchased
(ii) Prime cost
(iii) Works cost
(iv) Cost of production
(v) Cost of goods sold
(vi) Cost of Sales
(vii) Profit earned
(viii) Profit as a percentage of sales (MTP 10 Marks Sep'22)

Cost Sheet of A Limited for the year ended 31st March 2022

| Particulars | Amount (₹) | Amount (₹) |
| :--- | ---: | ---: |
| Opening Stock of Raw materials | $5,00,000$ |  |
| Add: Purchases (balancing figure) | $20,50,000$ |  |
| Less: Closing stock of raw materials | $6,30,000$ |  |
| Direct material consumed (balancing figure) |  | $19,20,000$ |
| Direct labour |  | $10,50,000$ |
| Prime Cost |  | $29,70,000$ |
| Add: Factory Overheads (10,50,000 / 175\%) |  | $6,00,000$ |
| Add: Opening Stock of Work in Progress |  | $6,00,000$ |
|  |  | $41,70,000$ |
| Less: Closing Stock of Work in Progress |  | $3,00,000$ |
| Works Cost |  | $1,50,000$ |
| Add: Administrative Overheads (relating to production <br> activity) |  | $35,20,000$ |
| COST OF PRODUCTION |  | $9,80,000$ |
| Add: Opening stock of finished goods |  | $45,00,000$ |
| Cost of Goods available for sale |  | $10,50,000$ |
| Less: Closing Stock of finished goods |  | $34,50,000$ |
| COST OF GOODS SOLD <br> (Working Note: (iv)) |  | $2,50,000$ |
| Add: Selling and Distribution Overhead |  | $3,00,000$ |
| COST OF SALES |  |  |
| Add: Profit (Balancing figure) [ Sales - Cost of Sales] |  |  |
| SALES |  |  |

Profit as a \% of sales
$=\frac{13 \text { Laksh }}{50 \text { Laksh }} \times 100=26 \%$

## Working Notes:

(i) The cost sheet is completed by Reverse Working. Purchases amount is the balancing figure.
(ii) Direct labour $=175 \%$ of factory overhead (given). Hence, if direct labour $=10,50,000$, then Factory Overhead $=10,50,000 / 175 \%=₹ 6,00,000$
(iii) Selling Overhead ₹ 2,50,000 (total), selling per unit ₹ 500.

Number of units sold $=₹ 2,50,000 / ₹ 500=500$ units
(iv) Cost of goods sold $=500$ units $x ₹ 6,900=₹ 34,50,000$

## Question 11

A factory can produce $1,80,000$ units per annum at its $60 \%$ capacity. The estimated costs of production are as under:

| Direct material | ₹300 per unit |
| :--- | :--- |
| Direct employee cost | ₹160 per unit |

Indirect expenses:

- Fixed ₹32,50,000 per annum
- Variable ₹50 per unit
- Semi- ₹20,000 per month up to 50\% capacity and ₹2,500 for every variable $\quad 20 \%$ increase in the capacity or part thereof.
If production program of the factory is as indicated below and the management desires to ensure a profit of $₹ 1,00,00,000$ for the year, DETERMINE the average selling price at which each unit should be quoted:

First three months of the year- 50\% of capacity;
Remaining nine months of the year- 75\% of capacity. (MTP 10 Marks Oct'22)

## Answer 11

Statement of Cost

|  | First three months (Rs.) | Remaining nine months (Rs.) | Total (Rs.) |
| :---: | :---: | :---: | :---: |
|  | 37,500 units | 1,68,750 units | 2,06,250 units |
| Direct material | 1,12,50,000 | 5,06,25,000 | 6,18,75,000 |
| Direct employee cost | 60,00,000 | 2,70,00,000 | 3,30,00,000 |
| Indirect- variable expenses | 18,75,000 | 84,37,500 | 1,03,12,500 |
| Indirect - fixed expenses | 8,12,500 | 24,37,500 | 32,50,000 |
| Indirect- semi-variable expenses |  |  |  |
| For first three months @ Rs.20,000 p.m. | 60,000 |  |  |
| For remaining nine months @ Rs.25,000 p.m. |  | 2,25,000 | 2,85,000 |
| Total cost | 1,99,97,500 | 8,87,25,000 | 10,87,22,500 |
| Desired profit | - | - | 1,00,00,000 |
| Sales value | - | - | 11,87,22,500 |
| Average selling price per unit |  |  | 575.62 |

## Question 12

Following information obtained from the records of a Manufacturing Company for the month of March:
Direct labour cost ₹ $\mathbf{2 5 , 0 0 0}$ being $\mathbf{1 5 0 \%}$ of works overheads.
Cost of goods sold excluding administrative expenses ₹ 75,000.
Inventory accounts showed the following opening and closing balances:

|  | March 1 (₹) | March 31 (₹) |
| :--- | ---: | ---: |
| Raw materials | 11,600 | 15,370 |
| Work-in-progress | 15,225 | 21,025 |
| Finished goods | 25,520 | 27,550 |


| Other information is as follows: |  |
| :--- | ---: |
|  | $(₹)$ |
| Selling expenses | 6,125 |
| General and administration expenses | 4,375 |
| Sales for the month | $1,05,250$ |

Required to:
(i) FIND out the value of materials purchased.
(ii) PREPARE a cost statement showing the various elements of cost and also the profit earned. (MTP 10 Marks March '23, Old \& New SM)
(i) Computation of the value of materials purchased

To find out the value of materials purchased, reverse calculations from the given data can be presented as below:

| Particulars | (₹) |
| :--- | :---: |
| Cost of goods sold | $\mathbf{7 5 , 0 0 0}$ |
| Add: Closing stock of finished goods | 27,550 |
| Less: Opening stock of finished goods | $(25,520)$ |
| Cost of production | $\mathbf{7 7 , 0 3 0}$ |
| Add: Closing stock of work-in-progress | 21,025 |
| Less: Opening stock of work-in-progress | $(15,225)$ |
| Works cost | $\mathbf{8 2 , 8 3 0}$ |
| Less: Factory overheads: <br> [₹25,000×100/150] | $(16,667)$ |
| Prime cost | $\mathbf{6 6 , 1 6 3}$ |
| Less: Direct labour | $\mathbf{( 2 5 , 0 0 0 )}$ |
| Raw material consumed | $\mathbf{4 1 , 1 6 3}$ |
| Add: Closing stock of raw materials | 15,370 |
| Raw materials available | 56,533 |
| Less: Opening stock of raw materials | $\mathbf{( 1 1 , 6 0 0 )}$ |
| Value of materials purchased | $\mathbf{4 4 , 9 3 3}$ |

Cost statement

|  | (₹) |
| :--- | ---: |
| Raw material consumed [Refer to statement (i) above] | 41,163 |
| Add: Direct labour cost | 25,000 |
| Prime cost | $\mathbf{6 6 , 1 6 3}$ |
| Add: Factory overheads | 16,667 |
| Works cost | $\mathbf{8 2 , 8 3 0}$ |
| Add: Opening work-in-progress | 15,225 |
| Less: Closing work-in-progress | $\mathbf{( 2 1 , 0 2 5 )}$ |
| Cost of production | $\mathbf{7 7 , 0 3 0}$ |
| Add: Opening stock of finished goods | $\mathbf{2 5 , 5 2 0}$ |
| Less: Closing stock of finished goods | $(27,550)$ |
| Cost of goods sold | $\mathbf{7 5 , 0 0 0}$ |
| Add: General and administration expenses | 4,375 |
| Add: Selling expenses | 6,125 |
| Cost of sales | $\mathbf{8 5 , 5 0 0}$ |
| Profit (sales i.e ₹1,05,250 - Cost of sales i.e ₹ 85,500$)$ | 19,750 |
| Sales | $\mathbf{1 , 0 5 , 2 5 0}$ |

## Question 13

Following information relate to a manufacturing concern for the year ended 31st March, 2019:
(₹)
Raw Material (opening)
2,28,000
3,05,000
42,25,000
1,00,000
12,56,000

Direct wages-outstanding at the end of the year
Factory Overheads
Work-in-progress (opening)
Work-in-progress (closing)
Administrative Overheads (related to production)
Distribution Expenses
Finished Stock (opening)- 1,217 Units
Sale of scrap of material

1,50,000
20\% of prime cost
1,92,500
1,40,700
1,73,000
₹ 16 per unit
6,08,500
8,000

The firm produced 14,000 units of output during the year. The stock of finished goods at the end of the year is valued at cost of production. The firm sold 14,153 units at a price of $₹ \mathbf{6 1 8}$ per unit during the year. PREPARE cost sheet of the firm. (RTP May '19, PYP May'18,10Marks)

## Answer 13

Cost sheet for the year ended 31st March, 2019.
Units produced - 14,000 units Units sold - 14,153 units

| Particulars | Amount (Rs.) |
| :---: | :---: |
| Raw materials purchased | 42,25,000 |
| Add: Freight Inward | 1,00,000 |
| Add: Opening value of raw materials | 2,28,000 |
| Less: Closing value of raw materials | $(3,05,000)$ |
|  | 42,48,000 |
| Less: Sale of scrap of material | $(8,000)$ |
| Materials consumed | 42,40,000 |
| Direct Wages (12,56,000 + 1,50,000) | 14,06,000 |
| Prime Cost | 56,46,000 |
| Factory overheads (20\% of Prime Cost) | 11,29,200 |
| Add: Opening value of W-I-P | 1,92,500 |
| Less: Closing value of W-I-P | $(1,40,700)$ |
| Factory Cost | 68,27,000 |
| Add: Administrative overheads | 1,73,000 |
| Cost of Production | 70,00,000 |
| Add: Value of opening finished stock | 6,08,500 |
| Less: Value of closing finished stock $\begin{aligned} & {[\text { Rs. } 500(70,00,000 / 14,000) \times 1,064]} \\ & (1,217+14,000-14,153=1,064 \text { units }) \end{aligned}$ | $(5,32,000)$ |
| Cost of Goods Sold | 70,76,500 |
| Distribution expenses (Rs. $16 \times 14,153$ units) | 2,26,448 |
| Cost of Sales | 73,02,948 |
| Profit (Balancing figure) | 14,43,606 |
| Sales (Rs. $618 \times 14,153$ units) | 87,46,554 |

## Question 14

The following details are available from the books of $R$ Ltd. for the year ending 31 ${ }^{\text {st }}$ March 2020:

| Particulars | Amount (₹) |
| :--- | ---: |
| Purchase of raw materials | $\mathbf{8 4 , 0 0 , 0 0 0}$ |
| Consumable materials | $\mathbf{4 , 8 0 , 0 0 0}$ |
| Direct wages | $\mathbf{6 0 , 0 0 , 0 0 0}$ |
| Carriage inward | $\mathbf{1 , 7 2 , 6 0 0}$ |


| Wages to foreman and store keeper | $\mathbf{8 , 4 0 , 0 0 0}$ |
| :--- | ---: |
| Other indirect wages to factory staffs | $\mathbf{1 , 3 5 , 0 0 0}$ |
| Expenditure on research and development on new production technology | $\mathbf{9 , 6 0 , 0 0 0}$ |
| Salary to accountants | $\mathbf{7 , 2 0 , 0 0 0}$ |
| Employer's contribution to EPF \& ESI | $\mathbf{7 , 2 0 , 0 0 0}$ |
| Cost of power \& fuel | $\mathbf{2 8 , 0 0 , 0 0 0}$ |
| Production planning office expenses | $\mathbf{1 2 , 6 0 , 0 0 0}$ |
| Salary to delivery staffs | $\mathbf{1 4 , 3 0 , 0 0 0}$ |
| Income tax for the assessment year 2019-20 | $\mathbf{2 , 8 0 , 0 0 0}$ |
| Fees to statutory auditor | $\mathbf{1 , 8 0 , 0 0 0}$ |
| Fees to cost auditor | $\mathbf{8 0 , 0 0 0}$ |
| Fees to independent directors | $\mathbf{9 , 4 0 , 0 0 0}$ |
| Donation to PM-national relief fund | $\mathbf{1 , 1 0 , 0 0 0}$ |
| Value of sales | $\mathbf{2 , 8 2 , 6 0 , 0 0 0}$ |
| Position of inventories as on 01-04-2019: | $\mathbf{6 , 2 0 , 0 0 0}$ |
| $-\quad$ Raw Material | $\mathbf{7 , 8 4 , 0 0 0}$ |
| $-\quad$ W-I-P | $\mathbf{1 4 , 4 0 , 0 0 0}$ |
| $-\quad$ Finished goods | $\mathbf{4 , 6 0 , 0 0 0}$ |
| Position of inventories as on 31-03-2020: | $\mathbf{6 , 6 4 , 0 0 0}$ |
| $-\quad$ Raw Material | $\mathbf{9 , 8 0 , 0 0 0}$ |
| $-\quad$ W-I-P |  |
| $-\quad$ Finished goods |  |

From the above information PREPARE a cost sheet for the year ended 31 st March 2020. (RTP Nov '20)

## Answer 14

| SI. No. | Particulars | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: | :---: |
| (i) | Material Consumed: |  |  |
|  | - Raw materials purchased | 84,00,000 |  |
|  | - Carriage inward | 1,72,600 |  |
|  | Add: Opening stock of raw materials | 6,20,000 |  |
|  | Less: Closing stock of raw materials | $(4,60,000)$ | 87,32,600 |
| (ii) | Direct employee (labour) cost: |  |  |
|  | - Direct wages | 60,00,000 |  |
|  | - Employer's Contribution towards PF \& ESIS | 7,20,000 | 67,20,000 |
| (iii) | Direct expenses: |  |  |
|  | - Consumable materials | 4,80,000 |  |
|  | - Cost of power \& fuel | 28,00,000 | 32,80,000 |
|  | Prime Cost |  | 1,87,32,600 |
| (iv) | Works/ Factory overheads: |  |  |
|  | - Wages to foreman and store keeper | 8,40,000 |  |
|  | - Other indirect wages to factory staffs | 1,35,000 | 9,75,000 |


|  | Gross factory cost |  | 1,97,07,600 |
| :---: | :---: | :---: | :---: |
|  | Add: Opening value of W-I-P |  | 7,84,000 |
|  | Less: Closing value of W-I-P |  | $(6,64,000)$ |
|  | Factory Cost |  | 1,98,27,600 |
| (v) | Research \& development cost paid for improvement in production process |  | 9,60,000 |
| (vi) | Production planning office expenses |  | 12,60,000 |
|  | Cost of Production |  | 2,20,47,600 |
|  | Add: Opening stock of finished goods |  | 14,40,000 |
|  | Less: Closing stock of finished goods |  | $(9,80,000)$ |
|  | Cost of Goods Sold |  | 2,25,07,600 |
| (vii) | Administrative overheads: |  |  |
|  | - Salary to accountants | 7,20,000 |  |
|  | - Fees to statutory auditor | 1,80,000 |  |
|  | - Fees to cost auditor | 80,000 |  |
|  | - Fee paid to independent directors | 9,40,000 | 19,20,000 |
| (viii) | Selling overheads\& Distribution overheads: |  |  |
|  | - Salary to delivery staffs |  | 14,30,000 |
|  | Cost of Sales |  | 2,58,57,600 |
|  | Profit (balancing figure) |  | 24,02,400 |
|  | Sales |  | 2,82,60,000 |

Note: Income tax and Donation to PM National Relief Fund is avoided in the cost sheet.

## Question 15

Impact Ltd. provides you the following details of its expenditures for the year ended 31st March, 2021:

| S. No. | Particulars | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: | :---: |
| (i) | Raw materials purchased |  | 5,00,00,000 |
| (ii) | GST paid under Composition scheme |  | 10,00,000 |
| (iii) | Freight inwards |  | 5,20,600 |
| (iv) | Trade discounts received |  | 10,00,000 |
| (v) | Wages paid to factory workers |  | 15,20,000 |
| (vi) | Contribution made towards employees' PF \& ESIS |  | 1,90,000 |
| (vii) | Production bonus paid to factory workers |  | 1,50,000 |
| (viii) | Fee for technical assistance |  | 1,12,000 |
| (ix) | Amount paid for power \& fuel |  | 2,62,000 |
| (x) | Job charges paid to job workers |  | 4,50,000 |
| (xi) | Stores and spares consumed |  | 1,10,000 |
| (xii) | Depreciation on: |  |  |
|  | Factory building | 64,000 |  |
|  | Office building | 46,000 |  |
|  | Plant \& Machinery | 86,000 | 1,96,000 |
| (xiii) | Salary paid to supervisors |  | 1,20,000 |
| (xiv) | Repairs \& Maintenance paid for: |  |  |
| (xiv646 |  |  |  |


|  | Plant \& Machinery | 58,000 |  |
| :---: | :---: | :---: | :---: |
|  | Sales office building | 50,000 |  |
|  | Vehicles used by directors | 20,600 | 1,28,600 |
| (xv) | Insurance premium paid for: |  |  |
|  | Plant \& Machinery | 31,200 |  |
|  | Factory building | 28,100 | 59,300 |
| (xvi) | Expenses paid for quality control check activities |  | 25,000 |
| (xvii) | Research \& development cost paid for improvement in production process |  | 48,200 |
| (xviii) | Expenses paid for administration of factory work |  | 1,38,000 |
| (xix) | Salary paid to functional mangers: |  |  |
|  | Production control | 4,80,000 |  |
|  | Finance \& Accounts | 9,60,000 |  |
|  | Sales \& Marketing | 12,00,000 | 26,40,000 |
| (xx) | Salary paid to General Manager |  | 13,20,000 |
| (xxi) | Packing cost paid for: |  |  |
|  | Primary packing necessary to maintain quality | 1,06,000 |  |
|  | For re-distribution of finished goods | 1,12,000 | 2,18,000 |
| (xxii) | Interest and finance charges paid (for usage of non- equity fund) |  | 3,50,000 |
| (xxiii) | Fee paid to auditors |  | 1,80,000 |
| (xxiv) | Fee paid to legal advisors |  | 1,20,000 |
| (xxv) | Fee paid to independent directors |  | 2,40,000 |
| (xxvi) | Payment for maintenance of website for online sales |  | 1,80,000 |
| (xxvii) | Performance bonus paid to sales staffs |  | 2,40,000 |
| (xxviii) | Value of stock as on 1st April, 2020: |  |  |
|  | Raw materials | 9,00,000 |  |
|  | Work-in-process | 4,00,000 |  |
|  | Finished goods | 7,00,000 | 20,00,000 |
| (xxix) | Value of stock as on 31st March, 2021: |  |  |
|  | Raw materials | 5,60,000 |  |
|  | Work-in-process | 2,50,000 |  |
|  | Finished goods | 11,90,000 | 20,00,000 |

Amount realized by selling of waste generated during manufacturing process - ₹ 66,000/-
From the above data, you are required to PREPARE Statement of cost of Impact Ltd. for the year ended 31st March, 2021, showing (i) Prime cost, (ii) Factory cost, (iii) Cost of Production, (iv) Cost of goods sold and (v) Cost of sales. (RTP Nov '21)

## Answer 15

Statement of Cost of Impact Ltd. for the year ended 31st March, 2021:

| SI. <br> No. | Particulars | Amount (₹) | Amount (₹) |
| :--- | :--- | ---: | ---: |
| (i) | Material Consumed: |  |  |



|  | Salary paid to General Manager | $13,20,000$ |  |
| :--- | :--- | ---: | ---: |
|  | Fee paid to auditors | $1,80,000$ |  |
|  | Fee paid to legal advisors | $1,20,000$ |  |
|  | Fee paid to independent directors | $2,40,000$ | $28,86,600$ |
| (xi) | Selling overheads: |  |  |
|  | Repairs \& Maintenance paid for sales office building | 50,000 |  |
|  | Salary paid to Manager- Sales \& Marketing | $12,00,000$ |  |
|  | Payment for maintenance of website for online sales | $1,80,000$ |  |
|  | Performance bonus paid to sales staffs | $2,40,000$ | $16,70,000$ |
| (xii) | Packing cost paid for re-distribution of finished goods |  | $1,12,000$ |
| (xiii) | Interest and finance charges paid |  | $3,50,000$ |
|  | Cost of Sales |  | $5,94,51,700$ |
|  |  |  |  |

* GST paid under Composition scheme would be included under cost of material as it is not eligible for input tax credit.


## Question 16

A Ltd. produces a single product $X$. During the month of December 2021, the company has produced 14,560 tonnes of $X$. The details for the month of December 2021 are as follows:
(i) Materials consumed ₹ $15,00,000$
(ii) Power consumed 13,000 Kwh @ ₹ 7 per Kwh
(iii) Diesels consumed 1,000 litres @ ₹ 93 per litre
(iv) Wages \& salary paid - ₹ $64,00,000$
(v) Gratuity \& leave encashment paid - ₹ $\mathbf{4 4 , 2 0 , 0 0 0}$
(vi) Hiring charges paid for HEMM-₹ $13,00,000$
(vii) Hiring charges paid for cars used for official purpose - ₹ 80,000
(viii)Reimbursement of diesel cost for the cars - ₹ 20,000
(ix) The hiring of cars attracts GST under RCM @ $5 \%$ without credit.
(x) Maintenance cost paid for weighing bridge (used for weighing of final goods at the time of despatch) - ₹ 7,000
(xi) AMC cost of CCTV installed at weighing bridge (used for weighing of final goods at the time of despatch) and factory premises is ₹ 6,000 and $₹ 18,000$ per month respectively.
(xii) TA/ DA and hotel bill paid for sales manager- ₹ 16,000
(xiii) The company has 180 employees works for 26 days in a month.

Required:
(a) PREPARE a Cost sheet for the month of December 2021.
(b) COMPUTE Earnings per manshift (EMS) and Output per manshift (OMS) for the month of December 2021. (RTP May '22)

## Answer 16

(a) Cost Sheet of A Ltd. for the month of December 2021

| Particulars | Amount (₹) | Amount (₹) |
| :--- | ---: | ---: |
| Materials consumed |  | $15,00,000$ |
| Wages \& Salary | $64,00,000$ |  |
| Gratuity \& leave encashment | $44,20,000$ | $1,08,20,000$ |
| Power cost (13,000 kwh $\times$ ₹ 7 ) | 91,000 |  |
| Diesel cost (1,000 Itr $\times$ ₹ 93) | 93,000 | $1,84,000$ |


| HEMM hiring charges |  | $13,00,000$ |
| :--- | ---: | ---: |
| Prime Cost |  | $\mathbf{1 , 3 8 , 0 4 , 0 0 0}$ |
| AMC cost of CCTV installed at factory premises |  | 18,000 |
| Cost of Production/ Cost of Goods Sold | $\mathbf{8 0 , 0 0 0}$ |  |
| Hiring charges of cars | $\mathbf{1 , 3 8 , 2 2 , 0 0 0}$ |  |
| Reimbursement of diesel cost | $1,00,000$ |  |
|  | 5,000 |  |
| Add: GST @5\% on RCM basis | 7,000 |  |
| Maintenance cost for weighing bridge | 6,000 |  |
| AMC cost of CCTV installed at weigh bridge |  | 13,000 |
| TA/ DA \& hotel bill of sales manager |  | 16,000 |
| Cost of Sales |  | $\mathbf{1 , 3 9 , 5 6 , 0 0 0}$ |

(b) Man shift $=\mathbf{1 8 0}$ employees $\times \mathbf{2 6}$ days $=\mathbf{4 , 6 8 0}$ man shifts

Computation of earnings per man shift (EMS):

$$
\begin{aligned}
& \mathrm{EMS}=\frac{\text { Total employee benefits paid }}{\text { Manshift }} \\
& =\frac{R s .1,08,20,000}{4,680}=\text { Rs. } 2,312
\end{aligned}
$$

## Computation of Output per man shift (OMS):

$$
\begin{aligned}
& \text { OMS }=\frac{\text { Total Output } / \text { Production }}{\text { Manshift }} \\
= & \frac{14,560 \text { Tonne }}{4,680}=3.11 \text { tonne }
\end{aligned}
$$

## Question 17

CT Limited is engaged in producing medical equipment. It has furnished following details related to its products produced during a month:

|  | Units | Amount (₹) |
| :--- | :---: | ---: |
| Raw materials |  |  |
| Opening stock | 1,000 | $90,00,000$ |
| Purchases | 49,000 | $44,10,00,000$ |
| Closing stock | 1,750 | $\mathbf{1 , 5 7 , 5 0 , 0 0 0}$ |
| Works-in-progress |  |  |
| Opening | 2,000 | $\mathbf{1 , 7 5 , 5 0 , 0 0 0}$ |
| Closing | 1,000 | $94,50,000$ |
| Direct employees' wages, allowances etc. |  | $\mathbf{6 , 8 8 , 5 0 , 0 0 0}$ |
| Primary packaging cost (per unit) |  | 1,440 |
| R\&D expenses \& Quality control expenses |  | $\mathbf{2 , 1 0 , 6 0 , 0 0 0}$ |
| Consumable stores, depreciation on plant |  | $3,42,00,000$ |
| Administrative overheads related to production |  | $4,84,30,800$ |
| Selling expenses |  | $3,64,50,000$ |
| Royalty paid for production |  | $60,75,000$ |
| Cost of web-site (for online sale) maintenance |  | 225 |
| Secondary packaging cost (per unit) |  |  |

There was a normal scrap of 250 units of direct material which realized ₹ 5,400 per unit. The entire finished product was sold at a profit margin of $\mathbf{2 0 \%}$ on sales. You are required to PREPARE a cost sheet showing:
(i) Prime cost
(ii) Gross works cost
(iii) Factory costs
(iv) Cost of production
(v) Profit
(vi) Sales. (RTP Nov’22)

## Answer 17

Cost Sheet

| Particulars | Units | Amount (₹) |
| :---: | :---: | :---: |
| Material |  |  |
| Opening stock | 1,000 | 90,00,000 |
| Add: Purchases | 49,000 | 44,10,00,000 |
| Less: Closing stock | $(1,750)$ | (1,57,50,000) |
|  | 48,250 | 43,42,50,000 |
| Less: Normal wastage of materials realized @ ₹ 5,400 per unit | (250) | $(13,50,000)$ |
| Material consumed |  | 43,29,00,000 |
| Direct employee's wages and allowances |  | 6,88,50,000 |
| Direct expenses- Royalty paid for production |  | 3,64,50,000 |
| Prime cost | 48,000 | 53,82,00,000 |
| Factory overheads - Consumable stores, depreciation etc. |  | 3,42,00,000 |
| Gross Works Cost | 48,000 | 57,24,00,000 |
| Add: Opening WIP | 2,000 | 1,75,50,000 |
| Less: Closing WIP | $(1,000)$ | (94,50,000) |
| Factory/Works Cost | 49,000 | 58,05,00,000 |
| Administration Overheads related to production |  | 3,15,00,000 |
| R\&D expenses and Quality control cost |  | 2,10,60,000 |
| Add: Primary packaging cost @ ₹ 1,440 per unit |  | 7,05,60,000 |
| Cost of production | 49,000 | 70,36,20,000 |
| Selling expenses | - | 4,84,30,800 |
| Cost of maintaining website for online sale |  | 60,75,000 |
| Secondary packaging cost @ ₹ 225 per unit | 49,000 | 1,10,25,000 |
| Cost of sales |  | 76,91,50,800 |
| Add: Profit @ 20\% on sales or 25\% of cost |  | 19,22,87,700 |
| Sales value |  | 96,14,38,500 |

## Question 18

From the following data of Motilal Ltd., CALCULATE Cost of production:

\begin{tabular}{|l|l|r|}
\hline \& \& (`) <br>
\hline (i) \& Repair \& maintenance paid for plant \& machinery \& $9,80,500$ <br>
\hline (ii) \& Insurance premium paid for inventories \& $\mathbf{2 6 , 0 0 0}$ <br>
\hline (iii) \& Insurance premium paid for plant \& machinery \& 96,000 <br>
\hline (iv) \& Raw materials purchased \& $\mathbf{6 4 , 0 0 , 0 0 0}$ <br>
\hline (v) \& Opening stock of raw materials \& $\mathbf{2 , 8 8 , 0 0 0}$ <br>
\hline (vi) \& Closing stock of raw materials \& $\mathbf{4 , 4 6 , 0 0 0}$ <br>
\hline (vii) \& Wages paid \& $\mathbf{4 , 0 6 , 0 0 0}$ <br>
\hline (viii) \& Value of opening Work-in-process \& $\mathbf{6 , 0 2 , 1 0 0}$ <br>
\hline (ix) \& Value of closing Work-in-process \& 86,000 <br>

\hline (x) \& | Quality control cost for the products in manufacturing |
| :--- |
| process | \& $\mathbf{9 2 , 6 0 0}$ <br>


\hline (xi) \& | Research \& development cost for improvement in |
| :--- |
| production process | \& <br>

\hline (xii) \& Administrative cost for: \& $9,00,000$ <br>
\hline \& \multicolumn{2}{|c|}{ Factory \& production } <br>
\hline \& Others \& $\mathbf{1 1 , 6 0 , 0 0 0}$ <br>
\hline
\end{tabular}

| (xiii) | Amount realised by selling scrap generated during the <br> manufacturing process | $\mathbf{9 , 2 0 0}$ |
| :--- | :--- | ---: |
| (xiv) | Packing cost necessary to preserve the goods for further <br> processing | $\mathbf{1 0 , 2 0 0}$ |
| (xv) | Salary paid to Director (Technical) | $\mathbf{8 , 9 0 , 0 0 0}$ |
|  |  |  |

(RTP May 23)

Calculation of Cost of Production of Motilal Ltd for the period.....

| Particulars | (`) |
| :--- | ---: |
| Raw materials purchased | $64,00,000$ |
| Add: Opening stock | $2,88,000$ |
| Less: Closing stock | $(4,46,000)$ |
| Material consumed | $62,42,000$ |
| Wages paid | $23,20,000$ |
| Prime cost | $85,62,000$ |
| Repair and maintenance cost of plant \& machinery | $9,80,500$ |
| Insurance premium paid for inventories | 26,000 |
| Insurance premium paid for plant \& machinery | 96,000 |
| Quality control cost | 86,000 |
| Research \& development cost | 92,600 |
| Administrative overheads related with factory and production | $9,00,000$ |
|  | $1,07,43,100$ |
| Add: Opening value of W-I-P | $4,06,000$ |
| Less: Closing value of W-I-P | $(6,02,100)$ |
|  | $1,05,47,000$ |
| Less: Amount realized by selling scrap | $(9,200)$ |
| Add: Primary packing cost | 10,200 |
| Cost of Production | $1,05,48,000$ |

## Notes:

(i) Other administrative overhead does not form part of cost of production.
(ii) Salary paid to Director (Technical) is an administrative cost.

## Question 19

A Ltd. produces a single product $X$. During the month of July 2023, the company has produced 14,560 tonnes of X. The details for the month of July 2023 are as follows:
(i) Materials consumed ${ }^{`} 15,00,000$
(ii) Power consumed in operating production machinery 13,000 Kwh @`7 per Kwh (iii) Diesels consumed in operating production machinery 1,000 litres @ ` 93 per litre
(iv) Wages \& salary paid -` \(64,00,000\) (v) Gratuity \& leave encashment paid -`44,20,000
(vi) Hiring charges paid for Heavy Earth Moving machines (HEMM) engaged in production - `13,00,000. Hiring charges is paid on the basis of production. (vii) Hiring charges paid for cars used for official purpose -` 80,000
(viii) Reimbursement of diesel cost for the cars -`\(\mathbf{2 0 , 0 0 0}\) (ix) The hiring of cars attracts GST under RCM @ \(5 \%\) without credit. (x) Maintenance cost paid for weighing bridge (used for weighing of final goods at the time of despatch) -`7,000
(xi) AMC cost of CCTV installed at weighing bridge (used for weighing of final goods at the time of despatch) and factory premises is `6,000 and` 18,000 per month respectively.
(xii) TA/ DA and hotel bill paid for sales manager-` 16,000
(xiii) The company has $\mathbf{1 8 0}$ employees works for $\mathbf{2 6}$ days in a month. Required:

PREPARE a Cost sheet for the month of July 2023. (RTP Nov 23)

## Answer 19

Cost Sheet of A Ltd. for the month of July 2023

| Particulars | Amount (`) & Amount (`) |  |
| :--- | ---: | ---: |
| Materials consumed |  | $15,00,000$ |
| Wages \& Salary | $64,00,000$ |  |
| Gratuity \& leave encashment | $44,20,000$ | $1,08,20,000$ |
| Power cost (13,000 kwh $\times^{{f79630f8c-1967-4930-adb5-8bb4ac65db5e}} 93$ ) | 93,000 | $1,84,000$ |
| HEMM hiring charges |  | $13,00,000$ |
| Prime Cost |  | $\mathbf{1 , 3 8 , 0 4 , 0 0 0}$ |
| AMC cost of CCTV installed at factory premises |  | 18,000 |
| Cost of Production/ Cost of Goods Sold |  | $\mathbf{1 , 3 8 , 2 2 , 0 0 0}$ |
| Hiring charges of cars | 20,000 |  |
| Reimbursement of diesel cost | $1,00,000$ |  |
|  | 5,000 | $1,05,000$ |
| Add: GST @5\% on RCM basis | 7,000 |  |
| Maintenance cost for weighing bridge | 6,000 |  |
| AMC cost of CCTV installed at weigh bridge |  |  |
| TA/ DA \& hotel bill of sales manager |  | $\mathbf{1 , 0 0 0}$ |
| Cost of Sales |  |  |

## Question 20

$\mathrm{M} / \mathrm{s}$ Areeba Private Limited has a normal production capacity of 36,000 units of toys perannum. The estimated costs of production are as under:
(i) Direct Material ₹ $\mathbf{4 0}$ perunit
(ii) Direct Labour ₹ 30 per unit (subject to a minimum of ₹ $\mathbf{4 8 , 0 0 0}$ p.m.)
(iii) Factory Overheads:
(a) Fixed ₹ $3,60,000$ per annum
(b) Variable ₹ $\mathbf{1 0}$ per unit
(c) Semi-variable₹ 1,08,000 perannum upto50\%capacityandadditional ₹ 46,800forevery 20\% increase in capacity or any part there of.
(iv) Administrative Overheads ₹ 5, 18,400 per annum (fixed)
(v) Selling overheads are incurred at ₹ 8 per unit.
(vi) Each unit of raw material yields scrap which is sold at the rate of ₹ 5 per unit.
(vii) In year 2019, the factory worked at 50\% capacity for the first three months but it was expected that it
would work at $80 \%$ capacity for the remaining ninemonths.
(viii) During the first three months, the selling price per unit was ₹ 145.

You are required to :
(i) Prepare a cost sheet showing Prime Cost, Works Cost, Cost of Production and Cost of Sales.
(ii) Calculate the selling price per unit for remaining nine months to achieve the total annual profit of $₹ \mathbf{8 , 7 6 , 6 0 0}$. (PYP May '19, 10 Marks)

Answer 20
(i) Cost Sheet of M/s Areeba Pvt. Ltd. for the year 2019.

Normal Capacity: 36,000 units p.a.

| Particulars | 3 Months 4,500Units |  | 9 Months 21,600 units |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Amount $(₹)$ ) | Cost per unit (₹ ) | Amount (₹ ) | Cost per unit (₹) |
| Direct material | $1,80,000$ |  | $8,64,000$ |  |
| Less: Scrap | $(22,500)$ | $(1,08,000)$ |  |  |
| Materials consumed | $1,57,500$ | 35 | $7,56,000$ | 35 |
| Direct Wages | $1,44,000$ | 32 | $6,48,000$ | 30 |
| Prime Cost | $\mathbf{3 , 0 1 , 5 0 0}$ | 67 | $\mathbf{1 4 , 0 4 , 0 0 0}$ | 65 |
| Factory overheads: |  |  |  |  |
| - Fixed | 90,000 |  | $2,70,000$ |  |
| - Variable | 45,000 |  | $2,16,000$ |  |
| - Semi variable | 27,000 | 36 | $1,51,200$ | 29.50 |
| Works Cost | $\mathbf{4 , 6 3 , 5 0 0}$ | 103 | $\mathbf{2 0 , 4 1 , 2 0 0}$ | 94.50 |
| Add: Administrative overheads | $\mathbf{1 , 2 9 , 6 0 0}$ | 28.80 | $3,88,800$ | 18 |
| Cost of Production | $\mathbf{5 , 9 3 , 1 0 0}$ | 131.80 | $\mathbf{2 4 , 3 0 , 0 0 0}$ | 112.5 |
| Selling Overheads | 36,000 | 8 | $1,72,800$ | 8 |
| Cost of Sales | $\mathbf{6 , 2 9 , 1 0 0}$ | 139.80 | $\mathbf{2 6 , 0 2 , 8 0 0}$ | 120.5 |

## Working Notes:

1. Calculation of Costs

| Particulars | 4,500 units | 21,600 units |
| :---: | :---: | :---: |
|  | Amount (₹) | Amount (₹) |
| Material | 1,80,000 (₹ $40 \times 4,500$ units) | 8,64,000 (₹ $40 \times 21,600$ units) |
| Wages | 1,44,000 (Max. of ₹ $30 \times 4,500$ units | 6,48,000(21600Units×30) |
|  | $\begin{aligned} & =₹ 1,35,000 \text { and } ₹ 48,000 \times 3 \text { months } \\ & =₹ 1,44,000 \text { ) } \end{aligned}$ |  |
| Variable Cost | 45,000 (₹ $10 \times 4,500$ units) | 2,16,000 (₹ 10×21,600 units) |
| Semi-variable Cost | $\begin{aligned} & \text { 27,000 (Rs. 1,08,000/12 Months } \\ & \times 3 \text { Months) } \end{aligned}$ | $\begin{aligned} & \text { 1,51,200 (Rs. 1,08,000/ } 12 \\ & \text { Months } \times 9 \text { months) } \end{aligned}$ |
|  |  | $+46,800$ (For 20\% increase) <br> +23,400 (For 10\% increase) |
| Selling Overhead | 36,000 (Rs. $8 \times 4,500$ units) | 1,72,800(Rs. $8 \times 21,600$ units) |

## Notes:

1. Alternatively scrap of raw material can also be reduced from Work cost.
2. Administrative overhead may be treated alternatively as a part of general overhead.

In that case, Works Cost as well as Cost of Production will be same i.e. ₹ 4,63,500 and Cost of Sales will remain same as ₹ 6,29,100.

| (ii)Calculation of Selling price for nine months period <br> Particulars | Amount (₹) |
| :--- | :---: |
| Total Cost of sales ₹ $(6,29,100+26,02,800)$ | $32,31,900$ |


| Add: Desired profit | $8,76,600$ |
| :--- | ---: |
| Total sales value | $41,08,500$ |
| Less: Sales value realised in first three months ( ₹ $145 \times 4,500$ units) | $(6,52,500)$ |
| Sales Value to be realised in next nine months | $\mathbf{3 4 , 5 6 , 0 0 0}$ |
| No. of units to be sold in next nine months | $\mathbf{2 1 , 6 0 0}$ |
| Selling price per unit (₹ $\mathbf{3 4 , 5 6 , 0 0 0} \div \mathbf{2 1 , 6 0 0}$ units) | $\mathbf{1 6 0}$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question on preparation of 'Cost Sheet'. Many examinees made mistake in calculation of number of units to be produced at different capacity levels. The performance of the candidate in this sub part of the question is below Average.

## Question 21

Following details are provided by M/s ZIA Private limited for the quarter ending 30 September 2018:

| (i) Direct expenses |  | ₹ 1,80,000 |
| :---: | :---: | :---: |
| (ii) Direct wages being 175\% of factory overheads |  | ₹ 2,57,250 |
| (iii) Cost of goods sold |  | ₹ 18,75,000 |
| (iv) Selling \& distribution overheads |  | ₹ 60,000 |
| (v) Sales |  | ₹ 22,10,000 |
| (vi) Administration overheads are 10\% of factory overheads |  |  |
| Stock details as per Stock Register: |  |  |
| Particulars | 30.06.2018₹ | 30.09.2018 ₹ |
| Raw material | 2,45,600 | 2,08,000 |
| Work-in-progress | 1,70,800 | 1,90,000 |
| Finished goods <br> You are required to prepare a cost sheet showing: | 3,10,000 | 2,75,000 |

(i) Raw material consumed
(ii) Prime cost
(iii) Factory cost
(iv) Cost of goods sold
(v) Cost of sales and profit
(PYP Nov '18, 10 Marks)

## Answer 21

Cost Sheet

|  | (for the quarter ending 30 September 2018) | Amount (₹ ) |  |
| :--- | :--- | :--- | ---: |
| (i) | Raw materials consumed |  |  |
|  | Opening stock of raw materials | $2,45,600$ |  |
|  | Add: Purchase of materials | $12,22,650 *$ |  |
|  | Less: Closing stock of raw materials | $(2,08,000)$ |  |
|  | Raw materials consumed | $12,60,250$ |  |
|  | Add: Direct wages (1,47,000×175\%) | $2,57,250$ |  |
|  | Direct Expenses | $1,80,000$ |  |
|  | (ii) | Prime cost | $\mathbf{1 6 , 9 7 , 5 0 0}$ |
|  | Add: Factory overheads $(2,57,250 / 175 \%)$ | $1,47,000$ |  |


|  | Gross Factory cost | $18,44,500$ |
| :--- | :--- | ---: |
|  | Add: Opening work-in-process | $1,70,800$ |
|  | Less: Closing work-in-process | $(1,90,000)$ |
| (iii) | Factory cost | $\mathbf{1 8 , 2 5 , 3 0 0}$ |
|  | Add: Administration overheads (10\% of factory overheads) | 14,700 |
|  | Add: Opening stock of finished goods | $3,10,000$ |
|  | Less: Closing stock of finished goods | $(2,75,000)$ |
| (iv) | Cost of goods sold | $\mathbf{1 8 , 7 5 , 0 0 0}$ |
|  | Add: Selling \& distribution overheads | 60,000 |
|  | Cost of sales | $19,35,000$ |
| (v) | Net Profit | $\mathbf{2 , 7 5 , 0 0 0}$ |
|  | Sales | $22,10,000$ |

*(18,75,000 + 2,75,000-3,10,000-(1,47,000×10\%)+1,90,000-1,70,800-(2,57,250×100/175\%) -1,80,000 $-2,57,250+2,08,000-2,45,600)=12,22,650$

## Working notes:

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material Raw material consumed $=$ Prime cost - Direct wages - Direct expenses

Factory Overheads $=2,57,250 * 100 / 175$
Prime cost = Factory cost + Closing WIP - Opening WIP - Factory overheads
Factory Cost = Cost of Production goods sold + Closing stock of Finished goods - Opening stock of finished goods

- Administrative overheads

Net Profit = Sales - Cost of sales

## Alternative solution

## Cost Sheet

(forthequarterending30September2018)

## (i) Raw materials consumed

| Raw materials consumed | Amount (₹ ) |
| :--- | ---: |
| Opening stock of raw materials | $2,45,600$ |
| Add: Purchase of materials | $12,37,350^{*}$ |
| Less: Closing stock of raw materials | $(2,08,000)$ |
| Raw materials consumed | $12,74,950$ |
| Add: Direct wages (1,47,000×175\%) | $2,57,250$ |
| Direct Expenses | $1,80,000$ |


| (ii) Prime cost | $\mathbf{1 7 , 1 2 , 2 0 0}$ |
| :--- | ---: |
| Add: Factory overheads (2,57,250/175\%) | $1,47,000$ |
| Gross Factory cost | $18,59,200$ |
| Add: Opening work-in-process | $1,70,800$ |
| Less: Closing work-in-process | $(1,90,000)$ |
| (iii) Factory cost/work cost /Cost of production | $\mathbf{1 8 , 4 0 , 0 0 0}$ |
| Add : Opening stock of finished goods | $3,10,000$ |
| Less: Closing stock of finished goods | $(2,75,000)$ |
| (iv) Cost of goods sold | $\mathbf{1 8 , 7 5 , 0 0 0}$ |
| Add: Administration overheads (10\% of factory overheads) | 14,700 |


| Add: Selling \& distribution overheads | 60,000 |
| :--- | ---: |
| Cost of Sales | $19,49,700$ |
| (v) Net Profit | $\mathbf{2 , 6 0 , 3 0 0}$ |
| Sales | $\mathbf{2 2 , 1 0 , 0 0 0}$ |

*(18,75,000 + 2,75,000-3,10,000+1,90,000-1,70,800-1,47,500-1,80,000-2,57,250 + 2,08,000 -

$$
2,45,600)=12,37,350
$$

## Working notes:

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material
Raw material consumed = Prime cost - Direct wages - Direct expenses
Factory Overheads $=2,57,250 * 100 / 175$
Prime cost = Factory cost + Closing WIP - Opening WIP - Factory overheads
Factory Cost = Cost of Production goods sold + Closing stock of Finished goods - Opening stock of
finished goods - Administrative overheads
Net Profit = Sales - Cost of sales

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This question was related to preparation of Cost Sheet. The performance of the examinees in this sub part of the question is very good and many secured 9 to 10 marks out of 10 marks.

## Question 22

The following data are available from the books and records of $Q$ Ltd. for the month of April 2020:
Direct Labour Cost = ₹ 1,20,000 (120\% of Factory Overheads)

| Cost of Sales | $=₹ 4,00,000$ |
| :--- | :--- |
| Sales | $=₹ 5,00,000$ |

Accounts show the following figures:

|  | $1^{\text {st }}$ April, 2020 <br> (₹) | 30th <br> April, 2020 <br> (₹) |
| :--- | :---: | :---: |
| Inventory: |  |  |
| Raw material | 20,000 | 25,000 |
| Work-in-progress | 20,000 | 30,000 |
| Finished goods | 50,000 | 60,000 |
| Other details: |  |  |
| Selling expenses |  | 22,000 |
| General \& Admin. expenses |  | 18,000 |

You are required to prepare a cost sheet for the month of April 2020 showing:
(i) Prime Cost
(ii) Works Cost
(iii) Cost of Production
(iv) Cost of Goods sold
(v) Cost of Sales and Profit earned. (PYP 10 Marks Jan 21)

## Answer 22

Cost Sheet for the Month of April 2020

| Particulars | (₹) |
| :--- | ---: |
| Opening stock of Raw Material | 20,000 |
| Add: Purchases [Refer Working Note-2] | $1,65,000$ |


| Less: Closing stock of Raw Material | $(25,000)$ |
| :--- | ---: |
| Raw material consumed | $1,60,000$ |
| Add: Direct labour cost | $1,20,000$ |
| Prime cost | $\mathbf{2 , 8 0 , 0 0 0}$ |
| Add: Factory overheads | $\mathbf{1 , 0 0 , 0 0 0}$ |
| Gross Works cost | $\mathbf{3 , 8 0 , 0 0 0}$ |
| Add: Opening work-in-progress | $\mathbf{2 0 , 0 0 0}$ |
| Less: Closing work-in-progress | $\mathbf{( 3 0 , 0 0 0 )}$ |
| Works Cost | $\mathbf{3 , 7 0 , 0 0 0}$ |
| Cost of Production | $\mathbf{3 , 7 0 , 0 0 0}$ |
| Add: Opening stock of finished goods | 50,000 |
| Less: Closing stock of finished goods | $\mathbf{6 0 , 0 0 0})$ |
| Cost of goods sold | $\mathbf{3 , 6 0 , 0 0 0}$ |
| Add: General and administration expenses* | 18,000 |
| Add: Selling expenses | $\mathbf{2 2 , 0 0 0}$ |
| Cost of sales | $\mathbf{4 , 0 0 , 0 0 0}$ |
| Profit $\{$ Balancing figure (₹ 5,00,000 - ₹ 4,00,000) \} | $1,00,000$ |
| Sales | $5,00,000$ |

*General and administration expenses have been assumed as not relating to the production activity.
Working Note:
1.

Computation of the raw material consumed

| Particulars | (₹) |
| :--- | ---: |
| Cost of Sales | $4,00,000$ |
| Less: General and administration expenses | $(18,000)$ |
| Less: Selling expenses | $(22,000)$ |
| Cost of goods sold | $3,60,000$ |
| Add: Closing stock of finished goods | 60,000 |
| Less: Opening stock of finished goods | $(50,000)$ |
| Cost of production/Gross works cost | $3,70,000$ |
| Add: Closing stock of work-in-progress | 30,000 |
| Less: Opening stock of work-in- progress | $(20,000)$ |
| Works cost | $3,80,000$ |
| Less: Factory overheads $\left(\frac{R s .1,20,000}{120} X 100\right)$ | $2,80,000$ |
| Prime cost | $(1,20,000)$ |
| Less: Direct labour | $1,60,000$ |
| Raw material consumed |  |


| 2. Computation of the raw material purchased |  |
| :--- | ---: |
| Particulars | $\mathbf{( ₹ )}$ |
| Closing stock of Raw Material | 25,000 |
| Add: Raw Material consumed | $1,60,000$ |
| Less: Opening stock of Raw Material | $(20,000)$ |
| Raw Material purchased | $1,65,000$ |

## Question 23

XYZ a manufacturing firm, has revealed following information for September ,2019:

|  | $1^{\text {st }}$ September | 30 th September |
| :--- | :--- | :--- |
| (₹) | (₹) |  |
| Raw Materials | $2,42,000$ | $2,92,000$ |
| Works-in-progress | $2,00,000$ | $5,00,000$ |

The firm incurred following expenses for a targeted production of 1,00,000 units during the month:

|  | (₹) |
| :--- | ---: |
| Consumable Stores and spares of factory | $\mathbf{3 , 5 0 , 0 0 0}$ |
| Research and development cost for process <br> improvements | $\mathbf{2 , 5 0 , 0 0 0}$ |
| Quality control cost | $\mathbf{2 , 0 0 , 0 0 0}$ |
| Packing cost (secondary) per unit of goods sold | $\mathbf{2}$ |
| Lease rent of production asset | $\mathbf{2 , 0 0 , 0 0 0}$ |
| Administrative Expenses (General) | $\mathbf{2 , 2 4 , 0 0 0}$ |
| Selling and distribution Expenses | $\mathbf{4 , 1 3 , 0 0 0}$ |
| Finished goods (opening) | Nil |
| Finished goods (closing) | $\mathbf{5 0 0 0}$ units |

Defective output which is $4 \%$ of targeted production, realizes ₹ 61 per unit. Closing stock is valued at cost of production (excluding administrative expenses) Cost of goods sold, excluding administrative expenses amounts to $₹ \mathbf{7 8 , 2 6 , 0 0 0}$. Direct employees cost is $\mathbf{1 / 2}$ of the cost of material consumed. Selling price of the output is $\boldsymbol{₹} \mathbf{1 1 0}$ per unit. You are required to :
(i) Calculate the Value of material purchased
(ii) Prepare cost sheet showing the profit earned by the firm. (PYP 10 Marks Nov '19)

## Answer 23

Workings:

1. Calculation of Sales Quantity:

| Particular | Units |
| :--- | ---: |
| Production units | $1,00,000$ |
| Less: Defectives (4\%×1,00,000 units) | 4,000 |
| Less: Closing stock of finished goods | 5,000 |
| No. of units sold | 91,000 |

2. Calculation of Cost of Production

| Particular | Amount (₹) |
| :--- | ---: |
| Cost of Goods sold (given) | $78,26,000$ |
| Add: Value of Closing finished goods | $4,30,000$ |
| $\left(\frac{R s .78,26,000}{91,000 \text { units }} \times 5,000\right.$ units) |  |
| Cost of Production | $82,56,000$ |

3. Calculation of Factory Cost

| Particular | Amount (₹) |
| :--- | ---: |
| Cost of Production | $82,56,000$ |
| Less: Quality Control Cost | $(2,00,000)$ |
| Less: Research and Development Cost | $(2,50,000)$ |
| Add: Credit for Recoveries/Scrap/By- <br> Products/ misc. income (1,00,000 units $\times 4 \% \times$ <br> $₹ 61)$ | $2,44,000$ |


| Factory Cost | $80,50,000$ |
| :--- | :--- |

4. Calculation of Gross Factory Cost

| Particular | Amount (₹) |
| :--- | ---: |
| Cost of Factory Cost | $80,50,000$ |
| Less: Opening Work in Process | $(2,00,000)$ |
| Add: Closing Work in Process | $5,00,000$ |
| Cost of Gross Factory Cost | $83,50,000$ |

5. Calculation of Prime Cost

| Particular | Amount (₹) |
| :--- | ---: |
| Cost of Gross Factory Cost | $83,50,000$ |
| Less: Consumable stores \& spares | $(3,50,000)$ |
| Less: Lease rental of production assets | $(2,00,000)$ |
| Prime Cost | $78,00,000$ |

6. Calculation of Cost of Materials Consumed \& Labour cost

Let Cost of Material Consumed $=\mathrm{M}$ and Labour cost $=0.5 \mathrm{M}$
Prime Cost $=$ Cost of Material Consumed + Labour Cost 78,00,000 $=\mathrm{M}+0.5 \mathrm{M}$
M = 52,00,000
Therefore, Cost of Material Consumed = ₹ 52,00,000 and Labour Cost =₹ $26,00,000$

## (i) Calculation of Value of Materials Purchased

| Particular | Amount (₹) |
| :--- | ---: |
| Cost of Material Consumed | $52,00,000$ |
| Add: Value of Closing stock | $2,92,000$ |
| Less: Value of Opening stock | $(2,42,000)$ |
| Value of Materials Purchased | $\mathbf{5 2 , 5 0 , 0 0 0}$ |

Cost Sheet

| SI. | Particulars | Total Cost <br> $(₹)$ |
| :--- | :--- | ---: |
| 1. | Direct materials consumed: | $\mathbf{2 , 4 2 , 0 0 0}$ |
|  | Opening Stock of Raw Material | $\mathbf{5 2 , 5 0 , 0 0 0}$ |
|  | Add: Additions/ Purchases [balancing figure as per requirement <br> (i)] | $\mathbf{( 2 , 9 2 , 0 0 0 )}$ |
|  | Less: Closing stock of Raw Material | $\mathbf{5 2 , 0 0 , 0 0 0}$ |
|  | Material Consumed | $\mathbf{2 6 , 0 0 , 0 0 0}$ |
| 2. | Direct employee (labour) cost | $\mathbf{7 8 , 0 0 , 0 0 0}$ |
| $\mathbf{3 .}$ | Prime Cost (1+2) | $\mathbf{3 , 5 0 , 0 0 0}$ |
| 4. | Add: Works/ Factory Overheads | $\mathbf{2 , 0 0 , 0 0 0}$ |
|  | Consumable stores and spares | $83,50,000$ |
|  | Lease rent of production asset | $\mathbf{2 , 0 0 , 0 0 0}$ |
| 5. | Gross Works Cost (3+4) | $(5,00,000)$ |
| 6. | Add: Opening Work in Process | $80,50,000$ |
| 7. | Less: Closing Work in Process |  |
| $\mathbf{8 .}$ | Works/ Factory Cost (5+6-7) |  |


| 9. | Add: Quality Control Cost | $\mathbf{2 , 0 0 , 0 0 0}$ |
| :--- | :--- | ---: |
| 10. | Add: Research and Development Cost | $\mathbf{2 , 5 0 , 0 0 0}$ |
| 11. | Less: Credit for Recoveries/Scrap/By-Products/misc. income | $\mathbf{( 2 , 4 4 , 0 0 0 )}$ |
| $\mathbf{1 2 .}$ | Cost of Production (8+9+10-11) | $\mathbf{8 2 , 5 6 , 0 0 0}$ |
| 13. | Add: Opening stock of finished goods | - |
| 14. | Less: Closing stock of finished goods (5000 Units) | $\mathbf{( 4 , 3 0 , 0 0 0 )}$ |
| $\mathbf{1 5 .}$ | Cost of Goods Sold (12+13-14) | $\mathbf{7 8 , 2 6 , 0 0 0}$ |
| 16. | Add: Administrative Overheads (General) | $\mathbf{2 , 2 4 , 0 0 0}$ |
| 17. | Add: Secondary packing | $\mathbf{1 , 8 2 , 0 0 0}$ |
| 18. | Add: Selling Overheads\& Distribution Overheads | $\mathbf{4 , 1 3 , 0 0 0}$ |
| 19. | Cost of Sales (15+16+17+18) | $\mathbf{8 6 , 4 5 , 0 0 0}$ |
| $\mathbf{2 0 .}$ | Profit | $\mathbf{1 3 , 6 5 , 0 0 0}$ |
| $\mathbf{2 1 .}$ | Sales 91,000 units@ ₹ $\mathbf{1 1 0}$ per unit | $\mathbf{1 , 0 0 , 1 0 , 0 0 0}$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Elements of Cost and Preparation of Cost Sheet'. This question required to calculate value of material purchased, prepare cost sheet and calculate profit of the firm based on information provided. Most of the examinees were unable to calculate value of material purchased using reverse calculation. Poor performance was observed.

## Question 24

G Ltd. manufactures leather bags for office and school purposes. The following information is related with the production of leather bags for the month of September, 2021.
(1) Leather sheets and cotton clothes are the main inputs and the estimated requirement per bag is two metres of leather sheets and one metre of cotton cloth. 2,000 metre of leather sheets and 1,000 metre of cotton cloths are purchased at $₹ \mathbf{3 , 2 0 , 0 0 0}$ and $₹ \mathbf{1 5 , 0 0 0}$ respectively. Freight paid on purchases is $₹ \mathbf{8 , 5 0 0}$.
(2) Stitching and finishing need 2,000 man hours at ₹ 80 per hour.
(3) Other direct costs of ₹ $\mathbf{1 0}$ per labour hour is incurred.
(4) G Ltd. have 4 machines at a total cost of ₹ $22,00,000$. Machines have a life of 10 years with a scrap value of $10 \%$ of the original cost. Depreciation is charged on a straight-line method.
(5) The monthly cost of administration and sales office staffs are ₹ 45,000 and ₹ 72,000 respectively. G Ltd. pays ₹ $\mathbf{1 , 2 0 , 0 0 0}$ per month as rent for a $\mathbf{2 , 4 0 0}$ sq. feet factory premises. The administrative and sales office occupies $\mathbf{2 4 0}$ sq. feet and $\mathbf{2 0 0}$ sq. feet respectively of factory space.
(6) Freight paid on delivery of finished bags is ₹ 18,000 .
(7) During the month, 35 kgs of scrap (cuttings of leather and cotton) are sold at $₹ \mathbf{1 5 0}$ per kg.
(8) There are no opening and closing stocks of input materials. There is a finished stock of 100 bags in stock at the end of the month.

You are required to prepare a cost sheet in respect of above for the month of September 2021 showing:
(i) Cost of Raw Material Consumed
(ii) Prime Cost
(iii) Works/Factory Cost
(iv) Cost of Production
(v) Cost of Goods Sold
(vi) Cost of Sales (10 Marks Dec '21, RTP Nov'19)

## Answer 24

No. of bags manufactured $=1,000$ units
Cost sheet for the month of September 2021

|  | Particulars | Total Cost <br> (₹) | Cost per unit <br> (₹) |
| :---: | :---: | :---: | :---: |
| 1. | Direct materials consumed: |  |  |
|  | - Leather sheets | 3,20,000 | 320.00 |
|  | - Cotton cloths | 15,000 | 15.00 |
|  | Add: Freight paid on purchase | 8,500 | 8.50 |
|  | (i) Cost of material consumed | 3,43,500 | 343.50 |
| 2. | Direct wages ( $₹ 80 \times 2,000$ hours) | 1,60,000 | 160.00 |
| 3. | Direct expenses ( $₹ 10 \times 2,000$ hours) | 20,000 | 20.00 |
| 4. | (ii) Prime Cost | 5,23,500 | 523.50 |
| 5. | Factory Overheads: Depreciation on machines $\{(₹ 22,00,000 \times 90 \%) \div 120$ months $\}$ | 16,500 | 16.50 |
|  | Apportioned cost of factory rent | 98,000 | 98.00 |
| 6. | (iii) Works/ Factory Cost | 6,38,000 | 638.00 |
| 7. | Less: Realisable value of cuttings (₹ $150 \times 35 \mathrm{~kg}$.) | $(5,250)$ | (5.25) |
| 8. | (iv) Cost of Production | 6,32,750 | 632.75 |
| 9. | Add: Opening stock of bags | 0 |  |
| 10. | Less: Closing stock of bags (100 bags $\times$ ₹ 632.75) | $(63,275)$ |  |
| 11. | (v) Cost of Goods Sold | 5,69,475 | 632.75 |
| 12. | Add: Administrative Overheads: |  |  |
|  | - Staff salary | 45,000 | 50.00 |
|  | - Apportioned rent for administrative office | 12,000 | 13.33 |
| 13. | Add: Selling and Distribution Overheads |  |  |
|  | - Staff salary | 72,000 | 80.00 |
|  | - Apportioned rent for sales office | 10,000 | 11.11 |
|  | - Freight paid on delivery of bags | 18,000 | 20.00 |
| 14. | (vi) Cost of Sales | 7,26,475 | 807.19 |

## Apportionment of Factory rent:

To factory building $\{(₹ 1,20,000 \div 2400$ sq. feet $) \times 1,960$ sq. feet $\}=₹ 98,000$
To administrative office $\{(₹ 1,20,000 \div 2400$ sq. feet $) \times 240$ sq. feet $\}=₹ 12,000$
To sale office $\{(₹ 1,20,000 \div 2400$ sq. feet $) \times 200$ sq. feet $\}=₹ 10,000$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical problem on preparation of Cost Sheet; Cost of raw material consumed, Prime Cost, Works cost, Production Cost, Cost of Goods Sold and Cost of sales were required to be calculated after making adjustments for given relevant items. Most of the examinees were not well versed about the treatment of some items like sale of scrap, office rent and valuation of closing stock. Overall performance of the examinees was poor.

## Question 25

The following data are available from the books and records of A Ltd. for the month of April 2022:

| Particulars | Amount (₹) |
| :--- | ---: |
| Stock of raw materials on 1st April 2022 | $\mathbf{1 0 , 0 0 0}$ |
| Raw materials purchased | $\mathbf{2 , 8 0 , 0 0 0}$ |
| Manufacturing wages | $\mathbf{7 0 , 0 0 0}$ |
| Depreciation on plant | $\mathbf{1 5 , 0 0 0}$ |
| Expenses paid for quality control check activities | $\mathbf{4 , 0 0 0}$ |
| Lease Rent of Production Assets | $\mathbf{1 0 , 0 0 0}$ |
| Administrative Overheads (Production) | $\mathbf{1 5 , 0 0 0}$ |
|  <br> maintenance | $\mathbf{1 , 0 0 0}$ |
| Stock of raw materials on 30th April 2022 | $\mathbf{4 0 , 0 0 0}$ |
| Primary packing cost | $\mathbf{8 , 0 0 0}$ |
| Research \& development cost (Process related) | 5,000 |
| Packing cost for redistribution of finished goods | $\mathbf{1 , 5 0 0}$ |
| Advertisement expenses | $\mathbf{1 , 3 0 0}$ |

Stock of finished goods as on 1st April 2022 was 200 units having a total cost of $₹ \mathbf{2 8 , 0 0 0}$. The entire opening stock of finished goods has been sold during the month Production during the month of April, 2022 was 3,000 units. Closing stock of finished goods as on 30th April, 2022 was 400 units.

You are required to:
I. Prepare a Cost Sheet for the above period showing the:
(i) Cost of Raw Material consumed
(ii) Prime Cost
(iii) Factory Cost
(iv) Cost of Production
(v) Cost of goods sold
(vi) Cost of Sales
II. Calculate selling price per unit, if sale is made at a profit of $\mathbf{2 0 \%}$ on sales. (PYP 10 Marks May'22) Answer 25

Statement of Cost (for the month of April, 2022)

| S. No. | Particulars | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: | :---: |
| (i) | Opening stock of Raw material <br> Add: Purchase of Raw material <br> Less: Closing stock of raw materials | $\begin{array}{r} 10,000 \\ 2,80,000 \\ (40,000) \\ \hline \end{array}$ | $\begin{array}{r} 2,50,000 \\ 70,000 \end{array}$ |
|  | Raw material consumed <br> Manufacturing wages |  |  |
| (ii) | Prime Cost |  | 3,20,000 |
|  | Factory/work overheads: |  |  |
|  | Depreciation on plant | $\begin{aligned} & 15,000 \\ & 10,000 \end{aligned}$ |  |
|  | Lease rent of production Asset |  |  |
|  | Expenses paid for pollution control and engineering \& Maintenance |  | 26,000 |
| (iii) | Factory/Work Cost | 1,000 | 3,46,000 |
|  | Expenses paid for quality control check activity |  | 4,000 |


|  | Research and Development Cost |
| :---: | :---: |
|  | Administration Overheads (Production) |
|  | Primary Packing Cost |
| (iv) | Cost of Production |
|  | Add: Opening stock of finished goods |
|  | Less: Closing stock of finished goods |
| (v) | Cost of Goods Sold |
|  | Advertisement expenses |
|  | Packing cost for redistribution of finished goods sold |
| (vi) | Cost of Sales |


| 5,000 |
| ---: |
| 15,000 |
| 8,000 |
| $3,78,000$ |
| 28,000 |
| $(50,400)$ |
| $3,55,600$ |
| 1,300 |
| 1,500 |
| $3,58,400$ |

Note: Valuation of Closing stock of finished goods
$\frac{₹ 3,78,000}{300 \text { units }} \times 400$ units
= ₹50,400
Cost per unit sold $=\frac{₹ 3,58,400}{200+3,000,+400}=₹ 128$ per unit
$\therefore$ Selling Price $=\frac{128}{80 \%}$
= ₹160 per unit

## Question 26

PNME Ltd. manufactures two types of masks- 'Disposable Masks' and 'Cloth Masks'. The cost data for the year ended 31stMarch, 2022 is as follows:

|  |  |
| :--- | ---: |
| Direct Materials | $\mathbf{1 2 , 5 0 , 0 0 0}$ |
| Direct Wages | $\mathbf{7 , 0 0 , 0 0 0}$ |
| Production | $4,00,000$ |
| Overhead |  |
| Total | $\mathbf{2 3 , 5 0 , 0 0 0}$ |

It is further ascertained that:

- Direct material cost per unit of Cloth Mask was twice as much of Direct material cost per unit of Disposable Mask.
- Direct wages per unit for Disposable Mask were $60 \%$ of those for Cloth Mask.
- Production overhead per unit was at same rate for both the types of the masks.
- Administration overhead was 50\% of Production overhead for each type of mask.
- $\quad$ Selling cost was ₹ 2 per Cloth Mask.
- $\quad$ Selling Price was ₹ 35 per unit of Cloth Mask.
- No. of units of Cloth Masks sold-45,000
- No. of units of Production of

| Cloth Masks: | $\mathbf{5 0 , 0 0 0}$ |
| :--- | ---: |
| Disposable Masks: | $1,50,000$ |

You are required to prepare a cost sheet for Cloth Masks showing:
(i) Cost per unit and Total Cost.
(ii) Profit per unit and Total Profit. (PYP 10 Marks Nov 22)

No. of units produced $=50,000$ units No. of
units sold $\quad=45,000$ units

| Particulars | Per unit (₹) | Total (₹) |
| :--- | ---: | ---: |
| Direct materials (Working note- (i)) | 10.00 | $5,00,000$ |
| Direct wages (Working note- (ii)) | 5.00 | $2,50,000$ |
| Prime cost | 15.00 | $7,50,000$ |
| Production overhead (Working note- (iii)) | 2.00 | $1,00,000$ |
| Factory Cost | 17.00 | $8,50,000$ |
| Administration Overhead* (50\% of Production | 1.00 | 50,000 |
| Overhead) |  | 18.00 |
| Cost of production | - | $(9,00,000$ |
| Less: Closing stock (50,000 units - 45,000 units) | 18.00 | $8,10,000$ |
| Cost of goods sold i.e. 45,000 units | 2.00 | 90,000 |
| Selling cost | 20.00 | $9,00,000$ |
| Cost of sales/ Total cost | 15.00 | $6,75,000$ |
| Profit | 35.00 | $15,75,000$ |
| Sales value (₹ $35 \times 45,000$ units) |  |  |

## Working Notes:

(i) Direct material cost per unit of Disposable Mask $=\mathrm{M}$ Direct
material cost per unit of Cloth Mask $=2 \mathrm{M}$
Total Direct Material cost $\quad=2 \mathrm{M} \times 50,000$ units $+\mathrm{M} \times 1,50,000$
units Or, ₹ $12,50,000=1,00,000 \mathrm{M}+1,50,000 \mathrm{M}$
Or, $M=\frac{R s .12,50,000}{2,50,000}=$ Rs. 5
Therefore, Direct material Cost per unit of Cloth Mask $=2 \times ₹ 5=₹ 10$
(ii) Direct wages per unit for Cloth Mask = W

Direct wages per unit for Disposable Mask=
0.6W

So, (W x 50,000) + (0.6W x 1,50,000) = ₹ 7,00,000
$\mathrm{W}=₹ 5$ per unit
Therefore, Direct material Cost per unit of Cloth Mask $=₹ 5$
(iii) Production overhead per unit $=\frac{R s .4,00,000}{(50,000+1,50,000)}=$ Rs. 2

Production overhead for Cloth Mask = ₹ $2 \times 50,000$ units = ₹ 1,00,000

* Administration overhead is related to production overhead in the question and hence to be considered in cost of production only.


## Question 27

The following information is available from SN Manufacturing Limited's for the month of April 2023.

|  | April 1 | April 30 |
| :--- | :--- | :--- |
| Opening and closing inventories data: |  |  |
| Stock of finished goods | 2,500 units | $?$ |
| Stock of raw materials | ${f4d714896-a38d-45fa-9abe-c40851474cba} 38,600$ |  |


| Work-in progress | {$`$-42,500} & 42,800 \hline Other data are: & & \hline Raw materials Purchased & & 6,95,000 \hline Carriage inward & & 36,200 \hline Direct wages paid & & 3,22,800 \hline Royalty paid for production & & 35,800 \hline Purchases of special designs, moulds and patterns (estimated life 12 Production cycles) & & 1,53,600 \hline Power, fuel and haulage (factory) & & 70,600 \hline Research and development costs for improving the production process (amortized) & & 31,680 \hline Primary packing cost (necessary to maintain quality) & & ` 6920 |  |
| :---: | :---: | :---: |
| Administrative Overhead |  | - 46,765 |
| Salary and wages for supervisor and foremen |  | 28,000 |

## Other information:

- Opening stock of finished goods is to be valued at ` 8.05 per unit.
- During the month of April, 1,52,000 units were produced and 1,52,600 units were sold. The closing stock of finished goods is to be valued at the relevant month's cost of production. The company follows the FIFO method.
- Selling and distribution expenses are to be charged at 20 paisa per unit.
- Assume that one production cycle is completed in one month.


## Required:

(i) Prepare a cost sheet for the month ended on April 30, 2023, showing the various elements of cost (raw material consumed, prime cost, factory cost, cost of production, cost of goods sold, and cost of sales).
(ii) Calculate the selling price per unit if profit is charged at 20 percent on sales. ( 10 Marks, May '23)
Answer 27
Cost Sheet for the month of April 2023

\begin{tabular}{|c|c|c|}
\hline Particulars \& \begin{tabular}{l}
Amount \\
(`)
\end{tabular} \& Amount (') \\
\hline Raw materials consumed: \& \& \\
\hline Raw materials purchased \& 6,95,000 \& \\
\hline Add: Carriage inward \& 36,200 \& \\
\hline Add: Value of opening stock of raw materials \& 42,500 \& \\
\hline Less: Value of closing stock of raw materials \& \((38,600)\) \& 7,35,100 \\
\hline Direct wages paid \& \& 3,22,800 \\
\hline Royalty paid for production \& \& 35,800 \\
\hline Amortised cost of special designs, moulds and patterns ('153,600 \(\div\) 12) \& \& 12,800 \\
\hline Power, fuel and haulage (factory)* \& \& 70,600 \\
\hline Prime Cost* \& \& 11,77,100 \\
\hline Salary and wages of supervisor and foremen \& \& 28,000 \\
\hline Gross Works Cost \& \& 12,05,100 \\
\hline Add: Opening stock of WIP \& \& 42,500 \\
\hline 94646 \& \& \((42,800)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Less: Closing stock of WIP \& \& 12,04,800 \\
\hline Factory/ Works Cost \& \& \\
\hline Research and development cost \& 31,680 \& \\
\hline Primary packing cost \& 6,920 \& 38,600 \\
\hline Cost of Production \& \& 12,43,400 \\
\hline Add: Opening stock of finished goods (` \(8.05 \times 2,500\) units) \& \& 20,125 \\
\hline Less: Value of closing stock \([(2,500+152,000-1,52,600) \times\) \& \& \((15,542)\) \\
\hline (12,43,400 \(\div 152000\) ) \& \& 12,47,983 \\
\hline Cost of Goods Sold \& \& \\
\hline Add: Administrative overheads \& \& 46,765 \\
\hline Add: Selling and distribution expenses (` \(0.20 \times 1,52,600\) ) \& \& 30,520 \\
\hline Cost of Sales \& \& 13,25,268 \\
\hline Add: Profit (20\% on Sales or \(25 \%\) on cost of sales) \& \& 3,31,317 \\
\hline Sales value \& \& 16,56,585 \\
\hline Selling price per unit (` \(16,56,585 \div 1,52,600\) units) \& \& 10.86 \\
\hline
\end{tabular}
*May be taken as part of Factory / Works cost, however Total Factory Cost will remain the same. If taken as part of factory cost then prime cost will be `11,06,500.

Alternative Solution (Based on work-in-progress figure of ` 45,500 as on 1st April 2023 as per Hindi part of Question paper)

| Particulars | Amount ( ) | Amount ( ) |
| :---: | :---: | :---: |
| Raw materials consumed: |  |  |
| Raw materials purchased | 6,95,000 |  |
| Add: Carriage inward | 36,200 |  |
| Add: Value of opening stock of raw materials | 42,500 |  |
| Less: Value of closing stock of raw materials | $(38,600)$ | 7,35,100 |
| Direct wages paid |  | 3,22,800 |
| Royalty paid for production |  | 35,800 |
| Amortised cost of special designs, moulds and patterns (` 153,600 \(\div\) 12) & & \[ 12,800 \] \\ \hline Power, fuel and haulage (factory)* & & 70,600 \\ \hline Prime Cost & & 11,77,100 \\ \hline Salary and wages of supervisor and foremen & & 28,000 \\ \hline Gross Works Cost & & 12,05,100 \\ \hline Add: Opening stock of WIP & & 45,500 \\ \hline Less: Closing stock of WIP & & \((42,800)\) \\ \hline Factory/ Works Cost & & 12,07,800 \\ \hline Research and development cost & 31,680 & \\ \hline Primary packing cost & 6,920 & 38,600 \\ \hline Cost of Production & & 12,46,400 \\ \hline Add: Opening stock of finished goods (` $8.05 \times 2,500$ units) |  | 20,125 |
| Less: Value of closing stock [(2,500+1,52,000-1,52,600) $\times$ (12,46,400 $\div 1,52,000$ ) |  | $(15,580)$ |
| Cost of Goods Sold |  | 12,50,945 |
| Add: Administrative overheads |  | 46,765 |
| 94646 |  | 30,520 |


| Add: Selling and distribution expenses (` \(0.20 \times 1,52,600)\) & \(13,28,230\) \\ Cost of Sales & \\ \hline Add: Profit ( \(20 \%\) on Sales or \(25 \%\) on cost of sales) & \(3,32,058\) \\ \hline Sales value & \(16,60,288\) \\ \hline Selling price per unit (` $16,60,288 \div 1,52,600$ units) | 10.88 |
| :--- | :--- |

*May be taken as part of Factory / Works cost, however Total Factory Cost will remain the same. If taken as part of factory cost then prime cost will be ` $11,06,500$.

## Chapter 7

## Cost Accounting System

## Question 1

A manufacturing company disclosed a net loss of Rs.3,47,000 as per their cost accounts for the year ended March 31,20X8. The financial accounts however disclosed a net loss of Rs. 5,10,000 for the same period. The following information was revealed because of scrutiny of the figures of both the sets of accounts.
(Rs.)

| (i) | Factory Overheads under-absorbed | $\mathbf{4 0 , 0 0 0}$ |
| :--- | :--- | ---: |
| (ii) | Administration Overheads over-absorbed | $\mathbf{6 0 , 0 0 0}$ |
| (iii) | Depreciation charged in Financial Accounts | $\mathbf{3 , 2 5 , 0 0 0}$ |
| (iv) | Depreciation charged in CostAccounts | $\mathbf{2 , 7 5 , 0 0 0}$ |
| (v) | Interest on investments not included in Cost Accounts | $\mathbf{9 6 , 0 0 0}$ |
| (vi) | Income-tax provided | $\mathbf{5 4 , 0 0 0}$ |
| (vii) | Interest on loan funds in Financial Accounts | $\mathbf{2 , 4 5 , 0 0 0}$ |
| (viii) Transfer fees (credit in financial books) | $\mathbf{2 4 , 0 0 0}$ |  |
| (ix) | Stores adjustment (credit in financial books) | 14,000 |
| (x) | Dividend received | $\mathbf{3 2 , 0 0 0}$ |
| PREPARE a memorandum Reconciliation Account. |  |  |

(MTP March '19, 5 Marks, RTP Nov 20) (Same concept different figures MTP 5 Marks Mar 21, Old \& New SM, MTP Oct'19 5 Marks)
Answer 1
Memorandum Reconciliation Accounts
Dr. Cr.

|  | (Rs.) |  | (Rs.) |
| :--- | ---: | :--- | :---: |
| To Net Loss as per Costing <br> books | $3,47,000$ | By Administration overheads over <br> Recovered in cost accounts | 60,000 |
| To Factory overheads <br> under absorbed inCost <br> Accounts | 40,000 | By Interest on investment not <br> included in Cost Accounts | 96,000 |
| To Depreciation <br> under charged in Cost <br> Accounts | 50,000 | By Transfer fees in Financial books | 24,000 |
| To Income- Tax not <br> provided in Cost Accounts | 54,000 | By Stores adjustment(Credit in <br> financial books) | 14,000 |
| To Income- Tax not <br> provided in Cost Account | 54,000 | By Dividend received infinancial books | 32,000 |
| To Interest on Loan <br> Funds in Financial Accounts | $2,45,000$ |  | By Net lossasperFinancialbooks |
|  | $7,36,000$ |  | $5,10,000$ |

## Question 2

"Is reconciliation of cost accounts and financial accounts necessary in case of integrated accounting system?" EXPLAIN. (MTP 5 Marks ,March'19 , March '23 , April '23 \& Sep '23 )(RTP May '22)

## Answer 2

VIVITSU

In integrated accounting system cost and financial accounts are kept in the same set of books.
Such a system will have to afford full information required for Costing as well as for Financial Accounts. In other words, information and data should be recorded in such a way so as to enable the firm to ascertain the cost (together with the necessary analysis) of each product, job, process, operation or any other identifiable activity. It also ensures the ascertainment of marginal cost, variances, abnormal losses and gains. In fact all information that management requires from a system of Costing for doing its work properly is made available. T he integrated accounts give full information in such a manner so that the profit and loss account and the balance sheet can be prepared according to the requirements of law and the management maintains full control over the liabilities and assets of its business.

Since, only one set of books are kept for both cost accounting and financial accounting purpose so there is no necessity of reconciliation of cost and financial accounts.

## Question 3

| Following information have been extracted from the cost records of XYZ Pvt. Ltd. |  |
| :--- | :---: |
| Stores: | (₹) |
| Opening balance | $\mathbf{1 , 0 8 , 0 0 0}$ |
| Purchases | $\mathbf{5 , 7 6 , 0 0 0}$ |
| Transfer from WIP | $\mathbf{2 , 8 8 , 0 0 0}$ |
| Issue to WIP | $\mathbf{5 , 7 6 , 0 0 0}$ |
| Issue for repairs | $\mathbf{7 2 , 0 0 0}$ |
| Deficiency found in stock | $\mathbf{2 1 , 6 0 0}$ |
| Work-in-process: | (₹) |
| Opening balance | $\mathbf{2 , 1 6 , 0 0 0}$ |
| Direct wages applied | $\mathbf{2 , 1 6 , 0 0 0}$ |
| Overheads charged | $\mathbf{8 , 6 4 , 0 0 0}$ |
| Closing balance | $\mathbf{1 , 4 4 , 0 0 0}$ |
| Finished Production: | $(₹)$ |
| Entire production is sold at a profit of 15\% on cost of WIP |  |
| Wagespaid | $\mathbf{2 , 5 2 , 0 0 0}$ |
| Overheads incurred | $\mathbf{9 , 0 0 , 0 0 0}$ |

PREPARE Stores Ledger Control Account, Work-in-Process Control Account, Overheads Control Account and Costing Profit and Loss Account. (MTP March'18,10Marks) (Same concept but different figures MTP Oct'18 10 Marks)

## Answer 3

| Stores Ledger Control A/c |  |  |  |
| :---: | :---: | :---: | :---: |
| Particulars |  | Particulars | (₹) |
| To Balance b/d | 1,08,000 | By Work in Process A/c | 5,76,000 |
| To General Ledger |  |  |  |
| Adjustment A/c | 5,76,000 | By Overhead Control A/c | 72,000 |
| To Work in Process A/c | 2,88,000 | By Overhead Control A/c | 21,600* |
|  |  | (Deficiency) |  |
|  |  | By Balance c/d | 3,02,400 |
|  | 9,72,000 |  | 9,72,000 |
| *Deficiency assumed as normal (alternatively can be treated as abnormal loss) |  |  |  |
| Work in Process Control A/c |  |  |  |
| Particulars |  | Particulars | (₹) |
| To Balance b/d | 2,16,000 | By Stores Ledger Control a/c | 2,88,000 |
| To Stores Ledger Control A/c | 5,76,000 | By Costing P/L A/c | 14,40,000 |


|  |  | (Balancing figures being Cost of |  |
| :---: | :---: | :---: | :---: |
|  |  | finished goods) |  |
| To Wages Control A/c | 2,16,000 | By Balance c/d | 1,44,000 |
| To Overheads Control A/c | 8,64,000 |  |  |
|  | 18,72,000 |  | 18,72,000 |
| Overheads Control A/c |  |  |  |
| Particulars | (₹) | Particulars | (₹) |
| To Stores Ledger Control A/c | 72,000 | By Work in Process A/c | 8,64,000 |
| To Stores Ledger Control A/c | 21,600 | By Balance c/d | 1,65,600 |
|  |  | (Under absorption) |  |
| To Wages Control A/c |  |  |  |
| (₹ 2,52,000-₹ 2,16,000) | 36,000 |  |  |
| To Gen. Ledger Adjust. A/c | 9,00,000 |  |  |
|  | 10,29,600 |  | 10,29,600 |
| Costing Profit \& Loss A/c |  |  |  |
| Particulars | (₹) | Particulars | (₹) |
| To Work in process | 14,40,000 | By Gen. ledger Adjust. A/c | 16,56,000 |
|  |  | (Sales) ( ₹ 14,40,000 × 115\%) |  |
| ToGen. Ledger Adjust. A/c (Profit) | 2,16,000 |  |  |
|  | 16,56,000 |  | 16,56,000 |

## Question 4

The Trading and Profit and Loss Account of a company for the year ended 31-03-2020 is as under:
Trading and Profit and Loss Account

| Particulars | Rs. | Particulars | Rs. |
| :--- | ---: | :--- | :---: |
| To Materials | $26,80,000$ | By Sales (50,000 units) | $\mathbf{6 2 , 0 0 , 0 0 0}$ |
| To Wages | $\mathbf{1 7 , 8 0 , 0 0 0}$ | By Closing stock <br> (2,000 units) | $\mathbf{1 , 5 0 , 0 0 0}$ |
| To Factory <br> expenses | $\mathbf{9 , 5 0 , 0 0 0}$ | By Dividend <br> received | 80,000 |
| To General administrative <br> expenses | $2,50,000$ |  |  |
| To Selling Expenses | $\mathbf{7 0 , 0 0 0}$ |  | $64,30,000$ |
| To Preliminary expenses <br> written off | $64,30,000$ |  |  |
| To Net profit |  |  |  |

In the Cost Accounts:
(i) Factory expenses have been allocated to production at 20\% of Prime Cost.
(ii) General administrative expenses absorbed at 10\% of factory cost.
(iii) Selling expenses charged at Rs. 10 per unit sold. Required:

PREPARE the Costing Profit and Loss Account of the company and RECONCILE the Profit/Loss with the profit as shown in the Financial Accounts. (MTP 10 Marks May 20, Aug 18)

## Answer 4

Workings:
Preparation of Cost Sheet/ Cost Statement

| Particulars | Amount (Rs.) |
| :--- | ---: |
| Materials | $26,80,000$ |
| Wages | $17,80,000$ |
| Prime Cost | $44,60,000$ |
| Add: Factory expenses (20\% of Rs. 44,60,000) | $8,92,000$ |
| Factory Cost / Cost of Production | $53,52,000$ |
| Less: Closing Stock (Rs. 53,52,000 / 52,000 units $\times$ |  |
|  | 2,000 units) |

## Costing Profit and Loss Account

| Particulars | Amount (Rs.) | Particulars | Amount (Rs.) |
| :--- | ---: | :--- | :---: |
| To Materials | $26,80,000$ | By Sales | $62,00,000$ |
| To Wages | $17,80,000$ | By Closing stock | $2,05,846$ |
| To Factory expenses | $8,92,000$ |  |  |
| To General administrative expenses | $5,35,200$ |  |  |
| To Selling expenses | $5,00,000$ |  |  |
| To Profit (Balancing figure) | 18,646 |  | $64,05,846$ |
|  | $64,05,846$ |  |  |

Reconciliation of profit as per Cost Accounts and as per Financial Accounts

| Particulars | Amount (Rs.) |
| :--- | ---: |
| Profit as per Cost Accounts Additions: | 18,646 |
| Additions: |  |
| General administrative expenses (Over-absorbed) (Rs. 5,35,200 - Rs.4,80,200) | 55,000 |
| Selling expenses (Overcharged) (Rs. 5,00,000 - Rs. 2,50,000) | $2,50,000$ |
| Dividend received | 80,000 |
|  | $4,03,646$ |
| Deductions: |  |
| Factory expenses (Under -absorbed) (Rs.9,50,000 - 8,92,000) | 58,000 |
| Closing stock (Over-valued) (Rs.2,05,846 - Rs. 1,50,000) | 55,846 |
| Preliminary expenses written off | 70,000 |
| Profit as per Financial Accounts | $1,83,846$ |
|  | $2,19,800$ |

## Question 5

LIST five financial expenses that causes differences in Financial and Cost Accounts. (MTP 5 Marks, Oct.'20, MTP 5 Marks Sep'22)

## Answer 5

Financial expenses causing differences in Financial and Cost Accounts:

VIVITSU
(i) Interest on loans or bank mortgages.
(ii) Expenses and discounts on issue of shares, debentures etc.
(iii) Other capital losses i.e., loss by fire not covered by insurance etc.
(iv) Losses on the sales of fixed assets and investments.
(v) Goodwill written off.
(vi) Preliminary expenses written off.
(vii) Income tax, donations, subscriptions.
(viii) Expenses of the company's share transfer office, if any.

## Question 6

A manufacturing company disclosed a net profit $₹ \mathbf{1 0 , 2 0 , 0 0 0}$ as per their cost accounts for the year ended 31 ${ }^{\text {st }}$ March, 2023. The financial accounts however disclosed a net profit of $₹ \mathbf{6 , 9 4 , 0 0 0}$ for the same period. The following information was revealed as a result of scrutiny of the figures of both the sets of accounts.

|  | (₹) |
| :--- | ---: |
| (i) Factory Overheads under-absorbed | $\mathbf{8 0 , 0 0 0}$ |
| (ii) Administration Overheads over-absorbed | $\mathbf{1 , 2 0 , 0 0 0}$ |
| (iii) Depreciation charged in Financial Accounts | $\mathbf{6 , 5 0 , 0 0 0}$ |
| (iv) Depreciation charged in Cost Accounts | $\mathbf{5 , 5 0 , 0 0 0}$ |
| (v) Interest on investments not included in Cost Accounts | $\mathbf{1 , 9 2 , 0 0 0}$ |
| (vi) Income-tax provided | $\mathbf{1 , 0 8 , 0 0 0}$ |
| (vii) Interest on loan funds in Financial Accounts | $\mathbf{4 , 9 0 , 0 0 0}$ |
| (viii) Transfer fees (credit in financial books) | $\mathbf{4 8 , 0 0 0}$ |
| (ix) Stores adjustment (credit in financial books) | $\mathbf{2 8 , 0 0 0}$ |
| (x) Dividend received | $\mathbf{6 4 , 0 0 0}$ |

PREPARE a Reconciliation statement. (MTP 5 Marks April 23, March '21 \& March '19)

## Answer 6

| Statement of Reconciliation |  |  |
| :--- | ---: | ---: |
| Particulars | Amount (₹) | Amount (₹) |
| Net profit as per Cost accounts |  | $10,20,000$ |
| Add: |  |  |
| Administration Overheads over-absorbed | $1,20,000$ |  |
| Interest on investments | $1,92,000$ |  |
| Transfer fees | 48,000 |  |
| Stores adjustment | 28,000 |  |
| Dividend received | 64,000 | $4,52,000$ |
| Less: |  |  |
| Factory Overheads under-absorbed | $1,00,000$ |  |
| Depreciation under charged | $1,08,000$ |  |
| Income-tax provided | $4,90,000$ | $(7,78,000)$ |
| Interest on loan funds |  | $6,94,000$ |
| Net profit as per Financial accounts |  |  |

The following figures have been taken from the financial accounts of a manufacturing firm for the year ended 31 ${ }^{\text {st }}$ March, 2021:

|  | (Rs.) |
| :--- | ---: |
| Direct material consumption | $\mathbf{2 0 , 0 0 , 0 0 0}$ |
| Direct wages | $\mathbf{1 2 , 0 0 , 0 0 0}$ |
| Factory overheads | $\mathbf{6 , 4 0 , 0 0 0}$ |
| Administrative overheads | $\mathbf{2 , 8 0 , 0 0 0}$ |
| Selling and distribution overheads | $\mathbf{3 , 8 4 , 0 0 0}$ |
| Bad debts | $\mathbf{3 2 , 0 0 0}$ |
| Preliminary expenses written off | $\mathbf{1 6 , 0 0 0}$ |
| Legal charges | $\mathbf{4 , 0 0 0}$ |
| Dividend received | $\mathbf{4 0 , 0 0 0}$ |
| Interest on fixed deposit | $\mathbf{8 , 0 0 0}$ |
| Sales - 48,000 units | $\mathbf{4 8 , 0 0 , 0 0 0}$ |
| Closing stock: |  |
| $-\quad$ Finished stock $-\mathbf{4 , 0 0 0}$ units | $\mathbf{3 , 2 0 , 0 0 0}$ |
| $-\quad$ Work-in-process | $\mathbf{9 6 , 0 0 0}$ |

The cost accounts for the same period reveal that the Direct Material consumption was Rs. 22,40,000; Factory overhead is recovered at $20 \%$ on prime cost; Administration overhead is recovered @ Rs. 4.8 per unit of production; and Selling and Distribution overheads are recovered at Rs. 6.40 per unit sold.

## Required:

PREPARE Costing and Financial Profit \& Loss Accounts and RECONCILE the difference in the profit as arrived at in the two sets of accounts. (MTP 10 Marks, Apr.'21) (Same concept different figures Old \& New SM)

## Answer 7

Costing Profit and Loss Account

| Particulars | Amount (Rs.) | Particulars | Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| To Direct Material consumed | 22,40,000 | By Sales | 48,00,000 |
| To Direct Wages | 12,00,000 | By Closing Work-in-process | 96,000 |
| Prime Cost | 34,40,000 | $\begin{aligned} & \text { By Closing Finished stock } \\ & \left(\frac{\text { Rs. } 41,28,000-\text { Rs. } 96,000}{52,000 \text { units }} \times 4,000\right) \end{aligned}$ | 3,10,154 |
| To Factory overheads (20\% of prime cost) | 6,88,000 |  |  |
|  | 41,28,000 |  |  |
| To Administrative overheads (Rs. $4.80 \times 52,000$ * units) | 2,49,600 |  |  |
| ```To Selling & distribution overheads (Rs.6.40 < 48,000 units)``` | 3,07,200 |  |  |
| To Net profit (balancing figure) | 5,21,354 |  |  |
|  | 52,06,154 |  | 52,06,154 |
| $\begin{aligned} * \text { Units produced } \quad & =\text { Units sold }+ \text { Closing stock }- \text { Opening stock } \\ & =48,000+4,000-0=52,000 \text { units } \end{aligned}$ |  |  |  |

Financial Profit and Loss Account

| Particulars | Amount <br> (Rs.) | Particulars | Amount <br> (Rs.) |
| :--- | ---: | :--- | ---: |
| To Direct Material consumed | $20,00,000$ | By Sales | $48,00,000$ |
| To Direct Wages | $12,00,000$ | By Dividend received | 40,000 |
| To Factory overheads | $6,40,000$ | By Interest on fixed deposit | 8,000 |
| To Administrative overheads | $2,80,000$ | By Closing Work-in-process | 96,000 |
| To Selling \& distribution overheads | $3,84,000$ | By Closing Finished stock | $3,20,000$ |
| To Bad debts | 32,000 |  |  |
| To Preliminary expenses | 16,000 |  |  |
| To Legal charges | 4,000 |  |  |
| To Net profit (balancing figure) | $7,08,000$ |  |  |


| Reconciliation Statement |  |  |
| :--- | ---: | ---: |
| Particulars | Amount <br> (Rs.) | Amount <br> (Rs.) |
| Net profit as per Financial Profit \& Loss A/c |  | $7,08,000$ |
| Add: Administrative overheads (2,80,000 - 2,49,600) | 30,400 |  |
| Selling \& Distribution overheads (3,84,000-3,07,200) | 76,800 |  |
| Bad debts | 32,000 |  |
| Preliminary expenses | 16,000 |  |
| Legal charges | 4,000 | $1,59,200$ |
| Less:Difference in value of materials consumed (22,40,000-   <br> 20,00,000) $2,40,000$  <br> Factory overheads (6,88,000 - 6,40,000) 48,000  <br> Dividend received 40,000  <br> Interest on fixed deposit 8,000  <br> Closing stock (3,20,000 - 3,10,154) 9,846 $(3,45,846)$ <br> Profit as per Costing Profit \& Loss A/c  $5,21,354$ |  |  |

## Question 8

XYZ Ltd. maintains a non-integrated accounting system for the purpose of management information. The following are the data related with year 2020-21:

| Particulars | Amount ('000) |
| :--- | ---: |
| Opening balances: |  |
| - Stores ledger control A/c | $\mathbf{4 8 , 0 0 0}$ |
| - Work-in-process control A/c | $\mathbf{1 2 , 0 0 0}$ |
| - Finished goods control A/c | $\mathbf{2 , 5 8 , 0 0 0}$ |
| - Building construction A/c | $\mathbf{3 , 2 4 , 0 0 0}$ |
| - Cost ledger control A/c |  |
| During the year following transactions took place: | $\mathbf{2 4 , 0 0 0}$ |
| Materials: | $\mathbf{3 0 , 0 0 0}$ |
| $-\quad$ Purchased | $\mathbf{3 , 6 0 0}$ |
| $-\quad$ Issued to production | $\mathbf{2 , 4 0 0}$ |
| $-\quad$ Issued to general maintenance |  |
| $-\quad$ Issued to building construction |  |
| Wages: |  |


| - Gross wages paid | $\mathbf{9 0 , 0 0 0}$ |
| :--- | ---: |
| - Indirect wages paid | $\mathbf{2 4 , 0 0 0}$ |
| - For building construction | $\mathbf{6 , 0 0 0}$ |
| Factory overheads: | $\mathbf{9 6 , 0 0 0}$ |
| - Actual amount incurred (excluding items shown above) | $\mathbf{1 2 , 0 0 0}$ |
| - Absorbed in building construction | $\mathbf{4 , 8 0 0}$ |
| - Under-absorbed | $\mathbf{3 , 0 0 0}$ |
| Royalty paid | $\mathbf{1 5 , 0 0 0}$ |
| Selling distribution and administration overheads | $\mathbf{2 , 7 0 , 0 0 0}$ |
| Sales |  |

At the end of the year, the stock of raw material and work-in-process was ₹ $33,00,000$, and $₹ 15,00,000$ respectively. The loss arising in the raw material account is treated as factory overheads. The building under construction was completed during the year. Gross profit margin is $\mathbf{2 0 \%}$ on sales.

Required: PREPARE the relevant control accounts to record the above transactions in the cost ledger of the company. (MTP 10 Marks Nov '21) (RTP Nov '21 \& May 22) (Same concept different figures Old \& New SM)
Answer 8
Cost Ledger Control Account

| Particulars | (₹in <br> ‘000) | Particulars | (₹in <br> '000) |
| :--- | :--- | :--- | :--- |
| To Costing P\&L A/c | $2,70,000$ | By Balance b/d | $3,24,000$ |
| To Building Construction A/c | 26,400 | By Stores Ledger control A/c | 24,000 |
| To Balance c/d | $2,89,800$ | By Wages Control A/c | 90,000 |
|  |  | By Factory overhead control A/c | 96,000 |
|  |  | By Royalty A/c | 3,000 |
|  |  | By Selling. Distribution and <br> Administration overheads | 15,000 |
|  |  | By Costing P\&L A/c | 34,200 |
|  | $5,86,200$ |  | $5,86,200$ |

Stores Ledger Control Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Balance b/d | 48,000 | By WIP control A/c | 30,000 |
| To Cost Ledger control A/c | 24,000 | By Factory overheads <br> control A/c | 3,600 |
|  |  | By Building construction A/c | 2,400 |
|  |  | By Factory overhead control <br> A/c (loss) (bal. fig.) | 3,000 |
|  | By Balance c/d | 33,000 |  |
|  | 72,000 |  | 72,000 |

Wages Control Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Cost Ledger control A/c | 90,000 | By Factory overhead control <br> A/c | 24,000 |
|  |  | By Building Construction A/c | 6,000 |
|  |  | By WIP Control A/c (bal. fig.) | 60,000 |
|  | 90,000 |  | 90,000 |

Factory Overhead Control Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Stores Ledger control A/c | 3,600 | By Building Construction A/c | 12,000 |
| To Wages Control A/c | 24,000 | By Costing P\&L A/c | 4,800 |
| To Cost Ledger control A/c | 96,000 | By WIP Control A/c (bal. fig) | $1,09,800$ |
| To Stores Ledger control A/c <br> (loss) | 3,000 |  |  |
|  | $1,26,600$ |  | $\mathbf{1 , 2 6 , 6 0 0}$ |

Royalty Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Cost Ledger control A/c | 3,000 | By WIP Control A/c | 3,000 |
|  | 3,000 |  | 3,000 |


| Work-in-process Control Account |  |  |  |
| :--- | ---: | :--- | ---: |
| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| To Balance b/d | 12,000 | By Finished goods control <br> A/c (bal. fig) | $1,99,800$ |
| To Stores Ledger control A/c | 30,000 |  |  |
| To Wages Control A/c | 60,000 |  |  |
| To Factory overhead control <br> A/c | $1,09,800$ |  | 15,000 |
| To Royalty A/c | 3,000 | By Balance c/d | $2,14,800$ |

Finished Goods Control Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | :---: |
| To Balance b/d | $2,58,000$ | By Cost of Goods Sold A/c <br> (Refer working note) | $2,16,000$ |
| To WIP control A/c | $1,99,800$ | By Balance c/d | $2,41,800$ |
|  | $4,57,800$ |  | $4,57,800$ |

Cost of Goods Sold Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Finished Goods control A/c | $2,16,000$ | By Cost of sales A/c | $2,16,000$ |
|  | $2,16,000$ |  | $2,16,000$ |

Selling, Distribution and Administration Overhead Control Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Cost Ledger control A/c | 15,000 | By Cost of sales A/c | 15,000 |
|  | 15,000 |  | 15,000 |

Cost of Sales Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Cost of Goods Sold A/c | $2,16,000$ | By Costing P\&L A/c | $2,31,000$ |
| To Selling, Distribution <br> and Administration A/c | $\mathbf{1 5 , 0 0 0}$ |  |  |
|  | $2,31,000$ |  | $2,31,000$ |

VIVITSU

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Cost of Sales A/c | $2,31,000$ | By Cost Ledger control A/c | $2,70,000$ |
| To Factory overhead control <br> A/c | 4,800 |  |  |
| To Cost Ledger control A/c | 34,200 |  |  |
|  | $2,70,000$ |  | $2,70,000$ |

Building Construction Account

| Particulars | (₹ in ‘000) | Particulars | (₹ in ‘000) |
| :--- | ---: | :--- | ---: |
| To Balance b/d | 6,000 | By Cost Ledger control A/c | 26,400 |
| To Stores Ledger control A/c | 2,400 |  |  |
| To Wages Control A/c | 6,000 |  |  |
| To Factory overhead control <br> A/c | 12,000 |  | 2 |
|  | 26,400 |  | 26,400 |

Trial Balance

| Particulars | Dr. | Cr. |
| :--- | ---: | ---: |
|  | (₹ in ‘000) | (₹ in '000) |
| Stores Ledger Control A/c | 33,000 |  |
| WIP Control A/c | 15,000 |  |
| Finished Goods Control A/c | $2,41,800$ |  |
| Cost Ledger Control A/c |  | $2,89,800$ |
|  | $2,89,800$ |  |

## Working Note:

Cost of Goods sold $=\frac{\text { Rs. } 2,70,000 \times 80}{100}=$ Rs. $2,16,000$

## Question 9

BRIEF OUT advantages of Integrated Accounts. (MTP 5 Marks April '22, Old \& New SM)

## Answer 9

Advantages of Integrated Accounts are as follows:
(i) No need for Reconciliation- The Question of reconciling costing profit and financial profit does not arise, as there is only one figure of profit.
(ii) Less efforts- Due to use of one set of books, there is a significant saving in efforts made.
(iii) Less time consuming- No delay is caused in obtaining information as it is provided from books of original entry.
(iv) Economical process- It is economical also as it is based on the concept of "Centralisation of Accounting function".

## Question 10

SHOW Journal entries for the following transactions assuming cost and financial accounts are integrated:

| (1) Materials issued: |  |
| :---: | :---: |
| Direct | Rs. 6,50,000 |
| Indirect (to factory) | Rs. 2,30,000 |


| (2) Allocation of wages (25\% indirect) | Rs. 9,00,000 |
| :--- | ---: |
| (3) Under/Over absorbed overheads: |  |
| Factory (Over) | Rs. $\mathbf{6 0 , 0 0 0}$ |
| Administration (Under) | Rs. 50,000 |
| (4) Payment to Creditors (Trade payables) | Rs. 9,00,000 |
| (5) Collection from Debtors (Trade receivables) | Rs. 8,00,000 |

(MTP 5 Marks May 20)

## Answer 10

Journal Entries under Integrated system of accounting

| Particulars |  | Rs. | Rs. |
| :---: | :---: | :---: | :---: |
| (i) Work-in-Progress Control A/c | Dr. | 6,50,000 |  |
| Factory Overhead Control A/c | Dr. | 2,30,000 |  |
| To Stores Ledger Control A/c <br> (Being issue of Direct and Indirect materials) |  |  | 8,80,000 |
| (ii) Work-in Progress Ledger Control A/c Factory | Dr. | 6,75,000 |  |
| Overhead control A/c | Dr. | 2,25,000 |  |
| To Wages Control A/c <br> (Being allocation of Direct and Indirect wages) |  |  | 9,00,000 |
| (iii) Factory Overhead Control A/c | Dr. | 60,000 |  |
| To Costing Profit \& Loss A/c <br> (Being transfer of over absorption of Factory overhead) |  |  | 60,000 |
| Costing Profit \& Loss A/c | Dr. | 50,000 |  |
| To Administration Overhead Control A/c (Being transfer of under absorption of Administration overhead) |  |  | 50,000 |
| (iv) Trade Payables A/c | Dr. | 9,00,000 |  |
| To Cash/ Bank A/c <br> (Being payment made to creditors) |  |  | 9,00,000 |
| v) Cash/ Bank A/c | Dr. | 8,00,000 |  |
| To Trade receivables A/c (Being payment received from debtors) |  |  | 8,00,000 |

## Question 11

The following are the balances existed in the books of JPG Ltd. for the year ended, 31st March, 2019:

| Particulars | Dr. | Cr. |
| :--- | ---: | ---: |
|  | (₹ ) | (₹) |
| Stores Ledger Control A/c | $30,00,000$ |  |
| WIP Control A/c | $15,00,000$ |  |
| Finished Goods Control A/c | $25,00,000$ |  |
| Manufacturing Overheads Control A/c |  | $\mathbf{1 , 5 0 , 0 0 0}$ |
| Cost Ledger Control A/c |  | $\mathbf{6 8 , 5 0 , 0 0 0}$ |
| During the year 2019-20, the following transactionstook place: <br> Particulars |  | Amount (₹) |
| Finished product (at cost) |  | $\mathbf{2 2 , 5 0 , 0 0 0}$ |
| Manufacturing Overhead incurred |  | $8,50,000$ |


| Raw material purchased |  | $12,50,000$ |
| :--- | ---: | ---: |
| Factory wages |  | $4,00,000$ |
| Indirect labour |  | $2,00,000$ |
| Cost of sales |  | $\mathbf{1 7 , 5 0 , 0 0 0}$ |
| Materials issued to production |  | $13,50,000$ |
| Sales returned (at cost) |  | 90,000 |
| Material returned to suppliers |  | $\mathbf{1 , 3 0 , 0 0 0}$ |
| Manufacturing overhead charged to production |  | $\mathbf{8 , 5 0 , 0 0 0}$ |
| Required: |  |  |

PREPARE the following control accounts and Trial balance at the end of the year:
Cost Ledger, Stores Ledger, Work-in-process, Finished Stock, Manufacturing Overhead, Wages and Cost of Sales. (RTP May'20) (Same concepts but different figures to RTP Nov 19, RTP May 18, MTP Oct'22 10 Marks, Old \& New SM)

## Answer 11

Cost Ledger Control Account

| Particulars | (₹ ) | Particulars | (₹) |
| :--- | ---: | :--- | ---: |
| To Stores Ledger control A/c | $1,30,000$ | By Balance b/d | $68,50,000$ |
| To Costing Profit \& Loss A/c | $17,10,000$ | By Stores Ledger control A/c | $12,50,000$ |
| By Wages Control A/c | $6,00,000$ |  |  |
| To Balance c/d | $77,10,000$ | By Manufacturing overhead control A/c | $8,50,000$ |
| $95,50,000$ |  |  |  |
| Store Ledger Control Account |  |  |  |
| Particulars | (₹) | Particulars | $\mathbf{9 5 , 5 0 , 0 0 0}$ |
| To Balance b/d | $30,00,000$ | By WIP Control A/c | $13,50,000$ |
| To Cost Ledger control A/c | $12,50,000$ | By Cost Ledger control A/c (return) | $1,30,000$ |
|  |  | By Balance c/d | $27,70,000$ |


| WIP Control Account |  |  |  |
| :--- | ---: | :--- | :--- |
| Particulars | (₹) | Particulars | (₹) |
| To Balance b/d | $15,00,000$ | By Finished Stock Control A/c | $22,50,000$ |
|  |  |  |  |
| To Wages Control A/c | $4,00,000$ |  | 18 |
| To Stores Ledger control A/c | $13,50,000$ |  | $18,50,000$ |
| To Manufacturing overhead control | $8,50,000$ | By Balance c/d |  |
| A/c | $41,00,000$ |  | $41,00,000$ |

Finished Stock Control Account

| Particulars | (₹) | Particulars | (₹) |
| :--- | ---: | :--- | :--- |
| To Balance b/d | $25,00,000$ | By Cost of Sales A/c | $17,50,000$ |
| To WIP Control A/c | $22,50,000$ |  |  |
| To Cost of Sales A/c (sales return) | 90,000 | By Balance c/d | $30,90,000$ |
|  | $48,40,000$ |  | $48,40,000$ |

Manufacturing Overhead Control Account

| Particulars | (₹) | Particulars | (₹) |
| :--- | ---: | :--- | ---: |
| To Cost Ledger Control A/c | $8,50,000$ | By Balance b/d | $1,50,000$ |
| To Wages Control A/c | $2,00,000$ | By WIP Control A/c | $8,50,000$ |


|  |  | By Costing P\&L A/c (under <br> recovery) | 50,000 |
| :--- | :--- | :--- | ---: |
|  | $10,50,000$ |  | $10,50,000$ |


| Particulars | (₹) | Particulars | (₹) |
| :--- | ---: | :--- | ---: |
| To Cost Ledger Control A/c | $6,00,000$ | By WIP Control A/c | $4,00,000$ |
|  |  | By Manufacturing overhead <br> control A/c | $2,00,000$ |
|  | $6,00,000$ |  | $6,00,000$ |

Cost of Sales Account

| Particulars | (₹) | Particulars | (₹) |
| :--- | ---: | :--- | ---: |
| To Finished Stock Control A/c | $17,50,000$ | By Finished Stock Control A/c <br> (sales return) | 90,000 |
|  |  | By Costing Profit \& Loss A/c | $16,60,000$ |
|  | $17,50,000$ |  | $17,50,000$ |

Trial Balance

| Particulars | Dr. | Cr. |
| :--- | :---: | :---: |
|  | (₹) | (₹) |
| Stores Ledger Control A/c | $27,70,000$ |  |
| WIP Control A/c | $18,50,000$ |  |
| Finished Goods Control A/c | $30,90,000$ |  |
| Cost Ledger Control A/c |  | $77,10,000$ |
|  |  | $77,10,000$ |
| 70 | $77,10,000$ |  |

Working:
Costing P\&L Account

| Particulars | (₹) | Particulars | (₹) |
| :--- | ---: | :--- | :--- |
| To Cost of Sales A/c | $16,60,000$ | By Cost Ledger control A/c | $17,10,000$ |
| To Manufacturing overhead control | 50,000 |  |  |
| A/c | $17,10,000$ |  | $17,10,000$ |

## Question 12

The following is the summarized Trading and Profit and Loss Account of XYZ Ltd. for the year ended 31st March 2019:

| Particulars | Amount (₹) | Particulars | Amount (₹) |
| :--- | ---: | :--- | ---: |
| Direct Material | $14,16,000$ | Sales (30,000 units) | $30,00,000$ |
| Direct wages | $7,42,000$ | Finished stock (2,000units) | $1,67,500$ |
| Works overheads | $4,26,000$ | Work-in-progress: |  |
| Administration overheads | $1,50,000$ | - Materials | 34,000 |
| Selling and distribution overheads | $1,65,000$ | - Wages | 16,000 |
| Net profit for the year | $3,22,500$ | - Works overhead | 4,000 |
|  | $32,21,500$ |  | 54,000 |

The company's cost records show that in course of manufacturing a standard unit (i) works overheads have been charged @ $\mathbf{2 0 \%}$ on prime cost, (ii) administration overheads are related with production activities and are recovered at ₹ 5 per finished unit, and (iii) selling and distribution overheads are recovered at ₹ 6 per unit sold.

## You are required to PREPARE:

(i) Costing Profit and Loss Account indicating the net profits,
(ii) A Statement showing reconciliation between profit as disclosed by the Cost Accounts and

VIVITSU

Financial Accounts. (RTP May'19)

## Answer 12

(i) Costing Profit and Loss Account for the year ended 31st March 2019:

| Particulars | Amount (₹) | Particulars | Amount (₹) |
| :--- | ---: | :---: | ---: |
| Material consumed | $14,16,000$ | Sales (30,000 units) | $30,00,000$ |
| Direct wages | $7,42,000$ |  |  |
| Prime Cost | $21,58,000$ |  |  |
| Works overheads | $4,31,600$ |  |  |
| (20\% of Prime cost) | $25,89,600$ |  |  |
| Less: Work in progress | $(54,000)$ |  |  |
| Factory cost | $25,35,600$ |  |  |
| Administration overheads | $1,60,000$ |  |  |
| (₹5 $\times 32,000$ units) | $26,95,600$ |  |  |
| Cost of production | $\mathbf{1 , 6 8 , 4 7 5 )}$ |  |  |
| Less: Finished stock | $25,27,125$ |  |  |
| Cost of goods sold | $1,80,000$ |  |  |
| Selling and distribution |  |  | $\mathbf{3 0 , 0 0 , 0 0 0}$ |
| overheads (₹ $6 \times 30,000$ unit) | $27,07,125$ |  |  |
| Cost of sales | $\mathbf{3 0 , 0 0 , 0 0 0}$ |  |  |
| Profit (balancing figure) |  |  |  |
|  |  |  |  |

(ii) Statement reconciling the profit as per costing profit and loss account with the profit as per financial accounts

| Particulars | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: |
| Profit as per cost records |  | 2,92,875 |
| Add: Overheads over-absorbed: |  |  |
| Works overheads (₹ 4,31,600-₹ 4,26,000) | 5,600 |  |
| Administration OH (₹ 1,60,000-₹ 1,50,000) | 10,000 |  |
| Selling and Distribution (₹ 1,80,000 - ₹ 1,65,000) | 15,000 | 30,600 |
| Less: Closing stock overvalued ( $₹ 1,68,475-₹ 1,67,500$ ) |  | (975) |
| Profitas perfinancial accounts |  | 500 |
| *It is assumed that the number of units Produced |  |  |
| $=$ Number of units sold + Finished stock $=30,000+2,0$ | 0 units. |  |

## Question 13

The financial books of a company reveal the following data for the year ended 31st March, 2023:

|  | () |
| :---: | ---: |
| Opening Stock: |  |
| Finished goods 625 units | $1,06,250$ |
| Work-in-process | 92,000 |
| 01.04 .2022 to 31.03.2023 |  |
| Raw materials consumed | $16,80,000$ |
| Direct Labour | $12,20,000$ |


| Factory overheads | $\mathbf{8 , 4 4 , 0 0 0}$ |
| :--- | ---: |
| Administration overheads (production related) | $\mathbf{3 , 9 6 , 0 0 0}$ |
| Dividend paid | $\mathbf{2 , 4 4 , 0 0 0}$ |
| Bad Debts | $\mathbf{3 6 , 0 0 0}$ |
| Selling and Distribution Overheads | $\mathbf{1 , 4 4 , 0 0 0}$ |
| Interest received | $\mathbf{7 6 , 0 0 0}$ |
| Rent received | $\mathbf{9 2 , 0 0 0}$ |
| Sales 12,615 units | $\mathbf{4 5 , 6 0 , 0 0 0}$ |
| Closing Stock: Finished goods 415 units | $\mathbf{9 1 , 3 0 0}$ |
| Work-in-process | 82,400 |

The cost records provide as under:
> Factory overheads are absorbed at 70\% of direct wages.
$>$ Administration overheads are recovered at $15 \%$ of factory cost.
$>$ Selling and distribution overheads are charged at `6 per unit sold. \(>\) Opening Stock of finished goods is valued at` 240 per unit.
$>$ The company values work-in-process at factory cost for both Financial and Cost Profit Reporting.

