

CA. PRANAV POPAT

FORMULA MARATHON STATS SESSION LINK:

https://www.youtube.com/watch?v= XXv5wRqso7w

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

	Class Boundary			
Formula	Mutually Exclusive	UCB		
	Classification			
1		LCB		
_	Mutually Inclusive	UCB		
	Classification	LCB		
	 Mid-Point / Class Mark of Class I			
Formula	What office class wark or class t	interval.		
2				
Formula	Class Length / Width of Class / Si	ze of Class:		
3				
Formula	Frequency Density of a Class:			
4				
	Relative Frequency:			
	mental of requestory.			
Formula				
5	Percentage Frequency:			
	AM of Discrete Distribution/Serio	es:		
Formula				
6				
	AM of Frequency Distribution:			
Farmenta				
Formula 7	In case of ungrouped distribution	on x = individual value		
,	In case of grouped frequency			
	distribution	· ·		
	AM using assumed mean / step	deviation method		
Formula				
8	4			
	where $d = \frac{x - A}{C}$, A is assumed mean, C is class length			
Formula	The algebraic sum of deviations	of a set of observations from their AM is		
9				

Formula 10	Combined	I AM:						
	Median in	case of discre	te distribu	tion				
Formula	If number of observations are odd			Median is				
11	If number of observations are even			Median is				
	Same forr	nula is used for	ungroup	ed fre	quency d	istributi	on	
	Median in	case of group	ed frequei	ncy dis	stribution	1		
	Step 1	Prepare a less	than type	cumi	ulative fr	equency	distribution	
	Step 2	Calculate $\frac{N}{2}$ and check between which class boundaries it						
	falls and call it as Median Class							
Formula			N _u		N		С	
12	Step 3	LCB of Median Class	Cum F of Med	•	Cum. Fi Pre-M	•	Class length of Median	
			Clas		Cla		Class	
	Step 4	Appy Formula						
	For a set of	of observations	, the sum	of abs	solute de	viations	is	
Formula								
13								
	when the $\sum (x - \overline{x}) = 0$	deviations are is	taken fro —	m the	median.			
		in case of discr				_,		7
Formula 14		Quartile	Secon				ird Quartile	-
14	$Q_1 = (n - 1)$	$+1)\times\frac{1}{4}$ term	$Q_2 = \left((n - 1)^2 \right)$	+1)× ² / ₄	term	$Q_3 = \bigcup$	$(n+1)\times\frac{3}{4}$ term	

	Note: above formula gives the term. Final value to be calculated based on				
	the term				
	Deciles in case of discrete observations:				
	First Decile	Second	Decile	Nint	h Decile
Formula 15	$D_1 = \left((n+1) \times \frac{1}{10} \right)^{th} term$	$D_2 = \left((n+1) \times \right)$	$\left(\frac{2}{10}\right)^{th}$ term	$D_9 = \left((n+1)^{n+1} \right)$	1)× $\frac{9}{10}$) th term
	Note: above formula gives the term. Final value to be calculated				lated based on
	the term				
	Percentiles in case of discrete observations:				
_	First Percentile	Second Po			ercentile
Formula 16	$P_1 = \left((n+1) \times \frac{1}{100} \right)^{th} term$				
	Note: above formula giv	es the term. I	Final value t	o be calcu	lated based on
	the term				
	Quartiles in case of Grou	•	cy Distribut	ion: Steps	are like
	median with few modifications.				
	1 st Quartile 3 rd Quartile Find Q ₁ class using Find Q ₃ class using				
Formula	N			using	
17	$\left \frac{n}{4} \right $		3N 4		
		$\left(\frac{N}{N}-N_{\perp}\right)$	$\left(\frac{3N}{2}\right)$	_N.)	
	$Q_1 = I_1 +$	$\left(\frac{\frac{N}{4}-N_1}{N_u-N_1}\right) \times C$	$Q_3 = I_1 + \left \frac{4}{N_u} \right $	$\frac{1}{-N_1} \times C$	
			5::::)	111
	Beenes in ease of Groupea Frequency Bistinguiton, Steps are like interior				
	with few modifications.	Decile	Oth D	ocilo	7
		class using	9 th D	c using	-
Formula	N N	lass asing	9N	3 dailig	
18	$\frac{1}{10}$		10		
	D =1 1	$\left(\frac{N}{10}-N_{I}\right)\times C$		$\left(\frac{1}{2} - N_1 \right)$	
	$D_1 = I_1 + $	$\overline{N_{u}-N_{l}}$	$D_9 = I_1 + \sqrt{\frac{N_u}{N_u}}$	$\overline{-N_1}$	
				s are like	
				_	
Formula				_	
19	<u> </u>	lass using	Find P ₉₉ clas	s using	
	$\frac{N}{100}$		99N		
	100		10		

