

Ratios

• Ratio is a comparison of two similar attributes in same units.

	Ratio	
+	+	+
Multiplier	as a bridging element	Comparison

- Types of ratios:(a:b)
- 1. Duplicate $a^2:b^2$
- 2. Sub dupl. $\sqrt{a}:\sqrt{b}$
- 3. Triplicate a³:b³
- 4. Sub Tripl. ³√a: ³√b
- 5. Compound $(a:b,c:d) \rightarrow a \times c:b \times d$
- 6. Continued -->a: b: c (a: b, b: c)
- 7. Inverse → b:a

Proportion

- If two ratios are equal they are said to be in proportion.
- Each pair of ratio should have same units.

	Proportion	
+	+	+
Mean Proportion	Third Proportion	Fourth Proportion

$$b^2 = \sqrt{ac} \quad \frac{a}{b} = \frac{b}{c}$$

- Product of means= Prod of extremes
- Properties of Proportion {a:b}
- 1. Invertendo
- 2. Alternendo
- 3. Componendo
- 4. Dividendo
- 5 Componedo & dividendo $\frac{a+b}{a-b} = \frac{c+d}{c-d}$

Indices

- It is a power game..
- Properties:
- 1. $\sqrt[b]{a} = a^{\frac{1}{b}}$
- 2. $a^b a^c = a^{b+c}$
- 3. $\frac{a^{b}}{a^{c}} = a^{b-c}$
- 4. $(a \times b)^c = a^c \times b^c$
 - $(a+b)^c \neq a^c + b^c$
 - $(a-b)^c \neq a^c b^c$
- 6. $a^{b} = c \rightarrow a = c^{\frac{1}{b}}$
- 7. $a^b = a^c$ then Base same b = c power equate
- 8. Power same base equate

$$a^b = c^b \longrightarrow a = c$$

- 9. $\frac{1}{a^{-b}} = a^b, \frac{1}{a^b} = a^{-b}$
- $10 (a)^0 = 1.$

Logarithms

- Always assume base to be 10.
- Log $a + \log b = \log a \times b$
- O $\log a \log b = \log \frac{a}{b}$
- $omlog n = log n^m$
- $\bullet \quad a^{\log^{ax}} = x$
- O Shortcut:

Type no.

Type √19 times

Type -1 × 227695

Equations

General Form

1 variable ax + b = 0

2 Variables ax + by + c = 0

3 Variables ax + by + cz + d = 0

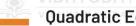
To get unique solutions

ODA No. of equations = No. of Variables DAY

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(Infinite Solution)

$$\frac{a_1}{a_2} \ge \frac{b_1}{b_2}$$


 $\frac{a_1}{a_2} \ge \frac{b_1}{b_2}$ [Unique Solution]

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

(No Solution)

