> If a quantity increases or decreases in the ratio a:b then

new quantity
$$\begin{array}{c} b \\ = - \times \\ a \end{array}$$
 original quantity

The fraction by which the original quantity is multiplied to get a new quantity is called the **factor multiplying ratio**.

By

 π

Inverse Ratio: One ratio is the inverse of another if their product is
1. Thus b : a is the inverse of a : b and vice-versa.

MATHS FORMULA MARATHON

- > The ratio **compounded** of the two ratios a : b and c : d is ac : bd.
- > Compounding two or more ratios means multiplying them.

MATHS FORMULA MARATHON

> A ratio compounded of itself is called its duplicate ratio.

 $a^2:b^2$

is the duplicate ratio of a:b

is the **triplicate ratio** of a:b

By

CAPRANAV

is the **sub-duplicate ratio** of a:b

MATHS FORMULA MARATHON

- Continued Ratio: is the relation or comparison between the magnitudes of three or more quantities of same kind.
- > The continued ratio of three similar quantities a, b, c can be written as a:b:c

By

> Cross Product Rule: If a : b = c : d are in proportion then ad = bc

Product of extremes = Product of means

Continuous Proportion: Three quantities a, b, c of the same kind (in same units) are said to be in continuous proportion if a : b = b : c

$$\frac{a}{b} = \frac{b}{c} \qquad b^2 = ac$$

here, a = first proportional, c = third proportional and b is mean proportional (because b is GM of a and c)

> Invertendo

If a : b = c : d, then

b:a=d:c

8

By CAPRANAV

> Alternendo

If a : b = c : d, then

a:c=b:d

9

By CAPRANAV

> Componendo

If a : b = c : d, then

a+b:b=c+d:d

MATHS FORMULA MARATHON

> Dividendo

If a : b = c : d, then

$$a-b:b=c-d:d$$

MATHS FORMULA MARATHON

 π

> Componendo and Dividendo

If a : b = c : d, then a+b c+da-bc-da-bc-d $a+b^{-}c+d$

12

MATHS FORMULA MARATHON

› Addendo

If a:b = c:d = e:f = ... = k

 $\frac{a+c+e+\dots}{b+d+f+\dots} = k$

then

13

MATHS FORMULA MARATHON

 π

> Subtrahendo

then

$$\frac{a-c-e+\dots}{b-d-f+}$$

J

=k

14

MATHS FORMULA MARATHON

Indices – Standard Results

 \mathcal{T}

> Any base raised to the power zero is defined to be 1

 $a^{0} = 1$

> Roots can also be expressed in the form of power.

$$\sqrt[r]{a} = a^{\frac{1}{r}}$$

15

 $a^m \times a^n = a^{m+n}$

If two or more terms with same base are multiplied, we can make them one term having the same base and power as sum of all powers.

MATHS FORMULA MARATHON

 \mathcal{T}

 a^m

If two or more terms with same base are in division, we can make them one term having the same base and power as difference of power.

MATHS FORMULA MARATHON

 \mathcal{T}

 $(a^m)^n = a^{m \times n}$

If a term having power is raised to another power, we can do product of powers to simplify the expression

MATHS FORMULA MARATHON

 \mathcal{T}

 $(a \times b)^n = a^n \times b^n$

If a product of two or more terms is raised to power, we can split the two terms with same individual power to each one of them.

MATHS FORMULA MARATHON

Calculator Trick for Reciprocal

π

MATHS FORMULA MARATHON

Calculator Trick for any power (including non integer)

Base $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{...12 times}}}} - 1 \times n$ +1 ×= ×= ×= ...

23

CAPRANAV

By

Log Conditions

The logarithm of a number to a given base is the index or the power to which the base must be raised to produce the number, i.e. to make it equal to the given number.

$$3^4 = 81$$
 $\log_3 81 = 4$

- > If $a^x = n$ then $\log_a n = x$
- > Conditions:
 - Number should be positive
 - Base should be positive
 - Base cannot be equal to zero

 $n > 0, a > 0, a \neq 1$

MATHS FORMULA MARATHON

 π

Standard Results of Log

 \mathcal{T}

> Log of a number with same base as number is equal to 1

 $\log_a a = 1$

> Log of 1 (one) for any base is equal to zero

 $\log_a 1 = 0$

25

 Logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers to the same base

$$\log_a mn = \log_a m + \log_a n$$

By CAPRANAV

 \mathcal{T}

 The logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

27

MATHS FORMULA MARATHON

MATHS FORMULA MARATHON

- π
- Logarithm of the number raised to the power is equal to the index of the power multiplied by the logarithm of the number to the same base.