	(N) (OON)			
	$P_1 = I_1 + \left(\frac{\frac{N}{100} - N_1}{N_u - N_1}\right) \times C \qquad P_{99} = I_1 + \left(\frac{\frac{99N}{10} - N_1}{N_u - N_1}\right) \times C$			
Formula 20	Mode in case of discrete observation: observation repeating for maximum no. of times or observation with highest frequency Note: There can be multiple modes also. If all observations are having same frequency, then there is no mode.			
Formula	Mode in case of grouped frequency distribution: Find Modal Class (Class with highest frequency) then apply below formula Mode =			
21	where, I_1 = LCB of modal class f_0 = frequency of modal class, f_{-1} = frequency of pre-modal class, f_1 = frequency of post modal class, f_2 = class length of modal class			
Formula 22	Relationship between Mean, Median and Mode in case of Symmetrical Distribution:			
Formula 23	Relationship between Mean, Median and Mode in case of moderately skewed distribution:			
Formula 24	Geometric Mean in case of discrete positive observations:			
Formula 25	Geometric Mean in case of frequency distribution:			
Formula 26	Harmonic Mean in case of discrete observations:			

Formula 27	Harmonic Mean in case of frequency distribution:		
Formula 28	Combined HM:		
Formula 29	When all the observations are identical / same When all the observations are distinct / different In General	Relationship	
Formula 30	Range in case of discrete observations: where L = Largest Observation, S = Smallest O	bservation	
Formula 31	Range in case of Grouped Frequency Distribution: L – S L = UCB of last class interval, S = LCB of first-class interval		
Formula 32	Coefficient of Range		
Formula 33	Mean Deviation in case of discrete observation where A is any appropriate central tendency		
Formula 34	Mean Deviation (in case of grouped frequency distributions) $MD_A = \frac{1}{N} \Sigma f x - A $		
	where A is any appropriate central tendency (as giveii)	

Formula	Coefficient of Mean Deviation:
35	
	Standard Deviation in case of discrete observations:
Formula 36	or shorter formula
	Standard Deviation in case of grouped frequency observations
Formula 37	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{N}} \text{ or shorter formula } \sigma_{x} = SD_{x} = \sqrt{\frac{\sum fx^{2}}{N} - (\overline{x})^{2}}$
Formula	Coefficient of Variation:
38	
Formula	If there are only two observations, then SD is half of range
39	
Formula	Standard Deviation of first n natural numbers:
40	
	Combined SD:
Formula	
41	
	$d_1 = \overline{x}_c - \overline{x}_1$ and $d_2 = \overline{x}_c - \overline{x}_2$
Formula	If all the observations are constant, then SD/ MD/ Range is
42	
Formula	Change of Origin and Scale: No effect of change of origin but affected by
43	change of scale in the magnitude (ignore sign) $SD_y = b SD_x$
	Note: same thing will apply to all the measures of dispersion

_	Quartile Deviation:
Formula 44	
Formula	Coefficient of Quartile Deviation:
45	
F	Relationship between SD, MD and QD
Formula 46	4SD=5MD=6QD OR SD:MD:QD=15:12:10
Formula	Posis Famous as Bashakilia $P(A) = \frac{No. \text{ of favorable events to } A}{P(A)}$
47	Basic Formula of Probability: $P(A) = 16000000000000000000000000000000000000$
Formula	Odds in favour of Event A:
48	
	Odds against an Event A:
Formula	Odds against an Event A.
49	
	Number of total outcomes of a random experiment:
Formula 50	If an experiment results in p outcomes and if it is repeated q times, then Total number of outcomes
30	Total fluffiber of outcomes
Formula	Relative Frequency Probability
51	no. of times the event occurred during experimental trials $=\frac{f_A}{r}$
	total no. of trials n
Formula	Set Based Probability: $P(A) = \frac{\text{no.of sample points in A}}{\text{no.of sample points in S}} = \frac{n(A)}{n(S)}$
52	here A is Event Set and S is Sample Space
Formula	Addition Theorem 1: In case of two mutually exclusive events A and B
53	$P(A \cup B) = P(A + B) = P(A \text{ or } B) =$
	Addition Theorem 2: In case of two or more mutually exclusive events
Formula	P (A ₁ U A ₂ U A ₃ U) =
54	. ()

Formula	Addition Theorem 3: For any two events
55	$P(A \cup B) =$
	Addition Theorem 4: In case of any three events
Formula	$P(A \cup B \cup C) =$
56	
	Conditional Probability of Event B when Event A is already occurred
Formula	
57	provided P(A)≠0
	Conditional Probability of Event A when Event B is already occurred
Formula 58	
30	provided P(B)≠0
	Compound Theorem: In case of two dependent events
Formula 59	$P(A \cap B) = P(B) \times P(A/B)_{or}$
39	$P(A \cap B) = P(A) \times P(B/A)$
	Compound Theorem: In case of two independent events
Formula 60	
	Expected value of a Probability Distribution:
Formula 61	E(v)
01	Also 5(1) (horo moons moon of probability distribution)
	Also, $E(x) = \mu$ (here μ means mean of probability distribution) Variance of Probability Distribution:
Formula	$V(x) = E(x - \mu)^2 =$
62	
F	Probability Mass Function in case of Binomial Distribution:
Formula 63	f(x) = P(X = x) =

