SETS, FUNCTIONS & RELATIONS

SET

A set is a well defined collection of objects, whereby, by 'well defined' we mean that there is a rule (or rules) by means of which it is possible to say, without ambiguity, whether a particular object belongs to the collection or not The objects in the set can be anything.

The individual object of the collection or set is called an element or a member of the set Sets are usually denoted by the capital alphabets such as X, Y, Z, etc., and the elements of a set are denoted by small alphabets such as x, y, z, etc.

If X is a set and x is a member of set x, y, z, i.e., x is an element of X, then we express it symbolically as $x \in X$ and read it as 'x belongs to X'. Also $x \notin X$ means that x is not an element of x.

It is customary, in mathematics, to put a vertical line / or / or / through a symbol to indicate the opposite or negative meaning of the symbol.

Example 1. The collection of first six even natural numbers is a set containing the elements, 2, 4, 6, 8, 10, 12.

Example 2. The collection of vowels in the English alphabets is a set containing the elements a, e, i, 0 u.

Example 3. The collection of first four prime natural numbers is a set containing the elements 2, 3, 5, 7.

UNIVERSAL SET

In any mathematical discussion we shall consider all the sets to be the subsets of a given large fixed set, known as Universal Set or Universe of Discourse and is usually denoted by U. i.e., A universal set is the largest non-empty set of which all the sets, under consideration, are subsets.

Example 4. In a plane geometry the universal set consists of all the points in the plane.

Example 5. In any study of human population all the people in the world constitute the universal set.

REPRESENTATION OFSETS

The most common methods of describing a set are :

- (i) ROSTER METHOD (Tabular Form)
- (ii) SET-BUILDER METHOD

Roster Method. In this method a set is described by listing all its elements, separated by commas (,) with in the braces { }.

Example 6. Let S be the set of all vowels of the alphabets] then elements of S are a, e, i, o, u. We can write it as : **S** = (a, e, i, o, u)

Here the elements are separated by commas and are then enclosed by brackets { }. This is known as **Roster Method** of representation of a set of **Tabular Form** of a set.

Note. Roster Method is used only when the number of elements in a set is finite.

Example 7. If A is a set of all prime numbers less than 13 then $A = \{2, 3, 5, 7, 11\}$.

Example 8. The set of all odd natural numbers can be described as {1, 3, 5, 7, 9 ...}. Here the dots (...) stand for 'and so on'.

Set Builder Method. In this method a set is described by stating a property P(x) which is satisfied by all its elements. In such case set is described by $S = \{x P(x) \text{ holds}\}$ or $S = \{x P(x)$

The symbol '/ 'or' : 'is read as 'such that' :

Example 9. The set A = (1, 2, 3, 4, 5, & 7, 8, 9, 10 can be written as

 $A = \{x/x \le 101\}$

Here P(x) = x is a natural number less than or equal to 10.

Example 10. The set N of all natural numbers 1, 2, 3, 4, 5, 6, ... can be written as

N = {x / x is a natural number}

Here

P (x) = x is a natural number

Example 11. The set A of all real numbers lying between - 2 and 1 can be written as $A = \{x \mid x \in R \text{ and } -2 < x < 1\}$

Here P(x) = x is a real number and x lies between - 2 and 1.

FINITE AND INFINITE SETS

11.4.1 Finite Set. A set is said to be afinite set if the number of distinct elements in it is

finite, For Example. let S be the set of all vowels, i.e., S = (a, e i, o u}. Clearly S is a finite :

Example 12. Each one of the following set is a finite set

- (i) The set of odd natural numbers less than 50
- (ii) The set of prime numbers less than 100.

11.4.2 Infinite Set. If the number or elements in a set is not finite then the set is known as an infinite set.

Example 13.

(i)I the set of all integers is an infinite set;

(ii)N, the set of all natural numbers is an infinite set N = 1 2, 3, ...}

(iii)The set of all points is a plane is an infinite set.

(iv)The set of all lines in a plane is an infinite set.

ORDER OF A FINITE SET OR CARDINAL NUMBER

The number of distinct elements in a finite set is called the order of the set. If X is a finite set having m distinct elements, then the order of x is m. Symbolically,

O(X) = m, m is also called the cardinal number of the set x. It is also written as n(X) = m.

Example 14. Let $S = \{1, 3, 5, 7, 9, 11\}$ be a set, then its order is 6. or the cardinal number of the set S is 6

EQUIVALENT SETS

Two sets A and B are said to be equivalent sets if their cardinal numbers are same, i.e.,

n (A) = n (B).

SUBSET

A set x is said to be a subset of the set Y if every element of the set x is also an elemEnt of the set Y, i.e., $\forall x \in X \implies x \in Y$ We expressit by saying that x is contained in Y or Y contains X. We use the symbol C to denote the fact that the 'set x is a subset of Y and we write it as

(i) $X \subseteq Y$, to be read as X is contained in Y.

(ii) $Y \supseteq X$, to be read as Y contains X.

More specifically, X is a subset of Y if, $\forall x \in X \Longrightarrow x \in Y$.

If $X \subseteq Y$, then Y is called the superset of X.

Example 15.

(i) If A = {1, 2, 3, 4, 5} and B = {3, 5} then B is a subset of A.

(ii) If P be the set of all parallelograms and T is the set of all squares in a plane, then T is a subset of P i.e., $T \subseteq P$.

Remarks. If X is not a subset of Y we write it as $x \not\subset Y$ or $Y \not\subset X$, where $Z \not\subset Y =$ there is at least one element $x \in X$ such that $x \notin Y$.

Proper Subset. A set X is called a proper subset of the set Y if

(i) $X \subset Y$; (ii) $Y \not\subset X$

and we denote it by $X \subset Y$, i.e. X is said to be a proper subset of Y if every element of X belongs to Y but there is at least one element of Y which is not in X.

Example 16.

(i)The set N of natural numbers is a proper subset of the set I, the set of all integers.

(ii) Q $_{\bigcirc}$ R, i.e., the set of rational numbers is a proper subset of real numbers. A 'set which is nOt a proper subset is called improper subset

EQUAL SETS

Two sets A and B are said to be equal if every element of A is an element of B and every element of B is an element of A'and it is denoted by A = B

i.e. $\forall x \in A \Longrightarrow x \in B \text{ and } \forall y \in B \Longrightarrow y \in A$

Thus $A = B \Rightarrow A \subseteq B$ and $B \subseteq A$

Example 17.

(i) Let S = {x / x is a vowel} and T = {a, e, A, o, u} then S = T.

(ii) Let S = {x | x is a solution of $x^2 - x - 2 = 0$ } and T = {-1, 2}.

We know that the solutions of $x^2 - x - 2 = 0$ are -1 and 2.

 \therefore S = {-1, 2}. Thus S = T.

NULL SET OR EMPTY SET

A set having no element is called a null set or a void set or an empty set and is denoted by ϕ . **Example 18.**

- (i) The set S = {x / x is an integer and $x^2 = 2$ } is, clearly, a null set as there is no integer whose square is 2.
- (ii) If X is the set of all real solutions of the equation $x^2 + 1 = 0$, then trivially $X = \phi$, for there is no real number which satisfies the equation $x^2 + 1 = 0$.

Thus we notice from the above examples, that in the case of an empty set, the defining óperty for the membership of a set is such that it is not satisfied 'by any of its members.

SINGLETON SET

A set consisting of only one element as its member, is known as singleton set

Example 19. (i) {1} is a singleton set whose only element is unity.

 $\{\phi\}$, it is a set whose only element is a null set, therefore, $\{\phi\}$ is singleton.

Remarks. The set ϕ contains no element whereas the set {0} contains only one element, viz 'zero'.

COUNTABLE AND UNCOUNTABLE SETS

A set whose elements can be put in one-to-one correspondence with the elements of the set N, the set of positive integers is called countable or enumerable set otherwise it is Matching sets.

When a one-to-one correspondence exists between two sets, they are said to be matching sets.

Example 20. The set T = {a, e, i, o, u} is a countable set as we can write it :

а	е	i	0	u
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	2	3	4	5

Thus T is a countable set.

Comparable Sets. Two sets A and B are said to be comparable if either A $_{\sub}\,$ B or

B $_{\subset}~$ A. If neither A $_{\subset}~$ B nor B $_{\subset}~$ A, then A and B are called non-comparable sets.

Example 21. Let A = {3, 6, 9} and B = {3, 6, 9, 12, 15} then A and B are **comparable** as

 $A \subset B$.

Example 22. A = {x : x is an even integer and B = (x : x is an odd integer} Then A and B are noncomparable as A $\not\subset$ B and B $\not\subset$ A.

DISJOINT SETS

Two sets A and B are said to be disjoint sets if they have no element in common, i.e., their intersection is a null set, i.e., if $A \cap B = \phi$.