Quadratic Equations

General Form

 $\bullet \quad ax^{2+}bx+c=0$

• if $\alpha \& \beta$ are roots then,

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

Sum of roots $(\alpha + \beta) = -\frac{b}{a}$

Product of roots $(\alpha\beta) = \frac{c}{a}$

The roots can be found out using,

$$x = \frac{-b \pm \sqrt{b^2 - 4ca}}{2a}$$

Nature of Roots depends on $D = b^2 - 4ac$

(a) D<0 Roots are imaginary

(b) D=0 Real and equal VID-YODAY

(c) D>0 and perfect square number real, distinct (unequal) and Rational

(d) D>0 and NOT a perfect square real distinct and Irratinal

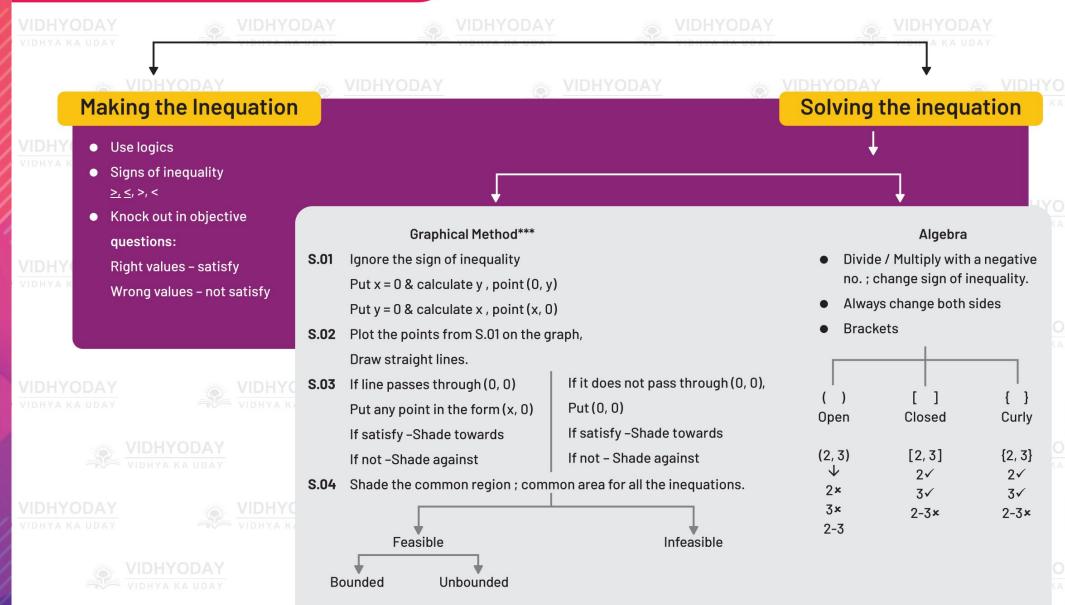
Cubic Equation KA

General Form

 $ax^3 + bx^2 + cx + d = 0$

Sum of roots $(\alpha + \beta + \gamma) = \frac{-b}{\alpha}$

Product of roots $(\alpha\beta\gamma) = \frac{-d}{a}$



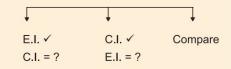
Linear In-equations

Time Value Of Money

Simple Interest

- $S.I. = \frac{pxrxt}{100}$
- A = P + S.I.
- 1 S. I. is not बेवफा! S.I. is always calculated on principal.
- 2 S.I. is constant for every year.
- 3 If Q. is चुपकी assume it to be of S.I.
- 4 Nature of r, t should be same
- 5 Time Scale में + P होगा

Compound Interest

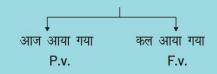

- Interest on Interest.
- O C.I. ≥ S. I.
- For the first period C.I. = S.I.
- $A = P \times (1+i)^n$
- \bullet C.I. = A P
- Nature of r & t is always same. Always focus on factor.
- Higher the compounding higher the amount.
- Time scale में × होगा
- WDV = H.V. \times (1 i)
- Doubling Period formula $T = 0.35 + \frac{69}{}$
- Tripling Period formula $T = 0.35 + \frac{111.111}{2}$

Effective Interest

E.I. = { एक साल का factor - 1} × 100

- Always assume t = 1 year
- Nature of r & t should be same.

Three types of Questions



Annuity

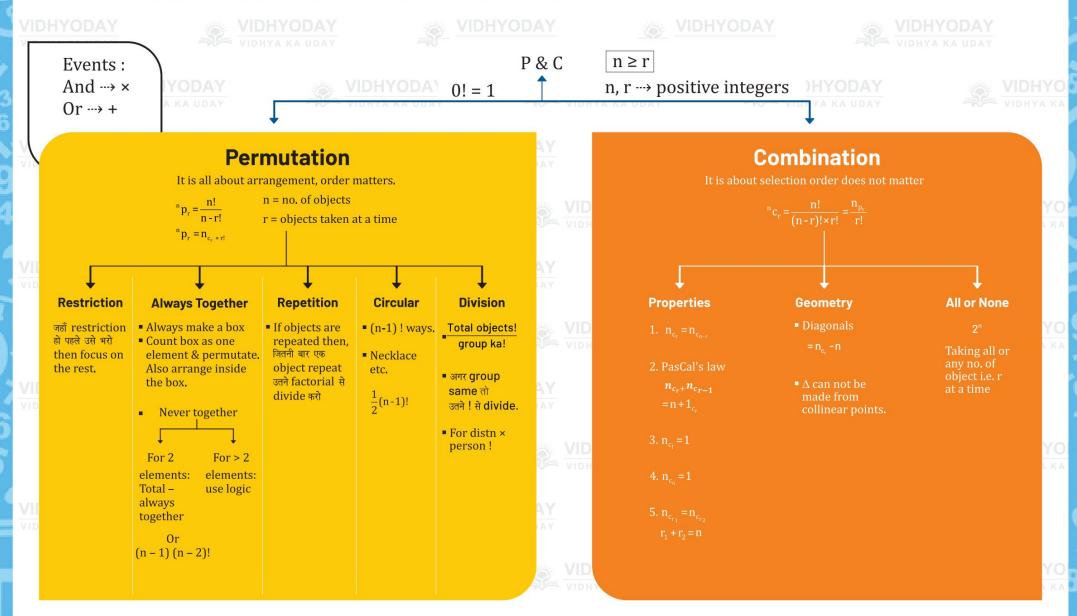
F.V. =
$$I \times \left\{ \frac{(1+i)^n - 1}{i} \right\}$$
 $I \div factor = n \text{ times GT}$

- Due: Starting from today → ans. × (1+i)
- Bulk amount

- 3 conditions for annuity.
 - Fixed Time Interval
 - Fixed Installments
 - Regular Payments

VIDHYODAY

VIDHYODAY


VIDIT OD

VIDHYODAY

Permutation & Combination



Sequence & Series

VIDHYODAY VIDHYA KA UDAY

AP / GP

Arithmetic Progression

VIDHY

- It is about adding the constant no. to the first term & again.
- Every no. is A.M. of its previous & succeeding no.
- First Term = a common difference = d
- VIDHY
- Variety -1 series : given value of term = ? Tn = a + (n-1) d
- Variety -2 series : given value = given n=?
- Variety 3 series : given sum =?
- Sn = $\frac{n}{2}$ {a+r} or $\frac{n}{2}$ {2a+(n-r)d}
- Variety -4 series: given sum = given no.?
- Variety 5 if two non consecutive term are given; $d = \frac{Tm - Tn}{m - n}$
- Variety 6 Insertion of A.M. 's between two no.'s results in A.P.
- Variety 7 Sum's machine

DHYODAY

ue of term = ?