## Required:

(i) Prepare statements for the year ended 31st March, 2023 showing:
$>$ the profit as per financial records
> the profit as per costing records.
(ii) Prepare a statement reconciling the profit as per costing records with the profit as per financial records. (RTP Nov '23 \& Nov '22) (Same concept different figures RTP Nov'18, RTP May'21)

## Answer 13

(for the year ended March 31, 2023)

\begin{tabular}{|l|r|l|r|}
\hline \& $(`)$ \& $\left(\begin{array}{l}\text { ( }\end{array}\right.$ <br>

\hline | To Opening stock of |
| :--- |
| Finished Goods |
| To Work-in-process | \& $1,06,250$ \& By Sales \& $45,60,000$ <br>


\hline To Raw materials consumed \& $16,80,000$ \& By Work-in-Process \& | By Closing stock of |
| :--- |
| finished Goods | <br>

\hline To Direct labour \& $12,20,000$ \& By Rent received \& 82,400 <br>
\hline To Factory overheads \& $8,44,000$ \& By Interest received \& 92,000 <br>
\hline To Administration overheads \& $3,96,000$ \& \& 76,000 <br>

\hline | To Selling \& distribution |
| :--- |
| overheads | \& $1,44,000$ \& \& <br>

\hline To Dividend paid \& $2,44,000$ \& \& <br>
\hline To Bad debts \& 36,000 \& \& $49,01,700$ <br>
\hline To Profit \& $1,39,450$ \& \& <br>
\hline
\end{tabular}

Statement of Profit as per costing records (for the year ended March 31,2023 )
$\left.\begin{array}{|l|r|}\hline & \text { (`) } \\ \hline \begin{array}{l}\text { Sales revenue (A) (12,615 } \\ \text { units) }\end{array} & 45,60,000 \\ \hline \text { Cost of sales: } & \\ \left.\hline \text { Opening stock (625 units } \times{ }^{`} 240\right) & 4,50,000 \\ \hline \begin{array}{l}\text { Add: Cost of production of 12,405 units (Refer to } \\ \text { working note 2) }\end{array} & (1,44,795) \\ \hline \text { Less: Closing stock } \quad \text { Rs. 43,28,140 ×415 units }) & 12,405 \text { units }\end{array}\right)$

## (ii) Statement of Reconciliation

(Reconciling the profit as per costing records with the profit as per financial records)

\begin{tabular}{|l|r|r|}
\hline \& $(`)$ \& $(`)$ <br>
\hline Profit as per Cost Accounts \& \& $1,50,965$ <br>
\hline Add: Administration overheads over absorbed \& $1,68,540$ \& <br>
\hline \multicolumn{1}{|c}{$5,64,540-` 3,96,000$ ) } \& \& <br>
\hline Opening stock overvalued (`1,50,000 -`1,06,250) \& 43,750 \& <br>
\hline Interest received \& 76,000 \& <br>
\hline Rent received \& 92,000 \& <br>

\hline | Factory overheads over recovered (` \\ \(8,54,000-` 8,44,000)\) |
| :--- | \& 10,000 \& $3,90,290$ <br>

\hline \& 68,310 \& $5,41,255$ <br>

\hline | Less: Selling \& distribution overheads under recovery (` \\ \(1,44,000-` 75,690)\) |
| :--- | \& 53,495 \& <br>

\hline Closing stock overvalued (`1,44,795 -`91,300) \& $2,44,000$ \& <br>
\hline Dividend \& 36,000 \& $(4,01,805)$ <br>
\hline Bad debts \& \& $1,39,450$ <br>
\hline Profit as per financial accounts \& \& <br>
\hline
\end{tabular}

## Working notes:

1. Number of units produced

|  | Units |
| :--- | ---: |
| Sales | 12,615 |
| Add: Closing stock | 415 |
| Total | 13,030 |
| Less: Opening stock | $(625)$ |
| Number of units produced | 12,405 |

## 2.Cost Sheet



| Direct labour | 12,20,000 |
| :---: | :---: |
| Prime cost | 29,00,000 |
| Factory overheads | 8,54,000 |
| (70\% of direct |  |
| wages) |  |
| Factory cost | 37,54,000 |
| Add: Opening work-in-process | 92,000 |
| Less: Closing work-in-process | $(82,400)$ |
| Factory cost of goods produced | 37,63,600 |
| Administration overheads | 5,64,540 |
| (15\% of factory cost) |  |
| Cost of production of 12,405 | 43,28,140 |
| units (Refer to working note 1) |  |
| Cost of production per unit: |  |
| $=\frac{\text { Total Cost of Production }}{\text { No.of units Produced }}=\frac{\text { Rs. } 43,28,140}{12,045 \text { units }}=\text { Rs. } 348.90$ |  |

## Question 14

The financial records of Riva Private Limited showed a net profit of ${ }^{`} 1,69,500$ for the year ended 31st March, 2022. The cost accounts, however, disclosed a net loss of ` 88,500 for the same period. The following information were revealed as a result of scrutiny of the figures of cost accounts and financial accounts:

|  |  | () |
| :--- | :--- | ---: |
| (i) | (Administrative overhead under recovered | $63,750.0$ |
| (ii) | Factory overhead over recovered | $3,37,500.0$ |
| (iii) | Depreciation under charged in Cost Accounts | $65,000.0$ |
| (iv) | Dividend received | $50,000.0$ |
| (v) | Loss due to obsolescence charged in Financial Accounts | $42,000.0$ |
| (vi) | Income tax provided | $\mathbf{1 , 0 9 , 0 0 0 . 0}$ |
| (vii) | Bank interest credited in Financial Accounts | $\mathbf{3 4 , 0 0 0 . 0}$ |
| (viii) | Value of opening stock: | $4,12,500.0$ |
|  | In Cost Accounts | $3,62,500.0$ |
|  | In Financial Accounts | $3,13,750.0$ |
| (ix) | Value of closing stock: | $3,30,000.0$ |
|  | In Cost Accounts | $62,500.0$ |
|  | In Financial Accounts | $1,50,000.0$ |
| (x) | Goodwill written-off in Financial Accounts | $37,500.0$ |
| (xi) | Notional rent of own premises charged in Cost Accounts |  |
| (xii) | Provision for doubtful debts in Financial Accounts |  |

Prepare a reconciliation statement by taking costing net loss as base. (RTP May 23) (Same concept different figures MTP April '19, 10 Marks)
Answer 14
Statement of Reconciliation

| SI. No. | Particulars | (`) | () |
| :--- | :--- | ---: | ---: |
|  | Net loss as per Cost Accounts |  | $(88,500)$ |
|  | Additions |  |  |

| 1 | Factory O/H over recovered | $3,37,500$ |  |
| :---: | :--- | ---: | ---: |
| 2 | Dividend Received | 50,000 |  |
| 3 | Bank Interest received | 34,000 |  |
| 4 | Difference in Value of Opening Stock | 50,000 |  |
|  | $(4,12,500-3,62,500)$ |  |  |
| 5 | Difference in Value of Closing Stock | 16,250 |  |
|  | $(3,30,000-3,13,7500)$ |  |  |
| 6 | Notional Rent of own Premises | $1,50,000$ | $6,37,750$ |
|  | Deductions | 63,750 |  |
| 1 | Administration O/H under recovered | 65,000 |  |
| 2 | Depreciation under charged | 42,000 |  |
| 3 | Loss due to obsolescence | $1,09,000$ |  |
| 4 | Income tax Provided | 62,500 |  |
| 5 | Goodwill written-off | 37,500 | $(3,79,750)$ |
| 6 | Provision for doubtful debts |  | $1,69,500$ |
|  | Net Profit as per Financial A/c. |  |  |

## Question 15

Explain integrated accounting system and state its advantages (PYP May '19, 5 Marks)

## Answer 15

Integrated Accounting System: Integrated Accounts is the name given to a system of accounting, whereby cost and financial accounts are kept in the same set of books.
Obviously, then there will be no separate sets of books for Costing and Financial records.
Integrated accounts provide or meet out fully the information requirement for Costing as well as for Financial Accounts. For Costing it provides information useful for ascertaining the cost of each product, job, and process, operation of any other identifiable activity and for carrying necessary analysis. Integrated accounts provide relevant information which is necessary for preparing profit and loss account and the balance sheets as per the requirement of law and also helps in exercising effective control over the liabilities and assets of its business.

## Advantages of Integrated Accounting System

The main advantages of Integrated Accounts are as follows:
(i) No need for Reconciliation - The question of reconciling costing profit and financial profit does not arise, as there is only one figure of profit.
(ii) Less efforts - Due to use of one set of books, there is a significant saving in efforts made.
(iii) Less time consuming - No delay is caused in obtaining information as it is provided from books of original entry.
(iv) Economical process - It is economical also as it is based on the concept of "Centralization of Accounting function".

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theoretical question was related to advantages of 'Integrated Accounting'. Average performance of the examinees was observed.

## Question 16

M/s Abid Private Limited disclosed a net profit of Rs. 48,408 as per cost books for the year ending 31st March 2019. However, financial accounts disclosed net loss of Rs. 15,000 for the same period. On scrutinizing both the set of books of accounts, the following information was revealed:

Works Overheads under-recovered in Cost Books

| Dividend received on Shares | 17,475 |
| :--- | :--- |
| Interest on Fixed Deposits | 21,650 |
| Provision for doubtful debts | 17,800 |
| Obsolescence loss not charged in Cost Accounts | 17,200 |
| Stores adjustments (debited in Financial Accounts) | 35,433 |
| Depreciation charged in financial accounts | 30,000 |
| Depreciation recovered in Cost Books | 35,000 |
| Prepare a Memorandum Reconciliation Account. | (PYP May '19,5 Marks) |

## Answer 16

Memorandum Reconciliation Account


| Particulars | (Rs. ) | Particulars | (Rs.) |
| :--- | ---: | :--- | ---: |
| To Works overheads under recovered |  | By Net profit as per Costing books | 48,408 |
| in Cost Accounts | 48,600 | By Office overheads over covered |  |
| To Provision for doubtful debts | 17,800 | in cost accounts | 11,500 |
| To Obsolescence loss | 17,200 | By Dividend received on shares | 17,475 |
| To Store adjustment (Debit) | 35,433 | By Interest on fixed deposit | 21,650 |
|  |  | By Depreciation overcharged | 5,000 |
|  |  | By Net loss asperfinancialaccounts | $\mathbf{1 5 , 0 0 0}$ |
|  | $\mathbf{1 , 1 9 , 0 3 3}$ |  | $\mathbf{1 , 1 9 , 0 3 3}$ |

[Note: This question may also be solved by taking net loss as per financial accounts as basis.]

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem on 'Reconciliation of profit of cost account and financial account'. Performance of the examinees was above average. Overall performance in this compulsory question was average.

## Question 17

GK Ltd. showed net loss of Rs. 2,43,300 as per their financial accounts for the year ended 31st March, 2018. However, cost accounts disclosed net loss of Rs. 2,48,300 for the same period. On scrutinizing both the set of books of accounts, the following information were revealed:

Rs.

| (i) | Works overheads over recovered 30,400 | $\mathbf{3 0 , 0 0 0}$ |
| :--- | :--- | ---: |
| (ii) | Selling overheads under recovered | $\mathbf{2 0 , 3 0 0}$ |
| (iii) | Administrative overheads under recovered | $\mathbf{2 7 , 7 0 0}$ |
| (iv) | Depreciation over charged in cost accounts | $\mathbf{3 5 , 1 0 0}$ |
| (v) | Bad debts w/off in financial accounts | $\mathbf{1 5 , 0 0 0}$ |
| (vi) | Preliminary Exp. w/off in financial accounts | $\mathbf{5 , 0 0 0}$ |
| (vii) | Interest credited during the year in financial accounts | $\mathbf{7 , 5 0 0}$ |

Prepare a reconciliation statement reconciling losses shown by financial and cost accounts by taking costing net loss as base. (PYP May'18, 5 Marks)

## Answer 17

Reconciliation Statement

| Particulars | $₹$ | ₹ |
| :--- | ---: | ---: |
| Loss as per Cost Accounts |  | $(2,48,300)$ |
| Add: | Works overheads over recovered | 30,400 |


| Interest credited during the year in financial accounts | 7,500 | 73,000 |
| :--- | ---: | ---: |
| Less: $\quad$ Selling overheads under recovered | 20,300 |  |
| Administrative overheads under recovered | 27,700 |  |
| Bad debts w/off in financial accounts | 15,000 |  |
| Preliminary Exp. w/off in financial accounts | 5,000 | $(68,000)$ |
| Loss as per Financial Accounts |  | $(2,43,300)$ |

## Question 18

Explain what are the pre-requisites of integrated accounting. (PYP 5 Marks Nov 20, RTP May'23) (SM May 22, MTP 5 Marks Mar'22)

## Answer 18

The essential pre-requisites for integrated accounts include the following steps:

- The management's decision about the extent of integration of the two sets of books. Some concerns find it useful to integrate up to the stage of prime cost or factory cost while other prefer full integration of the entire accounting records.
- A suitable coding system must be made available so as to serve the accounting purposes of financial and cost accounts.
- An agreed routine, with regard to the treatment of provision for accruals, prepaid expenses, other adjustment necessary for preparation of interim accounts.
- Perfect coordination should exist between the staff responsible for the financial and cost aspects of the accounts and an efficient processing of accounting documents should be ensured.
- Under this system there is no need for a separate cost ledger. Of course there will be a number of subsidiary ledgers; in addition to the useful Customers' Ledger and the Bought Ledger, there will be: (a) Stores Ledger; (b) Stock Ledger and (c) Job Ledger.

Question 19 (Also includes concepts of Cost Sheet)
The Profit and Loss account of ABC Ltd. for the year ended 31 ${ }^{\text {st }}$ March, 2021 is given below:
Profit and Loss account
(for the year ended 31st March, 2021)

| To Direct Material | 6,50,000 | By Sales (15000 units) | 15,00,000 |
| :---: | :---: | :---: | :---: |
| To Direct Wages | 3,50,000 | By Dividend received | 9,000 |
| To Factory overheads | 2,60,000 |  |  |
| To Administrative overheads | 1,05,000 |  |  |
| To Selling overheads | 85,000 |  |  |
| To Loss on sale of investments | 2,000 |  |  |
| To Net Profit | 57,000 |  |  |
|  | 15,09,000 |  | 15,09,000 |

- Factory overheads are 50\% fixed and 50\% variable.
- Administrative overheads are $\mathbf{1 0 0 \%}$ fixed.
- Selling overheads are completely variable.
- Normal production capacity of ABC Ltd. is 20,000 units.
- Indirect Expenses are absorbed in the cost accounts on the basis of normal production capacity.
- Notional rent of own premises charged in Cost Accounts is amounting to ₹ $\mathbf{1 2 , 0 0 0}$. You are required to:
(i) Prepare a Cost Sheet and ascertain the Profit as per Cost Records for the year ended 31 ${ }^{\text {st }}$ March, 2021.
(ii) Reconcile the Profit as per Financial Records with Profit as per Cost Records. (PYP 10 Marks July 21)


## Answer 19

Cost Sheet
(for the year ended 31st March, 2021)

|  | (₹) | (₹) |
| :--- | ---: | ---: |
| Direct material |  | $6,50,000$ |
| Direct wages |  | $3,50,000$ |
| Prime cost |  | $\mathbf{1 0 , 0 0 , 0 0 0}$ |
| Factory Overheads: | $1,30,000$ |  |
| Variable (50\% of ₹ 2,60,000) | 97,500 | $2,27,500$ |
| Fixed (₹ $1,30,000 \times 15,000 / 20,000$ ) |  | $\mathbf{1 2 , 2 7 , 5 0 0}$ |
| Works cost |  | $\mathbf{7 8 , 7 5 0}$ |
| Administrative Overheads (₹ 1,05,000 × 15,000/20,000) |  | 12,000 |
| Notional Rent |  | $\mathbf{1 3 , 1 8 , 2 5 0}$ |
| Cost of production |  | $\mathbf{8 5 , 0 0 0}$ |
| Selling Overheads |  | $\mathbf{1 4 , 0 3 , 2 5 0}$ |
| Cost of Sales |  | 96,750 |
| Profit (Balancing figure) |  | $\mathbf{1 5 , 0 0 , 0 0 0}$ |
| Sales revenue |  |  |

(ii)

## Statement of Reconciliation

(Reconciling profit shown by Financial and Cost Accounts)

|  | (₹) | (₹) |
| :--- | ---: | ---: |
| Profit as per Cost Account |  | 96,750 |
| Add: Dividend received | 9,000 |  |
| Add: Notional Rent | 12,000 | $\mathbf{2 1 , 0 0 0}$ |
| Less: Factory Overheads under-charged in Cost Accounts (₹ 2,60,000 <br> - ₹ 2,27,500) | 32,500 |  |
| Less: Administrative expenses under-charged in Cost Accounts <br> (₹ 1,05,000 - ₹ 78,750) | 26,250 |  |
| Less: Loss on sale of Investments | 2,000 | $(60,750)$ |
| Profit as per Financial Accounts | $\mathbf{5 7 , 0 0 0}$ |  |

(Note: Solution can be done considering base profit as per Financial Accounts)

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem requiring preparation of cost sheet and reconciling profit as per financial records with profit as per cost records. In the preparation of the cost sheet, examinees faced problems in the identification of absorbed indirect expenses on the basis of normal production capacity. Performance of the examinees was below average.

## Question 20

Journalise the following transactions, in cost books under Non- Integrated system of Accounting.
(iii) Credit Purchase of Material
Rs. 27,000
(iv) Manufacturing overhead charged to Production
Rs. 6,000
(v) Selling and Distribution overheads recovered from Sales
Rs. 4,000
(vi) Indirect wages incurred
Rs. 8,000
(vii) Material returned from production to stores Rs.9,000 (PYP Nov’19,5 Marks, MTP 5 Marks, Oct '21)

Answer 20

| Journal entries are as follows: |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | Dr. | Cr. |
|  |  | (Rs. ) | (Rs.) |
| (i) Stores Ledger Control A/c...................... | Dr. | 27,000 |  |
| To Cost Ledger Control A/c |  |  | 27,000 |
| (ii) Work-in-Process Control A/c......................... | Dr. | 6,000 |  |
| To Manufacturing Overhead Control A/c |  |  | 6,000 |
| (iii) Cost of Sales A/c................................ | Dr. | 4,000 |  |
| To Selling \& Dist. Overhead Control A/c |  |  | 4,000 |
| (iv) (1) Wage Control $\mathrm{A} / \mathrm{c}$..................... | Dr. | 8,000 |  |
| To Cost Ledger Control A/c |  |  | 8,000 |
| (2) Manufacturing Overhead Control $\mathrm{A} / \mathrm{c} . . . . . . .$. | Dr. | 8,000 |  |
| To Wages Control A/c |  |  | 8,000 | OR


| Manufacturing Overhead Control A/c............... | Dr. |  |
| :---: | :---: | :---: | :---: |
| To Cost Ledger Control A/c | 8,000 | 8,000 |
| (v) Stores Ledger Control A/c ......................... | Dr. | 9,000 |
| To Work-in-Process Control A/c |  | 9,000 |
| *Cost Ledger Control A/c is also known as General Ledger Control A/c |  |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question based on Non-Integrated system of accounting. Average performance was observed by the examinees.

## Question 21

R Ltd. showed a Net Profit of $₹ \mathbf{3 , 6 0 , 7 4 0}$ as per their cost accounts for the year ended $31^{\text {st }}$ March, 2021. The following information was revealed as a result of scrutiny of the figures from the both sets of accounts:

| Sr. No. | Particulars | (₹) |
| :--- | :--- | ---: |
| i. | Over recovery of selling overheads in cost accounts | $\mathbf{1 0 , 2 5 0}$ |
| ii. | Over valuation of closing stock in cost accounts | $\mathbf{7 , 3 0 0}$ |
| iii. | Rent received credited in financial accounts | 5,450 |
| iv. | Bad debts provided in financial accounts | $\mathbf{3 , 2 5 0}$ |
| v. | Income tax provided in financial accounts | $\mathbf{1 5 , 9 0 0}$ |
| vi. | Loss on sale of capital asset debited in financial accounts | 5,800 |
| vii. | Under recovery of administration overheads in cost accounts | $\mathbf{3 , 6 0 0}$ |

Required: Prepare a reconciliation statement showing the profit as per financial records. (PYP 5 Marks Dec '21)

## Answer 21

## Statement of Reconciliation

(Reconciling the profit as per costing records with the profit as per financial records)

| Net Profit as per Cost Accounts |  | 3,60,740 |
| :---: | :---: | :---: |
| Add: |  |  |
| Over recovery of selling overheads in cost accounts | 10,250 |  |
| Rent received credited in financial accounts | 5,450 | 15,700 |
|  |  | 376,440 |
| Less: |  |  |
| Over valuation of closing stock in cost accounts | 7,300 |  |
| Bad debts provided in financial accounts | 3,250 |  |
| Income tax provided in financial accounts | 15,900 |  |
| Loss on sale of capital asset debited in financial accounts | 5,800 |  |
| Under recovery of administration overheads in cost accounts | 3,600 | 35,850 |
| Profit as per Financial Accounts |  | 3,40,590 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

Question was on preparation of reconciliation statement to calculate the profit as per financial records. This sub part can be considered as an easy one and most of the examinees attempted in the correct line. Performance of the examinees was good.

## Question 22

The following balances were extracted from a Company's ledger as on 30th June, 2018:

| Particulars | Debit (Rs. ) | Credit (Rs. ) |
| :--- | :--- | :--- |
| Raw material control a/c | $2,82,450$ |  |
| Work-in-progress control a/c | $2,38,300$ |  |
| Finished stock control a/c | $3,92,500$ |  |
| General ledger adjustment a/c |  | $9,13,250$ |
| Total | $9,13,250$ | $9,13,250$ |

The following transactions took place during the quarter ended 30th September, 2018:

|  |  | Rs. |
| :---: | :--- | ---: |
| (i) | Factory overheads - allocated to work-in-progress | $1,36,350$ |
| (ii) | Goods furnished - at cost | $13,76,200$ |
| (iii) | Raw materials purchased | $12,43,810$ |
| (iv) | Direct wages - allocated to work-in-progress | $2,56,800$ |
| (v) | Cost of goods sold | $14,56,500$ |
| (vi) | Raw materials - issued to production | $13,60,430$ |
| (vii) | Raw materials - credited by suppliers | $\mathbf{2 7 , 2 0 0}$ |
| (viii) | Raw materials losses - inventory audit | 6,000 |
| (ix) | Work-in-progress rejected (with no scrap value) | $\mathbf{1 2 , 3 0 0}$ |
| (x) | Customer's returns (at cost) of finished goods | 45,900 |
| You are required to prepare: |  |  |

(i) Raw material control a/c
(ii) Work-in-progress control a/c
(iii) Finished stock control a/c
(iv) General ledger adjustmenta/c (PYP Nov '18,10 Marks)

## Answer 22



VIVITSU

|  | Adjustment A/c |  |  |  |
| :--- | :--- | ---: | :--- | ---: |
|  |  |  | Costing P \& L A/c | 6,000 |
|  |  |  | (Loss) (OR GLA) | $1,32,630$ |
|  | Work-in-Progress Control <br> A/c | $\mathbf{1 5 , 2 6 , 2 6 0}$ |  | $15,26,260$ |
|  |  |  |  |  |
|  | To Balance b/d | (Rs. ) |  | (Rs. ) |
|  | " Raw Material Control A/c | $13,60,430$ | " Finished Goods Control A/c | $13,76,200$ |
|  | " Wages Control A/c | $2,56,800$ | Costing P\&L A/c (OR GLA) | 12,300 |
|  | " Factory OH Control A/c | $1,36,350$ | " Balance c/d | $6,03,380$ |
|  |  | $19,91,880$ |  | $19,91,880$ |

(iii) Finished Goods Control A/c

|  | (₹) |  | (₹) |
| :---: | :---: | :--- | :---: |
| To Balance b/d | $3,92,500$ | ByCost of goods sold A/c <br> (OR GLA) | $14,56,500$ |
| General Ledger Adjustment <br> A/c | 45,900 |  | $3,58,100$ |
| Work-in-process Control <br> A/c | $13,76,200$ | $\prime$ Balance c/d | $18,14,600$ |

(iv) General Ledger Adjustment A/c

|  | (Rs. ) |  | (Rs.) |
| :--- | ---: | :--- | ---: |
| To Costing P\&LA/c (sales) <br> (Balancing figure) | $25,68,910$ | By Balanceb/d | $9,13,250$ |
| Raw MaterialControl A/c |  |  |  |
|  | 27,200 | " Raw Material Control A/c | $12,43,810$ |
|  |  | "Wages Control A/c | $2,56,800$ |
|  |  | "Factory OH Control A/c | $1,36,350$ |
|  |  | "Finished Goods Control A/c | 45,900 |
|  | $\mathbf{2 5 , 9 6 , 1 1 0}$ |  | $\mathbf{2 5 , 9 6 , 1 1 0}$ |

OR
General ledger adjustment account

|  |  | (Rs.) |  | (Rs. ) |
| :--- | :--- | :---: | :--- | ---: |
| To | Raw Material Control A/c | 27,200 | By Balance b/d | $9,13,250$ |
| $"$ | Raw Material control <br> account(loss) | 6,000 | " Raw Material Control A/c | $12,43,810$ |
| $"$ | WIP control Account (rejection) | 12,300 | "Wages Control A/c | $2,56,800$ |
| " | Finished stock Control Account | $14,56,500$ | " Factory OH Control A/c | $1,36,350$ |
| "" | Balance c/d | $10,94,110$ | " Finished Goods Control A/c | 45,900 |
|  |  | $\mathbf{2 5 , 9 6 , 1 1 0}$ |  | $\mathbf{2 5 , 9 6 , 1 1 0}$ |

## Working:

Factory Overhead Control A/c

|  |  | (₹) |  | (₹) |
| :--- | :--- | :---: | :--- | :---: |
| To <br>  <br>  <br>  <br>  <br> General Ledger <br> Adjustment A/c | $1,36,350$ | By Work-in-progress A/c | $1,36,350$ |  |
|  | $1,36,350$ |  | $1,36,350$ |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This numerical question was related to Non Integrated Accounts. Four different ledgers are required to be prepared. Performance of the examinees was average. The examinees have made mistakes in the posting of particular transaction in concerned account.

## Question 23

Answer any four of the following:
Briefly explain the essential features of a good Cost Accounting System. (PYP 5 Marks May'22, RTP Nov'18, MTP 5 Marks Oct'22)

## Answer 23

(a) The essential features, which a good cost accounting system should possess, are as follows:
(a) Informative and simple: Cost accounting system should be tailor-made, practical, simple and capable of meeting the requirements of a business concern. The system of costing should not sacrifice the utility by introducing inaccurate and unnecessary details.
(b) Accurate and authentic: The data to be used by the cost accounting system should be accurate and authenticated; otherwise it may distort the output of the system and a wrong decision may be taken.
(c) Uniformity and consistency: There should be uniformity and consistency in classification, treatment and reporting of cost data and related information. This is required for benchmarking and comparability of the results of the system for both horizontal and vertical analysis.
(d) Integrated and inclusive: The cost accounting system should be integrated with other systems like financial accounting, taxation, statistics and operational research etc. to have a complete overview and clarity in results.
(e) Flexible and adaptive: The cost accounting system should be flexible enough to make necessary amendment and modifications in the system to incorporate changes in technological, reporting, regulatory and other requirements.
(f) Trust on the system: Management should have trust on the system and its output. For this, an active role of management is required for the development of such a system that reflects a strong conviction in using information for decision making.

## Question 24

X Ltd. follows Non-Integrated Accounting System. Financial Accounts of the company show a Net Profit of $₹ \mathbf{5 , 5 0 , 0 0 0}$ for the year ended 31st March, 2022. The chief accountant of the company has provided following information from the Financial Accounts and Cost Accounts:

| Sr. No | Particulars | (₹) |
| :--- | :--- | ---: |
| (i) | Legal Chargers Provided in Financial accounts | 15,250 |
| (ii) | Interim Dividend received credited in financial accounts | $4,50,000$ |
| (iii) | Preliminary Expenses written off in financial accounts | 25,750 |
| (iv) | Over recovery of selling overheads in cost accounts | 11,380 |
| (v) | Profit on sale of capital asset credited in financial | 30,000 |
|  | accounts |  |
| (vi) | Under valuation of closing stock in cost accounts | 25,000 |
| (vii) | Over recovery of production overheads in cost accounts | 10,200 |
| (viii) | Interest paid on Debentures shown in financial accounts | 50,000 |

Required:
Find out the Profit (Loss) as per Cost Accounts by preparing a Reconciliation Statement.
(PYP 5 Marks Nov 22)
Answer 24
Reconciliation Statement
(Reconciliation the profit as per financial records with the profit as per costing records)

|  | Particulars | (₹) | Total (₹) |
| :--- | :--- | ---: | ---: |
|  | Profit as per Financial Accounts |  | $5,50,000$ |
| Add: | Legal Charges | 15,250 |  |
|  | Preliminary expenses written off | 25,750 |  |
|  | Interest paid | 50,000 | 91,000 |
|  |  | 25,000 |  |
|  | Less: | Under-valuation of closing stock in cost book |  |
|  | Interim Dividend Received | $4,50,000$ |  |
|  | Over recovery of selling overheads in cost <br> accounts | 11,380 | $5,26,580$ |
|  | Over recovery of production overhead in cost <br> accounts | 10,200 |  |
|  | Profit on sale of Assets | 30,000 |  |
|  | Profit as per Cost Accounts |  | $1,14,420$ |

## Question 25

Indicate, for following items, whether to be shown in the Cost Accounts or Financial Accounts:
(i) Preliminary expenses written off during the year
(ii) Interest received on bank deposits
(iii) Dividend, interest received on investments
(iv) Salary for the proprietor at notional figure though not incurred
(v) Charges in lieu of rent where premises are owned
(vi) Rent receivables
(vii) Loss on sale of Fixed Assets
(viii) Interest on capital at notional figure though not incurred
(ix) Goodwill written off
(x) Notional Depreciation on the assets fully depreciated for which book value is Nil. (PYP 5 Marks Nov 22)
Answer 25

| S. No. | Items | Accounts |
| :--- | :--- | :--- |
| (i) | Preliminary expenses written off during the year | Financial Accounts |
| (ii) | Interest received on bank deposits | Financial Accounts |
| (iii) | Dividend, interest received on investments | Financial Accounts |
| (iv) | Salary for the proprietor at notional figure though not <br> incurred | Cost Accounts |
| (v) | Charges in lieu of rent where premises are owned | Cost Accounts |
| (vi) | Rent receivables | Financial Accounts |
| (vii) | Loss on the sales of Fixed Assets | Financial Accounts |
| (viii) | Interest on capital at notional figure though not <br> incurred | Cost Accounts |


| (ix) | Goodwill written off | Financial Accounts |
| :--- | :--- | :--- |
| $(x)$ | Notional Depreciation on the assets fully depreciated <br> for which book value is nil | Cost Accounts |

## Question 40

Journalize the following transactions assuming the cost and financial accounts are integrated:

| Particulars | Amount (₹) |
| :--- | :--- |
| Direct Materials issued to production | $₹ 5,88,000$ |
| Allocation of Wages (Indirect) | $₹ 7,50,000$ |
| Factory Overheads (Over absorbed) | $₹ 2,25,000$ |
| Administrative Overheads (Under absorbed) | $₹ 1,55,000$ |
| Deficiency found in stock of Raw material (Normal) | $₹ 2,00,000$ |

(PYP 5 Marks May'22)

## Answer 40

| Particulars |  | (₹) | (₹) |
| :---: | :---: | :---: | :---: |
| (i) Work-in-Progress Ledger Control A/c | Dr. | 5,88,000 |  |
| To Stores Ledger Control A/c |  |  | 5,88,000 |
| (Being issue of direct materials to production) |  |  |  |
| (ii) Factory Overhead control A/c | Dr. | 7,50,000 |  |
| To Wages Control A/c |  |  | 7,50,000 |
| (Being allocation of Indirect wages) |  | 2,25,000 |  |
| (iii) Factory Overhead Control A/c $\square_{\text {a }}$ |  |  |  |
| To Costing Profit \& Loss A/c |  |  | 2,25,000 |
| (Being transfer of over absorption of Factory overhead) |  |  |  |
| (iv) Costing Profit \& Loss A/c $\quad$ Dr. |  | 1,55,000 |  |
| To Administration Overhead Control A/c |  |  | 1,55,000 |
| (Being transfer of under absorption of Administration overhead) | Dr. | 2,00,000 |  |
| (v) Factory Overhead Control A/c |  |  |  |
| To Stores Ledger Control A/c |  |  | 2,00,000 |
| (Being transfer of deficiency in stock of raw material) |  |  |  |

(Note: Costing P/\&/L = P/\&/L and SLC = MLC)

## Chapter 8 <br> Unit \& Batch Costing

## Question 1

STATE the differences between Job costing and Batch costing (MTP 5Marks, May 20, Oct 19, Old \& New SM, RTP Nov '21, RTP Nov '18, RTP May '23)

## Answer 1

Differences between Job costing and Batch costing:

| Sr. <br> No | Job Costing | Batch Costing |
| :--- | :--- | :--- |
| 1 | Method of costing used for non- standard <br> and non- repetitive products produced as <br> per customer specifications and against <br> specific orders. | Homogeneous products produced in a continuous <br> production flow in lots. |
| 2 | Cost determined for each Job. | Cost determined in aggregate for the entire Batch <br> and then arrived at on per unit basis. |
| 3 | Jobs are different from each other and <br> independent of each other. Each Job is <br> unique. | Products produced in a batch are homogeneous <br> and lack of individuality. |

## Question 2

A jobbing factory has undertaken to supply 300 pieces of a component per month for the ensuing six months. Every month a batch order is opened against which materials and labour hours are booked at actual. Overheads are levied at a rate per labour hour. The selling price contracted for is ₹ 8 per piece. From the following data CALCULATE the cost and profit per piece of each batch order and overall position of the order for 1,800 pieces.

| Month | Batch Output | Material cost | Direct wages | Direct labour |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (₹) | (₹) | hours |
| January | 310 | 1150 | 120 | 240 |
| February | 300 | 1140 | 140 | 280 |
| March | 320 | 1180 | 150 | 280 |
| April | 280 | 1130 | 140 | 270 |
| May | 300 | 1200 | 150 | 300 |
| June | 320 | 1220 | 160 | 320 |

The other details are:

| Month | Chargeable expenses | Direct labour |
| :--- | :---: | :---: |
|  | $(₹)$ | (Hours) |
| January | 12,000 | 4,800 |
| February | 10,560 | 4,400 |
| March | 12,000 | 5,000 |
| April | 10,580 | 4,600 |
| May | 13,000 | 5,000 |
| June | 12,000 | 4,800 |

(MTP 5 Marks, Oct.'2020) (Same concept different figures MTP 5 Marks Mar'21, RTP May’23)
Answer 2

| Direct wages (₹) | 120 | 140 | 150 | 140 | 150 | 160 | 860 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Chargeable expenses* (₹) | 600 | 672 | 672 | 621 | 780 | 800 | 4,145 |
| Total cost (₹) | 1,870 | 1,952 | 2,002 | 1,891 | 2,130 | 2,180 | 12,025 |
| Profit per batch (₹) | 610 | 448 | 558 | 349 | 270 | 380 | 2,615 |
| Total cost per unit (₹) | 6.03 | 6.51 | 6.26 | 6.75 | 7.10 | 6.81 | 6.57 |
| Profit per unit (₹) | 1.97 | 1.49 | 1.74 | 1.25 | 0.90 | 1.19 | 1.43 |

Overall position of the order for $\mathbf{1 , 2 0 0}$ units
Sales value of 1,800 units @ ₹ 8 per unit ₹ 14,400
Total cost of 1,800 units @ ₹ 6.57 per unit 11,826
Profit
₹ 2,574

* Chargeable expenses / Direct labour hour for the month X Direct labour hours for batch


## Question 3

Zee Ltd. manufactures pistons used in car engines. As per the study conducted by the Auto Parts Manufacturers Association, there will be a demand of 80 million pistons in the coming year. A Ltd. is expected to have a market share of $\mathbf{2 . 1 5 \%}$ of the total market demand of the pistons in the coming year. It is estimated that it costs ₹ 2.50 as inventory holding cost per piston per month and that the set-up cost per run of piston manufacture is ₹ 4,500 .
(i) COMPUTE the optimum run size for piston manufacturing?
(ii) Assuming that the company has a policy of manufacturing 20,000 pistons per run, CALCULATE how much extra costs the company would be incurring as compared to the optimum run suggested in (i) above? (MTP 5 Marks, Oct’21) (Same concept different figures MTP 5 Marks Apr 19, MTP 5 Marks Mar 19 but different figures)

## Answer 3

(i) Optimum run size or Economic Batch Quantity (EBQ) $=\sqrt{\frac{2 \times D \times s}{C}}$

Where, $D=A n n u a l$ demand i.e. $2.15 \%$ of $8,00,00,000=17,20,000$ units
S $\quad=$ Set-up cost per run $=₹ 4,500$
C = Inventory holding cost per unit per annum
= ₹ $2.5 \times 12$ months = ₹ 30
$E B Q=\sqrt{\frac{2 \times 17,20,000 \text { units } \times \text { Rs. } 4,500}{\text { Rs. } 30}}=22,716$ units
(ii) Calculation of Total Cost of set-up and inventory holding

|  | Batch size | No. of setups | Set-up <br> Cost (₹) | Inventory holding cost (₹) | Total Cost (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\begin{gathered} 20,000 \\ \text { units } \end{gathered}$ | $\begin{aligned} & 86 \\ & \left(\frac{17,20,000}{20,000}\right) \end{aligned}$ | $\begin{gathered} 3,87,000 \\ (86 \times ₹ \\ 4,500) \end{gathered}$ | $\begin{gathered} 3,00,000 \\ \left(\frac{20,000 \times \mathrm{Rs.} 30}{2}\right) \end{gathered}$ | 6,87,000 |
| B | $\begin{gathered} 22,716 \\ \text { units } \end{gathered}$ | $\begin{gathered} 76 \\ \left(\frac{17,20,000}{22,716}\right) \end{gathered}$ | $\begin{gathered} 3,42,000 \\ (76 \times ₹ \\ 4,500) \end{gathered}$ | $\begin{gathered} 3,40,740 \\ \left(\frac{22,716 \times \mathrm{Rs.} 30}{2}\right) \end{gathered}$ | 6,82,740 |
|  | Extra Cost ( $\mathrm{A}-\mathrm{B}$ ) |  |  |  | 4,260 |

Arnav Confectioners (AC) owns a bakery which is used to make bakery items like pastries, cakes and muffins. AC use to bake atleast 50 units of any item at a time. A customer has given an order for 600 cakes. To process a batch of $\mathbf{5 0}$ cakes, the following cost would be incurred:

Direct materials

- Rs. 5,000

Direct wages
Oven set-up cost
Rs. 750
AC absorbs production overheads at a rate of $20 \%$ of direct wages cost. $10 \%$ is added to the total production cost of each batch to allow for selling, distribution and administration overheads.

AC requires a profit margin of $\mathbf{2 5 \%}$ of sales value. Required:
(i) DETERMINE the price to be charged for 600 cakes.
(ii) CALCULATE cost and selling price per cake.
(iii) DETERMINE what would be selling price per unit If the order is for 605 cakes. (MTP 5 Marks Aug '18 \& March '23) (RTP May '18) (Same concept different figures Old \& New SM)

## Answer 4

Statement of cost per batch and per order
No. of batch $=600$ units $\div 50$ units $=12$ batches

|  | Particulars | Cost per batch <br> (Rs.) | Total Cost <br> (Rs.) |
| :--- | :--- | ---: | ---: |
|  | Direct Material Cost | $5,000.00$ | 60,000 |
|  | Direct Wages | 500.00 | 6,000 |
|  | Oven set-up cost | 750.00 | 9,000 |
|  | Add: Production Overheads (20\% of Direct wages) | 100.00 | 1,200 |
|  | Total Production cost | $6,350.00$ | 76,200 |
|  | Add: S\&D and Administration overheads | 635.00 | 7,620 |
|  | (10\% of Total production cost) |  |  |
|  | Total Cost | $6,985.00$ | 83,820 |
|  | Add: Profit (1/3rd of total cost) | $2,328.33$ | $\mathbf{2 7 , 9 4 0}$ |
| (i) | Sales price | $\mathbf{9 , 3 1 3 . 3 3}$ | $\mathbf{1 , 1 1 , 7 6 0}$ |
|  | No. of units in batch | 50 units |  |
| (ii) | Cost per unit (Rs.6,985 $\div 50$ units) | $\mathbf{1 3 9 . 7 0}$ |  |
|  | Selling price per unit $(9,313.33 \div 50$ units) | $\mathbf{1 8 6 . 2 7}$ |  |

(iii) If the order is for 605 cakes, then selling price per cake would be as below:

| Particulars | Total Cost (Rs.) |
| :--- | ---: |
| Direct Material Cost | 60,500 |
| Direct Wages | 6,050 |
| Oven set-up cost | 9,750 |
| Add: Production Overheads (20\% of Direct wages) | 1,210 |
| Total Production cost | 77,510 |
| Add: S\&D and Administration overheads | 7,751 |
| (10\% of Total production cost) | $\mathbf{8 5 , 2 6 1}$ |
| Total Cost | 28,420 |
| Add: Profit (1/3rd of total cost) | $\mathbf{1 , 1 3 , 6 8 1}$ |
| Sales price | 605 units |
| No. of units | $\mathbf{1 8 7 . 9 0}$ |
| Selling price per unit (Rs.1,13,681 $\div 605$ units) |  |

## Question 5

In Batch Costing, STATE how is Economic Batch Quantity determined? (MTP 4 Marks Mar 22, Mar 18)

## Answer 5

The economic batch size or Economic Batch Quantity may be determined by calculating the total cost for a series of possible batch sizes and checking which batch size gives the minimum cost. The objective here being to determine the production lot (Batch size) that optimizes on both set up and inventory holding cots formula. The mathematical formula usually used for its determination is as follows:

$$
(E B Q)=\sqrt{\frac{2 \times D \times S}{C}}
$$

Where,
$D=A n n u a l$ demand for the product
$\mathrm{S}=$ Setting up cost per batch
$\mathrm{C}=$ Carrying cost per unit of production

## Question 6

Arnav Ltd. operates in beverages industry where it manufactures soft -drink in three sizes of Large ( 3 litres), Medium ( 1.5 litres) and Small ( 600 ml ) bottles. The products are processed in batches. The 5,000 litres capacity processing plant consumes electricity of 90 Kilowatts per hour and a batch takes 1 hour 45 minutes to complete. Only symmetric size of products can be processed at a time. The machine set-up takes 15 minutes to get ready for next batch processing. During the set-up, power consumption is only $20 \%$.
(I) The current price of Large, Medium and Small are ₹ 150 , ₹ 90 and ₹ 50 respectively.
(II) To produce a litre of beverage, 14 litres of raw material-W and $\mathbf{2 5} \mathbf{~ m l}$ of Material-C are required which costs ₹ 0.50 and ₹ 1,000 per litre respectively.
(III) $\mathbf{2 0}$ direct workers are required. The workers are paid ₹ $\mathbf{8 8 0}$ for $\mathbf{8}$ hours shift of work.
(IV) The average packing cost per bottle is ₹3
(V) Power cost is ₹ 7 per Kilowatt -hour (Kwh)
(VI) Other variable cost is ₹ $\mathbf{3 0 , 0 0 0}$ per batch.
(VII) Fixed cost (Administration and marketing) is ₹ 4,90,00,000.
(VIII) The holding cost is ₹ 1 per bottle per annum.

The marketing team has surveyed the following demand (bottle) of products:

| Large | Medium | Small |
| :--- | :--- | :--- |
| $\mathbf{3 , 0 0 , 0 0 0}$ | $\mathbf{7 , 5 0 , 0 0 0}$ | $\mathbf{2 0 , 0 0 , 0 0 0}$ |

Required:
CALCULATE net profit/ loss of the organization and also COMPUTE Economic Batch Quantity (EBQ). (MTP 10 Marks April '22)

## Answer 6

Workings:

1. Maximum number of bottles that can be processed in a batch:
$=\frac{5,000 \text { Itrs }}{\text { Bottle volume }}$

| Large |  | Medium |  | Small |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Qty (Itr) | Max bottles | Qty (Itr) | Max bottles | Qty (ml) | Max bottles |
| 3 | 1,666 | 1.5 | 3,333 | 600 | 8,333 |

For simplicity of calculation small fractions has been ignored.
2. Number of batches to be run:

|  |  | Large | Medium | Small | Total |
| :---: | :--- | :---: | :---: | :---: | :---: |
| A | Demand | $3,00,000$ | $7,50,000$ | $20,00,000$ |  |
| B | Bottles per batch (Refer WN- <br> 1) | 1,666 | 3,333 | 8,333 |  |
| C | No. of batches [AㄷB] | 180 | 225 | 240 | 645 |

For simplicity of calculation small fractions has been ignored.
3. Quantity of Material-W and Material $C$ required to meet demand:

|  | Particulars | Large | Medium | Small | Total |
| :---: | :--- | :---: | :---: | :---: | :---: |
| A | Demand (bottle) | $3,00,000$ | $7,50,000$ | $20,00,000$ |  |
| B | Qty per bottle (Litre) | 3 | 1.5 | 0.6 |  |
| C | Output (Litre) [A×B] | $9,00,000$ | $11,25,000$ | $12,00,000$ | $32,25,000$ |
| D | Material-W per litre <br> of output (Litre) | 14 | 14 | 14 |  |
| E | Material-W required (Litre) <br> [C×D] | $1,26,00,000$ | $1,57,50,000$ | $1,68,00,000$ | $4,51,50,000$ |
| F | Material-C required per <br> litre of output (ml) | 25 | 25 | 25 |  |
| G | Material-C required (Litre) <br> $[(C \times F) \div 1000]$ | 22,500 | 28,125 | 30,000 | 80,625 |

4. No. of Man-shift required:

|  |  | Large | Medium | Small | Total |
| :---: | :--- | :---: | :---: | :---: | :---: |
| A | No. of batches | 180 | 225 | 240 | 645 |
| B | Hours required per batch (Hours) | 2 | 2 | 2 |  |
| C | Total hours required (Hours) [A×B] | 360 | 450 | 480 | 1,290 |
| D | No. of shifts required [C $\div 8]$ | 45 | 57 | 60 | 162 |
| E | Total manshift [D×20 workers] | 900 | 1,140 | 1,200 | 3,240 |

For simplicity of calculation small fractions has been ignored.
5. Power consumption in Kwh

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| For processing |  |  |  |  |  |
| A | No. of batches | 180 | 225 | 240 | 645 |
| B | Hours required per batch <br> (Hours) | 1.75 | 1.75 | 1.75 | 1.75 |
| C | Total hours required (Hours) <br> [A×B] | 315 | 393.75 | 420 | $1,128.75$ |
| D | Power consumption per hour <br> (Kwh) | 90 | 90 | 90 | 90 |
| E | Total Power <br> (Kwh) [C×D] | 28,350 | $35,437.5$ | 37,800 | $1,01,587$ |


| F | Per batch consumption* <br> $(K w h)[\mathrm{E} \div \mathrm{A}]$ | 157.5 | 157.5 | 157.5 | 157.5 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| For set-up |  |  |  |  |  |
| G | Hours required per batch <br> (Hours) | 0.25 | 0.25 | 0.25 | 0.25 |
| H | Total hours required (Hours) <br> [A×G] | 45 | 56.25 | 60 | 161.25 |
| I | Power consumption per hour <br> (Kwh) [20\%×90] | 18 | 18 | 18 | 18 |
| J | Total Power consumption <br> (Kwh) [H×I] | 810 | $1,012.5$ | 1,080 | $2,902.5$ |
| K | Per batch consumption* <br> (Kwh) [J $\div$ A] | 4.5 | 4.5 | 4.5 | 4.5 |

* Per batch consumption can be directly calculated as [Hours required per batch x Power consumption per hour]


## Calculation of Profit/ loss per batch:

|  | Particulars | Large | Medium | Small | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | Demand (bottle) | 3,00,000 | 7,50,000 | 20,00,000 | 30,50,000 |
| B | Price per bottle (₹) | 150 | 90 | 50 |  |
| C | Sales value (₹) [ $\mathrm{A} \times \mathrm{B}$ ] | 4,50,00,000 | 6,75,00,000 | 10,00,00,000 | 21,25,00,000 |
|  | Direct Material cost: |  |  |  |  |
| E | Material-W (₹) [Qty in WN-3 $\times$ ₹ 0.50 ] | 63,00,000 | 78,75,000 | 84,00,000 | 2,25,75,000 |
| F | Material-C ( $₹$ ) [Qty in WN-3 $\times$ ₹ 1,000 ] | 2,25,00,000 | 2,81,25,000 | 3,00,00,000 | 8,06,25,000 |
| G | [E+F] | 2,88,00,000 | 3,60,00,000 | 3,84,00,000 | 10,32,00,000 |
| H | Direct Wages (₹) [Manshift in WN-4 $\times \times$ ₹880] | 7,92,000 | 10,03,200 | 10,56,000 | 28,51,200 |
| 1 | $\begin{aligned} & \text { Packing cost } \\ & \text { [A×₹3] } \end{aligned}$ | 9,00,000 | 22,50,000 | 60,00,000 | 91,50,000 |
|  | Power cost ( $₹$ ) |  |  |  |  |
| J | For processing (₹) [WN-5 × ₹7] | 1,98,450 | 2,48,062.5 | 2,64,600 | 7,11,112.5 |
| K | For set-up time (₹) [WN-5 $\times$ ₹7] | 5,670 | 7,087.5 | 7,560 | 20,317.5 |
| L | [J+K] | 2,04,120 | 2,55,150 | 2,72,160 | 7,31,430 |
| M | Other variable cost (₹) [No. of batch in WN-2 $\times$ ₹ 30,000 ] | 54,00,000 | 67,50,000 | 72,00,000 | 1,93,50,000 |
| N | Total Variable cost per batch $[\mathrm{G}+\mathrm{H}+\mathrm{I}+\mathrm{L}+\mathrm{M}]$ | 3,60,96,120 | 4,62,58,350 | 5,29,28,160 | 13,52,82,630 |
| 0 | Profit/ loss before fixed cost [C-N] | 89,03,880 | 2,12,41,650 | 4,70,71,840 | 7,72,17,370 |
| P | Fixed Cost |  |  |  | 4,90,00,000 |
| Q | Net Profit [O-P] |  |  |  | 2,82,17,370 |

Computation of Economic Batch Quantity (EBQ):
$E B Q=\sqrt{\frac{2 \mathrm{XDXS}}{\mathrm{C}}}$
D = Annual Demand for the Product $=$ Refer A below
$S=$ Set-up cost per batch $=$ Refer $D$ below
$C=$ Carrying cost per unit per annum $=$ Refer $E$ below

|  | Particulars | Large | Medium | Small |
| :--- | :--- | ---: | ---: | ---: |
| A | Annual Demand (bottle) | $3,00,000$ | $7,50,000$ | $20,00,000$ |
| B | Power cost for set-up time (₹) <br> [Consumption per batch in WN-5 $\times$ ₹7] | 31.50 | 31.50 | 31.50 |
| C | Other variable cost (₹) | 30,000 | 30,000 | 30,000 |
| D | Total Set-up cost [B+C] | $30,031.50$ | $30,031.50$ | $30,031.50$ |
| E | Holding cost: | 1.00 | 1.00 | 1.00 |
| F | EBQ (Bottle) | $1,34,234$ | $2,12,243$ | $3,46,592$ |

## Question 7

Arnav Motors Ltd. manufactures pistons used in car engines. As per the study conducted by the Auto Parts Manufacturers Association, there will be a demand of 80 million pistons in the coming year. Arnav Motors Ltd. is expected to have a market share of $1.15 \%$ of the total market demand of the pistons in the coming year. It is estimated that it costs Rs.1.50 as inventory holding cost per piston per month and that the set-up cost per run of piston manufacture is Rs. 3,500.
(i) DETERMINE the optimum run size for piston manufacturing?
(ii) Assuming that the company has a policy of manufacturing 40,000 pistons per run, CALCULATE the extra costs company would be incurring as compared to the optimum run suggested in (i) above?
(iii) IDENTIFY variability of cost with respect to unit and batch level from the following cost:
(a) Inventory carrying cost; (b) Designing cost for a job; (c) Machine set-up cost to run production and (d) Depreciation of factory building. (MTP Oct'18, 10 Marks)

## Answer 7

(i) Optimum run size or Economic Batch Quantity (EBQ) $=\sqrt{\frac{2 \times D \times S}{C}}$

| Where, | D | $=$ Annual demand i.e. $1.15 \%$ of $8,00,00,000=9,20,000$ units |
| :--- | :--- | :--- |
|  | S | $=$ Set-up cost per run $=₹ 3,500$ |
|  | C | $=$ Inventory holding cost per unit per annum <br> $=₹ 1.5 \times 12$ months $=₹ 18$ |

$$
E B Q=\sqrt{\frac{2 \times 9,20,000 \text { units } \times 3,500}{18}}=18,915 \text { units }
$$

(ii) Calculation of Total Cost of set-up and inventory holding

|  | Batch size | No. of set-ups | Set-up Cost (Rs.) | Inventory holding cost (Rs.) | Total Cost (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 40,000 units | $\begin{gathered} 23 \\ \left(\frac{9,20,000}{40,000}\right) \end{gathered}$ | $\begin{gathered} 80,500 \\ (23 \times \text { Rs. } 3,500) \end{gathered}$ | $\begin{gathered} 3,60,000 \\ \left(\frac{40,000 \times \text { Rs. } 18}{2}\right) \end{gathered}$ | 4,40,500 |
| B | 18,915 units | $\begin{gathered} 49 \\ \left(\frac{9,20,000}{18,915}\right) \end{gathered}$ | $\begin{gathered} 1,71,500 \\ (49 \times \text { Rs. } 3,500) \end{gathered}$ | $\begin{gathered} 1,70,235 \\ \left(\frac{18,91 \times \text { Rs. } 18}{2}\right) \end{gathered}$ | 3,41,735 |
|  | Extra Cost ( $\mathrm{A}-\mathrm{B}$ ) |  |  |  | 98,765 |

(iii)

|  | Costs | Unit level | Batch level |
| :--- | :--- | :--- | :--- |
| (a) | Inventory carrying cost | Variable cost | Variable cost |


| (b) | Designing cost for a job | Fixed cost | Variable cost, provided the entire job <br> work is processed in a single batch. |
| :---: | :--- | :--- | :--- |
| (c) | Machine set-up cost to run <br> production | Fixed cost | Variable cost |
| (d) | Depreciation of factory <br> building | Fixed cost | Fixed cost |

## Question 8

$\mathrm{M} / \mathrm{s}$. KBC Bearings Ltd. is committed to supply 48,000 bearings per annum to M/s. KMR Fans on a steady daily basis. It is estimated that it costs Rs. 1 as inventory holding cost per bearing per month and that the set up cost per run of bearing manufacture is Rs. 3,200
(i) DETERMINE what would be the optimum run size of bearing manufacture?
(ii) DETERMINE What would be the interval between two consecutive optimum runs?
(iii) CALCULATE the minimum inventory cost? (MTP 5 Marks Oct '18, Old \& New SM)

## Answer 8

(i) Optimum batch size or Economic Batch Quantity (EBQ):
$\mathrm{EBQ}=\sqrt{\frac{2 \mathrm{DS}}{\mathrm{C}}}=\sqrt{\frac{2 \times 48,000 \times 3,200}{12}}=5,060$ units
(ii) Number of Optimum runs $=48,000 \div 5,060=9.49$ or 10 runs Interval between 2 runs (in days) $=365$ days $\div 10=36.5$ days
(iii) Minimum Inventory Cost $=$ Average Inventory $\times$ Inventory Carrying Cost per unit per annum

Average Inventory $=5,060$ units $\div 2=2,530$ units
Carrying Cost per unit per annum $=$ Rs. $1 \times 12$ months $=$ Rs.$~ 12$
Minimum Inventory Holding Costs $=2,530$ units $\times$ Rs. $12=$
Rs.30, 360

## Question 9

DESCRIBE Unit Costing. WHAT kind of industries follow this method of costing? (MTP 5 Marks Sep'22)

## Answer 9

Unit costing: It is that method of costing where the output produced is identical and each unit of output requires identical cost. Unit costing is synonymously known as single or output costing, but these are subdivision of unit costing method.

This method of costing is followed by industries which produce single output or few variants of a single output, therefore, this method of costing, finds its application in industries like paper, cement, steel works, mining, breweries etc. These types of industries produce identical products and therefore have identical costs.

## Question 10

BTL LLP. manufactures glass bottles for HDL Ltd., a pharmaceutical company, which is ayurvedic medicines business.
BTL can produce $\mathbf{2 , 0 0 , 0 0 0}$ bottles in a month. Set-up cost of each production run is ₹ $\mathbf{5 , 2 0 0}$ and the cost of holding one bottle for a year is ₹1.50.
As per an estimate HDL Ltd. can order as much as $19,00,000$ bottles in a year spreading evenly throughout the year.
At present the BTL manufactures 1,60,000 bottles in a batch.
Required:
(i) Compute the Economic Batch Quantity for bottle production.
(ii) ComputetheannualcostsavingtoBTLbyadoptingtheEBQofaproduction.(RTP Nov'19)

Economic Batch Quantity $(E B Q)=\sqrt{\frac{2 D S}{C}}$

Where, | $D$ | $=$ | Annual demand for the product |
| ---: | :--- | :--- |
| $S$ | $=$ Setting up cost per batch |  |
| $C$ | $=$ Carrying cost per unit of production |  |

(i) Computation of EBQ:

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \mathbf{1 9 , 0 0 , 0 0 0 \times \text { Rs. } 5 , 2 0 0}}{\text { Rs. } 1.5}} \\
& =1,14,775 \text { bottles }
\end{aligned}
$$

(ii) Computation of savings in cost by adopting EBQ:

| Batch Size <br> $1,60,000$ | No. of Batch | Set-up cost <br> 62,400 | Carrying cost <br> $1,20,000$ | Total Cost |
| :--- | :---: | :---: | :---: | :---: |
| bottles | 12 | $(‘ 5,200 \times 12)$ | $\left(‘ 1.5 \times 1,20,000 \frac{1}{2} \times 1,60,000\right)$ | $1,82,400$ |
| $1,14,775$ | 17 | $88,081.25$ <br> (‘ $5,200 \times 88,40017)$ | $(‘ 1.586,081.25 \times 1 / 2 \times 1,14,775)$ | $1,74,481.25$ |
| bottles |  |  | $7,918.75$ |  |
|  |  |  |  |  |

## Question 11

A Ltd. manufactures mother boards used in smart phones. A smart phone requires one mother board. As per the study conducted by the Indian Cellular Association, there will be a demand of $\mathbf{1 8 0}$ million smart phones in the coming year. A Ltd. is expected to have a market share of $5.5 \%$ of the total market demand of the mother boards in the coming year. It is estimated that it costs ₹6.25 as inventory holding cost per board per month and that the set-up cost per run of board manufacture is ₹33,500.
(i) COMPUTE the optimum run size for board manufacturing?
(ii) Assuming that the company has a policy of manufacturing 80,000 boards per run, CALCULATE how much extra costs the company would be incurring as compared to the optimum run suggested in (i) above? (RTP Nov '20) (MTP 5 Marks Sep '23)

## Answer 11

Optimum run size or Economic Batch Quantity $(E B Q)=\sqrt{\frac{2 \times D \times S}{C}}$
Where, $\quad D=$ Annual demand i.e. $5.5 \%$ of $18,00,00,000=99,00,000$ units
S $\quad=$ Set-up cost per run $=₹ 33,500$
C = Inventory holding cost per unit per annum
$=₹ 6.25 \times 12$ months = ₹75
$\mathrm{EBQ}=\sqrt{\frac{2 \times 99,00,000 \text { Units } \times \text { Rs. } 33,500}{\text { Rs. } 75}}$
= 94,042.5 Units or 94,043 Units
Calculation of Total Cost of set-up and inventory holding

|  | Batch size | No. of set- ups | Set-up Cost (₹) | Inventory holding cost <br> (₹) | Total Cost (₹) |
| :---: | :---: | :---: | :---: | :--- | :---: |
| A | 80,000 <br> units | 124 <br> $\left(\frac{99,00,000}{80,000}\right)$ | $41,54,000$ <br> $(124 \times$ <br> $₹ 33,500)$ | $\left(\frac{80,000 \times \text { Rs. } 75}{2}\right)$ | $71,54,000$ |


| B <br> 44,043 <br> units | 106 <br> $\left(\frac{99,00,000}{94,043}\right)$ | $35,51,000$ <br> $(106 \times$ <br> $₹ 33,500)$ | $35,26,612.5$ <br> $\left(\frac{94,043 \times \mathrm{Rs.75}}{2}\right)$ | $70,77,612.50$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Extra Cost (A - B) |  |  | $76,387.50$ |

## Question 12

PS Ltd. manufactures articles in predetermined lots simultaneously. The following costs have been incurred for Batch No. 'PS143' in the month of March, 2022:
Units produced 1,000 units
Direct materials cost ₹ 2,00,000
Direct Labour -
Department A 800 labour hours @ ₹ 100 per hour.
Department B 1,400 labour hours @ ₹ 120 per hour.
Factory overheads are absorbed on labour hour basis and the rates are:
Department A @ ₹ 140 per hour.
Department B @ ₹ 80 per hour.
Administrative overheads are absorbed at $10 \%$ of selling price.
The firm expects $\mathbf{2 5 \%}$ gross profit (sales value minus factory cost) for determining the selling price.
You are required to CALCULATE the selling price per unit of Batch No. 'PS143'. (RTP Nov’22)
Answer 12
Statement showing selling price per unit of Batch number 'PS143'

| Particulars | Amount (₹) | Amount (₹) |
| :--- | ---: | ---: |
| Direct Materials |  | $2,00,000$ |
| Direct Labour | 80,000 |  |
| Department A 800 labour hours @ ₹100 per hour | $1,68,000$ | $2,48,000$ |
| Department B 1400 labour hours @ ₹120 per hour | $1,12,000$ |  |
| Factory overheads <br> Department A 800 labour hours @ ₹140 per hour Department B 1400 <br> labour hours @ ₹80 per hour | $1,12,000$ | $2,24,000$ |
| Factory Cost |  | $6,72,000$ |
| Add: Administrative overheads (10\% of selling price) (6,72,000/75\% x 10\%) |  | 89,600 |
| Cost of production |  | $7,61,600$ |
| Add: Profit (15\% of selling price) (6,72,000/75\% x 15\%) | $1,34,400$ |  |
| Selling price of batch no 'PS143' |  | $8,96,000$ |
| Selling price per unit (8,96,000 / 1000 units) | 896 |  |

Alternatively, selling price calculation:-
Selling price assume $X$
25\% = (X - factory cost) / X
or 0.25 X = X-6,72,000
or $0.75 \mathrm{X}=6,72,000$
hence $X=$ ₹ 8,96,000

## Question 13

Explain 'Job Costing' and 'Batch Costing'. (PYP May '18, 5 Marks)

## Answer 13

Job costing: In this method of costing, cost of each job is ascertained separately. It is suitable in all cases where work is undertaken on receiving a customer's order like a printing press, motor work shop, etc. This method of costing is used for non- standard and non- repetitive products produced as per customer specifications and against specific orders. Jobs are different from each other and independent of each other. Each Job is unique.

Batch Costing: It is the extension of Job costing. Homogeneous products are produced in a continuous production flow in lots. A batch may represent a number of small orders passed through the factory in batch. Each batch here is treated as a unit of cost and thus separately costed. Here cost per unit is determined by dividing the cost of the batch by number of units produced in the batch.

## Question 14

GHI Ltd. manufactures 'Stent' that is used by hospitals in heart surgery. As per the estimates provided by Pharmaceutical Industry Bureau, there will be a demand of 40 Million 'Stents' in the coming year. GHI Ltd. is expected to have a market share of $2.5 \%$ of the total market demand of the Stents in the coming year. It is estimated that it costs 1.50 as inventory holding cost per stent per month and that the set-up cost per run of stent manufacture is ₹ 225.

Required:
(i) What would be the optimum run size for Stent manufacture?
(ii) What is the minimum inventory holding cost?
(iii) Assuming that the company has a policy of manufacturing 4,000 stents per run, how much extra costs the company would be incurring as compared to the optimum run suggested in (i) above? (PYP 5 Marks Jan '21) (Same concept different figures RTP May'22)

## Answer 14

(i) Computation of Optimum Run size of 'Stents' or Economic Batch Quantity (EBQ)

Economic Batch Quantity (EBQ) $=\sqrt{\frac{2 D s}{C}}$
Where, D = Annual demand for the Stents

$$
=4,00,00,000 \times 2.5 \%=10,00,000 \text { units }
$$

S $\quad$ Set- up cost per run
= ₹ 225
C = Carrying cost per unit per annum
$=₹ 1.50 \times 12$ = ₹ 18
$E B Q=\sqrt{\frac{2 \times 10,00,000 \times \text { Rs. } 225}{\text { Rs. } 18}}$
$=5,000$ units of Stents
(ii) Minimum inventory holding cost

Minimum Inventory Cost $=$ Average Inventory $\times$ Inventory Carrying Cost per unit per annum

$$
\begin{aligned}
& =(5,000 \div 2) \times ₹ 18 \\
& =₹ 45,000
\end{aligned}
$$

(iii) Calculation of the extra cost due to manufacturing policy

|  | When run size is 4,000 units | When run size is 5,000 units <br> i.e. at EBQ |
| :--- | :--- | :--- |
| Total set up cost | $=\frac{10,00,000}{4,000} \times$ Rs. 225 | $=\frac{10,00,000}{5,000} \times$ Rs. 225 |


|  | $=₹ 56,250$ | $=₹ 45,000$ |
| :--- | :---: | :---: |
| Total Carrying cost | $1 / 2 \times 4,000 \times ₹ 18$ | $1 / 2 \times 5,000 \times ₹ 18$ |
|  | $=₹ 36,000$ | $=₹ 45,000$ |
| Total Cost | $₹ \mathbf{9 2 , 2 5 0}$ | $₹ 90,000$ |

Extra cost = ₹ 92,250 - ₹ 90,000 = ₹ 2,250

## Question 15

XYZ Ltd. has obtained an order to supply 48000 bearings per year from a concern. On a steady basis, it is estimated that it costs Rs. 0.20 as inventory holding cost per bearing per month and the set-up cost per run of bearing manufacture is Rs. 384.
You are required to:
(i) compute the optimum run size and number of runs for bearing manufacture.
(ii) compute the interval between two consecutive runs.
(iii) find out the extra costs to be incurred, if company adopts a policy to manufacture 8000 bearings per run as compared to optimum run Size.
(iv) give your opinion regarding run size of bearing manufacture.

Assume 365 days in a year. (PYP Nov‘18,10 Marks)

## Answer 15

(i) Optimum batch size or Economic Batch Quantity (EBQ):

$$
\mathrm{EBQ}=\sqrt{\frac{2 \mathrm{DS}}{\mathrm{C}}}=\sqrt{\frac{2 \times 48,000 \times 384}{2.4}} \quad=3919.18 \text { or } 3,920 \text { units }
$$

Number of Optimum runs $=48,000 \div 3,920=12.245$ or 13 run
(ii) Interval between 2 runs (in days) $=365$ days $\div 13=28$ days Or
$365 \div 12.24=29.82$ days
(iii) If 8,000 bearings are manufactures in arun:

$$
\begin{aligned}
\text { Total cost } & =\text { Set-up cost }+ \text { Inventory holding cost } \\
& =\text { Rs. } .384 \times(48,000 \div 8,000)+(8,000 \div 2) \times ₹ .2 .4 \\
& =2304+9,600=11,904
\end{aligned}
$$

Extra cost $=$ Rs. $\left(11,904-9,406^{*}\right)=₹ 2,498 /-$ OR
Extra cost $=$ Rs. $\left(11,904-9,696^{*}\right)=$ Rs. 2,208/-

* Minimum Inventory Cost $=$ Average Inventory $\times$ Inventory Carrying Cost per unit per annum Average Inventory $=3,920$ units $\div 2=1,960$ units

Carrying Cost per unit per annum =Rs. $0.2 \times 12$ months =Rs. 2.4 Minimum Inventory Holding Costs $=1,960$ units $\times$ Rs. $2.4=$ Rs. 4,704
Total cost $=$ Set-up cost + Inventory holding cost= (12.245×384)+ 4704=Rs. 9,406 (approx.)

OR
Total cost $=$ Set-up cost + Inventory holding cost= ( $13 \times 384$ ) + 4704=Rs. 9,696 (approx.)
(iv) To save cost the company should run at optimum batch size i.e. 3,920 Units. It saves Rs. 2,498 or 2208 . Run size should match with the Economic production run of bearing manufacture. When managers of a manufacturing operation make decisions about the number of units to produce for each production run, they must consider the costs related to setting up the production process and the costs of holding inventory

Alternative presentation to part 3(a) (iii)
Statement showing Total Cost at Production Run size of 3,600 and 8,000 bearings

| A. | Annual requirement | 48,000 | 48,000 |
| :--- | :--- | ---: | ---: |
| B. | Run Size | 3,920 | 8,000 |
| C. | No. of runs (A/B) | 12.245 | 6 |
| D. | Set up cost per run | $₹ 384$ | $₹ 384$ |
| E. | Total set up cost (CxD) | $₹ 4,702$ | $₹ 2,304$ |
| F. | Average inventory (B/2) | 1,960 | 4,000 |
| G. | Carrying cost per unit p.a. | 2.40 | 2.40 |
| H. | Total Carrying cost (FxG) | 4,704 | 9,600 |
| I. | Total cost (E+H) | 9,406 | 11,904 |

Extra cost incurred, if run size is of $8,000=$ Rs. 11,904-9,406=Rs. 2,498

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This numerical question was based on batch costing. The majority of examinees did well.

## Question 16

AUX Ltd. has an Annual demand from a single customer for 60,000 Covid-19 vaccines. The customer prefers to order in the lot of $\mathbf{1 5 , 0 0 0}$ vaccines per order. The production cost of vaccine is $₹ \mathbf{5 , 0 0 0}$ per vaccine. The set-up cost per production run of Covid-19 vaccines is ₹ 4,800 . The carrying cost is ₹ $\mathbf{1 2}$ per vaccine per month.

You are required to:
(i) Find the most Economical Production Run.
(ii) Calculate the extra cost that company incurs due to production of 15,000 vaccines in a batch.(PYP 5 Marks July '21)

## Answer 16

i. Calculation of most Economical Production Run

$$
=\sqrt{\frac{2 \times 60,000 \times \text { Rs. } 4,800}{12 \times 12}}=2,000 \text { Vaccine }
$$

ii. Calculation of Extra Cost due to processing of 15,000 vaccines in a batch

|  | When run size is $\mathbf{2 , 0 0 0}$ vaccines | When run size is $\mathbf{1 5 , 0 0 0}$ vaccines |
| :---: | :---: | :---: |
| Total set up cost | $\begin{aligned} & =\frac{60,000}{2,000} \times \text { Rs. } 4,800 \\ & =₹ 1,44,000 \end{aligned}$ | $\begin{array}{r} =\frac{60,000}{15,000} \times \text { Rs. } 4,800 \\ =₹ 19,200 \end{array}$ |
| Total Carrying cost | $\begin{array}{r} 1 / 2 \times 2,000 \times ₹ 144 \\ =₹ 1,44,000 \\ \hline \end{array}$ | $\begin{array}{r} 1 / 2 \times 15,000 \times ₹ 144 \\ =₹ 10,80,000 \end{array}$ |
| Total Cost | ₹ 2,88,000 | ₹ 10,99,200 |

Thus, extra cost = ₹ 10,99,200 - ₹ 2,88,000 = ₹ 8,11,200

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem requiring to calculate Economic Production Run and extra cost due to a different production plan. Performance of the examinees was

## Question 17

A Ltd. is a pharmaceutical company which produces vaccines for diseases like Monkey Pox, Covid19 and Chickenpox. A distributor had given an order for 1,600 Monkey Pox Vaccines. The company can produce 80 vaccines at a time. To process a batch of $\mathbf{8 0}$ Monkey Pox vaccines, the following costs would be incurred:

|  | ₹ |
| :--- | ---: |
| Direct Materials | 4,250 |
| Direct wages | 500 |
| Lab set-up cost | 1,400 |

The Production Overheads are absorbed at a rate of $\mathbf{2 0 \%}$ of direct wages and $\mathbf{2 0 \%}$ of total production cost is charged in each batch for Selling, distribution and administration Overheads. The company is willing to earn profit of $\mathbf{2 5 \%}$ on sales value.

You are required to determine:
(i) Total Sales value for 1,600 Monkey Pox Vaccines
(ii) Selling price per unit of the Vaccine. (PYP 5 Marks Nov 22)

Answer 17
(i) \& (ii) Calculation of Sales value and Selling price per unit of Monkey Pox vaccine

| Particulars | Amount (₹) <br> per Batch | Amount (₹) for 1600 <br> units or 20 batches | Amount (₹) <br> per unit |
| :--- | ---: | ---: | ---: |
| Direct materials | 4,250 | 85,000 | 53.125 |
| Direct wages | 500 | 10,000 | 6.250 |
| Lab set-up cost | 1,400 | 28,000 | 17.500 |
| Production overheads <br> $(20 \%$ of direct wages) | 100 | 2,000 | 1.250 |
| Production Cost | 6,250 | $1,25,000$ | 78.125 |
| Selling, distribution and <br> administration cost (20\% <br> of Production cost) | 1,250 | 25,000 | 15.625 |
| Total Cost | 7,500 | 50,000 | 31.25 |
| Add: Profit (1/3rd of Total <br> cost or 25\% of Sales <br> value) | 2,500 | $2,00,000$ | 125.00 |
| Sales value | 10,000 |  | 93.75 |

## Question 18

TSK Limited manufactures a variety of products. The annual demand for one of its products- Product ' X ' is estimated as '1,35,000 units. Product ' X ' is to be manufactured done in batches. Set up cost of each batch is ` 3,375 and inventory holding cost is \({ }^{`} 5\) per unit. It is expected that demand of Product ' X ' would be uniform throughout the year.

Required:
(i) Calculate the Economic Batch (EBQ) for Product ' X '.
(ii) Assuming that the company has a policy of manufacturing 7,500 units of Product ' $X$ ' per batch, calculate the additional cost incurred as compared to the cost incurred as per Economic Batch Quantity (EBQ) as computed in (i) above. (PYP 5 Marks, May '23)
Answer 18
i) Economic Batch Quantity $(E B Q)=\sqrt{\frac{2 D S}{C}}$ where,
D $\quad=$ Annual demand for the product
S = Set-up cost per batch
$C=$ Carrying cost per unit per annum.
8.15
$\sqrt{\frac{2 D S}{C}}=\sqrt{\frac{2 \times 1,35,000}{5}}=13,500$ units.
ii) Total Cost (of maintaining the inventories) when batch size ( $Q$ ) are 13,500 and $\mathbf{7 , 5 0 0}$ units respectively

Total cost $=$ Total set-up cost + Total carrying cost .

|  | When batch size is 13,500 units | When batch size is 7,500 units |
| :---: | :---: | :---: |
| Total set up cost | $\begin{gathered} =\frac{1,35,000}{13,500} \times {f27a7e75b-2a21-4ef1-a670-187d2a69e283} 33,750 \text { Or, } \\ \text { No. of setups }=10 \\ =10 \times {fdbdac98c-9738-48cf-b3cb-ac776dae21ff} 33,750 \end{gathered}$ | $\begin{aligned} =\frac{1,35,000}{7,500} & \times {feeb289fe-7258-4727-bafa-5b8edddae759} 60,750 \end{aligned}$ |
| Total Carrying cost | $\begin{gathered} 1 / 2 \times 13,500 \times 5 \\ ={f8f6b2904-8c65-46cb-bba8-f153f3e58f68} 18,750 \end{gathered}$ |  |
| Total Cost | 67,500 | 79,500 |

12,000 is the excess cost borne by the company due to batch size not being economic batch quantity.

Alternative presentation

|  | EOQ 13,500 | Batch size 7500 | Extra cost | Saving |
| :---: | :---: | :---: | :--- | :--- |
| No of setup | 10 | 18 | $8 \times 3375=27,000$ |  |
| Carrying cost | $13,500-7500=6000 / 2 @ 5$ |  | 15,000 |  |

Net extra cost $=(27,000-15,000)=` 12,000$

## Chapter 9 <br> Job Costing and Contract Costing

## Question 1

A factory uses job costing. The following data are obtained from its books for the year ended 31st March, 20X8:

| Direct materials | $\mathbf{y}$ |
| :--- | ---: |
| Direct wages | $\mathbf{7 , 5 0 , 0 0 0}$ |
| Selling and distribution overheads | $5,25,000$ |
| Administration overheads | $\mathbf{4 , 2 0 , 0 0 0}$ |
| Factory overheads | $\mathbf{4 , 5 0 , 0 0 0}$ |
| Profit | $6,09,000$ |

(i) PREPARE a Job Cost sheet indicating the Prime cost, Cost of Production, Cost of sales and the Sales value.
(ii) In 2018-19, the factory received an order for a job. It is estimated that direct materials required will be Rs. $2,40,000$ and direct labour will cost Rs. $1,50,000$. DETERMINE what should be the price for the job if factory intends to earn the same rate of profit on sales assuming that the selling and distribution overheads have gone up by $15 \%$. The factory recovers overheads as a percentage of Cost of Production, based on cost rates prevailing in the previous year. (MTP Aug '18,10 Marks) (RTP May '20 \& May '18)

## Answer 1

(i) Production Statement

For the year ended 31st March, 2018

| Direct materials |  | Amount (₹) <br> $9,00,000$ |
| :--- | :--- | ---: |
| Direct wages |  | $7,50,000$ |
|  | Prime Cost | $16,50,000$ |
| Factory overheads | Cost of Production | $4,50,000$ |
|  |  | $21,00,000$ |
| Administration overheads |  | $4,20,000$ |
| Selling and distribution overheads | Cost of Sales | $5,25,000$ |
|  |  | $30,45,000$ |
| Profit | Sales value | $6,09,000$ |
|  |  | $36,54,000$ |
| Calculation of Rates: |  |  |

1. Percentage of factory overheads to direct wages = Rs. 4,50,000 / Rs. 7,50,000x $100=60 \%$
2. Percentage of administration overheads to Cost of production $=$ Rs. $4,20,000 /$ Rs. $21,00,000 \times$ $100=20 \%$
3. Selling and distribution overheads $=₹ 5,25,000 \times 115 \%=₹ 6,03,750$ Selling and distribution overhead \% to Cost of production $=\frac{R s .6,03,750}{R s .21,00,000} \times 100=28.75 \%$
4. Percentage of profit to sales $=\frac{R s .6,09,000}{R s .36,54,000} \times 100=16.67 \%$

| (ii) Calculation of price for the job received in 2018-19 |  |
| :--- | ---: |
| Direct materials | Amount (₹ ) |
| Direct wages | $2,40,000$ |
| Factory overheads (60\% of ₹ $1,50,000$ ) | $1,50,000$ |
|  | $3,90,000$ |
|  | Cost of Production |

STRIVING TOWARDS KNOWLEDGE

| Administration overheads (20\% of ₹ 4,80,000) | 96,000 |
| :---: | ---: |
| Selling and distribution overheads (28.75\% of ₹ 4,80,000) | $1,38,000$ |
| Cost of Sales | $7,14,000$ |
| Profit (20\% of ₹ 7,14,000) | $1,42,800$ |
|  | $8,56,800$ |

## Question 2

APFL Ltd. deals in plumbing materials and also provides plumbing services to its customers. On 12th August, 2019, APFL received a job order for a students' hostel to supply and fitting of plumbing materials. The work is to be done on the basis of specification provided by the hostel owner. Hostel will be inaugurated on 5th September, 2019 and the work is to be completed by 3rd September, 2019. Following are the details related with the job work:

Direct Materials
APFL uses a weighted average method for the pricing of materials issues. Opening stock of materials as on 12th August 2019:

- 15mm Gl Pipe, 12 units of 15 feet size @ Rs. 600 each
- 20mm GI Pipe, 10 units of 15 feet size @ Rs. 660 each
- Other fitting materials, 60 units @ Rs. 26 each
- Stainless Steel Faucet, 6 units @ Rs. 204each
- Valve, 8 units @ Rs. 404 each Purchases:

On 16th August 2019:

- 20 mm GI Pipe, $\mathbf{3 0}$ units of 15 feet size @ Rs. 610 each
- 10 units of Valve@ Rs. 402 each On 18th August 2019:
- Other fittingmaterials, 150 units @ Rs. 28 each
- Stainless Steel Faucet, 15 units @ Rs. 209 each On 27th August2019:
- 15 mm GI Pipe, 35 units of 15 feet size @ Rs. 628 each
- 20mm GI Pipe, 20 units of 15 feet size @ Rs. 660 each
- Valve, 14 units @ Rs. 424 each Issues for the hostel job:


## On 12th August 2019:

- 20mm Gl Pipe, 2 units of 15 feetsize
- Otherfitting materials,18units On 17th August 2019:
- 15 mm Gl Pipe, 8 units of 15 feet size
- Otherfitting materials,30units On 28th August 2019:
- 20 mm Gl Pipe, 2 units of 15 feetsize
- 15 mm GI Pipe, 10 units of $\mathbf{1 5}$ feetsize
- Other fitting materials, 34 units
- Valve, 6 units On 30thAugust:
- Other fitting materials, 60 units
- Stainless Steel Faucet, 15 units

Direct Labour:
Plumber: 180 hours @ Rs. 50 per hour (includes 12 hours overtime) Helper: 192 hours @ Rs. 35 per hour (includes $\mathbf{2 4}$ hours overtime) Overtimes are paid at 1.5 times of the normal wage rate.

Overheads:
Overheads are applied @ Rs. 13 per labour hour.
Pricing policy:
It is company's policy to price all orders based on achieving a profit margin of $\mathbf{2 5 \%}$ on sales price.

## You are required to

(a) Calculate the total cost of the job.
(b) Calculate the price to be charged from the customer. (MTP Oct. '19, 10 Marks) (RTP Nov '20)

Answer 2

| (a) Calculation of Total Cost for the Hostel Job Particulars <br> Direct Material Cost: | Amount (Rs.) | Amount (Rs.) |
| :---: | :---: | :---: |
| - 15 mm Gl Pipe (Working Note-1) | 11,051.28 |  |
| - $20 \mathrm{~mm} \mathrm{Gl} \mathrm{Pipe} \mathrm{(Working} \mathrm{Note-2)}$ | 2,588.28 |  |
| Other fitting materials (Working Note-3) | 3,866.07 |  |
| - Stainless steel faucet |  |  |
| 15 units $\times\left(\frac{6 \times \text { Rs. } 204+15 \times 209}{21 \text { units }}\right)$ |  |  |
| -Value | 3,113.57 |  |
| 6 units $\times\left(\frac{8 \times \text { Rs. } 404+10 \times \text { Rs } .402+14 \times \text { Rs. } 424}{32 \text { nits }}\right)$ | 2,472.75 | 23,091.95 |
| Direct Labour: |  |  |
| -Plumber[(180hours $\times$ Rs.50)+(12hours $\times$ Rs.25)] | 9,300.00 |  |
| -Helper[(192hours $\times$ Rs.35)+(24hours $\times$ Rs.17.5)] | 7,140.00 | 16,440.00 |
| - Overheads [Rs. $13 \times(180+192)$ hours] |  | 4,836.00 |
| Total Cost |  | 44,367.95 |

(b) Price to be charged for the job work:

|  | Amount (Rs.) |
| :--- | ---: |
| Total Cost incurred on the job | $44,367.95$ |
|  | $14,789.32$ |
| Add: $25 \%$ Profit on Job Price $\left(\frac{44,367.95}{75 \%} \times 25 \%\right)$ | $59,157.27$ |

## Working Note:

1. Cost of 15 mm GI Pipe

| Date |  | Amount (Rs.) |
| :--- | :--- | :--- |
| $17-08-2019$ | 8 units $\times$ Rs. 600 | $4,800.00$ |
| $28-08-2019$ | units $\times\left(\frac{4 \times R s .600+35 \times R s .628}{39 \text { units }}\right)$ | $6,251.28$ |
|  |  | $11,051.28$ |

2. Cost of 20 mm GI Pipe

| Date |  | Amount (Rs.) |
| :--- | :---: | :--- |
| $12-08-2019$ | 2 units $\times$ Rs. 660 | $1,320.00$ |
| $28-08-2019$ | 2 units $\times\left(\frac{8 \times R s .660+30 \times R s .610+20 \times R s .660}{39 \text { units }}\right)$ | $1,268.28$ |
|  |  | $2,588.28$ |

3. Cost of Other fitting materials

| Date |  | Amount (Rs.) |
| :--- | :--- | :--- |
| $12-08-2019$ | 18 units $\times$ Rs. 26 | 468.00 |
| $17-08-2019$ | 30 units $\times$ Rs. 26 | 780.00 |
| $28-08-2019$ | 34 units $\times\left(\frac{12 \times \text { Rs. } 26+150 \times \text { Rs.28 }}{162 \text { units }}\right)$ | 946.96 |
|  |  |  |
| $30-08-2019$ | 60 units $\times\left(\frac{12 \times \text { Rs. } 26+150 \times \text { Rs. } 28}{162 \text { units }}\right)$ | $1,671.11$ |

## Question 3

A Ltd. is an engineering manufacturing company producing job orders on the basis of specifications provided by the customers. During the last month it has completed three jobs namely A, B and C. The following are the items of expenditures which are incurred in addition to direct materials and direct employee cost:

Office and administration cost - Rs. 6,00,000
Product blueprint cost for job A - Rs. 2,80,000
Hire charges paid for machinery used in job work B - Rs. 80,000
Salary to office attendants - Rs. 1,00,000
One time license fee paid for software used to make computerised graphics for job C - Rs. 1,00,000.
Salary paid to marketing manager - Rs. 2,40,000.
Required:
CALCULATE direct expenses attributable to each job. (MTP 5 Marks Mar 21)

## Answer 3

Calculation of Direct expenses

| Particulars | Job A (Rs.) | Job B (Rs.) | Job C (Rs.) |
| :--- | :--- | :--- | :--- |
| Product blueprint cost | $2,80,000$ | -- | -- |
| Hire charges paid for machinery | -- | 80,000 | -- |
| License fee paid for software | -- | -- | $1,00,000$ |
| Total Direct expenses | $\mathbf{2 , 8 0 , 0 0 0}$ | $\mathbf{8 0 , 0 0 0}$ | $\mathbf{1 , 0 0 , 0 0 0}$ |

## Question 4

MT Ltd. pays the followings to skilled workers engaged in production works. The following are the employee benefits paid to the employees:

| (a) | Basic salary per day | ₹1,000 |
| :--- | :--- | :--- |
| (b) | Dearness allowance (DA) | 20\% of basic salary |
| (c) | House rent allowance | 16\% of basic salary |
| (d) | Transport allowance | ₹50 per day of actual work |
| (e) | Overtime | Twice the hourly rate (considers basic and DA), only <br> if works more than 9 hours a day otherwise no <br> overtime allowance. If works for more than 9 hours <br> a day then overtime is considered after 8th hours. |
| (f) | Work of holiday and Sunday | Double of per day basic rate provided works at least <br> $\mathbf{4}$ hours. The holiday and Sunday basic is eligible for <br> all allowances and statutory deductions. |
| (h) | Earned leave \& Casual leave | These are paid leave. |
| (h) | Employer's contribution to Provident <br> fund | $\mathbf{1 2 \%}$ of basic and DA |
| (i) | Employer's contribution to Pension <br> fund | 7\% of basic and DA |

The company normally works 8-hour a day and 26-day in a month. The company provides 30 minutes lunch break in between. During the month of August 2020, Mr. Z works for 23 days including 15 ${ }^{\text {th }}$ August and a Sunday and applied for 3 days of casual leave. On $15^{\text {th }}$ August and Sunday he worked
for 5 and 6 hours respectively without lunch break.
On $5^{\text {th }}$ and $13^{\text {th }}$ August he worked for 10 and 9 hours respectively. During the month Mr . Z worked for 100 hours on Job no.HT200. You are required to CALCULATE:
(i) Earnings per day
(ii) Effective wages rate per hour of Mr. Z.
(iii) Wages to be charged to Job no.HT200 [MTP 10 Marks April '23]

## Answer 4

## Workings:

1. Normal working hours in a month = (Daily working hours - lunch break) $\times$ no. of days $=(8$ hours -0.5 hours $) \times 26$ days $=195$ hours
2. Hours worked by Mr.Z = No. of normal days worked + Overtime + holiday/ Sunday worked
$=(21$ days $\times 7.5$ hours $)+(9.5$ hours +8.5 hours $)+(5$ hours +6 hours $)$
$=157.5$ hours +18 hours +11 hours $=186.50$ hours .

## (i) Calculation of earnings per day

| Particulars | Amount (₹) |
| :--- | ---: |
| Basic salary (₹1,000 $\times 26$ days) | 26,000 |
| Dearness allowance (20\% of basic salary) | 5,200 |
|  | 31,200 |
| House rent allowance (16\% of basic salary) | 4,160 |
| Employer's contribution to Provident fund (12\% × ₹31,200) | 3,744 |
| Employer's contribution to Pension fund (7\% $\times$ ₹31,200) | 2,184 |
|  | 41,288 |
| No. of working days in a month (days) | 26 |
| Rate per day | 1,588 |
| Transport allowance per day | 50 |
| Earnings per day | $\mathbf{1 , 6 3 8}$ |

## (ii) Calculation of effective wage rate per hour of Mr. Z:

| Particulars | Amount (₹) |
| :--- | ---: |
| Basic salary (₹1,000 $\times 26$ days) | 26,000 |
| Additional basic salary for Sunday \& holiday (₹1,000 $\times 2$ days) | 2,000 |
| Dearness allowance (20\% of basic salary) | 5,600 |
|  | 33,600 |
| House rent allowance (16\% of basic salary) | 4,480 |
| Transport allowance (₹50 $\times 23$ days) | 1,150 |
| Overtime allowance (₹160 $\times 2 \times 2$ hours)* | 640 |
| Employer's contribution to Provident fund (12\% $\times ₹ 33,600$ ) | 4,032 |
| Employer's contribution to Pension fund (7\% $\times ₹ 33,600$ ) | 2,352 |
| Total monthly wages | 46,254 |
| Hours worked by Mr.Z (hours) | 186.5 |
| Effective wage rate per hour | $\mathbf{2 4 8}$ |

$*($ Daily Basic + DA $) \div 7.5$ hours
$=(1,000+200) \div 7.5=₹ ₹ 160$ per hour
(iii) Calculation of wages to be charged to Job no. HT200

$$
=₹ 248 \times 100 \text { hours = ₹ } 24,800
$$

## Question 5

Ispat Engineers Limited (IEL) undertook a plant manufacturing work for a client. It will charge a profit mark up of $\mathbf{2 0 \%}$ on the full cost of the jobs. The following are the information related to the job:
Direct materials utilized - ₹ $1,87,00,000$
Direct labour utilized - 2,400 hours at ₹ 80 per hour
Budgeted production overheads are Rs. 48,00,000 for the period and are recovered on the basis of 24,000 labour hours.
Budgeted selling and administration overheads are ₹ $18,00,000$ for the period and recovered on the basis of total budgeted total production cost of $₹ 36,00,00,000$.

Required:
Calculate the price to be charged for the job. (RTP Nov'19)

## Answer 5

Calculation of job price

| Particulars | Amount (₹) |
| :---: | :---: |
| Direct materials | 1,87,00,000 |
| Direct wages ( $₹ 80 \times 2,400$ hours) | 1,92,000 |
| Production $\left(\frac{\text { Rs. } 48,00,000}{24,000 h r s} \times 2,400 h r s\right)$ | 4,80,000 |
| Production cost | 1,93,72,000 |
| Selling and administration overheads $\left(\frac{R s .18,00,000}{R s .36,00,00,000} \times R s .1,93,72,000\right)$ | 96,860 |
| Total cost of sales | 1,94,68,860 |
| Profit mark-up @ 20\% | 38,93,772 |
| Price for the job | 2,33,62,632 |

## Question 6

A company has been asked to quote for a job. The company aims to make a net profit of $\mathbf{3 0 \%}$ on sales. The estimated cost for the job is as follows:
Direct materials 10 kg @₹ 10 per kg
Directlabour20hours@₹5perhour
Variable production overheads are recovered at the rate of ₹ 2 per labour hour.
Fixed production overheads for the company are budgeted to be ₹ 1,00,000 each year and are recovered on the basis of labour hours.
There are 10,000 budgeted labour hours each year. Other costs in relation to selling, distribution and administration are recovered at the rate of $₹ 50$ per job.
DETERMINE quote for the job by the Company. (RTP Nov'18)

## Answer 6

## Determination of quotation price for the job

Cost
Direct Material (10kg $\times$ ₹ 10 )

Variable production overhead (20hrs $\times$ ₹ 2) 40

Fixed Overhead ( Rs. 1,00,000 / 10,000 Budgeted Hours200 $\times 20$ Hours
Other costs 50
Total costs 490
Net profit is $30 \%$ of sales, therefore total costs represent $70 \%$ ( $₹ 490 \times 100$ ) $\div 70=₹ 700$ price to quote for job.
To check Answer is correct; profit achieved will be ₹ 210 (₹ 700 - ₹ 490)
= ₹ $210 \div ₹ 700=30 \%$

## Question 7

KJ Motors Ltd. is a manufacturer of auto components. Following are the details of expenses for the year 2020-21:

|  |  | (₹) |
| :---: | :--- | :--- |
| (i) | Opening Stock of Material | $15,00,000$ |
| (ii) | Closing Stock of Material | $20,00,000$ |
| (iii) | Purchase of Material | $1,80,50,000$ |
| (iv) | Direct Labour | $90,50,000$ |
| (v) | Factory Overhead | $30,80,000$ |
| (vi) | Administrative Overhead | $20,50,400$ |

During the FY 2021-22, the company has received an order from a car manufacturer where it estimates that the cost of material and labour will be ₹ $80,00,000$ and $₹ 40,50,000$ respectively. The company charges factory overhead as a percentage of direct labour and administrative overheads as a percentage of factory cost based on previous year's cost. Cost of delivery of the components at customer's premises is estimated at $₹ \mathbf{9 , 5 0 , 0 0 0}$. You are required to:
(i) CALCULATE the overhead recovery rates based on actual costs for 2020-21.
(ii) PREPARE a Job cost sheet for the order received and the price to be quoted if the desired profit is 25\% on sales. (RTP May'21, May '22 \& Nov '23)

## Answer 7

(i) Calculation of Overhead Recovery Rate:

Factory Overhead Recovery Rate $=\frac{\text { Factory Overhead in } 2020-21}{\text { Direct labour Cost in } 2020-21} \times 100$
$=\frac{R s .30,80,000}{R a \cdot 90,50,000} \times 100=34 \%$ of Direct labour
Administrative Overhead Recovery Rate $=\frac{\text { Administrative Overhead in 2020-21 }}{\text { Factory Cost in 2020-21 (W.N.) }} \times 100$
$=\frac{R s .20,50,400}{R s .2,96,80,000} \times 100=6.91 \%$ of Factory Cost
Working Note: Calculation of Factory Cost in 2020-21

| Particulars | Amount (₹) |
| :--- | ---: |
| Opening Stock of Material | $15,00,000$ |
| Add: Purchase of Material | $1,80,50,000$ |
| Less: Closing Stock of Material | $(20,00,000)$ |
|  | $1,75,50,000$ |
| Direct Labour | $90,50,000$ |
| Prime Cost | $2,66,00,000$ |
| Factory Overhead | $30,80,000$ |

( |  |  |
| :--- | ---: |
| Factory Cost | $2,96,80,000$ |
| (ii) Job Cost Sheet for the order received in 2021-22 |  |
| Particulars | Amount (₹) |
| Material | $80,00,000$ |
| Labour | $40,50,000$ |
| Factory Overhead (34\% of ₹ 40,50,000) | $13,77,000$ |
| Factory Cost | $1,34,27,000$ |
| Administrative Overhead (6.91\% of ₹ 1,34,27,000) | $9,27,806$ |
| Cost of delivery | $9,50,000$ |
| Total Cost | $1,53,04,806$ |
| Add: Profit @ 25\% of Sales or 33.33\% of cost | $51,01,602$ |
| Sales value (Price to be quoted for the order) | $2,04,06,408$ |

Hence the price to be quoted is ₹ $2,04,06,408$.

## Question 8

Distinguish between Job costing and Process Costing. (Any five points of differences) (PYP 5 Marks May'22, Old \& New SM)(MTP 5 Marks Oct '23)
Answer 8

| Job Costing | Process Costing |
| :--- | :--- |
| A Job is carried out or a product is produced <br> by specific orders. | The process of producing the product has a <br> continuous flow and the product <br> produced is homogeneous. |
| (ii) Costs are determined for each job. | Costs are compiled on time basis i.e., for <br> production of a given accounting period for each <br> process or department. |
| Each job is separate and independent of <br> other jobs. | Products lose their individual identity as they are <br> manufactured in a continuous flow. |
| Each job or order has a number and costs are <br> collected against the same job number. | The unit cost of process is an average cost for the <br> period. |
| Costs are computed when a job is completed. <br> The cost of a job may be determined by <br> adding all costs against the job. | Costs are calculated at the end of the cost period. <br> The unit cost of a process may be computed by <br> dividing the total cost for the period by the <br> output of the process during that period. |
| As production is not continuous and each job <br> may be different, so more managerial <br> attention is <br> required for effective control. | Process of production is usually standardized and <br> is therefore, quite stable. Hence control here is <br> comparatively easier. |

## Question 9

B Limited has taken a contract for ${ }^{`} 70,00,000$ and furnishes the following information:

|  | 1st Year | 2nd Year |
| :--- | ---: | ---: |
|  | (Amount in ${ }^{\prime}$ ) | (Amount in ${ }^{\text {) }}$ |
| Material | $12,50,000$ | $13,65,000$ |
| Wages | $12,50,000$ | $11,44,000$ |
| Direct Expenses | $4,20,000$ | $3,80,000$ |
| Indirect Expenses | $2,70,000$ | $2,60,000$ |
| Work Certified | $32,00,000$ | $\mathbf{7 0 , 0 0 , 0 0 0}$ |
| Work Uncertified | $2,19,000$ | - |

Other Information:

- Plant costing ` $3,40,000$ was bought at the commencement of the contract.
- Depreciation of ` 85,000 per annum is charged on the plant on Straight Line Method (SLM) basis.
- There is a provision for escalation clause in the contract for increase in material rate and wage rate in the second year only.
- Standard material for the first and second year was ` 12,000 units each year @` 90 per unit whereas the actual consumption was 12,500 @ `100 per unit in the first year and 13,000 units @` 105 per unit in the 2ndyear. Standard labour hours for first year were 10,000 hours and for the second year it was 9,000 hours. Standard wage rate was `120 per hour. The firm has paid for 10,000 hours @` 125 per hour in the first year and 8,800 hours @ ` 130 per hour in the second year.
Required:
(i) Prepare Contract Account for both years without considering escalation clause.
(ii) Compute the total value of contract by considering the escalation clause.
(iii) Compute the total increase / (decrease) in the cost of material and wages for both the years. (PYP 10 Marks, May '23)


## Answer 9

i) Contract Account (For 1st Year)

| Particulars | (`) & Particulars & (') \\ \hline To Material & \(12,50,000\) & By work in Progress & \\ To Wages & \(12,50,000\) & Work & certified \\ & & \\ To Direct expense & \(4,20,000\) & Work uncertified 2,19,000 & \(34,19,000\) \\ To Indirect expense & \(2,70,000\) & & \\ To Depreciation & 85,000 & & \\ (`3,40,000 - `2,55,000) |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| To Costing P\&L | $1,44,000$ |  | $34,19,000$ |  |

Contract Account (For 2nd Year)

| Particulars | (`) & Particulars & (`) |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| To Opening Work in |  | By Contractee A/C | $70,00,000$ |  |
| Progress: |  |  |  |  |
| Work certified 32,00,000 |  |  |  |  |
| Work uncertified $2,19,000$ | $34,19,000$ |  |  |  |
| To Material | $13,65,000$ |  |  |  |
| To Wages | $11,44,000$ |  |  |  |
| To Direct expenses | $3,80,000$ |  |  |  |
| To Indirect expenses | $2,60,000$ |  |  |  |
| To Depreciation | 85,000 |  |  |  |
| (`2,55,000 -`1,70,000) |  |  |  |  |
|  |  | $3,47,000$ |  |  |

VIVITSU

|  | To Costing P\&L (b/f) |
| :--- | :--- |

ii) Computation of total value of contract after escalation clause

| Particulars | $(`)$ |
| :--- | :--- |
| Contract Price | $70,00,000$ |
| Increase in cost of material 12,000(105-90) | $1,80,000$ |
| Increase in cost of labour 9,000(130-120) | 90,000 |
|  | $72,70,000$ |

iii) Calculation of Increase/Decrease in cost of material and wages

| Year 1 | Standard Cost | Actual Cost | Increase/Decrease |
| :--- | :--- | :--- | :--- |
| Material | $10,80,000$ | $12,50,000$ | $1,70,000$ |
|  | $(12,000 \times 90)$ | $(12,500 \times 100)$ |  |
| Labour | $12,00,000$ | $12,50,000$ | 50,000 |
|  | $(10,000 \times 120)$ | $(10,000 \times 125)$ |  |
|  |  |  | $2,20,000$ |
|  | Standard Cost | Actual Cost | Increase/Decrease |
| Material | $10,80,000$ | $13,65,000$ | $2,85,000$ |
|  | $(12,000 \times 90)$ | $(13,000 \times 105)$ |  |
| Labour | $10,80,000$ | $11,44,000$ | 64,000 |
|  | $(9,000 \times 120)$ | $(88,000 \times 130)$ |  |
|  |  |  | $3,49,000$ |

## Chapter 10

## Process \& Operation Costing

## Question 1

Following details are related to the work done in Process-I by XYZ Company during the month of March:
()

| Opening work-in process (2,000 units) |  |
| :--- | ---: |
| Materials |  |
| Labour | $\mathbf{8 0 , 0 0 0}$ |
| Overheads | $\mathbf{1 5 , 0 0 0}$ |
| Materials introduced in Process-I (38,000 units) | $\mathbf{1 4 , 8 0 , 0 0 0}$ |
| Direct Labour | $\mathbf{3 , 5 9 , 0 0 0}$ |
| Overheads | $\mathbf{1 0 , 7 7 , 0 0 0}$ |
| Units scrapped: 3,000 units |  |
| Degree of completion: | $100 \%$ |
| Materials | $80 \%$ |
| Labour and overheads |  |
| Closing work-in process: 2,000 units |  |
| Degree of completion: | $100 \%$ |
| Materials | $80 \%$ |
| Labour and overheads | 35,000 units |
| Units finished and transferred to Process-II: |  |

Normal Loss:
$5 \%$ of total input including opening work-in-process. Scrapped units fetch ` 20 per piece. You are required to PREPARE using average method:
(i) Statement of equivalent production
(ii) Statement of cost
(iii) Statement of distribution cost, and
(iv) Process-I Account, Normal Loss Account and Abnormal Loss Account.
(Old \& New SM) (Same concept different figures PYP 10 Marks Nov 20)

## Answer 1

(i) Statement of Equivalent Production

| Particulars | Input Units | Particulars | Output Units | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material |  | $\begin{array}{rr} \hline \text { Labour } & \& \\ \text { O.H. } & \\ \hline \end{array}$ |  |
|  |  |  |  | \% | Units | \% | Units |
| Opening WIP | 2,000 | Completed and transferred to Process-II | 35,000 | 100 | 35,000 | 100 | 35,000 |
| Units introduced | 38,000 | Normal Loss (5\% of 40,000) | 2,000 | -- | -- | -- | -- |
|  |  | Abnormal loss (Balancing figure) | 1,000 | 100 | 1,000 | 80 | 800 |
|  |  | Closing WIP | 2,000 | 100 | 2,000 | 80 | 1,600 |
|  | 40,000 |  | 40,000 |  | 38,000 |  | 37,400 |

(ii) Statement showing cost for each element

\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Particulars } \& \begin{tabular}{l} 
Materials \\
(`)
\end{tabular} \& \begin{tabular}{l} 
Labour \\
(`)
\end{tabular} \& \begin{tabular}{l} 
Overhead \\
(`)
\end{tabular} \& \begin{tabular}{l} 
Total \\
(`)
\end{tabular} \\
\hline \begin{tabular}{l} 
Cost of opening \\
process
\end{tabular} \& 15,000 \& 45,000 \& \(1,40,000\) \\
\hline Cost incurred during the month \& \(14,80,000\) \& \(3,59,000\) \& \(10,77,000\) \& \(29,16,000\) \\
\hline \begin{tabular}{l} 
Less: Realisable Value of normal scrap \\
(` \(20 \times 2,000\) units)
\end{tabular} \& \((40,000)\) \& - \& - \& \((40,000)\) \\
\hline Total cost: (A) \& \(15,20,000\) \& \(3,74,000\) \& \(11,22,000\) \& \(30,16,000\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Equivalent units: \((B)\) \& 38,000 \& 37,400 \& 37,400 \& \\
\hline Cost per equivalent unit: \((C)=(A \div B)\) \& 40.00 \& 10.00 \& 30.00 \& 80.00 \\
\hline
\end{tabular}
(iii) Statement of Distribution of cost
\begin{tabular}{|c|c|c|}
\hline \& Amount (') \& Amount (') \\
\hline 1. Value of units completed and transferred
\[
(35,000 \text { units × ` } 80)
\] \& \& 28,00,000 \\
\hline 2. Value of Abnormal Loss: \& \& \\
\hline - Materials (1,000 units \(\times\) ` 40) \& 40,000 \& \\
\hline - Labour (800 units \(\times\) ` 10 ) \& 8,000 \& \\
\hline - Overheads (800 units \(\times\) ` 30 ) \& 24,000 \& 72,000 \\
\hline 3. Value of Closing W-I-P: \& \& \\
\hline - Materials (2,000 units \(\times\) ` 40) \& 80,000 \& \\
\hline - Labour (1,600 units \(\times\) ` 10 ) \& 16,000 \& \\
\hline - Overheads (1,600 units \(\times\) ` 30 ) \& 48,000 \& 1,44,000 \\
\hline
\end{tabular}
(iv) Process-I A/c
\begin{tabular}{|l|r|r|l|r|r|}
\hline Particulars \& Units \& (`) \& Particulars \& Units \& (`) \\
\hline To Opening W.I.P: \& \& \& \begin{tabular}{l} 
By Normal Loss \\
(`20 \(\times 2,000\) \\
units)
\end{tabular} \& 2,000 \& 40,000 \\
\hline- Materials \& 2,000 \& 80,000 \& By Abnormal loss \& 1,000 \& 72,000 \\
\hline\(-\quad\) Labour \& -- \& 15,000 \& By Process-I A/c \& 35,000 \& \(28,00,000\) \\
\hline- Overheads \& -- \& 45,000 \& By Closing WIP \& 2,000 \& \(1,44,000\) \\
\hline \begin{tabular}{l} 
To Materials \\
introduced
\end{tabular} \& 38,000 \& \(14,80,000\) \& \& \& \\
\hline To Direct Labour \& \& \(3,59,000\) \& \& \& \\
\hline To Overheads \& \& \(10,77,000\) \& \& 40,000 \& \(30,56,000\) \\
\hline
\end{tabular}

Normal Loss A/c

\begin{tabular}{|l|l|l|l|l|c|}
\hline Particulars \& Units \& (`) \& \multicolumn{2}{|c|}{ Particulars } \& Units <br>

\hline To Process-I A/c \& 2,000 \& 40,000 \& | By Cost Ledger |
| :--- |
| Control A/c | \& 2,000 \& 40,000 <br>

\hline \& 2,000 \& 40,000 \& \& 2,000 \& 40,000 <br>
\hline
\end{tabular}

Abnormal Loss A/c

| Particulars | Units | (`) & \multicolumn{1}{\|c|}{ Particulars } & Units & \((`)\) |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
| To Process-I A/c | 1,000 | 72,000 | By Cost Ledger <br> Control A/c | 1,000 | 20,000 |
|  |  | By Costing Profit \& Loss <br> A/c | 52,000 |  |  |
|  | 1,000 | 72,000 |  | 1,000 | 72,000 |

## Question 2

Aditya Agro Ltd. mixes powdered ingredients in two different processes to produce one product.
The output of Process-I becomes the input of Process -II and the output of Process-II is transferred to the Packing department.

From the information given below, you are required to PREPARE accounts for Process-I, Process-II and Abnormal loss/ gain A/c to record the transactions for the month of February $20 X 9$.

Process-I

| Input: |  |
| :--- | :--- |
| Material A | $\mathbf{6 , 0 0 0}$ kilograms at Rs. 50 per kilogram |
| Material B | 4,000 kilograms at Rs. 100 per kilogram |
| Labour | $\mathbf{4 3 0}$ hours at Rs. 50 per hour |
| Normal loss | 5\% of inputs. Scrap are disposed off at Rs. 16 per <br> kilogram |


| Output | 9,200 kilograms. |
| :--- | :--- |

There is no work- in- process at the beginning or end of the month.
Process-II

| Input: |  |
| :--- | :--- |
| Material C | 6,600 kilograms at Rs. 125 per kilogram |
| Material D | 4,200 kilograms at Rs. 75 per kilogram |
| Flavouring Essence | Rs. 3,300 |
| Labour | 370 hours at Rs. 50 per hour |
| Normal loss | $5 \%$ of inputs with no disposal value |
| Output | 18,000 kilograms. |

There is no work-in-process at the beginning of the month but 1,000 kilograms in process at the end of the month and estimated to be only $50 \%$ complete so far as labor and overhead were concerned. Overhead of Rs. 92,000 incurred to be absorbed on the basis of labor hours. (MTP 10 Marks March '19 \& Sep '23)

## Answer 2

Process-I A/c

| Particulars | Qty. | Amount | Particulars | Qty. | Amount |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | $(\mathbf{k g s})$ |  |  | (kgs) | (Rs.) |
| To Material A | 6,000 | $3,00,000$ | By Normal loss | 500 | 8,000 |
| To Material B | 4,000 | $4,00,000$ | By Process-II A/c | 9,200 | $7,38,857$ |
| To Labour | - | 21,500 | By AbnormallossA/c | 300 | 24,093 |
| To Overhead <br> Rs. $92,000 \times 430 \mathrm{hrs}$ <br> 800 hrs | -- | 49,450 |  |  |  |
|  |  |  |  |  |  |

$* \frac{\{(R s .3,00,000+\text { Rs. } 4,00,000+\text { Rs. } 21,500+\text { Rs. } 49,450)-\text { Rs. } 8,000)\}}{(10,000-500) \text { units }}=\frac{R s .7,70,950-\text { Rs } .8,000}{9,500 \text { units }}=$ Rs. 80.3105
Process-II A/c

| Particulars | Qty. <br> (kgs) | Amount <br> (Rs.) | Particulars | Qty. (kgs) | Amount <br> (Rs.) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| To Process-I A/c | 9,200 | $7,38,857$ | By Normal loss | 1,000 | -- |
| To Material C | 6,600 | $8,25,000$ | By Packing <br> Dept. A/c <br> (See the working <br> notes) | 18,000 | $18,42,496$ |
| To Material D | 4,200 | $3,15,000$ | By WIP A/c <br> (See the working <br> notes) | 1,000 | $1,00,711$ |
| To Flavouring essence | -- | 3,300 |  |  |  |
| To Labour | -- | 18,500 |  |  |  |
| To Overheads <br> Rs.92,000 $\times 370 h r s ~$ | -- | 42,550 |  | 20,000 | $19,43,207$ |
| $800 h r s$ |  |  |  |  |  |

Abnormal loss A/c

| Particulars | Qty. <br> (kgs) | Amount <br> (Rs.) | Particulars | Qty. <br> (kgs) | Amount <br> (Rs.) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| T o Process-I A/c | 300 | 24,093 | By Bank | 300 | 4,800 |


|  |  |  | By Costing <br> Profit \& Loss A/c | -- | 19,293 |
| :--- | ---: | ---: | :--- | ---: | ---: |
|  | $\mathbf{3 0 0}$ | $\mathbf{2 4 , 0 9 3}$ |  | $\mathbf{3 0 0}$ | $\mathbf{2 4 , 0 9 3}$ |

## Working Notes:

Calculation of Equivalent Production units

| Input | Units | Output | Units | Process-I |  | Mat-C \& D |  | Labour \& OH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (\%) | Units | (\%) | Units | (\%) | Units |
|  | 9,200 | Transferred to Packing. | 18,000 | 100 | 18,000 | 100 | 18,000 | 100 | 18,000 |
| Mat-C | 6,600 | Closing WIP | 1,000 | 100 | 1,000 | 100 | 1,000 | 50 | 500 |
| Mat-D | 4,200 | Normal loss | 1,000 | -- | -- | -- | -- | -- | -- |
|  | 20,000 |  | 20,000 |  | 19,000 |  | 19,000 |  | 18,500 |


| Calculation of Unit cost |  |  |  |
| :--- | ---: | ---: | ---: |
| Cost component | Amount (Rs.) | Equivalent units | Cost per unit <br> (Rs.) |
| Transferred-in | $7,38,857$ | 19,000 | 38.8872 |
| Material-C | $8,25,000$ | 19,000 | 43.4211 |
| Material-D | $3,15,000$ | 19,000 | 16.5789 |
| Flavouring essence | 3,300 | 19,000 | 0.1737 |
| Total Material Cost | $18,82,157$ | 19,000 | 99.0609 |
| Labour | 18,500 | 18,500 | 1.0000 |
| Overheads | $\mathbf{4 2 , 5 5 0}$ | 18,500 | 2.3000 |
| Total Cost | $\mathbf{1 9 , 4 3 , 2 0 7}$ |  | $\mathbf{1 0 2 . 3 6 0 9}$ |

Value of Materials transferred to Packing Department
$=18,000$ unit $\times$ Rs. $102.3609=18,42,496$
Value ofWIP:For Materials-1,000units $\times$ Rs.99.0609
Rs.99,061
For Labour \& Overheads 500 units $\times$ Rs.3.30=
Rs.1,650
Rs.1,00,711

## Question 3

The following are the details in respect of Process A and Process B of a processing factory:

|  | ProcessA(₹) | Process B (₹) |
| :--- | :--- | :---: |
| Materials | 40,000 | -- |
| Labour | 40,000 | 56,000 |
| Overheads | 16,000 | 40,000 |

The output of Process A is transferred to Process B at a price calculated to give a profit of $\mathbf{2 0 \%}$ on the transfer price and the output of Process B is charged to finished stock at a profit of 25\% on the transfer price. The finished stock department realized ₹ $4,00,000$ for the finished goods received from Process B. PREPARE process accounts and CALCULATE total profit, assuming that there was no opening or closing work-in-progress. (MTP March '18, 5 Marks)
Answer 3

Process A Account

| Dr. |  |  | Cr. |
| :---: | :---: | :---: | :---: |
|  | ₹ |  | ₹ |
| To Materials | 40,000 | By Process B A/c <br> (Transfer to Process B) | 1,20,000 |
| To Labour | 40,000 |  |  |
| To Overheads | 16,000 |  |  |
|  | 96,000 |  |  |
| To Profit (20\% of transfer price, i.e., $25 \%$ of cost) | 24,000 |  |  |
|  | 1,20,000 |  | 1,20,000 |

Process B Account
Dr.
Cr.

|  | ₹ |  | ₹ |
| :---: | :---: | :---: | :---: |
| To Process A A/c (Transferred from Process A) | 1,20,000 | By Finished Stock A/c <br> (Transfer to finished stock) | 2,88,000 |
| To Labour | 56,000 |  |  |
| To Overhead | 40,000 |  |  |
|  | 2,16,000 |  |  |
| To Profit (25\% of transfer price i.e., 33.33\% of cost) | 72,000 |  |  |
|  | 2,88,000 | - | 2,88,000 |
| Statement of Total Profit |  |  |  |
|  |  |  | ₹ |
| Profit from Process A |  |  |  |
| Profit from Process B |  |  |  |
| Profit on Sales ( $₹ 4,00,000$ - ₹ 2,88,000) |  | 1,12 |  |
| Total Profit |  | 2,08 |  |

## Question 4

The M-Tech Manufacturing Company is presently evaluating two possible processes for the manufacture of a toy. The following information is available:

| Particulars | Process A(Rs.) | Process B(Rs.) |
| :--- | ---: | ---: |
| Variable cost per unit | 12 | 14 |
| Sales price per unit | 20 | 20 |
| Total fixed costs per year | $30,00,000$ | $21,00,000$ |
| Capacity (in units) | $4,30,000$ | $5,00,000$ |
| Anticipated sales (Next year, in units) | $4,00,000$ | $4,00,000$ |

SUGGEST:

1. Which process should be chosen?
2. Would you change your Answer as given above, if you were informed that the capacities of the two processes are as follows:

A-6,00,000 units;B-5,00,000 units? STATEthereason?
(MIPAug.'18, 5 Marks)

## Answer 4

| (1) Comparative Profitability Statements <br> Particulars | Process- A (Rs.) | Process- B (Rs.) |
| :--- | ---: | ---: |
| Selling Price per unit | 20.00 | 20.00 |
| Less: Variable Cost per unit | 12.00 | 14.00 |
| Contribution per unit | 8.00 | 6.00 |


| Total Contribution | $32,00,000$ | $24,00,000$ |
| :--- | ---: | ---: |
|  | (Rs. $8 \times 4,00,000)$ | (Rs. $6 \times 4,00,000$ ) |
| Less: Total fixed costs | $30,00,000$ | $21,00,000$ |
| Profit | $2,00,000$ | $3,00,000$ |
| Capacity (units) | $4,30,000$ | $5,00,000$ |
| Total Contribution at full capacity | $34,40,000$ | $30,00,000$ |
|  | (Rs. $8 \times 4,30,000)$ | (Rs.6×5,00,000) |
| Fixed Cost | $30,00,000$ | $21,00,000$ |
| Profit | $4,40,000$ | $9,00,000$ |

Process- B should be chosen as it gives more profit as compared to Process-A.

| (2) |  |  |  |
| :--- | ---: | ---: | :---: |
| Particulars | Process- A (Rs.) | Process- B (Rs.) |  |
| *Capacity (units) | $6,00,000$ | $5,00,000$ |  |
| Total contribution | $48,00,000$ | $30,00,000$ |  |
|  | (Rs. $8 \times 6,00,000)$ | $($ Rs. $6 \times 5,00,000)$ |  |
| Fixed Cost | $30,00,000$ | $21,00,000$ |  |
| Profit | $18,00,000$ | $9,00,000$ |  |

If the capacity of the Process $A$ and $B$ is 6,00,000 units and 5,00,000 units respectively then Process-A is giving double profit than Process $C$. Thus Process $A$ be chosen.
*Note: It is assumed that capacity produced equals sales.

