Business Mathematics, Logical Reasoning & Statistics

CA VINOD REDDY

- Ratio & Proportion, Indices, Logarithms
- **2** Time Value of Money
- 3 AP & GP
- **1** Inequalities & Equations
- **5** Permutations & Combinations
- **6** Sets Functions Relations
- **7** Statistical Description of Data
- 8 Measures of Central Tendency & Measures of Dispersion
- 9 Correlation Regression
- Probability
- Theoretical Distributions
- **Derivatives and Integration**
- **13** Logical Reasoning
- 14 Index Numbers

Chapter 1

RATIO | PROPORTION LOGS & INDICES CAVINOD REDDY

			Ratio, Proportion, Logs, Indices
1.	What is Ratio?		
-			
2.	Find simplest form	of 3.50:8.75.	
_			
-			
3.	5:7 can also be wri	tten as :	
_			
	Ratio	1420	Amouson
4.		lt's	Answer
4.	5:7	Duplicate Ratio	Answer
4.			Answer
4.	5:7 8:3 11: 19 64:625	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio	Allswer
	5:7 8:3 11: 19	Duplicate Ratio Triplicate Ratio Inverse Ratio	Answer
5.	5:7 8:3 11: 19 64:625	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Allswer
	5:7 8:3 11: 19 64:625 125:27	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Answer
	5:7 8:3 11: 19 64:625 125:27	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Answer
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Answer
	5:7 8:3 11: 19 64:625 125:27	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Allswer
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Answer
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	Answer
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	My Notes:
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	
5.	5:7 8:3 11: 19 64:625 125:27 5:7 can also be wri	Duplicate Ratio Triplicate Ratio Inverse Ratio Sub-Duplicate Ratio Sub-Triplicate Ratio	

		nado, i ropordon, Logo, muices					
7.	Ratio of 3 or more term	ns is known as					
	1						
8.	Ratio is unit free.						
9.	First term of the ratio						
	Second term of the rat	io =					
10	Find the ratio of 3kg	· 35 000 drame					
	Tillu tile ratio of 3kg	. 39,000 grains					
11	ach can also be written	and (ak a bla) on (a, b) provided k = 0					
	a:D Can also be writter	1 as (ak : bk) or $\left(\frac{\mathbf{a}}{\mathbf{k}}:\frac{\mathbf{b}}{\mathbf{k}}\right)$ provided $\mathbf{k} \neq 0$					
12	The order of the terms	s in a ratio is important.					
	The order of the terms	maratio is important.					
13	Find simplest forn	$a \circ 1 \cdot 2^2$					
	rina simplest form						
-							
14	In the Ratio	then a:b is called as					
	a:b If						
	a > b						
	a < b						
	a = b						
15	Ratio exists only when	2 or more quantities are of same kind.					
16	• Find simplest form	of 1.1.1					
		31810					
_							
17	Find simplest form	of <u>3</u> : <u>2</u> : <u>8</u>					
-		5.3.5					
-							
_							
		My Notes:					
		my Notes.					
_							

CA Vinod Reddy - vinod.reddy.ca@gmail.com

	Ratio, Proportion, Logs, Indices
18. Ratios are unit - free	
19. If a:b = 2:3 b:c = 4:7 c:d = 8:1 Find a:b:c:d, a:d, b:d	
20. If Quantity increase or decreases in the ratio a:b then new quantity = b of original quantity = a	
$\therefore \text{ New quantity} = \begin{pmatrix} \text{original } \times \text{ mutiplying } \\ \text{quantity } \times \text{ ratio} \end{pmatrix}$	
where multiplying $=\begin{pmatrix} Reciprocal & of & given \\ ratio \end{pmatrix}$	
original quantity = $\begin{pmatrix} new & Given \\ quantity & ratio \end{pmatrix}$	
21. Population of a city is x then it changes in the ratio of	no than find now population
Population of a city is x then it changes in the ratio of	p.q then find new population
Duplicate ratio of sub duplicate ratio of p:q is = Triplicate ratio of sub triplicate ratio of m:n is = Sub triplicate ratio Triplicate ratio of x:y is = Sub duplicate ratio of duplicate ratio of u:v =	
23. Find Duplicate ratio of Inverse ratio of 5:7	
24. Find Triplicate ratio of sub duplicate ratio of 25:49	

25. 26.		ratio of Duplicate ratio of 2:3, licate ratio of 512:27	Triplicate ratio of 9:4, Sub duplicate ratio
			in product ratio of our, our auphotic ratio
26.	or or.o4, sub dup		
26.			
26.			
26.			
26.			
26.			
26.	1		
20.	Whon A quantiti	ies a,b,c,d are said to be i	n proportion?
	Wilen 4 quantiti	ies a,v,c,u are saiu iv ve ii	n proportion:
l —			
27.	When 4 quantiti	ies a,b,c,d are said to be i	n continued proportion?
00		Whet	ther 4 Quantities are in
28.	4 Quantities	Continued Proportion?	Proportion?
	2,6,18,54		1 1 operation
	4.0.10.04		
	3,8,12,32		
	3,8,12,32 8,24,96,288		
	3,8,12,32		
	3,8,12,32 8,24,96,288 8,5,80,45		
	3,8,12,32 8,24,96,288		
29	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a h c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion?
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	proportion? My Notes:
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	
29.	3,8,12,32 8,24,96,288 8,5,80,45 4,6,9,13.50	ies a,b,c are said to be in	

Ratio	Pro	portion,	Lode	Indica
nauv,	LIA	pui livii,	LUgo,	IIIuIUE

30.	If a,b,c,d	are in	proportion	i.e. <u>a</u> =	<u>c</u> then

Invertendo:	Alternendo :

Componendo and Dividendo:

31. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{i}{j} = k$$
, then

32. If
$$\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$$
 then, Find value of $\left(\frac{4a + 2b - 3c}{5b}\right)$

CA Vinod	Reddy - v	vinod.red	ldv.ca@ø	mail.con

-3k, 86, 25, 63

36. Rules of Indices

			m
1. a" x a" =	6.	a	
		b	

2.
$$\frac{a^m}{a^n} =$$
 7. $a^{1/m} =$

$$8. [(a^{m})^{n}]^{p} =$$

10. If
$$a^x = a^y$$
; then

5.
$$(a.b)^m =$$
 11. If $a^m = b^m$; then

37.
$$2x^{1/2} \times 3x^{1} = ?$$
 If $x = 4$

$$\frac{6ab^{2}c^{3}}{2a^{2}bc^{8}} = \frac{1}{16ab^{2}c^{3}}$$

$$\left(\frac{4x^{-1}}{x^{-1/3}}\right) = \frac{1}{x^{-1/3}}$$

$$\frac{2a^{1/2}x \ a^{2/3}x \ a^{-7/3}}{9a^{-5/3}x \ a^{3/2}} = ? \quad \text{If } a = 4$$

Datia	Proportion,	Lode	Indian
nauv,	Proportion,	LUES.	IIIuice

42.	(a ^m x	a ⁿ x	a ^p)	=
		$\overline{\mathbf{a}}^{\mathbf{x}}$		

$$6a^{4b} \cdot x^{6} \cdot (a^{2/3} \cdot x^{-1})^{-b} = ?$$

44.
$$(\sqrt{9})^7 \times (\sqrt{3})^{-5} = 3^k \text{ then } k = ?$$

$$\frac{2^5}{2^5} =$$

$$\frac{81x^4}{y^{-8}}\Big|_{=}^{1/4}$$

$$\left\{\frac{\left(3^{3}\right)^{2}_{X}\left(4^{2}\right)^{3}_{X}\left(5^{3}\right)^{2}}{\left(3^{2}\right)^{3}_{X}\left(4^{3}\right)^{2}_{X}\left(5^{2}\right)^{3}}\right\} =$$

48.
$$y^{a-b} y^{b-c} y^{c-a} = ?$$

49.
$$\left[1-\left(1-x^2\right)^{-1}\right]^{-1}$$

Ratio, Proportion, Logs, Indice

51. If
$$a^x = b$$
, $b^y = c$, $c^z = a$ then $xyz = ?$

52.
$$\frac{\left|\frac{\mathbf{X}^{a}}{\mathbf{X}^{b}}\right|^{(\mathbf{a}^{2}+\mathbf{ab}+\mathbf{b}^{2})} \cdot \left|\frac{\mathbf{X}^{b}}{\mathbf{X}^{c}}\right|^{(\mathbf{b}^{2}+\mathbf{bc}+\mathbf{c}^{2})} \cdot \left|\frac{\mathbf{X}^{c}}{\mathbf{X}^{a}}\right|^{(\mathbf{c}^{2}+\mathbf{ac}+\mathbf{a}^{2})} = 9$$

53.	Log of	number	consist	of 2	parts
------------	--------	--------	---------	------	-------

Integer Part =

Fractional Part =

54. Log x = characteristic of x + Mantissa of x

Log b a =	A.log (log x) =
Log_m (ab) =	Log (A.log x) =
Log _m (a/b) =	Log _a a =
If log, a = k; then	Log _b a x Log _c b =
	Log ₁₀ 10 =
If $x^y = z$; then	Log ₁₀ 100 =
Log_(a) ^{-b} =	Log ₁₀ 1000 =
Log (ab/c)	Log abc =

My Notes :

	1	Ratio, Proportion, Logs, Indices
57.	X	Characteristic of x
	56.81	
	583.2	
	81.93	
	5.81	
	13	
	0.008126	
	0.5826	
	8.5926	
58.	How to find L	og x on calculator?
_		
59.	How to find A l	og y on calculator?
00.	How to min A.	og y on calculator:
_		
	h	
60.	How to find a	on calculator? (Particularly when b is in fractions)
—		
—		
	1	
61.	Common base of	Logs is:
	Natural base of L	ogs is:
60		
62.	$Log_{\sqrt{2}}64 =$	
L —		

$$63. \quad Log_2 Log_2 Log_2 16 =$$

64.
$$Log_9(1/3) =$$

65.
$$\log_{16} 32^{-8} =$$

66. Log x = (m + n); Log y = (m - n); then
$$Log \left(\frac{10x}{y^2}\right) =$$

67.
$$2 \log 5 + \log 8 - (1/2) \log 4 =$$

68.
$$\sqrt{729 \times 39^{-1} \times 27^{-4/3}} = ?$$

69.
$$\log_{2\sqrt{2}} 64 = ?$$

			Ratio, Pr	oportion, Logs, Indices
70.	Find 4 th prop	ortional to 2/3, 3/7	. 4.	
	_			
71.	If $2^x = 3^y = 6^x$	^z ; then (1/x) + (1/y)	+ (1/z) = ?	
	1			
72.			of the workers of a factor	
			of workers in the ratio of	17:12 and increment in
	wage rate per	worker in the ratio of 24	F:29	
—				
73 .	What least num	her must be added to eac	ch one of 6, 14, 18, 38 to	make them in proportion
				mane them in proportion
	a. 5	b. 3	с. 2	d. 4
74.			tio of 3:2 and their expenses	
	oi 5:5. ii each	saves (1500 then inco	omes of X and Y resp. are	5 .
75.	In a sugar so	lution of 300 gms, the	proportion of sugar is	40%. How much sugar
10.		ded to make it 50%		

	Ratio, Proportion, Logs, Indices
76.	A mixture contains milk and water in the ratio of 5:1. On adding 5 litres of water, the ratio of milk to water becomes 5:2. The quantity of milk in the original mixture is :
77.	If the denominator of a fraction exceed the numerator by 8. If numerator and denominator are both increased by 5, then fraction becomes 3/5. Find the original fraction.
78.	If Lod velve of v
	If $Log_{3/2}x = 3$, Find value of x
79.	$Log_{(1/9)}^{}$ 243 = x. Find x
80.	Log x^3 - 2 Log x - 2 = 0. Find x
81.	Lod 2 = 2 Lod 8 = 2 then Lod a = 2
	Log _a 3 = 2, Log _b 8 = 3 then Log _b a = ?
	My Notes :

Ratio,	Propo	rtion.	logs.	Indice
,				

82. If 2 Log a + 3 Log b - 2 = 0 then $a^2b^3 = ?$

83. $\log_2[\log_2[\log_3(\log_3 27^3)]$

84. 2 numbers are in the ratio of 3:4. If 6 is added to each term then the new ratio will be 4:5 then the numbers are

85. The sub-duplicate ratio of 1250:50 is:

86. Dhrish earns ₹2,780 in 7 hrs and Vinod earns ₹990 in 12 hrs. Ratio of their earning per hour is :

P, Q, R are 3 cities. The ratio of avg. temp. of P, Q is 11:12 and that of P, R is 9:8. Find the ratio of avg temp. of Q:R.

88. If 2s: 3t is the duplicate ratio of (2s-p): (3t-p) then

$$a. p^2 = 6st$$

$$\mathbf{c.} \ \mathbf{2p} = \mathbf{3st}$$

d. None of these

Ratio. F	Proportion,	Logs.	Indices

89. If A = B/2 = C/5; then A:B:C is:

90	1005 = 0.6000	Log 3 = 0	4771 thon	Log (50/3	(OO) — 2

91. Log 2 = x; Log 3 = y; then Log 60 = ?

92. Log
$$(1/81)$$
 to the base 9 is equal to :

93.
$$\overline{4.5671} + 7.8253 = ?$$

95.	What	is a	comme	nsurab	le ratio ar	id incon	ımensura	ble.	ratio?

- 96. A Dealer mixes tea costing ₹ 6.92 per kg with tea costing ₹ 7.77 per kg and sells the mixture at ₹ 8.80 per kg and earns profit of 17 1/2 % on sales price. In what proportion does he mix them ?
 - a. 2:3

: 2

5:2

d. None of these

97. If x : y = z : w = 8 : 7; then $\left(\frac{x+z}{v+w}\right) = ?$

98. If $\left| \frac{5x - 3y}{5y - 3x} \right| = \frac{3}{4}$ then x : y = ?

100.	$(3^3)^2$ x	$(4^2)^3 X$	$\left(5^3\right)^2$	
	$(3^2)^3 x$	$(4^3)^2 x$	$(5^2)^3$	

Log 5 = 0.6990, Log = 0.4771 Find Log $\left(\frac{500}{0.003}\right)$

102. Log
$$2 = x$$
, Log $3 = y$ Find Log (2.40)

Calculator Tricks

1. How to find a^b on calculator. (Mainly when b is a fractions)

Enter 'a'	Find -
12 times	1. 120.35
Deduct 1 Multiply by 'b'	2. 286 ^{1.3528} =
Add 1 'x=' 12 times	3. 1.0296 ^{0.3} =
	4. 878 1.2896 =
	$5.5100 = 100^{1/5} = 100^{0.20} =$

2. How to find Log x on calculator

Enter 'x'	Find -
15 times	1. Log 35 =
Deduct 1	2. Log 896.8 =
Multiply by 14230.9635	3. Log 0.008671 =

3. How to find A.Log y on calculator

Enter 'y'	Find -
Divide by 14230.9635	1. A.Log 2.8935 =
Add 1	2. A.Log 0.08613 =
'x=' 15 times	3. A.Log 5.8863 =
	4. A. Log 1.2287 =

4.
$$1.0686^{90} = 1.0686 \quad x = \text{ till step count comes } 91$$

$$1.0296^{56} = 1.0296 \quad x = \text{ till step count comes } 57$$

$$1.0811^{61} = 1.0811 \quad x = \text{ till step count comes } 62$$

5. How to find discounting factor on calculator?

1 ÷ (1+r) then '=' n times

6. How to find annuity factor on calculator?

1÷(1+r) then '=' n times and GT

7. 8, 15, 22, 29..... Find t_{28} , t_{38}

$$9. \frac{1}{2 \times 2} =$$

10.
$$-3+5=$$

_		_	
Q	ж.	5	
O			

100 2 -		
100 - 3 =		

11.

	1
100 - 3 =	
then 20 8 =	
98 =	
63 =	
238 =	
238 -	

3 + 5 = then 8 =

9 =

10 =

100 =

2086 =

12. — 13 x 3 =	
	13 x 3 = then 5 =
13 x 5 =	then 5 =
13 x 8 =	8 =
	11 =
13 x 11 =	
	20 =
13 x 20 =	

13. - a. (1.20 x 5.36) + (28.96 + 15.92) + (28.11 x 18.63)

b. (15.92 x 21.83) + (28.66 x 11.193) - (5.06 x 18.193)

14. $5^2 + 8^2 + 9^2 + 13^2 + 16^2 =$

15. $(5 \times 9) + (33 \times 18) + (28 \times 93) - (16 \times 6) + 13^2 =$

EXERCISE

- 1. Log 28.96 =
- 2. A.Log 2.8592 =
- 3. 1.20868592²⁸=
- 4. 883.9281^{1.5625}=
- 5. 68, 74, 80, 86..... Find t_{28} , t_{32}

t₂₈ =

t₃₂ =

- $\frac{63581}{8} 56^2 =$
- 8. $(86 \times 93) + (59 \times 81) + (29 \times 63) = ?$
- 9. 10 58263 =

$$\frac{11.}{\frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{13} + \frac{1}{16} + \frac{1}{18}} =$$

$$\begin{vmatrix} \frac{3}{5} + \frac{8}{7} + \frac{11}{9} + \frac{25}{8} \end{vmatrix} =$$

15.	15 ² -	+ 8 ³ +	34+	18 ² +	2.82 ³ +	- 9.53 ⁴ =
------------	-------------------	---------------------------	-----	-------------------	---------------------	------------------------------

16.	16	18	19	28	
	(2/5)	$\overrightarrow{(3/8)}$	(5/7)	(3/11)	

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

	CA
CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

YOU DECIDE.

CA VINOD REDDY

CA VINOD REDDY

IN THE END
WE ONLY REGRET
THE CHANCES
WE DIDN'T TAKE

CA VINOD REDDY

HEROS ARE MADE BY
THE PATH THEY CHOOSE
NOT THE POWER
THEY ARE GRACED WITH!

Chapter 2

TIME VALUE OF MONEY

CA VINOD REDDY

Time	Val	ue	of	Ma	mei
	UUL		VI.	14.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1. Amount = Principle + Interest

Principle = Amount - Interest

Interest = Amount - Principle

- 2. Why is interest paid?
 - 1. Time Value of Money
 - 2. Opportunity Cost
 - 3. Inflation
 - 4. Liquidity Preference
 - 5. Risk Factor
- 3. Simple Interest =

Amount = P + Simple Interest

4. Compound Interest =

Amount =

5. With Simple Interest

Amount	Amount at the end of years						
Invested	5	10	15	20	25	30	35
P	2P						
Р	3P						

6. With Compound Interest

Amount	Amount at the end of years					
Invested	7	14	21	28	35	42
P	2P					
P	3P					
Р	4P					

7. A = 50,00,000; r = 12% p.a.S.I; P = ?; n = 10 years

				Time Value of Money
8.	A = 50,50,000; r = 1		= 20,00,000 ; n =	years
_				
_				
_				
9.	A = ?; r = 18% p.a.\$	s.I; P = 25,000 ; n	= 8 years 3 mor	1ths
_				
_				
10.	A sum of money doub	les itself with comn	ound interest in 1	O years. How many times
10.	it will become after 4		ound intologe in 1	o years. How many times
_				
_				
_				
11.	Find the future valu	e of ₹50,000 af	ter 25 years @ 2	22% p.a.C.I
12 .	Find present value of	₹ 20,00,000 recei va	able after 25 years	s if money is 18.50% effective.

Time Value of Mone	Time '	Value	of N	lone
--------------------	--------	-------	------	------

13.	A = ?; r = 14% p.a.C.Q); P = 20,00,000 ; n = 3 years 9 months
14.	A = 80,00,000; r = 18.	50% p.a.C.semiannually; P = ?; n = 8 years 6 months
15.	Compounded	No. of conversion periods in a year
	Annually Semi-annually Monthly Quarterly Weekly Daily Fortnightly	
16.		p.q.c.w; n = 3 months; A = ?
		My Notes:

17 .	A = 2,00,000; r = 18% p.a.C.Q; P = 80,000 ; n = years

V

Effective rate of interest =
$$\left(1 + \frac{r}{n}\right)^n - 1$$
 where $r = \frac{1}{n}$ in =

24.	Nominal Rate of Interest	Effective Rate of Interest
	12% p.a.c.q	
	14.50% p.a.c.m	
	18% p.a.c.semiannually	
	26.26% p.a.c.weekly	
	22% p.a.c.monthly	

25.	Effective Rate of Interest	Nominal Rate of Interest
	18%	% p.a.c.q
	20%	% p.a.c.monthly
	28.56%	% p.a.c. half yearly

My Notes :

		Time value of money
26	18.50% p.a.c.monthly is equivalent to	9/ p a a a
20.	18.50% p.a.c.montmy is equivalent to	% p.a.c.y
L —		
27.	20.86% p.a.c.q is equivalent to	% p.a.c. half yearly.
_		
28.		
	a. Future Value of annuity regular =	
l —		
-	b. Future Value of annuity due =	
	,	
<u> </u>		
29.	Annuity Regular	Annuity Due / Immediate
	<u> </u>	
l —		
L —		

30.	Present Value of Annuity Regular = (Periodical Amount x Annuity Factor)
31.	Present Value of Annuity Due = (Periodical Amount x Annuity Factor) x (1+r)
32.	Mr. A invested ₹500 at the end of each year for 30 years. Find amount to be received at the end of 30 years, if money is 16% effective.
33.	A loan of $\stackrel{?}{\sim}$ 8,00,000 is to be repaid in 10 annual installments. Find amount of installment if interest rate is 12% p.a.
34.	A person desires to create a sinking fund to be invested @12% p.a.c.l. by saving some amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year.
34.	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000.
34. 35.	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000.
	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year. Rahul invested ₹ 70,000 in a bank at the rate of 6.50% p.a.S.I. he received ₹ 85,925
	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year. Rahul invested ₹ 70,000 in a bank at the rate of 6.50% p.a.S.I. he received ₹ 85,925
	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year. Rahul invested ₹ 70,000 in a bank at the rate of 6.50% p.a.S.I. he received ₹ 85,925
	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year. Rahul invested ₹ 70,000 in a bank at the rate of 6.50% p.a.S.I. he received ₹ 85,925 at the end of term. Find out the period for which the sum was invested by Rahul.
	amount at the end of each year for 30 years to buy house worth ₹ 30,00,000. Find amount to be saved at the end of each year. Rahul invested ₹ 70,000 in a bank at the rate of 6.50% p.a.S.I. he received ₹ 85,925 at the end of term. Find out the period for which the sum was invested by Rahul.

Time Value of Money

	Time Value of Money
36. Kapil deposited some amount in a bank for $7\frac{1}{2}$ years @ 6% ₹ 1,01,500 at the end of term. Compute initial deposit of Ka	6p.a.S.I. Kapil received apil.
37. A sum of ₹ 46,875 was lent out at simple interest and at the months the total amount was ₹ 50,000. Find rate of interest and at the sum of the total amount was ₹ 50,000.	
38. What sum of money will produce ₹ 28,600 as an interest @2.50% p.a.S.I.	in 3 years and 3 months
39. The sum required to earn monthly interest of ₹ 1,200 \approx	at 18% p.a.S.I is :
40. Compute the compound interest on ₹ 40,000 for 1.5 years half yearly.	s @10% p.a. compounded

		T I	me Value of Money
41. What rate of i	nterest p.a. doubles the	e investment in 7 years at c	ompounded interest?
	•	,	•
10		-	
42. In what time	will ₹8,000 amount to	₹8,820 at 10% p.a. comp	ounded half yearly?
43. A certain sun	n invested at 4% p.a. c	ompounded semi-annually	amounts to ₹ 78,030
at the end of	one year. Find the sun	1.	
		every year by 2%. The num	ber of years by which
the total incr	ease in population be 4	10% is	
		10% is	ber of years by which d. None
the total incr	ease in population be 4	10% is	
the total incr	ease in population be 4	10% is	
the total incr	ease in population be 4	10% is	
the total incr	ease in population be 4	10% is	
the total incr	ease in population be 4	10% is	
the total increase. 7 years 45. The difference	ease in population be 4 b. 10 years e between simple interes	c. 17 years (approx.) st & compound interest on a	d. None
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) St & compound interest on a 10.16. The principle is -	d. None certain sum of money
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) st & compound interest on a	d. None certain sum of money
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) St & compound interest on a 10.16. The principle is -	d. None certain sum of money
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) St & compound interest on a 10.16. The principle is -	d. None certain sum of money
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) St & compound interest on a 10.16. The principle is -	d. None certain sum of money
the total increase. 7 years 45. The difference invested for 3	ease in population be 4 b. 10 years e between simple interes years at 6% p.a. is ₹ 1	c. 17 years (approx.) St & compound interest on a 10.16. The principle is -	d. None certain sum of money

46. The compound interest on ₹ 40,000 at 10% p.a. for 3 years when interest is payable quarterly is -

47. Use calculator and find answers for the following questions :

$$(1.0135)^{28} =$$

$$(1.10935)^{72} =$$

$$(1.089123)^{66} =$$

$$= \frac{P.A}{r} \times \left[1 - \frac{1}{(1+r)^n}\right] = \frac{P.A}{r} \times \left[1 - (1+r)^{-n}\right]$$

49. What is perpetuity?

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually.

50. The present value of annuity of ₹3,000 for 15 years @4.50% p.a.c.i is

Time Value of Money 51. A loan of ₹ 10,000 is to be paid back in 30 installments. The amount of each installment to cover principle and 4% p.a.c.i. is d. None of these a. 587.87 b. 587 c. 587.30 **52.** A person invests ₹ 500 at the end of each year @10% p.a. The amount standing to his credit one year after he has made his yearly investment for 12th time is: a. 11,761.36 b. 10.000 c. 12,000 d. None of these A person bought a house paying ₹ 20,000 cash down & ₹ 4,000 at the end of each year for 25 years, at 5% p.a.c.i. The cash down price of house is : a. ₹ 75,000 b. ₹ 76,000 c. ₹ 76,376 d. None of these **54.** The difference between simple interest and compound interest at 5% p.a. for 4 years on ₹ 20,000 is __

				Time Value of Money
55.	The compound	l interest on half year	y rests on ₹ 10,000,	if rate for 1 st and 2 nd year
	being 6% and	for third year being 9	% p.a. is ₹	
	a. 2,200	b. 2,287	c. 2,285	d. None of these
_				
5.0	\/:	F.O. La Library 1 and 1	-4.00/	. 00
56.		f 6 lakhs housing loan a nmencing at the end of		i 20 annual equal annual payment is necessary
	a. ₹ 52,420	b. ₹ 52,400	c. ₹ 52,310	d. None of these
57.	Raja aged 40 ve	and wishes his wife Day		
				his death. If expectation vestments commencing now at
	of life is another		aking equal annual inv	his death. If expectation vestments commencing now at
	of life is another	r 30 years & he starts m	aking equal annual inv	
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	vestments commencing now at
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	d. 84,080
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	d. 84,080
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	d. 84,080
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	d. 84,080
	of life is another 3% c.i.p.a. How	r 30 years & he starts m much should he invest a	aking equal annual inv unnually?	d. 84,080

				ime Value of Money
58.			D now and ₹ 20,000, ₹ 5 ectively. Find cash down	
	a. ₹ 1,83,816	b. ₹1,82,618	c. ₹ 1,86,218	d. ₹ 1,62,861
59.	Effective rate of 2	21.94% is equivalent t	D % p.a.c.m	onthly
001	a. 21.94%	b. 20%	c. 20.66%	d. 22.77%
60.	Out of certain mor	ney (1/3) rd is invested at	t 3% , (1/6) th is invested	at 6% and rest at
	8% for 2 years. Si	mple Interest from all t	nese investments is ₹ 60	O. The original sum is :
	a. ₹3,500	b. ₹4,000	c. ₹ 5,000	d. ₹ 4,500
				My Notes :

				Time Value of Money
	of a village is 10,000 after 3 years?). If it increases at 10)% p.a. \	What will be its
a. 13,310	b. 14,220	c. 17,908		d. 13,000
				(2 (2)th e
	n sum simple interes interest is	t at the end of 6.25 y	years be	ecome (3/8)" of sun
a. 7%	b. 9%	c. 5%	d. 6%	
The amoun	t of certain sum of mo	ney with simple interes	st at cer	tain rate of interest
		ney with simple interes		
			of interes	
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is :
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is:
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is :
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is :
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is :
is ₹ 2,660 i	in 3 years and ₹3,100) in 5 years. The rate o	of interes	st is :

				Time Value of Money
64.	At what rate of	compound interest n	noney will amount to	8 times in 20 years?
	a. 12.75%	b. 11.22%	с. 10.96%	d. None of these
—				
_				
65 .	At what rate of	f simple interest mo	ney will become 8 tiı	mes in 20 years?
	a. 35%	b. 40%	c. 30%	d. None of these
	u. 3370	8. 40 /0	0. 00 /0	d. None of those
_				
66.	In what time ₹ 1	,00,000 will become	₹8,00,000, If rate of	interest is 10% p.a.s.i
	a. 77 years	b. 7 years	c. 70 years	d. 17 years
	J	•	,	
_				
67 .	A sum of money	triples itself with co	mpound interest in 9 y	ears. How many times it
	will become afte	er 81 years?		
	a. 27 times	b. 6,561 times	c. 81 times	d. 19,683 times
_				
<u></u>				
				My Notes :
_				

CA Vinod Reddy - vinod.reddy.ca@gmail.com

Time Value of Mone	of Mone
--------------------	---------

68.	created to replace it by a new model at 25% higher cost after 25 years with a scrap value of realisation of ₹ 25,000. What amount should be set aside every year if money is 3.50% effective?					
	a. ₹	16,000	b. ₹ 16,564	c. ₹ 16,046	d. ₹ 16,005	
69.	inte	rest.			5 years. Find amount, simple	
Ye	ear	Opening I	Balance (₹)	Interest (₹)	Closing Balance (₹)	
	1					
	2					
	3					
	4					
	4					
	5					
	Amou	ınt receivable	at the end of 5 ye	ars =		
	Simp	le interest for	5 years =			
					My Notes :	
_						

Mr. A deposited ₹80,000 in a bank @10% p.a.c.i. for 5 years. Find amount
receivable after 5 years and compound interest.

Year	Opening Balance (₹)	Interest (₹)	Closing Balance (₹)
1			
2			
3			
4			
5			

Amount receivable at the end of 5 years =	
Compound Interest =	

71. P = ₹ 1,00,000; r = 12% p.a.c.q; n = 2 years, A = ?

	Opening Balance (₹)	Interest (₹)	Closing Balance (₹)
Year 1 Q1			
Q2			
Q 3			
Q4			
Year 2 Q1			
Q2			
Q 3			
Q4			

Amount to be received after 2 years =	

My Notes :

72.	should keep aside at the end of every year, if money is 14% effective						
	a. ₹ 2,20,819	b. ₹3,00,000	c. ₹3,55,556	d. None of these			
72		Tall 22 22 2		40.07%			
73.	Simple interest	on ₹ 25,00,000 for 8	years and 4 months @	9 19.25% p.a.s.i is			
\setminus —							
74.	A sum of ₹ 12.00	00 deposited at compo	und interest becomes de	ouble after 5 years.			
14.	After 20 years it						
	a. ₹ 1,44,000	b. ₹ 2,40,000	c. ₹ 1,92,000	d. None of these			
\ <u> </u>							
7 5.	A man denosits ₹	* 2 000 @ 4% n a and	₹3,000 @ 14% p.a. Fin	d average rate of			
10.		ing on whole sum?	(0,000 @ 1470 p.a. 1 m				
	a. 10%	b. 5% c. 1	4% d. None	of these			
<u></u>							
				My Notes :			

CA Vinod Reddy - vinod.reddy.ca@gmail.com

CA Vinod Reddy Maths Regular Notes	CA YINODREDDY

	CA
CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

LIFE IS ...

10%

WHAT HAPPENS TO US

& 90% HOW YOU REACT TO IT!

- CA VINOD REDDY -

MINDSET IS EVERYTHIG

MINDSET IS EVERYTHING

- CH VINOD REDDY -

Chapter 3

SEQUENCE & SERIES

C& VINOD REDDY

rms a, b, c, d, e, f, g are said to be i	<u>n</u>
GP, If	HP, If
	•

2.	Progression	AP/GP/HP/None of these
	8, 16, 32, 64, 128	
	80, 70, 60, 50, 40	
	2, 8, 32, 128	
0.8	50, 0.25, 0.1666666, 0.125	
	1, 1, 1, 1, 1 8 10 12 14 18	
	100, 97, 94, 91	
	4, 6, 9, 13.50	
	10,80,150,220	
	10,0,-10,-20,-30	

3.

For	t _n	S _n
AP		
GP		

		Sequence & Series (AP-GP)
4.	80, 87, 94, 101, Find t_{30} , t_{80} , t_{125} , t_{45} , t_{100} , t_{125}	
4.	$\mathbf{SU}, \mathbf{SI}, \mathbf{S4}, \mathbf{IUI}, \dots \mathbf{FIHU} \mathbf{t}_{30}, \mathbf{t}_{80}, \mathbf{t}_{125}, \mathbf{S}_{45}, \mathbf{S}_{100}, \mathbf{S}_{125}$	
_		
_		
-		
-		
_		
_		
l –		
-		
/-		
5.	5, 10, 20, 40, Find t_{12} , t_{10} , S_{16} , S_{22}	
	-	
_		
_		
_		
-		
-		
_		
-		
_		
\ _		
	7	
6.	1. Sum of infinite terms of G.P. where r > 1 =	
	2. Sum of infinite terms of G.P. where 0< r < 1 =	
_		
l —		
$\overline{}$		
7.	$10 + 20 + 40 + 80 + \dots \infty$ terms = ?	
	-	
_		
[—		
8.	200 + 100 + 50 + 25 + ∞ terms = ?	
_		
-		
[—		

						Sequence & Series (AP-	-GP) T
•					0		
9.	For AP t ₅	$= 80, t_{15} = 5$	80	Find a , d , t_{80} , t_{100} ,	880		
_							
_							
_							
_							
_							
_							
_							
_							
_							
\setminus $-$							
10.	For AP t ₃ =	$=$ 15, $S_3 = 30$ erm, commo	n diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	= 15, S ₃ = 30 erm, commo	n diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	$= 15, S_3 = 30$ erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	= 15, S ₃ = 30 eerm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ =	: 15, S ₃ = 30 :erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 eerm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ =	: 15, S ₃ = 30 :erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 eerm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀			
10.	For AP t ₃ = Find first t	15, S ₃ = 30 eerm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes :	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 serm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 serm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on differ	ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 serm, commo	on differ	'ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	
10.	For AP t ₃ = Find first t	15, S ₃ = 30 erm, commo	on diffe	ence, S ₄₀ , S ₁₀₀ , t ₃₀		My Notes:	

11.	For AP $t_n = (3n+5)$. Find S_n
-----	------------------------------------

12. For AP $t_n = ?$, if $S_n = (8n^2 - 3n)$ $t_n = ?$

- 13. For AP Please Remember
 - 1. If $S_m = S_n$, then $S_{m+n} = zero$
 - 2. If $t_m = n$, and $t_n = m$, then $t_{m+n} = zero$
 - 3. If m x $t_m = n x t_n$, then $t_{m+n} = zero$
- 14.

For 2 observations x,y

For 2 observations relation between AM, GM, HM is

For any no. of observations relation between AM, GM, HM is

	Sequence & Series (AP-GP)
16. For 2 observations if $GM = 10$ and $AM = 12$, $HM = ?$	
17. Insert 2 A.means between -200 and 1600	
18. Insert 3 A.means between 5000 and 8520.	
19. Insert one A.means between 100 and 250.	
20. Insert 5 G.means between 500 and 8,000.	
misert 3 d.illeans between 300 and 3,000.	