- 7/2
- DHYODAY
- DHYODAY

Geometric Progression

- It is about multiplying the constant no. again.
- Every no. is GM of its previous & succeeding terms.
- First term -a common ratio = r
- Variety no. 1 n = given Tn = ? $Tn = ar^{n-1}$
- Variety 3 Series = given sum = ? = $s_n = \frac{ax(r^n - 1)}{r - 1}$ (r > 1) = $s_n \frac{a(1 - r^n)}{1 - r}$ If (r < 1)
- Variety 4 sum = given n=?
- Variety 5 calculation of r in two non consecutive; $r = \left(\frac{Tm}{Tn}\right)^{\frac{1}{m-n}}$
- Variety 6 Insertion of GM's
- Variety 7 Sum of infinity series.

=given Term = ?

Sets, Function & Relations

Sets

Relations

Function

Basics

"It is a well defined group of distinct objects."

Expression Roaster Set

Builder

• Cardinal no. = no. of

(Listing)

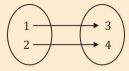
No. of subsets = 2ⁿ Proper subsets = 2ⁿ-1

elements in a set

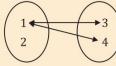
Types

- 1. Universal Set : contains all the objects.
- 2. Subset: every element of A is in B. ACB
- 3. Superset: every element of A is in B. BOA
- 4. Null Set: 0, 0 element.
- 5. Equal Set: Every element of A is in B & vice versa.
- 6. Equivalent Set :n (A) = n (B)
- 7. Power Set: Set of all subsets.

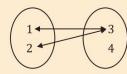
Basics


Types

Basics


Types

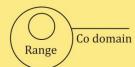
Every subset of a Cartesian product of A×B is called relation.

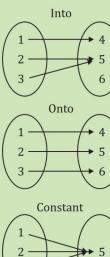

One to One

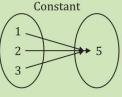

One to Many

Many to One

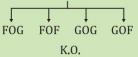
Many to Many




- Reflexive $A = \{1, 2, 3\}$ $R = \{(1,1)(2,2)(3,3)\}$ all a,a∈ R
- Symmetric $A = \{1, 2, 3\}$ $R = \{(1,2)(2,1)$ (2,3)(3,2)a,b∈ R then b,a∈ R
- Transitive $A = \{1, 2, 3\}$ $R = \{(1,2)(2,3)(1,3)\}$ a, b∈ R & b, c∈ R then, a,c∈ R
- S ✓ R ✓ T ✓ = Equivalence


"Every R is not F but every FisaR."

'No two ordered pairs should have same first element.'


> Domain = pre image Range = Image

Differential Calculus

Six Basic Rules of Differentiation

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = a^x \log_e a$$

$$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{a}^{\mathrm{x}}) = \mathrm{a}^{\mathrm{x}}\mathrm{log}_{\mathrm{e}}\mathrm{a} \qquad \qquad \frac{d}{dx}(constant) = 0$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(Logx) = \frac{1}{x}$$

Note:
$$\frac{d}{dx} \{ cf(x) \} = cf'(x)$$
 c being constant.

For Two Functions

$$h(x)=f(x) + g(x)$$

(Sum/Difference of function)

$$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$$

$$h(x) = f(x). g(x)$$

(Product of functions)

$$\frac{d}{dx}\{h(x)\} = f(x)\frac{d}{dx}\{g(x)\} + g(x)\frac{d}{dx}\{f(x)\}$$

$$h(x) = \frac{f(x)}{g(x)}$$

(Quotient of function)

$$\frac{d}{dx}\{h(x)\} = \frac{g(x)\frac{d}{dx}\{f(x)\} - f(x)\frac{d}{dx}\{g(x)\}}{\{g(x)\}^2}$$

Application of Differentiation

Average cost (AC or \overline{C}) = $\frac{Total\ Cost}{Out\ Put} = \frac{C(X)}{X}$

Average variable cost (AVC) = $\frac{Variable\ Cost}{Out\ Put} = \frac{V(x)}{x}$

Average Fixed Cost (AFC) = $\frac{Fixed\ Cost}{Out\ Put} = \frac{F(x)}{x}$

Marginal Cost: If C(x) the total cost producing x units then the increase in cost in producing one more unit is called marginal cost at an output level of x units and is given as

Revenue Function: Revenue, R(x), gives the total money obtained (Total turnover) by selling x units of a product. If x units are sold at 'P per unit, then R(x) = PX

Marginal Revenue: It is the rate of change in revenue per unit change in output. If R is the revenue and x is the output, then $MR = \frac{dR}{dx}$

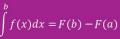
Profit function: Profit P(x), the difference of between total revenue R(x)and total Cost C(x). P(X) = R(x) - C(x)

Marginal Profit: It is rate of change in profit per unit change in dP output i.e. $\frac{dP}{dx}$

Slope of Curve: If y is any function then $\frac{dy}{dy}$ represent the slope of tangent to the curve.