## Question 5

The following information relate to Process A:

| (i)Opening Work-in-Process <br> Degree of Completion: <br> Material | $\mathbf{8 , 0 0 0}$ units at Rs.15,00,000 |
| :--- | :--- |
| Labour and Overhead | $100 \%$ |
| (ii) Input 1,82,000 unitsat | $60 \%$ |
| (iii) Wages paid | Rs.1,47,50,000 |
| (iv) Overheads paid | Rs.68,12,000 |
| (v) $\quad$ Units scrapped | 14,000 |
| Degree of Completion: Material |  |
| Wages and Overheads |  |
| (vi) Closing Work - in- Process | $100 \%$ |
| Degree of Completion: Material |  |
| Wages and Overheads |  |

(vii) Units completed and transferred to next process 1,58,000 units
(viii) Normal loss 10\% of total input including opening WIP
(ix) Scrap value is Rs. 15 per unit to be adjusted out of direct materialcost

## You are required to COMPUTE on the basis of FIFO

(i) Equivalent Production
(ii) Cost per unit
(iii) Value of units transferred to next process. (MTP Oct‘18,10Marks, RTP Nov 19) (Same concepts different figures MTP 10 Marks Apr’21)

## Answer 5

(i) Statement of Equivalent Production (FIFO Method)

| Input |  | Output |  | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Units | Particulars | Units | Material |  | Labour \& Overheads |  |
|  |  |  |  | (\%) | Units | (\%) | Units |
| Opening WIP | 8,000 | Transfer to next Process: |  |  |  |  |  |
| Introduced | 1,82,000 | Opening WIP completed | 8,000 | -- | -- | 40 | 3,200 |
|  |  | Introduced \& completed | 1,50,000 | 100 | 1,50,000 | 100 | 1,50,000 |
|  |  | Normal loss 10\% (8,000 + <br> 182,000) | 19,000 | -- | -- | -- | -- |
|  |  | Abnormal gain | $(5,000)$ | 100 | $(5,000)$ | 100 | $(5,000)$ |
|  |  | Closing WIP | 18,000 | 100 | 18,000 | 70 | 12,600 |
|  | 1,90,000 |  | 1,90,000 |  | 1,63,000 |  | 1,60,800 |

(ii) Computation of Cost per unit

| Particulars | Materials <br> (Rs.) | Labour <br> (Rs.) | Overhead <br> (Rs.) |
| :--- | ---: | :---: | :---: |
| Input of Materials | $1,47,50,000$ | -- | -- |
| Expenses | -- | $68,12,000$ | $34,06,000$ |
| Total | $1,47,50,000$ | $68,12,000$ | $34,06,000$ |
| Less: Sale of Scrap (19,000 units $\times$ Rs.15) | $(2,85,000)$ | -- | -- |
| Net cost | $1,44,65,000$ | $68,12,000$ | $34,06,000$ |
| Equivalent Units | $1,63,000$ | $1,60,800$ | $1,60,800$ |
| Cost Per Unit | 88.7423 | 42.3632 | 21.1816 |

Total cost per unit $=₹(88.7423+42.3632+21.1816)=₹ 152.2871$
(iii) Value of units transferred to next process:

|  | Amount <br> (Rs.) | Amount <br> (Rs.) |
| :--- | ---: | ---: |
| Opening W-I-P | $15,00,000.00$ |  |
| Add: Labour (3,200 units $\times$ Rs. 42.3632) | $1,35,562.24$ |  |
| Overhead (3,200 units $\times$ Rs. 21.1816) | $67,781.12$ | $17,03,343.36$ |
| New introduced (1,50,000 units $\times$ Rs. 152.2871) |  | $2,28,43,065.00$ |

## Question 6

G K Ltd. produces a product "XYZ" which passes through two processes, viz. Process-A and Process-B. The details for the year ending 31st March, 2020 are as follows:

|  | Process A | Process - B |
| :--- | ---: | ---: |
| 40,000 units introduced at a cost of | Rs. $\mathbf{3 , 6 0 , 0 0 0}$ | - |
| Material consumed | Rs. $2,42,000$ | $2,25,000$ |
| Direct wages | Rs. $2,58,000$ | $1,90,000$ |
| Manufacturing expenses | Rs. $1,96,000$ | $1,23,720$ |
| Output in units | 37,000 | 27,000 |
| Normal wastage of inputs | $5 \%$ | $10 \%$ |
| Scrap value (per unit) | Rs. 15 | 20 |
| Selling price (per unit) | Rs. 37 | 61 |

## Additional Information:

(a) $80 \%$ of the output of Process-A, was passed on to the next process and the balance was sold. The entire output of Process- $B$ was sold.
(b) Indirect expenses for the year was Rs. 4,48,080.
(c) It is assumed that Process-A and Process-B are not responsibility centre.

Required:
(i) PREPARE Process-A and Process-BAccount.
(ii) PREPARE Costing Profit \& Loss Account showing the net profit/ net loss for the year. (MTP 10 Marks May '20 \& Oct '23)

## Answer 6

(i) Process- A Account

| Particulars | Units | Amount <br> (Rs.) | Particulars | Units | Amount <br> (Rs.) |
| :--- | ---: | ---: | :--- | ---: | :---: |
| To Inputs | 40,000 | $3,60,000$ | By Normal wastage | 2,000 | 30,000 |
|  |  |  | $(2,000$ units $\times$ Rs.15) |  |  |
| To Material | --- | $2,42,000$ | By Abnormal loss A/c | 1,000 | 27,000 |
|  |  |  | $(1,000$ units $\times$ Rs.27) |  |  |
| To Direct wages | --- | $2,58,000$ | By Process- B | 29,600 | $7,99,200$ |
|  |  |  | $(29,600$ units $\times$ Rs.27) |  |  |
| To Manufacturing Exp. | --- | $1,96,000$ | By Profit \& Loss A/c | 7,400 | $1,99,800$ |
|  |  |  | $(7,400$ units $\times$ Rs.27) |  |  |
|  | 40,000 | $10,56,000$ |  | 40,000 | $10,56,000$ |

Cost per unit $=$ Rs. $10,56,000-$ Rs. $30,000 / 40,000$ units $-2,000$ units $=$ Rs. 27 per unit
Normal wastage $=40,000$ units $\times 5 \%=2,000$ units
Abnormalloss $\quad=40,000$ units $-(37,000$ units $+2,000$ units $)=1,000$ units Transfer
to Process-B $=37,000$ units $\times 80 \%=29,600$ units
Sale $=37,000$ units $\times 20 \%=7,400$ units
Process- B Account

| Particulars | Units | Amount (Rs.) | Particulars | Units | Amount (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Process- A A/c | 29,600 | 7,99,200 | By Normal wastage | 2,960 | 59,200 |
|  |  |  | (2,960 units $\times$ Rs. 20) |  |  |
| To Material | --- | 2,25,000 | ByProfit \& Loss A/c | 27,000 | 12,96,000 |
|  |  |  | (27,000 units $\times$ Rs.48) |  |  |
| To Direct Wages | --- | 1,90,000 |  |  |  |
| To Manufacturing Exp. | --- | 1,23,720 |  |  |  |
| $\begin{array}{\|l} \text { ToAbnormalGainA/c } \\ (360 \text { units } \times \text { Rs. 48) } \\ \hline \end{array}$ | 360 | 17,280 |  |  |  |
|  | 29,960 | 13,55,200 |  | 29,960 | 13,55,200 |

Cost per unit = Rs. 13,37,920-Rs.59,200 / 29,600 units $-2,960$ units $=$ Rs. 48 per unit
Normal wastage $=29,600$ units $\times 10 \%=2,960$ units
Abnormal gain $\quad=(27,000$ units $+2,960$ units $)-29,600$ units $=360$ units
(ii) Costing Profit \& Loss Account

| Particulars | Amount (Rs.) | Particulars | Amount (Rs.) |
| :--- | ---: | :--- | ---: |
| To Process- A A/c | $1,99,800$ | By Sales: | $2,73,800$ |
| To Process- B A/c | $12,96,000$ | $-\quad$ Process-A |  |
|  |  | $(7,400$ units $\times$ Rs. 37) | $16,47,000$ |


| To Abnormal loss A/c | 12,000 | -Process- B <br> $(27,000$ units $\times$ Rs. 61) | 10,080 |
| :--- | ---: | :---: | ---: |
| To Indirect Expenses | $4,48,080$ | By Abnormal gain | 25,000 |
|  | $19,55,880$ | By Net loss | $19,55,880$ |

Working Notes: Normal wastage (Loss) Account

| Particulars | Units | Amount (Rs.) | Particulars | Units | Amount (Rs.) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Process- A <br> A/c | 2,000 | 30,000 | By Abnormal Gain A/c <br> $(360$ units $\times$ Rs. 20) | 360 | 7,200 |
| To Process- B <br> A/c | 2,960 | 59,200 | By Bank (Sales) | 4,600 | 82,000 |
|  | 4,960 | 89,200 |  | 4,960 | 89,200 |

Abnormal Loss Account

| Particulars | Units | Amount <br> (Rs.) | Particulars | Units | Amount (Rs.) |
| :--- | ---: | :--- | :--- | ---: | ---: |
| To Process- | 1,000 | 27,000 | By Bank A/c | 1,000 | 15,000 |
| A A/c |  |  | $(1,000$ units $\times$ Rs. 15) |  |  |
|  |  |  | By Profit \& Loss A/c | --- | 12,000 |
|  | 1,000 | 27,000 |  | 1,000 | 27,000 |

Abnormal Gain Account

| Particulars | Units | Amount <br> (Rs.) | Particulars | Units | Amount <br> (Rs.) |
| :--- | ---: | :---: | :--- | ---: | ---: |
| To NormallossA/c (360 <br> units $\times$ Rs. 20) | 360 | 7,200 | By Process-B A/c | 360 | 17,280 |
| ToProfit\&LossA/c |  | 10,080 |  |  |  |
|  | 360 | 17,280 |  | 360 | 17,280 |

## Question 7

'Healthy Sweets' is engaged in the manufacturing of jiggery. Its process involve sugarcane crushing for juice extraction, then filtration and boiling of juice along with some chemicals and then letting it cool to cut solidified jaggery blocks.

The main process of juice extraction (Process -I) is done in conventional crusher, which is then filtered and boiled (Process - II) in iron pots. The solidified jaggery blocks are then cut, packed and dispatched. For manufacturing 10 kg of jaggery, 100 kg of sugarcane is required, which extracts only 45 litre of juice.

| Following information regarding Process - I has been obtained <br> department of Healthy Sweets for the month of January, 2020: | from the manufacturing |
| :--- | :---: |
|  | (₹) |
| Opening work-in process (4,500 litre) | 50,000 |
| Sugarcane | 15,000 |
| Labour | $\mathbf{4 5 , 0 0 0}$ |
| Overheads | $5,00,000$ |
| Sugarcane introduced for juice extraction (1,00,000 kg) | $2,00,000$ |
| Direct Labour | $6,00,000$ |
| Overheads |  |
| Abnormal Loss: 1,000 kg |  |
| Degree of completion: | $100 \%$ |
| Sugarcane |  |

## Labour and overheads

80\%
Closing work-in process: 9,000 litre Degree of completion:

## Sugarcane

 100\%Labour and overheads
80\%
Extracted juice transferred for filtering and boiling: 39,500 litre (Consider mass of 1 litre of juice equivalent to 1 kg )
You are required to PREPARE using average method:
(i) Statement of equivalent production,
(ii) Statement of cost,
(iii) Statement of distribution cost, and
(iv) Process-I Account. [MTP 10 Marks Oct ’20, Old \& New SM)

## Answer 7

(i) Statement of Equivalent Production

| Particulars | Input Units | Particulars | Output <br> Units | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Sugarcane |  | Labour \& O.H. |  |
|  |  |  |  | \% | Units | \% | Units |
| Opening WIP | 4,500 | Completed and transferred to Process - II | 39,500 | 100 | 39,500 | 100 | 39,500 |
| Units introduced | 1,00,000 | Normal Loss (55\%* of 1,00,000) | 55,000 | -- | -- | -- | - |
|  |  | Abnormal loss | 1,000 | 100 | 1,000 | 80 | 800 |
|  |  | Closing WIP | 9,000 | 100 | 9,000 | 80 | 7,200 |
|  | 1,04,500 |  | 1,04,500 |  | 49,500 |  | 47,500 |

* 100 kg of sugarcane extracts only 45 litre of juice. Thus, normal loss $=100-45=55 \%$
(ii) Statement showing cost for each element

| Particulars | Sugarcane <br> (₹) | Labour <br> (₹) | Overhead <br> (₹) | Total <br> (₹) |
| :--- | ---: | ---: | ---: | ---: |
| Cost of opening work-in-process | 50,000 | 15,000 | 45,000 | $1,10,000$ |
| Cost incurred during the month | $5,00,000$ | $2,00,000$ | $6,00,000$ | $13,00,000$ |
| Total cost: (A) | $5,50,000$ | $2,15,000$ | $6,45,000$ | $14,10,000$ |
| Equivalent units: (B) | 49,500 | 47,500 | 47,500 |  |
| Cost per equivalent unit: (C) $=(\mathrm{A} \div \mathrm{B})$ | 11.111 | 4.526 | 13.579 | 29.216 |

(iii) Statement of Distribution of cost

|  |  |  | Amount (₹) | Amount (₹) |
| :---: | :---: | :---: | :---: | :---: |
| 1. |  | of units completed and transferred (39,500 x ₹ 29.216) |  | 11,54,032 |
| 2. |  | of Abnormal Loss: |  |  |
|  | - | Sugarcane (1,000 units $\times$ ₹ 11.111) | 11,111 |  |
|  | - | Labour (800 units $\times$ ₹ 4.526) | 3,621 |  |
|  |  | Overheads (800 units $\times$ ₹ 13.579) | 10,863 | 25,595 |
| 3. |  | of Closing W-I-P: |  |  |
|  | - | Sugarcane (9,000 units $\times$ ₹ 11.111) | 99,999 |  |


|  | - | Labour (7,200 units $\times ₹ 4.526)$ | 32,587 |  |
| :--- | :--- | :--- | ---: | ---: |
|  | - | Overheads (7,200 units $\times ₹ 13.579)$ | 97,769 | $2,30,355$ |

(iv) Process-I A/c

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Opening W.I.P: |  |  | By Normal Loss | 55,000 | -- |
| - Sugarcane | 4,500 | 50,000 | By Abnormal <br> loss (₹25,595 + ₹18 | 1,000 | 25,613 |
| Labour |  |  | (difference due <br> to <br> approximation)) |  |  |
| Overheads | -- | 15,000 | By Process-II A/c | 39,500 | $11,54,032$ |
| - | 45,000 | By Closing WIP | 9,000 | $2,30,355$ |  |
| To Sugarcane introduced | 100,000 | $5,00,000$ |  |  |  |
| To Direct Labour |  | $2,00,000$ |  | 104,500 | $14,10,000$ |
| To Overheads |  | $6,00,000$ |  |  |  |

## Question 8

MP Ltd. produces a Product-X, which passes through three processes, I, II and III. In Process-III a byproduct arises, which after further processing at a cost of Rs. 85 per unit, product $\mathbf{Z}$ is produced. The information related for the month of September 2020 is as follows:

|  | Process-I | Process-II | Process-III |
| :--- | :---: | :---: | :---: |
| Normal loss | $5 \%$ | $10 \%$ | $5 \%$ |
| Materials introduced (7,000 units) | $1,40,000$ | - | - |
| Materials added | 62,000 | $1,36,000$ | 84,200 |
| Direct wages | 42,000 | 54,000 | 48,000 |
| Direct expenses | 14,000 | 16,000 | 14,000 |

Production overhead for the month is Rs. $\mathbf{2 , 8 8 , 0 0 0}$, which is absorbed as a percentage of direct wages.
The scraps are sold at Rs. 10 per unit
Product-Z can be sold at Rs. 135 per unit with a selling cost of Rs. 15 per unit No. of units produced:
Process-I- 6,600; Process-II- 5,200, Process-III- 4,800 and Product-Z- 600 There is no stock at the beginning and end of the month.

You are required to PREPARE accounts for:
(i) Process-I, II and III
(ii) By-Product-Z (MTP 10 Marks March '21, RTP Nov'20)

Answer 8
Total direct wages
= Rs. 42,000 + Rs. 54,000 + Rs. 48,000 = Rs. 1,44,000
Percentage absorption of production overhead on the basis of direct wages
$=\frac{2,88,000}{1,44,000} \times 100=200 \%$
(i) Process-I A/c

| Particulars | Units | Amt. (Rs.) | Particulars | Units | Amt. (Rs.) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Materials | 7,000 | $1,40,000$ | By Normal loss <br> (5\% of 7,000 units) | 350 | 3,500 |
| To Other materials | - | 62,000 | By Process-II* | 6,600 | $3,35,955$ |
| To Direct wages | - | 42,000 | By Abnormal loss* | 50 | 2,545 |
| To Direct expenses | - | 14,000 |  |  |  |
| To Production OH <br> $(200 \%$ of Rs.42,000) | - | 84,000 |  |  |  |
|  | 7,000 | $3,42,000$ |  | 7,000 | $3,42,000$ |

*Cost per Unit $=\frac{\text { Rs. }(3,42,000-3,500)}{(7,000-350) \text { Units }}=$ Rs. 50.9022

## Process-II A/c

| Particulars | Units | Amt.(Rs.) | Particulars | Units | Amt.(Rs.) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Process-I A/c | 6,600 | $3,35,955$ | By Normal loss <br> (10\% of 6,600 units) | 660 | 6,600 |
| To Other materials | - | $1,36,000$ | By Process-III** | 5,200 | $5,63,206$ |
| To Direct wages | - | 54,000 | By Abnormal loss** | 740 | 80,149 |
| To Direct expenses | - | 16,000 |  |  |  |
| To Production OH <br> (200\% of Rs.54,000) | - | $1,08,000$ |  | 6,600 | $6,49,955$ |

*Cost per Unit = Rs.(6,49,955-6,600)
$(6,600-660)$ Units $=$ Rs. 108.3089

Process-III A/c

| Particulars | Units | $\begin{array}{c}\text { Amt. } \\ \text { (Rs.) }\end{array}$ | Particulars | Units | $\begin{array}{c}\text { Amt. } \\ \text { (Rs.) }\end{array}$ |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Process-I A/c | 5,200 | $5,63,206$ | $\begin{array}{l}\text { By Normal loss } \\ \text { (5\% of 5,200 units) }\end{array}$ | 260 | 2,600 |
| To Other materials | - | 84,200 | By Product-X*** | 4,800 | $8,64,670$ |
| To Direct wages | - | 48,000 |  |  |  |
| To Direct expenses | - | 14,000 | By Product-Z\# |  |  |
| (Rs.35 $\times 600$ units) |  |  |  |  |  |$)$

${ }^{* * *}$ Cost per Unit $=\frac{\text { Rs. }(8,05,406-2,600-21,000)}{(5,200-260-660) \text { Units }}=$ Rs. 180.1396
\# Realizable value = Rs. 135 - $(85+15)=$ Rs. 35
(ii) By-Product Process A/c

| Particulars | Units | Amt. (Rs.) | Particulars | Units | Amt. (Rs.) |
| :--- | ---: | ---: | :--- | :---: | :---: |
| To Process-III A/c | 600 | 21,000 | By Product-Z | 600 | 81,000 |
| To Processing cost | - | 51,000 |  |  |  |
| To Selling <br> expenses | - | 9,000 |  |  |  |
|  | 600 | 81,000 |  | 600 | 81,000 |

## Question 9

An article passes through three successive operations from raw materials stage to the finished product stage. The following data are available from the production records for the month of March, 2021:

| Operation | No. of pieces <br> (Input) | No. of pieces (Rejected) | No. of pieces <br> (Output) |
| :---: | :---: | :---: | :---: |
| 1 | $1,80,000$ | 60,000 | $1,20,000$ |
| 2 | $1,98,000$ | 18,000 | $1,80,000$ |
| 3 | $1,44,000$ | 24,000 | $1,20,000$ |

(i) DETERMINE the input required to be introduced in the first operation in no. of pieces in order to obtain finished output of $\mathbf{5 0 0}$ pieces after the last operation.
(ii) CALCULATE the cost of raw material required to produce one piece of finished product, if the weight of the finished piece is 0.5 kg . and the price of raw material is Rs. 80 per kg. (MTP 5 Marks, April '21)
Answer 9

| Operation | Input | Rejections |  | Output |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | \% of <br> output |  |
| 1 |  | 60,000 | 50 | $1,20,000$ |
| 2 | $1,98,000$ | 18,000 | 10 | $1,80,000$ |
| 3 | $1,44,000$ | 24,000 | 20 | $1,20,000$ |

(i) Determination of input required to obtain 500 pieces of finished output:

| Particulars | No. of pieces |
| :--- | ---: |
| Output required after operation 3 | 500 |
| Add: Rejection in operation 3 (20\%) | 100 |
| Output required after operation 2 | 600 |
| Add: Rejection in operation 2 (10\%) | 60 |
| Output required after operation 1 | 660 |
| Add: Rejection in operation 1 (50\%) | 330 |
| Input required in operation 1 | $\mathbf{9 9 0}$ |

(ii) Calculation of cost of raw material:

To produce 500 pieces of final output, 990 pieces of inputs are required at operation 1 . Thus, to get a finished piece of 0.5 kg . of output, the weight of input required is:
$=0.5 / 500 \times 990=0.99 \mathrm{~kg}$.
The cost of raw material would be Rs. $80 \times 0.99 \mathrm{~kg} .=$ Rs. 79.20

## Question 10

Navyug Ltd. manufactures chemical solutions for the food processing industry. The manufacturing takes place in a number of processes and the company uses a FIFO process costing system to value work-inprocess and finished goods. At the end of the last month, a fire occurred in the factory and destroyed some of the paper files containing records of the process operations for the month.
Navyug Ltd. needs your help to prepare the process accounts for the month during which the fire occurred. You have been able to gather some information about the month's operating activities but some of the information could not be retrieved due to the damage. The following information was salvaged:

- Opening work-in-process at the beginning of the month was 900 litres, $70 \%$ complete for labour and $\mathbf{6 0 \%}$ complete for overheads. Opening work-in-process was valued at ₹ 29,970.
- Closing work-in-process at the end of the month was 160 litres, $\mathbf{3 0 \%}$ complete for labour and $\mathbf{2 0 \%}$ complete for overheads.
- Normal loss is $10 \%$ of input and total losses during the month were 1,800 litres partly due to the fire damage.
- Output sent to finished goods warehouse was 4,200 litres.
- Losses have a scrap value of $₹ \mathbf{2 0}$ per litre.
- All raw materials are added at the commencement of the process.
- $\quad$ The cost per equivalent unit (litre) is ₹39 for the month made up as follows:

|  | (₹) |
| :--- | :---: |
| Raw Material | 23 |
| Labour | 7 |
| Overheads | 9 |
|  | 39 |

REQUIRED:
(i) Calculate the quantity (in litres) of raw material inputs during the month.
(ii) Calculate the quantity (in litres) of normal loss expected from the process and the quantity (in litres) of abnormal loss / gain experienced in the month.
(iii) Calculate the values of raw material, labour and overheads added to the process during the month.
(iv) Prepare the process account for the month. (MTP 10 Marks Oct '21, RTP May'18) (Same concept different figures RTP May'20)

## Answer 10

(i) Calculation of Raw Material inputs during the month:

| Quantities Entering Process | Litres | Quantities Leaving Process | Litres |
| :--- | ---: | :--- | ---: |
| Opening WIP | 900 | Transfer to Finished Goods | 4,200 |
| Raw material input (balancing <br> figure) | 5,260 | Process Losses | 1,800 |
|  |  | Closing WIP | 160 |
|  | 6,160 |  | 6,160 |

(ii) Calculation of Normal Loss and Abnormal Loss/Gain

| Particulars | Litres |
| :--- | ---: |
| Total process losses for month | 1,800 |
| Normal Loss (10\% input) | 526 |
| Abnormal Loss (balancing figure) | 1,274 |

(iii) Calculation of values of Raw Material, Labour and Overheads added to the process:

|  | Material | Labour | Overheads |
| :--- | ---: | ---: | ---: |
| Cost per equivalent unit | ₹ 23.00 | $₹ 7.00$ | $₹ 9.00$ |
| Equivalent units (litre) (refer the <br> working note) | 4,734 | 4,892 | 4,966 |
| Cost of equivalent units | ₹ $1,08,882$ | $₹ 34,244$ | $₹ 44,694$ |
| Add: Scrap value of normal loss <br> $(526$ units $\times ₹ 20)$ | $₹ 10,520$ | -- | -- |
| Total value added | ₹ $1,19,402$ | $₹ 34,244$ | $₹ 44,694$ |

Workings: Statement of Equivalent Units (litre):

| Input Details | Units | Output details | Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material |  | Labour |  | Overheads |  |
|  |  |  |  | Units | (\%) | Units | (\%) | Units | (\%) |
| Opening WIP | 900 | Units completed: |  |  |  |  |  |  |  |


| Units introduced | 5,260 | - Opening WIP | 900 | -- | -- | 270 | 30 | 360 | 40 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | - Fresh inputs | 3,300 | 3,300 | 100 | 3,300 | 100 | 3,300 | 100 |
|  |  | Normal loss | 526 | -- | -- | -- | -- | -- | -- |
|  |  | Abnormal loss | 1,274 | 1,274 | 100 | 1,274 | 100 | 1,274 | 100 |
|  | Closing WIP | 160 | 160 | 100 | 48 | 30 | 32 | 20 |  |
|  | 6,160 |  | 6,160 | 4,734 |  | 4,892 |  | 4,966 |  |

(iv) Process Account for Month

|  | Litres | Amount (₹) |  | Litres | Amount (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Opening WIP | 900 | 29,970 | By Finished goods | 4,200 | $1,63,800$ |
| To Raw Materials | 5,260 | $1,19,402$ | By Normal loss | 526 | 10,520 |
| To Wages | -- | 34,244 | By Abnormal loss | 1,274 | 49,686 |
| To Overheads | -- | 44,694 | By Closing WIP | 160 | 4,304 |
|  | 6,160 | $2,28,310$ |  | 6,160 | $2,28,310$ |

## Question 11

Following information is available regarding process A for the month of October, 2021:
Production Record:

| Units in process as on 01.10.2021 | 8,000 |
| :---: | :---: |
| (All materials used, 25\% complete for labour and overhead) |  |
| New units introduced | 32,000 |
| Units completed | 28,000 |
| Units in process as on 31.10.2021 (All materials used, 33-1/3\% compl | 12,000 |
| Cost Records: |  |
| Work-in-process as on 01.10.2021 | (₹) |
| Materials | 12,00,000 |
| Labour | 2,00,000 |
| Overhead | 2,00,000 |
|  | 16,00,000 |
| Cost during the month |  |
| Materials | 51,20,000 |
| Labour | 30,00,000 |
| Overhead | 30,00,000 |
|  | 1,11,20,000 |

Presuming that average method of inventory is used, PREPARE:
(i) Statement of Equivalent Production.
(ii) Statement showing Cost for each element.
(iii) Statement of Apportionment of cost.
(iv) Process Cost Account for Process A. (MTP 10 Marks Nov '21, RTP May '19, Old \& New SM) (Same concept different figures RTP Nov'21)
Answer 11
(i) Statement of Equivalent Production (Average cost method)

| Input <br> (Units) | Particulars | Output <br> Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Materials |  | Labour |  | Overheads |  |
|  |  |  | (\%*) | Units** | (\% )* | Units** | (\%)* | Units** |


(ii) Statement showing Cost for each element

| Particulars | Materials | Labour | Overhead | Total |
| :--- | ---: | ---: | ---: | ---: |
| Cost of opening work-in-progress (₹) | $12,00,000$ | $2,00,000$ | $2,00,000$ | $16,00,000$ |
| Cost incurred during the month (₹) | $51,20,000$ | $30,00,000$ | $30,00,000$ | $1,11,20,000$ |
| Total cost (₹) : (a) | $63,20,000$ | $32,00,000$ | $32,00,000$ | $1,27,20,000$ |
| Equivalent units : (B) | 40,000 | 32,000 | 32,000 |  |
| Cost per equivalent unit (₹) : C= (A $\div$ <br> B) | 158 | 100 | 100 | 358 |

(iii) Statement of Apportionment of cost

|  | (₹) | (₹) |
| :--- | ---: | ---: |
| Value of output transferred: (A) (28,000 units $\times ₹$ <br> $358)$ |  | $1,00,24,000$ |
| Value of closing work-in-progress: (B) |  |  |
| Material (12,000 units $\times$ ₹158) | $18,96,000$ |  |
| Labour (4,000 units $\times$ ₹ 100) | $4,00,000$ |  |
| Overhead (4,000 units $\times$ ₹ 100) | $4,00,000$ | $26,96,000$ |
| Total cost : (A + B) |  | $1,27,20,000$ |

(iv) Process- A Account

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Opening WIP | 8,000 | $16,00,000$ | By Completed <br> units | 28,000 | $1,00,24,000$ |
| To Materials | 32,000 | $51,20,000$ | By Closing WIP | 12,000 | $26,96,000$ |
| To Labour |  | $30,00,000$ |  |  |  |
| To Overhead |  | $30,00,000$ |  |  |  |
|  | 40,000 | $1,27,20,000$ |  | 40,000 | $1,27,20,000$ |

## Question 12

Chill Ltd. uses process costing to manufacture water density sensor for hydro sector. The following information pertains to operations for the month of February:

| Particulars | Units |
| :--- | :--- |
| Beginning WIP, February 1 | 22,400 |
| Started in production during February | $1,40,000$ |
| Completed production during February | $1,28,800$ |
| Ending work in progress, February 28 | 33,600 |

The beginning work in progress was $50 \%$ complete for materials and $\mathbf{3 0 \%}$ complete for conversion costs. The ending inventory was $\mathbf{8 0 \%}$ complete for material and $\mathbf{3 0 \%}$ complete for conversion costs.

Costs pertaining to the month of February are as follows:
Beginning inventory costs are material ₹ $1,38,350$, direct labour ₹ $1,50,600$ and factory overhead ₹ 63,600

Cost incurred during February are material ₹ $\mathbf{2 3}, 95,000$, direct labour ₹ $9,14,400$, factory overheads ₹ 19,55,800.

## CALCULATE:

(i) Using the FIFO method, the equivalent units of production for material.
(ii) Cost per equivalent unit for conversion cost. (MTP 5 Marks March '22, Old \& New SM)

## Answer 12

i. Calculation of equivalent units of production:

| Input Details | Units | Output Particulars | Units | Equivalent Units |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material |  | Conversion cost |  |
|  |  |  |  | \% | Units | \% | Units |
| Beginning WIP | 22,400 | From beginning WIP | 22,400 | 50 | 11,200 | 70 | 15,680 |
| Unit Introduced | 1,40,000 | Completed output | 1,06,400 | 100 | 1,06,400 | 100 | 1,06,400 |
| Total |  | Closing W-I-P <br> Total | 33,600 | 80 | 26,880 | 30 | 10,080 |
|  | 1,62,400 |  | 1,62,400 |  | 1,44,480 |  | 1,32,160 |

ii. Calculation of cost per equivalent unit for conversion costs

| Particulars | ₹ $9,14,400$ |
| :--- | ---: |
| Direct labour | ₹ $19,55,800$ |
| Factory overheads | ₹ $28,70,200$ |
| Total | $1,32,160$ units |
| Equivalent units | ₹ 21.72 |
| Cost per equivalent unit |  |

## Question 13

WHAT is inter-process profit? STATE its advantages and disadvantages. (MTP 4 Marks Mar'22)

## Answer 13

Inter-Process Profit: To control cost and to measure performance, different processes within an organization are designated as separate profit centres. In this type of organizational structure, the output of one process is transferred to the next process not at cost but at market value or cost plus a percentage of profit. The difference between cost and the transfer price is known as inter - process profits. The advantages and disadvantages of using inter-process profit, in the case of process type industries are as follows:

## Advantages:

1. Comparison between the cost of output and its market price at the stage of completion is facilitated.
2. Each process is made to stand by itself as to the profitability.

## Disadvantages:

1. The use of inter-process profits involves complication.
2. The system shows profits which are not realised because of stock not sold out.

## Question 14

A Manufacturing unit manufactures a product which passes through three distinct Processes - A, B and C. The following data is given:

|  | Process A | Process B | Process C |
| :---: | :---: | :---: | :---: |
| Material consumed (in ₹) | 36,400 | 31,500 | 28,000 |
| Direct wages (in ₹) | 56,000 | 49,000 | 42,000 |

- The total Production Overhead of ₹ $\mathbf{2 , 2 0 , 5 0 0}$ was recovered @ $\mathbf{1 5 0 \%}$ of Direct wages.
- 15,000 units at ₹ 28 each were introduced to Process 'A'.
- The output of each process passes to the next process and finally, 12,000 units were transferred to Finished Stock Account from Process ' C'.
- No stock of materials or work in progress was left at the end. The following additional information is given:

| Process | \% of wastage to normal <br> input | Value of Scrap per unit (₹) |
| :---: | :---: | :---: |
| A | $6 \%$ | 15.40 |
| B | $?$ | 28.00 |
| C | $5 \%$ | 14.00 |

You are required to:
(i) FIND OUT the percentage of wastage in process ' $B$ ', given that the output of Process ' $B$ ' is transferred to Process ' C ' at ₹ $\mathbf{5 6}$ per unit.
(ii) PREPARE Process accounts for all the three processes A, B and C. (10 Marks April'22) (Same concept different figures PYP 10 Marks July 21)

## Answer 14

Dr.

| Particulars |  | Units | (₹) | Particulars |  | Units | (₹) |
| :--- | :--- | ---: | ---: | ---: | :--- | ---: | :---: |
| To | Material <br> introduced | 15,000 | $4,20,000$ | By | Normal Loss A/c <br> [(6\% of 15,000 <br> units) <br> x₹ 15.40$]$ | 900 | 13,860 |
| $\prime \prime$ | Additional <br> material | -- | 36,400 | $\prime \prime$ | Process-B A/c <br> (₹ 41.31* $\times 14,100$ <br> units) | 14,100 | $5,82,540$ |
| $\prime \prime$ | Direct wages | -- | 56,000 |  |  |  |  |
| $\prime \prime$ | Production OH | -- | 84,000 |  |  | 15,000 | $5,96,400$ |

* Cost per unit of completed units

$$
=\frac{\text { Total Cost-Realisable value from normal loss }}{\text { Inputs units }- \text { Normal loss units }}=\frac{\text { Rs. } 5,96,400-\text { Rs. } 13,860}{15,000 \text { units }-900 \text { units }}=\text { Rs. } 41.31
$$

15,000 units - 900 units
Dr.
Process-B Account
Cr

| Particulars |  | Units | (₹) | Particulars |  | Units | (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| To | Process-A A/c | 14,100 | 5,82,540 | By | Normal Loss A/c <br> [(\#13.44\% of 14,100 <br> units) $x$ ₹ 28] | 1,895 | 53,060 |
| " | Additional material | -- | 31,500 | " | Process-C A/c <br> (₹ $56 \times 12,205$ units) | 12,205 | 6,83,480 |
| " | Direct wages | -- | 49,000 |  |  |  |  |
| " | Production OH | -- | 73,500 |  |  |  |  |
|  |  | 14,100 | 7,36,540 |  |  | 14,100 | 7,36,540 |

\#Calculation for \% of wastage in process 'B':

Let's consider number of units lost under process ' $B$ ' $=b$
Now, Total Cost - Realisable value from normal loss / Inputs units - Normal loss units $=56$

$$
\begin{aligned}
& \frac{\text { Rs. } 7,36,540-\text { Rs. } 28 b}{14,100 \text { units }-b}=\text { Rs. } 56 \\
& ₹ 7,36,540-₹ 28 \mathrm{~b}=₹ 7,89,600-₹ 56 \mathrm{~b} \\
& 28 \mathrm{~b}=₹ 53,060=>\mathrm{b}=1,895 \text { units } \\
& \% \text { of wastage }=1,895 \text { units } / 14,100 \text { units }=13.44 \%
\end{aligned}
$$

Dr.

| Particulars |  | Units | (₹) | Particulars | Units | (₹) |  |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| To | Process-B A/c | 12,205 | $6,83,480$ | By | Normal Loss A/c <br> [(5\% of 12,205 <br> units) <br> x₹ 14] | 610 | 8,540 |
| $"$ | Additional <br> material | -- | 28,000 | $"$ | Finished Stock <br> A/c (₹ 69.68\$ $\times$ <br> 12,000 <br> units) | 12,000 | $8,36,160$ |
| $"$ | Direct wages | -- | 42,000 |  |  |  |  |
| $"$ | Production OH | -- | 63,000 |  |  |  |  |
| $"$ | Abnormal gain <br> (₹ 69.68\$ $\times 405$ <br> units) | 405 | 28,220 |  |  | 12,610 | $8,44,700$ |

Cost per unit of completed units
$=\frac{\text { Total Cost }- \text { Realisable value from normal loss }}{\text { Input units }- \text { Normal loss units }}=\frac{\text { Rs. } 8,16,480-\text { Rs. } 8,540}{12,205 \text { units }-610 \text { units }}=$ Rs. 69.68

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem on process costing which required the examinees to prepare process accounts and also find the percentage of wastage in process $Y$. Very few examinees answered the question in the correct line. Most of the examinees could not calculate the percentage of wastage correctly. Average performance was observed.

## Question 15

The following data are available in respect of Process-I for January 20X9:
(1) Opening stock of work in process: 600 units at a total cost of Rs. 4,20,000.
(2) Degree of completion of opening work in process:

| Material | $100 \%$ |
| :--- | :--- |
| Labour | $60 \%$ |
| Overheads | $60 \%$ |

(3) Input of materials at a total cost of Rs.55,20,000 for 9,200 units.
(4) Direct wages incurred Rs.18,60,000
(5) Production overhead Rs.8,63,000.
(6) Units scrapped 200 units. The stage of completion of these units was:

| Labour | $\mathbf{8 0 \%}$ |
| :--- | :--- |
| Overheads | $\mathbf{8 0 \%}$ |

(7) Closing work in process; 700 units. The stage of completion of these units was:

| Material | 100\% |
| :--- | :--- |
| Labour | $\mathbf{7 0 \%}$ |
| Overheads | $70 \%$ |

(8) 8,900 units were completed and transferred to the next process.
(9) Normal loss is 4\% of the total input (opening stock plus units put in)
(10) Scrap value is Rs. 60 per unit. You are required to:
(i) COMPUTE equivalent production,
(ii) CALCULATE the cost per equivalent unit for each element.
(iii) CALCULATE the cost of abnormal loss (or gain), closing work in process and the units transferred to the next process using the FIFO method. (10 Marks April '19) (Same concept different figures MTP 10 Marks Oct'22)

## Answer 15

(i) (FIFO Method)

| Input |  | Output |  | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Materials | Labour |  | Production Overhead |  |
| Details | Units |  |  | Details | Units | \% | Units | \% | Units | \% | Units |
| Opening Stock | 600 | From opening stock | 600 | - | - | 40 | 240 | 40 | 240 |
|  |  | - From fresh materials | 8,300 | 100 | 8,300 | 100 | 8,300 | 100 | 8,300 |
|  |  | Closing W-I-P | 700 | 100 | 700 | 70 | 490 | 70 | 490 |
| Fresh inputs | 9,200 | Normal loss | 392 | - | - | - | - | - | - |
|  |  |  | 9,992 |  | 9,000 |  | 9,030 |  | 9,030 |
|  |  | Less: Abnormal Gain | (192) | 100 | (192) | 100 | (192) | 100 | (192) |
|  | 9,800 |  | 9,800 |  | 8,808 |  | 8,838 |  | 8,838 |

(ii) Statement of Cost per equivalent units

| Elements | (Rs.) | (Rs.) | Equivalent units <br> (EU) | Cost per <br> EU <br> (Rs.) |
| :--- | ---: | ---: | ---: | ---: |
| Material Cost | $55,20,000$ |  |  |  |
| Less: Scrap realisation 392 <br> units @ Rs. 60/-p.u. | $(2,3520)$ | $54,96,480$ | 8,808 | 624.03 |
| Labour cost |  | $18,60,000$ | 8,838 | 210.45 |
| Production OH Cost |  | $8,63,000$ | 8,838 | 97.65 |
| Total Cost |  | $82,19,480$ |  | 932.13 |

(iii) Cost of Abnormal Gain - 192 Units

|  | (Rs.) | (Rs.) |
| :--- | ---: | ---: |
| Material cost of 192 units @ Rs. 624.03 p.u. | $1,19,813.76$ |  |
| Labour cost of 192 units @ Rs. 210.45 p.u. | $40,406.40$ |  |
| Production OH cost of 192 units @ Rs. 97.65 p.u. | $18,748.80$ | $1,78,968.96$ |

Cost of closing WIP - 700 Units

| Material cost of 700 equivalent units @ Rs. <br> 624.03 p.u. | $4,36,821.00$ |  |
| :--- | ---: | ---: |
| Labour cost of 490 equivalent units @ Rs. 210.45 <br> p.u. | $1,03,120.50$ |  |
| Production OH cost of 490 equivalent @ Rs. <br> 97.65 p.u. | $47,848.50$ | $5,87,790.00$ |

Cost of 8,900 units transferred to next process

| (i) Cost of opening W-I-P Stock b/f -600 units | $4,20,000.00$ |
| :--- | ---: |
| (ii) Cost incurred on opening W-I-P stock |  |
| Material cost | - |
| Labour cost 240 equivalent units @ Rs. 210.45 p.u. | $50,508.00$ |
| Production OH cost 240 equivalent units @ Rs 97.65 p.u | $23,436.00$ |
|  | $4,93,944.00$ |
| (iii) Cost of 8,300 completed units |  |
| 8,300 units @ Rs. 932.13 p.u. | $77,36,679.00$ |
| Total cost [(i) + (ii) + (iii))] | $86,50,623.00$ |

## Question 16

XYZ Ltd. is manufacturer of medicines. It carries on production operation in two processes. The material first passes through Process $I$, where Medicine ' $X$ ' is produced. Following data are given for the month October, 2022:

| Opening work-in-progress quantity <br> (Material 100\% and conversion 50\% complete) | (in Liter) | 12,000 |
| :---: | :---: | :---: |
| Material input quantity | (in Liter) | 60,000 |
| Work completed quantity | (in Liter) | 40,000 |
| Closing work-in-progress quantity <br> (Material 100\% and conversion 80\% complete) | (in Liter) | 15,000 |
| Opening work-in-progress cost |  |  |
| Material cost | (in ₹) | 1,75,000 |
| Processing cost | (in ₹) | 1,40,000 |
| Material input cost | (in ₹) | 7,70,000 |
| Processing cost | (in ₹) | 8,35,000 |

Normal process loss is $\mathbf{1 5 \%}$ of material input. It has no realizable value.
Any quantity of Medicine ' X ' can be sold for ₹ $\mathbf{4 2 . 5 0}$ per Liter. Alternatively, it can be transferred to Process II for further processing and then sold as Medicine ' XYZ' for ₹ 50 per Liter. Further materials are added in Process II, which yield 1.25 Liter of Medicine ' XYZ' for every Liter of Medicine ' $X$ ' of Process I. Out of the 40,000 Liter of work completed in Process I, 10,000 Liter are sold as Medicine 'X' and 30,000 Liter are passed through Process II for sale as Medicine 'XYZ'.
The monthly costs incurred in Process II (other than the cost of Medicine ' X ') are:

| Input | $\mathbf{3 0 , 0 0 0}$ Liter of Medicine ' $X$ ' |
| :--- | :--- |
| Materials Cost | $₹ 2,75,000$ |
| Processing Costs | $₹ 2,50,000$ |

You are required to:
(i) PREPARE Statement of Equivalent production and determine the cost per Liter of Medicine ' X ' in Process $I$, using the weighted average cost method.
(ii) Company is mulling over the option to sell the 30,000 Liter of Medicine ' X ' at Process-I without processing it further in Process-II. WILL IT BE beneficial for the company over the current pattern of processing 30,000 Liter in process-II? (MTP 10 Marks Sep'22)

## Answer 16

(i) Process I Statement of Equivalent Production (Under Weighted Average Method)

| Particulars | Input units (in Liter) | Particulars | Output units (in Liter) | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material |  | Conversion |  |
|  |  |  |  | (\%) | Equivalen t units (in Liter) | (\%) | $\begin{aligned} & \text { Equivalent } \\ & \text { units } \\ & \text { (in Liter) } \\ & \hline \end{aligned}$ |
| Opening WIP | 12,000 | Units introduced and completed | 40,000 | 100 | 40,000 | 100 | 40,000 |
| New Material Introduced | 60,000 | Normal Loss (15\% of 60,000 liters) | 9,000 |  |  |  |  |
|  |  | Closing WIP | 15,000 | 100 | 15,000 | 80 | 12,000 |
|  |  | Abnormal Loss (Bal. fig.) | 8,000 | 100 | 8,000 | 100 | 8,000 |
|  | 72,000 |  | 72,000 |  | 63,000 |  | 60,000 |

Statement of Cost for Each Element

| Elements of Costs | Material (₹) | Conversion Cost (₹) |
| :--- | ---: | ---: |
| Costs of Opening WIP | $1,75,000$ | $1,40,000$ |
| Cost of the Process (for the period) | $7,70,000$ | $8,35,000$ |
| Total Cost | $9,45,000$ | $9,75,000$ |
| Equivalent Units (in liter) | 63,000 | 60,000 |
| Cost Per equivalent Units (in liter) | $₹ 15$ | $₹ 16.25$ |

Therefore, Cost of Medicine ' X ' is ₹ 31.25 per liter (₹ 15 + ₹ 16.25 )
(ii) Statement showing comparative data to decide whether 30,000 Liters of Medicine ' X ' should be further processed into 'XYZ'

|  | Alternative 1 | Alternative 2 |
| :---: | :---: | :---: |
|  | Sell medicine ' X ' afterProcess I (₹) | Process further into 'XYZ' (₹) |
| Sales | $\begin{gathered} 12,75,000 \\ (30,000 \text { liters x ₹ } 42.50) \end{gathered}$ | $\begin{gathered} 18,75,000 \\ (37,500 \text { liters x ₹ } 50) \end{gathered}$ |
| Less: Costs: |  |  |
| Process I - Costs (30,000 liters x ₹ 31.25) | 9,37,500 | 9,37,500 |
| Material in Process II | - | 2,75,000 |
| Conversion cost in Process II | - | 2,50,000 |
| Total Cost | 9,37,500 | 14,62,500 |
| Profit | 3,37,500 | 4,12,500 |

Hence, company should process further as it will increase profit further by ₹ 75,000 (₹ 4,12,500 - ₹ $3,37,500$ )

## Question 17

SM Pvt. Ltd. manufactures their products in three consecutive processes. The details are as below:

|  | Process X | Process Y | Process Z |
| :--- | ---: | ---: | ---: |
| Transferred to next Process | $60 \%$ | $50 \%$ |  |
| Transferred to warehouse for | $40 \%$ | $50 \%$ | $100 \%$ |
| sale |  |  |  |

In each process, there is a weight loss of 2\% and scrap of 4\% of input of each process. The realizable value of scrap of each process is as below:

Process X @ ₹ 3 per ton
Process Y @ ₹ 5 per ton
Process Z @ ₹ 7 per ton.
The following particulars relate to January 2023:

|  | Process X | Process Y | Process Z |
| :--- | ---: | ---: | ---: |
| Materials used (in Tons) | 1,500 | $\mathbf{4 5 4}$ | 189 |
| Rate per ton | $₹ 21.5$ | $₹ 14$ | $₹ 12$ |
| Direct Wages | $₹ 5,000$ | $₹ 3,260$ | $₹ 2,540$ |
| Direct Expenses | $₹ 3,820$ | $₹ 2,775$ | $₹ 1,900$ |

PREPARE Process Accounts- X, Y and Z \& calculate cost per ton at each process. (MTP 10 Marks March '23) (Same concept different figures RTP Nov'22)

## Answer 17

Process X Account

| Particulars | Tones | Amount (₹) | Particulars | Tones | Amount (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Materials | 1,500 | 32,250 | By Weight Loss | 30 | --- |
| To Wages |  | 5,000 | By Scrap | 60 | 180 |
| To Direct Expenses |  | 3,820 | By Process Y | 846 | 24,534 |
|  |  |  | By Warehouse | 564 | 16,356 |
| Total | 1,500 | 41,070 | Total | 1,500 | 41,070 |

Cost per Ton $=(41,070-180) /(1,500-30-60)=₹ 29$ perton
Process Y account

| Particulars | Tones | Amount <br> $(₹)$ | Particulars | Tones | Amount <br> $(₹)$ |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process X | 846 | 24,534 | By Weight Loss | 26 | --- |
| To Materials | 454 | 6,356 | By Scrap | 52 | 260 |
| To Wages |  | 3,260 | By Process Z | 611 | $18,332.5$ |
| To Direct Expenses |  | 2,775 | By Warehouse | 611 | $18,332.5$ |
| Total | $\mathbf{1 3 0 0}$ | $\mathbf{3 6 , 9 2 5}$ | Total | $\mathbf{1 3 0 0}$ | $\mathbf{3 6 , 9 2 5}$ |

Cost per Ton $=(36,925-260) /(1,300-26-52)=₹ 30$ per ton
Process Z Accounts

| Particulars | Tones | Amount <br> $(₹)$ | Particulars | Tones | Amount (₹) |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process Y | 611 | 18332.5 | By Weight Loss | 16 | --- |
| To Materials | 189 | 2,268 | By Scrap | 32 | 224 |
| To Wages |  | 2,540 | By Warehouse | 752 | 24,817 |
| To Direct Expenses |  | 1,900 |  |  |  |
| Total | $\mathbf{8 0 0}$ | $\mathbf{2 5 , 0 4 1}$ | Total | $\mathbf{8 0 0}$ | $\mathbf{2 5 0 4 1}$ |

Cost per Ton $=(25,041-224) /(800-16-32) \quad=\quad ₹ 33$ per ton

## Question 18

From the following information for the month of January, 20X9, PREPARE Process-III cost accounts.

| Opening WIP in Process-III |  | 1,600 units at ₹ 24,000 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Transfer from Process-II |  | 55,400 units at ₹ $6,23,250$ |  |  |
| Transferred to warehouse |  | 52,200 units |  |  |
| Closing WIP of Process-III |  | 4,200 units |  |  |
| Units Scrapped |  | 600 units |  |  |
| Direct material added in Process-III |  | ₹ $\mathbf{2 , 1 2 , 4 0 0}$ |  |  |
| Direct wages |  | ₹ 96,420 |  |  |
| Production overheads |  | ₹ 56,400 |  |  |
| Degree of completion: |  |  |  |  |
|  | Opening Stock | Closing Stock |  | Scrap |
| Material | 80\% | 70\% |  | 100\% |
| Labour | 60\% | 50\% |  | 70\% |
| Overheads | 60\% | 50\% |  | 70\% |

The normal loss in the process was $5 \%$ of the production and scrap was sold @ ₹ 5 per unit. (Students may treat material transferred from Process - II as Material - A and fresh material used in Process - III as Material B) (RTP Nov.'18)
Answer 18
Statement of Equivalent Production Process III

| Input <br> Details | Units | Output <br> Particulars | Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material -A |  | Material - B |  | Labour \& Overhead |  |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Opening WIP | 1,600 | Work on Op. WIP | 1,600 | - | - | 20 | 320 | 40 | 640 |
| Process - <br> II <br> Transfer | 55,400 | Introduced \& Completed During the Month | 50,600 | 100 | 50,600 | 100 | 50,600 | 100 | 50,600 |
|  |  | Normal Loss (5 \% of 52,800 units) | 2,640 | - | - | - | - | - | - |
|  |  | Closing WIP | 4,200 | 100 | 4,200 | 70 | 2,940 | 50 | 2,100 |
|  |  | Abnormal Gain | $(2,040)$ | 100 | $(2,040)$ | 100 |  |  |  |

## Working note:

Production units $=$ Opening units + Units transferred from Process-II - Closing Units
$=1,600$ units $+55,400$ units $-4,200$ units $=52,800$ units

Statement of Cost

| Cost(₹) Equivalent |
| :--- | :--- | :--- |
| units | | Cost per |
| :--- |
| equivalent |
| units (₹) |



Process III A/c

| Particulars | Units | Amount (₹) | Particulars | Units | Amount (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Balance b/d | 1,600 | 24,000 | By Normal loss | 2,640 | 13,200 |
| To Process II A/c | 55,400 | $6,23,250$ | By Finished goods | 52,200 | $9,70,422.36$ |
| To Direct material |  | $2,12,400$ | By Closing WIP | 4,200 | $66,874.06^{*}$ |
| To Direct wages |  | 96,420 |  |  |  |
| To Production overheads |  | 56,400 |  |  |  |
| To Abnormal gain | 2,040 | $38,026.42$ |  |  |  |
|  | 59,040 | $10,50,496.42$ |  | $\mathbf{5 9 , 0 4 0}$ | $\mathbf{1 0 , 5 0 , 4 9 6 . 4 2}$ |

* Difference in figure due to rounding off has been adjusted with closing WIP.


## Question 19

A company produces a component, which passes through two processes. During the month of November, 2020, materials for 40,000 components were put into Process- I of which 30,000 were completed and transferred to Process- II. Those not transferred to Process- II were 100\% complete as to materials cost and 50\% complete as to labour and overheads cost. The Process- I costs incurred were as follows:

| Direct Materials | ₹ 3,00,000 |
| :--- | :--- |
| Direct Wages | ₹ 3,50,000 |
| Factory Overheads | ₹ 2,45,000 |

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process II. There were 1,800 units, remained unfinished in the process with $100 \%$ complete as to materials and $\mathbf{2 5 \%}$ complete as regard to wages and overheads.

Costs incurred in Process-II are as follows:

| Packing Materials | $₹ \mathbf{8 0 , 0 0 0}$ |
| :--- | :--- |
| Direct Wages | $₹ \mathbf{7 1 , 1 2 5}$ |
| Factory Overheads | $₹ \mathbf{8 5 , 3 5 0}$ |

Packing material cost is incurred at the end of the second process as protective packing to the completed units of production.
Required:
(i) PREPARE Statement of Equivalent Production, Cost per unit and Process I A/c.
(ii) PREPARE statement of Equivalent Production, Cost per unit and Process II A/c. (RTP May '21)(Same concept but different figures RTP May'22 \& Old \& New SM)

## Answer 19

Process I
Statement of Equivalent Production and Cost

| Input <br> (Units) | Particulars | Output Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Materials |  | Labour |  | Overheads |  |
|  |  |  | (\%) | Units | (\%) | Units | (\%) | Units |
| 40,000 | Completed Closing WIP | 30,000 | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | 30,000 | $\begin{gathered} 100 \\ 50 \end{gathered}$ | 30,000 | $\begin{array}{r} 100 \\ 50 \end{array}$ | $\begin{array}{r} 30,000 \\ 5,000 \\ \hline \end{array}$ |
|  |  | 10,000 |  | 10,000 |  | 5,000 |  |  |
| 40,000 |  | 40,000 |  | 40,000 |  | 35,000 |  | 35,000 |


| Particulars | Materials | Labour | Overhead | Total |
| :--- | ---: | ---: | ---: | ---: |
| Cost incurred (₹) | $3,00,000$ | $3,50,000$ | $2,45,000$ | $8,95,000$ |
| Equivalent units | 40,000 | 35,000 | 35,000 |  |
| Cost per equivalent unit (₹) | 7.50 | 10.00 | 7.00 | 24.50 |

Process-I Account

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Materials | 40,000 | 3,00,000 | $\begin{aligned} & \text { By Process-II A/c } \\ & (30,000 \text { units } \times ₹ 24.5) \end{aligned}$ | 30,000 | 7,35,000 |
| To Labour |  | 3,50,000 | By Closing WIP* | 10,000 | 1,60,000 |
| To Overhead |  | 2,45,000 |  |  |  |
|  | 40,000 | 8,95,000 |  | 40,000 | 8,95,000 |

* (Material 10,000 units $\times$ ₹ 7.5) $+($ Labour 5,000 units $\times$ ₹ 10) $+($ Overheads 5,000 units $\times$ ₹ 7 )
$=₹ 75,000+₹ 50,000+₹ 35,000=₹ 1,60,000$

Process II
Statement of Equivalent Production and Cost

| Input <br> (Units) | Particulars | Output Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Materials |  | Labour |  | Overheads |  |
|  |  |  | (\%) | Units | (\%) | Units | (\%) | Units |
| 30,000 | Completed <br> Normal loss <br> Closing WIP | $\begin{array}{r} 28,000 \\ 200 \\ 1,800 \\ \hline \end{array}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{array}{r} 28,000 \\ -- \\ 1,800 \end{array}$ | $\begin{array}{r} 100 \\ 25 \end{array}$ | $\begin{array}{r} 28,000 \\ -- \\ 450 \\ \hline \end{array}$ | $\begin{array}{r} 100 \\ 25 \\ \hline \end{array}$ | 28,000 |
| 30,000 |  | 30,000 |  | 29,800 |  | 28,450 |  | 28,450 |
| Particulars |  |  | Materials |  | Labour | Overhead |  | Total |
| Process-I Cost <br> Cost incurred (₹) |  |  | 7,35,000 |  | $71,125$ | 85,350 |  | $\begin{aligned} & 7,35,000 \\ & 1,56,475 \end{aligned}$ |


| Equivalent units | 29,800 | 28,450 | 28,450 | -- |
| :--- | ---: | ---: | ---: | ---: |
| Cost per equivalent unit (₹) | 24.6644 | 2.5000 | 3.0000 | 30.1644 |


| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Process-I A/c | 30,000 | $7,35,000$ | By Normal loss A/c | 200 | -- |
| To Packing Material | -- | 80,000 | By Finished Goods Stock | $28,000^{*}$ | $9,24,604$ |
|  |  |  | A/c |  |  |
| To Direct Wages | -- | 71,125 | By Closing WIP | $1,800^{* *}$ | 46,871 |
| To Factory Overhead | $--85,350$ |  |  |  |  |
|  | 30,000 | $9,71,475$ |  | 30,000 | $9,71,475$ |

* 28,000 × ₹ 30.1644 = ₹ 8,44,603 + ₹ 80,000 (Packing Material Cost) = ₹ 9,24,604
** 1,800 units $\times$ ₹ $24.6644+450$ units $\times(₹ 2.5+₹ 3)=₹ 46,871$


## Question 20

EXPLAIN the term Equivalent units used in process industries. (RTP Nov.'19)

## Answer 20

Equivalent Units: Equivalent units or equivalent production units, means converting the incomplete production units into their equivalent completed units. Under each process, an estimate is made of the percentage completion of work-in-process with regard to different elements of costs, viz., material, labour and overheads. It is important that the estimate of percentage of completion should be as accurate as possible. The formula for computing equivalent completed units is: For instance, if $25 \%$ of work has been done on the average of units still under process, then 200 such units will be equal to 50 completed units and the cost of work-in process will be equal to the cost of 50 finished units.

## Question 21

Describe Operation costing with two examples of industries where operation costing is applied. (May'18)

## Answer 21

This product costing system is used when an entity produces more than one variant of final product using different materials but with similar conversion activities. Which means conversion activities are similarfor all the product variants but materials differ significantly. Operation Costing method is also known as Hybrid product costing system as materials costs are accumulated by job order or batch wise but conversion costs i.e. labour and overheads costs are accumulated by department, andprocess costing methods are used to assign these costs to products. Moreover, under operation costing, conversion costs are applied to products using a predetermined application rate. This predetermined rate is based on budgeted conversion costs. The two example of industries are Ready made garments and Jewellery making.

## Question 22

'Dairy Wala Private limited' is engaged in the production of flavoured milk. Its process involve filtration and boiling of milk after that some sugar, flavour, colour is added and then letting it cool to fill the product into clean and sterile bottles. For Producing 10 litre of flavour milk, $\mathbf{1 0 0}$ litre of Raw milk is required, which extracts only 45 litres of standardized milk.
Following information regarding Process - I has been obtained from the manufacturing department of Dairy Wala Private limited for the month of December 2022:

| Items | (') |
| :--- | ---: |
| Opening work-in process (13,500 litre) |  |
| Milk | $\mathbf{1 , 5 0 , 0 0 0}$ |
| Labour | 45,000 |
| Overheads | $1,35,000$ |
| Milk introduced for filtration and boiling (3,00,000 litre) | $15,00,000$ |


| Direct Labour | $\mathbf{6 , 0 0 , 0 0 0}$ |
| :--- | ---: |
| Overheads | $\mathbf{1 8 , 0 0 , 0 0 0}$ |
| Abnormal Loss: 3,000 litres |  |
| Degree of completion: |  |
| Milk | $\mathbf{1 0 0 \%}$ |
| Labour and overheads | $\mathbf{8 0 \%}$ |
| Closing work-in process: 27,000 litres |  |
| Degree of completion: |  |
| Milk | $\mathbf{1 0 0 \%}$ |
| Labour and overheads | $\mathbf{8 0 \%}$ |
| Milk transferred for Packing: 1,18,500 litres |  |
| You are required to PREPARE using average method: |  |
| (i) Statement of equivalent production, |  |
| (ii) Statement of cost, |  |
| (iii) Statement of distribution cost, and |  |
| (iv) Process-I Account. |  |
| RP May 23) |  |

(RTP May 23)

## Answer 22

(i) Statement of Equivalent Production

| Particulars | Input Units | Particulars | Output Units | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Milk |  | Labour \& O.H. |  |
|  |  |  |  | \% | Units | \% | Units |
| Opening WIP | 13,500 | Completed <br> and transferred to Process-II | 1,18,500 | 100 | 1,18,500 | 100 | 1,18,500 |
| Units introduced | 3,00,000 | Normal Loss (55\%* of 3,00,000) | 1,65,000 | -- | -- | -- | -- |
|  |  | Abnormal loss | 3,000 | 100 | 3,000 | 80 | 2400 |
|  |  | Closing WIP | 27,000 | 100 | 27,000 | 80 | 21,600 |
|  | 3,13,500 |  | 3,13,500 |  | 1,48,500 |  | 1,42,500 |
| * 100 litre of milk extracts only 45 litre of standardized milk. Thus, normal loss $=100-45$ = $55 \%$ |  |  |  |  |  |  |  |

(ii) Statement showing cost for each element

| Particulars | Milk (`) & Labour (`) | Overhead (`) & Total (`) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Cost of opening work-in- <br> process | $1,50,000$ | 45,000 | $1,35,000$ | $3,30,000$ |
| Cost incurred during the <br> month | $15,00,000$ | $6,00,000$ | $18,00,000$ | $39,00,000$ |
| Total cost: (A) | $16,50,000$ | $6,45,000$ | $19,35,000$ | $42,30,000$ |
| Equivalent units: (B) | $1,48,500$ | $1,42,500$ | $1,42,500$ |  |
| Cost per equivalent unit: (C) <br> (A $\div$ B) | 11.111 | 4.526 | 13.578 | 29.216 |

(iii) Statement of Distribution of cost

\begin{tabular}{|c|r|r|}
\hline \begin{tabular}{l} 
1. Value of units completed and transferred \\
\((1,18,500\) units \(\times\) ` 29.216\()\)
\end{tabular} \& \& \(34,62,096\) \\
\hline 2. Value of Abnormal Loss: - \& \& \\
\hline Milk (3,000 units \(\times ` 11.111\) ) \& 33,333 \& \\
\hline Labour (2400 units \(\times ` 4.526\) ) \& 30,863 \& \\
\hline Overheads (2400 units \(\times ` 13.579)\) \& \& 76,786 \\
\hline 3. Value of Closing W-I-P: \& 299997 \& \\
\hline Milk (27,000 units \(\times ` 11.111\) ) \& 97,762 \& \\
\hline Labour (21,600 units \(\times ` 4.526)\) \& \(2,93,306\) \& \(6,91,065\) \\
\hline Overheads (21,600 units \(\times ` 13.579)\) \& \& \\
\hline
\end{tabular}
(iv) Process-I A/c
\begin{tabular}{|c|c|c|c|c|c|}
\hline Particulars \& Units \& Amount
\(\qquad\) \& Particulars \& Units \& \begin{tabular}{l}
Amount \\
( \()\)
\end{tabular} \\
\hline To Opening W.I.P: \& \& \& By Normal Loss \& 1,65,000 \& -- \\
\hline Milk \& 13,500 \& 1,50,000 \& By Abnormal Loss (`. 44 difference due to approximation) \& 3,000 \& 76,839 \\
\hline Labour \& -- \& 45,000 \& By Process-II A/c \& 1,18,500 \& 34,62,096 \\
\hline Overheads \& -- \& 1,35,000 \& By Closing WIP \& 27,000 \& 6,91,065 \\
\hline To Milk introduced \& 3,00,000 \& 15,00,000 \& \& - \& \\
\hline To Direct Labour \& \& 6,00,000 \& \& \& \\
\hline To Overheads \& \& 18,00,000 \& \& \& \\
\hline \& 3,13,500 \& 42,30,000 \& \& 3,13,500 \& 42,30,000 \\
\hline
\end{tabular}

## Question 23

The following information is furnished by ABC Company for Process - II of its manufacturing activity for the month of April 2023:
(i) Opening Work-in-Progress - Nil
(ii) Units transferred from Process I-55,000 units at ${ }^{`} \mathbf{3 , 2 7 , 8 0 0}$
(iii) Expenditure debited to Process - II:

| Consumables | 1,57,200 |
| :---: | :---: |
| Labour | 1,04,000 |
| Overhead | 52,000 |

(iv) Units transferred to Process III - 51,000 units
(v) Closing WIP - 2,000 units (Degree of completion):

| Consumables | $\mathbf{8 0 \%}$ |
| :--- | :--- |
| Labour | $60 \%$ |
| Overhead | $60 \%$ |

(vi) Units scrapped - 2,000 units, scrapped units were sold at ` 5 per unit
(vii) Normal loss - 4\% of units introduced

## You are required to:

(i) Prepare a Statement of Equivalent Production.
(ii) Determine the cost per unit
(iii) Determine the value of Work-in-Process and units transferred to Process - III
(RTP Nov '23)

## Answer 23

(i) Statement of Equivalent Production

| Input Details | Units | Output <br> Particulars | Units | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material-$\mathrm{A}^{*}$ |  | Consumables |  | Labour \& Overheads |  |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Units transferre d from Process-I | 55,000 | Units transferred to Process-III | 51,000 | 100 | 51,000 | 100 | 51,000 | 100 | 51,000 |
|  |  | Normal loss (4\% of 55,000) | 2,200 | - | - | - | - | - | - |
|  |  | Closing W-I-P | 2,000 | 100 | 2,000 | 80 | 1,600 | 60 | 1,200 |
|  |  | Abnormal Gain | (200) | 100 | (200) | 100 | (200) | 100 | (200) |
|  | 55,000 |  | 55,000 |  | 52,800 |  | 52,400 |  | 52,000 |

*Material A represent transferred-in units from process-I
(ii) Determination of Cost per Unit

\begin{tabular}{|l|r|r|r|}
\hline Particulars \& Amount (`) \& Units \& Per Unit (`) \\
\hline (i) Direct Material (Consumables) : \& \& \& \\
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
Value of units transferred from \\
Process-I
\end{tabular}} \& \(3,27,800\) \& \\
\hline \begin{tabular}{l} 
Less: Value of normal loss \\
\((2,200\) units \(\times\) ` 5)
\end{tabular} \& \((11,000)\) \& \& \\
\hline \& \(3,16,800\) \& 52,800 \& 6.00 \\
\hline (ii) Consumables added in Process-II \& \(1,57,200\) \& 52,400 \& 3.00 \\
\hline (iii) Labour \& \(1,04,000\) \& 52,000 \& 2.00 \\
\hline (iii) Overhead \& 52,000 \& 52,000 \& 1.00 \\
\hline Total Cost per equivalent unit \& \& \& 12.00 \\
\hline
\end{tabular}
(iii) Determination of value of Work-in-Process and units transferred to Process-III
\begin{tabular}{|l|r|r|r|}
\hline Particulars \& Units \& Rate (`) \& Amount (`) \\
\hline Value of Closing W-I-P: \& \& \& \\
\hline Material from Process-I \& 2,000 \& 6.00 \& 12,000 \\
\hline Consumables \& 1,600 \& 3.00 \& 4,800 \\
\hline Labour \& 1,200 \& 2.00 \& 2,400 \\
\hline Overhead \& 1,200 \& 1.00 \& 1,200 \\
\hline Value of units transferred to Process-III \& 51,000 \& 12.00 \& \(6,12,000\) \\
\hline
\end{tabular}

## Question 24

A product passes through two distinct processes before completion. Following information are available in this respect:

|  | Process-1 | Process 2 |
| :--- | :---: | :---: |
| Raw materials used | 10000 units | - |
| Raw material cost (per unit) | ₹ 75 | - |
| Transfer to next process/Finished good | $\mathbf{9 0 0 0}$ units | $\mathbf{8 2 0 0}$ units |


| Normal loss (on inputs) | $5 \%$ | $10 \%$ |
| :--- | :---: | :---: |
| Direct wages | $₹ 3,00,000$ | $₹ 5,60,000$ |
| Direct expenses | $50 \%$ of direct wages | $65 \%$ of direct wages |
| Manufacturing overheads | $25 \%$ of direct wages | $15 \%$ of direct wages |
| Realizable value of scrap (per unit) | $₹ 13.50$ | $₹ 145$ |

8000 units of finished goods were sold at a profit of $15 \%$ on cost. There was no opening and closing stock of work-in-progress.
Prepare:
(i) Process-1 and Process-2 Account
(ii) Finished goods Account
(iii) Normal Loss Account
(iv) Abnormal Loss Account
(v) AbnormalGainAccount (PYP Nov'19,10 Marks) (Same concept different figures Old \& New SM)

## Answer 24

(i)


Cost per unit of completed units and abnormal loss:
$\frac{\text { Rs. } 12,75,00-\text { Rs. } 6,750}{10,000 \text { units }-50 \text { units }}=$ Rs. 133.5
(ii)

Dr. Process-2 Account
Cr.

|  | Particulars | Units | Total (₹) |  | Particulars | Units | Total (₹) |
| :--- | :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| To | Process-I A/c | 9,000 | 12,01500 | B <br> y | Normal Loss A/c @ <br> 145 | 900 | $1,30,500$ |
| $\prime$ | To Direct Wages | -- | $5,60,000$ | $\prime \prime$ | By Finished Stock <br> A/c [bal fig] | 8,200 | $21,04,667$ |
| $\prime \prime$ | Direct Expenses | -- | $3,64,000$ |  |  |  |  |
| $\prime \prime$ | Manufacturing <br> Overheads | -- | 84,000 |  |  |  |  |
| To Abnormal gain <br> (₹ $256.67 \times 100$ <br> units) | 100 | 25,667 |  |  | 9,100 | $22,35,167$ |  |

Cost per unit of completed units and abnormal gain:

$$
\frac{\text { Rs. } 22,09,500-\text { Rs. } 130500}{8,100 \text { units }}=\text { Rs. } 256.67
$$

Dr.
Finished Goods A/c
Cr.

|  | Particulars | Units | Total (₹) |  | Particulars | Units | Total (₹) |
| :--- | :--- | :--- | :--- | :--- | :---: | ---: | ---: |
| To | Process II A/c | 8,200 | $21,04,667$ | By | By Cost of Sales | 8,000 | $20,53,333$ |
|  |  |  |  | $\prime \prime$ | By Balance c/d | 200 | 51,334 |
|  |  | $\mathbf{8 , 2 0 0}$ | $\mathbf{2 1 , 0 4 , 6 6 7}$ |  |  | $\mathbf{8 , 2 0 0}$ | $\mathbf{2 1 , 0 4 , 6 6 7}$ |

(iii) Normal Loss A/c

| Dr. Cr. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Particular s | Units | Total (₹) |  | Particulars | Units | Total (₹) |
| To | Process I | 500 | 6,750 | By | By abnormal Gain II | 100 | 14,500 |
|  | Process II | 900 | 1,30,500 |  | By Cash | 500 | 6,750 |
|  |  |  |  |  | By Cash | 800 | 1,16,000 |
|  |  | 1400 | 1,37,250 |  |  | 1400 | 1,37,250 |

(iv) Abnormal Loss A/c
Dr.
Cr.

|  | Particulars | Units | Total (₹) |  | Particulars | Units | Total (₹) |
| :--- | :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| To | Process I | 500 | 66,750 | By | By Cost Ledger <br> Control A/c <br> By Costing P\& L <br> A/C (Abnormal <br> Loss) | 500 | 6,750 |
|  |  |  | 66,750 |  |  | 60,000 |  |

(v) Abnormal Gain A/c

Dr. Cr .

|  | Particulars | Units | Total (₹) |  | Particulars | Units | Total (₹) |
| :--- | :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| To | Normal Loss A/c <br> $@ 145$ | 100 | 14,500 | By | Process II | 100 | 25,667 |
| To | Costing P \& L A/C |  | 11,167 |  |  |  |  |
|  |  | 100 | 25,667 |  |  | 100 | 25,667 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Process Costing'. The question required preparing Process accounts, normal loss, abnormal loss and abnormal gain accounts. Generally, well answered by most of the examinees. Performance of the examinees in this question was good.

## Question 25

KT Ltd. produces a product EMM which passes through two processes before it is completed and transferred to finished stock. The following data relate to May 2019:

| Particulars | Process |  | Finished stock |
| :--- | :---: | :---: | ---: |
|  | $\mathbf{A ( ₹ )}$ | $\mathbf{B ( ₹ )}$ | (₹) |
| Opening Stock | $\mathbf{5 , 0 0 0}$ | $\mathbf{5 , 5 0 0}$ | 10,000 |
| Direct Materials | 9,000 | 9,500 |  |
| Direct Wages | 5,000 | 6,000 |  |
| Factory Overheads | 4,600 | 2,030 |  |
| Closing Stock | $\mathbf{2 , 0 0 0}$ | $\mathbf{2 , 4 9 0}$ | $\mathbf{5 , 0 0 0}$ |

Output of Process A is transferred to Process B at 25\% profit on the transfer price and output of Process $B$ is transferred to finished stock at 20\% profit on the transfer price.
Stock in process is valued at prime cost. Finished stock is valued at the price at which it is received from Process B. Sales during the period are ₹ 75,000.
Prepare the Process cost accounts and Finished stock account showing the profit element at each stage. (PYP May '19, 10 Marks) (Same concept different figures Old \& New SM)

## Answer 25

| Process-A |  |  |  | A/c |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Total(₹) | $\operatorname{Cost}(₹)$ | Profit(₹) | Particulars | Total (₹) | $\operatorname{Cost}(₹)$ | Profit(₹) |
| Opening stock | 5,000 | 5,000 | - | Process BA/c | 28,800 | 21,600 | 7,200 |
| Direct materials | 9,000 | 9,000 | - |  |  |  |  |
| Direct wages | 5,000 | 5,000 | - |  |  |  |  |
|  | 19,000 | 19,000 | - |  |  |  |  |
| Less: Closing stock | $(2,000)$ | $(2,000)$ | - |  |  |  |  |
| Prime Cost | 17,000 | 17,000 | - |  |  |  |  |
| Overheads | 4,600 | 4,600 | - |  |  |  |  |
| Process Cost <br> Profit (33.33\% | 21,600 | 21,600 | - |  |  |  |  |
| of total cost) | 7,200 | - | 7,200 |  |  |  |  |
|  | 28,800 | 21,600 | $\begin{array}{r} 7,200 \\ \text { Process-B A/c } \end{array}$ |  | 28,800 | 21,600 | 7,200 |
| Particulars | Total(₹) | $\operatorname{Cost}(₹)$ | Profit(₹) | Particulars | Total(₹) | $\operatorname{Cost}(₹)$ | Profit(₹) |
| Opening stock | 5,500 | 4,500 | 1,000 | Finished stock A/c | 61,675 | 41,550 | 20,125 |
| Process A A/c | 28,800 | 21,600 | 7,200 |  |  |  |  |
| Direct materials | 9,500 | 9,500 | - |  |  |  |  |
| Direct wages | 6,000 | 6,000 | - |  |  |  |  |
|  | 49,800 | 41,600 | 8,200 |  |  |  |  |
| Less: Closing stock | $(2,490)$ | $(2,080)$ | (410) |  |  |  |  |
| Prime Cost | 47,310 | 39,520 | 7,790 |  |  |  |  |
| Overheads | 2,030 | 2,030 | - |  |  |  |  |
| Process Cost <br> Profit (25\% | 49,340 | 41,550 | 7,790 |  |  |  |  |
| of total cost) | 12,335 | - | 12,335 |  |  |  |  |
|  | 61,675 | 41,550 | 20,125 |  | 61,675 | 41,550 | 20,125 |

Finished Stock A/c

| Particulars | Total(₹) | Cost(₹) | Profit(₹) | Particulars | Total(₹) | Cost(₹) Profit(₹ <br> ) |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| Opening stock | 10,000 | 6,000 | 4,000 | Costing |  |  |
|  |  |  |  | P \& L A/c | 75,000 | $44,18130,819$ |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical question of 'Process Costing' examinees were asked to prepare process cost accounts and finished stock account. Examinees made a mistake in the calculation of profit in the closing stock in the Process B Account and Finished Stock Account.
Performance of the examinees was not satisfactory. Overall performance in this question was below average.

| Process B A/c | 61,675 | 41,550 | 20,125 |  |  |  |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: |
|  | 71,675 | 47,550 | 24,125 |  |  |  |
| Less: Closing stock | $(5,000)$ | $(3,369)$ | $(1,631)$ |  |  |  |
| COGS | 66,675 | 44,181 | 22,494 |  |  |  |
| Profit | 8,325 | - | 8,325 |  |  |  |
|  | $\mathbf{7 5 , 0 0 0}$ | $\mathbf{4 4 , 1 8 1}$ | $\mathbf{3 0 , 8 1 9}$ |  | $\mathbf{7 5 , 0 0 0}$ | $\mathbf{4 4 , 1 8 1} \mathbf{3 0 , 8 1 9}$ |

## Question 26

Following details have been provided by M/s AR Enterprises:
(i) Opening works-in-progress - $\mathbf{3 0 0 0}$ units ( $\mathbf{7 0 \%}$ complete)
(ii) Units introduced during the year - $\mathbf{1 7 0 0 0}$ units
(iii) Cost of the process (for the period) - ₹ 33,12,720
(iv) Transferred to next process - $\mathbf{1 5 0 0 0}$ units
(v) Closing works-in-progress - $\mathbf{2 2 0 0}$ units ( $80 \%$ complete)
(vi) Normal loss is estimated at 12\% of total input (including units in process in the beginning). Scraps realise ₹ 50 per unit. Scraps are 100\% complete.

Using FIFO method, compute:
(i) Equivalent production
(ii) Cost per equivalent unit (PYP Nov'18,5 Marks)

## Answer 26

Statement of Equivalent Production Units (Under FIFO Method)

| Particulars | Input <br> units | Particulars | Output <br> units | Equivalent <br> Production |  |
| :--- | ---: | :--- | ---: | ---: | ---: |
|  |  |  |  | (\%) <br> Equivalent <br> units |  |
| Opening W-I-P | 3,000 | From opening W-I-P | 3,000 | 30 | 900 |
| Units introduced | 17,000 | From fresh inputs | 12,000 | 100 | 12,000 |
|  |  | Units completed |  |  |  |
|  |  | (Transferred to next process) | 15,000 |  |  |
|  | Normal Loss |  |  |  |  |
|  | $\{12 \%$ (3,000 + 17,000 units) $\}$ | 2,400 | -- | -- |  |
|  |  | Closing W-I-P | 2,200 | 80 | 1760 |
|  | Abnormal loss (Balancing figure) | 400 | 100 | 400 |  |
|  | $\mathbf{2 0 , 0 0 0}$ |  | $\mathbf{1 1 , 0 0 0}$ |  | $\mathbf{1 5 , 0 6 0}$ |

Computation of cost per equivalent production unit:

Cost of the Process (for the period)
Less: Scrap value of normal loss (₹ $50 \times 2,400$ units) Total process cost
₹ $33,12,720$
(₹ 1,20,000)
₹ $31,92,720$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical problem of process costing for calculation of equivalent production and cost per equivalent unit. Performance of the examinees was average.

## Question 27

Alpha Ltd. is engaged in the production of a product A which passes through 3 different process Process P, Process Q and Process R. The following data relating to cost and output is obtained from the books of accounts for the month of April 2017:

| Particular | ProcessP | Process Q | Process R |
| :--- | :--- | :--- | :--- |
| Direct Material | 38,000 | $\mathbf{4 2 , 5 0 0}$ | $\mathbf{4 2 , 8 8 0}$ |
| Direct Labour | $\mathbf{3 0 , 0 0 0}$ | $\mathbf{4 0 , 0 0 0}$ | $\mathbf{5 0 , 0 0 0}$ |

Production overheads of $₹ \mathbf{9 0 , 0 0 0}$ were recovered as percentage of direct labour.
$10,000 \mathrm{~kg}$ of raw material @ ₹ 5 per kg. was issued to Process P. There was no stock of materials or work in process. The entire output of each process passes directly to the next process and finally to warehouse. There is normal wastage, in processing, of $10 \%$.

The scrap value of wastage is ₹ 1 per kg. The output of each process transferred to next process and finally to warehouse are as under:

Process $P=9,000 \mathrm{~kg}$ Process $Q=8,200 \mathrm{~kg}$ Process $R=7,300 \mathrm{~kg}$
The company fixes selling price of the end product in such a way so as to yield a profit of $\mathbf{2 5 \%}$ selling price. Prepare Process P, Q and R accounts. Also calculate selling price per unit of end product. (PYP May'18, 10Marks)

## Answer 27

Process- P Account

| Particulars | Kg. | Amount | Particulars | Kg. | Amoun t |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Input | 10,000 | $\begin{array}{r} \text { (₹) } \\ 50,000 \end{array}$ | By Normal wastage | 1,000 | $\begin{array}{r} \text { (₹) } \\ 1,000 \end{array}$ |
|  |  |  | (1,000 kg. × ₹ 1 ) |  |  |
| To Direct Material | - | 38,000 | $\begin{aligned} & \text { By Process- Q } \\ & (9,000 \mathrm{~kg} . \times ₹ 15.50) \end{aligned}$ | 9,000 | $\begin{gathered} 1,39,50 \\ 0 \end{gathered}$ |
| To Direct Labour | - | 30,000 |  |  |  |
| To Production OH $\text { (₹ } 90,000 \times 3 / 12 \text { ) }$ | - | 22,500 |  |  |  |
|  | 10,000 | 1,40,500 |  | $\begin{array}{r} 10,00 \\ 0 \\ \hline \end{array}$ | $\begin{gathered} 1,40,50 \\ 0 \\ \hline \end{gathered}$ |

Cost per unit $=\frac{\text { Rs. } 1,40,500-\text { Rs. } 1,000}{10,000 \mathrm{~kg} .-1,000 \mathrm{~kg} .}=$ Rs. 15.50
Process- Q Account

| Particulars | Kg. | Amount | Particulars | Kg. | Amoun |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (₹) |  |  | (₹) |
| To Process-P A/c | 9,000 | 1,39,500 | By Normal wastage |  |  |
|  |  |  | (900 kg. $\times$ ₹ 1) | 900 | 900 |
| To Direct Material |  | $42,500$ | $\begin{aligned} & \text { By Process- Q (8,200kg.×₹ } \\ & 31) \end{aligned}$ | $\begin{array}{r} 8,20 \\ 0 \end{array}$ | $\begin{array}{r} \hline 2,54,20 \\ 0 \end{array}$ |
| To Direct Labour | - | 40,000 |  |  |  |
| To Production OH (₹ 90,000 $\times 4 / 12$ ) <br> To Abnormal Gain | $\begin{gathered} - \\ 100 \end{gathered}$ | $\begin{array}{r} 30,000 \\ 3,100 \end{array}$ |  |  |  |
| (100 kg. $\times$ ₹ 31) |  |  |  |  |  |
|  | 9,100 | 2,55,100 |  | 9,10 0 | $\begin{array}{r} \hline 2,55,10 \\ 0 \end{array}$ |

Cost per unit $=\frac{\text { Rs. } 2,52,000-\text { Rs. } 900}{9,000 \mathrm{~kg}-900 \mathrm{~kg} .}$

Process- R Account

| Particulars | Kg. | Amount | Particulars | Kg. | Amount |
| :--- | ---: | ---: | :--- | ---: | ---: |
|  |  | (₹) |  |  | (₹ ) |
| To Process-Q A/c | 8,200 | $2,54,200$ | By Normal wastage | 820 | 820 |
|  |  |  | (820 kg. $\times$ Re.1) |  |  |
| To Direct Material | - | 42,880 | By Abnormal loss | 80 | 4,160 |
|  |  |  | (80 kg. $\times ₹ 52$ ) |  |  |
| To Direct Labour | - | 50,000 | By Finished Goods | 7,30 <br> 0 | $3,79,600$ |
|  |  |  |  | $(7,300 \mathrm{~kg} . \times ₹ 52)$ |  |
| To Production OH |  | - | 37,500 |  |  |
| (₹ 90,000 $\times 5 / 12$ ) | $\mathbf{8 , 2 0 0}$ | $\mathbf{3 , 8 4 , 5 8 0}$ |  | $\mathbf{8 , 2 0 0}$ |  |
|  |  |  |  |  |  |

Cost per unit $=\frac{R s .3,84,580-R s .820}{8,200 \mathrm{~kg} .-820 \mathrm{~kg}}=$ Rs. 52
Calculation of Selling price per unit of end product:

Cost per unit
Add: Profit 25\% on selling pricei.e. 1/3rd of cost
₹ 52.00
₹ 17.33 Selling price per unit ₹69.33

## Question 28

MNO Ltd has provided following details:

- Opening work in progress is $\mathbf{1 0 , 0 0 0}$ units at ₹ 50,000 (Material 100\%, Labour and overheads 70\% complete).
- Input of materials is $\mathbf{5 5 , 0 0 0}$ units at $₹ \mathbf{2 , 2 0 , 0 0 0}$. Amount spent on Labour and Overheads is ₹ $\mathbf{2 6 , 5 0 0}$ and ₹ 61,500 respectively.
- 9,500 units were scrapped; degree of completion for material 100\% and for labour \& overheads 60\%.
- Closing work in progress is 12,000 units; degree of completion for material $100 \%$ and for labour \& overheads 90\%.
- Finished units transferred to next process are 43,500 units.

Normal loss is $5 \%$ of total input including opening work in progress. Scrapped units would fetch ₹ 8.50 per unit.

You are required to prepare using FIFO method:
(i) Statement of Equivalent production
(ii) Abnormal Loss Account (PYP 5 Marks Jan 21)

## Answer 28

(i) Statement of Equivalent Production (Using FIFO method)

| Particulars | Input <br> Units | Particulars | Output Units | Equivalent Production |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Material |  | Labour \& O.H. |  |
|  |  |  |  | \% | Units | \% | Units |
| Opening WIP | 10,000 | Completed and transferred to Process-II |  |  |  |  |  |
| Units introduced | 55,000 | - From opening WIP | 10,000 |  |  | 30 | 3,000 |


|  |  | 33,500 | 100 | 33,500 | 100 | 33,500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 43,500 |  | 33,500 |  | 36,500 |
|  | $\begin{aligned} & \text { Normal Loss } \\ & \{5 \%(10,000+ \\ & 55,000 \text { units })\} \end{aligned}$ | 3,250 |  |  |  |  |
|  | Abnormal loss (9,500 $(-3,250)$ | 6,250 | 100 | 6,250 | 60 | 3,750 |
|  | Closing WIP | 12,000 | 100 | 12,000 | 90 | 10,800 |
| 65,000 |  | 65,000 |  | 51,750 |  | 51,050 |

Abnormal Loss A/c

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | :---: | :--- | :---: | :---: |
| To Process-I A/c | 6,250 | 29,698 | By Cost Ledger Control A/c | 6,250 | 53,125 |
| (Refer Working |  |  | $(6,250$ units $\times ₹ 8.5)$ |  |  |
| Note-2) |  |  |  |  |  |
| To Costing Profit | - | 23,427 |  |  |  |
| \& Loss A/c |  |  |  |  |  |
|  | $\mathbf{6 , 2 5 0}$ | $\mathbf{5 3 , 1 2 5}$ |  | $\mathbf{6 , 2 5 0}$ | $\mathbf{5 3 , 1 2 5}$ |

## Working Notes:

1. 

Computation of Cost per unit

| Particulars | Materials <br> (₹) | Labour <br> (₹) | Overhead <br> (₹) |
| :--- | ---: | ---: | ---: |
| Input costs | $2,20,000$ | 26,500 | 61,500 |
| Less: Realizable value of normal | $(27,625)$ | -- | -- |
| scrap (3,250 units $x ₹ 8.5)$ |  |  |  |
| Net cost | $1,92,375$ | 26,500 | 61,500 |
| Equivalent Units | 51,750 | 51,050 | 51,050 |
| Cost Per Unit | $\mathbf{3 . 7 1 7 4}$ | $\mathbf{0 . 5 1 9 1}$ | $\mathbf{1 . 2 0 4 7}$ |

Total cost per unit $=₹(3.7174+0.5191+1.2047)=₹ 5.4412$
2. Valuation of Abnormal Loss

|  |  |  |  |
| :--- | ---: | :---: | :---: |
| Materials (6,250 units $\times$ ₹ 3.7174$)$ | (₹) |  |  |
| Labour (3,750 units $\times ₹ 0.5191$ ) | $23,233.75$ |  |  |
| Overheads (3,750 units $\times ₹ 1.2047)$ | $1,946.63$ |  |  |
|  | $4,517.62$ |  |  |

## Question 29

A product passes through Process-I and Process-II. Particulars pertaining to the Process-I are:
Materials issued to Process-I amounted to ₹ 80,000, Wages ₹ 60,000 and manufacturing overheads were $₹ 52,500$. Normal Loss anticipated was $5 \%$ of input, 9,650 units of output were produced and transferred out from Process-I to Process-II. Input raw materials issued to Process-I were 10,000 units.

There were no opening stocks.
Scrap has realizable value of ₹ 5 per unit. You are required to prepare:
(i) Process-I Account
(ii) Abnormal Gain/Loss Account (PYP 5 Marks Dec '21)

## Answer 29

(i) Process - I Account

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Materials | 10,000 | 80,000 | By Normal loss (5\%of 10,000) | 500 | 2,500 |
| To Wages | - | 60,000 | By Process-II A/c <br> (₹20*×9,650units ) | 9,650 | 1,93,000 |
| To Manufacturing OH |  | 52,500 |  |  |  |
| To Abnormal Gain A/c (₹20*×150units) | 150 | 3,000 |  |  |  |
|  | 10,150 | 1,95,500 |  | 10,150 | 1,95,500 |

$$
\frac{(80,000+60,000+52,500)-2,500}{10,000-500}=20
$$

(ii) Abnormal Gain - Account

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| To Normal loss A/c | 150 | 750 | By Process-I A/c | 150 | 3,000 |
| To Costing P\&L A/c | - | 2,250 |  |  |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical question was based on the basic concept of Process Costing. A few examinees made mistake in the calculation of abnormal gain amounts. Overall performance of the examinees was good.

## Question 30

STG Limited is a manufacturer of Chemical 'GK', which is required for industrial use. The complete production operation requires two processes. The raw material first passes through Process I, where Chemical ' $G$ ' is produced. Following data is furnished for the month April 2022:

| Particulars | (in kgs.) |
| :---: | :---: |
| Opening work-in-progress quantity <br> (Material 100\% and conversion 50\% complete) | 9,500 |
| Material input quantity | 1,05,000 |
| Work Completed quantity | 83,000 |
| Closing work-in-progress quantity <br> (Material 100\% and conversion 60\% complete) | 16,500 |

You are further provided that:

| Particulars | (in ₹) |
| :--- | :--- |
| Opening work-in-progress cost Material cost | 29,500 |
| Processing cost | 14,750 |
| Material input cost | $3,34,500$ |
| Processing cost | $2,53,100$ |

Normal process loss may be estimated to be $10 \%$ of material input. It has no realizable value. Any loss over and above normal loss is considered to be $100 \%$ complete in material and processing.

The Company transfers $\mathbf{6 0 , 0 0 0} \mathbf{k g s}$. of output (Chemical G) from Process I to Process II for producing Chemical 'GK'. Further materials are added in Process II which yield 1.20 kg. of Chemical 'GK' for every kg. of Chemical ' $G$ ' introduced. The chemicals transferred to Process II for further processing are then sold as Chemical 'GK' for ₹ 10 per kg. Any quantity of output completed in Process I, are sold as Chemical 'G' @ ₹ 9 per kg.

The monthly costs incurred in Process II (other than the cost of Chemical ' G ') are: Input $\mathbf{6 0 , 0 0 0} \mathbf{~ k g}$. of Chemical 'G'

## Materials Cost ₹ 85,000

Processing Costs₹ $\mathbf{5 0 , 0 0 0}$ You are required:
(i) Prepare and determine the cost per kg. of Chemical ' $G$ ' in Process I using the weighted average cost method.
(ii) Prepare a statement showing cost of Chemical 'G' transferred to Process II, cost of abnormal loss and cost of closing work-in progress.
(iii) STG is considering the option to sell $60,000 \mathrm{~kg}$. of Chemical ' G ' of Process I without processing it further in Process-II. Will it be beneficial for the company over the current pattern of processing $60,000 \mathrm{~kg}$ in process-II?
(Note: You are not required to prepare Process Accounts) (PYP 10 Marks May'22)
Answer 30

| Particulars | Input <br> quantity | Particulars | Total |  | Material |  |  | Processing Cost |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  | $\%$ | Units | $\%$ | Units |  |  |
| Opening WIP | 9,500 | Units completed | 83,000 | $100 \%$ | 83,000 | $100 \%$ | 83,000 |  |
| Material <br> Input | $1,05,000$ | Normal loss (10\% <br> of 1,05,000) | 10,500 | - | - | - | - |  |
|  |  | Abnormal loss <br> (Bal. fig.) | 4,500 | $100 \%$ | 4,500 | $100 \%$ | 4,500 |  |
|  |  | Closing WIP | 16,500 | $100 \%$ | 16,500 | $60 \%$ | 9,900 |  |
|  | $, 14,500$ |  | $1,14,500$ |  | $1,04,000$ |  | 97,400 |  |

Statement of Cost for each element

| Particulars | Material | Processing | Total cost |
| :--- | ---: | ---: | ---: |
|  | $(₹)$ | $(₹)$ | (₹) |
| Cost of opening WIP | 29,500 | 14,750 | 44,250 |
| Cost incurred during the month | $3,34,500$ | $2,53,100$ | $5,87,600$ |
| Total cost (A) | $3,64,000$ | $2,67,850$ | $6,31,850$ |
| Equivalent production (B) | $1,04,000$ | 97,400 |  |
| Cost per kg of Chemical 'G' (A/B) | 3.5 | 2.75 | 6.25 |

Alternative Presentation
Statement showing cost per kg of each statement

|  |  | (₹) |
| :--- | :--- | :--- |
| Material | $\frac{29,500+3,34,000}{1,04,000}$ | (₹) |


| Processing cost | $\frac{14,750+2,53,100}{1,04,000}$ | 2.75 |
| :--- | :---: | :---: |
| Total Cost per kg |  | 6.25 |

(ii) Statement showing cost of Chemical 'G' transferred to Process II, cost of abnormal loss and cost of closing work-in- progress

|  | (₹) |
| :--- | ---: |
| Units transferred $(60,000 \times 6.25)$ | $3,75,000$ |
| Abnormal loss $(4,500 \times 6.25)$ | 28,125 |
| Closing work in progress: |  |
| Material $(16,500 \times 3.5)$ | 57,750 |
| Processing cost $(9,900 \times 2.75)$ | 27,225 |
|  | 84,975 |

(iii) Calculation of Incremental Profit / Loss after further processing

| Particulars | (₹) | (₹) |
| :--- | ---: | ---: |
| Sales if further processed (A) (60,000 x $1.20 \times$ ₹ 10) | $7,20,000$ |  |
| Calculation of cost in Process II |  |  |
| Chemical transferred from Process I | $3,75,000$ |  |
| Add: Material cost | 85,000 |  |
| Add: Process cost | 50,000 |  |
| Total cost of finished stock (B) | $5,10,000$ |  |
| Profit, if further processed (C = A - B) | $5,40,000$ |  |
| If sold without further processing then, | $3,75,000$ |  |
| Sales (60,000 x ₹ 9) |  | $1,65,000$ |
| Less: Cost of input without further processing |  | 45,000 |
| Profit without further processing (D) |  |  |
| Incremental Profit after further processing (C - D) |  |  |
| Additional net profit on further processing in Process II is 45,000. <br> Therefore, it is advisable to process further chemical 'G'. |  |  |

Alternative Presentation
Calculation of Incremental Profit / Loss after further processing

|  | $(₹)$ |
| :--- | ---: |
| If 60,000 units are sold @ ₹ 9 | $5,40,000$ |
| If 60,000 units are processed in process II $(60,000 \times 1.2 \times ₹ 10)$ | $7,20,000$ |
| Incremental Revenue (A) | $1,80,000$ |
| Incremental Cost: (B) |  |
| Material Cost | 85,000 |
| Processing Cost | 50,000 |
|  | $1,35,000$ |
| Incremental Profit (A-B) | 45,000 |

Additional net profit on further processing in Process II is 45,000. Therefore, itis advisable to process further chemical ' $G$ '.

## Question 31

N Ltd. produces a product which passes through two processes - Process - I and Process-II. The company has provided following information related to the Financial Year 2021-22:

|  | Process-I | Process -II |
| :--- | :---: | :---: |
| Raw Material @₹ 65 per unit | 6,500 units | - |
| Direct Wages | ₹ $1,40,000$ | ₹ 1,30,000 |
| Direct Expenses | $30 \%$ of Direct <br> Wages | 35\% of Direct <br> Wages |
| Manufacturing Overheads | ₹ 21,500 | $₹ 24,500$ |
| Realisable value of scrap per unit | ₹ 4.00 | $₹ 16.00$ |
| Normal Loss | 250 units | 500 units |
| Units transferred to Process-II / finished <br> stock | 6,000 units | 5,500 units |
| Sales | - | 5,000 units |

There was no opening or closing stock of work-in progress. You are required to prepare:
(i) Process-I Account
(ii) Process -II Account
(iii) Finished Stock Account (PYP 10 Marks Nov 22)

## Answer 31

Process-I A/c

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Raw material used (₹ $65 \times 6,500$ units) | 6,500 | 4,22,500 | By Normal loss <br> (250 units $\times ₹ 4$ ) | 250 | 1,000 |
| To Direct wages | -- | 1,40,000 | By Process- II A/c <br> (₹ $100 \times 6,000$ units) | 6,000 | 6,00,000 |
| To Direct expenses (30\% of ₹ $1,40,000$ ) | -- | 42,000 | By Abnormal loss (₹ $100 \times 250$ units) | 250 | 25,000 |
| To Manufacturing overhead |  | 21,500 |  |  |  |
|  | 6,500 | 6,26,000 |  | 6,500 | 6,26,000 |

Cost per unit of completed units and abnormal loss : $\frac{\text { Total Cost-Realisable value from normal loss }}{\text { Inputs units-Normal loss units }}$
$=\frac{\text { Rs. } 6,26,000-\text { Rs } 1,000}{6,500 \text { units }-250 \text { units }}=\frac{\text { Rs. } 6,25,000}{6,250 \text { units }}=$ Rs. 100
Process- II A/c

| Particulars | Units | (₹) | Particulars | Units | (₹) |
| :--- | ---: | ---: | ---: | ---: | :---: |
| To Process - I A/c | 6,000 | $6,00,000$ | By Normal loss <br> (500 units $\times ₹ 16$ ) | 500 | 8,000 |
| To Direct wages | -- | $1,30,000$ | By Finished Stock <br> A/c (₹144 $\times 5,500$ <br> units) | 5,500 | $7,92,000$ |
| To Direct expenses <br> (35\% of ₹ <br> $1,30,000)$ | -- | 45,500 |  |  |  |
| To Manufacturing <br> overhead | -- | 24,500 |  | 6,000 | $8,00,000$ |

Cost per unit of completed units and abnormal loss:

Total Cost - Realisable value from normal loss
Input units - Normal loss units
$=\frac{\text { Rs. } 8,00,000-\text { Rs } .8 .000}{6,000 \text { units }-500 \text { units }}=\frac{\text { Rs. } 7,92,000}{5,500 \text { units }}=$ Rs. 144
Finished Goods Stock A/c

| Particulars |  | Units | (₹) | Particulars | Units | (₹) |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| To | Process II A/c | 5,500 | $7,92,000$ | By Cost of Sales <br> (₹144 $\times 5,000$ units) | 5,000 | $7,20,000$ |
|  |  |  |  | By Balance c/d | 500 | 72,000 |
|  |  |  |  |  |  | 5,500 |

## Question 32

How will you treat normal loss, abnormal loss and abnormal gain in process costing? Explain (PYP 5 Marks, May '23)

## Answer 32

Treatment of normal loss, abnormal loss and abnormal gain in process costing
Treatment of Normal loss in Cost Accounts: The cost of normal process loss in practice is absorbed by good units produced under the process. The amount realised by the sale of normal process loss units should be credited to the process account.

Treatment of Abnormal loss in Cost Accounts: The cost of an abnormal process loss unit is equal to the cost of a good unit. The total cost of abnormal process loss is credited to the process account from which it arises. Cost of abnormal process loss is not treated as a part of the cost of the product. In fact, the total cost of abnormal process loss is debited to costing profit and loss account.

Treatment of Abnormal Gain in Cost Accounts: The process account under which abnormal gain arises is debited with the abnormal gain and credited to abnormal gain account which will be closed by transferring to the Costing Profit and Loss account. The cost of abnormal gain is computed on the basis of normal production.

VIVITSU
11.1

## Chapter 11

Joint Product and By Product

## Question 1

Three products $X, Y$ and $Z$ along with a byproduct $B$ are obtained again in a crude state which require further processing at a cost of Rs. 5 for $X$; Rs. 4 for $Y$; and Rs. $\mathbf{2 . 5 0}$ for $Z$ per unit before sale. The byproduct is however saleable as such to a nearby factory. The selling prices for the three main products and byproduct, assuming they should yield a net margin of 25 percent of cost, are fixed at Rs. 13.75 Rs. 8.75 and Rs. 7.50 and Re. 1.00 respectively - all per unit quantity sold.

During a period, the joint input cost including the material cost was Rs. 90,800 and the respective outputs were:

| $X$ | $\mathbf{8 , 0 0 0}$ units |
| :--- | :--- |
| $Y$ | $\mathbf{6 , 0 0 0}$ units |
| $Z$ | 4,000 units |
| $B$ | 1,000 units |

By product should be credited to the joint cost and only the net joint costs are to be allocated to the main products.
Calculate the joint cost per unit of each product and the margin available as a percentage on cost. (MTP Aug.'18, 10Marks)

## Answer 1

Working Notes:
(i) Computation of Allocation Ratio for Joint Costs

|  | Products |  |  |
| :--- | ---: | ---: | ---: |
|  | X <br> Rs. | Y <br> Rs. | Z. <br> Rs. |
| Selling Price | 13.75 | 8.75 | 7.50 |
| Less: Anticipated margin@ 25\% on cost or 20\% on sales | 2.75 | 1.75 | 1.50 |
| Cost of sales | 11.00 | 7.00 | 6.00 |
| Less: Post split off cost | 5.00 | 4.00 | 2.50 |
| Joint cost per unit | 6.00 | 3.00 | 3.50 |
| Output (units) | 8,000 | 6,000 | 4,000 |
| Total output cost | 48,000 | 18,000 | 14,000 |
| Allocation ratio for joint costs | 24 | 9 | 7 |

(ii) Computation of net allocable joint costs

|  | Rs. | Rs. |
| :--- | ---: | ---: |
| Joint input cost including material cost |  | 90,800 |
| Less: Credit for realization from by-product B: Sales revenue <br> $(1,000 \times$ Re. 1) | 1,000 |  |
| Less: profit @ 25\% on cost or 20\% on sales | 200 | 800 |
| Net joint costs to be allocated |  | 90,000 |

Determination of joint cost per unit of each product

| Product | Net joint costs allocation Rs. | Output(units) | Joint cost per unit |
| :---: | :---: | :---: | :---: |
|  |  |  | Rs. |

Profit margin available on each product as a percentage on cost

| Product | Joint Cost | Post spilt <br> off cost <br> Rs. | Total Co. <br> Rs. | Selling <br> Price Rs. | Margin | Margin \% on <br> cost <br> Rs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | 6.75 | 5.00 | 11.75 | 13.75 | 2.00 | 17.02 |
| Y | 3.38 | 4.00 | 7.38 | 8.75 | 1.37 | 18.56 |
| Z | 3.94 | 2.50 | 6.44 | 7.50 | 1.06 | 16.46 |

Note: 1
$X=\frac{24}{40} \times 90,000=54000$
$Y=\frac{9}{40} \times 90,000=20250$
$Z=\frac{7}{40} \times 90,000=15750$
Total 90000

## Question 2

In an Oil Mill, four products emerge from a refining process. The total cost of input during the quarter ending March 2019 is Rs.22,20,000. The output, sales and additional processing costs are as under:

| Products | Output in <br> Litres | Additional processing <br> cost after split off(Rs.) | Sales value (Rs.) |
| :---: | ---: | ---: | ---: |
| A | 8,000 | $6,45,000$ | $25,87,500$ |
| B | 4,000 | $1,35,000$ | $2,25,000$ |
| C | 2,000 | - | 90,000 |
| D | 4,000 | 22,500 | $6,75,000$ |

In case these products were disposed-off at the split off point that is before further processing, the selling price per litre would have been:

| A (Rs.) | B (Rs.) | C (Rs.) | D (Rs.) |
| :--- | :---: | :---: | ---: |
| 225.00 | 90.00 | 45.00 | 112.50 |

PREPARE a statement of profitability based on:
(i) If the products are sold after further processing is carried out in themill.
(ii) If they are sold at the split off point.
(MTP Oct. '19, 10 Marks, RTP Nov '18)

## Answer 2

Statement of profitability of an Oil Mill (after carrying out further processing) for the quarter ending 31st March2019.

| Products | Sales Value after <br> further <br> processing | Shareof Joint <br> cost | Additional <br> processing <br> cost | Total cost <br> after <br> processing | Profit (loss) |
| :---: | ---: | ---: | ---: | ---: | ---: |
| A | $25,87,500$ | $14,80,000$ | $6,45,000$ | $21,25,000$ | $4,62,500$ |
| B | $2,25,000$ | $2,96,000$ | $1,35,000$ | $4,31,000$ | $(2,06,000)$ |
| C | 90,000 | 74,000 | - | 74,000 | 16,000 |
| D | $6,75,000$ | $3,70,000$ | 22,500 | $3,92,500$ | $2,82,500$ |
|  | $\mathbf{3 5 , 7 7 , 5 0 0}$ | $\mathbf{2 2 , 2 0 , 0 0 0}$ | $\mathbf{8 , 0 2 , 5 0 0}$ | $\mathbf{3 0 , 2 2 , 5 0 0}$ | $\mathbf{5 , 5 5 , 0 0 0}$ |

Statement of profitability at the split off point

| Products | Selling price of <br> split off | Output in <br> units | Sales value at <br> split off point | Share of joint <br> cost | Profit at split <br> off point |
| :--- | ---: | ---: | ---: | ---: | ---: |
| A | 225.00 | 8,000 | $18,00,000$ | $14,80,000$ | $3,20,000$ |
| B | 90.00 | 4,000 | $3,60,000$ | $2,96,000$ | 64,000 |


| C | 45.00 | 2,000 | 90,000 | 74,000 | 16,000 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $D$ | 112.50 | 4,000 | $4,50,000$ | $3,70,000$ | 80,000 |
|  | - | - | $27,00,000$ | $22,20,000$ | $4,80,000$ |

Note: Share of Joint Cost has been arrived at by considering the sales value at split off point.

## Question 3

EXPLAIN the treatment of by-product cost in cost accounting. (MTP 5 Marks May 20, PYP 5 Marks Nov '18, Old \& New SM, RTP May 20)

## Answer 3

By-product cost can be dealt in cost accounting in the following ways:
(i) When they are of small total value: When the by-products are of small total value, the amount realised from their sale may be dealt in any one the following two ways:

1. The sales value of the by-products may be credited to the Costing Profit and Loss Account and no credit be given in the Cost Accounts. The credit to the Costing Profit and Loss Account here is treated either as miscellaneous income or as additional sales revenue.
2. The sale proceeds of the by-product may be treated as deductions from the total costs. The sale proceeds in fact should be deducted either from the production cost or from the cost of sales.
(ii) When the by-products are of considerable total value: Where by-products are of considerable total value, they may be regarded as joint products rather than as by-products. To determine exact cost of by-products the costs incurred upto the point of separation, should be apportioned over by-products and joint products by using a logical basis. In this case, the joint costs may be divided over joint products and byproducts by using relative market values; physical output method (at the point of split off) or ultimate selling prices (if sold).
(iii) Where they require further processing: In this case, the net realisable value of the by- product at the splitoff point may be arrived at by subtracting the further processing cost from the realisable value of byproducts.

If total sales value of by-products at split-off point is small, it may be treated as per the provisions discussed above under (i).

In the contrary case, the amount realised from the sale of by-products will be considerable and thus it may be treated as discussed under (ii).

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question on process costing on treatment of by product. Below average performance was observed.

## Question 4

'Buttery Butter' is engaged in the production of Buttermilk, Butter and Ghee. It purchases processed cream and let it through the process of churning until it separates into buttermilk and butter. For the month of January, 2020, 'Buttery Butter' purchased 50 Kilolitre processed cream @ ₹ 100 per 1000 ml. Conversion cost of $₹ 1,00,000$ were incurred up-to the split off point, where two saleable products were produced i.e. buttermilk and butter. Butter can be further processed intoGhee.

The January, 2020 production and sales information is as follows:

| Products | Production (in <br> Kilolitre/tonne) | Sales Quantity (in <br> Kilolitre/tonne) | Selling price per <br> Litre/Kg (₹) |
| :--- | :---: | :---: | :---: |
| Buttermilk | 28 | 28 | $\mathbf{3 0}$ |
| Butter | 20 | - | - |


| Ghee | 16 | 16 | 480 |
| :---: | :---: | :---: | :---: |

All 20 tonne of butter were further processed at an incremental cost of $₹ \mathbf{1 , 2 0 , 0 0 0}$ to yield 16 Kilolitre of Ghee. There was no opening or closing inventories of buttermilk, butter or ghee in January, 2020.

Required:
SHOW how joint cost would be apportioned between Buttermilk and Butter under Estimated Net Realisable Value method.
'Healthy Bones' offers to purchase 20 tonne of butter in February at ₹ $\mathbf{3 6 0} \mathbf{~ p e r ~ k g . ~ I n ~ c a s e ~ ' B u t t e r y ~}$ Butter' accepts this offer, no Ghee would be produced in February. SUGGEST whether 'Buttery Butter' shall accept the offer affecting its operating income or further process butter to make Ghee itself? (MTP 5 Marks Oct 20, Old \& New SM)

## Answer 4

(i) Estimated Net Realizable Value Method:

|  | Buttermilk <br> Amount (₹) | Butter <br> Amount (₹) |
| :--- | ---: | ---: |
| Sales Value | $8,40,000$ <br> (₹ $30 \times 28 \times 1000)$ | $76,80,000$ <br> (₹ $480 \times 16 \times 1000)$ |
| Less: Post split-off cost (Further <br> processing cost) |  | - |
| Net Realizable Value | $8,40,000$ | $(1,20,000)$ |
| Apportionment of Joint Cost of <br> ₹ $51,00,000 *$ in ratio of 1:9 | $5,10,000$ | $75,60,000$ |

* $[(₹ 100 \times 50 \times 1000)+₹ 1,00,000]=₹ 51,00,000$
(ii) Incremental revenue from further processing of Butter into Ghee

$$
\begin{array}{cc}
\begin{array}{c}
(₹ 480 \times 16 \times 1000-₹ 360 \times 20 \times 1000) \\
\text { Less: Incremental cost of further processing } \\
\text { of Butter into Ghee }
\end{array} & ₹ 4,80,000 \\
\text { Incremental operating income from further processing } & ₹ 3,60,000
\end{array}
$$

The operating income of 'Buttery Butter' will be reduced by ₹ $3,60,000$ in February if it sells 20 tonne of Butter to 'Healthy Bones', instead of further processing of Butter into Ghee for sale. Thus, 'Buttery Butter' is advised not to accept the offer and further process butter to make Ghee itself.

## Question 5

A factory produces two products, 'Ghee' and 'Cream' from a single process. The joint processing costs during a particular month are:

| Direct Material | $₹ \mathbf{6 0 , 0 0 0}$ |
| :--- | :--- |
| Direct Labour | $₹ \mathbf{1 9 , 2 0 0}$ |
| Variable Overheads | $₹ \mathbf{2 4 , 0 0 0}$ |
| Fixed Overheads | $₹ 64,000$ |

Sales: Ghee - $\mathbf{2 0 0}$ litre @ ₹ $\mathbf{6 0 0}$ per litre; Cream - $\mathbf{2 4 0}$ litre @ ₹ $\mathbf{2 0 0}$ per litre. REQUIRED:
I. Apportion joints costs on the basis of:
(i) Physical Quantity of each product.
(ii) Contribution Margin method, and
II. Determine Profit or Loss under both the methods. (MTP 5 Marks, Oct.'21, PYP 5 Marks Nov '19)

## Answer 5

| Particulars | Amount (₹) |
| :--- | ---: |
| Direct Material | 60,000 |
| Direct Labour | 19,200 |
| Variable Overheads | 24,000 |
| Total Variable Cost | $1,03,200$ |
| Fixed Overheads | 64,000 |
| Total joint cost | $1,67,200$ |

Apportionment of Joint Costs:


* The fixed cost of $₹ 64,000$ is to be apportioned over the joint products- Ghee and Cream in the ratio of their contribution margin but contribution margin of Product- Cream is Negative so fixed cost will be charged to Product- Ghee only.


## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Joint products and by-products'. The question required apportionment of joint cost on the basis of physical quantity method and contribution margin method. Performance of the examinees was average.

## Question 6

How apportionment of joint costs up-to the point of separation amongst the joint products using market value at the point of separation and net realizable value method is done? DISCUSS. (MTP 5 $\underset{\text { Marks }}{ }{ }^{\text {Mov '21, RTP May '21) }}$

## Answer 6

Apportionment of Joint Cost amongst Joint Products using:
Market value at the point of separation: This method is used for apportionment of joint costs to joint products upto the split off point. It is difficult to apply if the market value of the product at the point of separation is not available. It is useful method where further processing costs are incurred disproportionately.

Net realizable value Method: From the sales value of joint products (at finished stage) the followings are deducted:

- Estimated profit margins
- Selling \& distribution expenses, if any
- Post- split off costs.

The resultant figure so obtained is known as net realizable value of joint products. Joint costs are apportioned in the ratio of net realizable value.