Sequence & Series (AP-GP	Sequence	& Series	(AP-GP
--------------------------	----------	----------	--------

21.

a. Sum of first 'n' natural numbers =

b. Sum of first 'n' odd numbers =

c. Sum of squares of first 'n' natural numbers =

d. Sum of cubes of first 'n' natural numbers =

e. Sum of first 'n' even numbers =

22. $19^2 + 20^2 + 21^2 + 22^2 + \dots + 105^2$

23. $28^3 + 29^3 + 30^3 + \dots + 62^3$

24. 1 + 3 + 5 + 7 + + 989 = ?

25.

4484 + 4488 + 4492 + + 16880 = ?

26.	n th	term o	f sequen	ce 1, 3,	, 5, 7 ,	, is
------------	-----------------	--------	----------	----------	-----------------	------

27 .	i=7	
	∑√2i-1	=

28. If
$$S_n = 2n^2 + 8n$$
, first 3 terms of AP are :

29. For AP
$$t_1 = -4$$
, $t_n = 146$, $S_n = 7171$. The number of terms is :

30. $3\frac{1}{2}$ + 7 + $10\frac{1}{2}$ + 14 + Find S_{17}

	Sequence & Series (AP-GP)
31. 4 A.means between -2 & 23 are	
32. Find x such that $8x + 4$, $6x - 2$, $2x + 7$, are in A.P	
33. Find k such that (10k+8), (18k-19), (22k-81) are i	n A D
Tillu k Sucii tilat (TUK+8), (TSK-19), (22k-81) ale i	II A.F.
34. 4 A.means between -20 and 880 are	
	My Notes :

	Sequence & Series (AP-GP)
25 1 400	
35. Insert 3 G.means between $\frac{1}{2}$ and 9.	
$\overline{}$	
26 2 22 222 m towns = 3	
36. 3 + 33 + 333 + n terms = ?	
37. 6 12 24 48 Find t S	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t ₁₀ , S ₁₂	
37. 6, 12, 24, 48, Find t_{10} , S_{12} 38. For GP t_2 = 24, t_5 = 81 then find common ratio.	
37. 6, 12, 24, 48, Find t_{10} , S_{12} 38. For GP $t_2 = 24$, $t_5 = 81$ then find common ratio.	

39. Sum of first 20 terms of G.P. is equal to 244 times of sum of first 10 terms of G.P.	')
	hen
common ratio = ?	
	_
	_
40. 1 + 2 + 4 + 8 + = 8191.	
How many terms are there in the above G.P.?	
	_
	_
41. 4 G.Means between 4 and 972 are:	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	
42. For G.P., Find $t_4 = x$, $t_{10} = y$, $t_{16} = z$ then $y^2 = xz$. True / False	

				Sequence & Series (AP-GP)
43. Find s	um of all odd	l numbers divis	sible by 9 between	5,000 and 15,000.
44. Find s	sum of all nu	mbers divisible	by 7 between 800	and 8000.
15 1 02	1 002 1 1	.03³+	Find C	
1.03	+ 1.03 + 1	.03 +	Fina 5 ₁₁	
10 - 11				
46. The n th a. (-1) th		ie sequence -1, 2 b. 2 ⁿ⁻¹	2, -4, 8 is c. 2 ⁿ	d. None of these
a. (-1)	X Z	U. Z	6. 2	u. None of these
				My Notes :
				My Notes :
				My Notes :

47 .	7 ≥√2i-1	can be written as	S :
	i-1		

a.
$$\sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{13}$$

b.
$$2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11} + 2\sqrt{13}$$

$$c.\sqrt{7+9+11+13}$$

d. None of these

48. Which term of AP -1, -3, -5,is -39

a. 21st

h. 20th

c. 19th

d. None of these

4.9. For AP $t_m = n$, $t_n = m$ then $t_r = ?$

a. m+n+r

b. m+n-2r

- c. (m+n+r)/2
- d. m+n-r

- **50.** $10 + 9\frac{2}{3} + 9\frac{1}{3} + 9 + 8\frac{2}{3} + \dots$ Find S_{30}
 - a. 155

b. 551

- c. 1010
- d. 305

CA Vinod Reddy - vinod.reddy.ca@gmail.com

			Se Se	quence & Series (AP-GP)
51.	2 A.means betwee	n terms -6 and 14 are		
	a. 2/3, 1/3	b. 2/3, 22/3	c2/3, -22/3	d. None of these
\subseteq				
52.	The number of nu	ımbers between 74 and	l 25,556 divisible by	⁄ 5 are:
	a. 5090	b. 5097	с. 5095	d. None of these
_				
53.	The 4 arithmetic n	neans between -2 and 23	3 are :	
	a. 3, 13, 8, 18	b. 18, 3, 8, 13	c. 3, 8, 13, 18	d. None of these
54.	t ₁ = -4 and t _n = 14	6, S _n = 7171 . Find n		
54.	t ₁ = -4 and t _n = 14 a. 101	6, S _n = 7171 . Find n b. 100	с. 99	d. None of these
54.			с. 99	d. None of these
54.			с. 99	d. None of these
54.			c. 99	d. None of these
54.			c. 99	d. None of these
54.			c. 99	
54.			c. 99	d. None of these My Notes:
54.			c. 99	

55	\mathbf{Y}^2 \mathbf{Y}	1	t = 9
	A_{ij}		101

a. x²⁸

b. 1/x

c. $1/x^{28}$

d. $1/x^{35}$

56. For G.P. t_2 = 24, t_5 = 81. The series is,

a. 16, 36, 24, 54..... b. 24, 36, 53..... c. 16, 24, 36, 54..... d. None of these

57. The sum of 3 numbers in G.P. is 39 and their product is 729. The numbers are :

a. 3, 9, 27

b. 27, 9, 3

c. Both (a) & (b)

d. None of these

58 In a G.P, product of first 3 terms is 27/8. The middle term is

a. 2/3

b. 3/2

c. 9/8

d. None of these

My Notes:

				Sequence & Series (AP-Gl
			paise succ	eeding day and so on.
	in 2 weeks will be			
a. ₹ 163	b. ₹ 183	c. ₹ 10	63.83	d. None of these
Sum of first 2	20 terms of G.P. is	244 times of	sum of its	first ten terms.
The common		_		
a. √ 3	b. 3	c. 1/\3	d. None o	of these
The cum of the	he series 1 + 2 + <i>4</i>	1 1 8 1 1	n tonme ic	,
The sum of the a. 2"-1				
a. 2 - 1	b. 2n - 1	U. (1/2	") - 1	d. None of these
The number	of terms to be take	en so that 1 + :	2 + 4 + 8 +	will be 8191 is :
The number a. 10	of terms to be take b. 13		2 + 4 + 8 + c. 12	will be 8191 is : d. None of these
				d. None of these

00	- ^ .		1000
63.	Four Geometric n	neans between 4	and 972 are

- a. 12,36,108,324
- b. 12,24,108,320
- c. 10,36,108,320
- d. None of these

64. $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots \infty$	terms = ?
---	-----------

- a. 0.75
- b. 1.50
- **c.** ∞
- d. None of these

- 65. If p, q, r are in AP and x, y, z are in GP then $x^{q-r} \times y^{r-p} \times z^{p-q} = ?$
 - a. zero
- b. 1
- c. -1
- d. None of these

66. For G.P, $t_4 = x$, $t_{10} = y$, $t_{16} = z$. Then

a.
$$x^2 = y.z$$

b.
$$z^2 = x.y$$

- c. $y^2 = x.z$
- d. None of these

My Notes:

a. ₹ 1,000	b. ₹ 1,500	c. ₹ 1,200	oney he saved in first year d. None of these
a. (1,000	IJ. ₹ 1,500	G. (1,200	u. None of these
Sum of first 20	oven natural numbe	uno io .	
	even natural numbe		
Sum of first 30 a. 930	even natural numbe b. 465	ers is : c. 900	d. None of these
			d. None of these
			d. None of these
			d. None of these
			d. None of these
			d. None of these
	b. 465		d. None of these

U				
	a. 7n²+7n	b. 7n²+4n	c. 4n²+7n	d. 2n²+7n

My Notes :

				Sequence &	Series (AP-GP)
71.	For A.P t_9 = 40 and t_{40}	= 9 then t ₄₉ = ?			
	a. 49	b. ₹-98	c. zero	d.	None of these
70	If Lodg. Lodb. Lodg gr	o in AD, thon			
72.	If Loga, Logb, Logc and a. a, b, c are in G.P		n G.P c. Both o	f these d	. None of these
73.	For 2 positive observ	vations G.M. is G.M	of AM & HM		
	a. True	b. False			
74.	For AP First term = co				is -
74.		ommon difference th b. n:m		n to n th term d. None	is -
74.					is -
74.					is -
74.					is -
74.				d. None	votes:

75. $a^{1/x} = b^{1/y} = c^{1/z}$ and a, b, c are in G.P, then x, y, z are in

a. A.P

b. G.P

c. Both

d. H.P

76. $x = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots \infty$ terms, $y = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots \infty$ terms. Find $(x \cdot y)$.

a. 2

b. 1

c. 8/9

d. 1/2

77. For AP if t_7 : t_{10} = 5:7, then t_8 : t_{11} = ?

a. 13:16

b. 17:23

- c. 14:17
- d. 15:19

78. If G is GM of a, b then, $\frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2} = ?$

a. G²

b. 3**G**²

- $c.1/G^2$
- $d. 2/G^2$

My Notes:

				Sequence & Series (AP-GP)
79 .	Find the nr	roduct of 243 x 243 ^{1/6} x 243 ^{1/36}	×	
13.	Tilla tilo pi		A	
	a. 1024	b. 27	с. 729	d. 246
_				
-				
_				
_				
80	GM of D D	² , P ³ , P ⁴ , P ⁿ will be		
80.				
	a. P ⁿ⁺¹	b. P ^{(n+1)/2}	c. $P^{n(n+1)/2}$	d. None of these
-				
-				
_				
_				
01	Find the nu	mbore whose AM is 10 50 and 6	CM is 10.	
81.	Find the nu	mbers whose AM is 12.50 and 0	JINI IS TU:	
	a. 20,5	b. 10,5	c. 5,4	d. None of these
—				
-				
L —				
		4/9		
82.	t_5 of GP =	$3^{1/3}$ then product of the first 9	9 terms of GP is :	
	a. 8	b. 27	c. 243	d. 9
_				
_				
L				
$\overline{}$				
83.	For AP t_3 +	$t_9 = 8$. Find S_{11} for AP		
	a. 44	b. 22	с. 19	d. 11
_				
-				

$\mathbf{Q} \mathbf{A}$	t_8 for AP is 15 then $S_{15} = ?$
744	L TOP AP IS TO THEIR STEP I

a. 15

b. 0

c. 225

d. 225/2

85. Find first term of GP if second term is 2 and sum of infinite terms is 8.

a. 6

b. 3

c. 4

d. 1

86. If sum of 4^{th} term and 12^{th} term of AP is 8, what is the sum of first 15 terms?

a. 60

b. 120

c. 110

d. 150

87. In GP, $t_6 = 729$; r = 3, First term = ?

a. 2

b. 3

c. 4

d. 7

88. For AP $S_{13} = 143$, $t_3 = 5$, find first term.

a. 4

b. 7

c. 9

d. 2

			Sequ	uence & Series (AP-GP)
89.	If GM of a, b,	c, d is 3 then GM of <u>1</u> , <u>1</u> ,	<u>1, 1</u> is "	
	a. 1/3	a b (c. 81	d. 1/81
_				
90.		difference of AP, if a = 200 st 4 terms by 50	and sum of first 6 term	s exceeds twice
	a10	b15	c. 150	d. None of these
_				
91.	59 + 63 + 67 +	71 + + 107 = ?		
	a. 972	b. 1079	с. 1083	d. None of these
_				
92.	If one AM 'A' an	d 2 G. means G_1 & G_2 are ins	serted between any 2 num	obers then $(G_1^3 + G_2^3) = ?$
	a. 2AG ₁ G ₂	b. 2 G ₁ G ₂	c. 2AG ₁	d. 2A
_				
_				
00		^ ~		
93.		1 G.P. a, x, b and b, y, c bot		
	a. 1	b. 0	c. 2	d. None of these

		Sec	uence & Series (AP-G
14. For AP (t ₇ / t ₃) = (12/5). Find $(t_{13}/t_4) = ?$		
a. 8:5	b. 9:4	с. 7:3	d. 10:3
35. 4 th term of AP	is equal to 3 times of firs	st term and 7 th term excee	ds twice of third
term by 1. Fir	nd first term.		
a. 3	b. 5	c. 7	d. 9
6. t = 1/243.F	For 3, \(\sqrt{3}, 1 \) ther	ı n = ?	
a. 12	b. 13	с. 14	d. 15
7. For GP $S_n = 4$ a. 10	4095, r = 2, t _n = 2048. Fi b. 11	ind n c. 12	d. 15
a. 10	V. 11	0. 12	u. 13
			My Notes :

				Sequence & Series (AP-GP)
98.	Which term o	of AP 64, 60, 56, 52,	is zero	
	a. 18 th	b. 17 th	c. 14 th	d. 15 th
_				
—				
\ <u> </u>				
	Sum of all 2 o	ligit natural numbers is		
99.	Sum of an 2 (ngit naturai numbers is		
	a. 4955	b. 4890	с. 3776	d. None of these
<u></u>				
400	1 0 .			
100	1, y, 9 are II	n A.P, then value of y is		
	a. 3	b3	c. Either (a) or (b)	d. None of these
—				
<u> </u>				
404		. AD		
101	a, b, c are ii	n AP as well as GP, then		
	$\mathbf{a.} \ \mathbf{a} = \mathbf{b} = \mathbf{c}$	$\mathbf{b.} \ \mathbf{a} \neq \mathbf{b} = \mathbf{c}$	$\mathbf{c.} \ \mathbf{a} \neq \mathbf{b} \neq \mathbf{c}$	d. Wrong qs.
-				
<u> </u>				
				My Notes :

				Sequence & Series (AP-GP)
100	a h c d a f ara	in AP then (e-c) = ?		
102.				
	a. 2 (c-a)	b. 2 (f-d)	c. 2(d	-c) d. (d-c)
103.	The sum of fir	est '2n' terms of AP 2. 5.	8 is equal to su	ım of first 'n' terms of AP
103.	57, 59, 61,	then n = ?		
	a. 10	b. 12	c. 11	d. 13
L				
	1			
104.	If $\mathbf{a}^{x} = \mathbf{b}^{y} = \mathbf{c}^{z} \mathbf{a}$	nd x, y, z are in GP then	loga, logb, logc are i	n
	a. A.P	b. G.P	c. Both	d. None of these
<u> </u>				
105.	(4x+5), (5x+7)	7), (8x-1) are in A.P. the	en x = ?	
		b. 6		d. 4
	a. 5	N. U	c. 7	u. 4

106		in G.P. If we double the atio of G.P. is equal to	middle term, we get an A.	Р.
	a. 2 <u>+</u> √3	b. 3 <u>+</u> √2	c. 3 ±√5	d. 5 ±√3
107	1 1 1			
107	$2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$		= 10	
	a. 17/8	b. 9/2	c. 7/2	d. 4
100		****		
108	, in AP a,D,C,a,e,t	.2.n common aimerence :	= k; then in A.P. a,c,e,g cor	nmon aitt. = ?
	a. 2k	b. k ² c.		
	a. 2k	b. k ² c.	k d. None of t	hese
109	a. 2k	b. k² c. ,f,g,h common ratio = m;	then in G.P. a,c,e,g comm	on ratio = ?
	a. 2k	b. k ² c.	k d. None of t	hese
	a. 2k	b. k² c. ,f,g,h common ratio = m;	then in G.P. a,c,e,g comm	on ratio = ?
	a. 2k	b. k² c. ,f,g,h common ratio = m;	then in G.P. a,c,e,g comm	on ratio = ?
	a. 2k	b. k² c. ,f,g,h common ratio = m;	then in G.P. a,c,e,g comm	on ratio = ? d. None of these
	a. 2k	b. k² c. ,f,g,h common ratio = m;	then in G.P. a,c,e,g comm	on ratio = ?

		8	Sequence & Series (AP-GP)
110. Shall we sto	op here for the day?		
a. Yes	b.	No	
111 0000			
1111. 8,8,8,8,8 au			
a. A.P	b. G.P	с. Н.Р	d. All of these
112. $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{8}$. <u>1</u> 12 are in		
a. A.P	b. G.P	c. H.P	d. All of these
113 1, 1, 1, 200	in H D than m = 9		
113. $\frac{1}{8}$, $\frac{1}{m}$, $\frac{1}{18}$ are			
a. 1/13	b. 13	c. 1/12	d. 144
114. 3,√m, 10 a	re in G.P.; then m = ?		
a.√30	b. 30	с. 13	d. 13/3
115. If a,b,c,d,e,f,	g,h,i,j,k,l,m,n,o,p,q are ith common ratio = ?	in G.P with r as commo	n ratio; then a,d,g,j,m,p
a. r	b. r ²	c. r ³	d. None of these

CA Vinod Reddy Maths Regular Notes	CA

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY
va viiivu neuuy maiiis negulal nules	AIMODKEDDA

- CA VINOD REDDY -

Chapter 4

INEQUALITIES & EQUATIONS

CA VINOD REDDY

Locations	Points	Inequalities / Equations
1 st Quadrant		
2 nd Quadrant		
3 rd Quadrant		
4 th Quadrant		
X - Axis		
Y - Axis		
Origin		
2. The sta	andard format of a linear	equation is:
K Granhi	cal Presentation of a str	aight ling is known as
3. Graphi	ical Presentation of a str	aight line is known as
8. Graphi	ical Presentation of a str	aight line is known as
8. Graphi	ical Presentation of a str	aight line is known as
8. Graphi	ical Presentation of a str	aight line is known as
	s a set / collection of	
4. Line i	s a set / collection of	
4. Line i		
4. Line i	s a set / collection of	
4. Line i	s a set / collection of	
4. Line i	s a set / collection of	
4. Line i	s a set / collection of	
4. Line i	s a set / collection of	
4. Line i	s a set / collection of	

Equation of line	Slope of Line
8x + 3y = 93	
3x - 11y = 51	
-33x - 16y = -25	
3x = 83	
8y = 65	
px - qy = 80	
2x + 6063y = 81	
y = 8x + 13	
y = -15x + 65	

7 .	Equation of X-axis is :	
	Equation of Y-axis is :	
	Equation of line to X-axis is :	
	Equation of line to Y-axis is :	
	Slope of X-axis and all the lines to X-axis is :	
	Slope of Y-axis and all the lines to Y-axis is :	

8.	Equation of the line passing through points (x_1,y_1) and (x_2,y_2) is:	

- 9. Slope of the line passing through points (x_1,y_1) and (x_2,y_2) is :
- On solving 2 linear equations simultaneously if we get x=p and y=q, then

4	-	
1	1	
		•

Equation	Number of roots	
Linear		
Quadratic		
Cubic		

$$\frac{12}{4} + \frac{x-5}{3} = 11; \quad x = ?$$

13.
$$\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$$
 then $y=?$

$$\frac{14.}{4} = \frac{15x - 1}{5} + \frac{2x - 5}{3x - 1}; \text{ then } x = ?$$

15.
$$\frac{x+24}{5} = 4 + \frac{x}{4}$$
; then $x = ?$

16. Find solution for 3x + 4y = 7, 4x - y = 3

17. x + 5y = 36, $\frac{x + y}{x - y} = \frac{5}{3}$; then (x,y) = ?

18. $\frac{3}{x+y} + \frac{2}{x-y} = 3 \& \frac{2}{x+y} + \frac{3}{x-y} = 3\frac{2}{3}$; then (x,y) = ?

Monthly income of 2 persons is in the ratio of 4:5 and their monthly exp. are in the ratio of 7:9. If each saves $\stackrel{?}{\sim}$ 50 p.m. Find their monthly incomes.

20. Standard format of a quadratic equation is:

Inequa	lities and	Equations

22. First root of quadratic equation =
--

2nd root of quadratic equation =

Sum of roots =

Product of roots =

23. Find roots of quadratic equation $3x^2 - 7x - 20 = 0$. Also find sum and product of roots
--

24.

Quadratic Equations	Sum of roots	Product of roots
$3x^2 + 2x + 11 = 0$		
$5x^2 - 19x - 13 = 0$		
$2kx^2 - 13px + 8p - 19 = 0$		
$8x^2 - x - 63k + 25 = 0$		
$2x^2 = 25$		
$8x^2 - 13x = 0$		

$$(a+b)^2 =$$

$$(a-b)^2 =$$

$$(a^2+b^2) =$$

$$(a+b)^3 =$$

$$(a-b)^3 =$$

$$(a^3+b^3) =$$

$$(\mathbf{a}^2 - \mathbf{b}^2) =$$

$$(a+b+c)^2 =$$

$$\mathbf{a}^3 + \mathbf{b}^3 =$$

$$(a-b)^2 =$$

26. If $\alpha \& \beta$ are roots of the quadratic equation $3x^2 + 7x + 12 = 0$, then

$$\alpha\beta =$$

$$\alpha^2 + \beta^2 =$$

$$\alpha^3 + \beta^3 =$$

$$(\alpha - \beta)^2 =$$

$$\underline{\alpha} + \underline{\beta} =$$

$$\alpha + \beta =$$

$$\alpha^2 \beta + \beta^2 \alpha =$$

			Inequalities and Equations
27.	If $b^2 - 4ac =$		Nature of roots
	zero		
-	Negative		
-	Positive (perfect square	re)	
-	Positive (not a perfect	square)	
28.	Value of $b^2 - 4ac =$		Nature of roots
	28		
	25		
	-100		
-	0		
	35		
	64		
	729		
	-35		
	-0		
29.	If roots of quadratic eq	uation are	then
29.	If roots of quadratic eq	uation are	then
29.			then
29.	Equal	gn	then
30.	Equal but opposite in si	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic
30.	Equal Equal but opposite in si Reciprocals of each oth If $\alpha \& \beta$ are roots of	gn er the quadratic	equation $x^2 + 7x + 12 = 0$, then quadratic

 $\alpha + \beta =$

 $\alpha\beta =$

$$\alpha + \beta^2 =$$

 $\alpha^3 + \beta^3 =$

$$(\alpha - \beta)^2 =$$

 $\alpha^2 + \beta^2 =$

βα

 $\alpha + \beta =$

βα

32. Intercept form of Equation of Line is -

33. Length of segment drawn between points (x_1, y_1) and (x_2, y_2) is

If m₁ is slope of one line and m₂ is slope of other lines then lines are said to be

|| to each other if _______ to each other, if ____

Oblique, if

Inequalities and	Equations
-------------------------	------------------

35	The standard format of a quadratic equation is $ax^2 + bx + c = 0$, where $a \ne 0$ dividing by 'a' on both sides
=	
=	
=	
_	

36. Find quadratic equation whose roots are 5, 8.				
_				

37.	equation	Quadratic Equation
	8, 11	
	-19, 16	
	2, 20	
	3/8, 5/8	
	2/7, 5/2	
	$(5+\sqrt{3}), (5-\sqrt{3})$ $(8+\sqrt{10}), (8-\sqrt{10})$	
	$(8 + \sqrt{10}), (8 - \sqrt{10})$	

Sum of roots	Product of roots
	Sum of roots

39. y - axis

$$\uparrow x = 20$$

Inequalities representing shaded area are:

Inequalities representing shaded area are:

Sum of 2 numbers is 52 and their difference is 2. The numbers are : 41.

a. 17, 15

b. 12, 10

c. 27, 25

d. None of these

Diagonal of a rectangle is 5 cms and one of the sides is 4 cms. Its area is _____ **42**. sq.cms a. 20 b. 10 c. 12 d. None of these

43. 4th part of a number exceeds sixth part by 4. The number is:

a. 84

b. 44

c. 48

d. None of these

			Inequ	alities and Equations
44			nes of his son's age. Ten ne present ages of father	
	a. 50,20	b. 60,20	c. 55,25	d. None of these
_				
45	The number of w	which the half is gre	ater than (1/5) th of the	number by 15.
	a. 50	b. 40	c. 80	d. None of these
_				
46		and $2.5(x + 1) = 7y$		
	a. 0.50,0.40	b. 0.40, 0.5	0 c. 1/2,1/5	d. None of these
47	A 2 digit number Find the number		of digits. If 9 is added d	ligits are reversed.
	a. 54	b. 53	с. 45	d. 55
_				
_				
				My Notes :
=				

		Inequ	alities and Equations
	and 6 boys amount to ₹	33. If 4 men earn ₹4.5	0 more than 5 boys
Determine wage a. ₹ 1.50, ₹ 3	es of each man and boy. b. ₹3, ₹1.50	c. ₹ 2.50, ₹ 2	d. ₹ 2, ₹ 2.50
a. \ 1.50, \ 3	D. (3, (1.30	0. \ 2 .0 0 , \ 2	u. \ 2, \ 2.50
Of 2 numbers (1	l/5) th of the greater numb	er is equal to (1/3) rd of the	ne smaller & their
sum is 16. The r		ci io cquai to (1/3) of th	
a. 6,10	b. 9,7	с. 12,4	d. 11,5
y is older than	x by 7 years. 15 years	hack x's age was (3/4)	th of v's age.
The present ago			or younge.
a. 36,43	b. 50,43	c. 43,50	d. 40,4
2 numbers are s	such that twice the grea	ter number exceeds twic	e the smaller
number by 18, 8	$\&~(1/3)^{rd}$ of smaller $\overset{-}{n}um$		
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8	$\&~(1/3)^{rd}$ of smaller $\overset{-}{n}um$		
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe
number by 18, 8 The numbers ar	& (1/3) rd of smaller num re	ber & (1/5) th of greater	number are togethe

Quadratic Equations	Value of (b²-4ac)	Nature of roots
$x^2 - 8x + 16 = 0$		
$3x^2 - 8x + 4 = 0$		
$5x^2 - 4x + 2 = 0$		
$2x^2 - 6x - 3 = 0$		

53. If α,β are roots of the quadratic equation $2x^2-4x-1=0$. Find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

54. $4^x - 3 \times 2^{(x+2)} + 32 = 0$; then x = ?a. 2 b. 3 c. 2 or 3 d. None of these

55. $2^{(x-2)} + 2^{(3-x)} = 3$; then x = ?a. 2 b. 3 c. 2 or 3 d. None of these

56. Find the quadratic equation whose one root is (8+7)

		In	equalities and Equations
If one root of $5x^2+13x+$	p=0 be reciprocal	of other; then valu	e of p is
a5	b. 5	c. 1/5	d1/5
If p,q are roots of x^2+2	v±1−0: then find	$(\mathbf{n}^3 \perp \mathbf{n}^3)$	
If p,q are roots of x^2+2 a. 2	b2	с. 4	d. None of these
<u>-</u>	~		ut Notic of these
	2 0		
If one root of the equat			
a. 10	b. 11	c. 9	d. 12
_			
D. Five times of a positive The number is:	whole number is	3 less than twice t	the square of the numb
a. 3	b. 4	c3	d. 2
Two squares have side			The sum of their
squares is 625 sq. cm		e squares are :	
a. 10 cms, 30 cms		e squares are : b. 12 cm	s, 25 cms
squares is 625 sq. cm		e squares are :	s, 25 cms
a. 10 cms, 30 cms		e squares are : b. 12 cm	s, 25 cms
a. 10 cms, 30 cms		e squares are : b. 12 cm	s, 25 cms
a. 10 cms, 30 cms		e squares are : b. 12 cm	s, 25 cms

62.	x + y = 50 and (1	(x) + (1/y) = (1/12); th	en x,y are	
	a. 24, 26	b. 28, 22	c. 27, 23	d. 20, 30
_				
63.	The hypotenuse of	a right angled triangle	is 20 cms. The diff	. between other 2
001	sides is 4 cms. Th			
	a. 11 cms, 15 cm	s	b. 12 c	ms, 16 cms
	c. 20 cms, 24 cm	ıs	d. None	e of these
64.		bers is 45 and mean p	roportional betweer	1 them is 18.
	The numbers are		200	
	a. 15,30	b. 32,13	с. 36,9	d. 25,20
	1			
65.		ional numbers multiplied		s 70 and their diff is
		ler one is 12; 2 numbers		
	a. $3\sqrt{2}$, $2\sqrt{3}$	b. 5\\(\bar{2}\), 3\\(\bar{5}\)	c. 2\\(\bar{2}\), 5\\(\bar{2}\)	d. None of these
_				
				ATTENDED TO THE REAL PROPERTY.
				My Notes:
CA	Vinod Reddy - vinod.ı	eddy.ca@gmail.com		102

			mequal	illes and Equations
66.	The solution of a cubic	c equation x^3 - $6x^2$ +11x	c-6 = 0 is given by	
UU.	a. (-1,1,-2)	b. (1, 2, 3)	c. (-2,2,3)	d. (0,4,-5)
	u. (-1,1,- 2)	D. (1, 2, 0)	0. (-2,2,0)	u. (0,4,-0)
	7			
67 .	The cubic equation x ³	$x^2 + 2x^2 - x - 2 = 0$ has 3 r	oots namely.	
				d None of these
	a. 1, -1, 2	b. (-1, 1, -2)	c. (-1, 2, -2)	d. None of these
_				
000	The second of the second	3. 2. 2		
68.				
	a. (-3,-9,-1)	b. (3,-9,-1)	c. (3,9,1)	d. (-3,9,1)
_				
	3 _ 2			
69 .	If $4x^3 + 8x^2 - x - 2 = 0$; the	n (2x+3) = ?		
	a. 4,-1,2	b4,2,1	c. 2,-4,-1	d. None of these
		, ,	, ,	
	7			
70 .				
, V.	x, y ≥ 0 is known as		will restrict the	e feasible region in
		quadrant.		
				My Notes :

 71. Find feasible area for (3x-y) ≤ 6 72. Find feasible area for 2x + 9y ≤ 54 73. Find feasible area for 3x - 2y ≥ 30 74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0 My Notes : 		Inequalities and Equations
 72. Find feasible area for 2x + 9y ≤ 54 73. Find feasible area for 3x - 2y ≥ 30 74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0 	71. Find feasible area for (3x-y) ≤ 6	
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$		
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$		
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$		
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$		
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$		
73. Find feasible area for $3x - 2y \ge 30$ 74. Find common feasible area for $x+2y \le 100$; $x,y \ge 0$	72. Find feasible area for $2x + 9y < 54$	
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
74. Find common feasible area for x+2y ≤ 100; x,y ≥ 0		
	73. Find feasible area for 3x - 2y ≥ 30	
	74. Find common feasible area for $x+2y < 100$: $x,y >$	0
My Notes:		
		My Notes :

8x+3y=24	$3x+2y \leq 50$	\
x=81 Linear Equations	8x-y ≥ 60	
3x-5y=63 Or	x+y < 90	Linear Inequations
$8y = \left(\frac{-81}{5}\right)$ Linear Equalities	2x-y > 65	\ Or
3x-22y=635	y > 90	Linear Inequalities
•	x < 35	
	x < 35]

77. Point of intersection of lines $5x+3y = 150$ and $3x+5y=350$ lie in				lie in quadrant,
	a. 1 st	b. 2 nd	c. 3 rd	d. 4 th

- 78. One of the point on line 2x + 5y = 100 is

 a. (20,30) b. (60,-4) c. (8,12) d. All of these
- Point of intersection of lines (3x+5y=120) and (3x+2y=10) is

 a. (-30,90) b. (-90,30) c. (90,-30) d. None of these

	inequalities and Equations			
80.	The point (0.60). ((0,90), (0,-80), (0,-66) lie on		
GU.				d Cawlt cav
	a. X-Axis	b. Y-axis	c. Origin	d. Can't say
	1			
81.	The inequalities re	presenting second quadran	it are :	
	a. x>0, y>0	b. x<0, y>0	c. Both	d. None
	, ,	, ,		
82.	The line $y = 80$ is	parallel to		
	a. X-Axis	b. Y-axis	c. Origin	d. Can't say
83.	In number 78.534	4 place value of 8 is		
63.			- 000	1 00 000
	a. 8	b. 8,000	c. 800	d. 80,000
84.	The lines $(2x+3y) =$	60 and (10x+15y) = 238 hav	ve	
04.	a. No solution	b. Unique solution	c. 2 solution	d. None of these
	a. No solution	v. Cilique solution	C. 2 Solution	u. None of these
L —				
85.		tic equation $(x^2-5x-6) = 0$ ar		
	a. (x-3) (x-2)	b. (x+6) (x-1)	c. (x-3) (x+2)	d. (x-6) (x+1)
L —				

86. Formulae to remember -

 $(a+b)^2 =$

 $(a+b)^3 =$

 $(\mathbf{a}\mathbf{-b})^2 =$

 $(a-b)^3 =$

 $(a^2-b^2) =$

 $(a^3-b^3) =$

 $(\mathbf{a}^3 + \mathbf{b}^3) =$

 $(a+b+c)^2 =$

 $(a-b+c)^2 =$

 $(a-b-c)^2 =$

 $(a^2+b^2) =$

 $(a-b)^2 =$

 $(a+b)^2 + (a-b)^2 =$

$(1/5)^{th}$ of one half of a number is 11. The number is **87.**

a. 11

b. 55

c. 22

d. 110

88. Find the quadratic equation whose roots are (-2/3) and (5/17)

a. $15x^2+19x+10=0$

b. $15x^2+19x-10=0$ c. $51x^2+19x-10=0$

d. None of these

My Notes:

			Inequalitie	es and Equations
89.	If p,q are roots of	quadratic equation $10x^2$.	x-7=0. Find the quadrat	tic equation whose
	roots are (p+q), po		o.	
	a. 10x²+6x-7=0	b. 100x ² +60x+ 7 =0	c. 100x ² +60x-7=0	d. None of these
_				
90.	If p.g are roots of	quadratic equation 3x²-19	9x-1=0. Find the quadrat	tic equation whose
30.	roots are (p/q), (q		on the quality	no equation whose
	a. $3x^2$ -19x-1=0	b. $3x^2+367x+3=0$	c. $3x^2+367x-3=0$	d. None of these
91.	Equation of Y-Axis	s is		
	a. x=0	b. y=0	c. x.y=0	d. x/y=0
_				
92.	Cubic Fouation v	whose roots are p, q, r	is	
	Cubic Equation (то осточно и с р, ч, г		
_				
				N. N. d
				My Notes :

93. **Roots of quadratic Factors of Quadratic Equation** equation

3, -2	
-8, -9	
	(2x + 3) (7x - 8)
3, -9 8 17	
	(7x + 10)(8x - 11)
-2, <u>8</u> 3 13	
1, -1	
1, <u>-8</u> 27	
	(x - 33) (8x + 31)
1, <u>-1</u> 2	
Roots of quadratic eq. $3kx^2 - 9x^2 + 19$	9x - 3k + 63 = 0 are reciprocals of each other. Find k.