Thus two sets A and B are said to be disjoint sets if A $_{\bigcirc}$ B = ϕ .

The sets X = {x | x is an even natural number} and Y = {y | y is an odd natural number} are disjoint as $X \cap Y = \phi$.

FAMILY OF SETS OR SET OF SETS

If the elements of a set are sets themselves, then this set is called the family of sets or a class of sets or a set of sets.

- (i) The set {{ ϕ }, {2}, {1}, {1, 2}} is a family of sets because its members are the sets (ϕ), {2}, {1}, {1, 2}.
- (ii) $\{\phi\}$ is also a family of sets as its only element is the set ϕ .

Power Set

It is the set of all possible subsets of the given set A and is denoted by P (A), i.e., P(A) = {B / B \subseteq A}. Thus a power set is a family of sets.

For Example. Let A = $\{2,3,4\}$ 3, 4} then, P(A) = $\{\{\phi\}\ \{2\},\ \{3\},\ \{4\},\ \{3,4\}\ \{2,4\},\ \{2,3\},\ \{2,3,4\}\}$.

Theorem 1. If A is a finite set consisting of n elements, then P(A) contains 2ⁿ elements.

Proof. Let us consider all the subsets of set A.

The number of subsets having no element is "C₀.

The number of subsets having one element is "C1.

The number of subsets having two elements is "C2.

...

...

The number of subsets having n elements is "C_n.

Adding all these, we get the number of elements in

$$P(A) = [{}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n} = (1 + 1)^{n} = 2^{n}.$$

[See Binomial Theoremi]

Hence the power set P(A) has 2^n elements if A contains n elements, where P(A) is the 'power set of A.

BASIC OPERATIONS OF SETS

The main operations in the set theory are union, intersection, difference and complement.

Union of Two Sets. Let A and B be two given sets. Then the union of the two sets A and B is the set of all those elements x such that x belongs to A or x belongs to B or x belongs to both A and B, and is denoted by $A \cup B$, to be read as 'A union B' or

A ∪ **B**.

i.e., $A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ or } x \in A \text{ as well as } x \in B\}.$

Note 1. It is clear from the definition of union of two sets A and B, that $A \cup B = B \cup A$.

Note 2. The sets A and B are always subsets of A \cup B, i.e A \subseteq A \cup B and B \subseteq A \cup B

```
Note 3. If A_1, A_2, A_3, \dots, A_n is a finite family of sets, then their Union of denoted by \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n.

Example 23. (i) Let A = \{a, b, c\} and B = \{b, c, d\}, then

A \cup B = (x \mid x \in A \text{ or } x \in B \text{ or } x \in both A \text{ and } B\} = \{a, b, c, d\}.

Example 24. Let A \{1, 3, 2, 1, 3, 5\} and B = \{4, 6, 5, 1, 5, 4\}

then A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ or } x \in both A \text{ and } B\}

= \{1, 2, 3, 4, 5, 6\}.
```

Example 25. Let A = {x : x = 2n, $n \in Z$ }, B = {x : :x = 2n + 1, $n \in Z$ }, then

 $A \cup B = \{x : x \text{ is even integer}\} \cup \{x \text{ is an odd integer}\}$

= {x : x is an integer] = $[x : x \in Z]$

Intersectioin of Two Sets. Let A and B be two sets. Then the intersection of two sets A and B is the set of all those elements which belong to A as well as to B and is denoted by A \cap B, to be read as A intersection B or A cap B.

i.e.,
$$A \cap B = \{x \mid x A \text{ and } x \in B\}.$$

Therefore, by the intersection of two sets A and B we mean the set of alt those elements which are common to both A and B.

Clearly, $x \in A \cap B \Leftrightarrow x \in Aand x \in B$.

Note 1. If A and B are two sets, then $A \cap B \subseteq A$ and $A \cap B \subseteq B$, i.e., the intersection of two sets A and B is a subset of A as well as of B.

Note 2. The intersection of a finite family of sets $A_1, A_2, A_3, A_4, \dots, A_n$ is denoted by

 $\bigcap_{i=1}^{n} A_{i}$

where,

$$\bigcap_{i=1}^{n} A_{i} = \mathsf{A}_{1}, \cap \mathsf{A}_{2}, \cap \mathsf{A}_{3}, \cap \mathsf{A}_{4} \cap \cdots \cap \mathsf{A}_{4}$$

Example 26. Let $R = \{2, 4; 6, ...\}$ and $S = \{3, 6, 9, ...\}$, then $R \cap S = \{6, 12, 18, 24,\}$

Example 27. Let $A = \{a, b, 1\}$, $B = \{b, c, d, 1\}$, then $A \cap B = \{b, 1\}$.

Example28. if A { $x : x = 3n \ n \in Z$ } and B = { $x : x = 5n, n \in Z$], then find A \cap B.

Solution. Let $x \in A \cap B \Leftrightarrow (x = 3n, n \in Z)$ and $(x = 5n \in Z)$

 \Leftrightarrow (x is a multiple of 3) and (x is a multiple of 5)

 \Leftrightarrow x is amultiple of 15 x =15n, n \in Z

Hence $A \cap B = \{x : x = 15n n \in Z\}$

DIFFERENCE OF TWO SETS

Let A and B be, two sets, then the difference of the sets A and B is the set of all those elements x such that x bqlongs to A and x does not belong to B and is denoted by A B to be read as 'A difference or simply 'A minus B'

i.e., $A - B = \{ x : x \in A \text{ and } x \notin B \}.$

Example 29. Let A = {1, 3, 5, 7, 9, 11) and B = {3, 5, 7, 8} then

 $A - B = \{1, 9, 11\}, where as B - A = \{8\}$

Obviously A - B = B - A

COMPLEMENT OF A SET

Let U be a universal set and A $_{\subset}$ U then the complement of the set A with respect to the universal set U is the difference of the universal set U and the set A. It is denoted by A^c or A' be read as A complement.

i.e.,
$$A^c = U - A = \{x \mid x \in U \text{ and } x \notin A\}$$
 or $A^c = \{x \mid x \notin A\}$.

Another Definition. If A and B are two given Sets such that $A \subseteq B$, then the complement of A in B or complement of A with respect to B is the set of all those elements of B which does not belong to A.

i.e., $B - A = (x / x \in B \text{ and } X \notin A)$

e.g., If we take the set B = {x / $x \in N$ } and A = {y / y is an odd number and y N}, then A^c = {z / z is an even number and $z \in N$

Note 1. We notice that in order to define the complement of a set A with respect to another set B, it is necessary that $A \subset B$ whereas the difference can be defined for any two sets A and B.

Note 2. $A - B = A \cap B^c$ if for any two sets A and B.

Now A - B = {x | $x \in A$ and $x \in B$ } = {x | $x \in A$ and $x \in B^c$ } = A $\cap B^c$.

Example 30. Let N, the set of all natural numbers, be taken as the universal set and let $A = [x / x is an even number and x \in N)$, then

$$A^{\circ}$$
 = [y / y is an odd number and y $\,\in\,$ N

SYMMETRIC DIFFERENCE

The symmetric difference of two sets A and B is the set (A — B) u (B — A) and is denoted by A Δ B

i.e., $A \Delta B = (A - B) \cup (B - A)$

Example31. Let A = (1. 2, 3] and B = {3 4, 5 then A - b {1,2 2} and B - A = (4,5),

then $A \triangle B = (A - B) \cup (B - A) = \{1 \ 2\} \cup (4, 5) = 1, 2 \ 4, 5\}.$

PRINCIPLE OF DUALITY

The principle of duality states all laws of algebra remain true if we interchange union and intersection, and also the universal and the null set.

eg.. if the theorem is $(A \cup B) \cup (A \cup B^{c}) = A$,

then its dual will be obtained by interchanging union and intersection i.e., dual will be

 $(A \cap B) \cup (A \cap B^{\circ}) = A$

Theorem 2. If U is the universal set and A $_{\bigcirc}$ U, then (A^c)^c = A.

Proof In order to prove the above result we need to prove that

(a) $(A)^c \subseteq A \text{ and } (b) A \subseteq (A^c)^c$

Now

$$\mathbf{x} \subset (\mathbf{A}^c)^c \Leftrightarrow \mathbf{x} \notin \mathbf{A}^c$$
 Thus $\mathbf{x} \in (\mathbf{A}^c)^c \Leftrightarrow \mathbf{x} \in \mathbf{A}$
 $(\mathbf{A}^c)^c \subseteq \mathbf{A}$ and $(\mathbf{A}^c)^c \supseteq \mathbf{A} \Rightarrow (\mathbf{A}^c)^c = \mathbf{A}$

DE-MORGAN'S LAWS

Theorem 3. Let U be the universal set and A $_{\sub}$ U, B $_{\sub}$ U, then

(i) $(A \cup B)^c = A^c \cap B^c$, i.e the complement of union of two sets A and B is equal té intersection of their complements.

