Chapter-10

Probability

000

CA VINOD REDDY

1. Probability is the

Chance $O R$ possibility of happening oR Non- happening of any event.
2. Classical Definition of Probability

3. Coin: 2 possible outcomes: Head (H), Tail (T)

Dice/Die: 6 possible outcomes: $1,2,3,4,5,6$ points 52 playing cards

13 cards: $2,3,4,5,6,7,8,9,10$, Jack, queen, king, Ace
4. $\quad A$ coin is tossed 2 times what is probability of getting
 out comes

Probability

6. An unbaised coin is tossed 4 times. What is the probability of getting

7. A dice is rolled once. What is the probability of getting

\qquad
\qquad
\qquad
\qquad
8. A dice is rolled twice what is the probability of getting

\rightarrow Odd points on atleast one dice

$$
=27 / 36
$$

\longrightarrow Even points on both dice $=9 / 36$
\qquad
9. A card is drawn from a well shuffled pack of 52 cards. What is probability of getting :
a. \mathbf{A} diamond $=\left(13 c_{1} / 52 c_{1}\right)=1 / 4$
d. A Black Queen $=\left(2 c_{1} / 52 c_{1}\right)=1 / 26$
b. A King $=\left(4 c_{1} / 52 c_{1}\right)=4 / 52=$
c. A Black Card $=\left(26 c_{1} / 52 c_{1}\right)=1 / 2$
10. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{A}^{\prime}\right)=1-P(A) \\
& \mathbf{P}\left(\mathbf{B}^{\prime}\right)=1-P(B)
\end{aligned}
$$

$$
P(\mathbf{A} \cap \mathbf{B})=P(A)+P(B)-P(A \cup B)
$$

$$
P(A-B)=P(A)-P(A \cap B)=P\left(A \cap B^{\prime}\right)
$$

$$
P(B-A)=P(B)-P(A \cap B)=P\left(B \cap A^{\prime}\right)
$$

$$
P\left(A^{\prime} \cap B^{\prime}\right)=P(A \cup B)^{\prime}=1-P(A \cup B)
$$

$\mathbf{P}\left(\mathbf{A} \cup \mathbf{B}^{\prime}\right)=1-P(B-A)$

$$
P\left(B \cup A^{\prime}\right)=1-P(A-B)
$$

$$
P(A \triangle B)=P(A-B)+P(B-A)=P(A \cup B)-P(A \cap B)
$$

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)
$$

$$
P\left(A^{\prime} \cup B^{\prime}\right)=P(A \cap B)^{\prime}=1-P(A \cap B)
$$

$$
\mathbf{P}(\mathbf{A})=0.35
$$

11.

$$
\begin{aligned}
& \mathbf{P}(\mathbf{B})=0.4 S \\
& \mathbf{P}\left(\mathbf{A}^{\prime}\right)=1-P(A)=0.65 \\
& \mathbf{P (\mathbf { B } ^ { \prime }) = 1 - P (B) = 0 . 5 S} \\
& \mathbf{P}(\mathbf{A} \cup \mathbf{B})=P(A)+P(B)-P(A \cap B)=0.65 \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=0.15 \\
& \mathbf{P}(\mathbf{A}-\mathbf{B})=0.20 \\
& \mathbf{P}(\mathbf{B}-\mathbf{A})=0.30 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=0.35 \\
& \mathbf{P}(\mathbf{A} \triangle \mathbf{B})=0.20+0.30=0.50
\end{aligned}
$$

 CA VINOD REDD |
12. De-morgan's rule of probability (with diagram)

$$
\begin{aligned}
(A \cup B)^{\prime} & =\left(A^{\prime} \cap B^{\prime}\right) \\
P\left(A^{\prime} \cap B^{\prime}\right) & =P(A \cup B)^{\prime} \\
& =1-P(A \cup B)
\end{aligned}
$$

$$
\begin{aligned}
(A \cap B)^{\prime} & =\left(A^{\prime} \cup B^{\prime}\right) \\
P\left(A^{\prime} \cup B^{\prime}\right) & =P(A \cap B)^{\prime} \\
& =1-P(A \cap B)
\end{aligned}
$$

13. If $\mathbf{2}$ dice are rolled then

Sum of points on 2 dice	Probability
2	$1 / 36$
3	$2 / 36$
4	$3 / 36$
5	$4 / 36$
$\mathbf{6}$	$6 / 36$
$\mathbf{7}$	$5 / 36$
$\mathbf{8}$	$4 / 36$
$\mathbf{9}$	$3 / 36$
$\mathbf{1 1}$	$2 / 36$
$\mathbf{1 2}$	$1 / 36$

14. A card is drawn from a well shuffled pack of 52 cards then what is probability that it is a -
a. Spade $=P(A)=13 / 52$
b. Queen $=P(B)=4 / 52$
c. Spade and Queen $=P(A \cap B)=1 / 52$
d. Spade or Queen $=P(A \cup B)=16 / 52$
e. Spade but not Queen $=P(A-B)=P\left(A \cap B^{\prime}\right)=12 / 5236$
f. Queen but not Spade $=P(B-A)=P\left(B \cap A^{\prime}\right)=3 / 52 A$: event that card
g. Neither Spade nor Queen $=P\left(A^{\prime} \cap B^{\prime}\right)=36 / 52$

15. A, B are said to be mutually exclusive events then :

16. A, B are said to be mutually exhaustive events then :

Here $P(A \cup B)=1.00=100 \%$ ie. $P\left(A^{\prime} \cap B^{\prime}\right)=0$
$\therefore A, B$ are mutually exhaustive events
when ecu. of at least ane event is compulsory then events are said to be mutually exhaustive
17. A, B are said to be independent events when :

$$
P(A \cap B)=P(A) \times P(B)
$$

when occur. of one event doesn't affect occu. OR Non occur. of other event then events are said to be Independent events
18.