- **94.** Roots of quadratic eq" $3kx^2 2x^2 + 19x 3k + 63 = 0$ are reciprocals of each other. Find k. a. 7/13 b. 65/6 c. 21 d. None of these
- 95. Roots of quadratic eqⁿ $3x^2$ 2kx+ 21x 35 = 0 are equal but opposite in sign. Find k. a. 21/2 d. None of these **b.** 35/3 c. 2/21
- **96.** Y = Total cost, x = No. of units produced. Fixed Cost = $\frac{7}{3}$ 3,80,000 & Variable cost p.u. = ₹ 10; then **b.** y = 3,80,000 + 10xa. y = 10x - 3,80,000c. y = 3,80,000x + 10d. None of these

97	If p,q are roots of are $(1/p)$, $(1/q)$ is	quadratic equation x^2+2x :	x+1=0 then quadratic ed	quation whose roots
	a. x^2 -2x-1=0	b. $x^2+2x+1=0$	c. $x^2-2x+1=0$	d. None of these
_				
_				
98	$a^2 + b^2 = 45$ and ab	= 18; then (1/a) + (1/b)	= 2	
	a. 1/3	b. 2/3	c. 1/2	d. None of these
_				
—				
00	0.7214 x 20.37 1/3	· = 9		
99.	69.80			
	a. 1.5948	b. 0.5949	c. 0.2348	d. None of these
—				
100		irst 30 multiples of 5	. 75	d Novo of these
	a. 77.50	b. 87.50	c. 7 5	d. None of these
—				
10 1		d 180, 258 runs in first hird test so that his aver		
	a. 219	b. 242	c. 252	d. 334
	u. 210	N. 272	0. 202	u. 554
_				
_				

				Inequ	alities and Equations
10)2.		ed to another number, the of first and second numbe		% of second number.
		a. 1:2	b. 1:3	с. 2:3	d. None of these
_					
_					
_					
10		Coloulate the mu	when and that it is some	40 O dimon ido disso	
10)3.	a. 14	mber such that it is equal b. 28	c. 42	d. 178
_					
=					
_					
10)4.		8x + y = 21 have unique solu		
		a. k = 6	b. k ≠ 6	c. k = <u>+</u> 6	d. None of these
_					
_ _					
10) 5.	For what value of	k, the equation $9x + 4y = 9$	9 and 7x + ky = 5 ha	as no solution.
		a. 28/9	b. 36/7	c. 23/9	d. 7
=					
=					
10	1	If $b^2 > 4aa$ than t	poets of avadratic equation	n 010	
)6.	a. imaginary	oots of quadratic equation b. Real, unequal	c. Real, Rati	onal d. None
-					
-					
_	, , , , , , , , , , , , , , , , , , ,				
_					My Notes :

neau	alities	and	Foursi	tion
moqu	untios	ullu	Lquu	

107.	For what value of k the equation $x^2+4kx+k+2=0$ has one root as zero

a. 2

b. 4

c. -2

d. -1/2

108	If equation x^2 - (p+4)x + 2p + 5 = 0 has equal roots then p	= 0
I VO.	11 GYUAUVII X - (p+4/X + 2p + 0 - 0 Has GYUAI 10015 HIGH p,	

a. +1

b. +2

c. 2

d. -2

109. If total cost of 10 units, 20 units is $\stackrel{?}{\sim}$ 15,000 and $\stackrel{?}{\sim}$ 20,000 respectively. Find total cost of 30 units?

a. ₹30,000

b. ₹ 35,000

c. ₹ **25,000**

d. None of these

110. Find the quadratic equation whose roots are 5, -5

$$a. x^2 + 10x + 25 = 0$$

b.
$$x^2 - 10x + 25 = 0$$

c.
$$x^2 - 5 = 0$$

d. $x^2 - 25 = 0$

111. If p,q are roots of quadratic equation $3x^2 + 6x + 9 = 0$ then value of $(p^2 + q^2 + 2pq)$ is :

a. 4

b. -4

c. 3

d. 9

			Inequal	ities and Equations
119	If roots of guar	dratic equation $(x^2 - n)$	(+ 8p - 15 = 0) are equa	al then n = 9
112.		b. 2 or 5		
	a. 3 or 5	0. 2 Or 5	c. 2 or 30	d. None of these
113.	Out of 3 numbe	ers, sum of first and sec	cond is 24. Sum of secon	d & third is 30,
110.		d third is 26. The smal		
	a. 18	b. 14	c. 16	d. 10
	a. 10	W. 14	0. 10	u. 10
114.	Find slope of th	he line $oldsymbol{\perp}$ to the line $2x$	x + 78y = 1234	
	a2/78	b. 2/78	с. 39	d39
	uv =/10	S. 2, 10		
115.	The point (-2, -	-1/3) lie in	quadrant.	
115.		-1/3) lie in		
	The point (-2, -	-1/3) lie in b. 2 nd	quadrant. c. 3 rd	d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th
				d. 4 th

CA Vinod Reddy - vinod.reddy.ca@gmail.com

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

ACTION

is the real measure of

In the name of SMART-WORK
Don't invent intelligent ways
to escape HARD-WORK

- CA VINOD REDDY -

Chapter 5

Permutations & Combinations

Combinations

CM VINOD REDDY

1.

Permutation =

Combination =

2.

01 -	
0! =	404
	$a.\frac{19!}{19!} =$
1! =	"18!

2! =

4! =

$$5! = \frac{x!}{(x-1)!} =$$

6! =

$$8! = \frac{d \cdot \frac{(x+3)!}{(x+2)!}}{}$$

9! =

10! =
$$e \cdot \frac{(x-3)!}{(x-1)!}$$
 =

11! =

12! =

3. In how many ways 3 students can stand in a line for a photograph?

4.

In how many ways 4 students can stand in a line for a photograph?

5.

There are 5 students A, B, C, D, E in how many ways 2 of them can be

Selected

Arranged

6.

 $^{n}P_{r} = \frac{n!}{(n-r)!}$ where n = positive integer & n ≥ r ≥ 0

"P_r = n(n-1) (n-2) r tems

 ${}^{n}\mathbf{P}_{0} = {}^{18}\mathbf{P}_{3} =$

 $^{100}P_{1} = ^{100}P_{2} =$

 ${}^{0}\mathbf{P}_{2} = {}^{50}\mathbf{P}_{4} =$

 $^{10}P_{3} = ^{25}P_{1} =$

 ${}^{\mathsf{n}}\mathbf{P}_{4} = {}^{20}\mathbf{P}_{5} =$

 $^{10}P_{5} = ^{24}P_{8} = ^{2$

"P_n =

 $7. \frac{{}^{18}P_3 x^{16}P_3}{{}^{19}P_3 y^{17}P} =$

8.

 $\frac{9!}{6!2!}$ x^{5} P₂ =

9.	AND ————————————————————————————————————
	OR Add
10.	
	n! can also be written as
11.	How many different words can be formed by using letters of word:
	SQUARE:
	HEXAGON:
	MISSISSIPPI:
	BOSTON:
	MANAGEMENT:
	PERMUTATION:
$\lfloor -$	BANANA:
	My Notes:

Permutations & Combinations

if all vowels should be kept to	n be formed by using letters of word by using letters of word by using letters of word by the letters of word by t
ii uii vowoio siioulu se kept to	5 00001.
BANANA:	
DEDOEDTION	
PERCEPTION:	
JAYARAMAN:	
STATISTICS:	
COMPLITED .	
COMPUTER:	
CALCULATOR:	
TATED:	
IAILU .	
In how many ways 'n' stude	ents can stand in a line for a photograph if r of them
Want to be	Want to be
always-together?	never-together?

1	4.

In how many ways 3 letter words can be formed by using letters of the word

SQUARE

HEXAGON

COMPUTER

In how many ways 12 students can stand in a line for a photograph if

2 of the want to be always together?

2 of them want to be never together?

16. If 6 $x \, {}^{n}P_{3} = 7 \, x^{(n-1)}P_{3}$. Find n.

18. $^{1}P_{3}: ^{1}P_{2} = 3:1$; then n = ?

1	9.	⁵ P _r = 60; then r = ?		
2	0.		ters of word 'TRIANGLE' can be arranged if word 'ANGLE'	
		is always present.		
2	21.	In how ma	any ways 5 students can form a	
		Line	Circle	
2	22.	In how mar	ny different ways 12 students can form a	
		Line	Circle	
2	23.	In how many wave	of 7 students can be formed out of 12 students	
		III flow many ways	of 7 students can be formed out of 12 students	
		Line		
		In how many wave	of r students can be formed out of n students	
		III flow many ways	of P students can be formed out of it students	
		Line	Circle	

		1 of mutations & combinations
24.	The no. of ways in which 'n' diamonds can form a	necklace.
	The number of ways of arranging 'n' persons along a roun same 2 neighbours	d table so that no person has the
L —		
26.	No. of different necklaces can be formed with 'n' bea	ds of different colours = ?
27 .	Permutation of 'n' distinct things taken 'r' at a time who	en a particular object is
	Always there?	Never there?
—		
28.	How many 4 digit numbers can be formed by using 0,1,2,	3,4,5 if repetition of digits is
	Allowed	ot allowed
		My Notes:

	Permutations & Combinations
29. How many even numbers of 5 digits can be formed by ι	using 2 3 4 5 6 7 8 if renetition
of digits is	2501 2,0,4,0,0,1,0 11 Topottion
Not allowed	Allowed
30. How many 5 digit numbers greater than 23,000 can be	e formed by using 1,2,3,5,8,9
31. How many 4 digit numbers greater than 4700 can be if repetition of digits is	formed by using 2,3,4,5,8
in repetition of digits is	
Allowed	Not allowed
32. $^{n}\mathbf{C}_{r} =$	
	My Notes :
	My Notes :

33. Formulae on combinations

${}^{n}\mathbf{C}_{r} =$	$_{\rm n}$ C ³ =
-	

$$^{\mathrm{n}}\mathrm{C_{r}} =$$
 $^{\mathrm{n}}\mathrm{C_{4}} =$

$$^{\mathsf{n}}\mathbf{C}_{\mathsf{o}} =$$
 $^{\mathsf{n}}\mathbf{C}_{\mathsf{n}} =$

$${}^{\mathrm{n}}\mathbf{C}_{1} =$$
 ${}^{\mathrm{n}}\mathbf{C}_{\mathbf{n}\cdot\mathbf{r}} =$

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} =$$

$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} =$$

34.
$$^{18}C_r = ^{18}C_{r+2}$$
 then $r = ?$

35. ${}^{45}C_x = {}^{45}C_y$ then

36. $^{15}C_{11} =$

		Permutations & Combinations
37.	In how many ways 52 cards can be equ	nally divided in 4 groups?
38.	In how many different ways 10 mangoes ca will get 2,3,5 mangoes	n be divided among 3 people such that they
20		
39.	"P _r =	"C _r =
	"C _r	"P _r
	⁵ P _r =	5 p
_		∴
	⁵ C _r =	
$\lfloor -$		
40.		
10.	P (8, 3) =	
	C (12, 4) =	
41.	$\frac{^{18}P_3 x^{^{17}}C_2}{} = {}$	
	$^{19}P_2 x^{18}C_2$	
		My Notes :

42. $\frac{^{20}P_3 x^{^{21}}P_4 x^{^{22}}C_4}{} = $	
$^{23}C_3 x^{22}P_3 x^{21}P_2$	
43. In a party of x people if everyone hand shakes with other. How many handshakes will take place	
44.	
How many diagonal can be drawn in a polygon having :	
7 sides	
8 sides	
10 sides	
In a droup of 100 poople if everyone conde a dreating to other. How many cards	viII
45. In a group of 100 people, if everyone sends a greeting to other, How many cards be used in total?	7111
be used in total.	
46. In a plane of 20 non-collinear points	
In a plane of 20 non-collinear points	
In a plane of 20 non-collinear points	
How many different straight How many different How many different	
In a plane of 20 non-collinear points	
How many different straight How many different How many different	
How many different straight How many different How many different	
How many different straight How many different How many different	
How many different straight How many different How many different	
How many different straight How many different How many different	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

Permutations & Combinations

			Permutations & Combinations
47			
47	In a plane there are 30	points out of which 8 are	collinear
	How many different straig	ght How	many different
	lines can be drawn?		es can be obtained?
40	There are 4 parallel lines interse	cting with another set of	5 parallal lines How many
48.	parallelograms can be drawn?	cung with another set of	5 paraner mies. How many
	parallelograilis call be urawii:		
_			
_			
_			
_			
L —			
49	8 Red; 3 Pink; 6 White Balls -		
		lections of 3 balls are pos	eible with
		pos	Sibile Witti
	V	V	. ↓
	All Red balls 2 Red balls	Atleast 2 white	balls No pink balls
_			
_			
_			
<u> </u>			
$\overline{}$			
50			
	4 CA's; 3 Engineers; 8 Docto	ors -	
	How many ways a comm	itee of 4 members cane b	pe formed with
	Atlant 1 dantar	Atlanet	1 narrow of
_	Atleast 1 doctor		1 person of
_		eacii	profession
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
L —			

				P	ermutations	& Combinations
5	1.				•44	
-		Inere are 8 m be formed with	ales & 11 females. In l	now many ways a com	mittee of 5 i	members can
-		V V	<u>•</u>	*		
-		No restriction	Atleast 4	Atmost 1 Fema	ıle	3 Females
-			Females			
-						
-						
-						
-						
1						
52	2.	${}^{\mathrm{n}}\mathbf{P}_{\mathrm{r}} = {}^{\mathrm{n}\cdot\mathrm{1}}\mathbf{P}_{\mathrm{r}} + \mathbf{r} .$	ⁿ⁻¹ P	a.	. True	b. False
			141			
-						
-						
-						
[-						
5 3	3.	A supreme court be taken?	ench consist of 7 jud	ges. In how many wa	lys majority	decision can be
		tunom				
-						
:						
_						
5	4	A question naner l	ıas 8 questions. In ho	w many wave atleast	one questi	on can be solved?
	•	A question paper i	ias o questions. In he	ow many ways ancast	one questie	on can be solved.
-						
-						
_						
-						

				Permutations	& Combinations
55 .	A question pa	per has 8 questi	ons (each one has	alternatives). In how m	anv wavs one or
00.	more questio	ns can be solved	•		
_					
_					
	No. of wave i	n which O thinds	can be divided in 2	groups containing 2,3	2 4 things
56 .	respectively.	ii wiiion 5 uniigs	can be uivided in d	groups containing 2,c	o,4 umiga
	Тобросителу				
_					
-					
-					
57	Number of o	dd numboro dro	aton than 500 car	ha farmed by using	2 1 0 8
31	Number of o	aa numbers gre	ater man 500 car	n be formed by using	3, 1, 2, 8
_					
_					
_					
_					
	7				
58	"P.				
	<u> </u>				
	""P _{r-1}				
_					
-					
-					
<u></u>					
59	• A man has	12 friends in how	many ways he can	invite for dir	ner
	\.	4	.1.		J.
	2 of them		5 of them	Atleast one	Atmost 10
_					
-					
-					
_					
-					
-					
I —					

In a paper there are 2 sections A, B containing 5, 8 questions respectively. In how many ways total 5 questions can be solved with atmost 3 questions of any one of the sections.	on.
	_
61. $\frac{{}^{x}P_{2}.{}^{x}P_{3}}{{}^{x}P_{3}.{}^{x}P_{3}} = $	_
^x P ₄ . ^x P ₁	_
	_
10p v2p	
$\frac{62.}{{}^{11}P_4} = \frac{{}^{10}P_3 x^2 P_1}{{}^{11}P_4} = \frac{{}^{10}P_3 x^2 P_1}{{}^{11}P_4}$	
4	_
	_
63. ¹⁸ P ₂ x ²⁰ P ₃	
$\frac{{}^{21}P_{3}X^{19}P_{3}}{{}^{21}P_{3}X^{19}P_{3}} = \frac{1}{2}$	_
64. In how many ways 10 students can be arranged in a line if 4 of them want to be always together?	ys
65. There are 9 students, in how many ways they can stand in a line if 2 of them want to b	e
never together?	
	_
	_
	_

	Permutations & Combinations
66.	In how many ways letters of word 'DAUGHTER' can be arranged if all vowels should
00.	always be together?
_	
_	
_	
67.	In how many ways letters of word 'CALCULATOR' can be arranged if all consonants
	should always be together?
_	
_	
_	
\ —	
68.	How many 3 digit numbers can be formed by using 1,2,3,4,5 if repetition of digits is
	Allowed Not allowed
_	
—	
_	
_	
	Please Note
	If question is silent about whether repetition of digits is allowed or not then
	REPETITION OF DIGITS IS NOT ALLOWED
	The content of bland to Not Account
69.	How many 4 digit numbers greater than 5000 can be formed by using 3,5,8,2,1 if
	repetition of digits is
_	
	Not allowed Allowed
_	
—	
70 .	I How many numbers greater than 8000 can be formed by using 1.2.7.8.9 if redetition
	of digits is
	Not allowed Allowed
l —	
_	
-	

74		
▎▋▋∙┞	How many 5 digit numbers divisi	ble by 5 can be formed by using 0,2,3,4,5,8,9,
		are as a common by doing diago, 1,0,0,0,0
	if repetition of digits is	
	Not allowed	Allowed
	Not allowed	Allowed
72.	How many 5 digit numbers greate	r than 34,000 can be formed by using 3,1,2,7,8,0
L		
	n how many ways 5 sisters & 6 br sisters or no 2 brothers should sta	others can stand in a line for a photograph if no 2 and together?
74.	How many 2 digit numbers can l	be formed with atleast one digit as 7?
		My Notes:

75 .	In how many	v wave 11	nlavers out	t of 16 nlav	ere can he s	selected if .
	III HUW IIIAH	y ways i i	players ou	i ui Tu piay	ers call be s	selecteu II -

There is No restriction?	2 Particular players must be included?	3 Particular players must be excluded?	2 Particular players must be excluded & 4 particular players must be included?

76.	$^{20}P_2 x^{21}C_3$	a 1805	h 1826	. 1528	d Name of the co
	$\frac{18}{^{18}C_5} \times ^{21}P_2$	12852	18562	17882	d. None of these

777. There are 8 men and 7 women, in how many ways a committee of 4 members can be formed:

Without any restriction	With 2 Men	With Atleast 3 Men	With Atmost 1 Woman
restriction			

78.	78. 8 Red, 3 White, 4 Pink Balls - How many different selections of 4 balls are possible with atleast one ball of each colour?				
		_			
		_			
		_			

79.	Thousans (m) no	into in a plane out of w	high (L) and collinger	
	<u> </u>	ints in a plane out of w		
	How many difference can be drawn by	ent straight lines		ny different triangles tained by joining them?
	can be drawn by	can be ob	tained by joining them:	
80.	How many diago	nals can be drawn in	a Heptagon?	A
	(Heptagon = A po	olygon having 7 sides		
	No. of diagonals that	t can be drawn in a hept	ลยุดท	\mathbf{G}
	vo. or unagonale ma			
				F
				F D
				E D
81.				
01.	A man has 13 fri	ends. In how many wa	ays he can invite	for dinner
01.	A man has 13 fri	ends. In how many wa	ays he can invite	for dinner
	Atleast one of	ends. In how many wa	ays he can invite 4 or 7 of them	Atmost 11 of them
	Atleast one of			
	Atleast one of			
	Atleast one of			
	Atleast one of			
	Atleast one of			
	Atleast one of			
	Atleast one of them	4 of them	4 or 7 of them	Atmost 11 of them
82.	Atleast one of them There are 4 paper		4 or 7 of them many ways student ca	Atmost 11 of them
82.	Atleast one of them There are 4 papel passing in all pap	4 of them 4 of them rs in an exam. in how pers is compulsory to	4 or 7 of them many ways student capass the exam?	Atmost 11 of them an pass the exam if
82.	Atleast one of them There are 4 paper	4 of them rs in an exam. in how	4 or 7 of them many ways student ca	Atmost 11 of them
82.	Atleast one of them There are 4 papel passing in all pap	4 of them 4 of them rs in an exam. in how pers is compulsory to	4 or 7 of them many ways student capass the exam?	Atmost 11 of them an pass the exam if
82.	Atleast one of them There are 4 papel passing in all pap	4 of them 4 of them rs in an exam. in how pers is compulsory to	4 or 7 of them many ways student capass the exam?	Atmost 11 of them an pass the exam if
82.	Atleast one of them There are 4 papel passing in all pap	4 of them 4 of them rs in an exam. in how pers is compulsory to	4 or 7 of them many ways student capass the exam?	Atmost 11 of them an pass the exam if

				Permutations & Combinations
83.			how many ways a student	can pass the exam if
	student pass	ses the exam if he pas	ses in atleast one paper?	
	a. 32	b. 31	с. 1	d. None of these
84.		multiple choice ques of answer are possibl	stions with 4 options eac le?	h. How many different
	7			
85.			ons. First 4 questions have . How many different sequ	e 4 options each and last ences of answer are possible?
=				
86.				mittee of 5 members can be
	formed so th	nat males are in majo	rity?	
=				
87	No. of a		fferent things taken 'r' at particular thing	a time in which a
	AI	way there		Never there

			Permu	tations & Combinations
88.				
00.	No. of selec	ctions of 'n' different things t	taken 'r' at a time in wh	ich a particular thing
		V		—
	Is	alway there		s never there
L —				
$\overline{}$				
89.	Find sum of a	all 4 digit numbers formed b	v using 1.3.5.7	
	a. 1,06,656	b. 1,78,252	c. 1,78,282	d. None
\setminus —				
90.	"P _r can also b	e written as :		
	a ni	h. n c. n	d None	
	a. <u>_n!</u> 		n-r) d. None	
				
\setminus —				
04	Thoro are 6 P	ooks on Eco, 3 on Maths, 2 o	n etate. In how many wa	ve all booke can bo
91.		ooks on Eco, 3 on Maths, 2 o helf if books on same subject		
	piaceu on a si	ien ii books on same subject	are to be always together	51 .
	a. 1,06,656	b. 1,78,252	c. 1,78,282	d. 51,840
_				
92 .	The number	of ways in which 7 sinle	can form a nind is	
74.	The number	of ways in which 7 girls	can form a ring is:	
	a. 700	b. 710	с. 720	d. 360
				My Notes:
				My Notes:

a. 70	b. 27	с. 72	d. None of these
arrangement	boys the no. of arrangemes s of 2 boys. The no. of boy	s in the group is	
a. 10	b. 8	с. 6	d. None of these
$\sum_{r=1}^{r=10} \mathbf{r} \cdot \mathbf{P}_r =$	9 a. 11P ₁₁ b. 11P ₁	- 1 c. ¹¹ P ₁₁ +	1 d. None of the
	trains plying between Latu Latur to Pune and return b		of ways in which a ma
a. 99	b. 90	с. 80	d. 100
	S	()	
The number of that no '-' sign	f ways in which six '+' and fo is occur together is	our 🚭 signs can be ar	ranged in a line such
a. 7!/3!	b. (6! x 7!) / 3!	с. 35	d. None of these

98.			Pern	nutations & Combinations
	The number of v	vays in which letters of he odd places is :	word 'MOBILE' be arrang	ged so that consonants
	a. 36	b. 63	с. 30	d. None of these
	E manageme and o	itting along a nound to	hla in auch a way that to	slight manager is abused
9 .			ible in such a way that ta son. The no. of such arr	
	a. 6	b. 8	с. 24	d. None of these
00			ranged in a line if 7 of the	em are Black, 6 are
	Red and 4 are	White?		
01		different words that can nants and 3 vowels in ea	n be formed with 12 conso ach word are	onants and 5 vowels by
				onants and 5 vowels by d. None of these
	taking 4 consor	nants and 3 vowels in ea	ach word are	
01	taking 4 consor	nants and 3 vowels in ea	ach word are	
	taking 4 consor	nants and 3 vowels in ea	ach word are	
	taking 4 consor	nants and 3 vowels in ea	ach word are	d. None of these
	taking 4 consor	nants and 3 vowels in ea	ach word are	

				rmutations & Combinations
102		ifferent words can be forme TON' if all vowels should be		word
103	How many 1 0,4,4,5,5,5	numbers greater than a mil ,3?	llion can be formed wi	th the digits
	a. 420	b. 360	с. 7!	d. None of these
104	4 $x ^{"}P_{3} = 5$	$x^{(n-1)}P_3$; then value of 'n' is	;	
_	a. 12	b. 13	с. 14	d. 15
105	_ •	of ways in which 8 examing never come together are :	ation papers can be a	ranged so that best and
		b. 8! - 7!	c. 8!	d. None of these
=				
				My Notes :

			Permutations & Combinations			
106. How many	6 digit numbers can be fo	rmed out of 4,5,6,7,8,	9 if no digit being repeated?			
a. 6!-5!	b. 6!	c. 6!+5!	d. None of these			
Thorn one	50 stations on a nailway liv	ao How many different	Lindo of tickets to be			
There are 50 stations on a railway line, How many different kinds of tickets to be printed to enable a passenger to travel from one station to another station?						
a. 2500	b. 2450	с. 2400	d. None of these			
108. In "P _r , "C _r ;						
a. positive ir	nteger b. an int	eger c. zer	o d. None of these			
109. If all permutations of word 'CHALK' are written in a dictionary sequence, the rank of word 'CHALK' is						
a. 30	b. 31	с. 32	d. None of these			
110. How many		and latter A three	letter Daviss Jetter O erre			
a. 60	b. 120	c. 90	letter B twice. letter C once.			
	V. 140	0. 00	u. v			

111.	111. If different permutations of the word 'EXAMINATION' are listed in a dictionary, How many items are there in the list before the first word starting with E?						
a	. 9,06,200	b. 9,07,200	c. 9,08,200	d. 9,05,200			
112. A letter lock consist of 3 rings marked with 5 different letters. Number of maximum							
112.	unsuccessful attempts to open the lock is :						
	a. 124	b. 125	с. 120	d. 75			
113.	The number of 5 letter words that can be formed using letters of word 'DELHI' which begin and end with vowel, when repetitions are allowed is						
	a. 125	b. 625	с. 500	d. 1350			
114.	114. The number of ways in which 20 persons be seated along a round table if there are 7 seats is:						
	a. ²⁰ P ₇	b. ²⁰ P ₇ / 7!	C. ²⁰ C ₇	d. ²⁰ P ₇ / 7			
115.	115. $^{"}P_{r} = 120 x ^{"}C_{r}$, then $r = ?$						
	a. 5	b. 120	с. 24	d. 4			
110	In how many w	ave lattone of the word (DA	ULOON's be appeared of se	that 2 L'e do not come			
116. In how many ways letters of the word 'BALLOON' be arranged so that 2 L's do not come together is:							
	a. 900	b. 1200	c. 800	d. 600			

1	1	7 .	15C ₁₁	/	15C	þ
		_	\mathbf{U}_{11}	/	U ₁₀	

a. 15/11

b. 15/10

c. 5/10

d. None of these

118. How many even numbers greater than 300 can be formed with digits 1,2,3,4,5. No repetition being allowed

a. 112

b. 111

c. 113

d. 121

119. $^{43}C_{(r-6)} = ^{43}C_{(3r+1)}$, then r = ?

a. 12

b. 8

c. 6

d. 10

120. A committee of 3 ladies and 4 gents to be formed out of 8 ladies and 7 gents. Mrs. X refuses to serve in a committee if Mr. Y is there. Number of such committees are :

a. 1530

b. 1500

c. 1520

d. 1540

	dictionary sequ	one .		
	a. 20	b. 18	с. 19	d. None of these
	1			
100	How many 3 dis	git odd numbers can be	formed by using 1.3.	5. if repetition of digits

a. 3³

b. 3!

c. (3x3x4)

d. None of these

123.
$$^{56}P_{(r+6)}$$
: $^{54}P_{(r+3)} = 30,800 : 1$; then $r = ?$

a. 42

b. 41

c. 45

d. None of these

My Notes :

			P	ermutations & Combinations
124.	There are 6 qu	uestions in section A and ted with atmost 6 question	7 in section B. In how	v many ways 8 questions
	a. 360	b. 1281	c. 6	d. 42
125	How many wo	ords can be formed by us	sing all letters of wor	d 'REDDY'
	a. 120	b. 60	с. 240	d. None of these
				My Notes :

CA Vinod Reddy Maths Regular Notes	CA

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

YOU CANNOT BUILD A REPUTATION ON WHAT YOU ARE GOING TO DO

			Sets, Functions, Relations
1			
Set is	a collection of	and	objects
Roster Form / I	Braces Form	Alge	bric Form / Rule Form /
		Proper	ty Form / Set Builder Form
─			————
A = {1,2,3,4,5,	6,7,8,9,10}	A is a s	set of first 10 natural numbers
		$\Lambda = \int \mathbf{v}$	OR : where x ∈ N and x ≤ 10}
			. Whole X C IV this X 3 10
2. In mathemat	tics everything in this w	orld whether living	or non-living, is called as an
3. $A = \{5.8.9.1$	0,13} Explain : ∈		
4. No et al.		· · · · · · · · · · · · · · · · · · ·	
No. of distil	nct elements of a set	is known as	
5.	Types of sets	on the basis of ele	ements
J.	- / peo or dete	JII JIIO NUOIG VI UIC	
	<u> </u>		V
CA Vinod Reddy - v	inod.reddy.ca@gmail.com	1	1

	octs, Tunotions, Helations					
6. Conorally name of the cot						
Generally hame of the set						
Order of object is						
Repetition is of no use						
A = {1,2,3,4,5} B = {5,4,4,5,1,2,2,3,4,5,4}						
sets A and B are same sets						
7. Equivalent sets :						
8. Subset:						
9. Superset:						
3. Superset:						
10 -						
10. Proper Subset:						

	Sets, Functions, Relations
11. Improper Subset:	
12. Find all possible subsets of $A = \{5,7,8\}$	
13. For set B = $\{a,b,c\}$	
All possible subsets :	
•	
All possible proper subsets :	
All possible improper subsets :	
All possible empty subsets :	
All massible was a sweet, subsets .	
All possible non-empty subsets :	
14. If cardinal value of a set = n; then	
No. of subsets :	
No. of proper subsets :	
No. of improper subsets :	
No. of empty subsets :	
No. of non-empty subsets :	
No. of non-empty proper subsets :	

	Soto, Functions, Itelations
15	Where O and are acid to be assistant acts?
13.	When 2 sets are said to be equivalent sets?
_	
_	
_	
_	
L —	
4.0	
10.	When 2 or more sets are said to be equal sets?
_	
_	
	·· All equal sets are equivalent but all equivalent sets are not necessarily equal sets.
17 .	Universal Set:
=	
18	Complementary Set •
18.	Complementary Set:
18.	Complementary Set:
18.	Complementary Set :
18.	Complementary Set :
18.	Complementary Set :
18.	Complementary Set:
18.	Complementary Set :
18.	Complementary Set :
18.	Complementary Set :
18.	Complementary Set:
18.	Complementary Set :
18.	Complementary Set :
18.	
18.	Complementary Set : My Notes :
18.	
18.	
18.	
18.	
18.	
18.	
18.	
18.	
18.	

If $A = \{1,2,3,4,5\}$ $B = \{3,4,6,8,9,10\}$

Find (A union B) =

Find (A intersection B) =

20.

If $A = \{1,2,3,4\}$ $B = \{2,4,8,10\}$ $U = \{1,2,3,4,5,6,7,8,9,10\}$

Find A' =

 $\mathbf{B}' =$

(A U B) =

(A ∩B) =

21.

Find Set A

22.

Find Set A'

23.

Find Set B

24. Find Set A'

25. Find Set B'

26. Find Set (A ∪ B)

27. Find Set (A∩B)

28. Find (A-B) = $(A \cap B')$

29. Find (B-A) = $(B \cap A')$

		3618	, runctions, relations
30.			
00.	Find (A' \cap B')		
	A		
31.			
01.	Find Set $(A' \cup B')$		
	A		
32.			
	Find Set (A \triangle B)		
	A		
33.			
00.	Find (A \cup B \cup C)		
	A		
\rightarrow			
34.	Find (A D')		
	Find (A ∪ B')		
	A		
	B		
35.	Find (B \cup A')		
	A		
			404
CA V	inod Reddy - vinod.reddy.c	a@gmail.com	160

A B	Find A = {	}
3		
$(1,10(\frac{1}{9}),2,4,5)$	Find B = {	}
	_	_
6,7,8	Find A' = {	}

Find **B**' = {

Find $A \cup B =$	Find $A \cup B' =$
Find A ∩B =	Find $A' \cap B' =$
Find A - B =	Find $A' \cup B' =$
Find B - A =	Find $\mathbf{B} \cup \mathbf{A}' =$

37.

Formulae of sets at one place

n(A') =	$n(A' \cap B') =$
n(B ') =	$\mathbf{n}(\mathbf{A} \triangle \mathbf{B}) =$
n(AUB) =	n (A '∪ B ') =
$n(A \cap B) =$	$n(A \cup B') =$
n(A - B) =	$n(B \cup A') =$
n(B - A) =	

38.

 $n(A \cup B \cup C) =$

 $n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C) =$

If $A = \{1,2,3\}$ $B = \{8,9\}$

Find $(A \times B) =$

Find $(B \times A) =$

40.

A is a subset of B : Notation :

A is a proper subset of B: Notation:

41.

Demorgan's Rules of Sets

42.

 $A \cup A =$

 $A \cup (A \cup B) =$

 $A \cap A =$

 $(A \cup B) \cup (A \cap B) =$

 $A \cup \phi =$

 $(AUB) U (A' \cap B')=$

 $A \cap \phi =$

 $A \cup (A \triangle B)$

 $A \cup A' =$

 $A \cup (A \cap B') =$

 $A \cap A' =$

 $(A \cap B') \cup (A \cap B) =$

AUU=

 $(A \triangle B) \cup (A \cap B) =$

U′ =

Any subject of the product set X.Y is said to define a relation from X to Y, and any relation from X to Y in which no 2 different ordered pairs have the same first element is called as function.

In $f: A \longrightarrow B$

the element f(x) of B is called as image of x while x is called as pre-image of f(x).

- 44. There are 4 types of relations
 - 1.
 - 2.
 - 3.
 - 4.
- 45. If $f(x) = 3x^2 + 2x + 1$

Find f(3), f(8), f(-9), f(10)

46. If f(x) = 8x+11; g(x) = 2x+9

Find f(3) =

- g(8) =
- g(p) =
- **g**(y) =
- f(-13) =
- f(20) =
- g(2k) =
- 47. If f(x) = 10x+15; g(x) = 7x 13 Find f.g(x), g.f(x)

	Sets, Functions, Relations
48. If $f(x) = 2x+11$ Find $f^{-1}(y)$, $f^{-1}(x)$, $f^{-1}(p)$	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
49. If $f(x) = \frac{2x+13}{8x-2}$; Find $f^{-1}(y)$, $f^{-1}(20)$, $f^{-1}(p)$, $f^{-1}(p)$	·+1)
8x-2 mar (y), r (20), r (p), r (p)	····
50 1500 1 1500 1500 1500 1500 1500	
50. If $f(x) = \frac{1}{1-x}$; Find $f(10)$, $f(2)$, $f(13)$, $f(p)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	My Notes:
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	My Notes:
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	My Notes:
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	My Notes:
51. If $g(x) = \frac{x-1}{x}$; Find $g(-1/2)$	My Notes:

CA Vinod Reddy - vinod.reddy.ca@gmail.com

	Sets, Functions, Relations
52. If $f(2x+3) = 8x + 7$. Find $f(x)$, $f(30)$	
53. Domain and Range of {(1,5),(2,8),(3,9),(4,18)}	
54. $f(x-1) = x^2$. Find $f(x)$, $f(x+1)$	
55. When a relation is said to be	
Symmetric	
Reflexive	
Transitive	
56. Relation of Equivalence	
57. 'Is perpendicular to' is a	

	Sets, Functions, Relations
58. 'Is the reciprocal of' is a	
EQ. In a class of 100 students 60 like meths 50 like physics 6	Of like both embinets. Find
In a class of 100 students 60 like maths 50 like physics 2 how many students :	25 like both subjects. Find
a. Like maths or physics	
b. Like maths but not physics	
c. Like physics but not maths	
d. Neither like maths nor like physics	
e. Not like atleast one of 2 subjects	
f. Like one and only one subject	
1. Like the and they the subject	
60. $A = \{5,8,9,10\}; B = \{8,5,9,10\}; C = \{a,b,c,d\}$	
A, B are Equal Sets; Therefore Equivalent Also.	
A, C are Equivalent Sets; but not Equal sets.	
B, C are	
61. Set of cubes of a natural numbers is set	ndloton d Null
61. Set of cubes of a natural numbers is set	ngleton d. Null
61. Set of cubes of a natural numbers is set	ngleton d. Null
61. Set of cubes of a natural numbers is set a. Finite b. Infinite c. Sir	ngleton d. Null
61. Set of cubes of a natural numbers is set	ngleton d. Null d. None of these
61. Set of cubes of a natural numbers is set a. Finite b. Infinite c. Sin 62. {x : [(1) - (-1)^x]} for all integer values of x then x =	
61. Set of cubes of a natural numbers is set a. Finite b. Infinite c. Sin 62. {x : [(1) - (-1)^x]} for all integer values of x then x =	

	1			
63.	E is a set of all ever	n natural numbers and 0	is a set of all odd nat	ural numbers then
	(E U 0) =			
	(E∩0) =			
64.	If R is a set of positi	ive rational numbers and	E is a set of all real nu	mbers then
	a. R⊆ E	b. R⊂E	c. E <u>⊂</u> R	d. E⊂R
$\lfloor -$				
65.	If N is a set of all na	tural numbers and I is a	set of positive integers	then
	a. N = I	b. N⊂I		d. I⊆N
66.	If I is a set of all iso	sceles triangles and E is	a set of all equilateral	triangles, then
	a. I⊂E	b. E⊂I	c. E = I	d. None of these
67.	{[n(n+1)/2] where	n is a positive integer} is	a	
67.	{[n(n+1)/2] where a. Finite set	n is a positive integer} is b. Infinite set	c. An empty set	d. Singleton
67.				d. Singleton
67. 68.	a. Finite set	b. Infinite set		d. Singleton
	a. Finite set			d. Singleton d. None
	a. Finite set If A = {1,2,3,4,5} B	b. Infinite set $= \{x^2 : x \in A\} \text{ then -}$	c. An empty set	
	a. Finite set If A = {1,2,3,4,5} B	b. Infinite set $= \{x^2 : x \in A\} \text{ then -}$	c. An empty set	
	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A Then set f(A) = {f(x)}	b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B)	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A Then set f(A) = {f(x)}	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A Then set f(A) = {f(x)}	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A Then set f(A) = {f(x)}	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None
68.	a. Finite set If A = {1,2,3,4,5} B a. n(A) > n(B) Let f :A → B then A Then set f(A) = {f(x)}	 b. Infinite set = {x² : x ∈ A} then - b. n(A) < n(B) is called as domain of f, v 	c. An empty set c. n(A) = n(B)	d. None

Let A = $\{1,2,3,4,5\}$ B = $\{1,4,9,16,25,36,49\}$, we consider the rule $f(x) = x^2$

then f(1) = 1

Clearly each element of A has unique image in B so f(2) = 4

 $f: A \rightarrow B: f(x) = x^2$ is a function from A to B f(3) = 9

where domain = $\{1,2,3,4,5\}$ f(4) = 16

Range = {1,4,9,16,25} f(5) = 25

As in set A pre-image of 36,49 is not there it is 'INTO' function.