## Question 7

SV chemicals Limited processes $9,00,000$ kgs. of raw material in a month purchased at ₹ 95 per kg in department $X$. The input output ratio of department $X$ is $100: 90$. Processing of the material results in two joint products being produced ' $P 1$ ' and ' $P 2$ ' in the ratio of $60: 40$. Product ' $P 1$ ' can be sold at split off stage or can be further processed in department $Y$ and sold as a new product ' $Y P 1$ '. The input output ratio of department $Y$ is $100: 95$. Department $Y$ is utilized only for further processing of product 'YP 1' to product P1. Individual departmental expenses are as follows:

| Direct Materials | Dept. X (₹ lakhs) |  |  |
| :--- | ---: | ---: | ---: |
| 95.00 | Dept. Y(₹ | lakhs) <br> 14.00 |  |
| Direct Wages | 80.00 |  | 27.00 |
| Variable Overheads | 100.00 |  | 35.00 |
| Fixed Overheads | 75.00 |  | 52.00 |
| Total | 350.00 | 128.00 |  |

Further, selling expenses to be incurred on three products are:

| Particulars | Amount (₹ in lakhs) |
| :--- | ---: |
| Product ' $\mathbf{P}_{\mathbf{1}}{ }^{\prime}$ | 28.38 |
| Product ' $\mathbf{P}_{\mathbf{2}}{ }^{\prime}$ | 25.00 |
| Product ' $\mathrm{YP}_{1}{ }^{\prime}$ | 19.00 |

Selling price of the products ' $P_{1}$ ' and ' $P_{2}$ ' at split off point is $₹ 110$ per kg and $₹ 325$ per kg respectively.
Selling price of new product ' $\mathrm{YP}_{1}$ ' is $₹ \mathbf{1 5 0}$ per kg.
You are required to:
(i) Prepare a statement showing apportionment of joint costs, in the ratio of value of sales, net of selling expenses.
(ii) Prepare a Statement showing profitability at split off point.
(iii) Prepare a Statement of profitability of 'YP 1 '.
(iv) Determine that would you recommend further processing of $P$ 1? (MTP March'18,10Marks)

## Answer 7

## Working Notes:

Input output ratio of material processed in Department $X=100: 90$

| Particulars | Quantity (Kg) |
| :--- | ---: |
| Material input | $9,00,000$ |
| Less:Loss ofmaterial in process @ 10\%of 9,00,000 kgs | $(90,000)$ |
| Output | $8,10,000$ |


| Output of department $X$ is product ' $\mathrm{P} 1^{\prime}$ 'and ' P 2 ' in the ratio of $60: 40$ |  |  |
| :--- | :--- | :--- |
| Output' $\mathrm{P} 1^{\prime}=$ | $\frac{60 \times 8,10,000}{100}$ | $=4,86,000 \mathrm{kgs}$. |
| Output 'P2' $=$ | $\frac{40 \times 8,10,000}{100}$ | $=3,24,000 \mathrm{kgs}$. |


| Statement showing ratio of net sales | P1 | P2 | Total |
| :--- | ---: | ---: | ---: |
| Product | $4,86,000$ | $3,24,000$ | $8,10,000$ |
| Quantity (kgs) | 110.00 | 325.00 |  |
| Selling price per kg (₹ ) | 534.60 | $1,053.00$ | 1587.60 |
| Sales Value (₹ in lakhs) | $(28.38)$ | $(25.00)$ | $(53.38)$ |
| Less: Selling Expenses (₹ in I akhs) | 506.22 | $1,028.00$ | $1,534.22$ |
| Net Sales (₹ in lakhs) | $33 \%$ | $67 \%$ | 100.00 |
| Ratio |  | Amount (₹ Lakhs) |  |
| Computation of Joint Costs |  | 855.00 |  |
| Particulars |  | 95.00 |  |
| Raw Material input9,00,000kgs @ ₹95perkg |  | 80.00 |  |
| Direct Materials |  | 100.00 |  |
| Direct Wages |  | 75.00 |  |
| Variable Overheads |  | $1,205.00$ |  |
| Fixed Overheads |  |  |  |
| Total |  |  |  |

(i) Statement showing apportionment of joint costs in the ratio of net sales

Particulars
Joint cost of P1-33\% of ₹ 1,205 lakhs
Joint cost of P2-67\% of ₹ 1,205 lakhs
Total

## Amount (₹ in lakhs)

397.65
807.35

1,205.00
(ii) Statement showing profitability at split off point

| Product | P1 | P2 | Total |
| :--- | ---: | ---: | ---: |
| Net Sales Value (₹ in lakhs) - [A] | 506.22 | $1,028.00$ | $1,534.22$ |
| Less: Joint costs (₹ in lakhs) | $(397.65)$ | $(807.35)$ | $(1,205.00)$ |
| Profit (₹ i n lakhs) [A] - [B] | 108.57 | 220.65 | 329.22 |

Alternative Presentation

| Product | P1 | P2 | Total |
| :--- | ---: | ---: | ---: |
| Sales Value (₹ in lakhs) - [A] | 534.60 | $1,053.00$ | $1,587.60$ |
| Less: Joint costs (₹ in lakhs) | 397.65 | 807.35 | $1,205.00$ |
| Selling Expenses | 28.38 | 25.00 | 53.38 |
| Total Cost [B] | 426.03 | 832.35 | $1,258.38$ |
| Profit (₹ in lakhs) [A] - [B] | 108.57 | 220.65 | 329.22 |

(iii) Statement of profitability of product 'YP1'

| Particulars |  | YP1 |
| :--- | ---: | ---: |
| Sales Value (₹ in lakhs) (Refer working note) [A] |  | 629.55 |
| Less: Cost of P1 | 397.65 |  |
| Cost of Department Y | 128.00 |  |
| Selling Expenses of Product 'YP1' | 19.00 |  |
| Total Costs [B] |  | 544.65 |
| Profit (₹ in lakhs) [A] - [B] |  | 84.90 |

VIVITSU

## Working Note:

Computation of product 'YP1'
Quantity of product P1 input used $=4,86,000$ kgs
Input output ratio of material processed in Department $Y=100$ : 95

| Particulars | Quantity (Kg) |
| :--- | ---: |
| Material input | $4,86,000$ |
| Less: Loss of material in process @ 5\% of 4,86,000 | $(24,300)$ |
| Output | $4,61,700$ |

Sales Value of YP1 = 4, 61,700 kgs @ ₹ 150 per kg = ₹ 692.55 lakhs
(iv) Determination of profitability after further processing of product P1 into product YP1:

| Particulars | (₹ in lakhs) |
| :--- | ---: |
| Profit of Product 'P1' \{refer (ii) above\} | 108.57 |
| Profit of Product 'YP1'\{refer (iii) above\} | 84.90 |
| Decrease in profit after further processing | 23.67 |

Based on the above profitability statement, further processing of product P1 into YP1 should not be recommended.

## Question 8

DESCRIBE net realizable value method of apportioning joint costs to by-products (MTP 5 Marks Aug '18, MTP 5 Marks March '21)

## Answer 8

Net Realisable Value method: The realisation on the disposal of the by-product may be deducted from the total cost of production so as to arrive at the cost of the main product. For example, the amount realised by the sale of molasses in a sugar factory goes to reduce the cost of sugar produced in the factory. When the by-product requires some additional processing and expenses are incurred in making it saleable to the best advantage of the concern, the expenses so incurred should be deducted from the total value realised from the sale of the by-product and only the net realisations should be deducted from the total cost of production to arrive at the cost of production of the main product. Separate accounts should be maintained for collecting additional expenses incurred on:
(i) further processing of the by-product, and
(ii) selling, distribution and administration expenses attributable to the by-product.

## Question 9

Mili Ltd., a manufacturing company, produces two main products and a by-product out of a joint process. The ratio of output quantities to input quantities of direct material used in the joint process remains consistent on yearly basis. Company has employed the physical volume method to allocate joint production costs to the main products. The net realizable value of the by-product is used to reduce the joint production costs before the joint costs are allocated to the main products. During a month, company incurred joint production costs of $₹ 15,00,000$. The main products are not marketable at the split off point and thus have to be processed further. Details of company's operation are given in the table below.

| Particulars | Product-Q | Product-R | By product |
| :--- | :---: | :---: | :--- |
| Monthly output in kg. | 90,000 | $1,80,000$ | $\mathbf{7 5 , 0 0 0}$ |
| Selling price per kg. | $₹ 50$ | $₹ 30$ | $₹ 5$ |
| Process costs | $₹ 3,00,000$ | $₹ 4,50,000$ |  |

FIND OUT the amount of joint product cost that Mili Ltd. would allocate to product-R by using the physical volume method to allocate joint production costs? .(MTP 5 Marks March '22, Old \& New

## SM)

## Answer 9

Calculation of Net joint costs to be allocated:

| Particulars | Amount (₹) |
| :--- | ---: |
| Joint Costs | $15,00,000$ |
| Less: Net Realizable value of by-product $(75,000 \times 5)$ | $3,75,000$ |
| Net joint costs to be allocated | $11,25,000$ |

Therefore, amount of joint product cost that Mili Ltd. would allocate to the product-R by using the physical volume method to allocate joint production costs:
$=\frac{\text { Physical quantity of Product }-R}{\text { Total Quantity }} \times$ Net joint costs to be allocated
$=\frac{1,80,000 \text { units }}{2,70,000 \text { units }} \times 11,25,000=$ Rs. 7,50,000

## Question 10

Following information is available for A Ltd.:
Sales- P: 200 kg @ ₹ 120 per kg. Q: 240 kg @ ₹ 60 per kg.
Joint costs- Marginal cost ₹ 17,600 Fixed cost ₹ 15,600
You are required to FIND OUT the cost of joint products $P$ and $Q$ using contribution margin method. (MTP 5 Marks April '22)

## Answer 10

The marginal cost (variable cost) of $₹ 17,600$ is apportioned over the joint products $P$ and $Q$ in the ratio of their physical quantity i.e. 200 : 240
Marginal cost for Product P : ₹ 17,600×200/440 = ₹ 8,000
Marginal cost for Product Q : ₹ 17,600 $\times 240 / 440=₹ 9,600$
The fixed cost of ₹ 15,600 is apportioned over the joint products $P$ and $Q$ in the ratio of their contribution margin i.e. 160:48 (Refer to working note)

Product P : ₹ $15,600 \times 160 / 208=₹ 12,000$ Product Q : ₹ $15,600 \times 48 / 208=₹ 3,600$ Working
Note:
Computation of contribution margin ratio

| Products | Sales revenue | Marginal cost | Contribution |
| :---: | :---: | :---: | :---: |
|  | $(₹)$ | $(₹)$ | (₹) |
| P | 24,000 | 8,000 | 16,000 |
| Q | 14,400 | 9,600 <br> (Refer to above) | 4,800 |

Contribution ratio is $160: 48$

## Question 11

A manufacturing process yields the following products out of the raw materials introduced in the process:
Main Product X 60\% of Raw Materials
By-Product Y 15\% of Raw Materials
By Product Z 20\% of Raw Materials
Wastage 5\% of Raw Materials
Other information is as follows:
a. Total Cost: Raw Materials $\mathbf{1 , 0 0 0}$ units of ₹ 9,200 ; Labour ₹ $\mathbf{8 , 2 0 0}$; Overheads ₹ $\mathbf{1 2 , 0 0 0}$
b. One unit of product $z$ requires $1 / 2$ the raw materials required for one unit of product $Y$, one unit of product $X$ requires $11 / 2$ times the raw materials required for product $Y$.
c. Product $X$ required double the time needed for production of one unit of $Y$ and one unit of $Z$.
d. Product $Z$ requires $1 / 2$ the time required for the production of one unit of product $Y$.
e. Overheads are to be apportioned in the ratio of 6:1:1.

You are required to CALCULATE the total and per unit of cost of each of the products. (MTP 5 Marks Sep'22)

## Answer 11

Statement of Distribution of Costs

| Cost Elements | Basis | Total <br> Cost | Main Product X <br> (600 Units) |  | By-Product Y <br> (150 Units) |  | By-Product Z <br> (200 Units) |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total | Per <br> Unit | Total | Per <br> Unit | Total | Per <br> Unit |
| Raw Materials | $18: 3: 2$ | 9,200 | 7,200 | 12 | 1,200 | 8 | 800 | 4 |
| Labour | $36: 3: 2$ | 8,200 | 7,200 | 12 | 600 | 4 | 400 | 2 |
| Overheads | $6: 1: 1$ | 12,000 | 9,000 | 15 | 1,500 | 10 | 1,500 | 7.50 |
| Total | 29,400 | 23,400 | 39 | 3,300 | 22 | 2,700 | 13.50 |  |

## Working Notes:

1. Calculation of Units produced:

| Main Product X | $60 \%$ of Raw Materials | 600 Units |
| :--- | :--- | :--- |
| By-Product Y | $15 \%$ of Raw Materials | 150 Units |
| By Product Z | $20 \%$ of Raw Materials | 200 Units |

Wastage 5\% of Raw Materials
50 Units 1000 Units
2. Cost Allocation Raw Materials

Let Product $Z$ requires 1 unit of raw materials then, Product $Y$ will require 2 units of raw materials and Product $X$ will require 3 units of raw materials.

| Product | X | $Y$ | Z Individual Unit ratio |  |
| :--- | :---: | ---: | ---: | ---: |
| (a) | 3 | $:$ | $2:$ | 1 |
| Units (b) | 600 | $:$ | $150:$ | 200 |
| Ratio for Cost Allocation (a*b) | 1800 | $:$ | $300:$ | 200 |
| Ratio | $18:$ | $3:$ | 2 |  |

Labour:
Let Product $Z$ requires 1 hour of Labour then, Product $Y$ will require 2 hours of Labour and Product $X$ will require 6 hours of Labour.

| Product | X |  | $Y$ | Z |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Individual hour ratio (a) | 6 | $:$ | 2 | $:$ | 1 |
| Units (b) | 600 |  | 150 |  | 200 |
| Ratio for Cost Allocation (a*b) | 3600 | $:$ | 300 | $:$ | 200 |
| Ratio | 36 | $:$ | 3 | $:$ | 2 |

## Question 12

ABC Ltd. operates a simple chemical process to convert a single material into three separate items, referred to here as $X, Y$ and $Z$. All three end products are separated simultaneously at a single split-off point.

Product $X$ and $Y$ are ready for sale immediately upon split off without further processing or any other additional costs. Product $Z$, however, is processed further before being sold. There is no available market price for $Z$ at the split-off point.

The selling prices quoted here are expected to remain the same in the coming year. During 2022-23, the selling prices of the items and the total amounts sold were:
$X$-186 tons sold for ₹ 3,000 per ton $Y$-527 tons sold for ₹ 2,250 per ton
Z -736 tons sold for ₹1,500 per ton
The total joint manufacturing costs for the year were ₹ $12,50,000$.
An additional ₹6,20,000 was spent to finish product $Z$.
There were no opening inventories of $X, Y$ or $Z$ at the end of the year. The following inventories of complete units were on hand:

## X 180 tons

Y 60 Tons

## Z 25 tons

There was no opening or closing work-in-progress.
Required:
COMPUTE the cost of inventories of $X, Y$ and $Z$ and cost of goods sold for year ended March 31, 2023, using Net realizable value (NRV) method of joint cost allocation. (MTP 10 Marks April '23) (Same concepts different figures MTP 10 Marks Mar'23, RTP Nov'20)
Answer 12
Statement of Joint Cost allocation of inventories of $X, Y$ and $Z$
(By using Net Realisable Value Method)

|  | Products |  |  | Total |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |  |
|  | (₹) | (₹) | (₹) | $\left(\begin{array}{c}13,20,750 \\ \begin{array}{l}\text { Final sales value of total } \\ \text { production (Working Note } \\ \text { 1) }\end{array}\end{array} \begin{array}{c}10,98,000 \\ (366 \times \\ ₹ 3,000)\end{array}\right.$ |
| $(587 \times ₹ 2,250)$ | $11,41,500$ <br> $(761 \times ₹ 1,500)$ |  |  |  |
| Less: Additional cost | -- | -- | $(6,20,000)$ | $(6,20,000)$ |
| Net realisable value <br> (at split-off point) | $10,98,000$ | $13,20,750$ | $5,21,500$ | $29,40,250$ |
| Joint cost allocated <br> (Working Note 2) | $4,66,797$ | $5,61,496$ | $2,21,707$ | $12,50,000$ |

Cost of goods sold as on March 31, 2023
(By using Net Realisable Value Method)

|  | Product <br> S |  |  | Total |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |  |
|  | (₹) | (₹) | (₹) | (₹) |
| Allocated joint cost | $4,66,797$ | $5,61,496$ | $2,21,707$ | $12,50,000$ |
| Additional costs | -- | -- | $6,20,000$ | $6,20,000$ |
| Cost of goods <br> available for sale <br> (CGAS) | $4,66,797$ | $5,61,496$ | $8,41,707$ | $18,70,000$ |


| Less: Cost of ending | $2,29,571$ | 57,385 | 27,692 | $3,14,648$ |
| :--- | :---: | :---: | :---: | :---: |
| inventory | (CGAS $\times 49.18$ | $($ CGAS $\times$ | (CGAS $\times$ |  |
| (Working Note 1) | $\%)$ | $10.22 \%)$ | $3.29 \%)$ |  |
| Cost of goods sold | $2,37,226$ | $5,04,111$ | $8,14,015$ | $15,55,352$ |

## Working Notes

1. Total production of three products for the year 2022-2023

| Product <br> s | Quantity sold in <br> tones | Quantity of <br> ending <br> inventory in <br> tons | Total <br> production | Ending <br> inventory <br> percentage <br> $(\%)$ |
| :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)=[(2)+(3)\}$ | $(5)=(3) /$ <br> $(4)$ |
| $X$ | 186 | 180 | 366 | 49.18 |
| Y | 527 | 60 | 587 | 10.22 |
| $Z$ | 736 | 25 | 761 | 3.29 |

2. Joint cost apportioned to each product:
$\frac{\text { Total Joint Cost }}{\text { Total net Realisable value }} \mathrm{X}$ Net Realizable Value of each Product
Total Cost of Product $\mathrm{X}=\frac{R s .12,50,000}{R s \cdot 29,40,250} \times$ Rs. $10,98,000=$ Rs. $4,66,797$
Total Cost of Product $\mathrm{Y}=\frac{R s .12,50,000}{R s .29,40,250} \times$ Rs. $13,20,750=$ Rs. $5,61,496$
Total Cost of Product $Z=\frac{R s .12,50,000}{R s .29,40,250} \times$ Rs. $5,21,500=$ Rs. $2,21,707$

## Question 13

A company processes a raw material in its Department 1 to produce three products, viz. A, B and X at the same split-off stage. During a period $1,80,000$ kgs of raw materials were processed in Department 1 at a total cost of $₹ 12,88,000$ and the resultant output of $A, B$ and $X$ were $18,000 \mathrm{kgs}, 10,000 \mathrm{kgs}$ and 54,000 kgs respectively. A and B were further processed in Department 2 at a cost of $₹ 1,80,000$ and $₹$ 1,50,000 respectively.
$X$ was further processed in Department 3 at a cost of $₹ 1,08,000$. There is no waste in further processing. The details of sales affected during the period were as under:

|  | A | B | X |
| :--- | :---: | :---: | :---: |
| Quantity Sold (kgs.) | 17,000 | 5,000 | 44,000 |
| Sales Value (Rs.) | $12,24,000$ | $2,50,000$ | $7,92,000$ |

There were no opening stocks. If these products were sold at split-off stage, the selling prices of $A, B$ and $X$ would have been ₹ 50 , ₹ $\mathbf{4 0}$ and ₹ $\mathbf{1 0}$ per kg respectively.

Required:
(i) Prepare a statement showing the apportionment of joint costs to $A, B$ and $X$.
(ii) Present a statement showing the cost per kg of each product indicating joint cost and further processing cost and total cost separately.
(iii) Prepare a statement showing the product wise and total profit for the period.
(iv) State with supporting calculations as to whether any or all the products should be further processed or not. (RTP May'18, RTP May'19)(MTP 10 Marks Sep '23)
Answer 13

Statement showing the apportionment of joint costs to A, B and X

| Products | A | B | X | Total |
| :---: | :---: | :---: | :---: | :---: |
| Output (kg) | 18,000 | 10,000 | 54,000 |  |
| Sales value at the point of split off (Rs.) | $\begin{gathered} 9,00,000 \\ \text { (Rs. } 50 \times 18,000 \text { ) } \end{gathered}$ | $\begin{gathered} 4,00,000 \\ \text { (Rs. } 40 \times 10,000 \text { ) } \end{gathered}$ | $\begin{gathered} 5,40,000 \\ \text { (Rs. } 10 \times 54,000 \text { ) } \end{gathered}$ | 18,40,000 |
| Joint cost apportionment on the basis of sales value at the point of split off (Rs.) | $\left.\begin{array}{c} 6,30,000 \\ \left(\frac{R s .12,88,000}{R s .18,40,000}\right. \\ \times R s .9,00,000 \end{array}\right)$ | $\begin{gathered} 2,80,000 \\ \left(\frac{\text { Rs. } 12,88,000}{\text { Rs. 18,40,000 }}\right. \\ \times \text { Rs. } 4,00,000) \end{gathered}$ | $\begin{gathered} 3,78,000 \\ \left(\frac{R s .12,88,000}{R s .18,40,000}\right. \\ \times R s .5,40,000) \end{gathered}$ | 12,88,000 |

(ii) Statement showing the cost per kg. of each product (indicating joint cost; further processing cost and total cost separately)

| Products | A | B | X |
| :--- | :---: | :---: | :---: |
| Joint costs apportioned (Rs.) : (I) | $6,30,000$ | $2,80,000$ | $3,78,000$ |
| Production (kg) : (II) | 18,000 | 10,000 | 54,000 |
| Joint cost per kg (Rs.): (I : II) | 35 | 28 | 7 |
| Further processing Cost per kg. (Rs.) | 10 | 15 | 2 |
|  | $\left(\frac{R s .1,80,000}{18,000 \mathrm{~kg}}\right)$ | $\left(\frac{R s .1,50,000}{10,000 \mathrm{~kg}}\right)$ | $\left(\frac{R s .1,08,000}{54,000 \mathrm{~kg}}\right)$ |
| Total cost per kg (Rs.) |  |  |  |

(iii)

Statement showing the product wise and total profit for the period

| Products | A | B | X | Total |
| :--- | ---: | ---: | ---: | ---: |
| Sales value (Rs.) | $12,24,000$ | $2,50,000$ | $7,92,000$ |  |
| Add: Closing stock value (Rs.) |  |  |  |  |
| (Refer to Working note 2) | 45,000 | $2,15,000$ | 90,000 |  |
| Value of production (Rs.) | $12,69,000$ | $4,65,000$ | $8,82,000$ | $26,16,000$ |
| Apportionment of joint cost (Rs.) | $6,30,000$ | $2,80,000$ | $3,78,000$ |  |
| Add: Further processing cost (Rs.) | $1,80,000$ | $1,50,000$ | $1,08,000$ |  |
| Total cost (Rs.) | $8,10,000$ | $4,30,000$ | $4,86,000$ | $17,26,000$ |
| Profit (Rs.) | $4,59,000$ | 35,000 | $3,96,000$ | $8,90,000$ |

## Working Notes 1.

| Products | A | B | X |
| :--- | :---: | :---: | :---: |
| Sales value (Rs.) | $12,24,000$ | $2,50,000$ | $7,92,000$ |
| Quantity sold (Kgs.) | 17,000 | 5,000 | 44,000 |
| Selling price Rs./kg | 72 | 50 | 18 |
|  | $\left(\frac{R s .12,24,000}{17,000 \mathrm{~kg}}\right)$ | $\left(\frac{R s .2,50,000}{5,000 \mathrm{~kg}}\right)$ | $\left(\frac{R s .7,92,000}{44,000 \mathrm{~kg}}\right)$ |

## 2. Valuation of closing stock:

Since the selling price per kg of products $A, B$ and $X$ is more than their total costs, therefore closing stock will be valued at cost.

| Products | A | B | X | Total |
| :--- | :---: | :---: | :---: | :---: |


| Closing stock (kgs.) | 1,000 | 5,000 | 10,000 |  |
| :--- | ---: | ---: | ---: | ---: |
| Cost per kg (Rs.) | 45 | 43 | 9 |  |
| Closing stock value (Rs.) | 45,000 | $2,15,000$ | 90,000 | $3,50,00$ |
|  | $($ Rs. $45 \times 1,000 \mathrm{~kg})$ | (Rs. $43 \times 5,000 \mathrm{~kg})$ | (Rs.9x10,000 kg) |  |

(iv) Calculations for processing decision

| Products | A | B | X |
| :--- | :---: | :---: | :---: |
| Selling price per kg at the point of split off (Rs.) | 50 | 40 | 10 |
| Selling price per kg after further processing (Rs.) <br> (Refer to working Note 1) | 72 | 50 | 18 |
| Incremental selling price per kg (Rs.) | 22 | 10 | 8 |
| Less: Further processing cost per kg (Rs.) | $(10)$ | (15) | (2) |
| Incremental profit (loss) per kg (Rs.) | 12 | (5) | 6 |

Product A and X has an incremental profit per unit after further processing, hence, these two products may be further processed. However, further processing of product $B$ is not profitable hence, product $B$ shall be sold at split off point.

## Question 14

A company produces two joint products A and B from the same basic materials. The processing is completed in three departments.

Materials are mixed in Department I. At the end of this process, $A$ and $B$ get separated. After separation, A is completed in the Department II and B in Department III. During a period, 4,00,000 kg of raw material was processed in Department $I$ at a total cost of $₹ 17,50,000$, and the resultant 50\% becomes $A$ and $\mathbf{4 0 \%}$ becomes $B$ and $10 \%$ normally lost in processing. In Department $I I, 1 / 5^{\text {th }}$ of the quantity received from Department $I$ is lost in processing. $A$ is further processed in Department II at a cost of ₹ $2,60,000$.
In Department III, further new material is added to the material received from Department I and weight mixture is doubled, there is no quantity loss in the department III. Further processing cost (with material cost) in Department III is ₹ 3,00,000.
The details of sales during the said period are:

|  | Product A | Product B |
| :--- | ---: | ---: |
| Quantity sold (kg) | $\mathbf{1 , 5 0 , 0 0 0}$ | $3,00,000$ |
| Sales price per kg (₹) | 10 | 4 |

There were no opening stocks. If these products sold at split-off-point, the selling price of A and B would be ₹ 8 and ₹ 4 per kg respectively.

Required:
(i) PREPARE a statement showing the apportionment of joint cost to $A$ and $B$ in proportion of sales value at split off point.
(ii) PREPARE a statement showing the cost per kg of each product indicating joint cost, processing cost and total cost separately.
(iii) PREPARE a statement showing the product wise profit for the year.
(iv) On the basis of profits before and after further processing of product A and B, give your COMMENT that products should be further processed or not. (RTP Nov '21)
Answer 14
(i) Calculation of quantity produced

| (i) Calculation of quantity produced |  |  |
| :--- | :--- | :--- |
|  | Dept I (kg) | Dept II (kg) |


| Input | 4,00,000 | $\begin{array}{r} \hline 2,00,000 \\ (50 \% \text { of } 4,00,000 \mathrm{~kg} .) \end{array}$ | $1,60,000$ $(40 \%$ of $4,00,000 \mathrm{~kg}$. |
| :---: | :---: | :---: | :---: |
| Weight (lost) or added | $\begin{array}{r} (40,000) \\ (10 \% \text { of } 4,00,000 \mathrm{kg.}) \end{array}$ | $\begin{array}{r} (40,000) \\ \left(1 / 5^{\text {th }} \text { of } 2,00,000 \mathrm{~kg} .\right) \end{array}$ | 1,60,000 |
|  | 3,60,000 | 1,60,000 | 3,20,000 |
| Production of $A$ | 2,00,000 | 1,60,000 | -- |
| Production of $B$ | 1,60,000 | -- | 3,20,000 |

(ii) Statement of apportionment of joint cost of dept I

|  | Product A | Product B |
| :--- | ---: | ---: |
| Output (kg) | $2,00,000$ | $1,60,000$ |
| Selling price per kg (₹) | 8 | 4 |
| Sales value (₹) | $16,00,000$ | $6,40,000$ |
| Share in Joint cost (5:2) | $12,50,000$ | $5,00,000$ |
|  | $(₹ 17,50,000 \times 5 \div 7)$ | $(₹ 17,50,000 \times 2 \div 7)$ |

(iii) Statement of cost per kg

|  | Product A | Product B |
| :--- | ---: | ---: |
| Output (kg) | $1,60,000$ | $3,20,000$ |
| Share in joint cost (₹) | $12,50,000$ | $5,00,000$ |
| Joint Cost per kg (₹) (A) | 7.8125 | 1.5625 |
| Further processing cost (₹) | $2,60,000$ | $3,00,000$ |
| Further processing cost per kg (₹) (B) | 1.625 | 0.9375 |
| Total cost per kg (₹) $\{(\mathrm{A})+(\mathrm{B})\}$ | 9.4375 | 2.5000 |


| (iv) Statement of profit |  |  |
| :--- | ---: | ---: |
|  | Product A | Product B |
| Output (kg) | $1,60,000$ | $3,20,000$ |
| Sales (kg) | $(1,50,000)$ | $(3,00,000)$ |
| Closing stock (kg) | 10,000 | 20,000 |
|  | $(₹)$ | (₹) |
| Sales | $15,00,000$ | $12,00,000$ |
|  | $(1,50,000 \mathrm{~kg} \times ₹ 10)$ | $(3,00,000 \mathrm{~kg} \times ₹ 4)$ |
| Add: closing stock (at full cost) | 94,375 | 50,000 |
|  | $(10,000 \mathrm{~kg} \times ₹ 9.4375)$ | $(20,000 \mathrm{~kg} \times ₹ 2.5)$ |
| Value of production | $15,94,375$ | $12,50,000$ |
| Less: Share in joint cost | $12,50,000$ | $5,00,000$ |
| Further processing cost | $2,60,000$ | $3,00,000$ |
| Profit | $8,50,000$ |  |


| (v) | Profitability statement before and after processing |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Product A |  | Product B |  |
|  | Before (₹) | After (₹) | Before (₹) | After (₹) |
| Sales Value | 16,00,000 |  | 6,40,000 |  |
| Share in joint costs | 12,50,000 |  | 5,00,000 |  |
| Profit | 3,50,000 | $\begin{array}{r} 84,375 \\ \text { (as per iii above) } \end{array}$ | 1,40,000 | $\begin{array}{r} 4,50,000 \\ \text { (as per iii above) } \end{array}$ |

Product A should be sold at split off point and product $B$ after processing because of higher profitability.

## Question 15

DISCUSS the treatment of by-product cost in Cost Accounting when they are of small total value.
(RTP Nov '21)

## Answer 15

When the by-products are of small total value, the amount realised from their sale may be dealt in any one the following two ways:
(i) The sales value of the by-products may be credited to the Costing Profit and Loss Account and no credit be given in the Cost Accounts. The credit to the Costing Profit and Loss Account here is treated either as miscellaneous income or as additional sales revenue.
(ii) The sale proceeds of the by-product may be treated as deductions from the total costs. The sale proceeds in fact should be deducted either from the production cost or from the cost of sales.

## Question 16

JP Ltd. uses joint production process that produces three products at the split -off point. Joint production costs during the month of July, 2022 were ₹ $33,60,000$.

Product information for the month of July is as follows:

| Particulars | Product A | Product B | Product C |
| :--- | ---: | ---: | ---: |
| Units produced | $\mathbf{3 , 0 0 0}$ | 6,000 | 9,000 |
| Sales prices: |  |  |  |
| At the split-off | ₹ 200 |  |  |
| After further processing | $₹ 300$ | $₹ 350$ | $₹ 100$ |
| Costs to process after split-off | $₹ 6,00,000$ | $₹ 6,00,000$ | $₹ 6,00,000$ |

1. Other information is as follows:
2. Product $C$ is a by-product and the company accounts for the by-product at net realizable value as a reduction of joint cost. Further, Product B \& C must be processed further before they can be sold. FIND OUT the joint cost allocated to Product A in the month of July if joint cost allocation is based on Net Realizable Value. (RTP Nov'22)

## Answer 16

Product A
As the Question says that "Products B and C must be processed further before they can be sold", it means Product A can be sold at the split-off point.

Cost to process Product A after the split-off point = ₹ 6,00,000
Additional revenue to be earned by processing further $=₹ 3,00,000$
(₹ 100 increase in selling price per unit $\times 3,000$ units)
Therefore, Product A will not be processed further, and the sales value at split -off for A will be used for allocating the joint costs.

Sales value at the split-off for $A=₹ 6,00,000$ ( $₹ 200 \times 3,000$ units)

## Product B

Since Product B must be processed further, we use its net realizable value for the joint cost allocation.
Net realizable value of Product B = ₹ 15,00,000
[(₹ $350 \times 6,000$ units) $-₹ 6,00,000$ further processing costs]
Product C
Product C, the by-product, must also be processed further to be sold.
Net realizable value of Product C = ₹ 3,00,000
[(₹ $100 \times 9,000$ units) - ₹ 6,00,000 in further processing costs]

## Joint Cost Allocation

Joint production cost $=₹ 33,60,000$
Since, by-product C is accounted for as a reduction to the joint costs, the joint costs to be allocated
= ₹ 30,60,000
( $₹ 33,60,000$ - ₹ $3,00,000$ NRV of Product C)
Allocation of joint costs between Product $A$ and $B$ will be on the basis of $₹ 6,00,000$ : $₹ 15,00,000$
Joint Cost allocated to Product $=₹ 30,60,000 \times \frac{₹ 6,00,000}{₹ 21,000} ₹ 8,74,286$

## Question 17

A factory producing article A also produces a by-product B which is further processed into finished product. The joint cost of manufacture is given below:

| Material |  <br> Labour <br> Overhead |
| :--- | ---: |
|  | ${fc54802e3-1448-4474-a897-15527ae41a69} 2,000$ |
|  | $` 10,000$ |

Subsequent cost in` are given below:

|  | A | B |
| :--- | :---: | :---: |
| Material | 3,000 | 1,500 |
| Labour | 1,400 | 1,000 |
| Overhead | 600 | 500 |
|  | 5,000 | 3,000 |

Selling prices are A`16,000 B` 8,000
Estimated profit on selling prices is $\mathbf{2 5 \%}$ for A and $\mathbf{2 0 \%}$ for B.
Assume that selling and distribution expenses are in proportion of sales prices. Show how you would apportion joint costs of manufacture and prepare a statement showing cost of production of $A$ and $B$.
(RTP Nov '23) (MTP 5 Marks, Oct '23)

## Answer 17

Apportionment of Joint Costs

| Particulars | A (') | B (') |
| :---: | :---: | :---: |
| Selling Price | 16,000 | 8,000 |
| Less: Estimated profit | 4,000 $(25 \%$ of 16,000$)$ | $\begin{array}{r} 1,600 \\ \left(20 \% \text { of }{ }^{`} 8,000\right) \end{array}$ |
| Cost of sales | 12,000 | 6,400 |
| Less: Selling \& Distribution exp. (Refer working note) | $\begin{array}{r} 267 \\ (.400 \times 2 / 3) \end{array}$ | $\begin{array}{r} 133 \\ (.400 \times 1 / 3) \end{array}$ |
| Less: Subsequent cost | 5,000 | 3,000 |
| Share of Joint cost | 6,733 | 3,267 |

So, Joint cost of manufacture is to be distributed to $A \& B$ in the ratio of $6733: 3267$
Statement showing Cost of Production of A and B

| Elements of cost | Joint Cost |  | Subsequent Cost |  | Total Cost |  |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B |
| Material | 3,367 | 1,633 | 3,000 | 1,500 | 6,367 | 3,133 |
| Labour | 2,020 | 980 | 1,400 | 1,000 | 3,420 | 1,980 |


| Overheads | 1,346 | 654 | 600 | 500 | 1,946 | 1,154 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | Cost of production | 11,733 | 6,267 |  |  |

## Working Note:

Calculation of Selling and Distribution Expenses

| Particulars | (`) \\ \hline Total Sales Revenue (` $16,000+{f443fc747-7d41-4c9b-b6f5-63a178879dc5} \(4,000+{f09706af2-6141-49a2-86cc-fe42685a492f}5,000 + 3,000\()$ | 400 |
| :--- | ---: | :---: |
| Selling and Distribution expenses (Balancing figure) |  |  |

## Question 18

A Factory is engaged in the production of chemical Bomex and in the course of its manufacture a byproduct Cromex is produced which after further processing has a commercial value. For the month of April 2019 the following are the summarised cost data:

|  | Joint Expense(₹ ) | Separate | nses(₹) |
| :---: | :---: | :---: | :---: |
|  |  | Bomex | Cromex |
| Materials | 1,00,000 | 6,000 | 4,000 |
| Labour | 50,000 | 20,000 | 18,000 |
| Overheads | 30,000 | 10,000 | 6,000 |
| Selling Price per unit |  | 100 | 40 |
| Estimated profit per unit on sale of Cromex |  |  | 5 |
| Number of units produced |  | $\begin{aligned} & 2,000 \\ & \text { Units } \end{aligned}$ | $\begin{aligned} & 2,000 \\ & \text { Units } \end{aligned}$ |

The factory uses net realisable value method for apportionment of joint cost to by products.
You are required to prepare statements showing :
(i) Joint cost allocable to Cromex
(ii) Product wise and overall profitability of the factory for April 2019.
(PYP May'19,5 Marks)

## Answer 18

(i) Statement Showing Joint Cost Allocation to 'Cromex'

|  | Particulars | Cromex (₹ ) |
| :--- | :--- | ---: |
|  | Sales (₹ $40 \times 2,000$ units) | 80,000 |
|  | Less: Post Split Off Costs (4,000 $+18,000+6,000)$ | $(28,000)$ |
|  | Less: Estimated Profit (₹ $5 \times 2,000$ units) | $(10,000)$ |
|  | Joint cost allocable | 42,000 |

(ii) StatementShowingProductWiseandOverallProfitability

| Particulars | Bomex (₹) | Cromex (₹) | Total (₹) |
| :--- | ---: | ---: | ---: |
| Sales | $2,00,000$ | 80,000 | $2,80,000$ |


| Less: Share in Joint Expenses | $(1,38,000)^{*}$ | $(42,000)$ | $(1,80,000)$ |
| :--- | ---: | ---: | ---: |
| Less: Post Split Off Costs | $(36,000)$ | $(28,000)$ | $(64,000)$ |
| Profit | $\mathbf{2 6 , 0 0 0}$ | $\mathbf{1 0 , 0 0 0}$ | $\mathbf{3 6 , 0 0 0}$ |
| $\left(^{*}\right) 1,80,000-42,000$ |  |  |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical problem of 'By-products' examinees were asked to calculate joint cost allocation product wise and overall profitability. Many examinees failed to differentiate between main product and joint product and did not applied Net Realizable Value (NRV) method for joint cost allocation. Candidate performance was observed below average.

## Question 19

A company's plant processes 6,750 units of a raw material in a month to produce two products ' $M$ ' and ' N '.

The process yield is as under:

| Product M | $80 \%$ |
| :--- | :---: |
| Product N | $12 \%$ |
| Process Loss | $8 \%$ |

The cost of raw material is ₹ 80 per unit.
Processing cost is $₹ \mathbf{2 , 2 5 , 0 0 0}$ of which labour cost is accounted for $66 \%$. Labour is chargeable to products ' $M$ ' and ' $N$ ' in the ratio of 100:80.
Prepare a Comprehensive Cost Statement for each product showing:
(i) Apportionment of joint cost among products ' M ' and ' $N$ ' and
(ii) Total cost of the products ' M ' and ' N '. (PYP 5 Marks Nov 20)

Answer 19
Comprehensive Cost Statement

| Particulars | Total Cost <br> (₹) | Product-M <br> (₹) | Product-N |
| :--- | ---: | ---: | ---: |
| (₹) |  |  |  |


| in the ratio of output <br> $(5,400: 810)$ |  | $\left(\frac{6,16,500 \times 5,400}{\mathbf{6 , 2 1 0}}\right)$ | $\left(\frac{6,16,500 \times 810}{6,210}\right)$ |
| :--- | :--- | ---: | ---: |
| (ii) Total product cost | $7,65,000$ | $\mathbf{6 , 1 8 , 5 8 7}$ | $\mathbf{1 , 4 6 , 4 1 3}$ |

* No. of units produced of Product $\mathrm{M}=6750$ units $\times 80 \%=5400$ units No. of units produced of Product N $=6750$ units $\times 12 \%=810$ units


## Question 20

Narrate the terms 'Joint Products' and 'By-Products' with an example of each term. (PYP 4 Marks Dec '21)

## Answer 20

(i) Joint Products - Joint products represent "two or more products separated in the course of the same processing operation usually requiring further processing, each product being in such proportion that no single product can be designated as a major product".

In other words, two or more products of equal importance, produced, simultaneously from the same process, with each having a significant relative sale value are known as joint products. For example, in the oil industry, gasoline, fuel oil, lubricants, paraffin, coal tar, asphalt and kerosene are all produced from crude petroleum. These are known as joint products.
(ii) By-Products - These are defined as "products recovered from material discarded in a main process, or from the production of some major products, where the material value istobe consideredat the time of severancefrom themain product." Thus, by- products emerge as a result of processing operation of another product or they are produced from the scrap or waste of materials of a process. In short, a by-product is a secondary or subsidiary product which emanates as a result of manufacture of the main product.

The point at which they are separated from the main product or products is known as split-off point. The expenses of processing are joint till the split -off point.
Examples of by-products are molasses in the manufacture of sugar, tar, ammonia and benzole obtained on carbonisation of coal and glycerine obtained in the manufacture of soap.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theory question tested the basic knowledge of Joint product and By product with example. Most of the examinees answered it partially correct. Performance of the examinees was below average.

## Question 21

Mayura Chemicals Ltd buys a particular raw material at ₹ 8 per litre. At the end of the processing in Department- I, this raw material splits-off into products $X, Y$ and $Z$. Product $X$ is sold at the split-off point, with no further processing. Products $Y$ and $Z$ require further processing before they can be sold. Product $Y$ is processed in Department-2, and Product $Z$ is processed in Department-3. Following is a summary of the costs and other related data for the year 2019-20:

| Particulars | Department |  |  |
| :--- | :---: | :---: | :---: |
|  | 1 | 2 | 3 |
| Cost of Raw Material | $₹ 4,80,000$ | - | - |
| Direct Labour | $₹ 70,000$ | $₹ 4,50,000$ | $₹ 6,50,000$ |
| Manufacturing Overhead | $₹ 48,000$ | $₹ 2,10,000$ | $₹ 4,50,000$ |
|  | Products |  |  |
|  | X | Y | Z |
| Sales (litres) | 10,000 | 15,000 | $\mathbf{2 2 , 5 0 0}$ |
| Closing inventory (litres) | 5,000 | - | 7,500 |
| Sale price per litre (₹) | $\mathbf{3 0}$ | $\mathbf{6 4}$ | $\mathbf{5 0}$ |

There were no opening and closing inventories of basic raw materials at the beginning as well as at the end of the year. All finished goods inventory in litres was complete as to processing. The company uses the Net-realizable value method of allocating joint costs.

You are required to prepare:
(i) Schedule showing the allocation of joint costs.
(ii) Calculate the Cost of goods sold of each product and the cost of each item in Inventory.
(iii) A comparative statement of Gross profit. (PYP 10 Marks Jan 21)

## Answer 21

|  | Products |  |  | Total (₹) |
| :---: | :---: | :---: | :---: | :---: |
|  | X (₹) | Y (₹) | Z (₹) |  |
| Final sales value of total production (Working Note 1) | $\begin{array}{r} 4,50,000 \\ (15,000 \times ₹ 30) \end{array}$ | $\begin{array}{r} 9,60,000 \\ (15,000 \times ₹ 64) \end{array}$ | $\begin{array}{r} 15,00,000 \\ (30,000 \times ₹ 50) \end{array}$ | 29,10,000 |
| Less: Additional cost | -- | 6,60,000 | 11,00,000 | 17,60,000 |
| Net realizable value (at split-off point) | 4,50,000 | 3,00,000 | 4,00,000 | 11,50,000 |
| Joint cost allocated (Working Note 2) | 2,34,000 | 1,56,000 | 2,08,000 | 5,98,000 |

(ii) Calculation of Cost of goods sold and Closing inventory

|  | Products |  |  | Total (₹) |
| :--- | :---: | ---: | ---: | ---: |
|  | $\mathbf{X ( F )}$ |  |  |  |
| Z (₹) |  |  |  |  |
| Allocated joint cost | $2,34,000$ | $1,56,000$ | $2,08,000$ | $5,98,000$ |
| Add: Additional costs | -- | $6,60,000$ | $11,00,000$ | $17,60,000$ |
| Cost of goods sold (COGS) | $2,34,000$ | $8,16,000$ | $13,08,000$ | $23,58,000$ |
| Less: Cost of closing <br> inventory <br> (Working Note 1) | 78,000 | -- | $3,27,000$ | $4,05,000$ |
| Cost of goods sold | (COGS $\times 100 / 3 \%)$ |  | (COGS $\times 25 \%)$ |  |

(iii) Comparative Statement of Gross Profit


## Working Notes:

1. Total production of three products for the year 2019-2020

| Products | Quantity <br> sold in <br> litres | Quantity of closing <br> inventory in litres | Total <br> production | Closing inventory <br> percentage (\%) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{( 1 )}$ | $\mathbf{( 2 )}$ | $(3)$ | $(4)=[(2)+(3)\}$ | $\mathbf{( 5 )}=(3) /(4)$ |
| X | 10,000 | 5,000 | 15,000 | $100 / 3$ |
| Y | 15,000 | -- | 15,000 | -- |


| $Z$ | 22,500 | 7,500 | 30,000 | 25 |
| :---: | :---: | :---: | :---: | :---: |

2. Joint cost apportioned to each product:

$$
\begin{aligned}
& =\frac{\text { Total Joint Cost }}{\text { Total Net Realisable Value }} \times \text { Net Realisable Value of each product } \\
& \text { Joint cost of product } X=\frac{\text { Rs. } 5,98,000}{\text { Rs. } 11,50,000} \times \text { Rs. } 4,50,000=\text { Rs. } 2,34,000 \\
& \text { Joint cost of product } Y=\frac{\text { Rs.5,98,000 }}{\text { Rs. } 11,50,000} \times \text { Rs. } 3,00,000=\text { Rs. } 1,56,000 \\
& \text { Joint cost of product } Y=\frac{\text { Rs.5,98,000 }}{\text { Rs. } 11,50,000} \times \text { Rs. } 4,00,000=\text { Rs. } 2,08,000
\end{aligned}
$$

## Question 22

OPR Ltd. purchases crude vegetable oil. It does refining of the same. The refining process results in four products at the spilt-off point - S, P, N and A. Product ' $A$ ' is fully processed at the split-off point. Product $S, P$ and $N$ can be individually further refined into $S K, P M$, and NL respectively. The joint cost of purchasing the crude vegetable oi I and processing it were ₹ 40,000. Other details are as follows:

| Product | Further processing costs <br> (₹) | Sales at split-off point <br> $(₹)$ | Sales after further <br> processing (₹) |
| :---: | :---: | ---: | ---: |
| S | 80,000 | 20,000 | $1,20,000$ |
| P | 32,000 | 12,000 | 40,000 |
| N | 36,000 | 28,000 | 48,000 |
| A | - | 20,000 | - |

You are required to identify the products which can be further processed for maximizing profits and make suitable suggestions. (PYP 5 Marks July 21)

## Answer 22

Statement of Comparison of Profits before and after further processing

|  | S (₹) | P (₹) | N (₹) | A (₹) | Total (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A. Sales at split off point | 20,000 | 12,000 | 28,000 | 20,000 | 80,000 |
| B. Apportioned Joint Costs (Refer Working Note) | 10,000 | 6,000 | 14,000 | 10,000 | 40,000 |
| C. Profit at split-off point | 10,000 | 6,000 | 14,000 | 10,000 | 40,000 |
| D. Sales after further processing | 1,20,000 | 40,000 | 48,000 | - | 2,08,000 |
| E. Further processing cost | 80,000 | 32,000 | 36,000 | - | 1,48,000 |
| F. Apportioned Joint Costs (Refer Working Note) | 10,000 | 6,000 | 14,000 | - |  |
| G. Profit if further processing ( $\mathrm{D}-\mathrm{E}$ $+F)$ | 30000 | 2,000 | (-) 2,000 | - |  |
| H. Increase/ decrease in profit after further processing (G-C) | 20,000 | -4000 | -16,000 | - |  |

## Suggested Product to be further processed for maximizing profits:

On comparing the figures of "Profit if no further processing" and "Profits if further processing", one observes that OPR Ltd. is earning more after further processing of Product S only i.e. ₹ 20,000 . Hence, for maximizing profits, only Product $S$ should be further processed and Product $P, N$ and $A$ should be sold at split-off point.
Working Note:
Apportionment of joint costs on the basis of Sales Value at split -off point

Apportioned joint cost $=\frac{\text { Total joint cost }}{\text { Total Sales value at split-off point }} \times$ Sales value of each product
Where, Total Joint cost $=₹ 40,000$
Total sales at split off point $(S, P, N$ and $A)=20,000+12,000+28,000+20,000=₹ 80,000$
Share of $S$ in joint cost $=\frac{\text { Rs. } 40,000}{\text { Rs. } 80,000} \times$ Rs. $20,000=$ Rs. 10,000
Share of $P$ in joint cost $=\frac{\text { Rs. } 40,000}{\text { Rs. } 80,000} \times$ Rs. $12,000=$ Rs. 6,000
Share of $N$ in joint cost $=\frac{\text { Rs. } 40,000}{\text { Rs. } 80,000} \times$ Rs. $28,000=$ Rs. 14,000
Share of $A$ in joint cost $=\frac{\text { Rs. } 40,000}{\text { Rs. } 80,000} \times$ Rs. $20,000=$ Rs. 10,000
Alternative Solution
Decision for further processing of Product S, P and N

| Products | $\mathbf{S}$ (₹) | $\mathbf{P ~ ( ₹ )}$ | $\mathbf{N}$ (₹) |
| :--- | ---: | ---: | ---: |
| Sales revenue after further processing | $1,20,000$ | 40,000 | 48,000 |
| Less: sales value at split-off point | $\mathbf{2 0 , 0 0 0}$ | 12,000 | $\mathbf{2 8 , 0 0 0}$ |
| Incremental Sales Revenue | $\mathbf{1 , 0 0 , 0 0 0}$ | $\mathbf{2 8 , 0 0 0}$ | $\mathbf{2 0 , 0 0 0}$ |
| Less: Further Processing cost | 80,000 | 32,000 | $\mathbf{3 6 , 0 0 0}$ |
| Profit/ loss arising due to further processing | $\mathbf{2 0 , 0 0 0}$ | $\mathbf{( - ) 4 , 0 0 0}$ | $\mathbf{( - ) 1 6 , 0 0 0}$ |

Suggested Product to be further processed for maximizing profits:
On comparing the figures of "Profit if no further processing" and "Profits if further processing", one observes that OPR Ltd. is earning more after further processing of Product S only i.e. ₹ 20,000 . Hence, for maximizing profits, only Product $S$ should be further processed and Product $P, N$ and $A$ should be sold at split-off point.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a practical problem on treatment of joint cost and identification of products which has to be further processed for maximizing profits. Many examinees could not present the answer in a convincing manner in spite of arriving at the correct decision. Performance of the examinees was average.

## Question 23

RST Limited produces three joint products X, Y and Z. The products are processed further. Preseparation costs are apportioned on the basis of weight of output of each joint product. The following data are provided for the month of April, 2022.

Cost incurred up to separation point: ₹ 10,000

|  | Product X | Product Y | Product Z |
| :--- | :---: | :---: | :---: |
| Output (in Litre) | 100 | 70 | 80 |
| ₹ ₹ |  |  |  |
| Cost incurred after separation point | 2,000 | 1,200 | 800 |
| Selling Price per Litre: |  |  | 60 |
| After further processing | 50 | 80 | 45 |

## You are required to:

Prepare a statement showing profit or loss made by each product after further processing using the presently adopted method of apportionment of pre-separation cost.

Advise the management whether, on purely financial consideration, the three products are to be processed further or not.(PYP 5 Marks May22)

## Answer 23

Statement showing profit/loss by each product after further processing products

|  | Product X <br> (in ₹) | Product Y <br> (in ₹) | Product Z <br> (in ₹) |
| :--- | ---: | ---: | ---: |
| Sales value after further processing | 5,000 | 5,600 | 4,800 |
| Less: Further processing cost | 2,000 | 1,200 | 800 |
| Less: Joint Cost* (as apportioned) | 4,000 | 2,800 | 3,200 |
| Profit/(loss) | $(1,000)$ | 1,600 | 800 |

* Statement showing apportionment of joint cost on the basis of physical units

|  | Product X <br> (in ₹) | Product Y(in ₹) | Product Z <br> (in ₹) | otal (₹) |
| :--- | :--- | ---: | :--- | :--- |
| Output (in litre) | 100 | 70 | 80 | 250 |
| Weight | $0.4(100 / 250)$ | $0.28(70 / 250)$ | $0.32(80 / 250)$ |  |
| Joint cost apportioned | 4,000 | 2,800 | 3,200 |  |

(ii)Decision whether to process further or not

|  | Product X(in ₹) | Product Y(in ₹) | Product Z(in ₹) |
| :--- | ---: | ---: | ---: |
| Incremental Revenue | 2,500 | 700 | 1,200 |
|  | $[(50-25) \times 100]$ | $[(80-70) \times 70]$ | $[(60-45) \times 80]$ |
| Less: Further processing cost | 2,000 | 1,200 | 800 |
| Incremental profit /(loss) | 500 | $(500)$ | 400 |


|  | Product X <br> (in ₹) | Product Y <br> (in ₹) | Product Z <br> (in ₹) | Total |
| :--- | ---: | ---: | ---: | ---: |
| Sales | 2500 | 4900 | 3600 | 11000 |
| Pre separation costs | 4000 | 2800 | 3200 | 10000 |
| Profit/(Loss) | $(1500)$ | 2100 | 400 | 1000 |

It is advisable to further process only product $X$ and $Z$ and to sale product $Y$ at the point of separation.

## Question 24

ASR Ltd mainly produces Product 'L' and gets a by-Product ' $M$ ' out of a joint process. The net realizable value of the by-product is used to reduce the joint production costs before the joint costs are allocated to the main product. During the month of October 2022, company incurred joint production costs of $₹ 4,00,000$. The main Product ' $L$ ' is not marketable at the split off point. Thus, it has to be processed further. Details of company's operation are as under:

| Particulars | Product L | By-Product M |
| :--- | ---: | ---: |
| Production (units) | 10,000 | 200 |
| Selling price per kg | $₹ 45$ | ₹ 5 |
| Further processing <br> cost | $₹ 1,01,000$ | - |

## You are required to find out:

(i) Profit earned from Product ' $L$ '.
(ii) Selling price per kg of product ' $L$ ', if the company wishes to earn a profit of $₹ \mathbf{1 , 0 0 , 0 0 0}$ from the above production. (PYP 5 Marks Nov 22)
(i) Calculation of profit on product 'L'

| Particular | ₹ |
| :--- | ---: | ---: |
| Sales | $4,50,000$ |
| Less: Further processing cost | $(1,01,000)$ |
| Less: Joint Production Cost* | $3,49,000$ |
| loss | $(3,99,000)$ |

*Joint Production Cost $=[4,00,000-(200 \times 5)]=3,99,000$
(ii) Calculation of desired selling price of product ' $L$ '

$$
\begin{aligned}
& \text { Desired Selling Price }=\frac{\text { Desired Profit }+ \text { Total Cost }}{\text { Units Measured }} \\
& =\frac{1,00,000+1,01,000+3,99,000}{10,000}=\text { Rs. } 60 \text { per } \mathrm{kg} .
\end{aligned}
$$

## Question 25

ABC Company produces a Product ' $X$ ' that passes through three processes: $R, S$ and $T$. Three types of raw materials, viz., J, K, and $L$ are used in the ratio of 40:40:20 in process $R$. The output of each process is transferred to next process. Process loss is $10 \%$ of total input in each process. At the stage of output in process $T$, a by-product ' $Z$ ' is emerging and the ratio of the main product ' $X$ ' to the by-product ' $Z$ ' is $\mathbf{8 0 : 2 0}$. The selling price of product ' $X$ ' is ' 60 per kg .

The company produced $14,580 \mathrm{kgs}$ of product ' X '
Material price : Material J @ `15 per kg; Material K @`9 per kg.
Material L@`7 per kg Process costs are as follows:

| Process | Variable cost per kg (`) & Fixed cost of Input (`) |  |
| :---: | :--- | :--- |
| R | 5.00 | 42,000 |
| S | 4.50 | 5,000 |
| T | 3.40 | 4,800 |

The by-product ' $Z$ ' cannot be processed further and can be sold at ` 30 per kg at the splitoff stage. There is no realizable value of process losses at any stage.

Required:
Present a statement showing the apportionment of joint costs on the basis of the sales value of product ' $X$ ' and by-product ' $Z$ ' at the split- off point and the profitability of product ' $X$ ' and by-product 'Z. (PYP 10 Marks, May '23)

## Answer 25

## Working Notes:

1. Calculation of Input of Raw Material

Let assume total raw material in Process R be 100\%
$\therefore$ Output of Process T will be equal to: Input R 100\%

10\% Normal Loss ` 10
Input S 90\%
10\% Normal loss 9
Input T
10\% Normal loss 8.1
Output of T 72.9
Actual output of $X$
14,580 units
Which is $80 \%$ of the total output
$\therefore$ Output of Process T
$=\frac{14,580}{80 \%}=18,225$
$\therefore$ Input of Process $R=\frac{\mathbf{1 8 2 2 5}}{\mathbf{7 2 . 9} \%}=25,000 \mathrm{kgs}$

Alternative presentation for Calculation of Input in Process R, S and T
Working notes:

| Process T (Kg.) |  |  |  |
| :--- | :--- | :--- | :--- |
| To Input (Transfer from process <br> S) | 20,250 | By Normal loss | 2,025 |
|  |  | By Output Product X <br> By output of by-product <br> Z | 14,580 |
|  | 20,645 |  |  |


| Process S (kg.) |  |  |  |
| :--- | :--- | :--- | :--- |
| To Input (Transfer from process S) | 22,500 | By Normal loss (10\%) | 2,250 |
|  |  | By Transfer to process T | 20,250 |
|  | 22,500 |  | 22,500 |


| Process R (kg.) |  |  |  |
| :--- | :--- | :--- | :--- |
| To Input | 25,000 | By Normal loss (10\%) <br> By Transfer to process S | 2,500 |
|  |  |  | 22,500 |
|  | 25,000 |  | 25,000 |

2. Calculation of Joint Cost

| Process | Inputs | Variable cost per kg |  | Variable cost | Fixed Cost | Total Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | , |  |  | , | , |
| R | 25,000 | 5 |  | 1,25,000 | 42,000 | 1,67,000 |
| S | 22,500 | 4.5 |  | 1,01,250 | 5,000 | 1,06,250 |
| T | 20,250 | 3.4 |  | 68,850 | 4,800 | $\begin{array}{r} 73,650 \\ 3,46,900 \end{array}$ |
| Raw material J |  | $10000 \times 15$ | 1,50,000 |  |  |  |
| K $10000 \times 9$ |  |  | 90,000 |  |  |  |
| L $5000 \times 7$ |  |  | 35,000 |  |  |  |
|  |  |  | 2,75,000 |  |  |  |
| Add: Processing cost (as above) |  |  | 3,46,900 |  |  |  |
| Total Joint Cost |  |  | 6,21,900 |  |  |  |

## i) Statement showing apportionment of Joint Cost

| Particulars | Product X | By-Product Z | Total |
| :--- | :--- | :--- | :--- |
| Units | 14,580 | 3,645 |  |

\begin{tabular}{|l|l|l|l|}
Selling price (') \& 60 \& 30 \& <br>

| Sales Value (') |
| :--- |
| (` $6,21,900$ to apportioned in ratio |
| of sales value at split off point) | \& $5,54,800$ \& $1,09,350$ \& $9,84,150$ <br>

\hline
\end{tabular}

## ii) Statement of Profitability

| Particulars | Product X | By-Product Z | Total |
| :--- | :--- | :--- | :--- |
| Sales Value | $8,74,800$ | $1,09,350$ | $9,84,150$ |
| Joint Cost | $(5,52,800)$ | $(69,100)$ | $(6,21,900)$ |
| (As apportioned above) |  |  |  |
| Profit | $3,22,000$ | 40,250 | $3,62,250$ |

## Chapter 12

Service Costing

## Question 1 (Illustration)

A lodging home is being run in a small hill station with 100 single rooms. The home offers concessional rates during six off- season (Winter)months in a year when numbers of visitor are limited. During this period, half of the full room rent is charged. The management's profit margin is targeted at $20 \%$ of the room rent. The following are the cost estimates and other details for the year ending on 31st March. [Assume a month to be of 30 days].
(i) Occupancy during the season is $80 \%$ while in the off- season it is $40 \%$ only.
(ii) Total investment in the home is ` 200 lakhs of which $80 \%$ relate to buildings and balance for furniture and equipment.
(iii) Expenses:

- Staff salary [Excluding room attendants]: `5,50,000
- Repairs to building : `2,61,000
- Laundry charges : `80, 000
- Interior : `1,75,000
- Miscellaneous expenses :
- 1,90,800
(iv) Annual depreciation is to be provided for buildings @ $5 \%$ and on furniture and equipment @ 15\% on straight-line basis.
(v) Room attendants are paid`10 per room day on the basis of occupancy of the rooms in a month. (vi) Monthly lighting charges are` 120 per room, except in four months in winter when it is` 30 per room.

You are required to WORK OUT the room rent chargeable per day both during the season and the off-season months on the basis of the foregoing information. (Old \& New SM) (Same concept different figures MTP 10 Marks, Oct '21, PYP 10 Marks Nov '19)

## Answer 1

Working Notes:
(i) Total Room days in a year

| Season | Occupancy (Room-days) | Equivalent Full Room <br> charge days |
| :--- | :--- | :--- |
| Season <br> Occupancy | 100 Rooms $\times 80 \% \times 6$ months <br> $\times 30$ days in a month $=14,400$ <br> Room Days | 14,400 Room Days $\times$ <br> $100 \%=14,400$ |
| Off-season $-40 \%$ <br> Occupancy | 100 Rooms $\times 40 \% \times 6$ months <br> $\times 30$ days in a month $=7,200$ <br> Room Days | 7,200 Room Days $\times$ <br> $50 \%=3,600$ |
| Total Room Days | $14,400+7,200=21,600$ Room <br> Days | 18,000 Full Room days |

(ii) Lighting Charges:

It is given in the question that lighting charges for 8 months is ' 120 per month and during winter season of 4 months it is ` 30 per month. Further it is also given that peak season is 6 months and off season is 6 months.
It should be noted that - being Hill station, winter season is to be considered as part of Off season.
Hence, the non-winter season of 8 months include - Peak season of 6 months and Off season of 2 months.
Accordingly, the lighting charges are calculated as follows:

| Season | Occupancy (Room-days) |
| :--- | :--- |
| Season \& Non-winter $-80 \%$ | 100 Rooms $\times 80 \% \times 6$ months $\times{ }^{{ff6971dee-c532-4eda-a3ad-32da209e61b3}} 120$ per month $=$ |
| Occupancy ( $8-6$ months) | 9,600 |
| Off- season \& -winter $-40 \%$ | 100 Rooms $\times 40 \% \times 4$ months $\times {fa590b998-3b50-41b9-b6c6-42061d2239e0} 57,600+9,600+4,800=` 72,000$ |
| 794646 |  |

Statement of total cost:

|  | () |
| :--- | :--- |
| Staff salary | $5,50,000$ |
| Repairs to building | $2,61,000$ |
| Laundry \& Linen | 80,000 |
| Interior | $1,75,000$ |
| Sundries Expenses | $1,90,800$ |
| Depreciation on Building (` 200 Lakhs × 80\% × 5\%) & \(8,00,000\) \\ \hline Depreciation on Furniture \& Equipment (` 200 Lakhs × 20\% × 15\%) | $6,00,000$ |
| Room attendant's wages (` 10 per Room Day for 21,600 Room Days) | $2,16,000$ |
| Lighting charges | 72,000 |
| Total cost | $29,44,800$ |
| Add: Profit Margin (20\% on Room rent or 25\% on Cost) | $7,36,200$ |
| Total Rent to be charged | $36,81,000$ |

Calculation of Room Rent per day:
Total Cost / Equivalent Full Room days =` \(36,81,000 / 18,000=` 204.50\) Room Rent during Season `204.50 Room Rent during Off season = `204.50 $\times 50 \%=$ ` 102.25

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question relating to the topic 'Costing of Service Sector'. Examinees were required to calculate hotel room rent chargeable per day. Most of the examinees could not compute the total cost correctly and hence could not work out room rent chargeable per day during season and off-season. Performance of the examinees was below average.

## Question 2 (Illustration)

ABC Hospital runs a Critical Care Unit (CCU) in a hired building. CCU consists of 35 beds and 5 more beds can be added, if required.
Rent per month -`75,000 Supervisors - \(\mathbf{2}\) persons -` 25,000 Per month - each
Nurses - 4 persons -` 20,000 per month - each Ward Boys - 4 persons -` 5,000 per month - each
Doctors paid `2,50,000 per month - paid on the basis of number of patients attended and the time spent by them Other expenses for the year are as follows: Repairs (Fixed) -` 81,000
Food to Patients (Variable) - ` 8,80,000 Other services to patients (Variable) -`3,00,000
Laundry charges (Variable) - `6,00,000 Medicines (Variable) - \(7,50,000\) Other fixed expenses -` $10,80,000$
Administration expenses allocated -`10,00,000 It was estimated that for 150 days in a year 35 beds are occupied and for 80 days only \(\mathbf{2 5}\) beds are occupied. The hospital hired 750 beds at a charge of ` 100 per bed per day, to accommodate the flow of patients. However, this does not exceed more than 5 extra beds over and above the normal capacity of 35 beds on any day.
You are required to -
(1) CALCULATE contribution per Patient day, if the hospital recovers on an average `2,000 per day from each patient.
(2) FIND OUT Breakeven point for the hospital. (Old \& New SM) (MTP 10 Marks Oct '23)

## Answer 2

Working Notes:

1) Calculation of number of Patient days

| 35 Beds $\times 150$ days $=$ | 5,250 |
| :--- | :--- |
| 25 Beds $\times 80$ days $=$ | 2,000 |
| Extra beds $=$ | 750 |

Total $=8,000$

Statement of Profitability

| Particulars | Amount | Amount |
| :---: | :---: | :---: |
| Income for the year (` 2,000 per patient per day \(\times 8,000\) patient days) & & 1,60,00,000 \\ \hline Variable Costs: & & \\ \hline Doctor Fees (' \(2,50,000\) per month \(\times 12\) ) & 30,00,000 & \\ \hline Food to Patients (Variable) & 8,80,000 & \\ \hline Other services to patients (Variable) & 3,00,000 & \\ \hline Laundry charges (Variable) - (') & 6,00,000 & \\ \hline Medicines (Variable) - (`) | 7,50,000 |  |
| Bed Hire Charges (`100 \(\times 750\) Beds) & 75,000 & \\ \hline Total Variable costs & & 56,05,000 \\ \hline Contribution & & 1,03,95,000 \\ \hline Fixed Costs: & & \\ \hline Rent (` 75,000 per month $\times 12$ ) | 9,00,000 |  |
| Supervisor ( 2 persons $\times$ ` \(25,000 \times 12\) ) & 6,00,000 & \\ \hline Nurses (4 persons \(\times{ }^{`} 20,000 \times 12\) ) | 9,60,000 | - |
| Ward Boys (4 persons $\times{ }^{`} 5,000 \times 12$ ) | 2,40,000 |  |
| Repairs (Fixed) | 81,000 |  |
| Other fixed expenses - (') | 10,80,000 |  |
| Administration expenses allocated - (') | 10,00,000 |  |
| Total Fixed Costs |  | 48,61,000 |
| Profit |  | 55,34,000 |

(1) Calculation of Contribution per Patient day

Total Contribution - `1,03,95,000 Total Patient days - 8,000 Contribution per Patient day - ` 1,03,95,000 / 8,000 = `1,299.375 (2) Breakeven Point = Fixed Cost / Contribution per Patient day =` 48,61,000 / `1,299.375
$=3,741$ patient days

## Question 3

Calculate a suggested fare per passenger-km from the following information for a Mini Bus:
(i) Length of route: $\mathbf{3 0} \mathbf{~ k m}$
(ii) Purchase price Rs. $4,00,000$
(iii) Part of above cost met by loan, annual interest of which is Rs. 10,000 p.a.
(iv) Other annual charges: Insurance Rs. 15,000, Garage rent Rs. 9,000, Road tax Rs. 3,000, Repairs \& maintenance Rs. 15,000, Administrative charges Rs. 5,000.
(v) Running Expenses: Driver \& Conductor Rs. 5,000 p.m., Repairs/Replacement of tyre-tube Rs. 3,600 p.a., Diesel and oil cost per km Rs. 5.
(vi) Effective life of vehicle is estimated at 5 years at the end of which it will have a scrap value of Rs. 10,000 .
(vii) Mini Bus has $\mathbf{2 0}$ seats and is planned to make Six no. two way trips for $\mathbf{2 5}$ days/p.m.
(viii) Provide profit @ 20\% of total revenue. (MTP Aug.'18 5Marks)

## Working Notes:

```
Depreciation perannum: \(=\frac{\text { Purchase price-Scrap value }}{\text { Estimated life }}\)
\(=\frac{\text { Rs. } 4,00,000-\text { Rs } .10,000}{5 \text { years }}=\) Rs. 78,000
\(=\) Total distance travelled by mini-bus in 25 days:
\(=\) Length of the route (two - sides) \(\times\) No. of trips per day \(\times\) No. of days
\(=60 \mathrm{~km} \times 6\) trips \(\times 25\) days \(=9,000 \mathrm{~km}\)
```

1. Total Passenger-Km:
$=$ Total distance travelled by mini-bus in 25 days $\times$ No. of seats
$=9,000 \mathrm{~km} \times 20$ seats $=1,80,000$ passenger-km
Statement suggesting fare per passenger-km

| Particulars |  | Costperannum | Cost per month |
| :---: | :---: | :---: | :---: |
|  | Rs. |  | Rs. |
| Fixed expenses: <br> Insurance | 15,000 |  |  |
| Garage rent | 9,000 |  |  |
| Road tax | 3,000 |  |  |
| Administrative charges | 5,000 |  |  |
| Depreciation | 78,000 |  |  |
| Interest on loan | 10,000 |  |  |
|  | 1,20,000 |  | 10,000 |
| Running expenses: |  |  |  |
| Repair and maintenance |  | 15,000 | 1,250 |
| Replacement of tyre-tube |  | 3,600 | 300 |
| Diesel and oil cost (9,000 km $\times$ Rs. 5) |  | - | 45,000 |
| Driver and conductor's salary |  |  | 5,000 |
| Total cost (per month) |  |  | 61,550.00 |
| Add: Profit 20\% of total revenue cost or $25 \%$ of total cost |  |  | 15,387.50 |
| Total revenue <br> Rate per passenger-km Rs. 76,937.50/1,80,000 passenger $k m=0.42743$ i.e., |  |  | $76,937.50$ <br> i.e., 43 paise. |

## Question 4

DKG Airlines owns single passenger aircraft and operates between Melbourne and Delhi only. Flight leaves Melbourne on Monday and Thursday and departs from Delhi on Wednesday and Saturday. DKG Airlines cannot afford any more flight between Melbourne and Delhi. Only economical class seats are available on its flight and all tickets are booked by travel agents. The following information are collected.

| Seating capacity per plane | 360 |
| :--- | :--- |
| Average passengers per flight | 250 |
| Flights per week | 4 |
| Flights per year | 208 |
| Average one-way fare | Rs.50,000 |
| Variable fuel cost | Rs.28,00,000 per flight |
| Food service to passengers (not charged to Passengers) | Rs.2,600 <br> passenger |


| Commission to travel agents | $15 \%$ of fare |
| :--- | :--- |
| Fixed annual lease cost allocated to each flight | Rs. 15,30,000 per flight |
| Fixed ground services (maintenance, check in, <br> Baggage handling cost) allocated to each flight | Rs.1,000 per flight |
| Fixed salaries of flight crew allocated to each flight | Rs.6,50,000 per flight |

For the sake of simplicity assume that fuel cost is unaffected by the actual number of passengers on a flight.
Required:
(i) Calculate the operating income that DKG Airlines makes on each way flight between Melbourne and Delhi?
(ii) The market research department of DKG Airlines indicates that lowering the average one-way fare to Rs. 48,000 and increase in agents' commission to $17.5 \%$ will increase the average number of passenger per flight to $\mathbf{2 7 5}$. DECIDE whether DKG Airlines should lower its fare or not? (MTP Oct'18, 10Marks)

## Answer 4

(i) Statement of operating income of DKG Airlines for Melbourne-Delhi flight (one way)

| Particulars | Amount(₹) | Amount(₹) |
| :---: | :---: | :---: |
| Fare received (per flight): 250 passengers $\times$ ₹ 50,000 |  | 1,25,00,000 |
| Variable costs (per flight): |  |  |
| - Fuel cost | 28,00,000 |  |
| - Food (250 × ₹ 2,600) | 6,50,000 |  |
| - Commission to Travel Agents (15\% of ₹ 1,25,00,000) | 18,75,000 | $(53,25,000)$ |
| Contribution per flight |  | 71,75,000 |
| Fixed cost (per flight): <br> Annual lease cost | 15,30,000 |  |
| Fixed ground service costs | 1,70,000 |  |
| Salaries of flight crew | 6,50,000 | $(23,50,000)$ |
| Operating income per flight |  | 48,25,000 |
| (ii) Operating income of DKG Airlines per Melbourne-Delhi flight (one way) after reduction in fare |  |  |
| Fare received (per flight): 275 passengers $\times ₹ 48,000$ Variable costs (per flight): |  | 1,32,00,000 |
| Fuel cost | 28,00,000 |  |
| Food ( $275 \times$ ₹ 2,600 ) | 7,15,000 |  |
| Commission to Travel Agents (17.5\% of ₹ 1,32,00,000) | 23,10,000 | $(58,25,000)$ |
| Contribution per flight |  | 73,75,000 |

Excess contribution due to lowering of fare ( $₹ 73,75,000-₹ 71,75,000$ ) $=₹ 2,00,000$. DKG Airlines should lower its fare as it would increase its contribution by ₹ $2,00,000$.

## Question 5

KR Resorts (P) Ltd. offers three types of rooms to its guests, viz deluxe room, super deluxe room and luxury suite. You are required to DETERMINE the tariff to be charged to the customers for different types of rooms on the basis of following information:

| Types of Room | Number of Rooms | Occupancy |
| :--- | :--- | :--- |
| Deluxe Room | 100 | $90 \%$ |
| Super Deluxe Room | 60 | $75 \%$ |
| Luxury Suite | 40 | $60 \%$ |

Rent of 'super deluxe' room is to be fixed at 2 times of 'deluxe room' and that of 'luxury suite' is 3
times of 'deluxe room'. Annual expenses are as follows:

| Particulars | Amount (Rs. lakhs) |
| :--- | :--- |
| Staff salaries | 780.00 |
| Lighting, Heating and Power | 350.00 |
| Repairs, Maintenance and Renovation | 220.00 |
| Linen | 60.00 |
| Laundry charges | 34.00 |
| Interior decoration | 85.00 |
| Sundries | 36.28 |

An attendant for each room was provided when the room was occupied and he was paid Rs. 500 per day towards wages. Further, depreciation is to be provided on building @ 5\% on Rs. 900 lakhs, furniture and fixtures @ 10\% on Rs. 90 lakhs and air conditioners @ 10\% on Rs. 75 lakhs. Profit is to be provided @ 25\% on total taking and assume 360 days in a year. (MTP 10 Marks May 20) (Same concepts but different figures MTP March '18,10Marks) (RTP Nov '23)

## Answer 5

Total cost statement of KR Resort ( P ) Limited

| Particulars | Cost per annum <br> (Rs. in lakhs) |
| :--- | :--- |
| Staff Salaries | 780.00 |
| Room Attendant's Wages (Refer working note 3) | 286.20 |
| Lighting, Heating \& Power | 350.00 |
| Repairs, Maintenance \& Renovation | 220.00 |
| Linen | 60.00 |
| Laundry charges | 34.00 |
| Interior Decoration | 85.00 |
| Sundries | 36.28 |
| Depreciation: (Refer working note 4) |  |
| - Building | 45.00 |
| - Furniture \& Fixture | 9.00 |
| - Air Conditioners | 7.50 |
| Total cost for the year | 1912.98 |

## Computation of profit:

Let Rs. $x$ be the rent for deluxe from.
Equivalent deluxe room days are 90,720 (Refer working note 2)
Total takings = Rs. 90,720x
Profit is $25 \%$ of total takings.
Profit $=25 \%$ of Rs. $90,720 x=$ Rs. $22,680 x$ Total takings
= Total Cost + Profit
Rs. $90,720 x=$ Rs. $19,12,98,000$ + Rs. $22,680 x$ Rs. $90,720 x$-Rs. $22,680 x=$ Rs.
19,12,98,000 Rs. 68,040x = Rs. 19,12,98,000
$X=\frac{\text { Rs. } 19,12,98,000}{\text { Rs. } 68,040}=$ Rs. $2,811.55$

| Rent to be charged for deluxe room | Rs. 2,811.55 |
| :--- | :--- |
| Rent to be charged for super deluxe room = Rent <br> of deluxe room $\times 2=$ Rs. $2,811.55 \times 2$ | Rs. 5,623.10 |
| Rent to be charged for luxury suite $=$ | Rs. 8,434.65 |

Rent of Super Deluxe room $\times 1.5=$ Rs. $5,623.10 \times 1.5$

## Working Notes:

(1) Computation of Room Occupancy

| Type of Room | No. of rooms $x$ no. of days $x$ occupancy \% | Room days |
| :---: | :---: | :---: |
| Deluxe Room | 100 rooms $x 360$ days $x 90 \%$ occupancy | $2,400$ |
| Super Deluxe Room | 60 rooms x 360 days $\times 75 \%$ occupancy 16,200 |  |
| Luxury Suite | 40 rooms x 360 days x 60\% occupancy 8,640 |  |
|  | Total | 57,240 |

(2) Computation of equivalent deluxe room days

Rent of 'super deluxe' room is to be fixed at 2 times of 'deluxe room' and luxury suite' is 3 times of 'deluxe room'. Therefore, equivalent room days would be:

| Type of Room | Room days | Equivalent deluxe room <br> days |  |
| :--- | :--- | :--- | :--- |
| Deluxe Room | $32,400 \times 1$ | 32,400 |  |
| Super Deluxe Room | $16,200 \times 2$ | 32,400 |  |
| Luxury Suite | $8,640 \times 3$ | 25,920 |  |
|  | Total | 90,720 |  |

(3) Computation of room attendant's wages

Room occupancy days @ Rs. 500 per day = 286.2 lakhs (i.e. 57,240 days $\times$ Rs. 500)
(4) Computation of Depreciation per annum

| Particulars | Cost (Rs.) | Rate <br> Depreciation | of | Depreciation (Rs.) |
| :--- | :--- | :--- | :--- | :--- |
| Building | $9,00,00,000$ | $5 \%$ | $45,00,000$ |  |
| Furniture \& Fixtures | $90,00,000$ | $10 \%$ | $9,00,000$ |  |
| Air Conditioners | $75,00,000$ | $10 \%$ | $7,50,000$ |  |

## Question 6

EXPLAIN standing charges and running charges in the case of transport organizations. LIST three examples of both. (MTP 5 Marks, Oct '20)

## Answer 6

Standing Charges: These are the fixed costs that remain constant irrespective of the distance travelled.
These costs include the following-

- Insurance
- License fees
- Salary to Driver, Conductor, Cleaners, etc. if paid on monthly basis
- Garage costs, including garage rent
- Depreciation (if related to efflux of time)
- Taxes Administration expenses, etc.

Running Charges: These costs are generally associated with the distance travelled. These costs include the following-

- Petrol and Diesel
- Lubricant oils,
- Wages to Driver, Conductor, Cleaners, etc. if it is related to operations
- Depreciation (if related to activity) Any other variable costs identified


## Question 7

GMCS Ltd. collects raw milk from the farmers of Ramgarh, Pratapgarh and Devgarh panchayats and processes this milk to make various dairy products. GMCS Ltd. has its own vehicles (tankers) to collect and bring the milk to the processing plant. Vehicles are parked in the GMCS Ltd.'s garage situated within the plant compound. Following are the information related with the vehicles:

|  | Ramgarh | Pratapgarh | Devgarh |
| :--- | ---: | ---: | ---: |
| No. of vehicles assigned | 4 | 3 | 5 |
| No. of trips a day | 3 | 2 | 4 |
| One way distance from the processing plant | 24 k.m. | $\mathbf{3 4}$ k.m. | 16 k.m. |
| Fess \& taxes per month (Rs.) | 5,600 | 6,400 | --- |

All the 5 vehicles assigned to Devgarh panchayat, were purchased five years back at a cost of Rs. $9,25,000$ each. The 4 vehicles assigned to Ramgarh panchayat, were purchased two years back at a cost of Rs. 11,02,000 each and the remaining vehicles assigned to Pratapgarh were purchased last year at a cost of Rs. 13,12,000 each. With the purchase of each vehicle a two years free servicing warranty is provided. A vehicle gives 10 kmpl mileage in the first two year of purchase, 8 kmpl in next two years and 6 kmpl afterwards. The vehicles are subject to depreciation of $10 \%$ p.a. on straight line basis irrespective of usage. A vehicle has the capacity to carry 10,000 litres of milk but on an average only $\mathbf{7 0 \%}$ of the total capacity is utilized.

The following expenditures are related with the vehicles:

| Salary of Driver (a driver for each vehicle) | Rs. 24,000 p.m. |
| :--- | :--- |
| Salary to Cleaner (a cleaner for each <br> vehicle) | Rs. 12,000 p.m. |
| Allocated garage parking fee | Rs. 4,200 per vehicle per month |
| Servicing cost | Rs. 15,000 for every complete 5,000 k.m. <br> run. |
| Price of diesel per litre | Rs. 78.00 |

From the above information you are required to CALCULATE
(i) Total operating cost per month for each vehicle. (Take 30 days for the month) Vehicle operating cost per litre of milk. (MTP 10 Marks, Mar'21)

## Answer 7

(i) Calculation of Operating Cost per month for each vehicle

|  | Ramgarh (Rs.) | Pratapgarh (Rs.) | Devgarh (Rs.) | Total (Rs.) |
| :---: | :---: | :---: | :---: | :---: |
| A. Running Costs: |  |  |  |  |
| - Cost of diesel (Working Note- 2) | 1,68,480 | 95,472 | 2,49,600 | 5,13,552 |
| - Servicing cost (Working Note-3) | 45,000 | - | 45,000 | 90,000 |
|  | 2,13,480 | 95,472 | 2,94,600 | 6,03,552 |
| B. Fixed Costs: |  |  |  |  |
| - Salary to drivers | 96,000 <br> (4 drivers $\times$ Rs. 24,000) | $\begin{array}{\|l} 72,000 \\ \text { (3 drivers } \times \\ \text { Rs. 24,000) } \end{array}$ | $1,20,000$ <br> (5 drivers $\times$ Rs. 24,000) | 2,88,000 |
| - Salary to cleaners | $\begin{aligned} & 48,000 \\ & (4 \text { cleaners } \times \end{aligned}$ | $\begin{aligned} & 36,000 \\ & (3 \text { cleaners } \times \end{aligned}$ | $60,000$ <br> (5 cleaners $\times$ | 1,44,000 |


|  | Rs. 12,000) | Rs. 12,000) | Rs. 12,000) |  |
| :---: | :---: | :---: | :---: | :---: |
| - Allocated garage parking fee | $\begin{array}{\|} 16,800 \\ (4 \text { vehicles } \times \\ \text { Rs. } 4,200 \text { ) } \\ \hline \end{array}$ | $\begin{array}{\|} 12,600 \\ (3 \text { vehicles } \times \\ \text { Rs. } 4,200) \end{array}$ | $\begin{array}{r} 21,000 \\ (5 \text { vehicles } \times \\ \text { Rs. } 4,200 \text { ) } \end{array}$ | 50,400 |
| - Depreciation (Working Note-4) | 36,733 | 32,800 | 38,542 | 1,08,075 |
| - Fess \& taxes | 5,600 | 6,400 | --- | 12,000 |
|  | 2,03,133 | 1,59,800 | 2,39,542 | 6,02,475 |
| Total [ $\mathrm{A}+\mathrm{B}$ ] | 4,16,613 | 2,55,272 | 5,34,142 | 12,06,027 |
| Operating Cost per vehicle | $\begin{array}{r} 1,04,153 \\ \text { (Rs. } 4,16,613 \div \\ 4 \text { vehicles) } \end{array}$ | $\begin{gathered} 85,091 \\ \begin{array}{c} \text { (Rs. } 2,55,272 \div \\ 3 \text { vehicles) } \end{array} \end{gathered}$ | $\begin{aligned} & 1,06,828 \\ & \text { (Rs.5,34,142 } \div \\ & 5 \text { vehicles) } \end{aligned}$ | $\begin{array}{r} 1,00,502 \\ \text { (Rs. } 12,06,027 \div \\ 12 \text { vehicles) } \end{array}$ |

## (ii) Vehicle operating cost per litre of milk

$\frac{\text { Total Operating Cost per Month }}{\text { Total Milk Carried a Month }}=\frac{\text { Rs.12,06,027 }}{79,80,000 \text { Litres }(\text { Working Note-5) }}=$ Rs. 0.15

## Working Notes:

1. Distance covered by the vehicles in a month

| Route | Total Distance (in <br> K.M. $)$ |  |
| :--- | :--- | :---: |
| Ramgarh | $(4$ vehicles $\times 3$ trips $\times 2 \times 24 \mathrm{~km} . \times 30$ days $)$ | 17,280 |
| Pratapgarh | $(3$ vehicles $\times 2$ trips $\times 2 \times 34 \mathrm{~km} . \times 30$ days $)$ | 12,240 |
| Devgarh | $(5$ vehicles $\times 4$ trips $\times 2 \times 16 \mathrm{~km} . \times 30$ days $)$ | 19,200 |

2. Cost of diesel consumption

|  | Ramgarh | Pratapgarh | Devgarh |
| :--- | :--- | :--- | :--- |
| Total distance travelled (K.M.) | 17,280 | 12,240 | 19,200 |
| Mileage per litre of diesel | 8 kmpl | 10 kmpl | 6 kmpl |
| Diesel consumption (Litre) | 2,160 | 1,224 | 3,200 |
| Cost of diesel consumption @ Rs. <br> 78 per litre (Rs.) | $17,280 \div 8)$ | $(12,240 \div 10)$ | $(19,200 \div 6)$ |
|  |  | 95,472 | $2,49,600$ |

3. Servicing Cost

|  | Ramgarh | Pratapgarh | Devgarh |
| :--- | :--- | :--- | :--- |
| Total distance travelled <br> (K.M.) | 17,280 | 12,240 | 19,200 |
| Covered under free <br> service warranty | No | Yes | No |
| No. of services <br> required | 3 | 2 | 3 |
| $(17,280$ k.m. $\div 5,000$ k.m.) | 12,240 k.m. $\div$ <br> $5,000$ k.m. $)$ | $(19,200$ k.m. $\div 5,000$ k.m.) |  |
| Total Service Cost <br> (Rs.) | 45,000 <br> (Rs. $15,000 \times 3)$ | --- | 45,000 <br> (Rs. $15,000 \times 3)$ |

4. Calculation of Depreciation

|  | Ramgarh | Pratapgarh | Devgarh |
| :--- | :--- | :---: | :--- |
| No. of vehicles | 4 | 3 | 5 |
| Cost of a vehicle (Rs.) | $11,02,000$ | $13,12,000$ | $9,25,000$ |
| Total Cost of vehicles <br> (Rs.) | $44,08,000$ | $39,36,000$ | $46,25,000$ |

\(\left.$$
\begin{array}{|lc|l|l|l|}\hline \begin{array}{l}\text { Depreciation } \\
\text { month (Rs.) }\end{array}
$$ \& per \& \left.\begin{array}{l}36,733 <br>

\left(\frac{Rs. 44,08,000 \times 10 \%}{12 months}\right.\end{array}\right) \& \left(\frac{Rs. 39,36,000 \times 10 \%}{12 months}\right.\end{array}\right)\) | 38,542 |
| :--- |
| $\left(\frac{\text { Rs. } 46,25,000 \times 10 \%}{12 \text { months }}\right)$ |

5. Total volume of Milk Carried

| Route |  | Milk Qty. (Litre) |
| :--- | :--- | :--- |
| Ramgarh | $(10,000$ Itr. $\times 0.7 \times 4$ vehicles $\times 3$ trips $\times 30$ days $)$ | $25,20,000$ |
| Pratapgarh | $(10,000$ Itr. $\times 0.7 \times 3$ vehicles $\times 2$ trips $\times 30$ days $)$ | $12,60,000$ |
| Devgarh | $(10,000$ Itr. $\times 0.7 \times 5$ vehicles $\times 4$ trips $\times 30$ days $)$ | $42,00,000$ |
|  |  | $79,80,000$ |

## Question 8

DIFFERENCIATE between Service costing and Product costing (MTP 5 Marks, March '21)

## Answer 8

Service costing differs from product costing (such as job or process costing) in the following ways due to some basic and peculiar nature.
(i) Unlike products, services are intangible and cannot be stored, hence, there is no inventory for the services.
(ii) Use of Composite cost units for cost measurement and to express the volume of outputs.
(iii) Unlike a product manufacturing, employee (labour) cost constitutes a major cost element than material cost.
(iv) Indirect costs like administration overheads are generally have a significant proportion in total cost of a service as unlike manufacturing sector, service sector heavily depends on support services and traceability of costs to a service may not economically feasible.

## Question 9

Harry Transport Service is a Delhi based national goods transport service provider, owning five trucks for this purpose. The cost of running and maintaining these trucks are as follows:

| Particulars | Amount |
| :--- | :--- |
| Diesel cost | Rs.15 per km. |
| Engine oil | Rs. 4,200 for every 14,000 km. |
| Repair and maintenance | Rs.12,000 for every 10,000 km. |
| Driver's salary | Rs. 20,000 per truck per month |
| Cleaner's salary | Rs. 7,000 per truck per month |
| Supervision and other general expenses | Rs.15,000 per month |
| Cost of loading of goods | Rs. $\mathbf{2 0 0}$ per Metric Ton (MT) |

Each truck was purchased for Rs. 20 lakhs with an estimated life of 7,20,000 km. During the next month, it is expecting 6 bookings, the details of which are as follows:

| SI. <br> No. | Journey | Distance <br> (in km) | Weight - Up <br> (in MT) | Weight - Down <br> (in MT) |
| :---: | :--- | :---: | :---: | :---: |
| 1. | Delhi to Kochi | 2,700 | 15 | 7 |
| 2. | Delhi to Guwahati | 1,890 | 13 | 0 |
| 3. | Delhi <br> Vijayawada | 1,840 | 16 | 0 |
| 4. | Delhi to Varanasi | 815 | 11 | 0 |
| 5. | Delhi to Asansol | 1,280 | 13 | 5 |


| 6. | Delhi to Chennai | 2,185 | 11 | 9 |
| :---: | :---: | :--- | :---: | :--- |
|  | Total | 10,710 | 79 | 21 |

## Required:

(i) CALCULATE the total absolute Ton-km for the next month.
(ii) CALCULATE the cost per ton-km. (MTP 10 Marks, April.'21)

## Answer 9

(i) Calculation of Absolute Ton-km for the next month:

| Journey | Distance (in km) | WeightUp (in MT) | Ton-km | Weight <br> - Down <br> (in MT) | Ton-km | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (a) | (b) | $(\mathrm{c})=(\mathrm{a}) \times(\mathrm{b})$ | (d) | $(\mathrm{e})=(\mathrm{a}) \times(\mathrm{d})$ | $(f)=(c)+(e)$ |
| Delhi to Kochi | 2,700 | 15 | 40,500 | 7 | 18,900 | 59,400 |
| Delhi to Guwahati | 1,890 | 13 | 24,570 | 0 | 0 | 24,570 |
| Delhi to Vijayawada | 1,840 | 16 | 29,440 | 0 | 0 | 29,440 |
| Delhi to Varanasi | 815 | 11 | 8,965 | 0 | 0 | 8,965 |
| Delhi to Asansol | 1,280 | 13 | 16,640 | 5 | 6,400 | 23,040 |
| Delhi to Chennai | 2,185 | 11 | 24,035 | 9 | 19,665 | 43,700 |
| Total | 10,710 | 79 | 1,44,150 | 21 | 44,965 | 1,89,115 |

Total absolute Ton-Km = 1,89,115 ton-km
(ii) Calculation of cost per ton-km:

| Particulars | Amount (Rs.) | Amount (Rs.) |
| :---: | :---: | :---: |
| A. Running cost: |  |  |
| - Diesel Cost $\{$ Rs. $15 \times(10,710 \times 2)\}$ | 3,21,300 |  |
| - Engine oil cost ( Rs.4,200 / 14,000 km×21,420 km) | 6,426 |  |
| - Cost of loading of goods \{Rs. $200 \times(79+21)\}$ | 20,000 |  |
| Depreciation (Rs. 20,00,000/7,20,000 km $\times 21,420 \mathrm{~km}$ ) | 59,500 | 4,07,226 |
| B. Repair \& Maintenance Cost $\left(\frac{\mathrm{Rs} .12,000}{10,000 \mathrm{~km}} \times 21,420 \mathrm{~km}\right)$ |  | 25,704 |
| C. Standing Charges |  |  |
| - Drivers' salary (Rs.20,000 $\times 5$ trucks) | 1,00,000 |  |
| - Cleaners' salary (Rs.7,000 $\times 5$ trucks) | 35,000 |  |
| - Supervision and other general expenses | 15,000 | 1,50,000 |
| Total Cost ( $\mathrm{A}+\mathrm{B}+\mathrm{C}$ ) |  | 5,82,930 |
| Total absolute ton-km |  | 1,89,115 |
| Cost per ton-km |  | 3.08 |

## Question 10

MKL Infrastructure built and operates 110 k.m. highway on the basis of Built-Operate- Transfer (BOT) for a period of 21 years. A traffic assessment has been carried out to estimate the traffic flow per day which shows the following figures:

| SI. No. | Type of vehicle | Daily traffic volume |
| :--- | :--- | :--- |
| 18779794646 | Two wheelers |  |


| 2. | Car and SUVs | $\mathbf{3 , 4 5 0}$ |
| :--- | :--- | ---: |
| 3. | Bus and LCV | 1,800 |
| 4. | Heavy commercial vehicles | $\mathbf{8 1 6}$ |

The following is the estimated cost of the project:

| SI. no. | Activities | Amount (₹ in <br> lakh) |
| :--- | :--- | ---: |
| $\mathbf{1}$ | Site clearance | 341.00 |
| 2 | Land development and filling work | $9,160.00$ |
| 3 | Sub base and base courses | $10,520.00$ |
| 4 | Bituminous work | $32,140.00$ |
| 5 | Bridge, flyovers, underpasses, Pedestrian subway, footbridge, etc. | $28,110.00$ |
| 6 | Drainage and protection work | $9,080.00$ |
| 7 | Traffic sign, marking and road appurtenance | $8,810.00$ |
| 8 | Maintenance, repairing and rehabilitation | $12,850.00$ |
| 9 | Environmental management | $1,964.00$ |
|  | Total Project cost | $1,12,975.00$ |

An average cost of ₹1,200 lakh has to be incurred on administration and toll plaza operation. On the basis of the vehicle specifications (i.e. weight, size, time saving etc.), the following weights has been assigned to the passing vehicles:

| SI. No. | Type of vehicle |  |
| :--- | :--- | ---: |
| 1. | Two wheelers | $5 \%$ |
| 2. | Car and SUVs | $20 \%$ |
| 3. | Bus and LCV | $30 \%$ |
| 4. | Heavy commercial vehicles | $45 \%$ |

Required:
(i) CACULATE the total project cost per day of concession period.
(ii) COMPUTE toll fee to be charged for per vehicle of each type, if the company wants earn a profit of $15 \%$ on total cost. [Note: Concession period is a period for which an infrastructure is allowed to operate and recover its investment] (MTP 10 Marks Nov '21) (Same concept different figures MTP 10 Marks Oct'19, Old \& New SM)

## Answer 10

(i) Calculation of total project cost per day of concession period:

| Activities | Amount (₹ in lakh) |
| :--- | ---: |
| Site clearance | 341.00 |
| Land development and filling work | $9,160.00$ |
| Sub base and base courses | $10,520.00$ |
| Bituminous work | $32,140.00$ |
| Bridge, flyovers, underpasses, Pedestrian subway, footbridge, etc | $28,110.00$ |
| Drainage and protection work | $9,080.00$ |
| Traffic sign, marking and road appurtenance | $8,810.00$ |
| Maintenance, repairing and rehabilitation | $12,850.00$ |
| Environmental management | $1,964.00$ |
| Total Project cost | $\mathbf{1 , 1 2 , 9 7 5 . 0 0}$ |
| Administration and toll plaza operation cost | $1,200.00$ |
| Total Cost | $\mathbf{1 , 1 4 , 1 7 5 . 0 0}$ |
| Concession period in days (21 years $\times 365$ days) | $\mathbf{7 , 6 6 5}$ |
| Cost per day of concession period (₹ in lakh) | $\mathbf{1 4 . 9 0}$ |

(ii) Computation of toll fee:

Cost to be recovered per day $=$ Cost per day of concession period $+15 \%$ profit on cost
= ₹ 14,90,000 + ₹ 2,23,500 = ₹ 17,13,500

Cost Per equivalent vehicle $=₹ 17,13,500 / 76,444$ units (Refer working note)
$=₹ 22.42$ per equivalent vehicle
(iii) Vehicle type-wise toll fee:

| SI. <br> No. | Type of vehicle | Equivalent <br> cost [A] | Weigh <br> $\mathbf{t}[\mathrm{B}]$ | Tollfee per <br> vehicle <br> [A×B] <br> 1. Two wheelers |
| :--- | :--- | :--- | :--- | :--- |
| 2. | Car and SUVs | $₹ 22.42$ | 1 | $\mathbf{2 2 . 4 2}$ |
| 3. | Bus and LCV | $₹ 22.42$ | 4 | $\mathbf{8 9 . 6 8}$ |
| 4. | Heavy commercial vehicles | $\approx 22.42$ | 6 | $\mathbf{1 3 4 . 5 2}$ |

## Working Note:

The cost per day has to be recovered from the daily traffic. The each type of vehicle is to be converted into equivalent unit. Let's convert all vehicle types equivalent to Two-wheelers..

| SI. <br> No. | Type of vehicle | Daily traffic <br> volume [A] | Weight | Ratio <br> [B] | Equivalent <br> Two- wheeler <br> [A×B] |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1. | Two wheelers | 44,500 | 0.05 | 1 | 44,500 |
| 2. | Car and SUVs | 3,450 | 0.20 | 4 | 13,800 |
| 3. | Bus and LCV | 1,800 | 0.30 | 6 | 10,800 |
| 4. | Heavy commercial vehicles | 816 | 0.45 | 9 | 7,344 |
|  | Total |  |  |  | $\mathbf{7 6 , 4 4 4}$ |

## Question 11

YSPP Transport Company is running local city buses. It has a fleet of 20 Buses. Each bus can carry average 40 passengers per day and cover distance of 112.50 kms per day. Due to Covid-19 pandemic, the company is running $\mathbf{9 0 \%}$ buses on average.

Below are the operational expenses worked out for the month of November, 2021:

| Original cost per bus | ₹ 48,00,000 |
| :--- | ---: |
| Insurance for 20 buses | ₹ 63,36,000 per annum |
| Diesel \& Oil | ₹ 10 per km. |
| Salary of drivers per bus | ₹ 25,000 |
| Salary of cleaners per bus | ₹ 15,000 |
| Tyres and tubes | ₹ 12,58,040 |
| Lubricants | ₹ 10,70,000 |
| Repairs | ₹ 24,70,000 |
| Road tax per bus | ₹ 1,50,000 |
| Administrative overhead | ₹ 50,88,000 per annum |

Depreciation on buses is computed @ 20\% using Straight Line Method. Passenger tax is $\mathbf{1 5 \%}$ on total taking. Based on abovementioned information, you are required to COMPUTE the fare to be charged from each passenger per kilometer assuming $25 \%$ margin on total taking (Total receipts from passengers.) (MTP 10 Marks March '22)

Operating Cost Statement

| Particulars | Total Cost Per Month (in ₹) |
| :---: | :---: |
| Fixed Charges: |  |
| Salary of Drivers (₹ $25,000 \times 20$ buses) | 5,00,000 |
| Salary of Cleaners ( $₹ 15,000 \times 20$ buses) | 3,00,000 |
| Road Tax ( $₹ 1,50,000 \times 20$ buses) | 30,00,000 |
| Insurance (₹ $63,36,000 / 12$ months) | 5,28,000 |
| Depreciation $\left(\frac{48,00,000 \times 20 \% \times 20 \text { buses }}{12 \text { months }}\right)$ | 16,00,000 |
| Administrative Overheads (₹ 50,88,000/12 months) | 4,24,000 |
| Total (A) | 63,52,000 |
| Variable Charges: |  |
| Diesel ( $60,750 \mathrm{~km} . \times$ ₹ 10 ) | 6,07,500 |
| Tyres and Tubes | 12,58,040 |
| Lubricants | 10,70,000 |
| Repairs | 24,70,000 |
| Total (B) | 54,05,540 |
| Total Operating Cost ( $\mathrm{A}+\mathrm{B}$ ) | 1,17,57,540 |
| Add: Passenger tax (Refer to WN-1) | 29,39,385 |
| Add: Profit (Refer to WN-1) | 48,98,975 |
| Total takings (C) | 1,95,95,900 |
| No. of passengers kms. in a month (D) | 24,30,000 |
| Cost per passenger km. (C/D) | 8.06 |

## Working Notes:

1. Let total takings be $X$ then Passenger tax and profit will be as follows: $X=₹$

$$
\begin{aligned}
1,17,57,540+0.15 X+0.25 X & \\
X-0.40 X & =₹ 1,17,57,540 \\
X & =\frac{1,17,57,540}{0.60}=₹ 1,95,95,900 \\
\text { Passenger tax } & =₹ 1,95,95,900 \times 0.15=₹ 29,39,385 \text { Profit } \\
& =₹ 1,95,95,900 \times 0.25=₹ 48,98,975
\end{aligned}
$$

2. Total Kilometres to run during the month of November, 2021

$$
=(112.50 \mathrm{~km} . \times 30 \text { days } \times 20 \text { Buses }) \times 90 \%=60,750 \text { Kilometres }
$$

3. Total passenger Kilometres during the month of November, 2021

$$
=60,750 \mathrm{~km} . \times 40 \text { passengers }=24,30,000 \text { Passenger- } \mathrm{km} .
$$

## Question 12

STATE the unit of cost for the following service industries:
(i) Electricity Supply service
(ii) Hospital
(iii) Cinema
(iv) Hotels (MTP 4 Marks April ’22 \& Sep '22)

Answer 12

| S. <br> No. | Service industry | Unit of cost |
| :--- | :--- | :--- |
| (i) | Electricity Supply service | Kilowatt- hour (kWh) |
| (ii) | Hospital | Patient per day, room per day or per bed, per operation <br> etc. |
| (iii) | Cinema | Per ticket. |
| (iv) | Hotels | Guest Days or Room Days |

## Question 13

Answer the following:
A company has the following three alternative proposals for conveyance facilities for its sales personnel who has to do substantial traveling, approximately $\mathbf{2 0 , 0 0 0}$ kilometers yearly:
(i) Purchasing and maintaining its own fleet of cars. The average cost of a car is ₹ 7,20,000
(ii) Allow the Executive to use their own car and reimburse the expenses @ ₹ 12 per kilometer and also bear insurance costs.
(iii) Hire cars from an agency at ₹ $\mathbf{2 , 1 6 , 0 0 0}$ per year per car. The company will have to bear costs of petrol, taxes and tyres.
The following further details are available:

Petrol
Tyre
Taxes
Repairs and maintenance
Insurance
Life of the car
₹ 7.20 per km.
₹ 0.144 per km.
$₹ 960$ per car per annum
₹ 0.24 per km.
$₹ 1,440$ per car per annum
5 years with annual mileage of $20,000 \mathrm{~km}$.

Resale value ₹ 96,000 at the end of the fifth year. WORK OUT the relative costs of three proposals and rank them. (MTP 5 Marks Sep'22, Old \& New SM)

## Answer 13

Calculation of relative costs of three proposals and their ranking

|  | I- Use of company's car per km. (₹) | II- Use of own car per km. (₹) | III- Use of hired car per km. (₹) |
| :---: | :---: | :---: | :---: |
| Reimbursement | -- | 12.00 | -- |
| Hire Charges | -- | -- | 10.80* |
| Fixed cost: |  |  |  |
| Insurance | 0.072 | 0.072 | -- |
| Taxes | 0.048 | -- | 0.048 |
| Depreciation | 6.24\# | -- | -- |
| Running and Maintenance Cost: |  |  |  |
| Petrol | 7.20 | -- | 7.20 |
| Repairs and Maintenance | 0.24 | -- | --- |
| Tyre | 0.144 | -- | 0.144 |
| Total cost per km. | 13.944 | 12.072 | 18.192 |
| Cost for 20,000 km. | 2,78,880 | 2,41,440 | 3,63,840 |
| Ranking of proposals | II | I | III |

* (₹ 2,16,000 $\div 20,000 \mathrm{~km}$.) = ₹ 10.80
\#[(₹ 7,20,000-₹ 96,000) $\div 5$ years] $\div 20,000 \mathrm{~km} .=₹ 6.24$
The Second alternative i.e., use of own car by the executive and reimbursement of expenses by the company is the best alternative from company's point of view.


## Question 14

Royal transport company has been given a 50-kilometre-long route to run 6 buses. The cost of each bus is ₹ $75,00,000$. The buses will make 3 round trips per day carrying on an average 75 percent passengers of their seating capacity. The seating capacity of each bus is 48 passengers. The buses will run on an average 25 days in a month. The other information for the year 2021-22 is given below:

| Garage Rent | $₹ 60,000$ per month |
| :---: | :---: |
| Annual Repairs \& Maintenance | ₹ 2,40,000 each bus |
| Salaries of 6 drivers | ₹ 20,000 each per month |
| Wages of 6 conductors | $₹ 16,000$ each per month |
| Wages of 6 cleaners | $₹ 10,000$ each per month |
| Manager's salary | ₹ 50,000 per month |
| Road Tax, Permit fee, etc. | ₹ 60,000 for a quarter |
| Office expenses | ₹ $\mathbf{2 5 , 0 0 0}$ per month |
| Cost of diesel per litre | ₹92 |
| Kilometer run per litre for each bus | 6 kilometres |
| Annual Depreciation | 20\% of cost |
| Annual Insurance | 4\% of cost |
| Engine oils \& lubricants (for 1,000 kilometres) | ₹ 20,000 |

You are required to calculate the bus fare to be charged from each passenger per kilometer (upto four decimal points), if the company wants to earn profit of $33 \frac{1}{3}$ percent on taking (total receipts from passengers). (MTP 10 Marks Oct'22)

## Answer 14

Working Notes:

1. Total Kilometres to be run during the year 2021-22
$=50 \mathrm{~km} \times 2$ sides $\times 3$ trips $\times 25$ days $\times 12$ months $\times 6$ buses $=5,40,000$ Kilometres
2. Total passenger Kilometres
$=5,40,000 \mathrm{~km} . \times 48$ passengers $\times 75 \%=1,94,40,000$ Passenger- km.
Operating Cost Sheet for the year 2021-22

| Particulars |  | Total Cost (Rs.) |
| :---: | :---: | :---: |
| A. | Fixed Charges: |  |
|  | Garage rent (Rs. 60,000 $\times 12$ months) | 7,20,000 |
|  | Salary of drivers (Rs. 20,000 $\times 6$ drivers $\times 12$ months) | 14,40,000 |
|  | Wages of Conductors (Rs. 16,000 $\times 6$ conductors $\times 12$ months) | 11,52,000 |
|  | Wages of Cleaners (Rs. 10,000 $\times 6$ cleaners $\times 12$ months) | 7,20,000 |
|  | Manager's salary (Rs.50,000 $\times 12$ months) | 6,00,000 |
|  | Road Tax, Permit fee, etc. (Rs. 60,000 $\times 4$ quarters) | 2,40,000 |
|  | Office expenses (Rs. $25,000 \times 12$ months) | 3,00,000 |
|  | Depreciation (Rs. $75,00,000 \times 6$ buses $\times 20 \%$ ) | 90,00,000 |
|  | Insurance (Rs. 75,00,000 $\times 6$ buses $\times 4 \%$ ) | 18,00,000 |
|  | Total (A) | 1,59,72,000 |
| B. | Variable Charges: |  |
|  | Repairs and Maintenance (Rs. 2, $40,000 \times 6$ buses) | 14,40,000 |
|  | Diesel $\{(5,40,000 \mathrm{~km} . \div 6 \mathrm{~km}$.) $\times$ Rs. 92$\}$ | 82,80,000 |
|  | Engine oils \& lubricants $\{($ Rs. $20,000 . \div 1000 \mathrm{~km}) \times 5,40,.000 \mathrm{~km}\}$ | 1,08,00,000 |
|  | Total (B) | 2,05,20,000 |
|  | Total Cost ( $\mathrm{A}+\mathrm{B}$ ) | 3,64,92,000 |
|  | Add: $331 / 3 \%$ Profit on takings or $50 \%$ on cost | 1,82,46,000 |
| C. | Total Takings (Total bus fare collection) | 5,47,38,000 |


| D. | Total Passenger-km. (Working Note 2) |
| :--- | :--- |
| E. | Bus fare to be charged from each passenger per km. $(\mathrm{C} \div \mathrm{D})$ |


| $1,94,40,000$ |
| ---: |
| 2.82 |

## Question 15

Secure lifeline Ltd. operates in life insurance business. It launched a new insurance policy 'Total secure'. The company has incurred the following expenditures during the last year for the policy:

|  | $₹$ |
| :--- | ---: |
| Cost of marketing of the policy | $74,58,000$ |
| Sales support expenses | $18,89,250$ |
| Policy issuance cost | $16,59,735$ |
| Claims management cost | $2,07,240$ |
| Policy development cost | $18,56,250$ |
| Postage and logistics | $16,91,250$ |
| Facilities cost | $25,14,600$ |
| Policy servicing cost | $58,09,155$ |
| Employees cost | $9,24,000$ |
| IT cost | $1,22,62,800$ |
| Office administration cost | $26,73,660$ |

Number of policies sold- 844 . Total insured value of policies - ₹ $\mathbf{1 , 6 4 0}$ crore.
Required:
(i) CALCULATE total cost for Professionals Protection Plus' policy segregating the costs into four main activities namely (a) Marketing and Sales support, (b) Operations, (c) IT and (d) Support functions.
(ii) CALCULATE cost per policy.
(iii) CALCULATE cost per rupee of insured value. (MTP 5 Marks March '23, Old \& New SM, RTP Nov '18, PYP 5 Marks July '21)

## Answer 15

(i) Calculation of total cost for 'Professionals Protection Plus' policy

|  | Particulars | Amount (₹) | Amount (₹) |
| :--- | :--- | ---: | :---: |
| $\mathbf{1}$ | Marketing and Sales support: |  |  |
|  | - Policy development cost | $18,56,250$ |  |
|  | - Cost of marketing | $74,58,000$ |  |
|  | - Sales support expenses | $18,89,250$ | $1,12,03,500$ |
| $\mathbf{2}$ | Operations: | $16,59,735$ |  |
|  | - Policy issuance cost | $58,09,155$ |  |
|  | - Policy servicing cost | $2,07,240$ | $76,76,130$ |
|  | - Claims management cost |  | $1,22,62,800$ |
| $\mathbf{3}$ | IT Cost | $16,91,250$ |  |
| $\mathbf{4}$ | Support functions | $25,14,600$ |  |
|  | - Postage and logistics | $9,24,000$ |  |
|  | - Facilities cost | $26,73,660$ | $78,03,510$ |
|  | - Employees cost |  | $\mathbf{3 , 8 9 , 4 5 , 9 4 0}$ |
|  | - Office administration cost |  |  |
|  | Total Cost |  |  |

(ii) Calculation of Cost per policy $\frac{\text { Total Cost }}{\text { Number of policies }}=\frac{3,89,45,940}{844}=$ Rs. $46,144.48$
(iii) Cost per rupee of insured value $\frac{\text { Total Cost }}{\text { Total insured value }}=\frac{3,89,45,940}{1,640 \text { crore }}=$ Rs. 0.0024

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem was based on service costing which required examinees to segregate costs of Insurance policy under four main activities and to calculate cost per policy. Most of the examinees could not segregate the costs correctly. Performance of the examinees was below average.

