RPIL

VIDHYODAY
VIDHYA KA UDAY

VIDHYODAY

VIDHYODAY

VIDHYODAY

Ratios

• Ratio is a comparison of two similar attributes in same units.

	Ratio				
+	+	+			
Multiplier	as a bridging element	Comparison			

- Types of ratios:(a:b)
- 1. Duplicate $a^2:b^2$
- 2. Sub dupl. $\sqrt{a}:\sqrt{b}$
- 3. Triplicate $a^3:b^3$
- 4. Sub Tripl. $\sqrt[3]{a}:\sqrt[3]{b}$
- 5. Compound $(a:b, c:d) \rightarrow a \times c:b \times d$
- 6. Continued \rightarrow a: b:c (a:b, b:c)
- 7. Inverse \rightarrow b: a

Proportion

- If two ratios are equal they are said to be in proportion.
- Each pair of ratio should have same units.

Proportion						
+	+	↓ Fourth				
Mean	Third					
Proportion	Proportion	Proportion				

$$b^2 = \sqrt{ac} \left[\frac{a}{b} = \frac{b}{c} \right]$$

- Product of means= Prod of extremes
- Properties of Proportion {a:b}
- 1. Invertendo
- $\frac{b}{a} = \frac{d}{c}$
- 2. Alternendo

4. Dividendo

- $\frac{a}{c} = \frac{b}{d}$
- 3. Componendo
- $\frac{d}{d} = \frac{c \cdot d}{d}$ a-b _c-d
- 5 Componedo & dividendo $\frac{a+b}{a-b} = \frac{c+c}{c-c}$

Indices

- It is a power game..
- Properties:
- 1. $\sqrt[b]{a} = a^{\frac{1}{b}}$
- 2. $a^b a^c = a^{b+c}$
- 3. $\frac{a^{b}}{a^{c}} = a^{b-c}$
- 4. $(a \times b)^c = a^c \times b^c$ $(a+b)^c \neq a^c + b^c$
 - $(a-b)^c \neq a^c b^c$
- $5. \left(\frac{a}{b}\right)^{c} = \frac{a^{c}}{b^{c}}$
- 6. $a^{b} = c \rightarrow a = c^{\frac{1}{b}}$
- 7. $a^b = a^c$ then Base same b = c power equate
- 8. Power same base equate

$$a^b = c^b \longrightarrow a = c$$

- 9. $\frac{1}{a^{-b}} = a^b, \frac{1}{a^b} = a^{-b}$
- 10 (a) $^{0} = 1$.

Logarithms

- Always assume base to be 10.
- Log a + log b = log a×b
- $\log 1 = 0$
- \bullet m log n = log n^m
- **o** $a^{log^{ax}} = x$
- Shortcut:

Type no.

Type √19 times

Type -1 × 227695

Equations

Quadratic Equations

The roots can be found out using,

 $x = \frac{-b \pm \sqrt{b^2 - 4ca}}$

Nature of Roots depends on D = $b^2 - 4ac$

(b) D=0 Real and equal VIDHYODAY

(c) D>0 and perfect square number real, A UDAY

distinct (unequal) and Rational

(d) D>0 and NOT a perfect square real

distinct and Irratinal

General Form

 $\bullet \quad ax^{2+}bx+c=0$

• if $\alpha \& \beta$ are roots then,

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

Sum of roots $(\alpha + \beta) = -\frac{b}{a}$

Product of roots $(\alpha \beta) = \frac{c}{a}$

(a) D<0 Roots are imaginary

General Form

1 variable ax + b = 0

2 Variables ax + by + c = 0

3 Variables ax + by + cz + d = 0

To get unique solutions

ODA No. of equations = No. of Variables DAY

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(Infinite Solution)

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 (Unique Solution)

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

(No Solution)

VIDHYODAY

Product of roots $(\alpha\beta\gamma) = \frac{-d}{a}$

Linear In-equations

Time Value Of Money

Simple Interest

- $S.I. = \frac{pxrxt}{100}$
- A = P + S.I.
- 1 S. I. is not बेवफा! S.I. is always calculated on principal.
- 2 S.I. is constant for every year.
- 3 If Q. is चुपकी assume it to be of S.I.
- 4 Nature of r, t should be same
- 5 Time Scale में + P होगा

Compound Interest

- Interest on Interest.
- \bullet C.I. \geq S. I.
- For the first period C.I. = S.I.
- $A = P \times (1+i)^n$
- C.I. = A P
- Nature of r & t is always same. Always focus on factor.
- Higher the compounding higher the amount.
- Time scale में × होगा
- WDV = H.V. \times (1 i)
- Doubling Period formula

$$T = 0.35 + \frac{69}{r}$$

• Tripling Period formula $T = 0.35 + \frac{111.111}{}$

Effective Interest

E.I. = { एक साल का factor - 1} × 100

- Always assume t = 1 year
- Nature of r & t should be same.