If each element of 'B' has atleast one pre-image in set A then function is said to be 'ONTO' function.

71.

A one-one onto function is said to be bijective. A bijective function is also known as one to one correspondence.

Let $f: A \rightarrow B$, defined in such a way that all elements in A have the same image in B, then f is said to be constant function

Two functions f and g are said to be equal written as f = g if they have the same domain and they satisfy the condition f(x) = g(x) for all values of x.

72.

Inverse function is possible only when function is one to one onto

73.

Inverse $h^{-1}(x)$ when $h(x) = \log_{10} x$ is :

a. log₁₀x

b. 10^x

c. $\log_{10}(1/x)$

d. None of these

74. For the function $h(x) = 10^{(1+x)}$ the domain of real values of x where $0 \le x \le 9$, the range is -

a. $10 < h(x) < 10^{10}$

b. $0 < h(x) < 10^{10}$

c. 0 < h(x) < 10

d. None

75.	Lot S = fa h o	I he any eet then the ne	lation D is a subset of t	the product set		
	Let $S = \{a,b,c,\}$ be any set then the relation R is a subset of the product set					
_	$(S \times S)$					
	1. If R contains all o	<mark>ordered_pairs (a,a) in (S</mark> x	S) then R is said to be			
<u></u>	2. If $(a,b) \in R$, then $(b,a) \in R$. For every $(a,b) \in S$ then R is said to be					
l		4 > 5 D 44 (> 5 D	504	D: :14.1		
	3. If $(a,b) \subseteq R$, and	$(b,c) \in R$; then $(a,c) \in R$.	For every $a,b,c \in S$ the	en R is said to be		
A	relation which is ref	flexive symmetric as well a	as transitive is called as	Equivalence relation OR		
				Relation of Equivalence		
				The interior of Equivalence		
76.		D students 25 like phys		35 students dislike		
	atleast one subj	ect then find no. of stu	dents			
_	1. Who like physics	hut not maths ·				
	Tr Wild like physics	but not mutils.				
_	2. Who like maths k	aut not nhyeice .				
	2. WIIO like matiis k	out not physics:				
_	2 Who like both ou	hio etc.				
	3. Who like both su	njects:				
	4 84/8 808 048					
	4. Who like neither	maths nor physics :				
	5. Who like one and	l only one subject :				
_						
77.	"Is smaller than"	' over the set of eggs i	n a box is :			
77.	"Is smaller than"	' over the set of eggs i	n a box is :			
77.				d. Equivalence		
77.	"Is smaller than" a. Transitive	' over the set of eggs in b. Symmetric	n a box is : c. Reflexive	d. Equivalence		
77.				d. Equivalence		
77.				d. Equivalence		
77.				d. Equivalence		
77.				d. Equivalence		
77.				d. Equivalence		
77.				d. Equivalence		
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive		c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			
	a. Transitive	b. Symmetric	c. Reflexive			

79.	$A = \{2,8\} B = \{2,8\} Find (AxB), (BxA), [(AxB) \cup (BxA)], [(AxB) \cap (BxA)]$	

81. If
$$f(x) = 1/(1-x)$$
 the $f^{-1}(x) = ?$

- a. (1-x)
- **b.** (x-1)/x
- c. x/(x-1)
- d. None of these

82. Null set is represented by

- a. {**0**} or **0**
- b. {} or •
- c. or {0}
- d. None of these

83. If $f(x) = x^2$ then it is

- a. Odd function
- **b.** Even function
- c. Both of these
- d. None of these

89. If f(x+1) = f(x-1) where $f(x) = x^2 - 2x + 3$ then x = ?

a. 1

b. 2

c. 3

d. None of these

90. If f(x+1) = f(x+2) where $f(x) = 1 + x - x^2$ then x = ?

a. 2

b. 0

c. 1

d. -1

91. If f(x) = 3x + 4 then f[(x-4)/3] = ?

a. 1

b. x

c. zero

d. None of these

92. If f(x+1) = 4x + 5; find f(x)

a. 3x+4

b. 4x+1

c. 4x+3

d. None of these

93. If $f(x-1) = x^3$; find f(x)

a. $(x+1)^3$

b. (x+1)²

C. X³

d. $(x-1)^3$

94. f(x) = 3x + 5; g(x) = 6x + 100. Find g[f(2x)] = ?

a. 16x + 200

b. 9x - 300

c. f(x)

d. None of these

95. If $S = \{0,1,5,4,7,9,10\}$ then

No. of subsets =

No. of proper subsets =

No. of non empty subsets =

No. of non empty proper subsets =

96. If $A \subseteq B$ then

 $\mathbf{a}. \mathbf{A}' \subset \mathbf{B}'$

 $\mathbf{b.} \ \mathbf{A}' = \mathbf{B}'$

c. B′ _**CA**′

d. None of these

97. If 'A' is any set then

 $\mathbf{a.} \mathbf{A} \cup \mathbf{A'} = \mathbf{\phi}$

b. $A \cap A' = o$

c. $A \cup d = A'$

d. None

98. f(x-1) = 2x-2 then f(16) is

a. 16

b. 15

c. 32

d. Insufficient information

		Sets, Functions, Relations
99.	If $A = \{1,2,3,5,7\}$, $B = \{1,3,6,10,15\}$ and universal so then cardinal value of	et = U = {1,2,3,4,5,,15}
	(A∩B) = (A∪B) =	
	(A - B) =	
	(B - A) =	
	$(\mathbf{A}' \cap \mathbf{B}') =$	
	$(\mathbf{A} \triangle \mathbf{B}) =$	
	$(A \cup B') =$	
	$(\mathbf{B} \cup \mathbf{A}') =$	
	(A'∪ B') =	
100.	Null set don't have a proper subset	
	a. True b. False	
	a. True b. False	
	a. True b. False	
101.		
101.	7	
101.	7	
101.	7	
101.	7	
101.	7	
101.	7	
101.	Find All subsets of A = {5,8,9,12}	
	Find All subsets of A = {5,8,9,12}	
	Find All subsets of A = {5,8,9,12}	

If universal set U = {1,2,3,4,5,.......25}; A= {2,6,8,10,12,.....,24} **103.** $B = \{4,8,10,14\}$ then

$$\mathbf{a.} \ (\mathbf{A} \cap \mathbf{B})' = (\mathbf{A}' \cup \mathbf{B}')$$

b.
$$(A \cap B)' = A' \cap B'$$
 c. $A' \cap B' = A'$ **d.** $(A' \cup B') = A'$

$$\mathbf{c.} \ \mathbf{A'} \cap \mathbf{B'} = \mathbf{A'}$$

$$\mathbf{d.} \; (\mathbf{A'} \; \cup \; \mathbf{B'}) = \mathbf{A'}$$

	_		Sets,	Functions, Relations
104.	P set has 3 el	ements, Q set has 4 elements	ents then the set (PxQ) contains
	a. 34	b. 7	с. 1	d. 12
<u></u>				
105.	If $f(x) = 2^x$ then	function is		
	a. one-one	b. one-many	c. many-one	d. many-many
106.	If $f(x) = e^x$ then	f(p-q) is		
l	a. f(p) + f(q)	b. f(p) - f(q)	c. f(p) x f(q)	d. f(p) / f(q)
—				
107.	If $A = \{x : x < x < x < x < x < x < x < x < x < $	1 and $x > 1$ } then set A is	S	
	a. Null set	b. Singleton set	c. Infinite set	d. Power set
	1			
108.		me natural numbers is		
	a. Null set	b. Singleton set	c. Infinite set	d. Power set
109.		students 60 play Cricket, 50 students 60 play Cricket, 50 ents who don't play atleast or		y both.
	a. 70	b. 50	с. 10	d. None of these

110.	If $f(x) =$	(x+1) / ((x-1): the	$1 f^{-1}(30) = ?$

a. 23/12

b. 30/8

c. 31/29

d. None of these

111. n(A) = 729, n(B) = 875, $n(A \cap B) = 213$, n(U) = 2000. Find -

n(A') =	$\mathbf{n}(\mathbf{A}' \cap \mathbf{B}') =$
n(B') =	$n(A \triangle B) =$
n(A - B) =	$n(A' \cup B') =$
n(B - A) =	$n(A \cup B') =$
	n(B ∪ A ') =

Out of 2000 employees in an office 48% preferred coffee (C) and 54% liked Tea (T) and 64% used to smoke (S) 28% used C & T. 32% used T & S. 30% preferred C & S. Only 6% did none of these. The number having all three is :

a. 360

b. 300

c. 380

d. None of these

P set has 11 elements & Q set has 12 elements then (P x Q) has ______ elements

a. 1 b. 23 c. 132 d. 11/12

My Notes:

114. If $A = \{5,7,8\}$ $B = \{7,5,8\}$ show that $(AxB) = (BxA) = (AxB) \cup (BxA) = (AxB) \cap (BxA)$
Therefore, (A x B) and (B x A) are equal as well as equivalent sets are.
115. If $A = \{5,7,8\}$ $B = \{6\}$; Find (AxB), (BxA), whether (AxB) and (BxA) are equal sets? Equivalent sets?
116. In (AvB) = ((a b) , where a 5
In (AxB) = $\{(a,b) : \text{where } a \in \}$ If $A = \phi$ or $B = \phi$ then we defined
(AxB) or (BxA) as ϕ
117. If $A = \{12,10,16\}$ $B = \{5,8,12,13\}$ $C = \{8,11,10,25,16\}$ Find a. A x (B \cap C) b. B x (A \cap C)
118. If $f(x) = (x+1) / (x-1)$. Find $f(-3/2)$, $f(7/3)$

11	9. If $g(x) = (\frac{2x+1}{3x+8})$;	f(x) = 8x + 5; Find f.	g(10); g.f(-2); g[f ¹ (5)]	
-				
=				
=				
=				
=				
=				
=				
=				
=				
=				
=				
10				
12	0. $f(x) = 1/(1-x)$. Find a. 1	b. 1/2	c. Not defined	d. 2
=		~··/_	of Hot dolling	
=				
_				
12	1. $\{(x,y): x < y \text{ and } $	$x,y \in \mathbb{R}$ is		
_	a. not a function	b. a function	c. one-one mapping	d. None of these

122. 1. AUA =	13. (A∪B) ∩ A =
2. A U A' =	14. (A∩B) ∪ A =
3. A ∩ A'=	15. (A∩B) ∩ A =
4. A U U =	16. (A ∪ B) ∪ A' =
5. A U Φ =	17. (A ∪ B) ∩ (A'∩B') =
6. A ∩ Φ =	18. (A△B) ∪ (A∩B) =
7. Φ ∪ A' =	19. (A'∪ B') ∪ (A ∩B) =
8. ♦ ∩ U =	20. (A-B) ∪ (A∩B) =
9. (A-B)∩(B-A) =	21. (B-A) ∪ B =
10. (A∪B) ∪ (A∩B) =	22. (A △ B) ∪ (A' ∩ B') =
11. (A∪B) ∩ (A∩B) =	23. (A'∩B') ∪ (A△B) =
12. (AUB) U A =	24. (A△B) ∪ A =

My Notes:

1. n(A) =	21. n(B'∩ C') =
2. n(B) =	22. n(A'∩C') =
	23. n(A \(\triangle B \) =
4. n(A') =	24. n(B△C) =
4. II(A) -	25. n(A△C) =
5. n(B') =	26. n(A ∪ B') =
6. n(C') =	
	27. n(B ∪ A') =
<u> </u>	28. n(A ∪ C') =
8. n(A ∩ B) =	29. n(C ∪ A') =
9. n(B∩C) =	30. n(B ∪ C') =
10. n(A ∩ C) =	
11. n(A ∪ B) =	31. n(C ∪ B') =
12. n(B ∪ C) =	32. n(A' ∪ B') =
13. n(A ∪ C) =	33. n(B' ∪ C') =
14. n(A-B) =	34. n(A' ∪ C') =
— 15. n(B-A) =	35. n(A ∪ B ∪ C) =
16. n(A-C) =	36. n(A∩B∩C) =
17. n(C-A) =	37. n(A'∩B'∩C') =
18. n(B-C) =	38. n(A∩B'∩C') =
19. n(C-B) =	39. n(A'∩B∩C') =
20. n(A' ∩ B') =	40. n(C∩A'∩B') =

124.

Find Sets:

- 1. A =
- 2. B =
- 3. (A ∩ B) =
- **4.** (A \cup B) =
- 5. $(A \cap B') =$
- **6.** (B \cap A') =
- 7. $(A' \cap B') =$
- 8. (A △ B) =
- **9.** (A ∪ B') =
- 10. (B \cup A') =
- **11.** (A' ∪ B') =

125. $B = \{8,9,3,6,8,9,6,6,8,9,11,13,8,9,9,15\}$

Cardinal Value of Set B is

My Notes:

	CA VINODREDDY
CA Vinod Reddy Maths Regular Notes	YINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

- CA VINOD REDDY -

DO or DO NOT THERE IS NO TRY

"NO ONE IS COMING TO SAVE YOU.
THIS LIFE IS 100%
YOUR RESPONSIBILITY "

Statistical Description of Data

Chapter 7

CA VINOD REDDY

	Statistical Description of Data
1. The word statistics is derived from :	
Latin word Status	
Italian_word_Statista German word_Statistik	
French word Statistique	
Tronon word otherstique	
2. We may define statistics in singular and plural sense	Э
3. Statistics is useful in -	
4. 5 Steps in Statistics -	
5. Collection of Data	
Collection of Data	
	<u> </u>
6. Following methods can be used for collection of primary d	<u>ata</u>
1. Questionnaire Method	
2. Mailed questionnaire Method 3. Interview Method	
2. Mailed questionnaire Method	
2. Mailed questionnaire Method 3. Interview Method	
2. Mailed questionnaire Method 3. Interview Method	My Notes :
2. Mailed questionnaire Method 3. Interview Method	My Notes :
2. Mailed questionnaire Method 3. Interview Method	My Notes :

			Statis	tical Description of Data					
7.	Sources of Secondary Meth	<u>od</u>							
	1. International sources Wi	HO, IMF, World Ba	nk, etc.						
	2. Govt. Sources								
	3. Private Sources								
	4. Unpublished Data								
0									
8.	Checking the data for it _		and	is know	/n				
	as scrutiny of data								
9.	Methods of Classification of	Data							
	1.								
	2.								
	3.								
	4.								
	5.								
10.	Methods of Presentation o	f Data							
	1.								
	2.								
	3.								
10 .	Methods of Presentation o	f Data							
	1.								
	2.								
	3.								
11	Table No. 678 Cour	rea wisa Na af et	udents at PERCEP	т					
11.	Table No. 078	Year 2		<u>.</u>					
	Students	Boys	Girls	Total					
	Course		uns	Iotai					
	CA Foundation								
	CA Inter								
	CA Final								

	_				
12.	The best	method of data presentation is			
12.		memod of data presentation is			
4.2	The most	attractive method of data present	ation is		
13.	Ine mosi	attractive method of data present	ation is		
_					
14.	Stubs ar	e :			
L —					
	7				
15.	Captions	are:			
_					
_					
16.					
10.	<u>Diagra</u>	mmatic Presentation			
	Line Diagra	msBar Diag	rams Pie Chart		
	OR		ruiio i io onare		
I	- Histogran	IS-			
	Histogran	ls —			
	-Histogran	ls			
	Histogran				
	Histogran	es			
17.		ta on marks of 25 students :			
17.	Simple da	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1 C.I. 0-5	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
17.	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15	ta on marks of 25 students :	19, 11, 20, 16, 8, 9, 2, 3, 5, 4, 9, 2, 13		
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students :			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			
	Simple da 6, 3, 8, 1 C.I. 0-5 5-10 10-15 15-20 20-25	ta on marks of 25 students : 1, 19, 23, 24, 18, 11, 13, 16, 15, ²			

CA Vinod Reddy - vinod.reddy.ca@gmail.com

										Statisti	cal Desc	ription o	f Data
19.	LCB =												
	UCB =												
	Relati	ve F	reque	ency =									
	Percentage Frequency =												
	Class Width =												
	Class-	mar	·k =										
	Frequ	enc	y Den	sity =									
	Less t	han	type	of cur	nulati	ve frequ	iency =						
	Great	er t	han t	ype of	cumu	lative fi	requenc	y =					
\ <u> </u>													
20.													
C.I.	Freq.	L	CL	UCL	LCE	B UC	B Relat		q. Freq.		Class Width	less than type c.f.	greater than type c.f.
10-20	5							1.		-9 1010111	-	3,000	3,000
20-60	8												
60-80	7												
80-100	20												
100-120 120-140													
	1											1	
21.													
C.I.	Fr	eq	LCI	L l	ICL	LCB	UCB	Relative Freq.	% Freq.	Class Mark	Class Width	less than type c.f.	greater than type c.f.
10-18												0.2	
20-38													
40-98													
100-16													
170-21 220-31	_												

My Notes:

320-398

		outistical Description of Data
99		
22. Graphical Presentation		
<u> </u>		
	<u> </u>	
Area Diagrams	Frequency Polygon	Cumulative frequency curves
Area Diagrams OR Histograms		Cumulative frequency curves OR Ogives
23. Modian can be		
Median can be		
Mode can be		
Midde Call De		
0 1 F 0		
24. Frequency Curves		
1. Bell shaped curve		
2. U-shaped curve		
3. J-shaped curve		
4. Mixed curve		
0.5	Data	
25.	<u>Data</u>	
Y .		•
26. Diamete Veriable		
Discrete Variable :		
Continuous Variable :		
		My Notes :
		400
CA Vinod Reddy - vinod.reddy.ca@	gmail.com	192

Definition of Statistics Plural sense Singular sense

Quantitative and qualitative data collected
usually with a view of having
statistical analysis

Scientific method that is employed for collecting,
analysing and presenting data leading finally
to drawing statistical interferences.

28. Limitation of Statistics

- a. Deals with aggregate, an individual has no statistical significance.
- b. Mostly concerned with quantitative data
- c. Based on assumptions, so projections are likely to be inaccurate
- d. Based on random sampling.

29. Methods of Collection of primary data

Interview Method	Mailed Questionnaire Method	Observation Method	Questionnaire filled and sent by enumeraters
a. Personal interview			v
b. Indirect interview			
c. Telephonic interview			

- 30. a. In personal interview investigator meets to the respondent directly and collects the information.
 - b. If there are some practical problems in reaching the respondents directly then we may go for indirect interview when investigator collects the information from the <u>persons associated</u> with the problem.
 - c. Telephonic interview is quick and non expensive method to collect primary data.

First 2 methods are inapplicable when there is large data. The amount of non-response is maximum for third method of data collection.

31. Scrutiny of Data:

Since statistical analysis are made only on the basis of data, it is necessary to check whether the data under consideration are accurate and consistent.

No hard and fast rules can be applied for scrutiny of data. One must apply his intelligence, patience and experience while scrutinising the given information.

32. Textual Presentation :

This method comprises presenting data with the help of paragraphs.

Advantage of this method lies in its simplicity, a layman can also present data under this method.

Textual presentation, however not preferred as it is Dull, Monotonous, Lengthy.

33.	Tabular Presentation :
	It may be defined as systematic presentation of data with the help of a statistical table
	having no. of rows, columns and complete ref. no., title, description of rows and columns,
-	a. Caption is the upper part of the table describing column and sub-columns.
	b. Stubs are left part of table providing description of rows.
-	c. Body is the main part of the table that contains numerical figures.
34.	
04.	<u>Diagrammatic Presentation of Data</u>
_	a. Another alternative and attractive method is with the help of charts, graphs, pictures, etc.
	b. Any hidden trend can be understood with the help of this method.
-	c. However, as compared to tabulation, this method is less accurate. So if priority is
	accuracy of data, we have to recommend tabulation.
35.	We are going to consider the following types of diagrams
	a. Line diagram / histogram
-	b. Bar diagram
	c. Pie chart / pie diagram / circle diagram.
26	
36.	
	- Line diagram that uses logs is known as <u>Ratio-chart.</u>
	- Multiple Line chart is used for representing 2 or more related time series data expressed
	- Multiple Line chart is used for representing 2 or more related time series data expressed in same unit.
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different
	- Multiple Line chart is used for representing 2 or more related time series data expressed in same unit.
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different
37.	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different units.
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different units. Horizontal bar diagram issued for qualitative data.
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different units. Horizontal bar diagram issued for qualitative data.
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 - Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. - Multiple Axis chart in somewhat similar situations if variables are expressed in different units. - Horizontal bar diagram issued for qualitative data. - Vertical bar diagram is associated with qualitative data OR time series data
	 Multiple Line chart is used for representing 2 or more related time series data expressed in same unit. Multiple Axis chart in somewhat similar situations if variables are expressed in different units. Horizontal bar diagram issued for qualitative data. Vertical bar diagram is associated with quatitative data OR time series data

40. Draw the appropriate diagram for presentation the of following data:

Source	Revenue in Millions (₹)
Customs	80
Excise	190
Income-Tax	160
Corporate Tax	75
Misc	35
Total	540

Source	Angle in Pie chart
Customs	$(80/540) \times 360 = 53^{\circ} \text{ (approx.)}$
Excise	$(190/540) \times 360 = 127^{\circ}$
Income-Tax	$(160/540) \times 360 = 107^{\circ}$
Corporate Tax	$(75/540) \times 360 = 50^{\circ}$
Misc	$(35/540) \times 360 = 123^{\circ}$

Customs
Excise
Income-Tax
Corporate Tax
Misc

Frequency Polygon

_	Mid-points	46	51	56	61	66	71
_	No. of student	3	4	5	7	9	8

Ogives OR Cumulative frequency curves

Median can be graphically obtained with the help of cumulative frequency curves / ogives Mode can be graphically obtained with the help of histogram.

My	Notes	
----	--------------	--

45. There are 4 types of frequency curves

	<u> </u>	<u> </u>	V
Bell shaped	U shaped	J shaped	Mixed
curve	curve	curve	curve
V	₩	V	V
Distribution of height,	Frequency distribution	It starts with the	We may have
weight income generally	is minimum near the	minimum frequency	combination
belong this category.	central part and freq.	and then gradually	of these frequency
Freq. distribution starts	slowly and steadily	reaches to maximum	curves.
with low becomes	reaches maximum		
		frequency at other	No specific shape for
maximum at centre then	at after two extremities.	extremity.	mixed curve.
gradually reaches to		Ů	
lowest value to other			
extremity.			

46. The primary data is collected by

- a. Interview Method b. Observation Method
- c. Questionnaire Method d. All of these

47. The quickest method to collect primary data is:

- a. Personal Interview b. Indirect Interview
- c. Telephonic interview d. Observation Method

48. In case of Rail accident, the appropriate method of data collection is by :

- a. Personal Interview b. Direct Interview
- c. Indirect Interview d. All of these

49. Which method of data collection covers widest area

- a. Telephonic interview b. Mailed Questionnaire Method
- c. Direct Interview Method d. All of these

		Statistical Description of Data
50.	The amount of non-responses are	maximum in case of
	a. Mailed Questionnaire Method	b. Interview Method
	c. Observation Method	d. All of these
F1		
51.	The accuracy and consistency of d	ata can be verified by -
	a. Internal checking	b. External checking
	c. Scrutiny	d. None of these
52.	The unit of measurement in tabu	lation is shown in the
	a. Box Head	b. Body
	c. Caption	d. Stub
53.	In tabulation, source of the data	if any is shown in the
	a. Foot-Note	b. Body
	c. Caption	d. Stub
<u> </u>		
54.	Hidden trend, if any, in a data can	i be noticed by
	a. Textual presentation	b. Tabulation
	c. Diagrammatic Presentation	d. None of these
55.	The most accurate (Best) method	of data presentation is :
	a. Diagrammatic Presentation	b. Tabulation
	c. Textual presentation	d. None of these
56.	The chart used logarithms of a var	riable is known as :
	a. Line chart	b. Ratio chart
_	c. Multiple line chart	d. Pie chart
		My Notes :
		my Notes.

- 4	-	-
-1	п	

57.	Pie diagram is used for?	
	a. Comparing diff. components and their relation	to total
	b. Representing qualitative data in a circle	
—	c. Representing quantitative data in a circle	
	d. b-or-c	
58.	A frequency distribution	
	a. Arranges observations in increasing order	
—	b. Arranges observations in number of groups	
	c. is for time pass	
	d. All of these	
59 .	. Frequency distribution of a continuous vari	able is known as
	a. Grouped frequency distribution	b. Simple frequency distribution
_	c. a or b	d. a and b
60 .	. The distribution of shares is an example	of frequency distribution of :
	a. A discrete variable	b. A continuous variable
	c. An attribute	d. None of these
61.	. The distribution of profits of a blue chip cor	npany relates to :
	a. A discrete variable	b. A continuous variable
	c. An attribute	d. None of these
62 .	Mutually exclusive classification	
	a. Excludes both the class limits	b. Excludes UCL but includes LCL
_	c. Includes UCL and excludes LCL	d. None of these
		My Notes :

3. Out of 1000 worl							
1 200	kers, 25% v	vere indust	rial w	ork	ers and res	t were agricultu	ıral
	sons enjoy	ed world cı	ıp ma	tch	es on T.V, 3	0% of people w	ho had not
watched world cu			trial v	vorl	kers. What i	s agri. no. of w	orkers who ha
enjoyed world cu	p matches (on T.V.?					
a. 260	b.	240			с. 230		d. 250
54. The number of	accident f	or 7 days	in a	loc	ality are g	iven below :	
No. of accidents	0 4		4	_			
Frequency	0 1 15 19	2 3 22 31	9	5 3	<u>6</u> 2		
		_					
What is no. of case							4.07
a. 56	b.	0			c. 68		d. 87
55. The follow data	relates to	income :					
		_					
						1	1
	500 - 999	1000 - 1	499	15	500 - 1999		
Income 8	500 - 999 15	1000 - 1 28	499	15	36	2000 - 2499 7	
	15	28			36		
No. of persons	15 ons earning	28	₹ 15	009	36	7	None of these
No. of persons What is % of perso	15 ons earning	28 more than	₹ 15	009	36	7	None of these
No. of persons What is % of perso	15 ons earning	28 more than	₹ 15	009	36	7	None of these
No. of persons What is % of perso	15 ons earning	28 more than	₹ 15	009	36	7	None of these
No. of persons What is % of perso a. 43%	15 ons earning b. 50	28 more than	₹ 150	00?	36	7 d.	None of these
No. of persons What is % of perso	15 ons earning b. 50	28 more than	₹ 150	00?	36	7 d.	None of these
No. of persons What is % of personal at 43% The following dates:	15 ons earning b. 50	28 more than %	₹150	DOP G	36 . 40% p of studer	7 d.	
No. of persons What is % of personal at 43% The following dates:	15 ons earning b. 50 ta relate to	28 more than	₹150	DOP G	36	7 d. !	None of these Below 50 100
No. of persons What is % of persons a. 43% The following da Marks No. of Students	15 ons earning b. 50 ta relate to 3elow 10 15	the marks Below 2 38	s of g	rou	36 . 40% up of studer	7 d. l	Below 50
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100
No. of persons What is % of persons a. 43% The following da Marks No. of Students	15 ons earning b. 50 ta relate to 3elow 10 15	the marks Below 2 38	s of g	rou	36 . 40% p of studer elow 30 65	7 d. l	Below 50
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100
No. of persons What is % of persons a. 43% Marks No. of Students How many students	15 ons earning b. 50 ta relate to Below 10 15 have mark	the marks Below 2 38	s of g	oo?	36 . 40% p of studer elow 30 65	7 d. l	Below 50 100

	7				
67.	Find number of obser	vations between	250 and 300 f	rom the followi	ng data :
	Value	More than 200	More than 250	More than 300	More than 350
	No. of Observations	56	38	15	0
	a. 56	b. 23	с. 15		d. 8
68.	Cost of sugar in a mont	h under the head	ls material, labou	ır, expenses, ove	rheads are
	₹ 12,20,35,23 respecti	vely. What is diff			
	components of cost of s		7.00		
	a. 72° b. 4	18°	c. 56°	d. 92°	
69.	The distribution of pro	fits of a compan	y generally folio	ows:	
	a. J shaped freq. curve		lt	o. U-shaped freque	ency curve
	c. Bell shaped freq. curve		d	. None of these	
70.	The distribution most c	ommonly used is	:		
a	. Mixed	b. U-shaped	c. Be	ll shaped	d. None of these
<u>71.</u>	Graph is a				
9	Line diagram	b. Bar-diag	ram c	Pie-diagram	d. Pictogram
<u>u.</u>	Line diagram	v. Dui-diug	C.	ic-ulagi aiii	u. Hotogram
72.	(Class frequency / clas	s width) is defin	ed as		
	a. Frequency density	b. Frequ	uency distribution	c. Both	d. None
72.	Tally Marks detern	nines			
	a. Class width		h Clas	s boundary	
	c. Class limit			s Frequency	
	3. 3.1.33 111111		ui Ciuo		

		Statistical Description of Data
74 .	An area diagram is	
	a. Histogram	b. Frequency Polygon
	c. Ogives	d. None
75.	Ogive is a	
10.	05110 10 11	
	a. Line diagram	b. Bar diagram
	c. Both	d. None
76.	Unequal width of classes i construction of	n a frequency distribution do not cause any difficulty in
	a. Ogive	b. Frequency Polygon
	c. Histogram	d. None of these
77.	Graphical presentation of o	cumulative frequency distribution is called as
	a. Histogram	b. Ogive
	c. Both	d. None of these
	1	
78.	The most common form o distribution is	f diagrammatic presentation of a grouped frequency
78.		f diagrammatic presentation of a grouped frequency b. Histogram
78.	distribution is	
78. 79.	a. Ogive c. Frequency Polygon	b. Histogram d. None of these
	a. Ogive c. Frequency Polygon	b. Histogram d. None of these
	a. Ogive c. Frequency Polygon Vertical Bar diagram may	b. Histogram d. None of these appear somewhat alike -
	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon
	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive Number of types of cumulative street.	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these ulative frequency is :
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive Number of types of cumula. One	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these ulative frequency is: b. Two d. Four
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive Number of types of cumula. One	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these ulative frequency is: b. Two
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive Number of types of cumula. One	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these ulative frequency is: b. Two d. Four
79.	a. Ogive c. Frequency Polygon Vertical Bar diagram may a. Histogram c. Ogive Number of types of cumula. One	b. Histogram d. None of these appear somewhat alike - b. Frequency Polygon d. None of these ulative frequency is: b. Two d. Four

	Statistical Description of Data
81. A representative value of a class interv	al for the calculation of Mean, SD, MD, etc. is
a. Class interval	b. Class limit
c. Class mark	d. None
82. In all statistical calculations & diagram	s involving end points of classes are used.
a. Class Boundaries	b. Class Values
c. both	d. None
83. Upper boundary of a class coincide	with Lower boundary of next class.
a. True	b. False
c. Both	d. None
Q4 The lower extreme usint of a class	is salled as
84. The lower extreme point of a class	is called as
a. Lower Class Limit	b. Lower Class Boundary
c. Both	d. None
85. When one end of the class is not spe	ecified, the class is called as
a. Open end class	b. Close end class
c. Both	d. None of these
86. When all classes have equal width, the hequal to the	eights of rectangles in histogram will be numerically
a. Class Frequencies	b. Class Boundaries
c. Both	d. None of these
87. To find 'Mode of data' graphically	we use
a. Ogives	b. Frequency Polygon
c. Histogram	d. None of these
88. In representing simple frequency distri	butions of a discrete variable is useful.
a. Ogives	b. Histogram
c. Frequency Polygon	d. None of these

						Statistical D	escription of Data
89.	Diagrammat	ic presenta	ation of cu	mulative fre	quency di	stribution is	·
	a. Frequen	icy Polygon	<u> </u>		b. (Ogives	
						None of thes	e
<u></u>							
90.							
50.	Class	0-10	10-20	20-30	30-40	40-50	
	Frequency	5	8	15	6	4	
_	For the class	20-30 cu	mulative fr	equency is	•		
	a. 20		b. 13		C.	15	d. 28
$\lfloor -$							
04							
91.	Breadth of re	ectangle is	equal to le	ength of clas	ss interval	l in	·
_	a. Ogives		b. Histogr	'am	c. Line d	iagram	d. None
92.	In Histogram	classes a	re taken _		<u> </u>		
	a. Overlapping		b. None (Overlapping		c. Both	d. None
93.	There are		methods o	of classifica	tion of dat	ta.	
	a. 4		b. 3		с. 2		d. 1
0.4							
94.	There are		_ methods	of presenta	tion of dat	ta.	
	a. 4		b. 3		c. 2		d. 1
0.5							
95.	For the overla	apping clas	sses 0-10,	T0-20, 20- 3	O, etc. the	class mark (of 0 - 10 is
	a. 5		b. 4.50		c. 4		d. 10
96.	For the classe	es 0-9 , 10 -	19, 20-29,	30-39, the 6	class mark	of 10-19 is .	
	a. 14.50		b. 15		с. 2	20	d. 16
0=							
97 .	Mutually incl	lusive clas	sification	is meant fo	<u>r</u>		
_	a. Discrete vai	riable	b. Con	itinuous vari	able	c. Both	d. None
98.	Mutually exc	lusive clas	ssification	is meant fo	or		

b. Continuous variable

c. Both

d. None

a. Discrete variable

99.	LCB is								

- a. Latur Crime Branch
- b. Lower Class Branch
- c. Lower Class Boundary
- d. a or c

100. Relative Frequency of a particular class

- a. Lies between 0 and 1
- b. Lies between -1 and 1
- c. Lies between -1 and zero
- d. None of these

101.