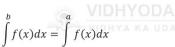
Intergal Calculus

6 Basic Rules of Integration

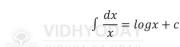


$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$$

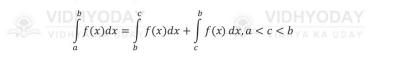
 $\int dx = x + c, since \int 1 dx = \int x^0 dx = \frac{x^1}{1} = x$ VIDHYA KA UDAY


b'is called the upper limit and 'a'the lower limit of integration.

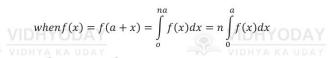
Important Properties of Definite Intergal



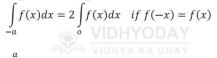
$$\int e^{ax} dx = \frac{e^{ax}}{a} + C + C + C$$



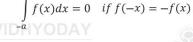
$$\int a^x dx = \frac{a^x}{\log_e a} + a$$



Integration By parts
$$\int uvdx = u \int v \, dx - \int \left[\frac{d(u)}{dx} \int v dx \right] dx$$



$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$$


$$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$$

Number Series & Coding-Decoding

Learn by Heart

Squares

$$1^2 = 1, 2^2 = 4, 3^2 = 9$$
-----upto $25^2 = 625$

Cubes

$$1^3 = 1, 2^3 = 8, 3^3 = 27$$
..... upto $15^3 = 3375$

What is "Method of Difference"?

Questions: 2, 5, 12, 27, 54, 97,?

$$Mod \rightarrow 2_5 12_27_54_97 160$$

 $3_7 15_27_43_63$
 $4 8 12 16 20$

VIDHYO VIDHYA KA

100	M. I			11.50	VIDILI	AINA	UDMI			7. 07	VID	11177 1	(A UD)	3.1
	1	2	3	4	5	6	7	8	9	10	11	12	13	
100	Α	В	С	D	E	F	G	Н	1	J	K	L	М	1
T.	Z	Υ	Х	W	٧	U	Т	S	R	Q	Р	0	N	
) A	26	25	24	23	22	21	20	19	18	17	16	15	14	Y
J D	ΑY		ā	N	VIDHY	AKA	UDAY			-30	= VID	HYAK	(A UD)	ΔY

Thumb Rule of Position

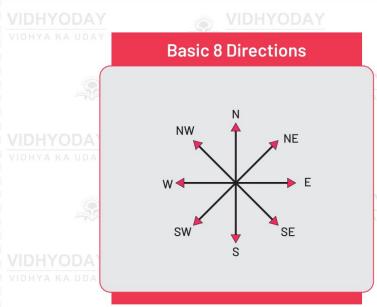
Alphabet Forward Position +
Alphabet Backward Position = 27

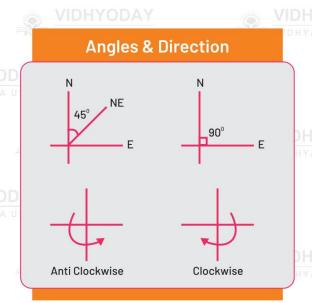
Forward Position = 9.

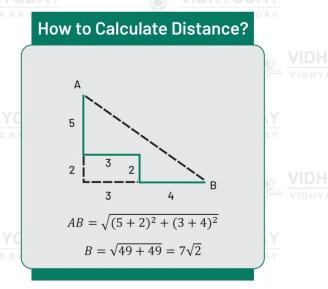
Backward Position = 27 - 9 = 18

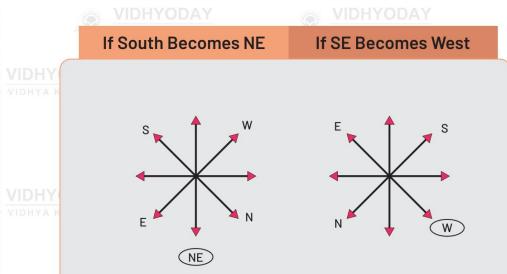
What is N Backward Position?

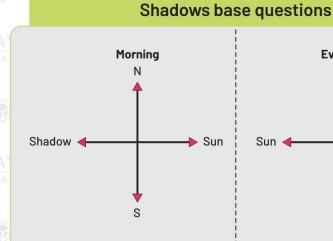
27 - 14 = (13) VIDHYODAY




Direction Test





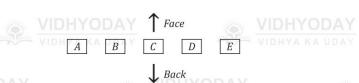




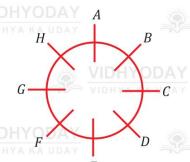
Seating Arragement

Circular Arrangement

5 People



6 People

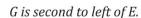


In the above arrangement

- \rightarrow B & A are to the left of C.
- \rightarrow D & E are to the right of C.
- \rightarrow B is immediate left of C.
- → There are two persons between A & D.
- \rightarrow D is third to the right of A.