Three types of Questions

Annuity

F.v. P.v.

F.V. =
$$I \times \left\{ \frac{(1+i)^n - 1}{i} \right\}$$
 | 1÷ factor = n times GT

- Due: Starting from today → ans. × (1+i)
- Bulk amount

- 3 conditions for annuity.
 - Fixed Time Interval
 - Fixed Installments
 - Regular Payments

VIDHYODAY

VIDHYODA'
VIDHYA KA UDA

VIDHYODA VIDHYA KA UDA

VIDHYODAY

Permutation & Combination

VIDHYODAY

Sequence & Series

VIDHYODAY VIDHYA KA UDAY VIDHYODAY VIDHYA KA UBAY

AP / GP

Arithmetic Progression

VIDHYA

- It is about adding the constant no. to the first term & again.
- Every no. is A.M. of its previous & succeeding no.
- First Term = a common difference = d
- Variety -1 series : given value of term = ? Tn = a + (n-1) d
- Variety -2 series: given value = given n=?
- Variety 3 series : given sum =?
- Sn = $\frac{n}{2}$ {a+r} or $\frac{n}{2}$ {2a+(n-r)d}
- Variety -4 series : given sum = given no.?
- Variety 5 if two non consecutive term are given; $d = \frac{Tm Tn}{m n}$
- Variety 6 Insertion of A.M. 's between two no.'s results in A.P.
- Variety 7 Sum's machine = given Term = ?

Geometric Progression

- It is about multiplying the constant no. again.
- Every no. is GM of its previous & succeeding terms.
- First term -a common ratio = r
- Variety no. 1 n = given Tn = ?
- Variety -2 n = ? Tn = ?
- Variety 3 Series = given sum = ? = $s_n = \frac{ax(r^n - 1)}{r - 1}$ (r > 1) = $s_n \frac{a(1 - r^n)}{1 - r}$ If (r < 1)
- Variety 4 sum = given n=?
- Variety 5 calculation of r in two non consecutive; $r = \left(\frac{Tm}{Tn}\right)^{\frac{1}{m-n}}$
- Variety 6 Insertion of GM's
- Variety 7 Sum of infinity series.

Sets, Function & Relations

Sets

Relations

Function

Basics

"It is a well defined group of distinct objects."

Expression Set Roaster Builder (Listing)

• Cardinal no. = no. of elements in a set

No. of subsets = 2^n Proper subsets = 2ⁿ-1 **Types**

- 1. Universal Set: contains all the objects.
- 2. Subset: every element of A is in B. ACB
- 3. Superset: every element of A is in B. B**O**A
- 4. Null Set: 0, 0 element.
- 5. Equal Set: Every element of A is in B & vice versa.
- 6. Equivalent Set :n (A) =n (B)
- 7. Power Set: Set of all subsets.

Basics

Every subset of a Cartesian product of A×B is called relation.

One to One

One to Many

Many to One

Many to Many

- **Types**
- Reflexive $A = \{1, 2, 3\}$ $R = \{(1,1)(2,2)(3,3)\}$ all a,a∈ R
- Symmetric $A = \{1, 2, 3\}$ $R = \{(1,2)(2,1)\}$ (2,3)(3,2) $a,b \in R$ then $b,a \in R$
- Transitive $A = \{1, 2, 3\}$ $R = \{(1,2)(2,3)(1,3)\}$ $a,b \in R \& b,c \in R$ then, a,c∈ R
- \blacksquare S \checkmark R \checkmark T \checkmark = Equivalence

"Every R is not F but every

Basics

'No two ordered pairs should have same first element.'

F is a R."

Domain = pre image Range = Image

Types

Differential Calculus

Six Basic Rules of **Differentiation**

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = a^x \log_e a$$

$$\frac{d}{dx}(a^{x}) = a^{x}log_{e}a \qquad \qquad \frac{d}{dx}(constant) = 0$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(Logx) = \frac{1}{x}$$

Note:
$$\frac{d}{dx} \{ cf(x) \} = cf'(x)$$
 c being constant.