• • • •		
	Characteristic	Discrete / Continuous Variable / Attribute
	a. Income	
	b. Profit	
	c Blue-colour	
	d. Honesty	
	e. Nationality	
	f. No. of shares	
	g. Age	
	h. No. of members	
	i.Drinking habit	
	j. Beauty	
	k. Children in a family	
	I. Love	
	m. Batch size	

102.

Class - Interval	Frequency
0 - 10	5
10 - 20	8
20 - 40	9
40 - 60	10

Mutually Exclusive Classification

Class - Interval	Frequency
0 - 9	25
10 - 29	28
30 - 89	35
90 - 189	40

Mutually Inclusive Classification

		ь.	4	
L.V. I	w	N.	tes	С
\mathbf{L}	V	LL.		

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

Do Not Be Afraid

to give up 'GOOD' to go for the 'GREAT'

YOUR INTELLIGENCE makes you really

ATTRACTIVE

- CA VINOD REDDY -

Measures of Central Tendency And Dispersion

	Measures of Central Tendency & Measures of Dispersion
1. 5 Measures of Central Tendency a	are:
AM of simple data =	
AM of grouped data =	
AM of grouped & classified data =	
3. Find AM of: 80,63,90,101,65,	73.88.100
Tillu Am of . 50,00,50,101,00,	10,00,100.
4. Find AM of	
x 20 30 40 50 f 28 52 68 72	60 80
5. Find AM of	
	0-120 84
f 15 18 23	54
	My Notes:

CA Vinod Reddy - vinod.reddy.ca@gmail.com

					Measures of Central Tendency & Measures of Dispersion
6.	Find A	\M of			
	C.I f	10-19 33	20-39 32	40-69 85	
7.	AM is I	magnitud	e-wise cei	ıtral nuı	nber
	Media	n is			
	Mode	is			
8.	Find M	ledian foi	r 81,36,2	5,35,38	5,43, 50
9.	Find M	edian for	80,60,2	8,90,81	100,103,115
10.			N	1edian - I	f No. of observations are
		√ dd			Even

4	4		
	Ι.	Find Median, Mode	for

C.I	10-20	20-30	30-40	40-60	60-100
f	15	18	33	22	16

12. Find AM, Median, Mode for

80, 60, 90, 90, 80, 90, 50, 90, 10, 5, 18, 16, 12, 16, 55

13. Empirical relation between Mean, Median, Mode

My Notes:

			Measures of Central Ten	idency & Mea	sures of Dispersion
14.					
	Fractiles	Divides the data in equal parts	No. of fractile	S	Notations
	Median				
	Quartiles Deciles				
	Percentiles				
	For Simple Median =	data - Formulae			
	neuran –				
	Q ₁ =				
	Q ₃ =				
_) ₆ =				
	P ₇₁ =				
	71				
16.	For Grouped	d and Classified data			
	Median =				
	$\mathbf{Q}_3 =$				
	D ₂ =				
	P ₈₀ =				
					My Notes :

1	7.	Find P ₈₅ for

C.I	10-18	20-38	40-98	100-168
f	28	36	56	28

18.

18.		
Measure	Simple Data	Grouped Data
AM		
GM		
НМ		
Median		
Mode		
$\mathbf{Q}_{\scriptscriptstyle{1}}$		
D ₇		
P ₆₁		

My	Notes	:

	medali eo er central rendency a medali eo er Biopereion
10	and AM CM 11M for 0 C 0 0 2 42 00 40
19. F	ind AM, GM, HM for - 2,6,8,9,3,13,20,18
20. P	roperties of AM
l ——	
L —	

			Measures of Central Tendenc	y & Measures of Dispersion
21.	If $\overline{\mathbf{x}}_1 = 8$	0 , $\overline{\mathbf{x}}_{2}$ = 120 and Combine	ed AM = 103. Find n ₁ : n ₂	
_				
	7			
22 .	Best Me	asure of Central Tendency =		
	For One	n Class internal		
		n Class interval asure of Central Tendency =		
23.				
	For n o	bservations =		
	For n di	istinct observations =		
	For 2 0	bservations =		
	7			
24.	ervations	AM	GM	НМ
UNS		AW	GW	
	p,q			
a	ı ,b,c,d			
	.,,,,,,,,			
60	,20,80			
5,1	10,20,0			
	If one of	the observation is zero t	hen •	

218

GM = **HM** =

25.	Find GM,	HM, AM for
------------	----------	------------

X	5	6	7	8
f	1	2	2	3

26.

For Q Croun	
For 2 Group	
taran da antara da a	

Combined A	$\mathbf{M} =$
------------	----------------

Combined GM =

Combined HM =

27.

For 3 Groups

Combined AM =

Combined GM =

Combined HM =

28.
$$n_1 = 30$$
; $n_2 = 20$; $S_1 = 3$; $S_2 = 4$; $\overline{X}_1 = 40$, $\overline{X}_2 = 50$. Find combined SD.

			initial remained a measures of Dispersion
29 .			
49.	Dispersion means :		
	Dispersion means:		
	Measures of dispersion	n are used to measure :	
<u> </u>			
30.			
30.		Measures of Dispe	rsion
		-	
	Absolute		
	Absolute		Relative
_			
31.	For simple data :		
	Donata		
	Range =		
	M.D =		
	S.D =		
	Q.D =		
	~ -		

33. For Grouped data : Range = M.D = Q.D =		
33. For Grouped data : Range = M.D = S.D =	39 Find Danda M.D. C.D. O.D. for 00.00 25 40.40 60.65 60	
Range = M.D = S.D =	721. Find hange, M.D., S.D., Q.D 101 - 20,28,35,40,48,00,05,08	
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =		
Range = M.D = S.D =	33. For Grouped data:	
M.D = S.D =		
M.D = S.D =	Donata -	
S.D =	Range =	
S.D =		
	$\mathbf{M.D} =$	
	S.D =	
Q.D =		
	Q.D =	

34.	ind Rang	e. M.D.	S.D.	Q.D

CI	10-20	20-30	30-40	40-50
f	5	7	2	6

35. Find Missing Frequency if median = 32

CI	0-10	10-20	20-30	30-40	40-50	50-60
f	10	-	25	30	-	10

Total Frequency = 100

			Measuro	es of Central Te	endency & Meas	ures of Dis
6. If Ma	de = 66. Fii	nd missing	frequency			
CI	30-40	40-50	50-60	60-70	70-80	80-90
f	8	16	22	28	-	12
7. S.D	of 2 Observat	tions =				
S.D	of1st 'n' natu	ıral numbers	3 =			
8.						
I.D about		Simple Da	ata		Grouped	Data
AM						
Median						
Wiedian						
Mode						
						My Notes :
						Ly NULES :

			medadi es di eei		sures of Dispersion		
39.							
00.	Q.D = Semi inter Quartile Range =						
	Coefficier	nt of Quartile Deviation	on =				
40.	$\mathbf{lf} \ \mathbf{y} = \mathbf{a} + \mathbf{bx} \ \mathbf{then}$						
			ii y = a + bx tileli				
41							
41.	Old	If 15 is subtracted	If ayamy abcomyation is	If aromy abcompation is	If aromy abcompation is		
41.	Old Data	If 15 is subtracted from each obs ⁿ	If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
41.			If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
41.	Data 30		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
	Data 30 n 50		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media	Data 30 n 50 e 60		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode	Data 30 n 50 e 60		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang	Data 30 n 50 e 60 e 70		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD	Data 30 n 50 e 60 e 70 28		If every observation is increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD	Data 30 n 50 e 60 e 70 28 36 55	from each obs ⁿ	increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD	Data 30 n 50 e 60 e 70 28 36 55		increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD	Data 30 n 50 e 60 e 70 28 36 55	from each obs ⁿ	increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD	Data 30 n 50 e 60 e 70 28 36 55	from each obs ⁿ	increased by 5	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to	from each obs ⁿ	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42.	Data	on coefficient of value of the coefficient of value of value of the coefficient of value	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42. If 20 is If 30 is	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to subtractory observat	on coefficient of value each observation each observation is multiplied by 80	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42. If 20 is If 30 is	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to subtractory observat	on coefficient of value of the coefficient of value of value of the coefficient of value	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42. If 20 is If 30 is	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to subtractory observat	on coefficient of value each observation each observation is multiplied by 80	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42. If 20 is If 30 is	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to subtractory observat	on coefficient of value each observation each observation is multiplied by 80	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		
Media Mode Rang MD SD QD 42. If 20 is If 30 is	Data 30 n 50 e 60 e 70 28 36 55 Impact of sadded to subtractory observat	on coefficient of value each observation each observation is multiplied by 80	increased by 5 ariation:	If every observation is mutliplied by 10	If every observation is divided by 20		

			Measures of Central Tendency & Measures of Dispersion
43.		Runs of last	t 8 innings
	Batsman A	80, 60, 65, 85,	7 5, 40 , 3 5, 20
	Batsman B	35, 25, 50, 25,	55, 60, 25, 15
	Who is more o	consistent?	
—			
_			
_			
-			
]		
44.			
Best	measure of dis	persion	
For	comparison pu	ırpose	
For	Open Class Int	ervals	
45.	Find S.D. Var	rianca Coofficient	t of Variation for 18,19,20,28,35.
	Tillu O.D, Val	iance, coemeicin	t of variation for 10,13,20,20,30.
_			
—			
_			
<u></u>			
			My Notes :

225

	measures of Central Tendency &	Measures of Dispersion
46.	Observations x,y,z	
AM =	GM =	HM =
47. Find Range	& Coefficient of range for : ₹ 90, ₹ 80, ₹ 60, ₹ 30,	₹ 10, ₹ 5, ₹ 65, ₹ 78
10		
48. If 3x + 5y =	= 85; AM of $x = 3$; SD of $x = 0.75$. Find AM of y, S.D	of y
49. Propertie	s of Median	
1. If $y = a + bx$,	, then (Median of y) = $a + b$ (Median of x)	
	c = 0; then a(median of x) + b(median of y) + $c = 0$	um whom dovictions are
-taken from me	observations, the sum of absolute deviations is $\underline{\underline{\text{minimodian}}}$. $\mathbf{\Sigma} \mathbf{x}$ -median $\mathbf{I} = \mathbf{mi}$	
CA Vinod Reddy	/ - vinod.reddy.ca@gmail.com	2

	measures of Central Tendency & Measures of Dispersion
50. For 2 Observations GM = 9; AM :	= 10. Find HM.
51. AM: a. is Best measure of central to	endency
b. is rigidly defined.	
c. based on all observations	
d. easy to comprehend, easy to	
e. amenable to mathematical p	roperties.
However drawback of AM is - it is vory	much affected by sampling fluctuation and AM can't be
calculated for data with open-e	
52. Median	
a. Median is also rigidly defined.	
b. Easy to comprehend and calculat	e.
c. It is positional average of data.	
d. It is the central number when da	ta is arranged is ascending or descending order of their
magnitude.	
e. Median is not based on all observ	vations.
f. Most appropriate measure of cen	tral tendency for open-end classification.
54. Measures of central tendency for	r a given set of observations measures
a. Scatterness of Observations	b. Central location of observations
c. Both of these	d. None of these
E E WILL COMP.	
55. While computing AM from a group	ed frequency distribution, we assume that
a. The classes are of equal length	
	,
b. The classes have equal frequency	
c. All the values of a class are equal d. None of these	to miu vaiue of class.
u. None of these	

	_			
56 .	Which of the follow	wing is true		
_	a. Usually AM is Best	t measure of dispersion		
	b. Usually SD is Best	t measure of dispersion		
	c. Both of these			
_	d. None of these			
57.	Which of the following	ng is not uniquely defi	ned	
	a. Mean	b. Median	c. Mode	d. All of these
58.	Weighted average a	are considered when		
_	a. The data are not o	classified		
	b. The data are put i	n the form of grouped f	req. distribution.	
	c. All observations at d. All of these	re not of equal importar	ıce	
<u>_</u>	d. All of these			
59 .	Which of the follow	ing is correct for a se	et of 'n' district positive	observations.
	a. AM ≥ GM ≥ HM		b. AM > GM >	НМ
	a. AM ≥ GM ≥ HM c. GM < AM < HM		b. AM > GM > d. None of the	
60.	c. GM < AM < HM When the firm regist	ters both profits and lo can not be considered?	d. None of the	ese
60.	c. GM < AM < HM When the firm regist		d. None of the	ese
60.	c. GM < AM < HM When the firm regist of central tendency of	can not be considered?	d. None of the	ollowing measure
60.	c. GM < AM < HM When the firm regist of central tendency of	can not be considered?	d. None of the	ollowing measure
	c. GM < AM < HM When the firm regist of central tendency ca. AM	can not be considered? b. GM	d. None of the	ollowing measure
60.	c. GM < AM < HM When the firm regist of central tendency ca. AM	can not be considered?	d. None of the	ollowing measure
61.	c. GM < AM < HM When the firm regist of central tendency ca. AM	can not be considered? b. GM	d. None of the	ollowing measure
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	ollowing measure d. Mode
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	ollowing measure d. Mode
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	d. Mode d. 3 parts
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	ollowing measure d. Mode
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	d. Mode d. 3 parts
61.	c. GM < AM < HM When the firm regist of central tendency of a. AM Quartiles are the va	b. GM b. GM	d. None of the sees then, which of the fo	d. 3 parts

aphically using							
	62. Quartiles can be determined graphically using						
gon c. Ogives	d. Pie-charts						
63. Which of the following measure satisfy linear relationship between 2 variables.							
c. Mode	d. All of these						
c 8 x ³ 15	d. 5 <mark>768</mark> 0						
0.0 A (10	u. \1000						
с. 2.90	d. 3 <mark>30</mark>						
d 3.20 resp. then GM will	be						
c 4.05	d. 4.00						
0. 4.00	u. 4.00						
	67. Find value of first/lower quartile for 15, 18, 10, 20, 23, 28, 12, 16						
· 15, 18, 10, 20, 23, 28, 1	2, 16						
° 15, 18, 10, 20, 23, 28, 1 c. 12.75	2, 16 d. None of these						
	c. Mode c. 8 x ³ 15						

	mous		
8. Third decile fo	r the numbers 15, 10,	20, 25, 18, 11, 9, 1	2 is
a. 13	b. 10.70	с. 11	d. 11.50
	of unskilled workers is ₹ 1 t is the % of skilled worker		of skilled workers
a. 40%	b. 50%	c. 60%	d. None of these
O. If there are 2 gr	oups with 75, 65 as Harmo	onic Mean and containin	g 15.13 observations
then combined H			9 10,10 0000114410110
a. 65	b. 70.36	c. 70.81	d. None of these
1. What is HM of	1, 1/2, 1/3, 1/4,1,	/n	
a. n	b. 2n	c. 2/(n+1)	d. n(n+1)/2
			My Notes :

230

	M	easures of Central		
	es from A to B at a s The avg, speed of en		s/hr and come	s back from B to
a. 600 kms/hr	b. 583.33 kn	ns/hr c.	100 √35 kms/h	ır d. Non
If the variable ass	sumes the values 1,2	2,3,4,5 with frequ	iencies 1,2,3,4	,5 then what is
a. 11/3	b. 5	с. 4	d. 4.50	0
GM of x is 10 a	nd GM of y is 10 th	en GM of x.y is		
			d. None	of these
	nd GM of y is 10 th b. log10 x log15	en GM of x.y is	d. None (of these
			d. None (of these
			d. None o	of these
a. 150		c. log150		
a. 150 If AM and GM fo	b. log10 x log15	c. log150 are both 15, the		is:
a. 150	b. log10 x log15 or 10 observations	c. log150 are both 15, the	en value of HM	is:
a. 150 If AM and GM fo a. Less than 15	b. log10 x log15 or 10 observations a b. More	c. log150 are both 15, the	en value of HM c. 15	is:
a. 150 If AM and GM fo a. Less than 15	b. log10 x log15 or 10 observations	c. log150 are both 15, the	en value of HM c. 15	is:
a. 150 If AM and GM fo a. Less than 15	b. log10 x log15 or 10 observations a b. More	c. log150 are both 15, the	c. 15	d. None of t
a. 150 If AM and GM fo a. Less than 15 Find Range of 6	b. log10 x log15 or 10 observations a b. More to	c. log150 are both 15, the than 15 O cms, 90 cms	c. 15	d. None of t
a. 150 If AM and GM fo a. Less than 15 Find Range of 6	b. log10 x log15 or 10 observations a b. More to	c. log150 are both 15, the than 15 O cms, 90 cms	c. 15	d. None of t
a. 150 If AM and GM fo a. Less than 15 Find Range of 6	b. log10 x log15 or 10 observations a b. More to	c. log150 are both 15, the than 15 O cms, 90 cms	c. 15	d. 66.6666
a. 150 If AM and GM fo a. Less than 15 Find Range of 6	b. log10 x log15 or 10 observations a b. More to	c. log150 are both 15, the than 15 O cms, 90 cms	c. 15	d. None of t
a. 150 If AM and GM fo a. Less than 15 Find Range of 6	b. log10 x log15 or 10 observations a b. More to	c. log150 are both 15, the than 15 O cms, 90 cms	c. 15	d. 66.66666

	Mea	asures of Central Tendency & Mi	casures of Dispersion		
77. Find Coefficient of	7. Find Coefficient of Range for 65 cms, 20 cms, 100 cms, 90 cms, 81 cms				
a. 80 cms	b. 80	c. 66.6666cms	d. 66.6666		
78. Find S.D and Rai	nge for 80 cms,	20 cms.			
79. Find S.D of firs	t 25 natural nu	mbers is :			
80. Properties of SD					
1. If all observations					
3. Combined SD =		but affected by change in scale			
3. Combined 3D	$\frac{\mathbf{n}_1\mathbf{o}_1 + \mathbf{n}_2\mathbf{o}_2 + \mathbf{n}_1\mathbf{u}_1}{\mathbf{n}_1 + \mathbf{n}_2}$				
70					
12. If AM and coeffi. of	variation of x are	10,40 resp. what is the varia	nce of (15-2x)?		

	Measur	es of Central Tendency a	Measures of Dispersion			
82. Range is quick	kest to compute. However ran too much by presenc	nge is based on only 2 ol e of extreme observation	oservations and affected is.			
83. If profit of the	company remains the same	for last 10 months the	n SD of profit would be			
a. zero	b. positive	c. negative	d. a or c			
	Which measure of dispersion is considered for finding a pooled measure of dispersion after combining several groups :					
a. MD	b. SD	c. QD	d. Range			
85. If all observa	tions are increased by 2	5 then				
AM						
Median						
Mode						
Range						
MD						
SD						
QD						
Coeff. of Variation						
86. If all observa	tions are multiplied by 10	O then				
AM						
Median						
Mode						
Range						
MD						
SD						
QD						
Coeff. of Variation						
			My Notes :			

en Range becomes C. (1/8) th	d. None of th
c. (1/8) th	d. None of th
c. (1/8) th	d. None of th
c. (1/8) th	d. None of th
c. (1/8) th	d. None of th
c. (1/8) th	d. None of th
c. (1/8) th	d. None of th
	d. None of th
9 natural numbers.	
с. 400/9	d. None of the
,	
Find coeff of MD abo	out AM for v
	d. None of these
0. 4	u. None of these
11, 9/11, 12/11, 8/11	
c. 6/11	d. 5/11
	0. Find coeff. of MD abo c. 4

92. What is standard deviation of 5, 5, 9, 9, 9, 10, 5, 10, 10

a. 14 b. (42)/3

c. 4.50

d. None of these

93. AM and SD of x are a, b resp. then SD of [(x - a) / b] is

a. -1

b. 1

c. ab

d. a/b

94. If quartiles of a variables are 45, 52, 65 resp. Find quartile deviation.

a. 10

b. 20

c. 25

d. 8.30

95. Standard Deviation of first 'n' natural number is 2 then find 'n'

a. 2

b. 7

c. 6

d. 5

96. If $n_1 = 30$, $n_2 = 20$, $\overline{x}_1 = 55$, $\overline{x}_2 = 60$, $S_1 = 4$, $S_2 = 5$; Find combined SD.

a. 5.00

b. 5.06

c. 5.23

d. 5.35

		Measure	s of Central Tendenc	y & Measures of Dispersion		
97		The mean and SD of sample of 100 observations were calculated as 40 and 5.10 respectively. one observation was taken as 50 instead of 40 by mistake. The correct SD is				
-	a. 4.90	b. 5.00	c. 4.88	d. 4.85		
_						
-						
-						
_						
-						
_						
-						
_						
_						
08	The words "r	mean" or "average" only r	ofore to			
30.	a. AM	b. GM		d. None of these		
-	a. AWI	D. CIM	c. HM	u. None of these		
99.	Mean is of	types.				
	a. 5	b. 4	c. 3	d. None of these		
40						
100	U. AM is never	r less than GM.				
l _	a. True	b. False				
_						
10	1 AM is alway	s more than HM.				
10						
_	a. True	b. False				
	_					
102	2. GM of set o	of 'n' observations is the _	root of 1	their product.		
		b. (n/4) th				
	a. (11/2)	0. (II/ 4)	U. II	u. (II-1 <i>)</i>		
103	3. GM of 8, 4,	2 is				
	a. 4	b. 2	c. 8	d. None of these		

	_			·	· ·
104	. Median is un	affected by ex	xtreme values.		
	a. True		b. False		
105	. When all obs	ervations oc	ccur with equal f	requency	does not exist.
	a. AM	b. M	edian	c. Mode	d. HM
106	Find Made as 6				
			3, 8, 8, 8, 3, 3, 3	4.1	la manda familia data
a	. 8		c. 8 & 3		o mode for this data
107	Find Mode of	883383	8,8,8,3,3,3,10 is		
			c. 8 & 3		o mode for this data_
		N • O			
108	Simple avera	ige is somet	imes called as		
	_				
8	a. Weighted Avg.	l	. Unweighted Avg.	c. Bo	th d. None
109				responding weight	ts and then dividing the
	sum by sum of v				
	a. Simple Avg.	l	o. Weighted Avg.	c. Both	d. None
110	. Simple and We	eighted Avera	ge are equal when	all weights are	equal.
	a. True		b. False		
—					
111	Frequencies a	re generally i	ised as		
	a. Range		Weights	c. Mean	d. None
112	The values of	all items are	taken into consi	deration in calc	ulation of
	a. AM	b. Me		c. Mode	d. None of these
113	GM can be cal	culated only v	when all observati	ons have same s	sign & none is zero.
	a. True		b. False		

			•
114. HM is defined w	hen No observation is		
a. 3	b. 2	с. 1	d. zero
115. The class in w	hich 'mode' belongs is ki	nown as :	
a. Median Class	b. Mean Class	c. Modal Class	d. Backward Class
116	•		
For calculation	of we ne	ed to find cumulative fro	equency.
a. AM	b. Median	c. Mode d.	None of these
17. When distribut	ion is symmetrical mean	, median, mode	
a. Coincide	b. Do not coincide	c. Both	d. None
18. The no. of obser	vations smaller than	is equal to no. of obse	ervations larger than it
a. Median	b. Mode	c. Mean	d. None of these
119.	quartile is known as upp	per quartile.	
a. First	b. Second	c. Third	d. Fourth
20. Second quartile	e is also known as		
a. Lower quartile	b. Upper qua	artile c. Median	d. Mode
121. Median = 2 nd qu	ıartile = 5 th Decile = 50 th l	Percentile	
a. True	b. False		
122. 10 th Percentile :	= ?		
a. 1 st Decile	b. 1 st Quartile	c. Median	d. None
a. i Decile	D. 1 Quartile	C. Meulan	u. None
25 th Percentile	= 9		
a. Q ₁	b. D ₂₅	c. Q ₃	d. Median
	25		
CA Vined Roddy - vine	d.reddy.ca@gmail.com		23

	Measu	res of Central Tend	dency & Measures of Dispersion
124. In ogive, a	abscissa corresponding 1	o ordinate (N/2	2) is
a. Median	b. 1 st Quartile	c. 3 rd	Quartile d. None
125. In ogive, al	bscissa corresponding to o	ordinate (3N/4)	is
a. Median	b. 1 st Quartile	c. 3 rd (Quartile d. None
126. For 600, 3	00, 500, 300, 800, 200,	300, 550, 450	, 350 rank of median is
a. 5	b. 5.50	с. 5.05	d. 600
127. For 81,23,	51,93,103,28,36 rank of	1 st Quartile is	
a. 3	b. 1	с. 2	d. 7
128. Standard d	eviation is denoted by		
a. x	b. σ	c. σ^2	d. None of these
129. The squar	e of SD is known as	· · ·	
a. Variance	b. MD	c. QD	d. Square Man
130. $\frac{\sigma}{x}$ x 100 =	p.		
130. $\frac{\sigma}{x}$ x 100 =	e b. MD	c. QD	d. Co-efficient of Variation
^		c. QD	d. Co-efficient of Variation
^			
a. AM	b. MD		
a. AM	b. MD		
a. AM	b. MD		
a. AM	b. MD		
a. AM	b. MD		f,g
a. AM	b. MD		f,g

239

		Measures of Central	Tendency & N	leasures of Dispersion
132.	For Observations : 18,18,18,	18,18,18		
	AM =			
	HM =			
	GM =			
	Median =			
	Mode =			
	Range =			
	MD =			
	SD =			
	QD =			
				My Notes :
				My Notes.

	CA
CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

OPEN YOUR

'MIND'

BEFORE YOUR

MOUTH

What consumes your

'MIND'

CONTROLS YOUR

'LIFE'

- CA VINOD REDDY -

* Die with MEMORIES not DREAMS!

- CA-VINOD REDDY -

Chapter 9

CORRELATION AND REGRESSION ANALYSIS

CAVINOD REDDY

		Correlation & Regression Analysis
1.	What is correlation and what is regression?	
	what is continued and what is regression.	
_		
	7	
2.	Whether correlation between 2 variable	es exists or not?
	Voc	V No.
	Yes	No
	What is the type	What is the degree
	What is the type of correlation?	What is the degree of correlation?
_		
3.	Methods to measure correlation between 2 variab	les:
	a. b.	
	C.	
	d.	
_		
		My Notes:

	5.	. Fin	d Spearman's	rank correl	lation co	efficien
--	-----------	-------	--------------	-------------	-----------	----------

X	30	80	45	63	91	28	222
y	101	111	93	123	86	65	79

6. Find Spearman's rank correlation coefficient.

X	58	92	63	63	65	65	63	58
y	20	25	28	25	28	25	30	38

											Corr	elation a	x negre	SSIUII	Allaiysi	S
l																
l																
l																
_																
_																
l																
l																
l																
_																
_																
_																
_																
	_															
7																
7.					Snear	rman	'e Rai	nk Co	rrela	tion (Coeffic	eient				
					Орси	IIIdii	3 Hai	IK CO	i i Ciu	tion (oldiit.				
-																
-																
-																
-																
-																
-																
-																
_																
< —																
$\overline{}$																
8.	Find	Coeff	icient	of Co	ncuri	rent D	eviati	ion fo	r -							
8.		1														
8.	Find	Coeffi 60	icient 90	of Co 28	ncuri 36	rent D 51	eviati 58	ion fo	r - 95	101	63					
8.		60	90	28	36	51	58	90	95							
8.	X	1		28						101 99	63 100					
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							
8.	X	60	90	28	36	51	58	90	95							

In the product column : No. of positive signs = x

No. of negative signs = y

V > V	n io nocitivo
A - y	r is positive
x < y	r is negative
$\mathbf{x} = \mathbf{y}$	r = 0

9.	Find Karl Pearson's

X	8	3	11	9	6
y	5	8	13	20	28

-4	
	v.

Covariance of (x,y) =

 $SD_x =$

 $SD_y =$

My Notes:

11.

r	Type of Correlation
r = 1.00	
0.30 < r < 0.80	
0.80 < r <1.00	
r = 0	
r = -1.00	
-1.00 < r < -0.80	
-0.80 < r < -0.30	
0 < r < 0.30	
-0.30 < r < 0	

12. If v = 3x+8; u = 8y-19; $r_{xy} = 0.80$

r_{uv} =

Correlation coefficient is unaffected by change / shift of origin as well as by change in scale.

13. If u = -3x+53; v = -18y+99; $r_{xy} = 0.70$

r_{uv} =

14. If u = -18x + 55; v = 16y + 100; $r_{xy} = 0.85$

r_{uv} =

15. If u = -8x + 19; v = -16y - 33; $r_{xy} = -0.56$

r_{uv} =

My Notes:

10			
18 .	B : 1	and Annalisation	
_	Regression Analysis		
	After studying correlation between 2 variable		
	one variable on the basis of other	is known as regression analysis	
_	V		
_		·	
	x = Given	y = Given	
	y = ?	x = ?	
_			
	, b _{yx} , b _{xy} all are unit-free		
	y way war are arrefred		
	Dod line of v on v ic.		
	Reg line of y on x is :		
	Reg line of x on y is :		
D	od coefficient of v on v is - h -		
_ N	eg coefficient of y on x is = b_{yx} =		
R	eg coefficient of x on y is = b_{xy} =		
_	eg coefficient of x on y is b _{xy}		
_			
		My Notes:	
_			
_			
_			

19.	If $\bar{x} = 30$, $\bar{y} = 90$, $\sigma_x = 5$, $\sigma_y = 8$, $r = 0.80$
	Find a. Reg line of x on y

b. Reg line of y on x

c. If x = 25, y = ?

d. If y = 85, x = 9

$\mathbf{b}_{yx} = \mathbf{r} \cdot \frac{\sigma_y}{\sigma}$	Therefore, b _{yx} . b _{xy}	Square of correlation coefficient
	$= \mathbf{r} \cdot \frac{\sigma_{y}}{\sigma_{y}} \times \mathbf{r} \cdot \frac{\sigma_{x}}{\sigma_{y}}$	is equal to product of 2 regression coefficients.
	$=\mathbf{r}^2$	
$\mathbf{b}_{xy} = \mathbf{r} \cdot \frac{\sigma_x}{\sigma_y}$	$\mathbf{r} = \mathbf{b}_{yx} \cdot \mathbf{b}_{xy}$	Correlation coefficient 'r' is G.M. of
	$\mathbf{r}^2 = \mathbf{b}_{yx} \cdot \mathbf{b}_{xy}$	2 regression coefficients b _{yx} . b _{xy}

•	A

My Notes:

		e or a common of the grade of the common of
20.		
 4U.	b _{yx} =	
	y _{yx} —	
	h _	
	$\mathbf{b}_{\mathrm{xy}} =$	
	$\mathbf{b}_{yx} \cdot \mathbf{b}_{xy} =$	
	Therefore 'r' is G.M. of	
	r b _{yx} b _{xy}	
	0 0 0	
	+ + +	
	T T T	
21.		
	If Reg. line of y on x is written in the form of	
	, , , , , , , , , , , , , , , , , , ,	
	If Reg. line of y on x is 3x+5y=83. Find b _{vx}	
_	if fleg. fille of y off x is 3x+3y=63. I fill b _{yx}	
l		
99		
22.	If Reg. line of x on y is written in the form of	
22.	If Reg. line of x on y is written in the form of	
22.	If Reg. line of x on y is written in the form of	
22.	If Reg. line of x on y is written in the form of	
22.		
22.	If Reg. line of x on y is written in the form of If Reg. line of x on y is $2x-3y=95$. Find b_{xy}	
22.		
22.		
22.		
22.		
22.		
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
		we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	we get x = 50 and y = 90, then My Notes:
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	
	If Reg. line of x on y is 2x-3y=95. Find b _{xy}	

Probable Error = $0.674 \times \frac{(1-r^2)}{N}$

Standard Error = $\frac{(1 - r^2)^2}{N}$

Coefficient of determination =

Coefficient of Non-determination =

25.

2 regression lines become identical i.e. they coincide when r = -1 or r = 1.

26.

If r = 0; then regression lines are \bot to each other.

When there is no correlation between 2 variables then regression lines will be \bot to each other.

27.

Particulars	Maths (x)	Stats (y)
AM	88	92
SD	10	12
r	0.75	

Find 1. Reg. line of y on x

3. If x = 95, y = ?

2. Reg. line of x on y

4. If y = 90, x = ?

	Correlation & Regression Analysis
00	oorrollands a magnesorom minar, one
28. 1.00 ≥ r ≥ -1.00	
<u>≥</u> r² ≥	
\geq (\mathbf{b}_{yx} , \mathbf{b}_{xy}) \geq	
29. If $b_{yx} > 0$; then $b_{xy} < 0$	
30. If $b_{yx} = 2.50$, $r = 0.80$, $b_{xy} = ?$	
31. If $b_{xy} = -1.56$, $b_{yx} = -0.20$, $r = ?$	
, y, y, y,	
39 If b = 1.5981 b = 0.9281 n = 9	
32. If $b_{xy} = -1.5281$, $b_{yx} = 0.2381$, $r = ?$	
33. If $b_{yx} = 1.82$, $b_{xy} = 0.90$, $r = ?$	
34. If $\bar{x} = 90$, $\bar{y} = 80$, $r = -0.85$, $\sigma_x = 10$, $\sigma_y = 18$	
1. If x = 35, y = ?	2. If y = 98.70, x = ?

ŀ	25	16 0.75	Final appetrations of	determination and	d	
н	JJ.	$\mathbf{H} \mathbf{r} = \mathbf{U} \cdot \mathbf{I} 5.$	Fina coefficient of	aetermination and	a coefficient of nor	1-aetermination.

X	y
35	480
28	410

Find 'r'

37.

X	y	1
200	500	
180	600	
		/
X	y	
200	y 800	

38. If C = 5, m = 11. Find coefficient of concurrent deviation.

39.