Events A \& B are said to be	If
Mutually ereclusive events	$\mathbf{P}(\mathbf{A \cap B})=\mathbf{0}$
Mutually ere han stive events	$\mathbf{P}(\mathbf{A \cup B})=\mathbf{1 . 0 0}$
In dependent events	$\mathbf{P}(\mathbf{A \cap B})=\mathbf{P (A)} \times \mathbf{P}(\mathbf{B})$
Equally likely events	$\mathbf{P (A)}=\mathbf{P}(\mathbf{B})$

\qquad
19. 2 dice are rolled. It is observed that sum of points is 9 . What is probability that 4 has appeared on one of the dice?

B : be the event that sum of points on 2 dice is 9
A: be the event that 4 points have appeared on one of the dice

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{2 / 36}{4 / 36}=\frac{2}{4}=\frac{1}{2}
$$

20. $P(A / B)=\frac{P(A \cap B)}{P(B)}$

$$
P\left(A^{\prime} / B\right)=\frac{P\left(A^{\prime} \cap B\right)}{P(B)}
$$

$P(B / A)=\frac{P(B \cap A)}{P(A)}$
$\mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$
$P\left(A / B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$
$\mathbf{P}\left(\mathbf{B}^{\prime} / \mathbf{A}\right)=P\left(B^{\prime} \cap A\right) / P(A)$
$\mathbf{P}\left(\mathbf{B} / \mathbf{A}^{\prime}\right)=\frac{P\left(B \cap A^{\prime}\right)}{P\left(A^{\prime}\right)}$
$\mathbf{P}\left(\mathbf{B}^{\prime} / \mathbf{A}^{\prime}\right)=P\left(B^{\prime} \cap A^{\prime}\right) / P\left(A^{\prime}\right)$
21. If A, B are independent events then :

$$
\begin{aligned}
& \Rightarrow P(A \cap B)=P(A) \times P(B) \\
& P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right) \\
& P\left(B \cap A^{\prime}\right)=P(B) \times P\left(A^{\prime}\right) \\
& P\left(A \mid \cap B^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right) \\
& P(A / B)=P(A) \\
& P\left(A / B^{\prime}\right)=P(A) \\
& P(B / A)=P(B) \\
& P\left(B / A^{\prime}\right)=P(B)
\end{aligned}
$$

$$
P\left(A^{\prime} / B\right)=P\left(A^{\prime}\right)
$$

22.

8 Red
6 White
5 Black

3 balls are drawn. What is probability of getting

23.

1. $P(A \cup B)$

A B
2. $P(A \cap B)$

$=P(A)+P(B)-P(A \cup B)$
5. $P\left(A^{\prime} \cap B^{\prime}\right)$

8. $P\left(B \cup A^{\prime}\right)$

$=1-P(A-B)$
3. $\mathbf{P}\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right)$

$=P(A)-P(A \cap B)=P(A-B)$
6. $\mathbf{P}(A \triangle B)$

$\begin{array}{lr}P(A-B)+P(B-A)= & P(A \cup B)- \\ \text { 9. } P\left(A^{\prime} \cup B^{\prime}\right) & P(A \cap B)\end{array}$

$$
=P(A \cap B)=1-P(A \cap B)
$$

$$
\begin{aligned}
= & p(A)+p(B)+p(C)-p(A \cap B) \\
& -p(B \cap C)-p(A \cap C)+p(A \cap B \cap C)
\end{aligned}
$$

$$
=P(A \cup B \cup C)^{\prime}
$$

$=1-\quad P(A \cup B \cup C)$
24. If $\mathbf{P}(\mathbf{A})=\mathbf{0 . 3 0}, \mathbf{P}(B)=\mathbf{0 . 4 0}, \mathbf{P}(A \cap B)=0.15$. Find

$$
\begin{aligned}
& P\left(A^{\prime}\right)=1-P(A)=0.70 \\
& P\left(B^{\prime}\right)=1-P(B)=0.60 \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.55 \\
& P(A-B)=P(A)-P(A \cap B)=0.15 \\
& \mathbf{P}(\mathbf{B}-\mathbf{A})=P(B)-P(A \cap B)=0.25 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=1-P(A \cup B)=0.45 \\
& P\left(A \cup B^{\prime}\right)=1-P(B-A)=0.75 \\
& P\left(B \cup A^{\prime}\right)=1-P(A-B)=0.85 \\
& \mathbf{P}(\mathbf{A} \triangle \mathbf{B})=P(A-B)+P(B-A)=0.40 \\
& \mathbf{P (A / B)}=\frac{P(A \cap B)}{P(B)}=\frac{0.15}{0.40}=0.3750 \\
& \mathbf{P}(\mathbf{B} / \mathbf{A})=\frac{P(B \cap A)}{P(A)}=\frac{0.15}{0.30}=0.50 \\
& \mathbf{P}\left(\mathbf{A} / \mathbf{B}^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{0.15}{0.60}=0.25 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{0.45}{0.60}=0.75
\end{aligned}
$$

25. $\mathbf{P}(\mathbf{A})=0.30, P(B)=0.40, A, B$ are independent events, then find

$$
\begin{aligned}
& \mathbf{P (A / B)}=P(A)=0.30 \\
& \mathbf{P (B / A})=P(B)=0.40 \\
& \mathbf{P (A / \mathbf { B } ^ { \prime }) = P (A) = 0 . 3 0} \\
& \left.\mathbf{P (B / A} \mathbf{A}^{\prime}\right)=P(B)=0.40 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}^{\prime}\right)=P\left(A^{\prime}\right)=0.70 \\
& \mathbf{P}\left(\mathbf{B}^{\prime} / \mathbf{A}^{\prime}\right)=P\left(B^{\prime}\right)=0.60
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \cup \mathbf{B})=0.30+0.40 \\
& -0.12=0.58 \\
& P(A-B)=P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right) \\
& P(B-A)=P(B \cap A 1)=0.30 \times 0.60=0.18 \\
& =P(B)-P(A \cap B)=0.28 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right) \\
& =0.70 \times 0.60=0.42 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cup \mathbf{B}^{\prime}\right)=1-P(A \cap B)=0.88 \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=P(A) \times P(B)=0.12
\end{aligned}
$$