By

CAPRANAV

 $\log_a m^n = n \log_a m$

π

Change of Base Theorem

 If the logarithm of a number to any base is given, then the logarithm of the same number to any other base can be determined from the following relation

$$\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$$

 $\log_b a \times \log_a b = 1$

29

Base of Log

> Common Log's Base

> Natural Log's Base

e

1

By CAPRANAV

Quadratic Equation

- > Equation having **degree = 2** is called as Quadratic Equation
- > QE will have two roots/ solutions usually denoted by lpha,eta
- > Equation Format $ax^2 + bx + c = 0$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

31

MATHS FORMULA MARATHON

 π

Solution of Quadratic Equation

$$ax^2 + bx + c = 0$$

> Formula to calculate roots:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

32

MATHS FORMULA MARATHON

 π

Construction of Quadratic Equation

If sum of roots and product of roots are given, equation can be constructed in the below manner:

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

MATHS FORMULA MARATHON

Concept of discriminant – to get nature of roots

 b^2 A = c

Discriminant of QE is the mathematical expression which is used to understand nature of roots of QE, it is expressed as below:

v - 4uc	
Condition	Nature of Roots
$b^2 - 4ac = 0$	Real and Equal
$b^2 - 4ac < 0$	Imaginary
$b^2 - 4ac > 0$	Real and Unequal
$b^2 - 4ac > 0$ and a perfect square	Real, Unequal and Rational
$b^2 - 4ac > 0$ & not a perfect square	Real, Unequal and Irrational

By CAPRANAV

> Conjugate Pairs

- If one root of the equation is

- The other one is surely

 $m - \sqrt{n}$

- This pair is called as conjugate pairs

36

By CAPRANAV
Simple Equation

- Equation of one degree and having one unknown variable is simple.
- > A simple equation has only one root.
- > Form of Equation:

ax+b=0

where, a is coefficient of x b is constant $a \neq 0$

> Solution Method – Direct basic algebra

37

By CAPRANAV

MATHS FORMULA MARATHON

 \mathcal{T}

Simultaneous Linear Equations (two unknowns)

- Here we always deal with two equations as it consist of 2 unknowns
- > Form:

$$a_1 x + b_1 y + c_1 = 0$$
$$a_2 x + b_2 y + c_2 = 0$$

where, a is coefficient of x b is coefficient of y c is constant $a \neq 0$

38

By CAPRANAV

Methods of Solution Simultaneous Linear Equations

- > Elimination Method: In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
- > **Substitution Method:** equation is written in the form of one variable in LHS and that value is substituted in other equation.
- > Cross Multiplication Method: Formula based method

 $a_1 x + b_1 y + c_1 = 0$ $a_2 x + b_2 y + c_2 = 0$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$

Cubic Equation

> Form:

$ax^3 + bx^2 + cx + d = 0$

where, a is coefficient of x^3 b is coefficient of x^2 c is coefficient of x d is constant $a \neq 0$

> Method of solution: Trial and Error

40

By CAPRANAV

Simple Interest

 \mathcal{T}

P = principal value r = rate of interest per annum t = time period in years

MATHS FORMULA MARATHON

Simple Interest

> Amount as per SI

 $A = P + SI = P + \frac{P.r.t}{P}$ 100

By CAPRANAV

Conversion Period

π

Conversion period	Description	Number of conversion period in a year
1 day	Compounded daily	365
1 month	Compounded monthly	12
3 months	Compounded quarterly	4
6 months	Compounded semi annually	2
12 months	Compounded annually	1

43

Compound Interest Amount

- Calculation of Accumulated Amount under CI denoted by A

$$A = P(1+i)^n$$

$$c i = \frac{r\%}{nocppy}$$

$$n = t \times noccpy$$

<u>By CAPRANAV</u>

Compound Interest Amount by Trick

- > Calculator Tricks for Amount as per CI
 - Example: *P*= 1000, *i* = 10%, *n* = 3 then

Calculator Steps to obtain A:

MATHS FORMULA MARATHON

Compound Interest

- > Formula for Compound Interest
 - Calculation of Compound Interest Value denoted by CI

$$CI = P[(1+i)^n - 1]$$

- where,

P = Initial Principal i = adjusted interest rate n = no. of periods

$$r = \frac{r\%}{nocppy}$$
 n

 $= t \times noccpy$

By CAPRANAV

Effective Rate of Interest

 \mathcal{T}

 $E = \left[(1+i)^n - 1 \right]$

where,

i = adjusted interest rate n = no. of periods in a year

47

MATHS FORMULA MARATHON

Future Value - Single Cashflow

$FV = CF(1+i)^n$

where,

CF = *Single Cashflow of which FV is to be calculated i* = *adjusted interest rate n* = *no. of periods*