If
$$cov(x,y) = 0$$
, then $r =$

If cov
$$(x,y)$$
 = positive, then == $1.00 \ge r > 0$

If cov (x,y) = negative, then
$$=$$
 -1.00 \leq r \leq 0

As
$$r = \frac{\text{covariance of } (x,y)}{\text{SD}_x \times \text{SD}_y}$$

40. Karl Pearson's product moment correlation coefficient is the ratio of cov (x,y) to product of standard deviations of x & y

41.	Prepare a bi-variate frequency table for the following data relating to marks in
	stats (x) and maths (y).

(12,18) (2,16) (12,3) (19,12) (5,8) (8,2) (13,14)

(2,6) (13,19) (6,10) (2,12) (14,2) (18,5) (20,1)

y		Marks in Maths (y)		Total
X		0-10	10-20	
Marks in	0-10			
Stats (x)	10-20			
	Total			

Find Marginal Distribution of x:	
Find Marginal Distribution of y:	
Find conditional Distribution of x when y is 10-20:	
Find conditional Distribution of y when x is 0-10:	
This conditional Distribution of y whom A is 0 To.	
4. 'Marginal Distribution' is the frequency distribution of one variable (x or y) active the other variable's full range of values.	cross
the other variable's full range of values.	
 'Marginal Distribution' is the frequency distribution of one variable (x or y) at the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) at the particular sub-population of other variable. 	
the other variable's full range of values.	
the other variable's full range of values.	across
the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) a the particular sub-population of other variable.	across
the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) a the particular sub-population of other variable.	across
the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) a the particular sub-population of other variable.	across
the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) a the particular sub-population of other variable.	across
the other variable's full range of values. 'Conditional Distribution' is the frequency distribution of one variable (x or y) a the particular sub-population of other variable.	across

x y	0-10	10-20	20-30	30-40	40-50	Total
0-10	5	20	22	23	25	95
10-20	8	30	26	28	42	134
20-30	9	20	29	38	48	144
30-40	13	50	36	39	56	194
40-50	26	60	28	19	26	159
Total	61	180	141	147	197	726

Fi	ind Marginal Distribution of x :
Fi	ind Marginal Distribution of y :_
Fi	nd conditional Distribution of x when y is 30-40:
Fi	nd conditional Distribution of y when x is 20-30:
42 .	If 2 variables move in same direction i.e. an increase on the part variable introduces an
	increase on the part of other variable and Decrease on the part of one variable introduces decrease on the part of other variable also, then 2 variables are known to be
	My Notes :

- 51. Regression equations are derived from method of least squares.
- Regression coefficient remain unchanged by shift of origin but affected due to change in scale.

a. If
$$u = 3 + x$$
 then $b_{vu} = b_{yx}$
 $v = y - 18$ and $b_{uv} = b_{xy}$

b. If
$$u = x + 17$$
 then $b_{vu} = b_{uv} = b_$

c. If
$$u = 3x + 18$$
 then $b_{vu} = b_{uv} = b_{uv}$

d. If
$$u = 18x + 17$$
 then $b_{vu} = v = 2y - 20$ $b_{uv} = 0$

- Two regression lines i.e. $(y \overline{y}) = b_{yx} (x \overline{x})$ and $(x-\overline{x}) = b_{yy} (y - \overline{y})$ intersect at point $(\overline{x}, \overline{y})$
- 54.
 r
 b_{yx}
 b_{xy}

 0.80
 5.80

 0.75
 0.20

 -0.60
 -1.36

 -0.80
 -1.10

 0.2819
 1.23619
- There are some cases when we may find a correlation between 2 variables although

 2 variables are not casually related. This is due to existence of third variable which is related

to both the variables under consideration, such a correlation is known as

- Bi-variate data are data collected for :
 - a. 2 variables.
 - b. More than 2 variables.
 - c. 2 variables at same point of time.
 - d. 2 variables at diff. point of time.

		Correlation a negression Analysis
57		
57.	If plotted paints in a scatter diagram lie fr	OM
	ii piotteu paints iii a scatter diagram ne n	OIII
 -	pper left to lower right then	Upper right to lower left then
I	<u> </u>	
L		
58.		
oo. If n	lotted points in a scatter diagram are evenly o	distributed without depicting any pattern
the		
59.		
If p	lotted points in a scatter diagram lie on a sir	ngle line then correlation is
a. F	Perfect Positive b. Perfect Negative	c. a or b d. None of these
60.		
The	correlation between shoe-size and intelligen	ce is
a. P	Positive b. Negative	c. Zero d. None of these
61.		:
Pro	oduct moment correlation coefficient is cons	sidered for
l		
	Finding nature of correlation	b. Finding degree of correlation
C. I	Both of these	d. None of these
l		
62.		
li r	is positive then points in a scatter diagram	tend to cluster :
<u> </u>		
a. I	From lower left corner to upper right corner	
b.	From lower left corner to lower right corner	
	From lower right corner to upper left corner	
d.	None of these	
63. The	e co-variance between 2 variables is :	
a. 8	Strictly positive	b. Strictly negative
	llways zero	d. Either positive, negative or zero
		a postaro, noguerro di zoro
Sin	nilarly SD =	
Sin	nilarly SD =	
	•	
	nilarly SD =	

		Correlation & Regression Analysis
64	•	To find degree of agreement about beauty between 2 judges in a beauty contest, we use :
		a. Scatter Diagram
		b. Product moment correlation coefficient
		c. Spearman's rank correlation coefficient
_		d. Coefficient of concurrent deviation
	_	
65		The diff. between observed value and estimated value in a regression analysis is known as Error or Residue.
	7	
66		What are the limits of 2 regression coefficient?
_		what are the limits of 2 regression coefficient.
		a. No limit b. Both must be positive
_		c. One positive & other negative d. Product of 2 regression coefficients must be
		numerically less than unity.
_		
_	_	
67	'•	Regression coefficients remain unchanged due to :
	a	a. Shift of origin b. Change of scale c. Both a and b d. Either a or b
_	_	
68	3.	Correlation coefficient between 2 variables is -0.90, then coefficient of determination is :
		a. 0.90 b0.81 c. 0.19 d. 0.81
_	_	
69).	
		Correlation coefficient between 2 variables is 0.70, then % of variation unaccounted for is : a. 70% b. 49% c. 51% d. 100%
		a. 70% U. 100%
	_	
70).[
		If cov (x,y) = 15, then $\sigma_x \cdot \sigma_y$
	_	
71		If $u + 5x = 6$ and $3y - 7v = 20$. $(r)_{xy} = 0.58$ then $(r)_{uv} = ?$
		a. 0.58 b0.58 c. 0.84 d0.84
_		
_		
_		

			3 students is 21,
a. 0.70	b. 0.65	с. 0.75	d. 0.80
		rent deviations found t	to be 4. What is
a. 0.20	nt deviation? b 0.20	c. 1/3	d1/3
a. 10	b. 9	c. 8	d. None of these
If y = 4 + 3x is regressi	on line of y on x. AM	I of $x = -1$; AM of $y = ?$	
a. 1 b.	-1	с. 7	d. None
2 regression lines are	y = -2x+3 and 8x = -	y+3. Find value of r.	
a. 0.50	b 0.50	c1 /\ 2	d. None of these
	what is the value of ran a. 0.70 For 10 pairs of observa coefficient of concurre a. 0.20 The coefficient of concurren a. 10 If y = 4 + 3x is regressi a. 1 b.	what is the value of rank correlation coeffician. 0.70 b. 0.65 For 10 pairs of observations, No. of concurrence officient of concurrent deviation? a. $\sqrt{0.20}$ b $\sqrt{0.20}$ The coefficient of concurrent deviation for 'pair's line of concurrent deviations was found a. 10 b. 9 If $y = 4 + 3x$ is regression line of y on x. AM a. 1 b1	what is the value of rank correlation coefficient? a. 0.70

77.	Given the follo equation of x		ons 2x - 3y = 10	D and 3x + 4y	/ = 15, which one	is the regression
	a. 3x+4y=15		b. 2x-3y=1	0	c. Both	d. None
	7					
78.	2 regression x = 25, SD of	lines are given y = ?	ven by : 8x + 1	0y = 25 and	16x + 5y = 12. &	Variance of
	a. 16	b. 8	с. 64	d. 4	e. None o	f these
—						
<u> </u>						
79.		Variable	es		Nature of C	orrelation
79.			es pany and no. of o	claims	Nature of C	orrelation
79.	1. Profit of insu	urance comp			Nature of C	orrelation
79.	 Profit of insu Demand for 	urance comp goods and th	eany and no. of o		Nature of C	orrelation
79.	1. Profit of insu 2. Demand for circumstances	urance comp goods and th	pany and no. of one		Nature of C	orrelation
79.	1. Profit of insu 2. Demand for circumstances 3. Years of edu 4. Amount of ra	urance comp goods and th cation and li ainfall and Yi	pany and no. of one	r normal	Nature of C	orrelation
79. 80.	 Profit of instances Demand for circumstances Years of edu Amount of ra Sale of woold 	goods and the cation and lacation and Yilliand Yillen garments	pany and no. of one prices under prices under necome ield of crop is and temperature.	r normal		orrelation t between x and y is
	 Profit of instances Demand for circumstances Years of edu Amount of ra Sale of woold 	goods and the cation and lacation and Yilliand Yillen garments	pany and no. of one prices under prices under necome ield of crop is and temperature.	r normal re 2,3)] the cor		
	 Profit of instances Demand for circumstances Years of edu Amount of rate Sale of woold For the bivaria	goods and the cation and lacation and Yilliand Yillen garments	neir prices unde ncome ield of crop s and temperatu	r normal re 2,3)] the cor	relation coefficien	t between x and y is
	 Profit of instances Demand for circumstances Years of edu Amount of rate Sale of woold For the bivaria	goods and the cation and lacation and Yilliand Yillen garments	neir prices unde ncome ield of crop s and temperatu	r normal re 2,3)] the cor	relation coefficien	t between x and y is
	 Profit of instances Demand for circumstances Years of edu Amount of rate Sale of woold For the bivaria	goods and the cation and lacation and Yilliand Yillen garments	neir prices unde ncome ield of crop s and temperatu	r normal re 2,3)] the cor	relation coefficien	t between x and y is

81.	r = 0.48, $cov(x,y) = 36$, SD of $x = 16$, SD of $y = 9$

a. 18.75

b. -18.75

c. 16.75

d. None of these

82. r = 0.52, cov (x,y) = 7.80, Variance of x = 16, SD of y = ?

a. 2.85

b. 3.25

c. 1.25

d. 3.75

83. If r = 0.40 then coefficient of determination and coefficient of non-determination are resp.

a. 0.16, 0.84

b. 0.36,0.64

c. 0.60,0.40

d. None

84. Simple correlation is known as:

a. Linear correlation

b. Non-linear correlation

c. Non-sense correlation

d. None of these

85. Slope of regression equation of x on y is:

a. b_w

b. b_{vx}

c. $1/b_{xy}$

d. $1/b_{vx}$

My Notes:

			Correla	tion a neglession analysis
86.	01			
30.	Slope of regi	ression equation of y on	X IS:	
	a. h	b. b _{yx}	c. 1/h	d. 1/b _{yx}
	Ху	ух		ti i / Nyx
\setminus —				
87.	$\mathbf{(r)}_{xy} = \mathbf{(r)}_{yx}$			
	a. correct	b. wrong	c. can't say	d. None of these
L				
88.	b _{vx} is always	same as b _w		
00.	JA.	Ŋ		
	a. correct	b. wrong		
89.				
09.	Covariance n	neasuresv	ariation between 2 variable	es.
	a. Joint	b. Common	c. Relative	d. None of these
	ar voiiit			
00				
90.	Karl Doareor	n's Product Moment		
		tion Coefficient		
	Correlati	iion coemcient		
	Snoone	n's Rank		
		Coefficient		
	Correlation			
l				

94. If cov(x,y) = 36, $\sigma_x = 9$, $\sigma_y = 4$. Find r

a. 1.00 b. -1.00 c. 0 d. None

95. _____ is also known as measure of association between 2 variables.

06			
96.			is
			15
the best m	ethod to obtain correlation betw	een 2 variables.	
0.4			
91. If Reg line o	f y on x is 3x + 8y = 13y - 63x + 6	$+$ 103. Find $\mathbf{b}_{\mathbf{x}}$	
		,-	
OO IS DOCK	for an win 10m or 00m od	00 Final h	
92. If Reg line of	f x on y is 16x - y = 93x - 21y +	83. FING D _{xy}	
93. If $r = -0.638$	812, $b_{yx} = -1.36822$, $b_{xy} = ?$		
	,,		
	,,		
		sale of cold drinks is :	
93. Correlation	between temperature of city and		
	between temperature of city and	sale of cold drinks is : c. Zero	d. Can't say
93. Correlation			d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		d. Can't say
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		d. Can't say My Notes:
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		
93. Correlation	between temperature of city and		

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

'I AM STRONG'

BECAUSE I KNOW MY WEAKNESS

- CA VINOD REDDY -

Student Life is the SEED of your life.
PLANT it Wisely

मेहनत इतनी खामोशी से करो के सफलता शोर मचा दे

Yesterday You Said Tomorrow

- CA VINOD REDDY -

Chapter-10

Probability

CM VINOD REDDY

		Probability
1.	Probability is the	
2.	Classical Definition of Probability	
_		
$\lfloor -$		
3.		
J.	Coin	
	Dice	
	Dice	
_	Card	
$\lfloor -$		
4.		
	A coin is tossed 2 times what is probability of getting	
2	P. heads 1 head Atleast 1 head	Atmost 1 head
_		
	My	Notes:

CA Vinod Reddy - vinod.reddy.ca@gmail.com

276

			Probability
8.	A d	ice is rolled twice what is the probability of getting	
	1	→ 7 points as sum	
		→ 8 points as sum	
		→ 9 or more points	
		-> 9 or more points	
		→ Atleast 3 points	
		Action of points	
		→ Odd points on both dice	
		→ Odd points on atleast one dice	
		→ Even points on both dice	
		> Even points on both thee	
		→ 5 or 7 points	
		→ Sum as prime number	
		→ Odd points on atleast one dice	
		→ Sum as odd number	

Sum as even number

- a. A diamond =
- b. A King =
- c. A Black Card =
- d. A Black Queen =
- e. A Jack =

- P(A') =
- P(B') =
- $P(A \cap B) =$
- P(A-B) =
- **P(B-A)** =
- $P(A' \cap B') =$
- $P(A \cup B') =$
- $P(B \cup A') =$
- $P(A \triangle B) =$
- P(AUBUC) =

- P(A) =
- P(B) =
- P(A')=
- P(B')=
- $P(A \cup B) =$
- $P(A \cap B) =$
- P(A-B) =
- P(B-A) =
- $P(A' \cap B') =$
- $P(A \triangle B) =$

		Probability
12. De-morgan's rule of pro	bability (with diagram)	
10		
13. If 2 dice are rolled ther		
Sum of points on 2 dice	Probability	
2		
3		
5		
6		
7		
8		
9		
10		
11		
14. A card is drawn from a we	ell shuffled pack of 52 cards then what is probab	ility that it is a -
a. Spade =		
b. Queen =		
c. Spade and	Queen =	
d. Spade or G		
e. Spade but		
f. Queen but	not Spade =	
g. Neither Sp	ade nor Queen =	

	Flooability
15. A, B are said to be mutually exclusive ev	ents then :
10	
16. A, B are said to be mutually exhaustive evo	ents then:
A D are said to be independent events wh	NO FO.
17. A, B are said to be independent events wh	ien:
17. A, B are said to be independent events wh	ien:
17. A, B are said to be independent events wh	ien:
17. A, B are said to be independent events wh	ien:
A, B are said to be independent events where the said to be independent events as the said to be independent events.	ien:
A, B are said to be independent events where the said to be independent events.	ien:
A, B are said to be independent events where the said to be independent events.	nen:
A, B are said to be independent events where the said to be independent events and the said to be independent events are said to be independent events and the said to be independent events a	nen:
A, B are said to be independent events where the said to be independent events and the said to be independent events. The said to be independent events are said to be independent events and the	ien:
	ien:
18.	
	If
18.	If P (A∩B) = 0
18.	If P (A∩B) = 0 P (A∪B) = 1.00
18.	If $P(A \cap B) = 0$ $P(A \cup B) = 1.00$ $P(A \cap B) = P(A) \times P(B)$
18.	If P (A∩B) = 0 P (A∪B) = 1.00
18.	If $P(A \cap B) = 0$ $P(A \cup B) = 1.00$ $P(A \cap B) = P(A) \times P(B)$
18.	If $P(A \cap B) = 0$ $P(A \cup B) = 1.00$ $P(A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$
18.	If $P(A \cap B) = 0$ $P(A \cup B) = 1.00$ $P(A \cap B) = P(A) \times P(B)$ $P(A) = P(B)$

							Probability	
19	2 dice are roll appeared on o	ed. It is observed and of the dice?	that sum of	points is 9.	What is p	orobability	y that 4 has	
-								
_								
=								
=								
20								
_	P (A/B) =			P (A'/B) =				
=	P (B/A) =			P (A'/B') =				
=	P (A/B') =			P (B'/A) =				
=				- (= / · · ·)				
	P (B/A') =			P(B'/A') =				
21	If A. D. one in	dan and ant avent	to them.					
	II A, B are inc	dependent event	s then :					
_								
=								
=								
_								
						My	Notes:	
_								_
_								_
_								_
_								
_								

					Probability				
22.									
		8 R 6 W							
		5 BI							
		3 balls are drawn. What							
		3 balls are drawn. What	is probability of	getting					
2 R	2 Red balls Atleast 2 white Balls Atmost 1 Black Ball								
$\overline{}$									
23.	1. P(AUB)	2. P(A∩B)		3. P(A∩B')					
	I. P(AOB)	2. F(ALIB)	$\overline{}$	J. F(AITB)					
	4. P(B∩A')	5. P(A'∩B')		6. P(A△B)					
	TI (BIIA)		\neg	0.1 (AZB)					
l —	7. P(A∪B')	8. P(BUA')		9. P(A'∪B')					
10	P(AUBUC)		1. P(A'∩B'∩C')						
10.	(AOBOC)		T. P (ATTIBLIE)						
	\								
_									
				M	y Notes :				

24. If P(A) = 0.30, P(B) = 0.40, $P(A \cap B) = 0.15$. Find

P(A') =	P (A △ B) =
P(B') =	P(A/B) =
P(AUB) =	
P(A-B) =	P(B/A) =
— P(B-A) =	
P(A'∩B') =	P(A/B') =
P(A ∪ B') =	P(A'/B') =
$P(B \cup A') =$	

25. P(A) = 0.30, P(B) = 0.40, A, B are independent events, then find

P(AUB) =
P(A-B) =
P(B-A) =
$\mathbf{P}(\mathbf{A}'\cap\mathbf{B}')=$
P (A' ∪ B') =

In a leap year selected at random what is probability of getting

53 Mondays

52 Mondays

54 Mondays

In a non-leap year selected at random what is probability of getting

53 Sundays

52 Sundays

Atleast 52 Sundays

54 Sundays

	Probability
28. In a year calcated at random what is the probability of setting	
In a year selected at random what is the probability of getting	
52 Tuesdays 53	Tuesdays
20 What is much shift, that 15th day of a randomly colored month is Sur	edovi)
29. What is probability that 15th day of a randomly selected month is Sur	iday:
30. Probability of A passing even is 0.20, and B passing even is 0.4	40
Probability of A passing exam is 0.30. and B passing exam is 0.4 What is the probability that	40.
What is the probability that	
	V
Both will Only A Only B Atleast one One & Only	Atleast one will fail
pass will pass will pass one will pass	wiii iaii
31.	
X 30 60 90 120 150 Find E(x), SD _x , Var Prob. x 0.20 0.30 0.10 0.15 0.25	iance of x

							Probability
32. –	X	10	20	30	40	50	
	Prob. x	0.20	3k	5k	7k	k	
	Find E(x), S	D Varianc	e of v				
	Tillu L(x), o	, variano	O OI X				
2	lf odds in f		out A one O	. O. Find D	VAN DVA'N		
0.	lf odds in fa	avour of ev	ent A are 5	; o. rillu r	(A), P(A)		
4.	lf odds agaiı	ist event B	are 8 : 13. F	ind P(B), P	(B')		
							My Notes:
CA	Vinad Raddy	- vinad rad	ldv.ca@gmai	Lcom			2

CA Vinod Reddy - vinod.reddy.ca@gmail.com

	If odds in favour of event A are $3:11$; Odds against event B are $2:15$;
	A,B are independent events, then find :

P(A) =

P(B) =

P(**A**∩**B**) =

P(AUB) =

 $P(A' \cap B') =$

P(A-B) =

P(B-A) =

36.

Physics **Maths** 60(20)130 90

Find probability that a student likes

1 Ball

- a. Maths if it is known that he likes physics =
- b. Physics if it is known that he doesn't likes maths =

37.

10 Red	2 Red	1 ball is drawn.
8 White	3 White	What is the probability that it is a red ball?

Events are of 2 types

Simple or Elementary Event

Composite or Compound Event

Getting Head when One Coin is tossed

Getting Head when
Two Coins are tossed

- Equally likely events are also known as Mutually Symmetric Events or Equi-probable events. If P(A) = 0.30, P(B) = 0.30 then A,B are equally likely events OR Equi-probable events OR Mutually Symmetric events
- 44. If P(A) = 1.00 = 100% then event A is said to be a
- 45. If P(B) = 0.00 = 0% then event B is said to be a
- **46.** Wages in ₹ 100-200 200-300 300-400 400-500 No. of workers 23 57 88 93

If a worker is selected at random, what is the probability that

- 1. He earns more than ₹ 300 =
- 2. He earns more than ₹400 =
- 3. He earns between ₹200 ₹400 =
- 4. He earns less than ₹300 =

47.

A B	
0.300.200.28	
0.50[0.25]	
0.	2

= Sample Space

= Set of all possible outcomes

0.22	i an possible outcomes	
Fo r above diagram. Find	P(BUA')	
P(A)	P(A'∪B')	
P(B)	P(A/B)	
P(A')	P(B/A)	
P(B')	P(A'/B')	
P(AUB)	P(B'/A')	
P(A∩B')	-(3/.1)	
P(B∩A')	P(A'/B)	
P(AUB')	D/D/A	
	P(B/A')	

4 4	
/	-
4	J

A B	
$\left(\begin{array}{c} 0.20 & 0.15 \\ 0.05 & 0.05 \end{array}\right)$	
0.10	
0.08 0.07	
0.22	

From this Venn Diagram : Find

P(A) =	P(BUC) =	$\mathbf{P}(\mathbf{A} \cap \mathbf{B}' \cap \mathbf{C}') =$
(B) =	P(A∪C) =	$P(B \cap A' \cap C') =$
(C) =	P(A-B) =	$\mathbf{P}(\mathbf{C} \cap \mathbf{A}' \cap \mathbf{B}') =$
(A') =	P(B-A) =	$P(A' \cup B') =$
P(B') =	P(A-C) =	P (B '∪ C ') =
(C') =	P(C-A) =	P(A'UC') =
(A∩B) =	P(B-C) =	$P(A'\cap B'\cap C') =$
(B∩C) =	P(C-B) =	$P(A \triangle B) =$
P(A∩C) =	P(AUBUC) =	$P(B \triangle C) = P(A \triangle C) =$
P(AUB) =	P(A∩B∩C) =	()

49.
$$P(A-B) = 0.20, P(B-A) = 0.30, P(A' \cap B') = 0.10.$$
 Find

P(A) =

P(B) =

P(AUB) =

 $P(A \cap B) =$

 $P(A\triangle B) =$

 $P(A \cup B') =$

P(BUA') =

 $P(A' \cup B') =$

P(A') =

P(B') =

My Notes:

Pro	hal	hil	it
LIO	va	UЦ	ш

50.	$P(A) = 0.30, P(B) = 0.20, P(C) = 0.60, P(A \cap B) = 0.10, P(B \cap C) = 0.15,$
	$P(A \cap C) = 0.18$, $P(A \cap B \cap C) = 0.05$, Find $P(A \cup B \cup C)$ and $P(A' \cap B' \cap C')$, $P(A \cup B)$, $P(B \cup C)$
	P(A∩C'), P(B∪C')
_	
_	
_	
<u></u>	
51.	Odds in favour of an event are 2:3 and odds against another event are 3:7. Find the
<i>J</i> 1.	probability that only one of two events occurs. (2 events are independent of each other)
l	
59	There are 2 haved with composition of halls at the same and the same are the same a
52.	
	There are 3 boxed with composition of balls: 5 Red 6 Red 8 Red 8 Blue 2 Blue 1 Blue 2 Blue 1 Blue 2 Blue 1 Blue 1 Blue 2 Blue 3 Blue 2 Blue 1 Blue 2 Blue 3
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue
	8 Blue 3 Blue 2 Blue

	Probability
53. In a business venture, a man can make profit of ₹	50,000 or incur a loss of
₹ 10,000. The probability of making profit or incu	
known to be 0.75 and 0.25 respectively. What is	nis expected profit?
54. Ashwat draws 2 balls from a bag containing 3 whit if he draws a white ball and ₹ 200 if he draws a re	
If the draws a white ball and \ 200 if the draws a re	u van. What is his expectation:
55. A number is selected form first 1000 natural number is divisible by 3 or 4 or 5.	nbers, what is probability that
indifficer is divisible by 3 of 4 of 5.	
The probability of an event lies between 0 and 1	hath inclusive
The probability of an event lies between 0 and 1,	DOIN INCIUSIVE.
0 ≤ Probability (Any event) ≤ 1.00	
	Nav Notice
	My Notes :

57.

A: Vinod is a minor

B: Vinod is a major

Here A, B are

58.

A : Ashwat is an Indian

B: Ashwat is an American

Here A, B are

59.

All general Formulae at one place:

1. P(A) =	11. P(A'∪B') =

3.
$$P(A \cup B) =$$
 13. $P(A' \cap B' \cap C') =$

18. P(A'/B) =

9. P (
$$A \triangle B$$
) =

20.
$$P(B'/A') =$$

60.

When A,B are mutually exclusive events

$P(A \cap B) = 0$	P(A/B) =

$$P(A \cup B) = P(B/A) =$$

$$P(A-B) = P(A\triangle B) =$$

$$P(B-A) = P(A \cup B') =$$

$P(A' \cup B') =$	P(B ∪ A ′) =

61.	When A,B are mutually exhaustive events then	
U .	when A,B are mutually exhaustive events then	•

 $P(A \cup B) = 1.00$

$$P(A' \cap B') =$$

$$P(A/B') =$$

$$P(B/A') =$$

62. When A,B are independent events then, $P(A \cap B) = P(A) \times P(B)$

P(A ∩ B ') =	P(A/B') =
$\mathbf{P}(\mathbf{B} \cap \mathbf{A}') =$	P(B/A') =
$P(A' \cap B') =$	P(A'/B) =
P(AUB) =	P(A'/B') =
P (A/B) =	P(B'/A) =
P(B/A) =	P(B'/A') =

2 dice are rolled, what is probability that points on first dice are more than points on second dice?

A committee of 5 members is formed from 8 ladies and 9 gents. What is probability that ladies form the majority?

My Notes:

				Probability
	oblem of maths was ectively. What is the		chances of solving it	are 1/3, 1/5, 1/2
		producting that pro	Siem gete content	
	entical balls are placa ains 3 balls?	ced at random in 3	bags. What is the pro	bability that first bag
67	1 1	1		
67. P(A)	$=\frac{1}{2}, P(B) = \frac{1}{3}, P$	$(A \cap B) = \frac{1}{4}$, Find F	P(A'/B')	
67. P(A)	$=\frac{1}{2}, P(B) = \frac{1}{3}, P$	$(A \cap B) = \frac{1}{4}$, Find F	P(A'/B')	
67. P(A)	$=\frac{1}{2}, P(B) = \frac{1}{3}, P(B)$	(A∩B) = 1/4 , Find F	P(A'/B')	
67. P(A)	$=\frac{1}{2}$, $P(B)=\frac{1}{3}$, $P(B)=\frac{1}{3}$	(A∩B) = 1/4 , Find F	P(A'/B')	
67. P(A)	$P = \frac{1}{2}, P(B) = \frac{1}{3}, P(B)$	(A∩B) = 1/4, Find F	P(A'/B')	
67. The pers	probability that the ons A,B,C are 0.20,	re is atleast one er , 0.30, 0.10 respec	ror in an account stat	
67. The pers	probability that the ons A,B,C are 0.20, ements. Find expect	re is atleast one er , 0.30, 0.10 respec	ror in an account stat	
67. The pers state	probability that the ons A,B,C are 0.20, ements. Find expect	re is atleast one er , 0.30, 0.10 respec ed number of corre	ror in an account stat ctively. If A, B, C prepa ect statements.	re 60, 70, 90 such
67. The pers state	probability that the ons A,B,C are 0.20, ements. Find expect	re is atleast one er , 0.30, 0.10 respec ed number of corre	ror in an account stat ctively. If A, B, C prepa ect statements.	re 60, 70, 90 such
67. The pers state	probability that the ons A,B,C are 0.20, ements. Find expect	re is atleast one er , 0.30, 0.10 respec ed number of corre	ror in an account stat ctively. If A, B, C prepa ect statements.	re 60, 70, 90 such
67. The pers state	probability that the ons A,B,C are 0.20, ements. Find expect	re is atleast one er , 0.30, 0.10 respec ed number of corre	ror in an account stat ctively. If A, B, C prepa ect statements.	re 60, 70, 90 such

								Probability
60								
69. –	X	1	2	4	6	8	Find Expected Value of x,	
	Prob. x	k	2k	3k	3k	k	SD of x, Variance of x.	
	1100. X	_ N	ZR	JN	JK	N	SD 01 A, Turiureo 01 A	
_								
70.	5 Red ⊥	4	Balls	are d	rawn	. Wha	at is the proabibility that	
10.	6 White	th	ere is	atlea	est on	e bal	ll of each colour?	
	4 Black						a di dadii dolomi.	
71.	5 Red _	$\longrightarrow 5$	Balls	are	drawı	n. Wh	nat is the proabibility that	
	12 Blue	tł	iere i	s atle	ast o	ne ba	all of each colour?	
	3 Pink							

c. 1/4

d. 17/36

e. None

a. 5/12

b. 7/12

92.		0, P(B-A) = 0.60, P(A)	= 0.55		
	Find P(AUB) a. 1.15	b. 0.15	c. 0.85	ا ل	Vnond data
	a. 1.15	D. U.15	C. U.85	a. v	Vrong data
93.	2 dice are re	olled, what is probab	ility that sum of po	oints is a prime i	number?
-					
-					
94.	One card is one of them	drawn from each of 2 is an ace?	2 packs of 52 cards	. What is probab	ility that atleast
	a. 8/104		c. 25/169		
-					
95.					
95.	A B	Shaded area represe	nts		
95.	A B	a. (A-B)	nts		
95.	A B	a. (A-B) b. (B-A)	nts		
95.	A B	a. (A-B) b. (B-A) c. (A∪B')	nts		
95.	A B	a. (A-B) b. (B-A)	nts		
	A B	a. (A-B) b. (B-A) c. (A∪B')	ints		
95.	A B	a. (A-B) b. (B-A) c. (A∪B')			
	ABB	a. (A-B) b. (B-A) c. (A∪B') d. (A'∪B') Shaded area repres a. (A-B)			
	ABB	a. (A-B) b. (B-A) c. (A∪B') d. (A'∪B') Shaded area repres a. (A-B) b. (A+B)			
	ABB	a. (A-B) b. (B-A) c. (AUB') d. (A'UB') Shaded area repres a. (A-B) b. (A+B) c. (AUB')			
	ABB	a. (A-B) b. (B-A) c. (A∪B') d. (A'∪B') Shaded area repres a. (A-B) b. (A+B)			

			riobability
97 .			
91.	A number is selected from first 100 nat	ural numbers, what is the proba	ability that
	<u></u>	V	
	It is a perfect	lt is a perfect	It is an
	square?	cube?	odd number?
L			
98.	2 cards are drawn one after other from a	pack of 52 cards, what is the pr	obability
	that both cards are kings if cards are draw		-
	<u> </u>	—	
	Without		
		Replacem	ent
	першеннени	nepiaceni	UIII
99.	2 numbers are selected from first 50 nat	ural numbers, find the probab	ility that both are
	divisible by 3?		
L —			
100	Mr. A says to Mr. B "If it rains today I wil	I give you ₹ 50,000 but if it do	esn't rain
	today you have to pay me ₹80,000". Find	l expected gain / (loss) for Mr.	B if probability of
	raining is 0.20		
		N	ly Notes :

			riovaviiity
1	01.	A and B tossed 3 coins each. What is probability that both of them will	get same
_	VI.	number of heads?	
		indifficition of ficting.	
1			
		My	Notes :

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

OA Wined De Jake I Meller De de Le Nelse	CA YINODREDDY
CA Vinod Reddy Maths Regular Notes	YINODKEDDY

Every good or Bad Moment of Your life is a part of your life, It's not your LIFE!

If you are not willing to learn,
No one can help you.
If you are determined to learn,
No one can stop you!

- CA VINOD REDDY -

All the late nights and Early mornings will pay off.

Education is the key to unlock the golden door of FREEDOM

Every student can learn, just not on the same day!

Chapter-11

Theoretical Distribution

CA VINOD REDDY

	Theoretical distributions
1. Theoretical Distribution	16
1. Theoretical Distribution	10
\rightarrow	\rightarrow
\rightarrow	→
→	→
→	-
	
2. Dinamailla Distribution	
Binomail's Distribution	
nuch (v)	
prob (x)	
where,	
n =	
p =	
x =	
η =	
3. A coins are tossed. What is probability of detti	nd 2 hoade
3. 4 coins are tossed. What is probability of getti	ng 3 heads
3. 4 coins are tossed. What is probability of getti	ng 3 heads
4 coins are tossed. What is probability of getti	
3. 4 coins are tossed. What is probability of getti Classical Approach	ng 3 heads Binomial's Approach
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach
4 coins are tossed. What is probability of getti	Binomial's Approach

4	5 pains are tassed. What is probab	ility of datting 2 hands
4.	5 coins are tossed. What is probab	mty vi getting 3 neaus
_		
_	Classical Approach	Binomial's Approach
_		
_		
_		
_		
<u> </u>		
5.	Mode of Binomial's distribution =	Largest integer contained in (n+1)P
	mode of Dinvillia 3 alsa ivativii -	
_		if (n+1)P is non integer. Data is uni-modal.
		If (n+1)P is an integer, then data is bi-modal.
		Modes are (n+1)P and (n+1)P-1
\ —		
$\overline{}$		
	and the second s	
h	Enon $(v) - N v^{"} C n^{x} \alpha^{"x}$	
6.	Freq (x) = N $x {}^{n}C_{x} p^{x}.q^{n-x}$	
6.	Freq (x) = N x ${}^{"}C_x p^x \cdot q^{"}^x$	
6.	Freq (x) = N x C_x p x .q x	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
b.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
6.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
b.	Freq (x) = N x " C_x p".q"	
b.	Freq (x) = N x " C_x p*.q"*	
b.	Freq (x) = N x " C_x p*.q"*	
b.	Freq (x) = N x ${}^{"}C_x p^x \cdot q^{"}^{"}$	
b.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
b.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
b.	Freq (x) = N x ${}^{"}C_x p^x \cdot q^{"}^x$	
b.	Freq (x) = N x ${}^{"}C_x$ p x .q ${}^{"}$	
b.	Freq (x) = N x " C_x p".q"	
7.		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?
		es. Find expected frequency of at most 7 heads?

5.	10 coins are tossed. Find probability of getting
a.	2 heads
-	O beads
0.	3 heads
C.	3 tails
d	4 tails
e.	5 or 7 heads
f.	4 or 5 or 6 heads
-6	Atmost 0 hoods
g.	Atmost 9 heads
<u>h.</u>	Atleast 2 heads
4	Atleast 1 tails
	ALIQUIS I WIII
j.	Atmost 2 tails
_	

		Theoretical Distributions
9.		
7	2 dice are rolled what is probability of get	ting odd points on atleast one dice
—		
	Classical Approach	Binomial's Approach
_		
_		
_		
10.		
	2 dice are rolled. What is the probability o	getting 5 points on atmost 1 dice?
_	→	
	Classical Approach	Binomial's Approach
_		
_		
_		
-		
_		
-		
11.	5 dice are rolled. What is the probability of g	etting 3 points on 4 dice?
_		
		My Notes :

							Theoretica	l Distributions
12	5 dice are	rolled. \	What is t	he probab	ility of gett	ing at least	5 points on	atmost 1 dice?
· ·	o unoc un c				and or gott		o pointo on	
-								
—								
	_							
13	4 dice are	rolled.	What is t	the probal	bility of get	ting atleast	3 points on	atleast 3 dice?
							o points on	
-								
=								
-								
_								
_								
_								
l —								
	1							
14	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4 S	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4 S	Sundays?
14	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4 S	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4 S	Sundays?
14	15 dates a	are selec	cted at r	andom. W	hat is the p	probability (of getting 4 S	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	probability (of getting 4 S	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	robability (of getting 4	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	probability (of getting 4	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	probability (of getting 4	Sundays?
14.	15 dates a	are selec	cted at r	andom. W	hat is the p	probability (of getting 4	Sundays?
							of getting 4 s	

16.

n	p	q	Mean	SD	Variance
20	0.20				
80		0.60			
120	0.05				
200			45		
	0.20		50		
		0.20	80		
			100		80
60	0.35				
2,000		0.05			
8,000		0.98			
10,000	0.63				

17. Summary of Binomial's Distribution.

	Theoretical Distributions
18. Prob (x) as per poisson's model = $\frac{1}{x}$	
19. If $m = 4$. Find prob ($x=5$) for poisson's variate.	
20. If SD of poisson's variate is 2. Find probability (-2.30 < $x \le$	1)
	•,

				Ineoretical Distributions
21. If m = 3,	for poisson's variate.	Find prob (x > 1)	prob (v > 1)	nroh (2 4 x 4 5)
2 1, II III = 3,	tor poisson's variate.	Tilla prov (x ≥ 1),	prov (x > 1)	, prov (3 S X S 3)
00				
22. n = 20	00, p = 0.01, find prob	(x=2)		
	/ - N - M - J - I		Poisson's Mo	odel
Binomia	al's Model			
				My Notes:

-		
-		
-		
_		
_		
_		
2	5. $p(x=3) = p(x=4)$. Find mean of Poisson's Distribution.	
_		
_		
_		
_		
-		
-		
-		
\-		
	CA Vinod Reddy - vinod.reddy.ca@gmail.com	316

	Theoretical Distributions
26. Summary of Poisson's Distribution	
	My Notes :
	My Notes:

27. Normal Distribution

- 1. It is applicable only for distribution of a 'continous variable'
- 2. Derived by Karl Gauss :- known as Gaussian's theorem.
- 3. It is based on assumption of Normality.
- 4. As per assumption of Normality a variable is said to be normally distributed if 50%

observations are less than AM and 50% of the observations are more than AM.

