ALL FORMULAS

CA FOUNDATION MATHEMATICS

(II2 formulas)

Use this PDF with Formula Revision Marathon

Marathon Link: https://youtu.be/SRMg3Yh3kNE

Downloaded From www.castudynotes.com

CA. PRANAV POPAT

- Chartered Accountant by Qualification
- Educator Dil Se \heartsuit
- Qualified all CA levels in very first attempt
- My Aim is to remove Maths Phobia from commerce background students and make Stats and Maths as their strength to crack CA Exam
- Educator at Unacademy for CA Foundation Maths, LR and Stats and CA Intermediate Cost and Management

Downloaded From www.castudynotes.com

The fraction by which the original quantity is multiplied to get a new quantity is called the **factor multiplying ratio**.

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Inverse Ratio: One ratio is the inverse of another if their product is
1. Thus b : a is the inverse of a : b and vice-versa.

CA Foundation Paper 3

π

- > The ratio **compounded** of the two ratios a : b and c : d is ac : bd.
- > Compounding two or more ratios means multiplying them.

CA Foundation Paper 3

> A ratio compounded of itself is called its duplicate ratio.

is the duplicate ratio of a:b

 $a^3:b^3$ is the triplicate ratio of a:b

Downloaded From www.castudynotes.com

CA Foundation Paper 3

- Continued Ratio: is the relation or comparison between the magnitudes of three or more quantities of same kind.
- > The continued ratio of three similar quantities a, b, c can be written as a:b:c

CA Foundation Paper 3

Cross Product Rule: If a : b = c : d are in proportion then ad = bc

Product of extremes = Product of means

Continuous Proportion: Three quantities a, b, c of the same kind (in same units) are said to be in continuous proportion if a : b = b : c

$$\frac{a}{b} = \frac{b}{c} \qquad b^2 = ac$$

here, a = first proportional, c = third proportional and b is mean proportional (because b is GM of a and c)

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

 π

Downloaded From www.castudynotes.com

> Invertendo

If a : b = c : d, then

b: a = d: c

8

Downloaded From www.castudynotes.com

兀

Downloaded From www.castudynotes.com

> Alternendo

If a : b = c : d, then

a:c=b:d

9

Downloaded From www.castudynotes.com

> Componendo

If a : b = c : d, then

a+b:b=c+d:d

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

^cormula Marathon for Maths, LR and Stats by CAPRANAV

 π

Downloaded From www.castudynotes.com

> Dividendo

If a : b = c : d, then

a-b:b=c-d:d

Downloaded From www.castudynotes.com

If a : b = c : d, then a+bc+dc-db a a-bc-dc+da+b

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

Downloaded From www.castudynotes.com

=k

If a:b = c:d = e:f = ... = k

 $\frac{a+c+e+\dots}{b+d+f+\dots}$

then

> Addendo

13

Downloaded From www.castudynotes.com

14

Downloaded From www.castudynotes.com

^cormula Marathon for Maths, LR and Stats by CAPRANAV

π

Downloaded From www.castudynotes.com

$$a^m \times a^n = a^{m+n}$$

If two or more terms with same base are multiplied, we can make them one term having the same base and power as sum of all powers.

 π

Downloaded From www.castudynotes.com

Downloaded Filmom www.castudynotes.com $\frac{a}{a}^{n} = a^{m-n}$

If two or more terms with same base are in division, we can make them one term having the same base and power as difference of power.

Downloaded From www.castudynotes.com

CA Foundation Paper 3

$$\left(a^{m}\right)^{n} = a^{m \times n}$$

If a term having power is raised to another power, we can do product of powers to simplify the expression

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Downloaded From www.castudynotes.com

$$(a \times b)^n = a^n \times b^n$$

> If a product of two or more terms is raised to power, we can split the two terms with same individual power to each one of them.

CA Foundation Paper 3

 π

FORMULA MARATHON

Calculator Trick for Reciprocal Downloaded From www.castudynotes.com

21

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

 π

Calculator Trick for any root Downloaded From www.castudynotes.com

Base
$$\sqrt{\sqrt{\sqrt{\sqrt{10}}}}$$
 12 *times* -1 \div *n*
+1 ×= ×= ×= 12 *times*

22

Downloaded From www.castudynotes.com

Calculator Trick for any power (including non integer)

Base
$$\sqrt{\sqrt{\sqrt{\sqrt{\dots 12 times}}}} = 1 \times n$$

+1 $\times = \times = \times = \dots$

23

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Log Conditions Downloaded From www.castudynotes.com

