Chapter 2

TIME VALUE OF MONEY

C A VINOD REDDY

| Amount $=$ Principle + Interest |
| :---: | :---: |
| Principle $=$ Amount - Interest |
| Interest $=$ Amount - Principle |

2. Why is interest paid? (in a commercial transaction)
3. Time Value of Money
4. Opportunity Cost
5. Inflation
6. Liquidity Preference
7. Risk Factor
8. Simple Interest $=$ $p \cdot n \cdot \gamma$

Amount $=\mathbf{P}+$ Simple Interest

$$
=p+p h \gamma=p(1+h \gamma)
$$

4. Compound Interest $=P\left[(1+\gamma)^{n}\right]-P=P\left[(1+\gamma)^{n}-1\right]$

$$
\text { Amount }=P\left[(1+\gamma)^{n}\right]
$$

5. With Simple Interest

Amount Invested	Amount at the end of years						
	$\mathbf{5}=\boldsymbol{x}$	$\mathbf{1 0}=\mathbf{2 x}$	$\mathbf{1 5}=3 \boldsymbol{x}$	$\mathbf{2 0}=4 x$	$\mathbf{2 5}=5 x$	$\mathbf{3 0}=6 \boldsymbol{x}$	$\mathbf{3 5}=\mathbf{7 x}$
	$\mathbf{2 P}$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$
\mathbf{P}	$\mathbf{3 P}$	$5 P$	$7 P$	$9 P$	$11 P$	$13 P$	$15 P$

6. With Compound Interest

Amount Invested	Amount at the end of years					
	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{2 1}$	$\mathbf{2 8}$	$\mathbf{3 5}$	$\mathbf{4 2}$
\mathbf{P}	$\mathbf{2 P}$	$4 P$	$8 P$	$16 P$	$32 P$	$64 P$
\mathbf{P}	$\mathbf{3 P}$	$9 P$	$27 P$	$81 P$	$243 P$	$729 P$
\mathbf{P}	$\mathbf{4 P}$	$16 P$	$64 P$	$256 P$	$1024 P$	$4096 P$

7. $A=50,00,000 ; r=12 \%$ p.a.S.I; $P=? ; \mathbf{n}=10$ years

Time Value of Money
8. $A=50,50,000 ; \mathbf{r}=13.50 \%$ p.a.S.I; $P=20,00,000 ; n=$ \qquad years

$$
\begin{aligned}
A & =p(1+n \gamma) \\
50,50,000 & =20,00,000[1+n \times 0.1350] \\
n & =11.2963 \text { years }
\end{aligned}
$$

9. $A=$? $; ~ r=18 \%$ p.a.S.I; $P=25,000 ; n=8$ years 3 months

$$
\begin{aligned}
A & =p(1+n \gamma) \\
& =25,000[1+(8.25 \times 0.18)] \\
& =F 62,125 /
\end{aligned}
$$

10. A sum of money doubles itself with compound interest in $\mathbf{1 0}$ years. How many times it will become after 40 years?

	After			
	sum invested	$10 Y$	$20 Y$	$30 Y$
P	$2 P$	$4 P$	$8 P$	$16 P$

11. Find the future value of ₹ $\mathbf{5 0 , 0 0 0}$ after 25 years @ $\mathbf{2 2 \%}$ p.a.C.I

$$
\begin{aligned}
A & =p(1+r)^{h} \\
\text { Future } & =\text { present } \times(1+\gamma)^{n} \\
\text { value } & =\text { value } \\
& =50,000 \times(1.22)^{25}=₹ 72,10,506 /
\end{aligned}
$$

12. Find present value of $₹ \mathbf{2 0 , 0 0}, 000$ receivable after 25 years if money is $\mathbf{1 8 . 5 0 \%}$ effective.

13. $\mathbf{A}=$? $; \mathbf{r}=14 \%$ p.a.C.Q; $\mathbf{P}=20,00,000 ; \mathbf{n}=3$ years 9 months

$$
\begin{aligned}
A & =P(1+\gamma)^{n}[3 \times 4+3 \\
& =20,00,000\left[1+\frac{0.14}{4}\right]^{3 \times 4} \\
& =20,00,000 \times(1.035)^{15}=\mp 33,50,698 /-
\end{aligned}
$$

14. $A=80,00,000 ; r=18.50 \%$ p.a.C.semiannually; $P=? ; \mathbf{n}=8$ years 6 months

$$
\begin{aligned}
A & =p(1+\gamma)^{n} \\
80,00,000 & =p\left(1+\frac{0.1850}{2}\right)^{8.50 \times 2} \\
80,00,000 & =p \times(1.0925)^{17} \therefore p=\sum 17,77,974 /-
\end{aligned}
$$

15.