48

By CAPRANAV

Future Value – Annuity Regular

$$FVAR = A_i \times FVAF(n,i)$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

$$FVAR = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\}$$

where,

FVAR = Future Value of Annuity Regular
A_i = Annuity Value (Installment)
FVAF = Future Value Annuity Factor
i = adjusted interest rate
n = no. of periods

49

By CAPRANAV

Future Value – Annuity Due

> Formula:

$$FVAD = A_i \times FVAF(n,i) \times (1+i)$$

$$FVAD = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\} \times (1+i)$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

where,

FVAD= Future Value of Annuity Due A_i = Annuity Value (Installment) **FVAF** = Future Value Annuity Factor i = adjusted interest rate n = no. of periods

MATHS FORMULA MARATHON

50

Present Value - Single Cashflow

 \mathcal{T}

$$PV = \frac{CF}{\left(1+i\right)^n}$$

where,

CF = *Single Cashflow for which PV is to be calculated i* = *adjusted interest rate n* = *no. of periods*

51

MATHS FORMULA MARATHON

Compounding and Discounting Factor

> Compounding

 \mathcal{T}

- Finding Future Value of any Cashflow
- Compounding Factor.

> Discounting

- Finding Present Value of any Cashflow

 $(1+i)^{n}$

- Discounting Factor:

52

CAPRAN<u>A</u>V

By

Present Value - Annuity Regular

$$PVAR = A_i \times PVAF(n,i)$$

$$PVAR = A_i \times \left[\frac{1}{i} \times \left\{1 - \frac{1}{(1+i)^n}\right\}\right]$$

Present Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Present Value

where,

PVAR = Present Value of Annuity Regular A_i = Annuity Value (Installment) **PVAF** = Present Value Annuity Factor i = adjusted interest rate n = no. of periods

MATHS FORMULA MARATHON

53

54

MATHS FORMULA MARATHON

π

Present Value – Annuity Due

 $PVAD = \left\lceil A_i \times PVAF\left\{(n-1), i\right\}\right\rceil + A_i$

where,

PVAD = Present Value of Annuity Due $A_i = Annuity Value (Installment)$ PVAF = Present Value Annuity Factor i = adjusted interest rate n = no. of periodsn-1 = one lesser period

55

By CAPRANAV

Perpetuity

where, *PVP* = Present Value of Perpetuity *A_i* = Annuity Value (Installment) *i* = adjusted interest rate

PV

56

MATHS FORMULA MARATHON

Growing Perpetuity

 \mathcal{T}

where,

PVGP = Present Value of Growing Perpetuity
A_i = Annuity Value (Installment)
i = adjusted interest rate
g = growth rate

57

By CAPRANAV

Net Present Value

> Formula

 \mathcal{T}

- NPV = Present Value of Cash Inflows Present Value of Cash Outflows
- > Decision Base:
 - If NPV \geq 0, accept the proposal, If NPV \leq 0, reject the proposal

Real Rate of Return

- > Meaning:
 - The real interest rate is named so to show what a lender or investor receives in real terms after inflation is factored in.
- > Formula:
 - Real Rate of Return = Nominal Rate of Return Rate of Inflation

MATHS FORMULA MARATHON

 \mathcal{T}

\mathcal{T}

CAGR

- Compounded Annual Growth rate is the interest rate we used in Compound Interest.
- > It is used to see returns on investment on yearly basis

Rules of Counting

Multiplication Rule

 \mathcal{T}

- If certain thing may be done in 'm' different ways and when it has been done, a second thing can be done in 'n ' different ways then total number of ways of doing both things simultaneously is (m x n) ways
- > Addition Rule
 - It there are two alternative jobs which can be done in 'm' ways and in 'n' ways respectively then either of two jobs can be done in (m + n) ways

	Word Used	Use
- 6	OR	+ Plus
	AND	× Product

Factorial

>
$$n! = n(n - 1)(n - 2) \dots 3.2.1$$

> $n! = 1.2.3 \dots (n - 2)(n - 1)n$
> $n! = n(n - 1)!$
> $n! = n(n - 1)(n - 2)!$
> $0! = 1$

62

MATHS FORMULA MARATHON

Factorial Values

Value of n	Value of n!	
1	1	
2	2	
3	6	
4	24	
5	120	
6	720	
7	5040	

Value of n	Value of n!	
8	40320	
9	362880	
10	3628800	
11	39916800	
12	479001600	
13	6227020800	
14	871178291200	

63

Theorem of Permutations

Number of Permutations when r objects are chosen out of n different objects

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Few Observations: $n \ge r$ n is a positive integer