The logarithm of a number to a given base is the index or the power to which the base must be raised to produce the number, i.e. to make it equal to the given number.

$$3^4 = 81 \log_3 81 = 4$$

> If
$$a^x = n$$
 then $\log_a n = x$

- > Conditions:
 - Number should be positive
 - Base should be positive
 - Base cannot be equal to one

 $n > 0, a > 0, a \neq 1$

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

π

Standard Results of Log *Downloaded From www.castudynotes.com* > Log of a number with same base as number is equal to 1

$$\log_a a = 1$$

> Log of 1 (one) for any base is equal to zero

$$\log_a 1 = 0$$

25

Downloaded From www.castudynotes.com

Downloaded From www.castudynotes.com

 Logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers to the same base

 $\log_a mn = \log_a m + \log_a n$

26

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Downloaded From www.castudynotes.com

> The logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

27

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Downloaded From www.castudynotes.com

> Logarithm of the number raised to the power is equal to the index of the power multiplied by the logarithm of the number to the same base.

 $\log_a m^n = n \log_a m$

28

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Change of Base Theorem Downloaded From www.castudynotes.com

If the logarithm of a number to any base is given, then the logarithm of the same number to any other base can be determined from the following relation

$$\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$$

 $\log_b a \times \log_a b = 1$

29

Downloaded From www.castudynotes.com

 \mathcal{T}

Base of Log Downloaded From www.castudynotes.com > Common Log's Base > Natural Log's Base

30

Downloaded From www.castudynotes.com

Quadratic Equation Downloaded From www.castudynotes.com

- > Equation having **degree = 2** is called as Quadratic Equation
- > QE will have two roots/ solutions usually denoted by lpha,eta
- > Equation Format $ax^2 + bx + c = 0$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

31

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Solution of Quadratic Equation Downloaded From www.castudynotes.com

$$ax^2 + bx + c = 0$$

> Formula to calculate roots:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

Downloaded From www.castudynotes.com

FORMULA MARATHON

Sum and Product of Roots of QE Downloaded From www.castudynotes.com $ax^2 + bx + c = 0$ h > Sum of roots $\alpha + \beta =$ > Product of roots $\alpha\beta =$ a

33

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

> Construction of Quadratic Equation

If sum of roots and product of roots are given, equation can be constructed in the below manner:

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

34

Downloaded From www.castudynotes.com

CA Foundation Paper 3
Downloaded From www.castudynotes.com

> Concept of discriminant – to get nature of roots

Discriminant of QE is the mathematical expression which is used to understand nature of roots of QE, it is expressed as below:

b^2	-4 <i>ac</i>	

Condition	Nature of Roots
$b^2 - 4ac = 0$	Real and Equal
$b^2 - 4ac < 0$	Imaginary
$b^2 - 4ac > 0$	Real and Unequal
$b^2 - 4ac > 0$ and a perfect square	Real, Unequal and Rational
$b^2 - 4ac > 0$ & not a perfect square	Real, Unequal and Irrational

35

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

Downloaded From www.castudynotes.com

> Conjugate Pairs

Formula Marathon for Maths, LR and Stats by CAPRANAV

π

- If one root of the equation is

 $m + \sqrt{n}$

- The other one is surely

 $m - \sqrt{n}$

- This pair is called as conjugate pairs

36

Downloaded From www.castudynotes.com

FORMULA MARATHON

 \mathcal{T}

Simple Equation Downloaded From www.castudynotes.com

- Equation of one degree and having one unknown variable is simple.
- > A simple equation has only one root.
- > Form of Equation:

ax + b = 0

where,
a is coefficient of x
b is constant
a ≠ 0
> Solution Method - Direct basic algebra

37

Downloaded From www.castudynotes.com

FORMULA MARATHON

Simultaneous Linear Equations (two unknowns) Downloaded From www.castudynotes.com

- Here we always deal with two equations as it consist of 2 unknowns
- > Form:

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

where, a is coefficient of x b is coefficient of y c is constant $a \neq 0$

38

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Methods of Solutioned Fibriulta as a subject Equations

- > Elimination Method: In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
- > **Substitution Method:** equation is written in the form of one variable in LHS and that value is substituted in other equation.
- > Cross Multiplication Method: Formula based method

 $a_1 x + b_1 y + c_1 = 0$ $a_2 x + b_2 y + c_2 = 0$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$