For Two Functions

$$h(x)=f(x) + g(x)$$

$$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$$

$$h(x)=f(x).g(x)$$
(Product of functions)

$$\frac{d}{dx}\{h(x)\} = f(x)\frac{d}{dx}\{g(x)\} + g(x)\frac{d}{dx}\{f(x)\}$$

$$h(x) = \frac{f(x)}{g(x)}$$

$$\frac{d}{dx}\{h(x)\} = \frac{g(x)\frac{d}{dx}\{f(x)\} - f(x)\frac{d}{dx}\{g(x)\}}{\{g(x)\}^2}$$

(Quotient of function)

Application of Differentiation

Average cost (AC or
$$\overline{C}$$
) = $\frac{Total\ Cost}{Out\ Put} = \frac{C(X)}{X}$

Average variable cost (AVC) =
$$\frac{Variable\ Cost}{Out\ Put} = \frac{V(x)}{x}$$

Average Fixed Cost (AFC) =
$$\frac{Fixed\ Cost}{Out\ Put} = \frac{F(x)}{x}$$

Marginal Cost: If C(x) the total cost producing x units then the increase in cost in producing one more unit is called marginal cost at an output level of x units and is given as

Revenue Function: Revenue, R(x), gives the total money obtained (Total turnover) by selling x units of a product. If x units are sold at 'P per unit, then R(x) = P.X

Marginal Revenue: It is the rate of change in revenue per unit change in output. If R is the revenue and x is the output, then $MR = \frac{dR}{dx}$

Profit function: Profit P(x), the difference of between total revenue R(x)and total Cost C(x). P(X) = R(x) - C(x)

Marginal Profit: It is rate of change in profit per unit change in dP output i.e. $\frac{dP}{dx}$

Slope of Curve: If y is any function then $\frac{dy}{dx}$ represent the slope of tangent to the curve.

Intergal Calculus

Definite Integration

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$$

b'is called the upper limit and 'a'the lower limit of integration.

Important Properties of Definite Intergal

 $\int dx = x + c, since \int 1 dx = \int x^0 dx = \frac{x^1}{1} = x$ VIDHYA KA UDAY

$$\int a^x dx = \frac{a^x}{\log_e a} + a$$

$$\int uvdx = u\int v dx - \int \left[\frac{d(u)}{dx}\int vdx\right]dx$$

$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$$

$$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$$

Number Series & Coding-Decoding

Learn by Heart

Squares

$$1^2 = 1, 2^2 = 4, 3^2 = 9$$
.....upto $25^2 = 625$

Cubes

$$1^3 = 1, 2^3 = 8, 3^3 = 27$$
..... upto $15^3 = 3375$

Questions: 2, 5, 12, 27, 54, 97,?

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	Α	В	С	D	Е	F	G	Н	I	J	K	L	M
	Z	Υ	Х	W	٧	U	Т	S	R	Q	Р	0	N
A	26	25	24	23	22	21	20	19	18	17	16	15	14

Thumb Rule of Position

Alphabet Forward Position +
Alphabet Backward Position = 27

Forward Position = 9.

Backward Position = 27 - 9 = (18)

27 - 14 = (13)

Direction Test

Shadows base questions

VIDHYODAY VIDHYA KA UDAY

Seating Arragement

Circular Arrangement

6 People

In the above arrangement

- \rightarrow B & A are to the left of C.
- \rightarrow D & E are to the right of C.
- \rightarrow B is immediate left of C.
- \rightarrow There are two persons between A & D.
- \rightarrow D is third to the right of A.

4 People 5 People DHYODAY VIDHYODAY

Note: Spacing between any two person should be same.

A is Diametrically opposite to E, H to D and so on

G is second to left of *E*.

G is third to right of *B*.