## Question 16

Arnav LMV Pvt. Ltd, operates cab/ car rental service in Delhi/NCR. It provides its service to the offices of Noida, Gurugram and Faridabad. At present it operates CNG fueled cars but it is also considering to upgrade these into Electric vehicle (EV). The following details related with the owning of CNG \& EV propelled cars are as tabulated below:

| Particulars | CNG Car | EV Car |
| :--- | ---: | ---: |
| Car purchase price (₹) | $9,20,000$ | $15,20,000$ |
| Govt. subsidy on purchase of car (₹) | -- | $1,50,000$ |
| Life of the car | 15 years | 10 years |
| Residual value (₹) | 95,000 | $1,70,000$ |
| Mileage | $20 \mathrm{~km} / \mathrm{kg}$ | 240 km per charge |
| Electricity consumption per full charge | -- | 30 Kwh |
| CNG cost per Kg (₹) | 90 | -- |
| Power cost per Kwh (₹) | -- | $\mathbf{7 . 6 0}$ |
| Annual Maintenance cost (₹) | 8,000 | 5,200 |
| Annual insurance cost (₹) | 7,600 | 14,600 |
| Tyre replacement cost in every 5 -year (₹) | 16,000 | 16,000 |
| Battery replacement cost in every 8- year (₹) | 12,000 | $5,40,000$ |

Apart from the above, the following are the additional information:

| Particulars |  |
| :--- | :--- |
| Average distance covered by a car in a month | $1,500 \mathrm{~km}$ |
| Driver's salary (₹) | $20,000 \mathrm{p.m}$ |
| Garage rent per car (₹) | $4,500 \mathrm{p.m}$ |
| Share of Office \& Administration cost per car (₹) | $1,500 \mathrm{p.m}$ |

## Required:

CALCULATE the operating cost of vehicle per month per car for both CNG \& EV options. [MTP 10 Marks April '23, RTP May '22)

## Answer 16

## Working Notes:

1. Calculation of Depreciation per month:

|  | Particulars | CNG Car | EV Car |
| :--- | :--- | :---: | :---: |
| A | Car purchase price (₹) | $9,20,000$ | $15,20,000$ |
| B | Less: Govt. subsidy (₹) | -- | $(1,50,000)$ |


| C | Less: Residual value (₹) | $(95,000)$ | $(1,70,000)$ |
| :--- | :--- | :---: | :---: |
| D | Depreciable value of car (₹) $[\mathrm{A}-\mathrm{B}-\mathrm{C}]$ | $8,25,000$ | $12,00,000$ |
| E | Life of the car | 15 years | 10 years |
| F | Annual depreciation (₹) $[\mathrm{D} \div \mathrm{E}]$ | 55,000 | $1,20,000$ |
| G | Depreciation per month (₹) $[\mathrm{F} \div \mathbf{1 2}]$ | $\mathbf{4 , 5 8 3 . 3 3}$ | $\mathbf{1 0 , 0 0 0}$ |

2. Fuel/ Electricity consumption cost per month:

|  | Particulars | CNG Car | EV Car |
| :--- | :--- | :--- | :--- |
| A | Average distance covered in a month (KM) | 1,500 | 1,500 |
| B | Mileage (KM) | 20 | 240 |
| C | Qty. of CNG/ Full charge required [A $\div \mathrm{B}]$ | 75 kg. | 6.25 |
| D | Electricity Consumption [C×30kwh] |  | 187.5 |
| E | Cost of CNG per kg (₹) | 90 | - |
| F | Power cost per Kwh (₹) |  | 7.60 |
| G | CNG Cost per month (₹) [C×E] | $\mathbf{6 , 7 5 0}$ | - |
| H | Power cost per month (₹) [D×F] |  | $\mathbf{1 , 4 2 5}$ |

3. Amortised cost of Tyre replacement:

|  | Particulars | CNG Car | EV Car |
| :--- | :--- | :--- | :--- |
| A | Life of vehicle | 15 years | 10 years |
| B | Replacement interval | 5 years | 5 years |
| C | No. of time replacement required | 2 times | 1 time |
| D | Cost of tyres for each replacement (₹) | 16,000 | 16,000 |
| E | Total replacement cost (₹) [C×D] | 32,000 | 16,000 |
| F | Amortised cost per year (₹) [E $\div \mathrm{A}]$ | $2,133.33$ | 1,600 |
| E | Cost per month (₹) [F:12] | $\mathbf{1 7 7 . 7 8}$ | $\mathbf{1 3 3 . 3 3}$ |

## 4. Amortised cost of Battery replacement:

|  | Particulars | CNG Car | EV Car |
| :--- | :--- | :--- | :--- |
| A | Life of vehicle | 15 years | 10 years |
| B | Replacement interval | 8 years | 8 years |
| C | No. of time replacement required | 1 time | 1 time |
| D | Cost of battery for each replacement (₹) | 12,000 | $5,40,000$ |
| E | Total replacement cost (₹) $[\mathrm{C} \times \mathrm{D}]$ | 12,000 | $5,40,000$ |
| F | Amortised cost per year (₹) $[\mathrm{E} \div \mathrm{A}]$ | 800 | 54,00 |
|  |  |  | 0 |
| E | Cost per month (₹) $[\mathbf{F} \div \mathbf{1 2}]$ | $\mathbf{6 6 . 6 7}$ | $\mathbf{4 , 5 0 0}$ |

Calculation of Operating cost per month:

|  | Particulars | CNG Car (₹) | EV Car (₹) |
| :--- | :--- | :--- | :--- |
| A | Running cost: |  |  |
|  | Fuel cost/ Power consumption cost [Refer WN-2] |  |  |
| B | Maintenance cost: |  | 1,425 |
|  | Annual Maintenance cost [Annual cost $\div 12]$ | 666.67 | 433.33 |
|  | Annual Insurance cost [Annual cost $\div 12]$ | 633.33 | $1,216.67$ |


|  | Amortised cost of Tyre replacement [Refer WN-3] | 177.78 | 133.33 |
| :--- | :--- | ---: | ---: |
|  | Amortised cost of Battery replacement [Refer <br> WN-4] | 66.67 | 4,500 |
|  |  | $1,544.45$ | $6,283.33$ |
| C | Fixed cost: |  |  |
|  | Depreciation [Refer WN-1] | $4,583.33$ | 10,000 |
|  | Driver's salary | 20,000 | 20,000 |
|  | Garage rent | 4,500 | 4,500 |
|  | Share of Office \& Administration cost | 1,500 | 1,500 |
|  |  | $30,583.33$ | 36,000 |
| D | Operating cost per month [A+B+C] | $\mathbf{3 3 , 8 7 7 . 7 8}$ | $\mathbf{4 3 , 7 0 8 . 3 3}$ |

## Question 17

AD Higher Secondary School (AHSS) offers courses for 11th \& 12th standard in three streams i.e. Arts, Commerce and Science. AHSS runs higher secondary classes along with primary and secondary classes but for accounting purpose it treats higher secondary as a separate responsibility centre. The Managing committee of the school wants to revise its fee structure for higher secondary students. The accountant of the school has provided the following details for a year:

|  | Amount (₹) |
| :--- | :---: |
| Teachers' salary (15 teachers $\times ₹ \mathbf{3 5 , 0 0 0 \times 1 2}$ months) | $\mathbf{6 3 , 0 0 , 0 0 0}$ |
| Principal's salary | $\mathbf{1 4 , 4 0 , 0 0 0}$ |
| Lab attendants' salary (2 attendants $\times ₹ 15,000 \times 12$ months) | $\mathbf{3 , 6 0 , 0 0 0}$ |
| Salary to library staff | $1,44,000$ |
| Salary to peons (4 peons $\times ₹ 10,000 \times 12$ months) | $\mathbf{4 , 8 0 , 0 0 0}$ |
| Salary to other staffs | $\mathbf{4 , 8 0 , 0 0 0}$ |
| Examinations expenditure | $\mathbf{1 0 , 8 0 , 0 0 0}$ |
| Office \& Administration cost | $\mathbf{1 5 , 2 0 , 0 0 0}$ |
| Annual day expenses | $\mathbf{4 , 5 0 , 0 0 0}$ |
| Sports expenses | $\mathbf{1 , 2 0 , 0 0 0}$ |

Other information:
(i)

|  | Standard 11 \& 12 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Arts | Commerce | Science | Secondary |$|$| No. of students | 120 | 360 | 180 | 840 |
| :--- | :--- | :--- | :--- | :--- |
| Lab classes in a year | 0 | 0 | 144 | 156 |
| No. of examinations in a year | 2 | 2 | 2 | 2 |
| Time spent at library per student <br> per year | 180 hours | 120 hours | 240 hours | 60 hours |
| Time spent by principal for <br> administration | 208 hours | 312 hours | 480 hours | 1,400 hours |
| Teachers for 11 \& 12 standard | 4 | 5 | 6 |  |

(ii) One teacher who teaches economics for Arts stream students also teaches commerce stream students. The teacher takes 1,040 classes in a year, it includes 208 classes for commerce students.
(iii) There is another teacher who teaches mathematics for Science stream students also teaches business mathematics to commerce stream students. She takes $\mathbf{1 , 1 0 0}$ classes a year, it includes $\mathbf{1 6 0}$ classes for
12.21
commerce students.
(iv) One peon is fully dedicated for higher secondary section. Other peons dedicate their $\mathbf{1 5 \%}$ time for higher secondary section.
(v) All school students irrespective of section and age participate in annual functions and sports activities. Requirement:
(a) CALCULATE cost per student per annum for all three streams.
(b) If the management decides to take uniform fee of ₹ $\mathbf{1 , 0 0 0}$ per month from all higher secondary students, CALCULATE stream wise profitability.
(c) If management decides to take $10 \%$ profit on cost, COMPUTE fee to be charged from the students of all three streams respectively. (RTP May' 20, RTP May'18, Old \& New SM)

## Answer 17

Calculation of Cost per annum

| Particulars | Arts (Rs.) | Commerce (Rs.) | Science (Rs.) | Total (Rs.) |
| :--- | :--- | :--- | :--- | :--- |
| Teachers' salary (W.N-1) | $16,80,000$ | $21,00,000$ | $25,20,000$ | $63,00,000$ |
| R-apportionment of Economics \& (84,000) <br> Mathematics teachers' salary (W.N- <br> 2) | $1,45,091$ | $(61,091)$ |  |  |
| Principal's salary (W.N-3) | $1,24,800$ | $1,87,200$ | $2,88,000$ | $6,00,000$ |
| Lab assistants' salary (W.N-4) | - |  | $1,72,800$ | $1,72,800$ |
| Salary to library staff (W.N-5) | 43,200 | 28,800 | 57,600 | $1,29,600$ |
| Salary to peons (W.N-6) | 31,636 | 94,909 | 47,455 | $1,74,000$ |
| Salary to other staffs (W.N-7) | 38,400 | $1,15,200$ | 57,600 | $2,11,200$ |
| Examination expenses (W.N- 8) | 86,400 | $2,59,200$ | $1,29,600$ | $4,75,200$ |
| Office $\quad$ \& Administration <br> expenses (W.N- 7) | $1,21,600$ | $3,64,800$ | $1,82,400$ | $6,68,800$ |
| Annual Day expenses (W.N-7) | 36,000 | $1,08,000$ | 54,000 | $1,98,000$ |
| Sports expenses (W.N- 7) | 9,600 | 28,800 | 14,400 | 52,800 |
| Total Cost per annum | $20,87,636$ | $34,32,000$ | $34,62,764$ | $89,82,400$ |

(i) Calculation of cost per student perannum

| Particulars | Arts (Rs.) | Commerce (Rs.) | Science (Rs.) | Total (Rs.) |
| :--- | :--- | :--- | :--- | :--- |
| Total Cost per annum | $20,87,636$ | $34,32,000$ | $34,62,764$ | $89,82,400$ |
| No. of students | 120 | 360 | 180 | 660 |
| Cost per student per <br> annum | 17,397 | 9,533 | 19,238 | 13,610 |

(ii) Calculation of profitability

| Particulars | Arts (Rs.) | Commerce <br> (Rs.) | Science (Rs.) | Total (Rs.) |
| :--- | :--- | :--- | :--- | :--- |
| Total Fees per annum | 12,000 | 12,000 | 12,000 |  |
| Cost per student per annum | 17,397 | 9,533 | 19,238 |  |
| Profit/ (Loss) per student per <br> annum | $5,397)$ | 2,467 | $(7,238)$ |  |
| No. of students | 120 | 360 | 180 |  |
| Total Profit/ (Loss) | $(6,47,640)$ | $8,88,120$ | $(13,02,840)$ | $(10,62,360)$ |

(iii) Computation of fees to be charged to earn a $10 \%$ profit on cost

| Cost per student per annum | 17,397 | 9,533 | 19,238 |
| :--- | :--- | :--- | :--- |
| Add: Profit @10\% | 1,740 | 953 | 1,924 |
| Fees per annum | 19,137 | 10,486 | 21,162 |
| Fees per month | 1,595 | 874 | 1,764 |

## Working Notes:

(1) Teachers' salary

| Particulars | Arts | Commerce | Science |
| :--- | :--- | :--- | :--- |
| No. of teachers | 4 | 5 | 6 |
| Salary per annum (Rs.) | $4,20,000$ | $4,20,000$ | $4,20,000$ |
| Total salary | $16,80,000$ | $21,00,000$ | $25,20,000$ |

(2) Re-apportionment of Economics and Mathematics teachers' salary

|  | Economics |  | Mathematics |  |
| :--- | :--- | :--- | :--- | :--- |
| Particulars | Arts | Commerce | Science | Commerce |
| No. of classes | 832 | 208 | 940 | 160 |
| Salary re-apportionment (Rs.) $(84,000)$ | 84,000 | $(61,091)$ | 61,091 |  |
|  | $\left(\frac{\text { Rs. } 4,20,000}{1,040} \times 208\right)$ | $\left(\frac{\text { Rs. 4,20,000 }}{1,100} \times 160\right)$ |  |  |

(3) Principal's salary has been apportioned on the basis of time spent by him for administration of classes.
(4) Labattendants'salaryhasbeenapportionedonthebasisoflabclassesattendedby the students.
(5) Salary of library staffs are apportioned on the basis of time spent by the students in library.
(6) Salary of Peons are apportioned on the basis of number of students. The peons' salary allocable to higher secondary classes is calculated as below:

|  | Amount (Rs.) |
| :--- | :---: |
| Peon dedicated for higher secondary | $1,20,000$ |
| $(1$ peon $\times$ Rs. $10,000 \times 12$ months) | 54,000 |
| Add: $15 \%$ of other peons' salary <br> $\{15 \%$ of $(3$ peons $\times$ Rs. $10,000 \times 12$ months $)\}$ |  |
|  | $1,74,000$ |

(7) Salary to other staffs, office \& administration cost, Annual day expenses and sports expenses are apportioned on the basis of number of students.
(8) Examination Expenses has been apportion taking number of students and number examinations into account.

## Question 18

A transport company has a fleet of four trucks of 10 tonne capacity each plying in different directions for transport of customer'sgoods. The trucks run loaded with goods and return empty. The distance travelled, number of trips made and the load carried per day by each truck are as under:

| Truck No. | One way <br> Distance Km | No.of trips <br> per day | Load carried <br> pertrip/daytonnes |
| :--- | :---: | :---: | :--- |
| 1 | 48 | 4 | 6 |
| 2 | 120 | 1 | 9 |
| 3 | 90 | 2 | 8 |
| 4 | 60 | 4 | 8 |

The analysis of maintenance cost and the total distance travelled during the last two years is as under

| Year | Total distance travelled | Maintenance Cost ₹ |
| :--- | :--- | :--- |
| 1 | $1,60,200$ | $1,38,150$ |
| 2 | $1,56,700$ | $1,35,525$ |

The following are the details of expenses for the year under review:

| Diesel | $₹ 60$ per litre. Each litre gives 4 km per litre of diesel on an <br> average. |
| :--- | :--- |
| Driver's salary | $₹ 22,000$ per truck per month |
| Licence and taxes | $₹ \mathbf{1 5 , 0 0 0}$ per annum per truck |
| Insurance | $₹ 80,000$ per annum for all the four trucks |
| Purchase Price per <br> truck | $₹ 30,00,000$, Life 10 years. Scrap value at the end of life is |
| $₹ 1,00,000$. |  |

The trucks operate 24 days per month on an average.
Required
(i) PREPARE an Annual Cost Statement covering the fleet of fourtrucks
(ii) CALCULATE the cost per km.run.
(iii) DETERMINEthefreightratepertonnekm.toyieldaprofit of 30\%onfreight. (RTP Nov'19) (Same concept different figures MTP 10 Marks March '19 \& Sep '23)

## Answer 18

(i) Annual Cost Statement of fourvehicles

|  | $(₹)$ |
| :--- | :--- |
| Diesel $\{(4,21,632 \mathrm{~km} . \div 4 \mathrm{~km}) \times ₹ 60)($ Refer to Working Note 1$)$ | $63,24,480$ |
| Oil \& sundries $\{(4,21,632 \mathrm{~km} . \div 100 \mathrm{~km}.) \times ₹ 525\}$ | $22,13,568$ |
| Maintenance $\left\{(4,21,632 \mathrm{~km} . \times ₹ 0.75)+{ }^{\prime} 18,000\right\}$ (Refer to Working Note 2$)$ | $3,34,224$ |
| Drivers' salary $\{(₹ 22,000 \times 12$ months $) \times 4$ trucks $\}$ | $10,56,000$ |
| Licence and taxes $(₹ 15,000 \times 4$ trucks) | 60,000 |
| Insurance | 80,000 |
| Depreciation $\{(₹ 29,00,000 \div 10$ years $) \times 4$ trucks $\}$ | $11,60,000$ |
| General overhead | $1,10,840$ |
| Total annual cost | $1,13,39,112$ |

(ii) Cost per km. run

$$
\begin{aligned}
\text { Cost per Kilometer run }= & \frac{\text { Totalannual cost of vehicles }}{\text { Totalkilometre travelled annually }} \text { (Refer to working Note 1) } \\
& =\frac{\text { Rs. } 1,13,39,112}{4,21,632 \mathrm{Kms}}=\text { Rs. } 26.89
\end{aligned}
$$

(iii) Freight rate per tonne km (to yield a profit of $\mathbf{3 0 \%}$ on freight)

$$
\begin{aligned}
\text { Cost per Kilometer run } & \left.=\frac{\text { Totalannual cost of three vehicles }}{\text { Total effective tonnes kms.per annum }} \text { (Refer to working Note } 1\right) \\
& =\frac{\text { Rs. } 1,13,39,112}{16,10,496 \mathrm{kms}}=\text { Rs. } 7.04
\end{aligned}
$$

Freight rate per tonne km. $\left(\frac{\text { Rs.7.04 }}{0.7}\right) \times 1=$ Rs. 10.06

## Working Notes:

1. Total kilometer travelled and tonnes kilometer (load carried) by four trucks in oneyear

STRIVING TOWARDS KNOWLEDGE

| Truck <br> number | One way <br> distance <br> in kms | No. of <br> trips | Total <br> covered in km <br> per day | Load carried per <br> trip/day <br> in tonnes | Total <br> effective <br> tonnes km |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 48 | 4 | 384 | 6 | 1,152 |
| 2 | 120 | 1 | 240 | 9 | 1,080 |
| 3 | 90 | 2 | 360 | 8 | 1,440 |
| 4 | 60 | 4 | 480 | 8 | 1,920 |
| Total |  |  | $\mathbf{1 , 4 6 4}$ |  | $\mathbf{5 , 5 9 2}$ |

Total kilometer travelled by four trucks in one year (1,464 km. $\times 24$ days $\times 12$ months) = 4,21,632
Total effective tonnes kilometer of load carried by four trucks during one year (5,592 tonnes km. $\times 24$ days $\times 12$ months) $=16,10,496$
2. Fixed and variable component of maintenance cost:

Variable maintenance cost per $\mathrm{km}=\frac{\text { Difference in maintence cost }}{\text { Difference in distance travelled }}$

$$
\begin{aligned}
& =\frac{\text { Rs. } 1,38,150-\text { Rs. } 1,35,525}{1,60,200 \mathrm{Kms}-1,56,700 \mathrm{kms}} \\
& =\text { Rs. } 0.75
\end{aligned}
$$

Fixed maintenance cost $=$ Total maintenance cost-Variable maintenance cost

$$
=\quad ₹ 1,38,150-1,60,200 \mathrm{kms} \times ₹ 0.75=₹ 18,000
$$

## Question 19

A company runs a holiday home. For this purpose, it has hired a building at a rent of $₹ \mathbf{1 0 , 0 0 , 0 0 0}$ per month along with $5 \%$ of total taking. It has three types of suites for its customers, viz., single room, double rooms and triple rooms.
Total annual cost of vehicles Total kilometer travelled annually

| Following information is given: <br> Type of suite | Number | Occupancy percentage |
| :--- | :--- | :--- |
| Single room | 100 | $100 \%$ |
| Double rooms | 50 | $80 \%$ |
| Triple rooms | 30 | $60 \%$ |

The rent of double rooms suite is to be fixed at 2.5 times of the single room suite and that of triple rooms suite as twice of the double rooms suite.

The other expenses for the year 20X9 are as follows:

|  | (Rs.) |
| :--- | :--- |
| Staff salaries | $14,25,00,000$ |
| Room attendants' wages | $4,50,00,000$ |
| Lighting, heating and power | $2,15,00,000$ |
| Repairs and renovation | $1,23,50,000$ |
| Laundry charges | $80,50,000$ |
| Interior decoration | $74,00,000$ |
| Sundries | $1,53,00,000$ |

Provide profit @ 20\% on total taking and assume 360 days in a year.
You are required to Calculate the rent to be charged for each type of suite. (RTP May'19, Old \& New SM)
Answer 19
(i) Total equivalent single room suites

| Nature of suite | Occupancy (Room-days) | Equivalent single room suites <br> (Room-days) |
| :--- | :--- | :---: |
| Single room suites | 36,000 | 36,000 |
|  | $(100$ rooms $\times 360$ days $\times 100 \%)$ | $(36,000 \times 1)$ |
| Double rooms suites | 14,400 | 36,000 |
|  | $(50$ rooms $\times 360$ days $\times 80 \%)$ | $(14,400 \times 2.5)$ |
| Triple rooms suites | 6,480 | 32,400 |
|  | $(30$ rooms $\times 360$ days $\times 60 \%)$ | $(6,480 \times 5)$ |

(ii) Statement of total cost:

|  | (₹) |
| :---: | :---: |
| Staff salaries | 14,25,00,000 |
| Room attendant's wages | 4,50,00,000 |
| Lighting, heating and power | 2,15,00,000 |
| Repairs and renovation | 1,23,50,000 |
| Laundry charges | 80,50,000 |
| Interior decoration | 74,00,000 |
| Sundries | 1,53,00,000 |
|  | 25,21,00,000 |
| Building rent $\{(₹ 10,00,000 \square 12$ months) $+5 \%$ on total taking\} | 1,20,00,000+5\% on total takings |
| Total cost | 26,41,00,000 + 5\% on total takings |
| Profit is $20 \%$ of total takings |  |

$\therefore$ Total takings $=₹ 26,41,00,000+25 \%(5 \%+20 \%)$ of total takings
Let $x$ be rent for single room suite
Then 1,04,400 x=26,41,00,000 + $0.25 \times 1,04,400 x$
Or, $1,04,400 x=26,41,00,000+26,100 x$
$\therefore$ Or, 78,300 x = 26,41,00,000
Or, $x=3,373$
(iii) Rent to be charged for single room suite $=₹ 3,373$

Rentfordoubleroomssuites ₹ $3,373 \times 2.5=₹ 8,432.5$
Rent for triple rooms suites ₹ $3,373 \times 5=₹ 16,865$.

## Question 20

A transport company has $\mathbf{2 0}$ vehicles, the capacities are as follows:

| No. of Vehicles | Capacity per vehicle |
| :---: | :--- |
| 5 | 9 MT |
| 6 | 12 MT |
| 7 | 15 MT |
| 2 | 20 MT |

The company provides the goods transport service between stations ' $A$ ' to station ' $B$ '. Distance between these stations is 100 kilometers. Each vehicle makes one round trip per day on an average. Vehicles are loaded with an average of 90 per cent of capacity at the time of departure from station ' $A$ ' to station ' $B$ ' and at the time of return back loaded with 70 per cent of capacity. 10 per cent of vehicles are laid up for repairs every day. The following information is related to the month of August, 2020:

| Salary of Transport Manager | ₹ 60,000 |
| :---: | :---: |
| Salary of $\mathbf{3 0}$ drivers | ₹ 20,000 each driver |
| Wages of 25 Helpers | ₹ 12,000 each helper |
| Loading and unloading charges | ₹ 850 each trip |
| Consumable stores (depends on running of vehicles) | ₹ 1,35,000 |
| Insurance (Annual) | ₹ 8,40,000 |
| Road Licence (Annual) | ₹ 6,00,000 |
| Cost of Diesel per litre | ₹ 78 |
| Kilometres run per litre each vehicle | 5 Km . |
| Lubricant, Oil etc. | ₹ 1,15,000 |
| Cost of replacement of Tyres, Tubes, other parts etc. (on running basis) | ₹ 4,25,000 |
| Garage rent (Annual) | ₹ 9,00,000 |
| Routine mechanical services | ₹ 3,00,000 |
| Electricity charges (for office, garage and washing station) | ₹ 55,000 |
| Depreciation of vehicles (on time basis) | ₹ 6,00,000 |

There is a workshop attached to transport department which repairs these vehicles and othervehicles also. 40 per cent of transportmanager'ssalary is debited totheworkshop. The transport department has been apportioned ₹88,000 by the workshop during the month. During the month operation was for 25 days.
You are required:
(i) CALCULATE per ton-km operating cost.
(ii) DETERMINE the freight to be charged per ton-km, if the company earned a profit of $\mathbf{2 5}$ per cent on freight. (RTP Nov '20)
Answer 20
(i) Operating Cost Sheet for the month of August, 2020

| Particulars |  | Amount (₹) |
| :---: | :---: | :---: |
| A. | Fixed Charges: |  |
|  | Manager's salary ( $₹ 60,000 \times 60 \%$ ) | 36,000 |
|  | Drivers' Salary (₹20,000 $\times 30$ drivers) | 6,00,000 |
|  | Helpers' wages ( $₹ 12,000 \times 25$ helpers) | 3,00,000 |
|  | Insurance ( $₹ 8,40,000 \div 12$ months) | 70,000 |
|  | Road licence ( $₹ 6,00,000 \div 12$ months) | 50,000 |
|  | Garage rent (₹9,00,000 $\div 12$ months) | 75,000 |
|  | Routine mechanical services | 3,00,000 |
|  | Electricity charges (for office, garage and washing station) | 55,000 |
|  | Depreciation of vehicles | 6,00,000 |
|  | Apportioned workshop expenses | 88,000 |
|  | Total (A) | 21,74,000 |
| B. | Variable Charges: |  |
|  | Loading and unloading charges (Working Note 1) | 7,65,000 |
|  | Consumable Stores | 1,35,000 |
|  | Cost of diesel (Working Note 2) | 14,04,000 |
|  | Lubricant, Oil etc. | 1,15,000 |


|  | Replacement of Tyres, Tubes \& other parts | $4,25,000$ |
| :--- | :--- | :--- |
|  | Total (B) | $28,44,000$ |
| C. | Total Cost (A + B) | $50,18,000$ |
| D. | Total Ton-Kms. (Working Note 3) | $9,43,200$ |
| E. | Cost per ton-km. (C $\div$ D) | 5.32 |

(ii) Calculation of Chargeable Freight

| Cost per ton-km. | ₹ 5.32 |
| :--- | :---: |
| Add: Profit @ 25\% on freight or 331⁄3\% on cost | ₹ 1.77 |
| Chargeable freight per ton-km. | $₹ 7.09$ |

## Working Notes:

1. Wages paid to loading and unloading labours

Numbers of vehicles available per day $\times$ No. of days $\times$ trips $\times$ wages per trip ( 20 vehicles $\times 90 \%$ ) $\times 25$ days
$\times 2$ trips $\times$ ₹ 850
$18 \times 25 \times 2 \times 850=₹ 7,65,000$

## 2. Cost of Diesel:

Distance covered by each vehicle during August, 2020
$=100 \mathrm{k} . \mathrm{m} . \times 2 \times 25$ days $\times 90 \%=4,500 \mathrm{~km}$.
Consumption of diesel $=\frac{4,500 \mathrm{~K} . \mathrm{M} . \times 20 \text { Vehicles }}{5 \mathrm{~K} . \mathrm{m} .}=18,000$ litres
Cost of Diesel $=18,000$ litres $\times$ Rs. $78=$ Rs. 14,04,000
Calculation of Total ton-km:
Total Ton-Km. = Total Capacity $\times$ Distance covered by each vehicle $\times$ Average Capacity Utilisation ratio.
$=[(5 \times 9 \mathrm{MT})+(6 \times 12 \mathrm{MT})+(7 \times 15 \mathrm{MT})+(2 \times 20 \mathrm{MT})] \times 4,500 \mathrm{~K} . \mathrm{m} . \times \frac{(90 \%+70 \%)}{2}$
$=(45+72+105+40) \times 4,500$ k.m. $\times 80 \%$
$=262 \times 4,500 \times 80 \%$.
$=9,43,200$ ton -km .

## Question 21

VPS is a public school having 25 buses each plying in different directions for the transport of its school students. In view of large number of students availing of the bus service, the buses work two shifts daily both in the morning and in the afternoon. The buses are garaged in the school. The workload of the students has been so arranged that in the morning, the first trip picks up senior students and the second trip plying an hour later picks up junior students. Similarly, in the afternoon, the first trip takes the junior students and an hour later the second trip takes the senior students home.
The distance travelled by each bus, one way is $\mathbf{8 k m}$. The school works 22 days in a month and remains closed for vacation in May and June. The bus fee, however, is payable by the students for all the $\mathbf{1 2}$ months in a year.

The details of expenses for a year are as under:
Driver's salary - payable for all the 12 in months
Cleaner's salary payable for all the 12 months
fees, taxes etc.
Insurance Premium
Repairs and Maintenance
Purchase price of the bus
$₹ 12,000$ per month per driver
₹ 8,000 per month per cleaner License
₹ 8,400 per bus per annum
$₹ 15,600$ per bus per annum
₹ $\mathbf{2 0 , 5 0 0}$ per bus per annum
₹ 20,00,000 each

VIVITSU

Life of the bus
Scrap value
Diesel Cost

16 years
₹ $1,60,000$
₹ 78.50 per litre

Each bus gives an average of $5 \mathbf{k m}$. per litre of diesel. The seating capacity of each bus is $\mathbf{4 0}$ students.
The school follows differential transportation fees based on distance travelled as under:

| Students picked up and dropped <br> within the range of distance from the <br> school | Transportation <br> fee | Percentage of <br> students availing <br> this facility |
| :---: | :---: | :---: |
| 2 km. | $25 \%$ of Full | $15 \%$ |
| 4 km. | $50 \%$ of Full | $30 \%$ |
| 8 km. | Full | $55 \%$ |

Due to a pandemic, lockdown imposed on schools and the school remained closed from April 2020 to December 2020. Drivers and cleaners were paid $75 \%$ of their salary during the lockdown period. Repairing cost reduced to 75\% for the year 2020.
Ignore the interest cost.
Required:
(i) PREPARE a statement showing the expenses of operating a single bus and the fleet of $\mathbf{2 5}$ buses for a year.
(ii) FIND OUT transportation fee per student per month in respect of:
(a) Students coming from a distance of upto 2 km . from the school.
(b) Students coming from a distance of upto 4 km . from the school; and
(c) Students coming from a distance of upto 8 km . from the school.
(iii) CALCULATE the minimum bus fare that has to be recovered from the students for the year 2020. (RTP May '21, Old \& New SM)

## Answer 21

(i) Statement showing the expenses of operating a singlebus and the fleet of $\mathbf{2 5}$ buses for a year

| Particulars | PerbusFleet of 25 <br> per annum <br> buses per <br> (₹) | annum <br> (₹) |
| :--- | :--- | :--- |
| Running costs : (A) | $2,21,056$ | $55,26,400$ |
| Diesel (Refer to working note 1) | 20,500 | $5,12,500$ |
| Repairs \& maintenance costs: (B) |  |  |
| Fixed charges: | $1,44,000$ | $36,00,000$ |
| Driver's salary <br> (₹ $12,000 \times 12$ months) | 96,000 | $24,00,000$ |
| Cleaners salary <br> (₹ 8,000 $\times 12$ months) | 8,400 | $2,10,000$ |
| Licence fee, taxes etc. | 15,600 | $3,90,000$ |
| Insurance |  |  |
| Depreciation | $1,15,000$ | $28,75,000$ |
|  | $3,79,000$ | $94,75,000$ |
| Rs. 20,00,000 - Rs. 1,60,000 $)$ | $6,20,556$ | $1,55,13,900$ |
| Total fixed charges: (C) |  |  |
| Total expenses: (A+B+C) |  |  |

(ii) Average cost per student per month in respect of students coming from a distance of:
$\left.\begin{array}{|ll|l|}\hline \text { (a) } 2 \mathrm{~km} \text {. from the school \{₹ 6,20,556 / (236 students } \times 12 & \text { ₹ } 219.12 \\ \text { months) }(\text { Refer to Working Note 2) }\end{array}\right]$
(iii) Calculation of minimum bus fare to be recovered from the students during the year 2020:

Statement showing the expenses of operating a single bus in year 2020

| Particulars | Per bus per annum (₹) |
| :---: | :---: |
| Running costs : (A) | 66,316.80 |
| Diesel (Refer to working note 3) |  |
| Repairs \& maintenance costs: (B) $\text { (₹ } 20,500 \times 0.75)$ | 15,375 |
| Fixed charges: |  |
| Driver's salary <br> $\{₹ 12,000 \times 3$ months $+(75 \%$ of $₹ 12,000 \times 9$ months $)\}$ | 1,17,000 |
| Cleaners salary <br> $\{₹ 8,000 \times 3$ months $+(75 \%$ of ₹ $8,000 \times 9$ months $)\}$ | 78,000 |
| Licence fee, taxes etc. | 8,400 |
| Insurance | 15,600 |
| Depreciation $\left(\frac{\text { Rs. } 20,00,000-\text { Rs. } 1,60,000}{16 \text { years }}\right)$ | 1,15,000 |
| Total fixed charges: (C) | 3,34,000 |
| Total expenses: $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ | 4,15,691.80 |

Minimum bus fare to be recovered:
$\left.\begin{array}{|ll|l|}\hline \text { (a) } 2 \mathrm{~km} \text {. from the school }\{₹ 4,15,691.8 /(236 \text { students } \times 12 \text { months) }\} & ₹ 146.78 \\ \text { (Refer to Working Note 2) }\end{array}\right]$

## Working Notes:

1. Calculation of diesel cost per bus:

| No. of trips made by a bus each day | 4 |
| :--- | :--- |
| Distance travelled in one trip both ways ( $8 \mathrm{~km} . \times 2$ trips) | 16 km. |
| Distance travelled per day by a bus ( $16 \mathrm{~km} . \times 4$ shifts) | 64 km. |
| Distance travelled during a month $(64 \mathrm{~km} . \times 22$ days) | $1,408 \mathrm{~km}$. |
| Distance travelled per year (1,408 $\times 10$ months) | $14,080 \mathrm{~km}$. |
| No. of litres of diesel required per bus per year | 2,816 litres |
| $(14,080 \mathrm{~km} . \div 5 \mathrm{~km})$. | $₹ 2,21,056$ |
| Cost of diesel per bus per year $(2,816$ litres $\times ₹ 78.50)$ |  |

2. Calculation of equivalent number of students per bus:

| Bus capacity of 2 trips (40 students $\times 2$ trips) | 80 students |
| :--- | :--- |
| $1 / 4^{\text {th }}$ fare students ( $15 \% \times 80$ students) | 12 students |


| $1 / 2$ fare students ( $30 \% \times 80$ students $\times 2$ ) (equivalent to $1 / 4^{\text {th }}$ fare students) | 48 students |
| :---: | :---: |
| Full fare students $\left(55 \% \times 80\right.$ students $\times 4$ ) (equivalent to $1 / 4^{\text {th }}$ fare students) | 176 students |
| Total students equivalent to $1 / 4^{\text {th }}$ fare students | 236 students |

3. Calculation of diesel cost per bus in Year 2020:

| Distance travelled during a month (64 km. $\times 22$ days) | $1,408 \mathrm{~km}$. |
| :--- | :--- |
| Distance travelled during the year $2020(1,408 \times 3$ months $)$ | $4,224 \mathrm{~km}$. |
| No. of litres of diesel required per bus per year | 844.8 litres |
| $(4,224 \mathrm{~km} . \div 5 \mathrm{~km})$. |  |
| Cost of diesel per bus per year (844.8 litres $\times ₹ 78.50)$ | $₹ 66,316.80$ |

## Question 22

Mr. PS owns a bus which runs according to the following schedule:

| (i) | Delhi to Hisar and back, the same day |  |
| :---: | :---: | :---: |
|  | Distance covered: | 160 km. one way |
|  | Number of days run each month: | 9 |
|  | Seating capacity occupied | 90\%. |
| (ii) | Delhi to Aligarh and back, the same day |  |
|  | Distance covered: | 160 km. one way |
|  | Number of days run each month: | 12 |
|  | Seating capacity occupied | 95\% |
| (iii) | Delhi to Alwar and back, the same day |  |
|  | Distance covered: | 170 km. one way |
|  | Number of days run each month: | 6 |
|  | Seating capacity occupied | 100\% |
| (iv) | Following are the other details: |  |
|  | Cost of the bus | ₹ 15,00,000 |
|  | Salary of the Driver | ₹ 30,000 p.m. |
|  | Salary of the Conductor | ₹ 26,000 p.m. |
|  | Salary of the part-time Accountant | ₹ 7,000 p.m. |
|  | Insurance of the bus | ₹ 6,000 p.a. |
|  | Diesel consumption 5 km . per litre at | ₹ 90 per litre |
|  | Road tax | ₹ 21,912 p.a. |
|  | Lubricant oil | ₹ 30 per 100 km. |
|  | Permit fee | ₹ 500 p.m. |
|  | Repairs and maintenance | ₹ 5,000 p.m. |
|  | Depreciation of the bus | @ 30\% p.a. |
|  | Seating capacity of the bus | 50 persons |

Passenger tax is 20\% of the total takings.
CALCULATE the bus fare to be charged from each passenger to earn a profit of $30 \%$ on total takings. The fares are to be indicated per passenger for the journeys: (i) Delhi to Hisar (ii) Delhi to Aligarh and (iii) Delhi to Alwar. (RTP Nov '21)

## Answer 22

Working Notes:

1. Total Distance (in km.) covered per month

| Bus route | Km. per trip | Trips per day | Days per <br> month | Km. per <br> month |
| :--- | :--- | :--- | :--- | :--- |
| Delhi to Hisar | 160 | 2 | 9 | 2,880 |
| Delhi to Aligarh | 160 | 2 | 12 | 3,840 |
| Delhi to Alwar | 170 | 2 | 6 | 2,040 |
| Total |  |  | 8,760 |  |

## 2. Passenger- km. per month

|  | ```Total seats available per month (at 100% capacity)``` | Capacity utilised |  | Km. <br> per <br> trip | PassengerKm. per month |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (\%) | Seats |  |  |
| Delhi to Hisar Back | $\begin{aligned} & \& 900 \\ & (50 \text { seats X } 2 \text { trips X } 9 \\ & \text { days }) \end{aligned}$ | 90 | 810 | 160 | $\begin{aligned} & 1,29,600 \\ & (810 \text { seats } \times \\ & 160 \mathrm{~km} .) \end{aligned}$ |
| Delhi to Aligarh Back | $\begin{aligned} & \& 1,200 \\ & (50 \text { seats X } 2 \text { trips X } 12 \\ & \text { days) } \end{aligned}$ | 95 | 1,140 | 160 | $\begin{aligned} & 1,82,400 \\ & (1,140 \text { seats } \\ & \times 160 \mathrm{~km} .) \end{aligned}$ |
| Delhi to Alwar Back | $\begin{aligned} & \& 600 \\ & (50 \text { seats } \times 2 \text { trips X } 6 \\ & \text { days }) \end{aligned}$ | 100 | 600 | 170 | $\begin{aligned} & 1,02,000 \\ & (600 \text { seats } \times \\ & 170 \mathrm{~km} .) \end{aligned}$ |
| Total |  |  |  |  | 4,14,000 |

Monthly Operating Cost Statement

| Particulars | (₹) | (₹) |
| :--- | :--- | :--- |
| (i) Running Costs |  |  |
| Diesel $\{(8,760 \mathrm{~km} / 5 \mathrm{~km}) \times ₹ 90\}$ | $1,57,680.00$ |  |
| Lubricant oil $\{(8,760 \mathrm{~km} / 100) \times$ ₹ 30$\}$ | $2,628.00$ | $1,60,308.00$ |
| (ii) Maintenance Costs |  |  |
| $\quad$ Repairs \& Maintenance |  | $5,000.00$ |
| (iii) Standing charges | $30,000.00$ |  |
| Salary to driver | $26,000.00$ |  |
| Salary to conductor | $7,000.00$ |  |
| Salary of part-time accountant | 500.00 |  |
| $\quad$ Insurance (₹ 6,000 $\div 12)$ | $1,826.00$ |  |
| $\quad$ Road tax (₹ 21,912 $\div 12)$ | 500.00 |  |
| Permit fee | $37,500.00$ | $1,03,326.00$ |
| Depreciation $\{(₹ 15,00,000 \times 30 \%) / 12\}$ | $2,68,634.00$ |  |
| Total costs per month before Passenger Tax (i)+(ii)+(iii) |  | $1,07,453.60$ |
| Passenger Tax* |  | $3,76,087.60$ |
| Total Cost |  | $1,61,180.40$ |
| Add: Profit* |  | $5,268.00$ |
| Total takings per month |  |  |

* Let total takings be $X$ then,
$\mathrm{X}=$ Total costs per month before passenger tax +0.2 X (passenger tax) +0.3 X (profit) X $=₹ 2,68,634+0.2 X+0.3 X$
$0.5 X=₹ 2,68,634$ or, $X=₹ 5,37,268$

Passenger Tax = 20\% of ₹ 5,37,268 = ₹ 1,07,453.60 Profit
$=30 \%$ of $₹ 5,37,268=₹$

## 1,61,180.40

Calculation of Rate per passenger km. and fares to be charged for different routes
Rate per Passenger-Km. = Total takings per month / Total Passenger - Km.per month

$$
\text { = Rs. 5,37,268 / 4,14,000 Passenger -Km. = Rs. } 1.30 \text { (approx.) }
$$

Bus fare to be charged per passenger:

| Delhi to Hisar | $=$ | $₹ 1.30 \times 160 \mathrm{~km}$ | $=$ |
| :--- | :--- | :--- | :--- |
| $₹ 208.00$ |  |  |  |
| Delhi to Aligarh | $=$ | $₹ 1.30 \times 160 \mathrm{~km}=$ | $₹ 208.00$ |
| Delhi to Alwar | $=$ | $₹ 1.30 \times 170 \mathrm{~km}=$ | $₹ 221.00$ |

## Question 23

Royal Transport Services runs fleet of buses within the limits of Jaipur city. The following are the details which were incurred by the company during October, 2021:

|  | (₹) |
| :--- | ---: |
| Cost of each Bus | $\mathbf{2 4 , 0 0 , 0 0 0}$ |
| Garage Rent | $\mathbf{1 , 0 0 , 0 0 0}$ |
| Insurance | $\mathbf{2 5 , 0 0 0}$ |
| Road tax | $\mathbf{2 0 , 0 0 0}$ |
| Manager's Salary | $\mathbf{6 0 , 0 0 0}$ |
| Assistant's Salary (Two) | $\mathbf{3 2 , 0 0 0}$ each |
| Supervisor's Salary (Three) | $\mathbf{2 4 , 0 0 0}$ each |
| Driver's Salary (Twenty-Five) | $\mathbf{2 0 , 0 0 0}$ each |
| Cleaner's Salary (Twenty) | $\mathbf{5 , 0 0 0}$ each |
| Office Staff's Salary | $\mathbf{1 , 0 0 , 0 0 0}$ |
| Consumables | $\mathbf{1 , 2 0 , 0 0 0}$ |
| Repairs \& Maintenance | $\mathbf{9 0 , 0 0 0}$ |
| Other Fixed Expenses | $\mathbf{7 2 , 0 0 0}$ |
| Diesel (10 Kms per Litre) | $\mathbf{8 0}$ per litre |
| Oils \& Lubricants | $\mathbf{1 , 4 5 , 0 0 0}$ |

Tyres and tubes 35,000
Depreciation 10\% p.a. on Cost Other details are as below:
Capacity
Buses 60 Passengers
13Buses 50 Passengers
Each bus makes 4 round trips a day covering a distance of 10 Kilometers in each trip (One Way) on an average. During the trips $80 \%$ of the seats are occupied. The annual records show that 5 buses are generally required to be kept away from roods each day for repairs.
You are required to CALCULATE cost per passenger-km. Cost sheet to be prepared on the basis of 25 buses. (RTP Nov’22)

## Answer 23

Operating Cost Sheet

| Particulars | Amount (₹) | Amount (₹) |
| :--- | :--- | :--- |
| Standing Charges: |  |  |
| Depreciation (₹ $24,00,000 \times 10 \% \times 1 / 12 \times 25$ ) | $5,00,000$ |  |
| Garage Rent | $1,00,000$ |  |
| Insurance Road Tax | 25,000 |  |
| Manager's Salary |  |  |


| Assistant's Salary (₹ $32,000 \times 2$ ) | 20,000 |  |
| :--- | :--- | :---: |
| Supervisor's Salary (₹ 24,000 X 3) | 60,000 |  |
| Driver's Salary (₹ $20,000 \times 25$ ) | 64,000 |  |
| Cleaner's Salary (₹ 5,000 X 20) | 72,000 |  |
| Office Staff's Salary | $5,00,000$ |  |
| Consumables | $1,00,000$ |  |
| Repairs \& Maintenance | $1,00,000$ |  |
| Other Fixed Expenses | $1,20,000$ | $18,23,000$ |
|  | 90,000 |  |
| Running Charges | 72,000 |  |
| Diesel (49,600 Kms / 10 Kms X ₹ 80 per unit) | $3,96,800$ | $1,45,000$ |
| Oils \& Lubricants | 35,000 | $\mathbf{5 , 7 6 , 8 0 0}$ |
| Tyres and tubes | $\mathbf{2 3 , 9 9 , 8 0 0}$ |  |
| Total Operating Cost |  |  |

Cost per passenger-km $=\frac{\text { Total Operating Cost }}{\text { Passenger }-\mathrm{kms}}$

$$
=\frac{23,99,800}{27,18,080}=0.883
$$

## Working Note:

Calculation of Total Kilometers and Passenger Kilometers

| Specification | Total Km. | Passenger-Km. |
| :--- | :--- | :--- |
| 12 Buses (60 Passengers) | $29,760 \mathrm{Kms}$ | $14,28,480$ |
|  | $(10 \mathrm{Kms} \times 4 \times 2$ trips $\times 31$ days <br> $\times 12$ Buses) | $(29760 \mathrm{Kms} \times 60$ Pass. x <br> $80 \%)$ |
| 13 Buses (50 Passengers) | $32,240 \mathrm{Kms}$ | $12,89,600$ |
|  | $(10 \mathrm{Kms} \times 4 \times 2$ trips $\times 31$ days | $(32240 \mathrm{Kms} \times 50$ Pass. x |
|  | $\times 13$ Buses) | $80 \%)$ |
| Total | 62,000 | $27,18,080$ |

Since 5 buses out of 25 buses are kept for repairs every day
Actual total Km. $62,000 \times 20 / 25=49,600$

## Question 24

Health Wealth Hospital is interested in estimating the cost for each patient stay. The hospital offers general health care facility i.e. only basic services.(RTP Nov’22)

You are required to:
(i) CLASSIFY each of the following costs as either direct or indirect with respect to each patient.
(ii) CLASSIFY each of the following costs as either fixed or variable with respect to hospital costs per day.

|  | Direct | Indirect | Fixed | Variable |
| :--- | :--- | :--- | :--- | :--- |
| Electronic monitoring |  |  |  |  |
| Meals for patients |  |  |  |  |
| Nurses' salaries | - |  |  |  |
| Parking maintenance |  |  |  |  |
| Security |  |  |  |  |

## Answer 24

a)

| Item | Direct | Indirect | Fixed | Variable |
| :--- | :--- | :--- | :--- | :--- |


| Electronic monitoring | YES |  |  | YES |
| :--- | :--- | :--- | :--- | :--- |
| Meals for patients | YES |  |  | YES |
| Nurses' salaries |  | YES | YES |  |
| Parking maintenance |  | YES | YES |  |
| Security |  | YES | YES |  |

## Question 25

PREPARE cost statement of Panipat Thermal Power Station showing the cost of electricity generated per kwh, from the following data.

| Total units generated | $16,50,000 \mathrm{kWh}$ |
| :--- | :--- |
|  | () |
| Operating labour | $21,75,000$ |
| Repairs \& maintenance | $7,25,000$ |
| Lubricants, spares and stores | $5,80,000$ |
| Plant supervision | $4,35,000$ |
| Administration overheads | $29,00,000$ |
| Insurance Charges | $15,00,000$ |
| Fuel Charges | $8,00,000$ |

7 kWh . of electricity generated per kg. of coal consumed @ `4.75 per kg. Depreciation charges @ 5\% on capital cost of `3,10,00,000. (RTP May 23) (Same concept different figures Old \& New SM)
Answer 25
Total units generated 16,50,000 kWh.
Cost Statement of Panipat Thermal Power Station

|  | Per annum (`) & Per kWh. (`) |  |
| :--- | :--- | :--- |
| Fixed costs: |  |  |
| Plant supervision | $4,35,000$ |  |
| Administration overheads | $29,00,000$ |  |
| Insurance Charges | $15,00,000$ |  |
| Depreciation (5\% of ` 3,10,00,000 p.a.) | $15,50,000$ |  |
| Total fixed cost: (A) | $63,85,000$ | 3.87 |
| Variable costs: |  |  |
| Operating labour | $21,75,000$ |  |
| Fuel Charges | $8,00,000$ |  |
| Lubricants, spares and stores | $5,80,000$ |  |
| Repairs \& maintenance | $7,25,000$ |  |
| Coal cost (Refer to working note) | $11,19,643$ |  |
| Total variable cost: (B) | $53,99,643$ | 3.27 |
| Total cost [(A) + (B)] | $1,17,84,643$ | 7.14 |

## Working Note:

Coal cost $(16,50,000 \mathrm{kWh} . \div 7 \mathrm{kWh}) \times$|  |
| :---: | 75 per kg. $=` 11,19,643$

## Question 26

Describe Composite Cost unit as used in Service Costing and discuss the ways of computing it. (PYP Nov'19,5 Marks)

Composite Cost Unit: Sometime two measurement units are combined together to know the cost of service or operation. These are called composite cost units. For example, a public transportation undertaking would measure the operating cost per passenger per kilometer.

Examples of Composite units are Ton- km., Quintal- km, Passenger-km., Patient-day etc. Composite unit may be computed in two ways:
(i) Absolute (Weighted Average) basis.
(ii) Commercial (Simple Average) basis.

In both bases of computation of service cost unit, weightage is also given to qualitative factors rather quantitative (which are directly related with variable cost elements) factors alone.
(i) Weighted Average or Absolute basis - It is summation of the products of qualitative and quantitative factors. Forexample, to calculate absolute Ton-Kmforagoodstransport is calculated as follows.:

$$
\begin{gathered}
\sum(\text { Weight Carried } \times \text { Distance })_{1}+(\text { Weight Carried } \times \text { Distance })_{2} \\
+\ldots+(\text { Weight Carried } \times \text { Distance })_{\mathrm{n}}
\end{gathered}
$$

Similarly, in case of Cinema theatres, price for various classes of seats are fixed differently. For exampleFirst class seat may be provided with higher quality service and hence charged at a higher rate, whereasSecondClassseatmaybepricedless.Inthiscase, appropriateweightto be given effect for First Class seat and Second Class seat - to ensure proper cost per composite unit.
(ii) Simple Average or Commercial basis - It is the product of average qualitative and total quantitative factors. For example, in case of goods transport, Commercial Ton-Km is arrived at by multiplying total distance km., by average load quantity.
$\sum\left(\right.$ Distance $_{1}+$ Distance $_{2}+\ldots . \&+$ Distance $\left._{\mathrm{n}}\right) \times\left(\frac{\mathrm{W}_{1}+\mathrm{W}_{2}+\cdots \cdots \mathrm{W}_{\mathrm{n}}}{\mathrm{n}}\right)$
In both the example, variable cost is dependent of distance and is a quantitative factor. Since, the weight carried does not affect the variable cost hence and is a qualitative factor.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question based on composite cost unit. Performance of the examinees was below average.

## Question 27

X Ltd. distributes' its goods to a regional dealer using single lorry. The dealer premises are 40 kms away by road. The capacity of the lorry is 10 tonnes. The lorry makes the journey twice a day fully loaded on the outward journey and empty on return journey. The following information is available:

| Diesel Consumption | 8 km per litre |
| :---: | :---: |
| Diesel Cost | 60 per litre |
| Engine Oil | `200 per week \\ \hline Driver's Wages (fixed) & 2,500 per week \\ \hline Repairs & - 600 per week \\ \hline Garage Rent & 800 per week \\ \hline Cost of Lorry (excluding cost of tyres) & -9,50,000 \\ \hline Life of Lorry & 1,60,000 kms \\ \hline Insurance &`18,200 per annum |
| Cost of Tyres | 52,500 |
| Life of Tyres | 25,000 kms |
| Estimated sale value of the lorry at end of its life is | -1,50,000 |
| Vehicle License Cost | ` 7,800 per annum |

## Other Overhead Cost

` 41,600 per annum
The lorry operates on a 5 day week.

## Required :

(i) A statement to show the total cost of operating the vehicle for the four week period analysed into Running cost and Fixed cost.
(ii) Calculate the vehicle operating cost per km and per tonne km. (Assume 52 weeks in a year) (PYP May '19, 10 Marks)

## Answer 27

Working Notes:

| Particulars | For 4 weeks | For 1 week (by dividing <br> by 4) |
| :--- | :--- | :--- |
| Total distance travelled $(40 \mathrm{k} . \mathrm{m} \times 2$ <br> $\times 2$ trips $\times 5$ days $\times 4$ weeks) | $3,200 \mathrm{~km}$ | 800 km |
| Total tonne km (40 k.m $\times 10$ tonnes $\times 2$ <br> $\times 5$ days $\times 4$ weeks) | 16,000 tonne km | 4,000 tonne km |

## (i) Statement showing Operating Cost

Amount (')

*Cost of engine oil \& repairs may also be treated as fixed cost, as the question relates these with time i.e. in weeks instead of running of vehicle.

| (ii) Calculation of vehicle operating cost: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Operating cost per k.m. | $=$ | $\begin{array}{r} ` 68,320 / \\ 3,200 \mathrm{kms} \end{array}$ & or & $\begin{aligned} & ` 17,080 /=` 21.35 \\ & 800 \mathrm{Kms} \end{aligned}$  \hline Operating cost per Tonne-k.m. & $=$ & 68,320 / & or & 17,080 / = ` 4.27 |  |  |
|  |  | 16,000 |  | 4,000 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this practical question on 'Service Costing' students were required to calculate operating cost per km and per tonne km by preparing operating cost statement with the segregation of cost items in running and fixed cost. Performance of the examinees in this sub part of the question is good.

## Question 28

$\mathrm{M} / \mathrm{s}$ XY Travels has been given a $\mathbf{2 5} \mathbf{~ k m}$. long route to run an air- conditioned Mini Bus. The cost of bus is `\(\mathbf{2 0 , 0 0}, \mathbf{0 0 0}\). It has been insured @ \(3 \%\) premium per annum while annual road tax amounts to` 36,000 . Annual repairs will be `50,000 and the bus is likely to last for 5 years. The driver's salary will be`2,40,000 per annum and the conductor's salary will be ` \(1,80,000\) per annum in addition to \(10 \%\) of the takings as commission (to be shared by the driver and the conductor equally). Office and administration overheads will be` 18,000 per annum. Diesel and oil will be`1,500 per 100 km . The bus will make 4 round trips carrying on an average 40 passengers on each trip.
Assuming 25\% profit on takings and considering that the bus will run on an average $\mathbf{2 5}$ days in a month, you are required to:
(i) prepare operating cost sheet (for the month).
(ii) calculatefaretobechargedperpassenger km. (PYP Nov'18,10Marks)

## Answer 28

\begin{tabular}{|c|c|c|c|}
\hline (i) \& Statement showing the Operating Cost per Passenger-km. \& \& <br>
\hline \& \& Yearly (`) & Monthly (`) <br>

\hline \& | (A) Standing Charges: |
| :--- |
| Insurance Charge ` $20,00,000 \times 3 \%$ | \& \[

60,000
\] \& 5,000 <br>

\hline \& Road Tax \& 36,000 \& 3,000 <br>
\hline \& Depreciation (20,00,000/5) \& 4,00,000 \& 33,333.33 <br>
\hline \& Total \& 4,96,000 \& 41,333.33 <br>
\hline \& (B) Maintenance Charges: \& \& <br>
\hline \& Annual Repairs \& 50,000 \& 4166.67 <br>
\hline \& Office and administration overheads \& 3,18,000 \& 26,500 <br>
\hline \& Total \& 3,68,000 \& 30666.67 <br>
\hline \& (C) Running Cost/Charges: Driver's Salary \& 2,40,000 \& 20,000 <br>
\hline \& Conductor's Salary \& 1,80,000 \& 15,000 <br>
\hline \& Diesel \& Oil (60,000 $\times 1,500 / 100$ ) \& 9,00,000 \& 75,000 <br>
\hline \& Total \& 13,20,000 \& 41,333.33 <br>
\hline \& Total ( $\mathrm{A}+\mathrm{B}+\mathrm{C}$ ) Cost before commission and profit \& 21,84,000 \& 1,82,000 <br>
\hline \& Commission (33,60,000 $\times 10 \%$ ) (working note 2) \& 3,36,000 \& 28,000 <br>
\hline \& Profit (33,60,000 $\times 25 \%$ ) (working note 2) \& 8,40,000 \& 70,000 <br>
\hline \& Takings (working note 1) \& 33,60,000 \& 2,80,000 <br>
\hline
\end{tabular}

(ii) Fare per passenger - K. $\mathrm{m}=\frac{\text { Total Collection /Takings }}{\text { Total passenger }-\mathrm{km} \text { (working note } 3 \text { ) }}$ $\frac{33,60,000}{24,00,000}=$ Rs. 1.40

Fare per Passenger Km. $($ Monthly $)=\frac{2,80,000}{2,00,000}=$ Rs. 1.40
Working note :

1. Cost before commission (10\%) and profit (25\%) is $21,84,000$ which is $65 \%$ of total takings. So total takings is $(21,84000 \div 65) \times 100={ }^{`} 33,60,000$
2. Commission is $10 \%$ of ${ }^{`} 33,60,000=` 3,36,000$ and Profit is $25 \%$ of ${ }^{`} 33,60,000={ }^{`} 8,40,000$
3. Total Km is (4 Round Trips $\times$ Days in a month $\times$ Month $=(4 \times 2 \times 25 \times 25 \times 12)=60,000 \mathrm{~km}$ Passenger km is $60,000 \mathrm{~km} \times 40$ passenger $=24,00,000$.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem was related to Service Costing. A few number of examinees secured good marks. Some of the examinees failed to calculate passenger kilometres and lost three marks. Overall performance in this question was average.

## Question 29

A group of 'Health Care Services' has decided to establish a Critical Care Unit in a metro city with an investment of ` 85 lakhs in hospital equipments. The unit's capacity shall be of $\mathbf{5 0}$ beds and $\mathbf{1 0}$ more beds, if required, can be added. Other information for a year are as under:


## Answer 29

$$
\begin{array}{r}
\text { Number of Patient Days }=(200 \times 50)+(105 \times 30)+(60 \times 20) \\
=14,350 \text { patient days }+250=14,600
\end{array}
$$

## Statement Showing Profit

Elements of Costand Revenue
A. Revenue $\left(14,600 x^{`} 2,500\right)$

Variable Costs

| Food and Laundry Service | $39,53,000$ |
| :--- | :--- |
| Medicines to Patients | $22,75,000$ |


| Doctor's Payment | $66,00,000$ |
| :--- | :--- |
| Hire Charges of Bed $\left(250 \times{ }^{{fbff6bcf6-b990-43c0-bf47-38e8f4495106} \(50,000 \times 3 \times 12)$ | $18,00,000$ |
| Nurse's Salary (` \(18,000 \times 12 \times 24)\) & \(51,84,000\) \\ \hline Ward boy's Salary (` $9,000 \times 12 \times 24)$ | $25,92,000$ |
| Administrative Overheads | $28,00,000$ |
| Depreciation on Equipment's | $12,75,000$ |
|  | $1,63,51,000$ |
| D. $\quad$ Total Cost (B+C) | $2,94,16,500$ |
| E. Profit (A-D) | $70,83,500$ |

Profit per patient day $=` 70,83,500 / 14,600=` 485.17$
(i) Contribution (per patient day) $=(` 3,65,00,000-` 1,30,65,500) / 14,600=` 1,605.10 \mathrm{BEP}=$ $1,63,51,000 / 1,605 \cdot 10=10,186.90$ or say 10,187 patient days

## Notes:

1. Higher Charges for extra beds are a semi variable cost; still, for the sake of convenience it has been considered a variable cost.
2. Assumed, the hospital hired 250 beds at a charge of ` 950 per bed to accommodate the flow of patients. However, this never exceeded the 10 beds above the normal capacity of 50 beds on any day.
3. The fees were paid based on the number of patients attended to and the time spent by them, which on an average worked out to ${ }^{`} 5,50,000$ p.m.

## Question 30

SEZ Ltd. built a 120 km . long highway and now operates a toll road to collect tolls. The company has invested ` 900 crore to build the road and has estimated that a total of 120 crore vehicles will be using the highway during the 10 years toll collection tenure. The other costs for the month of "June 2020" are as follows:
(i) Salary:

- Collection personnel ( 3 shifts and 5 persons per shift) -` 200 per day per person.
- Supervisor ( 3 shifts and 2 persons per shift) - ` 350 per day per person.
- Security personnel ( 2 shifts and 2 persons per shift) - ` 200 per day per person.
- Toll Booth Manager ( 3 shifts and 1 person per shift) - `500 per day per person. (ii) Electricity -` 1,50,000
(iii) Telephone - $1,00,000$
(iv) Maintenance cost - ` 50 lakhs
(v) The company needs $30 \%$ profit over total cost.

Required:
(1) Calculate cost per kilometre.
(2) Calculate the toll rate per vehicle. (PYP 10 Marks Nov 20, Old \& New SM)

Answer 30

| Particulars |  | () |
| :---: | :---: | :---: |
| A. Apportionment of capital cost | $\left(\frac{\text { Rs. } 900 \text { crore }}{10 \text { Years }} \times \frac{1}{12 \text { months }}\right)$ | 7,50,00,000 |
| B. Other Costs |  |  |
| Salary to Collection Personnel | \[ \begin{aligned} |  (  3  Shifts  \times 5  persons per shift  \times 30  days  |
|  | \times `200 \text { per day) } \end{aligned} \] & 90,000 \\ \hline Salary to Supervisor & \begin{tabular}{l} ( 3 Shifts \(\times 2\) persons per shift \(\times 30\) days \\ \(\times\)` 350 per day) |  | \& 63,000 <br>

\hline Salary to Security

Personnel \& | ( 2 Shifts $\times 2$ persons per shift $\times 30$ days |
| :--- |
| $\times{ }^{`} 200$ per day) | \& 24,000 <br>

\hline Salary to Toll Booth Manager \& $$
\begin{aligned}
& \text { ( } 3 \text { Shifts } \times 1 \text { person per shift } \times 30 \text { days } \\
& \times{ }^{`} 500 \text { per day) }
\end{aligned}
$$ \& 45,000 <br>

\hline \multicolumn{2}{|l|}{Electricity} \& 1,50,000 <br>
\hline \multicolumn{2}{|l|}{Telephone} \& 1,00,000 <br>
\hline \& \& 4,72,000 <br>
\hline C. Maintenance cost \& \& 50,00,000 <br>
\hline Total ( $\mathrm{A}+\mathrm{B}+\mathrm{C}$ ) \& \& 8,04,72,000 <br>
\hline
\end{tabular}

(1) Calculation of cost per kilometer:

$$
=\frac{\text { Total Cost }}{\text { Total Km. }}=\frac{\text { Rs. } 8,04,72,000}{120 \mathrm{~km} .}=\text { Rs. } 6,70,600
$$

(2) Calculation of toll rate per vehicle:

$$
=\frac{\text { Total Cost }+25 \% \text { Profit }}{\text { Vehicles per month }}=\frac{\text { Rs. } 8,04,72,000+\text { Rs. } 2,41,41,600}{1,00,00,000 \text { vehicles }}=\text { Rs. } 10.46
$$

## Working :

Vehicles per month $=\frac{\text { Total estimated vehicles }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { months }}$
$=\frac{120 \text { crore }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { months }}=1$ Crore vehicles

## Question 31

A machine shop has 8 identical machines manned by 6 operators. The machine cannot work without an operator wholly engaged on it. The original cost of all the 8 machines works out to ${ }^{`} 32,00,000$. The following particulars are furnished for a six months period:

| Normal available hours per month per operator | 208 |
| :--- | :--- |
| Absenteeism (without pay) hours per operator | 18 |
| Leave (with pay) hours per operator | 20 |
| Normal unavoidable idle time-hours per operator | 10 |
| Average rate of wages per day of 8 hours per <br> operator | 100 |
| Production bonus estimated | $10 \%$ on wages |
| Power consumed | 40,250 |
| Supervision and Indirect Labour | 16,500 |
| Lighting and Electricity | 6,000 |

The following particulars are given for a year:

| Insurance | ${fdfdd8301-eb84-49b5-9106-46b4306519f2} \mathbf{5 0 , 0 0 0}$ |
| :--- | :--- |

Repairs and Maintenance (including consumables): 5\% of the value of all the machines. Prepare a statement showing the comprehensive machine hour rate for the machine shop.(PYP 5 Marks Jan '21)

## Answer 31

Workings:

| Particulars | Six months 6 <br> operators (Hours) |
| :--- | :--- |
| Normal available hours per month ( $208 \times 6$ months $\times 6$ operators) | 7,488 |
| Less: Absenteeism hours ( $18 \times 6$ operators) | $(108)$ |
| Paid hours (A) | 7,380 |
| Less: Leave hours (20 x 6 operators) | $(120)$ |
| Less: Normal idle time (10 $\times 6$ operators) | $(60)$ |
| Effective working hours | $\mathbf{7 , 2 0 0}$ |

2021 Computation of Comprehensive Machine Hour Rate

| Particulars | { Amount for six months (`) } \\ \hline Operators' wages (7,380/8 x100) & 92,250 \\ \hline Production bonus (10\% on wages) & 9,225 \\ \hline Power consumed & 40,250 \\ \hline Supervision and indirect labour & 16,500 \\ \hline Lighting and Electricity & 6,000 \\ \hline Repair and maintenance \(\{(5 \% \times ` 32,00,000) / 2\}\) | 80,000 |
| :--- | :--- | :---: |
| Insurance (` 3,60,000/2) & \(1,80,000\) \\ \hline Depreciation \(\{\) (` 32,00,000 $\times 10 \%) / 2\}^{\text {Sundry Work expenses ({f231ee154-581b-4719-8f88-79f46eced393}5,00,000/2) & 25,000 \\ \hline Total Overheads for 6 months & \(2,50,000$ |  |  |
| Comprehensive Machine Hour Rate $=$ <br> $\mathbf{8 , 5 9 , 2 2 5 / 7 , 2 0 0 ~ h o u r s ~}$ | $\mathbf{8 , 5 9 , 2 2 5}$ |  |

(Note: Machine hour rate may be calculated alternatively. Further, presentation of figures may also be done on monthly or annual basis.)

## Question 32

ABC Health care runs an Intensive Medical Care Unit. For this purpose, it has hired a building at a rent of ` 50,000 per month with the agreement to bear the repairs and maintenance charges also.

The unit consists of 100 beds and 5 more beds can comfortably be accommodated when the situation demands. Though the unit is open for patients all the 365 days in a year, scrutiny of accounts for the year $\mathbf{2 0 2 0}$ reveals that only for $\mathbf{1 2 0}$ days in the year, the unit had the full capacity of $\mathbf{1 0 0}$ patients per day and for another 80 days, it had, on an average only 40 beds occupied per day. But, there were occasions when the beds were full, extra beds were hired at a charge of ` 50 per bed per day. This did not come to more than 5 beds above the normal capacity on any one day. The total hire charges for the extra beds incurred for the whole year amounted to ${ }^{\mathbf{2 0}} \mathbf{2 0} 00$.

The unit engaged expert doctors from outside to attend on the patients and the fees were paid on the basis of the number of patients attended and time spent by them which on an average worked out to - 30,000 per month in the year 2020.

The permanent staff expenses and other expenses of the unit were as follows:

|  |  |
| :--- | :--- |
| 2 Supervisors each at a per month salary of | 5,000 |


| 4 Nurses each at a per month salary of | 3,000 |
| :--- | :--- |
| 2 Ward boys each at a per month salary of | 1,500 |
| Other Expenses for the year were as under: |  |
| Repairs and Maintenance | 28,000 |
| Food supplied to patients | $4,40,000$ |
| Caretaker and Other services for patients | $1,25,000$ |
| Laundry charges for bed linen | $1,40,000$ |
| Medicines supplied | $2,80,000$ |
| Cost of Oxygen etc. other than directly borne for treatment of patients | $\mathbf{7 5 , 0 0 0}$ |
| General Administration Charges allocated to the unit | $\mathbf{7 1 , 0 0 0}$ |

Required:
(i) What is the profit per patient day made by the unit in the year 2020, if the unit recovered an overall amount of ` $\mathbf{2 0 0}$ per day on an average from each patient.
(ii) The unit wants to work on a budget for the year 2021, but the number of patients requiring medical care is a very uncertain factor. Assuming that same revenue and expenses prevail in the year 2021 in the first instance, work out the number of patient days required by the unit to break even. (PYP 10 Marks Jan 21)
Answer 32

## Workings:

Calculation of number of Patient days

| 100 Beds $\times 120$ days | $=$ | 12000 |
| :--- | :--- | :--- |
| 40 Beds $\times 80$ days | $=$ | 3,200 |
| Extra beds | $=$ | 400 |
| Total | $=$ | 15,600 |

(i)

Statement of Profitability

| Particulars | Amount (`) & Amount (') \\ \hline Income for the year (` 200 per patient per day $\times 15,600$ patient days) |  | 31,20,000 |
| :---: | :---: | :---: | :---: |
| Variable Costs: |  |  |  |
| Doctor Fees (` 30,000 per month \(\times 12\) ) & 3,60,000 & \\ \hline Food to Patients (Variable) & 4,40,000 & \\ \hline Caretaker Other services to patients (Variable) & 1,25,000 & \\ \hline Laundry charges (Variable) & 1,40,000 & \\ \hline Medicines (Variable) & 2,80,000 & \\ \hline Bed Hire Charges (` $50 \times 400$ Beds) | 20,000 |  |  |
| Total Variable costs |  | (13,65,000) |  |
| Contribution |  | 17,55,000 |  |
| Fixed Costs: |  |  |  |
| Rent (` 50,000 per month \(\times 12\) ) & 6,00,000 & \\ \hline Supervisor ( 2 persons \(\times \times 5,000 \times 12\) ) & 1,20,000 & \\ \hline Nurses (4 persons \(\times{ }^{`} 3,000 \times 12\) ) | 1,44,000 |  |  |
| Ward Boys ( 2 persons x $1500 \times 12$ ) | 36,000 |  |  |
| Repairs (Fixed) | 28,000 |  |  |
| Cost of Oxygen | 75,000 |  |  |
| Administration expenses allocated | 71,000 |  |  |
| Total Fixed Costs |  | (10,74,000) |  |
| Profit |  | 6,81,000 |  |

Calculation of Contribution and profit per Patient day
Total Contribution $=` 17,55,000$

Total Patient days $=15,600$ days
Contribution per Patient day $=` 17,55,000 / 15,600$ days =` 112.50 Total Profit

|  | $={f9f9a2a5d-2d8f-4e94-837b-cfd7360c8545} 6,81,000 / 15,600$ days $=` 43.65$ |
| :---: | :---: |

(ii) Breakeven Point = Fixed Cost / Contribution per Patient day

$$
\begin{gathered}
=` 10,74,000 / ` 112.50 \\
=9,547 \text { patient days }
\end{gathered}
$$

## Question 33

What do you understand by Build-Operate-Transfer (BOT) approach in Service Costing? How is the Toll rate computed? (PYP 5 Marks July 21)

## Answer 33

Build-Operate-Transfer (BOT) Approach: In recent years a growing trend emerged among Governments in many countries to solicit investments for public projects from the private sector under BOT scheme. BOT is an option for the Government to outsource public projects to the private sector. With BOT, the private sector designs, finances, constructs and operate the facility and eventually, after specified concession period, the ownership is transferred to the Government. Therefore, BOT can be seen as a developing technique for infrastructure projects by making them amenable to private sector participation.
Toll Rate: In general, the toll rate should have a direct relation with the benefits that the road users would gain from its improvements. The benefits to road users are likely to be in terms of fuel savings, improvement in travel time and good riding quality.

To compute the toll rate, following formula may be used = Total Cost + Profit / Number of vehicles Or, to compute the toll rate following formula with rounding off to nearest multiple of five has been adopted: User fee $=$ Total distance $\times$ Toll rate per km .

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

It was a service costing question on Build-Operate-Transfer (BOT). Performance of the examinees was below average.

## Question 34

$\mathrm{M} / \mathrm{s}$ Zaina Private Limited has purchased a machine costing ${ }^{`} \mathbf{2 9 , 1 4 , 8 0 0}$ and it is expected to have a salvage value of ` \(1,50,000\) at the end of its effective life of 15 years. Ordinarily the machine is expected to run for 4,500 hours per annum but it is estimated that \(\mathbf{3 0 0}\) hours per annum will be lost for normal repair \& maintenance. The other details in respect of the machine are as follows: (i) Repair \& Maintenance during the whole life of the machine are expected to be \({ }^{`} 5,40,000\).
(ii) Insurance premium (per annum) 2\% of the cost of the machine.
(iii) Oil and Lubricants required for operating the machine (per annum) `87,384. (iv) Power consumptions: 10 units per hour @` 7 per unit. No power consumption during repair and maintenance. -
(v) Salary to operator per month ${ }^{`} 24,000$. The operator devotes one third of his time to the machine. You are required to calculate comprehensive machine hour rate. (PYP May'19,5Marks)

Answer 34

$$
\text { Effective machine hour }=4,500-300=4,200 \text { hours }
$$

Calculation of Comprehensive machine hour rate

| Elements of Cost and Revenue | Amount (') Per Annum |
| :---: | :---: |
| Repair and Maintenance ( $5,40,000 \div 15$ years) | 36,000 |
| $\operatorname{Power}(4,200$ hours $\times 10$ units $\times ` 7)$ | 2,94,000 |
| Depreciation $\left(\frac{\mathrm{Rs} .29,14,800-\mathrm{Rs.1,50,000}}{15 \text { Years }}\right)$ | 1,84,320 |
| Insurance ( $29,14,800 \times 2 \%$ ) | 58,296 |
| Oil and Lubricant | 87,384 |
| Salary to Operator $\{(\times 24,000 \times 12) / 3\}$ | 96,000 |
| Total Cost | 7,56,000 |
| Effective machine hour | 4,200 |
| Total Machine Rate Per Hour | 180 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This question was related to 'Overheads' on calculation of comprehensive machine hour rate. Performance of the examinees was good.

## Question 35

Paras Travels provides mini buses to an IT company for carrying its employees from home to office and dropping back after office hours. It runs a fleet of 8 mini buses for this purpose. The buses are parked in a garage adjoining the company's premises. Company is operating in two shifts (one shift in the morning and one shift in the afternoon). The distance travelled by each mini bus one way is 30 kms . The company works for $\mathbf{2 0}$ days in a month. The seating capacity of each mini bus is $\mathbf{3 0}$ persons. The seating capacity is normally $80 \%$ occupied during the year. The details of expenses incurred for a year are as under:

| Particulars |  |
| :---: | :---: |
| Driver's salary | `20,000 per driver per month \\ \hline Lady attendant's salary (mandatorily required for each mini bus) & ` 10,000 per attendant per month |
| Cleaner's salary (One cleaner for 2 mini buses) | `15,000 per cleaner per month \\ \hline Diesel (Avg. 8 kms per litre) & ` 80 per litre |
| Insurance charges (per annum) | 2\% of Purchase Price |
| License fees and taxes | `5,080 per mini bus per month \\ \hline Garage rent paid &` 24,000 per month |
| Repair \& maintenance including engine oil and lubricants (for every 5,760 kms) | `2,856 per mini bus \\ \hline Purchase Price of mini bus & `15,00,000 each |
| Residual life of mini bus | 8 Years |
| Scrap value per mini bus at the end of residual life | `3,00,000 |

Paras Travels charges two types of fare from the employees. Employees coming from a distance of beyond 15 kms away from the office are charged double the fare which is charged from employees coming from a distance of up-to 15 kms . away from the office. 50\% of employees travelling in each trip are coming from a distance beyond 15 kms . from the office. The charges are to be based on average cost.

You are required to:
(i) Prepare a statement showing expenses of operating a single mini bus for a year,
(ii) Calculate the average cost per employee per month in respect of:
(a) Employees coming from a distance upto 15 kms . from the office.
(b) Employees coming from a distance beyond 15 kms. from the office. (PYP 10 Marks Dec '21)

## Answer 35

(a) (i) Statement of Expenses of operating a mini bus in a year

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Particulars} \& Rate (`) \& Per Bus per \\
\hline \& Standing Charges: \& \& \\
\hline \& Driver's salary \& 20,000 p.m \& 2,40,000 \\
\hline \& Lady attendant's salary \& 10,000 p.m \& 1,20,000 \\
\hline \& Average Cleaner's salary (50\%) \& 15,000 p.m \& 90,000 \\
\hline \& Insurance charge \& 30,000 p.a. \& 30,000 \\
\hline \& License fee, taxes etc. \& 5,080 p.m. \& 60,960 \\
\hline \& Average Garage Rent \& 24,000 p.m \& 36,000 \\
\hline \& Depreciation \(\{(15,00,000-3,00,000) \div 8\}\) \& 1,50,000 p.a. \& 1,50,000 \\
\hline \multirow[t]{2}{*}{(B)} \& Maintenance Charges: \& \& \\
\hline \& Repairs \& maintenance including engine oil and lubricants (Working Note 1) \& 28,560 p.a. \& \\
\hline \multirow[t]{2}{*}{(C)} \& Operating Charges: \& \& \\
\hline \& Diesel (Working Note 2) \& \& 5,76,000 \\
\hline \& Total Cost ( \(\mathrm{A}+\mathrm{B}+\mathrm{C}\) ) \& \& 13,31,520 \\
\hline \& Cost per month \& \& 1,10,960 \\
\hline
\end{tabular}
(ii) Average cost per employee per month:
A. Employee coming from distance of upto 15 km
\[
=\frac{\text { Total cost per month }}{\text { Total no.of equivalent employee }}=\frac{1,10,960}{72 *}=\text { Rs. } 1,541.11
\]
B. Employee coming from a distance beyond 15 km
\(=1541.11 \times 2=` 3,082.22\)
\begin{tabular}{|l|c|}
\hline * Considering half fare employees as a base \& \\
\hline Full fare employees (12 \(\times 2\) ) \& 24 employees \\
\hline Add: Half fare employees (Working Note 3) \& 12 employees \\
\hline Total Equivalent number of employees per month \& 36 employees \\
\hline \begin{tabular}{l} 
Total Equivalent number of employees per month (morning + \\
afternoon shift of company)
\end{tabular} \& 72 employees \\
\hline
\end{tabular}

## Working Notes:

1. Calculation of Repairs and maintenance cost of a bus:

Distance travelled in a year:
( 4 trip $\times 2$ shifts $\times 30 \mathrm{~km} . \times 20$ days $\times 12$ months) Distance travelled p.a.: 57,600 km.
Repairs and maintenance cost per Bus per annum:
$=\frac{57,600 \mathrm{~km} .}{5,760 \mathrm{~km}} \mathrm{X}$ Rs. 2,856 per bus
$=` 28,560$ per annum
2. Calculation of diesel cost per bus per annum: Distance travelled in a year $=57,600 \mathrm{~km}$ Diesel cost per Bus per annum:

$$
\begin{aligned}
& =\frac{57,600 \mathrm{~km} .}{8 \mathrm{~km}} \times \text { Rs. } 80 \\
& =5,76,000
\end{aligned}
$$

3. Calculation of equivalent number of employees per bus:

| Seating capacity of a bus | 30 employees |
| :--- | :--- |
| Occupancy (80\% of capacity) | 24 employees |
| Half fare employees (50\% of 24 employees) | 12 employees |
| Full fare employees (50\% of 24 employees) | 12 employee |

[Note: Total Equivalent number of employees per month (morning + afternoon shift of company can also be calculated considering full fare employees as a base. In that case the number will be 36 . Then fare for employees coming from distance beyond 15 km will be $1,10,960 / 36={ }^{\prime} 3,082.22$ and employees coming from distance upto 15 km will be 3,082.22 / 2 = `1,541.11]

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical Question was based on the concept of Operating Costing. Many examinees faced hardship in the calculation of the cost of diesel, repairs \& maintenance and equivalent employee's numbers. Performance of the examinees was below average.

## Question 36

Coal is transported from two mines $X \& Y$ and unloaded at plots in a railway station. $X$ is at distance of 15 kms and Y is at a distance of $\mathbf{2 0} \mathbf{~ k m s}$ from the rail head plots. A fleet of lorries having carrying capacity of 4 tonnes is used to transport coal from the mines. Records reveal that average speed of the lorries is 40 kms per hour when running and regularly take 15 minutes to unload at the rail head.
At Mine $X$ average loading time is $\mathbf{3 0}$ minutes per load, while at mine $Y$ average loading time is $\mathbf{2 5}$ minutes per load.
Additional Information:
Drivers' wages, depreciation, insurance and taxes, etc. ₹ 12 per hour Operated Fuel, oil tyres, repairs and maintenance, etc. ₹ 1.60 per km
You are required to prepare a statement showing the cost per tonne kilometre of carrying coal from each mine ' X ' and ' Y '. $\backslash$ (PYP 5 Marks May'22)

## Answer 36

Statement showing the cost per tonne-kilometre of carrying mineral from each mine

|  | line X (₹) | line Y (₹) |
| :---: | :---: | :---: |
| Fixed cost per trip: (Refer to working note 1) |  |  |
| (Driver's wages, depreciation, insurance and taxes) |  |  |
| X: 1 hour 30 minutes @ ₹ 12 per hour | 8.00 |  |
| Y: 1 hour 40 minutes @ ₹ 12 per hour |  | 0.00 |
| Running and maintenance cost: |  |  |
| (Fuel, oil, tyres, repairs and maintenance) |  |  |
| X: 30 km . ₹ 1.60 per km. | 8.00 |  |
| $\mathrm{Y}: 40 \mathrm{~km}$. ₹ 1.60 per km. |  | 4.00 |
| Total cost per trip (₹) | 5.00 | 4.00 |
| Cost per tonne - km (Refer to working note 2) | $\left[\begin{array}{l} 1 \\ {\left[\frac{\text { ₹ } 66}{60} \text { tonne }-\mathrm{km}\right.} \end{array}\right]$ | $\left[\frac{₹ 84}{80 \text { tonne }-\mathrm{km}}\right]$ |

## Working notes:

|  | Mine- X | Mine- Y |
| :--- | :--- | :--- |
| (1) Total operated time taken per trip |  |  |
| Running time to \& fro | 45 minutes | 60 minutes |


|  | $\left[30 \mathrm{~km} \times \frac{60 \text { minutes }}{40 \mathrm{~km}}\right]$ | $\left[40 \mathrm{~km} \times \frac{60 \text { minutes }}{40 \mathrm{~km}}\right]$ |
| :--- | :--- | :--- |
| Un-loading time | 15 minutes | 15 minutes |
| Loading time | 30 minutes | 25 minutes |
| Total operated time | 90 minutes or | 100 minutes or |
|  | 1 hour 30 minutes | 1 hour 40 minutes |
| $(2)$ Effective tones -km. | $60(4$ tonnes $\times 15 \mathrm{~km})$. | $80(4$ tonnes $\times 20 \mathrm{~km})$. |

## Question 37

ABC Bank is having a branch which is engaged in processing of 'Vehicle Loan' and 'Education Loan' applications in addition to other services to customers. $30 \%$ of the overhead costs for the branch are estimated to be applicable to the processing of 'Vehicle Loan' applications and 'Education Loan' applications each.

Branch is having four employees at a monthly salary of ₹ 50,000 each, exclusively for processing of Vehicle Loan applications and two employees at a monthly salary of $₹ \mathbf{7 0 , 0 0 0}$ each, exclusively for processing of Education Loan applications.
In addition to above, following expense are incurred by the Branch:

- Branch Manager who supervises all the activities of branch, is paid at ₹ $\mathbf{9 0 , 0 0 0}$ per month.
- Legal charges, Printing \& stationery and Advertising Expenses are incurred at $₹ \mathbf{3 0 , 0 0 0}$, $\mathbf{1 2 , 0 0 0}$ and $₹ \mathbf{1 8 , 0 0 0}$ respectively for a month.
Other expenses are ₹ $\mathbf{1 0 , 0 0 0}$ per month. You are required to:
(i) Compute the cost of processing a Vehicle Loan application on the assumption that 496 Vehicle Loan applications are processed each month.
(ii) Find out the number of Education Loan Applications processed, if the total processing cost per Education Loan Application is same as in the Vehicle Loan Application as computed in (i) above. (PYP 5 Marks Nov 22)
Answer 37

| Particulars | Vehicle Ioan <br> Applications <br> (₹) | Education loan <br> Application <br> (₹) | Total |
| :--- | :--- | :--- | :--- |
| (₹) |  |  |  |

(i) Computation of cost of processing a vehicle loan application:

Total Cost $\div$ No. of applications
₹ $2,48,000 \div 496=₹ 500$
(ii) Computation of no. of Education loan Processed

Total Cost $=$ No. of applications $\times$ Processing cost per application
$₹ 1,88,000=$ No. of applications $\times ₹ 500$
No. of education loan applications $=₹ 1,88,000 \div ₹ 500=376$ applications

## Question 38

RST Toll Plaza Limited built an 80-kilometre-long highway between two cities and operates a toll plaza to collect tolls from passing vehicles using the highway. The company has estimated that 50,000
light weight, 12,000 medium weight and 10,000 heavy weight vehicles will be using the highway in one month in outward journey and the same number for return journey.

As per government notification, vehicles used for medical emergencies, Members of Parliament, and essential services are exempt from toll charges. It is estimated that $10 \%$ of light weight vehicles will pass the highway for such use.

It is the policy of the company that if vehicles return within $\mathbf{2 4}$ hours of their outward journey, the toll fare will be reduced by 25 percent automatically. It is estimated that $\mathbf{3 0 \%}$ of chargeable light weight vehicles return within the specified time frame.

The toll charges for medium weight vehicles is to be fixed as 2.5 times of the light weight vehicles and that of heavy weight vehicles as $\mathbf{2}$ times of the medium weight vehicles.

The toll and maintenance cost for a month is ` $59,09,090$, The company requires a profit of $10 \%$ over the total cost to cover interest and other costs.

## Required:

(i) Calculate the toll rate for each type of vehicle if concession facilities are not available on the return journey.
(ii) Calculate the toll rate that will be charged from light weight vehicles if a return journey concession facility is available, assuming that the revenue earned from light weight vehicles calculated in option (i) remains the same. (PYP 5 Marks, May '23)

## Answer 38

Working Notes:
(1) Calculation of equivalent numbers of Light weight vehicles (when no concession is provided on return journey)

| Type of vehicle | Monthly <br> traffic (A) | Return <br> traffic (B) | Ratio <br> $(C)$ | Equivalent light <br> weight [(A + B) $\times$ C ] |
| :--- | :--- | :--- | :--- | :--- |
| Light weight | $45,000^{*}$ | 45,000 | 1 | 90,000 |
| Medium weight | 12,000 | 12,000 | 2.5 | 60,000 |
| Heavy weight | 10,000 | 10,000 | 5 | $1,00,000$ |
|  |  |  |  | $2,50,000$ |

*50,000 light vehicles less 10\% exempted vehicles
(2) Calculation of equivalent numbers of Light weight vehicles (when concession is provided on return journey)

| Type of vehicle | Monthly traffic <br> (A) | Return traffic <br> (B) | Ratio (C) | Equivalent light weight $[(A+B) \times C]$ |
| :---: | :---: | :---: | :---: | :---: |
| Light weight | 45,000* | $\begin{aligned} & 41,625 \\ & {[45,000-(45,000 \times} \\ & 30 \% \times 25 \%)] \end{aligned}$ | 1 | 86,625 |
| Medium weight | 12,000 | 12,000 | 2.5 | 60,000 |
| Heavy weight | 10,000 | 10,000 | 5 | 1,00,000 |
|  |  |  |  | 2,46,625 |

(i) Calculation of toll rate for each type of vehicle:

Total cost to cover $\div$ Equivalent type of vehicles
(`\(59,09,090+10 \%\) of` $59,09,090$ ) $\div 2,50,000$ equivalent vehicles (Refer working note 1 )
$=65,00,000 \div 2,50,000={ }^{`} 26$

VIVITSU

Light weight vehicle = ` 26 Medium weight vehicle \(=` 26 \times 2.5=` 65\) Heavy weight vehicle \(=` 26 \times 5=` 130\)
(ii) Calculation of toll rate for each type of vehicle:

Revenue earned from Light weight vehicle in (i) above
$=90,000$ vehicles $\times ` 26=` 23,40,000$
New toll rate to maintain the same revenue from Light weight vehicle
$=` 23,40,000 \div 86,625($ Refer working note- 2 ) $=` 27.01$
Light weight vehicle $=` 27.01$
Rate to be charged from 13,500 light weight vehicles $=27.01 \times 0.75=20.26$

## Alternative presentation

(iii) Toll rate to be charged from light weight vehicles if concession applicable Revenue share in light vehicles $=90,000 \times 26=` 23,40,000$

Suppose rate is $x$, then outward journey 45,000 x; return journey (45,000-30\% of 45,000) + 13,500 ( $x$ - 0.25)
$45,000 x+31,500 x+13500(0.75 x)=` 23,40,000$
Toll rate to be charged from light weight vehicles: $86,625 x=` 23,40,000=` 27.01$
Rate to be charged from 76,500 light weight vehicles @ 27.01 ; revenue will be ` $20,66,494$
Rate to be charged from 13,500 light weight vehicles $=27.01 \times 0.75=20.26$ revenue will be 2,73,506

## Chapter 13 <br> Standard Costing

## Question 1

A manufacturing department of a company has employed 120 workers. The standard output of product "NPX" is $\mathbf{2 0}$ units per hour and the standard wage rate is ₹ $\mathbf{2 5}$ per labour hour.

In a 48 hours week, the department produced 1,000 units of 'NPX' despite 5\% of the time paid being lost due to an abnormal reason. The hourly wages actually paid were ₹ $\mathbf{2 5 . 7 0}$ per hour.

## Calculate:

(i) Labour Cost Variance
(ii) Labour Rate Variance
(iii) Labour Efficiency Variance
(iv) Labour Idle time Variance (PYP 5 Marks May'22)

## Answer 1

## Working Notes:

1. Calculation of standard man hours

When 120 worker works for 1 hr ., then the std. output is 20 units.
Std. man hour per unit
$=\frac{120 \mathrm{hurs}}{20 \text { units }}=6 \mathrm{hurs}$
2. Calculation of std. man hours for actual output

Total std. man hours $=1,000$ units $\times 6 \mathrm{hrs} .=6,000 \mathrm{hrs}$.

| Standard for actual |  | Actual |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hours | Rate <br> (₹) | Amount(₹) | Actual hrs.paid | Idle time <br> hrs. | Production <br> hrs. | Rate <br> (₹) | Amount <br> paid (₹) |
| 6,000 | 25 | 50,000 | 5,760 <br> $(48$ hrs. x 120 <br> workers) | 288 | 5,472 | 25.70 | $1,48,032$ |

(i) Labour cost variance
= Std. labour cost - Actual labour cost
$=1,50,000-1,48,032=₹ 1,968 \mathrm{~F}$
(ii) Labour rate variance
$=(S R-A R) \times$ AHPaid
$=(25-25.70) \times 5,760$ = ₹ $4,032 \mathrm{~A}$
(iii) Labour efficiency variance
$=(S H-A H) \times S R$
$=(6,000-5,472) \times 25$
(iv) Labour Idle time variance
$=$ Idle Hours $\times$ SR
$=288 \times 25=₹ 7,200 \mathrm{~A}$
Note: Variances can also be calculated for one worker instead of 120.

## Question 2

Following are the standard cost for a product-X:

|  | (₹) |
| :--- | ---: |
| Direct materials 10 kg @ ₹ 90 per kg | 900 |
| Direct labour 8 hours @ ₹100 per hour | 800 |
| Variable Overhead 8 hours @ ₹15 per hour | 120 |
| Fixed Overhead | 400 |
|  | 2,220 |

Budgeted output for the year was $\mathbf{2 , 0 0 0}$ units. Actual output is $\mathbf{1 , 8 0 0}$ units. Actual cost for year is as follows:

|  | (₹) |
| :--- | ---: |
| Direct Materials 17,800 Kg @ ₹ 92 per Kg. | $16,37,600$ |
| Direct Labour 14,000 hours @ ₹ 104 per hour | $14,56,000$ |
| Variable Overhead incurred | $2,17,500$ |
| Fixed Overhead incurred | $7,68,000$ |

You are required to CALCULATE:
(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(v) Labour Rate Variance
(vi) Labour Cost Variance
(vii) Variable Overhead Cost Variance
(viii) Fixed Overhead Cost Variance. [10 Marks April '23]

## Answer 2

(i) Material Usage Variance

$$
\begin{aligned}
& =\text { Std. Price (Std. Quantity - Actual Quantity) } \\
& =₹ 90(18,000 \mathrm{~kg} .-17,800 \mathrm{~kg} .) \\
& =₹ 18,000 \text { (Favourable) } \\
& =\text { Actual Quantity (Std. Price - Actual Price) } \\
& =17,800 \mathrm{~kg} . \text { (₹ } 90-₹ 92)=₹ 35,600 \text { (Adverse) } \\
& =\text { Std. Material Cost - Actual Material Cost } \\
& =\text { (SQ } \times \text { SP) - (AQ } \times \text { AP) } \\
& =(18,000 \mathrm{~kg} . \times ₹ 90)-(17,800 \mathrm{~kg} . \times ₹ 92) \\
& =₹ 16,20,000-₹ 16,37,600 \\
& =₹ 17,600 \text { (Adverse) }
\end{aligned}
$$

(iii) Material Cost Variance
(iv) Labour Efficiency Variance = Std. Rate (Std. Hours - Actual Hours)

$$
\begin{aligned}
& =₹ 100 \text { (1,800 units } \times 8-14,000 \text { hrs.) } \\
& =₹ 100 \text { (14,400 hrs. }-14,000 \text { hrs.) } \\
& =₹ 40,000 \text { (Favourable) }
\end{aligned}
$$

(v) Labour Rate Variance = Actual Hours (Std. Rate - Actual Rate)

$$
\begin{aligned}
& =14,000 \text { hrs. (₹ } 100-₹ 104) \\
& =₹ 56,000 \text { (Adverse) } \\
& =\text { Std. Labour Cost }- \text { Actual Labour Cost }
\end{aligned}
$$

(vi) Labour Cost Variance

$$
\begin{aligned}
& =(S H \times S R)-(A H \times A R) \\
& =(14,400 \mathrm{hrs.} \times ₹ 100)-(14,000 \mathrm{hrs.} \times ₹ 104) \\
& =₹ 14,40,000-₹ 14,56,000 \\
& =₹ 16,000 \text { (Adverse) } \\
\text { (vii) Variable Cost Variance } & =\text { Std. Variable Cost }- \text { Actual Variable Cost } \\
& =(14,400 \text { hrs. } \times ₹ 15)-₹ 2,17,500 \\
& =₹ 1,500 \text { (Adverse })
\end{aligned}
$$

(viii) Fixed Overhead Cost Variance $=$ Absorbed Fixed Overhead - Actual Fixed Overhead

$$
\begin{aligned}
& =(1,800 \text { units } \times ₹ 400)-₹ 7,68,000 \\
& =₹ 7,20,000-₹ 7,68,000=₹ 48,000 \text { (Adverse) }
\end{aligned}
$$

## Question 3

The following standards have been set to manufacture a product:

| Direct Material: | $(`$  \hline 2units of A @ `4 per unit 8.00 | 8.00 |
| :--- | ---: | :---: |
| 3 units of B @ 3 per unit 9.00 | 9.00 |  |
| 3units of B @`3 per unit & 15.00 \\ \hline 15 units of C @`1 per unit | 32.00 |  |
| Direct Labour: 3 hours @ `8 per hour 24.00 | 24.00 |  |
| Total standard prime cost | 56.00 |  |

The company manufactured and sold 6,000 units of the product during the year. Direct material costs were as follows:
12,500 units of $A$ at ${ }^{`} 4.40$ per unit
18,000 units of $B$ at ${ }^{`} 2.80$ per unit
88,500 units of $C$ at ${ }^{`} 1.20$ per unit
The company worked 17,500 direct labour hours during the year. For 2,500 of these hours, the company paid at ` 12 per hour while for the remaining, the wages were paid at standard rate.

## CALCULATE

I. Materials price variance \& Usage variance
II. Labour rate \& Efficiency variances. (Old \& New SM) (Same concepts different figures MTP Mar'19 10 Marks)

## Answer 3

For Material Cost Variances

|  | $\mathbf{S Q} \times \mathbf{S P}$ | $\mathbf{~} \mathbf{A Q} \times \mathbf{A P}$ | $\mathbf{~ A Q} \times \mathbf{S P}$ |
| :--- | :--- | :--- | :--- |
| $A$ | $12,000 \times 4=48,000$ | $12,500 \times 4.40=55,000$ | $12,500 \times 4=50,000$ |
| $B$ | $18,000 \times 3=54,000$ | $18,000 \times 2.80=50,400$ | $18,000 \times 3=54,000$ |
| $C$ | $90,000 \times 1=90,000$ | $88,500 \times 1.20=1,06,200$ | $88,500 \times 1=88,500$ |
| Total | $1,92,000$ | $2,11,600$ | $1,92,500$ |

Variances:
Material Price Variance = Actual quantity (Std. price - Actual
price) Or,

$$
\begin{aligned}
& =(A Q \times S P)-(A Q \times A P) \\
& =` 1,92,500-` 2,11,600 \\
& ={ }^{`} 19,100 \quad(A)
\end{aligned}
$$

$$
\text { Or, } \quad=` 1,92,500-` 2,11,600
$$

Material Usage Variance = Standard Price (Std. Quantity - Actual
Quantity) Or, $\quad=(S P \times S Q)-(S P \times A Q)$
Or, $\quad=` 1,92,000-` 1,92,500=` 500(A)$
For Labour Cost Variance:

|  | $\mathbf{S H} \times \mathbf{S R}$ | $\mathbf{A H} \times \mathbf{A R}$ | $\mathbf{A H} \times \mathbf{S R}$ |
| :---: | ---: | ---: | ---: |
| Labour | $(6,000 \times 3) \times{ }^{\prime} 8$ | $2,500 \times 12=30,000$ | $17,500 \times 8=$ |
|  | $=1,44,000$ | $15,000 \times 8=1,20,000$ | $1,40,000$ |


| Total | 1,44,000 | 1,50,000 ` 1,40,000 \\ \hline \multicolumn{3}{\|c|}{Variances:} \\ \hline & Labour Rate Variance: \[ (A H \times S R)-(A H \times A R) \] & Actual Hours (Std. Rate - Actual Rate) Or, = \\ \hline & Or, & \[ \begin{aligned} & =` 1,40,000-` 1,50,000 \\ & =` 10,000(A) \end{aligned} \] |
| :---: | :---: | :---: |
|  | Labour Efficiency Variance: | Standard Rate (Std. Hours - Actual Hours) Or, $=(S R \times S H)-(S R \times A H)$ |
|  | Or, | $=` 1,44,000-{ }^{\text {'1,40,000 }}$  \hline & & = `4,000 (F) |

## Question 4

The standard labour component and the actual labour component engaged in a week for a job are as follows:

|  | Skilled | Semi-skilled | Un-Skilled |
| :--- | :---: | :---: | :---: |
|  | Workers | Workers | workers |
| Standard number of workers in the gang | 32 | 12 | 6 |
| Standard wage rate per hour (₹) | 30 | 20 | 10 |
| Actual number of workers employed in the gang |  |  |  |
| during the week | 28 | 18 | 4 |
| Actual wages rate per hour (₹) | 34 | 23 | 12 |

During the 40 hours working week the gang produced 1,800 standard labour hours of work.
CALCULATE:
(i) Total labour cost variance;
(ii) Labour yield variance;
(iii) Labour mix variance; and
(iv) Labour wage rate variance. (MTP March '18, 10 Marks)

## Answer 4

Work produced by the gang 1,800 standard labour hours, i.e.,
1, $800 / 32+12+6$ or 36 gang hours

| Standard hours of Skilled Labour | $(36 \times 32)$ | 1,152 | hours |  |  |  |  |
| :--- | :---: | ---: | ---: | :---: | :---: | :---: | :---: |
| Standard hours of Semi-skilled Labour | $(36 \times 12)$ | 432 | hours |  |  |  |  |
| Standard hours of Un-skilled Labour | $(36 \times 6)$ | 216 | hours |  |  |  |  |
| Total |  | 1,800 | hours |  |  |  |  |
| Actual hours of Skilled Labour | $(40 \times 28)$ | 1,120 | hours |  |  |  |  |
| Actual hours of Semi-skilled Labour | $(40 \times 18)$ | 720 | hours |  |  |  |  |
| Actual hours of Un-skilled Labour | $(40 \times 4)$ | 160 | hours |  |  |  |  |
| Total |  |  |  |  |  | 2,000 | hours |

Revised Standard hours (actual hours worked expressed in standard ratio)

| Skilled Labour | $\frac{\mathbf{1 , 1 5 2}}{\mathbf{1 , 8 0 0}} \times \mathbf{2 , 0 0 0}$ | 1,280 hours |
| :--- | :---: | :--- |
| Semi-skilled Labour | $\frac{432}{1,800} \times 2,000$ | 480 hours |
| Unskilled Labour | $\frac{216}{1,800} \times 2,000$ | 240 hours |

Standard Cost for Actual Output:
Skilled Labour

hours @₹ 30
₹ 34,560


## Question 5

In a manufacturing company the standard units of production of the year were fixed at 1,20,000 units and overhead expenditures were estimated to be:

| Fixed | ₹ $12,00,000 ;$ | Variable | $₹ 6,00,000 ;$ |
| :--- | :--- | :--- | :--- |
| Semi-Variable | $₹ 1,80,000$ |  |  |

Actual production during the April, 2019 of the year was 8,000 units. Each month has $\mathbf{2 0}$ working days. During the month there was one public holiday. The actual overheads amounted to:

| Fixed | $₹ 1,10,000 ;$ | Variable | ₹ 48,000 |
| :--- | :--- | :--- | :--- |
| Semi-variable | $₹ 19,200$ |  |  |

Semi-variable charges are considered to include 60 per cent expenses of fixed nature and 40 per cent of variable character.
CALCULATE the followings:
(i) Overhead Cost Variance
(ii) Fixed Overhead Cost Variance
(iii) Variable Overhead Cost Variance
(iv) Fixed Overhead Volume Variance
(v) Fixed Overhead Expenditure Variance
(vi) Calendar Variance. (MTP Oct. ‘19, 10Marks, PYP 10 Marks Dec '21)

Answer 5
COMPUTATION OF VARIANCES
(i) Overhead Cost Variance $=$ Absorbed Overheads - ActualOverheads
$=(₹ 87,200+₹ 44,800)-(₹ 1,21,520+₹ 55,680)$
$=\quad ₹ 45,200(A)$
(ii) Fixed Overhead Cost $=$ Absorbed Fixed Overheads - Actual Fixed Overheads

Variance $=₹ 87,200$-₹ $1,21,520$
= ₹ 34,320 (A)
(iii) Variable Overhead Cost $=$ StandardVariable Overheads for ProductionActual Variance Variable Overheads
$=₹ 44,800$-₹ 55,680
$=\quad ₹ 10,880(\mathrm{~A})$
(iv) Fixed Overhead Volume $=$ Absorbed Fixed Overheads-Budgeted Fixed Variance Overheads

```
\(=₹ 87,200-₹ 1,09,000\)
\(=\quad ₹ 21,800(A)\)
```

(v) Fixed Overhead Expenditure
$=\quad$ Budgeted Fixed Overheads-Actual Fixed Overheads Variance
$=₹ 10.90 \times 10,000$ units-₹1,21,520
$=\quad ₹ 12,520(\mathrm{~A})$
(vi) Calendar Variance $=\quad$ Possible Fixed Overheads-Budgeted Fixed Overheads

```
= ₹1,03,550-₹1,09,000
= ₹ 5,450 (A)
```

WORKING NOTE

| Fixed Overheads per Unit $=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }}=\frac{\text { Rs. } 12,00,000}{1,20,000 \text { units }}$ | ₹ 10 |
| :---: | :---: |
| Fixed Overheads element in Semi-Variable Overheads i.e. $60 \%$ of ₹ $1,80,000$ | ₹ 1,08,000 |
| Fixed Overheads per Unit $=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }}=\frac{R s .1,08,000}{1,20,000 \text { units }}$ | ₹ 0.90 |
| Standard Rate of Absorption of Fixed Overheads per unit (₹10 + ₹0.90) | ₹10.90 |
| Fixed Overheads Absorbed on 8,000 units @ Rs10.90 | ₹ 87,200 |
| Budgeted Variable Overheads <br> Add : Variable element in Semi-Variable Overheads 40\% of ₹ 1,80,000 | $\begin{array}{r} \text { ₹ 6,00,000 } \\ \text { ₹ 72,000 } \end{array}$ |

Total Budgeted Variable Over heads ₹6,72,000
Standard Variable Cost per unit $=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }}=\frac{\text { Rs. } 6,72,000}{1,20,000 \text { units }} \quad=₹ 5.60$

Standard Variable Overheads for 8,000 units @ ₹5.60
Budgeted Annual Fixed Overheads (₹12,00,000+60\%of₹1,80,000)

$$
\begin{array}{r}
\text { Possible Fixed Overheads }=\frac{\text { Budgeted Fixed Overheads }}{\text { Budgeted Output }} \times \text { Actual Days } \\
\qquad\left[\frac{\text { Rs. } 1,09,000}{20 \text { Days }} \times 19 \text { Days }\right\rfloor
\end{array}
$$

Actual FixedOverheads ( $₹ 1,10,000+60 \%$ of $₹ 19,200$ )
ActualVariableOverheads(₹48,000+40\%of₹19,200) ₹55,680
₹ 44,800
₹13,08,000
₹ $1,03,550$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical question tested the basic knowledge of examinees on the topic of Standard Costing. The examinees had to calculate various fixed and variable overhead cost variance. The main theme of question was based on segregating the semi- variable overheads into fixed and variable cot and to calculate standard cost for actual output. Some of the examinees had calculated fixed overhead variances correctly but failed to calculate variable overhead variances and calendar variance. Performance of the examinees was below average.

## Question 6

Arnav Ltd. manufactures a product $Q$, the standard cost of which is as follows:

| Standard Cost per unit (₹) |  |
| :--- | :---: |
| Direct Material | 600 |
| Direct labour: |  |
| - Unilled @ ₹80 per hour | 120 |
| Variable overheads | 90 |
| Fixed overheads | 75 |
|  | 30 |

During the month just ended 4,000 units of $Q$ were produced. The actual labour cost was as follows.

Rate perhour (₹)
Skilled
Unskilled
87.50
55.00

Cost (₹)
5,77,500
2,97,000
$10 \%$ of the labour time was lost due to idle time. The standard idle time was $7.5 \%$ of labour time. Arnav Ltd. has budgeted to produce 4,200 units of Q. Arnav Ltd. absorbs its overheads on direct labour hour (effective hours) basis. Actual fixed and variable overheads incurred were ₹1,55,000 and ₹2,85,000 respectively.

## CALCULATE:

(i) Labour rate variance;
(ii) Labour efficiency variance;
(iii) Labour mix variance;
(iv) Labour yield variance;
(v) Labour idle time variance;
(vi) Variable overhead expenditure variance and
(vii) Variable overhead efficiency variance. (MTP Oct. '18, 10 Marks)

Answer 6

| Workings: |  |  |
| :--- | :--- | :--- |
|  | Skilled | Unskilled |
| Standard Rate per hour | 80 | 60 |
| Standard time for producing one unit | 1.5 hours (₹ $120 \div ₹ 80$ ) | 1.5 hours $(₹ 90 \div ₹ 60$ ) |
| Actual hours paid (AHPaid) | 6,600 hours | 5,400 hours |
| Standard hours required to produce | 6,000 hours | 6,000 hours |
| 4,000 units (SH) | (1.5 hours $\times 4,000$ units) | (1.5 hours $\times 4,000$ units) |

Actual hours worked
( $\mathrm{AH}_{\text {Worked }}$ )
$6,600 / 100 \times 97.5$
$=6,435$ hours

$$
\left(\frac{6,600+5,400}{100} \times 97.5\right) \times 0.5
$$

$$
\left(\frac{6,600+5,400}{100} \times 97.5\right) \times 0.5
$$

| (i) | Idle time Abnormal Labour Rate Variance | $\begin{gathered} =5,850 \text { hours } \\ 6,600-6,435=165 \text { hours } \\ =\mathrm{AH}_{\text {Paid }}(\text { Std. Rate }- \text { Actual Rate }) \end{gathered}$ | $\begin{aligned} & =5,850 \text { hours } \\ & 5,400-5,265=135 \text { hours } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | - Skilled | = 6,600 hours (₹ $80-₹ 87.50$ ) | = ₹ 49,500 (A) |
|  | - Unskilled | = 5,400 hours (₹ $60-₹ 55$ ) | = ₹ 27,000 (F) |
|  |  |  | = ₹ 22,500 (A) |
| (ii) | Labour EfficiencyVariance - Skilled | $\begin{aligned} & =\text { Std. Rate }\left(\mathrm{SH}-\mathrm{AH}_{\text {worked }}\right) \\ & =₹ 80(6,000 \text { hours }-6,435 \text { hours }) \end{aligned}$ | = ₹ 34,800 (A) |
|  | - Unskilled | = ₹ 60 (6,000 hours $-5,265$ hours) | = ₹ 44,100 (F) |
|  |  |  | = ₹ 9,300 (F) |
|  | Labour Mix Variance - Skilled | $\begin{aligned} & \left.=\text { Std. Rate (RSH }-\mathrm{AH}_{\text {worked }}\right) \\ & =₹ 80(5,850 \text { hours }-6,435 \text { hours }) \end{aligned}$ | = ₹ 46,800 (A) |
|  | - Unskilled | = ₹ 60 ( 5,850 hours $-5,265$ hours) | = ₹ 35,100 (F) |
|  |  |  | = ₹ 11,700 (A) |
| (iv) | Labour Yield Variance | = Std. Rate (SH - RSH) |  |
|  | - Skilled | = ₹ 80 (6,000 hours -5,850 hours) | = ₹ 12,000 (F) |
|  | - Unskilled | = ₹ 60 (6,000 hours -5,850 hours) | = ₹ 9,000 (F) |
|  |  |  | = ₹ 21,000 (F) |
| (v) | Labour Idle time Variance | td. Rate $\times$ Idle time Abnormal |  |
|  | - Skilled | $=₹ 80 \times 165$ hours | = ₹ 13,200 (A) |
|  | - Unskilled | = ₹ $60 \times 135$ hours | = ₹ 8,100 (A) |
|  |  |  | = ₹ 21,300 (A) |
| (vi) Variable Overhead Expend |  | re Variance |  |

$=A H_{\text {worked }}(S R-A R)$
$=11,700$ hours $=\left(\frac{\text { Rs. } 75}{2 \times 1.5 \text { hours }}-\frac{\text { Rs. } 2,85,000}{11,700 \text { hours }}\right)$
$=11,700$ hours ( $₹ 25-₹ 24.36$ ) = ₹ 7,488 (F)
(vii) Variable Overhead Efficiency Variance
$=$ Std. Rate (SH $\left.-\mathrm{AH}_{\text {Worked }}\right)$
$=₹ 25(12,000-11,700)=₹ 7,500(F)$

## Question 7

ZX Ltd. has furnished the following information:

|  | Budgeted | Actual March <br> 2020 |
| :--- | ---: | :--- |
| Number of working days | 25 | 27 |
| Chapter 13 Standard Costing |  |  |


| Production (in units) | $\mathbf{2 0 , 0 0 0}$ | $\mathbf{2 2 , 0 0 0}$ |
| :--- | ---: | ---: |
| Fixed Overheads | $₹ 3,00,000$ | $₹ 3,10,000$ |

Budgeted fixed overhead rate is ₹ $\mathbf{1 0 . 0 0}$ per hour. In March 2020, the actual hours worked were
31,500. In relation to fixed overheads, CALCULATE:
(i) Efficiency Variance
(ii) Capacity Variance
(iii) Calendar Variance
(iv) Volume Variance
(v) Expenditure Variance (MTP 5 Marks May 20)

## Answer 7

## Working:

(1) Budgeted Hours $=\frac{\text { Rs. } 3,00,000}{\text { Rs. } 10 \text { per hour }} \quad 30,000$ hours
(2) Standard Fixed Overhead rate per hour (Standard Rate);
$=\frac{\text { Budgeted fixed overheads }}{\text { Budgeted Hours }}=\frac{\text { Rs. } 3,00,000}{30,000 \text { hours }}=₹ 10.00$
(3) Standard hour per unit of output $=30,000$ hours $/ 20,000$ units $=1.5$ hours
(4) Standard hours for Actual Output $=22,000$ units $\times 1.5$ hours $=33,000$ Hours
(5) Budgeted Overhead per day for budgeted days= ₹3,00,000 / 25 days = ₹ 12,000
(6) Budgeted Overhead for actual days worked $=₹ 12,000 \times 27$ days $=₹ 3,24,000$
(7) Budgeted Hours for Actual days worked $=30,000$ hours $/ 25$ days $\times 27$ days $=32,400$ hours

Computation of Variances in relation to Fixed Overheads:
(i) Efficiency Variance
$=$ Standard Rate $\times$ (Standard hours for actual output - Actual hours worked)
= ₹10 (33,000 hours - 31,500 hours) = ₹15,000 (Favourable)
(ii) Capacity Variance
$=$ Standard Rate $\times$ (Actual Hours - Budgeted Hours for actual days worked)
= ₹10 (31,500 hours - 32,400 hours) = ₹9,000 (Adverse)
(iii) Calendar Variance
$=$ Standard/Budgeted Fixed Overhead Rate per day $\times$ (Actual Working days - Budgeted working days)
= ₹ 12,000 ( 27 days -25 days) $=$ ₹24,000 (Favourable)
(iv) Volume Variance
$=$ Standard Rate $\times$ (Standard hours - Budgeted hours)
= ₹10 (33,000 hours - 30,000 hours) = ₹30,000 (Favourable)
(v) Expenditure Variance
= Budgeted Overheads - Actual Overheads
= ₹3,00,000 - ₹3,10,000 = ₹10,000 (Adverse)
Note: Overhead Variances may also be calculated based on output.

