

- Measures of central tendency is the central location (Central Value) of the observations
- Weighted averages are considered when all the observations are not of equal importance
- Simple average is sometimes called Un-weighted average
- Each value is considered only once for Simple average
- Each value is considered as many times as it occurs for Weighted average
- Multiplying the values of the variables by the
corresponding weights and then dividing the
- Multiplying the values of the variables by the
corresponding weights and then dividing the sum products by the sum of weights is Weighted average
- Simple average is obtained on dividing the total of a set of observations by their number
- Frequencies are generally used are Weights

MOCT
\downarrow
\downarrow

$>$ A.M of a set of observations is defined to be their sum, divided by the no. of observations.
> While computing the AM from a grouped frequency distribution, we assume that -All the
values of a class are equal to the mid-value of that class
$>$ The algebraic sum of deviations of
observations from their A.M is $\mathbf{0}$
$>$ The total of a set of observations is equal to the
product of their number of observations and the
The total of a set of observations is equal to the
product of their number of observations and the A.M
E.g., Let There are three observations Say 2,3,4 (Here $n=3$ And mean $=2+3+4 / 3=3$ Total of Observation = 9
Total of Observation (9) = No of Observation (3) * Mean (3)
> A.M is never less than G.M
$>$ When the algebraic sum of deviations from the arithmetic mean is not equal to zero, the figure of arithmetic mean Is not correct
$>$ If the same amount is added to or subtracted from all the values, the mean shall increase or decrease by the Same amount ,
\square
MEAN
\downarrow

$>$ Pooled Mean is also called Grouped Mean
> A.M is used when variability has also to be calculated.
> Mean is used when sampling variability should be least.
$>$ Weighted A.M is related to Frequency
> The words "mean" or "average" only refer to A.M
$>$ Mean is used when representation value is required \& distribution is asymmetric.
> Extreme values have some effect on A.M
Practical Cum Theory
> Median always lies in between the arithmetic mean \& mode.
> For open-end classification, Median is the best measure of central tendency
> In case of an even number of observations median is the simple average of these two middle values
> Median is based on only fifty per cent of the central values.
> In formula of median for grouped frequency distribution N is Total frequency
> For calculation of Median, we have to construct cumulative frequency distribution
> Median is equal to value corresponding to cumulative frequency ($\mathrm{N}+1$)/2 from simple frequency distribution
> For grouped frequency distribution Median is equal to the value corresponding to cumulative frequency $\mathrm{N} / 2$
$>$ In the case of a continuous frequency distribution, the size of the $\mathbf{n} / 2^{\text {th }}$ item indicates class interval in which the median lies.

Median
\square
1

Partition Value

> Mode is not uniquely defined
> The value which occurs with the maximum frequency is called Mode
> When all values occur with equal frequency,
there is no Mode
> Mode cannot be treated algebraically
> The class in which mode belongs is known as Modal class
> For calculation of Mode, we have to construct a grouped frequency distribution
Eg: For ordering shoes of various sizes for resale, a Modal size will be more appropriate.
MODE

Harmonic Mean (HM)

- H.M has a limited use
- H.M \& G.M cannot be calculated if any observation is zero.
- H.M is a good substitute to a weighted average.
- Extreme values have Greatest effect on H.M
- H.M is the reciprocal of the A.M of reciprocal of observations.

Relation between Various Measures of Central Tendency

Comparative Chart of Common Theory Point of MOCT

Sr No.	Particulars	Arithmetic Mean	Median	Mode	Geometric Mean (GM)	Harmonic Mean (HM)
1	Meaning	It is obtained by dividing the sum of values of all items of a series by the number of items of that Series	It is the central value that divides the series into two equal parts in such a way that half of the items lie above this value and the remaining half lie below this value	It is that value in a series which is the greatest frequency	GM of n items is the $\mathrm{n}^{\text {th }}$ root of their Product.	HM of Various items of a series is the reciprocal of the AM of their reciprocal
2	Symbol Used	\bar{X}	M_{d}	Mo	G.M.	H.M.
3	Whether based on All items of Series	YES	No	No	YES	YES
4	Can its formula be extended to calculate Combined Average of two or more related series?	YES	No	No	YES	YES
5	Whether it requires arrangement of data in ascending/ descending order?	No	Yes	No	No	No

6	Whether affected by Sampling Fluctuation	Least	Affected more than AM			
7	Whether affected by extreme values	Yes	No	No	Yes (Gives more weight to small item	Yes (gives largest weight to smallest item)
8	Suitable for	Other Cases	Open-ended distribution	Qualitative data	Average Rate of Increase/ Decrease, Average Ratios/ Percentages	For Rates and Ratios involving Speed, Time, Distance, Price \& Quantity.
9	Can it be determined graphically	No	Yes	Yes	No	No
10	Is it independent of choice of origin	No	No	No	No	No
11	Is it independent of choice of scale	No	No	No	No	No
12	Mathematical Property	1.Sum of Deviations from AM is always zero. 2.the sum of Squared Deviations from AM is Minimum	The Sum of Absolute Deviations from Median is Minimum	a	1.The product of the values of series will remain unchanged when the value of geometric mean is substituted for each individual value. 2.The sum of the deviations of the logarithms of the of the original observations above or below the logarithm of the geometric mean is equal.	If each value of the variant id replaced by harmonic mean the total of reciprocals of value of variant remains the same.

Summary Notes
\qquad
\qquad

Educator at Home

