OTM - Only This Much PERMUTATIONS

MATH, LR \& STATS CA FOUNDATION DEC 2023

CA. PRANAV POPAT

SESSION LINK:

https://youtube.com/live/KnQ8AmvX-

Is?feature=share

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

Permutations and Combinations | Past Trends

Attempt	Easy	Moderate	Advance Level	Total
May 2018	2	0	0	2
Nov 2018	2	2	0	4
Jun 2019	2	1	1	4
Nov 2019	3	2	0	5
Nov 2020	2	2	0	4
Jan 2021	3	2	2	7
Jul 2021	2	2	0	4
Dec 2021	4	1	0	5
Jun 2022	6	2	0	8
Dec 2022	4	0	1	4
Jun 2023	3	1	4	

Permutations - Basics

| Rules of |
| :--- | :--- | :--- |
| Counting |\quad| Multiplication Rule
 $/$ AND Rule |
| :--- | | Ways of doing things together $=$ |
| :--- |
| $\mathrm{m} \times \mathrm{n}$ ways |, | Addition Rule/ OR |
| :--- |
| Rule | | Ways of either one or other thing $=$ |
| :--- |
| $\mathrm{m}+\mathrm{n}$ ways |

PYQ Jan 21
PYQ Jun 22

There are ten flights operating between City A and City B. The number of ways in which a person can travel from A to B and return by different flight?
a. 90
b. 95
c. 80
d. 78

Ans: a

PYQ Jul 21
A person can go from A to B by 11 different modes of transport but is allowed to return to A by mode other than earlier. The number of different ways in which the entire journey can be completed is
a. 110
b. 10^{10}
c. 9^{5}
d. 10^{9}

Ans: a

Theorem	Number of Permutations when r objects are chosen out of n different objects ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ Condition: $n \geq r$
Shortcut of Theorem	To find ${ }^{n} P_{r}$ do reverse multiplication of n for r times. No. of Factors in ${ }^{n} P_{r}=r$
Special Formula	$(\mathrm{n}+1)!-\mathrm{n}!=\mathrm{n} . \mathrm{n}!$

PYQ Nov 18

Ans: a

PYQ Jun 19
a. 81
b. 78
c. 89
d. 64

The value of N in $\frac{1}{7!}+\frac{1}{8!}=\frac{N}{9!}$ is

Which of the following statement is correct:
a. $\quad{ }^{n} P_{n}={ }^{n} P_{n-1}$
b. ${ }^{n} P_{n}={ }^{2 n} P_{n-2}$
c. ${ }^{n} P_{n}={ }^{3 n} P_{n-3}$
d. ${ }^{n} P_{n}={ }^{n(n-1)} P_{n-1}$

Ans: a

PYQ Nov 19
${ }^{n} P_{3}:{ }^{n} P_{2}=3: 1$. Find n
a. 5
b. $7 / 2$
C. 4
d. 2/7

Ans: a
PYQ Nov 20
PYQ Jul 21
If ${ }^{n} P_{4}=20^{n} P_{2}$ where p denotes the number of permutations, then n is
a. 4
b. 2
c. 5
d. 7

Ans: d

PYQ Dec 21
If ${ }^{n} P_{2}=12$, then the value of n is
a. 2
b. 3
C. 4
d. 6

Ans: c

PYQ Jun 22
If $\frac{n!}{10}=\frac{(n-1)!}{(n-1-n+3)!}$ then find n
a. 4
b. 5
c. 6
d. 7

Ans: b

Number Formations

Why Permutations	- Any number is formed by arranging the given digits - So for the purpose of calculating number of possible numbers formed, we use permutations.
Assumption	- When question is silent, we assume that digits will not be repeated in forming number
Condition 1	- If there is a zero, it cannot come to first place of the number
Condition 2	- If there is a restriction that the numbers formed should be larger than a particular value, then we will use counting rules to find solution
Problem on Summation of all possible numbers	Use below Steps: 1. Find the number of numbers that can be formed 2. Find repetition value of each digit 3. Repetition of each digit $=\frac{\text { Value of Step } 1}{\text { no. of different digits }}$ 4. Find sum of digits 5. Sum of digits x Repetition 6. Multiply value of step 4 by 1111,111 , etc. in case of four-digit numbers and three-digit numbers respectively