(ii) $(A \cap B)^c = A^c \cup B^c$ u if, i.e., the complement of the intersection of two sets is equal to the union of their complements.

ALGEBRA OF SETS

We have introduced the notion of a set and discussed some basic operations in sets, namely intersection, union, difference, etc., which enable us to combine sets so as to give a new set. These basic operations play an important role in the development of set theory. We know that there are certain fundamental laws in the algebra of numbers, where addition and multiplication are the two basic operations. Similarly; there are certain fundamental laws in set theory with respect to the basic operations of u (union), n (intersection) and (difference).

I Commutative Laws. If A and B are any two sets, then

(i)
$$A \cup B = B \cup A$$

and (ii)
$$A \cap B = B \cap A$$

II Associative Laws. If A, B and C are any three sets then associative law is said to hold good. -

(i)
$$A \cup (B \cup C) = (A \cap B) \cap C$$

(ii) A \cap (B \cap C) = (A \cap B) \cap C

III. Distributive Laws. If A, B and C are three sets and \cup and \cap are operations, then

- (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Idempotent Laws. If A is any set, then

(i) $A \cup A = A$

(ii)
$$A \cap A = A$$

V.Identity Laws. If A is any set and U is the universal set and \oslash is the null set, then

- (i) $A \cup \phi = A$
- (ii) $A \cap U = A$

VI. Complement Laws. If A is any set and $A^c OR A'$ is the complement of the set A, then

(i)
$$A \cap A^c = \phi$$

(ii)
$$A \cup A^c = U$$

VII. De Morgan's Laws. If A and B are any two sets, then

(i)
$$(A \cup B)^c = A^c \cap B^c$$

(ii)
$$(A \cap B)^c = A^c \cup B^c$$

VENN DIAGRAM

A Swiss mathematician Euler, first of all, gave an idea to represent a set by points in a closed curve. Later on British mathematician Venn put this idea to practice. It is this fact that the diagrams drawn to represent sets are called Venn - Euler diagrams or simply Venn-diagrams. These diagrams are very useful for the beginners to understand the set theoretic ideas. In Venn-diagrams, the Universal set U is represented by points within a rectangle. The subsets A, B, ... of the Universal set U are represented by points in a closed curves (usually circles) within the rectangle.

Subsets. The subsets are represented by the portion of the region within the region and this portion is generally enclosed by the circle around the elements.

For example the subset A = {a, b, c, d} is represented by the circle enclosing a, b, c, d in -

Fig. 11.1.

Proper Subset. If A is a proper subset of B, then the circle representing A is drawn inside the circle representing B [see Fig. 11.2].

Example 32. Let A be set of all players and B be the set of all Cricket players of Dyal Singh College. This possibility is represented by saying that B is proper subset of A, i.e., B C A and this is represented by Venn diagram as the circle B inside the circle A (See Fig. 11.3).

Complement of A Set. Let U be the universal set. Let A be a subset of U. Then the complement A of with respect to U is the shaded region in the Fig. 11.6. -

Example 33. Let the universal set be

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \text{ and } A = \{2, 3, 4\}.$

Now 1, 5, 6, 7, 8, 9 are members of U but not of A, whereas 2, 3, 4 are members of both the sets A and U. Thus the members 1,5,6,7, 8,9, can form another set known as complement of A and is denoted by A^c The shaded portion in Fig. 11.7 is A^c .

Difference of Two Sets. Let A and B be the two subsets of the universal set U. Then the difference A — B is the set of all those elements which do not belong to B. In the Venn-diagram A - B is the shaded region in the figure 11.8.

Similarly, the set BA is given by the shaded portion in the figure 11.9.

Symmetric Difference. Let A and B be two subsets of the universal set U. Then the symmetric differencel A $\Delta B = (A - B) \cup (B - A)$ is the shaded is the shaded portion in the figure 11.10.

SOME RESULTS ON NUMBER OF ELEMENTS IN SETS

Theorem 4. If A and B are two finite sets, then

(i) n (A \cup B) = n (A) + n (B)—n (A \cap B), when A and B are not disjoint sets

(ii) n (A \cup B) = n (A) + n (B), when A and B are disjoint sets

(iii) n (A — B) = n (A) - n (A
$$\cap$$
 B) , i.e., n (A) = n (A — B) + n (A \cap B)

(iv) n (A Δ B) = Number of elements which belongs to exactly one of A or B

$$\therefore$$
 n (A Δ B) = n (A) + n (B) - 2n (A n B)

(v) n
$$(A' \cup B') = n [(A \cap B)'] = n (U) - n (A \cap B)$$

(vi) n
$$(A' \cap B') = n [(A \cup B)'] = n (U) - n (A \cup B)$$

Theorem 5. If A, B and C are three finite sets, then

(i)
$$n (A \cup B \cup C) = n (A) + n (B) + (C) - n (A \cap B) - n (A \cap C)$$

-n ($B \cap C$) +n ($A \cap B \cap C$)

(ii) Number of elements in exactly two of the sets A, B, C

 $= n (A \cap B) + n (B \cap C) + n(C \cap A) - 3n (A \cap B \cap C)$

(iii) Number of elements in exactly are of the sets A, B, and C

= n (A) + n (B) + n (C) — 2n (A
$$\cap$$
 B) - 2n (B \cap C) -2n (A \cap C) + 3n (A \cap B \cap C)

Example 34. The combined membership of Mathematics AssOciation and Science Club is 122 What is the membership of Science Club if 50 are known to be the members of Mathematics Association and 28 are members of both the organisations ?

Solution. Let M be the set of Mathematics Association arid S be the set of Science Club.

We are given that n (M \cup S) = 122, n (M) = 50; n (M \cap S) = 28.

Also we know that n ($M \cup S$) = n (M) - n ($M \cap S$)

 \therefore 122 = 50 + n (S) - 28 \implies n (s) = 122 - 22 = 100.

Example 35. In a class containing 50 students, 15 play Tennis,: 20 play Cricket and 20 play Hockey, 3 play Tennis and Cricket, 6 play Cricket and Hockey, and 6 play Tennis and Hockey. 7. play no game at alt How many play Cricket, Tennis and Hockey ?

Solution. Let sets of Tennis, Cricket and Hockey players be denoted by T, C and H respectively, then n (U) = 50, n (T) = 15, n (C) = 20, n (H) = 20, n (T \cap C) = 3, n (C \cap H) = 6, n (T n H) = 5 n (T \cap C \cap H)' = 7. We have to find n (T \cap C \cap H).

Now, n (T \cup C \cup H) = n (T) + n (C) + n (H) n (T \cap C) n (C \cap H)

- n (T \cap H) + n (T \cap C \cap H).

:.
$$n (T \cup C \cup H) = 15 + 20 + 20 - 3 - 6 - 5 + n (T \cap C \cap H)$$

or
$$n(T \cup C \cup H) = 41 + n(T \cap C \cap H)$$

But

n (T
$$\cup$$
 C \cup H)' = n (U) - n (T \cup C \cup H)
7 = 50 [41 + n (T \cap C \cap H)] \Rightarrow n (T \cap C \cap H) = 2.

Example 36. A company studies the product preferences of 300 consumers. It was found that 226 liked product X; SI liked product Y and 54 liked product Z; 21 liked products X and Y; 54 liked products X and Z; 39 liked products Y and Z and 9 liked all the three products. Prove that the study results are not correct. (Assuming that each consumer likes at least one of the three products.)

Solution. Let the set of consumers having likings for the product X, product Y and product Z respectively be denoted by X, Y and Z. Then we have

n (X) = 266, n (Y) = 51, n (Z) = 54, n (X
$$\cap$$
 y) = 21, n (X \cap Z) = 54, n (V \cap Z) = 39,

n (X \cap Y \cap Z) = 9 and n (X \cup V \cup Z) = 300.

We know that $n(X \cup Y \cup Z) = n(X) + n(Y) + n(Z) - n(X \cap Z) - n(X \cap Y) - n(Y \cap Z) + n(X \cap Y \cap Z)$.

L.H.S = 256 + 51 + 54 - 21 - 54 - 39 + 9 = 226.

R.H.S. = 300 (as given) But 226 \neq 300 \Rightarrow L.H.S. \neq R.H.S.

Hence the study results are not correct. -

Example 37. If A. M. S. are three groups consisting of Accountants, Management Consultants and Sales Managers respectively, then test the validity of the statement "Some Accountants are Management Consultants : all Management Consultants are Sales Managers, therefore some Accountants are Sales Managers."