4 People

DHYODAY



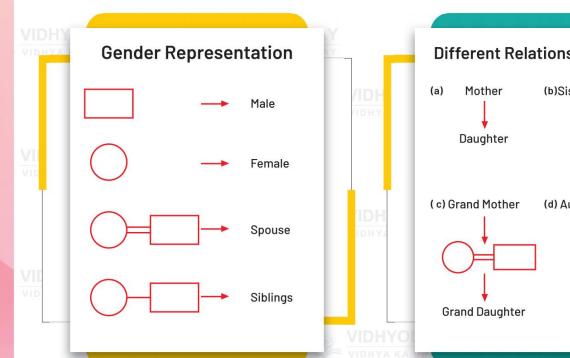
Note: Spacing between any two person should be same.

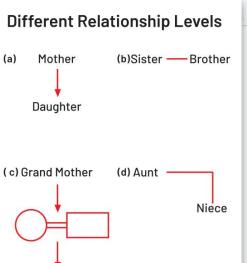
A is Diametrically opposite to E, H to D and so on

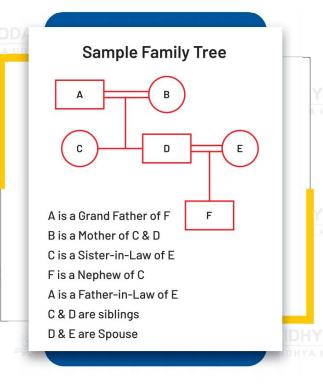
G is third to right of *B*.

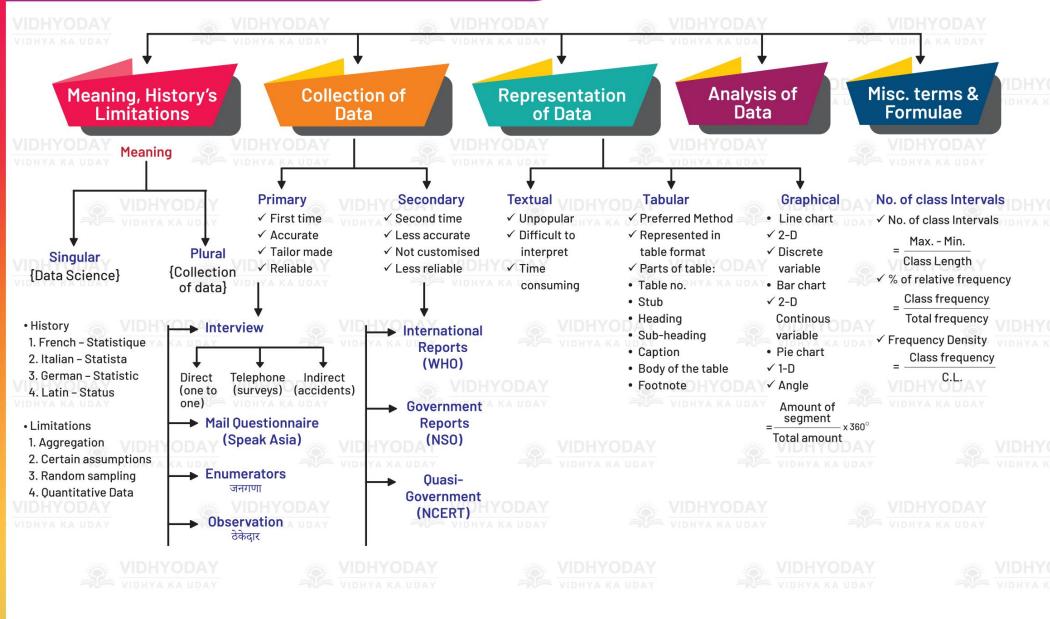
VIDHYA KA UDĀŢ

Blood Relations









Statistical Distribution of Data

Central Tendency

लवारिस Property

Δ of origin ✓

Δ of scale ✓

Δ of sign ✓

Ouantitative Average

 AM ≥GM≥HM · GM = √AM X HM

Relationship: Mode:3md-2X $m_0 - \overline{X} = 3(md - \overline{X})$

Positional Average

AM

- · Average formula = $\frac{\sum x}{n}$, $\frac{\sum fx}{\sum f}$, $\frac{\sum fm}{\sum f}$,
- Properties
- 1. A.M. is the most popular measure of CT.
- 2. Sum of deviations from A.M. is always 0. $\sum X - \overline{X} = 0$
- 3. Combined A.M. can be calculated.

$$\overline{X}_{12} = \frac{\overline{X}, n, +\overline{X}_2 n_2}{n_1 + n_2}$$

4. Mean can be calculated using assumed mean formula

$$\bar{X} = A + \frac{\sum d}{n}$$

- 5. A.M. can not be represented graphically.
- 6. $\sum (X \overline{X})^2 = \min \min$

GM

- · GM is best measure of CT for ratios & percentages.
- · Formula Individual

$$(axbac...)\frac{1}{n}$$

Discrete

$$\left(\mathbf{X} \frac{\mathbf{f}^1}{-} \mathbf{x} \mathbf{X} \frac{\mathbf{f}^2}{2} \dots \mathbf{X} \frac{fn}{n}\right) \frac{1}{\sum n}$$

