INDEX

Sr. No.	Chapter Name	Page No.
1.	Ratio & Proportion, Indices, Logarithms	1 to 32
2.	Equations	33 to 55
3.	Linear Inequations	56 to 69
4A.	Time Value of Money	70 to 93
4B.	Application of Time Value of Money	94 to 100
5.	Permutations and Combinations	101 to 127
6.	Sequence, Series and Progressions	128 to 152
7.	Sets, Relations and Functions	153 to 177
8A.	Derivatives	178 to 195
8B.	Integration	196 to 209

Important Identities :-

- 1) $(a+b)^{2} = a^{2} + 2ab + b^{2}$ 2) $(a-b)^{2} = a^{2} - 2ab + b^{2}$ 3) $a^{2} - b^{2} = (a+b) (a - b)$ 4) $(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ OR $a^{3} + b^{3} + 3ab (a+b)$ 5) $(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3} OR a^{3} - b^{3} - 3ab (a - b)$ 6) $a^{3} + b^{3} = (a+b) (a^{2} - ab + b^{2}) OR (a+b)^{3} - 3ab (a+b)$ 7) $a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2}) OR (a - b)^{3} + 3ab (a - b)$ 8) $(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac.$
- 9) $a^3+b^3+c^3 = (a+b+c)(a^2+b^2+c^2-ab-bc-ac) + 3abc$

If $a+b+c = 0 a^3+b^3+c^3 = 3abc$

1. RATIO & PROPORTION, INDICES, LOGARITHMS

Ratios

A. Features

- 1. Comparison : A ratio is comparison of the size of the sizes of two or more quantities of the same kind by division.
- 2. Same Unit : The two quantities should be the same unit.
- 3. Lower terms : Ratio is expressed in lowest terms.
- 4. Fraction : If 'a' and 'b' are the quantities of the same kind, the fraction a/b is called the ratio of 'a' and 'b'.
- 5. Antecedent : The first term 'a' is called antecedent.
- 6. Consequent : The second term 'b' is called consequent.

B. Inverse Ratio

- 1. The reciprocal of the given ratio is called the inverse ratio.
- 2. If ratio is a:b, then its inverse ratio is b:a.

C. Compound Ratio :

- 1. The product of ratios obtained by multiplying the fractions (denoting the ratios) is called compounded ratios.
- 2. The compound of a/b and c/d is ac/bd.

D. Duplicate Ratio :

- 1. When two equal ratios are multiplied, the product is the duplicate ratio.
- 2. The duplicate ratio of a:b is $a^2 : b^2$.

E. Sub Duplicate Ratio :

- 1. The square root of the given ratio is the sub-duplicate ratio.
- 2. The sub-duplicate ratio of a : b is \sqrt{a} : \sqrt{b}

F. Triplicate Ratio :

- 1. When three equal ratios are compounded, the product is called the triplicate ratio.
- 2. The triplicate ratio of a : b is $a^3 : b^3$.

G. Sub-triplicate Ratio :

- 1. The third root of the given ratio vs sub-triplicate ratio.
- 2. The sub-triplicate ratio of a:b is $\sqrt[3]{a}$: $\sqrt[3]{b}$.

H. Continued Ratio :

- 1. The relation between the magnitudes of three or more quantities of the same kind.
- 2. The continued ratio of three similar quantities a, b, c is a:b:c.

	<u>Par</u> Ra (Module · Set	<u>rt - I</u> tio + Scanner) : - A	10.	The du a) $\sqrt{3}$ c) 9 : 1
1.	Ratio exists only bet kind. a) same	ween quantities of	11.	The sub a) 6 : 5 c) 50 :
2.	c) smaller A ratio is a	d) None	12.	The trip a) 27 :
	a) unit	b) term		C) Z.C
	c) number	d) function	13.	The trip a) 125
3.	The order of the terr a) True	ms in a ratio is important. b) False		c) 64 :
	c) Partly True	d) None of the above	14.	The sub a) 27 :
4.	A ratio is expressed a) simplest	in form. b) complicated		c) 2:3
5.	(c) moderate Ratio has no unit. a) True c) False	d) functional b) Partly True d) None of the above	15.	The rat 8 : 10 is a) 1 : 1 c) 3 : 8
6.	lf a : b = c : d then a) ab = cd c) ad = bc	b) ac = bd d) ab = ad	16.	The ra duplica a) 1:4 c) 3:1
7.	The inverse ratio of a) 15 : 11 c) 121 :225	11 : 15 is b) $\sqrt{11} : \sqrt{15}$ d) none of these	17.	The raduplica
8.	The ratio of two antecedent is 15, the	quantities is 3 :4. If the econsequent is		c) 4
	a) 16 c) 22	b) 60 d) 20	18	The rat ratio of 7 is
9.	The ratio of the consequent of its	quantities is 5:7. If the inverse ratio is 5, the		a) 2:7 c) 2:2
	a) 5 c) 7	b) $\sqrt{5}$ d) none of these	19.	The rat 5, tripli 81 : 256 a) 4 : 5 c) 1 : 1

10.	The duplicate ratio of	of 3 :	4 is
	a) $\sqrt{3}:2$	b)	4:3
	c) 9:16	d)	none of these
11.	The sub-duplicate ra	atio d	of 25 : 36 is
	a) 6:5	b)	36:25
	c) 50 : 72	d)	5:6
12.	The triplicate ratio o	of 2 :	3 is
	a) 27:8	b)	24:81
	c) 2:3	d)	none of these
13.	The triplicate ratio o	of 4 :	5 is: (Scanner)
	a) 125:64	b)	16: 25
	c) 64:125	d)	120:46
14.	The sub-triplicate ra	tio o	f 8 : 27 is
	a) 27:8	b)	24 : 81
	c) 2:3	d)	none of these
15.	The ratio compound	ded c	of 2 : 3, 9 : 4, 5 : 6 and
	a) $1 \cdot 1$	b)	1 · 5
	c) 3:8	d)	none of these
16.	The ratio compound duplicate ratio of 3 : a) 1:4 c) 3:1	ndec 4 is b) d)	1 of 4 : 9 and the 1:3 none of these
17.	The ratio Compound duplicate of "a":9 is	unde 8:15	d of 4:5 and sub- 5. Then value of "a" is: (Scanner)
	a) 2	b)	3
	c) 4	d)	5
18	The ratio compound ratio of 3 : 4, the trip 7 is	ded olicat	of 4 : 9, the duplicate te ratio of 2 : 3 and 9 :
	a) 2:7	b)	7:2
	c) 2:21	d)	none of these
19.	The ratio compound 5, triplicate ratio of 81 : 256 and sub-trip a) 4 : 512 c) 1 :12	led c 1 : 3, plicat b) d)	of duplicate ratio of 4 : sub duplicate ratio of te ratio of 125 : 512 is 3 : 32 none of these

BUSINESS MATHEMATICS

d) 8:3

c) 3:5

20.	If a : b = 3 : 4, the va	alue	of (2a + 3b) : (3a + 4b)
	a) 54:25	b)	8 : 25
	c) 17:24	d)	18 : 25
21.	If A:B = 2:5, then (10 to:	0A +	3B):(5A + 2B) is equal (Scanner)
	a) 7:4	b)	7:3
	c) 6:5	d)	7:9
22.	If $x : y = 3 : 4$, the value $x = 12$	alue o	of $x^2y + xy^2 : x^3 + y^3$ is
	a) 13:12 c) 21:31	d)	12:13
	() 21.51	u)	none of these
23.	If $p: q = 2:3$ and x 5px + 3qy : 10 px +	: y = · 4av	4 : 5, then the value of
	a) 71:82	b)	27 : 28
	c) 17:28	d)	none of these
24.	If $\frac{p}{a} = -\frac{2}{3}$ then the	value	e of $\frac{2p+q}{2p-q}$ is :
	<i>q</i> 5		(Scanner)
	a) 1	b)	-1/7
	c) 1/7	d)	7
25.	lf a : b = 3 : 7 then 3	Ba +	2b : 4a + 5b = ?
	a) 27 : 43	b) /	23:47
	c) 24 : 51	d) /	29:53
26. l	$f 5x^2 - 13xy + 6y^2 = 0$, the	n x : y is
ā	a) (2 : 1) only	b) ((3 : 5) only
C	c) (5 : 3) or (1 : 2)	d) ((3 : 5) or (2 : 1)
27. I	$f \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$ then	pa+o pb+o	ac+re ad+rf equals
ā	a) k	b) ((p + q + r) k
C	$\frac{1}{k}$	d)	None of these
28.	Two whole numbers in the ratio	who	se sum is 72 cannot be
ā	a) 5 : 7	b) 3	3:5
C	:) 3 : 4	d) 4	4 : 5
29.	If $15(2p^2 - q^2) =$ positive, then p : q v a) 5 : 6	7pq, will b b)	where p and q are e: (Scanner) 5 : 7

30.	Ratio between 25 m a) 100 : 3 c) 4 : 5	ninutes and 45 seconds. b) 5 : 9 d) 3 : 10	
31.	If 40% of a number another number, v number to the secon a) 2 : 5 c) 5 : 3	is equal to two – third o what is the ratio of firs nd number? b) 3 : 7 d) 7 : 3	of St
	<u>Set</u>	<u>t - B</u>	
1.	Two numbers are i subtracted from eac 5. The numbers are a) (16, 24)	in the ratio 2 : 3. If 4 b ch, they are in the ratio 3 b) (4, 6)	e :
	c) (2, 3)	d) none of these	
2.	The angles of a trian The angles are a) (20°, 70°, 90°) c) (18°, 63°, 99°)	ngle are in ratio 2 : 7 : 11 b) (30°, 70°, 80°) d) none of these	
3.	Division of Rs.324 k ratio 11 : 7. X & Y w a) (204, 120) c) (180, 144)	Detween X and Y is in the ould get Rupees b) (200, 124) d) none of these	e
4.	Anand earns Rs.80 i 90 in 12 hours. The i a) 32 : 21 c) 8 : 9	n 7 hours and Promod Re ratio of their earnings is b) 23 : 12 d) none of these	5.
5.	The ratio of two n difference is 105. Th a) (200, 305) c) (245, 350)	numbers is 7:10 and thei ne numbers are b) (185, 290) d) none of these	ir
6.	P, Q and R are three temperature betwee that between P and I the average tempera a) 22 : 27 c) 32 : 33	cities. The ratio of averagen P and Q is 11 : 12 and R is 9 : 8. The ratio between ature of Q and R is b) 27 : 22 d) none of these	e d n

7. Simplify the ratio 1/3 : 1/8 :1/6

CA FOUNDATION

	a) 8:4:3	b) 8:3:4		a) 20	b) 19
	c) 4:3:8	d) none of these		c) 23	d) 27
8.	The ratio 3 / 2 : 1 / 3 a) 36 : 3 : 8 c) 36 : 8 : 3	3 : 1/ 8 is same as b) 3 : 8 : 36 d) 3 : 36 : 8	16.	Find three numbers the sum of their sq	s in the ratio 1 : 2 : 3, so that uares is equal to 504 (Scanner)
9.	X varies inversely as = 2 for $x = 1$. The	s square of y. Given than y value of x for $y = 6$ will be		a) 6, 12, 18 c) 4, 8, 12	b) 3, 6, 9 d) 5, 10, 15
	equal to a) 3 c) 1/3	b) 9 d) 1/9	17.	The salaries of A, B the increments of 1 to their respective ratio of the salaries	and C are of ratio 2 : 3 : 5. If 5%, 10% and 20% are done salaries, then find the new
10.	Two numbers are i more than a third numbers is	respectively 30% and 40% number. The ratio of two		a) 23 : 33 : 60 c) 23 : 60 : 33	b) 33 : 23 : 60 d) 33 : 60 : 23
	a) 3 : 4 c) 13 : 14	b) 14 : 14 d) 4 : 3	18.	Divide 80 into two is maximum, then t	parts so that their product he numbers are:
					(Scanner)
11.	A person has assets to divide it amongst in the ratio 3 : 2	worth Rs.1,48,200. He wish his wife, son and daughter 1 respectively. From this		a) 25, 55 c) 40, 40	b) 35, 45 d) 15, 65
	assets, the share of a) Rs.24,700 c) Rs.74,100	his son will be: (Scanner) b) Rs.49,400 d) Rs.37,050	19.	If A, B and C start Rs.1,26,000, Rs.84,0 end of the year pr share of each is:	ed a business by investing 00 and Rs.2,10,000. If at the ofit is Rs.2,42,000 then the <i>(Scanner)</i>
12.	The number which y of the terms of the 1:4 is $2(15-b) = -(15-c)^{2}$	when subtracted from each ratio 19 : 31 reducing it to		 a) 72,600, 48,400, b) 48,400, 1,21,000 c) 72,000, 49,000, d) 48,000, 1,21,400 	1,21,000), 72,600 1,21,000), 72,600
13	Two numbers are	in the ratio 2.3 and the	20.	Daily earnings of two 4.5 and their daily	wo persons are in the ratio
13.	difference of their so are:	quares is 320. The numbers		9. If each saves are	Rs.50 per day, their daily
	a) 12, 18	b) 16, 24		a) (40, 50)	b) (50, 40)
	c) 14, 21	d) None		c) (400, 500)	d) none of these
14.	What must be adde 49 : 68, so that it be (Scanner)	d to each term of the ratio comes 3 : 4?	21.	The ages of two p Eighteen years ago of 8:13, their prese	ersons are in the ratio 5:7. their ages were I the ratio nt ages (in years) are:
	a) 3	b) 5			(Scanner)
. –	c) 8	d) 9		a) 50, 70 c) 40, 56	b) 70, 50 d) None
15.	The ratio of no. of b	oys and the no. of girls in a			
	school is found to k and equal no. of girl the ratio of 2/3?	be 15 : 32. How many boys is should be added to bring	22.	If the salary of P is and the salary of R	is 25% lower then that of Q is 20% higher than that of

23.

24.

25.

26.

27.

FOUN	DATION						
Q, t	the ratio of the sa	alary	of R	and	P will be:	: pr)	
a) c)	5 : 8 5 : 3	b) d)	8 : ! 3 : !	5	(Scanne	,	
The anc sav	e incomes of A a their expenditur es Rs.1,500, then	nd B res in B's ii	are the ncor	in th ratio ne is:	ne ratio 3 5 : 3. If e	3 : 2 each	
a)	Rs 6 000	h)	Rs 4	1 500	"		
c)	Rs.3,000	d)	Rs.7	7,500			
Inco the tota is tl a) 2 c) 3	omes of R and S ir expenditures a al expenditure is a he ratio of their s 23 : 36 31 : 19	are are in equa aving b) 2 d) 3	in the 1 to i gs? 28 : 4 35 : 1	ne ratio ratio ncom 1 9	tio 7 : 9 o 1 : 5. T ne of R. W	and Their Vhat	
Rat ear dec bec	io of earnings o nings of A increa crease by 25%, the comes 8 : 7. What	f A a ise by e nev : is A	and y 50 v rati 's ea	B is % an io of ⁻ rning	4 : 7. If d those their earr ?	the of B ning	
2)	Rc 21 000		(Sc	anne	r)		
a) C)	Rs.28,000 Rs.28,000		d) [Data i	nadequa	ate.	
The : 8. the a)	e ratio between th If the second trai speed of the firs 10 Km/hr	ne sp n rur t trai	eeds ns 40 n is b)	5 of tv 0 km 50 k	wo trains s. In 5 hc (m/hr	s is 7 ours,	
c)	70 Km/hr		d)	non	e of thes	se	
The 7, i rem the	e students of two if 10 students I naining students a number of stude	clas eft f are ir ents i	ses a from n the n ea (Sc e	are in eac ratio ch cla anne	the ration h class, of 4 : 6 t ass is: r)	o 5 : the then	

	(Scumer
a) 30, 40	b) 25, 24
c) 40, 60	d) 50, 70

28. In 40 litres mixture of glycerine and water, the ratio of glycerine and water is 3 : 1. The quantity of water added in the mixture in order to make this ratio 2 : 1 is: (Scanner) a) 15 litres b) 10 litres c) 8 litres d) 5 litres.

	of copper is:	(Scanner)
	ratio 9 : 4. The zinc required	to melt with 24 kg
29.	An alloy is to contain copp	er and zinc in the

a)	$10\frac{2}{3}$ kg	b)	$10\frac{1}{3}$ kg
c)	$9\frac{2}{3}$ kg	d)	9kg

30. A vessel contained a solution of acid and water in which water was 64%. Four litres of the solution were taken out of the vessel and the same quantity of water was added. If the resulting solution contains 30% acid, the quantity (in litres) of the solution, in the beginning in the vessel, was.

a) 12	b) 36
c) 24	d) 27

31. The ratio of the number of boys to the number of girls in a school of 720 students is 3 : 5. If 18 new girls are admitted in the school, find how many new boys may be admitted so that the ratio of the number of boys to the number of girls may change to 2 : 3.

a) 42	b)	50
c) 45	d)	none of these

32. In a department, the number of males and females are in the ratio 3 : 2. If two males and 5 females join department, then the ratio becomes 1:1, initially the number of female in the department is:

a) 9	b) 6
c) 3	d) 8

33. The ratio of the prices of two houses was 16 : 23. Two years later when the price of the first has increased by 10% and that of the second by Rs.477, the ratio of the prices becomes 11 : 20. Find the original prices of the second houses.

a)	Rs.1,219	b)	Rs.1,222
c)	Rs.1,225	d)	none of these

A bag has 105 coins containing some 50 paise, 34. and 25 paise coins. The ratio of the number of these coins is 4 : 3. The total value (in Rs.) in the bag is

	a) 43.25 c) 39.25 c	b) 41.25) 35.25		a) Increased in 5 : 8 b) c) Increased in 6 : 5 d)	Decreased in 6 : 5 none of these
35.	A box contains Rs.56 in rupee, 50 paise and 25 paise coin is double to coins and four times th coins. The numbers of is: (Scanner)	the form of coins of one paise. The number of 50 the number of 25 paise ne numbers of one rupee 50 paise coins in the box	41.	If (a + b) : (b + c) : (c + b + c) = 14, then the va a) 6 c) 8	a) = 6:7:8 and (a + lue of c is b) 7 d) 14
	a) 64 c) 16	b) 32 d) 14	42.	x^2 then x^2 is	
36.	A bag contains Rs.187 50 paise and 10 paise Find the number of ea a) 102, 136, 170	in the form of 1 rupee, coins in the ratio 3:4:5. ch type of coins: (Scanner) b) 136, 102, 170	43.	a) $\frac{p}{p+q}$ c) $\frac{pq}{p+q}$ If 2s : 3t is the duplicate	b) $\frac{q}{p+q}$ d) none of these e ratio of 2s – p : 3t – p
	c) 170, 102, 136	d) None.		then a) $p^2 = 6st$	b) p = 6st
37. 38.	The first, second and the person are in the rational between the product months & last 2 monthes alary of the second mean and the second mean of the second mean and t	third month salaries of a o 2 : 4 : 5. The difference of the salaries of first 2 ns is 4,80,00,000. Find the nonth. b) Rs. 6,000 d) Rs. 8,000 a business. If X invests 3	44. 45.	c) $2p = 3st$ If $(4x + 3) : (9x + 10)$ is t : 4, then the value of x i a) 9 c) 6 $\frac{3x-2}{5x+6}$ is the duplicate ratio	d) none of these he Triplicate Ratio of 3 b) 7 d) 5 of $\frac{2}{3}$ then find the value
	times as much as Y ir third of what Z invests, of X, Y, Z is: a) 3:9:2 c) 3:6:2	wests and Y invests two then the ratio of capitals (Scanner) b) 6:3:2 d) 6:2:3	46.	a) 2 c) 5 What quantity must be ac ratio p+q : p – q to make	b) 6 d) 9 ded to the terms of the it equal to $(p + q)^2$: $(p$
39.	The ratio in which t workers of a facto decreased), if there be in the ratio 7 : 5 and an in the ratio 2:3 is a) 14 : 15 c) 4 : 1 c	he total wages of the bry get increased (or e a reduction of workers in increase in their wages b) 15 : 14 b) 1 : 4		– q) ² a) (q + p) / 2p c) (q ² - p ²)/2p	b) (q – p) / 2p d) None of these
40.	Find in what ratio wil workers of a factory be if there be a reduct workers in the ratio 15	the total wages of the increased or decreased ion in the number of : 11 and an increment in			

their wages in the ratio 22 : 25.

BUSINESS MATHEMATICS

Proportions

A. Features of proportion :

- 1. Equality of two ratio is called a proportion.
- 2. a, b, c, d are the terms of the proportion.
 - (1) a and d are the Extremes or extreme terms.
 - (2) b and c are the means or mean terms.
- 3. Cross product rule : Product of extremes = product of means
- 4. Continuous proportion : Quantities are said to be in continuous proportion if

 $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{d}{e} = \dots$

B. Terminologies :

- **1.** If a, b, c are in continued proportion, then $\frac{a}{b} = \frac{b}{c}$,
 - (a) Mean proportional b is the mean proportional between a and c i.e. $b^2 = ac \Rightarrow b = \sqrt{ac}$
 - **(b)** First proportional \Rightarrow a is the first proportional.
 - (c) Third proportional \Rightarrow c is the third proportional.
- **2.** Fourth Proportional \Rightarrow If a, b, c, d are in proportion, then d is the fourth proportional.