Downloaded From www.castudynotes.com

FORMULA MARATHON

π

Cubic Equation Downloaded From www.castudynotes.com

> Form:

 $ax^3 + bx^2 + cx + d = 0$

where, a is coefficient of x^3 b is coefficient of x^2 c is coefficient of x d is constant $a \neq 0$

> Method of solution: Trial and Error

40

Downloaded From www.castudynotes.com

FORMULA MARATHON

 π

Addition/Subtraction of Matrices *Downloaded From www.castudynotes.com*

> Property

- Commutative Law: A + B = B + A
- Associative Law: (A+B)+C=A+(B+C)

- Distributive Law: k(A+B) = kA + kB

41

Downloaded From www.castudynotes.com

FORMULA MARATHON

Multiplication of Matrices *Downloaded From www.castudynotes.com*

- > Condition
 - The product A x B of two matrices A and B is defined only if the number of columns in Matrix A is equal to the number of rows in Matrix B.

 $\times B_{n \times p} = AB_{m \times p}$ m×n

42

Downloaded From www.castudynotes.com

CA Foundation Paper 3

FORMULA MARATHON

CA Foundation Paper 3

Determinant – 3x3 Downloaded From www.castudynotes.com > If a square matrix of order 3 x 3 is given $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}$ det $A = a_{11}$ a_{32} $|a_{31}|$

Downloaded From www.castudvnotes.com

FORMULA MARATHON

Formula Marathon for Maths, LR and Stats by CAPRANAV

 π

Minors and Cofactors Downloaded From www.castudynotes.com

 $C_{ij} = (-1)^{i}$

> Minor of the element of a determinant is the determinant of M_{ij} by deleting ith row and jth column in which element is existing.

π

Downloaded From www.castudvnotes.com

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Formula Marathon for Maths, LR and Stats by CAPRANAV

 π

CA Foundation Paper 3

FORMULA MARATHON

Simple Interest

Downloaded From www.castudynotes.com

P = principal value r = rate of interest per annum t = time period in years

48

Downloaded From www.castudynotes.com

CA Foundation Paper 3

 π

Simple Interest

Downloaded From www.castudynotes.com

> Amount as per SI

 $A = P + SI = P + \frac{P.r.t}{100}$

Downloaded From www.castudynotes.com

Conversion Period

Downloaded From www.castudynotes.com

Conversion period	Description	Number of conversion period in a year
1 day	Compounded daily	365
1 month	Compounded monthly	12
3 months	Compounded quarterly	4
6 months	Compounded semi annually	2
12 months	Compounded annually	1

50

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

Compound Interest Amount Downloaded From www.castudynotes.com

- Calculation of Accumulated Amount under CI denoted by A

$$A = P(1+i)^n$$

where, *P* = Initial Principal *i* = adjusted interest rate *n* = no. of periods

$$i = \frac{r\%}{nocppy}$$

$$n = t \times noccpy$$

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

π

Compound Interest Amount by Trick Downloaded From www.castudynotes.com

- > Calculator Tricks for Amount as per CI
- Example: *P*= 1000, *i* = 10%, *n* = 3 then

Calculator Steps to obtain A:

1000 + 10 % + 10 % + 10 %

52

Downloaded From www.castudynotes.com

FORMULA MARATHON

Compound Interest Downloaded From www.castudynotes.com

- > Formula for Compound Interest
 - Calculation of Compound Interest Value denoted by CI

$$CI = P[(1+i)^n - 1]$$

- where,

P = Initial Principal i = adjusted interest rate n = no. of periods

$$=\frac{r\%}{nocppy} \qquad n=t\times noccpy$$

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

Effective Rate of Interest Downloaded From www.castudynotes.com

 $E = [(1+i)^n - 1]$

where,

i = adjusted interest rate n = no. of periods in a year

54

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Future Value – Single Cashflow Downloaded From www.castudynotes.com

$FV = CF(1+i)^n$

where,

CF = *Single Cashflow of which FV is to be calculated i* = *adjusted interest rate n* = *no. of periods*

55

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Future Value – Annuity Regular Downloaded From www.castudynotes.com

$$FVAR = A_i \times FVAF(n,i)$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

$$FVAR = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\}$$

where,

FVAR = Future Value of Annuity Regular A_i = Annuity Value (Installment) **FVAF** = Future Value Annuity Factor i = adjusted interest rate n = no. of periods