PYQ Nov 19
PYQ Jul 21

How many numbers can be formed with the help of $2,3,4,5,6,1$ which are not divisible by 5 , given that it is a five-digit number and digits are not repeating?
a. 600
b. 400
c. 1200
d. 1400

Ans: a

PYQ Jan 21
Ans: b

Exercise 5A

 Que 19Ans: d

Exercise 5B
Que 10
Ans: c

How many four-digit odd numbers can be formed with digits $0,1,2,3,4,7$ and 8 ?
a. 150
b. 300
c. 120
d. 210

The sum of all 4 -digit number containing the digits $2,4,6,8$ without repetitions is
a. 133330
b. 122220
c. 213330
d. 133320

The number of numbers lying between 10 and 1000 can be formed with the digits $2,3,4,0,8,9$ is
a. 124
b. 120
c. 125
d. None

How many 3 digit odd numbers can be formed using the digits $5,6,7,8,9$ if the digits can be repeated?
a. 55
b. 75
c. 65
d. 85

Ans: b

Word Formations

Why Permutations	- Any arrangement of letters as a word, - Meaning or Pronunciation is irrelevant	
Words always Together/ Not Together	Total ways when some letters are together	- Group of things which are together should be counted as one thing only - Things within group can change their place within themselves, their arrangements also need to be considered. - If based on information in questions, things in the group cannot change their places, ignore their arrangement
	Total ways when some letters are not together	Total ways - Ways of always together = Ways of Never Together
Permutations when letters are alike		$p=\frac{n!}{n_{1}!n_{2}!n_{3}!}$

PYQ Jan 21
 PYQ Dec 21

Ans: b

In how many ways can the letters of the word "DETAIL" be arranged so that vowels occupy only the odd positions?
a. 32
b. 36
c. 48
d. 60

PYQ Dec 21
The number of words that can be formed using the letters of the word "PETROL" such that the words do not have P in the first position is
a. 720
b. 120
c. 600
d. 540

Ans: c

If four letters are taken with or without meaning from the word "LOGARITHAM" without repetition, how many words will be formed?
a. 5040
b. 2520
c. 120
d. 40320

Circular Permutations

Meaning	if we arrange the objects along a closed curve viz., a circle, the permutations are known as circular permutations
Theorem	The number of circular permutations of n different things chosen all at a time is $(n-1)!$ (This theorem applies only when we choose all of n things)
Circular Permutations	number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

Type II		$\frac{1}{2}(n-1)!$
	Examples: Garlands, Necklaces	

MTP May 20
Ans: a
Exercise 5B Que 3

5 persons are sitting in a round table in such way that Tallest Person is always on the right-side of the shortest person; the number of such arrangements is
a. 6
b. 8
c. 24
d. None

If 50 different jewels can be set to form a necklace, then the number of ways is
e. 50!/2
f. $49!/ 2$
g. 49!
h. None

Miscellaneous Problems

Ans: b

PYQ Dec 22

Ans: c

PYQ Nov 19

Ans: b

PYQ Dec 21

Ans: d

PYQ Jun 22
8 people are seated in a row in a meeting among them the president and vice president are to be seated always in the centre. What is the arrangement?
a. $7!2!$
b. $6!2$!
c. 6!
d. 1!

Six boys and five girls are to be seated for a photograph in a row such that no two girls sit together, and no two boys sit together. Find the number of ways in which this can be done.
a. 74200
b. 96900
c. 45990
d. 86400

The number of ways 4 boys and 3 girls can be seated in a row so that they are alternate is:
a. 12
b. 288
c. 144
d. 256

Three girls and five boys are to be seated in a row so that no girls sit together.
Total number of ways of this arrangement are
a. 120
b. 14400
c. ${ }^{5} P_{3}$
d. $3!\times 5$!