C. Properties of proportion – If a:b = c: d

Property	Result
1. Invertendo	b:a = d:c
2. Alternendo	a : c = b : d
3. Componedo	(a+b) : b = (c + d) : d
4. Dividendo	(a-b): b = (c-d): d
5. Componendo and Dividendo	(a+b) : (a-b) = (c +d) : (c – d)

If $\frac{a}{b} = \frac{c}{a}$ then, (Theorem on equal ratios)

6) Addendo $\frac{a}{b} = \frac{c}{a} = \frac{a+c}{b+a}$

	<u>Part - I</u>	<u>l</u>		a) 24 c) 36	b) 27 d) none of these
	Proporti	on		c) 50	dy none of these
	Set - A		11.	The third proportion $(a + b)^2$ is:	onal between $(a^2 - b^2)$ and
1.	Which of the numbers a	re not in proportion? (Scanner)		(a + b) is. a) $\frac{a+b}{b}$	b) $\frac{a-b}{a-b}$
	a) 6, 8, 5, 7	b) 7, 3, 14, 6		a-b	a+b
	c) 18, 27, 12, 18	d) 8, 6, 12, 9		c) $\frac{(a-b)^2}{a+b}$	d) $\frac{(a+b)^3}{a-b}$
2.	Find the value of x if 10/	'3 : x : : 5/2 : 5/4.	12.	Find the mean pro	oportion between 1.25 and
	a) 5/3	D) $5/2$		1.8.	
	C) 5/5	u) none of these		a) 1.1	b) 1.5
3.	If $\frac{1}{2}, \frac{1}{2}, \frac{1}{5}$ and $\frac{1}{4}$ are in	n proportion, then the		c) 1.2	d) none of these
	2 3 3 x	(Scannor)	13.	The mean proportion	onal between 25, 81 is
		(Scanner)		a) 40	b) 50
	a) $\frac{10}{2}$	b) $\frac{5}{5}$		c) 45	d) none of these
	c) $\frac{10}{3}$	d) $\frac{5}{6}$	14.	The mean proporti 5.6 gms is	ional between 1.4 gms and
4	Find the fourth proporti	onal to 2/3, 3/7, 4,		a) 28 gms	b) 2.8 gms
	a) 15/7	b) 18/7		c) 3.2 gms	d) none of these
	C) 10/7	d) hone of these	15.	The mean proporti	onal between 24 and 54 is:
5.	Fourth proportional to x	x, 2x, (x+1) is:		2) 22	(Scanner)
		(Scanner)		a) 55	D) 54
	a) (x + 2)	b) (x – 2)		C) 55	u) 50
	c) (2x + 2)	d) (2x – 2)	16.	The number which	has the same ratio to 26
6.	Find the third proportion	n to 2.4 Kg, 9.6 kg.			b) 10
	a) 38.4	b) 35.4		a) 11 c) 21	d) none of these
	c) 33.5	d) none of these		() 21	u) none of these
7.	The fourth proportional	to 4, 6, 8 is	17.	The fourth proport	ional to 2a, a ² , c is
	a) 12	b) 32		a) ac/2	b) ac
	c) 48	d) none of these		c) 2/ac	d) none of these
8.	12, 16, *, 20 are in propo	ortion. Then * is	18.	If four numbers proportional then >	1/2, 1/3, 1/5, 1/x are
	a) 25 c) 15	d) none of these		a) 6/5	b) 5/6
	() 15	d) none of these		c) 15/2	d) none of these
9.	4, *, 9, 13 ¹ / ₂ are in prop	ortion. Then * is	19	The mean proportion	onal between $12x^2$ and $27y^2$
	a) 6	b) 8	1.5.	is	onar between 12x and 27y
	c) 9	d) none of these		 a) 18xv	b) 81xv
				c) 8xv	d) none of these
10.	The third proportional to	o 12, 18 is		c, oxy	

Page 10 | 179

20.	If A = B/2 = C/5, the a) 3 : 5 :2 c) 1 : 2 : 5	en A : B : C is b) 2 : 5 : 3 d) none of these	31.	If 2A = 3 B and 4B = a) 4 : 3 c) 8 : 15	= 5C, then A : C is b) 15 : 8 d) 3 : 4
21.	lf a/3 = b/4 = c/7, t a) 1 c) 2	hen (a + b + c)/c is b) 3 d) none of these	32.	lf a : b = 2 : 3, b : c = a : d is: a) 24 : 35 c) 16 : 35	= 4 : 5 and c : d = 6 : 7, then (Scanner) b) 8 : 15 d) 7 : 15
22.	If $\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$ then $\frac{a+b}{c}$ a) 4 c) 7	$\frac{b+c}{c}$ is b) 2 d) none of these	33.	P, Q and R are three temperature betwe that between P and the average temper	e cities. The ratio of average en P and Q is 11 : 12 and R is 9 : 8. The ratio between rature of Q and R is:
23.	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then prove a) 1 c) 8	ove that $\frac{a+b+c}{c} = 2$ b) 2 d) 5		a) 22 : 27 c) 32 : 33	(Scanner) b) 27 : 22 d) None
24.	If x/2 = y/3 = z/7, th 4z)/2y is a) 6/23 c) 3/2	hen the value of (2x – 5y + b) 23/6 d) 17/6	34.	If A : B = 5 : 3 B : 0 then the value of A a) 20 : 14 : 12 : 9 c) 20 : 9 : 14 : 12	C = 6 : 7 and C : D = 4 : 9, : B : C : D b) 20 : 9: 12 : 14 d) 40 : 14 : 28 : 63
25.	lf x : y : z = 7 : 4 : 11 a) 2 b) 3	the $\frac{x+y+z}{z}$ is: (Scanner) c) 4 d) 5	35.	Division of Rs.750 in : 6 is a) (200, 250, 300) b) (250, 250, 250) c) (350, 250, 150)	nto 3 parts in the ratio 4 : 5
26.	lf p/q = r/s = 2.5/1. a) 3/5	5, the value of ps : qr is b) 1 : 1	36.	d) 8 : 12 : 9 The numbers 14,	16, 35, 42 are not in
07	c) 5/3	d) none of these		proportion. The fou be in proportion is	rth term for which they will
27.	If x : y = z : w = 2.5 : + w) is a) 1	b) $3/5$		c) 32	d) none of these
	c) 5/3	d) none of these	37.	If x/y = z/w, implies is called	y/x = w/z, then the process
28.	If (5x – 3y) /(5y – 3x a) 2 : 9 c) 7 : 9) = 3/4, the value of x : y is b) 7 : 2 d) none of these	38.	a) Dividend c) Alternendo lf p/g = r/s = p-r/g	 b) Componendo d) none of these – s. the process is called
29.	If A : B = 3 : 2 and B a) 9 : 6 : 10 c) 10 : 9 : 6	: C = 3 : 5, then A : B : C is b) 6 : 9 : 10 d) none of these	39	a) Subtrahendo c) Invertendo	b) Addendo d) none of these s $(a+b)/(a-b) = (c + d)/(c - b)$
30.	If x : y = 2 : 3, y : z = a) 2 : 3 : 4 c) 3 : 2 : 4	: 4 : 3 then x : y : z is b) 4 : 3 : 2 d) none of these		d), the process is caa) Componendob) Dividendo	lled

P a	age	11	179

	c) Componendo and Dividendo d) none of these		c) 1:3 d) 1:2
40.	If u/v = w /p, then (u-v)/(u+v) The process is called a) Invertendo b) Alternendo c) Addendo d) none of these	= (w-p)/(w+p). 47.	If a : b = c : d = 2.5 : 1.5, what are the values of a + c : b + d? a) 5 : 3 b) 5 : 5 c) 5 : 1 d) none of these
41.	Two numbers are in the ratio 3 :-to each terms of the ratio, therwill be 4 :5, then the numbers area) 14, 20b) 17,c) 18 and 24d) nor	4; if 6 be added n the new ratio re 1. 19 ne of these	Set - B The sum of the ages of 3 persons is 150 years. 10 years ago their ages were in the ratio 7 : 8 : 9. Their present ages are
42.	What number must be added numbers 10, 18, 22, 38 to make proportion?a) 2b) 4c) 8d) Note	to each of the the numbers is Scanner) 2. ne of these	 a) (45, 50, 55) b) (40, 60, 50) c) (35, 45, 70) d) none of these 20 litres of a mixture contains milk and water in the ratio 5:3. If 4 litres of this mixture be replaced by 4 litres of milk, the ratio of milk to
43.	If $\frac{a}{4} = \frac{b}{5}$ then a) $\frac{a+4}{a-4} = \frac{b-5}{b+5}$ b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$ c) $\frac{a-4}{a+4} = \frac{b+5}{b-5}$ d) none of these	3.	water in the new mixture would be a) 2 :1 b) 7 : 3 c) 8 : 3 d) 4 : 3 If $\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c}$ then (b - c) x + (c - a)y + (a - b)z is a) 1 b) 0 c) 5
44.	If a : b = 4 : 1 then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ is a) 5/2 b) 4 c) 5 d) none of these	1.	 d) none of these <u>Set - C</u> A dealer mixes tea costing Rs.6.92 per kg. with tea costing Rs.7.77 per kg and sells the mixture at Rs 2.90 mer kg and sells the mixture
45.	If a : b = 9 : 4 then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = ?$ a) 2/3 b) 3/2 c) 6/13 d) 13/6		his sale price. In what proportion does he mix them? a) $3:2$
46.	If a : b = c : d = 2.5 : 1.5, what an ad : bc ? a) 1 : 5 b) 1 : 1	re the values of	c) 2 : 3 d) none of these

Indices

Definition of Indices :

The product of m factors each equal to a represented by am. So, am = a. a. a...... a (m times). Here a is called the base and m is the index (or power or exponent).

Properties of Indices :

- 1. $a^m . a^n = a^{m+n}$
- $2. \quad \frac{a^m}{a^n} = a^{m-n}$
- 3. $(a^m)^n = a^{mn}$
- 4. $a^0 = 1$
- 5. $1^x = 1$.
- $6. \quad \sqrt[m]{a} = a^{\frac{1}{m}}$
- 7. $a^n b^n = (ab)^n$
- 8. $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$
- 9. $a^{-m} = \frac{1}{a^m}$
- 10. $\frac{1}{a^{-m}} = a^{m}$ 11. $\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$
- 12. $a^{\frac{p}{p}} = (a^p)^{\frac{1}{q}} = \sqrt[q]{a^p}$

	<u>Par</u> Inc Se	<u>t - III</u> lices t - A	10.	The value of $\left(\frac{2p^2}{3x}\right)$ equal to	$\left(\frac{q^3}{y}\right)^0$ where p, q, x, y \neq 0 is
1.	$4x^{-1/4}$ is expressed a a) $-4x^{1/4}$	s b) x ⁻¹		a) 0 c) 1	b) 2/3 d) none of these
2.	c) $4/x^{1/4}$ The value of $8^{1/3}$ is	d) none of these	11.	Which is True? a) $2^{\circ} > (1/2)^{\circ}$ b) $2^{\circ} < (1/2)^{\circ}$	
	a) ³√2 c) 2	b) 4 d) none of these		c) 2 ⁰ = (1/2) ⁰ d) none of these	
3.	The value of $2 \times (32)$) ^{1/5} is	12.	Simplify (6ab ² c ³) (4	$b^{-2}c^{-3}d$
	a) 2 c) 4	b) 10 d) none of these		a) 24ad c) 48ad	b) 30ad d) none of these
4.	The value of $4/(32)^{1}$	⁷⁵ is		5, 111 5, 4	x ⁻¹
	a) 8	b) 2	13.	Find the value of $-\frac{x}{x}$	-1/3
	C) 4	a) none of these		a) $4x^{-2/3}$ or $\frac{4}{x^{2/3}}$	
5.	The value of $(8/27)^1$	^{/3} is		b) $4x^{-3/2}$ or $\frac{4}{-3/2}$	
	a) 2/3 c) 2/9	d) none of these		$x^{2/3}$	
6	The value of $2(256)^2$	1/8 ic		c) $4x^{-2/3}$ or $\frac{-4}{4}$	
0.	a) 1	b) 2		d) none of these	
	c) 1/2	d) none of these	14.	$x^{a-b} x^{b-c} x^{c-a}$ is equal	to
	$(\sqrt{3})^{5/2} (9)^{7/2}$			a) x c) 0	b) 1 d) none of these
7.	$\left(\frac{\sqrt{3}}{9}\right) \left(\frac{\sqrt{3}}{3\sqrt{3}}\right) \times$	9 is equal to: (Scanner)			< N146] ·
	a) 1	b) √3	15.	The value of $\left[(10)^{100} \right]$	$\div(10)^{10}$ IS
	c) 3√3	d) $\frac{3}{9\sqrt{3}}$	i i	a) 1000 c) 100000	b) 10000 d) 10 ⁶
		243			u) 10
8.	$2^{\frac{1}{2}}$. $4^{\frac{3}{4}}$ is equal to		16.	Simplify $2x^{1/2} 3x^{-1}$ if	x = 4
	b) a positive integer			c) 3	d) none of these
	 c) a negative intege d) none of these 	r	17	$1^{2.5} \cdot 2^3$ is some as	
				a) 4 : 1	b) 2 : 1
9.	$\left(\frac{81x^4}{y^{-8}}\right)^{\frac{1}{4}}$ has simplify	ed value equal to		c) 16 : 1	d) 80 : 1
	a) xy ² c) 9xy ²	b) x ² y d) none of these	18.	Simplification of $\frac{x^n}{n}$	$\frac{x^{4m-9n}}{x^{6m-6n}}$ is: (Scanner)
	-			a) x ^m c) x ⁿ	b) x ^{-m} d) x ⁻ⁿ
			I	,	, Page 14 179

BUSINESS MATHEMATICS

19. Solve for x if $(\sqrt{x})^{\sqrt{x}} = 256$ 2. Simplify $(x^{a}.y^{-b})^{3}$ $(x^{3}y^{2})^{-a}$ a) $\frac{1}{y^{3b+2a}}$ b) $\frac{1}{y^{3b-2a}}$ a) 2 b) 16 d) $\sqrt{2}$ c) 4 c) $\frac{1}{v^{2b-3a}}$ d) $\frac{1}{v^{2b+3a}}$ 20. Find the value of x, if $x(x)^{1/3} = (x^{1/3})^x$ (Scanner) 3. The True option is a) 3 b) 4 a) $x^{2/3} = {}^{3}\sqrt{x^2}$ c) 2 d) 6 b) $x^{2/3} = {}^{3}\sqrt{x^{3}}$ c) $x^{2/3} > {}^{3}\sqrt{x^2}$ 21. Find thew value of 'a' from the following d) $x^{2/3} < {}^{3}\sqrt{x^2}$ $(\sqrt{9})^{-5} \times (\sqrt{3})^{-7} = (\sqrt{3})^{-a}$ a) 4. For what minimum integer value of x, the 13 b) 11 expression $(3^{x}/243)$ will be greater than 1? c) 15 d) 17 b) 4 a) 3 c) 5 d) 6 22. If $2^x \times 3^y \times 5^z = 360$ Then what is the value of (Scanner) x, y, z,? The simplified value of $(16x^{-3}y^2) (8^{-1}x^3y^{-2})$ is 5. b) 1, 2, 3 a) 3, 2, 1 a) 2xy b) xy/2 d) 1, 3, 2 c) 2, 3, 1 c) 2 d) none of these 23. Solve for 'z' if $z^{-1} = 3^{-1} - 4^{-1}$ The value of $(8/27)^{-1/3} \times (32/243)^{-1/5}$ is 6. a) 5⁻¹ b) 1 a) 9/4 b) 4/9 d) 12 c) 1/12 c) 2/3 d) none of these The value of $\frac{x^{2/7}}{z^{-1/2}} \times \frac{x^{2/5}}{z^{2/3}} \times \frac{x^{-9/7}}{z^{2/3}} \times \frac{z^{5/6}}{x^{-3/5}}$ is 24. If $49 \times 49 \times 49 \times 49 = 7^{n}$, then n equals 7. a) 4 b) 7 a) 1 b) -1 c) 8 d) 16 c) 0 d) None Simplify $\frac{2a^{\frac{1}{2}} \times a^{\frac{2}{3}} \times 6a^{-\frac{7}{3}}}{9a^{\frac{-5}{3}} \times a^{\frac{3}{2}}}$ if a = 4 The value of $\left(\frac{6^{-1}7^2}{6^27^{-4}}\right)^{1/2} \times \left(\frac{6^{-2}7^3}{6^37^{-5}}\right)^{-1/2}$ is 8. 25. a) $\frac{1}{2}$ b) $\frac{1}{2}$ a) 0 b) 252 c) 250 d) 248 c) $\frac{1}{4}$ d) none of these 9. If $3^{(x-y)} = 27$ and $3^{(x+y)} = 243$, then x is equal to a) 0 b) 2 26. Find x, if $x\sqrt{x} = (x\sqrt{x})^x$ c) 4 d) 6 a) x = 2 b) x = 3 d) none of these c) x = 1 10. If $\left(\frac{3a}{2b}\right)^{2x-4} = \left(\frac{2b}{3a}\right)^{2x-4}$ for same a and b, then the Set - B value of x is a) 8 b) 6 The value of $y^{a-b} \times y^{b-c} \times y^{c-a} \times y^{-a-b}$ is 1. d) 2 c) 4 a) y^{a+b} b) y c) 1 d) 1/y^{a+b}

11.	The value of $\frac{6^{x+4}+3^{x+3}}{5\times 6^x}$	$\frac{x^2 \cdot 2^{x+3}}{x^{x+3}}$	21.	The value of $\{(x + y)$	$(x - y)^{3/2}$	$\sqrt{x+y} \times \sqrt{x-y}$
	a) 232	b) 242		$(y)^{3}$ is		
	c) 252	d) 262		a) $(x + y)^{-}$	D) $(x - y)$	haca
	-,	-,		C) x + y	d) none of t	nese
12.	Find the value of k f	rom $(\sqrt{9})^{-7} \times (\sqrt{3})^{-5} = 3^k$	22	The veloce of 1	1	
	a) -19/2	b) 19/2	22.	The value of $\frac{1}{1+a^{y-x}}$	$\frac{1}{1+a^{x-y}}$ is given	ven by
	c) $+19/2$	d) none of these		a) -1	b) 0	
	c) * · · · / _	2)		c) 1	d) None	
10	$6\sqrt{a^{4b}x^6}$ $(a^{2/3}x^{-1})^{-b}$					
13.	$\sqrt{u} x (u x)$	1. 1.b	23.	If $x^{1/p} = y^{1/q} = z^{1/r}$ and	id xyz = 1, the	n the value of
	a) x ^{1-b}	b) x ^{1+b}		p +q + r is		
	C) X ^S	d) none of these		a) 1	b) 0	
	2	$x+3$, 2^{2x-y} , f^{x+y+3} , f^{y+1}		c) 1/2	d) none of t	hese
14.	On simplification $\frac{2}{2}$	$\frac{\times 3}{(x^{+1}+1)^{y+3}+15^x}$				
	raducas ta	6 ×10 ⁴ ×15	24.	If $a^{*} = b$, $b^{y} = c$, $c^{2} = c^{*}$	a, then xyz is	
	a) 1	b) 0		a) 1	b) 2	
	a) - 1 c) 1	b) 0 d) 10		C) 3	d) none of t	nese
	C) 1	u) 10	25	If $y = y^a y = z^b$ and	$z = x^{c}$ then ab	
	$2^{m+1} \times 3^{2m-n+3} \times 5^{n+m}$	$^{+4} \times 6^{2n+m}$	25.	II x = y, $y = 2$ and		anner)
15.	$\frac{2}{6^{2m+n} \times 10^{n+1} \times 10^{n+1}}$	(Scanner)		a) 2 b) 1	c) 3 d) 4	4
	a) 3 ^{2m - 2n}	b) 3^{2n-2m}			c) 5 d)	
	c) 1	d) None of the above	26.	The value of z is	aiven by the	following if
				$\pi^{z\sqrt{z}} - (\pi \sqrt{z})^{z}$	<u> </u>	<u> </u>
16.	$\{(3^3)^2 \times (4^2)^3 \times (5^3)^2\}$	$/ \{(3^2)^3 \times (4^3)^2 \times (5^2)^3\}$ is		$z = (z \vee z)$	_	
	a) 3/4	b) 4/5		a) 2	b) $\frac{3}{2}$	
	c) 4/7	d) 1		2	2	
				c) $-\frac{3}{2}$	d) $\frac{9}{4}$	
17.	If $(25)^{150} = (25 \times)^{50}$;	then the value of x will be:		2	4	
	\ - 3	(Scanner)	27	If $2^{x} - 2^{x-1} - 4$ then	x ^x is equal to:	(Scannor)
	a) 5^{3}	b) 5 ⁻	27.	112 - 2 - 4 (1)eff.	h) 3	(Scamer)
	C) 5 ⁻	d) 5		c) 27	d) 9	
10	$\Gamma((2))^{1/2}$ (1) ^{3/4} (9) ^{5/6}	$(16)^{7/8}$ $(22)^{9/10}$ $(413/25)$		C) 21	u) 5	
10.	$[\{(2)^{+}, (4)^{+}, (0)^{+}\}$	$(10)^{-1} (52)^{-1} $		$2^{n} + 2^{n-1}$		
		d) none of these	28.	$\frac{2^{n+1}-2^n}{2^{n+1}-2^n}$		(Scanner)
	C) 1	d) hole of these		a) ½	b) 3/2	
19	Simplified value of	$(125)^{2/3} \times \sqrt{25} \times \sqrt[3]{5^3} \times 5^{1/2}$		c) 2/3	d) 1/3	
15.	is			, .	, .	
	a) 5	b) 1/5		$(3^{n+1} -$	$+3^{n}$)	
	c) 1	d) none of these	29.	The value of $\frac{1}{(2^{n+3})}$	$\frac{1}{2^{n+1}}$ is equa	l to:
		<i>.</i>		(3 -	-5)	
20	The value of $\left(1 - \frac{3}{2}\right)$	$\overline{0.027} \left(\frac{5}{2}\right) \left(\frac{1}{2}\right)^2$ is				(Scanner)
20.		(6)(2)		a) 1/5	b) 1/6	
	a) 11/16	b) 13/16		c) 1/4	d) 1/9	
	C) 15/16	d) 1				