26. In a leap year selected at random what is probability of getting

\downarrow	\downarrow	\downarrow	\downarrow
$\mathbf{5 3}$ Mondays	$\mathbf{5 2}$ Mondays	Atleast $\mathbf{5 2}$ Mondays	$\mathbf{5 4}$ Mondays
$=\frac{2}{7}$	$=\frac{s}{7}$	$=100 \%$	$=0 \%$

27. In a non-leap year selected at random what is probability of getting

\downarrow			
53 Sundays	52 Sundays	Atleast 52 Sundays	54 Sundays
$=\frac{1}{7}$	$=\frac{6}{7}$	$=100 \%$	$=0 \%$

28. In a year selected at random what is the probability of getting

$$
\begin{array}{ll}
=\left(\frac{1}{4} \times \frac{5}{7}\right)+\left(\frac{3}{4} \times \frac{6}{7}\right) & =\left(\frac{1}{4} \times \frac{2}{7}\right)+\left(\frac{3}{4} \times \frac{1}{7}\right) \\
=\frac{5}{28}+\frac{18}{28}=(23 / 28) & =\frac{2}{28}+\frac{3}{28}=(5 / 28)
\end{array}
$$

29. What is probability that 15 th day of a randomly selected month is Sunday?

$$
\frac{1}{7}
$$

what is probability that $22^{\text {nd }}$ day of a randomly selected month is not a satur day? $\Rightarrow 6 / 7$
30. Probability of A passing exam is 0.30 . and B passing exam is $\mathbf{0 . 4 0}$.

Here A, B are indep. events

\downarrow Atleast one will pass One \& Only will pass	\downarrow At least one will fail	
$=P(A \cup B)$	$=P(A \Delta B)$	$=P\left(A^{\prime} \cup B^{\prime}\right)$
$=0.58$	$=0.46$	$=0.88$
A	$0.18(0.12$	0.28

31.

\mathbf{x}	$\mathbf{3 0}$	$\mathbf{6 0}$	$\mathbf{9 0}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$
Prob. \mathbf{x}	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 5}$

Find $E(x)$, SD $_{x}$, Variance of x

32.

\mathbf{x}	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$
Prob. \mathbf{x}	$\mathbf{0 . 2 0}$	3k	$\mathbf{5 k}$	$\mathbf{7 k}$	\mathbf{k}

Find $E(x), S D_{x}$, Variance of x

$$
\begin{aligned}
0.20+3 k+5 k+7 k+k & =1.00=\sum p(x) \\
16 k & =0.80 \\
k & =0.05
\end{aligned}
$$

$$
\left.\begin{array}{rl}
E(x)= & \sum x \cdot p(x)=29 \\
\text { vari. of } x & =990-29^{2} \\
& =149 \\
\text { SD of } x & =\sqrt{149} \\
= & 12.20656
\end{array}\right]=\left[\begin{array}{l}
= \\
=
\end{array}\right.
$$

33. If odds in favour of event A are $3: 8$. Find $P(A), P\left(A^{\prime}\right)$

$$
\begin{aligned}
& P(A)=\frac{3}{3+8}=\frac{3}{11} \\
& P(A 1)=\frac{8}{11}
\end{aligned}
$$

34. If odds against event B are $8: 13$. Find $P(B), P\left(B^{\prime}\right)$

$$
\begin{aligned}
& P(B)=\frac{13}{21} \\
& P\left(B^{\prime}\right)=\frac{8}{21}
\end{aligned}
$$

If $P(D)=97 / 103$ then
odds in favour of event D are $: 97: 6$
odds against event D are $\div 6: 97$

35. If odds in favour of event A are $3: 11 ;$ Odds against event B are $2: 15$; A, B are independent events, then find :

$$
P(A)=\frac{3}{14}
$$

36.

Find probability that a student likes
a. Maths if it is known that he likes physics $=P(B / A)=\frac{P(B A A)}{P(A)}=\frac{20 / 300}{80 / 300}$

$$
=\frac{20}{80}=\frac{1}{4}=0.25=25 \%
$$

b. Physics if it is known that he doesn't likes maths =

$$
=P\left(A / B^{\prime}\right)=P\left(A \cap B^{\prime}\right) / P\left(B^{\prime}\right)=\frac{60 / 300}{150 / 300}=60 / 150=0.40=40 \%
$$

37.

What is the probability that it is a red ball?

Trans fer
Red: $\frac{10}{18} \times \frac{3}{6}=\frac{30}{108}$
white: $\frac{8}{18} \times \frac{2}{6}=\frac{16}{108} \quad$ Answer: $\begin{aligned} \frac{46}{108} & =\frac{23}{54} \\ & =42.59259 \%\end{aligned}$

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A})=3 / 14 \\
& \mathbf{P}(\mathbf{B})=15 / 17 \\
& P(B)=\frac{15}{17} \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=P(A) \times P(B)=(45 / 238) \\
& P(A \cup B)=\frac{3}{14}+\frac{15}{17}-\frac{45}{238}=\frac{261}{238}-\frac{45}{238}=\left(\frac{216}{238}\right) \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=1-\frac{216}{238}=(22 / 238) \\
& P(A-B)=P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right)=\frac{3}{14} \times \frac{2}{17}=\frac{6}{238} \\
& \mathbf{P}(\mathbf{B}-\mathbf{A})= \\
& P\left(B \cap A^{\prime}\right)=P(B) \times P\left(A^{\prime}\right)=\frac{15}{17} \times \frac{11}{14}=\frac{165}{238}
\end{aligned}
$$

Transfer

39.