Blood Relations

VIDHYAKAUDAY

Statistical Distribution of Data

Central Tendency

लवारिस Property

- Δ of origin ✓
- Δ of scale \checkmark
- Δ of sign \checkmark

Quantitative Average

• AM ≥GM≥HM • GM = √AM X HM Relationship: Mode: $3md - 2\overline{X}$ $m_0 - \overline{X} = 3(md - \overline{X})$

Positional Average

AM

- Average formula = $\frac{\text{sum}}{\text{no}}$ $\frac{\sum x}{n}$, $\frac{\sum fx}{\sum f}$, $\frac{\sum fm}{\sum f}$,
- Properties
- 1. A.M. is the most popular measure of CT.
- 2. Sum of deviations from A.M. is always 0. $\sum X \overline{X} = 0$
- 3. Combined A.M. can be calculated.

$$\overline{X}_{12} = \frac{\overline{X}, n, +\overline{X}_2 n_2}{n_1 + n_2}$$

4. Mean can be calculated using assumed mean formula

$$\bar{X} = A + \frac{\sum d}{n}$$

- A.M. can not be represented graphically.
- 6. $\sum (X \overline{X})^2 = \min$

GM

- GM is best measure of CT for ratios & percentages.
- Formula Individual $(axbac...)\frac{1}{n}$

Discrete

$$\left(X \frac{f^1}{n} X X \frac{f^2}{2} \dots X \frac{fn}{n}\right) \frac{1}{\sum n}$$

Continuos

$$(M_1^{f1} \times M_2^{f2} \dots)^{\frac{1}{\sum f}}$$

HM

- Used for variables having reciprocal relationship
- Formula Individual

$$HM = \frac{n}{\frac{1}{X1} + \frac{1}{X2} \dots \frac{1}{Xn}}$$

Discrete

$$HM = \frac{\sum f}{\frac{f1}{X1} + \frac{f2}{X2} \dots \frac{fn}{Xn}}$$

$$HM = \frac{\sum f}{\frac{f1}{m1} + \frac{f2}{m2} \dots \frac{fn}{m_n}}$$

- आवन जावन Q is imp
- HM is the reciprocal of AM
- Combined HM

$$=\frac{n1+n2}{\frac{n1}{HM1}+\frac{n2}{HM2}}$$

MEDIAN

- Individual इधर से काटो, उधर से काटो, बीच में जो बचा वो median
- Discrete

$$S.01\frac{N}{2}$$

$$\mathrm{S.01} rac{\mathrm{N}}{2}$$
 को Locate करो in C.F.

- S.03 आगे वाला is median
- Continuos
 - S.01 follow discrete

S.02
$$M_d = 1_1 + \left\{ \frac{\frac{N}{2} - C}{F} \right\} x H$$

- Md is not affected by extremities of the observations
- Sum of absolute deviation from median is minimum.

$$\sum |x - xmd| = \min$$

- Calculated through Ogive.
- Partition Values

Value =
$$\left[\text{orderX} \left\{ \frac{n+1}{4/10/100} \right\} \right]_{\text{th}}^{\text{th}} \text{ term}$$

Quartiles Deciles Percentiles

• Best for open' end classification

MODE

- Individual Most repeated no.
- DiscreteNo. with highest frequency
- Continuos

Find out model class & use.

Formula:

$$M0 = 1_1 + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

- It is not uniquely defined.
- Calculated using Histogram.
- Mode
 Unimodel Bimodel Multimodel

Measures of Dispersion

लवारिस Property

- ∆ of origin ×
- Δ of scale \checkmark
- Δ of sign \times

[Measures of Dispersion] "Second order of averages"

Absolute MOD

Relationship Between MD, QD & S.D.

* easiest &

quickest

to calculate

dispersion,

M.D. =
$$\frac{\sum |X - \overline{X}|}{n}$$
 Max Value – Min Value = Range

Or

$$\frac{\sum |X - Xm|}{n}$$

0r $\sum |X - Xmo|$

- If frequencies of all observations are same, count them only once,
- M.D. from Median is minimum.

Q.D. =
$$\frac{Q_3 - Q_1}{2}$$

- * It is best suited for open end classification as it is based on middle 50% values
- * Also called as semi inter quartile range.

Standard Deviation

$$S.D. = \sqrt{\frac{\sum X^2}{n} - (\overline{X})^2}$$

- S.D. = (sigma)
- $S.D^2$ = variance
- $\sqrt{\text{variance}} = \text{S.D.}$
- For first n natural no.'s

S.D. =
$$\sqrt{\frac{n^2 - 1}{12}}$$

If frequencies of all observations are same. count them once only.

S.D. between 2 no.'s

$$=\frac{\left|a-b\right|}{2}$$

■ Combined S.D.

$$= \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$

$$d_1 = \overline{X}_{12} - \overline{X}_1$$

 $d_2 = \overline{X}_{12} - \overline{X}_2$

M.D.

Coeff. Of M.D.

$$= \frac{\text{M.D.}}{\bar{x}|x_{\text{md}}|x_{\text{mo}}} \times 100$$

Range

Coeff of Range

Coeff of O.D.