Continuos

$$(M_1^{f1} \times M_2^{f2} \dots)^{\frac{1}{\sum f}}$$

HM

- · Used for variables having reciprocal relationship
- Formula Individual

$$HM = \frac{n}{\frac{1}{X1} + \frac{1}{X2} \cdot \dots \cdot \frac{1}{Xn}}$$

Discrete

$$HM = \frac{\sum f}{\frac{f1}{X1} + \frac{f2}{X2} \dots \frac{fn}{Xn}}$$

$$HM = \frac{\sum f}{\frac{f1}{m1} + \frac{f2}{m2} \dots \frac{fn}{m_n}}$$

- आवन जावन 0 is imp
- · HM is the reciprocal of AM
- · Combined HM

$$=\frac{n1+n2}{\frac{n1}{HM1}+\frac{n2}{HM2}}$$

MEDIAN

- · Individual इधर से काटो, उधर से काटो, बीच में जो बचा वो median
- Discrete

$$S.01\frac{N}{2}$$

$$\mathrm{S.01} rac{\mathrm{N}}{2}$$
 को Locate करो in C.F.

- S.03 आगे वाला is median
- Continuos
 - S.01 follow discrete

S.02
$$M_a=1 + \left\{\frac{\frac{N}{2} - C}{F}\right\} x H$$

- · Md is not affected by extremities of the observations
- · Sum of absolute deviation from median is minimum.

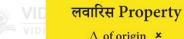
$$\sum |x-xmd| = \min$$

- · Calculated through Ogive.
- · Partition Values

Value =
$$\begin{bmatrix} orderX \\ 4/10/100 \end{bmatrix}$$
 th term

Ouartiles Deciles Percentiles

· Best for open' end classification


MODE

- Individual Most repeated no.
- Discrete
- No. with highest frequency
- Continuos
- Find out model class & use.

$$MO = 1_1 + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

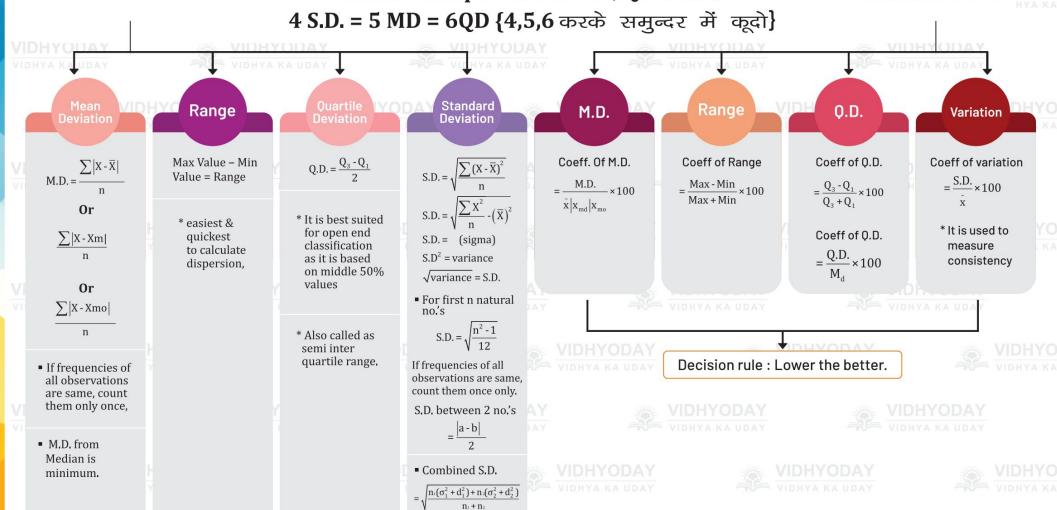
- · It is not uniquely defined.
- · Calculated using Histogram.
- Mode Unimodel Bimodel Multimodel

Measures of Dispersion

△ of origin ×

△ of scale ✓

Relative MOD


Champions वाला Chart

△ of sign ×

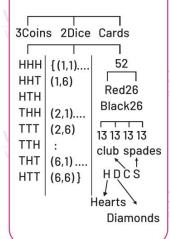
[Measures of Dispersion] "Second order of averages"

Absolute MOD

Relationship Between MD, QD & S.D.

 $\mathbf{d}_1 = \overline{\mathbf{X}}_{12} - \overline{\mathbf{X}}_1$ $d_2 = \overline{X}_{12} - \overline{X}_2$

Probability


Basics

$$P(A) = \frac{Fav.}{Total}$$

Odds in favour = m:n

Odds in against = n : m

$$P(A) = \frac{m}{m+n} P(\bar{A}) = \frac{n}{m+n}$$

Terminology

- Exp. = कीडे करना
- Random Exp = outcome is not know
- Exhaustive = ूरी दुनिया
 Union = 1
- Equally likely = सब बराबर P(A) = P(B)
- Mutually Exclusive ਸਲਗੀ = 0 P(A∩B)=0
- Sure event
 P(A)=1
- Impossible Event P(A) = 0
- Dependent = formula P(A∩B) = P(A) × P(B/A)
- Independent ਸ਼ੁਝਾਲੀ = P(A) × P(B)

P&C

- Mostly combination (balls, cards, committee, geometry figures etc.)
- Fav. Total
- Fav = with restrictions
- Total = w/o restriction