40. Two Broad divisions of Probability are

Subjective Probability
 Subjective Probability is basically dependent on personal judgement and experience.
 It may be influenced by personal belief, attitude and bias.

Objective Probability
It is not based upon personal judgement. \downarrow
we are studying
objective probability
41. An experiment may be described as a performance that produces certain results.

The result or outcome of a random experiment are known as events.

Drobability

42.

Simple or Elementary Event

Getting Head when One Coin is tossed

Events are of 2 types

Composite or Compound Event
Getting Head when Two Coins are tossed
43. Equally likely events are also known as Mutually Symmetric Events or Equi-probable events.

If $\mathbf{P}(\mathbf{A})=\mathbf{0 . 3 0}, \mathbf{P}(\mathbf{B})=\mathbf{0 . 3 0}$ then $\mathbf{A , B}$ are equally likely events $\mathbf{O R}$ Equi-probable events $\mathbf{O R}$ Mutually Symmetric events
44. If $\mathbf{P}(\mathbf{A})=\mathbf{1 . 0 0}=\mathbf{1 0 0 \%}$ then event \mathbf{A} is said to be a $S \cup R E$ Event
45. If $\mathbf{P}(\mathbf{B})=\mathbf{0 . 0 0}=\mathbf{0} \%$ then event \mathbf{B} is said to be a Impossible event
46.

Wages in $₹$	$100-200$	$200-300$	$300-400$	$400-500$
No. of workers	23	57	88	93

If a worker is selected at random, what is the probability that

1. He earns more than $₹ 300=(181 / 261)$
2. He earns more than $₹ \mathbf{4 0 0}=(93 / 261)$
3. He earns between ₹ $200-₹ 400=(145 / 261)$
4. He earns less than $₹ 300=(80 / 261)$
5.

- = Sample Space
= Set of all possible outcomes

From above diagram. Find

$$
\begin{aligned}
& \mathbf{P (A)}=0.50 \\
& P(B)=0.48 \\
& \mathbf{P}\left(\mathbf{A}^{\prime}\right)=0.50 \\
& \mathbf{P}\left(\mathbf{B}^{\prime}\right)=0.52 \\
& P(A \cup B)=0.78 \\
& \mathbf{P}\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right)=0.30 \\
& \mathbf{P}\left(\mathbf{B} \cap A^{\prime}\right)=0.28 \\
& \begin{array}{l}
\mathbf{P}\left(\mathbf{B} \cup A^{\prime}\right)=0.70 \\
\mathbf{P}\left(\mathbf{A}^{\prime} \cup \mathbf{B}^{\prime}\right)=0.80 \\
\mathbf{P}(\mathbf{A} / \mathbf{B})=0.20 / 0.48=0.4166666 \\
\mathbf{P}(\mathbf{B} / \mathbf{A})=0.20 / 0.50=0.40 \\
\mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}^{\prime}\right)=\frac{0.22}{0.52}=0.42307692307 \\
\mathbf{P}\left(\mathbf{B}^{\prime} / \mathbf{A}^{\prime}\right)=\frac{0.22}{0.50}=0.44
\end{array} \\
& \mathbf{P}\left(\mathbf{A} \cup \mathbf{B}^{\prime}\right)=0.72 \\
& \mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}\right)=\frac{0.28}{0.48}=0.5833333 \\
& \mathbf{P}\left(\mathbf{B} / \mathbf{A}^{\prime}\right)=\frac{0.28}{0.50}=0.56
\end{aligned}
$$

48.

From this Venn Diagram : Find

$$
\begin{array}{ll}
\mathbf{P}(\mathbf{A})=0.53 & \mathbf{P}(\mathbf{B} \cup \mathbf{C})=0.67 \\
\hline \mathbf{P}(\mathbf{B})=0.37 & \mathbf{P}(\mathbf{A} \cup \mathbf{C})=0.82 \\
\mathbf{P}(\mathbf{C})=0.47 & \mathbf{P}(\mathbf{A}-\mathbf{B})=0.28 \\
\mathbf{P}\left(\mathbf{A}^{\prime}\right)=0.47 & \mathbf{P}(\mathbf{B}-\mathbf{A})=0.12 \\
\hline \mathbf{P}\left(\mathbf{B}^{\prime}\right)=0.63 & \mathbf{P}(\mathbf{A}-\mathbf{C})=0.35 \\
\hline \mathbf{P}\left(\mathbf{C}^{\prime}\right)=0.53 & \mathbf{P}(\mathbf{C}-\mathbf{A})=0.29 \\
\mathbf{P}(\mathbf{A} \cap \mathbf{B})=0.25 & \mathbf{P}(\mathbf{B}-\mathbf{C})=0.20 \\
\mathbf{P}(\mathbf{B} \cap \mathbf{C})=0.17 & \mathbf{P}(\mathbf{C}-\mathbf{B})=0.30 \\
\hline \mathbf{P}(\mathbf{A} \cap \mathbf{C})=0.18 & \mathbf{P}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C})=0.87 \\
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=0.65 & \mathbf{P}(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C})=0.10
\end{array}
$$