BUSINESS MATHEMATICS

15. The value of
$$\left[\frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} + \frac{y^2 - (x - z)^2}{(x + y)^2 - z^2} + \frac{(x - y)^2}{(y + z)^2 - x^2}\right]^2$$

is (Scamer)
a) 0 b) 1
c) -1 d) ∞
16. Tick the correct of these when $x = p^{1/3} - p^{1/3}$
a) $x^{+3}x = p - 1/p$
b) $x^3 + 3x = p - 1/p$
c) $x^3 + 3x = p - 1/p$
c) $x^3 + 3x = p - 1/p$
d) one of these
17. If $P = x^{1/3} + x^{1/3}$ then $P^2 - 3P =$ (Scamer)
a) 3 b) $\frac{1}{2}\left(x + \frac{1}{x}\right)$
c) $\left(\frac{x + \frac{1}{x}\right)$ d) $2\left(x + \frac{1}{x}\right)$
18. If $a = x^{1/3} + x^{1/3}$ then $3x^2 - 3x$ is
a) 15 b) 10
c) $\left(x + \frac{1}{x}\right)$ d) $2\left(x + \frac{1}{x}\right)$
19. If $x - \frac{1}{3^2} + 3^{-1}$, then $3x^2 - 3x$ is
a) 15 b) 13
c) 12 d) none of these
20. If $x = 4^{1/3} + 4^{1/3}$ then $4x^2 - 12x$ is given by
a) 12 b) 13
c) 15 d) 17
21. If $x = 5^{1/3} + 5^{1/3}$ then $5x^2 - 15x$ is given by
a) 22^7 d) 30
22. If $a = \sqrt[3]{\sqrt{2^2 + 1} - \sqrt[3]{\sqrt{2^{-1}}}}$ then the value of $a^3 + 3a - 25x$
a) 3 b) 0
c) 27 d) 30
23. If $a = 3^{1/4} + 3^{3/4}$ and $b = 3^{1/4} - 3^{-3/4}$ then the
value of $3(a^2 + b^{1/2})^2$ is given by
a) 3^3 b) 0
c) 2^2 d) 1
24. If $x = x^{1/3} + x^{-1/3}$ then $5x^2 - 15x$ is given by
a) 2^5 b) 2^6
c) 6^4 d) 6^2

Page 18 | 179

BUSINESS MATHEMATICS

If a = $x^{n+p} y^m$, b = $x^{p+m}y^n$, c = $x^{m+n} y^p$ then the 40. If $2^a = 3^b = (12)^c$, then the value of ab-c 32. value of $a^{n-p} \times b^{p-m} \times c^{m-n}$ reduces to (a+2b)reduces to a) 0 b) 1 b) 1 a) 0 c) -1 d) None c) 2 d) 3 33. If $a^{b} = b^{a}$, then the value of $\left(\frac{a}{b}\right)^{\frac{a}{b}} - a^{\frac{a}{b}-1}$ reduces 41. If $3^x = 5^y = 75^z$, then (Scanner) a) x + y - z = 0 b) $\frac{2}{x} + \frac{1}{y} = \frac{1}{z}$ to b) b a) a c) $\frac{1}{x} + \frac{2}{y} = \frac{1}{z}$ d) $\frac{2}{x} + \frac{1}{z} = \frac{1}{y}$ d) None c) 0 34. If $a^p = b^q = c^r$ and $b^2 = ac$ the value of 42. If $3^{a} = 5^{b} = (75)^{c}$, then the value of ab-c (2a+b) q(p+r)/pr is given by reduces to a) 1 b) -1 b) 0 a) 1 c) 2 d) None d) 5 c) 3 43. If $a^p = b^q = c^r = d^s$ and ab = cd then the value 35. If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s}$ reduces to a) 1 b) 0 c) 2 d) none of these b) 1/b a) 1/a c) 0 d) 1 If $4^x = 5^y = 20^z$ then z is equal to: 36. (Scanner) 44. If $2^a = 4^b = 8^c$ and abc = 288 then the value b) $\frac{x+y}{xy}$ $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by a) xy d) $\frac{xy}{x+y}$ a) $\frac{1}{8}$ b) $-\frac{1}{8}$ c) $\frac{1}{xy}$ c) $\frac{11}{96}$ d) $-\frac{11}{96}$ 37. If $(5.678)^x = (0.5678)^y = 10^z$ then a) $\frac{1}{r} - \frac{1}{v} + \frac{1}{z} = 1$ If $ax^{2/3} + bx^{1/3} + c = 0$ then the value of $a^3 x^2 + c^3 = 0$ 45. b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$ $b^3x + c^3$ is given by b) -3abcx a) 3abcx c) $\frac{1}{x} - \frac{1}{v} + \frac{1}{z} = -1$ c) 3abc d) -3abc 46. $x^{a^2b^{-1}c^{-1}} \cdot x^{b^2c^{-1}a^{-1}} \cdot x^{c^2a^{-1}b^{-1}} - x^3$ would reduce to zero d) None if a + b + c is given by 38. If $(4.8)^x = (0.48)^y = 1,000$ then the value of b) -1 a) 1 $\frac{1}{x} - \frac{1}{y}$ is c) 0 d) None a) 3 b) -3 47. On simplification c) $\frac{1}{3}$ d) $-\frac{1}{3}$ $\frac{1}{1+z^{a-b}+z^{a-c}}+\frac{1}{1+z^{b-c}+z^{b-a}}+\frac{1}{1+z^{c-a}+z^{c-b}}$ would reduces to a) $\frac{1}{z^{2(a+b+c)}}$ b) $\frac{1}{z^{(a+b+c)}}$ 39. If $2^a = 3^b = (12)^c$, then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a}$ reduces to a) 1 b) 0 c) 1 d) 0 c) 2 d) None Page 19 | 179

On simplification, $1/(1+a^{m-n}+a^{m-p}) + 1/(1+a^{n-1})$ 48. 55. The square root of $3+\sqrt{5}$ is $^{m}+a^{n-p}$) + 1/(1+ a^{p-m} + a^{p-n}) is equal to a) $\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}$ a) 0 b) a c) 1 d) 1/a b) $-\left(\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}\right)$ 49. If xyz = 1 then the value c) Both the above of $\frac{1}{1+x+y^{-1}} + \frac{1}{1+y+z^{-1}} + \frac{1}{1+z+y^{-1}}$ is d) None 56. The square root of $11 - \sqrt{120}$ is given by a) 1 c) 2 d) None a) $\sqrt{6} + \sqrt{5}$ b) $\sqrt{6} - \sqrt{5}$ If abc = 2, then the value 50. of $\frac{1}{1+a+2b^{-1}} + \frac{1}{1+\frac{1}{2}b+c^{-1}} + \frac{1}{1+c+a^{-1}}$ c) $2\sqrt{3} - 3\sqrt{2}$ d) $2\sqrt{3} + 3\sqrt{2}$ (Scanner) 57. The square root of $x + \sqrt{x^2 - y^2}$ is given by b) 2 a) 1 a) $\frac{1}{\sqrt{2}} \left[\sqrt{x+y} + \sqrt{x-y} \right]$ d) $\frac{1}{2}$ c) 3 b) $\frac{1}{\sqrt{2}} \left[\sqrt{x+y} - \sqrt{x-y} \right]$ 51. $\frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^c + x^{-a} + 1} + \frac{1}{x^a + x^{-b} + 1}$ would c) $\left[\sqrt{x+y} + \sqrt{x-y}\right]$ reduce to one if a + b + c is given by d) $\left[\sqrt{x+y} - \sqrt{x-y}\right]$ b) 0 a) 1 c) -1 d) None 58. If $x = \sqrt{2 - \sqrt{2} - \sqrt{2}} \dots \infty$ the value of x is given 52. If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}, b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ then the value of a bv a) -2 b) 1 + b is c) 2 d) 0 b) 100 a) 10 d) 99 c) 98 59. If a = 3 + $2\sqrt{2}$ then the value of $a^{1/2} + a^{-1/2}$ is a) $\sqrt{2}$ b) $-\sqrt{2}$ 53. If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}, b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ then the value of a^2 b) $-\sqrt{2}$ d) $-2\sqrt{2}$ c) $2\sqrt{2}$ $+ b^2$ is a) 10 60. If a = $3 + 2\sqrt{2}$ then the value $a^{1/2} - a^{-1/2}$ is b) 100 a) $2\sqrt{2}$ b) 2 c) 98 c) $-2\sqrt{2}$ d) None d) 99 54. If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}, b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ then the value of 61. If a = $\frac{1}{2}(5-\sqrt{21})$ then the value of $a^3 + a^{-3} - \frac{1}{2}(5-\sqrt{21})$ $5a^2 - 5a^{-2} + a + a^{-1}$ is $\frac{1}{r^2} + \frac{1}{r^2}$ a) 0 b) 1 a) 10 b) 100 c) 5 d) -1 d) 99 c) 98

62.	If $a=3-\sqrt{5}$ then the value of $a^4 - a^3 - 20a^2 - 16a^3 - 16a^3 - 20a^2 - 16a^3 - $		
	16a + 24 is a) 10	b) 14	
	c) 0	d) 15	
	<u>Set</u>	<u>: - D</u>	
1.	If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ then	the value of $2a^4 - 21a^3 +$	
	$12a^2 - a + 1$ is	1.) 1	
	a) 21 c) 12	d) None	
	o,	.,	
2.	If $a = \frac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}$ th	en the value of	
	$\frac{a+2\sqrt{2}}{a-2\sqrt{2}} + \frac{a+2\sqrt{3}}{a-2\sqrt{3}}$ is	s given by	
	a) 1 $a - 2\sqrt{2}$ $a - 2\sqrt{3}$	b) -1	
	c) 2	d) -2	
3.	If $xy+yz+zx = -1$, the second secon	hen the value of $\left(\frac{x+y}{x+y}+\right)$	
	$\frac{z+y}{z+z} + \frac{x+z}{z+z}$ is	(1+Xy	
	1+zy 1+zx/ a) xvz	b) <u>-1</u>	
	$() \frac{1}{2}$	d) $\frac{1}{1}$	
	c) _{xyz}	x+y+z	
4.	If $P+\sqrt{3}Q+\sqrt{5}R+\sqrt{3}Q$	$\sqrt{15}$ S = $\frac{1}{1+\sqrt{3}+\sqrt{5}}$ then the	
	value of P is		
	a) 7/11 b) 3	3/11	
	C) - 1/ 1 1	a) -2/11	
			l

Logarithms

Logarithm of a number consists of two parts.

- (a) The whole or integral parts is called characteristic.
- (b) The decimal part is called mantissa.
 - log(any number) = Characterstic. Mantissa

A) Indices to Log & Log to Indices conversions:

- 1) If $a^x = m$ then, $\log_a m = x$
- 2) If $\log_a m = x$ then $m = a^x$.

B) Laws of Logarithms.

- 1. $\log_c a + \log_c b = \log_c ab$
- 2. $\log_c a \log_c b \log_c \left(\frac{a}{b}\right)$
- 3. $\log a^m = m \log a$ Please not $(\log a)^m \neq m \log a$
- 4. $\log_a a = 1$
- 5. $\log 1 = 0$
- 6. Change of Base : $\log_a b = \frac{\log a}{\log b}$

7.
$$\log_{b}a = \frac{1}{\log_{a}b}$$

- 8. $\frac{1}{\log_b a} = \log_a b$
- 9. $a^{\log_a m} = m$.

Logarithm always has a base.

- The default base in general is '10'.
- But in calculas default base is 'e'.

e is constant e \cong 2.71828

Calculus means Limits, continuity, derivatives, Integration and its applications.

Γ

	<u>Part</u> Logar Set	<u>t - IV</u> rithms : - A	1.	lc a)
1.	The integral part of and the decimal called a) Mantissa, Charact b) Characteristic, Ma c) Whole, Decimal d) None of these	a logarithm is called part of a logarithm is (Scanner) ceristic antissa	2.	c) Fi a) c)
2.	log 6 + log 5 is expr	essed as		a) c)
3.	a) log 11 c) log 5/6 log 32/4 is equal to a) log 32/log 4	b) log 30 d) none of these b) log 32 – log 4	4.	Tl a) c)
4.	c) 2 ³ log (1 × 2 × 3) is eq	d) none of these ual to	5.	lc a)
	 a) log 1 + log 2 + lo b) log 3 c) log 2 d) none of these 	g 3	6.	c) Tl
5.	log 9 + log 5 is expr a) log (9/5) c) log 14	essed as b) log 4 d) log 45	7.	a, c) lc
6.	log ₂ 8 is equal to a) 2	b) 8		a, C)
_	c) 3	d) none of these	8.	lo a)
7.	lf 2 log x = 4 log 3, t a) 3 c) 2	b) 9 d) none of these	9	c) If
8.	The value of (log _b a > a) 3 c) 1	< log _c b × log₃c) ³ is equal to b) 0 d) none of these	5.	a) c)
9.	The value of $(\log_y x)$	$\log_z y \cdot \log_x z)^3$ is	10.	lf a) b
	a) 1 c) 1	(Scanner) b) – 1 d) 3		c) d

<u>Set - B</u>

	log √2 64 is equal to a) 12 c) 1	b) 6 d) none of th	ese
<u>)</u> .	Find the logarithm o a) 6 c) 4	f 64 to the ba b) 9 d) none of th	se 2√2 ese
3.	$log_{2\sqrt{3}} 1728$ is equal a) $2\sqrt{3}$ c) 6	to b) 2 d) none of th	ese
ŀ.	The value of log 0.00 a) - 4 c) 1/4	001 to the bas b) 4 d) none of th	e 0.1 is ese
5.	log (1/81) to the bas a) 2 c) -2	e 9 is equal to b) ½ d) none of th	ese
5.	The value of log $\frac{1}{3}$ to a) - $\frac{1}{2}$ c) 1	the base 9 is b) ½ d) none of th	ese
7 .	log 0.0625 to the bas a) 4 c) 1	se 2 is equal to b) 5 d) none of th	o ese
3.	$\log_{2\sqrt{2}}(512):\log_{3\sqrt{2}}3$ a) 128 : 81 c) 3 : 2	324 = b) 2 : 3 d) None	(Scanner)
).	If $\log_a (\sqrt{3}) = 1/6$ fin a) 81 c) 27	d the value of b) 9 d) 3	''a'.
0.	If $\log_a b + \log_a c = 0$ a) b = c b) b = - c c) b = c = 1 d) b and c are recipre	then ocals.	(Scanner)

11.	Find the value of log a) .6980 c) .9069	5 if log 2 is equal to .3010. b) .6990 d) none of these
12.	If log x = a + b, log y log $\frac{10x}{y^2} = $	y = a – b then the value of (Scanner)
	a) 1 – a + 3b c) a + 3b + 1	b) a – 1 + 3b d) 1 – b + 3a
13.	Given log2 = 0.3010 value of log 6 is a) 0.9030 c) 0.7781	0 and log 3 = 0.4771 the b) 0.9542 d) none of these
14.	Given that $log_{10}2 = x$ of $log_{10} 60$ is express a) $x - y + 1$ c) $x - y - y$	and $log_{10} 3 = y$, the value sed as b) x + y + 1 d) none of these
15.	Given that $log_{10}2 = x$ is expressed in terms a) $x + 2y - 1$ c) $2x + y - 1$	x, $log_{10}3 = y$, then $log_{10} 1.2$ s of x and y as b) x + y - 1 d) none of these
16.	If log 2 = 0.3010 and value of log 24 is: a) 1.0791 c) 1.3801	d log 3 = 0.4771, then the (Scanner) b) 1.7323 d) 1.8301
17.	Given that log x = m value of log $10x/y^2$ i and n as: a) 1 - m + 3n b) m - 1 + 3n c) m + 3n + 1 d) none of these	+ n and log y = m – n, the s expressed in terms of m (Scanner)
18.	The value $\frac{\log_3 3}{\log_9 16.\log_9 16.\log_9 16.\log_9 16}$ a) 3 log ₁₀ 2 c) 3 log _e z	$\frac{8}{\log_4 10}$ is: (Scanner) b) 7 log ₁₀ 3 d) none.
19.	log 144 is equal to: a) 2 log 4 + 2 log 2 b) 4 log 2 + 2 log 3 c) 3 log 2 + 4 log 3	(Scanner)

	d) 3 log 2 – 4 log 3	
20.	The simplified value log ₁₀ 4 is a) 1/2 c) 2	of 2 $\log_{10} 5 + \log_{10} 8 - \frac{1}{2}$ b) 4 d) none of these
21.	The value of is 4 log a) 0 c) 2	$\frac{8}{25} - 3\log \frac{16}{125} - \log 5$ is b) 1 d) -1
22.	$7 \log\left(\frac{16}{15}\right) + 5 \log\left(\frac{25}{24}\right)$	$\left(+ 3 \log \left(\frac{81}{80} \right) \right)$ is equal to:
	a) 0 c) log 2	(Scanner) b) 1 d) log 3
23.	$a^{\log_a b - \log_a c} imes b^{\log_b c - \log_b a}$ a) 1 c) -1	$ imes c^{\log_c a - \log_c b}$ has a value of b) 0 d) None
24.	The value of is $a^{\log_a \left(\frac{1}{4}\right)}$ a) 0 c) -1	$(\frac{b}{c})$. $b^{\log_b\left(\frac{c}{a}\right)}$. $c^{\log_c\left(\frac{a}{b}\right)}$ b) 1 d) None
25.	The value of $(bc)^{\log_{bc} \frac{1}{d}}$ a) 0 c) -1	$f(ca)^{\log_{ca}\frac{c}{a}}(ab)^{\log_{ab}\frac{a}{b}}$ is b) 1 d) None
26.	$a^{\left(\frac{1}{\log_{b}a}\right)}$ has a value of a) a c) (a + b)	b) b d) None
27.	The value of th $a^{\log_a b \cdot \log_b c \cdot \log_c d \cdot \log_d t}$ is given by the second se	e following expression ven by b) abcdt d) None
28.	log₅ (a).log₅ (b).loga (a) 0 c) -1	(c) is equal to b) 1 d) None
29.	The value of log ₄ 9. a) 3	Log₃ 2 is: (Scanner) b) 9