Compounded	No. of conversion periods in a year
Annually	1
Semi-annually	2
Monthly	12
Quarterly	4
Weekly	52
Daily	365
Fortnightly	24

16. $\mathbf{P}=20,000 ; \mathbf{r}=\mathbf{2 0 \%}$ p.q.c.w; $\mathbf{n}=3$ months; $\mathbf{A}=$?

$$
\begin{aligned}
A & =p(1+\gamma)^{n} \quad 0.25 \text { years } \times 52 \\
& =20,000\left(1+\frac{0.20}{52}\right)^{13} \\
& =20,000 \times(1.00384615384) \\
& =₹ 21,023 /-
\end{aligned}
$$

Time Value of Money
17. $A=2,00,000 ; \mathbf{r}=18 \%$ p.a.C.Q; $P=80,000 ; \mathbf{n}=$ \qquad years

$$
\begin{aligned}
& A=P(1+r)^{h} \quad 4 n \mid \log 2.50=4 n \times \log 1.045 \\
& \begin{array}{l}
A=P(1+\gamma) \\
2,00,000=80,000\left(1+\frac{0.18}{4}\right)^{4 n}
\end{array} \\
& 2.50=(1.045)^{4 n} \\
& 4 n=\frac{\log 2.50}{\log 1.045} \\
& 4 n=\frac{0.39794541318}{0.01911 .616865}=5.20 \text { year } \\
& \text { 18. } A=20,00,000 ; r= \\
& \text { \% p.a.C.Q ; } \mathbf{P}=\mathbf{5 , 0 0 , 0 0 0 ; ~} \mathbf{n}=8 \text { years } \\
& \begin{array}{l}
A=p(1+r)^{n} \\
20,00,000=5,00,000\left(1+\frac{\gamma}{4}\right)^{8 \times 4} \therefore 1+\frac{\gamma}{4}=4^{1 / 32}
\end{array} \\
& 4=\left(1+\frac{\gamma}{4}\right)^{32} \\
& \gamma=17.709512968 \% \\
& \text { P.q.C.Q. }
\end{aligned}
$$

19. $1.01^{35}=$ \qquad

$$
\begin{aligned}
& 1.1025^{38}=\frac{40.7743202164}{1.10285^{45}=} \frac{81.8917474745}{1.1826^{90}=} 3592598.79256
\end{aligned}
$$

20. $A=P(1+r)^{n}$
$\mathbf{A}=$ Amount $=$ principle $+C I=$ sum invested + comp. interest
$\mathbf{P}=$ principle amt $=$ sum invested
$\mathbf{r}=$ Rate of interest of conversion period
$\mathbf{n}=$ No. of conversion periods
21. Discounting Factor $=1 \div(1+\gamma)^{n}$

Present Value $=$ (Future Value \times Discounting Factor)
How to find discounting factor on calculator? (For $n^{\text {th }}$ year)
$\Longrightarrow \frac{1}{(1+\gamma)^{n}} \Rightarrow 1 \div(1+\gamma)$ then press till step count comes ' $n+2$ '

22.

Simple Annuity is a series of payment / receipts where

25.

Effective Rate of Interest	Nominal Rate of Interest
$\mathbf{1 8 \%}$	$16.89865418 \quad 18.3$ \% p.a.c.q
$\mathbf{2 0 \%} \%$	\% p.a.c.monthly
$\mathbf{2 8 . 5 6 \%}$	$26.76860452 \underline{8} \%$ p.a.c. half yearly

(1) $0.18=\left(1+\frac{\gamma}{4}\right)^{4}-1 \quad \therefore\left(1+\frac{\gamma}{4}\right)^{4}=1.18 \quad 1+\frac{\gamma}{4}=1.18^{1 / 4}$