Exp. Value

- Nothing but weighted avg.
- E(x) = ∑ px
- Sum of probability = 1
 ∑ p = 1
- अगर bracket में x के अलावा expression है तो change x.
- Properties:
 E(x±y) = E(x) ± E(y)
 E(Kx) = KE (x)
 E(x÷y) = E(x) / E(y)
 E(x×y) = E(x) × E(y)
- Variance
 E[X-e(X)]²

Venn Diagram

1) A∪B = A+B-A∩B

2) A∩B

Dependent Independent

A×B

3) Only A

A - A∩B

4) Only B B - A∩B

5) $\overline{A \cap B}$ = $\overline{A} \cup \overline{B} = 1 - A \cup B$ $\overline{A} \cup \overline{B} = 1 - P(A \cup B)$

6) <u>AUB</u>

 $\bar{A} \cap \bar{B} = 1 - P(A \cup B)$

7) A^c = 1- A

8) $B^{c} =$

Conditional Probability

Probability of A when B has already occurred P(A/B)

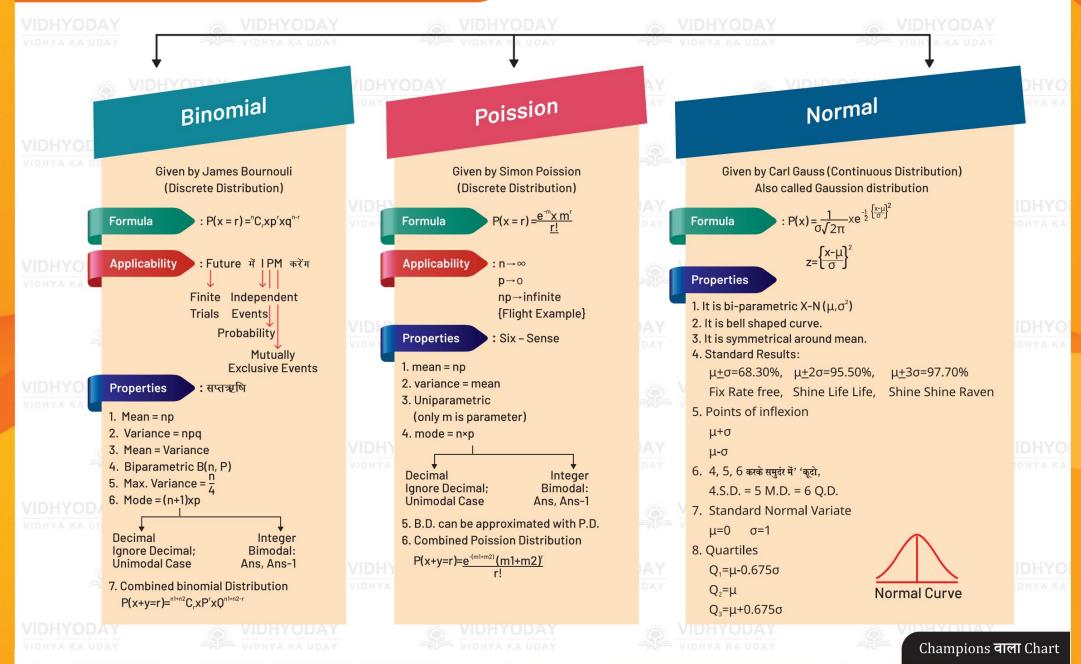
 $=\frac{P(A\cap B)}{P(B)}$

For e.g. $P(\bar{A}/\bar{B})$ $=\frac{P(\bar{A}\cap\bar{B})}{\bar{B}}$

P(B)

 $\frac{=1-P(A\cap B)}{1-P(B)}$

VIDHYODAY VIDHYA KA UDAY

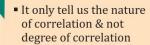


Theoretical Distribution

Correlation

लवारिस Property

- △ of origin ×
- △ of scale ×
- △ of sign ✓



Scatter

Diagram

Five Diagrams

$$r = -1$$

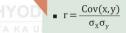
$$r = 0$$

- Correlation of Straight line is always +1 or -1. It depends upon the
- Equation of a Straight
- Proportion --> decides 1 or not direction --> decides +

Rank Correlation

$$r_0 = 1 - \frac{6\sum d^2}{n^3 - n}$$

n= no. of observations. d = difference of ranks


- Sum of difference of ranks is always 0.
- If ranks are exactly opposite then r = -1.
- Even if ranks are reversed, it remains same.

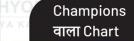
Concurrent Deviation

$$r_c = \pm \sqrt{\pm \frac{2c - m}{m}}$$

- If there is negative no inside the root, r is going to be negative.
- m = no. of observationscompared = n - 1.
- c = no. of concurrent deviation (+'s)

Karl Pearson

- $\frac{n\Sigma xy \Sigma x\Sigma y}{\sqrt{n\Sigma x^{2-}(\Sigma x)^2} \sqrt{n\Sigma y^2 (\Sigma y)^2}}$
- Cov(x,y)


$$=\frac{\Sigma(X-\overline{X})(Y-\overline{Y})}{n}$$

- Cov (X, Y) desides the nature of correlation -
- -1≤r≤+1
- n is a pure no. (unit free).
 - Coefficient of determination = 1- r² (Unexplained variance)
 - P.E.= $\frac{0.675\sqrt{1-r^2}}{r}$

Product Moment

correlation (nick name) Useful for variables having only linear relationship.