Page 24 | 179

		I	
	c) 2 d) 1		
30	$\log_{\mathbf{b}}\left(a^{\frac{1}{2}}\right)\log_{\mathbf{c}}(\mathbf{b}^{3})\log_{\mathbf{c}}\left(c^{\frac{2}{3}}\right)$ is equal to	39.	$\frac{1}{1 + \frac{1}{1 + 1$
00.			$\log_{ab}(abc) \log_{bc}(abc) \log_{ca}(abc)$
	a) 0 b) 1		(Scanner)
	c) -1 d) None		
			c) z d) - 1
31	The value of log $\frac{a^n}{a} + \log \frac{b^n}{a} + \log \frac{c^n}{a}$ is		1 1 1
51.	$b^n + b^n c^n + b^n a^n$	40.	$\frac{1}{\log_{10}(r)} + \frac{1}{\log_{10}(r)} + \frac{1}{\log_{10}(r)}$ is equal to
	a) 0 b) 1		$\log_{a/c}(x)$ $\log_{b/c}(x)$ $\log_{c/a}(x)$
	c) -1 d) None		a) 0 b) 1
			c) 3 d) -1
32.	The value of log $\frac{a^2}{a} + \log \frac{b^2}{a} + \log \frac{c^2}{a}$ is		
	bc ca ab	41.	$\frac{1}{1 + \log(h_0)} + \frac{1}{1 + \log(h_0)} + \frac{1}{1 + \log(h_0)}$ is equal
	a) 0 b) 1		$1 + \log_a(bc) = 1 + \log_b(ca) = 1 + \log_c(ab)$
	c) - I d) None		
22	$\log (2^9)$, $\log 2 = 10$ if the value of 2 is given		
55.	$\log (a) + \log a = 10$ if the value of a is given	12	$ f = 1 + \log hc m = 1 + \log c_{2} n = 1 + \log c_{3}$
	a > 0 $b > 10$	72.	1 1 1
	c) -1 d) None		ab then the value of $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1$ is
			a) 0 b) 1
34.	On solving the equation logt $+ \log (t-3) = 1$ we		c) -1 d) 3
	get the value of t as		
	a) 5 b) 2	43.	If $x = 1 + \log_p qr$, $y = 1 + \log_q rp$ and $z = 1 + qq$
	c) 3 d) 0		
			$\log_r pq$ then the value of $-+-+-=$
35.	If $\log_{10000} x = \frac{-1}{-1}$, then x is given by: (Scanner)		(Scanner)
			a) 0 b) 1
	a) $\frac{1}{100}$ b) $\frac{1}{10}$		c) -1 d) 3
	100 10		
	c) $\frac{1}{20}$ d) None of these.	44.	If $\frac{\log a}{\log a} = \frac{\log b}{\log a} = \frac{\log c}{\log a}$ the value of abc is
	20		y-z $z-x$ $x-y$
			a) 0 b) 1
36.	The value of $\frac{1}{\log(ab)} + \frac{1}{\log(ab)}$ is		c) -1 d) None
	a) 0 b) 1		
	c) -1 d) None	45.	If $\frac{\log a}{\log b} = \frac{\log b}{\log c}$ the value of $a^{y+z} \cdot b^{z+x} \cdot c^{x+y}$
			y-z $z-x$ $x-y$
37	Value of 1 , 1 , 1 is: (Scanner)		is given by
57.	$\frac{1}{\log_3^{60}} + \frac{1}{\log_4^{60}} + \frac{1}{\log_5^{60}} + \frac{1}$		a) U b) I
	a) 0 b) 1 c) 5 d) 60		c) - 1 d) None
			1 1
38.	If $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$ then the value	46.	If loga = $\frac{1}{2}$ logb = $\frac{1}{5}$ logc the value of $a^4b^3c^{-2}$
	$\log_a t \log_b t \log_c t \log_z t$		is 2
	of z is given by		a) 0 b) 1
	a) abc b) a + b + c		c) -1 d) None
	c) a(b + c) d) (a + b)c		
			Page 25 179

56. If $\log x + \log y = \log (x + y)$, y can be expressed 47. If $\frac{1}{2}\log a = \frac{1}{3}\log b = \frac{1}{5}\log c$ the value of $a^4 - \frac{1}{5}\log c$ as a) x-1 b) x bc is c) x/x-1 d) none of these a) 0 b) 1 c) -1 d) None 57. $\log (m + n) = \log m + \log n, m can be$ 48. If $\frac{1}{4}\log_2 a = \frac{1}{6}\log_2 b = -\frac{1}{24}\log_2 c$ the value of expressed as: (Scanner) a) $m = \frac{n}{n-1}$ b) $m = \frac{n}{n+1}$ c) $m = \frac{n+1}{n}$ d) $m = \frac{n+1}{n-1}$ $a^{3}b^{2}c$ is a) 0 b) 1 c) -1 d) None 49. If $\log_2 [\log_3 (\log_2 x)] = 1$, then x equals: Find the value of log (x^6) if log $(x) + 2 \log(x^2)$ 58. $+ 3 \log(x^3) = 14.$ (Scanner) b) 256 a) 3 a) 128 b) 4 d) 6 c) 512 d) None c) 5 50. If $\log_3 [\log_4 (\log_2 x)] = 0$, then the value of 'x' 59. If $log_2x + log_4x + log_{16}x = 21/4$, these x is equal will be: (Scanner) to a) 4 b) 8 d) 32 b) 4 c) 16 a) 8 c) 16 d) none of these The value of $\log_2 \log_2 \log_2 16$ (Scanner) 51. a) 0 b) 2 60. If $\log_2 x + \log_4 x = 6$, then the Value of x is: d) none of these (Scanner) c) 1 a) 16 b) 32 The value of $log_2[log_2 \{ log_3 (log_3 27^3) \}]$ is equal d) 128 52. c) 64 to a) 1 b) 2 61. If $\log_4 X + \log_{16} X + \log_{64} X + \log_{256} X = 25/6$ c) 0 d) none of these then the value of x is a) 64 b) 4 53. $\log_4 (x^2 + x) - \log_4 (x + 1) = 2$. Find x c) 16 d) 2 (Scanner) a) 16 b) 0 62. For what value of x, the equation d) None of these. $(\log_{\sqrt{x}} 2)^2 = \log_x 2$ is true? (Scanner) c) - 1 a) 16 b) 32 54. Solve: $\left(\frac{\log_{10} x - 3}{2}\right) + \left(\frac{11 - \log_{10} x}{3}\right) = 2$ c) 8 d) 4 (Scanner) For any three consecutive integers x y z the 63. a) 10⁻¹ b) 10² equation log(1+xz) - 2logy = 0 is d) 10³ c) 10 a) True b) False 55. If $\log_x y = 100$ and $\log_2 x = 10$, then the value c) Sometimes true of 'v' is: (Scanner) d) cannot be determined in the cases of b) 2¹⁰⁰ a) 2¹⁰ variables with cyclic order. c) 2^{1,000} d) 2^{10,000}

	<u>Set</u>	<u>- C</u>	9.	On solving the equ 2 we get the value	tation $log_{\frac{1}{2}} [log_t(log_4 32)] =$
1.	log $[1 - {1 - (1 - x^2)^{-1}}]$ a) log x ² c) log 1/x	⁻¹] ^{-1/2} can be written as b) log x d) none of these		a) $\frac{5}{2}$ c) $\frac{625}{16}$	b) $\frac{25}{4}$ d) None
2.	The simplified value a) log 3 c) log ½	of log $\sqrt[4]{729 \sqrt[3]{9^{-1}.27^{-4/3}}}$ b) log 2 d) none of these	10.	If log (2a – 3b) = lo a) $\frac{3b^2}{2}$	g a – log b, then a = : (Scanner) b) $-\frac{3b}{2}$
3.	If $a = b^2 = c^3 = d^4$ th is a) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$ c) $1 + 2 + 3 + 4$	en the value of \log_{a} (abcd) b) $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}$ d) None	11	a) $\frac{2b-1}{2b+1}$ c) $\frac{b^2}{2b+1}$	d) $\frac{2b-1}{2b+1}$
4.	The value of 2 log x + 2 log x ² + 2 2 log x ⁿ will be: a) $\frac{n(n+1)\log x}{2}$ b) n(n + 1) log x c) n ² log x	² log x ³ ++ (Scanner)	11.	$\log_{5}\left(1+\frac{1}{5}\right) + \log_{5}\left(\frac{1}{624}\right)$ + log ₅ $\left(1+\frac{1}{624}\right)$ a) 2 c) 5	$(1+\frac{1}{6})$ +
5.	d) None of these. The sum $\log_a b + \log_{a^2} b^2 + \log_a$	of the series $_{3}b^{3} + \log_{a^{n}} b^{n}$ is given by	12.	The value of log ₈ 25 a) 1 c) 1.5482	given log 2 = 0.3010 is b) 2 d) none of these
6.	a) $\log_a b^n$ c) $\log_{a^n} b^n$ The value of log (1 ³ +	b) $\log_{a^n} b$ d) None - 2 ³ + 3 ³ + n ³) is equal	13.	If $x^{2a-3}y^{2a} = x^{6-a}y^{5a}$ this a) 3 log x	then the value of a log $\left(\frac{x}{y}\right)$ b) log x
	to: (Sc a) 3 log 1 + 3 log 2 - b) 2 log n + 2 log (n c) log n + log (n+1) d) 1	a nner) + + 3 log n +1) – 2 log 2 + log (2n + 1) – log 6	14.	c) 6 log x If log $\frac{a+b}{3} = \frac{1}{2}$ (log $\frac{a}{b} + \frac{b}{a}$ is	d) 5 log x ga+logb) then the value of
7.	lf a = log ₂₄ 12, b = log 1 + abc = ? a) 2bc c) 6ac	g ₃₆ 24, and c = log ₄₈ 36 then b) 4cb d) none	15.	a) 2 c) 7 If $a^{2} + b^{2} = 7ab$	b) 5 d) 3 then the value of is log
8.	On solving the equ 1we get the value of a) 8 b) 18	ation log3 [log2(log3t)] = t as c) 81 d) 6561		$\frac{a+b}{3} - \frac{\log a}{2} - \frac{\log b}{2}$ a) 0 c) -1	b) 1 d) 7

16. If
$$a^{3} + b^{3} = 0$$
 then the value of log $(a+b) - \frac{1}{2}$
(loga + logb + log3) is equal to
a) 0 b) 1
c) -1 d) 3
17. If $x = \frac{e^{n} - e^{-n}}{e^{n} + e^{-n}}$ then the value of n is
a) $\frac{1}{2} \log_{e} \frac{1+x}{1-x}$
b) $\log_{e} \frac{1+x}{1-x}$
c) $\log_{e} \frac{1-x}{1+x}$
d) $\frac{1}{2} \log_{e} \frac{1-x}{1+x}$

<u>Set – D</u>

1. If $x = log_abc$; $y = log_bca$; $z = log_cab$ then the value of xyz - x - y - z is a) 0 b) 1 c) -1 d) 2

Equations

Synopsis :

Nature and Degree of an Equation :

- 1) An equation with one unknown is called a simple equation.
- 2) Equations with more than one unknown are called simultaneous equations.
- 3) The degree of an equation is the degree of the highest power of the unknown present in the equation.
- 4) An equation of degree one in the variable is called as linear equation.
- 5) An equation of degree two in the variable is called a quadratic equation.
- 6) An equation of degree three in the variable is called a cubic equation and so on.

1) Root of Equation :

Any value (or values) of the variable (or variables) which satisfy given equation is called as Root of Equation.

2) Linear Equation

An equation of the form ax + by + c = 0, where a, b, c are constants is called as Linear Equation.

- 1) ax + b = 0 is Linear Equation in one variable
- 2) ax + by + c = 0 is Linear Equation in two variables.

Nature of Simultaneous Equ	ations	: lf a1x+b1y	$+c_1 = 0$	and a ₂ x	$+b_2y+c_2 =$	0 are two	simultaneous
linear equations then we have	-						

Nature of Solution	Condition	Nature of equation	Nature of lines
Unique Solution	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Consistent	Intersecting
No solution	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Inconsistent	Parallel
Infinitely many solution	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Consistent	Coincident i.e. one above another

<u>Part - I</u>				10. Solve for x and y : $x-3y = 0$, $x+2y = 20$.			
	Linear E	quations		a) x = 4, y = 12			
	(Module)	+ Scanner)		b) $x = 12, y = 4$			
				c) $x = 5, y = 4$			
	Set	t - A		d) none of these			
1	Pick up the correct y	value of x for $x = 2$		d) home of these			
1.	The confect of	$\frac{1}{30} = \frac{1}{45}$	11	The simultaneous e	equat	7x - 3y = 31.9	x –
	a) x = 5	b) x = 7		5v = 41 have soluti	ions	niven hv	~
	c) $x = 1^{1}$	d) none of these		a) $(-4 - 1)$	h)	$(-1 \ 4)$	
	$x = 1\frac{3}{3}$	d) hone of these		c) $(4, 1)$	d)	(37)	
				C) (4, 1)	u)	(3, 7)	
2.	The equation -/ x +	$1 = 5 - 3 \times \text{will be satisfied}$	12	15v + 2Av - 182) 5(v+	(1) - 7y have solution	nc
	for x equal to:		12.	1.5× + 2.4y = 1.0, 2			715
	a) 2	b) -1		(0504)	b)	(0 4 0 5)	
	c) 1	d) none of these		a) (0.5, 0.4)	0)	(0.4, 0.5)	
		r + 24 r		C) $(\frac{1}{2}, \frac{2}{5})$	d)	(2, 5)	
3.	The solution of the	equation $\frac{x+24}{5} = 4 + \frac{x}{4}$		2 5			
	a) 6	b) 10	13	15x + 36y - 212	5 (v.	-1) - 6v	
	a) 0 c) 16	d) none of these	15.	(0.2, 0.5)	، م) د. (h	(05, 02)	
	C) 10	d) Hone of these		a) $(0.2, 0.3)$	(U	(0.3, 0.2)	
Л	$ f _{kv} = 4 - (k - 1)v + 1$	hen which of the following		(2, 3)	u)	(2, 3)	
4.	11 Kx = 4 = (K = 1)x, t	(Common of the following	1/	Solving $6x + 5y - 16y$	-0 a	nd $3x_{-}y_{-}1=0$ we a	not
	(13 t) t = -5	(scumer) (4)	17.	values of x and y ar	-0 a	na ský i=o we g	jei
	a) $x = -3$	d) $x = \pm 4$		a) 1 1	, b)	1 2	
	c) x = 3			c) -1 2	0)	d) 0.2	
_		x + 4 + x - 5		C) 1, L		a) 0, 2	
5.	The root of the equa	ation $\frac{x+4}{4} + \frac{x-5}{3} = 11$ is	15	If the ratio of $(5x - 1)$	Rv) ar	$d(5y - 3x)$ is $3 \cdot 4$ th	۱en
	a) 20	b) 10	13.	the value of x : v is:	sy) ai		ner)
	c) 2	d) none of these		a) 27 · 29		(ocum	,
	-, _			b) 29:27			
_	2x + 5 3x + 10			c) 3:4			
6.	$-\frac{10}{10} + \frac{15}{15} = 5$	(Scanner)		d) 4:3			
	a) 10 58	b) 9.58		.,			
	c) 95	d) None	16.	The values of x and	d v sa	atisfving the equation	ons
	c, <i>s</i> . <i>s</i>			<i>x y</i> 2 2	0		
7.	The solution of the	e equation $(p+2)(p-3) +$		$\frac{-+\frac{3}{2}}{2} = 2$, x + 2y =	8 are	e given by the pair.	
	(p+3)(p-4) = p(2p-5)	5) is		a) (3, 2)			
	a) 6	b) 7		b) (-2, -3)			
	c) 5	d) none of these		c) (2, 3)			
	c) 5	a) hole of these		d) none of these			
8	f x-2 + x-3 =	= 7 then 'x' will be equal to					
0.	a) 6	b) - 1 (Scanner)	17	x y x y	10		
	c) 6 and -1	d) None of the above	17.	$\frac{-+-+1}{5} = \frac{-+-1}{6} = \frac{-+-1}{5} = $	28		
		d) None of the above.		a) (6, 9)	b)	(9, 6)	
9	The solution of the	set of equations $3x + 4y =$		c) (60, 90)	d)	(90, 60)	
5.	7.4x - y = 3 is				-		
	a) (1, -1)	b) (1, 1)					
	c) $(2 \ 1)$	d) $(1 - 2)$					
		c, (,, _)					
			1				

FOUNDATION

BUSINESS MATHEMATICS

18.	If $\frac{3}{x+y} + \frac{2}{x-y} = -1$ and $\frac{1}{x+y} - \frac{1}{x-y} = \frac{4}{3}$
	then (x, y) is: (Scanner) a) (2, 1) b) (1, 2) c) (-1, 2) d) (-2, 1)
19.	$\frac{x}{p} + \frac{y}{q} = 2, x + y = p + q \text{ are satisfied by the}$ values given by the pair. a) $(x = p, y = q)$ b) $(x=q, y=p)$ c) $(x=1, y=1)$ d) none of these
20.	3x-4y + 70z = 0, 2x + 3y - 10z = 0, x + 2y+3z = 13 a) (1, 3, 7) b) (1, 7, 3) c) (2, 4, 3) d) (-10, 10, 1)
21.	2x + 3y + 4z = 0, x + 2y = 5z = 0, 10x + 16y - 6z = 0 a) (0, 0, 0) b) (1, -1, 1) c) (3, 2, -1) d) (1, 0, 2)
22.	$\frac{x}{4} = \frac{y}{3} = \frac{z}{2}; 7x + 8y + 5z = 62$ a) (4, 3, 2) b) (2, 3, 4) c) (3, 4, 2) d) (4, 2, 3)
23.	The sum of two numbers is 52 and their difference is 2. The numbers are a) 17 and 15 b) 12 and 10 c) 27 and 25 d) none of these
24.	The product of two numbers is 3200 and the quotient when the larger number is divided by the smaller is 2. The numbers are a) (16, 200) b) (160, 20) c) (60, 30) d) (80, 40)
25.	Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the

1

	ratio 7 : 9. If each saves Rs.50 per month find their monthly incomes a) (500, 400) b) (400, 500) c) (300, 600) d) (350, 550)
26.	The denominator of a fraction exceeds the numerator by 5 and if 3 be added to both the fraction becomes $\frac{3}{4}$. Find the fraction.
	a) $\frac{10}{15}$ b) $\frac{12}{17}$
	c) <u> </u>
27.	A number consists of two digits the digit in the ten's place is twice the digit in the unit's place. If 18 be subtracted from the number the digits are reversed. Find the number.
	a) 44 b) 50 c) 42 d) none of these
28.	The sum of the digits of a two digit number is 10. If 18 be subtracted from it the digits in the resulting number will be equal. The number is a) 37 b) 73 c) 75 d) none of these numbers.
29.	A number consists of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is a) 39 b) 92 c) 93 d) 94
30.	A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed find the number.a) 54b) 53c) 45d) 55
31.	A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is: a) 63 b) 35 c) 36 d) 60

FOUNDATION

32.	Of two numbers, 1/5 th of the greater is equal to 1/3 rd of the smaller and their sum is 16. The numbers are: a) (6, 10) b) (9, 7)
	c) (12, 4) d) (11, 5)
33.	The fourth part of a number exceeds the sixth part by 4. The number is a) 84 b) 44
	c) 48 d) none of these
34.	If a number of which the half is greater than $\frac{1}{5}$
	th of the number by 15 then the number is a) 50 b) 40 c) 80 d) pape of these
	c) 60 d) hone of these.
35.	Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are. a) (50, 20) b) (60, 20) c) (55, 25) d) none of these
36.	y is older than x by 7 years 15 years back x's age was 3/4 of y's age. Their present ages are: a) (x=36, y=43) b) (x=50, y=43) c) (x=43, y=50) d) (x=40, y=47)
	<u>Set - B</u>
1.	8 is the solution of the equation a) $\frac{x+4}{4} + \frac{x-5}{3} = 11$
	b) $\frac{x+4}{2} + \frac{x+10}{9} = 8$
	c) $\frac{x+24}{5} = 4 + \frac{x}{4}$
	d) $\frac{x-15}{10} + \frac{x+5}{5} = 4$
2.	The equation $\frac{12x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is true
	tor a) $x = 1$ b) $x = 2$

	c) x = 5		d) x = 7
3.	Pick up the correct $\frac{x}{0.5} - \frac{1}{0.05} + \frac{x}{0.005} - \frac{x}{0.005}$ a) $x = 0$ b) $x = 1$ c) $x = 10$ d) none of these	ct <u>1</u> 000:	value x for which $\frac{1}{5} = 0$
4.	The value of y that $\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$ is	t sa	atisfies the equation
	a) -1 l	b)	7
	c) 1	d)	$-\frac{1}{7}$
5.	The pair satisfying the $\frac{x+y}{x-y} = \frac{5}{3}$ is given by	e ec	quations $x + 5y = 36$,
	a) (16, 4)	b)	(4, 16)
	c) (4, 8)	d)	none of these.
6.	Solve for x and y: $\frac{4}{5}$ - 10 (y-x). a) (5, 2) b c) (2, -5) c	$\frac{5}{y} =$	$\frac{x+y}{xy} + \frac{3}{10}$ and $3xy =$ (-2, -5) (2, 5)
7.	The values of x and y $\frac{3}{x+y} + \frac{2}{x-y} = 3, \frac{2}{x+y}$	sati + y	sfying the equations $\frac{3}{x-y} = 3\frac{2}{3}$ are given
	by	-)	(1)
	a) (1, 2) 1	0)	(-1, -2)
	c) $(1, \frac{1}{2})$	d)	(2, 1)
8.	Solving $9^x = 3^y$ and following roots a) 1, 2 b) 0, 1	5 ^{x+y}	⁺¹ = 25 ^{xy} we get the c) 0, 3 d) 1, 3
9.	If $2^{x+y} = 2^{2x-y} = \sqrt{8}$. the	nen	the respective values
	of x and y are (Scanner)		
	a) $1, \frac{1}{2}$	b)	$\frac{1}{2},1$
	c) $\frac{1}{2}, \frac{1}{2}$	d)	None of these