CA VINOD REDDY \| Maths Notes \| \quad vinod.reddy.ca@gmail.com
(2) $0.20=\left(1+\frac{\gamma}{12}\right)^{12}-1$
(3) $350.2856=\left(1+\frac{8}{2}\right)^{2}-1$
26. $\mathbf{1 8 . 5 0 \%}$ p.a.c.monthly is equivalent to $\gamma \quad \gamma \quad$ \% p.a.c.q

$$
\begin{aligned}
\left.1+\frac{0.1850}{12}\right)^{12}-1 & =\left(1+\frac{\gamma}{4}\right)^{4}-1 \\
\left(1.0154166666^{12}\right. & =\left(1+\frac{\gamma}{4}\right)^{4} \\
1.0154166666^{3} & =1+\gamma / 4 \quad \gamma=18.7867 \% \text { P.a.c.q. }
\end{aligned}
$$

27. I) $\mathbf{2 0 . 8 6 \%}$ p.a.c.q is equivalent to $\gamma \quad \%$ p.a.c. half yearly.

$$
\begin{aligned}
\left(1+\frac{0.2086}{4}\right)^{4}-1 & =\left(1+\frac{\gamma}{2}\right)^{2}-1 \\
1.05215^{4} & =\left(1+\frac{\gamma}{2}\right)^{2}
\end{aligned}
$$

$$
\gamma=21.4039245 \% \text { p.a.c. half yearly }
$$

II) 18.24% p.a.c.q is equivalent to $\mathrm{m} \%$ p.a.c. m (Find m .

$$
\begin{aligned}
& \text { \% p.a.c.q is equivalent to m \% p.a.c. mn Find m. } \\
& \begin{array}{c}
\left(1+\frac{0.1824}{4}\right)^{4}=\left(1+\frac{m}{12}\right)^{12} \\
1+\frac{m}{12}=(1.195259759)^{1 / 2} \\
1.0456^{4}=\left(1+\frac{m}{12}\right)^{12} \\
\hline
\end{array}
\end{aligned}
$$

28. a. Future Value of annuity regular $=$

$$
=\underset{\text { amount }}{\text { Periodical }} \times\left[\frac{(1+\gamma)^{n}-1}{\gamma}\right]
$$

b. Future Value of annuity due $=\frac{\text { periodical }}{\text { amount }} \times\left[\frac{(1+\gamma)^{n}-1}{\gamma}\right] \times(1+\gamma)$
29. Annuity Regular or or dinary annuity
payment/Receipt is at the end of every period the start of every period

Time Value of Money
30. Present Value of Annuity Regular = (Periodical Amount x Annuity Factor)
31. Present Value of Annuity Due $=($ Periodical Amount \mathbf{x} Annuity Factor) $\mathbf{x}(1+r)$

How to find annuity: $1 \div(1+\gamma)$ then $=$ till step count comes factor on calculator : $1-(1+2)$ then press GT
32. Mr. A invested ₹ 500 at the end of each year for $\mathbf{3 0}$ years. Find amount to be received at the end of $\mathbf{3 0}$ years, if money is $\mathbf{1 6 \%}$ effective.

$$
\begin{aligned}
\binom{\text { Future value of }}{\text { annuity regular }} & =\text { periodical amt } \times \frac{(1+r)^{n}-1}{\gamma} \\
& =₹ 500 \times\left(\frac{1.16^{30}-1}{0.16}\right)=\mp 2,65,156 /-
\end{aligned}
$$

33. A loan of $₹ \mathbf{8 , 0 0}, 000$ is to be repaid in 10 annual installments. Find amount of installment if interest rate is $\mathbf{1 2 \%}$ pa.
present value of annuity $=P \cdot A \cdot x$ Annuity factor $8,00,000=\begin{aligned} & \text { Installment } \times 5.6502230282,5 \\ & \text { ant }\end{aligned}$
Installment ant $=₹ 1,41,587$
34. A person desires to create a sinking fund to be invested @12\% p.a.c.I. by saving some amount at the end of each year for 30 years to buy house worth ₹ $\mathbf{3 0 , 0 0}, 000$.

$$
\begin{array}{r}
\text { Find amount to be saved at the end of each year. } \\
\longrightarrow \begin{array}{r}
\text { Future value } \\
\text { of annuity pegu. }
\end{array}=P \cdot A \cdot \times \frac{(1+\gamma)^{n}-1}{\gamma} \\
30,00,000=P \cdot A \cdot \times\left(\frac{1 \cdot 12^{30}-1}{0 \cdot 12}\right) \\
P \cdot A \cdot=12,431
\end{array}
$$

35. Rahul invested ₹ $\mathbf{7 0 , 0 0 0}$ in a bank at the rate of $\mathbf{6 . 5 0}$ \% p.a.S.I. he received ₹ $\mathbf{8 5 , 9 2 5}$
at the end of term. Find out the period for which the sum was invested by Rahul.