Solution. Some Accountants are Management Consultant $\Rightarrow A \cap M \neq \phi$(1)

All Management Consultants are Sales Manager \Rightarrow M \cap S' = ϕ(2)

Now (1) can be written as $(A \cap M \cap S) \cup (A \cap M \cap S') \neq \phi$(3)

Again (2) can be written as : (A
$$\cap$$
 M \cap S) \cup (A \cap M \cap S') = ϕ(4)

Now (4)
$$\Rightarrow A \cap M \cap S' = \phi$$
. ...(5)

But (3) and (5) $\Rightarrow A \cap M \cap S \neq \phi \Rightarrow A \cap S \neq \phi$.

 \Rightarrow The class of Accountants who are Sales Manager is not an empty.

Hence "Some Accountants are Sales Manager" is a valid statement.

<u>**Relation**</u> : Let A, B be any two non-empty sets, then every subset of A \times B define a relation from A to B and every relation from A to B is a subset of A \times B

If R is a relation from A to B and if $(a, b) \in R$ then we write aRb and say that "a" is related to b" it is denoted by R a - b

 $R = \{(a, b) / a \in A; b \in B\}$

Note : Let the number of elements of A and B be m and n respectively then the number of elements of A × B is mn

Therefore the number of elements of the powerset of A \times B is 2^{mn} Hence the number of different relation from A to B is 2^{mn}

Domain and Range of a relation : If R is a relation from A to B, then the set of al first coordinates of elements of R is called the domain of R while the set of all second co-ordinates of elements of R is called the range of R

Dom (R) = $\{a/(a, b) \in R\}$

Range of R = $\{b / (a, b) \in R\}$

Some particular Types of relation :

(1) Void relation : Since $\phi \subset A \times A$, it follows that ϕ is a relation on A, called the empty or void relation

e.g. Let A = $\{3, 5\}$ B = $\{7, 11\}$ Let R = $\{(a, b)/a \in A, b \in B a - b \text{ is odd}\}$

Since none of the numbers (3 - 7), (3 - 11), (5 - 7), (5 - 11) is an odd number, R is an empty relation.

<u>Universal Relation</u>: Since $A \times A \subseteq A \times B$ it follows that $A \times A$ is a relation on A, called the universal relation.

e.g. Let $A = \{1, 2, 3\}$ then

R = A × A = {(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3,)} is a universal relation in Α.

<u>Identify Relation</u> : The relation $I_A = \{(a, a) / a \in A\}$ is called the identify relation on A

e.g. If A = {1, 2, 3} then the identify relation on A is given by $I_A = \{(1, 1), (2, 2), (3, 3)\}$

Inverse Relation : If R is a relation on A, then the relation R⁻¹ defined by

 $R^{-1} = \{(b, a)/(a, b) \in R\}$ is called an inverse relation on A

Clearly dom (R^{-1}) = Range (R) and

range $(R^{-1}) = dom (R)$

e.g. Let A =
$$\{2, 3, 4\}$$
 B = $\{2, 3, 4\}$ and R = $\{(x, y)/x - y = 1\}$

be a relation from A to B

i.e. $R = \{(3, 2) (2, 3) (4, 3) (3, 4)\}$ then $R^{-1} = \{(2, 3) (3, 2) (3, 4) (4, 3)\}$

Reflexive Relations : Let R be a relation in a set A Then R is called a reflexive relation if (a, a) ∈ R

for all $a \in A$

Thus R is reflexive if aRa holds for all a \in A

e.g. Let $A = \{1, 2, 3, 4\}$ then

(i) The relation $R_1 = \{(1, 1) (2, 4) (3, 3) (4, 1) (4, 4)\}$ in A is not reflexive since $2 \in A$ but (2, 2) ∉ R1

The relation $R_2 = \{(1, 1) (2, 2) (3, 3) (4, 4)\}$ is reflexive. (ii)

Symmetric Relations : Let R be a relation in a set A

Then R is said to be symmetric relation if (a, b) \in R \Rightarrow (b, a) \in R

e.g. Let L be the set of all straight lines in a plane, The relation R in L defined by "x is parallel to y" is symmetric relations.

Since a straight line I_1 is parallel to a straight line I_2 then is also parallel to 11

Thus (a, b) $\in R \implies$ (b, a) $\in R$

<u>Transitive Relations</u> : Let R be a relation in a set A then R is said to be transitive relation if $(a, b) \in R$ and $(b, c) \in R = (a, c) \in R$

e.g. Let L be the set of all straight lines in a plane and R be the relation in L defined by "x" is parallel to y" If I_1 is parallel to I_2 , I_2 is parallel to I_3 then I_1 is parallel to I_3 Thus (a, b) \in R, (b, c) \in R \Rightarrow (a, c) \in R

Equivalence Relation : Let R be a relation in a set A

Then R is an equivalence relation in A if

- (i) R is reflexive i.e. for all $a \in R$ (a, a) $\in R$
- (ii) R is symmetric i.e. (a, b) $\in R \Rightarrow (b, a) \in R$ for all a, b $\in A$
- (iii) R is transitive i.e. (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R

for all a, b, c \in A

e.g. The example of an equivalence relation is that of "equality"

For any elements in any set

- (i) a= a i.e. reflexive
- (ii) a = b = b = a i.e. symmetric
- (iii) a = b and $b = c \implies a = c$ i.e. transitive.

CLASS WORK + HOME WORK - 1

Set Theroy :

1.	The number of subsets of the s	ets {6, 8, 11} is:				
	(a) 9	(b) 6	(c) 8	(d) None of these		
2.	If the universal set E = $\{x / x\}$	is a positive integer <	25), A = {2, 6, 8, 14, 22}, B	= {4, 8, 10, 14}, then :		
	(a) (A∩B)′ = A′∪B′		(b) $(A \cap B)' = A' \cap B'$			
	(c) $(A' \cap B)' = \phi$		(d) None of these			
3.	If the set P has 3 elements, contains :	Q has four elements	and R has two elements, t	then the set P x Q x R		
	(a) 9 elements	(b) 20 elements	(c) 24 elements	(d) None of these		
4.	If A and B are two sets, the	n (A \cup B) \cap = B equ	lals			
	(a) B	(b) A	(c) $A \cap B$	(d) φ		
5.	Let A = { x / x is a multiple o	f 2} and B = { x / x is a	multjple of 3}. Then A $_{igcarrow}$	Bis given by :		
	(a) {3, 6, 9,}	(b) {2, 4, 6, 8, }	(c) {6, 12, 18, }	(d) None of these		
6.	If A = {1,2,3,4}, B = {2, 4, 5,	6) and C = {1, 3, 4, 6,	8}, then the set $(A \cap B) \cup$	\mathcal{F} (A \cap C) equal to		
	(a) {1, 2, 3, 4}	(b)	1, 2, 3, 4, 5, 6}			
	(c) {2, 4, 5, 6}	(b)	None of these			
7.	Let A = {1, 3, 5, 7, 8, 9} and	B= {3, 5, 8), thenA $_{\Delta}$	B is :			
	(a) {1,7,9}	(b) {3, 5, 8}	(C) φ	(d) None of these		
8.	If A = (1, 3, 5, 7, 11, 13, 15,	17}, B = {2, 4, 618]	} and N is the universal se	t, then		
	$A' \cup [(A \cup B) \cap B']$ is equ	al to:				
	(a) N (b)	A'	(c) B	(d) None of these		
9.	If X and Y are two sets, the	n (Y \cup X)' \cap X equa	ls :			
	(a) φ	(b) x	(c) y	(d) None of these		
10.	If A & B are two sets and U	is the universal set su	ch that n (U) = 700, n (A) =	= 200, n (B) = 300 and		
	n (A \cap B) = 100, then n (A'	\cap B') is equal to :	() .	(N		
	(a) 200	(b) 300	(c) 400	(d) 600		
11.	A and B are two disjoint sets	s containing 3 and 6 el	ements respectively. The r	number of elements in		
	$A \cup B $ is:			()) 0		
	(a) 3	(D) 6	(c) 2	(d) 9		