## Question 8

Following data is extracted from the books of XYZ Ltd. for the month of January, 2020:
(i) Estimation-


Chapter 13 Standard Costing

| Material-B | 600 | 30.00 | 18,000 |
| :--- | ---: | ---: | ---: |

Normal loss was expected to be $10 \%$ of total input materials.
(ii) Actuals- 1480 kg of output produced.

| Particulars | Quantity (kg.) | Price (₹) | Amount (₹) |
| :--- | ---: | ---: | ---: |
| Material-A | $\mathbf{9 0 0}$ | $\boldsymbol{?}$ | -- |
| Material-B | $\boldsymbol{?}$ | $\mathbf{3 2 . 5 0}$ | -- |
|  |  |  | $\mathbf{5 9 , 8 2 5}$ |

(iii) Other Information-

Material Cost Variance $=₹ 3,625$ (F) Material
Price Variance = ₹ 175 (F)
You are required to CALCULATE:
(i) Standard Price of Material-A;
(ii) Actual Quantity of Material-B;
(iii) Actual Price of Material-A;
(iv) Revised standard quantity of Material-A and Material-B; and
(v) Material Mix Variance; (MTP 10 Marks, Oct.'20 \& March '23, Old \& New SM)

Answer 8
(i) Material Cost Variance $(A+B)=\{(S Q \times S P)-(A Q \times A P)\}$

$$
\begin{array}{cc}
₹ 3,625 & =(S Q \times S P)-₹ 59,825 \\
(S Q \times S P) & =₹ 63,450
\end{array}
$$

$\left(\mathrm{SQ}_{\mathrm{A}} \times \mathrm{SP}_{\mathrm{A}}\right)+\left(\mathrm{SQ}_{\mathrm{B}} \times \mathrm{SP}_{\mathrm{B}}\right) \quad=₹ 63,450\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)+(705 \mathrm{~kg} \times ₹ 30)=₹ 63,450$
$\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)+₹ 21,150=₹ 63,450$
$\left(940 \mathrm{~kg} \times \mathrm{SP}_{\mathrm{A}}\right)=₹ 42,300$
$S P_{A}=₹ 42,300 / 940 \mathrm{~kg}$
Standard Price of Material-A = ₹ 45
Working Note:
SQ i.e. quantity of inputs to be used to produce actual output
$=\frac{1,480 \mathrm{~kg}}{90 \%}=1,645 \mathrm{~kg}$
$\mathrm{SQ}_{\mathrm{A}} \quad=\frac{800 \mathrm{~kg}}{(800+600)} \times 1,645 \mathrm{~kg} .=940 \mathrm{~kg}$
$\mathrm{SQ}_{\mathrm{B}} \quad=\frac{600 \mathrm{~kg}}{(800+600)} \times 1,645 \mathrm{~kg} .=705 \mathrm{~kg}$
(ii) Material Price Variance $(A+B)=\{(A Q \times S P)-(A Q \times A P)\}$

$$
\text { ₹ } 175=(A Q \times S P)-₹ 59,825
$$

$$
(\mathrm{AQ} \times \mathrm{SP}) \quad=\quad ₹ 60,000\left(\mathrm{AQ}_{\mathrm{A}}\right.
$$

$$
\left.\times S P_{A}\right)+\left(\mathrm{AQ}_{\mathrm{B}} \times \mathrm{SP}_{\mathrm{B}}\right) \quad=\quad ₹ 60,000
$$

(900 kg $\times$ ₹ 45 (from (i) above)) $+\left(\mathrm{AQ}_{\mathrm{B}} \times ₹ 30\right)=₹ 60,000$
$₹ 40,500+\left(A Q_{B} \times ₹ 30\right)=₹ 60,000$
$\left(A Q_{B} \times ₹ 30\right) \quad=\quad ₹ 19,500$
$A Q_{B}$
$=19,500 / 30=650 \mathrm{~kg}$

Actual Quantity of Material $B=650 \mathrm{~kg}$.
(iii) $(A Q \times A P)=₹ 59,825$
$\left(A Q_{A} \times A P_{A}\right)+\left(A Q_{B} \times A P_{B}\right)=₹ 59,825$
$(900 \mathrm{~kg} \times \mathrm{APA})+(650 \mathrm{~kg}($ from (ii) above) $\times ₹ 32.5)=₹ 59,825(900 \mathrm{~kg} \times \mathrm{APA})+₹ 21,125$
= ₹ 59,825
$\left(900 \mathrm{~kg} \times \mathrm{AP}_{\mathrm{A}}\right) \quad=₹ 38,700$
$A P_{A}=38,700 / 900=43$
Actual Price of Material-A = ₹ 43
(iv) Total Actual Quantity of Material-A and Material-B

$$
\begin{aligned}
& =A Q_{A}+A Q_{B} \\
& =900 \mathrm{~kg}+650 \mathrm{~kg} \text { (from (ii) above) } \\
& =1,550 \mathrm{~kg}
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
\text { Revised } \mathrm{SQ}_{\mathrm{A}} & =800 \mathrm{~kg} / 800+600 \times 1,550 \mathrm{~kg} .=886 \mathrm{~kg} . \\
\text { Revised } \mathrm{SQ}_{B} & =600 \mathrm{~kg} /(800+600) \times 1,550 \mathrm{~kg} .=664 \mathrm{~kg} .
\end{array}
$$

(v) Material Mix Variance $(A+B)=\{(R S Q \times S P)-(A Q \times S P)\}$
$=\left\{\left(\mathrm{RSQ}_{A} \times S P_{A}\right)+\left(\mathrm{RSQ}_{B} \times S P_{B}\right)-60,000\right\}$
$=(886 \mathrm{~kg}$ (from (iv) above) $\times ₹ 45$ (from (i) above))
$+(664 \mathrm{~kg}$ (from (iv) above) $\times ₹ 30$ ) $-₹ 60,000$
$=(39,870+19,920)-60,000=₹ 210(\mathrm{~A})$

## Question 9

AK Ltd. has furnished the following standard cost data per unit of production:
Material 10 kg @ ₹ 100 per kg.
Labour 6 hours @ ₹ 55 per hour
Variable overhead 6 hours @ ₹ 100 per hour.
Fixed overhead ₹ $45,00,000$ per month (Based on a normal volume of 30,000 labour hrs)
The actual cost data for the month of September 2020 are as follows:
Material used $50,000 \mathrm{~kg}$ at a cost of ₹ $52,50,000$.
Labour paid ₹ $\mathbf{1 5 , 5 0 , 0 0 0}$ for 31,000 hours
Variable overheads ₹ 29,30,000
Fixed overheads ₹ 47,00,000
Actual production 4,800 units.
CALCULATE:
(i) Material Cost Variance.
(ii) Labour Cost Variance.
(iii) Fixed Overhead Cost Variance.
(iv) Variable Overhead Cost Variance (MTP 5 Marks, Mar'21) (Same concept different figures MTP 5 Marks Nov'21)

Budgeted Production 30,000 hours $\div 6$ hours per unit $=5,000$ units
Budgeted Fixed Overhead Rate $=₹ 45,00,000 \div 5,000$ units $=₹ 900$ per unit Or

$$
=₹ 45,00,000 \div 30,000 \text { hours = ₹ } 150 \text { per hour. }
$$

(i) Material Cost Variance $=($ Std. Qty. $\times$ Std. Price $)-($ Actual Qty. $\times$ Actual Price $)$
$=(4,800$ units $\times 10 \mathrm{~kg} . \times ₹ 100)-₹ 52,50,000$
= ₹ 48,00,000 - ₹ 52,50,000
= ₹ 4,50,000 (A)
(ii) Labour Cost Variance $=($ Std. Hours $\times$ Std. Rate $)-$ (Actual Hours $\times$ Actual rate $)$
$=(4,800$ units $\times 6$ hours $\times ₹ 55)-₹ 15,50,000$
= ₹ $15,84,000$ - ₹ $15,50,000$
= ₹ 34,000 (F)
(iii) Fixed Overhead Cost Variance $=$ (Budgeted Rate $\times$ Actual Qty) - Actual Overhead

$$
\begin{aligned}
& =(₹ 900 \times 4,800 \text { units })-₹ 47,00,000 \\
& =₹ 3,80,000(\mathrm{~A}) \text { OR } \\
& =(\text { Budgeted Rate } \times \text { Std. Hours })-\text { Actual Overhead } \\
& =(₹ 150 \times 4,800 \text { units } \times 6 \text { hours })-₹ 47,00,000 \\
& =₹ 3,80,000(\mathrm{~A})
\end{aligned}
$$

(iv) Variable Overhead Cost Variance
$=$ (Std. Rate $\times$ Std. Hours) - Actual Overhead

$$
\begin{aligned}
& =(4,800 \text { units } \times 6 \text { hours } \times ₹ 100)-₹ 29,30,000 \\
& =₹ 28,80,000-₹ 29,30,000 \\
& =₹ 50,000(A)
\end{aligned}
$$

## Question 10

Following information has been provided by a company:

| Number of units produced and sold | 9,000 |
| :--- | :---: |
| Standard labour rate per hour | $₹ 12$ |
| Standard hours required for 9,000 units | - |
| Actual hours required | 25,641 hours |
| Labour efficiency | $105.3 \%$ |
| Labour rate variance | $1,53,846$ (A) |
| You are required to CALCULATE: |  |

(i) Actual labour rate per hour
(ii) Standard hours required for 9,000 units
(iii) Labour Efficiency variance
(iv) Standard labour cost per unit
(v) Actual labour cost per unit. (MTP 10 Marks, Oct'21)(RTP Nov '23)

Answer 10
SR - Standard labour Rate per Hour

AR - Actual labour rate per hour

SH - Standard Hours
AH - Actual hours
(i) Labour rate Variance $=\mathrm{AH}(\mathrm{SR}-\mathrm{AR})$

$$
-1,53,846=25,641(12-A R)
$$

$$
-6 \quad=12-A R
$$

$$
A R \quad=₹ 18
$$

(ii) Labour Efficiency $=\frac{S H}{A H} \times 100=105.3$

$$
\begin{aligned}
& \mathrm{SH}=\frac{A H \times 105.3}{100}=\frac{25,641 \times 105.3}{100} \\
& \mathrm{SH} \quad=26,999.973 \\
& \mathrm{SH} \quad=27,000 \text { hours }
\end{aligned}
$$

(iii) Labour Efficiency Variance $=S R(S H-A H)$

$$
\begin{aligned}
& =12(27,000-25,641) \\
& =₹ 16,308(F)
\end{aligned}
$$

(iv) Standard Labour Cost per Unit $=\frac{27,000 \times 12}{9,000}=₹ 36$
(v) Actual Labour Cost Per Unit $\quad=\frac{25,641 \times 18}{9,000}=₹ 51.282$

## Question 11

Rounak Minerals Ltd. operates in iron ore mining through open cast mining method. Explosives and detonators are used for excavation of iron ores from the mines. The following are the details of standard quantity of explosives materials used for mining:

| Particulars | Rate (₹) | Standard Qty. for <br> Iron ore | Standard Qty. for <br> Overburden (OB) |
| :---: | :---: | :---: | :---: |
| SME | 40.00 per kg. | 2.4 kg per tonne | 1.9 kg per cubic- <br> meter |
| Detonators | 20.00 per piece | 2 pcs per tonne | 2 pcs per cubic-meter |

The standard stripping ratio is 3:1 (means 3 cubic- meter of overburden soil to be removed to get one tonne of iron ore). During the month of December 2021, the company produced 20,000 tonnes of iron ore and removed 58,000 cubic- meter of $O B$. The quantity of explosive materials used and paid for the month is as below:

| Material | Quantity | Amount (₹) |
| :--- | :--- | :--- |
| SME | $1,67,200 \mathrm{~kg}$. | $63,53,600$ |
| Detonators | $1,18,400 \mathrm{pcs}$ | $24,27,200$ |

## You are required to COMPUTE:

(i) Material price variance
(ii) Material quantity variance
(iii) Material cost variance. (MTP 10 Marks April'22 \& Sep '23)

## Answer 11

Workings:

1. Calculation of Standard Qty. of Explosives and Detonators for actual output:

|  | Particulars | Iron ore | Overburden (OB) | Total |
| :--- | :--- | :---: | :---: | :---: |


| SME: |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: |
| A | Actual Output | 20,000 tonne | $58,000 \mathrm{M} 3$ |  |
| B | Standard Qty per unit | $2.4 \mathrm{~kg} . /$ tonne | $1.9 \mathrm{~kg} . / \mathrm{M} 3$ |  |
| C | Standard Qty. for actual <br> production [A×B] | $48,000 \mathrm{~kg}$. | $1,10,200 \mathrm{~kg}$. | $1,58,200 \mathrm{~kg}$. |
| Detonators: |  |  |  |  |
| D | Standard Qty per unit | $2 \mathrm{pcs} /$ tonne | $2 \mathrm{pcs} / \mathrm{M} 3$ |  |
| E | Standard Qty. for actual <br> production [A×D] | 40,000 pcs. | $1,16,000 \mathrm{pcs}$ | $1,56,000 \mathrm{pcs}$ |

2. Calculation of Actual Price per unit of materials:

| Material | Quantity [A] | Amount (₹) <br> [B] | Rate (₹) [C = B $\div \mathbf{A}$ ] |
| :--- | :---: | :---: | :---: |
| SME | $1,67,200 \mathrm{~kg}$. | $63,53,600$ | 38.00 |
| Detonators | $1,18,400 \mathrm{pcs}$ | $24,27,200$ | 20.50 |

(i) Computation of material price variance:
Material Price Variance $=$ Actual Qty. $\times($ Std. Price - Actual Price $)$
SME
$=1,67,200 \mathrm{~kg} \cdot \times(₹ 40-₹ 38)=₹ 3,34,400(\mathrm{~F})$
Detonators
Total
(ii) Computation of material quantity variance:

| Material Qty. Variance | $=$ Std. Price $\times($ Std. Qty for actual output - Actual Qty. $)$ |
| :--- | :--- | :--- |
|  |  |
| SME $=₹ 40 \times(1,58,200 \mathrm{~kg} .-1,67,200 \mathrm{~kg})$. $=₹ 3,60,000(\mathrm{~A})$ <br> Detonators $=₹ 20 \times(1,56,000 \mathrm{pcs}-1,18,400 \mathrm{pcs})$ $=₹ 7,52,000(\mathrm{~F})$ <br> Total  $=₹ 3,92,000(\mathrm{~F})$ |  |

(iii) Computation of material cost variance:

$$
\begin{aligned}
& \text { Material cost variance }=\text { Std. cost }- \text { Actual Cost } \\
& \begin{array}{ll}
\text { Or, (Std. Price } \times \text { Std. Qty })-(\text { Actual Price } \times \text { Actual Qty. }) \\
& =(₹ 40 \times 1,58,200 \mathrm{~kg})-(₹ 38 \times 1,67,200 \mathrm{~kg} .) \\
\text { SME } & =₹ 63,28,000-₹ 63,53,600 \quad=₹ 25,600(\mathrm{~A}) \\
& =(₹ 20 \times 1,56,000 \mathrm{pcs})-(₹ 20.50 \times 1,18,400 \mathrm{pcs}) \\
\text { Detonators } & =₹ 31,20,000-₹ 24,27,200 \\
& =₹ 6,92,800(\mathrm{~F}) \\
\text { Total } &
\end{array} \quad=₹ 6,67,200(F)
\end{aligned}
$$

## Question 12

DISCUSS the Controllable and un-controllable variances (MTP 5 Marks, March '21)

## Answer 12

Controllable and un-controllable variances: The purpose of the standard costing reports is to investigate the reasons for significant variances so as to identify the problems and take corrective action. Variances are broadly of two types, namely, controllable and uncontrollable. Controllable variances are those which can be controlled by the departmental heads whereas uncontrollable variances are those which are beyond their control. Responsibility centers are Answerable for all adverse variances which are controllable and are appreciated for favourable variances. Controllability is a subjective matter and varies from situation to
situation. If the uncontrollable variances are of significant nature and are persistent, the standard may need revision.

## Question 13

BBC Ltd. manufactures Ordinary Portland Cement (OPC). The standard data for the raw materials that are used to manufacture OPC are as follows:

| Material | Composition (\%) | Rate per Metric Ton (₹) |
| :--- | :---: | :---: |
| Limestone | 65 | 565 |
| Silica | 20 | 4,800 |
| Alumina | 5 | 32,100 |
| Iron ore | 5 | 1,800 |
| Others | 5 | 2,400 |

During the month of February 20X8, A Ltd. produced 500 MT OPC. Actual data related with the consumption and costs are as follows:

| Raw Material | Quantity (MT) | Total Cost (₹) |
| :--- | :---: | :---: |
| Limestone | 340 | $1,90,400$ |
| Silica | 105 | $5,09,250$ |
| Alumina | 25 | $8,12,500$ |
| Iron ore | 30 | 53,400 |
| Others | 23 | 51,750 |

You are required to COMPUTE the following variances related with the production of OPC for the month of February 20X8:
(i) Material Price Variance
(ii) Material Mix Variance
(iii) Material Yield Variance
(iv) Material Cost Variance.
(MTP 10 Marks Apr 19)

## Answer 13

(i) Material Price Variance $=$ Actual Quantity (Std. Price - Actual Price)

| Limestone | $=$ | $340\left(₹ 565-\frac{R s .1,90,400}{340}\right)$ |  |
| :--- | :--- | :--- | :--- |
|  | $=$ | $340(₹ 565-₹ 560)$ | $=1,700(F)$ |
| Silica | $=$ | $105\left(₹ 4,800-\frac{R s .5,09,250}{105}\right)$ | $=5,250(\mathrm{~A})$ |
|  | $=$ | $105(₹ 4,800-₹ 4,850)$ |  |
| Alumina | $=$ | $25\left(₹ 32,100-\frac{R s .8,12,500}{25}\right)$ | $=10,000(\mathrm{~A})$ |
|  | $=$ | $25(₹ 32,100-₹ 32,500)$ |  |
| Iron ore | $=$ | $30\left(₹ 1,800-\frac{R s .53,400}{30}\right)$ | $=600(F)$ |
|  | $=$ | $30(₹ 1,800-₹ 1,780)$ |  |
| Others | $=$ | $23\left(₹ 2,400-\frac{R s .51,750}{23}\right)$ |  |
|  | $=$ | $23(₹ 2,400-₹ 2,250)$ | $9,450(F)$ |
|  |  |  | $9,500(\mathrm{~A})$ |

(ii) Material Mix Variance = Std. Price (Revised Std. Quantity - Actual Quantity)

| Limestone | $=$ | $₹ 565(523 \times 65 \%-340)$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $=$ | $₹ 565(339.95-340)$ | $=28.25(\mathrm{~A})$ |
| Silica | $=$ | $₹ 4,800(523 \times 20 \%-105)$ |  |
|  | $=$ | $₹ 4,800(104.6-105)$ | $=1,920(\mathrm{~A})$ |


| Alumina | $=$ | $₹$ | $32,100(523 \times 5 \%-25)$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $=$ | $₹$ | $32,100(26.15-25)$ | $=36,915(\mathrm{~F})$ |
| Iron ore | $=$ | $₹$ | $1,800(523 \times 5 \%-30)$ | $=6,930(\mathrm{~A})$ |
|  | $=$ | $₹$ | $1,800(26.15-30)$ |  |
| Others | $=$ | $₹$ | $2,400(523 \times 5 \%-23)$ | $=7,560(\mathrm{~F})$ |
|  | $=$ | $₹$ | $2,400(26.15-23)$ | $35,596.75(\mathrm{~F})$ |

(iii) Material Yield Variance = Std. Price (Standard Quantity - Revised Std. Quantity)

| Limestone | $=$ | $₹ 565(500 \times 65 \%-523 \times 65 \%)$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $=$ | $₹ 565(325-339.95)$ | $=8,446.75(\mathrm{~A})$ |  |
| Silica | $=$ | $₹ 4,800(500 \times 20 \%-523 \times 20 \%)$ |  |  |
|  | $=$ | $₹ 4,800(100-104.6)$ | $=22,080(\mathrm{~A})$ |  |
| Alumina | $=$ | $₹ 32,100(500 \times 5 \%-523 \times 5 \%)$ |  |  |
|  | $=$ | $₹ 32,100(25-26.15)$ | $=36,915(\mathrm{~A})$ |  |
| Iron ore | $=$ | $₹ 1,800(500 \times 5 \%-523 \times 5 \%)$ | $=2,070$ (A) |  |
|  | $=$ | $₹ 1,800(25-26.15)$ |  |  |
| Others | $=$ | $₹ 2,400(500 \times 5 \%-523 \times 5 \%)$ | $=2,760$ (A) |  |
|  | $=$ | $₹ 2,400(25-26.15)$ | $72,271.75$ | (A) |

(iv) Material Cost Variance $=$ (Std. Quantity $\times$ Std. Price) $-($ Actual Quantity $\times$ Actual Price)

| Limestone | $=₹ 565 \times(500 \times 65 \%)-₹ 1,90,400$ | $=6,775(\mathrm{~A})$ |
| :--- | :--- | ---: |
|  | $=₹ 1,83,625-₹ 1,90,400$ |  |
| Silica | $=₹ 4,800 \times(500 \times 20 \%)-₹ 5,09,250$ | $=29,250(\mathrm{~A})$ |
|  | $=₹ 4,80,000-₹ 5,09,250$ | $=10,000(\mathrm{~A})$ |
| Alumina | $=₹ 32,100(500 \times 5 \%)-₹ 8,12,500$ |  |
|  | $=₹ 8,02,500-₹ 8,12,500$ | $=8,400(\mathrm{~A})$ |
| Iron ore | $=₹ 1,800(500 \times 5 \%)-₹ 53,400$ |  |
|  | $=₹ 45,000-₹ 53,400$ | $=8,250(\mathrm{~F})$ |
| Others | $=₹ 2,400(500 \times 5 \%)-₹ 51,750$ | 46,175 (A) |
|  |  |  |
|  |  |  |

## Question 14

Following are the details given:

| Budgeted Days | 25 |
| :--- | :--- |
| Budgeted Fixed Overheads | $1,00,000$ |
| Budgeted Production | 800 units per day |
| Actual Production | 21,000 units |
| Fixed Overheads are absorbed @ ₹ 10 per <br> hour. |  |
| Fixed overheads efficiency variance | $10,000 \mathrm{~A}$ |
| Fixed overheads calendar variance | $\mathbf{8 , 0 0 0 F}$ |
| Fixed overheads cost variance | $15,000 \mathrm{~A}$ |

You are required to CALCULATE:
(a) Actual Fixed Overheads
(b) Actual Days
(c) Actual Hours
(d) Fixed overheads Expenditure variance
(e) Fixed overheads volume variance
(f) Fixed overheads capacity variance (MTP 10 Marks March '22)

## Answer 14

(i) Fixed Overhead Cost Variance $=$ (Std Fixed Overheads - Actual Fixed Overheads)
$=(1,00,000 / 20,000 \times 21,000$ units - Actual Fixed Overheads $)=15,000 \mathrm{~A}$
$=(1,05,000-$ Actual Fixed Overheads $)=15,000 \mathrm{~A}$
=> Actual Fixed Overheads $=1,20,000$
(ii) Fixed Overhead Calendar Variance=(Actual Days - Budgeted Days) x Budgeted rate per day
$=\left(\right.$ Actual Days -25)X $\frac{1,00,000}{25}=8,000 \mathrm{~F}$
$=($ Actual Days -25) $=2$
=> Actual Days =27
(iii) Fixed Overhead Efficiency Variance =(Standard Hours for Actual Production - Actual Hours) x Budgeted rate per hour $=\left(\frac{10,000}{20,000} \times 21,000-\right.$ Actual Hours $) \times 10=10,000 \mathrm{~A}$
$=(10,500-$ Actual Hours $)=-1,000$
=> Actual Hours $=11,500$
(iv) Fixed overheads Expenditure variance=(Budgeted Fixed Overheads - Actual Fixed Overheads)

$$
=(1,00,000-1,20,000)=20,000 \mathrm{~A}
$$

(v) Fixed overheads volume variance $=($ Budgeted units - Actual Units $) \times$ Budgeted Rate per unit $=(20,000-21,000) \times \frac{1,00,000}{20,000}=5,000 \mathrm{~F}$
(vi) Fixed overheads capacity variance = (Budgeted Hours for Actual Days - Actual Hours)
x Budgeted Rate per Hour
$=\left(\frac{10,000}{25} \times 27-11,500\right) \times 10=7,000 F$

## Question 15

The details regarding a product manufactured by the company for the last one week are as follows: Standard cost (per unit)
Direct materials 10 units @ ₹ 22.50 ₹ 225
Direct wages 5 hours @ ₹ 120 ₹ 600
Total: ₹ 825
Actual (for whole activity):
Direct materials ₹ 96,525

Direct wages ₹ 2,44,860
Analysis of variances:
Direct materials:
Price
Usage
Direct wages (labour):
Efficiency
₹ 8,775 (Adverse)
₹ 5,625 (Favourable)

You are required to CALCULATE:
(i) Material Cost variance

Prakshal Shah | 87797946i46 Actual output units
(iii) Actual price of material per unit
(iv) Actual Wages rate per labour hour
(v) Labour rate variance
(vi) Labour Cost variance (MTP 10 Marks Sep'22)

## Answer 15

(i) Material Cost Variance $=$ Material Price Variance+ Material Usage Variance
$=₹ 8,775 A+₹ 5,625 \mathrm{~F}=₹ 3,150$ Adverse
(ii) Actual output units

Let $x$ be the actual quantity of output
Then Standard Quantity of input for actual output ' $x$ '
$S Q=10 x$
Material cost variance
$=(S Q \times S P)-(A Q \times A P)$
$-3,150$
$-3,150$
$=(10 \times x 22.50)-₹ 96,525$
$=225 x-₹ 96,525$
225x
$=96,525-3,150$
= ₹ 93,375

X

$$
=93,375 / 225=415 \text { Units }
$$

(iii) Actual Price of Material per unit

Material Usage variance $=(S Q-A Q) \times$ SP 5, 625 $=(10 x-A Q) \times ₹ 22.50$
$5,625=(10 \times 415$ units $-A Q) \times ₹ 22.50$
$5,625 / 22.50 \quad=4,150-\mathrm{AQ}$
$\mathrm{AQ}=4,150-250 \quad=3,900$ units
Now, AQ x AP = ₹ 96,525 (given) AP = ₹ 96,525/AQ $=₹ 96,525 / 3,900$ units $=₹ 24.75$
(iv) Actual wages rate per labour hour

Labour efficiency variance =5,400 Adverse (given)
Standard rate per hour (Standard time - Actual time) $=-5,400$
₹ 120 [(Actual output units x Number of hours per output) - Actual time] = -5,400
₹ 120 [(415 units x 5 hrs) - Actual time] =-5,400 2,075 hrs - Actual time
$=-5,400 / 120$
Actual time

$$
\begin{aligned}
& =2,075+45 \\
& =2,120 \mathrm{hrs}
\end{aligned}
$$

Now Direct wages $=₹ 2,44,860$ (given) Actual time $\times$ Actual rate per hour
= ₹ 2,44,860

Actual rate per hour
= ₹ 2,44,860 / 2,120 hrs

$$
\text { = ₹ } 115.50
$$

(v) Labour rate variance

$$
\begin{aligned}
& =\text { Actual time (Standard Rate - Actual Rate) } \\
& =2,120 \mathrm{hrs}(₹ 120-₹ 115.50) \\
& =2,120 \mathrm{hrs} \times ₹ 4.50=9,540 \text { Favourable }
\end{aligned}
$$

(vi) Labour Cost variance
$=$ Labour rate variance+ Labour efficiency variance
$=9,540 \mathrm{~F}+5,400 \mathrm{~A}=4,140$ Favourable

## Question 16

The following information is available from the cost records of a company for the month of July, 2022:

| (1) | Material purchased | 22,000 pieces |
| :--- | :--- | :--- |
| (2) | Material consumed | 21,000 pieces |
| (3) | Actual wages paid for | 5,150 hours |
| (4) Fixed Factory overhead incurred |  | $₹ \mathbf{2 , 5 7 , 5 0 0}$ |
| (5) Fixed Factory overhead budgeted |  | $₹ 4,60,000$ |
| (6) Units produced | 1,900 |  |
| (7) Standard rates and prices are: |  |  |
|  | Direct material | ₹ 45 per piece |
|  | Standard input | 10 pieces per unit |

You are required to CALCULATE the following variances:
(i) Material price variance
(ii) Material usage variance
(iii) Labour rate variance
(iv) Labour efficiency variance
(v) Fixed overhead expenditure variance
(vi) Fixed overhead efficiency variance

Fixed overhead capacity variance (MTP 10 Marks Oct'22) (Same concept different figures Old \& New SM)
Answer 16
(i) Material price variance (on the basis of Single plan):

$$
\begin{aligned}
& =\text { Actual Quantity Purchased (Std. Price }- \text { Actual Price) } \\
& =22,000 \text { pcs } \\
& \left(\text { Rs. } 45-\frac{\text { Rs. } 9,00,000}{R s .22,000 p c s}=\text { Rs. } 90,000^{*}\right. \text { (Favourable) }
\end{aligned}
$$

OR
Material price variance (on the basis of Partial plan):

$$
\begin{aligned}
& =\text { Actual Quantity consumed (Std. Price - Actual Price) } \\
& =21,000 \text { pcs (Rs. } 45-\text { Rs. } 9,00,000=\text { Rs. } 85,909^{*} \text { (Favourable) }
\end{aligned}
$$

(*Figure may slightly differ due to rounding off the actual price per unit)
(ii) Material usage variance:
$=$ Rs. 45 (1,900 units $\times 10-21,000)=$ Rs. 90,000 (Adverse)
(iii) Labour rate variance:

$$
\begin{aligned}
& =\text { Actual hours paid (Std. rate }- \text { Actual rate) } \\
& =5,150 \text { hours (Rs. } 60-\frac{\text { Rs. } 2,57,500}{5,150 \text { hours }}=\text { Rs. } 51,500 \text { (Favourable) }
\end{aligned}
$$

(iv) Labour efficiency variance:

$$
\begin{aligned}
& =\text { Std. rate per hour (Std. hours }- \text { Actual Quantity worked } \\
& =\text { Rs. } 60(1,900 \text { units } \times 2.5 \text { hours }-5,150 \text { hours) }=\text { Rs. } 24,000 \text { (Adverse) }
\end{aligned}
$$

(v) Fixed overhead expenditure variance:

$$
\begin{aligned}
& =\text { Budgeted Overhead }- \text { Actual Overhead } \\
& =\text { Rs. } 4,20,000-\text { Rs. } 4,60,000=\text { Rs. } 40,000 \text { (Adverse) }
\end{aligned}
$$

(vi) Fixed overhead efficiency variance:

$$
\begin{aligned}
& =\text { Std. rate (Std. hours - Actual hours worked) } \\
& =\text { Rs. } 80 \text { (1,900 units } \times 2.5 \text { hours }-5,150 \text { hours) }=\text { Rs. } 32,000 \text { (Adverse) } \\
& \qquad \text { Or, } \\
& \text { Fixed overhead efficiency variance on basis of units } \\
& =\text { Std. rate per unit (Actual output - Standard output for actual hours) } \\
& =\text { Rs. } 200 \text { (1,900 units }-5,150 / 2.5 \text { hours) = Rs. 32,000 (Adverse) }
\end{aligned}
$$

(vii) Fixed overhead capacity variance:

$$
\begin{aligned}
& =\text { Std. rate (Actual hours worked - Budgeted hours) } \\
& =\text { Rs. } 80 \text { (5,150hours }-\frac{R s . .4,20,000}{R s .80}=\text { Rs. } 8,000 \text { (Adverse) } \\
& \qquad \text { Or, } \\
& \text { Fixed overhead capacity variances on basis of units } \\
& =\text { Std. rate per unit (Standard output for actual hours - Budgeted output) } \\
& =\text { Rs. } 200 \text { ( } 2,060 \text { units }-4,20,000 / 200)=\text { Rs. } 8,000 \text { (Adverse) }
\end{aligned}
$$

## Question 17

$X$ Associates undertake to prepare income tax returns for individuals for a fee. They use the weighted average method and actual costs for the financial reporting purposes. However, for internal reporting, they use a standard costs system. The standards, based on equivalent performance, have been established as follows:

| Labour per return | 5 hrs @`40 per hour \\ Overhead per return & 5 hrs @` 20 per hour |
| :--- | :--- |

For July 2023 performance, budgeted overhead is ` 98,000 for standard labour hours allowed. The following additional information pertains to the month of July 2023:

| July 1 | Return-in-process (25\% complete) | 200 No. |
| :---: | :---: | :---: |
|  | Return started in July | 825 Nos |
| July 31 | Return-in-process (80\% complete) | 125 Nos |
| Cost Data: |  |  |
| July 1 | Return-in-process labour | 12,000 |
|  | - Overheads | 5,000 |
| July 1 to 31 | Labour : 4,000 hours | -1,78,000 |
|  | Overheads | 90,000 |

## You are required to compute:

(i) For each element, equivalent units of performance and the actual cost per equivalent unit.
(ii) Actual cost of return-in-process on July 31.
(iii) The standard cost per return.
(iv) The labour rate and labour efficiency variance as well as overhead volume and overhead expenditure variance. (MTP 10 Marks, Oct '23)

## Answer 17

I. Statement Showing Cost Elements Equivalent Units of Performance and the Actual Cost Per Equivalent Unit

| Detail of Returns | Detail of Input Units | Details | Equivalent Units |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Output Units | Labour |  | Overheads |  |
|  |  |  |  | Units | \% | Units | \% |
| Returns in <br> Process at Start | 200 | Returns Completed in July | 900 | 900 | 100 | 900 | 100 |
| Returns Started in July | 825 | Returns in Process at the end of July | 125 | 100 | 80 | 100 | 80 |
|  | 1,025 |  | 1,025 | 1,000 |  | 1,000 |  |


| Costs: | Labour (`) & Overhead (`) |  |
| :--- | ---: | ---: |
| From previous month | 12,000 | 5,000 |
| During the month | $1,78,000$ | 90,000 |
| Total Cost | $1,90,000$ | 95,000 |
| Cost per Equivalent Unit | 190.00 | 95.00 |

II. Actual cost of returns in process on July 31:

\begin{tabular}{|l|c|c|c|c|}
\hline \& Numbers \& \begin{tabular}{c} 
Stage of \\
Completion
\end{tabular} \& \begin{tabular}{c} 
Rate per Return \\
(`)
\end{tabular} \& Total (`) \\
\hline Labour \& 125 returns \& 0.80 \& 190.00 \& 19,000 \\
\hline Overhead \& 125 returns \& 0.80 \& 95.00 \& 9,500 \\
\hline \& \& \& \& 28,500 \\
\hline
\end{tabular}
III. Standard Cost per Return:
Labour \(5 \mathrm{Hrs} \times{ }^{`} 40\) per hour \(=` 200\)

Overhead 5 Hrs $\times$ ` 20 per hour \(=` 100\)
‘ 300
Budgeted volume for July =`98,000 / 1000 = 980 Returns Actual labour rate \(\quad=` 178000 / 4000=` 44.50\)
IV. Computation of Variances:

| Statement Showing Output (July only) Element Wise | Labour | Overhead |
| :--- | ---: | ---: |
| Actual performance in July in terms of equivalent units as <br> Calculated above | 1,000 | 1,000 |
| Less: Returns in process at the beginning of July in terms <br> of equivalent units i.e. $25 \%$ of returns (200) | 50 | 50 |
|  | 950 | 950 |

## Variance Analysis:

Labour Rate Variance

```
\(=\quad\) Standard Rate \(\times\) Actual Time - Actual Rate \(\times\) Actual Time
\(=\quad ` 40 \times 4,000 \mathrm{hrs} .-` 1,78,000=` 18,000(\mathrm{~A})\)
```

Labour Efficiency Variance

```
\(=\quad\) Standard Rate \(\times(\) Standard Time - Actual Time \()\)
\(=\quad\) Standard Rate \(\times\) Standard Time - Standard Rate \(\times\) Actual Time
\(=\quad ` 40 \times(950\) units \(\times 5 \mathrm{hrs})-.` 40 \times 4,000 \mathrm{hrs}\).
\(=\quad{ }^{`} 30,000(F)\)
```

Overhead Expenditure or Budgeted Variance

$$
\begin{array}{ll}
= & \text { Budgeted Overhead }- \text { Actual Overhead } \\
= & ` 98,000-` 90,000 \\
= & ` 8,000(\mathrm{~F})
\end{array}
$$

Overhead Volume Variance

$$
\begin{array}{ll}
= & \text { Recovered/Absorbed Overhead }- \text { Budgeted Overhead } \\
= & 950 \text { Units } \times 5 \mathrm{hrs} \times{ }^{`} 20-` 98,000=` 3,000(\mathrm{~A})
\end{array}
$$

## Question 18

ABC Ltd. had prepared the following estimation for the month of January:

|  | Quantity | Rate (₹) | Amount (₹) |
| :--- | ---: | ---: | ---: |
| Material-A | 800 kg | 90.00 | 72,000 |
| Material-B | 600 kg. | 60.00 | 36,000 |
| Skilled labour | 1,000 hours | 75.00 | 75,000 |
| Unskilled labour | 800 hours | 44.00 | 35,200 |

Normal loss was expected to be $10 \%$ of total input materials and an idle labour time of 5\% of expected labour hours was also estimated.

At the end of the month the following information has been collected from the cost accounting department:

The company has produced $1,480 \mathrm{~kg}$. finished product by using the followings:

|  | Quantity | Rate (₹) | Amount (₹) |
| :--- | ---: | ---: | ---: |
| Material-A | 900 kg. | 86.00 | 77,400 |
| Material-B | 650 kg. | 65.00 | 42,250 |
| Skilled labour | 1,200 hours | 71.00 | 85,200 |
| Unskilled labour | 860 hours | 46.00 | 39,560 |

You are required to CALCULATE:
(a) Material Cost Variance;
(b) Material Price Variance;
(c) Material Mix Variance;
(d) Material Yield Variance;
(e) Labour Cost Variance;
(f) Labour Efficiency Variance and (g) Labour Yield Variance. (RTP May'19 , May '20 May '18) (Same concept different figures RTP May'18)

## Answer 18

Material Variances:

| Material | SQ | SP | SQ $\times$ SP | RSQ | RSQ $\times$ SP | AQ | AQ $\times$ SP | AP | AQ $\times$ AP |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | (WN-1) | (₹) | (₹) | (WN-2) | (₹) |  | (₹) | (₹) | (₹) |
| A | 940 kg. | 90.00 | 84,600 | 886 kg. | 79,740 | 900 kg. | 81,000 | 86.00 | 77,400 |
| B | 705 kg. | 60.00 | 42,300 | 664 kg. | 39,840 | 650 kg. | 39,000 | 65.00 | 42,250 |
|  | 1645 kg |  | $1,26,900$ | 1550 kg | $1,19,580$ | 1550 kg | $1,20,000$ |  | $1,19,650$ |

Material A- $\left(\frac{800 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=939.68$ or 940 kg .
Material B- $\left(\frac{600 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=704.76$ or 705 kg .
WN- 2: Revised Standard Quantity (RSQ):
Material A- $\left(\frac{800 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=885.71$ or 886 kg .
Material B- $\left(\frac{600 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=664.28$ or 664 kg .
(a) Material Cost Variance $(\mathrm{A}+\mathrm{B})$

$$
\begin{array}{ll}
= & \{(S Q \times S P)-(A Q \times A P)\} \\
= & \{1,26,900-1,19,650\}=7,250(F)
\end{array}
$$

(b) Material Price Variance $(A+B)$
$=\quad\{(A Q \times S P)-(A Q \times A P)$
$=\{1,20,000-1,19,650\}=350(F)$
(c) Material Mix Variance (A + B)
$=\quad\{(R S Q \times S P)-(A Q \times S P)\}$
$=\quad\{1,19,580-1,20,000\}=420(\mathrm{~A})$
(d) Material Yield Variance ( $\mathrm{A}+\mathrm{B}$ )
$=\{(S Q \times S P)-(R S Q \times S P)\}$
$=\{1,26,900-1,19,580\}=7,320(F)$
Labour Variances:

| Labour | SH | SR | SH $\times$ SR | RSH | RSH $\times$ SR | AH | AH $\times$ SR | AR | AH $\times$ AR |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | (WN-3) | (₹) | (₹) | (WN-4) | (₹) |  | (₹) | (₹) | (₹) |
| Skilled | $1,116 \mathrm{hrs}$ | 75.00 | 83,700 | 1144 | 85,800 | 1,200 | 90,000 | 71.00 | 85,200 |
| Unskilled | 893 hrs | 44.00 | 39,292 | 916 | 40,304 | 860 | 37,840 | 46.00 | 39,560 |
|  | $2,009 \mathrm{hrs}$ |  | $1,22,992$ | 2,060 | $1,26,104$ | 2,060 | $1,27,840$ |  | $1,24,760$ |

WN- 3: Standard Hours (SH):
Skilled Labour $-\left(\frac{0.95 \times 1,000 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=1,115.87$ or $1,116 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{\mathbf{0 . 9 5} \times \mathbf{8 0 0} \mathbf{~ h r} .}{\mathbf{0 . 9 0} \times \mathbf{1}, \mathbf{4 0 0} \mathbf{k g} .} \times \mathbf{1}, \mathbf{4 8 0} \mathbf{k g}.\right)=892.69$ or 893 hrs.

## WN-4: Revised Standard Hours (RSH):

Skilled Labour $-\left(\frac{1,000 h r}{1,800 h r} .2,060 \mathrm{hr}.\right)=1,115.87$ or $1,116 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{\mathbf{8 0 0} \mathbf{h r} .}{\mathbf{1 , 8 0 0 h r}} \times \mathbf{2 , 0 6 0} \mathbf{h r}.\right)=915.56$ or 916 hrs .

| (e) Labour Cost Variance (Skilled + Unskilled) | $=$ | $\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})\}$ |
| :--- | :--- | :--- |
| (f) Labour Efficiency Variance (Skilled + Unskilled) | $=$ | $\{1,22,992-1,24,760\}=1,768(\mathrm{~A})$ |
|  | $=$ | $\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})\}$ |
|  | $=$ | $\{1,22,992-1,27,840\}=4,848(\mathrm{~A})$ |
| (g) Labour Yield Variance (Skilled + Unskilled) | $=$ | $\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{RSH} \times \mathrm{SR})\}$ |
|  | $=$ | $\{1,22,992-1,26,104\}=3,112(\mathrm{~A})$ |

## Question 19

JVG Ltd. produces a product and operates a standard costing system and value material and finished goods inventories at standard cost. The information related with the product is as follows:

## Particulars

Direct materials ( 30 kg at ₹ 350 perkg)

## Cost perunit (₹)

10,500

Direct labour ( 5 hours at ₹ 80per hour)
400
The actual information for the month just ended is as follows:
(a) The budgeted and actual production for the month of September 2019 is 1,000 units.
(b) Direct materials $-5,000 \mathrm{~kg}$ at the beginning ofthe month. The closingbalance of direct materials for the month was $10,000 \mathrm{~kg}$. Purchases during the month were made at ' 365 per kg. The actual utilization of direct materials was $\mathbf{7 , 2 0 0} \mathbf{~ k g}$ more than the budgeted quantity.
(c) Direct labour - 5,300 hours were utilized at a cost of ₹ 4,34,600.

Required:
Calculate (i) Direct material price and usage variances (ii) Direct labour rate and efficiency variances. ( RTP Nov'19)

## Answer 19

Working:
Quantity of material purchased and used.

| No. of units produced | $1,000 \mathrm{units}$ |
| :--- | ---: |
| Std. input per unit | 30 kg. |
| Std. quantity (Kg.) | $30,000 \mathrm{~kg}$. |
| Add: Excess usage | $7,200 \mathrm{~kg}$. |
| Actual Quantity | $37,200 \mathrm{~kg}$. |
| Add: Closing Stock | $10,000 \mathrm{~kg}$. |
| Less: Opening stock | $5,000 \mathrm{~kg}$. |
| Quantity of Material purchased | $42,200 \mathrm{~kg}$. |

(i) Direct Material Price Variance:
$=\quad$ Actual Quantity purchased (Std. Price - Actual Price)
$=42,200 \mathrm{~kg}$. $₹ 350-₹ 365$ ) $=6,33,000$ (Adverse)
Direct Material Usage Variance:

$$
\begin{aligned}
& =\quad \text { Std. Price (Std. Quantity }- \text { Actual Quantity) } \\
& =₹ 350(30,000 \mathrm{~kg} .-37,200 \mathrm{~kg} .)=₹ 25,20,000 \text { (Adverse) }
\end{aligned}
$$

(ii) Direct Labour Rate Variance:

$$
\begin{aligned}
& =\text { Actual hours (Std. Rate }- \text { Actual Rate) } \\
& =5,300 \text { hours }(₹ 80-₹ 82)=₹ 10,600 \text { (Adverse) }
\end{aligned}
$$

Direct Labour Efficiency Variance:

$$
\begin{aligned}
& =\quad \text { Std. Rate (Std. hours }- \text { Actual hours) } \\
& =₹ 80(1,000 \text { units } \times 5 \text { hours }-5,300 \text { hours })=₹ 24,000 \text { (Adverse) }
\end{aligned}
$$

## Question 20

Aaradhya Ltd. manufactures a commercial product for which the standard cost per unit is as follows:

|  | (Rs.) |
| :---: | ---: |
| Material : 5 kg @ Rs. 4 per kg | 20.00 |
| Labour: 3 hours @ Rs. 10 per kg | 30.00 |
| Overhead |  |
| Variable:3hours @₹1 | 3.00 |
| Fixed:3hours @₹0.50 | 1.50 |
| Total | 54.50 |

During Jan. 20X8, 600 units of the product were manufactured at the cost shown below:

|  | (Rs.) |
| :--- | ---: |
| Materials purchased: 5,000kg.@₹4.10perkg. | 20,500 |


| Materials used: 3,500 kg. |  |
| :--- | ---: |
| Direct Labour : 1,700 hours @ ₹ 9 | 15,300 |
| Variable overhead | 1,900 |
| Fixed overhead | 900 |
| Total | 38,600 |

The flexible budget required 1,800 direct labour hours for operation at the monthly activity level used to set the fixed overhead rate.

Compute:
(a) Material price variance, (b) Material Usage variance; (c) Labour rate variance; (d) Labour efficiency variance; (e) Variable overhead expenditure variance; (f) Variable overhead efficiency variance; (g) Fixed overhead expenditure variance; (h) Fixed overhead volume variance; (i) Fixed overhead capacity variance; and (j) Fixed overhead efficiency variance. Also RECONCILE the standard and actual cost of production. (RTP Nov.'18)

Answer 20
(a) Material price variance:
$=($ Standard price - Actual Price $) \times$ Actual quantity $=(₹ 4-₹ 4.10) \times 5,000=₹ 500 \mathrm{Adv}$.
(b) Material usagevariance:
$=($ Std. quantity for actual output - Actual qtty. $) \times$ Std. price
$=(600 \times 5-3,500) \times 4=₹ 2,000$ Adv.
(c) Labour RateVariance:
$=($ Standard rate - Actual rate $) \times$ Actual hours
$=(₹ 10-₹ 9) \times 1,700=₹ 1,700$ Fav.
Labour Efficiency Variance:
$=$ (Standard hours for actual output - Actual hours) $\times$ Standard rate
$=(600 \times 3-1,700) \times ₹ 10$
= ₹ 1,000 Fav.
Variable Overhead Expenditure Variance
$=$ (Actual Hours $\times$ Standard Rate) - Actual Overhead
$=(1,700 \times ₹ 1)-₹ 1,900$
= ₹ 200 Adv.
Variable Overhead Efficiency Variance:
$=$ Std. hours for actual output - Actual hours) $\times$ Std. rate
$=(600 \times 3-1,700) \times ₹ 1=₹ 100$ Fav.
Fixed Overhead Expenditure Variance:
$=($ Budgeted overhead - Actual overhead $)$
$=(1,800 \times 0.50-900)=\mathrm{Nil}$
Fixed Overhead Volume Variance:
$=($ Std. hours for actual output - Budgeted hours $) \times$ Std. rate
$=(600 \times 3-1,800) \times ₹ 0.50=\mathrm{Nil}$
Fixed Overhead Capacity Variance:
$=($ Budgeted hours - Actual Hours) $\times$ Standard rate
$=(1,800-1,700) \times ₹ 0.50=₹ 50$ Adv.
Fixed Overhead Efficiency Variance:
$=($ Std. hours for actual output - Actual hours $) \times$ Standard rate
$=(600 \times 3-1,700) \times ₹ 0.50=₹ 50$ Fav.
Verification:
Overhead recovered: 600 units @ ₹ 4.50
Actual Overhead:
Variable 1,900

Fixed

Variable expenditure variance
Variable Efficiency variance
Fixed expenditurevariance
Fixed overhead volume variance

## Reconciliation Statement

Standard Cost: 600 units @ ₹ 54.50
Actual Cost:
Less: Material Stock at standard cost: $(1,500 \times ₹ 4)$
Variances:
Material price
Material usage
Labour rate
Labour efficiency
Variable expenditure
Variable efficiency
Total
(₹)

900

$$
2,800
$$

100 Adv.
200 Adv
100 Fav.
Nil
Nil
100 Adv.

32,700
38,600
6,000
$(32,600)$
100 Fav.
Adv. (₹)
Fav. (₹)
500
2,000

|  | 1,700 |  |
| :--- | :--- | :--- |
|  | 1,000 |  |
| 200 |  |  |
| 100 | 2,800 | 100 Fav. |

## Question 21

LM Limited produces a product 'SX4' which is sold in a 10 Kg . packet. The standard cost card per packet of 'SX4' is as follows:

|  | (Rs.) |
| :--- | ---: |
| Direct materials 10 kg @ ₹ 90 per kg | 900 |
| Direct labour 8 hours @ ₹ 80 per hour | 640 |
| Variable Overhead 8 hours @ ₹ 20 per hour | 160 |
| Fixed Overhead | 250 |
|  | 1,950 |

Budgeted output for a quarter of a year was $10,000 \mathrm{Kg}$. Actual output is $9,000 \mathrm{Kg}$. Actual costs for this quarter are as follows:

|  | (Rs.) |
| :--- | ---: |
| Direct Materials 8,900 Kg @ ₹ 92 per Kg. | $8,18,800$ |
| Direct Labour 7,000 hours @ ₹ 84 per hour | $5,88,000$ |
| Variable Overhead incurred | $1,40,000$ |
| Fixed Overhead incurred | $2,60,000$ |
| You are required to CALCULATE: |  |

(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(vi) Labour Cost Variance
(vii) Variable Overhead Cost Variance
(viii) Fixed Overhead Cost Variance
(RTP May '21) (Same concept but different figures RTP Nov'20)

## Answer 21

(i) Material Usage Variance = Std. Price (Std. Quantity - Actual Quantity)

$$
\text { = ₹ } 90 \text { (9,000 kg. - 8,900 kg.) }
$$

= ₹ 9,000 (Favorable)
(ii) Material Price Variance = Actual Quantity (Std. Price - Actual Price)

$$
\text { = 8,900 kg. (₹ } 90 \text { - ₹ 92) = ₹ 17,800 (Adverse) }
$$

(iii) Material Cost Variance = Std. Material Cost - Actual Material Cost

$$
=(S Q \times S P)-(A Q \times A P)
$$

$$
=(9,000 \mathrm{~kg} . \times ₹ 90)-(8,900 \mathrm{~kg} . \times ₹ 92)
$$

= ₹ 8,10,000 - ₹ 8,18,800
= ₹ 8,800 (Adverse)
(iv) Labour Efficiency Variance = Std. Rate (Std. Hours - Actual Hours)

$$
=₹ 80 \text { (9,000/10 X8Hours) - 7,000 hrs. }
$$

$$
\text { = ₹ } 80 \text { (7,200 hrs. - 7,000 hrs.) }
$$

= ₹ 16,000 (Favorable)
(v) Labour Rate Variance =Actual Hours (Std. Rate - Actual Rate)

$$
\text { = 7,000 hrs. (₹ } 80 \text { - ₹ 84) }
$$

= ₹ 28,000 (Adverse)
(vi) Labour Cost Variance
(vii) Variable Cost Variance = Std. Variable Cost - Actual Variable Cost

$$
=(7,200 \mathrm{hrs} . \times ₹ 20)-₹ 1,40,000
$$

= ₹ 4,000 (Adverse)
(viii) Fixed Overhead Cost Variance= Absorbed Fixed Overhead - Actual Fixed Overhead

$$
\begin{aligned}
& =\frac{\text { Rs. } 250}{10 \mathrm{kgs}} \times 9,000 \mathrm{kgs} .- \text { Rs. 2,60,000 } \\
= & ₹ 2,25,000-₹ 2,60,000=₹ 35,000 \text { (Adverse) }
\end{aligned}
$$

## Question 21

Baby Moon Ltd. uses standard costing system in manufacturing one of its product 'Baby Cap'. The details are as follows:

Direct Material 1 Meter @ ₹ 60 per meter ₹ 60
Direct Labour 2 hour @ ₹ 20 per hour ₹ 40

| Variable overhead 2 hour @ ₹ 10 per hour |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Total | ₹ 120 |  |  |  |
| During the month of August, 10,000 units of 'Baby Cap' were manufactured. Details as follows: |  |  |  |  |
| Direct material consumed |  | 11,400 meters | @ | ₹ 58 per meter |
| Direct labour Hours | ? @ | ? |  | ₹ 4,48,800 |
| Variable overhead incurred |  |  |  | ₹ $2,24,400$ |

Variable overhead efficiency variance is ₹ 4,000 A. Variable overheads are based on Direct Labour Hours.

You are required to CALCULATE the following Variances:
(a) Material Variances- Material Cost Variance, Material Price Variance and Material Usage Variance.
(b) Variable Overheads variances- Variable overhead Cost Variance, Variable overhead Efficiency Variance and Variable overhead Expenditure Variance.
(c) Labour variances- Labour Cost Variance, Labour Rate Variance and Labour Efficiency Variance.(RTP Nov '21) (Same concept different figures MTP 10 Marks Aug'18, Old \& New SM)
Answer 21
(i) Material Variances

| Budget |  |  | Std. for actual |  |  | Actual |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quantity (Meter) | Price (₹) | Amount (₹) | Quantity (Meter) | Price (₹) | Amount (₹) | Quantity <br> (Meter) | Price (₹) | Amount (₹) |
| 1 | 60 | 60 | 10,000 | 60 | 6,00,000 | 11,400 | 58 | 6,61,200 |
| Material Cost Variance $=(S Q \times S P-A Q \times A P)$ |  |  |  |  |  |  |  |  |

$$
\begin{aligned}
& \qquad=6,00,000-6,61,200=₹ 61,200(A) \\
& \text { Material Price Variance }=(S P-A P) \text { AQ } \\
&=(60-58) 11,400=₹ 22,800(F) \\
& \text { Material Usage Variance }=(S Q-A Q) S P \\
&=(10,000-11,400) 60=₹ 84,000(\mathrm{~A})
\end{aligned}
$$

(ii) Variable Overheads Variances Variable overhead cost Variance
= Standard variable overhead - Actual Variable Overhead
$=(10,000$ units $\times 2$ hours $\times ₹ 10)-2,24,400=₹ 24,400(A)$
Variable overhead Efficiency Variance
$=($ Standard Hours - Actual Hours) $\times$ Standard Rate per Hour
Let Actual Hours be ' $X$ ', then:

| $(20,000-X) \times 10$ | $=4,000(A)$ |
| ---: | :--- |
| $2,00,000-10 X$ | $=-4,000$ |
| $x$ | $=2,04,000 \div 10$ |
| Therefore, Actual Hours $(X)$ | $=20,400$ |

## Variable overhead Expenditure Variance

$=$ Variable Overhead at Actual Hours - Actual Variable Overheads
$=20,400 \times ₹ 10-2,24,400=₹ 20,400(A)$
(iii) Labour variances

| Budget |  |  | Std. for actual |  |  | Actual |  |  |
| :---: | ---: | ---: | :---: | ---: | ---: | :---: | ---: | ---: |
| Hours | Rate <br> (₹) | Amount <br> (₹) | Hours | Rate <br> (₹) | Amount <br> (₹) | Hours | Rate <br> (₹) | Amount <br> (₹) |
| 2 | 20 | 40 | 20,000 | 20 | $4,00,000$ | 20,400 | $22^{*}$ | $4,48,800$ |

*Actual Rate $=₹ 4,48,800 \div 20,400$ hours $=₹ 22$
Labour Cost Variance $=(S H \times S R)-(A H \times A R)$
$=4,00,000-4,48,800=₹ 48,800(\mathrm{~A})$
Labour Rate Variance $=(S R-A R) \times A H$
$=(20-22) \times 20,400=₹ 40,800(\mathrm{~A})$
Labour Efficiency Variance $=(S H-A H) \times S R$
$=(20,000-20,400) \times 20=₹ 8,000(\mathrm{~A})$

## Question 22

The standard output of a Product ' D ' is 50 units per hour in manufacturing department of a Company employing 100 workers. In a 40 hours week, the department produced 1,920 units of product ' $D$ ' despite $5 \%$ of the time paid was lost due to an abnormal reason. The hourly wage rates actually paid were ₹ 12.40 , ₹ 12.00 and ₹ 11.40 respectively to Group 'A' consisting 10 workers, Group 'B' consisting 30 workers and Group ' $C$ ' consisting 60 workers. The standard wage rate per labour is same for all the workers. Labour Efficiency Variance is given ₹ 480 (F).

You are required to COMPUTE:
(i) Total Labour Cost Variance.
(ii) Total Labour Rate Variance.
(iii) Total Labour Gang Variance.
(iv) Total Labour Yield Variance, and
(v) Total Labour Idle Time Variance.
(RTP May '22, PYP 10 Marks July 21)
Answer 22
Working Notes:

1. Calculation of Standard Man hours

When 100 workers work for 1 hour, the standard output is 50 units.

$$
\text { Standard man hours per unit }=\frac{100 \text { hours }}{50 \text { Units }}=\mathbf{2} \text { hours per unit }
$$

2. Calculation of standard man hours for actual output:

$$
=1,920 \text { units } \times 2 \text { hours }=3,840 \text { hours. }
$$

3. Calculation of actual cost

| Type of <br> Workers | No of <br> Workers | Actual <br> Hours Paid | Rate <br> (₹) | Amount <br> (₹) | Idle Hours (5\% of <br> hours paid) | Actual hours <br> Worked |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group ' $A^{\prime}$ | 10 | 400 | 12.40 | 4,960 | 20 | 380 |
| Group ' $B^{\prime}$ | 30 | 1,200 | 12 | 14,400 | 60 | 1,140 |
| Group 'C' $^{2}$ | 60 | 2,400 | 11.40 | 27,360 | 120 | 2,280 |


|  | 100 | 4,000 |  | 46,720 | 200 | 3,800 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

4. Calculation of Standard wage Rate:

| Labour Efficiency Variance | $=480 \mathrm{~F}$ |
| ---: | :--- |
| (Standard hours for Actual production-Actual Hours) $\times$ SR $=480 \mathrm{~F}$ <br> $(3,840-3,800) \times S R$  <br> Standard Rate (SR) $=₹ \mathbf{1 2}$ per hour |  |

## (i) Total Labour Cost Variance

$=$ (Standard hours x Standard Rate) - (Actual Hours x Actual rate)
$=(3,840 \times 12)-46,720=640 \mathrm{~A}$
(ii) Total Labour Rate Variance
$=$ (Standard Rate - Actual Rate) $\times$ Actual Hours
Group ' $A$ ' = (12-12.40) $400=160 \mathrm{~A}$
Group 'B' = (12-12) 1,200 $=0$
Group 'C' = (12-11.40) 2,400 = 1,440F
1,280F

## (iii) Total Labour Gang Variance

$=$ Total Actual Time Worked (hours) $\times$ \{Average Standard Rate per hour of Standard Gang -Average Standard Rate per hour of Actual Gang@\}
@ on the basis of hours worked
$=3,800 \times(12-3,840 \times 12 / 3,800)$
$=0$
[Note: As the number of workers in standard and actual is the same, there is no difference in mix ratio, so labour gang variance will be NIL]
(iv) Total Labour Yield Variance
$=$ Average Standard Rate per hour of Standard Gang $\times$ \{Total Standard Time (hours) - Total Actual Time worked (hours)\}

$$
\begin{aligned}
& =12 \times(3,840-3,800) \\
& =480 F
\end{aligned}
$$

(v) Total Labour idle time variance
$=$ Total Idle hours $x$ standard rate per hour
$=200$ hours $\times 12$
$=2,400 \mathrm{~A}$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem tested the basic knowledge of examinees on the topic of standard costing requiring computation of various labour variances. Most of the examinees had just written the formula of different variances. They did not understand how to calculate standard hours for actual output. Performance of the examinees was poor.

## Question 23

Ahaan Limited operates a system of standard costing in respect of one of its products 'AH1' which is manufactured within a single cost centre. Details of standard per unit are as follows:

- $\quad$ The standard wage rate is $\mathbf{₹} \mathbf{7 2}$ per hour and $\mathbf{5}$ hours are allowed to produce one unit.
- Fixed production overhead is absorbed at the rate of $100 \%$ of wages cost.

During the month of April 2022, the following was incurred:

- Actual price paid for material purchased @ ₹ 22 per kilogram.
- Total direct wages cost was ₹ $43,92,000$

Fixed production overhead cost incurred was ₹ 45,00,000 Analysis of variances was as follows:

| Variances | Favourable | Adverse |
| :--- | ---: | ---: |
| Direct material price | ₹ 4,80,000 | - |
| Direct material usage | ₹ 48,000 |  |
| Direct labour rate | - | ₹ 69,120 |
| Direct labour efficiency | ₹ 33,120 | - |
| Fixed production overhead expenditure |  | ₹ 1,80,000 |

You are required to CALCULATE the following for the month of April, 2022
(i) Material cost variance
(ii) Budgeted output (in units)
(iii) Quantity of raw materials purchased (in kilograms)
(iv) Actual output (in units)
(v) Actual hours worked
(vi) Actual wage rate per labour hour
(vii) Labour cost variance
(viii) Production overhead cost variance (RTP Nov'22)

## Answer 23

i. Direct Material Cost Variance = Direct Material Price Variance + Direct Material Usage Variance
$=₹ 4,80,000 \mathrm{~F}+₹ 48,000 \mathrm{~F}=₹ 5,28,000 \mathrm{~F}$
ii. Budgeted Output (units)

Fixed Production Overhead Expenditure Variance
= Budgeted Fixed Overhead - Actual Fixed Overheads
= Budgeted Output x Standard Overhead Rate - Actual Fixed Overheads
₹ $1,80,000 \mathrm{~A}=$ Budgeted Output x ₹ 360 (5 hrs @₹ 72) - ₹ 45,00,000
Budgeted Output $=\frac{₹ 45,00,000-₹ 1,80,000}{₹ 360}=\mathbf{1 2 , 0 0 0}$ units
iii. Quantity of Materials purchased (in kilograms)

Material Price Variance = Actual Usage (Standard Price per kg - Actual price per kg)
₹ $4,80,000$ F = Actual Usage (₹ 24 -₹ 22)
Actual usage in kgs $=\frac{₹ 4,80,000-₹ 1,80,000}{2}=2,40,000 \mathrm{kgs}$
Actual Output (units)

| Actual Direct Wages | ₹ 43,92,000 |
| :--- | ---: |
| Direct labour rate variance | ₹ $69,120 \mathrm{~A}$ |
| Direct labour efficiency variance | ₹ 33,120 F |
| Standard labour cost for actual output | ₹ 43,56,000 |

Actual Output $=\frac{\text { Standard labour cost for actual output }}{\text { Standard wage rate per unit }}$
794646
$=\frac{₹ 4,3,56,000-₹ 1,80,000}{₹ 360(72 \times 5)}=12,100$ units
Alternatively, let $X$ be the actual quantity of output
Then, Standard Quantity of input for actual output ' X '

$$
\begin{aligned}
& 20 X \quad=S Q \\
& \text { Material cost variance }=(S Q \times S P)-(A Q \times A P) \\
& ₹ 5,28,000=(20 \times \times ₹ 24)-(2,40,000 \mathrm{kgs} \times ₹ 22) \\
& \begin{array}{c}
480 \times \quad=₹ 52,80,000+₹ 5,28,000 \\
480 X \quad=₹ 58,08,000 \\
\text { ₹ }=\frac{58,08,000}{480}= \\
\mathbf{1 2 , 1 0 0} \text { units }
\end{array}
\end{aligned}
$$

iv. Actual hours worked

Labour Efficiency Variance = Standard Labour Rate (Standard time for actual output - Actual time)

$$
\begin{aligned}
& ₹ 33,120 F=₹ 72 \text { ( } 5 \text { hours } \times 12100 \text { units }- \text { Actual time) } \\
& 460 \text { hours }=60,500 \text { hours }- \text { Actual time } \\
& \text { Actual time }=60,500-460=60,040 \text { hours }
\end{aligned}
$$

v. Actual wage rate per hour

$$
\begin{array}{ll}
\text { Actual Wages paid } & =₹ 43,92,000 \\
\text { Actual hours worked } & =60,040 \text { hours }
\end{array}
$$

Actual Wage rate per hour $=\frac{₹ 43,92,000}{60,04 \text { hours }}==₹ 73.15$ per hour
vi. Production Overhead Cost Variance

$$
\begin{aligned}
& =\text { Actual Output x Standard overhead rate - Actual Overheads Incurred } \\
& =12,100 \text { units } x ₹ 360-₹ 45,00,000 \\
& =₹ 43,56,000-₹ 45,00,000 \\
& =₹ 1,44,000 \mathrm{~A}
\end{aligned}
$$

## Question 24

The standard cost of a chemical mixture is as follows : 60\% of Material A @ ₹ 50 per kg 40\% Material B @ ₹ 60 per kg.

A standard loss of $\mathbf{2 5 \%}$ on output is expected in production. The cost records for a period has shown the following usage.
540 kg of Material A @ ₹ 60 per kg 260 kg of Material
B @ ₹ 50 per kg
The quantity processed was 680 kilograms of good product. From the above given information

## Calculate:

| (i) Material Cost Variance | (ii) | Material Price Variance |
| :--- | :--- | :--- |
| (iii) Material Usage Variance | (iv) | Material Mix Variance |
| (v) Material Yield Variance |  |  |

(PYP Nov'19,10Marks) (Same concept different figures Old \& New SM)
Answer 24
Basic Calculation

| Material | Standard for 640 kg. output | Actual for 680 kg. output |
| :--- | :---: | :---: |


|  | Qty. | Rate | Amount | Qty | Rate | Amount |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Kg. | (₹) | (₹) | Kg. | (₹) | (₹) |
| A | 480 | 50 | 24,000 | 540 | 60 | 32,400 |
| B | 320 | 60 | 19,200 | 260 | 50 | 13,000 |
| Total | 800 | 43,200 | 800 | 45,400 |  |  |
| Less: Loss | 160 | - | - | 120 | - | - |
|  | 640 |  | 43,200 | 680 |  | $\mathbf{4 5 , 4 0 0}$ |

Std.costofactualoutput=₹43,200×680/640=₹45,900 Calculation of Variances
(i) MaterialCostVariance
$=(45,900-45,400)$
=₹ $\mathbf{5 0 0}$ (F)
(ii) Material Price Variance

Material A
Material B
₹ 2600 (F) MPV
₹ $\mathbf{2 8 0 0}$ (A)
$=($ Std. cost of actual output - Actual cost $)$

$$
\begin{array}{ll}
=(S P-A P) \times A Q & \\
=(50-60) \times 540 & =₹ 5400(\mathrm{~A}) \\
=(60-50)) \times 260 & = \\
& =
\end{array}
$$

iii) Material Usage Variance (MUV) $=($ Std. Quantity for actual output - Actual Quantity $) \times$ Std. Price Material $A=\left(\frac{480 \times 680}{640}-540\right) \times 50=$ Rs. $1,500(A)$

Material $B=\left(\frac{320 \times 680}{640}-540\right) \times 60=$ Rs. $4,800(F)$

$$
\text { MUV } \quad=₹ \mathbf{3 , 3 0 0}(F)
$$

(iv) Material Mix Variance

A =₹ $50 \times(480 \mathrm{Kg}-540 \mathrm{Kg})$
B $=₹ 60 \times(320 \mathrm{Kg} .-260 \mathrm{Kg}$.)
Total =₹ 3,000 (A) $+₹ 3,600$ (F)
(v) MaterialYieldVariance

A =₹ $50 \times(510 \mathrm{Kg} .-480 \mathrm{Kg})$
B $\quad=₹ 60 \times(340 \mathrm{Kg} .-320 \mathrm{Kg}$.)
Total =₹ 1,500 (F) $+₹ \mathbf{1 , 2 0 0 ( F ) ~}$

$$
\begin{aligned}
& =S P \times(R A Q-A Q) \\
& =₹ 3,000(A) \\
& =₹ 3,600(F) \\
& =₹ 600(F) \\
& =S P \times(S Q-R A Q) \\
& =₹ 1,500(F) \\
& =₹ 1,200(F) \\
& =₹ 2,700(F)
\end{aligned}
$$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question relating to the topic 'Standard Costing'. The question required calculation of material variances. Performance of the examinees was average.

## Question 25

A gang of workers normally consists of $\mathbf{3 0}$ skilled workers, 15 semi-skilled workers and 10 unskilled workers. They are paid at standard rate per hour as under:

Skilled ₹ 70
Semi-skilled ₹ 65
Unskilled ₹ 50
In a normal working week of 40 hours, the gang is expected to produce 2,000 units of output. During the week ended 31st March, 2019, the gang consisted of 40 skilled, 10 semi-skilled and 5 unskilled
workers. The actual wages paid were at the rate of ₹ $75, ₹ 60$ and $₹ 52$ per hour respectively. Four hours were lost due to machine breakdown and 1,600 units were produced.

Calculate the following variances showing clearly adverse (A) or favourable (F)
(i) Labour Cost Variance (ii) Labour Rate Variance
(iii) Labour Efficiency Variance (iv) Labour Mix Variance
(v) Labour IdleTime Variance (PYP May'19, 10Marks)

Answer 25
(i) Labour Cost Variance = Standard Cost - Actual Cost
$=₹ 1,14,400-₹ 1,54,400=40,000(A)$
$(1,600 * 75+400 * 60+200 * 52=₹ 1,54,400)$

|  | Or |  |
| :--- | :--- | ---: |
| Types of workers | Standard Cost - Actual Cost | Amount (₹) |
| Skilled Workers | $(30 \times 40 \times 70 / 2,000 \times 1,600)-(40 \times 40 \times 75) 67,200-1,20,000$ | $52,800($ A) |
| Semi- Skilled | $(15 \times 40 \times 65 / 2,000 \times 1,600)-(10 \times 40 \times 60) 31,200-24,000$ | $7,200(F)$ |
| Un-Skilled Workers | $(10 \times 40 \times 50 / 2,000 \times 1,600)-(5 \times 40 \times 52) 16,000-10,400$ | $5,600(F)$ |
| Total | $1,14,400-1,54,400$ | $40,000(A)$ |

(ii) Labour RateVariance

| Types ofworkers | Actual Hours $\times$ (Standard Rate-Actual Rate) | Amount (₹) |
| :--- | :--- | ---: |
| SkilledWorkers | $1,600$ hours $\times$ ( $₹ 70.00-₹ 75.00)$ | $8,000(A)$ |
| Semi- Skilled | 400 hours $\times(₹ 65.00-₹ 60.00)$ | $2,000(F)$ |
| Un-Skilled Workers | 200 hours $\times(₹ 50.00-₹ 52.00)$ | $400(A)$ |
| Total | $₹ 8,000(A)+₹ 2,000(F)+₹ 400(A)$ | $6,400(A)$ |

(iii) Labour Efficiency Variance

| Typesofworkers | Standard Rate $\times($ Standard Hours-Actual Hours) | Amount(₹) |
| :--- | :--- | ---: |
| Skilled Workers | $₹ 70.00 \times(960$ hours $-1,440$ hours $)$ | $33,600(A)$ |
| Semi- Skilled | $₹ 65.00 \times(480$ hours -360 hours $)$ | $7,800(F)$ |
| Un-Skilled Workers | $₹ 50.00 \times(320$ hours -180 hours $)$ | $7,000(F)$ |
| Total | $33,600(A)+7,800(F)+7,000(F)$ | $18,800(A)$ |

Alternatively, labour efficiency can be calculated on basis of labour hours paid

| Types of workers | Standard Rate $\times($ Standard Hours-Actual Hours) | Amount(₹) |
| :--- | :--- | ---: |
| Skilled Workers | $70.00 \times(960$ hours -1600 hours $)$ | $44,800($ A $)$ |
| Semi- Skilled | $65.00 \times(480$ hours -400 hours $)$ | $5,200(F)$ |
| Un-Skilled Workers | $50.00 \times(320$ hours -200 hours $)$ | $6,000(F)$ |
| Total | $33,600($ A $)+7,800(F)+7,000(F)$ | $\mathbf{3 3 , 6 0 0 ( A )}$ |

(iv) Labour Mix Variance
$=\quad$ Total Actual Time Worked (hours) $\times$ \{Average Standard Rate per hour of Standard Gang Less Average Standard Rate per hour of Actual Gang\} @on the basis of hours worked
$=1,980$ hours $\times\left(\frac{R s .1,14,400}{1,760 \mathrm{hrs} .}-\frac{1,440 \mathrm{hrs} . \times R s .70+360 \mathrm{hrs} . \times R s .65+180 \mathrm{hrs} . \times R s .50}{1,980 \mathrm{hrs} .}\right)$
Or
Labour Mix Variance

| Types of workers | Std. Rate ? (Revised Actual Hours Worked |  |
| :--- | :--- | ---: |
|  | Actual Hours Worked) | Amount (₹) |
| Skilled Workers | $₹ 70 \times(1,080 \mathrm{hrs}-.1440 \mathrm{hrs})$. | $25,200(\mathrm{~A})$ |
| Semi- Skilled | $₹ 65 \times(540 \mathrm{hrs}-.360 \mathrm{hrs})$. | $11,700(\mathrm{~F})$ |
| Un Skilled Workers | $₹ 50 \times(360 \mathrm{hrs}-.180 \mathrm{hrs})$. | $9,000(\mathrm{~F})$ |
| Total | $₹ 25,200(\mathrm{~A})+₹ 11,700(\mathrm{~F})+₹ 9,000(\mathrm{~F})$ | $4,500(\mathrm{~A})$ |

(v) Labour Idle Time Variance

| Types ofworkers | Standard Rate $\times$ (Hours Paid-Hours Worked) | Amount (₹) |
| :--- | :--- | :---: |
| SkilledWorkers | ₹ $70.00 \times(1,600$ hours-1,440hours) | $11,200(A)$ |
| Semi- Skilled $₹ 65.00 \times(400$ hours- 360 hours $)$ | $2,600(A)$ |  |
| Un-Skilled Workers | ₹ $50.00 \times(200$ hours-180hours) | 1,000 (A) |
| Total 11,200 | (A) $+2,600$ | (A) $+1,000$ (A) |

## Verification:

## Labour Cost Variance

= Labour Rate Variance + Labour Efficiency Variance + Labour Idle Time Variance
$=6,400(A)+18,800(A)+14,800(A)=₹ 40,000(A)$

## Labour Cost Variance

= Labour Rate Variance + Labour Efficiency Variance
$=6400$ (A) +33600 (A) $=$ ₹ 40000(A)
In this case, labour idle time variance is a part of labour efficiency variance.

## Working Notes:

Category StandardCost Actual(1600units) Revised Actual Hours

| Hrs. | Rate | Amt. (₹) | Hrs. | Rate | Amt. (₹) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Skilled 960 | 70.00 | 67,200 | 1,440 |  | 1,08,000 | 1,080 |
| (30 W x $40 \times 1,600 / 2,000$ ) |  |  |  |  |  |  |
|  |  |  | (40Wx36) | 75.00 |  | (1,980x6/11) |
| Semiskilled 480 | 65.00 | 31,200 | 360 |  | 21,600 | 540 |
| $\begin{array}{r} (15 \mathrm{~W} \times 40 \mathrm{x} \\ 1,600 / 2,000) \end{array}$ |  |  |  |  |  |  |
|  |  |  | (10Wx36) | 60.00 |  | (1,980x3/11) |
| Unskilled 320(10Wx40 x1,600/2,000) | 50.00 | 16,000 | 180 (5Wx36) | 52.00 | 9,360 | $\begin{array}{r} 360 \\ (1,980 \times 2 / 11) \end{array}$ |
| Total 1,760 | 65 | 1,14,400 | 1,980 |  | 1,38,960 | 1,980 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this practical question related to 'Standard Costing' examinees were required to calculate Labour Variances. Most of the examinees made a mistake in the calculation of Standard hours

## Question 26

ABC Ltd. has furnished the following information regarding the overheads for the month of June 2020:

| (i) | Fixed Overhead Cost Variance | ₹ $\mathbf{2 , 8 0 0}$ (Adverse) |
| :--- | :--- | :--- |
| (ii) | Fixed Overhead Volume Variance | ₹ 2,000 (Adverse) |
| (iii) | Budgeted Hours for June, 2020 | $\mathbf{2 , 4 0 0}$ hours |
| (iv) | Budgeted Overheads for June,2020 | ₹ 12,000 |


| (v) | Actual rate of recovery of overheads | ₹ 8 Per Hour |
| :--- | :--- | :--- |

From the above given information Calculate:
(1) Fixed Overhead Expenditure Variance
(2) Actual Overheads Incurred
(3) Actual Hours for Actual Production
(4) Fixed Overhead Capacity Variance
(5) Standard hours for Actual Production
(6) Fixed Overhead Efficiency Variance (PYP 10 Marks Nov 20)

## Answer 26

(1) Fixed Overhead Expenditure Variance
$=$ Budgeted Fixed Overheads - Actual Fixed Overheads
$=₹ 12,000-₹ 12,800$ (as calculated below) $=₹ \mathbf{8 0 0}(\mathrm{~A})$
(2) Fixed Overhead Cost Variance= Absorbed Fixed Overheads - Actual Fixed Overheads

$$
\begin{array}{ll}
2,800(\mathrm{~A}) & =₹ 10,000-\text { Actual Overheads Actual } \\
\text { Overheads } & =₹ \mathbf{1 2 , 8 0 0}
\end{array}
$$

(3) Actual Hours for Actual Production = ₹ 12,800/ ₹ $8=1,600 \mathrm{hrs}$.
(4) Fixed Overhead capacity Variance
= Budgeted Fixed Overheads for Actual Hours- Budgeted Fixed Overheads
$=₹ 5 \times 1600$ hrs. $-₹ 12,000=₹ 4,000(A)$
(5) Standard Hours for Actual Production
= Absorbed Overheads/ Std. Rate
= ₹ 10,000/₹ 5 = 2,000 hrs.
(6) Fixed Overhead Efficiency Variance
= Absorbed Fixed Overheads - Budgeted Fixed Overheads for Actual Hours
$=₹ 10,000-₹ 5 \times 1,600 \mathrm{hrs} .=₹ \mathbf{2 , 0 0 0}(\mathrm{~F})$

## Working Note:

(i) Fixed Overhead Volume Variance = Absorbed Fixed Overheads - Budgeted Fixed Overheads

| 2,000 (A) | $=$ Absorbed Fixed Overheads $-₹ 12,000$ |
| ---: | :--- |
| Absorbed Fixed Overheads | $=₹ 10,000$ |
| ii) Standard Rate/ Hour | $=₹ 5$ (₹ $12,000 / 2,400 \mathrm{hrs})$. |

## Question 27

Premier Industries has a small factory where 52 workers are employed on an average for $\mathbf{2 5}$ days a month and they work 8 hours per day. The normal down time is $15 \%$. The firm has introduced standard costing for cost control. Its monthly budget for November, 2020 shows that the budgeted variable and fixed overhead are $₹ \mathbf{1 , 0 6 , 0 8 0}$ and $₹ \mathbf{2 , 2 1 , 0 0 0}$ respectively.

The firm reports the following details of actual performance for November, 2020, after the end of the month:

| Actual hours worked | $\mathbf{8 , 1 0 0} \mathbf{h r s}$. |
| :--- | ---: |
| Actual production expressed in standard hours | $\mathbf{8 , 8 0 0} \mathbf{h r s}$. |
| Actual Variable Overheads | $₹ \mathbf{1 , 0 2 , 0 0 0}$ |
| Actual Fixed Overheads | $₹ \mathbf{2 , 0 0 , 0 0 0}$ |

You are required to calculate:
(i) Variable Overhead Variances:
(a) Variable overhead expenditure variance.
(b) Variable overhead efficiency variance.
(ii) Fixed Overhead Variances:
(a) Fixed overhead budget variance.
(b) Fixed overhead capacity variance.
(c) Fixed overhead efficiency variance.
(iii) Control Ratios:
(a) Capacity ratio.
(b) Efficiency ratio.
(c) Activity ratio. (PYP 10 Marks Jan '21)

## Answer 27

Workings:
Calculation of budgeted hours
Budgeted hours $=(52 \times 25 \times 8) \times 85 \%=8,840$ hours
(i) Variable overheads variance
(a) Variable overhead expenditure variance

$$
\begin{aligned}
& =\text { Std. overhead for Actual hours }- \text { Actual variable Overhead } \\
& =\left(\frac{R s .1,06,080}{8,840} \times 8,100\right)-\text { Rs. } 1,02,000 \\
& =4800 \mathrm{~A}
\end{aligned}
$$

(b) Variable overhead efficiency variance

Std. rate per hour $\times$ (Std. hours for actual production - Actual hours)
$=\frac{R s .1,06,080}{8,840}(8,800$ hours $-8,100$ hours $)=8400 \mathrm{~F}$
(ii) Fixed overhead variances
(a) Fixed overhead budget variance
= Budgeted overhead - Actual overhead
= ₹ 2,21,000 - ₹ 2,00,000
$=21,000 \mathrm{~F}$
(b) Fixed overhead capacity variance
$=$ Std rate $\times$ (Actual hours - budgeted hours)
$=\frac{R s .2,21,000}{8,840} \times(8,100-8,840)=\mathbf{1 8 , 5 0 0} \mathrm{A}$
(c) Fixed overhead efficiency variance

$$
\text { = Std rate } x \text { (Std hours for actual production - Actual hours) }
$$

$$
\begin{aligned}
& =\frac{R s .2,21,000}{8,840} \times(8,800-8,100) \\
& =\mathbf{1 7 , 5 0 0} \mathbf{F}
\end{aligned}
$$

(iii) Control Ratios
(a) Capacity Ratio

$$
\begin{aligned}
& =\frac{\text { Actual hours }}{\text { Budgeted hours }} \times 100 \\
& =\frac{8,100}{8,840} \times 100=91.63 \%
\end{aligned}
$$

(b) Efficiency Ratio

$$
\begin{aligned}
& =\frac{\text { Standard hours }}{\text { Actual hours }} \times 100 \\
& =\frac{8,800}{8,100} \times 100=108.64 \%
\end{aligned}
$$

(c) Activity Ratio

$$
\begin{aligned}
& =\frac{\text { Standard hours }}{\text { Budgted hours }} \times 100 \\
& =\frac{8,800}{8,840} \times 100=99.55 \%
\end{aligned}
$$

## Question 28

Beta Ltd. is manufacturing Product N. This is manufactured by mixing two materials namely Material P and Material Q. The Standard Cost of Mixture is as under:

Material P 150 ltrs. @ ₹ $\mathbf{4 0}$ per Itr.
Material Q 100 ltrs. @ ₹ 60 per Itr.
Standard loss @ 20 of total input is expected during production. The cost records for the period exhibit following consumption: Material P 140 ltrs. @ ₹ 42 per Itr, Material Q 110 ltrs. @ ₹ 56 per Itr, Quantity produced was 195 ltrs.
Calculate:
(i) Material Cost Variance
(ii) Material Usage Variance.
(iii) Material Price Variance (PYP 5 Marks May '18)

## Answer 28

Workings:
Take the good output of 195 ltr . The standard quantity of material required for 195 ltr . of output is $\frac{195}{80} \times 100=243.75 \mathrm{ltr}$.

Statement showing computation of Standard Cost/Actual Cost/ Revised Actual Quantity

|  | Material | Standard Cost |  |  | Actual Cost |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity <br> [SQ] <br> (Kg.) | Rate <br> [SP] <br> (₹) | Amount $[S Q \times S P]$ <br> (₹) | Quantity <br> [AQ] <br> (Kg.) | Rate <br> [AP] <br> (₹) | Amount $[A Q \times A P]$ <br> (₹) |
|  | $\begin{aligned} & \text { A ( } 60 \% \text { of } \\ & 243.75 \mathrm{ltr} .) \\ & \text { B ( } 40 \% \text { of. } \\ & 243.75 \mathrm{Kg} .) \end{aligned}$ | $\begin{array}{r} 146.25 \\ 97.50 \\ 243.75 \end{array}$ | 40 60 | $\begin{array}{r} 5,850.00 \\ 5,850.00 \\ 11,700.00 \\ \hline \end{array}$ | $\begin{aligned} & 140 \\ & 110 \\ & 200 \end{aligned}$ | 42 56 | $\begin{array}{r} 5,880 \\ 6,160 \\ 12,040 \end{array}$ |


| Note:SQ | $=$ Standard Quantity = Expected Consumption for Actual Output |
| :---: | :--- |
| AQ | $=$ Actual Quantity of Material Consumed |
| SP | $=$ Standard Price Per Unit |
| AP | $=$ Actual Price Per Unit |

## Computation of Variances:

(i) Material Cost Variance $=S Q \times S P-A Q \times A P$
$A=₹ 146.25 \mathrm{ltr} . \times ₹ 40-140 \mathrm{ltr} . \times ₹ 42=₹ 30.00(\mathrm{~A}) \mathrm{B}=$
₹ 97.50 ltr . $\times$ ₹ 60 - 110 ltr . $\times ₹ 56=₹ 310.00$ (A)
Total $=₹ 30.00(A)+₹ 310.00(A)$

$$
\text { = ₹ } 340.00 \text { (A) }
$$

(ii) Material Usage Variance $=S P \times(S Q-A Q)$

$$
\begin{aligned}
A & =₹ 40 \times(146.25 \text { Itr. }-140 \text { Itr. })=₹ 250.00 \text { (F) B } \\
& =₹ 60 \times(97.50 \text { Itr. }-110 \text { Itr. })=₹ 750.00(\mathrm{~A}) \\
\text { Total } & =₹ 250.00(\mathrm{~F})+₹ 750.00 \text { (A) } \\
& =₹ 500.00 \text { (A) }
\end{aligned}
$$

(iii) Material Price Variance $=A Q \times(S P-A P)$

$$
\begin{aligned}
A & =140 \mathrm{Kg} \cdot \times(₹ 40-₹ 42)=₹ 280(A) B \\
& =110 \mathrm{Kg} \cdot \times(₹ 60-₹ 56)=₹ 440(F) \\
\text { Total } & =₹ 280(A)+₹ 440 \text { (F) } \\
& =₹ 160 \text { (F) }
\end{aligned}
$$

## Question 29

A manufacturing concern has provided following information related to fixed overheads:

|  | Standard | Actual |
| :--- | ---: | ---: |
| Output in a month | 5000 units | 4800 units |
| Working days in a month | 25 days | 23 days |
| Fixed overheads | $₹ 5,00,000$ | $₹ 4,90,000$ |

## Compute:

i. Fixed overhead variance
ii. Fixed overhead expenditure variance
iii. Fixed overhead volume variance
iv. Fixed overhead efficiency variance (PYP Nov'18, 5 Marks)

Answer 29

## Calculation of Variances:

(i) Fixed Overhead Variance: Standard fixed overhead - Actual fixed overhead
$=₹[(5,00,000 \div 5000) \times 4800]-₹ 4,90,000=₹ 10,000(A)$
(ii) Fixed Overhead Expenditure Variances:

Budgeted fixed overhead - Actual fixed overhead
= ₹ $5,00,000-₹ 4,90,000=₹ 10,000(F)$
(iii) Fixed Overhead Volume Variance: Standard fixed overhead - Budgeted fixed overhead
(iv) Fixed Overhead efficiency Variance: Standard fixed overhead - Budgeted fixed overhead for Actual days

$$
=₹ 4,80,000-[(₹ 5,00,000 \div 25) \times 23]=₹ 20,000(F)
$$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this numerical problem of standard costing to calculate Fixed Overhead variances, average performance was observed. Some examinees failed to understand the concept of Standard Cost for actual output.

## Question 30

## Discuss briefly some of the criticism which may be levelled against the Standard Costing System (PYP 5 Marks May'22)

## Answer 30

Criticism of Standard Costing
(i) Variation in price: One of the chief problem faced in the operation of the standard costing system is the precise estimation of likely prices or rate to be paid. The variability of prices is so great that even actual prices are not necessarily adequately representative of cost. But the use of sophisticated forecasting techniques should be able to cover the price fluctuation to some extent. Besides this, the system provides for isolating uncontrollable variances arising from variations to be dealt with separately.
(ii) Varying levels of output: If the standard level of output set for pre-determination of standard costs is not achieved, the standard costs are said to be not realised. However, the statement that the capacity utilisation cannot be precisely estimated for absorption of overheads may be true only in some industries of jobbing type. In vast majority of industries, use of forecasting techniques, market research, etc., help to estimate the output with reasonable accuracy and thus the variation is unlikely to be very large. Prime cost will not be affected by such variation and, moreover, variance analysis helps to measure the effects of idle time.
(iii) Changing standard of technology: In case of industries that have frequent technological changes affecting the conditions of production, standard costing may not be suitable. This criticism does not affect the system of standard costing. Cost reduction and cost control is a cardinal feature of standard costing because standards once set do not always remain stable. They have to be revised.
(iv) Attitude of technical people: Technical people are accustomed to think of standards as physical standards and, therefore, they will be misled by standard costs. Since technical people can be educated to adopt themselves to the system through orientation courses, it is not an insurmountable difficulty.
(v) Mix of products: Standard costing presupposes a pre-determined combination of products both in variety and quantity. The mixture of materials used to manufacture the products may vary in the long run but since standard costs are set normally for a short period, such changes can be taken care of by revision of standards.
(vi) Level of Performance: Standards may be either too strict or too liberal because they may be based on (a) theoretical maximum efficiency, (b) attainable good performance or (c) average past performance. To overcome this difficulty, the management should give thought to the selection of a suitable type of standard. The type of standard most effective in the control of costs is one which represents an attainable level of good performance.
(vii) Standard costs cannot possibly reflect the true value in exchange: If previous historical costs are amended roughly to arrive at estimates for ad hoc purposes, they are not standard costs in the strict sense of the term and hence they cannot also reflect true value in exchange. In arriving at standard costs, however, the economic and technical factors, internal and external, are brought together and analysed to arrive at quantities and prices which reflect optimum operations. The resulting costs, therefore, become realistic measures of the sacrifices involved.
13.41
therefore, feel difficulty in the operation of such system.

## Question 31

$Y$ Lid manufactures "Product $M$ " which requires three types of raw materials - " $A$ ", " $B$ " \& "C". Following information related to 1st quarter of the F.Y. 2022-23 has been collected from its books of accounts. The standard material input required for $1,000 \mathrm{~kg}$ of finished product ' M ' are as under:

| Material | Quantity <br> (Kg.) | Std. Rate per Kg. <br> (₹) |
| :--- | :---: | :---: |
| A | 500 | 25 |
| B | 350 | 45 |
| C | 250 | 55 |
| Standard Loss | 1100 |  |
| Standard Output | 100 |  |

During the period, the company produced $20,000 \mathrm{~kg}$ of product " M " for which the actual quantity of materials consumed and purchase prices are as under:

| Material |  | Quantity (Kg.) | Purchase price per Kg. (₹) |
| ---: | :--- | ---: | ---: |
|  | A | 11,000 | 23 |
|  | B | 7,500 | 48 |
|  | C | 4,500 | 60 |

You are required to calculate:
(i) Material Cost Variance
(ii) Material Price Variance for each raw material and Product ' M '
(iii) Material Usage Variance for each raw material and Product ' $\mathbf{M}$ '
(iv) Material Yield Variance

Note: Indicate the nature of variance i.e. Favourable or Adverse. (PYP 10 Marks Nov 22)
Answer 31
Basic Calculations:

|  | Standard for 20,000 kg. |  |  | Actual for 20,000 kg. |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Qty. | Rate | Amount | Qty. | Rate | Amount |
|  | Kg. | (₹) | (₹) | Kg. | (₹) | $(₹)$ |
| A | 10,000 | 25 | $2,50,000$ | 11,000 | 23 | $2,53,000$ |
| B | 7,000 | 45 | $3,15,000$ | 7,500 | 48 | $3,60,000$ |
| C | 5,000 | 55 | $2,75,000$ | 4,500 | 60 | $2,70,000$ |
| Total | 22,000 |  | $8,40,000$ | 23,000 |  | $8,83,000$ |

## Calculation of Variances:

(i) Material Cost Variance $=$ Std. Cost for actual output-Actual cost $\mathrm{MCV}=8,40,000-8,83,000=₹ 43,000(\mathrm{~A})$
(ii) Material Price Variance $=(S P-A P) \times A Q$

$$
\begin{array}{ll}
\mathrm{A}=(25-23) \times 11,000 & =22,000(\mathrm{~F}) \\
\mathrm{B}=(45-48) \times 7,500 & =22,500(\mathrm{~A}) \\
\mathrm{C}=(55-60) \times 4,500 & =22,500(\mathrm{~A})
\end{array}
$$

$$
23000 \text { (A) }
$$

(iii) Material Usages Variance $=(S Q-A Q) \times S P A=$

$$
\begin{aligned}
& (10,000-11,000) \times 25=25,000(A) B=(7,000- \\
& 7,500) \times 45=22,500(A) C=(5,000-4,500) \times 55= \\
& 27,500(F)
\end{aligned}
$$

(iv) $\quad$ Material Yield Variance $=\left(S Q-R S Q^{*}\right) \times S P$

$$
\begin{aligned}
A=(10,000-10,454.54) \times 25 & =11,363.5(\mathrm{~A}) \\
\mathrm{B}=(7,000-7,318.18) \times 45 & =14,318.1(\mathrm{~A}) \\
\mathrm{C}=(5,000-5,227.27) \times 55 & =12,500(\mathrm{~A}) \\
& 38,181.6(\mathrm{~A})
\end{aligned}
$$

$$
\begin{aligned}
& \text { *Revised Standard Quantity (RSQ) } \\
& A=\frac{10,000}{22,000} \times 23,000=10,454.54 \\
& B=\frac{7,000}{22,000} \times 23,000=7,318.18 \\
& C=\frac{5,000}{22,000} \times 23,000=5,227.17
\end{aligned}
$$

Material Yield Variance can also be Calculated as below
Material yield variance = Standard cost per unit (Actual yield - Standard yield)
Standard Cost per unit $=\frac{R s .8,40,000}{20,000}=$ Rs. 42
New Standard Yield $=\frac{20,000}{22,000} \times 23,000=20,909$
Material yield variance = ₹ 42 (20,000-20,909)

$$
=₹ 38,178 \text { (A) }
$$

## Question 32

NC Limited uses a standard costing system for the manufacturing of its product ' X '. The following information is available for the last week of the month:

- $25,000 \mathrm{~kg}$ of raw material were actually purchased for ${ }^{`} 3,12,500$. The expected output is 8 units of product ' $X$ ' from each one kg of raw material. There is no opening and closing inventories. The material price variance and material cost variance, as per cost records, are`\(12,500(F)\) and` 1800 (A), respectively.
- The standard time to produce a batch of 10 units of product ' X ' is 15 minutes. The standard wage rate per labour hour is 50 . The company employs 125 workers in two categories, skilled and semiskilled, in a ratio of 60:40. The hourly wages actually paid were `50 per hour for skilled workers and` 40 per hour for semiskilled workers. The weekly working hours are $\mathbf{4 0}$ hours per worker. Standard wage rate is the same for skilled and semi- skilled workers.
- The monthly fixed overheads are budgeted at `76,480 Overheads are evenly distributed throughout the month and assume 4 weeks in a month. In the last week of the month, the actual fixed overhead expenses were `19,500.


## Required:

(i) Calculate the standard price per kg and the standard quantity of raw material.
(ii) Calculate the material usage variance, labour cost variance, and labour efficiency variance.
(iii) Calculate the fixed overhead cost variance, the fixed overhead expenditure variance and the fixed overhead volume variance.

Note: Indicate the nature of variance i.e Favourable or Adverse. (PYP 10 Marks, May '23)

## Answer 32

i) Calculation of Standard price per kg and the standard quantity of raw material:

## Standard Price

Material Price Variance $=$ Standard Cost of Actual Quantity - Actual Cost
12,500 (F) $=(S P \times A Q)-` 3,12,500$
$12,500(F)=(S P \times 25,000)-` 3,12,500$
SP =`13 Standard Quantity Material Cost Variance \(=\) Standard Cost - Actual Cost \(1,800(A) \quad=S Q \times\)` $13-` 3,12,500$
SQ

$$
=23,900 \mathrm{~kg} .
$$

ii) Calculation of Material Usage Variance, Labour Cost Variance and Labour Efficiency Variance
(a) Material Usage Variance $=\quad$ Standard Cost of Standard Quantity for Actual Output - Standard Cost of Actual Quantity
$=\quad S Q \times S P-A Q \times S P$
Or
$=\quad S P \times(S Q-A Q)$
$=\quad ` 13 \times(23,900 \mathrm{~kg} .-25,000 \mathrm{~kg}$.
$=\quad$ 14,300 (A)
(b) Labour Cost Variance $=\quad$ Standard Cost - Actual Cost
$=\quad(S H \times S R)-(A H \times A R)$
$=\quad ` 2,39,000-` 2,30,000$
$=\quad$-9,000 (F)
(c) Labour Efficiency Variance= Standard Cost of Standard Time for Actual Production - Standard Cost of Actual Time
$=\quad(S H \times S R)-(A H \times S R)$
Or
$=\quad(S H-A H) \times S R$
$=\quad$ ' $50 \times[4,780 \mathrm{hrs} .-5,000 \mathrm{hrs}$.
$=\quad ` 11,000(\mathrm{~A})$
iii) Calculation of Fixed Overhead Cost Variance, Fixed Overhead Expenditure Variance and Fixed Overhead Volume Variance:
(a) Fixed overhead cost variance $=\quad$ Standard Fixed Overheads - Actual
$=18,279-19,500$
$=\quad$ 1,221( A )
(b) Fixed Overhead Expenditure
$=$ Budgeted Fixed Overheads - Actual Fixed Overheads

Variance
$=\quad$ '19,120 - ${ }^{-} 19,500$
$={ }^{`} 380(\mathrm{~A})$
(c) Fixed overhead volume variance $=$ (Budgeted output - Actual Output) X Budgeted rate per unit
$=(2,00,000-1,91,200) 0.0956$
$=\quad$ ' $8,800 \times 0.0956$
$=\quad$ ` \(841(\mathrm{~A})\) Alternative presentation to part (iii) (a) and (b) i) Fixed Overhead Cost Variance: = Overhead absorbed for actual production - Actual overhead incurred \(=\frac{19,120}{2,00,000} \times 1,91,200-19,500=` \mathbf{1 , 2 2 1}(\mathbf{A})\)
(ii) Fixed Overhead Volume Variance:
= Absorbed overhead - Budgeted overhead
$=\frac{19,120}{2,00,000} \times 1,91,200-19,120=` \mathbf{8 4 1}(A)$

## Working Notes:

1. Standard time to produce 10 units of product $X$ is 15 minutes. Therefore, we can manufacture 40 units in an hour.
Hours available in a week
125 Workers x 40 Hours = 5,000 hours
Therefore, budgeted output $=5,000 \times 40$ units per hour $=2,00,000$ units

## Alternatively

Budgeted time per unit $=\frac{15 \text { units }}{10 \text { units }}=1.5$ minutes

So, Budgeted output $=\frac{5,000 \text { Hours } \times 60 \text { Minutes }}{1.5 \text { Minutes }}=2,00,00$ units
Actual output $=23,900 \times 8$ units $=1,91,200$ units
Standard hour for actual output $=1,91,200 \times \frac{0.25 \mathrm{Hrs}}{10 \text { units }}=4,780 \mathrm{Hrs}$
2.

| Labour |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Budget |  |  | Revised standard |  |  | Actual |  |  |  |
| Hours | Rate |  | Hours | Rate |  |  | Hours | Rate |  |
| 5,000 | 50 | 2,50,000 | 4,780 | 50 | 2,39,000 | Skilled | 3000 | 50 | 1,50,000 |
|  |  |  |  |  |  | SemiSkilled | 2000 | 40 | 80,000 |
|  |  |  |  |  |  |  | 5000 |  | 2,30,000 |

Chapter 13 Standard Costing
3.

|  | Budget | Actual |
| :--- | :--- | :--- |
| Units | $2,00,000$ | $1,91,200$ |
| Fixed Overheads | 19,120 | 19,500 |

4. Standard Fixed overheads:
$\frac{19,120}{2,00,000} \times 1,91,200=` 18,279$
Budgeted rate per unit:
$\frac{19,120}{2,00,000}=0.0956$.

## Chapter 14 <br> Marginal Costing

## Question 1

NG Ltd. has an annual fixed cost of ₹ 98,50,000. In the year 2022-23, sales amounted to ₹7,80,60,000 as compared to ₹5,93,10,000 in the preceding year 2021-22. Profit in the year 2022-23 is ₹37,50,000 more than that in 2021-22.

Required:
(i) CALCULATE Break-even sales of the company.
(ii) DETERMINE profit/ loss on a forecasted sales volume of ₹8,20,00,000.
(iii) If there is a reduction in selling price by 10\% in the financial year 2022-23 and company desires to earn the same amount of profit as in 2021-22, COMPUTE the required sales amount? (MTP 5 Marks April '23, March '19 \& Sep '23)
Answer 1
(i) Break-even Sales $=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }}$

$$
\mathrm{P} / \mathrm{v} \text { Ratio }=\frac{\text { Change in Profit }}{\text { Change in Sales }} \times 100 \text { or, } \frac{\text { Rs. } 37,50,000}{\text { Rs. } 7,80,60,000-\text { Rs.5,93,10,000 }} \times 100
$$

$$
\text { Or, } \frac{R s .37,50,000}{R s .1,87,50,000} \times 100 \text { or,20\% }
$$

$$
\text { Break-even Sales }=\frac{R s .98,50,000}{20 \%}=\text { Rs. } 4,92,50,000
$$

(ii) Profit/ loss = Contribution - Fixed Cost
= ₹8,20,00,000 × 20\% - ₹98,50,000
= ₹1,64,00,000-₹98,50,000 = ₹65,50,000
(iii) To earn same amount of profit in 2022-23 as it was in 2021-22, the company has to earn the same amount of contribution as it had earned in 2021-22.

Sales - Variable cost = Contribution equal to 2021-22 contribution

$$
\begin{aligned}
\text { Contribution in 2021-22 } & =\text { Sales in 2021-22 } \times \text { P/V Ratio in 2021-22 } \\
& =₹ 5,93,10,000 \times 20 \%=₹ 1,18,62,000
\end{aligned}
$$

Let the number of units to be sold in 2022-23 = X
Sales in 2022-23 - Variable cost in 2022-23 = Desired
Contribution $90 \mathrm{X}-80 \mathrm{X}=$ ₹ $1,18,62,000$
Or, $10 \mathrm{X}=1,18,62,000$
Or, $X=11,86,200$ units
Therefore, Sales amount required to earn a profit equal to 2021-22 profit
$=₹ 90 \times 11,86,200$ units $=₹ 10,67,58,000$

## Question 2

Yamuna Ltd. manufactures a product, currently utilizing $80 \%$ capacity, with a turnover of Rs.8,00,000 at Rs. 25 per unit. T he cost data are as under:

Material cost Rs.7.50 per unit, Labour cost Rs. 6.25 per unit
Semi-variable cost (Including variable cost of Rs.3.75) per unit Rs.1,80,000.
Fixed cost Rs. 90,000 upto $\mathbf{8 0 \%}$ level of output, beyond this an additional Rs. 20,000 will be incurred.
Calculate :

## (i) Activity level at Break-Even-Point

(ii) Number of units to be sold to earn a net income of $\mathbf{8 \%}$ of sales
(iii) Activity level needed to earn a profit of Rs. 95,000. (MTP April'19,5 Marks)

## Answer 2

Working notes:

1. (i) Number of units sold at $80 \%$ capacity
(ii) Number of units sold at $100 \%$ capacity $\frac{\text { Rs. } 32,000 \text { units }}{80} \times 100=40,000$ units
2. Component of fixed cost included in semi -variable cost of 32,000 units.

Fixed cost $=\{$ Total semi-variable cost - Total variable cost $\}$
$=$ Rs.1,80,000 - 32,000 units $\times$ Rs. 3.75
= Rs.1,80,000 - Rs.1,20,000
= Rs.60,000
3. (i) Total fixed cost at $80 \%$ capacity
= Fixedcost+Component offixed costincludedinsemi-variable cost (Refer to working note 2)
$=$ Rs. 90,000 + Rs. $60,000=$ Rs.1,50,000
(ii) Total fixed cost beyond 80\% capacity
$=$ Total fixed cost at 80\% capacity + Additional fixed cost to be incurred
$=$ Rs.1,50,000 + Rs. $20,000=$ Rs.1,70,000
4. Variable cost and contribution per unit

Variable cost per unit $=$ Material cost + Labour cost + Variable cost component
in semi variable cost $=$ Rs. $7.50+$ Rs. $6.25+$ Rs. $3.75=$ Rs. 17.50
Contribution per unit $=$ Selling price per unit - Variable cost per unit
= Rs. 25 - Rs. 17.50 = Rs. 7.50
5. Profit at $80 \%$ capacity level
$=$ Sales revenue - Variable cost - Fixed cost
$=$ Rs.8,00,000 - Rs.5,60,000 (32,000 units $\times$ Rs.17.50) - Rs.1,50,000
= Rs.90,000
(i) Activity level at Break-EvenPoint

Break-even point (units) $=\frac{\text { Fixed cost }}{\text { Contribution per unit }}=\frac{R s \cdot 1,50,000}{R s \cdot 7.50}=20,000$ units
(Refer to working notes 3 \& 4)
Activitylevelat $\mathrm{BEP}=\frac{\text { Break-Even point (units) }}{\text { No.of units at } 100 \% \text { capacity level }} \times 100 \quad$ (Refer to
working note 1(ii))
$=20,000$ units $/ 40,000$ units $\times 100=50 \%$
(ii) Number of units to be sold to earn a net income of 8\% of sales

Let $S$ be the number of units sold to earn a net income of $8 \%$ of sales.
Mathematically it means that : (Sales revenue of $S$ units)
=VariablecostofSunits+Fixedcost+ Net income
Or, Rs.25S = Rs.17.5S + Rs.1,50,000 + 8/100 $\times($ Rs. 25 S$)$
Or, Rs. $25 \mathrm{~S}=$ Rs. $17.5 \mathrm{~S}+$ Rs. $1,50,000+$ Rs. 2 S Or, $\mathrm{S}=($ Rs.1,50,000/Rs.5.5) units
Or, $S=27,273$ units.
(iii) Activity level needed to earn a profit of Rs. 95,000

The profit at $80 \%$ capacity level, is Rs. 90,000 which is less than the desired profit of Rs. 95,000,
therefore the needed activity level would be more than $80 \%$. Thus the fixed cost to be taken to determine the activity level needed should be Rs.1,70,000 (Refer to Working Note 3 (ii))
Units to be sold to earn a profit of Rs.95,000
= Fixedcost+Desired profit / Contribution perunit
$=$ Rs. 1,70, 000 + Rs. 95, 000 / Rs. $7.5=35,333.33$ units
Activity level needed to earn a profit of Rs.95,000
$=35,333.33$ units $/ 40,000$ units $\times 100=88.33 \%$

## Question 3

SK Ltd. engaged in the manufacture of tyres. Analysis of incomestatement indicated a profit of ₹150 lakhs onasalesvolumeof50,000units. Thefixedcostis₹850lakhswhichappearstobehigh. Existing sellingpriceis ₹ 3,400 per unit. The company is considering torevise the profit target to $₹ 350$ lakhs. You are required to COMPUTE-
(i) Break-even point at existing levels in units and in rupees.
(ii) The number of units required to be sold to earn the target profit.
(iii) Profit with $15 \%$ increase in selling price and drop in sales volume by $10 \%$.
(iv) Volume to be achieved to earn target profit at the revised selling price as calculated in (ii) above, if a reduction of $8 \%$ in the variable costs and ₹ 85 lakhs in the fixed cost is envisaged. (MTP March '18, 10 Marks) (Same concept different figures RTP Nov'20)
Answer 3
Sales Volume 50,000 Units Computation of existing contribution

| Particulars | Per unit (₹ ) | Total(₹in lakhs) |
| :--- | ---: | ---: |
| Sales | 3,400 | 1,700 |
| Fixed Cost | 1,700 | 850 |
| Profit | 300 | 150 |
| Contribution | 2,000 | 1,000 |
| Variable Cost | 1,400 | 700 |

(i) Breakeven sales in units $=\frac{\text { Fixed cost }}{\text { Contribution per unit }}=\frac{R s .8,50,00,000}{.2,000} \quad 42,500$ units

Break even sales in rupees $=42,500$ units $x ₹ 3,400=₹ 1,445$ lakhs
OR
P/VRatio $=\frac{2,000}{3,400} \times 100=58.82 \%$
B.E.P (inrupees) $=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }}=\frac{8,50,00,000}{58.82 \%}=$ Rs. 1,445 lakhs (approx.)
(ii) Number of units sold to achieve a target profit of ₹ 350 lakhs:

Desired Contribution = Fixed Cost + Target Profit
$=850$ lakhs + 350 lakhs
= 1,200 lakhs

Numberof units to be sold $=\frac{\text { Desired Contribution }}{\text { Contribution per unit }}=\frac{12,00,00,000}{2,000}=60,000$ units
(iii) Profit if selling price is increased by $15 \%$ and sales volume drops by $10 \%$

Existing Selling Price per unit $=$ ₹ 3,400
Revised selling price per unit $=₹ 3,400 \times 115 \%=₹ 3,910$
Existing Sales Volume $=50,000$ units
Revised sales volume $=50,000$ units $-10 \%$ of $50,000=45,000$ units.

Statement of profit at sales volume of 45,000 units @ ₹ 3,910 per unit

| Particulars | Per unit (₹) | Total (₹inlakhs) |
| :--- | ---: | :---: |
| Sales | $3,910.00$ | $1,759.50$ |
| Less:Variable Costs | $(1,400.00)$ | $(630.00)$ |
| Contribution | $2,510.00$ | $1,129.50$ |
| Less: Fixed Cost |  | $(850.00)$ |
| Profit |  | 279.50 |

(iv) Volume to be achieved to earn target profit of ₹ 350 lakhs with revised selling price and reduction of $8 \%$ in variable costs and ₹ 85 lakhs in fixed cost.

| Revised selling price per unit | = ₹ 3 ,910 |
| :---: | :---: |
| Variable costs per unit existing | =₹ 1,400 Revised Variable Costs |
| Reductionof8\%invariablecosts | = ₹ $1,400-8 \%$ of 1,400 |
| = ₹ 1,400-₹ 112 | = ₹ 1,288 |
| Total Fixed Cost (existing) | = ₹ 850 lakhs |
| Reduction infixed cost | = ₹ 85 lakhs |
| Revisedfixedcost | = ₹ 850 lakhs - ₹ 85 lakhs = ₹ 765 lakhs |
| Revised Contribution (unit) | =Revisedselling priceperunit - Revised Variable Costs per units |
| Revised Contribution per unit | =₹ 3,910 -₹ $1,288=₹ 2,622$ |
| Desired Contribution | = Revised Fixed Cost + Target Profit |
|  | = ₹ 765 lakhs + ₹ 350 lakhs = ₹ 1,115 lakhs |

No. of units to be sold $=$ Desired Contribution $=$ Rs. 1,115lakh /Rs. 2,622 $=42,525$ units

## Question 4

| Fixed Cost | Rs. 1,20,000 |
| :--- | :--- |
| Variable costs | Rs.3perunit |
| Selling price | Rs.7perunit |
| Output | Rs. 50,000 unit42,525 units |

CALCULATE the profit for each of the following situation with the above data:

|  | (i) | with the data above |  |
| :--- | :--- | :--- | :--- |
|  | (ii) | with a $10 \%$ increase in output \& sales. |  |
|  | (iii) | with a $10 \%$ increase in fixed costs. |  |
|  | (iv) | with a 10\% increase in variable costs. |  |
|  | (v) | with a 10\% increase in selling price. |  |
|  | (vi) | taking all the above situations. |  |
| (MTP Aug.'18,10Marks) |  |  |  |

## Answer 4

| (i) | Rs. |
| :--- | ---: |
| Sales 50,000 units at Rs. 7 | $3,50,000$ |
| Variable cost $50,000 \times 3$ | $1,50,000$ |
| Contribution $50,000 \times 4$ | $2,00,000$ |
| Fixed costs | $1,20,000$ |
| Profit | 80,000 |

$P /$ ratio $=\frac{S-V}{S} \times 100=\frac{7-3}{7} \times 100=\frac{4}{7} \times 100=57.14 \%$
BEP (units) $=\frac{F}{\text { Contributionper unit }}=\frac{1,20,000}{4}=30,000$ Units

BEP (Value) $=30,000$ Units $\times 7=$ Rs. 2,10,000

| Profit Rs. 80,000 (as calculated above) <br> (ii) with $10 \%$ increase inoutput \& sales |  |
| :---: | :---: |
| i.e., 50,000+5,000 $=55,000$ units |  |
| Contribution $55,000 \times$ Rs. 4 per unit | Rs. 2,20,000 |
| Fixed costs | Rs. 1,20,000 |
| Profit | Rs. 1,00,000 |
| (iii) with a 10\% increase in Fixed Cost |  |
| Contribution ( $50,000 \times$ Rs. 4 per unit) | Rs. 2,00,000 |
| Fixed cost (1,20,000+12,000 ) | Rs. 1,32,000 |
| Profit | Rs. 68,000 |
| (iv) with a 10\% increase in variable costs |  |
| Selling price per unit | 7.00 |
| Less: variable cost (3+0.30) | 3.30 |
| Contribution per unit | 3.70 |
| Total contribution 50,000 3.70 | 1,85,000 |
| Fixed costs | 1,20,000 |
| Profit | 65,000 |
| (v) with a $10 \%$ increase in sellingprice Selling price per unit (7.00+0.70) | 7.70 |
| Variable cost per unit | 3.00 |
| Contribution per unit | 4.70 |
| Total contribution 50,000 $\times$ Rs. 4.70 | 2,35,000 |
| Fixed costs | 1,20,000 |
| Profit | 1,15,000 |
| (vi) Effect of all the four above:- |  |
| Variable cost 55,000 $\times 3.30$ | Rs. 1,81,500 |
| Contribution 55,000 $\times 4.40$ | Rs. 2,42,000 |
| Fixed cost 1,20,000+12,000 | Rs. 1,32,000 |
| Profit | Rs. 1,10,000 |

Note: It is assumed that the increase d output of 55,000 units has been sold.

## Question 5

C.T. Ltd. manufactures and sells a single product $X$ whose selling price is Rs. 100 per unit and the variable cost is Rs. 60 per unit.
(i) If the Fixed Costs for this year are Rs. 24,00,000 and the annual sales are at 60\% margin of safety, CALCULATE the rate of net return on sales, assuming an income tax level of 40\%.
(ii) For the next year, it is proposed to add another product line $Y$ whose selling price would be Rs. 150 per unit and the variable cost Rs. 100 per unit. The total fixed costs are estimated at Rs. 28,00,000. The sales mix of $X: Y$ would be $5: 3$. COMPUTE the break- even sales in units for both the products. (MTP Oct.' 19,5 Marks) (Same concept different figures Old \& New SM)

## Answer 5

| (i) Contribution per unit | $=$ | Selling price - Variable cost |
| :--- | :--- | :--- |
|  | $=$ | Rs. $100-$ Rs. 60 |
|  | $=$ | Rs. 40 |


| Break-even Point | $=$ | $\frac{R s .24,00,000}{R s .40} 60,000$ units |
| :--- | :--- | :--- |



Composite contribution will be as follows:
Contribution per unit
$=(40 / 8 \times 5)+(50 / 8 \times 3)$
$=25+18.75=$ Rs. 43.75
Break-even Sale $=64,000$ units $\left(\frac{R s .28,00,000}{R s .43 .75}\right)$
Break-even Sales Mix:
$X(64,000$ units $\times 5 / 8)=40,000$ units
$Y(64,000$ units $\times 3 / 8)=24,000$ units

## Question 6

Arnav Ltd. is producing a single product, has the profit-volume ratio of $40 \%$. The company wishes to increase the selling price by $10 \%$ which will increase the variable cost by $5 \%$. The fixed overheads will increase from its present level of Rs.20,00,000 to Rs.30,00,000.

Required:
(i) Compute the company's original break-even point sales and the break-even point sales after the increase.
(ii) Estimate the sales value for the firm to make a profit of Rs. 4,50,000 after the increase. (MTP Oct.'18,5 Marks)

## Answer 6

Workings:
Let us assume that the selling price before increment is ₹ 100 , the other relevant details are as follows:

| Particulars | Before increase | After increase |
| :--- | :---: | :---: |
| Selling Price | 100 | 110 |
| Variable Cost | 60 | 63 |
| Contribution | 40 | 47 |
| P/V Ratio | $40 \%$ | $42.73 \%$ |

(i) Computation of Break-even point sales:

Break-even point sales $=$ Fixed Overheads $/ P / V$ ratio

- Before increase = Rs. 20,00,000 / 40\% = Rs. 50,00,000
- After increase $=$ Rs. 30,00,000 / 42.73\% =Rs. 70,20,828(approx.)
(ii) Sales value to make a profit of Rs. 4,50,000:

$$
\frac{\text { Fixed Overheads }+ \text { Desired Profit }}{\frac{P}{V} \text { ratio }}=\frac{\text { Rs. } 30,00,000+\text { Rs. } 4,50,000}{42.73 \%}=\text { Rs. } 80,73,953
$$

## Question 7

A company gives the followinginformation:

| Margin ofSafety | Rs.7,50,000 |
| :--- | :---: |
| TotalCost | Rs.7,75,000 |
| Margin ofSafety(Qty.) | 15,000 units |
| BreakEvenSalesin Units | 5,000 units |

## You are required to CALCULATE:

(i) Selling price per unit
(ii) Profit
(iii) Profit/ Volume Ratio
(iv) Break Even Sales (in Rupees)
(v) Fixed Cost (MTP 5 Marks May 20)

Answer 7
(i) Selling Price per unit $=\frac{\text { Margin of Safety in Rupee Value }}{\text { Margin of Safety in Quantity }}$

$$
=\frac{\text { Rs. } 7,50,000}{15,000 \text { units }}=\text { Rs. } 50
$$

(ii) Profit = Sales Value - Total Cost
$=$ Selling price per unit $\times$ (BEP units + MoS units $)-$ Total Cost
$=$ Rs. $50 \times(5,000+15,000)$ units - Rs. $7,75,000$
= Rs. 10,00,000 - Rs.7,75,000 = Rs.2,25,000
(iii)

$$
\text { Profit/ Volume (P/V) Ratio }=\frac{\text { profit }}{\text { MArgin of Safety in Rupee value }} \times 100
$$

$$
=\frac{R s .2,25,000}{R s .7,50,000} \times 100=30 \%
$$

(iv) Break Even Sales (in Rupees) $=\mathrm{BEP}$ units $\times$ Selling Price per unit

$$
=5,000 \text { units } \times \text { Rs. } 50=\text { Rs.2,50,000 }
$$

(v) Fixed Cost $=$ Contribution - Profit

$$
\begin{aligned}
& =\text { Sales Value } \times \text { P/V Ratio }- \text { Profit } \\
& =(\text { Rs. } 10,00,000 \times 30 \%)-\text { Rs.2,25,000 } \\
& =\text { Rs. } 3,00,000-\text { Rs.2,25,000 }=\text { Rs. } 75,000
\end{aligned}
$$

## Question 8

A company can make any one of the 3 products $X, Y$ or $Z$ in a year. It can exercise its option only at the beginning of each year. Relevant information about the products for the next year is given below.

|  | X | Y | Z |
| :--- | :---: | :---: | :---: |
| Selling Price (Rs. / unit) | 100 | 120 | 120 |


| Variable Costs (Rs. / unit) | 60 | 90 | 70 |
| :--- | :---: | :---: | :---: |
| Market Demand (unit) | 3,000 | 2,000 | 1,000 |
| Production Capacity (unit) | 2,000 | 3,000 | 900 |
| Fixed Costs (Rs.) | $3,00,000$ |  |  |

Required
COMPUTE the opportunity costs for each of the products. (MTP 5 Marks May 20, Old \& New SM)

## Answer 8

|  |  | X | Y | Z |
| :--- | :--- | :---: | :---: | :---: |
| I. | Contribution per unit (Rs.) | 40 | 30 | 50 |
| II. | Units (Lower of Production / Market <br> Demand) | 2,000 | 2,000 | 900 |
|  | Possible Contribution (Rs.) [ $1 \times$ II ] | 80,000 | 60,000 | 45,000 |
| IV. | Opportunity Cost* (Rs.) | 60,000 | 80,000 | 80,000 |

$\left(^{*}\right)$ Opportunity cost is the maximum possible contribution forgone by not producing alternative product i.e. if Product $X$ is produced then opportunity cost will be maximum of (Rs. 60,000 from Y, Rs. 45,000 from Z).