56

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

Future Value – Annuity Due Downloaded From www.castudynotes.com

> Formula:

$$FVAD = A_i \times FVAF(n,i) \times (1+i)$$

$$FVAD = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\} \times (1+i)$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

where,

FVAD= Future Value of Annuity Due A_i = Annuity Value (Installment) **FVAF** = Future Value Annuity Factor i = adjusted interest rate n = no. of periods

57

Downloaded From www.castudynotes.com

FORMULA MARATHON

Present Value – Single Cashflow Downloaded From www.castudynotes.com

$$PV = \frac{CF}{\left(1+i\right)^n}$$

where,

CF = *Single Cashflow for which PV is to be calculated i* = *adjusted interest rate n* = *no. of periods*

58

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Compounding and Discounting Factor Downloaded From www.castudynotes.com

- > Compounding
 - Finding Future Value of any Cashflow
 - Compounding Factor.

> Discounting

- Finding Present Value of any Cashflow
- Discounting Factor:

59

Downloaded From www.castudynotes.com

 $(1+i)^{n}$

FORMULA MARATHON

CA Foundation Paper 3

Present Value – Annuity Regular Downloaded From www.castudynotes.com

 $PVAR = A_i \times PVAF(n,i)$

$$PVAR = A_i \times \left[\frac{1}{i} \times \left\{1 - \frac{1}{(1+i)^n}\right\}\right]$$

Present Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Present Value

where,

PVAR = Present Value of Annuity Regular $A_i = Annuity Value (Installment)$ PVAF = Present Value Annuity Factori = adjusted interest raten = no. of periods

60

Downloaded From www.castudynotes.com

CA Foundation Paper 3

61

Downloaded From www.castudynotes.com

Formula Marathon for Maths, LR and Stats by CAPRANAV

π

π Present Value – Annuity Due *Downloaded From www.castudynotes.com* $PVAD = \int A \times PVAF \{(n-1)\}$

$$PVAD = \left[A_i \times PVAF\left\{(n-1), i\right\}\right] + A_i$$

where,

Formula Marathon for Maths, LR and Stats by CAPRANAV

PVAD = Present Value of Annuity Due
A_i = Annuity Value (Installment)
PVAF = Present Value Annuity Factor
i = adjusted interest rate
n = no. of periods
n-1 = one lesser period

62

Downloaded From www.castudynotes.com

FORMULA MARATHON

Perpetuity

Downloaded From www.castudynotes.com

PVP

where, *PVP* = Present Value of Perpetuity *A_i* = Annuity Value (Installment) *i* = adjusted interest rate

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Growing Perpetuity Downloaded From www.castudynotes.com

PVGP g

where,

PVGP = Present Value of Growing Perpetuity
A_i = Annuity Value (Installment)
i = adjusted interest rate
g = growth rate

64

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Net Present Value Downloaded From www.castudynotes.com

- > Formula
 - NPV = Present Value of Cash Inflows Present Value of Cash Outflows
- > Decision Base:
 - If NPV \geq 0, accept the proposal, If NPV \leq 0, reject the proposal

CA Foundation Paper 3

Real Rate of Return Downloaded From www.castudynotes.com

- > Meaning:
 - The real interest rate is named so to show what a lender or investor receives in real terms after inflation is factored in.
- > Formula:
 - Real Rate of Return = Nominal Rate of Return Rate of Inflation

CA Foundation Paper 3

CAGR

Downloaded From www.castudynotes.com

- Compounded Annual Growth rate is the interest rate we used in Compound Interest.
- > It is used to see returns on investment on yearly basis

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Rules of Counting Downloaded From www.castudynotes.com

- > Multiplication Rule
 - If certain thing may be done in 'm' different ways and when it has been done, a second thing can be done in 'n ' different ways then total number of ways of doing both things simultaneously is (m x n) ways
- > Addition Rule
 - It there are two alternative jobs which can be done in 'm' ways and in 'n' ways respectively then either of two jobs can be done in (m + n) ways

	Word Used	Use
5	OR	+ Plus
	AND	× Product

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

Factorial

Downloaded From www.castudynotes.com

> $n! = n(n - 1)(n - 2) \dots 3.2.1$ > $n! = 1.2.3 \dots (n - 2)(n - 1)n$ > n! = n(n - 1)!> n! = n(n - 1)(n - 2)!> 0! = 1

69

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Factorial Values

Downloaded From www.castudynotes.com

Value of n	Value of n!	Value of n	Value of n!
1	1	8	40320
2	2	9	362880
3	6	10	3628800
4	24	11	39916800
5	120	12	479001600
6	720	13	6227020800
7	5040	14	871178291200

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3
Theorem of Permutations Downloaded From www.castudynotes.com

n

Number of Permutations when r objects are chosen out of n different objects n!