12.	If a \in N such that aN = {ax	: x \in N}. The set 3N $_{\frown}$	7N is equal to :	
	(a) 7 N	(b) 3 N	(c) 21 N	(d) None of these.
13.	For any natural number a, d is equal to:	we define aN = (ax : x t	€ N}. If b, c, d € N such tha	at bN \cap cN = dN, then
	(a) b	(b) c	(c) bc	(d) None of these
DIRE	CTION : For Q.No. 14 to Q	.no.18.		
	U = $\{1, 2, \dots, 9\}$ to be the following questions	e universal set, A = {1,	2, 3, 4} and B = {2, 4, 6	, 8}. Then answer the
14.	The A \cup B is equal to :			
	(a) {1, 2, 3,4, 6, 8}	(b) {2, 4}	(c) {5, 6, 7, 8, 9}	(d) {5, 7,9}
15.	The set equal to set A $_{\bigcirc}$ B	3 is :		
	(a) {1,2,3,4,6,8}	(b) {2, 4}	(c) {5, 6, 7, 8, 9}	(d) (5,7,9)
16.	The set equal to set A' is :			
	(a) {1, 2, 3, 4, 6, 8}	(b) {2, 4}	(c) {5, 6, 7, 8, 9}	(d) {5,7,9}
17.	The set (A \cup B)' is :	TREACHC &		
	(a) {1, 2, 3, 4, 6, 8}	(b) {2, 4}	(c) {5, 6, 7, 8, 9}	(d) {5, 7, 9}.
18.	The set (A $_{igcarrow}$ B)' is equal to	o:		
	(a) {1, 2, 3, 4, 6, 8}		(b) {2, 4}	
	(c) {5, 6, 7, 8, 9}		(d) {1, 3, 5, 6, 7, 8, 9}.	
19.	Then A x (B \cup C) is equal	to		
	(a) {(2, 4), (2,5), (2,6), (3,4)	4), (3, 5), (3, 6)}		
	(b) {(2, 5), (3,5)}			
	(c) $\{(2, 4), (2, 5), (3, 4),$	8, 5) (4, 5), (4, 6), (5,5)	(5, 6)}	
	(d) None of these.			
20.	The set A x (B $ {}_{\bigcirc}$ C) is equa	al to		
	(a) {(2,4), (2,5), (2,6), (3,4	4), (3, 5), (3, 6)}		
	(b) {(2,5), (3,5)}			
	(c) $\{(2, 4), (2, 5), (3, 4),$	8, 5) (4, 5),		
	(4, 6), (5,5) (5, 6)}			
	(d) None of these.			

21.	The set (A x B) \cup (B	x C) is equal to		
	(a) {(2,4), (2, 5), (2,	6), (3,4), (3, 5), (3, 6)}		
	(b) {(2, 5), (3,5)}			
	(c) {(2, 4), (2, 5), (3,	4), (3, 5) (4,5), (4, 6), (5, 5	5) (5, 6)}	
	(d) None of these.			
22.	Given A {2, 3}, B = {4	, 5}, C = {5, 6}, then A x (B	$_{\bigcirc}$ C) is equal to	
	(a) {(2, 5), (3, 5)}		(b) {(5, 2), (5, 3)}	
	(c) $\{(2, 3), (5, 5)\}$		(d) None of these.	
23.	After qualifying out of as service. There wer and 20 in both industr any of these?	400 professionals, 112 joine and service. There were	ined industry, 120 started ctice and service, 40 in bo 2 12 who did all the three. F	bractice and 160 joined th practice and industry low many could not get
	(a) 88	(b) 244	(c) 122	(d) None of these.
24.	In a town of 20,000 fa newspaper B and 10 4% buy A and C. If 2% A only is :	amilies it was found that 4 % families buy newspaper families buy all the three n	10% families buy newspap C, 5% families buy A and newspapers, then the numb	er A, 20% families buy B, 3% buy B and C and er of families which buy
	(a) 6600	(b) 6300	(c) 5600	(d) 600
25.	In the above question	ns(24), the number of fami	lies which buy none of A, I	3 and C is :
	(a) 6000	(b) 8000	(c) 4000	(d) None of these
26.	If A has 32 elements, in A $_{\bigcirc}$ B.	B has 42 elements and A	u B has 62 elements find t	he number of elements
	(a) 10	(b) 12	(c) -12	(d) None of these
27.	A town has a total pop 23000 read "Sandesh Samachar" nor "Sand	oulation of 50000 persons n" while 4000 read both the desh"?	and of them 28000 read, " e papers. Indicate how mar	Gujarat Samachar" and ny read neither "Gujarat
	(a) 300	(b) 1300	(c) 3000	(d) None of these
28.	If A = $\{x / x^2 - 17x + 60\}$	0 = 0}		
	B = {x / x ² - 7x+ 12=0]	} find A \cup B and.		
	(a) {3, 4, 5, 12}		(b) {-3, 4, 5, -12}	{3}
	(c) {3, -4, 5, 12}	{12}	(d) None of these.	

SETS, FUNCTIONS & RELATIONS

29.	In a c taken	ollege, there are Mathematic. Hov	at le v ma	ast 500 girls and on the set 500 girls and on the set and the set	of the aken b	m 3 ooth	300 have taken Ecor the subjects ?	iomic	s and 250 have	
	(a) 4	0	(b)	50	()	c) ·	-50	(d)	None of these	
30.	Let th	e universal set U	= {x	/ 3 <u><</u> x <u><</u> 13, x _∈ I	N}					
	A = { y	y / 2 ∠ y ∠ 7, y	∈N	}						
	B = {3	, 5, 7, 9}, find A'								
	(i) {	7, 8, 9, 10, 11, 12	2, 13	}	(i	ii) ·	{3, 6, 8, 9, 10, 11, 12	, 13}		
	(iii) {	4, 5, 6, 10, 11, 12	2, 13}		(i	iv)	None of these			
31.	Let th	e universal set U	= {x	/ 3 <u>≤ x ≤</u> 13, x _∈ I	N}					
	A = { y	y / 2 ∠ y ∠ 7, y	∈N	}						
	B = {3	, 5, 7, 9}, find B'								
	(i)	{4, 5, 6, 7, 8, 9,	10 1	1, 12, 13}(ii) {	4, 6, 8	8, 10), 11, 12, 13}			
	(iii)	{5, 6, 7, 11, 12,	13}	(iv)	No	ne of these			
32.	Let the universal set U = {x / 3 \leq x \leq 13, x \in N}									
	$A = \{ y / 2 \ge y \ge 7, y \in N \}$									
	B = {3	, 5, 7, 9}, find (A	∪ B)'						
	(i)	{8, 10, 11, 12, 1	3}	(1	ii)	{3,	4, 5, 11, 12, 13}			
	(iii)	{3, 4, 5, 8, 9, 10), 11,	12, 13} (i	iv)	No	ne of these			
33.	If U = the fo	(a, b, c, 1, 2, 3) is llowing sets (A -	a un — B)	iversal set, A = (a, \cap (B — A)	b, c},	B =	(1,2,3), C = (a, 1,2),	D = (a, b, 3) then find	
	(i)	Ø		(i	ii)	{a,	b, 1}			
	(iii)	{1, 2, 3}		()	v)	No	ne of these			
34.	If U = the fo	(a, b, c, 1, 2, 3) is llowing sets (C	a un ∪ D	iversal set, A = (a,))'	b, c},	B =	(1,2,3), C = (a, 1,2),	D = (a, b, 3) then find	
	(i) {	a}	(ii)	{b}	(i	iii) ·	{c}	(iv)	None of these	
35.	lf U =	(a, b, c, 1, 2, 3) is	aun	iversal set, A = (a,	b, c},	В=	(1,2,3), C = (a, 1,2),	D = (a, b, 3) then find	
	the fo	llowing sets (A	— D)) ∩ (A ∩ D).						
	(i) {	1, 2, 3}	(ii)	{a, b, 2}	(i	iii)	Ø	(iv)	None of these	

MATHEMATICS (CPT)

36.	If $A = {$	2, 3} the	en find A ²	2					
	(i)	(2, 2)	(2,3)	(3, 2)	(3,3)	(ii)	{(4, 9)}	ł	
	(iii)	{(2, 2)	(3, 3) }			(iv)	None	of these	
37.	lf the u subse	iniversa ts of X,	I set is X find the	= { x / sets A	′ x ∈ N, 1 <u>≤</u> x <u>≤</u> ∧ ∪ (B ∩ C)	12] an	d A={1,9	9,10], B = {3,4,6,	11, 12},C = {2,5,6} are
	(i) {1	I, 6, 9, 1	10}	(ii)	{1, 6}		(iii) {1,6	6, 10}	(iv) None of these
38.	lf the u subse	iniversa ts of X,	II set is X find the s	={x/ sets(′ x ∈ N, 1 <u>≤</u> x <u>≤</u> (A ∪ B) ∩ (A ∪	12] an∉ ⊬C).	d A={1,9	9,10], B = {3,4,6,	11, 12},C = (2,5,6) are
	(i) {1	I, 6, 9, 1	10)	(ii)	{1, 2, 5, 6}		(iii) {1, 2	2, 5, 6, 9, 10}	(iv) None of these
39.	If A = {	2,4}, B ፡	= {2,4,6}	find A	ХxВ				
	(i)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4,) ,(4,6)	}	(ii)	{(2,2), (2,4), (4,2)	2), (4,4)}
	(iii)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4), (4,6),				
		(6,2), ((6,4), (6,	6)}			(iv)	None of the abo	ove
40.	If A = {	2,4}, B =	= {2,4,6}	find A	XA				
	(i)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4,) ,(4,6)	} (ii)	{(2,2),	(2,4), (4,2), (4,4))}
	(iii)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4), (4,6),				
	(6,2), ((6,4), (6	,6)}			(iv)	None of	of the above	
41.	If A = {	2,4}, B =	= {2,4,6}	find E	З x В.				
	(i)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4,) ,(4,6)	} (ii)	{(2,2),	(2,4), (4,2), (4,4))}
	(iii)	{(2,2),	(2,4), (2	,6), (4	,2), (4,4), (4,6),	<i>и</i> ,			
		(6,2),	(6,4), (6,	,6)}		(iv)	None o	of the above	
42.	There	are 120	student:	s in a	class of a colleg	e. 30 s	tudents o	do not have inter	est in games and they
	How m	iake pa nany stu	in in the g idents pl	game av bo	th the games?	i the c	ass play		students play hockey.
	(i) 5	, <u>,</u> , , , , , , , , , , , , , , , , ,		(ii)	10		(iii) -5		(iv) None of these
43.	There	are 120	student	s in a	class of a colleg	je. 30 s	tudents	do not have inter	est in games and they
	do not	take pa	irt in the	game	s. 64 students o	f the cl	ass play	foot-ball and 36	students play hockey.
	How m	nany stu	idents pl	ay on	ly foot-ball?				
	(i) 4	5		(ii)	54		(iii) 34		(iv) None of these