FOUNDATION

10.	Solving $9x + 3y - 4z = 3$, $x + y - z = 0$ and $2x-5y-4z=-20$ following roots are obtained a) 2, 3, 4 b) 1, 3, 4 c) 1, 2, 3 d) None	18.	Let E_1 and E_2 are two linear equations in two variables x and y. (0, 1) is a solution of both equations E_1 and E_2 . (2, -1) is a solution of equation E_1 only and (-2, -1) is solution of E_2 only then E_1 and E_2 are
11.	The solution for the pair of equation $\frac{1}{16x} + \frac{1}{15y} = \frac{9}{20}, \frac{1}{20x} - \frac{1}{27y} = \frac{4}{45}$ is given by a) $\left(\frac{1}{4}, \frac{1}{3}\right)$ b) $\left(\frac{1}{3}, \frac{1}{4}\right)$		(Scanner) a) $x = 0, y = 1$ b) $2x - y = -1, 4x + y = 1$ c) $x + y = 1, x - y = -1$ d) $x + 2y = 2, x + y = 1$
12.	c) (3 4) d) (4 3) $\frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} + \frac{3}{10} 3 xy = 10 (y-x)$ a) (2, 5) b) (5, 2)	19.	The diagonal of a rectangle is 5 cm and one of at sides is 4 cm. Its area isa) 20 sq.cm.b) 12 sq.cm.c) 10 sq.cm.d) none of these
13.	c) (2, 7) d) (3, 4) $\frac{1}{3}(x+y) + 2z = 21, 3x - \frac{1}{2}(y+z) = 65, x + \frac{1}{2}(x+y-z) = 38$ a) (4, 9, 5) b) (2, 9, 5)	20.	 Divide 56 into two parts such that three times the first part exceeds one third of the second by 48. The parts are. a) (20, 36) b) (25, 31) c) (24, 32) d) none of these
14.	c) $(24, 9, 5)$ d) $(5, 24, 9)$ $\frac{x}{0.01} + \frac{y + 0.03}{0.05} = \frac{y}{0.02} + \frac{x + 0.03}{0.04} = 2$ a) $(1, 2)$ b) $(0.1, 0.2)$ c) $(0.01, 0.02)$ d) $(0.02, 0.01)$	21.	A man sells 6 radios and 4 televisions forRs.18,480. If 14 radios and 2 televisions are soldfor the same amount, what is the price of atelevision?(Scanner)a) Rs.1,848b) Rs.840c) Rs.1,680d) Rs.3,360
15.	$\frac{xy}{y-x} = 110, \frac{yz}{z-y} = 132, \frac{zx}{z+x} = \frac{60}{11}$ a) (12, 11, 10) b) (10, 11, 12) c) (11, 10, 12) d) (12, 10, 11)	22.	Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs.51. Mr. Paul has Rs.4 less than Mr. Roy and Mr. Singh has got Rs.5 less than Mr.Roy. They have the money as.
16.	Solve for x, y and z: $\frac{xy}{x+y} = 70, \frac{xz}{x+z} = 84, \frac{yz}{y+z} = 140$ a) 400, 100, 200 b) 105, 210, 420		 a) (Rs.20, Rs.16, Rs.15) b) (Rs.15, Rs.20, Rs.16) c) (Rs.25, Rs.11, Rs.15) d) None of these
17.	c) 100, 120, 210 d) 110, 220, 330 Solve for x, y and z: $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 5$, $\frac{2}{x} - \frac{3}{y} - \frac{4}{z} = -11$, $\frac{3}{x} + \frac{2}{y} - \frac{1}{z} = -6$ a) $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$ b) $\frac{-1}{2}, \frac{1}{3}, \frac{1}{6}$	23.	A man went to the Reserve Bank of India with Rs.1,000. He asked the cashier to give him Rs.5 and Rs.10 notes only in return. The man got 175 notes in all. Find how many notes of Rs.5 and Rs.10 did he receive? <i>(scanner)</i> a) (25, 150) b) (40, 110) c) (150, 25) d) None
	c) $\frac{1}{2}, \frac{-1}{3}, \frac{1}{6}$ d) $\frac{1}{2}, \frac{1}{3}, \frac{-1}{6}$	24.	the wages of 8 men and 6 boys amount to Rs.33. If 4 men earn Rs.4.50 more than 5 boys determine the wages of each man and boy. a) (Rs.1.50, Rs.3)

- b) (Rs.3, Rs.1.50)
- c) (Rs.2.50, Rs.2)
- d) (Rs.2, Rs.2.50)
- 25. A man starts his job with a certain monthly salary and earns a fixed increment every year. If his salary was Rs.1,500 after 4 years of service and Rs.1,800 after 10 years of service, what was his starting salary and what is the annual increment in rupees?
 - (Scanner)
 - a) Rs.1,300, Rs.50
 - b) Rs.1,100, Rs.50
 - c) Rs.1,500, Rs.30
 - d) None
- 26. The demand and supply equations for a certain commodity are 4q + 7p = 17 and $p = \frac{q}{3} + \frac{7}{4}$. respectively where p is the market price and q

is the quantity then the equilibrium price and quantity are:

- a) $2, \frac{3}{4}$ c) $5, \frac{3}{5}$ d) None of these
- For a certain commodity the demand equation 27. giving demand 'd' in kg, for a price 'p' in rupees per kg. is d = 100 (10 - p). The supply equation giving the supply s in kg. for a price p in rupees per kg. is s = 75 (p - 3). The market price is such at which demand equals supply. Find the quantity that will be bought and sold.
 - a) 500 kg b) 700 kg
 - d) none of these c) 300 kg
- Find the fraction which is equal to 1/2 when 28. both its numerator and denominator are increased by 2. It is equal to 3/4 when both are increased by 12.

a)	3/8	b)	5/8
c)	2/8	d)	2/3

If the numerator of a fraction is increased by 2 29. and the denominator by 1 it becomes 1. Again if the numerator is decreased by 4 and the denominator by 2 it becomes 1/2. Find the fraction. b) 2/5

a) 1/4

- c) 3/4 d) 7/8.
- 30. The denominator of a fraction exceeds the numerator by 2. If 5 be added to the numerator the fraction increases by unity. The fraction is.

a)	$\frac{5}{7}$	b)	$\frac{1}{3}$
c)	$\frac{7}{9}$	d)	$\frac{3}{5}$

Two numbers are such that twice the greater 31. number exceeds twice the smaller one by 18 and 1/3rd of the smaller and 1/5th of the greater number are together 21. The numbers are:

a) (36, 42)	b)	(45, 36)
c) (50, 41)	d)	(55, 46)

- 32. The sum of the digits of a three digit number is 12. If the digits are reversed the number is increased by 495 but reversing only of the ten's and unit digits increase the number by 36.the number is
 - a) 327 b) 372 c) 237 d) 273
- 33. A number consist of three digit of which the middle one is zero and the sum of the other digits is 9. The number formed by interchanging the first and third digits is more than the original number by 297 find the number.
 - a) 303
 - b) 206
 - c) 306
 - d) none of these
- 34. One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5. If the answer is 4 short of the correct answer then the number was

a)	320	b)	400
c)	480	d)	none of these

35. If thrice of A's age 6 years ago be subtracted from twice his present age, the result would be equal to his present age. Find A's present age.

- a) 5 years
- b) 7 years
- c) 13 years
- d) 9 years

<u>Set - C</u>

- The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man?
 - a) 45 years
 - b) 55 years
 - c) 43 years
 - d) 38 years
- 2. The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.
 - a) 60 years
 - b) 52 years
 - c) 51 years
 - d) 50 years

Quadratic Equation :

Synopsis :

Any equation of the form $ax^2 + bx + c = 0$ where a, b, c are constants and a is not equal to zero is called as Quadratic equation.

Methods of Finding Roots of Quadratic Equation :

- 1) Factorizations (Direct Observation)
- 2) By using Formula

$$\alpha,\beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Roots of Quadratic equation

The values of x satisfying the equation $ax^2 + bx + c = 0$ are called roots of the equation. These are given by:

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{And} \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
	<u>Par</u> Quadratio	r <u>t - II</u> : Equations t - Δ		a) x = 1 c) x = 2	b) d)	x = - 1 x = - 2
1.	Find the value of K a) 17/4 c) 4/17	in $3x^2 - 2kx + 5 = 0$ if $x = 2$ (Scanner) b) - 7/14 d) - 4/17	10.	The values of x in $7(x+2p)^2 + 5p^2 = 3$ a) (4p, -3p) c) (-4p, 3p)	the equati 35xp + 117 b) (4j d) (-4	on 7p ² are 5, 3p) Ip, -3p)
2.	Solving equation > value(s) of x a) 9, 6 c) 15, 6	x ² – 24x + 135 = 0 are, b) 9, 15 d) None	11.	Solving equation get roots as a) ±1 c) -1	$\frac{6x+2}{4} + \frac{6x+2}{4}$	$\frac{2x^2 - 1}{2x^2 + 2} = \frac{10x - 1}{4x}$ we
3.	Solving equation 3 roots as a) ±1 c) 0	$x^{2} - 14x + 16 = 0$ we get b) 2 and $\frac{8}{3}$ d) None	12.	If $x = m$ is one of $2x^{2} + 5x - m = 0$ t a) (0, 2) c) (0, 1) The sum of two r	the solutio he possibl b) (0, d) (1,	ns of the equation e values of m are -2) -1) 45 and the mean
4.	Solving $x^2 + y^2 - 25$ roots as under a) $\pm 3 \pm 4$ c) 0, 3, 4	=0 and x-y-1=0 we get the b) ±2±3 d) -3, -4		are a) (15, 30) c) (36, 9)	b) (32 d) (25	is 18. The numbers 2, 13) 5, 20)
5.	Solving $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} -$ the roots as under a) 1, 4 c) 1, 3	$\frac{5}{2} = 0$ and x+y-5=0 we get b) 1, 2 d) 1, 5	14.	Divide 50 into two their reciprocals is a) (24, 26) c) (27, 23) There are two con	o parts suc 5 1/12. The b) (28 d) (20 nsecutive r	ch that the sum of numbers are 3, 22)), 30) numbers such that
6.	The values of x for t 6 – 4x are a) (1, 12) c) (1, -12)	he equation x ² + 9x + 18 = b) (-1, -12) d) (-1, 12)	16.	the difference of t a) (15, 16) c) (13, 14) Divide 25 into tw	heir recipr b) (17 d) (12 o parts so	ocals is 1/240. 7, 18) 2, 13) that sum of their
7.	Solving equation x value(s) of x a) a, b c) b	² – (a+b) x + ab = 0 are, b) a d) None		 reciprocals is 1/6. a) 10 and 20 b) 13 and 12 c) 10 and 15 d) none of these 		
8.	If $\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$ the a) a, b ² /a c) a ² , b ² /a	roots of the equation are b) a ² , b/a ² d) a, b ²	17.	If the length of a the breadth and rectangle is 40 cm of the rectangle w	rectangle d if the n, then the <i>v</i> ill be:	is 5 cm more than perimeter of the length & breadth <i>(Scanner)</i>
9.	A solution of the qu + (2a-b-c)x + (c+a-	adratic equation $(a+b-2c)x^2$ 2b) = 0 is		 a) 7.5 cm, 2.5 cm b) 10 cm, 5 cm c) 12.5 cm, 7.5 cr 	n	

d) 15.5 cm, 10.5 cm		Se	ot - B
18. If the sum of two numbers is 13 and the of their squares is 85, then the numbers w	e sum 1. ill be:	Solve x : 4 ^x – 3.2 ^{x+2} a) 1 b) 2 c)	$+ 2^5 = 0$ 3 d) 4
a) 3, 10 b) 5, 8 c) 4, 9 d) 6, 7	2.	Solve 2 ^{x-2} + 2 ^{3-x} = 3 a) 1, 3 c) 1, 2	b) 2, 3 d) None
19. The sum of two numbers is 8 and the su their squares is 34. Taking one number form an equation in x and hence find numbers.	um of as x 3. d the	If 2 ^{2x+3} – 3 ² .2 ^x + 1 = a) 0, 1 c) 0, 3	0 then values of x are b) 1, 2 d) 0, -3
 a) (7, 10) b) (4, 4) c) (3, 5) d) (2, 6) 	4.	The solution of the are $(2, 3)$	equation $3x^2 - 17x + 24 = 0$
20. A number consists of two digits such that digit in one's place in thrice the digit in place. If 36 be added then the digit	at the ten's s are	c) $(3, 2\frac{2}{3})$	d) $(2, 3_3)$
reversed. Find the number (so a) 62 b) 26 c) 39 d) None of these	sanner) 5.	Solving equation 3x as a) ±4	$x^2 - 14x + 8 = 0$ we get roots b) ± 2
21. The difference of two positive integers is the sum of their squares is 89. Taking smaller integer as x form a quadratic equ	3 and g the ation	c) $4, \frac{2}{3}$	d) None
and solve it to find the integers. The int are. a) $(7, 4)$ b) $(5, 8)$ c) $(3, 6)$ d) $(2, 5)$	egers 6.	If 2x ² – (a+6) 2X + 1 a) 4 & a ² c) 3 & 2a	12a = 0 then roots are b) 6 & a d) 6 & 3a
 22. Two squares have sides p cm and (p + 5) The sum of their squares is 625 sq. cm 	cms. . The	Solving $\frac{1}{x^2} + \frac{1}{y^2} - 1$	$3 = 0$ and $\frac{1}{x} + \frac{1}{y} - 5 = 0$ we
sides of the squares are a) (10 cm, 30 cm) b) (12 cm, 25 cm) c) (15 cm, 20 cm) d) none of these		a) $\frac{1}{8}, \frac{1}{5}$ c) $\frac{1}{13}, \frac{1}{5}$	b) $\frac{1}{2}, \frac{1}{3}$ d) $\frac{1}{4}, \frac{1}{5}$
23. The area of a rectangular field is 2000 sq.r its perimeter is 180m. Form a qua- equation by taking the length of the field and solve it to find the length and bread	n and dratic d as x lth of	Solving $x^2 + xy-21 =$ get the roots as une a) ± 1 , ± 2 c) ± 3 , ± 4	= 0 and xy – 2y ² + 20 = 0 we der b) ±2, ±3 d) None
the field. The length and breadth are a) (205m, 80m) b) (50m, 40m) c) (60m, 50m) d) none	9.	Solving $x^2 + xy+y^2$ get the following rc a) ± 3 , ± 4 c) ± 2 , ± 3	= 37 and $3xy+2y^2 = 68$ we bots b) $\pm 4, \pm 5$ d) None

10.	Solving $4^{x}.2^{y} = 128$ and $3^{3x+2y} = 9^{xy}$ we get the following roots	17.	Solving equation 6 $\left[\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}}\right] = 13$
	a) $\frac{7}{4}, \frac{7}{2}$ b) 2, 3		following roots are obtained
	c) Both A & B d) None of these		a) $\frac{4}{13}, \frac{9}{13}$
11.	Solving $x+2y+2z=0$, $3x-4y+z=0$ and $x^2+3y^2+z^2=11$ following roots are obtained a) 2, 1, -2 and -2, -1, 2 b) 2, 1, 2 and -2, -1, -2 c) only 2, 1, -2 d) only -2, -1, 2		b) $\frac{-4}{13}, \frac{-9}{13}$ c) $\frac{4}{13}, \frac{5}{13}$ d) $\frac{6}{13}, \frac{7}{13}$
12.	The solutions of the equation $6x = 6(x+1)$	18.	On solving $\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = 2\frac{1}{6}$, we get one
	$\frac{1}{x+1} + \frac{1}{x} = 13$ are		value of x as: (Scanner)
	a) (2, 3) b) (3, -2)		a) $\frac{4}{13}$ b) $\frac{1}{13}$
	c) (-2, -3)		c) $\frac{2}{3}$ d) $\frac{3}{3}$
	d) (2, -3)		cy 13 dy 13
13.	The satisfying values of x for the equation	19	Solving equation $z + \sqrt{z} = \frac{6}{2}$ the value of z
	$\frac{1}{x+p+q} = \frac{1}{x} + \frac{1}{p} + \frac{1}{q}$ are	15.	Solving equation $2 + \sqrt{2} = \frac{25}{25}$
	a) (p, q) b) (-p, -q)		a) $\frac{1}{2}$ b) $\frac{2}{2}$
	c) (p, -p) d) (-p, q)		3 5 5 5 1 2
14.	The values of x satisfying the equation		c) $\frac{1}{25}$ d) $\frac{2}{25}$
	$\sqrt{(2x^2+5x-2)} - \sqrt{(2x^2+5x-9)} = 1$ are	20.	Solving equation $z^{10} - 33z^5 + 32 = 0$ the
	a) (2, -9/2) b) (4, -9) c) (2, 9/2) d) (-2, 9/2)		following values of z are obtained
			a) 1, 2 b) 2, 3 c) 2, 4 d) 1, 2, 3
15.	The equation $\frac{3(3x^2+15)}{6} + 2x^2 + 9 = \frac{2x^2+96}{7} + 6$	21	When $\sqrt{2z+1} + \sqrt{3z+4} = 7$ the value of z is
	has got the solution as		given by
	a) (1, 1) b) (1/2, -1)		a) 1 b) 2 c) 3 d) 4
	c) (1, -1)		
	d) (2, -1)	22.	The value of $\sqrt{6} + \sqrt{6} + \sqrt{6} + \dots \infty$ is: (Scanner)
16.	Solving equation $7\sqrt{\frac{x}{1-x}} + 8\sqrt{\frac{1-x}{1-x}} = 15$		a) - 3 b) 2 c) 3 d) 4
	following roots are obtained $\sqrt{1-x}$ \sqrt{x}	23.	Solving equation $\left(x-\frac{1}{2}\right)^2 - 6\left(x+\frac{1}{2}\right) + 12 = 0$
	a) $\frac{64}{110}, \frac{1}{2}$ b) $\frac{1}{10}, \frac{1}{10}$		we get roots as follows
	113 2 50 65 49 1 1 64		a) 0 b) 1
	c) $\overline{50}, \overline{65}$ d) $\overline{50}, \overline{65}$		c) -1 d) None

24.	If $\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{x-1}{x+3} - \frac{x}{x+3}$	$\frac{+3}{-3}$ then the values of
	a) $0, \pm \sqrt{6}$ b) c) $0, \pm 2\sqrt{3}$ d)	$0,\pm\sqrt{3}$ None
25.	If $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{x-b}{x}$ x are	$\frac{a}{-b}$ then the values of
	a) 0, (a+b), (a-b)	b) 0, (a+b), $\frac{a^2 + b^2}{a+b}$
	c) 0, (a-b), $\frac{a^2 + b^2}{a+b}$ d)	$\frac{a^2+b^2}{a+b}$
26.	If $\frac{x-a^2-b^2}{c^2} + \frac{c^2}{x-a^2-b^2}$	= 2 the value of is
	a) $a^2 + b^2 + c^2$ b) $-a^2-b^2-c^2$	
	c) $\frac{1}{a^2 + b^2 + c^2}$	
	d) $-\frac{1}{a^2+b^2+c^2}$	
27.	If $\frac{x-bc}{b+c} + \frac{x-ca}{c+a} + \frac{x-ab}{a+b} =$	= a + b + c the value of
	x is a) $a^2 + b^2 + c^2$ b) c) $(a+b)(b+c)$ d)	a(a+b+c) ab + bc + ca
28.	The values of $4 + $ 1	
	4 +	$\frac{1}{1}$
	a) $1 \pm \sqrt{2}$ b)	$2 + \sqrt{5}$
	c) $2 \pm \sqrt{5}$ d)	none of these
29.	Five times of a positive w than twice the square	hole number is 3 less of the number. The
	a) 3 b)	4
	c) -3 d)	2
30.	If the square of a numbe number by 15, then the r condition is	r exceeds twice if the number satisfying the
	a) -5	b) 3
	c) 5	d) 15

31. A distributor of apple Juice has 5000 bottle in the store that it wishes to distribute in a month. From experience it is known that demand D (in number of bottles) is given by $D = -2000p^2 +$ 2000p + 17000. The price per bottle that will result zero inventory is a) Rs.3 b) Rs.5 c) Rs.2 d) none of these. 32. The hypotenuse of a right-angled triangle is 20cm. The difference between its other two sides be 4cm. The sides are a) (11cm, 15cm) b) (12cm, 16cm) c) (20cm, 24cm) d) none of these 33. If the sides of an equilateral triangle are shortened by 3 units, 4 units and 5 units respectively and a right triangle is formed, then the side of an equilateral triangle is: (Scanner) a) 6 units b) 7 units c) 8 units d) 10 units. 34. The sides of an equilateral triangle are shortened by 12 units 13 units and 14 units respectively and a right angle triangle is formed. The side of the equilateral triangle is a) 17 units b) 16 units c) 15 units d) 18 units 35. If area and perimeter of a rectangle is 6000 cm² and 340 cm respectively, then the length of rectangle is: (Scanner) a) 140 b) 120 c) 170 d) 200 36. A person on a tour has Rs.9,600 for his expenses. If his tour is extended by 16 days, he has to cut down his daily expenses by Rs.20, his original duration of tour had been. (Scanner) a) 48 days b) 64 days c) 80 days d) 96 days

37. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of each article (in Rs.) was 2 more than thrice the number of articles produced on that day. If the total cost

	of production on that day was Rs.800, the number of articles produced was (scanner) a) 14 b) 16 c) 12 d) 18	2.
38.	The number of students in each section of a school is 36. After admitting 12 new students, four new sections were started. If total number of students in each section now is 30, than the number of sections initially were. <i>(scanner)</i> a) 6 b) 10 c) 14 d) 18	3.
39.	The sum of two irrational numbers multiplied by the larger one is 70 and their difference is multiplied by the smaller one is 12; the two numbers are a) $3\sqrt{2}, 2\sqrt{3}$ b) $5\sqrt{2}, 3\sqrt{5}$ c) $2\sqrt{2}, 5\sqrt{2}$ d) none of these	4.
40.	A piece of iron rod costs Rs.60 If the rod was 2 metre shorter and each metre costs Rs.1.00 more, the cost would remain unchanged. What is the length of the rod? a) 24m. b) 12m. c) 16m. d) none of these	-
41.	The cost of 2 oranges and 3 apples is Rs. 28. If the cost of an apple is doubled then the cost of 3 oranges and 5 apples is Rs. 75. The original cost of 7 oranges and 4 apples (in Rs) is a) 59 b) 47 c) 71 d) 63	5.
	<u>Set - C</u>	
1.	Solve $\left(x-\frac{1}{x}\right)^2 + 2\left(x+\frac{1}{x}\right) = 7\frac{1}{4}$. a) $2\frac{1}{2}$ b) $\frac{1}{2}$ c) $-2\frac{1}{2}$ d) none of these	