Time Value of Money

Comprehensive Revision
36. Kapil deposited some amount in a bank for $\mathbf{7} 1 / 2$ years $@ \mathbf{6} \%$ p.a.S.I. Kapil received ₹ $1,01,500$ at the end of term. Compute initial deposit of Kapil.

$$
\begin{aligned}
& \rightarrow \quad A=1,01,500, \gamma=6 \% P .9 . S . I, n=7.50 \text { years } P=? \\
& A=P(1+n \gamma) \\
& 1,01,500=P[1+(7.50 \times 0.06)] \\
& P=70,000 /
\end{aligned}
$$

37. A sum of $₹ \mathbf{4 6 , 8 7 5}$ was lent out at simple interest and at the end of 1 year and 8 months the total amount was ₹ $\mathbf{5 0 , 0 0 0}$. Find rate of interest pea.

$$
\begin{aligned}
& \Rightarrow p=46,875, A=50,000, n=1.6666666 \text { years } \\
& \gamma= \% \text { p.a.s.I. } \\
& A=p(1+n \gamma)[1+1.666666 \gamma] \quad \gamma=4 \% p . a . s . I . \\
& 50,000=46,875[1+
\end{aligned}
$$

38. What sum of money will produce $₹ \mathbf{2 8 , 6 0 0}$ as an interest in 3 years and 3 months @2.50\% p.a.S.I.

$$
\begin{aligned}
& p=? S I=28,600, n=3.25 \text { years, } r=2.50 \% \\
& S I=P \cdot n \cdot r \\
& 28600=p \times 3.25 \times 0.0250 \\
& P=F 3,52,000 /
\end{aligned}
$$

39. The sum required to earn monthly interest of $₹ 1,200$ at 18% p.a.S.I is :

$$
\begin{aligned}
& \text { SIfor 1 month }=1200 \\
& P \times n \times r=1200 \\
& P \times \frac{1}{12} \times 0.18=1200 \quad \therefore p=80,000 /
\end{aligned}
$$

40. Compute the compound interest on ₹ $\mathbf{4 0 , 0 0 0}$ for 1.5 years @10\% pea. compounded half yearly.

$$
\begin{aligned}
c I & =p\left[(1+\gamma)^{n}-1\right] \\
& =40,000\left[1.05^{3}-1\right]= \pm 6305 /-
\end{aligned}
$$

41. What rate of interest pa. doubles the investment in 7 years at compounded interest?

$$
\begin{array}{ll}
A=p(1+\gamma)^{n} & \therefore(1+\gamma)=2^{1 / 7} \\
2 p=p(1+\gamma)^{7} & \therefore \gamma=10.409736997 \% p .9 \\
(1+\gamma)^{7}=2 &
\end{array}
$$

42. In what time will ₹ 8,000 amount to ₹ 8,820 at 10% pa. compounded half yearly?

$$
\begin{array}{rlrl}
A & =p(1+r)^{n} \\
8820 & =8000\left(1+\frac{0.10}{2}\right)^{2 n} & \therefore 1.05^{2} & =1.05^{2 n} \\
1.1025 & =(1.05)^{2 n} & \ddots 2 n & =2 \\
& & n=1 \text { year }
\end{array}
$$

43. A certain sum invested at $\mathbf{4 \%}$ pea. compounded semi-annually amounts to ₹ 78,030 at the end of one year. Find the sum.