- 44. There are 120 students in a class of a college. 30 students do not have interest in games and they do not take part in the games. 64 students of the class play foot-ball and 36 students play hockey. How many students play only hockey?
 - (i) 62 (ii) 16 (iii) 36 (iv) None of these

45. In a class, 85 students pass in at least one of the three subjects Mathematics, Statistics and Economics. The number of students passing in each of these three subjects is same. Also the number of students passing in both Mathematics and Statistics is 20; passing in both Statistics and Economics is 25 and passing in both Economics and Mathematics is 35. The number of students passing in all the three subjects is 15. Then find the number of students passing in each of the three subjects.

(i) 50 (ii) 100 (iii) 25 (iv) None of these

46. A class of 100 students appeared for F. Y. B.B.A. examination. Out of 100 students, 40 passed in Mathematics, 36 passed in Management, 60 passed in Accountancy, 8 students passed in Mathematics and Management, 17 passed in Management and Accountancy 16 passed in Mathematics and Accountancy 5 passed in all the three subjects find : How many students passed exactly in one subject?

	(i)	69	(ii)	136		(iii)	56		(iv)	None of these.
Funct	ion :]			APP	Ĩ				
47.	lf f(x	$x(x) = x + 3, g(x) = x^2,$	ther	n f(x)	g(x) is :					
	(a)	$(x + 3)^2$		(b)	x ² + 3		(C)	$x^3 + 3x^2$	(d)	None of these.
48.	The	range of the functi	on f	(x) =	log (1 + x) for th	ne don	nain	of real values of	x whe	en x \in [0, 9] is
	(a)	(0, -1)		(b)	(0, 1, 2)	(C)	[0,	1]	(d)	None of these
49.	lf f(×	$x = x + 3, g(x) = x^2,$	ther	n fog(x) is :					
	(a)	x ² + 3		(b)	$x^2 + x + 3$	(c)	(X	+ 3) ²	(d)	None of these.
50.	lf f(x	x) = 1/(1 - x), then f	(-1) is	s :						
	(a)	0		(b)	1/2	(c)	0		(d)	None of these.
51.	The	domain of {(1, 7),	(2, 6))} is :						
	(a)	(1, 6)	(b)	(7, 6	6)	(c)	{1,	2}	(d)	(6, 7)
52.	The	range of the functi	on f:	$A \rightarrow$	R, $f(x) = x^2 + 1$,	where	e A =	{-1, 0, 2,4} is :		
	(a)	{1, 2, 5, 17}		(b)	{2, 5,17}	(c)	{5,	17}	(d)	None of these.
53.	The	range of the functi	ong	:A →	N, $g(x) = 2x$, w	here A	ν = {x	$x \in N, x \le 5)$ is :		
	(a)	{1, 2, 3,, 10)			(b)	{2, 4,	6, 8	, 10}		
	(C)	{1, 3, 5, 7}			(d)	None	of tl	nese		

54.	Let $f : R \rightarrow R$ be a function	given by f(x) =	x^2 + 1, then	n f ⁻¹ (-5) is equal to		
	(a) {- 5}	(b)	(c)	{2. 3}	(d)	None of these
55.	The domain for which the fo	unctions $f(x) = 2$	2x ² - 1 and g	g(x) = 1 - 3x are equ	al is :	
	(a) {- 2, 1/2}	(b) {1/2, 2}	(c)	{ - 2, -1/2}	(d)	None of these
56.	Let f = {(1, 1), (2, 3), (0, -1),	(-1, -3)} be a fu	nction defir	ned as f(x) = ax + b f	or son	ne integers a and
	b. Then the value of (a, b) is	6:				
	(a) (2, -1)	(b) (1,2)	(c)	(1, -2)	(d)	(-1, -2)
57.	Let f: $R \rightarrow R$, f(x) = 2 ^x , then	n the range off is	S :			
	(a) N	(b) R ⁺	(C)	R	(d)	1
58.	If $f(x) = x + 3$, $g(x) = x^2$, then	n go f(x) is equa	l to			
	(a) $(x + 3)^2$	(b) x ² + 3	(c)	x ² (x + 3)	(d)	None of these
59.	Let A = {a, b}. Set of subset	s of A is called p	oower set o	of A denoted by P(A)	. Now	n(P(A)) is
	(a) 2	(b) 4	(c)	3	(d)	None of these
60.	If f R \rightarrow R, f(x) = x ³ + 2 for	all, then f is :	\rightarrow			
	(a) One-One onto	(b) Onto		Into	(d)	None of these
61.	If f : A \rightarrow B, f(x) = x ² , A = {-	l, 1, -2, 2}, and	B ≭ {1,4, 9,	, 16}, then f is :		
	(a) One-One	(b) Many-one	Into (c)	Into	(d)	None of these
62.	1ff: $Z \rightarrow Z$, f(x) = x ² + x for a	all $x \in z$, thenf is	S :			
	(a) Many-one	(b) One-One	(c)	Onto	(d)	None of these
63.	If f :Z \rightarrow Z, f(x) = 3x + 2 for a	all $x \in Z$, then fi	s:			
	(a) Onto (surjective)	(b) One-One	e (c)	Injective	(d)	None of these
64.	If f : R \rightarrow R, f(x) = 3x ³ + 5 fo	$r all x \in R, ther$	n f is :			
	(a) Into		(b) One-	One onto (bijections	6)	
	(c) One-One into		(d) None	of these		
65.	If f : $R \rightarrow R$; f(x) = x ² , and g	$: R \to R; g(x) =$	= 2x + 1, the	en fog is :		
	(a) 2x ² + 1	(b) $(2x + 1)^2$		(c) $4x^2 + 1$	(d)	None of these
66.	If the function f and g are given the function f and g are given by the function f and g are given by the function f and g are given by the function of the fu	ven by f = {(1, 2)	, (3, 5), (4,	1)} and g = {(2, 3), (5	5, 1), (⁻	1, 3)}, then gof is:
	(a) {(1, 3), (3, 1), (4, 3)}		(b) {(2, 5	ō), (5, 2), (1, 5)}		
	(c) {(1, 3), (2, 5), 3, 5}		(d) None	of these		