By CAPRANAV

Particular Case of theorem (n = r)

Number of Permutations when *n* objects are chosen out of *n* different objects ${}^{n}P_{n} = n!$

MATHS FORMULA MARATHON

00

MATHS FORMULA MARATHON

 \mathcal{T}

Circular Permutations

- > Theorem:
 - The number of circular permutations of n different things chosen at a time is (n-1)!
 - Note: this theorem applies only when we choose all of n things

By

Circular Permutations (Type II)

 number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

 $\frac{1}{2}(n)$

Bv

Permutation with Restriction : Theorem 1

 Number of permutations of n distinct objects taken r at a time when <u>a particular object is not taken</u> in any arrangement is

CAPRAN

MATHS FORMULA MARATHON

 \mathcal{T}

Permutations with Restrictions : Theorem 2

 Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement is

By

 \mathcal{T}

MATHS FORMULA MARATHON

 \mathcal{T}

MATHS FORMULA MARATHON
Theorem of Combinations

Number of Combinations when r objects are chosen out of n different objects

$${}^{n}C_{r} = \frac{n!}{(n-r)!\,r!}$$

Few Observations:

- $n \geq r$
- > n is a positive integer

By

MATHS FORMULA MARATHON

Special Result of Combinations

 ${}^{n}C_{0}$ = 1 1

75

By CAPRANAV

76

MATHS FORMULA MARATHON

π

Special Formula of Combination

 ${}^{n+1}C_r = {}^nC_r + {}^nC_{r-1}$

Combinations of one or more

 \mathcal{T}

Combinations of n different things taking **one or more** out of n things at a time

MATHS FORMULA MARATHON

Geometry in PNC

 \mathcal{T}

a line
a line
ines or ucted
'9

MATHS FORMULA MARATHON

General Term of an AP

 \mathcal{T}

 $t_n = a + (n-1)d$

where, a = first term d = common difference n = position number of term

81

MATHS FORMULA MARATHON

MATHS FORMULA MARATHON

Sum of first n terms of an AP

 π

 $S_n = \frac{n}{2} \{ 2a + (n-1)d \}$

where, a = first term d = common difference n = position number of term $t_n = nth term of AP$

83

By CAPRANAV

MATHS FORMULA MARATHON

Sum of first n natural or counting numbers

n(n+1)S 2

85

MATHS FORMULA MARATHON

π

Sum of first n odd numbers

 $S = n^2$

MATHS FORMULA MARATHON

Sum of the squares of first n natural numbers

87

MATHS FORMULA MARATHON

 \mathcal{T}

Sum of the cubes of first n natural numbers

 $\int n(n+1)$ S =2

88

MATHS FORMULA MARATHON

π

Common Ratio of GP

π

89

MATHS FORMULA MARATHON

General Term of an GP

 \mathcal{T}

arn t_n

where, *a* = first term *r* = common ratio *n* = position number of term

90

MATHS FORMULA MARATHON

MATHS FORMULA MARATHON

Sum of first n terms of a GP

Use when r < 1

 $S_n = \frac{a(r^n - 1)}{r - 1}$

Use when r > 1

where, *a* = first term *r* = common ratio *n* = position number of term

92

By CAPRANAV

MATHS FORMULA MARATHON

Sum of Infinite Geometric Series

π

Can be used only if -1 < r < 1

where, *a* = first term *r* = common ratio *n* = position number of term

94

MATHS FORMULA MARATHON

Subset

> No. of possible subset of any set

 \mathbf{n}

MATHS FORMULA MARATHON

De Morgan's Law

 $(P \cup Q)' = P' \cap Q'$

 $(P \cap Q)' = P' \cup Q'$

MATHS FORMULA MARATHON

2 Set Operations Formulas

- $\rightarrow n(A \cup B) = n(A) + n(B) n(A \cap B)$
 - Proof:
 - > Example: A = {6, 2, 4, 1} B = {2, 4, 3}

By CAPRANAV

3 Set Operations Formula \rightarrow n(AUBUC) = n(A) + n(B) + n(C) - $n(A \cap B) - n(B \cap C) - n(A \cap C) +$ $n(A \cap B \cap C)$

MATHS FORMULA MARATHON

Composition of Functions $\rightarrow fog = fog(x) = f[g(x)]$ $\Rightarrow gof = gof(x) = g[f(x)]$

99

MATHS FORMULA MARATHON

Step Method of finding inverse of f

- 1. Write your function in the form of y - y = f(x)
- 2. From above expression, find the value of x- $x = \square$
- 3. Interchange value of x and y, now the RHS is Inverse function $-y = \Box$

100