- 5. prob(x < w) = 50%
- **Prob** $(x > u_1) = 50\%$
- **6. Z** = **Normal curve wefficient** = (**x**-**W**)

σ

- 7. There are 2 parameters of normal distribution namely u_i , σ^2 Therefore
- It is a Bi-parametric distribution
- 8. Normal curve is a Bell-shaped curve, symmetrical about AM.
- 9. In probability distribution of this type:

 $Prob(x \le 50) = prob(x \le 50)$

 $Prob(x \ge 85) = prob(x \ge 85)$

- Therefore, we can say that: probability that a particular variable will assume a specific value is always 0.
- 10. AM= Median= Mode
- **11. Median = (Q_3 + Q_1) = uq = mode**

2

12. Q.D. = $(Q_3 - Q_1) = 0.6750 \times SD$

2

- -13. MD = 0.80 X SD
- **14.** $Q_3 = W + 0.675\sigma$

 $\mathbf{Q}_1 = \mathbf{W} - \mathbf{0.675} \sigma$

- 15. Φ (a) represents area from - ∞ to a.
 - 16. Total area covered by normal curve = 1.00= 100%
 - 17. Expected frequency
 - 18. For normal distribution: SD > MD > QD
 - 19. Points of inflexion for normal distribution are

28. For Normal Distribution

1. Relation between MD & SD

MD =

2. Relation between QD & SD

QD=

3. Relation between MD & QD

				The	oretical Distributions
29 .	$\mathbf{Q}_{_3}$	$\mathbf{Q}_{\scriptscriptstyle{1}}$	Q.D.	M.D.	S.D.
	50	20			
	69.60	29.40			
	86	40			
	91.80	40.63			
	81.88	43.63			
	28.93	12.13			
	60.86	12.98			
30.					
-	QD < MD <	SD			
				001	
31.			bs at a building. 2 bomb ability of destruction of l		
	target is 0.		ability of uestiluction of a	unung n chance mac	bollo litting the
-					
32.			s passed in the exam. F		nt out of 10
	students r	andomiy seid	ected atleast 8 have pas	sea the exam?	
_					
—					
_					
_					
33.	8 coins ar	e tossed 40	9600 times. Find the	expected frequency	of atleast 6 tails?
—					
_					
-					
_					

	Theoretical Distributions
34. There are 12,800 families with 5 children each. How many of t	hem are expected to
have atleast 4 boys?	
5% of total bulbs are known to be defective. 6 bulbs are se	locted at random
5% of total bulbs are known to be defective. 6 bulbs are se what is the probability of getting 3 defective bulbs?	icolcu at l'alluvill,
what is the probability of getting 5 derective saiso.	
36. 60% of total students passed in exams. Find the probability	that in the group of 7
students atleast 5 have passed the exam.	that in the group of I
·	
	ManNeton
	My Notes:

37	5 coins are tossed 512 times. Find out expected frequency of getting 0,1,2,3,4,5 heads. Also, Find mean, SD, variance of the distribution.
_	
_	
_	

3.	р	q	Variance = n.p.q	
	0.90			Therefore, Variance attains its
		0.20		max value of 0.25n = n/4,
		0.63		when p = q = 0.50
	0.50			
	0.85			
	0.89			
	0.09			
	0.02			

Variance in case of Binomial's distribution attains its max value in case of symmetrical Binomial's distribution.

be
_
_
_
_
_
_
_
_
_
_
_
_
_
-

		Theoretical Distributions
Characteristics of population are known as Parameters Characteristics of sample are known as Statistic.		
For normal distribution, Probability densi	ty function =	
The normal distribution is symmetrical when x = u _I . When x = u _I , then skewness of normal curve is zero; i.e. neither inclined to move towards the right (Negatively skewed) nor towards the left (Positively skewed)		
The normal curve has 2 points of inflexion to be given by $x = u_1 - \sigma$ and $x = u_1 + \sigma$ i.e. at these points, the normal curve changes its curvature from concave to convex and from convex to concave.		
52. The theoretical probability distribution:	÷	
a) Does not exists c) Exists in real life	b) Exists only in theory d) None of these	
53. The probability distribution may be		
a. Discrete b. Continuous	c. a or b	d. None of these
54. An example of parameter is		
a. Sample SD b. Sample mean c. Sample mode d. Population mean		
55. A trial is an attempt to		
a. Make something possible c. Prosecute in court of law d. Produce an outcome that is neither certain nor impossible		
56. The important characteristics of Bernoulli's trials are :		
a. Each trial is associated with just 2 possible c. Trials are infinite		b. Trials are independent d. Both a & b

		Theoretica	al Distributions
57	If x is a Binomial Variable with parameter	s n,p then x can assume	
_	a. Any value between 0 and n c. Any whole no. between 0 and n, both inclusive	b. Any value between 0 and i	
58	For a symmetrical binomial's distribution If n = Find mean, SD, variance of the distribution	= 60.	
_			
_			
59	Which of the following is Bi-parametric dist	ribution :	
_	a. Binomial's Distribution c. Both of these	b. Normal Distribution d. None of these	
60	Which of the following is Uni-parametric di	stribution :	
_	a. Binomial's Distribution c. Normal Distribution	b. Poisson's Distribution d. None of these	
61	. The most important continuous probability d	istribution is known as	·
_	a. Binomial's Distribution c. Chi-square Distribution	b. Normal Distribution d. Sampling Distribution	
62	The total area of a normal curve is		
_	a. 1.00 (i.e. 100%) b. 50%	с. 0.25	d. 0.00
63	The normal curve is		
_	a. Bell-shaped b. U-shaped	c. J-shaped	d. V-shaped
64	The normal curve is		
_	a. Positively skewed c. Symmetrical	b. Negatively skewe d. None of these	d

			Th	eoretical Distributions
65 .	What is SD of n	umber of recoveries among	48 patients when probabi	lity of recovering is 0.75
	a. 36	b. 81	с. 9	d. 3
66.	If x ~ B (n,p), w	hat would be the greates	t value of variance of x, w	hen n = 16
	a. 2	b. 4	c. 8	d. √5
67 .	If x is a binomi	al variate with n = 15 and	p = 1/3. What is the mode	of the distribution
	a. 5 and 6	b. 5	c. 5.50	d. 6
68 .	For Binomial's	s distribution n = ?, mea	n = 3, SD = 1.50	
	a. 2	b. 4	c. 8	d. 12
69 .	What is proba	bility of 5 correct guesse	s in 12 true-false questio	ons?
70.	If Q. = 25.40.	$Q_1 = 14.60$. Find SD of nor	emal distribution.	
	a. 9	b. 6	c. 10	d. 8

			Theoretical Dist	ributio
Points of inflexion	on of a normal curve are	e 40,60 respectively	. Find mean of normal	distrib
a. 8	b. 45	c. 50	d. 60	
7				
Q1 = 13.25, M	ID = 8 for a Normal dis	stribution then, fin	d mode of distribution	on
a. 20	b. 10	C.	15	d. 1
If it is known th	at the probability of mis	ssile hitting the targ	et is 1/8, what is the	
	out of 10 missiles fired			
a. 0.4258	b. 0.3968	с. 0.523	8 d. 0.36	11
1				
	rs in a factory is norma			
Find Total no. of	ctively. If 50 workers re f workers.	ceive saiary more th	ian < 14,000.	
a. 2198	b. 2000	с. 2581	d. None of these	

75. Area of a no	ormal curve between $z = 0 &$	z = 1 is 0.3413, then	value of Φ (1) is
a. 0.50	b. 0.1587	с. 0.8413	d0.3413
			ile deviation of the distribution
<u>a. 10</u>	b. 13.50	с. 15.00	d. 12.05
77 Fan a naisce	on's distribution if push (v	-0) - 2 v ppob(v-4) W	(hat is the variance of v
77. For a poisso	on's distribution, if prob (x= b. 4		d. 2
			u. L
	~		•
			·
			·
	sson's variate is 2 then Fin		
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).
78. If SD of pois	sson's variate is 2 then Fin	d prob (1.50 < x < 2.9	0).

79. If mean	of poisson's variable	x is 1, What is $p(x = take)$	s the value atleast 1) =	
a. 0.450	6 b. 0.82	21 c. 0.63	2 d. 0.25	4
80. Out of 1	2800 families with 4 ch	nildren each, How many far	nilies are expected to have	all boys?
81. For Bind	omial's distribution if m	ean = 9, variance = 2.25,	then probability of a failure	e
			•	
in a sing	gle trial = ?			
in a singa. 0.75	gie trial = ? b. 0.25	с. 0.50	d. None of these	
-	-	с. 0.50	d. None of these	
-	-	c. 0.50	d. None of these	
-	-	c. 0.50	d. None of these	
-	-	c. 0.50	d. None of these	
a. 0.75	-		d. None of these	
a. 0.75	b. 0.25		d. None of these	
a. 0.75	b. 0.25	ntch the following :	d. None of these	
a. 0.75	b. 0.25 Description of the control	ntch the following : a. n,p	d. None of these	
a. 0.75	b. 0.25 Description of the control	ntch the following : a. n,p b. n.p	d. None of these	
a. 0.75	b. 0.25 Description of the control	a. n,p b. n.p c. npq	d. None of these	
a. 0.75	b. 0.25 Description of the control	a. n,p b. n.p c. npq	d. None of these	
a. 0.75	b. 0.25 Description of the control	a. n,p b. n.p c. npq	d. None of these	
a. 0.75	b. 0.25 Description of the control	a. n,p b. n.p c. npq	d. None of these	

83.	A listing of possil	ble outcomes of an experime	ent and their correspo	onding probability is called as
	a. Random Variable		b. Frequency distribution	
	c. Probability Distribution		d. Continger	ncy table
84.	Distribution	Discrete / Continuous	Parameters Parameters Parameters	Types
04.	Binomial's	,		
	Poisson's			
	Normal			
85.	5 dice are roll	ed what is probability of	getting 3 points on	4 dice?
_				
$\lfloor -$				
86.	Match the follo	wing		
	a. Mean of Binom	ial's distri.	a. 0.67	750 x SD
	b. Mean of Poisso	on's distri.	b. Sym	metrical Binomial's distri.
	c. QD of Normal d	listri.	c. m	
_	d. MD of Normal (distri.	d. w, c)2
	e. Variance of Po	isson's distri.	e. is al	ways greater than variance
	f. SD of Binomial'	' s distri.	f. Bell	shaped
	g. Parameters of	Normal distri.	g. is al	ways equal to variance
	h. When $p = q = 0$.50	h. npq	
	I. Shape of Norma	al Curve	I. 0.8	O x SD
	j. Binomial's & Po	pisson's distri.	j. can l	oe uni-modal or bi-modal.
				My Notes :

	Theoretical Distributions
87.	Shaded Area =
91.	Citatou / II ou
88.	Shaded Area =
00.	
89.	Shaded Area =
90.	Shaded Area =
91.	Shaded Area =
	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA YINODREDDY

& It All Began with one small WIN

99% of the FAILURES
come from people
who have the habit
of EXCUSES

- CA VINOD REDDY -

Mistakes are PROOF.... that you are TRYING

Forget the Mistake..... Remember the LESSON!

CA VINOD REDDY

Chapter-12 Derivatives Integration CM VINOD REDDY

		Derivatives & Integration
1.	What is Derivative or Differential function?	
_		
2.	Derivative of $f(x)$ is $f'(x)$	
	f'(x) by first principle =	
	f(x) f'(x)	
3.	X	
	x ² x ³	
	x" Log x	
	a ^x	
	e^{x} \sqrt{x}	
	constant = k	
4.	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{u}+\mathbf{v})=$	
	$\frac{d}{dx}(u - v) =$	
	$\frac{d}{dx}(u \times v) =$	
	d (u) _	
	$\frac{d}{dx} \left(\frac{u}{v} \right) =$	
		My Notes :

Find dy if

a)
$$y = 3x^2 + 5x - 2$$

b)
$$y = a^x + x^a + a^a$$

c)
$$y = \frac{1}{3}x^3 - 5x^2 + 6x - 2\log x + 3$$

$$\mathbf{d)} \ \mathbf{y} = \frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{Log}\mathbf{x}}$$

e)
$$y = \frac{2x}{3x^3+7}$$

$$f) y = 2^x \cdot Log x$$

g)
$$y = 5^x \cdot x^{10}$$

h)
$$y = \frac{3x + 5}{5x + 8}$$

6.	Chain Rule	Find dy	$if v = a^{(2x+3)}$
	Chain Huic	Tillu —	II y — a
		- AX	

7. Find $\frac{dy}{dx}$ if

a.
$$y = 5^{(2x+3)}$$

b.
$$y = (8x+3)^2$$

$$\mathbf{c.} \ \mathbf{y} = \mathbf{e}^{\log x}$$

d.
$$y = \sqrt{(5x+13)}$$

e.
$$y = \sqrt{2x^2 + 5x + 3}$$

$$f. v = \sqrt{Logx}$$

$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}'(x)$

 $f(x)^n$

 $\mathbf{a}^{\mathbf{f}(\mathbf{x})}$

 $e^{f(x)}$

Log [f(x)]

	f(v)
\setminus	I(A)

My Notes:

.	0
Derivatives	& Integration

9.	3	dv
0.	$y = at^3$, $x = 2bt$. Find	uy
	,	
		UX

10.		dv
10.	$y = x^x$. Find	dy
		u

12. Find
$$\frac{d^2y}{dx^2}$$
 If $y = 16x^3 - 22x^2 + 18x + 54$

	Derivatives & Integration
40	
13. Find the gradient of curve $y = 3x^2 - 5x + 4$ at point (1,2)	
$14 \qquad \qquad$	
14. $x = 2t + 5$, $y = t^2 - 2$; Find $\frac{dy}{dx}$	
15 34 1 1 dV	
15. $x = 3t^2 - 1$, $y = t^3 - t$; Find $\frac{dy}{dx}$	
16. If $f(x) = x^k$ and $f'(1) = 10$; then value of k is	
16. If $f(x) = x^k$ and $f'(1) = 10$; then value of k is	
	My Notes :
<u> </u>	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

17 .	2x	E:I	dy
	y – e	Fina	dx

Therefore, Integration is anti-derivative

		2	1	
--	--	---	---	--

$\mathbf{x}^{n}.\mathbf{d}\mathbf{x} =$	J	k.dx =	:

$$\int \mathbf{a}^{\mathbf{x}}.\mathbf{dx} = \int \mathbf{1} \cdot \mathbf{dx} =$$

$$\int \mathbf{e}^{\mathbf{x}} . \mathbf{dx} = \int \frac{1}{\mathbf{x}} . \mathbf{dx} =$$

22.

$$\int \sqrt{\mathbf{x}} \cdot \mathbf{dx} =$$

$$\int \frac{1}{\sqrt{X}} \cdot dx =$$

$$\int e^{-3x} \cdot dx =$$

$$\int 3^x \cdot dx =$$

$$\int x \sqrt{x} . dx =$$

$$\int \left(x + \frac{1}{x^2}\right) \cdot dx =$$

$$\int \overline{x} (x^3 + 2x - 3) . dx =$$

Derivatives	&	Integration
Delliatives		Tilled B. action

25. $\int (e^{3x} + e^{-4x}) . dx$

$$26. \quad \int \frac{x^2}{x+1} dx =$$

$$\frac{27. \quad \int \frac{x^3 + 5x^2 - 3}{x + 2} \cdot dx = 0}{x + 2}$$

28.
$$\int \frac{x^3}{(x^2+1)^3} . dx =$$

(Solve by Method of Substitution)

29.
$$\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} Log \left| \frac{x-a}{x+a} \right| + c$$

30.
$$\frac{1}{a^2-x^2} dx = \frac{1}{2a} Log \left| \frac{a+x}{a-x} \right| + c$$

31.
$$\frac{1}{x^2+a^2}$$
 dx = Log $x + \sqrt{x^2+a^2}$ + c

32.
$$\int \frac{1}{x^2-a^2} dx = \text{Log} \left| x + \sqrt{x^2-a^2} \right| + c$$

33.
$$\int e^{x} [f(x) + f'(x)] \cdot dx = e^{x} \cdot f(x) + c$$

34.
$$x^2+a^2$$
. $dx = \frac{x}{2} x^2+a^2 + \frac{a^2}{2} log x + x^2+a^2 + c$

$$36. \int \frac{f'(x)}{f(x)} dx = \text{Log } f(x) + c$$

37. Integration by parts
$$\int (u.v) \cdot dx = u \int v.dx - \int \left[\frac{du}{dx} \times \int v.dx \right] .dx$$

38. If
$$\int f(x).dx = g(x) + c$$
; then
$$\int_{a}^{b} f(x) = g(b) - g(a)$$

My Not	es:
--------	-----

39.	Find dy	If $x^2y^2 + 3xy + y = 0$

Find $\frac{dy}{dx}$ If $y = \text{Log}(x + \sqrt{x^2 + a^2})$

11. If
$$y = (a.e^{mx} + b.e^{-mx})$$
. Find $\frac{d^2y}{dx^2}$

42. If
$$y = \sqrt{x+1}$$
. Find $\frac{dy}{dx}$

a. 1 /√x+1

b. -1 / x+1

c. 1 / 2 x+1

43. If $f(x) = e^{(ax^2+bx+c)}$ Find f'(x)

a. $e^{(ax^2+bx+c)}$.(ax+b) **b.** $e^{(ax^2+bx+c)}$

c. $e^{(ax^2+bx+c)}$.(2ax+b) d. (ax²+bx+c) x e^{ax+b}

44. If $f(x) = \frac{x^2+1}{x^2-1}$ then f'(x) = ?

 $a. -4x/(x^2-1)^2$

b. $4x/(x^2-1)^2$

 $c. x/(x^2-1)^2$

d. None of these

45. y = x(x-1)(x-2); Find $\frac{dy}{dx}$

 $a. 3x^2 - 6x + 2$

b. -6x + 2

 $c.3x^2 + 2$

d. None of these

46. If xy = 1; then $y^2 + \frac{dy}{dx} = \frac{1}{1}$

a. 1

b. 0

c.-1

- 47. $y = \sqrt{x} + \sqrt{x}$ then $\frac{dy}{dx} = ?$ $a. \frac{1}{2\sqrt{x + \sqrt{x}}}$
 - a. $\frac{1}{2\sqrt{x+\sqrt{x}}}$ b. $\frac{1}{2\sqrt{x+\sqrt{x}}}$ $x(1+\sqrt{x})$
 - c. $\frac{2}{\sqrt{x+\sqrt{x}}}$ d. $\frac{1}{2\sqrt{x+\sqrt{x}}}$ $x(1+\frac{1}{2\sqrt{x}})$

- 48. $e^{xy} 4xy = 0$; then $\frac{dy}{dx} = ?$
 - a. -y/x b. y/x c. x/y d. None of these

- 49. $x^3 + y^3 3axy = 0$; then $\frac{dy}{dx}$
 - dx dx
 - $\frac{ay x^2}{v^2 + ax} \qquad \qquad b \cdot \frac{ay x^2}{v^2 ax}$
 - $\frac{\mathbf{ay} \mathbf{x}^2}{\mathbf{c} \mathbf{ax}} \qquad \qquad \mathbf{c} \cdot \frac{\mathbf{ay} + \mathbf{x}^2}{\mathbf{y}^2 + \mathbf{ax}}$
- d. None of these

- 50. $x = 2t + 5 & y = t^2 2$; then $\frac{dy}{dx} = ?$
 - a. t b. -1/t c. 1/t d. None of these

a. 1/2x\x

b. $-1/x\sqrt{x}$

c. $-1/2x\sqrt{x}$

d. None of these

52. If $x = 3t^2-1$ and $y = t^3-t$; then $\frac{dy}{dx} = 2$

a. 3t² - 1 6t

b.3t² - 1

c. 3t - 1 6t

d. None of these

53.

For the curve $x^2 + y^2 + 2gx + 2hy = 0$; the value of $\frac{dy}{dx}$ at (0,0) is

a. -g/h

b. g/h

c. h/g

d. None of these

6iven $x = t + t^{-1} & y = t - t^{-1}$ then $\frac{dy}{dx}$ for t = 2 is

a. 3/5

b. -3/5

c. 5/3

55. $x^3 - 2x^2y^2 + 5x + y - 5 = 0$ then $\frac{dy}{dx}$ at x = 1 and y = 1 is :

- a. 4/3
- **b.** -4/3

c. 3/4

d. None of these

 $56. y = x^2 \cdot \text{Log } x \cdot \text{Find } \frac{dy}{dx}$

- a. $1 + 2 \log x$
- **b.** x (1 + 2 Log x)
- c. 2 logx
- d. None of these

157. If $x = at^2$ and y = 2at; then $\frac{dy}{dx_{t=2}}$ is

- a. 1/2
- **b.** -2

c. -1/2

d. None of these

58. If $f(x) = x^2 - 6x + 8$. Find f'(5) - f'(8)

a. f' (2)

b. 3f'(2)

- c. 2f'(2)
- d. None of these

- **59.** If $f(x) = x^k$ and f'(1) = 0 then k = ?
 - a. 10

b. -10

- c. 1/10
- d. None of these

60. $\int_{3}^{5} x^{2} \cdot dx = ?$

- **61.** If $\int f(x) dx = g(x) + c$; then
 - $\int_{a}^{b} f(x) = g(b) g(a)$
- 62. $\int_{2}^{3} (2x^2 + 5x + 3) \cdot dx = ?$

63. $\int_{-7}^{10} a^{2x} dx = ?$

64.

$$\int_{0}^{4} 3x + 4 \cdot dx = ?$$

a. 9/112

- b. 112/9
- c. 11/9

d. None of these

65.

$$\int_{0}^{2} \left(\frac{x+2}{x+1} \right) . dx = ?$$

- a. 2 + Log_e2
- $b. 2 + Log_e 3$
- c. Log_e3
- d. None of these

66.
$$\int_{0}^{4} \frac{(x+1)(x+4)}{x} dx = 9$$

- a. $51\frac{1}{5}$
- **b.** 48/5

c. 48

d. $55\frac{7}{15}$

67.

$$\int \mathbf{Log} \ \mathbf{x}^2 \ .\mathbf{dx} = \mathbf{P}$$

a. x (log x - 1) + k

b. 2x (log x - 1) + k

c. 2 (logx - 1) + k

68.

$\mathbf{y}=\mathbf{f}(\mathbf{x})$	$\frac{\mathrm{d}y}{\mathrm{d}x}=\mathbf{f}'(x)$
х	
x ²	
x ³	
4x³	
5x ⁴ + 2x ²	
8x ³ -9x ¹⁰	
$10x^3 + 16x^2 + 18x$	
35	
8x²- 35x+ 18	
a ^x	
a ^{2x}	
a ^{2x+5}	
5 ^{8x+9}	
e ^x	
$\mathbf{e}^{^{2\chi+5}}$	
e^{5x^2+2x+5}	
log _e x	
$\sqrt{\mathbf{x}}$	
√2x+5	
$\sqrt{2x^2+3x+9}$	
Log x	
Log (2x+3)	

G	Q	
U	O	•

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x}=\mathbf{f}^{*}(\mathbf{x})$
Log√x	
$Log (5x^2 + 2x + 3)$	
$\mathbf{a}^{\mathbf{x}} \cdot \mathbf{e}^{\mathbf{x}}$	
Log of $x \cdot \sqrt{x}$	
$(3x + 2) \cdot 5^{x}$	

	My Notes :	
	my House v	
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA YINODREDDY

To be in the 1% You have to do what 99% won't

You get what you
FOCUS on.
So FOCUS on what you
want!

CA VINOD REDDY 357

True Humility is staying teachable, Regardless of how much you already know...

Believe
you Can...
& You are
Half Way
There

- CA VINOD REDDY -

If You Focus on HURT,
you will continue to suffer,
if you focus on LESSON,
You will continue to GROW!

Chapter-13 LOGICAL REASONING C# VINOD REDDY

				Logical Reasoning	
1.	Series is classified	into			
_	A. Number Series.				
	B. Alphabet Series.				
	C. Letter Series.				
2.	2, 7, 16, ?, 46, 67, 92				
_	a. 29	b. 31	с. 41	d. None	
3.	2, 5, 10, 17, ?, 37	,			
_	a. 30	b. 21	с. 25	d. 26	
4.	1, 1, 4, 8, 9, 27, 1	6, ?			
_	a. 32	b. 48	с. 64	d. 50	
5.	120, 99, 80, 63,	9			
_	a. 48	b. 40	с. 30	d. None	
6.	10, 11, 22, 23,	46, 47, 94, 95			
_	a. 96	b. 110	с. 190	d. 180	
7.	1000, 500, 250, 1	25, ?			
_	a. 69	b. 25	с. 60	d. 62.5	

				Logical Reasoning
8.	6, 11, 17, 2	24, 32, ?		
	a. 41	b. 40	с. 64	d. None of these
9.	1 0 05 4	0.01.0		
9.	1, 9, 25, 49 a. 169	b. 121	c. 225	d. 289
	a. 109	U. 121	U. ZZU	u. 203
10.	10, 12, 36	6, 38, 114, 116, 348, ?		
_	a. 350	b. 1050	с. 1044	d. None of these
$\lfloor -$				
11.	5760, 960), 192, ?, 16, 8		
	a. 48	b. 64	с. 384	d. None of these
_				
_				
10				
12.		6, 8, 64, 625, ?	105	
	a. 25	b. 390625	c. 125	<u>d. 5</u>
13 .	2, 3, 5, 7,	11, 13, ?		
	a. 19	b. 17	с. 15	d. 21
				My Notes :

CA Vinod Reddy - vinod.reddy.ca@gmail.com

																					Logi	ical	Kea	ison	ing	
14	4.												Coc	<u>ding</u>												
		•					1 - 44)#•		4					_	, KI			- all*						
							Lett	er (odi	ng 4						7	► Nu	mb	er C	odin	ıg					
	_	0	•		_		_	0	•	40		40	4.0	4 4	4 =	40	4 =	40	40	00	04	00	00	0.4	0.5	00
	1	2	3	4	5	6	7	8	9	10	11				15		17	18		20						
	A	B	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	8	T	U	V	W	X	Y	Z
[26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
														-												
1	5.	lf	MEN	ITIO	N is	coc	ded	as N	IFO	U JP () th	en E	ΧP	ERT	will	be	cod	ed a	s -							
(
	_																									
1	6.	lf.	VIN	nn.	S.C	nde	l as	WE	ION	F th	en (SUSI	HIELE	Lw	ill b	e co	odec	as								
<u> </u>	J .		VIIV	ושע	. O - U(ı-us		CIVI	- UII	CII (E W	шТ			-us								
1																										
-	_																									
	1.	lf	TAP	is (cod	ed a	is Q	BU	the	n Gl	REE	N w	ill k	e c	ode	d as	- 3									
1																										
1																										
18	8.	If I	МОР	SILE	is o	code	ed as	s NC)FM	OK :	ther	ı AS	HW	AT w	vill	De C	ode	ıl as								
18	8.	lf I	МОЕ	BILE	is (code	ed as	s NG	QEM:	QK t	ther	ı AS	HW	AT v	vill l	oe c	ode	d as	-							
18	8.	lf I	МОВ	BILE	is (code	ed as	s NG	QEM(QK 1	ther	ı AS	HW	AT v	vill l	oe c	ode	d as	; -							
18	8.	If I	МОВ	BILE	is (code	ed as	s NG)EM	QK 1	ther	ı AS	HW	AT w	vill I	ре с	ode	d as	-							
1:	8.	If I	МОВ	BILE	is (code	ed as	s NG)EM	QK 1	ther	ı AS	HW	AT w	viII I	De C	ode	d as	-							
1:	8.	If I	МОВ	BILE	is (ode	ed as	s NO	QEM(QK 1	ther	ı AS	HW	AT v	vill l	De C	ode	d as	-							
1	8.	If I	МОВ	BILE	is (ode	ed as	s NG	QEM(QK 1	ther	ı AS	HW	AT v	vill !	oe c	ode	d as	-							
1:	8.	If I	MOB	BILE	is	ode	ed as	s NG	QEM(QK 1	ther	ı AS	HW	AT v	vill I	De c	ode	d as	-							
1:	8.	If !	MOE	BILE	is (code	ed as	s NG	QEM ⁽	QK	ther	ı AS	HW	AT v	vill !	De c	ode	d as	; -							
																		d as								
	9.											ı AS						d as								
																		d as								
																		d as								
																		d as								
																		d as								
																		d as								

20. Find the odd man out -

i. January, May, December, April

ii. 10, 14, 16, 28, 17, 30, 38, 42

iii. 25, 49, 35, 81, 121, 64, 4

iv. 78, 91, 26, 52, 130, 117, 82, 143, 39

v. 1, 64, 27, 16, 125, 343

vi. Physics, Biology, Chemistry, Accounts

vii. Book, Pen, Pencil, Bike

21. Find the odd man out - 49, 39, 36, 225

39 : only

225 : only

36 : only

49: only

22.

	Logical Reasoning
23. North then right	
24. North left then left then right	
05	
25. West then left then right	
26. Southwest then left then right	
27. Northwest then right	
28. Seating arrangements are classified into	
i)	
ii)	
iii)	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

						Logical Reasoning
29.	P Q	R	S	Т	facing north	
	Who are to the left o	of R:				
	Who is to the immed					
	Who is to the immed	liate right	of P:			
30.	A B C	D		E	F facin	g south
	Who is to the right of					
	Who is to the left of E					
	Who is to the immedi					
	Who is to the immedi	iate left of	E:			
31.						
	Clock	kwise				Anti-clockwise
22	Clock		C. D. F.	F. G. H are	facing centre, the	
32.	G A B C	If A, B,	C, D, E,	F, G, H are	facing centre, the	
32.	G B C	If A, B, G A f B C D E F		F, G, H are	facing centre, the	
32.	G B C	If A, B, G A f B C D E F		F, G, H are	facing centre, the	n
32.	G B C	If A, B, G A f B C D E F		F, G, H are	facing centre, the	n
32.	G B C	If A, B, G A f B C D E F G		F, G, H are	facing centre, the	n
32.	G B C	If A, B, G A f B C D E F G		F, G, H are	facing centre, the	n
32.	G B C	If A, B, G A f B C D E F G		F, G, H are	facing centre, the	n

33.	
	1. Father's Father
	2. Father's Mother
	3. Father's Brother
	4. Father's Sister
	5. Children of Uncle
	6. Wife of Uncle
	7. Children of Aunt
	8. Husband of Aunt
	9. Mother's Father
	10. Mother's Mother
	11. Mother's Brother
	12.Mother's Sister
	13. Children of Maternal Uncle
	14. Wife of Maternal Uncle
	15. Grandfather's Son
	16. Grandfather's Only son
	17. Mother or Father's Mother
	18. Grandmother's Mother
	19. Grandmother's Father
	20. Grandson's Daughter
	21. Grandson's Son
	22. Grand-daughter's Son
	23. Grand-daughter's Daughter
	24. Daughter's Husband
	25. Son's Wife
	26. Husband's Father
	27. Husband's Mother
	28. Wife's Brother
	29. Wife's Sister
	30. Wife's Father
	31. Wife's Mother
	32. Brother's Son
	33. Brother's Daughter
	34. Sister's Son
	35. Sister's Daughter
	36. Brother's Wife
	37. Sister's Husband
	38. My father's son is my
	39. My father's daughter is my
	40. My father's father is my

Odical	Rageoning
	Reasoning

41. My mother's	brother is my		
42. My daughter'	s husband is my		
43. My son's wife	is my		
44. My Brother's	wife is my		
45. My brother's	daughter is my		
46. My brother's	son is my		
47. My wife's fath	ner is my		
48. My wife's mot	ther is my		
49. My wife's sist	er is my		
50. My wife's bro	ther is my		
51. My father's w	ife is my		
52. My mother's	•		
53. My son's dau			
54. My daughter'	s son is my		
24			
34. 6, 11, 21, 36	5, 56, ?		
a. 42	b. 51	c. 81	d. 91
25 10 100 00	0.240.3		
3 <mark>5.</mark> 10, 100, 20			
35. 10, 100, 20 a. 400	0, 310, ? b. 410	с. 420	d. 430
		с. 420	d. 430
		с. 420	d. 430
		с. 420	d. 430
a. 400	b. 410	c. 420	d. 430
a. 400 B6. 11, 13, 17, 1	b. 410 19, 23, 25, ?		
a. 400	b. 410	c. 420 c. 31	d. 430 d. None of these
a. 400 B6. 11, 13, 17, 1	b. 410 19, 23, 25, ?		
a. 400 B6. 11, 13, 17, 1	b. 410 19, 23, 25, ?		
a. 400 B6. 11, 13, 17, 1	b. 410 19, 23, 25, ?		
a. 400 36. 11, 13, 17, 1 a. 27	b. 410 19, 23, 25, ? b. 29		
a. 400 36. 11, 13, 17, 1 a. 27 37. 6, 12, 21, 3	b. 410 19, 23, 25, ? b. 29	c. 31	d. None of these
a. 400 36. 11, 13, 17, 1 a. 27	b. 410 19, 23, 25, ? b. 29		
a. 400 36. 11, 13, 17, 1 a. 27 37. 6, 12, 21, 3	b. 410 19, 23, 25, ? b. 29	c. 31	d. None of these
a. 400 36. 11, 13, 17, 1 a. 27 37. 6, 12, 21, 3	b. 410 19, 23, 25, ? b. 29	c. 31	d. None of these
a. 400 36. 11, 13, 17, 1 a. 27 37. 6, 12, 21, 3	b. 410 19, 23, 25, ? b. 29	c. 31	d. None of these

				Logical Reasoning
38.	2, 5, 9,	14, ?, 27		
	a. 20	b. 16	с. 18	d. None of these
_				
39.	11, 21,	?, 56, 81		
	a. 42	b. 36	с. 91	d. 51
40.	10, 18,	2 8, 40 , 54, ?, 88		
		b. 86	с. 72	d. 80
_				
41.	195, 16	8, 143, 120, ?, 8 0		
	a. 100	b. 99	с. 105	d. None of these
_				
42.	8, 10, 4	0, 42, 168, 170, 680, 682, ?		
_	a. 684	b. 1528	с. 2728	d. None of these
43.	28, 33, 3	31, 36, 34, ?		
	a. 38	b. 39	с. 42	d. None of these
				My Notes :