Q.D.

Coeff of Q.D.

 $=\frac{Q_3-Q_1}{Q_2+Q_1}\times 100$

Relative MOD

Coeff of variation

$$=\frac{\text{S.D.}}{\frac{1}{x}} \times 100$$

* It is used to measure consistency

Decision rule: Lower the better.

Probability

Basics

$$P(A) = \frac{Fav.}{Total}$$

Odds in favour = m:n

Odds in against = n : m

$$P(A) = \frac{m}{m+n} P(\bar{A}) = \frac{n}{m+n}$$

Terminology

VIDHYA KA UDAY

- Exp. = कीड़े करना
- Random Exp = outcome is not know
- Exhaustive = ूपी दुनिया Union = 1
- Equally likely = सब बराबर P(A) = P(B)
- Mutually Exclusive मछली **= 0** $P(A \cap B) = 0$
- Sure event P(A)=1
- Impossible Event P(A) = 0
- Dependent = formula $P(A \cap B) = P(A) \times P(B/A)$
- Independent मछली = P(A) × P(B)

P&C

- · Mostly combination (balls, cards, committee, geometry figures etc.)
- Fav. Total
- Fav = with restrictions
- Total = w/o restriction

Exp. Value

- · Nothing but weighted avg.
- E(x) = ∑ px
- Sum of probability = 1 $\sum p = 1$
- अगर bracket में x के अलावा expression है तो change x.
- Properties: $E(x\pm y) = E(x) \pm E(y)$ E(Kx) = KE(x) $E(x \div y) = E(x) / E(y)$ $E(x \times y) = E(x) \times E(y)$
- Variance $E[X-e(X)]^2$

Venn **Diagram**

1) $A \cup B = A+B-A \cap B$

 $A \times B$

3) Only A $A - A \cap B$

4) Only B B-A∩B

5) <u>A∩B</u> =AUB=1-AUB $\overline{A} \cup \overline{B} = 1 - P(A \cup B)$

6) \overline{AUB}

 $\bar{A} \cap \bar{B} = 1 - P(A \cup B)$

7) A^c _ 1- A

8) $B_c =$ 1-B

Conditional **Probability**

Probability of A when B has already occurred P(A/B)

$$=\frac{P(A\cap B)}{P(B)}$$

For e.g. $P(\bar{A}/\bar{B})$

 $-\frac{P(\bar{A}\cap \bar{B})}{\bar{A}\cap \bar{B}}$ $P(\bar{B})$

 $= 1 - P(A \cap B)$ 1 - P(B)

Theoretical Distribution

Correlation

लवारिस Property

- Δ of origin \star
- Δ of scale \times
- Δ of sign \checkmark

Correlation (Measures the degree of linear relationship between two variables)

19

Scatter **Diagram**

- It only tell us the nature of correlation & not degree of correlation
- Five Diagrams

- - Equation of a Straight
 - Proportion --> decides 1 or not direction --> decides +

We take Online Classes Separately from Our studios.

Rank

$$r_0 = 1 - \frac{6\sum d^2}{n^3 - n}$$

n= no. of observations. d = difference of ranks

- Sum of difference of ranks is always 0.
- If ranks are exactly opposite then r = -1.
- Even if ranks are reversed, it remains same.

Concurrent **Deviation**

$$r_c = \pm \sqrt{\pm \frac{2c - m}{m}}$$

- If there is negative no inside the root, r is going to be negative.
- m = no. of observations compared = n - 1.
- c = no. of concurrent deviation (+'s)

Karl Pearson

- **■** Cov(x,y)

$$= \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{n}$$

- Cov (X,Y) desides the nature of correlation -
- -1≤r≤+1
- n is a pure no. (unit free).
- Coefficient of determination = 1- r² (Unexplained variance)
- P.E.= $\frac{0.675\sqrt{1-r^2}}{n}$
- correlation (nick name) Useful for variables having only linear relationship.