49. $\mathbf{P}(A-B)=0.20, P(B-A)=0.30, P\left(A^{\prime} \cap B^{\prime}\right)=0.10$. Find

$$
\mathbf{P}(\mathbf{A})=0.60
$$

$$
\mathbf{P}(\mathbf{B})=0.70
$$

$$
\mathbf{P}(\mathbf{A} \cup B)=0.90
$$

$$
\mathbf{P}(\mathbf{A} \cap \mathbf{B})=0.40
$$

$$
\mathbf{P}(\mathbf{A} \triangle \mathbf{B})=0.50
$$

$$
\mathbf{P}\left(\mathbf{A} \cup \mathbf{B}^{\prime}\right)=0.70
$$

$$
\mathbf{P}\left(\mathbf{B} \cup A^{\prime}\right)=0.80
$$

$$
\mathbf{P}\left(\mathbf{A}^{\prime} \cup \mathbf{B}^{\prime}\right)=0.60
$$

$$
\mathbf{P}\left(\mathbf{A}^{\prime}\right)=0.40
$$

$$
\mathbf{P}\left(\mathbf{B}^{\prime}\right)=0.30
$$

0.20
50. $P(A)=0.30, P(B)=0.20, P(C)=0.60, P(A \cap B)=0.10, P(B \cap C)=0.15$, $P(A \cap C)=0.18, P(A \cap B \cap C)=0.05$, Find $P(A \cup B \cup C)$ and $P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right), P(A \cup B), P(B \cup C)$ $\mathbf{P}\left(A \cap C^{\prime}\right), \mathbf{P}\left(B \cup C^{\prime}\right)$
(1)

$$
\begin{aligned}
P(A \cup B \cup C) & =P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) \\
& -n(A \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

$$
=0.72
$$

(2) $p\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)=1-P(A \cup B \cup C)=0.28$
(3) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.40$
(4) $P(B \cup C)=P(B)+P(C)-P(B \cap C)=0.65$
(5) $P\left(A \cap C^{\prime}\right)=P(A)-P(A \cap C)=0.12$
(6) $P\left(B \cup C^{1}\right)=1-P(C-B)=1-[0.60-0.15]=0.55$
51. Odds in favour of an event are $2: 3$ and odds against another event are 3:7. Find the
probability that only one of two events occurs. (2 events are independent of each other)

$$
\begin{aligned}
& P(A)=\frac{2}{5} \quad P(B)=\frac{7}{10} \quad P(A \cap B)=\frac{14}{50} \\
& P(A \triangle B)= P(A \cup B)-P(A \cap B) \\
&=\left(\frac{2}{5}+\frac{7}{10}-\frac{14}{50}\right)-\frac{14}{50}=\frac{20+35-14-14}{50}=\left(\frac{37}{50}\right) \\
&=74 \%
\end{aligned}
$$

52. There are $\mathbf{3}$ boxed with composition of balls :

If one box is selected at random and one ball is drawn, what is the probability that it is a red ball?

$$
\begin{aligned}
& =\left(\frac{1}{3} \times \frac{5}{13}\right)+\left(\frac{1}{3} \times \frac{6}{9}\right)+\left(\frac{1}{3} \times \frac{8}{10}\right) \\
& =\left(\frac{5}{39}+\frac{6}{27}+\frac{8}{30}\right)=61.7094 \%
\end{aligned}
$$

53. In a business venture, a man can make profit of ₹ $\mathbf{5 0 , 0 0 0}$ or incur a loss of ₹ $\mathbf{1 0 , 0 0 0}$. The probability of making profit or incurring loss from past experience are
known to be 0.75 and 0.25 respectively. What is his expected profit?

x	$P(x)$	$x \cdot P(x)$	
	50,000	0.75	37,500
$-10,000$	0.25	$-2,500$	
	$E(x)=135,000$		
Expected profit $=₹ 35,000 /-$			

54. Ashwat draws 2 balls from a bag containing $\mathbf{3}$ white and 5 red balls. He gets ₹ 500
if he draws a white ball and ₹ 200 if he draws a red ball. What is his expectation?

55. A number is selected form first 1000 natural numbers, what is probability that number is divisible by 3 or 4 or 5.

$$
\begin{aligned}
& P(A \cup B \cup C) \\
= & P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) \\
& -P(A \cap C)+P(A \cap B \cap C) \\
= & \frac{333}{1000}+\frac{250}{1000}+\frac{200}{1000}-\frac{83}{1000}-\frac{50}{1000}-\frac{66}{1000}+\frac{16}{100} \\
= & (600 / 1000)=60 \%
\end{aligned}
$$

56. The probability of an event lies between 0 and 1 , both inclusive.
57. A : Vinod is a minor

B : Vinod is a major
Here A, B are mutually execlusive events as well as mutually exhaustive events as $P(A \cup B)=1.00, P(A \cap B)=0$
58. A : Ashwat is an Indian

B : Ashwat is an American
Here A, B are mutually execlusiveevents an $P(A \cap B)=0$ but A, B are not mutually erehanstive.
59. All general Formulae at one place :

1. $\mathbf{P (A)}=1-P\left(A^{\prime}\right)$
2. $\mathbf{P}\left(A^{\prime} \cup B^{\prime}\right)=1-P(A \cap B)$
3. $\mathbf{P}\left(B^{\prime}\right)=1-P(B)$
4. $P(A \cup B \cup C)=1-P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$
5. $\mathbf{P}(\mathbf{A} \cup B)=P(A)+P(B)-P(A \cap B)$
6. $P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)=1-P(A \cup B \cup C)$
7. $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=P(A)+P(B)-P(A \cup B)$
8. $P(A / B)=P(A \cap B) / P(B)$
9. $\mathbf{P}(\mathbf{A}-\mathbf{B})=P(A)-P(A \cap B)$
10. $P(B / A)=P(B \cap A) / P(A)$
11. $\mathbf{P (B - A)}=P(B)-P(A \cap B)$
12. $\mathbf{P}\left(\mathbf{A \cup B} \mathbf{B}^{\prime}\right)=1-P(B-A)$
13. $P\left(A / B^{\prime}\right)=P\left(A \cap B^{\prime}\right) / P\left(B^{\prime}\right)$
14. $P\left(B / A^{\prime}\right)=P\left(B \cap A^{\prime}\right) / P\left(A^{\prime}\right)$
15. $\mathbf{P}\left(\mathbf{B} \cup A^{\prime}\right)=1-P(A-B)$
16. $P\left(A^{\prime} / B\right)=P\left(A^{\prime} \cap B\right) / P(B)$
17. $P\left(A^{\prime} / B^{\prime}\right)=P\left(A^{\prime} \cap B^{\prime}\right) / P\left(B^{\prime}\right)$
18. $\mathbf{P}(\mathbf{A} \triangle \mathbf{B})=P(A-B)+P(B-A)$
19. $\mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=1-P(A \cup B)$
20. $P\left(B^{\prime} / A^{\prime}\right)=P\left(B^{\prime} \cap A^{\prime}\right) / P\left(A^{\prime}\right)$
21. $P\left(B^{\prime} / A\right)=P\left(B^{\prime} \cap A\right) / P(A)$
22. When A, B are mutually exclusive events