Time Value of Money
46. The compound interest on ₹ $\mathbf{4 0 , 0 0 0}$ at 10% pa. for 3 years when interest is payable quarterly is -

$$
\begin{aligned}
\text { compound interest } & =p\left[(1+\gamma)^{n}-1\right] \\
= & ₹ 40,000\left[\left(1+\frac{0.10}{4}\right)^{3 \times 4}-1\right] \\
& =40,000\left[1.025^{12}-1\right]=₹ 13,795.552968
\end{aligned}
$$

47. Use calculator and find answers for the following questions :

$$
\begin{aligned}
\begin{array}{l}
\text { 48. Present Value of } \\
\text { Annuity Regular }
\end{array} & =\left\{P . A \times\left[\frac{(1+r)^{n}-1}{r}\right]\right\} \times \frac{1}{(1+r)^{n}}=\left[\begin{array}{l}
\text { Future value } \\
\text { of annuity } \\
\text { factor }
\end{array},\right. \\
& =\frac{P . A}{r} \times\left[1-\frac{1}{(1+r)^{n}}\right] \quad=\frac{P . A}{r} \times\left[1-(1+r)^{-n}\right]
\end{aligned}
$$

present value of annuity Regular $=$ (P.A. X Annuity factor)
49. What is perpetuity?

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually.
present value of perpetuity $=$ (periodical amount $/ \gamma)$
50. The present value of annuity of ₹ 3,000 for 15 years @4.50\% p.a.c.i is

51. A loan of ₹ $\mathbf{1 0 , 0 0 0}$ is to be paid back in 30 installments. The amount of each installment to cover principle and 4\% p.a.c.i. is
a. 587.87
b. 587
c. 587.30
N. None of these
\qquad
52. A person invests ₹ 500 at the end of each year @10\% pea. The amount standing to his credit one year after he has made his yearly investment for $12^{\text {th }}$ time is:
a/11,761.36
b. 10,000
c. 12,000
d. None of these

$$
10692 \cdot 1418836+10 \%=11,761.36
$$

53. A person bought a house paying ₹ 20,000 cash down $\& ₹ 4,000$ at the end of each year for 25 years, at 5\% p.a.c.i. The cash down price of house is :
a. ₹ 75,000
b. ₹ 76,000
C.र 76,376
d. None of these
present value
$20,000 \quad \Longrightarrow \quad 20,000$
present value of $\Rightarrow 4000 \times 14.0939445646$
25 payment of $4000=56,376$
cash down price $=76,376$
54. The difference between simple interest and compound interest at 5\% pa. for

4 years on $₹ \mathbf{2 0 , 0 0 0}$ is

Time Value of Money

55 . The compound interest on half yearly rests on ₹ 10,000 , if rate for $1^{\text {st }}$ and $2^{\text {nd }}$ year being 6\% and for third year being 9\% pa. is ₹ \square
a. 2,200
b. 2,287
c. 2,285
d. None of these

$$
\begin{aligned}
& A=\left[10,000 \times(1.03)^{4}\right] \times 1.045^{2}=12,290 \\
& C I=12,290-10,000=2290
\end{aligned}
$$

56. Vinod borrows ₹ 6 lakhs housing loan at $\mathbf{6 \%}$ pa. repayable in 20 annual equal installments commencing at the end of first year. How much annual payment is necessary.
a. ₹ 52,420
b. ₹ $\mathbf{5 2 , 4 0 0}$
d. None of these
present value of annuity regular $=$ Install. x Annuity amt factor

$$
\begin{aligned}
& 6,00,000=\text { Inst. amt } \times 11.4699212174 \\
& \text { Instal.ant }=52,310
\end{aligned}
$$

57. Raja aged 40 years wishes his wife Rani to have $₹ \mathbf{4 0}$ lakhs at his death. If expectation of life is another 30 years $\&$ he starts making equal annual investments commencing now at 3\% c.i.p.a. How much should he invest annually?
a. 88,448
b. $\mathbf{8 4 , 4 5 0}$
c. $\mathbf{8 4 , 4 4 9}$
58. 84,080

59. A TV can be purchased by paying ₹ 10,000 now and ₹ 20,000 , ₹ 50,000 , ₹ 90,000 , ₹ $\mathbf{8 0 , 0 0 0}$ at the end of years $\mathbf{1 , 2 , 3 , 4}$ respectively. Find cash down price of TV if money is 12\% effective.
a. ₹ $1,83,816$
c. ₹ $\mathbf{1 , 8 6 , 2 1 8}$
d. ₹ $1,62,861$

payment		present value
10,000	Now	10,000
20,000	After Y1	$20,000 \times 0.89285714285=17857$
50,000	$Y 2$	39860
90,000	$Y 3$	64060
80,000	YA	50841
	cash down price	$1,82,618$