SETS, FUNCTIONS & RELATIONS

67.	If f: $R \rightarrow R$, f(x) = x ² - 3x + 2, then f(f(x)) =		
	(a) $x^4 + 10x^2 - 3x$	(b)	x ⁴ - 6x ³ + 10x ² - 3x
	(c) $x^4 + 6x^4 - 10x^2 + 3x$	(d)	None of these.
68.	If f, g : $R \rightarrow R$, f(x) = x ² + 3x + 1, g (x) = 2x	-3, fc	or all $x \in R$, then fog is :
	(a) 4x ² - 6x + 1	(b)	4x ² + 6x - 1
	(c) $4x^2 + 6x + 1$	(d)	None of these
69.	If g : $R \rightarrow R$, g(x) = 2x - 3, for all $x \in R$, the	en go	g is :
	(a) 4x + 9	(b)	4x - 9
	(c) 4x + 7	(d)	None of these
70.	If f : R \rightarrow R, f(x) = 2x + 7 then the inverse	off is	:
	(a) $f^{-1}(x) = (x - 7)/2$	(b)	$f^{-1}(x) = (x + 7)/2$
	(c) $f^{1}(x) = (x - 3)/2$	(d)	None of these
71.	If f : $R \rightarrow R$ is a bijection given by f(x) = x^{3}	⊦ 3, tl	hen f ^{_1} (x) is :
	(a) $f^{-1}(x) = (x - 3)^{1/3}$	(b)	$f^{-1}(x) = (x - 3)^{-1/3}$
	(c) $f^{-1}(x) = (x + 3)^{1/3}$	(d)	None of these
72.	Let f: $R \rightarrow R$ be such that f (x) = 2 ^x , then) equals
	(a) f(x) + f(y)	(b)	f(x) . f(y)
	(c) $f(x) \div f(y)$	(d)	None of these
Relat	ion :		
73.	The range of the relation {(x, y) : X $_{\in}$ N, y	∈ N,	and x + y = 10) is :
	(a) {1,2,3,4,5,6,7, 8,9}	(b)	{9, 8, 7, 6, 5, 4, 3,2, 1}
	(c) {1, 2, 3, 4, 5, 7}	(d)	None of these
74.	The domain of there relation $\{(x, y) : y = \}$	x - 1	, x $_{\in}$ Z and $\left \begin{array}{c} x \end{array} \right \leq 3 \}$ is :
	(a) {-3, -2, -1, 0, 1, 2, 3}	(b)	{4, 3, 2, 1, 0}
	(c) {6, 1, 2, 3, 4}	(d)	None of these.
75.	The range of the relation R, where R = {(x	, X ³);	x is a prime number less than 10) is :
	(a) {2, 3, 5, 7}	(b)	{8, 27, 125, 343}
	(c) {8, 27, 125, 243} (d) None of these		
76.	If f is relation from set A = $\{2, 3, 5\}$ to set B	= {2,	3, 6, 8, 10} defined by xfy $rightarrow$ x divides y, then f =
	(a) $\{(2, 6), (2, 8), (2, 10), (3, 6), (5, 10)\}$	}	
	(b) $\{(2, 2), (2, 6), (2, 8), (2, 10), (3, 6), (2, 10), (3, 6), (2, 10), (3, 6), (3, $	(3, 3), (5, 10)}

- (c) $\{(2, 2), (2, 6), (2, 8), (2, 10), (3, 6), (5, 10)\}$
- (d) none of these.

77. $A = \{1, 2, 3\} R = \{(1, 1), (2, 2), (3, 3)\} \subseteq A \times A$. Then R is :

- (a) not reflexive but transitive and symmetric
- (b) not transitive but reflexive and symmetric
- (c) an equivalence relation
- (d) not an equivalence relation
- 78. If A = {x / $x \in N$, 1 ≤ x ≤ 8} and R = {(x, y) : $x \in A$ and x + 2y = 9} is a relation in A, then dom R⁻¹ =
 - (a) $\{1, 2, 3, 4\}$ (b) $\{1, 3, 5, 7\}$ (c) $\{1, 2, 3, 5\}$ (d) $\{1, 2, 3,8\}$.
- **79**. A = {1, 2, 3} . R = {(1, 1), (1, 2), (2, 2), (3, 3)} is a relation which is
 - (a) reflexive, symmetric, transitive (b) reflexive, symmetric but not transitive
 - (c) symmetric, not reflexive and not (d) reflexive and transitive but not symmetric. transitive
- 80. If R is the relation "less than" from A = $\{1, 3, 4, 5\}$ to B = $\{2, 3, 5\}$, then number of elements in R⁻¹ oR is :
 - (a) 7 (b) 6 (c) 8 (d) 9
- **81**. A = {1, 2, 3} R = {1, 1}, (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)} \subseteq A x A, the R is :
 - (a) reflexive, transitive but not symmetric
 - (b) transitive, reflexive and symmetric
 - (c) reflexive, symmetric nut not transitive
 - (d) reflexive, but not symmetric and not transitive
- 82. The relation R on the set Z of all integers defined by $(x, y) \in R \iff x y$ divisible by n is :
 - (a) reflexive, transitive and not symmetric
 - (b) not reflexive, transitive and not symmetric
 - (c) reflexive, not symmetric and not transitive
 - (d) an equivalence relation

83.	The do	omain of the relation (x, y) : $x, y \in N$, a	and x +	y = 10} is :
	(a)	{1, 2, 3, 4, 5, 6, 7, 8, 9}	(b)	{9, 8, 7, 6, 5, 4, 3, 2, 1}
	(c)	{7, 6, 5, 4, 3, 2}	(d)	none of these
84.	The ra	ange of the relation $\{(x, y) : y = x-1 ;$	x ∈ Z,	and $ x \leq 3$ } is :
	(a)	{4, 3, 2, 1, 0}	(b)	{0, 1, 2, 3, 4}
	(c)	{1, 2, 3, 4}	(d)	none of these
85 .	Let A =	= {1, 2, 3,, 13, 14}, R = {x, y) : 3x	c - y = 0	, x, y $\in A$ }, then co-domain of R is
	(a)	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	3, 14}	
	(b)	{3, 6, 9, 12}		
	(C)	{12, 9, 6, 3}		
	(d)	none of these		
86.	The de	omain of the relation R, where R = {(x	x, x ³) : x	is a prime number less than 10} is a
	(a)	{2, 4, 6, 8}	(b)	{2, 3, 5, 7}
	(C)	{2, 3, 5, 7, 9}	(C)	none of these
87.	The do	omain of the relation R defined by R	- {(x, x -	+ 5) : x \in {0, 1, 2, 3, 4, 5} } is :
	(a)	{0, 1, 2, 3, 4, 5}	(b)	{5, 4, 3, 2, 1, 0}
	(C)	{5, 6, 7, 8, 9, 10}	(d)	none of these
88.	The ra	ange of the relation R, where R = {(x, x	x + 5):	x \in {0, 1, 2, 3, 4, 5}} is :
	(a)	{0, 1, 2, 3, 4, 5}	(b)	{5, 6, 7, 8, 9, 1}
	(C)	{1, 9, 8, 7, 6, 5}	(d)	none of these
89.	The de	omain of the relation R, where $R = \{(-1)\}$	3, 1), (-	1, 1), (1, 0), (3, 0)} is :
	(a)	{-3, -1, 1, 3}	(b)	{-1, -3, 1, 3}
	(C)	{0, 1}	(d)	none of these
90.	The ra	inge of the relation R, where		
	R = {()	κ, y) : x is a multiple of 3 and y is a mu	ultiple o	f 5} is :
	(a)	{3n, : n ∈ Z}	(b)	{5n, : n ∈ Z}
	(C)	{15n, n _∈ Z}	(d)	none of these
91.	The ra	ange of the relation R, where $R = \{(x, x)\}$	x3) : x i	s a prime number less than 15} is :
	(a)	{2, 3, 5, 7, 11, 13}	(b)	{4, 9, 25, 49, 121, 169}
	(C)	{7, 9, 25, 49, 121, 169, 225}	(d)	none of these

92.	2. The co-domain of the relation R, where $R = \{x, y\}$: $y = x + 1\}$, and $R : A \rightarrow A$, where $A = \{1, 2, 3, 4, 5, 6\}$ is :								
	(a)	$\{1, 2, 3, 4, 5, 6\}$		(b)	{1, 2, 5, 9, 10}				
	(c)	{1, 2, 3, 4, 5}		(d)	none of these				
93.	Let A =	= {1, 2} and B = {3, 4}. The nur	nber of	relatior	n from A into B is :				
	(a)	16		(b)	12				
	(c)	4		(d)	8				
94.	The ra	ange of the relation R, where F	R = {(4x	x + 3, 1 ·	$(-x): x \le 4, x \in \mathbb{N}$ is :				
	(a)	{0, -1, -2, -3}		(b)	{2, 5, 10, 17, 26}				
	(c)	{7, 11, 15, 19}		(c)	none of these				
95.	The ra	ange of the relation R, where F	R = {1 +	· x, 1 + >	x^{2}) : x \in 5, x \in N} is :				
	(a)	$\{2, 3, 4, 5, 6\}$		(b)	{2, 5, 10, 17, 26}				
	(c)	{2, 3, 4, 6, 10}	(d)	none	of these				
96.	The d	omain of the relation R, where	e R = {(´	1 + x, 1	+ x^2) : x \leq 5, x \in N} is :				
	(a)	{2, 3, 4, 5, 6}		(b)	{1, 2, 3, 4, 5}				
	(c)	{3, 4, 5, 6, 7}		(d)	none of these.				
			A	HHI //					

ANSWER KEYS

Q.	Α.	Q.	Α.	Q.	Α.	Q.	Α.	Q.	Α.
1		21		41		61		81	
2		22		42	9 8	62		82	
3		23		43		63		83	
4	- 14	24		44		64		84	
5		25		45		65		85	
6	55 55	26		46	62. 13	66		86	65 67
7		27		47		67		87	
8	- x	28	5 Y	48	1 Y	68		88	
9		29		49		69		89	
10	9. 2	30		50	8. 2	70		90	
11		31		51		71		91	
12		32		52		72		92	
13	8. 8.	33		53		73		93	
14		34		54		74		94	- 2
15		35		55		75		95	
16		36		56		76		96	
17		37		57		77			
18		38	- Y	58	5 Y	78			
19		39		59		79			
20		40		60		80			