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{0} \\
& \mathbf{P}(\mathbf{A} \cup \mathbf{B})=P(A)+P(B) \\
& \mathbf{P}(\mathbf{A}-\mathbf{B})=P(A) \\
& \mathbf{P}(\mathbf{B}-\mathbf{A})=P(B) \\
& \mathbf{P}\left(\mathbf{A}^{\prime} \cup \mathbf{B}^{\prime}\right)=1.00
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{A} / \mathbf{B})=0
$$

$$
\mathbf{P}(\mathbf{B} / \mathbf{A})=0
$$

$$
\mathbf{P}(\mathbf{A} \triangle \mathbf{B})=P(A)+P(B)
$$

$$
P\left(A \cup B^{\prime}\right)=P\left(B^{\prime}\right)
$$

$$
P\left(B \cup A^{\prime}\right)=P\left(A^{\prime}\right)
$$

61. When A, B are mutually exhaustive events then :

$$
\begin{aligned}
& \mathbf{P (A \cup B)}=1.00 \\
& \mathbf{P (A ^ { \prime } \cap \mathbf { B } ^ { \prime })}=0 \\
& \mathbf{P (A \cap B)}=P(A)+P(B)-1 \\
& \mathbf{P (A / B ^ { \prime })}=1.00 \\
& \mathbf{P (B / A ^ { \prime })}=1.00 \\
& \mathbf{P (A \triangle B)}=1-P(A \cap B)=P(A \cap B)^{\prime}=P\left(A^{\prime} \cup B^{\prime}\right)
\end{aligned}
$$

62. When A, B are independent events then, $P(A \cap B)=P(A) \times P(B)$

$$
\begin{array}{l|l}
\mathbf{P}\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right)=P(A) \times P\left(B^{\prime}\right) & \mathbf{P}\left(\mathbf{A} / \mathbf{B}^{\prime}\right)=P(A) \\
\hline \mathbf{P}\left(\mathbf{B} \cap \mathbf{A}^{\prime}\right)=P(B) \times P\left(A^{\prime}\right) & \mathbf{P}\left(\mathbf{B} / \mathbf{A}^{\prime}\right)=P(B) \\
\hline \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right) & \mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}\right)=P\left(A^{\prime}\right) \\
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=P(A)+P(B)-P(A) \cdot P(B) & \mathbf{P}\left(\mathbf{A}^{\prime} / \mathbf{B}^{\prime}\right)=P\left(A^{\prime}\right) \\
\hline \mathbf{P}(\mathbf{A} / \mathbf{B})=P(A) & \mathbf{P (\mathbf { B } ^ { \prime } / \mathbf { A }) = P (B ^ { \prime })} \\
\hline \mathbf{P (B / A)}=P(B) & \mathbf{P}\left(\mathbf{B}^{\prime} / \mathbf{A}^{\prime}\right)=P\left(B^{\prime}\right) \\
\hline
\end{array}
$$

63. 2 dice are rolled, what is probability that points on first dice are more than points on second dice?
outcomes in favour: $(2,1)(3,1)(3,2)(4,1)(4,2)(4,3)$

$$
(5,1)(5,2)(5,3)(5,4)(6,1)(6,2)
$$

$$
=\frac{15}{36}=\frac{5}{12} \quad(6,3)(6,4)(6,5)
$$

64. A committee of 5 members is formed from 8 ladies and 9 gents. What is probability that ladies form the majority?

 CA VINOD REDD |

Comprehensive Revision ald
65. A problem of maths was given to 3 students, chances of solving it are $1 / 3,1 / 5,1 / 2$ respectively. What is the probability that problem gets solved?

$$
\begin{aligned}
& \text { (Independent events) } \\
& \begin{aligned}
P(A \cup B \cup C) & =1-P\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right) \\
& =1-\left(\frac{2}{3} \times \frac{4}{5} \times \frac{1}{2}\right) \\
& =1-\frac{8}{30}=(22 / 30)=11 / 15
\end{aligned}
\end{aligned}
$$

66. 8 identical balls are placed at random in 3 bags. What is the probability that first bag contains 3 balls?

$$
\begin{aligned}
\Rightarrow \quad h=8, p=\frac{1}{3}, q=\frac{2}{3}, x & =3 \\
\text { prob }(x=3)=8 c_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{5} & =\frac{56 \times 1 \times 32}{6561}=\frac{1792}{6561} \\
& =27.31291 \%
\end{aligned}
$$

67. $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}, P(A \cap B)=\frac{1}{4}$, Find $P\left(A^{\prime} / B^{\prime}\right)$

$$
\begin{aligned}
& P\left(A^{\prime} / B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{1-\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{\frac{2}{3}}=\frac{1-\frac{6+4-3}{12}}{\frac{2}{3}} \\
& =\left(\frac{1-\frac{7}{12}}{\frac{8}{12}}\right)=\left(\frac{5 / 12}{8 / 12}\right)=\frac{5}{8}=62.50 \%
\end{aligned}
$$

68. The probability that there is atleast one error in an account statement prepared by 3 persons A, B, C are $\mathbf{0 . 2 0}, \mathbf{0 . 3 0}, \mathbf{0 . 1 0}$ respectively. If A, B, C prepare $60,70,90$ such statements. Find expected number of correct statements.
a. 170
b. 176
d. 180

	x	$p(x)$	$x \cdot P(x)$
A	60	0.80	
B	70	0.70	
C	90	0.90	
		$E(x)$	178

 CA VINOD REDD |
69.