 $P_r = \frac{n}{(n-r)!}$

Few Observations: $n \ge r$ n is a positive integer

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Particular Case of theorem (n = r) Downloaded From www.castudynotes.com

Number of Permutations when n objects are chosen out of n different objects n_{D} — n_{D}

72

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

Special Formula (Must Remember) Downloaded From www.castudynotes.com

(n + 1)! - n! = n.n!

73

Downloaded From www.castudynotes.com

Circular Permutations Downloaded From www.castudynotes.com

- > Theorem:
 - The number of circular permutations of n different things chosen at a time is (n-1)!
 - Note: this theorem applies only when we choose all of n things

Circular Permutations (Type II) Downloaded From www.castudynotes.com

> number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

> Same formula will apply if ask is to find number of different forms of necklaces/ garlands

CA Foundation Paper 3

Permutation with Restriction : Theorem 1

 Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is

CA Foundation Paper 3

Permutations with Restrictions : Theorem 2 Downloaded From www.castudynotes.com

 Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement is

CA Foundation Paper 3

FORMULA MARATHON

CA Foundation Paper 3

Downloaded From www.castudynotes.com

Theorem of Combinations Downloaded From www.castudynotes.com Number of Combinations when r objects are chosen out of n different objects n!Few Observations: $> n \ge r$ > n is a positive integer

80

Downloaded From www.castudynotes.com

^cormula Marathon for Maths, LR and Stats by CAPRANAV

π

π

Few Observations:

- $> n \ge r$
- $\rightarrow n$ is a positive integer

Linkage of PNC Theorems Downloaded From www.castudynotes.com

81

Downloaded From www.castudynotes.com

FORMULA MARATHON

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Special Formula of Combination Downloaded From www.castudynotes.com $^{n+1}C_r$ n_{C} -1

84

Downloaded From www.castudynotes.com

CA Foundation Paper 3

 π

Combinations of one or more Downloaded From www.castudynotes.com

Combinations of n different things taking **one or more** out of n things at a time

Downloaded From www.castudynotes.com

CA Foundation Paper 3

 \mathcal{T}

2		Geometry in PNC	
	π	Particulars	Tips to Solve
		No. of Straight Lines with the given n points	${}^{n}C_{2}$ 2 is used as we need to select two points to make a line
LN allu Jla		No. of Triangles with the given n points	${}^{n}C_{3}$ 3 is used as we need to select two points to make a line
I UNNULA MATAUTURI TULI MAULIS, I		Adjustment of Collinear Points	If there are collinear points in any problem, no. of lines or triangles formed using those points should be deducted from total no. of lines/ triangles
		No. of Parallelogram with the given one set of m parallel lines and another set of n parallel lines	${}^{n}C_{2} \times {}^{m}C_{2}$ Selecting 2 lines from each set of parallel lines
		No. of Diagonals	${}^{n}C_{2}-n$ 86
		Down	loaded From www.castudynotes.com

FORMULA MARATHON

General Term of an AP Downloaded From www.castudynotes.com

 $t_n = a + (n-1)d$

where, *a* = first term *d* = common difference *n* = position number of term

88

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Formula Marathon for Maths, LR and Stats by CAPRANAV

π

FORMULA MARATHON

Sum of first n terms of an AP Downloaded From www.castudynotes.com

$$S_n = \frac{n}{2} \left\{ 2a + (n-1)d \right\}$$

where, a = first term d = common difference n = position number of term $t_n = nth term of AP$

90

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

Sum of first n natural or counting numbers Downloaded From www.castudynotes.com

n(n+1)

92

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Sum of first n odd numbers Downloaded From www.castudynotes.com

S = n

93

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Sum of the squares of first n natural numbers

n(n+1)(2n+1)6

94

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Sum of the cubes of first n natural numbers

n(n+1)S•

95

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Common Ratio of GP Downloaded From www.castudynotes.com