HOME WORK - 2

1.	Whi	ch of the following	pairs	of events are mutually	y exc	clusive?		
	(a)	A : The student re	eads	in a school. B : He stu	udies	s Philosophy.		
	(b)	A : Raju was borr	n in I	ndia. B : He is a fine	Engi	neer.		
	(c)	A : Ruma is 16 ye	ears c	old. B : She is a good s	singe	er.		
	(d)	A : Peter is under	- 15 y	vears of age. B : Peter	is a	voter of Kolkata.		
2.	lf y=	$f(x) = \frac{ax+b}{ax-a}$ then	f(y)	is				
	(a)	x	(b)	2x	(C)	x	(d)	X ²
3.	lf g(x) = x $-1/x$, g($-\frac{1}{2}$) is	6					
	(a)	1	(b)	2	(c)	3/2	(d)	3
4.	lf th	e set P has 3 elem	ents,	Q four and R two the	n the	e set P×Q×R contains		
	(a)	9 elements		(b) 20 ele	men	ts		
	(c)	24 elements		(d) None	of th	nese		
5.	In a coff	group of 20 childre ee but not tea is	n, 8 c	Irink tea but not coffee	and	13 like tea. The number	erof	children drinking
	(a)	6	(b)	7	(c)	1	(d)	None of these.
6.	lf A A∩ I	has 32 elements, E 3 is	3 has	: 42 elements and A \cup	B ha	as 62 elements, the nu	umb	er of elements in
	(a)	12	(b)	74	(c)	10	(d)	None of these
7.	AUA	A' is equal to						
	(a)	А.	(b)	Sample Space.	(c)	φ.	(d)	None of these.
8.	lf A l	has 70 elements, B	8 has	32 elements and A \cup	Βh	as 22 elements then A	Ъi	S
	(a)	60	(b)	124	(C)	80	(d)	None of these.
9.	lf A =	= {1,2,3,5,7} and B=	= {1,3	3,6,10,15} then cardina	al nu	mber of A-B is		
	(a)	3	(b)	-4	(c)	6	(d)	None of these
10.	lf P	is a set of natural n	umb	er then P ∩ P' is				
	(a)	Ø	(b)	Sample Space.	(C)	0	(d)	(P U P')'

11.	lf A	f A = {1, 2, 3, 4}, B = {5, 6, 7} then cardinal number of A X B is							
	(a)	4	(b)	7	(c)	12		(d)	None of these
12.	The	set of squares of p	oositi	ve integers is					
	(a)	A finite set	(b)	Null set	(c)	An ir	nfinite set	(d)	None of these
13.	lf B	is any set then B)B is						
	(a)	Null Set	(b)	В	(C)	Who	le set	(d)	None of these
14.	lf B	is any set then B (∫B is						
	(a)	В	(b)	Null set	(c)	Who	le set	(d)	None of these
15.	"Is e	equal to" is a							
	(a)	Symmetric relation	n		(b)	Refle	exive relation		
	(C)	Transitive relation			(d)	Equi	valence relation		
16.	lf f(>	x) = x^2 + 2, then the	e give	n function is					
	(a)	odd function			(b)		even function		
	(c)	Neither odd nor	even	function	(d)		None of these		
17.	For	the function $f(x) =$	12 ^{1+x}	, the domain of real va	alues	s of x	where 0 <u>< x <</u> 9 t	the ra	ange is
	(a) ⁻	12 <u><</u> f(x) <u><</u> 12 ¹⁰			(b)		$0 \le f(x) \le 12^{10}$		
	(c)	0 <u><</u> f(x) <u><</u> 12			(d)		None of these		
18.	"Is g	greater than" over t	he se	et of real number s is					
	(a)	Transitive relatio	n		(b))	Symmetric rela	ation	
	(c)	Reflexive relation	۱		(d)		Equivalence rel	atio	า
19.	lf f()	x) = x ² +3x then f(2)	– f(4) is equal to					
	(a)	–15	(b)	–18	(C)	18		(d)	12
20.	lf f ($f(\mathbf{x}) = \left \frac{1}{\mathbf{x}} \right - \mathbf{x} , f\left(\frac{1}{2} \right)$	is						
	(a)	3/2	(b)	2/3	(c)	1		(d)	0
21.	lf f ((x+1) = 2x + 7 then	f (– 2	2) is					
	(a)	1	(b)	2	(c)	3		(d)	4
22.	lf f(>	x) = 2x + 3 then f(2x	x) – 2	f(x)+3 is equal to					
	(a)	1	(b)	0	(c) ·	–1		(d)	None of these

23.	If f' $f(x) = 3x^2 + 2 \& f(0) = 0$ then find $f(2)$.										
	(a) 8	(b) 10	(c) 12	(d) None of these							
		f(3)									
24.	If $f(x)=x^2-1$ and $g(x) =$	$\frac{x+1}{2}$ then $\frac{f(3)}{f(3)+g(3)}$ is									
	(a) 5/4	(b) 4/5	(c) 3/5	(d) 5/3							
25.	If $f(x) = 2x+5$ and $g(x) = 2x+5$	= x ² +1 the fog = ?									
	(a) 2x ² + 7	(b) 2x + 1	(c) x ² + 5	(d) None of these							
	- 1										
26.	If $f(x) = \frac{X^3 + \frac{1}{x^3}}{x^3}$ then values	alue of $f(x) - f(1/x)$ is equal	to								
	(2) 0	(b) 1	(c) $x^3 + \frac{1}{2}$	(d) None of these							
27	A function $f(x)$ is an even	n function if	(c) x ' x ³								
	(a) $-f(x) = f(x)$	(b) $f(-x) = f(x)$	(c) $f(-x) = -f(x)$	(d) None of these							
28.	If a function in x is defir	ned by $f(x) = \frac{1}{x^2 + 1}$, $X \in \mathbb{R}$	then f(1/x) =								
	() (()	X ⁻ + 1									
00	(a) f(x)	(b) $f(-x)$	(C) —f(X)	(d) 0							
29.	number of students,	20 students like maths, 18 li b like no subject. A 040491	ke science and 12 like bot	n the subject. Find the							
	(a) 4	(b) 5	(c) 8	(d) None of these							
30.	The number of subsets	s of the set {2, 3, 5} is									
	(a) 3	(b) 8	(c) 6	(d) None of these.							
31.	Given A = {2, 3}, B = {4	Ⅰ, 5}, C = {5, 6} then A × (BC	C) is								
	(a) {(2, 5), (3, 5)}	(b) {(5, 2), (5, 3)}	(c) {(2, 3), (5, 5)}	(d) None of these.							
32.	A town has a total population of 50,000. Out of it 28,000 read the newspaper X and 23000 read										
	while 4000 read both th	he papers. The number of p	ersons not reading X and	Y both is							
2 2	(a) 2000	(D) 3000	(C) 2500	(d) None of these.							
JJ .	(a) 13	(h) 12	(c) 16	(d) 15							
34	(a) 15 The number of subset	(b) 12 of set {2 4 6} is	(0) 10	(u) 15							
•	(a) 12	(b) 8	(c) 6	(d) None of these							
35.	The number of subset	of a set containing n eleme	ent is:								
	(a) 2n	(b) 2 ⁿ	(c) 2 ⁻ⁿ	(d) None of these							
36.	The set of cubes of the	e natural number is									
	(a) A finite set	(b) An infinite set	(c) As null set	(d) None of these							
37.	$If A = \{4,5\}, B = \{2,3\}, C =$	={5.6} then AX BCC is		()							
	(a) $\{(2,5), (3,5)\}$	(b) $\{(4 \ 2) \ (4 \ 6)\}$	(c) $\{(4,3), (4,2)\}$	(d) None of these							
		(~/ ((',-/, (', ')/) ****									
		* * * *									

ANSWER KEYS								
1	(d)	11	(c)	21	(a)	31	(a)	
2	(c)	12	(c)	22	(b)	32	(b)	
3	(d)	13	(b)	23	(c)	33	(c)	
4	(c)	14	(a)	24	(b)	34	(b)	
5	(b)	15	(d)	25	(a)	35	(b)	
6	(a)	16	(b)	26	(a)	36	(b)	
7	(b)	17	(a)	27	(b)	37	(d)	
8	(c)	18	(a)	28	(a)			
9	(a)	19	(b)	29	(a)			
10	Nil	20	(a)	30	(b)			
E MUM E								

* * *