	Mean of Binomial Distribution:		
	$\mu =$		
Formula			
64	Variance of Binomial Distribution:		
	σ^2		
	Made in second Birewick Birtike tions		
	Mode in case of Binomial Distribution: Step 1 Calculate (n+1)p		
Formula	Calculate (** * =/p		
65	Step 2A If $(n+1)p$ is an integer, there will be two modes: $\mu_0 = (n+1)p$ & $[(n+1)p-1]$		
	Step 2B If $(n+1)p$ is a non-integer, there will be only one mode:		
	μ_0 = largest integer contained in (n+1)p		
_	Probability Mass Function in case of Poisson Distribution:		
Formula 66	f(x) = P(X = x) =		
00			
	Mean of Poisson Distribution: $\mu = m$		
Formula	Variance of Poisson Distribution: $\sigma^2 = m$		
67			
	SD of Poisson Distribution: $\sigma =$ Mode in case of Poisson Distribution:		
Formula	If m is an integer there will be two modes: $\mu_0 = m\&m-1$		
68	If m is a non- there will be only one mode: largest integer		
	integer contained in m		
	Probability Density Function in case of Normal Distribution		
Formula 69	1 $\left(\frac{x-\mu}{\sigma}\right)\frac{1}{2}$		
09	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{2}}$		
Formula 70	Mean Deviation in case of Normal Distribution: $MD = \sigma$		
70	Mean Deviation in case of Normal Distribution:		
	Quartiles in case of Normal Distribution:		
Formula 71	$Q_1 =$		
71	$Q_1 = Q_3 = Q_3 = Q_4$		
	كت ا		

Formula 72	Quartile Deviation in case of Normal Distribution: $QD = 0.675\sigma$		
Formula 73	Points of Inflex of Normal Curve:		
Formula 74	In case of Normal Distri QD: MD: SD = 10		
Formula 75	Conditions of Standard	Normal Distribution: Mean = 0, SD = 1	
Formula 76	Z Score:		
Formula 77	Area under Normal Cur From To Area u μ $\mu+\sigma$ $\mu+\sigma$ $\mu+2\sigma$ $\mu+2\sigma$ $\mu+3\sigma$ $\mu+3\sigma$ $+\infty$	ve (Popular Intervals) Inder Normal Curve Probability 34.135% 13.59% 2.14% 0.135%	
Formula 78	For a p×q bivariate frequency distribution: Number of cells Number of marginal distributions Number of conditional distributions		
Formula 79	Karl Pearson's Product Moment Correlation Coefficient:		
Formula 80	Covariance between two variables:		

	Spearman's Rank Correlation Coefficient:
Formula 81	here d means difference in ranks of both variables
Formula 82	Spearman's Rank Correlation Coefficient (in case of tied values) $r_{R} = 1 - \frac{6\left(\Sigma d^{2} + A\right)}{n(n^{2} - 1)} \text{ here A is adjustment value}$ $A = \frac{\Sigma\left(t^{3} - t\right)}{12} \text{ where t = tie length (calculate t value for each of the ties)}$
Formula 83	where c is number of concurrent deviations (same direction) m is number of pairs compared (equals to n-1)
Formula 84	Regression Coefficients: Y on X: X on Y:
Formula 85	Correlation Coefficient is the GM of regression coefficients: Note: r_{xy} , b_{xy} , b_{yx} all will have same sign

	Change of Origin/ Scale for Regression Coefficients: Origin no impact,
	Scale impact of both magnitude and sign.
Formula	$b_{vu} = b_{yx} \times \frac{\text{change of scale of y}}{\text{change of scale of x}}$
86	vu yx change of scale of x
	$b_{uv} = b_{xy} \times \frac{\text{change of scale of x}}{\text{change of scale of y}}$
	change of scale of y
Formula 87	Two regression lines (if not identical) will intersect at the point
	Coefficient of Determination / Evaleined Variance / Assumted Variance
Formula 88	Coefficient of Determination/ Explained Variance/ Accounted Variance:
_	Coefficient of Non-determination/ Un-explained Variance/ Un-accounted
Formula 89	Variance:
89	
Formula	Price Relatives: $\frac{P_n}{P_0}$, Quantity Relatives: $\frac{Q_n}{Q_0}$, Value Relatives: $\frac{V_n}{V_0}$
90	
Formula	Simple Aggregative Index:
91	
	Simple Average of Relatives – Method Index:
Formula	$\sum \frac{P_n}{P_n}$
92	$\frac{P_0}{}$
	n
	Laspeyres Index (weight – base year quantity weight)
Formula	
93	
	×
	Paasche's Index (weight – current year quantity weight)
Formula	
94	

Formula 95	Marshall-Edgeworth Index (weight – sum of both current and base quantity) $\frac{\Sigma P_n \left(Q_0 + Q_n\right)}{\Sigma P_0 \left(Q_0 + Q_n\right)} \times 100$
Formula 96	Fisher's Ideal Index: GM of Laspeyres Index and Paasche's Index
Formula 97	Bowley's Index: AM of Laspeyres Index and Paasche's Index

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 7+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se)
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Ab mushkil nahi kuch bhi, nahi kuch bhi!!!

With Lots of Love

CA. Pranav Popat (P^2 SIR)