59. Effective rate of 21.94% is equivalent to \qquad \% p.a.c.monthly
a. 21.94\%
60. 20%
c. $\mathbf{2 0 . 6 6 \%}$
d. 22.77%

$$
\begin{aligned}
& \text { Eff. rate }=\left(1+\frac{\gamma}{n}\right)^{n}-1 \quad \therefore\left(1+\frac{\gamma}{12}\right)^{12}=1.2194 \\
& 0.2194=\left(1+\frac{r}{12}\right)^{12}-1 \quad r=20 \% . \text { P.a.C.m. }
\end{aligned}
$$

60. Out of certain money $(1 / 3)^{\text {rd }}$ is invested at $3 \%,(1 / 6)^{\text {th }}$ is invested at 6% and rest at $\mathbf{8 \%}$ for 2 years. Simple Interest from all these investments is ₹ 600 . The original sum is :
a. ₹ 3,500
b. ₹ $\mathbf{4 , 0 0 0}$
C. ₹ 5,000
d. ₹ $\mathbf{4 , 5 0 0}$

61. Population of a village is 10,000 . If it increases at 10% pa. What will be its population after 3 years?
62. 13,310
b. $\mathbf{1 4 , 2 2 0}$
c. 17,908
d. 13,000

$$
\begin{aligned}
A & =10,000 \times(1.10)^{3} \\
& =13,310
\end{aligned}
$$

62. On a certain sum simple interest at the end of 6.25 years become (3/8) of sum.

The rate of interest is \qquad
a. 7\%
b. 9%
c. 5%
a. 6%
\longrightarrow

$$
\begin{aligned}
S I & =p \cdot n \cdot \gamma \\
\frac{3}{8} \phi & =\varnothing \times 6.25 \times \gamma \\
0.06 & =\gamma
\end{aligned}
$$

63. The amount of certain sum of money with simple interest at certain rate of interest is ₹ 2,660 in 3 years and ₹ 3,100 in 5 years. The rate of interest is :
a. 12\%
D. 11%
c. ₹ 13%
d. 10\%

sum invested 2000 2220	2440	2660	2880	3100
	int. of 1 year $=220$			

Time Value of Money
64. At what rate of compound interest money will amount to 8 times in 20 years?
a. 12.75%
b. 11.22\%
d. None of these

$$
\begin{aligned}
\Longrightarrow A & =p(1+\gamma)^{n} \\
8 \nsim & =\varnothing(1+\gamma)^{20} \\
\therefore(1+\gamma) & =8^{1 / 20} \quad \gamma=10.959725861 \%
\end{aligned}
$$

65. At what rate of simple interest money will become 8 times in 20 years?
66. 35%
b. $\mathbf{4 0 \%}$
c. $\mathbf{3 0 \%}$
d. None of these

$$
\begin{aligned}
& A=p(1+n \gamma) \\
& 8 \phi=p(1+20 \gamma) \\
& 7=20 \gamma \quad \gamma=35 \%
\end{aligned}
$$

66. In what time ₹ $1,00,000$ will become ₹ $8,00,000$, If rate of interest is 10% p.a.s.i
a. 77 years
b. 7 years
c. 70 years
d. 17 years

$$
\begin{gathered}
8,00,000=1,00,000(1+n \times 0.10) \\
h=70 \text { years }
\end{gathered}
$$

67. A sum of money triples itself with compound interest in 9 years. How many times it will become after 81 years?
a. 27 times
b. 6,561 times
c. 81 times
68. 19,683 times
(
69. A machine costs $₹ 5,20,000$ with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value of realisation of $₹ \mathbf{2 5 , 0 0 0}$. What amount should be set aside every year if money is 3.50\% effective?
a. ₹ 16,000
b. ₹ 16,564
C. ₹ 16,046
d. ₹ 16,005
money required after 25 years $=(5,20,000+25 \%)-25,000$

$$
\begin{array}{r}
\text { P.A.x }\left(\frac{1.035^{25}-1}{0.035}\right) \\
\text { PA. }=16046
\end{array}
$$