- Solving equation $\left(x \frac{1}{x}\right)^2 10\left(x \frac{1}{x}\right) + 24 = 0$ we get roots as follows a) 0 b) 1
 - c) -1 d) $(2\pm\sqrt{5}), (3\pm\sqrt{10})$
- Solving equation $(1)^2 (1)^2$
 - $\left(x \frac{1}{x}\right)^2 5\left(x + \frac{1}{x} + 2\right) + 18 = 0 \text{ we get roots as}$ under a) 0
 - b) 1
 - о) і с) -1
 - d) $-2\pm\sqrt{3}$
- 4. Solving equation $6x^4 + 11x^3-9x^2 11x+6 = 0$ following roots are obtained

5. Solving equation (2x+3)(2x+5)(x-1)(x-2) = 30the roots available are

a)
$$0, \frac{1}{2}, -\frac{11}{4}, \frac{9}{4}$$

b) $0, -\frac{1}{2}, \frac{-1 \pm \sqrt{105}}{4}$
c) $0, -\frac{1}{2}, -\frac{11}{4}, -\frac{9}{4}$
d) None

ROOTS

Synopsis :

Nature of Roots

i) If α and β are the roots of the equation $ax^2 + bx + c = 0$, then Sum of roots $= \alpha + \beta = -b/a$ Product of roots $= \alpha\beta = c/a$ ii) An equation whose roots are α and β is given by $x^2 - (\text{sum of the roots}) x + (\text{product of the root}) = 0$

$x^2 - (\alpha + \beta)x + \alpha\beta = 0$

Nature of Roots :

$\Delta = b^2 - 4ac$ (Discriminant)	Nature of Roots
Value of $\Delta = b^2 - 4ac$	
1) $b^2 - 4ac < 0$	1) Real and Equal
2) $b^2 - 4ac = 0$	2) Real and Unequal
3) $b^2 - 4ac > 0$	3) Imaginary / Complex
4) $b^2 - 4ac > 0$, perfect square	4) Real, Unequal and Rational
5) $b^2 - 4ac > 0$, not a perfect square	5) Real, unequal, irrational & Conjugate of each
	other

BUSINESS MATHEMATICS

	<u>Part - III</u> Nature of roots (Quadratic Equation) <u>Set – A</u>	9.
1.	 If b² – 4 ac is a perfect square but not equal to zero than the roots are: (Scanner) a) real and equal b) real, irrational and equal c) real, rational and unequal d) Imaginary. 	10
2.	If one root of $5x^2 + 13x + p = 0$ be reciprocal of the other then the value of p is a) -5 b) 5 c) $1/5$ d) $-1/5$	
3.	The equation $x^2 - (p+4)x + 2p + 5 = 0$ has equal roots the values of p will be. a) ± 1 b) 2 c) ± 2 ,d) -2	11
4.	If the roots of the equation $2x^2 + 8x - m^3 = 0$ are equal then value of m is a) -3 b) -1 c) 1 d) -2	
5.	If the roots of the equation $4x^2 - 12x + k = 0$ are equal, then the value of k is: (Scanner) a) -3 b) -3	1.
	c) -9 d) 9	2.
6.	The quadratic equation $x^2 - 2kx + 16 = 0$ will have equal roots when the value of 'k' is (Scanner) a) $\cdot \cdot 1$ b) $\cdot \cdot 2$ c) $\cdot \cdot 3$ d) $\cdot \cdot 4$	3.
7.	If one root of the Equation $px^2 + qx + r = 0$ is r then other root of the Equation will be:(<i>Scanner</i>) a) $1/q$ b) $1/r$ c) $1/p$ d) $\frac{1}{p+q}$	4
8.	If $\alpha + \beta = -2$ and $\alpha\beta = -3$, then α, β are the roots of the equation, which is: (Scanner) a) $x^2 - 2x - 3 = 0$ b) $x^2 + 2x - 3 = 0$ c) $x^2 + 2x + 3 = 0$	

d) $x^2 - 2x + 3 = 0$

- 9. If one root of the equation is $2-\sqrt{3}$ form the equation given that the roots are irrational a) $x^2 - 4x + 1 = 0$ b) $x^2 - 4x - 1 = 0$ c) $x^2 - 4x + 3 = 0$ d) none of these
- 10. The equation $\left(\frac{l-m}{2}\right)x^2 \left(\frac{l+m}{2}\right)x + m = 0$ has got two values of x to satisfy the equation
 - given as a) $\left(1, \frac{2m}{l-m}\right)$ b) $\left(1, \frac{m}{l-m}\right)$ c) $\left(1, \frac{2l}{l-m}\right)$ d) $\left(1, \frac{1}{l-m}\right)$
- 11. Solving equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ following roots are obtained
 - a) $\frac{a-b}{b-c}$,1 b) (a-b) (a-c), 1 c) $\frac{b-c}{a-b}$,1 d) None

<u>Set – B</u>

1. If $\alpha\beta$ be the roots of the equation $2x^2 - 4x - 3$ = 0 the value of $\alpha^2 + \beta^2$ is a) 5 b) 7

- c) 3 d) -4
- Roots of equation $2x^2 + 3x + 7 = 0$ are α and β . The value of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is *(Scanner)* a) 2 b) 3/7c) 7/2 d) -19/14
- 3. If p and q are the roots of $x^2 + 2x + 1 = 0$ then the values of $p^3 + q^3$ becomes a) 2 b) -2
 - c) 4 d) -4
- 4 If roots of equation $x^2 + x + r = 0$ are ' α ' and ' β ' and $\alpha^3 + \beta^3 = -6$. Find the value 'r' ? (Scanner)

a) $\frac{-5}{3}$ b) $\frac{7}{3}$ c) $\frac{-4}{3}$ d) 1

5. If α and β be the roots of the quadratic equation $2x^2 - 4x = 1$, the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is____. (Scanner) a) -11 b) 22 c) -22 d) 11 Let α and β be the roots of $x^2 + 7x + 12 = 0$. 6. Then the value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$ will be *(Scanner)* a) $\frac{7}{12} + \frac{12}{7}$ b) $\frac{49}{144} + \frac{144}{49}$ c) $-\frac{91}{12}$ d) None of the above. If one of the roots of the equation $x^2 + px + a$ 7. is $\sqrt{3} + 2$, then the value of 'p' and '<u>a</u>' is: (Scanner) a) -4, -1 b) 4, -1 d) 4, 1 c) -4, 1 If α and β are the roots of the equation $x^2 + 7x$ 8. + 12 = 0, then the equation whose roots $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ will be: (Scanner) a) $x^2 - 14x + 49 = 0$ b) $x^2 - 24x + 144 = 0$ c) $x^2 - 50x + 49 = 0$ d) $x^2 - 19x + 144 = 0$ When two roots of quadratic equation are α_i 9. $\frac{1}{\alpha}$ then what will be the quadratic equation: (Scanner) a) $ax^2 - (a^2 + 1)x + \alpha = 0$ b) $ax^2 - a^2x + 1 = 0$ c) $ax^2 - (\alpha^2 + 1)x + 1 = 0$ d) None of these 10. The difference between the roots of the equation $x^2 - 7x - 9 = 0$ is: (Scanner) b) √85 a) 7 d) $2\sqrt{85}$ c) 9 11. If the root of the equation $x^2-8x+m = 0$ exceeds the other by 4 then the value of m is a) m = 10 b) m = 11 c) m = 9 d) m = 12

- If α , β are the roots of equation x²-5x+6=0 and 12. $\alpha > \beta$ then the equation with roots ($\alpha + \beta$) and $(\alpha - \beta)$ is
 - a) $x^2-6x + 5 = 0$ b) $2x^2-6x + 5 = 0$
 - c) $2x^2 5x + 6 = 0$
 - d) $x^2 5x + 6 = 0$
- 13. If α , β are the roots of equation $x^2-5x+6=0$ and $\alpha > \beta$ then the equation with roots ($\alpha^2 + \beta$) and $(\alpha + \beta^2)$ is a) $x^2 - 9x + 99 = 0$
 - b) $x^2 18x + 90 = 0$
 - c) $x^2 18x + 77 = 0$
 - d) None
- If α , β are the roots of equation x²-5x+6=0 and 14. $\alpha > \beta$ then the equation with roots ($\alpha\beta$ - α - β) and $(\alpha\beta + \alpha + \beta)$ is a) $x^2 - 12x + 11 = 0$
 - b) $2x^2-6x+12=0$
 - c) $x^2 12x + 12 = 0$
 - d) None
- If α and β be the roots of $x^2 + 7x + 12 = 0$ find 15. the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ β)². a) $x^2 - 50x - 49 = 0$
 - b) $x^2 50x + 45 = 0$
 - c) $x^2 + 50x 49 = 0$
 - d) $x^2 50x + 49 = 0$
- 16. Find the condition that one roots is double the other of $ax^2 + bx + c = 0$ (Scanner) a) $2b^2 = 3ac$ b) $b^2 = 3ac$ c) $2b^2 = 9ac$ d) $2b^2 > 9ac$
 - c) $2b^2 = 9ac$ d) $2b^2 > 9ac$
- 17. the condition that one of $ax^2+bx+c=0$ the roots of is twice the other is a) $b^2=4ca$ b) $2b^2=9(c+a)$
 - c) $2b^2=9ca$ d) $2b^2=9(c-a)$
- 18. The condition that one of $ax^2 + bx + c = 0$ the roots of is thrice the other is
 - a) $3b^2 = 16ca$ b) $b^2 = 9ca$
 - c) $3b^2 = -16ca$ d) $b^2 = -9ca$

If the roots of $ax^2 + bx + c = 0$ are in the ratio 19. $\frac{p}{q}$ then the value of $\frac{b^2}{(cq)}$ is

a) $\frac{(p+q)^2}{(pq)}$ (p + q)b) (pq)c) $\frac{(p-q)^2}{(pq)}$ $\frac{(p-q)}{(pq)}$ d) 20. If α , β be the roots of $2x^2 - 4x - 1 = 0$ find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ a) 20 b) -22 c) 15 d) none of these 21. If α and β are the roots of the equation $2x^2+5x$ +k = 0, and 4 ($\alpha^2 + \beta^2 + \alpha\beta$) = 23, then which of the following is true? a) $k^2+3k-2=0$ b) $k^2-2k+3=0$ c) $k^2 - 2k - 3 = 0$ d) $k^2 - 3k + 2 = 0$ Set – C If L + M + N = 0 and L, M, N are rationals the 1. roots of the equation $(M + N - L)x^{2} + (N + L - M)x + (L + M - N) = 0$ are a) real and irrational b) real and rational c) imaginary and equal d) real and equal The roots of the equation $x^2 + (2p-1)x + p^2 = 0$ 2. are real if b) $p \le 4$ a) p ≥ 1 d) $p \le 1/4$ c) $p \ge 1/4$ 3. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals then $\frac{b^2}{a^2} + \frac{bc}{a^2}$ is equal to a) 2 b) -2 c) 1 d) -1 If α , β are the two roots of the equation $x^2 - px$ 4. + q = 0 form the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. a) $qx^2-(p^2-2q)x+q=0$ b) $qx^2-(p^2+2q)x$ q=0 c) $qx^2+(p^2-2q)x-q=0$ d) none of these

BUSINESS MATHEMATICS

equation and the difference in root then the equation is a) $x^2 + ax + 2a^2 = 0$ b) $x^3 - 3ax - 2a^3 = 0$ c) $x^3 - 3ax + 2a^2 = 0$ d) $x^2 + 3ax - 2a^2 = 0$ Set - D D1. If the roots of the equation $p(q-r)x^2 + q(r-p)x +$ r(p - q) = 0 are equal, then $\frac{1}{2} + \frac{1}{2} = ?$ a) $\frac{1}{q}$ b) q d) $\frac{2}{a}$ c) 2q D2. If $p \neq q$ and $p^2 = 5p - 3$ and $q^2 = 5q - 3$ the equation having roots as $\frac{p}{2}$ and $\frac{q}{2}$ is a) $x^2 - 19x + 3 = 0$ b) $3x^2 - 19x - 3 = 0$ c) $3x^2 - 19x + 3 = 0$ d) $3x^2 + 19x + 3 = 0$ D3. If α and β are the roots of $x^2 = x + 1$ then value of $\frac{\alpha^2}{\beta} - \frac{\beta^2}{\alpha}$ is

If one root is half of the other of a quadratic

5.

a) $2\sqrt{5}$ b) $\sqrt{5}$ d) $-2\sqrt{5}$ c) $3\sqrt{5}$

CUBIC EQUATIONS

Synopsis :

- 1. **Meaning :** Equation in which the highest power is 3 is called cubic Equation. (Ex) : $ax^3 + bx^2 + cx + d = 0$ ($a \neq 0$) $x^3 - 2x^2 + x - 7 = 0$
- 2. **Solution to Simultaneous Equations :** For solving the Cubic Equation, find one root by Trial and Error Method and then reduce the cubic equation into quadratic equation by Synthetic Division method. The Quadratic Equation may further be dissolved into two further Linear Equations.

If α . β , γ are roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ then

- 1) Sum of roots = $\alpha + \beta + \gamma = -\frac{b}{a}$.
- 2) Sum of product of 2 roots taken at a time = $\alpha\beta + \beta r + \gamma r = \frac{c}{a}$.
- 3) Product of roots = $\alpha\beta$. $r = -\frac{d}{a}$.

Finding cubic equation using roots α . β , γ . $x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \alpha\gamma)x - \alpha\beta\gamma = 0$.

BUSINESS MATHEMATICS

	<u>Part</u> Cubic Eq <u>Set</u>	<u>- IV</u> uat <u>- A</u>	<u>/</u> ions	10.
1.	The solution of the co 6 = 0 is given by the a) (-1, 1, -2) c) (-2, 2, 3)	ubic tripl b) d)	equation x ³ -6x ² +11x- let: (1, 2, 3) (0, 4, -5)	11.
2.	The cubic equation x roots namely. a) (1, -1, 2) c) (-1, 2, -2)	κ ³ +	$2x^{2} - x - 2 = 0$ has 3 b) (-1, 1, -2) d) (1, 2, 2)	12
3.	The roots of the equa 0 are a) (-3, -9, -1) c) (3, 9, 1)	atior b) d)	$n x^{3} + 7x^{2} - 21x - 27 =$ (3, -9, -1) (-3, 9, 1)	
4.	The satisfying value c a) (1, 4, -5) c) (0, -4, 5)	of x ³ b) d)	+ x ² - 20x = 0 are (2, 4, -5) (0, 4, -5)	13.
5.	The roots of the cub - 27 = 0 are a) (-3, -9, -1) c) (0, -4, 5)	ic ea b) d)	quation x ³ + 7x ² – 21x (3, -9, -1) (-3, 9, 1)	14.
6.	The roots of the cubi are: a) 1, 2 and 3 c) 1, 2 and -3	c eq b) d)	uation x ³ – 7x + 6 = 0 <i>(Scanner)</i> 1, -2 and 3 1, -2 and -3	15.
7.	Solve x ³ -5x ² -2x+24 roots being in the rat a) -2, 4, 3 c) 2, 4, 3	=0 tio c b) d)	given that two of its of 3:4 -1, 4, 3 -2, -4, -3	
8.	Solve x ³ -6x ² +5x+12= of the two roots is 12 a) 1, 3, 4 c) 1, 6, 2	=0 g <u>2</u> b) d)	iven that the product -1, 3, 4 1, -6, -2	16.
9.	Solve x ³ + 3x ² -x-3=0 arithmetical progress a) -1, 1, 3 b) 1, 2, 3	give sion	en that the roots are in	

	d) -3, -2, -1		
10.	Solving $x^3 + 9x^2 - x - 9$ roots a) ± 1 , -9 k c) ± 1 , 9 c	=0 we b) ±1, d) Nc	get the following ± 9
11.	It is being given that o sum of the other tw 60=0 we get the follow a) 1, 2, 3 c) 2, 3, 4	ne of t vo solv wing ro b) d)	he roots is half the ving x ³ -12x ² +47x- oots: 3, 4, 5 -3, -4, -5
12.	Solve x ³ -7x ² +14x-8=0 in geometrical progre a) 1/2, 1, 2 c) 1/2, -1, 2	given ssion b) d)	that the roots are 1, 2, 4 -1, 2, -4
13.	The rational root of th + 2 = 0 is a) $\frac{1}{2}$ c) 2	ne equ b) d)	ation $2x^3 - x^2 - 4x$ $-\frac{1}{2}$ -2.
14.	x, $x - 4$, $x + 5$ are the side of the equation. a) $x^3 + 2x^2 - x - 2 = 0$ b) $x^3 + x^2 - 20x = 0$ c) $x^3 - 3x^2 - 4x + 12 = 0$ d) $x^3 - 6x^2 - 11x - 6 = 0$	e factor) = 0 0	s of the left-hand
15.	The equation $3x^3 + 5x^3$ and hence the factors the equation $3x^3 + 5x^3$ a) $x - 1$, $x - 2$, $x - 5/3$ 3x + 5 c) $x + 1$, $x - 1$, $3x - 5$	$a^{2} = 3x^{2}$ of the $a^{2} - 3x - 3x^{2}$	+ 5 has got 3 roots left – hand side of - 5 = 0 are b) $x - 1, x + 1,$
16.	The value of 'K' is following cubic equati a) 2 c) 1	u, i ion : x ³	f 2 is root of the - (k +1) x + k = 0. b) 6 d) 4

JPA Foundation Maths

c) -3, -1, 1

<u>Set - B</u>

1.	The roots of x ³ + x ² - a) (-1, -1, 1) c) (-1, -1, -1)	- x – b) d)	1 = 0 are (1, 1, -1) (1, 1, 1)
2.	The roots of the equ	atior	$y^3 + y^2 - y - 1 = 0$ are:
	a) (1, 1, -1) c) (1, 1, 1)		(Scanner) b) (-1, -1, 1) d) None of these
3.	If $4x^3 + 8x^2 - x - 2 = 0$ th given by	en va	alue of (2x+3) is
	a) 4, -1, 2	b)	-4, 2, 1
	c) 2, -4, -1	d)	none of these
4.	$ f x^3 - 6x^2 + 11x - 6 $	= 0 1	then find the value of
	(3x - 4).	b)	(Scanner)
	a) $(1, 2, 3)$ c) $(-1, 3, 5)$	(U	(-1, 2, 3) (2, 3, 5)
		,	
	$\mathbf{\hat{v}}$	ÛÛ	

3. LINEAR INEQUATIONS

Synopsis :

The term 'programming' means 'planning' and it refers to a particular plan of action from amongst several alternatives for maximizing or minimizing a function under given restrictions as maximizing profit or minimizing cost, etc. The term 'linear means that 'all inequations' or equations used' and the function to be maximized or minimized are linear. Thus, linear programming is a technique for resource utilization.

Before starting Linear Programming Problems, we should know some terminology of Liner inequalition are given below.

Linear Inequalities

An inequality or inequation is said to be linear, if each variable occurs in first degree only and there is no term involving the product of the variables e.g., $ax+b \le 0$, ax+by+c > 0, $ax \le 4$ etc.

Linear Inequality in One Variable

A linear inequality or inequation, which has only one variable is called linear inequality or inequation in one variable e.g. ax+b<0, where $a \neq 0, 3x+4>0$.

Linear Inequality in Two Variables

A linear inequality, which has two variables is called linear inequality in two variables e.g. $3x+11y \le 0, 4t+3s > 0$

Concept of Half Planes

The graph of a line ax+by+c=0 is a straight line which divides the cartesian plane or xy- plane into two parts. Each part is known as half plane.

Types of Half Planes

- **i.** Left and right half planes A. vertical line will divide the plane in two parts, left half plane and right half plane.
- ii. **Lower and upper half planes** A non-vertical line will divide the xy plane into two parts, lower half plane and upper half plane.

iii. **Closed half plane** A half place in xy – plane is called a closed half plane. If the line separating the half plane is also included in the half plane.

Therefore, the graph of a linear inequality involving sign \leq or \geq is always closed half plane.

iv. **Open half plane** A half plane in xy – plane called an open half plane, if the line separating the half plane is not included in the half plane.

Therefore, the graph of a linear inequality involving sign < or > is always an open half plane.