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
Prob. x	\mathbf{k}	$\mathbf{2 k}$	$\mathbf{3 k}$	$\mathbf{3 k}$	\mathbf{k}

Find Expected Value of x, SD of x, Variance of x.

$$
\begin{aligned}
10 k & =1.00 \\
k & =0.10
\end{aligned} \quad E(x)=\sum x \cdot p(x)=4.30
$$

x	$p(x)$	x^{2}	$x \cdot p(x)$	$x^{2} \cdot p(x)$
1	0.10	1		
2	0.20	4		
4	0.30	16		
6	0.30	36		
8	0.10	64		

$$
\begin{aligned}
\text { var of } x & =E\left(x^{2}\right)-[E(x)]^{2} \\
& =22.90-4.30^{2}=4.41 \\
\text { SD of } x & =\sqrt{4.41} \\
& =2.10
\end{aligned}
$$

70. $\mid 5$ Red $\xrightarrow{6} 4$ Balls are drawn. What is the proabibility that there is atleast one ball of each colour?

$$
\begin{aligned}
& =\frac{\left(5 c_{1} \times 6 c_{1} \times 4 c_{2}\right)+\left(5 c_{1} \times 6 c_{2} \times 4 c_{1}\right)+\left(5 c_{2} \times 6 c_{1} \times 4 c_{1}\right)}{15 c_{4}} \\
& =\frac{180+300+240}{1365}=\frac{720}{1365}=52.74725 \%
\end{aligned}
$$

71. $\underset{12}{ } 5$ Red $\longrightarrow 5$ Balls are drawn. What is the proabibility that 12 Blue there is atleast one ball of each colour?
3 Pink
3 Pink
$\quad\left(\begin{array}{l}\left(5 c_{1} \times 12 c_{1} \times 3 c_{3}\right)+\left(5 c_{1} \times 12 c_{3} \times 3 c_{1}\right)+\left(5 c_{3} \times 12 c_{1} \times 3 c_{1}\right) \\ +\left(5 c_{2} \times 12 c_{2} \times 3 c_{1}\right)+\left(5 c_{2} \times 12 c_{1} \times 3 c_{2}\right)+\left(5 c_{1} \times 12 c_{2} \times 3 c_{2}\right) \\ = \\ =\left(\frac{60 c_{5}}{15504}\right) \\ =(7050 / 15504)=45.4721 \%\end{array}\right)$
$=\left(\begin{array}{l}60+3600+360+1980+360+990\end{array}\right)$
72. The expected number of heads in 100 tosses of an unbaised coin is :

$$
=100 \times 0.50=50
$$

73. A man can kill a bird once in 3 shots. The probability that bird is not killed is
a. $1 / 3$
74. $2 / 3$
c. 1.00
d. 0
75. If on an average 9 ships out of 10 return safely to the port, the probability that one ship returns to the port safely is
a. 1/10
76. 9/10
c. $8 / 10$
d. None of these
77. A family has 2 children. The probability that both of them are boys if it is known that one of them is a boy is :
a. 1.00
78. $1 / 2$
c. $3 / 4$
d. None of these
79. Probability of throwing an odd number with an ordinary six faced die is?
80. 1/2
b. 1.00
c. $-1 / 2$
d. $1 / 6$
81. When none of the outcomes is favourable to the event then event is said to be
a. Certain
b. Sample
impossible
d. None
82. What is probability that 4 children selected at random would have different birthdays?
a. 98.36%
b. 100%
c. 99.82\%
d. 0\% $\left(\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365}\right)$
83. For 2 independent events $A, B, P(A \cup B)=2 / 3, P(A)=2 / 5, P(B)=$?
a. 4/15
84. $4 / 9$
c. $5 / 9$
d. 7/18
e. None $\frac{2}{3}=\frac{2}{5}+P(B)-\frac{2}{5} \times P(B) \frac{2}{3}-\frac{2}{5}=P(B)\left[1-\frac{2}{5}\right]$ 80. What is chance of throwing atleast 7 in a single cast with 2 dice?
a. $5 / 12$
85. 7/12
c. $1 / 4$
d. 17/36
e. None

CA VINOD REDDY |
Maths Notes
| \oplus vinod.reddy.ca@gmail.com

Probability

81. Expected value of a random variable
a. Is always positive
b. May be positive or negative
C. May be positive, negative or zero
d. Can never be zero
82. $P(A)=8 / 17$, then odds against event A is .
a. 8:17
b. 17:8
c. 8:9
83. 9:8
odds in favour $=8: 9$ odds against event $A=9: 8$
84. Initially probability was branch of
a. Physics
b. Chemistry
c. Statistics
d. Mathematics
85. Subjective probability may be used in
a. Mathematics
b. Statistics
Management
d. Biology
86. $P(A-B)=0.30, P(A \cap B)=0.10, P\left(A^{\prime} \cap B^{\prime}\right)=0.15$.