## Question 9

CanCola, a zero sugar cold drink manufacturing Indian company, is planning to establish a subsidiary company in Nepal to produce coconut flavoured juice. Based on the estimated annual sales of 60,000 bottles of the juice, cost studies produced the following estimates for the Nepalese subsidiary:

|  | Total Annual Costs <br> (₹) | Percent of Total Annual <br> Cost which is variable |
| :--- | ---: | :---: |
| Material | $2,70,000$ | $100 \%$ |
| Labour | $1,97,000$ | $80 \%$ |
| Factory Overheads | $1,20,000$ | $60 \%$ |
| Administration Expenses | 52,000 | $35 \%$ |

The Nepalese production will be sold by manufacturer's representatives who will receive a commission of $9 \%$ of the sale price. No portion of the Indian office expenses is to be allocated to the Nepalese subsidiary. You are required to-
(i) COMPUTE the sale price per bottle to enable the management to realize an estimated $\mathbf{2 0 \%}$ profit on sale proceeds in Nepal.
(ii) CALCULATE the break-even point in rupees value sales and also in number of bottles for the Nepalese subsidiary on the assumption that the sale price is ₹ 14 per bottle. (MTP 10 Marks, Oct. 20, Old \& New SM)
Answer 9
(i) Computation of Sale Price Per Bottle

Output: 60,000 Bottles

|  | (₹) |  |  |
| :--- | ---: | :---: | :---: |
| Variable Cost: |  |  |  |
| Material | $2,70,000$ |  |  |
| Labour (₹ 1,97,000 $\times 80 \%$ ) | $1,57,600$ |  |  |
| Factory Overheads (₹1,20,000 $\times 60 \%$ ) | 72,000 |  |  |
| Administrative Overheads (₹ 52,000 $\times 35 \%$ ) | 18,200 |  |  |
| Commission (9\% on ₹9,00,000 (Working Note -1) | 81,000 |  |  |
| Fixed Cost: |  |  |  |
| Labour (₹ 1,97,000 $\times 20 \%$ ) |  |  | 39,400 |


| Factory Overheads (₹ 1,20,000 $\times 40 \%$ ) | 48,000 |
| :--- | ---: |
| Administrative Overheads (₹ $52,000 \times 65 \%$ ) | 33,800 |
| Total Cost | $7,20,000$ |
| Profit (20\% of ₹ 9,00,000) | $1,80,000$ |
| Sales Proceeds | $9,00,000$ |
| Sales Price per bottle Rs. 9,00,000/60,000 | 15 |

(ii) Calculation of Break-even Point

| Sales Price per Bottle | $=\quad ₹ 14$ |
| :--- | :--- |
| Variable Cost per Bottle | $=$ Rs.5,93,400(Working note -2$) / 60,000$ bottels $=$ Rs. |
|  | 9.89 |

Contribution per Bottle = ₹ 14 -₹ 9.89 = ₹ 4.11
Break -even Point (in number of Bottles) = Fixed cost / Contribution per bottle

$$
\begin{aligned}
& =\text { Rs. } 1,21,000 / \text { Rs. } 4.11=29,489 \\
\text { Break- even Point (in Sales Value) } & =\quad 29,489 \text { Bottles } \times ₹ 14 \\
& =\quad ₹ 4,12,846
\end{aligned}
$$

## Working Note

(1) Let the Sales Price be ' $X$ '

Commission $=9 X / 100$
Profit $=20 \mathrm{X} / 100$
$X=₹ 2,70,000+₹ 1,57,600+₹ 72,000+₹ 18,200+₹ 39,400+₹ 48,000+$ Rs. $33,800+9 X / 100+20 X / 100$
X
$=₹ 6,39,000+9 X / 100+20 X / 100$

$$
\begin{aligned}
100 x-9 X-20 X & =6,39,00,000 \\
71 X & =6,39,00,000
\end{aligned}
$$

$$
X=6,39,00,000 / 71=\text { Rs. 9,00,000 }
$$

(2)

| Total Variable Cost | (₹) |
| :--- | ---: |
| Material | $2,70,000$ |
| Labour | $1,57,600$ |
| Factory Overheads | 72,000 |
| Administrative Overheads | 18,200 |
| Commission [(60,000 Bottles $\times$ ₹ 14$) \times 9 \%]$ | 75,600 |
|  | $5,93,400$ |

## Question 10

The following information has been obtained from the records of a manufacturing unit:

|  | Rs. | Rs. |
| :--- | ---: | ---: |
| Sales 80,000 units @ Rs. 50 |  | $40,00,000$ |
| Material consumed | $16,00,000$ |  |
| Variable Overheads | $4,00,000$ |  |


| Labour Charges | $\mathbf{8 , 0 0 , 0 0 0}$ |  |
| :--- | ---: | ---: |
| Fixed Overheads | $\mathbf{7 , 2 0 , 0 0 0}$ | $\mathbf{3 5 , 2 0 , 0 0 0}$ |
| Net Profit |  | $\mathbf{4 , 8 0 , 0 0 0}$ |

## CALCULATE:

(i) The number of units by selling which the company will neither lose nor gain anything.
(ii) The sales needed to earn a profit of $\mathbf{2 0 \%}$ on sales.
(iii) The extra units which should be sold to obtain the present profit if it is proposed to reduce the selling price by $20 \%$ and $25 \%$.
The selling price to be fixed to bring down its Break-even Point to $\mathbf{1 0 , 0 0 0}$ units under present conditions. (MTP 10 Marks March '21)

## Answer 10

Workings:
(1) Contribution per unit $=$ Selling price per unit - Variable cost per unit

$$
\begin{aligned}
& =\text { Rs. } 50-\{\text { Rs. }(16,00,000+4,00,000+8,00,000) \div 80,000 \text { units }\} \\
& =\text { Rs. } 50-\text { Rs. } 35=\text { Rs. } 15
\end{aligned}
$$

(2) Profit-Volume (P/V) Ratio = Contribution per unit/Selling Price per Unit $\times 100$

$$
=\text { Rs. } 15 / R s .50 \times 100=30 \%
$$

## Calculations:

(i) The number of units to be sold for neither loss nor gain i.e. Break-even units:

$$
=\frac{\text { Fixed Overheads }}{\text { Contribution per unit }}=\frac{R s .7,20,000}{R s .15}=48,000 \text { Units }
$$

(ii) The sales needed to earn a profit of 20\% on sales:

As we know $\mathrm{S}=\mathrm{V}+\mathrm{F}+\mathrm{P}$
( $\mathrm{S}=$ Sales; $\mathrm{V}=$ Variable Cost; $\mathrm{F}=$ Fixed Cost; $\mathrm{P}=$ Profit) Suppose Sales units are $x$ then
Rs. $50 x=$ Rs. $35 x+$ Rs. $7,20,000+$ Rs. $10 x$
Rs. $50 x$-Rs. $45 x=$ Rs. 7,20,000
Or, $\mathrm{X}=\frac{R s .7,20,000}{R s .5}=1,44,000$ units
Therefore, Sales needed $=1,44,000$ units Rs. $50=$ Rs. $72,00,000$ to earn a profit of $20 \%$ on sales.
(iii) Calculation of extra units to be sold to earn present profit of Rs.4,80,000 under the following proposed selling price:

|  |  | When selling price is reduced by |  |
| :--- | :--- | :--- | :--- |
|  |  | 20\%\% <br> (Rs.) | 25\% <br> (Rs.) |
|  | Selling price per unit | 40.00 | 37.50 |
|  |  | (Rs. $50 \times 80 \%$ ) | (Rs. $50 \times 75 \%$ ) |
|  | Less: Variable Cost per unit | 35.00 | 35.00 |
|  | Contribution per unit | 5.00 | 2.50 |
|  | Desired Contribution: |  |  |
|  | Fixed Overheads | $7,20,000$ | $7,20,000$ |
|  | Desired Profit | $4,80,000$ | $4,80,000$ |
|  |  | $12,00,000$ | $12,00,000$ |
| (a) | Sales unit for desired contribution |  |  |


|  | $\left\lfloor\frac{\text { Desired Contribution }}{\text { Contribution per unit }}\right\rfloor$ | Rs. 12,00,000/Rs. 5 | Rs. $12,00,000 / \mathrm{Rs}$. <br> 2.5 |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| (b) | Units presently sold | 80,000 units | 80,000 units |
| (c) | Extra units to be sold $\{(\mathrm{a})-(\mathrm{b})\}$ | $1,60,000$ units | $4,00,000$ units |

(iv) Sales price to bring down BEP to 10,000 units:

$$
\begin{aligned}
& \text { B.E.P (Units) }=\frac{\text { Fixed Cost }}{\text { Contribution per unit }} \\
& \begin{aligned}
& \text { Or, Contribution per unit } \quad=\text { Rs. } 7,20,000 / 10,000 \text { units }=\text { Rs. } 72 \\
& \text { So, Sales Price (per unit) } \quad=\text { Variable Cost + Contribution } \\
&=\text { Rs. } 35+\text { Rs. } 72=\text { Rs. } 107
\end{aligned}
\end{aligned}
$$

## Question 11

Following data is available from the costing department of Aarya Ltd. which manufactures and markets a single product:

| Material | Rs. 32 per unit | Fixed Cost (Rs.) | Rs. 10,00,000 |
| :--- | ---: | :--- | ---: |
| Conversion Cost (Variable) | Rs. 24 per unit | Present Sales (units) | 90,000 |
| Dealer's Margin (10\% of <br> Sales) | Rs. 8 per unit | Capacity Utilization | $60 \%$ |
| Selling Price | Rs. 80 per unit |  |  |

There is acute competition in the market, thus extra efforts are necessary to enhance the sales. For this, following suggestions have been proposed:
(i) Reducing selling price by 5 per cent.
(ii) Increasing dealer's margin by $\mathbf{2 0}$ per cent over the existing rate.

Which of these two suggestions would you RECOMMEND, if the company desires to maintain the present profit? GIVE REASONS. (MTP 10 Marks, April'21)

## Answer 11

Workings:
Statement Showing Profit on Sale of 90,000 units

|  | (Rs.) | (Rs.) |
| :--- | ---: | ---: |
| Selling Price per unit |  | 80 |
| Less: Variable Cost per unit |  |  |
| Material | 32 |  |
| Conversion Cost | 24 |  |
| Dealers' Margin | 8 | 64 |
| Contribution per unit |  | 16 |
| Total Contribution (90,000 units $\times$ Rs. 16) |  | $14,40,000$ |
| Less: Fixed Cost |  | $10,00,000$ |
| Profit |  | $4,40,000$ |

In both the proposed suggestions, the fixed costs remain unchanged. Therefore, the present profit of Rs. 4,40,000 can be maintained by maintaining the total contribution at the present level i.e. Rs. 14,40,000.
(i) Reducing Selling Price by 5\%

New Selling Price (Rs. $80-5 \%$ of Rs. 80)
$=\quad$ Rs. 76 New
Dealer's Margin (10\% of Rs. 76)
$=\quad$ Rs. 7.60 New

| Variable Cost (Rs. $32+$ Rs. $24+$ Rs. 7.60) | $=$ | Rs. 63.60 New |
| :--- | :--- | :--- |
| Contribution per unit (Rs. $76-$ Rs. 63.60) | $=$ | Rs. 12.40 |

Level of sales required for present level of Profits $=\frac{\text { Total Contribution Required }}{\text { New Contribution per unit }}$

$$
=\frac{R s \cdot 14,40,000}{R s .12 \cdot 40}
$$

$$
=1,16,129 \text { units }
$$

(ii) Increasing Dealer's Margin by 20\%

New Dealer's Margin after increasing it by $20 \%=$ Rs. $8+(20 \%$ of Rs. 8$)$
= Rs. 9.60
New Variable Cost (Rs. 32 + Rs. 24 + Rs. 9.60) = Rs. 65.60
Contribution (Rs. 80 - Rs. 65.60) = Rs. 14.40
Level of sales required for present level of Profits $=\frac{\text { Total Contribution Required }}{\text { New Contribution per unit }}$

$$
\begin{aligned}
& =\frac{R s .14,40,000}{R s .14 .40} \\
& =1,00,000 \text { units }
\end{aligned}
$$

## Conclusion:

The second proposal, i.e., increasing the Dealer's Margin is recommended because:

1. The contribution per unit is higher which is Rs. 14.40 in comparison to Rs. 12.40 in the first proposal; and
2. The sales (in units) required to earn the same level of profit are lower. They are at 1,00,000 units as against $1,16,129$ units in the first proposal. This means a lower sales effort and less finance would be required for implementing proposal (ii) as against proposal (i). Of course, under proposal (ii) the company can earn higher profits than at present level if it can increase its sales beyond 1,00,000 units.

## Question 12

DISCUSS basic assumptions of Cost Volume Profit analysis. (MTP 5 Marks, April '21, Old \& New SM)

## Answer 12

Assumptions of Cost Volume Profit analysis:

1. Changes in the levels of revenues and costs arise only because of changes in the number of product (or service) units produced and sold - for example, the number of television sets produced and sold by Sony Corporation or the number of packages delivered by Overnight Express. The number of output units is the only revenue driver and the only cost driver. Just as a cost driver is any factor that affects costs, a revenue driver is a variable, such as volume, that causally affects revenues.
2. Total costs can be separated into two components; a fixed component that does not vary with output level and a variable component that changes with respect to output level. Furthermore, variable costs include both direct variable costs and indirect variable cos ts of a product. Similarly, fixed costs include both direct fixed costs and indirect fixed costs of a product
3. When represented graphically, the behaviours of total revenues and total costs are linear (meaning they can be represented as a straight line) in relation to output level within a relevant range (and time period).
4. Selling price, variable cost per unit, and total fixed costs (within a relevant range and time period) are known and constant.
5. The analysis either covers a single product or assumes that the proportion of different products when multiple products are sold will remain constant as the level of total units sold changes.
6. All revenues and costs can be added, subtracted, and compared without taking into account the
time value of money.

## Question 13

Amy Ltd. manufacture and sales its product RM. The following figures have been collected from cost records of last year for the product RM:

| Elements of Cost | Variable Cost portion | Fixed Cost |
| :--- | :--- | ---: |
| Direct Material | $\mathbf{3 0 \%}$ of Cost of Goods Sold | -- |
| Direct Labour | $\mathbf{1 5 \%}$ of Cost of Goods Sold | -- |
| Factory Overhead | $\mathbf{1 0 \%}$ of Cost of Goods Sold | $₹ 3,45,000$ |
| Administration Overhead | $\mathbf{2 \%}$ of Cost of Goods Sold | $₹ 1,06,500$ |
| Selling \& Distribution Overhead | $4 \%$ of Cost of Sales | $₹ \mathbf{1 , 0 2 , 0 0 0}$ |

Last Year, 7,500 units were sold at ₹185 per unit. From the given information, DETERMINE the followings:
(i) Break-even Sales (in rupees)
(ii) Profit earned during last year
(iii) Margin of safety (in \%)
(iv) Profit if the sales were $10 \%$ less than the actual sales.
(Assume that Administration Overhead is related with production activity) (MTP 10 Marks, Oct '21, RTP May '20)

## Answer 13

1. Working Notes:
(1) Calculation of Cost of Goods Sold (COGS):

| COGS | $=\mathrm{DM}+\mathrm{DL}+\mathrm{FOH}+\mathrm{AOH}$ |
| :--- | :--- |
| COGS | $=\{0.3 \mathrm{COGS}+0.15 \mathrm{COGS}+(0.10 \mathrm{COGS}+$ |
|  | $(0.02 \mathrm{COGS}+₹ 1,06,500)\}$ |
| Or, COGS $=$ | $0.57 \mathrm{COGS}+₹ 4,51,500$ |
| Or COGS $=$ | Rs. $4,51,500 / 0.43=₹ 10,50,000$ |
| Calculation of Cost of Sales (COS): |  |
| COS $=$ | COGS + S\&DOH |
| $\mathrm{COS}=\mathrm{COGS}+(0.04 \mathrm{COS}+₹ 1,02,000)$ |  |
| Or COS $=$ | $₹ 10,50,000+(0.04 \mathrm{COS}+₹ 1,02,000)$ |
| $\mathrm{Or}, \mathrm{COS}=₹ 11,52,000 / 0.96=₹ 12,00,000$ |  |

Calculation of Variable Costs:

| Direct Material- | $(0.30 \times ₹ 10,50,000)$ | $₹ 3,15,000$ |
| :--- | ---: | ---: |
| Direct Labour- | $(0.15 \times ₹ 10,50,000)$ | $₹ 1,57,500$ |
| Factory Overhead- | $(0.10 \times ₹ 10,50,000)$ | $₹ 1,05,000$ |
| Administration OH- | $(0.02 \times ₹ 10,50,000)$ | $₹ 21,000$ |
| Selling \& Distribution OH | $(0.04 \times ₹ 12,00,000)$ | $₹ 48,000$ |

(2) Calculation of total Fixed Costs:

| Factory Overhead | ₹ $3,45,000$ |
| :--- | :--- |
| Administration OH | ₹ $1,06,500$ |
| Selling \& Distribution OH | ₹ $1,02,000$ |

## Calculation of P/V Ratio:

$$
\begin{aligned}
& \text { P/V Ratio }=\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{\text { Sales-Variable Costs }}{\text { Sales }} \times 100 \\
& =\frac{(\text { Rs. } 185 \times 7,500 \text { units })-\text { Rs. } 6,46,500}{\text { Rs. } 185 \times 7,500 \text { units }} \times 100 \\
& =\frac{\text { Rs. } 13,87,500-\text { Rs. } 6,46,500}{R s .13,87,500} \times 100=53.41 \%
\end{aligned}
$$

(i) Break- Even Sales $=\frac{\text { Fixed Costs }}{\frac{P}{V} \text { Ratio }}=\frac{\text { Rs.5,53,000 }}{53.41 \%}=$ Rs. $10,36,323$
(ii) Profit earned during the last year $=$ (Sales - Total Variable Costs) - Total Fixed Costs

$$
\begin{aligned}
& =(₹ 13,87,500-₹ 6,46,500)-₹ 5,53,500 \\
& =₹ 1,87,500
\end{aligned}
$$

(iii) Margin of Safety (\%) $=\frac{\text { Sales }- \text { Breakeven Sales }}{\text { Sales }} \times 100=25.31 \%$
(iv) Profit if the sales were $10 \%$ less than the actual sales:

$$
\begin{aligned}
\text { Profit } & =90 \%(₹ 13,87,500-₹ 6,46,500)-₹ 5,53,500 \\
& =₹ 1,13,400
\end{aligned}
$$

## Question 14

A factory can produce $1,80,000$ units per annum at its $60 \%$ capacity. The estimated costs of production are as under:

Direct material ₹ 50 per unit
Direct employee cost ₹ 16 per unit
Indirect expenses:

- Fixed
- Variable
- Semi-variable
$₹ 32,50,000$ per annum
₹ 10 per unit
₹ $\mathbf{4 0 , 0 0 0}$ per month up to $50 \%$ capacity and ₹ $\mathbf{1 5 , 0 0 0}$ for every $\mathbf{2 0 \%}$ increase in the capacity or part thereof.

If production program of the factory is as indicated below and the management desires to ensure a profit of $₹ 10,00,000$ for the year, DETERMINE the average selling price at which each unit should be quoted:

First three months of the year- 50\% of capacity;
Remaining nine months of the year- 75\% of capacity. (MTP 5 Marks Nov '21)

## Answer 14

Statement of Cost

|  | First three <br> months (₹) | Remaining nine months <br> (₹) | Total (₹) |
| :--- | ---: | ---: | ---: |
|  | $\mathbf{3 7 , 5 0 0}$ <br> units | $\mathbf{1 , 6 8 , 7 5 0}$ units | $\mathbf{2 , 0 6 , 2 5 0}$ units |
| Direct material | $18,75,000$ | $84,37,500$ | $1,03,12,500$ |
| Direct employee cost | $6,00,000$ | $27,00,000$ | $33,00,000$ |
| Indirect- variable <br> expenses | $3,75,000$ | $16,87,500$ | $20,62,500$ |
| Indirect - fixed expenses | $8,12,500$ | $24,37,500$ | $32,50,000$ |
| Indirect- semi-variable <br> expenses |  |  |  |


| -For first three <br> months @ ₹ <br> 40,000 p.m. | $1,20,000$ |  | $1,20,000$ |
| :--- | ---: | ---: | ---: |
| -For remaining <br> nine months @ <br> $₹ 70,000^{*}$ p.m. |  | $6,30,000$ | $6,30,000$ |
| Total cost | $37,82,500$ | $1,58,92,500$ |  |
| Desired profit | - | - | $1,96,75,000$ |
| Sales value | - | - | $10,00,000$ |
| Average selling price per <br> unit |  |  | $2,06,75,000$ |

[^0]
## Question 15

A Limited manufactures three different products and the following information has been collected from the books of accounts:

|  | Products |  |  |
| :--- | :---: | :---: | :---: |
|  | S | T | U |
| Sales Mix | $\mathbf{2 5 \%}$ | $\mathbf{3 5 \%}$ | $\mathbf{4 0 \%}$ |
| Selling Price | $₹ 600$ | $₹ 800$ | $₹ 400$ |
| Variable Cost | $₹ 300$ | $₹ 400$ | $₹ 240$ |
| Total Fixed Costs |  |  | $₹ 36,00,000$ |
| Total Sales |  |  | $₹ \mathbf{1 , 2 0 , 0 0 , 0 0 0}$ |

The company has currently under discussion, a proposal to discontinue the manufacture of Product $U$ and replace it with Product $M$, when the following results are anticipated:

|  | Products |  |  |
| :---: | :---: | :---: | :---: |
|  | S | T | M |
| Sales Mix | 40\% | 35\% | 25\% |
| Selling Price | ₹ 600 | ₹800 | ₹600 |
| Variable Cost | ₹ 300 | ₹ 400 | ₹300 |
| Total Fixed Costs |  |  | ₹ 36,00,000 |
| Total Sales |  |  | ₹1,28,00,000 |

Required
(i) Compute the PV ratio, total contribution, profit and Break-even sales for the existing product mix.
(ii) Compute the PV ratio, total contribution, profit and Break-even sales for the proposed product mix. (MTP 10 Marks Nov '21, RTP May '21 \& May '22) (Same concept different figures Old \& New SM)

## Answer 15

i. Computation of PV ratio, contribution and break-even sales for existing product mix

|  | Products |  |  |
| :--- | ---: | ---: | ---: |
|  |  |  |  |
|  | S | T | U | (₹)


| Sales Mix | $25 \%$ | $35 \%$ | $40 \%$ |
| :--- | ---: | ---: | ---: |
| Contribution per rupee of sales | $12.5 \%$ | $17.5 \%$ | $16 \%$ |
| (P/V Ratio $\times$ Sales Mix) | $46 \%$ |  |  |
| Present Total Contribution (₹ 1,20,00,000 $\times 46 \%$ ) | ₹55,20,000 |  |  |
| Less: Fixed Costs | ₹36,00,000 |  |  |
| Present Profit | ₹19,20,000 |  |  |
| Present Break Even Sales (₹ 36,00,000/0.46) | ₹ 78,26,087 |  |  |

ii. Computation of PV ratio, contribution and break-even sale for proposed product mix

|  | Products |  |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | S | T | M |  |
| Selling Price (₹) | 600 | 800 | 600 |  |
| Less: Variable Cost (₹) | 300 | 400 | 300 |  |
| Contribution per unit (₹) | 300 | 400 | 300 |  |
| P/V Ratio (Contribution/Selling price) | 50\% | 50\% | 50\% |  |
| Sales Mix | 40\% | 35\% | 25\% |  |
| Contribution per rupee of sales (P/V Ratio x Sales Mix) | 20\% | 17.5\% | 12.5\% | 50\% |
| Proposed Total Contribution (₹1,28,00,000 x 50\%) |  |  |  | ₹64,00,000 |
| Less: Fixed Costs |  |  |  | ₹36,00,000 |
| Proposed Profit |  |  |  | ₹28,00,000 |
| Proposed Break Even Sales (₹36,00,000/0.50) |  |  |  | ₹72,00,000 |

## Question 16

Maximum Production capacity of KM (P) Ltd. is $\mathbf{2 8 , 0 0 0}$ units per month. Output at different levels along with cost data is furnished below:

| Particulars of Costs |  | Activity Level |  |
| :--- | :--- | :--- | :--- |
|  | 16,000 units | 18,000 units | 20,000 units |
| Direct Material | $₹ 12,80,000$ | $₹ 14,40,000$ | $₹ 16,00,000$ |
| Direct labour | $₹ 17,60,000$ | $₹ 19,80,000$ | $₹ 22,00,000$ |
| Total factory overheads | $₹ 22,00,000$ | $₹ 23,70,000$ | $₹ 25,40,000$ |

You are required to Calculate the selling price per unit at an activity level of 24,000 units by considering profit at the rate of $\mathbf{2 5 \%}$ on sales. (MTP March'18,5Marks)

## Answer 16

## Computation of Overheads

Variable Overhead per unit $=\frac{\text { Change in Factory Overheads }}{\text { Change in activity level }}$
$=\frac{23,70,000-22,00,000}{18,000-16,000}$ or $\frac{25,40,000-23,70,000}{20,000-18,000}$
$=\frac{1,70,000}{2000}$ Rs. 85 per unit
Fixed Overhead
Activity level = 16,000 units

| Particulars | Amount (₹) |  |
| :--- | ---: | ---: |
| Total factory overheads |  | $22,00,000$ |
| Less:Variableoverheads16,000 units@ | ₹ 85 per unit | $(13,60,000)$ |
| Fixed Overhead | $8,40,000$ |  |

Computation of Costs at Activity Level 24,000 units

|  | Per Unit (₹) | Amount (₹ ) |
| :--- | ---: | ---: |
| Direct Material (12,80,000/16,000) | 80.00 | $19,20,000$ |
| Direct Labour (17,60,000/16,000) | 110.00 | $26,40,000$ |


| Variable Overhead (As calculated above) | 85.00 |
| :---: | :---: |
| Fixed Overhead |  |
| Total Cost |  |
| Computation of Selling Price at activity level 24,000 units |  |
| Profit requiredis $25 \%$ onselling price, hence cost will be $75 \%$. |  |
| $\text { Therefore desired profit }=\frac{25 \times 74,40,000}{75}=\text { Rs. } 24,80,000$ |  |
| Costof24,000units | 74,40,000 |
| Desired Profit | 24,80,000 |
| Total Sales | 99,20,000 |
| Alternatively |  |
| $\text { Total Sales }=\frac{\text { Total Cost }}{75} \times 100=\frac{74,40,000}{75} \times 100=\text { Rs. } 99,20,000$ |  |
| Selling Price per unit $=\quad \frac{\text { Total Sales }}{\text { No of unts }}=\frac{99,20,000}{24,000}=$ Rs. 413.33 |  |

## Question 17

At budget activity of $\mathbf{8 0 \%}$ of total capacity, a company earns a P/V ratio of $\mathbf{3 0 \%}$ and a profit of $15 \%$ of total sales. Due to covid pandemic resulting in poor demand, the company has to reduce its selling price by $10 \%$. The company was able to achieve a production and sales volume for the year equivalent to $50 \%$ of total capacity. The sales value at this level was $₹ 27,00,000$ at a reduced price of $₹ \mathbf{1 8}$ per unit. Due to reduction in production, the actual variable cost went up by $5 \%$ of the budget.

## You are required to:

(i) PREPARE statement of profitability at budget and actual activity.
(ii) FIND P/V ratio and BES (in ₹ and unit of the actual sales activity). (MTP 10 Marks March '22)

Answer 17

| Actual Sales | ₹ 27,00,000 |
| :--- | ---: |
| Actual Selling Price per unit | 18 |
| Actual units (50\%) <br> $\left(\frac{27,00,000}{18}\right)$ | $1,50,000$ |
| Therefore, budgeted units (80\%) <br> $\left(1,50,000 \times \frac{80}{50}\right)$ | $2,40,000$ |
| Budgeted Selling Price (18 / 90\%) | 20 |

Budgeted Variable Cost per unit $=\frac{(2,40,000 \times 20)(1-.30)}{2,40,000 \text { units }}=\frac{33,60,000}{2,40,000 \text { units }}=$ Rs. 14
(i) Statement of profitability at budget and actual activity

| Particulars | Budget (80\%) | Actual (50\%) |  |
| :--- | :--- | ---: | ---: |
| Units | $2,40,000$ | $1,50,000$ |  |
| Sales (₹) | (a) | $48,00,000$ | $27,00,000$ |
| Variable cost (₹) | (b) | $33,60,000$ | $22,05,000$ |
| Contribution (₹) (c = a - b) | $14,40,000$ | $4,95,000$ |  |
| Fixed cost (₹) | (d) | $7,20,000$ | $7,20,000$ |
| Profit (₹) | (e = c -d) | $7,20,000$ | $(2,25,000)$ |

(ii) Calculation of $\mathrm{P} / \mathrm{V}$ ratio and BES
$\mathrm{P} / \mathrm{V}$ ratio $=\frac{\text { Contribution }}{\text { Sales }} X 100$
$=\frac{4,95,000}{27,00,000} \times 100=18.33 \%$
Break Even Sales (in Rs.) $=\frac{\text { Fixed Cost }}{\frac{P}{\bar{V}} \text { Ratio }}=\frac{7,20,000}{18.33 \%}=$ Rs. 39,27,987
Break Even Sales (In Units) $=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}=\frac{7,20,000}{3.3 *}=2,18,182$ Units

* Contribution Per unit $==\frac{4,95,000}{1,50,000 \text { units }}=3.3$ per unit


## Question 18

Company manufacture and sell 3 types of mobile handset. It also manufactures wireless charger for mobile. The company has worked out following estimates for next year.

|  | Annual Demand <br> (in units) | Selling Price <br> (₹ per unit) | Material cost <br> (₹ per unit) | Labour cost <br> (₹ per unit) |
| :---: | :---: | :---: | :---: | :---: |
| X5 | 5,000 | 8,000 | 2,000 | 1,000 |
| X6 | 4,000 | 9,000 | 2,500 | 1,500 |
| X7 | 3,000 | 12,000 | 3,000 | 2,000 |
| Wireless Charger | 15,000 | 1,500 | 300 | 200 |

To encourage the sale of wireless charger a discount of $10 \%$ in its price is being offered if it were to be purchased along with mobile. It is expected that customer buying mobile will also buy the wireless charger. The company factory has an effective capacity of 35,000 labour hours. The labour is paid @ ₹ 500 per hour. Overtime of labour has to be paid at double the normal rate. Other variable cost work out to be $50 \%$ of direct labour cost and fixed cost is $₹ 1,00,00,000$. There will be no inventory at the end of the year. PREPARE statement of profitability. (MTP 10 Marks April '22)

## Answer 18

| Calculation of Labour overtime hours |  |
| :--- | ---: |
| Total hours required for production |  |
| X5 | $(5,000 \times 2 \mathrm{hrs})$ |
| X6 | $(4,000 \times 3 \mathrm{hrs})$ |
| X7 | $(3,000 \times 4 \mathrm{hrs})$ |
| Wireless Charger | $(15,000 \times 0.40 \mathrm{hrs})$ |
|  | 12,000 |
| Hours available | 12,000 |
| Overtime | 6,000 |

Statement of Profitability

| Particulars | Amount (₹) | Amount (₹) |
| :--- | ---: | ---: |
| Sales |  |  |
| X5 $(5,000 \times 8,000)$ | $4,00,00,000$ |  |
| X6 $(4,000 \times 9,000)$ | $3,60,00,000$ |  |
| X7 $(3,000 \times 12,000)$ | $3,60,00,000$ |  |
| Wireless Charger $[(12,000 \times 1,350)+(3,000 \times$ <br> $1,500)$ | $2,07,00,000$ | $13,27,00,000$ |
| Less: Variable cost |  |  |


| Material: |  |  |
| :--- | :--- | :--- |
| X5 (5,000 x 2,000) |  |  |
| X6 (4,000 x 2,500) |  |  |
| X7 (3,000 x 3,000) |  |  |
| Wireless Charger (15,000 x 300) |  |  |
| Labour: |  |  |
| X5 (5,000 x 1,000) |  |  |
| X6 (4,000 x 1,500) |  |  |
| X7 (3,000 x 2,000) | $2,50,00,000$ |  |
| Wireless Charger (15,000 x 200) | $1,25,00,000$ | $7,10,00,000$ |
| Overtime (5,000 x 1,000) |  | $6,17,00,000$ |
| Other variable overheads |  | $1,00,00,000$ |
| Contribution |  | $5,17,00,000$ |
| Less: Fixed Cost |  |  |
| Profit |  |  |

## Question 19

PS Limited is a manufacturing company and is operating at 75\% capacity utilization. The PV ratio at this level of activity is $40 \%$.
The flexible budget drafted by the company for two levels of activity is given below:

|  | Capacity utilization (75 \%) | Capacity utilization (100 \%) |
| :--- | ---: | ---: |
|  | Amount in ₹ (Lakhs) | Amount in ₹ (Lakhs) |
| Direct materials | 180 | 240 |
| Direct wages | 120 | 160 |
| Power and fuel | 12 | 16 |
| Repairs and maintenance | 18 | 21 |
| Consumables | 21 | 28 |
| Supervision | 20 | 20 |
| Indirect labour | 36 | 42 |
| Administrative expenses | 21 | 21 |
| Selling expenses | 18 | 18 |
| Depreciation | 54 | 54 |

## You are required to:

i. CALCULATE the profit earned by PS Limited at 75\% level of activity.
ii. CALCULATE the break-even level of activity. (MTP 10 Marks Sep'22)

## Answer 19

Calculation of Semi Variable component

|  | Repairs and Maintenance ( $₹$ ) | Indirect labour (₹) |
| :--- | :---: | :---: |
| At 75\% capacity | $18,00,000$ | $36,00,000$ |
| At $100 \%$ capacity | $21,00,000$ | $42,00,000$ |
| Variable component for $25 \%$ | $3,00,000$ | $6,00,000$ |
| Hence variable cost at $75 \%$ | $3,00,000 \times 75 / 25=9,00,000$ | $6,00,000 \times 75 / 25=$ |
|  |  | $18,00,000$ |
| Fixed cost at $75 \%$ capacity | $18,00,000-9,00,000=9,00,000$ | $36,00,000-$ |
|  |  | $18,00,000=18,00,000$ |

Segregation of Fixed and Variable cost

|  | $75 \%$ | $100 \%$ | VC at 75\% | FC at 75\% |
| :--- | ---: | ---: | ---: | ---: |
| Direct Material | 180 | 240 | 180 |  |
| Direct Labour | 120 | 160 | 120 |  |
| Power and fuel | 12 | 16 | 12 |  |
| Repairs and maintenance | 18 | 21 | 9 | 9 |
| Consumables | 21 | 28 | 21 | 20 |
| Supervision | 20 | 20 |  | 18 |
| Indirect labour | 36 | 42 | 18 | 21 |
| Administrative expenses | 21 | 21 |  | 18 |
| Selling expenses | 18 | 18 |  | 54 |
| Depreciation | 54 | 54 |  | 140 |
| Total | 500 | 620 | 360 |  |

(i) Calculation of profit earned at 75\% capacity

Given PV ratio $=40 \%$, Hence variable cost would be $60 \%$
If variable cost is ₹ 360 lakhs then sales would be $360 / 0.60=₹ 600$ lakhs

Less: Variable cost = ₹ 360 lakhs
Less: Fixed cost = ₹ 140 lakhs
Profit = ₹ 100 lakhs
(ii) Break-even level of activity

BEP Sales $=\mathrm{FC} / \mathrm{P} / \mathrm{V}$ ratio $=140 / 0.40=₹ 350$ lakhs

## Question 20

Answer the following:
A company makes 1,500 units of a product for which the profitability statement is given below:

|  | (₹) |
| :--- | ---: |
| Sales | $\mathbf{1 , 2 0 , 0 0 0}$ |
| Direct Materials | $\mathbf{3 0 , 0 0 0}$ |
| Direct Labour | $\mathbf{3 5 , 0 0 0}$ |
| Variable Overheads | 15,000 |
| Fixed Cost | 16,800 |
| Profit | 22,200 |

After the first 500 units of production, the company has to pay a premium of $₹ 5$ per unit towards overtime labour. The premium so paid has been included in the direct labour cost of $₹ \mathbf{3 5 , 0 0 0}$ given above.
You are required to COMPUTE the Break-even point. (MTP 5 Marks Oct'22)

## Answer 20

| Data / Unit | $1-$ <br> 500 <br> (Rs.) | $501-$ <br> 1,500 <br> (Rs.) |
| :--- | :---: | :---: |
| Sales (Rs.1,20,000 / 1,500 units) | 80 | 80 |
| Direct Material (Rs.30,000 / 1,500 units) | 20 | 20 |
| Direct Labour* | 20 | 25 |
| Variable Overheads (Rs.15,000 / 1,500 units) | 10 | 10 |
| Contribution | 30 | 25 |

Fixed Cost $=$ Rs. 16,800
Shortfall
$=$ Rs. 1,800
No. of units to recover shortfall
$=72$ units (Rs. 1,800 / Rs.25)
Break Even Point
$=572$ units ( 500 units +72 units)
(*)
Let $X$ be the Direct Labour per unit up to 500 units. Total Direct Labour-

$$
\begin{aligned}
500 X+1,000 \times(X+5) & =35,000 \\
1,500 X+5,000 & =35,000 \\
X & =20
\end{aligned}
$$

Therefore, up to 500 units the Direct Labour is Rs. 20. After 500 units it is Rs. 25.

## Question 21

LNP Ltd. and MNT Ltd. are engaged in manufacturing of identical products. Existing revenue and cost data is as follows:

|  | LNP Ltd. (₹) | MNT Ltd. (₹) |
| :--- | ---: | ---: |
| Sales | $13,60,000$ | $17,00,000$ |
| Variable Cost | $10,88,000$ | $10,20,000$ |
| Fixed Cost | $1,72,000$ | $5,80,000$ |

You are required to calculate:
(i) Break-even point (in Value) for each company
(ii) Sales at which each company will earn a profit of ₹ $5,00,000$
(iii) Sales at which both companies will have same profits. (MTP 10 Marks March '23)

## Answer 21

Income Statement

|  | LNP Ltd. <br> $(₹)$ | MNT Ltd. <br> $(₹)$ |
| :--- | :---: | :---: |
| Sales (Rs.) | $13,60,000$ | $17,00,000$ |
| Less: Variable Cost | $10,88,000$ | $10,20,000$ |
| Contribution | $2,72,000$ | $6,80,000$ |
| P.V. Ratio ( $\frac{\text { Contribution }}{\text { Sales }}$ X 100) | $20 \%$ | $40 \%$ |
| Fixed Cost ( $₹$ ) |  |  |
| Profit ( $₹$ ) | $1,72,000$ | $5,80,000$ |

(i) Break even point $=\frac{\text { Fixed Cost }}{\text { P.V.Ratio }}$

LNP Ltd. $=\frac{\text { Rs.1.72.000 }}{20 \%}=$ Rs. 8,60,000
MNT Ltd. $=\frac{R s .5,80,000}{40 \%}=$ Rs. 14,50,000
(ii) Sales value to earn a profit of ₹ $5,00,000$

Sales $=\frac{\text { Fixed Cost }+ \text { Desired Profit }}{P . V . \text { Ratio }}$
LNP Ltd. $=\frac{1.72 .000+5,00,000}{40 \%}=$ Rs. 33,60,000
MNT Ltd. $=\frac{5,80,000+5,00,000}{40 \%}=$ Rs. $27,00,000$
(iii) Sales value at which both companies will earn same profit

Let $\mathrm{S}=$ Sales value and $\mathrm{P}=$ Profit
Sales - Variable cost $=$ Fixed cost + Profit
or, Contribution $=$ Fixed cost + Profit
LNP Ltd.:
$20 \% S=₹ 1,72,000+P$
or, $0.20 \mathrm{~S}=₹ 1,72,000+\mathrm{P}$
MNT Ltd.
$40 \% S=₹ 5,80,000+P$
or, $0.40 \mathrm{~S}=₹ 5,80,000+\mathrm{P}$.
By solving these equations, we will get the value of ' $S$ ' and ' $P$ '

$$
\begin{aligned}
& 0.20 \mathrm{~S}=1,72,000+\mathrm{P} \\
& 0.40 \mathrm{~S}=5,80,000+\mathrm{P} \\
& -\quad- \\
& -0.20 \mathrm{~S}=-4,08,000 \\
& \text { or, } \mathrm{S}=₹ 20,40,000
\end{aligned}
$$

Putting the value of ' $S$ ' in equation no. (i) we will get the value of ' $P$ '
$0.20 \times 20,40,000=1,72,000+P$
or, $P=₹ 2,36,000$
Therefore, at Sale value of ₹ $20,40,000$ both the companies will earn same profit of $₹ 2,36,000$

## Question 22

The following figures are related to KG Limited for the year ending 31st March, 2023:
Sales - 48,000 units @ ₹ 400 per unit; P/V Ratio 25\% and Break-even Point 50\% of sales.
You are required to CALCULATE:
(i) Profit earned for the year
(ii) Units to be sold to earn a target net profit of ₹ $\mathbf{2 2 , 0 0 , 0 0 0}$ for a year.
(iii) Number of units to be sold to earn a net income of 25\% on cost.[MTP 5 Marks April '23]

## Answer 22

Break- even point (in units) is 50\% of sales i.e. 24,000 units.
Hence, Break- even point (in sales value) is 24,000 units $\times ₹ 400=₹ 96,00,000$
(i) Break even Sales $=\frac{\text { Fixed Cost }}{\frac{p}{V} \text { ratio }}$

Or, Rs. $96,00,000=\frac{\text { Fixed Cost }}{25 \%}$
Or, Fixed Cost = ₹ $96,00,000 \times 25 \%$
= ₹ 24,00,000

So Fixed Cost for the year is ₹ $24,00,000$
(ii) Contribution for the year $=(48,000$ units $\times ₹ 400) \times 25 \%$
= ₹ 48,00,000

Profit for the year $=$ Contribution - Fixed Cost

$$
\begin{aligned}
& =₹ 48,00,000-₹ 24,00,000 \\
& =₹ 24,00,000
\end{aligned}
$$

(iii) Target net profit is ₹ $22,00,000$

$$
\text { Hence, } \begin{aligned}
\text { Target contribution } & =\text { Target Profit }+ \text { Fixed Cost } \\
& =₹ 22,00,000+₹ 24,00,000 \\
& =₹ 46,00,000
\end{aligned}
$$

Contribution per unit $=25 \%$ of $₹ 400=₹ 100$ per unit
No. of units $=\frac{R s .46,00,000}{R s .100 \text { per unit }}=46,000$ units
So, 46,000 units to be sold to earn a target net profit of $₹ 22,00,000$ for a year.
(iv) Let desired total Sales (Number of units $\times$ Selling price) be $x$ then desired profit is $25 \%$ on Cost or $20 \%$ on Sales i.e. $0.2 x$

Desired Sales $=\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\frac{p}{v} \text { Ratio }}$
$=\frac{R s .24,00,000+0.2 x}{25 \%}$
or, $0.25 x=$ ₹ $24,00,000+0.2 x$
or, $0.05 x=₹ 24,00,000$
or, $x \quad=₹ 4,80,00,000$
No. of units to be sold $=\frac{₹ 4,80,00,000}{R s .400}=1,20,000$ units

## Question 23

T Ltd., produces and sells 95,000 units of ' $X$ ' in a year at its $80 \%$ production capacity. The selling price of product is ₹ 8 per unit. The variable cost is $75 \%$ of sales price per unit. The fixed cost is ₹ $\mathbf{3 , 5 0 , 0 0 0}$. The company is continuously incurring losses and management plans to shut -down the plant. The fixed cost is expected to be reduced to ₹ $1,30,000$. Additional costs of plant shut- down are expected at $₹ \mathbf{1 5 , 0 0 0}$.
Should the plant be shut-down? Find the shut-down point in units and also in percentage of capacity level of production. (MTP 5 Marks ,Oct '23)
Answer 23

| Statement Showing "Operating Loss" |  |  |
| :--- | :---: | :---: |
|  | If Plant is Continued | If Plant is Shutdown |
| Sales | $7,60,000$ | --- |
| Less: Variable Cost | $5,70,000$ | --- |
| Contribution | $1,90,000$ | --- |
| Less: Fixed Cost | $3,50,000$ | $1,30,000$ |
| Less: Additional Cost | --- | 15,000 |
| Operating Loss | $1,60,000$ | $1,45,000$ |

## Decision on Shut Down

A comparison of loss figures (indicated as above) points out that loss is reduced by ₹15,000 ( $₹ 1,60,000-₹ 1,45,000$ ) if plant is shut down.
$\rightarrow$ Accordingly, plant should be Shut Down.
Shut Down Point $\quad=\frac{R s .3,50,000-R s .1,45,000}{R s .8-R s .6}=1,02,500$ units

## Capacity Level at Shut Down Point (\%)

At 100\% Level - Production Capacity
$=1,18,750\left(\frac{95,000 \text { Units }}{0.80}\right)$
Capacity Level at Shut Down Point
$=86.32 \% \quad\left(\frac{1,02,500 \text { Units }}{1,18,750 \text { Units }}\right)$

## Question 24

A company manufactures four products. The annual demand for products, selling prices and variable production costs are as follows:

| Product | $\mathbf{P}$ | $\mathbf{Q}$ | R | S |
| :--- | :---: | :---: | :---: | :---: |
| Demand (Units) | $1,20,000$ | $1,86,000$ | $1,71,000$ | 99,000 |
|  | $₹$ | $₹$ | $₹$ | $₹$ |
| Selling price/unit | 23.88 | 28.68 | 55.08 | 47.88 |
| Direct Material/Unit | 10.08 | 13.20 | 30.48 | 24.96 |
| Direct Labour/unit | 4.08 | 4.08 | 6.72 | 6.36 |
| Variable <br> overheads/unit | 1.44 | 1.44 | 2.40 | 2.16 |

Other data:
(i) The variable overheads are absorbed on a machine hour basis at a rate of $₹ \mathbf{1 . 2 0}$ per machine hour.
(ii) Fixed overheads total ₹ $46,84,000$ per annum.
(iii) Production capacity available 8,15,000 machine hours per annum.
(iv) Products $\mathbf{P}, \mathbf{Q}$ and R can be bought-in at ₹ $\mathbf{2 1 . 3 6}$ per unit, ₹ $\mathbf{2 4}$ per unit and ₹ $\mathbf{4 8}$ per unit respectively.

You are required to calculate Best product mix and Profitability statement for the year. (MTP 10 Marks, Oct '23)

## Answer 24

(i) Statement Showing "Calculation of Contribution/ unit"

|  |  | P <br> (₹) | Q <br> (₹) | R <br> (₹) | S <br> (₹) |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Selling Price | $\ldots . .(\mathrm{A})$ | 23.88 | 28.68 | 55.08 | 47.88 |
| Variable Cost |  |  |  |  |  |
| Direct Material |  | 10.08 | 13.20 | 30.48 | 24.96 |
| Direct Labour |  | 4.08 | 4.08 | 6.72 | 6.36 |
| Variable Overheads |  | 1.44 | 1.44 | 2.40 | 2.16 |
| Total Variable Cost | $\ldots$. (B) | 15.60 | 18.72 | 39.60 | 33.48 |
| Contribution per unit | $\ldots . .(\mathrm{A})$ - (B) | 8.28 | 9.96 | 15.48 | 14.40 |

(ii) Calculation of Machine Hours/ unit

| Machine Hours per unit | 1.20 | 1.20 | 2.00 | 1.80 |
| :--- | :--- | :--- | :--- | :--- |

(iii) Machine Hours Required

| Machine Hours per unit | $1,44,000^{*}$ | $2,23,200 \%$ | $3,42,000 @$ | $1,78,200 \#$ |
| :--- | :--- | :--- | ---: | ---: |
| Total |  |  |  | $8,87,400$ |

[^1](iv) Total Machine Hours Available 8,15,000. Hence, it is a key factor. Product ' S ' is to be manufactured, since it is not available with sub-contractor/ market.
(v) Statement Showing "Make or Buy for Products P, Q, R"

|  | P <br> (₹) | Q <br> (₹) | R <br> (₹) |
| :--- | :---: | :---: | :---: |
| Sub-Contractor/ Buy Price | 21.36 | 24.00 | 48.00 |
| Less: Variable Manufacturing Cost | 15.60 | 18.72 | 39.60 |
| Saving in Cost | 5.76 | 5.28 | 8.40 |
| Saving in Cost per machine hour | 4.8 | 4.4 | 4.20 |
| Ranking | I | II | III |

(vi) Statement Showing "Best Product Mix"

| Product | Units | Machine Hour/ <br> Unit | Total Machine <br> Hours |
| :---: | :---: | :---: | :---: |
| S | 99,000 | 1.8 | $1,78,200$ |
| P | $1,20,000$ | 1.2 | $1,44,000$ |
| Q | $1,86,000$ | 1.2 | $2,23,200$ |
| R (Balance) | $1,34,800$ | 2.0 | $2,69,600$ |
| Total |  |  |  |
| $8,15,000$ |  |  |  |

Balance quantity of $R$ to be purchased 36,200 units (1,71,000-1,34,800).
(vii) Profitability Statement

| Product | No of Units | Contribution/unit <br> (₹) | Total Cont. <br> (₹) |
| :---: | :---: | :---: | :---: |
| P (Mfg) | $1,20,000$ | 8.28 | $9,93,600$ |
| Q (Mfg) | $1,86,000$ | 9.96 | $18,52,560$ |
| R (Mfg) | $1,34,800$ | 15.48 | $20,86,704$ |
| R (Buy) | 36,200 | 7.08 |  |
| (₹55.08-₹48.00) | $2,56,296$ |  |  |
| S (Mfg) | 99,000 | 14.40 | $14,25,600$ |
| Total Contribution |  | $66,14,760$ |  |
| Less: Fixed Overheads |  | $46,84,000$ |  |
| Net Profit |  | $19,30,760$ |  |

## Question 25

PVC Ltd sold 55,000 units of its product at $₹ 375$ per unit. Variable costs are $₹ 175$ per unit (manufacturing costs of ₹ 140 and selling cost ₹ 35 per unit). Fixed costs are incurred uniformly throughout the year and amount to ₹ $65,00,000$ (including depreciation of $₹ \mathbf{1 5 , 0 0 , 0 0 0}$ ). There is no beginning or ending inventories.
Required:
(i) Compute breakeven sales level quantity and cash breakeven sales level quantity.
(ii) Compute the $\mathrm{P} / \mathrm{V}$ ratio.
(iii) Compute the number of units that must be sold to earn an income (EBIT) of ₹5,00,000.
(iv) Compute the sales level achieve an after-tax income (PAT) of ₹ $5,00,000$, assume $40 \%$ corporate tax rate.
(RTP Nov'19)(Same concept different figures RTP May'19, Old \& New SM)

## Answer 25

(i) Contribution = ₹ 375-₹ 175 = ₹ 200 per unit.

Break Even Sales Quantity $=\frac{\text { Fixed Cost }}{\text { Contribution Margin per unit }}=\frac{\text { Rs.65,00,000 }}{\boldsymbol{R s} . \mathbf{2 0 0}}=32,500$ units
Cash Break even Sales Qty $=\frac{\text { Cash Fixed Cost }}{\text { Contribution Margin per unit }}=\frac{\boldsymbol{R s . 5 0 , 0 0 , 0 0 0}}{\boldsymbol{R s . 2 0 0}}=25,000$ units
(ii) P/V Ratio $=\frac{\text { Contribution } / \text { unit }}{\text { Sales price } / \text { unit }} \times 100=\frac{\text { Rs. } 200}{\text { Rs. } 375} \times 100=53.33 \%$
(iii)No. of units that must be sold to earn an Income (EBIT) of ‘5,00,000

$$
\frac{\text { Fixed Cost }+ \text { Desired EBIT level }}{\text { Contribution margin per unit }}=\frac{65,00,000+5,00,000}{200}=35,000 \text { units }
$$

(iv) After Tax Income(PAT)=₹5,00,000 Tax rate $=40 \%$

Desired level of Profit before $\operatorname{tax}=\frac{R s .5,00,000}{60} \times 100=$
Rs. 8,33,333 Estimate Sales Level $=\frac{\text { Fixed Costs }}{p / \text { VRatio }}$
Or, (Fixed Cost + Desired Profit /Contribution per unit $\times$ Selling price per unit $)$
$=$ Rs. $65,00,000+$ Rs. $8,33,333 / 53.33 \%=$ Rs. 1,37,50,859

## Question 26

A company sells its product at ₹ 15 per unit. In a period, if it produces and sells 8,000 units, it incurs a loss of $₹ 5$ per unit. If the volume is raised to $\mathbf{2 0 , 0 0 0}$ units, it earns a profit of $₹ \mathbf{4}$ per unit. Calculate break-even point both in terms of rupees as well as in units. (RTP Nov.'18, Old \& New SM)

## Answer 26

We know that $S-V=F+P$ ( $S$ - Sales, $V$ - Variable cost, $F$ - Fixed cost and $P$ - Profit/loss)
Suppose variable cost $=x$ per unit Fixed
Cost $=\mathrm{y}$
When sales is 8,000 units, then
$15 x 8,000-8,000 x=y-40,000$. $\qquad$
When sales volume raised to 20,000 units, then
$15 \times 20,000-20,000 x=y+80,000$. $\qquad$
Or,1,20,000-8,000x=y-40,000.
And 3,00,000-20,000x=y+80,000
From (3) \& (4) we get $x=$ ₹ 5 . Variable cost per unit = ₹ 5
Putting this value in 3 rd equation: 1,20,000-(8,000x5)=y 40,000 or $y=₹ 1,20,000$
Fixed Cost = ₹ 1,20,000
$\mathrm{P} / \mathrm{V}$ ratio $=\frac{S-V}{S}=\frac{15-5}{15} \times 100=\frac{200}{3}=66 \frac{2}{3} \%$
Suppose break-even sales $=x$
$15 x-5 x=1,20,000$ (at BEP, contribution will be equal to fixed cost) $x=12,000$ units.
Or Break-even sales in units $=12,000$
Break-even sales in rupees $=12,000 \times ₹ 15=₹ 1,80,000$

## Question 27

A company manufactures two types of herbal product, A and B. Its budget shows profit figures after apportioning the fixed joint cost of ₹ 15 lacs in the proportion of the numbers of units sold. The budget for 2018, indicates:

| Selling Price / unit ( ₹ ) | 200 | 120 |
| :--- | :---: | :---: |
| P/V Ratio (\%) | 40 | 50 |

Required:
Compute the best option among the following, if the company expects that the number of units to be sold would be equal.
(i) Due to exchange in a manufacturing process, the joint fixed cost would be reduced by $15 \%$ and the variables would be increased by $71 / 2 \%$.
(ii) Price of A could be increased by $20 \%$ as it is expected that the price elasticity of demand would be unity over the range of price.
(iii) Simultaneous introduction of both the option, viz, (i) and (ii) above. (RTP May'18]

## Answer 27

Option (i)
Increase in profit when due to change in a manufacturing process there is reduction in joint fixed cost and increase in variable costs.

|  | (Rs.) |
| :--- | ---: |
| Revised Contribution from 12,000 units of A due to $7.5 \%$ increase in <br> Variable Cost $\{12,000$ units $\times$ ( ₹ 200 - ₹ 129$)\}$ | $8,52,000$ |
| Revised Contribution from 12,000 units of B due to $7.5 \%$ increase in <br> Variable Cost $\{12,000$ units $\times$ (₹ $120-₹ 64.50)\}$ | $6,66,000$ |
| Total Revised Contribution | $15,18,000$ |
| Less: Fixed Cost (₹ $15,00,000-15 \% \times ₹ 15,00,000)$ | $12,75,000$ |
| Revised Profit | $2,43,000$ |
| Less: Existing Profit | $1,80,000$ |
| Increase in Profit | 63,000 |

## Option (ii)

Increase in profit when the price of product A increased by $20 \%$ and the price elasticity of its demand would be unity over the range of price.

| Budgeted Revenue from Product A (12,000 units × ₹ 200) | $24,00,000$ |
| :--- | ---: |
| Revised Demand (in units) (₹ $24,00,000 / ₹ 240$ ) | 10,000 |
| Revised Contribution (in ₹) [10,000 units $\times$ ( ₹ $240-₹ 120$ )] | $12,00,000$ |
| Less: Existing Contribution (12,000 units × ₹ 80) | $9,60,000$ |
| Increase in Profit (Contribution) | $2,40,000$ |

*Note: Since Price Elasticity of Demand is 1, therefore the Revenue in respect of Products will remain same.

## Option (iii)

Increase in profit on the simultaneous introduction of above two options.

|  |  | (Rs.) |
| :--- | :--- | ---: |
| Revised Contribution from Product A [10,000 units | $\times$ ( ₹ $240-₹ 129)]$ | $11,10,000$ |
| Revised Contribution from Product B [12,000 units | $\times$ ( ₹ $120-₹ 64.50)]$ | $6,66,000$ |
| Total Revised Contribution |  | $17,76,000$ |
| Less: Revised Fixed Cost |  | $12,75,000$ |
| Revised Profit |  | $5,01,000$ |
| Less: Existing Profit |  | $1,80,000$ |
| Increase in Profit |  | $3,21,000$ |

A comparison of increase in profit figures under above three options clearly indicates that the option (iii)
is the best as it increases the profit of the concern by ₹ 3,21,000.
Note: The budgeted profit / (loss) for 2018 in respect of products A and B should be ₹ 2,10,000 and (₹ 30,000 ) respectively instead of ₹ $1,50,000$ and ₹ 30,000 .

## Workings

1. Contribution per unit of each product:

|  | Product |  |
| :--- | :---: | :---: |
|  | A (₹) | B (₹) |
| Contribution per unit | 80 | 60 |
| (Sales $\times P / V$ Ratio) | (₹200 $\times 40 \%)$ | (₹120 $\times 50 \%)$ |

2. Number of units to be sold:

Total Contribution - Fixed Cost = Profit
Let $x$ be the number of units of each product sold, therefore:
$(80 x+60 x)-₹ 15,00,000=₹ 1,50,000+₹ 30,000$
Or $x=12,000$ units

## Question 28

A company has three factories situated in North, East and South with its Head Office in Mumbai. The Management has received the following summary report on the operations of each factory for a period:

|  |  |  | (₹ in ‘000) |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Sales |  | Profit |  |
|  | Actual | Over / (Under) <br> Budget | Actual | Over / (Under) <br> Budget |
| North | 1,100 | $(400)$ | 135 | (180) |
| East | 1,450 | 150 | 210 | 90 |
| South | 1,200 | $\mathbf{( 2 0 0 )}$ | 330 | (110) |

CALCULATE the following for each factory and for the company as a whole for the period:
(i) Fixed Cost
(ii) Break-even Sales(RTP Nov '21, Old \& New SM)

## Answer 28

Computation of Profit Volume Ratio

|  |  |  |  |  |  |  | (Fin '000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { in } \end{aligned}$ | Sales |  |  | Profit |  |  | P/V Ratio <br> (Change in profit / Change in Sales) |
|  | Actual | Over / <br> (Under) <br> Budget | Budgeted Sales | Actual | Over / <br> (Under) <br> Budget | Budget <br> Profit |  |
| North | 1,100 | (400) | 1,500 | 135 | (180) | 315 | 45\% |
| East | 1,450 | 150 | 1,300 | 210 | 90 | 120 | 60\% |
| South | 1,200 | (200) | 1,400 | 330 | (110) | 440 | 55\% |

(i) Computation of Fixed Costs
(₹ in ‘000)

| Factory | Actual Sales | P/V Ratio | Contribution | Actual <br> Profit | Fixed Cost |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( 1 )}$ | $\mathbf{( 2 )}$ | $(3)=(1) \times(2)$ | $(4)$ | $\mathbf{( 5 )}=\mathbf{( 3 )}-\mathbf{( 4 )}$ |
| North | 1,100 | $45 \%$ | 495 | 135 | $\mathbf{3 6 0}$ |


| East | 1,450 | $60 \%$ | 870 | 210 | $\mathbf{6 6 0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| South | 1,200 | $55 \%$ | 660 | 330 | $\mathbf{3 3 0}$ |
| Total | 3,750 |  | 2,025 | 675 | $\mathbf{1 , 3 5 0}$ |

(ii) Computation of Break-Even Sales

| Factory | Fixed Cost (a) | P/V Ratio (b) | Break-even Sales <br> (a) /(b) |
| :--- | :---: | :---: | :---: |
| North | 360 | $45 \%$ | $\mathbf{8 0 0}$ |
| East | 660 | $60 \%$ | $\mathbf{1 , 1 0 0}$ |
| South | 330 | $55 \%$ | $\mathbf{6 0 0}$ |
|  |  |  | $\mathbf{2 , 5 0 0}$ |

Break -even Sales (Company as whole) = Fixed Cost/ Composite P/V Ratio*
= Rs. 13,50,000/54\%
= Rs. 25,00,000
*Composite P/V Ratio = Total Contribution/ Total Actual Sales $=2,025 / 3,750=54 \%$

## Question 29

a) RPP Manufacturers is approached by an international customer for one-time special order similar to one offered to its domestic customers. Per unit data for sales to regular customers is provided below:

| Direct material | ₹ $\mathbf{6 9 3}$ |
| :--- | ---: |
| Direct labour | ₹ $\mathbf{3 1 5}$ |
| Variable manufacturing support | ₹ 504 |
| Fixed manufacturing support | ₹ 1092 |
| Total manufacturing costs | ₹ 2604 |
| Markup (50\%) | ₹ 1302 |
| Targeted selling price | ₹ 3906 |

It is provided that RPP Manufacturers has excess capacity. Required:
(i) WHAT is the full cost of the product per unit?
(ii) WHAT is the contribution margin per unit?
(iii) WHICH costs are relevant for making the decision regarding this one-time special order? WHY?
(iv) For RPP Manufacturers, WHAT is the minimum acceptable price of this one- time-special order only
(v) For this one-time-only special order, SHOULD RPP Manufacturers consider a price of $₹ \mathbf{2 1 0 0}$ per unit? WHY or why not?
(vi) The lab corner of New life Hospital Trust operates two types of specialist MRI scanning machineMR10 and MR59. Following details are estimated for the next period:

| Machine | MR10 | MR59 |
| :--- | ---: | ---: |
| Running hours | 1,100 | $\mathbf{2 , 0 0 0}$ |
|  | $(₹)$ | $(₹)$ |
| Variable running costs excluding special technology | 68,750 | $\mathbf{1 , 6 0 , 0 0 0}$ |
| Fixed Costs | 50,000 | $\mathbf{2 , 4 3 , 7 5 0}$ |

b) A brain scan is normally carried out on machine type MR10. This task uses special technology costing ₹ 100 each and takes four hours of machine time. Because of the nature of the process, around $10 \%$ of the scans produce blurred and therefore useless results.

Required:

- CALCULATE the total cost of a satisfactory brain scan on machine type MR10.
- Brain scans can also be done on machine type MR59 and would take only 1.8 hours per scan with a reduced reject rate of $6 \%$. However, the cost of the special technology would be ₹ 137.50 per scan. ADVISE which type should be used, assuming sufficient capacity is available on both types of machines. Consider fixed costs will remain unchanged. (RTP Nov'22)


## Answer 29

a) (i) Full cost of the product per unit

| Direct material | ₹ 693 |
| :--- | :--- |
| Direct labour | ₹ 315 |
| Variable manufacturing support | ₹ 504 |
| Fixed manufacturing support | ₹ 1092 |
| Total manufacturing costs | ₹ 2604 |

(ii) Contribution margin per unit

Selling price ₹ 3906
Less: Variable costs
Direct material ₹ 693
Direct labour ₹ 315
Variable manufacturing support ₹ 504
Contribution margin per unit ₹ 2394
(iii) Costs for decision making are those costs that differ between alternatives, which in this situation are the incremental costs.

Direct material
₹ 693
Direct labour ₹ 315
Variable manufacturing support ₹ 504
Total incremental costs ₹ 1512
(iv) Minimum acceptable price would be the incremental costs in the short term i.e. ₹ 1512
(v) Yes, RPP Manufacturers may consider a price of $₹ 2100$ per unit because this price is greater than the minimum acceptable price.
b) (i)

| Particulars | (₹) |
| :--- | ---: |
| Variable cost per running hour of Machine MR10 <br> (₹ 68,750/1100 hours) | 62.50 |
| Fixed cost (₹ 50,000/1100 hours) | 45.46 |
| Cost of brain scan on Machine MR10: | (₹) |
| Variable machine cost (4 hours $\times$ ₹ 62.50) | 250.00 |
| Special technology | 100.00 |
| Total variable cost | 350.00 |
| Fixed machine cost (4 hours $\times$ ₹ 45.46) | 181.84 |
| Total cost of a scan | 531.84 |
| Total cost of a satisfactory scan (₹ 531.84/0.9) | 590.93 |

(ii) It is given that fixed cost will remain unchanged and thus they are not relevant for the decision. The relevant costs would be the incremental costs of an additional scan:

| Machine MR10: | (₹) |
| :--- | ---: |
| Variable cost per scan | 350.00 |
| Variable cost per satisfactory scan (₹ 350/0.9) | 388.89 |


| Machine MR59: | (₹) |
| :--- | ---: |
| Variable machine cost per scan (₹ $1,60,000 / 2000$ hours $\times$ <br> 1.8 hours) | 144.00 |
| Special technology | 137.50 |
| Variable cost per scan | 281.50 |
| Variable cost per satisfactory scan (₹ $281.50 / 0.94$ ) | 299.47 |

(vii) The relevant costs per satisfactory scan are cheaper on Machine MR59 and therefore brain scans should be undertaken on said machine.

## Question 30

The following data are available from the budget records of Finesign Women's Handbag Company for the forthcoming budget period.

|  | $₹$ |
| :--- | ---: |
| Selling Price per unit | 1000 |
| Variable cost per unit: |  |
| Cost of Material used | 750.00 |
| Sales commission | 50.00 |
| Total Variable Cost | $\mathbf{8 0 0 . 0 0}$ |
| Annual fixed expenses: |  |
| Rent | $\mathbf{7 , 0 0 , 0 0 0}$ |
| Salaries | $5,00,000$ |
| Other fixed expenses | $23,00,000$ |
| Total Fixed Cost |  |

Although the firm manufactures Bags with different styles, they have identical purchase costs and selling price.

## Requirement:

(a) What is the annual break-even point both in terms of units and value?
(b) If the store manager is paid 1 per cent commission on sales, what would be the annual breakeven point both in terms of units and value?
(c) If the firm decides to pay a fixed salary of $₹ 9,00,000$ in lieu of sales commission, what would be the annual break-even point in terms of units and value.

Considering break-even point in requirement (a), If the stores manager is paid 2 per cent commission on each bag sold in excess of the break-even point, what would be the profit if 20000 bags were sold. (RTP May 23)

## Answer 30

(a) P/V ratio : $\frac{\text { Sales per unit-Variable Cost per unit }}{\text { Selling Price per unit }} \times 100$

$$
\begin{aligned}
& =\frac{1000-800}{1000} \times 100 \\
& =\frac{1000-800}{1000} \times 100 \\
& =\frac{200}{1000} \times 100=20 \%
\end{aligned}
$$

Annual BEP in Units: $\frac{\text { Annual fixed Cost }}{\text { Contribution per unit }}$
$=\frac{R s \cdot 23,00,000}{R s \cdot 200}=11,500$ units
Annual BEP in Value : $\frac{\text { Annual fixed Cost }}{\frac{P}{V} \text { ratio }}$
$\frac{R s .23,00,000}{R s .20 \%}=11,500$ units
(b) Revised P/V ratio and BEP:
commission on sales per unit= 1\% of 1,000= ₹10
So, P/V ratio : $\frac{1000-(750+50+10)}{1000}$
$=\frac{190}{1000} \times 100=19 \%$
BEP in terms of units $=\frac{\text { Annual fixed Cost }}{\text { Contribution per unit }}$
$=\frac{R s \cdot 23,00,000}{190}=12,106$ units
BEP in terms of value $: \frac{\text { Annual fixed Cost }}{P / V}$
$=\frac{R s .23,00,000}{19 \%}=$ Rs. 1,21,05,263
(c) Break-even point under fixed salary plan:
$P / V$ ratio : $\frac{\text { Contribution per unit }}{\text { Selling price per unit }}=\frac{1000-750}{1000} \times 100=\frac{250}{1000} \times 100=25 \%$
Revised fixed cost:

Original fixed cost
Proposed fixed salary
Total
₹ 23,00,000
₹ 9,00,000
₹ 32,00,000

BEP in terms of units $=\frac{\text { Annual fixed Cost }}{\text { Contribution per unit }}$
$=\frac{32,00,000}{250}=12,800$ units
BEP in terms of value $: \frac{\text { Annual fixed Cost }}{\frac{P}{V} \text { ratio }}$
$=\frac{R s .32,00,000}{25 \%}=1,28,00,000$
(d) Annual break-even point under requirement (a) is 11,500 units.

Margin of safety at sales volume of 20,000 unit of bags $(20,000-11,500)=8500$ units
Contribution on sales beyond break-even sales: Revised contribution per unit: 200 - ( $2 \%$ of 1000)
$=180$ Profit $=$ Margin of safety (in units) $\times$ Contribution per unit $=8500 \times 180=₹ 15,30,000$

## Question 31

(a) A dairy product company manufacturing baby food with a shelf life of one year furnishes the following information:
(i) On 1st April, 2023, the company has an opening stock of $\mathbf{2 0 , 0 0 0}$ packets whose variable cost is ₹ $\mathbf{1 8 0}$ per packet.
(ii) In 2022-23, production was 1,20,000 packets and the expected production in 2023-24 is 1,50,000 packets. Expected sales for 2023-24 is 1,60,000 packets.
(iii) In 2022-23, fixed cost per unit was ₹ 60 and it is expected to increase by 10\% in 2023-24. The variable cost is expected to increase by $\mathbf{2 5 \%}$. Selling price for 2023-24 has been fixed at ₹ 300 per packet.

You are required to calculate the Break-even volume in units for 2023-24.
(b) The M-Tech Manufacturing Company is presently evaluating two possible processes for the manufacture of a toy. The following information is available:

| Particulars | Process A (₹) | Process B (₹) |
| :--- | ---: | ---: |
| Variable cost per unit | 12 | 14 |
| Sales price per unit | 20 | 20 |
| Total fixed costs per year | $\mathbf{3 0 , 0 0 , 0 0 0}$ | $21,00,000$ |
| Capacity (in units) | $4,30,000$ | $5,00,000$ |
| Anticipated sales (Next year, in units) | $4,00,000$ | $4,00,000$ |

## Suggest:

1. Identify the process which gives more profit.
2. Would you change your answer as given above, if you were informed that the capacities of the two processes are as follows:

A-6,00,000 units; B-5,00,000 units? (RTP Nov '23)

## Answer 31

Working Notes:
(a)

| Particulars | 2022-23 (₹) | $\mathbf{2 0 2 3 - 2 4 ~ ( ₹ ) ~}$ |
| :--- | :---: | :---: |
| Fixed Cost | $72,00,000$ | $79,20,000$ |
|  | (₹ $60 \times 1,20,000$ | $(110 \%$ of $₹$ |
| units) | $72,00,000)$ |  |
| Variable Cost | 180 | 225 |
|  |  | $(125 \%$ of $₹ 180)$ |

## Calculation of Break-even Point (in units):

Since, shelf life of the product is one year only, hence, opening stock is to be sold first.
\(\left.\begin{array}{|l|c|}\hline \& (₹ <br>

(\end{array}\right]\)| Total Contribution required to recover total fixed cost in <br> $2023-24$ and to reach break-even volume. | $79,20,000$ |
| :--- | :---: |
| Less: Contribution from opening stock <br> $\{20,000$ units $\times(₹ 300-₹ 180)\}$ | $24,00,000$ |
| Balance Contribution to be recovered | $55,20,000$ |

Units to be produced to get balance contribution
$=\frac{R s .55,20,000}{R s .300-R s .225}=73,600$ packets.
Break-even volume in units for 2023-24

|  | Packets |
| :--- | :---: |
| From 2023-24 production | 73,600 |
| Add: Opening stock from 2022-23 | 20,000 |
|  | 93,600 |

(b)

## Comparative Profitability Statements

| Particulars | Process- A (₹) | Process- B (₹) |
| :--- | ---: | ---: |
| Selling Price per unit | 20.00 | 20.00 |
| Less: Variable Cost per unit | 12.00 | 14.00 |
| Contribution per unit | 8.00 | 6.00 |
| Total Contribution | $32,00,000$ | $24,00,000$ |
|  | (₹ $8 \times 4,00,000)$ | (₹ $6 \times 4,00,000)$ |
| Less: Total fixed costs | $30,00,000$ | $21,00,000$ |
| Profit | $2,00,000$ | $3,00,000$ |


| Capacity (units) | $4,30,000$ | $5,00,000$ |
| :--- | ---: | ---: |
| Total Contribution at full capacity | $34,40,000$ | $30,00,000$ |
|  | $(₹ 8 \times 4,30,000)$ | $(₹ 6 \times 5,00,000)$ |
| Fixed Cost | $30,00,000$ | $21,00,000$ |
| Profit | $4,40,000$ | $9,00,000$ |

Process - B gives more profit.
(2)

| Particulars | Process- A (₹) | Process- B (₹) |
| :--- | ---: | ---: |
| *Capacity (units) | $6,00,000$ | $5,00,000$ |
| Total contribution | $48,00,000$ | $30,00,000$ |
|  | $(₹ 8 \times 6,00,000)$ | $(₹ 6 \times 5,00,000)$ |
| Fixed Cost | $30,00,000$ | $21,00,000$ |
| Profit | $18,00,000$ | $9,00,000$ |

Process-A be chosen.
*Note: It is assumed that capacity produced equals sales.

## Question 32

When volume is 4000 units, average cost is ?
3.75 per unit. When volume is 5000 units, average cost is ₹ 3.50 per unit. The Break-Even point is $\mathbf{6 0 0 0}$ units. Calculate: - (i) Variable Cost per unit (ii) Fixed Cost and (iii) Profit Volume Ratio. (PYP Nov'19,5 Marks)

## Answer 32

(i)

$$
\begin{aligned}
& \text { Variable cost per unit }=\frac{\text { Change in Total Cost }}{\text { Change in units }} \\
& \quad=\frac{(R s .3 .505,000 \text { units })(\text { Rs. } 3.754,000 \text { units })}{5,000-4,000} \\
& =\frac{R s .17,500-\text { Rs. } 15,000}{1,000}=\text { Rs. } 2,500 / 1000=\text { Rs. } 2.5
\end{aligned}
$$

(ii) Fixed cost $=$ Total Cost - Variable cost (at 5,000 units level)

$$
=\quad ₹ 17,500-₹ 2.5 \times 5,000=₹ 5,000
$$

(iii) Contribution

Per unit $=\frac{\text { Fixed Cost }}{B E P(\text { in units })}=\frac{R s .5,000}{6,000 \text { units }}=0.833$
$\mathrm{P} / \mathrm{V}$ Ratio $=\frac{\text { Contributionper unit }}{\text { Sales price per unit }}=\frac{0.833}{2.5+0.833}=25 \%$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question relating to the topic 'Marginal costing' to ascertain information based on change in volume, average cost per unit and breakeven point. Most of the examinees were unable to calculate the fixed cost; hence they could not calculate the $\mathrm{P} / \mathrm{V}$ ratio. Performance of the examinees was average.

## Question 33

PJ Ltd manufactures hockey sticks. It sells the products at ₹ 500 each and makes a profit of ₹ 125 on each stick. The Company is producing 5000 sticks annually by using $\mathbf{5 0 \%}$ of its machinery capacity.

The cost of each stick is as under:

| Direct Wages | $₹ 50$ |
| :--- | :--- |
| Works Overhead | $₹ 125$ ( $50 \%$ fixed) |
| Selling Expenses | $₹ 150$ ( $25 \%$ variable) |

The anticipation for the next year is that cost will go up as under:
FixedCharges: 10\%

Direct Wages 20\%
Direct Material 5\%

There will not be any change in selling price.
There is an additional order for $\mathbf{2 0 0 0}$ sticks in the next year.
Calculate the lowest price that can be quoted so that the Company can earn the same profit as it earned in the current year ? (PYP Nov'19,10 Marks)

## Answer 33

Selling Price = ₹ 500

Profit = ₹ 125
No of Sticks = 5,000

| Particular | Current Year <br> (₹) | Next Year <br> $(₹)$ |
| :--- | ---: | ---: |
| Direct Material | 150 | $\mathbf{1 5 7 . 5 0}$ |
| $(150+5 \%)$ |  |  |$|$| $\mathbf{6 0}$ |
| ---: |
| Direct Wages |
| Works Overheads |
| Selling Expenses |
| Total Variable Cost |
| Fixed Cost $(62.5 \times 5,000)=3,12,500 ;(37.5 \times 5,000)=$ |
| $1,87,500$ |

Let: Lowest Price Quoted = K
Now, Sales $=$ Target Profit (5,000 units $\times$ ₹ 125 ) + Variable Cost + Fixed Cost Or, $=(5,000 \times 500)+(2,000$
$\times K)=6,25,000+20,47,500+5,50,000$ Or, $K=₹ 361.25$
So, Lowest Price that can be quoted to earn the profit of ₹ $6,25,000$ (same as current year) is ₹ 361.25

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical problem from the topic 'Marginal Costing'. Question required calculation of lowest price to be quoted for additional order in order to earn the same profit as last vear. Performance of majority of the examinees was above average.

## Question 34

$\mathrm{M} / \mathrm{s}$ Gaurav Private Limited is manufacturing and selling two products :'BLACK' and 'WHITE' at selling price of ₹ $\mathbf{2 0}$ and ₹ $\mathbf{3 0}$ respectively. The following sales strategy has been outlined for the financial year 2019-20:
(i) Sales planned for the year will be ₹ $81,00,000$ in the case of 'BLACK' and ₹ $54,00,000$ in the case of 'WHITE'.
(ii) The selling price of 'BLACK' will be reduced by $10 \%$ and that of 'WHITE' by $\mathbf{2 0 \%}$.
(iii) Break-even is planned at 70\% of the total sales of each product.
(iv) Profit for the year to be maintained at ₹ $8,26,200$ in the case of 'BLACK' and ₹ $7,45,200$ in the case of 'WHITE'. This would be possible by reducing the present annual fixed cost of ₹ 42,00,000 allocated as ₹ $\mathbf{2 2 , 0 0 , 0 0 0}$ to 'BLACK' and ₹ 20,00,000 to 'WHITE'
You are required to calculate:
(i) Number of units to be sold of 'BLACK' and 'WHITE' to Break even during the financial year 201920.
(ii) Amount of reduction in fixed cost product-wise to achieve desired profit mentioned at (iv) above. (PYP May'19,5 Marks)

## Answer 34

| (i) Statement showing Break Even Sales Particulars | Black | White |
| :---: | :---: | :---: |
| Sales Planned | 81,00,000 | 54,00,000 |
| Selling Price (₹) | 18 | 24 |
| Number of Units to be sold | 4,50,000 | 2,25,000 |
| Break Even sales (in Units),70\% of total sales | 3,15,000 | 1,57,500 |
| Or |  |  |
| BreakEvensales(in₹),70\%oftotalsales | 56,70,000 | 37,80,000 |
| (ii) Statement Showing Fixed Cost Reduction Profit to be maintained ( ₹ ) | 8,26,200 | 7,45,200 |
| Margin of Safety (70\% of Sales) ( ₹ ) | 24,30,000 | 16,20,000 |
| PVR (Profit/ Margin of Safety) x 100 | 34\% | 46\% |
| Contribution (Sales x 34\% or 46\%) (₹) | 27,54,000 | 24,84,000 |
| Less: Profit (₹) | 8,26,200 | 7,45,200 |
| Revised Fixed Cost (₹) | 19,27,800 | 17,38,800 |
| Present Fixed Cost ( ₹ ) | 22,00,000 | 20,00,000 |
|  | Reduction in Fixed Cost $\quad \mathbf{2 , 7 2 , 2 0 0}$ | 2,61,200 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a numerical question on 'Marginal Costing'. Examinees easily calculated the BEP, but failed to calculate the reduction in fixed cost, due to lack of conceptual clarity on this topic. The performance in this sub part the question was below Average.

## Question 35

What are the limitations of marginal costing? (PYP May'19,5Marks)

## Answer 35

## Limitations of Marginal Costing

(i) Difficulty in classifying fixed and variable elements: It is difficult to classify exactly the expenses into fixed and variable category. Most of the expenses are neither totally variable nor wholly fixed. For example, various amenities provided to workers may have no relation either to volume of production or time factor.
(ii) Dependence onkeyfactors: Contribution of a product itself is not a guide for optimum profitability unless it is linked with the key factor.
(iii) Scopefor Low Profitability: Sales staff may mistake marginal cost for total cost and sell at a price; which will result in loss or low profits. Hence, sales staff should be cautioned while giving marginal cost.
(iv) Faulty valuation: Overheads of fixed nature cannot altogether be excluded particularly in large contracts, while valuing the work-in- progress. In order to show the correct position fixed overheads have to be included in work-in-progress.
(v) Unpredictablenature of Cost: Some of the assumptions regarding the behaviour of various costs are not necessarily true in a realistic situation. For example, the assumption that fixed cost will remain static
throughout is not correct. Fixed cost may change from one period to another. For example, salaries bill may go up because of annual increments or due to change in pay rate etc. The variable costs do not remain constant per unit of output. There may be changes in the prices of raw materials, wage rates etc. after a certain level of output has been reached due to shortage of material, shortage of skilled labour, concessions of bulk purchases etc.
(vi) Marginal costing ignores time factor and investment: The marginal cost of two jobs may be the same but the time taken for their completion and the cost of machines used may differ. The true cost of a job which takes longer time and uses costlier machine would be higher. This fact is not disclosed by marginal costing.
(vii) Understating of W-I-P: Under marginal costing stocks and work in progress are understated.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this theoretical question on limitations of 'Marginal Costing'. Most of the examinees failed to mention the limitations correctly. Poor performance of the candidate was observed. Overall performance in this question was below average.

## Question 36

A manufacturing company is producing a product ' $A$ ' which is sold in the market at ₹ 45 per unit. The company has the capacity to produce 40000 units per year. The budget for the year 2018-19 projects a sale of $\mathbf{3 0 0 0 0}$ units.

The costs of each unit are expected as under:

| Materials | 12 |
| :--- | ---: |
| Wages | 9 |
| Overheads | 6 |
| Margin of safety is $₹ \mathbf{4 , 1 2 , 5 0 0}$. |  |
| You are required to: |  |

(i) calculate fixed cost and break-even point.
(ii) calculate the volume of sales to earn profit of $\mathbf{2 0 \%}$ onsales.
(iii) if management is willing to invest ₹ $10,00,000$ with an expected return of $20 \%$, calculate units to be sold to earn this profit.
(iv) Management expects additional sales if the selling price is reduced to ₹ 44 . Calculate units to be sold to achieve the same profit as desired in above (iii). (PYP Nov '18, 10 Marks)

## Answer 36

$$
\begin{aligned}
& \text { Margin of Safety }=\frac{\text { Profit }}{P / V \text { ratio }}=\text { Rs. } 4,12,500 \\
& \frac{\text { Profit }}{=\frac{45-(2+9+6)}{45}}=\text { Rs. } 4,12,500 \\
& \frac{\text { Profit }}{\frac{18}{45}}=4,12,500 \\
& \text { Profit }=1,65,000 \text { OR P/V }=(18 / 45) \times 100=40 \%
\end{aligned}
$$

(i) Fixed Cost

$$
\begin{aligned}
& \text { Profit }=(\text { Sales } \times \text { P/V Ratio })-\text { Fixed Cost } \\
& 1,65,000=\left((30,000 \times 45) \times \frac{18}{45}\right)-\text { Fixed cost } \\
& \text { Or Fixed Cost }=5,40,000-1,65,000 \\
& \quad=₹ 3,75,000
\end{aligned}
$$

$$
\begin{aligned}
& \text { Profit }=\text { Contribution - Fixed Cost }=₹ 5,40,000-₹ 3,75,000=₹ 1,65,000 \\
& \text { P/VRatio }=18 / 45=40 \% \\
& \text { Break-even Point }=\text { Total Sales }- \text { Margin of Safety } \\
& =₹(30,000 \times 45)-4,12,500 \\
& =13,50,000-4,12,500=₹ 9,37,500 \\
& \text { Or } \\
& \text { BEP }=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }} \frac{3,75,000}{\frac{18}{45}}=\frac{3,75,000}{40 \%}=₹ 9,37,500 \text { OR 20833.33 Units }
\end{aligned}
$$

(ii) Let's assume, Sales Volume $=\mathbf{S}$ unit so total sales value is 45 S and

Contribution is $45 \mathrm{~S}-27 \mathrm{~S}=18 \mathrm{~S}$
Now, Contribution $=$ Fixed Cost + Desired Profit $18 \mathrm{~S}=$
$3,75,000+9 \mathrm{~S}(20 \%$ of 45 S$)$
Or, $9 \mathrm{~S}=3,75,0000$
So, $S=\frac{3,75,000}{9}$ Units
Volume of sales $=\frac{3,75,000-45}{9}=₹ 18,75,000$ OR 41666.67 Units

So, ₹ $18,75,000$ sales are required to earn profit on $20 \%$ of sales

18S
$=3,75,000+$ Return on Investment
$=3,75,000+2,00,000$
$=\frac{5,75,000}{18}$ Units $=31,945$ Units(approx.)
So, 31,945 Units to be sold to earn a return of ₹ $2,00,000$.
(iv) Revised Contribution = Fixed Cost +

Desired Profit 17S $=3,75.000+$
2,00,000

| $S=$ | $\frac{5,75,000}{17}$ Units |
| :--- | :--- |
| $S$ | $=33,824$ units (approx.) |

Additional Sales to be sold to achieve the same profit is 33,824 Units.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This question was related to Marginal costing, Most of the examinees performed well and obtained 6-8 marks out of 10 marks.

Overall performance in this question was very good.

## Question 37

Following figures have been extracted from the books of M/s. RST Private Limited:

| Financial Year | Sales (₹) | Profit/Loss (₹) |
| :--- | :---: | :---: |
| $2016-17$ | $4,00,000$ | 15,000 (loss) |
| $2017-18$ | $5,00,000$ | 15,000 (Profit) |

You are required to calculate:
(i) Profit Volume Ratio
(ii) Fixed Costs
(iii) Break Even Point
(iv) Sales required to earn a profit of ₹ 45,000.
(v) Margin of Safety in Financial Year 2017-18. (PYP May'18,5 Marks)

## Answer 37

|  | Sales (₹) | Profit (₹) |
| :--- | ---: | ---: |
| Year 2016 | $4,00,000$ | 15,000 (loss) |
| Year 2017 | $5,00,000$ | 15,000 (profit) |
| Difference | $1,00,000$ | 30,000 |

(i) P/V Ratio $=\frac{\text { Difference in profit }}{\text { Difference in Sales }} \times 100=\frac{30,000}{1,00,000} \times 100=30 \%$
(ii) Contribution in 2016 (4,00,000 x 30\%) 1,20,000

Add:Loss
15,000
Fixed Cost*
1,35,000
*Contribution = Fixed cost + Profit
$\therefore$ Fixedcost $\quad=$ Contribution - Profit
(iii) Break-even point $=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }}=\frac{1,35,000}{30 \%}=$ Rs. $4,50,000$
(iv) Sales to earn a profit of ₹ 45,000

(v) Margin of safety in 2017-18

Margin of safety $=$ Actual sales - Break-even sales
$=5,00,000-4,50,000=₹ 50,000$.

## Question 38

PH Gems Ltd. is manufacturing readymade suits. It has annual production capacity of 2,000 pieces. The Cost Accountant has presented following information for the year to the management:

| Particulars | Amount (₹ ) | Amount (₹) |
| :--- | ---: | ---: |
| Sales 1,500 pieces @ ₹ 1,800 per piece |  | $27,00,000$ |
| Direct Material | $5,94,200$ |  |
| Direct Labour | $4,42,600$ |  |
| Overheads (40\% Fixed) | $11,97,000$ | $22,33,800$ |
| Net Profit |  | $4,66,300$ |

## Evaluate following options:

i. If selling price is increased by ₹ 200 , the sales will come down to $\mathbf{6 0 \%}$ of the total annual capacity. Should the company increase its selling price?
ii. The company can earn a profit of $\mathbf{2 0 \%}$ on sales if the company provide TIEPIN with ready-made suit. The cost of each TIEPIN is ₹ 18 . Calculate the sales to earn a profit of $\mathbf{2 0 \%}$ on sales. (PYP May ${ }^{\prime} 18,10$ Marks)
Answer 38
(i) Evaluation of Option (i)

$$
\text { SellingPrice=₹ } 1800+₹ 200=₹ 2,000 \text { Sales=2000x60\%=1200Pieces }
$$

Sales(1,200 pieces @ ₹ 2,000)
24,00,000

Less:DirectMaterial (Rs. 5,94,200 / 1,500 units $\times$ 1,200) 4,75,360
Direct Labour (Rs. 4,42,600/1,500 units $\times 1,200$ 3,54,080
Variable Overhead (Rs. 11,97,000 $\times 60 \% / 1,500$ units $\times 1,200 \quad 5,74,560$

|  | Contribution | $9,96,000$ |
| :--- | :--- | :--- |
|  | Less: Fixed cost (Rs. 11,97,000x40\%) | $4,78,800$ |
|  |  | $5,17,200$ |

If price has been increased by $11.11 \%$ (increases by 200 on 1,800 ) sales goes down by $20 \%$ (decreased by 300 on 1,500 ). Change in demand is greater than change in price. Since the variable costs are still same profit has been arose to ₹ $5,17,200$ in-spite of high elasticity of demand. PH gemswould not be able to sustain this policy on account of change if any in variable costs.

## (ii) Evaluation of Option (ii)

(Rs.)
Sales

Less: Direct Material (Rs. 5,94,200 / 1,500)

| Cost of Tie PIN | 18.00 |
| :--- | :--- |
| Direct Labour (Rs. 4,42,600 / 1,500) |  |
| Variable Overheads $\left(\frac{\text { Rs. } 11,97,000 \times 60 \%)}{1,500}\right.$ | 295.07 |
| 478.80 |  |

P/VRatio (₹ 612/1800x100) 34.0\%

## Sales to required earn a profit of $20 \%$

Sales $=₹ 4,78,800+0.20$ of Sales
34.00\%

Sales $=₹ 34,20,000$ or 1,900 units ( $₹ 34,20,000 / 1800$ )
To earn profit $20 \%$ on sales of readymade suit (along with TIE PIN) company has to sold 1,900 units i.e. $95 \%$ of the full capacity. This sales level of 1,900 units is justified only if variable cost is constant. Any upside in variable cost would impact profitability, to achieve the desired profitability. Production has to be increased but the scope is limited to $5 \%$ only.

## Question 39

Moon Ltd. produces products ' X ', ' $Y$ ' and ' $Z$ ' and has decided to analyse it's production mix in respect of these three products - ' X ', ' Y ' and ' Z '.

You have the following information:

|  | X | Y | Z |
| :--- | :---: | :--- | :--- |
| Direct Materials ₹ (per unit) | 160 | 120 | 80 |
| Variable Overheads ₹ (per unit) | 8 | 20 | 12 |
| Direct labour : |  |  |  |


| Departments: | Rate per Hour (₹) | Hours per <br> unit | Hours per <br> unit | Hours per <br> unit |
| :--- | :---: | :---: | :---: | :---: |
| 4646 |  | X | Y | Z |


| Department-A | 4 | 6 | 10 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| Department-B | 8 | 6 | 15 | 11 |

From the current budget, further details are as below :

|  | X | Y | Z |
| :--- | ---: | ---: | ---: |
| Annual Production at present (in units) | 10,000 | 12,000 | 20,000 |
| Estimated Selling Price per unit (₹) | 312 | 400 | $\mathbf{2 4 0}$ |
| Sales departments estimate of possible sales in the <br> coming year (in units) | 12,000 | 16,000 | 24,000 |

There is a constraint on supply of labour in Department-A and its manpower cannot be increased beyond its present level.

Required:
(i) Identify the best possible product mix of Moon Ltd.
(ii) Calculate the total contribution from the best possible product mix. (PYP 5 Marks Nov 20, Old \& New SM)
Answer 39
(i) Statement Showing "Calculation of Contribution/ unit"

| Particulars | X <br> (₹) | Y <br> (₹) | Z <br> (₹) |
| :--- | :---: | :---: | :---: |
| Selling Price (A) | 312 | 400 | 240 |
| Variable Cost: |  |  |  |
| Direct Material | 160 | 120 | 80 |
| Direct Labour |  |  |  |
| Dept. A (Rate x Hours) | 24 | 40 | 20 |
| Dept. B (Rate x Hours) | 48 | 120 | 88 |
| Variable Overheads | 8 | 20 | 12 |
| Total Variable Cost (B) | 240 | 300 | 200 |
| Contribution per unit (A - B) | $\mathbf{7 2}$ | $\mathbf{1 0 0}$ | $\mathbf{4 0}$ |
| Hours in Dept. A | 6 | 10 | 5 |
| Contribution per hour | 12 | 10 | 8 |
| Rank | 1 | II | III |

Existing Hours $=10,000 \times 6 \mathrm{hrs} .+12,000 \times 10 \mathrm{hrs} .+20,000 \times 5 \mathrm{hrs} .=2,80,000 \mathrm{hrs}$. Best possible product mix (Allocation of Hours on the basis of ranking)

| Produce ' $X$ ' | $=$ | 12,000 units |
| :---: | :---: | :---: |
| Hours Required | = | 72,000 hrs (12,000 units $\times 6$ hrs.) |
| Balance Hours Available | = | $\begin{aligned} & \text { 2,08,000 hrs (2,80,000 hrs. - 72,000 } \\ & \text { hrs.) } \end{aligned}$ |
| Produce ' $\gamma$ ' (the Next Best) | = | 16,000 units |
| Hours Required | = | 1,60,000 hrs (16,000 units $\times 10 \mathrm{hrs}$.) |
| Balance Hours Available | = | $\begin{aligned} & 48,000 \text { hrs ( } 2,08,000 \text { hrs. }-1,60,000 \\ & \text { hrs.) } \end{aligned}$ |
| Produce 'Z' (balance) | = | 9,600 units (48,000 hrs./ 5 hrs.) |

(ii) Statement Showing "Contribution"

| Product | Units | Contribution/ Unit (₹) | Total Contribution (₹) |
| :---: | :---: | :---: | :---: |
| X | 12,000 | 72 | $8,64,000$ |


| $Y$ | 16,000 | 100 | $16,00,000$ |
| :---: | :---: | :---: | :---: |
| $Z$ | 9,600 | 40 | $3,84,000$ |
| Total |  |  | $\mathbf{2 8 , 4 8 , 0 0 0}$ |

## Question 40

Differentiate between "Marginal and Absorption Costing". (PYP 5 Marks Nov 20)

## Answer 40

Difference between Marginal costing and Absorption costing

| S. <br> No. | Marginal costing | Absorption costing |
| :---: | :--- | :--- |
| 1. | Only variable costs are considered for <br> product costing and inventory <br> valuation. | Both fixed and variable costs are considered <br> for product costing and <br> inventory valuation. |
| 2. | Fixed costs are regarded as period <br> costs. The Profitability of different <br> products is judged by their P/V ratio. | Fixed costs are charged to the cost of <br> production. Each product bears a reasonable <br> share of fixed cost and thus the profitability <br> of a product is influenced <br> by the apportionment of fixed costs. |
| 3. | Cost data presented highlight the total <br> contribution of each product. | Cost data are presented in conventional <br> pattern. Net profit of each product is <br> determined after subtracting fixed cost <br> along with their variable costs. |
| 4. | The difference in the magnitude of <br> opening stock and closing stock does <br> not affect the unit cost of <br> production. | The difference in the magnitude of opening <br> stock and closing stock affects the unit cost <br> of production due to the <br> impact of related fixed cost. |
| 5. | In case of marginal costing the cost <br> per unit remains the same, <br> irrespective of the production as it is <br> valued at variable cost | In case of absorption costing the cost per <br> unit reduces, as the production increases <br> as it is fixed cost which reduces, whereas, <br> the variable cost <br> remains the same per unit. |

## Question 41

During a particular period, ABC Ltd has furnished the following data:
Sales ₹ 10,00,000
Contribution to sales ratio $\mathbf{3 7 \%}$ and Margin of safety is $\mathbf{2 5 \%}$ of sales.
A decrease in selling price and decrease in the fixed cost could change the "contribution to sales ratio" to $\mathbf{3 0 \%}$ and "margin of safety" to $40 \%$ of the revised sales. Calculate:
(i) Revised Fixed Cost.
(ii) Revised Sales and
(iii) New Break-Even Point. (PYP 5 Marks Jan '21)

## Answer 41

Contribution to sales ratio ( $\mathrm{P} / \mathrm{V}$ ratio) $=37 \%$
Variable cost ratio = 100\% - 37\% = 63\%
Variable cost $=₹ 10,00,000 \times 63 \%=₹ 6,30,000$
After decrease in selling price and fixed cost, sales quantity has not changed. Thus, variable cost is ₹ $6,30,000$.

Revised Contribution to sales $=30 \%$
Thus, Variable cost ratio $=100 \%-30 \%=70 \%$
Thus, Revised sales =Rs. 6,30,000 / 70\% = Rs. 9,00,000
Revised, Break-even sales ratio $=100 \%-40 \%$ (revised Margin of safety) $=60 \%$
(i) Revised fixed cost = revised breakeven sales x revised contribution to sales ratio
= ₹ 5,40,000 (₹ 9,00,000 x 60\%) x 30\%
= ₹ 1,62,000
(ii) Revised sales
(iii) Revised Break-even point
= ₹ 9,00,000 (as calculated above)
= Revised sales x Revised break-even sales ratio
= ₹ 9,00,000 x 60\%
= ₹ $5,40,000$

## Question 42

Two manufacturing companies $A$ and $B$ are planning to merge. The details are as follows:

|  | A | B |
| :--- | :---: | :---: |
| Capacity utilisation (\%) | 90 | 60 |
| Sales (₹) | $63,00,000$ | $48,00,000$ |
| Variable Cost (₹) | $39,60,000$ | $22,50,000$ |
| Fixed Cost (₹) | $13,00,000$ | $15,00,000$ |

Assuming that the proposal is implemented, calculate:
(i) Break-Even sales of the merged plant and the capacity utilization at that stage.
(ii) Profitability of the merged plant at $\mathbf{8 0 \%}$ capacity utilization.
(iii) Sales Turnover of the merged plant to earn a profit of $₹ \mathbf{6 0 , 0 0 , 0 0 0}$.
(iv) When the merged plant is working at a capacity to earn a profit of $₹ \mathbf{6 0 , 0 0 , 0 0 0}$, what percentage of increase in selling price is required to sustain an increase of $5 \%$ in fixed overheads. (PYP 10 Marks Jan 21)

## Answer 42

Workings:

1. Statement showing computation of Breakeven of merged plant and other required information

| S. <br> No. | Particulars | Plan A |  | Plant B |  | Merged |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Before <br> (90\%) <br> (₹) | After <br> (100\%) <br> (₹) | Before <br> (60\%) <br> (₹) | After <br> (100\%) <br> (₹) | Plant <br> (100\%) <br> (₹) |
| (i) | Sales | $63,00,000$ | $70,00,000$ | $48,00,000$ | $80,00,000$ | $1,50,00,000$ |
| (ii) | Variable cost | $39,60,000$ | $44,00,000$ | $22,50,000$ | $37,50,000$ | $81,50,000$ |
| (iii) | Contribution (i - ii) | $23,40,000$ | $26,00,000$ | $25,50,000$ | $42,50,000$ | $68,50,000$ |
| (iv) | Fixed Cost | $13,00,000$ | $13,00,000$ | $15,00,000$ | $15,00,000$ | $28,00,000$ |
| (v) | Profit (iii - iv) | $10,40,000$ | $13,00,000$ | $10,50,000$ | $27,50,000$ | $40,50,000$ |

2. PV ratio of merged plant $=$

$$
\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{R s .68,50,000}{1,50,00,000} \times 100=45.67 \%
$$

(i) Break even Sales of merged plant $=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }}$

$$
\begin{aligned}
& =\frac{R s .28,00,000}{45.67 \%}=\text { Rs. 61,30,939.34(approx..) } \\
& \text { Capacity utilization }=\frac{R s .61,30,939.34}{1,50,00,000} \times 10 \mathrm{C}=40.88 \%
\end{aligned}
$$

(ii) Profitability of the merged plant at $80 \%$ capacity utilization

$$
\begin{aligned}
& =(₹ 1,50,00,000 \times 80 \%) \times P / v \text { ratio - fixed cost } \\
& =₹ 1,20,00,000 \times 45.67 \%-₹ 28,00,000 \\
& =₹ 26,80,400
\end{aligned}
$$

(i) Sales to earn a profit of $₹ \mathbf{6 0 , 0 0 , 0 0 0}$

$$
\begin{aligned}
\text { Desired sales } & =\frac{\text { Fixed Cost }+ \text { Desired profit }}{\frac{P}{V} \text { ratio }} \\
& =\frac{\text { Rs. } 28,00,000+\text { Rs } \cdot 60,00,000}{45.67 \%} \\
& =₹ 1,92,68,666 \text { (approx.) }
\end{aligned}
$$

(ii) Increase in fixed cost
= ₹ 28,00,000 x 5\% = ₹ 1,40,000

Therefore, percentage increase in sales price

$$
=\frac{R s .1,40,000}{R s .1,92,68,666} \times 100=0.726 \%(\text { approx..) }
$$

## Question 43

XYZ Ltd. is engaged in the manufacturing of toys. It can produce 4,20,000 toys at its 70\% capacity on per annum basis. Company is in the process of determining sales price for the financial year 202021. It has provided the following information:

Direct Material ₹ 60 per unit Direct
Labour ₹ 30 per unit
Indirect Overheads:
Fixed ₹ 65,50,000 per annum
Variable ₹ 15 per unit
Semi-variable ₹ 5,00,000 per annum up to $60 \%$ capacity and ₹ 50,000 for every $5 \%$ increase in capacity or part thereof up to $80 \%$ capacity and thereafter ₹ $\mathbf{7 5 , 0 0 0}$ for every $10 \%$ increase in capacity or part thereof.

Company desires to earn a profit of $₹ \mathbf{2 5 , 0 0 , 0 0 0}$ for the year. Company has planned that the factory will operate at $50 \%$ of capacity for first six months of the year and at $75 \%$ of capacity for further three months and for the balance three months, factory will operate at full capacity.

You are required to:
(1) Determine the average selling price at which each of the toy should be sold to earn the desired profit.
(2) Given the above scenario, advise whether company should accept an offer to sell each Toy at:
(a) ₹ 130 per Toy
(b) ₹ 129 per Toy (PYP10 Marks Jan 21)

## Answer 43

(1) Statement of Cost

|  | For first 6 months | For further 3 months | For remaining 3 months | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 6,00,000 \times \\ 6 / 12 \times 50 \% \\ =1,50,000 \\ \text { units } \end{gathered}$ | $\begin{gathered} 6,00,000 \times \\ 3 / 12 \times 75 \% \\ =1,12,500 \\ \text { units } \end{gathered}$ | $\begin{gathered} 6,00,000 x \\ 3 / 12 \\ =1,50,000 \\ \text { units } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { 4,12,500 } \\ & \text { units } \end{aligned}$ |
| Direct Material | 90,00,000 | 67,50,000 | 90,00,000 | 2,47,50,000 |
| Direct labour | 45,00,000 | 33,75,000 | 45,00,000 | 1,23,75,000 |
| Indirect - Variable Expenses | 22,50,000 | 16,87,500 | 22,50,000 | 61,87,500 |
| Indirect - Fixed Expenses | 32,75,000 | 16,37,500 | 16,37,500 | 65,50,000 |
|  |  |  |  |  |
| - For first six months @ 5,00,000 per annum | 2,50,000 |  |  |  |
| - For further three months @ 6,50,000* per annum |  | 1,62,500 |  |  |
| - For further three months @ 8,50,000** per annum |  |  | 2,12,500 | 6,25,000 |
| Total Cost | 1,92,75,000 | 1,36,12,500 | 1,76,00,000 | 5,04,87,500 |
| Desired Profit |  |  |  | 25,00,000 |
| Sales value |  |  |  | 5,29,87,500 |
| Average Sales price per Toy |  |  |  | 128.45 |

* ₹ 5,00,000+ [3 times (from 60\% to 75\%) x 50,000] = ₹ 6,50,000
** ₹ $6,50,000+$ [ 1 time (from $75 \%$ to $80 \%$ ) x 50,000] + [2 times (from $80 \%$ to $100 \%$ )
$\times 75,000]=₹ 8,50,000$
(2) (a) Company Should accept the offer as it is above its targeted sales price of ₹ 128.45 per toy.
(b) Company Should accept the offer as it is above its targeted sales price of ₹ 128.45 per toy.


## Question 44

LR Ltd. is considering two alternative methods to manufacture a new product it intends to market. The two methods have a maximum output of 50,000 units each and produce identical items with a selling price of $₹ \mathbf{2 5}$ each. The costs are:

|  | Method-1 <br> Semi-Automatic <br> (₹) | Method-2 <br> Fully-Automatic <br> (₹) |
| :--- | ---: | ---: |
| Variable cost per unit | 15 | 10 |
| Fixed costs | $1,00,000$ | $3,00,000$ |

## You are required to calculate:

(1) Cost Indifference Point in units. Interpret your results.
(2) The Break-even Point of each method in terms of units.

## Answer 44



## Interpretation of Results

At activity level below the indifference points, the alternative with lower fixed costs and higher variable costs should be used. At activity level above the indifference point, alternative with higher fixed costs and lower variable costs should be used.

| No. of Product | Alternative to be Chosen |
| :--- | :--- |
| Product $\leq 40,000$ units | Method-1, Semi-Automatic |
| Product $\geq 40,000$ units | Method-2, Automatic |

(ii) Break Even point (in units)


## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This practical problem was based on Marginal Costing which required calculation of cost indifference point between two methods and interpretation of the result. Question also required calculation of BEP under both methods. Most of the examinees failed to interpret the cost indifference point. Performance of the examinees was average.

## Question 45

What is Margin of Safety? What does a large Margin of Safety indicates? How can you calculate Margin of Safety? (PYP 5 Marks July 21)

## Answer 45

Margin of Safety: The margin of safety can be defined as the difference between the expected level of sale and the breakeven sales.

The larger the margin of safety, the higher is the chances of making profits.
The Margin of Safety can be calculated by identifying the difference between the projected sales and breakeven sales in units multiplied by the contribution per unit. This is possible because, at the breakeven point all the fixed costs are recovered and any further contribution goes into the making of profits.

Margin of Safety $=($ Projected sales $\boldsymbol{-}$ Breakeven sales) in units $\mathbf{x}$ contribution per unit
It also can be calculated as:

$$
\text { Margin of Safety }=\frac{\text { Profit }}{\frac{P}{V} \text { Ratio }}
$$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

Examinees were required to explain margin of safety. Performance of the examinees was above average.

## Question 46

A $Z$ company has prepared its budget for the production of $2,00,000$ units. The variable cost per unit is ₹ 16 and fixed cost is ₹ 4 per unit. The company fixes its selling price to fetch a profit of $20 \%$ on total cost.

You are required to calculate:
(i) Present break-even sales (in ₹ and in quantity).
(ii) Present profit-volume ratio.
(iii) Revised break-even sales in ₹ and the revised profit-volume ratio, if it reduces its selling price by 10\%.
(iv) What would be revised sales- in quantity and the amount, if a company desires a profit increase of $20 \%$ more than the budgeted profit and selling price is reduced by $10 \%$ as above in point (iii). (PYP 10 Marks Dec '21)

## Answer 46

Variable Cost per Unit=₹16
Fixed Cost per Unit $=₹ 4$, Total Fixed Cost= 2,00,000 units $x ₹ 4=₹ 8,00,000$

Total Cost per Unit =₹20

Selling Price per unit $=$ Total Cost + Profit $=$ Rs. $20+$ Rs. $4=$ Rs. 24

Contribution per unit = Rs. 24-Rs. $16=$ Rs. 8
(i) Present Break- even Sales (Quantity) $=\frac{\text { Fixed Cost }}{\text { Contribution margin per unit }}=\frac{R s .8,00,000}{R s .8}$ Present Break -even Sales(Rs.) $=1,00,000$ units X Rs. $24=$ Rs. $24,00,000$
(ii) Present P/V Ratio $=8 / 24 \times 100=33.33 \%$
(iii) Revised Selling Price per unit = Rs. $24-10 \%$ of Rs. 24 = Rs. 21.60

$$
\text { Revised Contribution per unit = Rs. } 21.60 \text { - Rs. } 16 \text { = Rs. } 5.60
$$

Revised Break-even point (Rs.) $=\frac{\text { Fixed Cost }}{\frac{P}{V} \text { Ratio }}=\frac{8,00,000}{25.926 \%}=$ Rs. $30,85,705$
Or
Revised Break-even point (units) $=\frac{\text { Fixed Cost }}{\text { Contribution margin per unit }}=\frac{R s .8,00,000}{5.60}$ $=1,42,857$

Revised Break-even point $(₹)=1,42,857$ units $x$ ₹ $21.60=₹ 30,85,711$
(iv) Present profit $=₹ 8,00,000$

Desired Profit $=120 \%$ of $₹ 8,00,000=₹ 9,60,000$ Sales to earn a profit of $₹ 9,60,000$

Total contribution required $=8.00 .000+9,60,000=₹ 17,60,000$
$\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { Contribution per unit }}=\frac{8,00,000+9,60,000}{5.60}=3,14,286$ units

Revised Sales (in Rs.) = 3,14,286 units X Rs. $21.60=$ Rs. $67,88,578$

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical problem based on the concept of Marginal costing. First three parts of the question were answered in the correct line. In the fourth part, many examinees failed to calculate amount of desired contribution. Performance of the examinees was good.

## Question 47

Top-tech a manufacturing company is presently evaluating two possible machines for the manufacture of superior Pen-drives. The following information is available:

| Particulars | Machine A | Machine B |
| :--- | :---: | :---: |
| Selling price per unit | $₹ 400.00$ | $₹ 400.00$ |
| Variable cost per unit | $₹ 240.00$ | $₹ 260.00$ |
| Total fixed costs per year | $₹ 350$ lakhs | $₹ 200$ lakhs |
| Capacity (in units) | $\mathbf{8 , 0 0 , 0 0 0}$ | $\mathbf{1 0 , 0 0 , 0 0 0}$ |

## Required:

(i) Recommend which machine should be chosen?
(ii) Would you change your Answer, if you were informed that in near future demand will be unlimited and the capacities of the two machines are as follows?

Machine A-12,00,000 units Machine B-12,00,000 units Why?(PYP 5 Marks May'22)
Answer 47

|  |  | Machine-A | Machine-B | Total |
| :--- | :--- | ---: | ---: | ---: |
| A | Selling price per unit (₹) | 400 | 400 |  |
| B | Variable cost per cost (₹) | 240 | 260 |  |
| C | Contribution per unit (₹) [A-B] | 160 | 140 |  |
| D | Units | $8,00,000$ | $10,00,000$ |  |
| E | Total contribution (₹ [C×D] | $12,80,00,000$ | $14,00,00,000$ | $26,80,00,000$ |
| F | Fixed Cost (₹) | $3,50,00,000$ | $2,00,00,000$ | $5,50,00,000$ |
| G | Profit [E-F] (₹) | $9,30,00,000$ | $12,00,00,000$ | $21,30,00,000$ |
| H | Profit per unit [Gㄷ․ $](₹)$ | 116.25 | 120.00 |  |

(i) Machine $B$ has the higher profit of $₹ 2,70,00,000$ than the Machine-A. Further, Machine-B's fixed cost is less than the fixed cost of Machine-A and higher capacity. Hence, Machine B be recommended.
Note: This Question can also be solved as below:
Indifferent point = Difference in fixed cost / difference in variable cost per unit
$=1,50,00,000 / 20=7,50,000$ units
At the level of demand $7,50,000$ units both machine options equally profitable. If demand below 7,50,000 units, select machine B (with lower FC).

If demand above 7,50,000 units, select machine A (with lower VC).
(ii) When the capacities of both the machines are same and demand for the product is unlimited, calculation of profit will be as follows:

|  |  | Machine-A | Machine-B btal |  |
| :--- | :--- | ---: | ---: | ---: |
|  | Contribution per unit (₹) | 160 | 140 |  |
|  | Units | $12,00,000$ | $12,00,000$ |  |
|  | Total contribution $(₹)[A \times B]$ | $19,20,00,000$ | $16,80,00,000$ | $36,00,00,000$ |


|  | Fixed Cost (₹) | $3,50,00,000$ | $2,00,00,000$ | $5,50,00,000$ |
| :--- | :--- | ---: | ---: | ---: |
|  | Profit [C-E] (₹) | $15,70,00,000$ | $14,80,00,000$ | $30,50,00,000$ |
|  | Profit per unit [E $\div \mathrm{B}](₹)$ | 130.83 | 123.33 |  |

Yes, the preference for the machine would change because now, Machine $A$ is having higher contribution and higher profit, hence recommended.

## Question 48

UV Limited started a manufacturing unit from 1st October 2021. It produces designer lamps and sells its lamps at ₹ 450 per unit. During the quarter ending on 31st December, 2021, it produced and sold 12,000 units and suffered a loss of ₹ 35 per unit. During the quarter ending on 31st March, 2022, it produced and sold $\mathbf{3 0 , 0 0 0}$ units and earned a profit of $₹ \mathbf{4 0}$ per unit.

## You are required to calculate:

(i) Total fixed cost incurred by UV Itd. per quarter.
(ii) Break Even sales value (in rupees)

Calculate Profit, if the sale volume reaches 50,000 units in the next quarter (i.e., quarter ending on 30th June, 2022). (PYP 5 Marks May'22)

## Answer 48

|  | Quarter ending 31st <br> December, 2021 (₹) | Quarter ending 31st March, <br> 2022(₹) |
| :--- | :--- | :--- |
| Sales (No. of units sold x ₹ 450 per unit) | $54,00,000$ | $1,35,00,000$ |
| Profit (Loss) | $(4,20,000)$ | $12,00,000$ |
|  | $[12,000 \times 35]$ | $[30,000 \times 40]$ |

P/V Ratio $=\frac{\text { Change in profit }}{\text { Change in sales }} \times 100$
$\therefore \frac{16,20,000}{81,00,000} \times 100=20 \%$
(i) Fixed Cost $=$ Sales $\times P / V$ ratio - profit

$$
\begin{aligned}
& =₹ 1,35,00,000 \times 20 \%-12,00,000 \\
& =₹ 15,00,000
\end{aligned}
$$

Alternative Presentation for the calculation of Fixed cost

|  | Quarter ending <br> 31stDecember, 2021(₹) | Quarter ending 31st <br> March, 2022(₹) |
| :--- | ---: | :--- |
| Sales (No. of units sold $x$ ₹ 450 per <br> unit) | $54,00,000$ | $1,35,00,000$ |
| Profit (Loss) | $(4,20,000)$ | $12,00,000$ |
| $[12,000 \times 35]$ | $[30,000 \times 40]$ |  |

VC per unit $=(1,23,00,000-58,20,000) /(30,000-12,000)$
$=64,80,000 / 18,000=₹ 360$ per unit
Fixed cost $=T C-V C, \quad 58,20,000(360 \times 12,000$ units $) ₹ 15,00,000$

$$
\frac{\text { Fixed cost }}{P / V \text { ratio }} \times 100
$$

$\frac{15,00,000}{20 \%}=₹ 75,00,000$
(i) Profit, if sales reach 50,000 units for the quarter ending 30th June, 2022

|  | (₹) |
| :--- | :--- |
| Sales $(50,000 \times ₹ 450)$ | $2,25,00,000$ |
| Less: Variable cost | $1,80,00,000$ |
| Contribution | $45,00,000$ |
| Less: Fixed cost | $15,00,000$ |
| Profit | $30,00,000$ |

## Question 49

ABC Ltd sells its Product ' $Y$ ' at a price of $₹ \mathbf{3 0 0}$ per unit and its variable cost is ₹ $\mathbf{1 8 0}$ per unit. The fixed costs are $₹ 16,80,000$ per year uniformly incurred throughout the year. The Profit for the year is $₹$ 7,20,000.

You are required to calculate:
(i) BEP in value ( $₹$ ) and units.
(ii) Margin of Safety
(iii) Profits made when sales are 24,000 units.
(iv) Sales in value ( $₹$ ) to be made to earn a net profit of $₹ \mathbf{1 0 , 0 0 , 0 0 0}$ for the year. (PYP 5 Marks Nov 22)

## Answer 49

(i) Calculation of BEP in value

P/V ratio $=\frac{\text { Sales Price }- \text { Variable Cost }}{\text { Sales }}=\frac{300-180}{300}=40 \%$
Break Even Point in Value ( $₹$ ) $=\frac{\text { Fixed cost }}{\frac{P}{v} \text { ratio }}=\frac{16,80,000}{40 \%}=$ Rs. $42,00,000$
Break Even Point in Units $=\frac{\text { Fixed cost }}{\text { Contribution }}=\frac{16,80,000}{120 \%}=14,000$ Units
(Alternatively , $\frac{R s .42,00,000}{300}=14000$ Units)
(ii) Margin of Safety (in Amount) $=\frac{\text { Profit }}{\frac{{ }_{V}^{V}}{P} \text { ratio }}=\frac{\mathbf{7 , 2 0 , 0 0 0}}{40 \%}=$ Rs. 18,00,000

Margin of safety may also be calculated by deducting BEP sales from present sale. Present sale is $₹ 60,00,000$ i.e. $(16,80,000+7,20,000) / 40 \%$.