■ Product Moment

Champions वाला Chart

- Correlation of Straight line is always +1 or -1. It depends upon the direction between x & y.
- Line is ax + by = c
- or -

Correlation

Regression

- ∆ of origin ×
- Δ of scale \checkmark
- Δ of sign \checkmark

Regression

Regression **Equations**

- Unlike r, it tells us the exact increase in price of y if x is increased or vice versa.
- There are two equations :
 - 1. Y on $x \rightarrow to$ calculate y.
 - 2. X on y \rightarrow to calculate x.
- Y on $x \rightarrow Y \overline{Y} = byx(X \overline{X})$ X on $y \rightarrow X - \overline{X} = bxy(Y - \overline{Y})$
- byx= $r \frac{\sigma y}{\sigma x}$ (जो पीछे है वो नीचे है।)

bxy =
$$r \frac{\sigma x}{\sigma y}$$

Popular Questions:

- 1 Lines = given slope = ?
- 2 Lines = given r = ?
- 3 Slopes = given r = ?
- 4 Lines = given mean = ?
- 5 पहचान कौन?

Properties

- 1) Regression lines intersect each other at $(\bar{X} \bar{Y})i.e.$ mean. (K.0.)
- 2) Correlation coefficients is GM of regression coefficient. $r = \sqrt{b_{vx} \times b_{xy}}$
- 3) The product of regression coefficients should be ≤ 1 . $b_{vx} \times b_{xv} \leq 1$
- 4) If one coefficients is greater than unity the other should be less than unity.
- 5) byx, bxy & r are all of same sign.
- 6) Regression lines are made using least squares deviation method.
- 7) लाबरिस Property : \triangle of origin $\times \triangle$ of scale $\checkmark \triangle$ of sign \checkmark
- 8) r = 0 regression lines are perpendicular, if $r \pm 1$, lines will coincide.
- 9) पहचान कौन?
 - S.01 Calculate $b_{yx} \& b_{xy} \le 1$ By assuming one line as Y on x & another as x on y.
 - S.02 Check if $\sqrt{b_{vx} \times b_{xy} \le 1}$
 - S.03 Yes \rightarrow assumption is true. No \rightarrow opposite is true.

Index No.

CY value, when B.Y value is assumed to be 100. E.g. Sensex (1978-79) Index no. is a pure no.

Simple Method

$$P_{01} = \frac{\sum P_1}{\sum P_0} \times 100$$

$$I = \frac{\sum I_R}{n}$$

$$I_{R} = \frac{P_1}{P_0} \times 100$$

Weighted Method

$$\left[\frac{\sum P_1 W}{\sum P_0 W}\right]^{1}$$
Laspeyer =
$$\frac{\sum P_1 q_0}{\sum p_0 q_0}$$

(Base year Q.)

Passche =
$$\frac{\sum P_1 q_1}{\sum p_0 q_1}$$

(Current year Q.)

*** (Ideal)

Fishers =
$$\sqrt{\text{La} \times \text{Pa}}$$

Dorbish & Bowley =
$$\frac{\text{La} \times \text{Pa}}{2}$$

Marshall Edgeworth

$$P01 = \frac{\sum P_{1} \left(\frac{q_{0} + q_{1}}{2} \right)}{\sum P_{0} \left(\frac{q_{0} + q_{1}}{2} \right)}$$

Walsh
$$\left(\sqrt{P_{01}}\right) = \frac{\sum P_1 \sqrt{q_0 q_1}}{\sum P_0 \sqrt{q_0 q_1}}$$

Weight =
$$\sqrt{q_0 q_1}$$

(kelly) =
$$\frac{\sum P_1 q}{\sum P_0 q}$$

Special Points

Test

Inflation **Deflation**

Base Shifting & CBI

0.'s

Salary

- 1) Unit test unit free satisfied by all.
- 2) Time Reversal Test $P_{01} \times P_{10} = 1$ Kelly, MEW, Fishers Simple aggregative Satisfy TRT
- 3) Circular Test
- **♥**Extension $P_{01} \times P_{12} \times P_{20}$
 - Fisher × Kelley ✓
- aggregative ✓
- 4) Factor Reversal $P_{01} \times q_{01} = v_{01}$
- Fisher's ✓ $v_{01} = \frac{\sum P_1 q_1}{\sum P_0 q_0} \times 100$

- (Index No 100) = Inflation %
- Deflated value mean B.Y. dh value
- $= \frac{\text{C.Y.Value}}{\text{C.Y.Index}} \times 100$
- C.Y. Salary C.Y.Index B.Y.Index
- $= \frac{LR \times PYCBI}{100}$ $LR = \frac{CYPrice}{Prev.Price} \times 100$
 - B.Y.Salary B.Y.Index
 - C.Y.Index = C.Y. की Salary

= B.Y. की Salary

- Today' salary - should have been = Real gain.
- Should have been -Today's salary = D.A.