Solution of a Linear Inequality in Two Variables by Graphical Method

Suppose, given linear inequality is $ax+by \le c$, or $ax+by \ge c$ or ax+by < c or ax+by > c then for finding its solution by graphical method, we use the following steps:

- i. Consider the equation ax + by = c in place is given inequality, which represents a straight line in XY-plane.
- ii. Identify the type of line.
- iii. Obtain the shaded region by substituting angle point {preferable (0,0) or (1, 0)} which does not lie on the line in the equation.
- iv. If there are multiple lines obtain the common shaded region i.e. feasible region.

Γv	pes	of	lines

Туре	Standard Equation	
1) X axis	Y = 0	
2) Y axis	X = 0	
3) Parallel to X – axis	by +c = 0 eg. : y =3, 2y-3 = 0	
4) Parallel to Y – axist	ax + c = 0, eg : x = 2, 3x + 5 = 0	
5) Passing through origin	ax+by = 0, eg. : 2x+3y=0, x – y =0	
6) Standard line	ax + by + c = 0, eg. : $2x+3y-6 = 0$, $3x+4y + 8 = 0$	

NOTE : -

For Standard line we may use Doble Intercept form : =

 $\frac{x}{A} + \frac{y}{B} = 1$ Where A \rightarrow x – intercept, B \rightarrow y – intercept.

	<u>P1</u> One variable	<u>e (direct)</u>	9.	Find the range of r inequalities 3x – (Scanner)	eal values 2 > 7 an	of x satisfying th nd 4x – 13 > 1	e 5
1.	If a > 0 and b < 0, it folds a) $\frac{1}{2} > \frac{1}{2}$	llows that : (Scanner) b) $\frac{1}{-1} < \frac{1}{-1}$		a) x > 3 c) x < 7	b) : d) :	x > 7 x < 3	
	c) $\frac{a}{a} = \frac{b}{b}$	<i>a b</i> d) None of these	10	The solution set of and $2x - 6 > 0$ is (S	f the in eq Scanner)	uations x + 2 >	0
2.	When an Inequation is	multiplied or divide by		a) (-2,∞) c) (-∞,-2)	b) d)	(3, ∞) (- ∞, -3)	
	any negative number, in	equation-direction.	11	• The solution of the	e inequalit	ty 8x + 6 < 12x ·	+
	c) Either (a) or (b) d)) Neither (a) or (b)		a) $(-2, 2)$ c) $(2, \infty)$	b) d)	(0, -2) (-2, ∞)	
3.	- 6X < - 18 implies –	h $Y > 3$	12	The solution of the	inoquality	(5-2x) < x = 5i	ic
	c) $X = 0$	d) X =3	12	(Scanner)	inequality	$\frac{3}{3} \leq \frac{1}{6} = 31$	2
				a) x ≥8	b)	x ≤ 8	
4.	4X > -16 implies –			c) x = 8	d)	None of these	
	a) X greater than equal to	o -4	12	The Linear relation	shin hotw	yaan tuyo yariahla	
	b) X less than -4		13	in an inequality: (S	canner)		5
	c) X greater than equal to $-A$			a) ax + by $\leq c$	b)	ax - by \leq c	
_				c) axy + by \leq c	d)	$ax + bxy \le c$	
5.	If $p - q = -3$ then –		14	. The sum of squ	are of a	any real positiv	e
	a) p < q	p) b > d		quantities and its r	eciprocal i	is never less than c	
	c) $p = q$	a) p = 0		a) 1 c) 3	, (а У (р	2 4	
6	X < -3 implies -				ч)		
0.	a) -2X greater than 6	b) 2X greater than -6			<u>P2</u>		
	c) Both (a) or (b)	d) Neither (a) nor (b)		<u>Graps</u>	<u>s (direct)</u>		
	c) _ c (u) c: (c)			Sect	<u>tion – B</u>		
7.	What is the smallest in	nteger value of x that					
	satisfies the inequality 4 -	– 3x < 11?	1.	The inequalities $x \ge 1$	0, y≥ 0 inc	dicates –	
	a) -3	b) -2		a) First quadrant	b) Seco	nd quadrant	
	c) -1	d) 0		c) Third quadrant	d) Four	th quadrant	
8.	In the inequality $4x + 3$	3 < 2x + 5, all of the	2 .	The inequalities x < (0, y > 0 rej	presents –	
	following may be a value	e of 'x' except –		a) First quadrant	b) Seco	nd quadrant	
	a) 0	b) 1		c) Third quadrant	d) Four	th quadrant	
	c) -1	d) -2	_	T I - 1 P .	0		
			3.	The inequalities $x_1 \ge \frac{1}{2}$	$0, x_2 \ge 0,$	are represented	
				by one of the graphs	s shown be	elow:	

- a) $3x + 5y \le 15$, $5x + 2y \ge 10$, $x, y \ge 0$ b) $3x + 5y \le 15$, $5x + 2y \le 10$, $x, y \ge 0$ c) $3x + 5y \ge 15$, $5x + 2y \ge 10$, $x, y \ge 0$
- d) None of these.

The common region (shaded part) shown in the diagram refers to the inequalities: (Scanner)

a)	5x + 3y ≤ 30	b)	5x + 3y ≥ 30
	x + y ≤9		x + y ≤9
	$y \leq \frac{1}{2}x$		$y \ge x/3$
	y ≤x/2		$y \le x/2$
	$x \ge 0, y \ge 0$		$x \ge 0, y \ge 0.$

c) $5x + 3y \ge 30$ d) 5x + 3y > 30 $x + y \ge 9$ x + y < 9 $y \leq x/3$ y ≥9 $y \ge x/2$ y ≤x/2 $x \ge 0, y \ge 0.$ $x \ge 0, y \ge 0.$

13. The common region represented by the following in equalities $L_1 = X_1 + X_2 < 4$; $L_2 = 2X_1$

14. The graph of linear inequalities $7x + 9y \le 10^{-1}$ 63, $x + y \ge 1$, $0 \le x \le 6$ and $0 \le y \le 5$

15. On solving the inequalities $6x + y \ge 18$, x + 4y \geq 12, 2x + y \geq 10, we get the following situation:

BUSINESS MATHEMATICS

a) (0, 18), (12, 0), (4, 2) & (2, 6) b) (3, 0), (0, 3), (4, 2) & (7, 6) c) (5, 0), (0, 10), (4, 2) & (7, 6) d) (0, 18), (12, 0), (4, 2), (0, 0) and (7, 6) **16.** On Solving the Inequalities $5x + y \le 100$, x + y \leq 60, x \geq 0, y \geq 0, we get the following solution: (Scanner) a) (0, 0), (20, 0), (10, 50) & (0, 60) b) (0, 0), (60, 0), (10, 50) & (0, 60) c) (0, 0), (20, 0), (0, 100) & (10, 50) d) None of these 17. On solving the inequalities $2x + 5y \le 20, 3x + 2y \le 12, x \ge 0, y \ge 0$, we get the following situation (0,0),(0,4),(4,0) and (20/11,36/11)a) (0,0),(10,0),(0,6) and (20/11,36/11)b) (0,0),(0,4),(4,0) and (2,3)c) (0,0),(10,0),(0,6) and (2,3)d) **18.** The common region in the graph of linear inequalities $2x + 2y \ge 18, x + y \ge 12$ and $3x + 2y \le 36$ a) Unbounded b) infeasible c) feasible and bounded d) feasible and unbounded **19.** Solution space of the inequalities $2x + y \le 10$ and $x - y \le 5$: i) includes the origin. ii) includes the point (4, 3)which one is correct? (Scanner) a) Only (i) b) Only (ii) c) Both (i) and (ii) d) None of the above. **P3** Word problems Section - A 1. An employer recruits experienced (x) and fresh workmen (y) for his under the condition that he cannot employ more than 11 people. X and y can related by the inequality. (Scanner) a) $x + y \neq 11$ b) $x + y \le 11, x \ge 0, y \ge 0$

3.

- c) $x + y \ge 11, x \ge 0, y \ge 0$
 - d) None of these

 $y \leq 9 \ x \geq 0, y \geq 0$

2. An employer recruits experienced (x) and fresh workmen (y) for his firm under the condition that he cannot employ more than 9 people. x and y can be related by the inequality

a) $x + y \neq 9$	b) $x + y \le 9 \ x \ge 0, y \ge 0$
c) $x + y \ge 9$ $x \ge 0, y \ge 0$	d) None of these

On the average an experienced person does 7 units of work while a fresh one work 5 units of work daily but the employer has to maintain an

output of at least 35 units of work per day. The

situation can be expressed as: (Scanner)

a)	7x + 5y < 35	b)	7x + 5y ≤ 35
c)	7x + 5v > 35	d)	7x + 5v > 35

- On an average, experienced person does 5 4. units of work while a fresh person does 3 units of work daily but the employer has to maintain the output of at least 30 units of work per day. The situation can be expressed as. (Scanner) a) $5x + 3y \le 30$ $5x + 3y \ge 30$ b) c) 5x + 3y > 30d) 5x + 3y = 30
- The rules and regulations demand that the 5. employer should employ not more than 5 experienced hands to 1 fresh one and this fact is represented by: (Taking experienced person as x and fresh person as y) (Scanner)

a) y	$y \ge \frac{x}{5}$	b)	5y≤x
c) !	5y > x	d)	None

The union forbids employer to employ less 6. than two experienced person (x) to each fresh person (y). This situation can be expressed as: (Scanner)

a) x ≤ y/2	b) $y \le x/2$
c) y ≥ x/2	d) None of these

7. XYZ Company has a policy for its recruitment as : it should not recruit more than eight men (x) to three women (y). How can this fact be expressed in inequality?

a) $3y \ge 8x$	b) $3y \le x/8$
c) $8y \geq 3x$	d) $8y \le 3x$

Section – B

1. A firm makes two types of products: Type A and Type B. the profit on product A is Nu. 20 each and that on product B is Nu. 30 each. Both types are processed on three machines M1, M2 and M3. The time required in hours by each product and total time available in hours per week on each machine are follows:

Machine	Product	Product	Available
	А	В	Time
M1	3	3	36
M2	5	2	50
M3	2	6	60

The constraints can be formulated taking $x_1 =$ number of units A and x_2 = number of unit of B as

a)	$x_1 + x_2 \le 12$ $5x_1 + 2x_2 \le 50$ $2x_1 + 6x_2 \le 60$	b)	$3x_{1} + 3x_{2} \ge 36$ $5x_{1} + 2x_{2} \le 50$ $2x_{1} + 6x_{2} \ge 60$ $x_{1} \ge 0, x_{2} \ge 0$
c)	$3x_1 + 3x_2 \le 36$ $5x_1 + 2x_2 \le 50$ $2x_1 + 6x_2 \le 60$ $x_1 \ge 0, x_2 \ge 0$	d)	None of these

2. A dietitian wishes to mix together two kinds of food so that the vitamin content of the mixture is at least 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C and 12 units of vitamin D. The vitamin content per Kg. of each food is shown below.

	А	В	С	D
Food I	2	1	1	2
Food II	1	1	2	3

Assuming x units of food I is to be mixed with y units of food II the situation can be expressed as

	$2x + y \le 9$		2x + y > 30
	$x + y \le 7$		$x + y \le 50$ $x + y \le 7$
a)	$x + 2y \le 10$	b)	$x + 2y \ge 10$
	$2x + 3y \le 12$		$x + 3y \ge 12$
	x > 0, y > 0		

	2u + u > 0		$2x + y \ge 9$
	$2x + y \ge 9$		$x + y \ge 7$
c)	$x + y \ge 7$	d)	$x + 2y \ge 10$
	$x + y \le 10$		$2x + 3y \ge 12$
	$x + 3y \ge 12$	$+3y \ge 12$	$x \ge 0, y \ge 0$

3. A dietician wishes to mix together two kinds of food so that the vitamins content of the mixture is atleast 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C, 12 units of vitamin D. The vitamin content per kg. of each food is shown in table. Assuming 'x' units of food I is to be mixed with 'y' units of food II the situation can be expressed as: **(Scanner)**

_						
		А	В	С	D	
	Food I	2	1	1	2	
	Food II	1	1	2	3	
а) 2x + y ≤	<u>9</u>		b)	2x + y ≥3	0
	x + y ≤ 1	7			x + y ≤7	
	x + 2y ≤	10		x +	2y ≥10	
	2x + 3y	≤ 12		2x +	- 3y ≥12	
	x > 0, y	> 0		x >	0, y > 0	
С) 2x + y ≥	: 9		d)	2x + y ≥9	
	x + y ≥7			x +	y ≥7	
	x + 2y ≤	10		х +	2y ≥10	
	x + 3y ≤	: 12		2x +	- 3y ≥ 12	
	x ≥ 0, y	> 0		x ≥(0, y ≥ 0	

- A car manufacturing company manufactures 4. cars of two types A and B. Model A requires 150 man-hours for assembling, 50 man hours for painting and 10 man-hours for checking and testing. Model B requires 60 man-hours for assembling, 40 man-hours for painting and 20 man-hours for checking and testing. There are available 30 thousand man-hours for assembling, 13 thousand man-hours for painting and 5 thousand man-hours for checking and testing. Express the above situation using linear inequalities. Let the company manufacture x units of type A model of car and y units of type B model of car. Then, the inequalities are: (Scanner)
 - a) $5x + 2y \ge 1000; 5x + 4y \ge 1300,$ $x + 2y \le 500; x \ge 0, y \ge 0,$
 - b) $5x + 2y \le 1000; 5x + 4y \le 1300,$

- x + 2y \ge 500; x \ge 0, y \ge 0, c) 5x + 2y \le 1000; 5x + 4y \le 1300, x + 2y \le 500; x \ge 0, y \ge 0, d) 5x + 2y = 1000; 5x + 4y \ge 1200
- d) 5x + 2y = 1000; $5x + 4y \ge 1300$, x + 2y = 500; $x \ge 0$, $y \ge 0$,
- 5. A company produces two products A and B, each of which requires processing in two machines. The first machine can be used at most for 60 hours, the second machine can be used at most for 40 hours. The product A requires 2 hours on machine one and one hour on machine two. The product B requires one hour on machine one and two hours on machine two. Express above situation using linear inequalities.
 - a) $2x + y \le 60, 2x + y \le 40$
 - b) 2x + y < 60, x + 2y < 40
 - c) $2x + y \ge 60, x + 2y \ge 40$
 - d) $2x + y \le 60, x + 2y \le 40$
- 6. A Fertilizer company produces two types of fertilizers called grade I and grade II. Each of these types is processed through two critical chemical plant units. Plant A has maximum of 120 hours available in a week and plant B has maximum of 180 hours available in a week. Manufacturing one bag of grade I fertilizer requires 6 hours in plant A and 4 hours in plant B. manufacturing one bag of grade II fertilizer requires 3 hours in plant A and 10 hours in plant B. Express this using linear inequalities.
 - a) $6x + 3y \le 120, 4x + 10y < 180$
 - b) $6x + 3y < 120, 4x + 10y \le 180$
 - c) $6x + 3y \le 120, 4x + 10y \ge 180, x \ge 0, y \ge 0$
 - d) $6x + 3y \le 120, 4x + 10y \le 180, x \ge 0, y \ge 0$

<u>Section – C</u>

 A manufacturer produces two products A and B, and has his machines in operation for 24 hours a day. Production of A requires 2 hours of processing in machine M₁, and 6 hours in machine M₂ Production of B requires 6 hours of processing in machine M₁ and 2 hours in

a) 2, 4	b) 0, 6
c) 3, 3	d) 12, 0

2. Two machines (I and II) produce two grades of plywood, grade A and grade B. In one hour of operation machine I produces two units of grade A and one unit of grade B, while machine, II, in one hour of operation produces three units of grade A and four units of grade B. The machines are required to meet a production schedule of at least fourteen units of grade A and twelve units of grade B. Express this using linear inequalities and draw the graph.

b)

c)

4A. TIME VALUE OF MONEY

Synopsis

Simple Interest :-

- S. I = $\frac{P.r.t}{100}$, $i = \frac{r}{100}$
- S. I = Pit.
- $P \rightarrow Principal$ (Starting amount)
- $R \rightarrow Rate of Interest p.a.$ (i.e. per annum)
- $T \rightarrow Time period in years.$
- A = P + S. I. = P (1+ it).
- $A \rightarrow$ Accumulated value

In Simple Interest, interest remains same each year. i.e. Interest is calculated uniformly on the original principal throughout the period.

Compound Interest :-

 $A = P (1 + i)^n$

C.I = A - P

C. I. = P $(1+i)^n - P = P [(1+i)^n - 1]$

- In compound Interest we get interest on interest also.
- In compound Interest the interest of each year is always greater than the interest of previous year.

Effective Rate of Interest :- The stated rate is called as Nominal rate. If the compounding is performed more than once then we get effectively greater than the nominal rate and it is called as effective rate of Interest. If $r \rightarrow$ nominal rate, $i = \frac{r}{100}$.

 $m \rightarrow no.$ of times compounding in a year

 $r_e \rightarrow effective \ rate$

$$r_{e} = \left[\left(1 + \frac{r}{m} \right)^{m} - 1 \right] \times 100$$

• Please note effect rate is not dependent on the Principle, (i.e. investment amount).

	<u>Part - I</u> Simple Interest (Module+Scanner) <u>Set - A</u>	9.	P = 5,000, R = 1 l will be a) Rs.3,375 c) Rs.3,735	5, T = 4 b) d)	¹ / ₂ using I = PRT/100, Rs.3,300 none of these
1.	How much interest will be earned on Rs.2000at 6% simple interest for 2 years?a) Rs.240b) Rs.200c) Rs.220d) None	10.	lf P = 5,000, T = ⁻ a) 5% c) 6%	1, I = Rs b) d)	5.300, R will be 4% none of these
2.	Sania deposited Rs.50,000 in a bank for two years with the interest rate of 5.5% p.a. How much interest would she earn? a) Rs.5,400 b) Rs.5,500 c) Rs.4,400 d) None	11.	P = Rs.10,000, I = number of years a) 1 ½ years c) 3 years How much invest	Rs.2,50 T will b d) ment is	00, R = 12 ½ % SI. The e b) 2 years none of these
3.	S.I on Rs.3,500 for 3 years at 12% per annum is a) Rs.1,200 b) Rs.1,260 c) Rs.2,260 d) None of these		Annual income co interest. a) Rs.6,000 c) Rs.5,580	of Rs.42 b) d)	20 at 7% p.a. Simple (Scanner) Rs.6,420 Rs.5,000
4.	Simple interest on Rs.2,000 for 5 months at 16% p.a. is (Scanner) a) Rs.133.33 b) Rs.133.26 c) Rs.134.00 d) Rs.132.09	13.	What sum of mor an interest in 3 ye simple interest? a) Rs. 3,78,000	ney will ears anc	produce Rs. 42,800 as 3 months at 2.5% p.a. b) Rs. 5,26,769
5.	Sachin deposited Rs.1,00,000 in his bank for 2 years at simple interest rate of 6%. How much would be the final value of deposit? a) Rs.1,10,000 b) Rs.1,11,000 c) Rs.1,15,000 d) Rs.1,12,000	14.	 c) Rs. 4,22,000 In how many years four times at 12% a) 18 years 	; will a s p.a. sim b)	d) Rs. 2,24,000 sum of money become pple interest? (Scanner) 21 years
6.	Sania deposited Rs.50,000 in a bank for two years with the interest rate of 5.5% p.a. What will be the final value of investment ? a) Rs.50,550 b) Rs.55,400 c) Rs.55,500 d) None	15.	 c) 25 years In how many years become four times a) 8 c) 16 	d) s will a s s at 25% b) d)	28 years sum of money % p.a. simple interest? 12 20
7.	Find the rate of interest if the amount owed after 6 months is Rs.1050, borrowed amount being Rs.1000.a) 10%b) 15%c) 20%d) None	16.	If a sum triples in interest, the rate o (<i>Scanner</i>) a) 13.0% c) 13.5%	n 15 ye of intere b) d)	ears at simple rate of est per annum will be 13.3% 18.0%
8.	Rahul invested Rs.70,000 in a bank at the rateof 6.5% p.a. simple interest rate. He receivedRs.85,925 after the end of term. Find out theperiod for which sum was invested by Rahul.a) 4.5 yrsb) 3.5 yrsc) 5.5 yrsd) None	17.	In how much time a certain sum be 10% per annum? a) $1\frac{1}{4}$ years	e would 0.125 b)	the simple interest on times the principal at (Scanner) $1\frac{3}{4}$ years