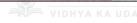
- direction between x & y.
- Line is ax + by = c
- or -

We take Online Classes Separately from Our studios.

Regression

∆ of origin ×

△ of scale ✓


 Δ of sign \checkmark

Regression **Equations**

- Unlike r, it tells us the exact increase in price of y if x is increased or vice versa.
- · There are two equations: 1. Y on $x \rightarrow to$ calculate y.
 - 2. X on y \rightarrow to calculate x.
- Y on $x \rightarrow Y \overline{Y} = byx(X \overline{X})$ X on $y \rightarrow X - \overline{X} = bxy(Y - \overline{Y})$
- byx= $r \frac{\sigma y}{\sigma y}$ (जो पीछे है वो नीचे है।)

$$bxy = r \frac{\sigma x}{\sigma y}$$

Popular Questions:

- 1 Lines = given slope = ?
- 2 Lines = given r = ?
- 3 Slopes = given r = ?
- 4 Lines = given mean = ?
- 5 पहचान कौन?

- 1) Regression lines intersect each other at $(\bar{X} \bar{Y})i.e.$ mean. (K.0.)
- 2) Correlation coefficients is GM of regression coefficient. $r = \sqrt{b_{yx} \times b_{xy}}$
- 3) The product of regression coefficients should be ≤ 1 . $b_{vx} \times b_{xy} \le 1$
- 4) If one coefficients is greater than unity the other should be less than unity.
- 5) byx, bxy & r are all of same sign.
- 6) Regression lines are made using least squares deviation method.
- 7) लावरिस Property : Δ of origin $\times \Delta$ of scale $\checkmark \Delta$ of sign \checkmark
- 8) r = 0 regression lines are perpendicular, if $r \pm 1$, lines will coincide.
- 9) पहचान कौन?
 - S.01 Calculate $b_{yx} \& b_{xy} \le 1$ By assuming one line as Y on x & another as x on y.
 - S.02 Check if $\sqrt{b_{yx} \times b_{yy}} \le 1$
 - S.03 Yes \rightarrow assumption is true. No \rightarrow opposite is true.

CY value, when B.Y value is assumed to be 100. E.g. Sensex (1978-79) Index no. is a pure no.

AIDHAV KV III

Simple Method

$$P_{01} = \frac{\sum P_1}{\sum P_0} \times 100$$

$$I = \frac{\sum I_R}{n}$$

$$I_{R} = \frac{P_1}{P_0} \times 100$$

Weighted Method

$$\left[\frac{\sum P_1 W}{\sum P_0 W} \right]_{\perp}$$

$$Laspeyer = \frac{\sum P_1 q_0}{\sum p_0 q_0}$$

(Base year Q.)

$$Passche = \frac{\sum P_1 q_1}{\sum p_0 q_1}$$

(Current year Q.)

*** (Ideal)

$$\downarrow$$
Fishers = $\sqrt{\text{La} \times \text{Pa}}$

Dorbish & Bowley =
$$\frac{\text{La} \times \text{Pa}}{2}$$

Marshall Edgeworth

$$P01 = \frac{\sum P_{1} \left(\frac{q_{0} + q_{1}}{2} \right)}{\sum P_{0} \left(\frac{q_{0} + q_{1}}{2} \right)}$$

Walsh
$$\left(\sqrt{P_{01}}\right) = \frac{\sum P_1 \sqrt{q_0 q_1}}{\sum P_0 \sqrt{q_0 q_1}}$$

Weight =
$$\sqrt{q_0 q_1}$$

(kelly) =
$$\frac{\sum P_1 q}{\sum P_0 q}$$

Special Points

43	TT ' '. C
1)	Unit test unit free
	satisfied by all.

Test

- 2) Time Reversal Test $P_{01} \times P_{10} = 1$ Kelly MEW
- Kelly, MEW, Fishers Simple aggregative Satisfy TRT
- 3) Circular Test 0 2 0 Extension of TRT 1 $P_{01} \times P_{12} \times P_{20}$

Fisher ×

- Kelley ✓
- aggregative ✓
- 4) Factor Reversal $P_{01} \times q_{01} = v_{01}$

Fisher's
$$\checkmark$$

$$v_{01} = \frac{\sum P_1 q_1}{\sum P_2 q_2} \times 100$$

Base Shifting Salary & CBI 0.'s

CBI

- (Index No 100) = Inflation %
- Deflated value mean B.Y. dh value

Inflation

Deflation

 $= \frac{\text{C.Y.Value}}{\text{C.Y.Index}} \times 100$

- C.Y.Salary C.Y.Index
- $= \frac{LR \times PYCBI}{100}$ C.Y.Index $LR = \frac{CYPrice}{Prev.Price} \times 100 = B.Y. की Salary$
 - B.Y.Salary B.Y.Index C.Y.Index
 - = C.Y. की Salary
 - Today' salary

 should
 have been =
 Real gain.
 - Should have been –Today's salary = D.A.