$$
=6,25,000
$$

69. A sum of ₹ 80,000 invested in a bank @10\% p.a.s.i. for 5 years. Find amount, simple interest.

Year	Opening Balance (₹)	Interest (₹)	Closing Balance (₹)
$\mathbf{1}$	$0+80,000$	$80,000 \times 10 \%=8,000$	88,000
$\mathbf{2}$	88,000	$80,000 \times 10 \%=8,000$	96,000
$\mathbf{3}$	96,000	$80,000 \times 10 \%=8,000$	$1,04,000$
$\mathbf{4}$	$1,04,000$	$80,000 \times 10 \%=8,000$	$1,12,000$
$\mathbf{5}$	$1,12,000$	$80,000 \times 10 \%=8,000$	$1,20,000$

Amount receivable at the end of 5 years $=₹ 1,20,000$

$$
\begin{aligned}
\text { Simple interest for } 5 \text { years } & =\mp 1,20,000-₹ 80,000=\mp 40,000 \\
40,000 & =80,000 \times 5 \times 10 \% \\
S I & =p \cdot h \cdot \gamma
\end{aligned}
$$

$$
\begin{aligned}
\text { Amount } & =p+s I \\
& =p+p n \gamma=p[1+n \gamma]
\end{aligned}
$$

70. Mr. A deposited ₹ $\mathbf{8 0 , 0 0 0}$ in a bank @10\% p.a.c.i. for 5 years. Find amount receivable after 5 years and compound interest.

Year	Opening Balance (₹)	Interest (₹)	Closing Balance (₹)
$\mathbf{1}$	$0+80,000$	$80,000 \times 10 \%=8,000$	88,000
2	88,000	$88,000 \times 10 \%=8,800$	96,800
3	96,800	$96,800 \times 10 \%=9680$	$1,06,480$
4	$1,06,480$	10,648	$1,17,128$
5	$1,17,128$	$11,712.80$	$1,28,840.80$

Amount receivable at the end of 5 years $=1,28,840.80$
Compound Interest $=1,28,840.48-80,000=48,840.80$
$1,28,840.80=(80,000 \times 1.10) \times 1.10 \times 1.10 \times 1.10 \times 1.10$

$$
\begin{array}{rlrl}
1,28,840.80 & =80,000 \times(1+0.10)^{s} & C I & =p(1+\gamma)^{n}-p \\
A & =p(1+\gamma)^{n} & =p\left[(1+\gamma)^{n}-1\right]
\end{array}
$$

71. $P=₹ 1,00,000 ; r=12 \%$ p.a.c. $q ; n=2$ years, $A=$?

	Opening Balance (₹)	Interest (₹)	Closing Balance (₹)
Year 1 Q1	$1,00,000$	3,000	$1,03,000$
$\mathbf{Q 2}$	$1,03,000$	3,090	$1,06,090$
$\mathbf{Q 3}$	$1,06,090$	$3,182.70$	$1,09,272.70$
$\mathbf{Q 4}$	$1,09,272.70$	$3,278.181$	$1,12,550.881$
Year 2 Q1	$1,12,550.881$	$3,376.52643$	$1,15,927.40743$
$\mathbf{Q 2}$	$1,15,927.40743$	$3,477.822222$	$1,19,405.229652$
$\mathbf{Q 3}$	$1,19,405.229652$	$3,582.15688956$	$1,22,987.386541$
$\mathbf{Q 4}$	$1,22,987.386541$	$3,689.62159623$	$1,26,677.008137$

Amount to be received after 2 years $=p(1+\gamma)^{n} \quad 2 \times 4$

$$
\gamma=\text { Rate of interest }
$$

for the conv.period
$n=$ NO. of conversion periods

$$
\begin{aligned}
& =1,00,000\left(1+\frac{0.12}{4}\right) \\
& =1,00,000 \times(1.03)^{8}=\{1,26,677.008137
\end{aligned}
$$

Comprehensive Revision
72. You require $₹ \mathbf{3 2 , 0 0 , 0 0 0}$ at the end of 9 years from now. Find the amount you should keep aside at the end of every year, if money is 14% effective
a. ₹ $\mathbf{2 , 2 0 , 8 1 9}$
b. ₹ $\mathbf{3 , 0 0 , 0 0 0}$
c. ₹ $\mathbf{3 , 5 5 , 5 5 6}$
o. None of these

$$
\begin{aligned}
32,00,000 & =P \cdot A \cdot x\left(\frac{1 \cdot 14^{9}-1}{0.14}\right) \\
P \cdot A \cdot & =1,98,939
\end{aligned}
$$