Find $\mathbf{P}(\mathbf{A}), \mathbf{P}(A \cup B), \mathbf{P}\left(A^{\prime} \cup B^{\prime}\right), \mathbf{P}(B), \mathbf{P}(A \triangle B), \mathbf{P}(B-A), \mathbf{P}(A / B), P\left(B^{\prime} / A^{\prime}\right)$

$$
\begin{aligned}
& P(A)=0.40 \\
& P(A \cup B)=0.85 \\
& P\left(A^{\prime} \cup B^{\prime}\right)=0.90 \\
& P(B)=0.55 \\
& P(A \triangle B)=0.75 \\
& P(B-A)=0.45
\end{aligned}
$$

$$
P(A / B)=\frac{0.10}{0.55}=2 / 11
$$

86. $P(A / B)$ is defined only when
a. B is a sure event
b. B is an impossible event
c. B is not a sure event
A. B is not an impossible event

$P(A / B)=\frac{P(A \cap B)}{P(B)} \Rightarrow$ This is defined only when

87. $P\left(A / B^{\prime}\right)$ is defined only when
a. B is a sure event
b. B is an impossible event
C. B is not a sure event
d. B is not an impossible event
$P\left(A / B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$
This is defined only when
88. $\mathbf{P}(\mathbf{X} / \mathbf{Y})$ is defined only when Y is not an impossible event. $\mathbf{P}\left(\mathbf{X} / \mathbf{Y}^{\prime}\right)$ is defined only when Y is not a sure event
89. If A, B, C are 3 mutually exclusive and exhaustive events such that $P(A)=2 \cdot P(B)=3 \cdot P(C)$ then $P(B)=$?
a. 6/11
90. $3 / 11$
c. $1 / 6$
d. $1 / 3$

$$
\begin{aligned}
1.00 & =P(A)+P(B)+P(C)-0-0-0+0 \\
1 & =2 \cdot P(B)+P(B)+\frac{2}{3} P(B) \\
1 & =P(B)\left[3+\frac{2}{3}\right] \\
1 & =P(B) \times \frac{11}{3} \quad \therefore P(B)=\frac{3}{11}
\end{aligned}
$$

90. $\mathbf{P}(A-B)=0.30, P(A \triangle B)=0.50, P^{\prime}\left(A^{\prime} \cup B^{\prime}\right)=0.80$

Find $\mathbf{P}\left(A^{\prime} \cap B^{\prime}\right)$

$$
P\left(A^{\prime} \cap B^{\prime}\right)=0.30
$$

91. $\mathbf{P}(\mathbf{A})=\mathbf{0 . 6 0}, \mathbf{P}(\mathbf{B})=\mathbf{0 . 7 0}, \mathbf{P}\left(\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}\right)=0.20$

Find $\mathbf{P}(\mathbf{A}-\mathrm{B}), \mathbf{P}(\mathbf{B - A}), \mathbf{P}(\mathbf{A} \cap \mathrm{B})$

$$
\begin{aligned}
& P(A-B)=0.10 \\
& P(B-A)=0.20 \\
& P(A \cap B)=0.50
\end{aligned}
$$

92. $\mathbf{P}(A-B)=0.30, P(B-A)=0.60, P(A)=0.55$ Find $P(A \cup B)$
a. 1.15
b. 0.15
c. 0.85

1. Wrong data

2. 2 dice are rolled, what is probability that sum of points is a prime number?

$$
=\frac{1+2+4+6+2}{36}=\frac{15}{36}=\frac{5}{12}
$$

94. One card is drawn from each of 2 packs of 52 cards. What is probability that atleast one of them is an ace?
a. 8/104
b. ${ }^{8} \mathrm{C}_{2} /{ }^{104} \mathrm{C}_{2}$
c. $25 / 169$
d. 1/169
e. None

$$
\begin{array}{r}
\text { prob (at least one ace })=1-\text { prob }\binom{\text { Both cards are }}{\text { Non-ace }} \\
=1-\left(\frac{48}{52} \times \frac{48}{52}\right)=1-\frac{144}{169}=25 / 169
\end{array}
$$

95.

Shaded area represents
a. (A-B)
b. (B-A)
c. $\left(A \cup B^{\prime}\right)$
d. $\left(A^{\prime} \cup B^{\prime}\right)$
96.

Shaded area represents
a. (A-B)
b. $(A+B)$
c. $\left(A \cup B^{\prime}\right)$
© (BUA')
97. A number is selected from first 100 natural numbers, what is the probability that

99. 2 numbers are selected from first 50 natural numbers, find the probability that both are
$\rightarrow \frac{16 c_{2} \times 34 C_{0}}{\text { divisible by 3? }}=\frac{120}{1225}=9.7959 \%$
100. Mr. A says to Mr. B "If it rains today I will give you ₹ $\mathbf{5 0 , 0 0 0}$ but if it doesn’t rain today you have to pay me ₹ $\mathbf{8 0 , 0 0 0}$ ". Find expected gain / (loss) for Mr. B if probability of raining is $\mathbf{0 . 2 0}$

	x	$p(x)$	$x \cdot p(x)$	$\sum x \cdot p 00 b(x)$
Rain	50,000	0.20	10,000	$=-54,000$
No Rain	$-80,000$	0.80	$-64,000$	$=-54,000$

101. A and B tossed 3 coins each. What is probability that both of them will get same number of heads?

A	B		
Ho. of heads	prob (x)	prob (x)	
0	$1 / 8$	$1 / 8$	$1 / 64$
1	$3 / 8$	$3 / 8$	$9 / 64$
2	$3 / 8$	$3 / 8$	$9 / 64$
3	$1 / 8$	$1 / 8$	$1 / 64$
			$20 / 64$

Answer: $\frac{20}{64}=\frac{5}{16}=31.25 \%$

Every good or Bad Moment of Your life is a part of your life, It's not your LIFE!

 —

If you are not willing to learn,

 No one can help you.If you are determined to learn, No one can stop you!

- CA VINOD REDDY -

All the late nights and

Early mornings will pay off.

- CA UINOD REDDY -

Education is the key to unlock the solden door of FREEDOM

Every student can learn, just not on the same day!