Margin of Safety (in Units) $=\frac{\text { Profit }}{\text { Contribution per unit }}=\frac{\mathbf{7 , 2 0 , 0 0 0}}{120}=6,000$ units
(iii) Profit when sales are 24,000 units

| Particular | (₹) |
| :--- | ---: | ---: |
| Contribution $(24,000 \times 120)$ | $28,80,000$ |
| Less: Fixed cost | $16,80,000$ |
| Profit | $12,00,000$ |

(iv) Sales in value to earn a net profit of $\mathbf{₹} \mathbf{1 0 , 0 0 , 0 0 0}$

$$
\frac{\text { Fixed cost }+ \text { Desired profit }}{\frac{P}{v} \text { ratio }}=\frac{16,80,000+10,00,000}{40 \%}=\text { Rs. } 67,00,000
$$

An agriculture based company having 210 hectares of land is engaged in growing three different cereals namely, wheat, rice and maize annually. The yield of the different crops and their selling prices are given below:

|  | Wheat | Rice | Maize |
| :--- | :---: | :---: | :---: |
| Yield (in kgs per <br> hectare) | 2,000 | 500 | 100 |
| Selling Price (₹ per kg) | 20 | 40 | 250 |

The variable cost data of different crops are given below:
(All figures in ₹ per kg)

| Crop | Labour <br> charges | Packing <br> Materials | Other variable <br> expenses |
| :--- | :---: | :---: | :---: |
| Wheat | 8 | 2 | 4 |
| Rice | 10 | 2 | 1 |
| Maize | 120 | 10 | 20 |

The company has a policy to produce and sell all the three kinds of crops. The maximum and minimum area to be cultivated for each crop is as follows:

| Crop | Maximum Area (in <br> hectares) | Minimum Area (in <br> hectares) |
| :--- | :---: | :---: |
| Wheat | 160 | 100 |
| Rice | 50 | 40 |
| Maize | 60 | 10 |

You are required to:
(i) Rank the crops on the basis of contribution per hectare.
(ii) Determine the optimum product mix considering that all the three cereals are to be produced.
(iii) Calculate the maximum profit which can be achieved if the total fixed cost per annum is ₹ 21,45,000. (PYP 10 Marks Nov 22)
(Assume that there are no other constraints applicable to this company)

Statement showing Ranking of crops on the basis of Contribution per hectare

| SI. No | Particulars | Wheat | Rice | Maize |
| :---: | :--- | ---: | ---: | ---: |
| (I) | Sales price per kg (₹) | 20 | 40 | 250 |
| (II) | Variable cost* per kg (₹) | 14 | 13 | 150 |
| (III) | Contribution per kg (₹) | 6 | 27 | 100 |
| (IV) | Yield (in kgs per hectare) | 2,000 | 500 | 100 |
| (V) | Contribution per hectare (₹) | 12,000 | 13,500 | 10,000 |
| (VI) | Ranking | II | I | III |

*Variable cost $=$ Labour Charges + Packing Material+ Other Variable Expenses
Therefore, to maximize profits, the order of priority of production would be Rice, Wheat and Maize.
(ii) \& (iii) Statement showing optimum product mix considering that all the three cereals are to be produced and maximum profit thereof

| SI. | Particulars | Wheat | Rice | Maize | Total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| No. |  |  |  |  |  |
| (i) | Minimum Area (in hectare) | 100 | 40 | 10 | 150 |
| (ii) | Remaining area (in hectare) |  |  |  | 60 |


| (iii) | Distribution of remaining area <br> based on ranking considering <br> Maximum area | 50 | 10 | - | 60 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| (iv) | Optimum mix (in hectare) | 150 | 50 | 10 | 210 |
| (v) | Contribution per hectare (₹) | 12,000 | 13,500 | 10,000 |  |
| (vi) | Total contribution (₹) | $18,00,000$ | $6,75,000$ | $1,00,000$ | $25,75,000$ |
| (vii) | Fixed cost (₹) |  |  |  | $21,45,000$ |
| (viii) | Maximum Profit (₹) |  |  |  | $4,30,000$ |

Optimum Product Mix and calculation of maximum profit earned by company can also be presented as below
(ii) Optimum Product Mix:

| Particular | Area <br> (in hectares) | Yield <br> (kg per <br> hectare) | Total Production (in <br> kgs) |
| :--- | :---: | :---: | :---: |
| (a) Maximum of Rice | 50 | 500 | 25000 |
| (b) Minimum of Maize | 10 | 100 | 1000 |
| (c) Balance of Wheat | 150 | 2000 | 300000 |
|  | 210 |  | 326000 |

(iii) Calculation of maximum profit earned by the company:

|  | Production (in kgs) | Contribution (₹ per kg) | Total contribution |
| :---: | :---: | :---: | :---: |
| (a) Rice | 25,000 | 24 | 6,75,000 |
| (b) Maize | 1,000 | 100 | 1,00,000 |
| (c) Wheat | 3,00,000 | 6 | 18,00,000 |
| Total contribution |  |  | 25,75,000 |
| Less: Total Fixed Cost per annum |  |  | $(21,45,000)$ |
| Maximum profits earned by the company |  |  | 4,30,000 |

## Question 51

MNP Company Limited produces two products ' $A$ ' and ' $B$ '. The relevant cost and sales data per unit of output is as follows.

| Particulars | Product A | Product B |
| :--- | :--- | :--- |
|  | (₹) | (₹) |
| Direct material | 55 | 60 |
| Direct labour | 35 | 45 |
| Variable factory overheads | 40 | 20 |
| Selling Price | 180 | 175 |

The availability of machine hours is limited to 55,000 hours for the month. The monthly demand for product ' $A$ ' and product ' $B$ ' is 5,000 units and 6,000 units, respectively. The fixed expenses of the company are $₹ 1,40,000$ per month. Variable factory overheads are $₹ 4$ per machine hour. The company can produce both products according to the market demand.

## Required:

Calculate the product mix that generates maximum profit for the company in the situation and also
calculate profit of the company. (PYP 5 Marks, May '23)

## Answer 51

$\left.\begin{array}{|l|l|l|}\hline \text { Particulars } & \text { Product A } & \text { Product B } \\ \hline & ₹ & ₹ \\ \hline \text { Selling Price } \\ \text { Variable cost: } \\ \text { Direct Material }\end{array}\right)$

## Calculation of Product Mix

| Hours available | 55,000 |
| :--- | :--- |
| Product B $(6000 \times 5)$ | 30,000 |
| Balance Hours | 25,000 |
| Product A $2500 \times 10)$ | 25,000 |
| Balance Hours | 0 |

## Calculation of Profit

|  |  | $₹$ |
| :--- | :--- | :--- |
| Contribution |  |  |
| A | 2500 units $\times 50$ |  |
| B | 6000 units $\times 50$ | $4,25,000$ |
| Less: | Fixed cost | $(1,40,000)$ |
|  | Profit | $2,85,000$ |

## Chapter 15

## Budget \& Budgetary Control

## Question 1

CALCULATE (i) Efficiency ratio (ii) Activity Ratio (iii) Capacity Ratio. The relevant data is as below: Budgeted Production 1,44,000 units Standard Hours per unit 12 Actual Production 1,20,000 units Actual Working Hours 12,00,000 (MTP 5 Marks March '23 ,Aug '18 )( Same concept different figures MTP Oct '19 5 Marks)

## Answer 1

(i) Efficiency Ratio $=\frac{\text { Standard hour }(\text { for actual Production })}{\text { Actual hour works }} \times 100$

$$
=\frac{1,20,000 \text { units } X 12 \text { hrs. }}{12,00,000 \text { hrs. }} \times 100=120 \%
$$

(ii) Activity Ratio $=\frac{\text { Standard hour }(\text { for actual Production })}{\text { Budgeted Hours }} \times 100$

$$
=\frac{14,40,0000}{1,44,000 \text { Units } X 12 \text { hours }} \times 100=83.34 \%
$$

(iii) Capacity Ratio $=\frac{\text { Actual Hours }(\text { worked })}{\text { Budgeted Hours }} \times 100$

$$
=\frac{12,00,0000}{1,44,000 \text { Units } X 12 \text { hours }} \times 100=69.45 \%
$$

## Question 2

Following data is available for ABC Ltd.:

| Standard working hours | $\mathbf{8}$ hours per day of 5 days per <br> week |
| :--- | :--- |
| Maximum Capacity | $\mathbf{6 0}$ employees |
| Actual working | $\mathbf{5 0}$ employees |
| Actual hours expected to be worked per four week | $\mathbf{8 , 0 0 0}$ hours |
| Standard hours expected to be earned per four week | $\mathbf{9 , 6 0 0}$-hours |
| Actual hours worked in the four week period | $\mathbf{7 , 5 0 0}$ hours |
| Standard hours earned in the four week period | $\mathbf{8 , 8 0 0}$ hours |

The related period is of four weeks. Calculate the following Ratios:
(i) Efficiency Ratio
(ii) Activity Ratio
(iii) Standard Capacity Usage Ratio
(iv) Actual Capacity Usage Ratio
(v) Actual Usage of Budgeted Capacity Ratio (PYP 5 Marks May '19)

Answer 2
(i) Efficiency Ratio:

$$
=\frac{\text { Standard Hrs }}{\text { Actual Hrs }} \times 100=\frac{8,800 \text { hours }}{7,500 \text { hours }} \times 100=117.33 \%
$$

(ii) Activity Ratio:
$=\frac{\text { Standard Hrs }}{\text { Budgeted Hrs }} \times 100=\frac{8,800 \text { hours }}{8,000 \text { hours }} \times 100=110 \%$
(iii) Standard Capacity Usage Ratio:
$=\frac{\text { Budgeted Hours }}{\text { Max.Possible hours in the budgeted period }} \times 100=\frac{8,800 \text { hours }}{9,600 \text { hours }} \times 100=83.33 \%$

## (iv) Actual Capacity Usage Ratio:

$$
=\frac{\text { Actual Hours worked }}{\text { Max.Possible Workings hours in the period }} \times 100=\frac{7,500 \text { hours }}{9,600 \text { hours }} \times 100=78.125 \%
$$

(v) Actual Usage of Budgeted Capacity Ratio:

$$
=\frac{\text { Actual working Hours }}{\text { Budgeted Hrs }} \times 100=\frac{7,500 \text { hours }}{8,000 \text { hours }} \times 100=93.75 \%
$$

## Working Notes:

1. Maximum Capacity in a budget period

$$
=60 \text { Employees } \times 8 \text { Hrs. } \times 5 \text { Days } \times 4 \text { Weeks }=9,600 \text { Hrs. }
$$

2. Budgeted Hours (Hrs)

$$
=50 \text { Employees } \times 8 \text { Hrs. } \times 5 \text { Days } \times 4 \text { Weeks }=8,000 \text { Hrs. }
$$

3. Actual Hrs. $=7,500 \mathrm{Hrs}$. (given)
4. Standard Hrs. for Actual Output $=8,800$ Hrs.

## Question 3

SP Ltd. has prepared budget for the coming year for its two products A and B.

|  | Product A (₹) | Product B (₹) |
| :--- | ---: | ---: |
| Production \& Sales unit | 6,000 units | 9,000 units |
| Raw material cost per unit | 60.00 | 42.00 |
| Direct labour cost per unit | 30.00 | 18.00 |
| Variable overhead per unit | 12.00 | 6.00 |
| Fixed overhead per unit | 8.00 | 4.00 |
| Selling price per unit | 120.00 | 78.00 |

After some marketing efforts, the sales quantity of the Product $A \& B$ can be increased by 1,500 units and 500 units respectively but for this purpose the variable overhead and fixed overhead will be increased by $\mathbf{1 0 \%}$ and 5\% respectively for the both products.

You are required to PREPARE flexible budget for both the products:
(i) Before marketing efforts
(ii) After marketing efforts (MTP 5 Marks April '23 \& March '19, RTP May '19)

## Answer 3

(i) Flexible Budget before marketing efforts:

|  | Product A (₹) |  | Product B (₹) |  |
| :--- | ---: | ---: | ---: | ---: |
|  | $\mathbf{6 , 0 0 0}$ units |  | 9,000 units |  |
|  | Per unit | Total | Per unit | Total |
| Sales | 120.00 | $7,20,000$ | 78.00 | $7,02,000$ |
| Raw material cost | 60.00 | $3,60,000$ | 42.00 | $3,78,000$ |
| Direct labour cost per unit | 30.00 | $1,80,000$ | 18.00 | $1,62,000$ |
| Variable overhead per unit | 12.00 | 72,000 | 6.00 | 54,000 |
| Fixed overhead per unit | 8.00 | 48,000 | 4.00 | 36,000 |
| Total cost | 110.00 | $6,60,000$ | 70.00 | $6,30,000$ |
| Profit | 10.00 | 60,000 | 8.00 | 72,000 |

(ii) Flexible Budget after marketing efforts:

| Product A (₹) |  | Product B (₹) |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{7 , 5 0 0}$ units |  | 9,500 units |  |
| Per unit | Total | Per unit | Total |


| Sales | 120.00 | $9,00,000$ | 78.00 | $7,41,000$ |
| :--- | ---: | ---: | ---: | ---: |
| Raw material cost | 60.00 | $4,50,000$ | 42.00 | $3,99,000$ |
| Direct labour cost per unit | 30.00 | $2,25,000$ | 18.00 | $1,71,000$ |
| Variable overhead per unit | 13.20 | 99,000 | 6.60 | 62,700 |
| Fixed overhead per unit | 6.72 | 50,400 | 3.98 | 37,800 |
| Total cost | 109.92 | $8,24,400$ | 70.58 | $6,70,500$ |
| Profit | 10.08 | 75,600 | 7.42 | 70,500 |

## Question 4

Soya B Limited is presently operating at 50\% capacity and producing 50,000 units. The entire output is sold at a price of Rs. 180 per unit. The cost structure at the $\mathbf{5 0 \%}$ level of activity is as under:

|  | (₹) |
| :--- | ---: |
| Direct Material | $\mathbf{6 0}$ per unit |
| Direct Wages | $\mathbf{2 0}$ per unit |
| Variable Overheads | $\mathbf{2 0}$ per unit |
| Direct Expenses | $\mathbf{1 2}$ per unit |
| Factory Expenses (30\% fixed) | 16 per unit |
| Selling and Distribution Exp. (85\% variable) | 10 per unit |
| Office and Administrative Exp. (100\% fixed) | 6 per unit |

The company anticipates that the variable costs will go up by $\mathbf{2 0 \%}$ and fixed costs will go up by $10 \%$.
You are required to prepare an Expense budget, based on marginal cost for the company at 50\%,75\% and $\mathbf{1 0 0 \%}$ level of activity and find out the profits at respective levels. (MTP 10 Marks March '23, March '18) (Same concepts different figures MTP 10 Marks May'20, Old \& New SM)

## Answer 4

Expense Budget of Soya B Ltd. for the period

|  | Per <br> unit <br> (₹) | $\mathbf{5 0 , 0 0 0}$ <br> units | $\mathbf{7 5 , 0 0 0}$ <br> units | $\mathbf{1 , 0 0 , 0 0 0}$ <br> units |
| :--- | :---: | :---: | :---: | :---: |
| Sales (A) |  | Amount (₹) | Amount (₹) |  |
| Less: Variable Costs: | 180 | $90,00,000$ | $1,35,00,000$ | $1,80,00,000$ |
| - Direct Material | 72 | $36,00,000$ | $54,00,000$ | $72,00,000$ |
| - Direct Wages | 24 | $12,00,000$ | $18,00,000$ | $24,00,000$ |
| - Variable Overheads | 24 | $12,00,000$ | $18,00,000$ | $24,00,000$ |
| - Direct Expenses | 14.4 | $7,20,000$ | $10,80,000$ | $14,40,000$ |
| - Variable factory expenses | 13.44 | $6,72,000$ | $10,08,000$ | $13,44,000$ |
| (70\% of Rs 16 p.u.)x 120\% | 13 |  | $5,10,000$ | $7,65,000$ |
| - Variable Selling \& Dist. <br> exp. | 10.2 | $10,20,000$ |  |  |
| (85\% of Rs 10 p.u.)x120\% |  |  |  |  |
| Total Variable Cost (B) | 158.04 | $79,02,000$ | $1,18,53,000$ | $1,58,04,000$ |
| Contribution (C) = (A - B) | 21.96 | $10,98,000$ | $16,47,000$ | $21,96,000$ |
| Less: Fixed Costs: |  |  |  |  |
| - Office and Admin. exp. <br> (100\%) | -- | $3,30,000$ | $3,30,000$ | $3,30,000$ |
| - Fixed factory exp. (30\%) | -- | $2,64,000$ | $2,64,000$ | $2,64,000$ |
| - Fixed Selling \& Dist. exp. | -- | 82,500 | 82,500 | 82,500 |

Chapter 15 Budget \& Budgetary Control

| Total Fixed Costs | (D) | -- | $6,76,500$ | $6,76,500$ | $6,76,500$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Profit (C - D) | -- | $4,21,500$ | $9,70,500$ | $15,19,500$ |  |

## Question 5

Explain the difference between fixed budget and flexible budget. (MTP Aug.'18,5 Marks, MTP 5 Marks Apr'22, Old \& New SM)

Answer 5
Difference between Fixed and Flexible Budgets:

| S. No. | Fixed Budget | Flexible Budget |
| :--- | :--- | :--- |
| 1. | It does not change with actual volume of <br> activity achieved. Thus it is known as rigid <br> or inflexible budget. | It can be re-casted on the basis of <br> activity level to be achieved. Thus it <br> is not rigid. |
| 2. | It operates on one level of activity and <br> under one set of conditions. It assumes that <br> there will be no change in the prevailing <br> conditions, which is unrealistic. | It consists of various budgets for <br> different levels of activity. |
| 3. | Here as all costs like - fixed, variable and <br> semi-variable are related to only one level <br> of activity so variance analysis does not <br> give useful information. | Here analysis of variance provides <br> useful information as each cost is <br> analysed according to its behaviour. |
| 4. | If the budgeted and actual activity levels <br> differ significantly, then the aspects like cost <br> ascertainment and price fixation do not give <br> a correct picture. | Flexible budgeting at different levels <br> of activity facilitates the <br> ascertainment of cost, fixation of <br> selling price and tendering of <br> quotations. |
| 5. | Comparison of actual performance with <br> budgeted targets will be meaningless <br> specially when there is a difference <br> between the two activity levels. | It provides a meaningful basis of <br> comparison of the actual <br> performance with the budgeted <br> targets. |

## Question 6

$V$ Ltd. produces and markets a very popular product called ' $X$ '. The company is interested in presenting its budget for the second quarter of 2019.
The following information are made available for this purpose:
(i) It expects to sell 50,000 bags of ' $X$ ' during the second quarter of 2019 at the selling price of Rs. 900 per bag.
(ii) Eachbagof' $X$ 'requires 2.5 kgs. ofaraw-materialcalled' $Y$ 'and 7.5 kgs .ofraw-materialcalled'Z'.
(iii) Stock levels are planned as follows:

| Particulars | Beginning of Quarter | End of Quarter |
| :--- | ---: | ---: |
| Finished Bags of ' $X$ ' (Nos.) | 15,000 | $\mathbf{1 1 , 0 0 0}$ |
| Raw - Material ' $Y$ ' (Kgs.) | $\mathbf{3 2 , 0 0 0}$ | $\mathbf{2 6 , 0 0 0}$ |
| Raw - Material ' $Z^{\prime}$ (Kgs.) | 57,000 | $\mathbf{4 7 , 0 0 0}$ |
| Empty Bag (Nos.) | $\mathbf{3 7 , 0 0 0}$ | $\mathbf{2 8 , 0 0 0}$ |

(iv) 'Y' cost Rs. 120 per Kg., 'Z' costs Rs. 20 per Kg. and 'Empty Bag' costs Rs. 80 each.
(v) It requires 9 minutes of direct labour to produce and fill one bag of ' $X$ '. Labour cost is Rs. 50 per hour.
(vi) Variablemanufacturingcosts areRs.45perbag. Fixedmanufacturing costsRs.30,00,000perquarter.
(vii) Variable selling and administration expenses are 5\% of sales and fixed administration and selling expenses are Rs.20,50,000 per quarter.
Required
(i) PREPARE a production budget for the said quarter.
(ii) PREPAREaraw-material purchase budget for ' $Y$ ', ' $Z$ ' and 'Empty Bags' forthesaid quarter in quantity
8779794646 | 8779794646
as well as in rupees.
(iii) COMPUTE the budgeted variable cost to produce one bag of ' $X$ '.
(iv) PREPARE astatement of budgeted net income for the said quarter and show both per unit and total cost data. (MTP Oct.'19 \& April '23 10 Marks) (Same concept different figures Old \& New SM)
Answer 6
(i) Production Budget of ' $X$ ' for the Second Quarter

| Particulars | Bags (Nos.) |
| :--- | :--- |
| Budgeted Sales | 50,000 |
| Add: Desired Closing stock | 11,000 |
| Total Requirements | 61,000 |
| Less: Opening stock | 15,000 |
| Required Production | 46,000 |

(ii) Raw-Materials Purchase Budget in Quantity aswell as in Rs.for46,000 Bags of ' $X$ '

| Particulars | $\begin{gathered} \quad Y^{\prime} \\ \text { Kgs. } \end{gathered}$ | $\begin{array}{r} \text { 'Z' } \\ \text { Kgs. } \end{array}$ | EmptyBags Nos. |
| :---: | :---: | :---: | :---: |
| Production Requirements Per bag of ' $X$ ' | 2.5 | 7.5 | 1.0 |
| Requirement for Production $(46,000 \times 2.5)$ | $\begin{array}{r} 1,15,000 \\ (46,000 \times 7.5) \end{array}$ | $\begin{array}{r} 3,45,000 \\ (46,000 \times 1) \end{array}$ | 46,000 |
| Add: Desired Closing Stock | 26,000 | 47,000 | 28,000 |
| Total Requirements | 1,41,000 | 3,92,000 | 74,000 |
| Less: Opening Stock | 32,000 | 57,000 | 37,000 |
| Quantity to be purchased | 1,09,000 | 3,35,000 | 37,000 |
| Cost per Kg./Bag | Rs. 120 | Rs. 20 | Rs. 80 |
| Cost of Purchase (Rs.) | 1,30,80,000 | 67,00,000 | 29,60,000 |

(iii) Computation of Budgeted Variable Cost of Production of 1 Bag of ' $X$ '

Particulars
Raw - Material

| Y2.5Kg@120 | 300.00 |
| :--- | :--- |
| Z7.5Kg.@20 | 150.00 |
| Empty Bag | 80.00 |

Direct Labour (Rs. $50 \times 9$ minutes / 60 minutes)
Variable Manufacturing Overheads 45.00
Variable Cost of Production per bag
582.50
(iv) Budgeted Net Income for the Second Quarter

| Particulars | PerBag(Rs.) | Total (Rs.) |
| :--- | :---: | ---: |
| Sales Value(50,000Bags) | 900.00 | $4,50,00,000$ |
| Less: Variable Cost: |  |  |
| Production Cost | 582.50 | $2,91,25,000$ |
| Admn. \& Selling Expenses (5\% of Sales Price) | 45.00 | $22,50,000$ |
| Budgeted Contribution | 272.50 | $1,36,25,00$ |
| Less: Fixed Expenses: |  |  |
| $\quad$ Manufacturing |  | $\underline{20,00,000}$ |
| Admn. \& Selling | $85,75,000$ |  |

## Question 7

## EXPLAIN the stages in Zero-based budgeting (MTP 5 Marks, May 2020)

## Answer 7

Zero-based budgeting (ZBB) involves the following stages:
(i) Identification and description of Decision packages
(ii) Evaluation of Decision packages
(iii) Ranking (Prioritisation) of the Decision packages
(iv) Allocation of resources
(v) Identification and description of Decision packages: Decision packages are the programmes or activities for which decision is required to be taken. The programmes or activities are described for technical specifications, financial impact in the form of cost benefit analysis and other issues like environmental, regulatory, social etc.
(vi) Evaluation of Decision packages: Once Decision packages are identified and described, it is evaluated against factors like synchronisation with organisational objectives, availability of funds, regulatory requirement etc.
(vii) Ranking (Prioritisation) of the Decision packages: After evaluation of the decision packages, it is ranked on the basis priority of the activities. Because of this prioritization feature ZBB is also known as Priority-based Budgeting.
(viii) Allocation of resources: After ranking of the decision packages, resources are allocated for decision packages. Budgets are prepared like it is done first time without taking reference to previous budgets

## Question 8

DESCRIBE objectives of Budgetary Control System. (MTP 5 Marks Oct '20)
Answer 8

## Objectives of Budgetary Control System

1. Portraying with precision the overall aims of the business and determining targets of performance for each section or department of the business.
2. Laying down the responsibilities of each of the executives and other personnel so that everyone knows what is expected of him and how he will be judged. Budgetary control is one of the few ways in which an objective assessment of executives or department is possible.
3. Providing a basis for the comparison of actual performance with the predetermined targets and investigation of deviation, if any, of actual performance and expenses from the budgeted figures. This naturally helps in adopting corrective measures.
4. Ensuring the best use of all available resources to maximise profit or production, subject to the limiting factors. Since budgets cannot be properly drawn up without considering all aspects usually there is good co-ordination when a system of budgetary control operates.
5. Co-ordinating the various activities of the business, and centralising control and yet enabling management to decentralise responsibility and delegate authority in the overall interest of the business.
6. Engendering a spirit of careful forethought, assessment of what is possible and an attempt at it. It leads to dynamism without recklessness. Of course, much depends on the objectives of the firm and the vigour of its management.
7. Providing a basis for revision of current and future policies.
8. Drawing up long range plans with a fair measure of accuracy.
9. Providing a yardstick against which actual results can be compared.

## Question 9 (Includes concepts of Cost Sheet)

The information of Z Ltd. for the year ended 31 ${ }^{\text {st }}$ March 2021 is as below:

|  | Amount (Rs.) |
| :--- | ---: |
| Direct materials | $\mathbf{1 7 , 5 0 , 0 0 0}$ |
| Direct wages | $\mathbf{1 2 , 5 0 , 0 0 0}$ |
| Variable factory overhead | $\mathbf{9 , 5 0 , 0 0 0}$ |
| Fixed factory overhead | $\mathbf{1 2 , 0 0 , 0 0 0}$ |
| Other variable costs | $\mathbf{6 , 0 0 , 0 0 0}$ |
| Other fixed costs | $\mathbf{4 , 0 0 , 0 0 0}$ |
| Profit | $\mathbf{8 , 5 0 , 0 0 0}$ |
| Sales | $\mathbf{7 0 , 0 0 , 0 0 0}$ |

During the year, the company manufactured two products, $X$ and $Y$, and the output and cost were:

|  | $X$ | $Y$ |
| :--- | ---: | ---: |
| Output (units) | 8,000 | 4,000 |
| Selling price per unit (Rs.) | 600 | 550 |
| Direct material per unit (Rs.) | 140 | 157.50 |
| Direct wages per unit (Rs.) | 90 | 132.50 |

Variable factory overheads are absorbed as a percentage of direct wages and other variable costs are computed as:

Product $X$ - Rs. 40 per unit and Product $Y$ - Rs. 70 per unit.
For the FY 2021-22, it is expected that demand for product $X$ and $Y$ will fall by $20 \%$ \& $10 \%$ respectively. It is also expected that direct wages cost will raise by $20 \%$ and other fixed costs by $\mathbf{1 0 \%}$. Products will be required to be sold at a discount of $\mathbf{2 0 \%}$.
You are required to:
(i) PREPARE profitability statement for the FY 2020-21 and PREPARE a budget for the FY 2021-22. (MTP 10 Marks March '21) (RTP Nov '20)

## Answer 9

(i) Product-wise Profitability Statement for the FY 2020-21:

| Particulars |  | Product-X (Rs.) | Product-Y (Rs.) | Total (Rs.) |
| :---: | :---: | :---: | :---: | :---: |
| Output (units) |  | 8,000 | 4,000 |  |
| Selling price per unit |  | 600 | 550 |  |
| Sales value |  | 48,00,000 | 22,00,000 | 70,00,000 |
| Direct material |  | 11,20,000 | 6,30,000 | 17,50,000 |
|  |  | (Rs. $140 \times 8,000$ units) | (Rs.157.50 $\times 4,000$ |  |
|  |  |  | units) |  |
| Direct wages |  | $\begin{array}{r} 7,20,000 \\ (\text { Rs. } 90 \times 8,000 \text { units) } \\ \hline \end{array}$ | $\begin{array}{r} 5,30,000 \\ \text { (Rs. } 132.5 \times 4,000 \text { units) } \\ \hline \end{array}$ | 12,50,000 |
| Variable overheads* | factory | $\begin{array}{r} 5,47,200 \\ \text { (76\% of Rs. } 7,20,000 \text { ) } \end{array}$ | $4,02,800$ (76\% of Rs. 5,30,000) | 9,50,000 |
| Other variable costs |  | $\begin{array}{r} 3,20,000 \\ (\text { Rs. } 40 \times 8,000 \text { units) } \end{array}$ | $\begin{array}{r} 2,80,000 \\ (\text { Rs. } 70 \times 4,000 \text { units) } \end{array}$ | 6,00,000 |
| Contribution |  | 20,92,800 | 3,57,200 | 24,50,000 |


| Fixed <br> overheads | factory | - | - | $12,00,000$ |
| :--- | :--- | :--- | :--- | :--- |
| Other fixed costs | - |  | - | $4,00,000$ |
| Profit |  |  | $\mathbf{8 , 5 0 , 0 0 0}$ |  |

* Percentage absorption of variable factory overhead on the basis of direct wages

$$
=\frac{9,50,000}{12,50,000} \times 100=76 \%
$$

Preparation of Budget for the FY 2021-22:

| Particulars | Product-X (Rs.) | Product-Y (Rs.) | Total (Rs.) |
| :---: | :---: | :---: | :---: |
| Output (units) | $\begin{array}{r} 6,400 \\ (8,000 \text { units } \times 80 \%) \end{array}$ | $\begin{array}{r} 3,600 \\ (4,000 \text { units } \times 90 \%) \end{array}$ |  |
| Selling price per unit | $\begin{array}{r} 480 \\ (\text { Rs. } 600 \times 80 \%) \end{array}$ | $\begin{array}{r} 440 \\ (\text { Rs. } 550 \times 80 \%) \\ \hline \end{array}$ |  |
| Sales value | 30,72,000 | 15,84,000 | 46,56,000 |
| Direct material | $\begin{array}{r} 8,96,000 \\ (\text { Rs. } 140 \times 6,400 \text { units) } \end{array}$ | $\begin{gathered} 5,67,000 \\ (\text { Rs. } 157.50 \times 3,600 \text { units) } \end{gathered}$ | 14,63,000 |
| Direct wages per unit | $\begin{array}{r} 6,91,200 \\ (\text { Rs. } 108 \times 6,400 \text { units }) \\ \hline \end{array}$ | $\begin{array}{r} 5,72,400 \\ (\text { Rs. } 159 \times 3,600 \text { units) } \\ \hline \end{array}$ | 12,63,600 |
| Variable factory overheads | $\begin{array}{r} 5,25,312 \\ \text { (76\% of Rs.6,91,200) } \end{array}$ | $4,35,024$ (76\% of Rs.5,72,400) | 9,60,336 |
| Other variable costs | $\begin{array}{r} 2,56,000 \\ (\text { Rs. } 40 \times 6,400 \text { units) } \end{array}$ | $\begin{array}{r} 2,52,000 \\ (\text { Rs. } 70 \times 3,600 \text { units }) \\ \hline \end{array}$ | 5,08,000 |
| Contribution | 7,03,488 | $(2,42,424)$ | 4,61,064 |
| Fixed factory overheads | - | - | 12,00,000 |
| Other fixed costs (110\% of Rs.4,00,000) | - | - | 4,40,000 |
| Profit/ (Loss) |  |  | $(11,78,936)$ |

## Question 10 (Includes concepts of Standard Costing)

Tricon Co. furnishes the following information for the month of September, 2020.

| Particulars | Budget Details | Static Budget | Actual |
| :--- | :---: | ---: | ---: |
| Units produced \& Sold |  | 4,000 | $\mathbf{3 , 2 0 0}$ |
|  |  | (Rs.) | (Rs.) |
| Direct Material | 3 kg p.u. @ Rs. 30 per <br> kg. | $3,60,000$ | $3,10,000$ |
| Direct Labour | 1 hr. p.u. @ Rs. 72 per <br> hr. | $2,88,000$ | $2,25,600$ |
| Variable Overhead | 1 hr. p.u. @ Rs. 44 per <br> hr. | $1,76,000$ | $1,47,200$ |
| Fixed Overhead |  | $1,80,000$ | $1,68,000$ |
| Total Cost |  | $10,04,000$ | $8,50,800$ |
| Sales |  | $12,00,000$ | $8,96,000$ |
| Profit |  | $1,96,000$ | 45,200 |

During the month $\mathbf{1 0 , 0 0 0} \mathrm{kg}$. of materials and $\mathbf{3 , 1 0 0}$ direct labour hours were utilized.
Required:
(i) PREPARE a flexible budget for the month.
(ii) DETERMINE the material usage variance and the direct labour rate variance for the actual vs the flexible budget. (MTP 10 Marks, April '21)

## Answer 10

(i) Statement Showing "Flexible Budget for 3,200 units Activity Level"
$\left.\begin{array}{|l|r|c|}\hline \text { Particulars } & \begin{array}{c}\text { Amount } \\ \text { (Rs.) }\end{array} & \begin{array}{c}\text { Amount } \\ \text { (Rs.) }\end{array} \\ \hline \text { Sales (Rs. } 12,00,000 \times 3,200 \text { units) } \\ 4,000 \text { units }\end{array}\right)$
(ii) Computation of Variances

Material Usage Variance $=$ Standard Cost of Standard Quantity for Actual Production Standard Cost of Actual Quantity

$$
\begin{aligned}
& =(S Q \times S P)-(A Q \times S P) \\
& \text { Or } \\
& =(S Q-A Q) \times S P \\
= & {[(3,200 \text { units } \times 3 \mathrm{~kg} .)-10,000 \mathrm{~kg} .] \times \text { Rs. } 30.00 } \\
& =\text { Rs. } 12,000(\mathrm{~A})
\end{aligned}
$$

Labour Rate Variance = Standard Cost of Actual Time - Actual Cost

$$
\begin{aligned}
& =(S R \times A H)-(A R \times A H) \\
& \quad O r \\
& =(S R-A R) \times A H \\
& =[(\text { Rs. } 72-\text { Rs. } 2,25,600 / 3,100 \mathrm{hrs} .) \times 3,100 \mathrm{hrs} .] \\
& =\text { Rs. } 2,400(\mathrm{~A})
\end{aligned}
$$

## Question 11

DESCRIBE the steps necessary for establishing a good budgetary control system. (MTP 5 Marks, April '21, Old \& New SM)

## Answer 11

The following steps are necessary for establishing a good budgetary control system:

1. Determining the objectives to be achieved, over the budget period, and the policy or policies that might be adopted for the achievement of these objectives.
2. Determining the activities that should be undertaken for the achievement of the objectives.
3. Drawing up a plan or a scheme of operation in respect of each class of activity, in quantitative as well as monetary terms for the budget period.
4. Laying out a system of comparison of actual performance by each person, or department with the relevant budget and determination of causes for the variation, if any.
5. Ensuring that corrective action will be taken where the plan has not been achieved and, if that is not possible, for the revision of the plan.

## Question 12

DEFINE Zero Based Budgeting and mention its various stages. (MTP 5 Marks, Oct '21, PYP Nov'19 5 Marks)

## Answer 12

Zero-based Budgeting: (ZBB) is an emergent form of budgeting which arises to overcome the limitations of incremental (traditional) budgeting system. Zero- based Budgeting (ZBB) is defined as'a method of budgeting which requires each cost element to be specifically justified, although the activities to which the budget relates are being undertaken for the first time, without approval, the budget allowance is zero'.

ZBB is an activity based budgeting system where budgets are prepared for each activities rather than functional department. Justification in the form of cost benefits for the activity is required to be given. The activities are then evaluated and prioritized by the management on the basis of factors like synchronization with organizational objectives, availability of funds, regulatory requirement etc.

ZBB is suitable for both corporate and non-corporate entities. In case of non-corporate entities like Government department, local bodies, not for profit organizations, where these entities need to justify the benefits of expenditures on social programmers like mid-day meal, installation of street lights, provision of drinking water etc.

## ZBB involves the following stages:

(i) Identification and description of Decision packages
(ii) Evaluation of Decision packages
(iii) Ranking (Prioritisation) of the Decision packages
(iv) Allocation of resources

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a theoretical question based on stages of ZBB. Poor performance was observed. Most of the examinees failed to mention the stages of ZBB.

## Question 13

T Ltd manufactures and sells a single product and has estimated sales revenue of $₹ 1,51,20,000$ during the year based on $20 \%$ profit on selling price. Each unit of product requires $\mathbf{6 k g}$ of material $A$ and $\mathbf{3} \mathbf{~ k g}$ of material B and processing time of 4 hours in machine shop and $\mathbf{2}$ hours in assembly shop. Factory overheads are absorbed at a blanket rate of $20 \%$ of direct labour. Variable selling \& distribution overheads are ₹ 30 per unit sold and fixed selling \& distribution overheads are estimated to be ₹ $34,56,000$.

The other relevant details are as under:

| Purchase Price: | Material A | ₹80 per kg |  |
| :--- | :---: | :---: | :---: |
|  | Materials B | ₹50 per kg |  |
| Labour Rate: | Machine Shop | ₹70 per hour |  |
|  | Assembly Shop | ₹35 per hour |  |
|  | Finished Stock | Material A | Material B |
| Opening Stock | $\mathbf{2 , 5 0 0}$ units | $\mathbf{7 , 5 0 0} \mathbf{~ k g}$ | $4,000 \mathrm{~kg}$ |
| Closing Stock | $\mathbf{3 , 0 0 0}$ units | $\mathbf{8 , 0 0 0} \mathbf{~ k g}$ | $5,500 \mathrm{~kg}$ |

Required
(i) CALCULATE number of units of product proposed to be sold and selling price per unit,
(ii) PREPARE Production Budget in units and
(iii) PREPARE Material Purchase Budget in units. (MTP 10 Marks Nov '21) (RTP May '21)

Answer 13

## Workings

Statement Showing "Total Variable Cost for the year"

| Particulars | Amount <br> (₹) |
| :--- | ---: |
| Estimated Sales Revenue | $1,51,20,000$ |
| Less: Desired Profit Margin on Sale @ 20\% | $30,24,000$ |
| Estimated Total Cost | $1,20,96,000$ |
| Less: Fixed Selling and Distribution Overheads | $34,56,000$ |
| Total Variable Cost | $86,40,000$ |

Statement Showing "Variable Cost per unit"

| Particulars | Variable Cost p.u. (₹) |
| :--- | ---: |
| Direct Materials: | 480 |
| B: 3 Kg. @ ₹50 per kg. | 150 |
| Labour Cost: |  |
| Machine Shop: 4 hrs. @ ₹70 per hour | 280 |
| Assembly Shop: 2 hrs. @ ₹35 per hour | 70 |
| Factory Overheads: 20\% of (₹280 + ₹70) | 70 |
| Variable Selling \& Distribution Expenses | 30 |
| Total Variable Cost per unit | 1,080 |

(i) Calculation of number of units of product proposed to be sold and selling price per unit:

$$
\begin{aligned}
\text { Number of Units Sold } & =\text { Total Variable Cost / Variable Cost per unit } \\
& =₹ 86,40,000 / ₹ 1,080 \\
& =8,000 \text { units }
\end{aligned}
$$

Selling Price per unit $=$ Total Sales Value $/$ Number of Units Sold

$$
\begin{aligned}
& =₹ 1,51,20,000 / 8,000 \text { units } \\
& =₹ 1,890
\end{aligned}
$$

(ii) Production Budget (units)

| Particulars | Units |
| :--- | ---: |
| Budgeted Sales | 8,000 |
| Add: Closing Stock | 3,000 |
| Total Requirements | 11,000 |
| Less: Opening Stock | $(2,500)$ |
| Required Production | 8,500 |

(iii) Materials Purchase Budget (Kg.)

| Particulars | Material | Material |
| :--- | ---: | ---: |
|  | A | B |
| Requirement for Production | 51,000 | 25,500 |
|  | $(8,500$ units $\times 6 \mathrm{Kg})$. | $(8,500$ units $\times 3 \mathrm{Kg})$. |
| Add: Desired Closing Stock | 8,000 | 5,500 |
| Total Requirements | 59,000 | 31,000 |
| Less: Opening Stock | $(7,500)$ | $(4,000)$ |
| Quantity to be purchased | 51,500 | 27,000 |

Nakata Ltd a Vehicle manufacturer has prepared sales budget for the next few months, and the following draft figures are available:

| Month | No. of vehicles |
| :---: | ---: |
| October | 40,000 |
| November | 35,000 |
| December | 45,000 |
| January | 60,000 |
| February | 65,000 |

To manufacture a vehicle a standard cost of Rs.5,71,400 is incurred and sold through dealers at a uniform selling price of Rs.8,57,100 to customers. Dealers are paid 15\% commission on selling price on sale of a vehicle. Apart from other materials four units of Part - $X$ are required to manufacture a vehicle. It is a policy of the company to hold stocks of Part-X at the end of each month to cover $40 \%$ of next month's production. 48,000 units of Part-X are in stock as on $1^{\text {st }}$ October.

There are 9,500 nos. of completed vehicles are in stock as on $1^{\text {st }}$ October and it is policy to have stocks at the end of each month to cover $\mathbf{2 0 \%}$ of the next month's sales. You are required to
(i) PREPARE Production budget (in nos.) for the month of October, November, December and January.
(ii) PREPARE a Purchase budget for Part-X (in units) for the months of October, November and December.
(iii) CALCULATE the budgeted gross profit for the quarter October to December. (MTP 10 Marks April '19, MTP 10 Marks Oct'22 \& Oct '23, RTP May '20)
Answer 14
(i) Preparation of Production Budget (in units)

|  | October | November | December | January |
| :--- | ---: | ---: | ---: | ---: |
| Demand for the month (Nos.) | 40,000 | 35,000 | 45,000 | 60,000 |
| Add: $20 \%$ ofnext month's demand | 7,000 | 9,000 | 12,000 | 13,000 |
| Less: Opening Stock | $(9,500)$ | $(7,000)$ | $(9,000)$ | $(12,000)$ |
| Vehicles to be produced | 37,500 | 37,000 | 48,000 | 61,000 |

(ii) Preparation of Purchase budget for Part-X

|  | October | November | December |
| :---: | :---: | :---: | :---: |
| Production for the month (Nos.) | 37,500 | 37,000 | 48,000 |
| Add: 40\% of next month's production | $\begin{gathered} 14,800 \\ (40 \% \text { of } 37,000) \\ \hline \end{gathered}$ | $\begin{gathered} 19,200 \\ (40 \% \text { of } 48,000) \end{gathered}$ | $\begin{gathered} 24,400 \\ (40 \% \text { of } 61,000) \\ \hline \end{gathered}$ |
|  | 52,300 | 56,200 | 72,400 |
| No. of units required for production | $\begin{gathered} 2,09,200 \\ (52300 \times 4 \text { units }) \\ \hline \end{gathered}$ | $\begin{gathered} 2,24,800 \\ (56200 \times 4 \text { units }) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2,89,600 \\ (72,400 \times 4 \text { units }) \\ \hline \end{gathered}$ |
| Less: Opening Stock | $(48,000)$ | $\begin{gathered} (59,200) \\ (14800 \times 4 \text { units }) \end{gathered}$ | $\begin{gathered} (76,800) \\ (19200 \times 4 \text { units }) \end{gathered}$ |
| No. of units to be purchased | 1,61,200 | 1,65,600 | 2,12,800 |

(ii) Budgeted Gross Profit for the Quarter October to December

|  | October | November | December | Total |
| :--- | ---: | ---: | ---: | :---: |
| Sales in nos. | 40,000 | 35,000 | 45,000 | $1,20,000$ |
| Net Selling Price per unit* | $7,28,535$ | $7,28,535$ | $7,28,535$ |  |
| Sales Revenue (Rs. in lakh) | $2,91,414$ | $2,54,987.25$ | $3,27,840.75$ | $8,74,242$ |
| Less: Cost of Sales (Rs. in lakh) | $2,28,560$ | $1,99,990.00$ | $2,57,130.00$ | $6,85,680$ |

VIVITSU

| (Sales unit $\times$ Cost per unit) |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Gross Profit (Rs. in lakh) | 62,854 | $54,997.25$ | $70,710.75$ | $1,88,562$ |

* Net Selling price unit $=$ Rs. 8,57,100 $-15 \%$ commission on Rs. 8,57,100
= Rs.7,28,535.


## Question 15

A firm has a total capacity of producing 1,00,000 units of an item. The budgeted expenses at this level of activity are as under:

|  | Per unit (₹) |
| :--- | ---: |
| Direct Materials | 650 |
| Direct Wages | 325 |
| Direct Expenses | 125 |
| Variable overheads | 50 |
| Fixed Production Overheads | 25 |
| Selling and Distribution Overheads (20\% fixed) | 25 |
| Administrative Expenses (100\% fixed) | 60 |
| Total | 1,260 |

The selling price is $₹ 1,750$ per unit and is anticipated to remain constant.
You are required to PREPARE a flexible budget, on the basis of marginal costing, for 60,000 and 75,000 units of output level showing the profit and P/V Ratio. (MTP 10 Marks Sep'22)

## Answer 15

Workings -

1. Fixed Production overheads (given) =₹ $\mathbf{2 5}$ per unit

So, at 1,00,000 units capacity, it will be ₹ $25,00,000$ (1,00,000 units $x$ ₹ 25 )
2. Selling and distribution overheads:

| Given (1,00,000 units $x ₹ 25)$ | $=₹ 25,00,000$ |
| :--- | :--- |
| So, Fixed component | $=₹ 25,00,000 \times 20 \%=₹ 5,00,000$ |
| Hence, variable component | $=₹ 25,00,000-₹ 5,00,000=₹ 20,00,000$ |
| Variable per unit | $=₹ 20,00,000 / 1,00,000$ units |
|  | $=₹ 20$ per unit |

Flexible Budget

| Particulars | Per unit (₹) | Output Level |  |
| :---: | :---: | :---: | :---: |
|  |  | 60,000 units ( $₹$ ) | 75,000 units (₹) |
| Sales (A) | 1,750 | 10,50,00,000 | 13,12,50,000 |
| Variable costs: |  |  |  |
| Direct Material | 650 | 3,90,00,000 | 4,87,50,000 |
| Direct Wages | 325 | 1,95,00,000 | 2,43,75,000 |
| Direct expenses | 125 | 75,00,000 | 93,75,000 |
| Variable overheads | 50 | 30,00,000 | 37,50,000 |
| Selling and distribution overheads | 20 | 12,00,000 | 15,00,000 |
| Total Variable cost (B) | 1,170 | 7,02,00,000 | 8,77,50,000 |
| Contribution ( $\mathrm{C}=\mathrm{A}-\mathrm{B}$ ) |  | 3,48,00,000 | 4,35,00,000 |
| Fixed costs: |  |  |  |
| Production overheads |  | 25,00,000 | 25,00,000 |
| Administrative overheads |  | 60,00,000 | 60,00,000 |


| Selling and distribution overheads |  | $5,00,000$ | $5,00,000$ |
| :--- | :--- | ---: | ---: | ---: |
| Total Fixed cost (D) |  | $90,00,000$ | $90,00,000$ |
| Profit (C-D) |  | $2,58,00,000$ | $3,45,00,000$ |

$P / V$ Ratio $=(₹ 3,48,00,000 / ₹ 10,50,00,000) \times 100=33.143 \%$
OR
$P / V$ Ratio $=(₹ 4,35,00,000 / ₹ 13,12,50,000) \times 100=33.143 \%$

## Question 16

STATE the advantages of Zero-based budgeting. (MTP 5 Marks March '23) (RTP Nov '20 \& May '18)

## Answer 16

The advantages of zero-based budgeting are as follows:

- It provides a systematic approach for the evaluation of different activities and ranks them in order of preference for the allocation of scarce resources.
- It ensures that the various functions undertaken by the organization are critical for the achievement of its objectives and are being performed in the best possible way.
- It provides an opportunity to the management to allocate resources for various activities only after having a thorough cost-benefit-analysis. The chances of arbitrary cuts and enhancement are thus avoided.
- The areas of wasteful expenditure can be easily identified and eliminated.
- Departmental budgets are closely linked with corporation objectives.
- The technique can also be used for the introduction and implementation of the system of 'management by objective.' Thus, it cannot only be used for fulfillment of the objectives of traditional budgeting but it can also be used for a variety of other purposes.


## Question 17

KLM Limited has prepared its expense budget for 50,000 units in its factory for the year 2019-20 as detailed below:

| ('per unit) |  |
| :--- | ---: |
| Direct Materials | 125 |
| Direct Labour | 50 |
| Variable Overhead | 40 |
| Direct Expenses | 15 |
| Selling Expenses (20\% fixed) | $\mathbf{2 5}$ |
| Factory Expenses (100\% fixed) | 15 |
| Administration expenses (100\% fixed) | 8 |
| Distribution expenses (85\% variable) | $\underline{20}$ |
| Total | $\mathbf{2 9 8}$ |

PREPARE an expense budget for the production of $\mathbf{3 5 , 0 0 0}$ units and 70,000 units. (RTP Nov'19)

## Answer 17

Expense Budget of KLMLtd.

| Particulars | $\mathbf{5 0 , 0 0 0}$ Units(₹ ) | $\mathbf{3 5 , 0 0 0}$ Units(₹ ) | $\mathbf{7 0 , 0 0 0}$ Units (₹) |
| :--- | ---: | ---: | ---: |
| Direct Material | $62,50,000$ | $43,75,000$ | $87,50,000$ |
|  | $(50,000 \times 125)$ | $(35,000 \times 125)$ | $(70,000 \times 125)$ |
| Direct Labour | $25,00,000$ | $17,50,000$ | $35,00,000$ |
|  | $(50,000 \times 50)$ | $(35,000 \times 50)$ | $(70,000 \times 50)$ |
|  | $20,00,000$ | $14,00,000$ | $28,00,000(70,000 \times$ |
| Variable Overhead | $(50,000 \times 40)$ | $(35,000 \times 40)$ | $40)$ |


| Direct Expenses | $7,50,000$ <br> $(50,000 \times 15)$ | $5,25,000$ <br> $(35,000 \times 15)$ | $10,50,000$ <br> $(70,000 \times 15)$ |
| :--- | ---: | ---: | ---: |
| Selling Expenses (Variable)* | $10,00,000(50,000$ <br> $\times 20)$ | $7,00,000$ <br> $(35,000 \times 20)$ | $14,00,000$ <br> $(70,000 \times 20)$ |
| Selling Expenses (Fixed)*(5x50,000) | $2,50,000$ | $2,50,000$ | $2,50,000$ |
| Factory Expenses (Fixed)(15x50,000) | $7,50,000$ | $7,50,000$ | $7,50,000$ |
| Administration Expenses (Fixed)(8x <br> $50,000)$ | $4,00,000$ | $4,00,000$ | $4,00,000$ |
| Distribution Expenses (Variable)** | $8,50,000$ | $5,95,000$ | $11,90,000$ |
| $(17 \times 50,000)$ | $1,50,000)$ | $(17 \times 70,000)$ |  |
| Distribution Expenses (Fixed)**(3x | $1,50,000$ | $1,08,95,000$ | $2,02,40,000$ |
| 50,000$)$ | $1,49,00,000$ |  |  |

*Selling Expenses: Fixed cost per unit=₹ $25 \times 20 \%=₹ 5$
Fixed Cost $=₹ 5 \times 50,000$ units $=₹ 2,50,000$
Variable Cost Per unit = ₹ 25 -₹ 5 =₹ 20
**Distribution Expenses: Fixed cost perunit = ₹ $20 \times 15 \%=₹ 3$
Fixed Cost $=₹ 3 \times 50,000$ units $=₹ 1,50,000$
Variable cost per unit $=₹ 20-₹ 3=₹ 17$

## Question 18

Gaurav Ltd. is drawing a production plan for its two products Minimax (MM) and Heavy high (HH) for the year 20X8-X9. The company's policy is to hold closing stock of finished goods at $\mathbf{2 5 \%}$ of the anticipated volume of sales of the succeeding month. The following are the estimated data for two products:

| Budgeted Production units |  | $\begin{array}{r} \hline \text { Minimax (MM) } \\ 1,80,000 \\ (₹) \end{array}$ |  | $\begin{array}{r} \hline \text { Heavy high (HH) } \\ 1,20,000 \\ \text { (₹) } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
| Direct material cost per unit | 220 |  |  | 280 |
| Direct labour cost per unit | 130 |  |  | 120 |
| Manufacturing overhead | 4,00,000 |  |  | 5,00,000 |
| Theestimatedunits to be sol | din the first four month |  | of the year 20X8-X9 are as under June <br> July |  |
|  | April | May |  |  |  |
| Minimax | 8,000 | 10,000 | 12,000 | 16,000 |
| Heavy high | 6,000 | 8,000 | 9,000 | 14,000 |

PREPARE production budget for the first quarterin month wise. (RTP Nov.'18, Old \& New SM)

## Answer 18

Production budget of Product Minimax and Heavy high (in units)

|  | April |  | May | June |  | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{M M}$ | HH | $\mathbf{M M}$ | HH | $\mathbf{M M}$ | HH | $\mathbf{M M}$ |
| Sales | 8,000 | 6,000 | 10,000 | 8,000 | 12,000 | 9,000 | 30,000 |
|  |  |  |  |  |  |  |  |
| Add: Closing Stock |  |  |  |  |  |  |  |
| (25\% of next month's sale | 2,500 | 2,000 | 3,000 | 2,250 | 4,000 | 3,500 | 9,500 |
| Less: Opening Stock | $2,000^{*}$ | $1,500^{*}$ | 2,500 | 2,000 | 3,000 | 2,250 | 7,500 |
| Production units | 8,500 | 6,500 | 10,500 | 8,250 | 13,000 | 10,250 | 32,000 |

*Opening stock of April is the closing stock of March, which is as per company's policy $25 \%$ of next month's sale.

VIVITSU

| Element of cost | Rate( $₹$ ) |  | Amount (₹) |  |
| :--- | :---: | :---: | :---: | ---: |
|  | MM | HH | MM | HH |
|  | $(32,000$ units) | $(25,000$ units $)$ |  |  |
| Direct Material | 220 | 280 | $70,40,000$ | $70,00,000$ |
| Direct Labour | 130 | 120 | $41,60,000$ | $30,00,000$ |
| Manufacturing Overhead |  |  |  |  |
| $(4,00,000 / 1,80,000 \times 32,000)$ |  |  | 71,111 |  |
| $(5,00,000 / 1,20,000 \times 25,000)$ |  |  | $\underline{\mathbf{1 , 1 2 , 7 1 , 1 1 1}}$ | $\underline{\mathbf{1 , 0 1 , 0 4 , 1 6 7}}$ |
|  |  |  |  |  |

## Question 19

G Ltd. manufactures two products called ' $M$ ' and ' $N$ '. Both products use a common raw material $Z$. The raw material $Z$ is purchased @ ₹ 36 per kg from the market. The company has decided to review inventory management policies for the forthcoming year.
Thefollowing information has been extracted from departmental estimates forthe year ended 31st March 2018 (the budget period):

|  | Product M | Product N |
| :--- | ---: | ---: |
| Sales (units) | 28,000 | 13,000 |
| Finished goods stock increase by year-end | 320 | 160 |
| Post-production rejection rate (\%) | 4 | 6 |
| Material Z usage (per completed unit, net of wastage) | 5 kg | 6 kg |
| Material Z wastage (\%) | 10 | 5 |

Additional information:

- Usage of raw material $Z$ is expected to be at a constant rate over the period.
- Annual cost of holding one unit of raw material in stock is $11 \%$ of the material cost.
- The cost of placing an orders is ₹ $\mathbf{3 2 0}$ per order.
- The management of G Ltd. has decided that there should not be more than 40 orders in a year for the raw material $Z$.

Required:
(i) PREPARE functional budgets for the year ended 31st March 2018 under the following headings:
(a) Production budgetfor Products $M$ andN (inunits).
(b) Purchases budget for Material Z (in kgs and value).
(ii) CALCULATE the Economic Order Quantity for Material Z (in kgs).
(iii) If there is a sole supplier for the raw material $Z$ in the market and the supplier do not sale more than $4,000 \mathrm{~kg}$. of material $Z$ at a time. Keeping the management purchase policy and production quantity mix intoconsideration,CALCULATEthe maximum number of units of Product $M$ and $N$ that couldbeproduced. (RTP May'18) (MTP 10 Marks Sep '23)
Answer 19
(i) (a) Production Budget (in units) for the year ended 31st March 2016

| ProductM | ProductN |
| ---: | ---: |
| 28,000 | 13,000 |
| 320 | 160 |
| 28,320 | 13,160 |
| $4 \%$ | $6 \%$ |
| 29,500 | 14,000 |
| $28,320 / 0.96$ | $13,160 / 0.94$ |

(a) Purchase budget (in kgs and value) for Material Z

|  | ProductM | ProductN |
| :--- | :---: | :---: |
| No. of units to be produced | 29,500 | 14,000 |


| Usage of Material Z per unit of production | 5 kg. |
| :--- | :---: |
| Material neededfor production | $1,47,500 \mathrm{~kg}$. |
| Materialsto bepurchased | $1,63,889 \mathrm{~kg}$. |
| $\left(\frac{\mathbf{1 , 4 7 , 5 0 0}}{\mathbf{0 . 9 0}}\right)\left(\frac{\mathbf{8 4 , 0 0 0}}{\mathbf{0 . 9 5}}\right)$ |  |
| Total quantity to be purchased | $2,52,310 \mathrm{~kg}$. |
| Rate perkg. ofMaterialZ | $₹ 36$ |
| Total purchase price | $₹ 90,83,160$ |

(ii) Calculation of Economic Order Quantity for Material Z

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 2,52,310 \mathrm{~kg} . \times R s .320}{R s .36 \times 11 \%}}=\sqrt{\frac{16,74,78,000}{R s .3 .96}}=6,385.72 \mathrm{~kg} .
$$

(iii) Since, the maximum number of order per year cannot be more than 40 orders and the maximum quantityperorderthatcanbepurchasedis $4,000 \mathrm{~kg}$. Hence, thetotalquantity of MaterialZthatcanbe available for production:
$=4,000 \mathrm{~kg} . \times 40$ orders $=1,60,000 \mathrm{~kg}$.

|  | ProductM | ProductN |
| :--- | :---: | :---: |
| Material needed for production to | $1,03,929 \mathrm{~kg}$. | $56,071 \mathrm{~kg}$. |
| maintain the same production mix | $(1,60,000 \times 1,63,889$ | $(1,60,000 \times 88,421 /$ |
|  | $/ 2,52,310)$ | $2,52,310)$ |
| Less: Process wastage | $10,393 \mathrm{~kg}$. | $2,804 \mathrm{~kg}$. |
| Net Material available for |  |  |
| production | $93,536 \mathrm{~kg}$. | $53,267 \mathrm{~kg}$. |
| Units to be produced | $18,707 \mathrm{units}$ | $8,878 \mathrm{units}$ |
|  | $(93,536 \mathrm{~kg} . / 5 \mathrm{~kg})$. | $(53,267 \mathrm{~kg} / 6 \mathrm{~kg})$. |

## Question 20

The accountant of manufacturing company provides you the following details for year 2019-20:

| Particulars | (₹) |
| :--- | ---: |
| Direct materials | $\mathbf{2 8 , 0 0 , 0 0 0}$ |
| Direct Wages | $16,00,000$ |
| Fixed factory overheads | $16,00,000$ |
| Variable factory overheads | $16,00,000$ |
| Other variable costs | $12,80,000$ |
| Other fixed costs | $12,80,000$ |
| Profit | $18,40,000$ |
| Sales | $1,20,00,000$ |

During the year, the company manufactured two products $A$ and $B$ and the output and costs were:

| Particulars | A | B |
| :--- | ---: | ---: |
| Output (units) | $2,00,000$ | $1,00,000$ |
| Selling price per unit | $₹ 32.00$ | $₹ 56.00$ |
| Direct materials per unit | $₹ 8.00$ | $₹ 12.00$ |
| Direct wages per unit | $₹ 4.00$ | $₹ 8.00$ |

Variable factory overhead is absorbed as a percentage of direct wages. Other variable costs have been computed as: Product $A$ ₹ 4.00 per unit; and $B$ ₹ 4.80 per unit.
During 2020-21, it is expected that the demand for product A will fall by $\mathbf{2 5 \%}$ and for $\mathbf{B}$ by $\mathbf{5 0 \%}$. It is decided to manufacture a new product $C$, the cost for which is estimated as follows:

| Particulars | Product C |
| :--- | ---: |
| Output (units) | $\mathbf{2 , 0 0 , 0 0 0}$ |
| Selling price per unit | $₹ 28.00$ |
| Direct materials per unit | $₹ 6.40$ |
| Direct wages per unit | $₹ 4.00$ |

It is anticipated that the other variable costs per unit of Product $C$ will be same as for product $A$. PREPARE a budget to present to the management, showing the current position and the position for 2020-21. COMMENT on the comparative results. (RTP Nov '21, Old \& New SM)

## Answer 20

Budget Showing Current Position and Position for 2020-21

|  | Position for 2019-20 |  |  | Position for 2020-21 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | $\begin{aligned} & \text { Total } \\ & (\mathrm{A}+\mathrm{B}) \end{aligned}$ | A | B | C | $\begin{gathered} \text { Total } \\ (\mathrm{A}+\mathrm{B}+\mathrm{C}) \end{gathered}$ |
| Sales (units) <br> (A) Sales | $\begin{array}{r} 2,00,000 \\ (₹) \\ 64,00,000 \\ \hline \end{array}$ | $\begin{array}{r} 1,00,000 \\ \text { (₹) } \\ 56,00,000 \end{array}$ |  | $\begin{array}{r} 1,50,000 \\ (₹) \\ 48,00,000 \\ \hline \end{array}$ | $\begin{array}{r} 50,000 \\ (₹) \\ \mathbf{2 8 , 0 0 , 0 0 0} \end{array}$ | $\begin{array}{r} 2,00,000 \\ \text { (₹) } \\ 56,00,000 \end{array}$ | $\begin{array}{r} \text { (₹) } \\ 1,32,00,000 \end{array}$ |
| Direct Material | 16,00,000 | 12,00,000 | 28,00,000 | 12,00,000 | 6,00,000 | 12,80,000 | 30,80,000 |
| Direct wages | 8,00,000 | 8,00,000 | 16,00,000 | 6,00,000 | 4,00,000 | 8,00,000 | 18,00,000 |
| Factory overhead (variable) | 8,00,000 | 8,00,000 | 16,00,000 | 6,00,000 | 4,00,000 | 8,00,000 | 18,00,000 |
| Other variable costs | 800,000 | 4,80,000 | 12,80,000 | 6,00,000 | 240,000 | 8,00,000 | 16,40,000 |
| (B) Marginal Cost | 40,00,000 | 32,80,000 | 72,80,000 | 30,00,000 | 16,40,000 | 36,80,000 | 83,20,000 |
| (C) Contribution (A-B) | 24,00,000 | 23,20,000 | 47,20,000 | 18,00,000 | 11,60,000 | 19,20,000 | 48,80,000 |
| Fixed costs <br> - Factory |  |  | 16,00,000 |  |  |  | 16,00,000 |
| - Others |  |  | 12,80,000 |  |  |  | 12,80,000 |
| (D) Total fixed cost |  |  | 28,80,000 |  |  |  | 28,80,000 |
| Profit (C - D) |  |  | 18,40,000 |  |  |  | 20,00,000 |

Comments: Introduction of Product $C$ is likely to increase profit by ₹ $1,60,000$ (i.e. from ₹ $18,40,000$ to ₹ $20,00,000$ ) in 2020-21 as compared to 2019-20 even if the demand for Product A \& B falls. Therefore, introduction of product $C$ is recommended.

## Question 21

Maharatna Ltd., a public sector undertaking (PSU), produces product A. The company is in process of preparing its revenue budget for the year 2022. The company has the following information which can be useful in preparing the budget:
(i) It has anticipated 12\% growth in sales volume from the year 2021 of 4,20,000 tonnes.
(ii) The sales price of $₹ \mathbf{2 3 , 0 0 0}$ per tonne will be increased by $\mathbf{1 0 \%}$ provided Wholesale Price Index (WPI) increases by 5\%.
(iii) To produce one tonne of product A, 2.3 tonnes of raw material are required. The raw material cost is ₹4,500 per tonne. The price of raw material will also increase by $\mathbf{1 0 \%}$ if WPI increase by $5 \%$.
(iv) The projected increase in WPI for 2022 is $\mathbf{4 \%}$
(v) A total of 6,000 employees works for the company. The company works 26 days in a month.
(vi) $85 \%$ of employees of the company are permanent and getting salary as per 5-year wage agreement. The earnings per manshift (means an employee cost for a shift of 8 hours) is ₹ 3,000 (excluding terminal benefits). The new wage agreement will be implemented from $1^{\text {st }}$ July 2022 and it is expected that a $15 \%$ increase in pay will be given.
(vii) The casual employees are getting a daily wage of ₹ 850 . The wages in linked to Consumer Price Index (CPI). The present CPI is $\mathbf{1 6 5 . 1 7}$ points and it is expected to be $\mathbf{1 7 3 . 5 9}$ points in year 2022.
(viii) Power cost for the year 2021 is ₹ $42,00,000$ for $7,00,000$ units ( 1 unit = 1 Kwh ). 60\% of power is used for production purpose (directly related to production volume) and remaining are for employee quarters and administrative offices.
(ix) During the year 2021, the company has paid ₹ $60,00,000$ for safety and maintenance works. The amount will increase in proportion to the volume of production.
(x) During the year 2021, the company has paid ₹ 1,20,000 for the purchase of diesel to be used in car hired for administrative purposes. The cost of diesel will increase by 15\% in year 2022.
(xi) During the year 2021, the company has paid ₹ $6,00,000$ for car hire charges (excluding fuel cost). In year 2022, the company has decided to reimburse the diesel cost to the car rental company. Doing this will attract 5\% GST on Reverse Charge Mechanism (RCM) basis on which the company will not get GST input credit.
(xii) Depreciation on fixed assets for the year 2021 is ₹ $80,40,00,000$ and it will be $15 \%$ lower in 2022.

Required: From the above information PREPARE Revenue (Flexible) budget for the year 2022 and also show the budgeted profit/ loss for the year. (RTP May '22)
Answer 21
Revenue Budget (Flexible Budget) of Maharatna Ltd. for the Year 2022

|  | Particulars | PY 2021 | CY 2022 |
| :---: | :---: | :---: | :---: |
| A | Sales Volume (Tonnes) | 4,20,000 | 4,70,400 |
|  |  |  | [112\% $\times 4,20,000]$ |
| B | Selling Price per tonne (₹) | 23,000 | 23,000 |
|  |  | (₹ in lakh) | (₹ in lakh) |
| C | Sales value [ $\mathrm{A} \times \mathrm{B}$ ] | 96,600 | 1,08,192 |
| D | Raw material Cost: |  |  |
| (i) | Qty. of Material [2.3 tonnes $\times \mathrm{A}$ ] (tonnes) | 9,66,000 | 10,81,920 |
| (ii) | Price per tonne (₹) | 4,500 | 4,500 |
| (iii) | Total raw material cost $(₹$ in lakh) [(i)×(ii)] | 43,470 | 48,686.40 |
| E | Wages \& Salary Cost: |  |  |
| (i) | Wages to casual employees ( $15 \% \times$ $6,000=900$ employees) | $\begin{array}{r} 2,386.80 \\ {[900 \times 26 \times 12 \times} \\ ₹ 850] \end{array}$ | $\begin{array}{r} 2,508.47 \\ {[900 \times 26 \times 12 \times} \\ ₹ 893.33] \end{array}$ |
| (ii) | Salary to permanent employees (85\% <br> $\times 6,000=5,100$ employees) | $\begin{array}{r} 47,736 \\ {[5100 \times 26 \times 12 \times} \\ ₹ 3,000] \end{array}$ | $\begin{array}{r} 51,316.20 \\ {[(5100 \times 26 \times 6 \times} \\ \text { ₹ } 3,000)+(5100 \times 26 \\ \times 6 \times ₹ 3,450)] \end{array}$ |
| (iii) | Total wages \& salary [(i)+(ii)] | 50,122.80 | 53,824.67 |
| F | Power cost: |  |  |
| (i) | For production (units) | $\begin{array}{r} 4,20,000 \\ {[60 \% \times 7,00,000]} \\ \hline \end{array}$ | $\begin{array}{r} 4,70,400 \\ {[112 \% \times 4,20,000]} \end{array}$ |
| (ii) | For employees \& offices (units) [40\% $\times 7,00.000$ ] | 2,80,000 | 2,80,000 |
| (iii) | Total Power consumption (units) $[(i)+(i i)]$ | 7,00,000 | 7,50,400 |
| (iv) | Power rate per unit (₹) $\text { [ } ₹ 42,00,000 \div 7,00,000]$ | 6.00 | 6.00 |
| (v) | Total power cost [(iii)×(iv)] | 42 | 45.024 |


| G | Safety and maintenance Cost | 60 | $\begin{array}{r} 67.20 \\ {[112 \% \times 60,00,000]} \end{array}$ |
| :---: | :---: | :---: | :---: |
| H | Diesel cost | 1.2 | - |
| I | Car Hire charge: |  |  |
| (i) | Car hire charge | 6 | 6 |
| (ii) | Fuel reimbursement cost | - | $\begin{array}{r} 1.38 \\ {[115 \% \times 1.2]} \end{array}$ |
| (iii) | GST@5\% on RCM basis $[5 \% \times(\mathrm{i}+\mathrm{ii})]$ | - | 0.369 |
| (iv) | Total Car hire charge cost [(i)+(ii)+(iii)] | 6 | 7.749 |
| J | Depreciation | 8,040 | $\begin{array}{r} 6,834 \\ {[85 \% \times 8040]} \end{array}$ |
| K | Total Cost [Sum of D to J] | 1,01,742 | 1,09,465.043 |
| L | Profit/ (Loss) [C-L] | $(5,142)$ | (1273.043) |

## Question 22

Following information is available for DK and Co.:
Standard working hours 9 hours per day of 5 days per week

Maximum capacity
Actual working

50 employees
40 employees

Actual hours expected to be worked per four week 7,200 hours
Std. hours expected to be earned per four weeks 9,000 hours
Actual hours worked in the four- week period
6,750 hours
Standard hours earned in the four- week period
7,875 hours.
The related period is of 4 weeks. In this period there was a one special day holiday due to national event.
You are required to CALCULATE the following ratios:
(i) Efficiency Ratio
(ii) Activity Ratio
(iii) Calendar Ratio
(iv) Standard Capacity Usage Ratio
(v) Actual Capacity Usage Ratio
(vi) Actual Usage of Budgeted Capacity Ratio (RTP Nov'22, Old \& New SM)

Answer 22
Maximum Capacity in a budget period
$=50$ Employees $\times 9$ Hrs. $\times 5$ Days $\times 4$ Weeks $=9,000$ Hrs.
Budgeted Hours
$=40$ Employees $\times 9$ Hrs. $\times 5$ Days $\times 4$ Weeks $=7,200 \mathrm{Hrs}$.
Actual Hrs.
= 6,750 Hrs
Standard Hrs. for Actual Output
= 7,875 Hrs.
Budget No. of Days
= 20 Days (4 Weeks x 5 Days) Actual No. of Days
= 20-1 = 19 Days
i. Efficiency Ratio $=\frac{\text { Standard Hrs }}{\text { Standard Hrs }} \times 100=\frac{7,875 \text { hours }}{6,750 \text { hours }} \times 100=116.67 \%$
ii. Activity Ratio $=\frac{\text { Standard Hrs }}{\text { Budgeted Hrs }} \times 100=\frac{7,875 \text { hours }}{7,200 \text { hours }} \times 100=109.375 \%$
iii. Calendar Ratio $=\frac{\text { Available working days }}{\text { Budgeted working days }} \times 100=\frac{19 \text { days }}{20 \text { days }} \times 100=95 \%$
iv. Standard Capacity Usage Ratio

$$
=\frac{\text { Budgeted Hours }}{\text { Max.possible hours in the budgeted period }} \times 100=\frac{7,200 \text { hours }}{9,000 \text { hours }} 100=75 \%
$$

v. Actual Capacity Usage Ratio $=\frac{\text { Actual Hours worked }}{\text { Budgeted hours }} \times 100=\frac{6,750 \text { hours }}{7,200 \text { hours }} 100=93 \%$

## Question 23

EDF Ltd. produces two products using Skilled labour and two types of materials. Shown below the information for the next month's budget:

|  | Product- A | Product-B |
| :--- | ---: | ---: |
| Budgeted sales (in units) | 4,080 | 6,120 |
| Budgeted material consumption per unit <br> (in kg): Material-X <br> Material-Y | 8.5 | 5.1 |
|  | 6.8 | 10.2 |
| Standard labour hours allowed per unit of <br> product | 5.1 | 8.5 |

Material-X and Material-Y cost `8 and` 10 per kg and labours are paid ` 30 per hour. Overtime premium is $75 \%$ and is payable, if a worker works for more than 45 hours a week. There are 400 direct workers.

The target efficiency ratio for the productive hours worked by the direct workers in actually manufacturing the products is $85 \%$. In addition the non-productive down-time is budgeted at $15 \%$ of the productive hours worked.

There are four 6-days weeks in the budgeted period and it is anticipated that sales and production will occur evenly throughout the whole period.

It is anticipated that stock at the beginning of the period will be:

| Product-A | 550 units |
| :--- | ---: |
| Product-B | 350 units |
| Material-X | 1,200 kgs. |
| Material-Y | 600 kgs. |

The anticipated closing stocks for budget period are as below:

| Product-A | 5 days sales |
| :--- | :--- |
| Product-B | 5 days sales |
| Material-X | 10 days consumption |
| Material-Y | 3 days consumption |

Required:
CALCULATE the Material Purchase Budget and the Wages Budget for the direct workers, showing the quantities and values, for the next month. (RTP May 23, Old \& New SM) (Same concepts different figures MTP 10 Marks Oct'18)

## Answer 23

Number of days in budget period $=\mathbf{4}$ weeks $\times \mathbf{6}$ days $=\mathbf{2 4}$ days Number of units to be produced

|  | Product-A (units) | Product-B (units) |
| :--- | :---: | :---: |
| Budgeted Sales | 4,080 | 6,120 |
| Add: Closing stock | 850 | 1275 |
|  | $\left(\frac{4,080 \text { units }}{24 \text { days }} X 5\right.$ Days $)$ | $\left(\frac{6,120 \text { units }}{24 \text { days }} \times 5\right.$ Days $)$ |
| Less.: Opening Stock | 550 | 350 |


|  | 4,380 | 7,045 |
| :---: | :---: | :---: |
| (i)Material Purchase <br>  <br> Budget |  |  |
|  | Material-X (Kg.) | Material-Y (Kg.) |
| Material required: |  |  |
| Product-A | $\begin{gathered} 37,230 \\ (4,380 \text { units } \times 8.5 \mathrm{~kg} .) \end{gathered}$ | $\begin{gathered} 29,784 \\ (4,380 \text { units } \times 6.8 \mathrm{~kg} .) \end{gathered}$ |
| Product-B | $\begin{gathered} 35,930 \\ (7,045 \text { units } \times 5.1 \mathrm{~kg} .) \end{gathered}$ | $\begin{gathered} 71,859 \\ (7,045 \text { units } \times 10.2 \mathrm{~kg} .) \end{gathered}$ |
|  | 73,160 | 1,01,643 |
| Add: Closing stock | 30,483 | 21,176 |
|  | $\left(\frac{73,160 \mathrm{kgs} .}{24 \text { days }}\right.$ X 10 days $)$ | $\left(\frac{1,01,643 \mathrm{kgs} .}{24 \text { days }}\right.$ X 5 Days $)$ |
| Less: Opening stock | 1,200 | 600 |
| Quantity to be purchased | 1,02,443 | 1,22,219 |
| Rate per kg. of Material | 8 | 10 |
| Total Cost | 8,19,541 | 12,22,186 |
| (ii) Wages Budget |  |  |
|  | Product-A (Hours) | Product-B (Hours) |
| Units to be produced | 4,380 | 7,045 |
| Standard hours allowed per unit | 5.1 | - 8.5 |
| Total Standard <br> Hours allowed | 22,338 | 59,883 |
| Productive hours required for production | $\frac{22,338 \text { hours }}{85 \%} \times 26,280$ | $\frac{59,883 \text { hours }}{85 \%} \times 70,450$ |
| Add: Non-Productive down time hours | 3942 | 10568 |
|  | (15\% of 26,280 hours) | (15\% of 70,450 hours) |
| Hours to be paid | 30,222 | 81,018 |
| Total Hours to be paid = | 1,11,240 |  |
| Hours to be paid at normal rate (4 weeks $\times 45$ hours $\times 400$ workers) = | 72000 |  |
| Hours to be paid at premium rate | 39,240 |  |
| Total wages to be paid $=(72,000$ hours $\times {f73e5d858-e09e-4592-878e-cc78a029adb1} 52.5\()$ | $={f0b7c2bb7-313d-4c2e-98ce-ab00f76e7def} \(20,60,100=` 42,20,100$ |  |

## Question 24

XY Co. Ltd manufactures two products viz., $X$ and $Y$ and sells them through two divisions, East and West. For the purpose of Sales Budget to the Budget Committee, following information has been made available for the year 2022-23:

| Product | Budgeted Sales |  | Actual Sales |  |
| :---: | :---: | :---: | :---: | :---: |
|  | East Division | West Division | East Division | West Division |
| X | 400 units at ${ }^{\prime} 9$ | 600 units at ${ }^{\prime} 9$ | 500 units at 9 | 700 units at ${ }^{\prime} 9$ |


| Y | 300 units at ${ }^{\text {{f84a62016-e15c-4d09-9946-2c170821d0e5} 21 & 200 units at \({ }^{{f3d198e83-4ec6-40b8-a6e1-252fc2e2f2f2}} 21$ |
| :---: | :---: | :---: | :---: | :---: |

Adequate market studies reveal that product $X$ is popular but underpriced. It is expected that if the price of $X$ is increased by ${ }^{`} 1$, it will, find a ready market. On the other hand, $Y$ is overpriced and if the price of $Y$ is reduced by ${ }^{1} 1$ it will have more demand in the market. The company management has agreed for the aforesaid price changes. On the basis of these price changes and the reports of salesmen, following estimates have been prepared by the Divisional Managers:
Percentage increase in sales over budgeted sales

| Product | East Division | West <br> Division |
| :---: | :---: | :---: |
| X | $+10 \%$ | $+5 \%$ |
| Y | $+20 \%$ | $+10 \%$ |

With the help of intensive advertisement campaign, following additional sales (over and above the above-mentioned estimated sales by Divisional Mangers) are possible:

| Product | East Division | West <br> Division |
| :---: | :---: | :---: |
| $\mathbf{X}$ | 60 units | 70 units |
| $Y$ | 40 units | 50 units |

You are required to prepare Sales Budget for 2023-24 after incorporating above estimates and also show the Budgeted Sales and Actual Sales of 2022-23. (RTP Nov '23)

## Answer 24

Statement Showing Sales Budget for 2023-24

| Division | Product X |  |  | Product Y |  |  | Total |
| :--- | :---: | :---: | ---: | ---: | :---: | ---: | ---: |
|  | Qty. | Rate (`) & Amt. (`) | Qty. | Rate (`) & Amt. (`) | Amt. (`) |  |  |
| East | 5001 | 10 | 5,000 | $400^{3}$ | 20 | 8,000 | 13,000 |
| West | 7002 | 10 | 7,000 | $600^{4}$ | 20 | 12,000 | 19,000 |
| Total | 1,200 |  | 12,000 | 1,000 |  | 20,000 | 32,000 |

## Workings

1. $400 \times 110 \%+60=500$ units
2. $600 \times 105 \%+70=700$ units
3. $300 \times 120 \%+40=400$ units
4. $500 \times 110 \%+50=600$ units

Statement Showing Sales Budget for 2022-23

\begin{tabular}{|l|c|c|r|r|r|r|r|}
\hline \multirow{2}{*}{ Division } \& \multicolumn{3}{|c|}{ Product X } \& \multicolumn{3}{c|}{ Product Y } \& Total <br>
\cline { 2 - 8 } \& Qty. \& Rate (`) & Amt. (`) \& Qty. \& Rate (`) & Amt. (`) \& Amt. (`) <br>
\hline \multirow{2}{*}{ East } \& 400 \& 9 \& 3,600 \& 300 \& 21 \& 6,300 \& 9,900 <br>

\hline \multirow{2}{*}{| West |
| :--- |
| Total |} \& 600 \& 9 \& 5,400 \& 500 \& 21 \& 10,500 \& 15,900 <br>

\cline { 2 - 8 } \& 1,000 \& \& 9,000 \& 800 \& \& 16,800 \& 25,800 <br>
\hline
\end{tabular}

Statement Showing Actual Sales for 2022-23

\begin{tabular}{|l|c|c|c|r|c|r|r|}
\hline \multirow{3}{*}{ Division } \& \multicolumn{4}{|c|}{\begin{tabular}{c} 
Product \\
X
\end{tabular}} \& \begin{tabular}{c} 
Rate \\
(`)
\end{tabular} \& Amt. (`) \& \begin{tabular}{c} 
Qty \\
Q
\end{tabular} \\
\cline { 2 - 9 } \& Qty. \& \begin{tabular}{c} 
Rate \\
(`)
\end{tabular} \& Amt. (`) \& Amt. (`) \\
\hline East \& 500 \& 9 \& 4,500 \& 200 \& 21 \& 4,200 \& 8,700 \\
\hline West \& 700 \& 9 \& 6,300 \& 400 \& 21 \& 8,400 \& 14,700 \\
\hline Total \& 1,200 \& \& 10,800 \& 600 \& \& 12,600 \& 23,400 \\
\hline
\end{tabular}

## Question 25

G Ltd. manufactures a single product for which market demand exists for additional quantity. Present sales of ₹ $6,00,000$ utilises only $60 \%$ capacity of the plant. The following data are available:
(1) Selling price
: ₹ 100 per unit
(2) Variable cost
(3) Semi-variable expenses
(4) Fixed expenses
: ₹ 30 per unit
: ₹ $\quad$ 60,000 fixed $+₹ 5$ per unit
: $\quad ₹ 1,00,000$ at present level, estimated to increase by $25 \%$ at and above $80 \%$ capacity.

You are required to prepare a flexible budget so as to arrive at the operating profit at $60 \%, 80 \%$ and 100\% levels. (PYP 5 Marks Nov '20)
Answer 25
Flexible Budget

| Activity Level | $\mathbf{6 0 \%}$ | $\mathbf{8 0 \%}$ | $\mathbf{1 0 0 \%}$ |
| :--- | ---: | ---: | ---: |
| Production (units) | $\mathbf{6 , 0 0 0}$ | $\mathbf{8 , 0 0 0}$ | $\mathbf{1 0 , 0 0 0}$ |
|  | (₹) | (₹) | (₹) |
| Sales @ ₹ 100 per unit | $6,00,000$ | $\mathbf{8 , 0 0 , 0 0 0}$ | $\mathbf{1 0 , 0 0 , 0 0 0}$ |
| Variable Cost <br> (@ ₹ 35 (₹ 30 + ₹ 5) per unit) | $2,10,000$ | $2,80,000$ | $\mathbf{3 , 5 0 , 0 0 0}$ |
| Contribution (A) | $3,90,000$ | $5,20,000$ | $6,50,000$ |
| Fixed Cost (part of semi-variable cost) | 60,000 | 60,000 | 60,000 |
| Other Fixed Cost | $1,00,000$ | $\mathbf{1 , 2 5 , 0 0 0}$ | $\mathbf{1 , 2 5 , 0 0 0}$ |
| Total Fixed Cost (B) | $1,60,000$ | $\mathbf{1 , 8 5 , 0 0 0}$ | $\mathbf{1 , 8 5 , 0 0 0}$ |
| Operating Profit (A - B) | $\mathbf{2 , 3 0 , 0 0 0}$ | $\mathbf{3 , 3 5 , 0 0 0}$ | $\mathbf{4 , 6 5 , 0 0 0}$ |

## Question 26

What are the important points an organization should consider if it wants to adopt Performance Budgeting?". (PYP 5 Marks Nov 20)

## Answer 26

For an enterprise that wants to adopt Performance Budgeting, it is thus imperative that:

- the objectives of the enterprise are spelt out in concrete terms.
- the objectives are then translated into specific functions, programmes, activities and tasks for different levels of management within the realities of fiscal constraints.
- realistic and acceptable norms, yardsticks or standards and performance indicators should be evolved and expressed in quantifiable physical units.
- a style of management based upon decentralised responsibility structure should be adopted, and an accounting and reporting system should be developed to facilities monitoring, analysis and review of actual performance in relation to budgets


## Question 27

State the limitations of Budgetary Control System. (PYP 5 Marks Jan '21)
Answer 27
Limitations of Budgetary Control System

| 1. Based on Estimates | Budgets are based on a series of estimates, which are based on <br> the conditions prevalent or expected at the time budget is <br> established. It requires revision in plan if conditions change. |
| :--- | :--- |
| 2. Time factor | Budgets cannot be executed automatically. Some preliminary <br> steps are required to be accomplished before budgets are <br> implemented. It requires proper attention and time of <br> management. Management must not expect too much during <br> the initial development period. |
| 3. Co-operation <br> Required | Staff co-operation is usually not available during the initial <br> budgetary control exercise. In a decentralised organisation, <br> each unit has its own objective and these units enjoy some <br> degree of discretion. In this type of organisation structure, <br> coordination among different units is required. The success of <br> the budgetary control depends upon willing co-operation and <br> teamwork, |
| 4. Expensive | The implementation of budget is somewhat expensive. For <br> successful implementation of the budgetary control, proper <br> organisation structure with responsibility is prerequisite. <br> Budgeting process start from the collection of information to <br> for preparing the budget and performance analysis. It <br> consumes valuable resources (in terms of qualified manpower, <br> equipment, etc.) for this purpose; hence, it is an expensive <br> process. |
| 5. Not a substitute for |  |
| management | Budget is only a managerial tool and must be intelligently applied <br> for management to get benefited. Budgets are not a substitute <br> for good management. |
|  | Budgets are sometime considered as rigid documents. But in <br> reality, an organisation is exposed to various uncertain internal <br> and external factors. Budget should be flexible enough to <br> incorporate ongoing developments in the internal and external <br> factors affecting the very purpose of the budget. |

## Question 28

PSV Ltd. manufactures and sells a single product and estimated the following related information for the period November, 2020 to March, 2021.

| Particulars | November, <br> 2020 | December, <br> 2020 | January, <br> 2021 | February, <br> 2021 | March, <br> 2021 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Opening Stock of Finished <br> Goods (in Units) | 7,500 | 3,000 | 9,000 | 8,000 | 6,000 |
| Sales (in Units) | 30,000 | 35,000 | 38,000 | 25,000 | 40,000 |
| Selling Price per unit (in <br> ₹) | 10 | 12 | 15 | 15 | 20 |

## Additional Information:

- Closing stock of finished goods at the end of March, 2021 is $\mathbf{1 0 , 0 0 0}$ units.
- Each unit of finished output requires $\mathbf{2} \mathbf{~ k g}$ of Raw Material 'A' and $\mathbf{3} \mathbf{k g}$ of Raw Material 'B'.

You are required to prepare the following budgets for the period November, 2020 to March, 2021 on monthly basis:
(i) Sales Budget (in ₹)
(ii) Production budget (in units) and
(iii) Raw material Budget for Raw material ' $A$ ' and ' $B$ ' separately (in units) (PYP 10 Marks July 21)

## Answer 28

i. Sales Budget (in ₹)

| Particulars | Nov, 20 | Dec, 20 | Jan, 21 | Feb, 21 | Mar, 21 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| Sales (in Units) | 30,000 | 35,000 | 38,000 | 25,000 | 40,000 | $1,68,000$ |
| Selling Price per <br> unit (₹) | 10 | 12 | 15 | 15 | 20 | - |
| Total Sales (₹) | $3,00,000$ | $4,20,000$ | $5,70,000$ | $3,75,000$ | $8,00,000$ | $24,65,000$ |

ii. Production Budget (in units)

| Particulars | Nov, 20 | Dec, 20 | Jan, 21 | Feb, 21 | Mar, 21 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Sales | 30,000 | 35,000 | 38,000 | 25,000 | 40,000 | $1,68,000$ |
| Add: Closing stock of <br> finished goods | 3,000 | 9,000 | 8,000 | 6,000 | 10,000 | 36,000 |
| Total quantity required | 33,000 | 44,000 | 46,000 | 31,000 | 50,000 | $2,04,000$ |
| Less: Opening stock of <br> finished goods | $\mathbf{7 , 5 0 0}$ | 3,000 | 9,000 | 8,000 | 6,000 | 33,500 |
| Units to be produced | $\mathbf{2 5 , 5 0 0}$ | $\mathbf{4 1 , 0 0 0}$ | $\mathbf{3 7 , 0 0 0}$ | $\mathbf{2 3 , 0 0 0}$ | $\mathbf{4 4 , 0 0 0}$ | $1,70,500$ |

iii. Raw material budget (in units)

For Raw material ' $A$ '

| Particulars | Nov, 20 | Dec, 20 | Jan, 21 | Feb, 21 | Mar, 21 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Units to be produced: (a) | 25,500 | 41,000 | 37,000 | 23,000 | 44,000 | $1,70,500$ |
| Raw material consumption <br> p.u. (kg.): (b) | 2 | 2 | 2 | 2 | 2 | - |
| Total raw material <br> consumption (Kg.): $(\mathrm{a} \times \mathrm{b})$ | $\mathbf{5 1 , 0 0 0}$ | $\mathbf{8 2 , 0 0 0}$ | $\mathbf{7 4 , 0 0 0}$ | $\mathbf{4 6 , 0 0 0}$ | $\mathbf{8 8 , 0 0 0}$ | $3,41,000$ |

For Raw material 'B'

| Particulars | Nov, 20 | Dec, 20 | Jan, 21 | Feb, 21 | Mar, 21 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Units to be <br> produced: (a) | 25,500 | 41,000 | 37,000 | 23,000 | 44,000 | $1,70,500$ |
| Raw material <br> consumption p.u. <br> (kg.): (b) | 3 | 3 | 3 | 3 | 3 | - |
| Total raw material <br> consumption (Kg.): (a <br> (b) | $\mathbf{7 6 , 5 0 0}$ | $\mathbf{1 , 2 3 , 0 0 0}$ | $\mathbf{1 , 1 1 , 0 0 0}$ | $\mathbf{6 9 , 0 0 0}$ | $\mathbf{1 , 3 2 , 0 0 0}$ | $5,11,500$ |

## Question 29

What are the cases when a flexible budget is found suitable? (PYP 5 Marks May '19)

## Answer 29

Flexible budgeting may be resorted to under following situations:
(i) In the case of new business venture due to its typical nature it may be difficult to forecast the demand of a product accurately.
(ii) Where the business is dependent upon the mercy of nature e.g., a person dealing in wool trade may have enough market if temperature goes below the freezing point.
(iii) In the case of labour-intensive industry where the production of the concern is dependent upon the availability of labour.

## Suitability for flexible budget:

1. Seasonal fluctuations in sales and/or production, for example in soft drinks industry;
2. a company which keeps on introducing new products or makes changes in the design of its products frequently;
3. industries engaged in make-to-order business like ship building;
4. an industry which is influenced by changes in fashion; and
5. General changes in sales.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

In this theoretical question on suitability of 'Flexible Budget', most of the examinees didn't understand area and conditions where the flexible budget is applicable. Poor performance of the examinees was observed.

## Question 30

Why is 'Zero Base Budgeting' (ZBB) considered superior to 'Traditional Budgeting'? Explain. (PYP 5 Marks May '18)

## Answer 30

Zero based budgeting is superior to traditional budgeting: Zero based budgeting is superior to traditional budgeting in the following manner:

- It provides a systematic approach for evaluation of different activities.
- It ensures that the function undertaken are critical for the achievement of the objectives.
- It provides an opportunity for management to allocate resources to various activities after a thorough - cost benefit analysis.
- It helps in the identification of wasteful expenditure and then their elimination. If facilitates the close linkage of departmental budgets with corporate objectives.
- It helps in the introduction of a system of Management by Objectives


## Question 31

An electronic gadget manufacturer has prepared sales budget for the next few months. In this respect, following figures are available:

| Months | Electronic gadgets' sales |
| :--- | :---: |
| January | $\mathbf{5 0 0 0}$ units |
| February | $\mathbf{6 0 0 0}$ units |
| March | $\mathbf{7 0 0 0}$ units |
| April | $\mathbf{7 5 0 0}$ units |
| May | $\mathbf{8 0 0 0}$ units |

To manufacture an electronic gadget, a standard cost of $₹ 1,500$ is incurred and it is sold through dealers at an uniform price of ₹ $\mathbf{2 , 0 0 0}$ per gadget to customers. Dealers are given a discount of 15\% on selling price.

Apart from other materials, two units of batteries are required to manufacture a gadget. The company wants to hold stock of batteries at the end of each month to cover $30 \%$ of next month's production and to hold stock of manufactured gadgets to cover $25 \%$ of the next month's sale.

3250 units of batteries and 1200 units of manufactured gadgets were in stock on $1^{\text {st }}$ January.
Required:
(i) Prepare production budget (in units) for the month of January, February, March and April.
(ii) Prepare purchase budget for batteries (in units) for the month of January, February and March and calculate profit for the quarter ending on March. (PYP 10 Marks Nov '18)

## Answer 31

(i) Preparation of Production Budget (in Units)

|  | January | February | March | April | May |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sales | 5,000 | 6,000 | 7,000 | 7,500 | 8,000 |
| Add: Closing stock (25\% of <br> next month's sales) | 1,500 | 1,750 | 1,875 | 2,000 |  |
| Less: Opening Stock | $(1200)$ | $(1500)$ | $(1750)$ | $(1875)$ |  |
| Production of electronic <br> Gadgets | 5,300 | 6,250 | 7,125 | 7,625 |  |

(ii) Preparation of Purchase budget

|  | January | February | March | April |
| :--- | ---: | ---: | ---: | ---: |
| Consumption/production of Batteries (@ 2 per <br> Gadget) | 10,600 | 12,500 | 14,250 | 15,250 |
| Add: Closing Stock (30\% of next month's <br> production) | 3750 | 4275 | 4575 |  |
| Less: Opening Stock | 3,250 | 3,750 | 4275 |  |
| Purchase of Batteries | $\mathbf{1 1 , 1 0 0}$ | $\mathbf{1 3 , 0 2 5}$ | $\mathbf{1 4 , 5 5 0}$ |  |


|  | Jan. | Feb. | March | Total |
| :---: | :---: | :---: | :---: | :---: |
| Sales (A) | 5,000 | 6,000 | 7,000 | 18,000 |
| Selling Price per unit* | ₹. 2,000 | ₹. 2,000 | ₹. 2,000 | ₹. 2,000 |
| Less: Discount @15\% of selling price | 300 | 300 | 300 | 300 |
| Less: Standard cost of Manufacturing per gadget Cost | 1500 | 1500 | $\square 1500$ | 1500 |
| Profit (B) (selling Price-discount- cost) | 200 | 200 | 200 | 200 |
| Total Profit ( $\mathrm{A} \times \mathrm{B}$ ) | ₹.10,00,000 | ₹.12,00,000 | ₹.14,00,000 | ₹.36,00,000 |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This was a simple numerical problem on preparation of production budget, purchase budget and for calculation of profit for the quarter ending on 31 st March. Majority of examinees have calculated production units correctly but failed to calculate purchase units and profit for the quarter ending. Performance in the sub part was below average.

## Question 32

The Accountant of KPMR Ltd. has prepared the following budget for the coming year 2022 for its two products 'AYE' and 'ZYE':

| Particulars | Product 'AYE' | Product 'ZYE' |
| :--- | ---: | ---: |
| Production and Sales (in Units) | $\mathbf{4 , 0 0 0}$ | $\mathbf{3 , 0 0 0}$ |
|  | Amount (in ₹) | Amount (in ₹) |
| Selling Price per unit | $\mathbf{2 0 0}$ | $\mathbf{1 8 0}$ |
| Direct Material per unit | $\mathbf{8 0}$ | $\mathbf{7 0}$ |
| Direct Labour per unit | $\mathbf{4 0}$ | $\mathbf{3 5}$ |
| Variable Overhead per unit | $\mathbf{2 0}$ | $\mathbf{2 5}$ |
| Fixed Overhead per unit | $\mathbf{1 0}$ | $\mathbf{1 0}$ |

After reviewing the above budget, the management has called the marketing team for suggesting some measures for increasing the sales. The marketing team has suggested that by promoting the products on social media, the sales quantity of both the products can be increased by 5\%. Also, the selling price per unit will go up by $10 \%$. But this will result in increase in expenditure on variable
overhead and fixed overhead by $\mathbf{2 0 \%}$ and $5 \%$ respectively for both the products.
You are required to prepare flexible budget for both the products:
(i) Before promotion on social media,
(ii) After promotion on social media. (PYP 5 Marks Dec '21)

Answer 32

| (i) |  | Flexible Budget (before promotion) |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | Particulars | Product 'AYE' | Product 'ZYE' |  |
|  | Production \& Sales (units) | 4,000 | 3,000 |  |
|  |  | Amount (₹) | Amount (₹) | Amount (₹) |
| A. | Sales Value | $\begin{array}{r} 8,00,000 \\ \text { (₹ } 200 \times 4,000 \text { ) } \end{array}$ | $\begin{array}{r} 5,40,000 \\ \text { (₹ } 180 \times 3,000 \text { ) } \end{array}$ | 13,40,000 |
| B. | Direct Materials | $\begin{array}{r} 3,20,000 \\ (₹ 80 \times 4,000) \end{array}$ | $\begin{array}{r} 2,10,000 \\ (₹ 70 \times 3,000) \end{array}$ | 5,30,000 |
| C. | Direct labour | $\begin{array}{r} 1,60,000 \\ \text { (₹ } 40 \times 4,000 \text { ) } \end{array}$ | $\begin{array}{r} 1,05,000 \\ (₹ 35 \times 3,000) \\ \hline \end{array}$ | 2,65,000 |
| D. | Variable Overheads | $\begin{array}{r} 80,000 \\ (₹ 20 \times 4,000) \\ \hline \end{array}$ | $\begin{array}{r} 75,000 \\ (₹ 25 \times 3,000) \\ \hline \end{array}$ | 1,55,000 |
| E. | Total Variable Cost $(B+C+D)$ | 5,60,000 | 3,90,000 | 9,50,000 |
| F. | Contribution (A-E) | 2,40,000 | 1,50,000 | 3,90,000 |
| G. | Fixed Overhead | $\begin{array}{r} 40,000 \\ (₹ 10 \times 4,000) \\ \hline \end{array}$ | $\begin{array}{r} 30,000 \\ (₹ 10 \times 3,000) \\ \hline \end{array}$ | 70,000 |
| H. | Profit (F-G) | 2,00,000 | 1,20,000 | 3,20,000 |
|  | Profit per unit | 50 | 40 |  |

(ii) Flexible Budget (after promotion)

|  | Particulars | Product 'AYE' | Product 'ZYE' | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | Production \& Sales (units) | $\begin{array}{r} 4,200 \\ (4,000 \times 105 \%) \\ \hline \end{array}$ | $\begin{array}{r} 3,150 \\ (3,000 \times 105 \%) \\ \hline \end{array}$ |  |
|  |  | Amount (₹) | Amount (₹) | Amount (₹) |
| A. | Sales Value | 9,24,000 | 6,23,700 | 15,47,700 |
|  |  | (₹ $220 \times 4,200$ ) | (₹ $198 \times 3,150$ ) |  |
| B. | Direct Materials | 3,36,000 | 2,20,500 | 5,56,500 |
|  |  | (₹ $80 \times 4,200$ ) | (₹ $70 \times 3,150$ ) |  |
| C. | Direct labour | 1,68,000 | 1,10,250 | 2,78,250 |
|  |  | (₹ $40 \times 4,200$ ) | (₹ $35 \times 3,150$ ) |  |
| D. | Variable Overheads | 1,00,800 | 94,500 | 1,95,300 |
|  |  | (₹ $24 \times 4,200$ ) | (₹ $30 \times 3,150$ ) |  |
| E. | $\begin{array}{ll} \text { Total } \\ (B+C+D) \end{array} \quad \text { Variable Cost }$ | 6,04,800 | 4,25,250 | 10,30,050 |
| F. | Contribution (A-E) | 3,19,200 | 1,98,450 | 5,17,650 |
| G. | Fixed Overhead | 42,000 | 31,500 | 73,500 |
|  |  | $\begin{array}{r} (₹ 40,000 \times \\ 105 \%) \end{array}$ | $\begin{array}{r} (₹ 30,000 \times \\ 105 \%) \end{array}$ |  |
| H. | Profit (F-G) | 2,77,200 | 1,66,950 | 4,44,150 |
|  | Profit per unit | 66 | 53 |  |

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This Numerical question on Flexible Budget by segregating cost into fixed and variable. Many examinees faced hardship to understand the concept of fixed cost when the level of production changed; hence fixed overheads cost was not calculated correctly in the second part of the question. Performance of the examinees was average.

## Question 33

What is 'Budgetary Control System' and discuss the components of the same. (PYP 5 Marks Dec '21, Old \& New SM)

## Answer 33

Budgetary Control System: It is the system of management control and accounting in which all the operations are forecasted and planned in advance to the extent possible and the actual results compared with the forecasted and planned results.
Components of Budgetary Control System: The policy of a business for a defined period is represented by the master budget, the detailed components of which are given in a number of individual budgets called functional budgets. These functional budgets are broadly grouped under the following heads:

1. Physical budgets: Those budgets which contain information in quantitative terms such as the physical units of sales, production etc. This may include quantity of sales, quantity of production, inventories, and manpower budgets are physical budgets.
2. Cost budgets: Budgets which provides cost information in respect of manufacturing, administration, selling and distribution, etc. for example, manufacturing costs, selling costs, administration cost, and research and development cost budgets are cost budgets.
3. Profit budgets: A budget which enables the ascertainment of profit. For example, sales budget, profit and loss budget, etc.
4. Financial budgets: A budget which facilitates in ascertaining the financial position of a concern, for example, cash budgets, capital expenditure budget, budgeted balance sheet etc.

## EXAMINERS' COMMENTS ON THE PERFORMANCE OF EXAMINEES:

This theory question on Budgetary Control and its components. Majority of the examinees had not answered in the correct line. Performance of the examinees was below average.

## Question 34

SR Ltd. is a manufacturer of Garments. For the first three months of financial year 2022-23 commencing on 1st April 2022, production will be constrained by direct labour. It is estimated that only $\mathbf{1 2 , 0 0 0}$ hours of direct labour hours will be available in each month.

For market reasons, production of either of the two garments must be at least $25 \%$ of the production of the other. Estimated cost and revenue per garment are as follows:

|  | Shirt (₹) | Short (₹) |
| :--- | ---: | ---: |
| Sales price | 60 | 44 |
| Raw Materials |  |  |
| Fabric @12 per metre | 24 | 12 |
| Dyes and cotton | 6 | 4 |
| Direct labour @ 8 per hour | 8 | 4 |
| Fixed Overhead @ 4 per hour | 4 | 2 |
| Profit | 18 | 22 |

From the month of July 2022 direct labour will no longer be a constraint. The company expects to be able to sell $\mathbf{1 5 , 0 0 0}$ shirts and $\mathbf{2 0 , 0 0 0}$ shorts in July, 2022. There will be no opening stock at the beginning of July 2022. Sales volumes are expected to grow at $10 \%$ per month cumulatively thereafter throughout the year. Following additional information is available:
month's sale from July 2022 onwards.

- The estimated selling price will be same as above.

Required:
I. Calculate the number of shirts and shorts to be produced per month in the first quarter of financial year 2022-2023 to maximize company's profit.
II. Prepare the following budgets on a monthly basis for July, August and September 2022:
(i) Sales budget showing sales units and sales revenue for each product.
(ii) Production budget (in units) for each product.
(PYP 10 Marks May'22)

## Answer 34

Calculation of number of shirts $\&$ shorts to be produced per month:
Contribution per labour hour:

|  |  | Shirts (₹) | Shorts (₹) |
| :--- | :--- | ---: | ---: |
| A | Sales Price per unit | 60 | 44 |
| B | Variable Cost: |  |  |
|  | - Raw materials | 30 | 16 |
|  | - Direct labour | 8 | 4 |
|  |  | 38 | 20 |
| C | Contribution per unit [A-B] | 22 | 24 |
|  | Labour hour per unit | 1 hour | 0.5 hour |
|  | Contribution per labour hour [C:D] | 22 | 48 |

Production plan for the first three months:
Since, Shorts has the higher Contribution per labour hour, it will be made first. Shirts will be $25 \%$ of Shorts. The quantity will be determined as below:
Let the Quantity of Shorts be X and Shirts will be 0.25 X , then
(Qty. of Shorts $\times$ labour hour per unit) + (Qty. of Shirts $\times$ labour hour per unit) $=$ Total labour hours available
Or, $(X \times 0.5$ hour $)+(0.25 X \times 1$ hour $)=12,000$ hours
Or, $0.5 X+0.25 X=12,000$ Or, $0.75 X=12,000$
Or, $X \quad=12,000 \div 0.75$
$=16,000$ units of Shorts
Therefore, for Shirts $=25 \%$ of 16,000 units
= 4,000 units
Production per month for the first quarter will be:
Shorts- 16,000 units \& Shirts- 4,000 units

(ii) Production budget for the month of July, August \& September 2022:

|  |  | July 2022 |  | August 2022 |  | September 2022 |  | October 2022 |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Shirts | Shorts | Shirts | Shorts | Shirts | Shorts | Shirts | Shorts |  |
|  | Opening <br> stock | 0 | 0 | 6,600 | 8,800 | 7,260 | 9,680 |  |  |
|  | Sales <br> demand | 15,000 | 20,000 | 16,500 | 22,000 | 18,150 | 24,200 | 19,965 | 26,620 |
|  | Closing stock | 6,600 | 8,800 | 7,260 | 9,680 | 7,986 | 10,648 |  |  |
| 7 Production | 21,600 | 28,800 | 17,160 | 22,880 | 18,876 | 25,168 |  |  |  |

Chapter 15 Budget \& Budgetary Control

|  | $[B+C-A]$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Question 35

Define Budget Manual. What are the salient features of Budget Manual? (PYP 5 Marks Nov 22) (RTP May '21 \& Nov '19, MTP 5 Marks Nov'21, Old \& New SM)

## Answer 35

Budget Manual: The budget manual is a booklet specifying the objectives of an organisation in relation to its strategy. The budget is made to decide how much an organisation would earn and spend and in what manner. In the budget, the organisation sets its priorities too.

Effective budgetary planning relies on the provision of adequate information to the individuals involved in the planning process. Many of these information needs are contained in the budget manual. A budget manual is a collection of documents that contains key information for those involved in the planning process.
CIMA London defines budget manual as, 'A document which sets out the responsibilities of the persons engaged in, the routines of, and the forms and records required for, budgetary control'.

Contents of a budget manual: Typical budget manual may include the following:
(i) A statement regarding the objectives of the organisation and how they can be achieved through budgetary control;
(ii) A statement about the functions and responsibilities of each executive, both regarding preparation and execution of budgets;
(iii) Procedures to be followed for obtaining the necessary approval of budgets. The authority of granting approval should be stated in explicit terms. Whether, one two or more signatures are required on each document should be clearly stated;
(iv) A form of organisation chart to show who are responsible for the preparation of each functional budget and the way in which the budgets are interrelated.
(v) A timetable for the preparation of each budget.
(vi) The manner of scrutiny and the personnel to carry it out;
(vii) Reports, statements, forms and other record to be maintained.
(viii) The accounts classification to be employed. It is necessary that the framework within which the costs, revenue and other financial accounts are classified must be identical both in the accounts and budget department.
(ix) The reporting of the remedial action.
(x) The manner in which budgets, after acceptance and issuance, are to be revised or amended, these are included in budgets and on which action can be taken only with the approval of top management
(xi) This will prevent the formation of a 'bottleneck' with the late preparation of one budget holding up the preparation of all others.
(xii) Copies of all forms to be completed by those responsible for preparing budgets, with explanations concerning their completion.
(xiii) A list of the organization's account codes, with full explanations of how to use them.
(xiv) Information concerning key assumptions to be made by managers in their budgets, for example the rate of inflation, key exchange rates, etc.
(Any four points)

## Question 36

PQR Limited manufactures three products - Product $X$, Product $Y$ and Product $Z$. The output for the current year is $\mathbf{2 , 5 0 , 0 0 0}$ units of Product $X, \mathbf{2 , 8 0 , 0 0 0}$ units of Product $Y$ and $\mathbf{3 , 2 0 , 0 0 0}$ units of Product $Z$ respectively.

Selling price of Product $X$ is 1.25 times of Product $Z$ whereas Product $Y$ can be sold at double the price at which product $Z$ can be sold. Product $Z$ can be sold at a profit of $\mathbf{2 0 \%}$ on its marginal cost.

Other information are as follows:

|  | Product X | Product Y | Product Z |
| :--- | ---: | ---: | ---: |
| Direct Material Cost (Per unit) | ${ }^{{f4b2518ae-add2-4170-ad75-6722802ba263} \mathbf{2 0}$ |  |  |
| Direct Wages Cost (per unit) | ${ }^{\prime} 16$ | ${ }^{\prime} \mathbf{2 4}$ | ${ }^{\prime} 16$ |

Raw material used for manufacturing all the three products is the same. Direct Wages are paid @ `4 per labour hour, Total overhead cost of the company is` $52,80,000$ for the year, out of which ` 1 per labour hour is variable and the rest is fixed.

In the next year it is expected that sales of product $X$ and product $Z$ will increase by $\mathbf{1 2 \%}$ and $\mathbf{1 5 \%}$ respectively and sale of product $Y$ will decline by $5 \%$. The total overhead cost of the company for the next year is estimated at ` $55,08,000$. The variable cost of ${ }^{\prime} 1$ per labour hour remains unchanged.

It is anticipated that all other costs will remain same for the next year and there is opening and closing stock. Selling Price per unit of each product will remain unchanged in the next year.

Required:
Prepare a budget showing the current position and the position for the next year clearly indicating the total product-wise contribution and profit for the company as a whole. (PYP 10 Marks, May '23)

## Answer 36

i) Budget showing current position of total product wise contribution and profitability

\begin{tabular}{|l|l|l|l|l|l|}
\hline \& Particulars \& \begin{tabular}{l} 
Product \\
X(`)
\end{tabular} \& \begin{tabular}{l} 
Product \\
Y (`)
\end{tabular} \& \begin{tabular}{l} 
Product \\
Z (`)
\end{tabular} \& Total (`) \\
\hline A \& Direct material cost (per unit) \& 20 \& 20 \& 20 \& \\
\hline B \& \begin{tabular}{l} 
Direct wages cost \\
(per unit)
\end{tabular} \& 16 \& 24 \& 16 \& \\
\hline C \& \begin{tabular}{l} 
Variable overhead per unit \\
(Refer WN-1)
\end{tabular} \& 4 \& 6 \& 4 \& \\
\hline D \& \begin{tabular}{l} 
Total variable cost/ Marginal cost per \\
unit [A+B+C]
\end{tabular} \& 40 \& 50 \& 40 \& \\
\hline E \& Add: Profit [20\% of D] \& - \& - \& 8 \& \\
\hline F \& Selling price unit [D+E] \& - \& - \& 48 \& \\
\hline G \& Price weight \& 1.25 \& 2 \& 1 \& \\
\hline H \& \begin{tabular}{l} 
Selling price per unit [Selling price of \\
Product Z \(\times\) G]
\end{tabular} \& 60 \& 96 \& 48 \& \\
\hline I \& \begin{tabular}{l} 
Contribution per \\
unit [H-D]
\end{tabular} \& 20 \& 46 \& 8 \& \\
\hline J \& Quantity to be sold \& \(2,50,000\) \& \(2,80,000\) \& \(3,20,000\) \& \\
\hline K \& \begin{tabular}{l} 
Total Contribution \\
[J×I]
\end{tabular} \& \(50,00,000\) \& \(1,28,80,000\) \& \(25,60,000\) \& \(2,04,40,000\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|c|}
\hline\(L\) \& Fixed Overheads [Refer WN-1] \& \& \& \& \(13,20,000\) \\
\hline\(M\) \& Profit \& \& \& \& \(1,91,20,000\) \\
\hline
\end{tabular}

## Working Notes:

1. Segregation of Overheads into variable and fixed in current year

\begin{tabular}{|l|l|l|l|l|l|}
\hline \& Particulars \& \begin{tabular}{l} 
Product X \\
(`)
\end{tabular} \& \begin{tabular}{l} 
Product Y \\
(`
\end{tabular} \& \begin{tabular}{l} 
Product Z \\
(`)
\end{tabular} \& Total (`) \\
\hline A \& Total overhead cost \& - \& - \& - \& \(52,80,000\) \\
\hline B \& \begin{tabular}{l} 
Labour hour per unit \\
[Direct wages Cost \(\div\) \\
Re.1]
\end{tabular} \& 4 \& 6 \& 4 \& \\
\hline C \& Quantity produced \& \(2,50,000\) \& \(2,80,000\) \& \(3,20,000\) \& \\
\hline D \& \begin{tabular}{l} 
Total variable \\
overhead cost [B×C]
\end{tabular} \& \(10,00,000\) \& \(16,80,000\) \& \(12,80,000\) \& \(39,60,000\) \\
\hline E \& \begin{tabular}{l} 
Fixed overhead cost \\
{\([A-D]\)}
\end{tabular} \& \& \& \& \(13,20,000\) \\
\hline
\end{tabular}
ii) Budget showing next year's position of total product wise contribution and profitability
\begin{tabular}{|l|l|l|l|l|l|}
\hline \& Particulars \& \begin{tabular}{l} 
Product \\
(`)
\end{tabular} \& \begin{tabular}{l} 
Product Y \\
\((`)\)
\end{tabular} \& \begin{tabular}{l} 
Product Z \\
\((`)\)
\end{tabular} \& Total (`) \\
\hline A \& Selling price per unit \& 60 \& 96 \& 48 \& \\
\hline B \& Contribution per unit \& 20 \& 46 \& 8 \& \\
\hline C \& Quantity to be sold \& \begin{tabular}{l}
\(2,80,000\) \\
{\([112 \%\) of } \\
\(2,50,000]\)
\end{tabular} \& \begin{tabular}{l}
\(2,66,000\) \\
{\([95 \%\) of } \\
\(2,80,000]\)
\end{tabular} \& \begin{tabular}{l}
\(3,68,000\) \\
{\([115 \%\) of } \\
\(3,20,000]\)
\end{tabular} \& \\
\hline D \& Total Contribution [B×C] \& \(56,00,000\) \& \(1,22,36,000\) \& \(29,44,000\) \& \(2,07,80,000\) \\
\hline \& \begin{tabular}{l} 
Fixed Overheads [Refer WN- \\
\(2]\)
\end{tabular} \& \& \& \& \(13,20,000\) \\
\hline \& Profit \& \& \& \& \(1,94,60,000\) \\
\hline
\end{tabular}

## Working Notes:

2. Segregation of Overheads into variable and fixed in next year

\begin{tabular}{|l|l|l|l|l|l|}
\hline \& Particulars \& \begin{tabular}{l} 
Product X \\
(`
\end{tabular} \& \begin{tabular}{l} 
Product Y \\
\((`)\)
\end{tabular} \& \begin{tabular}{l} 
Product Z \\
\((`)\)
\end{tabular} \& Total (`) \\
\hline A \& Total overhead cost \& - \& - \& - \& \(55,08,000\) \\
\hline B \& \begin{tabular}{l} 
Labour hour per unit \\
[Direct wages Cost \(\div\) \\
Re.1]
\end{tabular} \& 4 \& 6 \& 4 \& \\
\hline C \& Quantity produced \& \(2,80,000\) \& \(2,66,000\) \& \(3,68,000\) \& \\
\hline D \& \begin{tabular}{l} 
Total variable \\
overhead cost [B×C]
\end{tabular} \& \(11,20,000\) \& \(15,96,000\) \& \(14,72,000\) \& \(41,88,000\) \\
\hline E \& Fixed overhead cost [A-D] \& \& \& \& \(13,20,000\) \\
\hline
\end{tabular}


[^0]:    * ₹ 40,000 for $50 \%$ capacity + ₹ 15,000 for $20 \%$ increase in capacity + ₹ 15,000 for $5 \%$ increase in capacity (because cost is increased for every $20 \%$ increase in capacity or part thereof)

[^1]:    *     - (1,20,000 × 1.2); \% - (1,86,000 × 1.2); @ - (1,71,000 × 2); \# - (99,000 × 1.8)