73. Simple interest on ₹ $25,00,000$ for 8 years and 4 months @ 19.25% p.a.s.i is

$$
\begin{aligned}
S I & =p \cdot n \cdot r \\
& =25,00,000 \times 8 \cdot 333333333 \times 19 \cdot 25 \% \\
& =₹ 40,10,416 \cdot 666666
\end{aligned}
$$

74. A sum of ₹ $\mathbf{1 2 , 0 0 0}$ deposited at compound interest becomes double after 5 years. After 20 years it will become :
a. ₹ $1,44,000$
b. ₹ $\mathbf{2 , 4 0 , 0 0 0}$
o. ₹ $1,92,000$
d. None of these

After years				
	S	10	15	20
12000	24000	48000	96000	$1,92,000$

75. A man deposits ₹ 2,000 @ 4% pa. and ₹ 3,000 @ 14% pea. Find average rate of return he is earning on whole sum?
a. 10%
b. 5\%
c. 14%
d. None of these

$$
\begin{aligned}
₹ 2000 \times 4 \% & =₹ 80 \\
₹ 3000 \times 14 \% & =₹ 420 \\
₹ 5000 \longrightarrow 10 \% & >F 500
\end{aligned}
$$

 CA IND REDD |

Time Value of Money
Formulae
simple interest $=p \cdot n \cdot r$
Amount when int. is simple $=p(1+h \gamma)$
compound interest $=p\left[(1+\gamma)^{n}-1\right]$
Amount when int. is compound $=p(1+\gamma)^{n}$
Eff. rate of int $=\left(1+\frac{r}{n}\right)^{n}-1$
Future value $=$ present value $x(1+\gamma)^{n}$
$\begin{array}{ll}\text { present value }=\text { Future value } \times & \begin{array}{l}\text { Discounting } \\ \\ \text { Factor }\end{array}\end{array}$
Discounting Factor $=\frac{1}{(1+\gamma)^{n}}$
Future value of $=$ Periodical annuity regular $\times\left[\frac{(1+\gamma)^{n}-1}{\gamma}\right]$
Future value of $=\begin{gathered}\text { periodical } \\ \text { annuity due }\end{gathered} \times\left[\frac{(1+\gamma)^{n}-1}{\gamma}\right] \times(1+\gamma)$. or immediate
$\begin{aligned} & \begin{array}{l}\text { present value } \\ \text { of annuity regular }\end{array}=\left(\begin{array}{ccc}\text { Periodical } & \times & \text { Annuity } \\ \text { ant }\end{array}\right) \\ & \left.\begin{array}{lll}\text { present value }\end{array}\right) \\ & \text { of annuity due }\end{aligned}=\left(\begin{array}{ccc}\text { periodical } \\ \text { ant }\end{array} \times \begin{array}{ll}\text { Annuity }\end{array}\right) \times(1+\gamma)$ $\begin{aligned} & \text { present value } \\ & \text { of perpetuity }\end{aligned}=($ periodical amount $/ \gamma)$

How to find Discounting factor on calculator? (for $n^{\text {th }}$ year)

$$
1 \div(1+\gamma) \text { then press }=,=,=, \ldots \ldots
$$ till step count comes $(n+2)$

How to find Annuity factor on calculator? (for n years)
$1 \div(1+\gamma)$ then press $=,=, \ldots .$. till step count comes $(n+2)$ then press GT

$$
\text { Annuity }=\left[\begin{array}{c}
\left.\frac{1}{(1+\gamma)^{1}}+\frac{1}{(1+\gamma)^{2}}+\frac{1}{(1+\gamma)^{3}}+\cdots \cdot\right] \\
\cdots+\frac{1}{(1+\gamma)^{n}}
\end{array}\right]
$$

LIFEIS...

WHAT HAPPENS TO US

\& 1) $\%$ HOW YOU REACT TO IT !

- CA VINID REDDY -

KRIMDSEG

 15EVERYKHIMG

- CA VINOD REDDY -

MINDSET

IS

EVERYTHING

- LR VINDD REDDY -