CA Vinod Reddy - vinod.reddy.ca@gmail.com

				Logical Reasoning
44	1. 5760, 960, 19	92, ?, 16, 8		
-	a. 96	b. 48	с. 32	d. None of these
-				
(-				
45	2, 3, 3, 5, 10	, 13, 39, 43, 2, 177		
-	a. 46	b. 172	с. 48	d. None of these
-				
_				
46	If RAMAN is writ How HAMAM is v		SH is written as 675489	,
-	a. 92323	b. 92233	с. 93292	d. None of these
-				
-				
/				
4 -				
47		as 6720 then GREEN w		4.670004
47	0007740	as 6720 then GREEN v	vould be coded as c. 1677209	d. 1672091
47				d. 1672091
47				d. 1672091
47				d. 1672091
48	a. 9207716	b. 167129	c. 1677209	d. 1672091
-	a. 9207716	b. 167129	c. 1677209	d. 1672091 d. 2524889
-	a. 9207716 If BROTHER is cowhat is coded as	b. 167129 oded as 2456784, SISTE BORBERS?	c. 1677209 R is coded as 919684,	
-	a. 9207716 If BROTHER is cowhat is coded as	b. 167129 oded as 2456784, SISTE BORBERS?	c. 1677209 R is coded as 919684,	
48	a. 9207716 If BROTHER is cowhat is coded as a. 2542849	b. 167129 oded as 2456784, SISTE BORBERS?	c. 1677209 R is coded as 919684,	
-	a. 9207716 3. If BROTHER is cowhat is coded as a. 2542849 3. If DELHI is coded	b. 167129 oded as 2456784, SISTE BORBERS? b. 2542898	c. 1677209 R is coded as 919684, c. 2454889	d. 2524889 ALICUT coded?
48	a. 9207716 If BROTHER is cowhat is coded as a. 2542849	b. 167129 oded as 2456784, SISTE BORBERS? b. 2542898	c. 1677209 R is coded as 919684, c. 2454889	d. 2524889

				Logical Reasoning
50	. If CLOCK is code	ed as 34235 and TIME	as 8679, what will be th	e code for MOTEL?
- - - -	a. 72894	b. 77684	с. 72964	d. 27894
51	. In a certain cod	e NAME is written as 42	258 then what would be t	the code for MEAN?
	a. 2458	b. 5842	c. 8524	d. 5824
52	If GOLD is writte	en as IQNF then WIND	would be coded as	
	a. VHMC	b. YKPF	c. XJOE	d. DNIW
F 0				
5 3	_		CUIT can be written in th	
-	a. DKUEWKV	b. CJTDVJU	c. DKVEWKV	d. DKUEWKY
5 4	If DELHI is code	d as CCIDD then How w	ould you code BOMBAY?	
- - - -	a. AJMTVT	b. AMJXVS	c. MJXVSU	d. None of these
5 5		n with a code number o	f 43 then, what will be tl	ne code number for
-	a. 123	b. 85	с. 120	d. 125

					Logical Reasoning
56	637 means 358 means	you are good we are bad good and bad following represents	'and' in that code		
	a. 2	b. 5	c. 8		d. 3
57	Find odd man	out from : Avni, Isha	ni. Esha. Usha. Veer	1a	
	a. Veena		c. Usha		
<u> </u>					
38	a. 2048	man out from : 64, 8	32, 512, 243, 102 c. 64		. 8
	1				
59	Find the odd a. AB	man out from AB, b. MN	MN, YZ, VU c. YZ		d. VU
	7				
60	If A = 1, PA	T = 37, then TAP =			
	a. 73	b. 37	С. 3	86	d. 38
61		= 7, then what is the			
	a. 8	b. 17	c. 3	35	d. 37

					Logical Reasoning
62	If MATHEMATION	CS = 1234512367	78, then MA	HATMA = ?	
-	a. 1242312	b. 1234 5	5123	c. 12345678	d. 12425341
_					
_					
6 3	If D = 4, COVE	ER = 63, then BASIS	S = ?		
_	a. 55	b. 50	с. 49	d. 54	
_					
_					
6 4	. If HKUJ mear	ıs FISH, what doe	es UVCD me	eans?	
_	a. STAR	b. STAB		c. STAL	d. None of the these
_					
_					
_	_				
65	If NOIDA is w	vritten as STNIF, I	How MEERU	JT can be written i	n that code?
65	a. QIIVYX	vritten as STNIF, l b. RJJWZ		JT can be written i	n that code? d. RIIVYX
65					
65					
66	a. QIIVYX	b. RJJWZ	ZV		
-	a. QIIVYX	b. RJJWZ	ZV	c. RJJWZY	
-	a. QIIVYX	b. RJJWZ	ZV	c. RJJWZY	
-	a. QIIVYX	b. RJJWZ	ZV	c. RJJWZY	
66	a. QIIVYX	is coded as ZCOS	SGAI then IN	c. RJJWZY	d. RIIVYX
-	a. QIIVYX	is coded as ZCOS	SGAI then IN	c. RJJWZY	
66	a. QIIVYX	is coded as ZCOS	SGAI then IN	c. RJJWZY	d. RIIVYX
66	a. QIIVYX	is coded as ZCOS	SGAI then IN	c. RJJWZY	d. RIIVYX

My Notes :

	Logical Reasoning
68. In a certain code HYDROGEN is coded as JCJZYSSD then how can	ANTIMONY be coded?
in a certain code indicative coded as seed incident now can	
f 69. In certain language PLAYER is coded as QNDCJX then how SINGER will	be coded in that language
70. In certain code MONKEY is written as XDJMNL. How TIGER is writ	ton in that code?
in certain code Monker is written as Admine. How right is write	ten in that code.
71. If BAT can be written as DCV, then MAN can be written as	
72. If CAT can be written as CNANT, then GOD can be written as	
12. Il CAT call be written as CNANT, then GOD can be written as	
73. If SIR can be written as PSPIPR, then MAN can be written as	

_			Logical Reasoning
If TIMBER is w	ritten as BERMIT then how	would BANTER be	written in that code
In a certtain co same code	de COURSE is written as ESRU	JUC. How BREATH can	be written in the
In a certain code	493 means 'Friendship diffic	ult challenge': 961 me	eans 'Struggle
difficult exam'; 1	78 means 'Exam believable su		
a. 7	b. 8 c. a o	or b d. No	ne of these
	d as Book, Book as Flower, I he treasure of huge amount		
	d as Book, Book as Flower, I he treasure of huge amount b. Calculator		
then where is t	he treasure of huge amount	of knowledge hidden	12
then where is t	he treasure of huge amount	of knowledge hidden	12
then where is t	he treasure of huge amount	of knowledge hidden	12
then where is t	he treasure of huge amount	of knowledge hidden	12
then where is t	he treasure of huge amount	of knowledge hidden	12
then where is the a. Book	he treasure of huge amount	of knowledge hidden c. Flower	d. Vehicle
then where is the a. Book	he treasure of huge amount b. Calculator	of knowledge hidden c. Flower	d. Vehicle
then where is the a. Book If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle
then where is the a. Book If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle
then where is the a. Book a. Book If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle
then where is the a. Book B. If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle
then where is the a. Book B. If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle
then where is the a. Book B. If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle tten in that code? d. None of these
then where is the a. Book B. If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle tten in that code? d. None of these
then where is the a. Book B. If TALENT is wr	he treasure of huge amount b. Calculator itten as LATENT then how w	of knowledge hidden c. Flower ould EXOTIC be writ	d. Vehicle tten in that code? d. None of these

n a certtain la	nguage NOITCELES repres	sents SELECTION thenA	IDNI represents-
a. AIDSI	b. HINDI	c. INDIA	d. None
lohan starts wa	ılking from point A & 1 km	towards south, turns left	t and walks 1 km.
	oft and again walks 1 km. N		d. North
. Lust	D. West	U. GUUII	u. North
uresh starts fr	om a point walks 2 miles to and walks $\frac{1}{2}$ miles and the	owards south, turns right	and walks $1\frac{1}{2}$
a. East			d. North

A man facing East	then he turns left and goes	10 m, then he turns rig	tht and goes 5 m
	he south and from there 5		
a. East	b. West	c. South	d. North
north & then turns	i Reddy wishes to go to sch left & then turns right and er school is situated with re	finally she turns left and	
a. North-East	b. North-West	c. South-East	d. South-West
K is a place which	is located 2 kms away in n	orth-west direction fro	m the capital P.
R is another place another place that	is located 2 kms away in n that is located 2 kms away is located 2 kms away in r ed 2 kms away in south-wes to P. b. North-West	y in south-west direction orth-west direction fro	n from K. M is m R. T is another
R is another place another place that place that is locate located in relation	that is located 2 kms away is located 2 kms away in red 2 kms away in south-westo P.	in south-west direction in south-west direction from M. In s	n from K. M is om R. T is another which direction T is
R is another place another place that place that is locate located in relation	that is located 2 kms away is located 2 kms away in red 2 kms away in south-westo P.	in south-west direction in south-west direction from M. In s	n from K. M is om R. T is another which direction T is
R is another place another place that place that is locate located in relation	that is located 2 kms away is located 2 kms away in red 2 kms away in south-westo P.	in south-west direction in south-west direction from M. In s	n from K. M is m R. T is another which direction T is
R is another place another place that place that is locate located in relation a. South-West	that is located 2 kms away in red 2 kms away in south-west b. North-West	in south-west direction north-west direction fro st direction from M. In c. West	n from K. M is m R. T is another which direction T is d. North
R is another place another place that place that is locate located in relation a. South-West	that is located 2 kms away is located 2 kms away in red 2 kms away in south-westo P.	in south-west direction from the direction from M. In the control of the control	n from K. M is m R. T is another which direction T is d. North
R is another place another place that place that is locate located in relation a. South-West I started walking designed to my left	that is located 2 kms away is located 2 kms away in red 2 kms away in south-west to P. b. North-West lown a road in the mornin then I turned to my right.	in south-west direction from the continuous direction from M. In the continuous case of the	n from K. M is m R. T is another which direction T is d. North Iking for sometime s I going then?
R is another place another place that place that is locate located in relation a. South-West	that is located 2 kms away is located 2 kms away in red 2 kms away in south-west to P. b. North-West	in south-west direction from the direction from M. In the control of the control	n from K. M is m R. T is another which direction T is d. North
R is another place another place that place that is locate located in relation a. South-West I started walking deligion to my left	that is located 2 kms away is located 2 kms away in red 2 kms away in south-west to P. b. North-West lown a road in the mornin then I turned to my right.	in south-west direction from the continuous direction from M. In the continuous case of the	n from K. M is m R. T is another which direction T is d. North Iking for sometime s I going then?

			Logical Reasoning
	straight, first eastwards the		right again, then
a. East	rection would you be going b. West	c. South	d. North
You go North, to	urn right, then right again	. & then go to the left.	
	are you facing now?	, a then go to the left	
a. East	b. West	c. South	d. North
7 O	raveled 15 kms eastwards, travelled 15 kms. How far		
7 O			
turned left and	travelled 15 kms. How far	is he from starting point	•
turned left and	travelled 15 kms. How far	is he from starting point	•
turned left and	travelled 15 kms. How far	is he from starting point	•
turned left and	travelled 15 kms. How far	is he from starting point	•
turned left and a. 30 kms	travelled 15 kms. How far	is he from starting point c. 15 kms	d. 5 kms
turned left and a. 30 kms Hari travelled 17	travelled 15 kms. How far b. 35 kms	is he from starting point c. 15 kms d left and went 15 kms, h	d. 5 kms
turned left and to a. 30 kms Hari travelled 17	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne	is he from starting point c. 15 kms d left and went 15 kms, h	d. 5 kms
turned left and a. 30 kms Hari travelled 17 left and went 17	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s	is he from starting point c. 15 kms d left and went 15 kms, hetarting point?	d. 5 kms d. 5 kms e again turned
turned left and a. 30 kms Hari travelled 17 left and went 17	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s	is he from starting point c. 15 kms d left and went 15 kms, hetarting point?	d. 5 kms d. 5 kms e again turned
turned left and a. 30 kms Hari travelled 17 left and went 17	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s	is he from starting point c. 15 kms d left and went 15 kms, he	d. 5 kms d. 5 kms e again turned
turned left and a. 30 kms Hari travelled 17 left and went 17	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s	is he from starting point c. 15 kms d left and went 15 kms, he	d. 5 kms d. again turned
turned left and a. 30 kms Hari travelled 17 left and went 17 a. 17 kms	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s	d left and went 15 kms, be tarting point? c. 15 kms	d. 5 kms e again turned d. 32 kms
turned left and a. 30 kms Hari travelled 17 left and went 17 a. 17 kms Sudha travels 8	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s b. 2 kms	turns to the right and wa	d. 5 kms d. 32 kms alks 4 kms. Then
turned left and a. 30 kms Hari travelled 17 left and went 17 a. 17 kms Sudha travels 8	travelled 15 kms. How far b. 35 kms 7 kms to the east, he turne kms. How far is he from s b. 2 kms kms to the south, then she	turns to the right and wa	d. 5 kms d. 32 kms alks 4 kms. Then

a. 7 kms	b. 6 kms	c. 4 kms	d. 5 kms
turned right and w	nd walked 5 kms southwar valked 5 kms and turned l alk to reach her home stra	eft and walked 5 kms. Ho	
a. 5 kms	b. 7 kms	c. 17 kms	d. 15 kms
Facing the East G	iopi walks straight 4 kms	, turns left and walks 3	kms and again
turns left and wa	iopi walks straight 4 kms lked 4 kms. How far is ho	e now from the starting p	point?
			point?
turns left and wa	lked 4 kms. How far is ho	e now from the starting p	point?
turns left and wa	lked 4 kms. How far is ho	e now from the starting p	
turns left and wa	lked 4 kms. How far is ho	e now from the starting p	point?
turns left and wa a. 2 kms Pran and Khan st	lked 4 kms. How far is hob. 3 kms b. 3 kms art from their office and values 10	c. 10 kms	d. 11 km
Pran and Khan st	lked 4 kms. How far is hob. 3 kms b. 3 kms art from their office and values 10	c. 10 kms	d. 11 km
Pran and Khan st 10 kms. Pran the How far are they f	art from their office and valks 10 from each other?	e now from the starting position of the starti	d. 11 km d. 11 km d. 11 km each travelling ght and walks 10 l

	rom a point 'P'. A goes wes his right and walks 3 kms		
a. 7 kms	b. 9 kms	c. 2 kms	d. 5 kms
turns to his right	kms to North and turning and goes 20 kms. After th n his starting point?		
a. 20 kms	b. 10 kms	c. 25 kms	d. 40 kms
7. A man travels 3 k from starting poi	ims in the East and turns to nt?	to south and moves 4 kn	ns. How far is he
a. 5 kms	b. 6 kms	c. 2 kms	d. 10 kms
	cms towards the North, tur and covers another 4 kms		
How far is he fro			
a. 18 kms	b. 11 kms	c. 12 kms	d. 15 kms

				Logical Reasoning
		outhwards and turned lef) kms, then turned
	kms	s. How far was Mitan from b. 10 kms	c. 12 kms	d. 14 kms
		ns towards East then turno urned west & travelled 15		
	15 kms	b. 30 kms	c. 45 kms	d. zero kms
101. D	aily in the morning th	ne shadow of Ram temple	falls on Hanuman	temple, and in the
e,	vening shadow of Har	numan temple falls on Rar		
	emple is from Ram te - East		c South	d North
a	Lust	N. WUSL	O. South	u. North
				My Notes :

I NØ	ICAL	Reas	oning
	- Cut	II Cuc	VIIIII 9

rides 2 kms and moving now?	turns again to the right to	ride to go more. In which	n direction is h
a. East	b. West	c. South	d. North
	ising sun behind the temple What direction of temple fr		railway station
a. East	b. West	c. South	d. North
. A is B's daughte	er. B is C's mother. D is C's	brother. How is D relate	ed to A?
A is B's daughte	er. B is C's mother. D is C's b. Grandfather	brother. How is D relate c. Brother	ed to A? d. Son
			d. Son
			d. Son

Logical	Reasoning

				. How is P related to T
	a. Grand-daughter	b. Great grandson	c. Grandson	d. Grandmother
06.	A is B's brother. C is	a D's father. E is B's mo	ther A & D are brothe	rs. How is E related to (
	a. Sister	b. Sister in law	c. Niece	d, Wife
07.	Given that A is moth is the grandmother	er of B, C is son of A, of D?	D is brother of E, E is	daughter of B, who
	a. A	b. B	. C d. D	
08.	M is the son of P. Q How is M related to	is grand daughter of O?		P.
08.				P. d. Father
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	
08.	How is M related to	05	O who is husband of	

						Logical Reasoning
1(09.	A is B's sister .	C is B's n	other. D is C's 1	father. E is D's m	other. How is A related to D?
	a	. Grandmother	b	. Grandfather	c. Daughter	d. Grand-daughter
:						
1	10.	A is father B & (C, B is so	ı of A. But C is n	ot son of A. How	is C related to A?
		a. Niece	b. S	on-in-law	c. Daughter	d. Grandson
1					other of B. E is so	n of A.
		What is relations . Brother & siste		een C and E? b. Cousins	c. Niece & un	cle <u>d. Uncle & Aunt</u>
	a	Brother & Siste	,	D. Cousins	o. Nicoc & un	di Unite & Aunt
1	1.0					
					8 & Q. What is R to	
	8	. Mother	b.	Sister	c. Aunt	d. Mother in law

					Lo	gical Reasoning
1	13.	X is husband of the relation of N	Y. W is daughter of X. Z is N to Y?	husband of W. N is	daughter o	f Z. What is
		a. Cousin	b. Niece	c. Daughter	d. Gra	nnd-daughter
1	1.4	A's mother is	sister of B and she has da	ughter C who is 2	1 vears old	How is R
	14.	related to C?	b. Maternal Uncle		ughter	d. Uncle
1	15.	A is D's broth	er. D is B's father. B &	C are sisters. Ho	w is C rela	ited to A?
		a. Cousin	b. Niece	c. Aunt	d. Nephew	
<u> </u>	4.0	1				
1	16.		er, C is A's mother. D is (
		a. Cousin	b. Nephew	c. Uncl	e	d. Grandson

		_	
		Reaso	mind
- 11	4 1 07 (1	I Lat (P)	111111

1		B are brothers is relationship	. E is daughter of of E to A?	F. F is wife of B.		
	a. Siste	er b. D	aughter (e. Niece d	Sister-in-law	
1	10					
					sister of F. Who is B to	
	a. Siste	er-in-law	b. Sister	c. Mo	other d. Nie	ce
1	19. Q is so	on of P. X is dau	ighter of Q. R is ai	ınty (Bua) of X and I	_ is son of R, then what	is L to P?
					al a la Nati	
١.	a. Gran	ndson	b. Granddaug	hter c. Dau	ghter d. Nephev	<u>V</u>
	a. Gran	ndson	b. Granddaug	nter c. Dau	gnter a. Nepnev	V
	a. Gran	ndson	b. Granddaug	nter c. Dau	gnter a. Nepnev	V
-	a. Gran	ndson	b. Granddaug	nter c. Dau	gnter a. Nepnev	V
	a. Gran	ndson	b. Granddaug	nter c. Dau	gnter a. Nepnev	
1:	20. Rajiv i	is brother of At			n of Sonia. How is Rajiv	
1:	20. Rajiv i	is brother of Ato d to Sonia?			ı of Sonia. How is Rajiv	
1:	20. Rajiv i relate	is brother of Ato d to Sonia?	ul. Sonia is sister	of Sunil. Atul is son	ı of Sonia. How is Rajiv	
1:	20. Rajiv i relate	is brother of Ato d to Sonia?	ul. Sonia is sister	of Sunil. Atul is son	ı of Sonia. How is Rajiv	
1:	20. Rajiv i relate	is brother of Ato d to Sonia?	ul. Sonia is sister	of Sunil. Atul is son	ı of Sonia. How is Rajiv	
12	20. Rajiv i relate	is brother of Ato d to Sonia?	ul. Sonia is sister	of Sunil. Atul is son	ı of Sonia. How is Rajiv	
12	20. Rajiv i relate	is brother of Ato d to Sonia?	ul. Sonia is sister	of Sunil. Atul is son	ı of Sonia. How is Rajiv	

CA Vinod Reddy - vinod.reddy.ca@gmail.com

	other?				
	a. Grandfath	ner-Grandson		b.	Grandfather-son
	c. Husband-	Wife		d.	Father & Son
122.				her has a son whose	e son is Ashwat".
	How is Ashva. Uncle	vat related to F b. (Ramu? Cousin	c. Brother	d. Nephew
123.			S,T. P is right se is in the mi	of Q and T is left of	R and right of P.
	w is right of	5. Willon Hous		aale?	
	a. P	b. Q		c. R	d. T
					d. T
					d. T
124.	a. P Five friends	b. Q	bench. A is to	c. R	the right of C, D is to the
124.	a. P Five friends	b. Q	bench. A is to	c. R the left of B but on	
124.	Five friends	b. Q are sitting on ut on the left o	bench. A is to f E. Who are a	the left of B but on at the extremes?	
124.	Five friends	b. Q are sitting on ut on the left o	bench. A is to f E. Who are a	the left of B but on at the extremes?	

	of O. R is sitting to the			
	a. 0	b. R	c. P	d. M
100	E hove A D C D E are a	tanding in a naw Dia	to the widet of E. Die on the	Loft of F but
126			s to the right of E, B is on the s standing on extreme right. '	
	in the middle?			
	a. B	b. C	с. D	d. E
127	4 Ladies A,B,C,D and 4	4 gentlemen E,F,G,H a	re sitting in a circle around	a table
	facing each other - I. N	No 2 ladies or gentlen	en are sitting side by side	
		C who is sitting betwe	en G, E facing D	
	III.	C who is sitting betwe F is between D and A	een G, E facing D and facing G	
	III. IV.	C who is sitting between F is between D and A H is to the right of B	een G, E facing D and facing G	
	III. IV. Qs. 1 Who is sitting to	C who is sitting between E is between D and A H is to the right of B the left of A?	een G, E facing D and facing G	
	Qs. 1 Who is sitting to a. E b. F	C who is sitting between E is between D and A H is to the right of B the left of A? c. G	een G, E facing D and facing G	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom	C who is sitting between E is between D and A H is to the right of B the left of A? c. G	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B	C who is sitting between E is between D and A H is to the right of B the left of A? c. G	een G, E facing D and facing G	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B	C who is sitting between E is between D and A H is to the right of B the left of A? c. G	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	
	Qs. 1 Who is sitting to a. E b. F Qs. 2 E is facing whom a. F b. B Qs. 3 Who are immedi	C who is sitting between E is between D and A H is to the right of B the left of A? c. G c. G ate neighbours of A?	een G, E facing D and facing G d. H	

			Laume Norm, W. W	ho is immediate left of S i	s facing W.
		n i and 8 and	W is to the immed		
		s sitting in fro			
	a. U	b. Q	c. V	d. P	
	Qs. 2 Who is	s to the imme	diate right of R?		
	a. S	b. U	c. T	d. None of these	
	Oc. 2 In whi	ch of the follo	wind naire narean	s are sitting in front of eac	ch other?
	a. S,V	b. R,V	c. T,V	d. U,R	on other.
	,		,	,	
	A to H are so	natad in a stud	aight line facing No	rth. C sits 4 th left of G. D si	te cocond
29.				A. B and F are immediate n	
				A. H is not neighbour of D	
	cuon omer.	D 19 HOT IIIIIIC	diate heighbour of	A. II is not neighbour of D	
	a. Who amor	ng the following	ng sits third to the	right of C?	
	a. B	b. F	c. A	d. E	
	h Which of t	the following	renresents nersons	seated at 2 extreme ends	of line ⁹
	a. C,D	b. A,B	c. B,G	d. D,H	
			,	,	
			ith respect to F?	c. 2 nd to right	d. 4 th to left
	a. 3 rd to left	D. III	nmediate right	C. 2 to right	u. 4 to left
			seated between A &	k E?	
	a. 1	b. 2	с. 3	d. 4	
	1				
30.	Given that A			is brother of E. E is daug	hter of B.
30.	Given that A Who is gran	is mother of dmother of D		is brother of E. E is daug	hter of B.
30.	Given that A Who is gran a. A			is brother of E. E is daug	hter of B.
30.	Who is gran	dmother of D	9		hter of B.
30.	Who is gran	dmother of D	9		hter of B.
30.	Who is gran	dmother of D	9		hter of B.
30.	Who is gran	dmother of D	9		hter of B.
30.	Who is gran	dmother of D	9		hter of B.
30.	Who is gran	dmother of D	9		hter of B.

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

Food For Thought

BUT THEN We RISE We HEAL We OVERCOME

CA VINOD REDDY

What makes life so difficult?

'PEOPLE'

All things are difficult before they are EASY

- CA VINOD REDDY -

Chapter-14

1.	Often we encounter news of price rise, GDP growth, production growth, etc. It is important for student of chartered accountancy to learn techniques of measuring growth / rise or decline of various economic & business data and reporting it with the help of index numbers.
2.	<u>Definition of Index Numbers :</u>
2.	Index number is ratio or avg of ratios of prices, quantities, values where 2 or more time periods e involved, one of which is the base period. The value at base time period serves as standard point for comparison. Examples: Sensex, CII, HDI, CPI, etc.
3.	There are 2 broad types of index numbers
Sin	a. b. mple index number is computed for one variable where as composite index number is calculated from 2 or more variables. Most index numbers are composite in nature.
4.	All index Numbers are UNIT FREE.
5.	Issues involved in the construction of index numbers
	a. Selection of data. b. Base period. c. Selection of weights. d. Use of averages e. Choice of variable f. Selection of formula
6.	Price Relative =
	Quantity Relative =
	Value Relative =
_	My Notes:

7
•

Year (B.Year) 2016	Price of	ce of Quantity of commodity A	Value of commodity	Relatives		
2016	A		A	Price	Qty.	Value
2016	50	8				
2017	103	13				
2018	68	16				
2019	98	21				
2020	111	28				
2021	125	35				

8.	
0.	Simple Aggregative
	Price Index Number

Simple Aggregative Value Index Number

9.

Commodities	Year		
Commountes	2021	2022	2023
Cheese (per 10 gms)	12	15	16.80
Egg (per piece)	3	3.60	3.30
Potato (per kg)	5	6.00	5.70
Aggregate	20		
Simple Aggregative			
Price Index Number			

Commodities	Year		
Commodities	2021	2022	2023
Cheese (per 100 gms)			
Egg (per dozen)			
Potato (per 20 kg)			
Aggregate			
Simple Aggregative			
Price Index Number			

Observations from above two tables :				

	Index Numbers
10.	Simple Aggregative Index Numbers do not satisfy <u>unit test</u>
	To overcome this limitation of simple aggregative index number we have introduced
11.	Weighted Aggregative Index Numbers :
	While finding weighted aggregative price index numbers we use weight as : While finding weighted aggregative quantity index numbers we use weight as :
	My Notes:

Weighted Aggregative	D	Quantity
Index Numbers	Price	Quantity
1. Laspeyre's		
1. Laspeyre s		
2. Paasche's		
2. Faasule s		
3. Marshall Edgeworth's		
4. Fisher's Ideal Indices		
1		
10		
13. (Link)	molative of Cumpant Veen v Chain	Index of Duovious Vocas
13. Chain Index = (Link	relative of Current Year x Chain	Index of Previous Year)
Chain Index = (Link		ndex of Previous Year)
	relative of Current Year x Chain 100	Index of Previous Year)
		Index of Previous Year) My Notes:

Year	Price	Link Relatives	Chain Indices
2011	50		
2012	60		
2013	62		
2014	65		
2015	70		
2016	78		
2017	82		
2018	84		
2019	88		
2020	90		
2021	103		
2022	108		

15. <u>Limitations of Index Numbers :</u>

- 1. Indices are collected mostly from samples.
- 2. They depict only broad trend and not real picture
- 3. There are many methods employed from constructing index numbers, the result gives diff values and this at times creates confusion.

16.

Year	Wholesale Price Index	GNP at current Prices	Real GNP
2021	113.10	7499	
2022	116.30	7935	
2023	121.20	8657	
2024	127.70	9323	

Defleted Value -	Cur	rent Value	
Deflated Value =	Price Ind	ex of current year	

1	7 .
	•

Year	Original Price Index	Shifted Price Index to the base 2020
2010	100	
2011	104	
2012	106	
2013	107	
2014	110	
2015	112	
2016	115	
2017	117	
2018	125	
2019	131	
2020	140	
2021	147	

	Original Price Index
Shifted Price Index =	
	Price Index of the year on which base has to be shifted

Tests of Adequacy : a.

b.

c. d.

19.

When unit test of index numbers is said to be satisfied?

		Index Numbers
20.	When time reversal test is said to be satisfied?	
_		
- Yo	ou will notice that Laspeyre's & Paasche's method do not satisfy Time-rever	sal test but Fisher's
fo	rmula satisfy Time-reversal test.	
- WI	hile selecting an appropriate index formula, the time reversal test and factor	or reversal test are
CO	nsidered necessary in testing the consistency.	
21.	When factor reversal test is said to be satisfied?	
	Fisher's formula satisfy time reversal test as well as factor reversal	test.
	Therefore, it is called as ideal index number.	
22.	When circular test of index numbers is said to be satisfied?	
23.		
	A series of numerical figures which show the relative position is ca	lled as
24.		
	Index number for the base period is always taken as a. 200 b. 50 c. 150	d. 100
25.		
	play very important part in construction of index numbers.	

d. Students

b. Classes

c. Estimations

a. Weights

				muex Numbers
26.	is particula	rs suitable for con	struction of index nu	mbers.
	a. AM b. GM		c. HM	
27.				
21.	Index number showb.			
	a. nelative D.	rercentage	C. Major	u. Willot
28.	The make	s index numbers	time reversible	
	a. AM b. C	iM	c. HM	d. Mode
29.				
	The of grou			d Nove of these
	a. AM b. GM	1	c. HM	a. None of these
30.	Test is extens	ion to time revers	al test.	
	a. Factor Reversal Test			d. None
24				
31.	Factor Reversal Test is satisf	ied by :		
	a. Fisher's Index b. La	speyre's Index	c. Paasche's Index	d. None of these
32.		-43-6		
	Laspeyre's formula does not a a. Factor Reversal Test		est c. Circular 1	Test d. All of these
33.	The value at1	ime period serves	as standard point for	comparison
			d. Past	
34.	Index numbers are often co	nstructed from		
	a. Frequency b.	Class	c. Sample	d. Temple
35.	The ratio of price of a single	commodity in a giv	en period to its price	in the base year
	is called as			
	a. Price Relative	b. Close Relative		
	c. Cousin	d. Price		
36.	Sum of prices of all co	mmodities		
30.	Sum of prices of all commod	Y	100 = ?	
	a. Price Relative		b. Quantity Relative	
	c. Simple aggregative price ind	ex number	d. Weighted aggregat	ive price index number

				Index Numbers
37.				
	P ₀₁ is the index fo		0 1 on 1	d 0 an 0
	a. 1 on 0	D. U ON I	C. I OH I	d. 0 on 0
38.				
00.	P ₁₀ is the index for			
_	a. 1 on 0	b. 0 on 1	c. 1 on 1	d. 0 on 0
39.				
39.	P _{ab} is the index for			
L —	a. a on b	b. b on a	c. a on a	d. b on b
40.	When product of	price index number and q	uantity index numb	per is equal to
40.		lue index number then th	•	
_	a. Unit Test		_	ne Reversal Test
	c. Circular Test		d. Fa	ctor Reversal Test
41.	The formula shou	ld be independent of the	unit in which or for	which prices and
_	quantities are qu	oted in :		
	a. Unit Test			me Reversal Test
<u></u>	c. Circular Test		d. Fa	ctor Reversal Test
42.				
42.		mula does not satisfy		
<u></u>	a. Unit Test	b. Circular Test	c. Time Revers	al Test d. None of these
43.				
43.		aasche's method		
<u></u>	a. Satisfy	b. Do not satisfy	c. Sometime	s satisfy d. Can satisfy
44.	There is no suc	h thing as unweighted ind	lex numbers.	
L —	a. True	b. False		
	The quetically CM	is boot and in construction	an of indox number	a but in practice
45.	mostly AM is use	is best avg in construction	on of index number	s but in practice,
L —	a. True	b. False		
46.	The number of	tests of adequacy are		
L —	a. 3	b. 4	c. 8	d. 2
47	We use price ind	lov niimhore		
47.				
	a. To measure an	nd compare prices		b. To measure prices
	c. To compare pr	ices		d. None of these

					Index Numbers
48.	If price of all c	commodities in a plac	no have increased 1	OF times in some	nanican to their
		ne index number of p			parison to their
	a.125	b. 25	c. 150	d. 225	
49.	If index number	r of prices at a place	in 2022 is 250 with	2005 as base y	ear then prices
	have increased	on avg by			
	a. 250%	b. 150%	с. 350%	d. 5	0%
50.	If prices of all	commodities in a pla	ice have decreased 3	5% over the bas	e period prices,
_	then index nun	nber of prices of that	place now is ,		
	a. 35	b. 135	с. 65	d. None of th	ese
F 4					
51.		dex number is expre		of 'n' is :	
_	a. P _n P _(n+1)	b. P _n P _(n-1)	C. P _(n+1) P _(n-1)	d. No	one of these
	P _(n+1)	P _(n-1)	P _(n-1)		
50	Fisher's ide	al Price Index			
52.	=\				
	_ \				
53.	Fisher's ideal	Quantity Index			
	=\				
54.	Consumer price	e index for the year	1957 was 313 with	1940 as the ha	ise year. The avg.
	_	in 1957 of the work			_
	a. ₹48.40	b. ₹ 51.12			d. None of these

Bowley's Index

Lasp. Index + Paasche's Index

Commodity _	Base	Year	Curre	ent Year
	Price	Quantity	Price	Quantity
	20	125	22	150
	28	163	32	170
	30	128	32	150
	38	193	42	200
	42	186	42	193
	45	176	48	192
	60	185	56	198
	70	198	7 5	210

Find Lasp. Price Index =
Paasche's Price Index =
Marshall Edgeworth's. Price Index =
Fisher's Ideal Price Index =
Dorbish-Bowley's Price Index =
Lasp. Quantity Index =
Paasche's Quantity Index =
Fisher's Quantity Index =
Marshall Edgeworth's. Quantity Index =
Dorbish-Bowley's Quantity Index =

	7					
57.		December 1 and 1 op 5				
	Circular test is not met by Laspeyre's and Paasche's index OR Fisher's index.					
_	The simple geometric mean of price relatives an	d weighted aggregative	e with fixed weights			
	meets this	test.				
58.	In 1980, the net monthly income of an employe	e was ₹800 n.m. The	consumer price index			
00.						
_	was 160 in 1980. It rises to 200 in 1984. If he has to be rightly compensated the additional amount to be paid to employee is					
_		• ₹ 000	J 740F			
_	a. ₹ 175 b. ₹ 185	c. ₹ 200	d. ₹ 125			
_						
_						
_						
_						
50	Uses of Index Numbers					
59.	a. Framing suitable policies in economics &	husiness				
l —	b. They reveal trends and tendencies.					
—	c. They are used for forecasting the future.					
-	d. They are useful in deflating.					
	e. Useful to measure changes in cost of livi	ng.				
l —						
	7					
60 .	• The purpose determines the type of index num	hers to use.				
	a. True b. False					
\ —	a. Hue D. Laise					
			My Notes:			

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA Vinod Reddy Maths Regular Notes	CA VINODREDDY

CA VINOD REDDY

People don't care for you, when you are alone
They just care for you when they are alone!

Food For Thought

WE ARE NOT OUR DEST INTENTIONS, WE ARE WHAT WE

No matter where you are in life, GOD always has more in store. He never wants you to stop growing

FORM IS TEMPORARY CLASS IS PERMANENT

CA VINOD REDDY

Your.ICAN is more important than your I.Q