96

Downloaded From www.castudynotes.com

CA Foundation Paper 3

 \mathcal{T}

General Term of an GP Downloaded From www.castudynotes.com

 $=ar^{n-1}$ n

where, a = first term r = common ratio n = position number of term

97

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

FORMULA MARATHON

Sum of first n terms of a GP Downloaded From www.castudynotes.com

Use when r < 1

Use when r > 1

where, *a = first term r = common ratio n = position number of term*

99

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

FORMULA MARATHON

 π

Downloaded From www.castudynotes.com

CA Foundation Paper 3

Downloaded From www.castudynotes.com

> No. of possible subset of any set

Total = 2^n

Proper= 2^{n} -1

102

Downloaded From www.castudynotes.com

CA Foundation Paper 3

π

De Morgan's Law Downloaded From www.castudynotes.com

 $(P \cup Q)' = P' \cap Q'$

 $(P \cap Q)' = P' \cup Q'$

103

Downloaded From www.castudynotes.com

π

```
2 Set Operations Formulas

Downloaded From www.castudynotes.com

> n(A∪B) = n(A) + n(B) - n(A∩B)
```

- Proof:

> Example: A = {6, 2, 4, 1} B = {2, 4, 3}

104

Downloaded From www.castudynotes.com

 π

3 Set Operations Formula Downloaded From www.castudynotes.com

 \rightarrow n(AUBUC) =

n(A) + n(B) + n(C) $n(A \cap B) - n(B \cap C) - n(A \cap C) +$ $n(A \cap B \cap C)$

Downloaded From www.castudynotes.com

FORMULA MARATHON

106

Downloaded From www.castudynotes.com

π

Step Method of finding inverse of f Downloaded From www.castudynotes.com

- 1. Write your function in the form of y
 - -y = f(x)

- x =

- *y* =

2. From above expression, find the value of x

3. Interchange value of x and y, now the RHS is Inverse function

107

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

Differentiation Basic Formulas Downloaded From www.castudynotes.com

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

π

Basic Laws of Differentiation *Downloaded From www.castudynotes.com*

Function	Derivative of the Function		
h(x)=c.f(x) where c is a real constant, scalar multiplication of function	$\frac{d}{dx}\{h(x)\} = c \cdot \frac{d}{dx}\{f(x)\}$		
$h(x) = f(x) \pm g(x)$ sum/ difference of function	$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}\{f(x)\} \pm \frac{d}{dx}\{g(x)\}$		
h(x) = f(x).g(x) Product of functions	$\frac{d}{dx}\{h(x)\} = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$		
$h(x) = \frac{f(x)}{g(x)}$ Quotient of Function	$\frac{d}{dx}\{h(x)\} = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{\{g(x)\}}$		

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

π

Cost and Revenue Functions Downloaded From www.castudynotes.com

Cost Function	y = C(x)	
Average Cost	$A(x) = \frac{C(x)}{x}$	
Average Cost is minimum or maximum when	A'(x) = 0	
Marginal Cost	$M(x) = \frac{dC}{dx}$	
Marginal Cost is minimum or maximum when	M'(x) = 0	
Marginal Revenue	$MR(x) = \frac{dR}{dx}$	<u> 11 </u>
	Downloaded From www.castudynotes.com	TTO

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

π

Integration – Basic Formulas Downloaded From www.castudynotes.com i) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$ (If $n = -1, \frac{x^{n+1}}{n+1} = \frac{1}{0}$ which is not defined) ii) $\int dx = x + c$, since $\int 1 dx = \int x^{\circ} dx = \frac{x1}{1} = x + c$ iii) $\int e^x dx = e^x + c$, since $\frac{d}{dx}e^x = e^x$ iv) $\int e^{ax} dx = \frac{e^{ax}}{a} + c$, since $\frac{d}{dx} \left(\frac{e^{ax}}{a} \right) = e^{ax}$ v) $\int \frac{dx}{x} = \log x + c$, since $\frac{d}{dx} \log x = \frac{1}{x}$ vi) $\int a^x dx = a^x / \log_e a + c$, since $\frac{d}{dx} \left(\frac{a^x}{\log^a} \right) = a^x$

111

Downloaded From www.castudynotes.com

FORMULA MARATHON

cormula Marathon for Maths, LR and Stats by CAPRANAV

 π

CA Foundation Paper 3

Integration by Parts – ILATE Rule Downloaded From www.castudynotes.com

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{d(u)}{dx} \int v \, dx\right] \, dx$$

where u and v are two different functions of x

Guidelines for Selecting u and dv:

(There are always exceptions, but these are generally helpful.)

"L-I-A-T-E" Choose 'u' to be the function that comes first in this list:

- L: Logrithmic Function
- I: Inverse Trig Function
- A: Algebraic Function
- T: Trig Function
- E: Exponential Function

112

Downloaded From www.castudynotes.com

FORMULA MARATHON

CA Foundation Paper 3

 π