		.1		- 3		total amount v
		c) $2\frac{1}{4}$ years	d) 1	$2\frac{-}{4}$ years		interest percen
	18.	Find the numbers	of y	ears in which a sum		a) 4%
		doubles itself at the	rate	of 8% per annum.		c) 6%
				(Scanner)	2.	A sum of mone
		. ₁₁ 1	LA	12 ¹		and Rs.7,400 in
		a) $11 - 2$	b)	$\frac{12}{2}$		of interest are
		1		1		a) Rs.3,800, 31
		c) $9{2}$	d)	$\frac{13}{2}$		c) Rs.3,500, 15
		2		2	2	M/hat aver af m
	19.	The sum required to) earr	n a monthly interest of	3.	what sum of it
		Rs.1,200 at 18% per	anni	um SI is		simple interest
		a) Rs.50,000	b)	Rs.60,000		a) Pc 3 50 000
		c) Rs.80,000	d)	none of these		a) $Rs.3, 30,000$
		, ,	,			C) NS.5,52,000
	20.	What principal will a	amou	int to Rs.370 in 6 years	4.	If the Simple In
		at 8% p.a. at simple	inter	rest? (Scanner)		less than the sir
		a) Rs.210	b)	Rs.250		same period by
		c) Rs.310	d)	Rs.350		is
						a) 5.67%
	21.	P = Rs.12,000, A =	Rs.1	6,500, T = 2 ½ years.		c) 7.20%
		Rate percent per an	num	simple interest will be		
		a) 15%	b)	12%	5.	If the simple inte
		c) 10%	d)	none of these		less than the sim
						the same period
	22.	In what time wi	ll R	s.85,000 amount to		interest is
		Rs.1,57,675 at 4.5%	p.a.?			a) 4% b)
		a) 19 yrs	b)	22 yrs	6	
		c) 18 yrs	d)	None	6.	A person lends R
	22			and the beat for 7		for 3 years at sin
	23.	Kapil deposited son	ne ar	W n a cimple interact		as total interest,
		V2 years at the rate		% p.a. simple interest.		a) 5% b) 4
		term Compute initi	יכ, ו ט, הם וב	nosit of Kapil		,
		a) $R_{c} = 60,000$	ai ue h)	Rs 70 000	7.	A certain sum o
		a) $R_{3.00,000}$	(U	None		year and 4 mon
		C) N3.33,000	u)	None		amounted to Rs.
	24	The ratio of simple	inter	est earned by certain		
		amount at the same	rate	of interest for 5 years		a) Rs.200
		and that for 0 year is	fute	or interest for 5 years		c) Rs.220
		and that IOI 9 year IS	L) (Э. Г	8	The certain sum
		a) 5 : 9	D) 9	כ: ל 	0.	vrs and Rs 800/
		c) 5 : 4	d) 4	4:5		amount is
						a) Rs.520
		<u>Se</u>	<u>t – B</u>	<u>B</u>		c) Rs.720
						-
ļ	1.	A sum of Rs.46,87	5 wa	as lent out at simple	9.	Rs.8,000 becor

	total amoun	t was R	5.50,000.	Find th	ne rate of
	a) 4%	ent per a	h)	5%	
	a) 470 c) 6%		d	None	
_	A sum of mo	onev amo	ount to R	s.6.200	in 2 vears
•	and Rs.7,400) in 3 yea	ars. The j	orincipa	and rate
	of interest ar	re			
	a) Rs.3,800,	31.57%	b)	Rs.3,00)0, 20%
	c) Rs.3,500,	15%	d)	none o	of these
	What sum or an interest in simple intere	f money a 3 years est?	will proo and 3 m	duce Rs onths a	.28,600 as t 2.5% p.a.
	a) Rs.3,50,00	00	b)	Rs.3,55	5,000
	c) Rs.3,52,00	00	d)	None	
•	If the Simple less than the same period is a) 5.67% c) 7.20%	Interest simple in by Rs.80	on Rs.1, nterest o), then th (Sca b) d)	400 for on Rs.1,8 ne rate (nner) 6.67% 5.00%	3 years is 300 for the of interest
	If the simple i less than the the same peri interest is	nterest c simple in od by Rs	on Rs. 2,0 Iterest of 3. 324, th	000 for 3 n Rs. 3, nen the	3 years is 800 for rate of
	a) 4%	b) 7%	c) 6	% d)	10%
•	A person lend for 3 years at as total intere	ls Rs.6,00 simple ir st, the ra	0 for 4 y nterest, l nte of int	ears and f he get erest is:	d Rs.8,000 :s Rs.2,400 :
	2) 5%	b) 1%	c) 6	(Scanner	r) 7%
	a) 570	D) 4 /0	C) 0	/o u)	1 /0
•	A certain sum year and 4 m amounted to	n of mon onths at Rs.248, t	ey Q wa 4.5% sir hen the	s depos nple int value o	sited for 5 terest and f Q is (Scanner)
	a) Rs.200		b) Rs.2	210	(,
	c) Rs.220		d) Rs.2	240	
	The certain su yrs and Rs.80	ım of mc 00/- in	oney bec 5 yrs th	ame Rs. ien the	.692/- in 2 principle

9. Rs.8,000 becomes Rs.10,000 in two years at simple interest. The amount that will become

interest and at the end of 1 year 8 months the

	Rs.6,875 in 3 years	at th	e same rate of interest		c) 22/7%	d)	6%
	is:		(Scanner)	17	The simula interest of		
	a) Rs.4,850	b)	Rs.5,000	17.	ne simple interest c	on a	sum of money is ninth
	c) Rs.5,500	d)	Rs.5,725		part of principal. If th	ie rat	e percent and time are
					equal then their valu	es ai	re
10.	Rs. 8,000 necp,es R	s. 10	,000 in four years at		a) $\left(3\frac{1}{2}, 3\frac{1}{2}\right)$	b)	$\left(3\frac{2}{2},3\frac{2}{2}\right)$
	simple interest. The	amo	bunt that will become		$\begin{pmatrix} 3 & 3 \end{pmatrix}$		$\begin{pmatrix} 3 & 3 \end{pmatrix}$
	is. 4, 125 III 0 years a		same fale of interest		c) $\left(2^{\frac{1}{2}},3^{\frac{1}{2}}\right)$	d)	None of these
	a) 2500	b)	2900		(3^{-3})	,	
	c) 3300	d)	3000		<u>Se</u>	t –C	<u>.</u>
11	What is the rate of	cimr	la interact if a sum of	1.	P = Rs.8,500, A = F	Rs.10	,200, R = 12 ½ % SI, t
11.	money amounts to	sinip N Rs	2 784 in 4 years and		will be.		_
	Rs.2.688 in 3 years?	/ 13.	(Scanner)		a) 1 yr. 7 mth.	b)	2 yrs.
	a) 1% p.a.	b)	4% p.a.		C) I 1/2 yr.	a)	none of these
	c) 5% p.a.	d)	8% p.a.	2.	Two equal sums of	mor	ney were lent at simple
					interest at 11% p.a	a. foi	$r_3\frac{1}{2}$ years and $4\frac{1}{2}$ years
12.	A certain sum of mo	ney	amounts to Rs.6,300 in		respectively If the	diffe	rence in interests for
	two years and Rs.	7,875	in three years nine		two periods was R	s.412	2.50, then each sum is:
	months at simple	inter	est. Find the rate of				(Scanner)
	interest per annum:	b)	(Scanner)		a) Rs.3,250	b)	Rs.3,500
	c) 15%	d)	10%		c) Rs.3,750	d)	Rs.4,350
	c) 1570	u)	1070	3.	A person borrows	Rs.5,	000 for 2 years at 4%
13.	A sum of money do	uble	s itself in 10 years. The	, 	p.a. simple interest	: He	immediately lends to
	number of years it v	voulo	d treble itself is:		another person 6^{1}	"р.	a. simple interest for 2
	a) 2E vears	b)	(Scanner)			• •	
	a) 25 years	(a b)	None		years. Find his gain	in tr	e transaction per year:
		u)	None		a) Rs 112 50	b)	Rs 125
14.	A sum of money do	uble	s itself in 10 years. The		c) Rs 225	d)	Rs 167 50
	number of years it	wou	uld be eight times of		0) 10.220	са)	
	itself is			4	The rate of simple i	ntere	est on a sum of money
	a) 30yrs	b)	45 yrs		is 6% p.a. for first 3	vea	rs 8% p.a. for the next
	c) 70 yrs	d)	None of these		five years and 10%	na	for the period beyond
15	A sum of money dou	bles	itself in 6 years at		8 years If the sim	p.u. ble ir	terest accrued by the
13.	simple interest. The	num	ber of years it would		sum for a period for	or 10	vears is Rs 1 560. The
	be eight times of itse	lf	,		sum is: (Scanner)		
	a) 18 b) 42		c) 36 d) 48		a) Rs 1 500	b)	Rs 2 000
					c) Rs 3 000	d)	Rs 5 000
16.	The S.I. on a sum of	mon	ey is $\frac{4}{9}$ of the principal	5.	The difference in	sime	ble interest of a sum
	and the no of yea	irs is	Pequal to the rate of		invested of Rs.1,50	0 fo	r 3 years is Rs.18. The
	interest per annum.	Find	the rate of interest per		difference in their ra	ates	İS: (Scanner)
	annum?		(Scanner)		a) 0.4% b) 0.6	5%	c) 0.8% d) 0.10%
	a) 5%	b)	20/3%				

JPA Foundation Maths

- 6. Mr. X invests Rs.90,500 in post office at 7.5% p.a. simple interest. While calculating the rate was wrongly taken as 5.7% p.a. The difference in amounts at maturity is Rs.9,774. Find the period for which the sum was invested: *(scanner)*
 - a) 7 years b) 5.8 years
 - c) 6 years d) 8 years
- 7. A certain sum of money was invested at simple rate of interest for three years. If the same has been invested at a rate that was seven percent higher, the interest amount would have been Rs.882 more. The amount of sum invested is: (Scanner)
 - a) Rs.12,600 b) Rs.6,800 c) Rs.4,200 d) Rs.2,800
- 8. A certain sum ammounts to Rs. 15,748 in 3 years at simple interest rate of r% and the same sum amounts to Rs. 16,510 at (r+2)% p.a. simple interest in the same time. What is the value of r

 a) 6%
 b) 8%
 - c) 10% d) 12%
- A man invests Rs.12,000 at 10% p.a. and another sum of money at 20% p.a. for one year. The total investment earns at 14% p.a. simple interest the total investment is: (Scanner)
 - a) Rs.8,000 b) Rs.20,000
 - c) Rs.14,000 d) Rs.16,000
- 10. In simple interest if the principal is Rs.2,000 and the rate and time are the roots of the equation $x^2 - 11x + 30 = 0$ then simple interest is
 - (Scanner)

a)	Rs.500	b)	Rs.600
c)	Rs.700	d)	Rs.800

11. A person invests certain amount in three different investment plans P, Q and R with the rate of interest 10%, 12% and 15% per annum respectively. If the total interest accrued in 1

year is 3,200 and the amount invested in plan R is 150% of the amount invested in plan P and 240% of the amount invested in plan Q then the amount invested in plan Q is

a) 8000	b) 7000
c) 6000	d) 5,000

1.

<u>Part - II</u> Compound Interest <u>Set - A</u>

- Earning interest on interest is calleda) Extra Interestb) Simple interestc) Inflation Interestd) Compound Interest
- Rs.2,000 is invested at annual rate of interest of 10%. What is the amount after two years if compounding is done annually?
 - a) Rs.2,450. b) Rs.2,340.
 - c) Rs.2,420 d) None
- Rs.2,000 is invested at annual rate of interest of 10%. What is the amount after two years if compounding is done Semi-annually?
 - a) Rs.2,440 b) Rs.2,431
 - c) Rs.2,435 d) None
- 4. Rs.2,000 is invested at annual rate of interest of 10%. What is the amount after two years if compounding is done Quarterly?
 a) Rs.2,436.80 b) Rs.2,340.75
 - c) Rs.2,430.58 d) None
- 5. Rs.2,000 is invested at annual rate of interest of 10%. What is the amount after two years if compounding is done monthly?
 - a) Rs.2,450.58 b) Rs.2,340.55
 - c) Rs.2,440.58 d) None
- 6. Saina deposited Rs.1,00,000 in a nationalized bank for three years. If the rate of interest is 7% p.a., calculate the interest that bank has to pay to Saina after three years if interest is compounded annually.
 - a) Rs.1,20,504.30 b) Rs.22,504.30
 - c) Rs.1,22,505.25 d) Rs.1,21,504.30

7. Saina deposited Rs.1,00,000 in a nationalized 14. bank for three years. If the rate of interest is 7% p.a., calculate the final amount that bank has to pay to Saina after three years if interest is compounded annually.
a) Rs 1 20 504 30 b) Rs 1 22 504 30

a) Rs.1,20,504.30	b) Rs.1,22,504.30
c) Rs.1,22,505.25	d) Rs.1,21,504.30

8. You invest \$800 in an account that pays 6% compound interest annually. How much money do you have after five years? Round your answers to the nearest cent.
a) \$208.00
b) \$1070.59

a)	\$898.09	b)	\$1070.58
c)	\$1710.58	d)	\$975.25

9. Compute the compound interest on Rs.4,000 for 1½ years at 10% per annum compounded half-yearly.
a) Rs.530.45 b) Rs.635.30

a) Rs.530.45	b) Rs.63
c) Rs.630.50	d) None

10. katie invested \$6,500 in a savings account earning 12% interest compounded quarterly. What is the future value of this investment after five years? Round your answer to the nearest cent.

a) \$1,235,322.65b) \$6,895.83c) \$11,739.72d) \$6,901.32

A sum of money compounded annually becomes Rs.1,140 in two years and Rs.1,710 in three years. Find the rate of interest per annum. (Scanner)
a) 30%
b) 40%

c) 50%	d) 60%

12. A sum of money compounded annually ecomes Rs. 1,200 in two years and Rs. 1,500 three years. Find the rate of interest per annum.a) 50%b) 25%

13. A sum amount to Rs.1,331 at a principal of Rs.1,000 at 10% compounded annually. Find the time. *(Scanner)*

a)	3.31 years	b)	4 years
-	2	(ام	2

c) 3 years d) 2 years

14. In what time will Rs.3,90,625 amount to Rs.4,56,976 at 8% per annum, when the interest is compounded semi-annually? [Given : $(1.04)^4 =$ 1.16986] (Scanner) a) 2 years b) 4 years c) 5 years d) 7 years 15. On what sum will the compound interest at 5% per annum for two years compounded annually be Rs.1,640? a) Rs.15,000. b) Rs.14,000 c) Rs.17,000 d) Rs.16,000 16. In what time will Rs.8,000 amount to Rs.8,820 at 10% per annum interest compounded halfyearly? a) 4 yrs b) 2 yrs 5 yrs d) None C) 17. Find the rate percent per annum if Rs.2,00,000 amount to Rs.2,31,525 in 11/2 year interest being compounded half-yearly. a) 16% b) 5% c) 10% d) None 18. If Rahul deposites 20,000 in a bank and it Pays Quarterly compounded interest then the amount after 2 years is 23,433 a) 2% p.a. b) 4% p.a. d) 8% p.a. c) 8.25 p.a. 19. Mr. X borrowed Rs.5,120 at 12 1/2 % p.a C.I. At the end of 3 yrs, the money was repaid along with the interest accrued. The amount of interest paid by him is

- a) Rs. 2,100 b) Rs.2,170 c) Rs. 2,000 d) none of these
- 20. a = Rs.5,200, R = 5% p.a., T = 6 years, P will be a) Rs.2,000 b) Rs.3,880 c) Rs.3,000 d) none of these
- 21. The present value of Rs.10,000 due in 2 years at 5% p.a. compound interest when the interest is paid on yearly basis is Rs.____.
 a) 9,070 b) 9,060
 c) 9,080 d) None

BUICINESS MATHEMATICS

FOUNDATION

- 22. What is the present value of Rs 10,000 to be received in year 10 at an interest rate of 10%? a) RM 4,855.43 b) RM 5,855.43 c) RM 3, 855.43 d) RM 6, 855.43
- 23. Find the present value of Rs. 1,00,000 be required after 5 years if the rate of interest is 9% given that $(1.09)^5 = 1.5386$ a) 78,995.98 b) 64, 994.20 c) 88,992.43 d) 93,902.12
- 24. If the desired future value after 5 years with 18% interest rate is Rs. 1,50,000, then the present value (in Rs.) is (given that $(1.19)^5 = 2.2877$) b) 65,568 a) 63, 712 b) 53,712 d) 41,712
- 25. Mr. X bought an electronic item for Rs.1,000. What would be the future value of the same item after 2 years, if the value is compounded semi annually at 22% per annum? (Scanner) a) Rs.1,488.40 b) Rs.1,518.07 c) Rs.2,008.07 d) Rs.2,200.00
- 26. A certain sum invested at 4% per annum compounded semi-annually amounts to Rs.78,030 at the end of one year. Find the sum. b) Rs.77,000 a) Rs.75,000 c) Rs.80,000 d) None
- 27. How much must you deposit today in a bank account paying interest compounded quarterly if you wish to have \$30,000 at the end of 3 months, if the bank pays 6% annual rate? a) \$28,689.51 b) \$29,556.65
 - c) \$9,851.49 d) \$25,188.58
- 28. Rs.16,000 invested at 10% p.a. compounded semi-annually amounts to Rs.18,522. Find the time period of investment.

a)	5 yrs	b)	3 yrs
c)	8 yrs	d)	1.5 yrs

29. If P = Rs.1,000, R = 5% p.a, n = 4; What is Amount and C.I. is a) Rs.1,215.50, Rs.215.50 b) Rs.1,125, Rs.125 d) none of these c) Rs.2,115, Rs.115

	DL	
30.	Rs.100 will become after compound interest amore a) Rs.250b)c) Rs.265d)	er 20 years at 5% p.a. ount of Rs.205 none of these
31.	If $A = Rs.1,000$, $n = compound interest payprincipal (P) isa) Rs.889 b)c) Rs.895 d)$	2 years, R = 6% p.a. yable half-yearly, then Rs.880
32.	The C.I on Rs.16000 for payable half-yearly is a) Rs.2,222 b) c) Rs.2,500 d)	Rs.2,522 none of these
33.	The C.I on Rs.40000 at 1the interest is payable ofa) Rs.4,000b)c) Rs.4,152.51d)	0% p.a for 1 year when juarterly is Rs.4,100 none of these
34.	The C.I on Rs.4,000 for payable quarterly is a) Rs. 243.60 c) Rs. 245.20	6 months at 12% p.a b) Rs. 240.40 d) none of these
35.	If P = 1,000, n = 4 year will be a) Rs.215.50 c) Rs.220	s., R = 5% p.a. then C.I b) Rs.210 d) none of these
36.	If A = Rs.10,000, n = 18y be a) Rs. 4,000 c) Rs. 4,500	rrs, R = 4% p.a C.I, P will b) Rs.4,900 d) none of these
37.	What is the compound sum of Rs. 12,600 for 1 annum if the interest yearly? (Nearest to a Ru a) 4271 c) 4711	l interest (in Rs.) on a $1^{1}/_{2}$ years at 20% per is compounded half pee) b) 4171 d) 4117
38.	If compound interest or	any sum at the rate of

38 5% for two years is Rs.512.50 then the sum would be: (Scanner) b) Rs.4,000 a) Rs.3,000 c) Rs.5,000 d) Rs.6,000

39. A sum of money is put at 27% compound interest p.a. At which year aggregated amount just exceedes the double of the original sum? *(Scanner)*

a) 6	b) 5
c) 4	d) 3

- 40. On what sum will the compound interest at 5% p.a. for 2 years compounded annually be Rs. 3,280. *(Scanner)* a) Rs. 16,000 b) Rs. 32,000 c) Rs. 48,000 d) Rs. 64,000
- 41. An amount P becomes Rs. 5,100.5 and Rs. 5,203 after second and fourth year respectively, at r% of interest per annum compounded annually. Thus, values of P and r are *(scanner)* a) Rs. 5,000 and 1 b) Rs. 4,000 and 1 c) Rs. 6,000 and 2 d) Rs. 5,500 and 3
- 42. A certain sum invested at 4% per annum compounded semi-annually amounts to Rs. 1,20,000 at the end of one year. Find the sum a)1,10,120 b) 1,15,340 c) 1,12,812 d) 1,13,113
- 43. Find the compound interest if an amount of Rs. 50,000 is deposited in a bank for one year at the rate of 8% per annum compounded semi annually
 a) Rs. 3080 b) Rs. 4080
 - c) Rs. 5456 d) Rs. 7856

<u>Set –B</u>

- 1. The equivalent annual rate of interest due to compounding is
 - (a) Effective rate of interest
 - (b) Simple interest
 - (c) Compound interest
 - (d) All of the above
- 2. The effective rate of interest does not depend upon (Scanner)

- a) Amount of Principal
- b) Amount of Interest
- c) Number of Conversion Periods
- d) None of these
- 3. Effective interest rate is not related to the amount of principal. This statement is
 a) True
 b) False
 c) Parthy true
 d) Parthy follows
 - c) Partly true d) Partly false
- 4. Lisa wants to know what the value of her RM 1,000 will be if she invests it for 3 years at a given rate. What is Lisa trying to find?a) Present value
 - a) Present value
 - b) Future value
 - c) Effective annual rate (EAR)
 - d) Discount rate
- 5. The present value of a future amout will be higher with a higher interest rate.a) Trueb) False
- 6. What is the definition of present value?a) The future value of a current sum of moneyb) The interest paid on a current sum of moneyc) The current value of a future sum of moneyd) The interest paid on a future sum of money
- 7. If u have offer from bank which give you choose between interest @ 12% p.a. compounded quaterly and 10% p.a. compounded annually for your deposits the you will select

 a) 10% p.a. compounded annually
 b) 12% p.a. compounded annually
 c) 12% p.a. compounded quaterly
 d) None of these
- 8. If we assume positive interest rate, present value is always _____ the future value
 a) Higher than b) Lower than
 c) the same as
- 9. The effective annual rate of interest corresponding to nominal rate 6% p.a. payable half yearly is *(scanner)*a) 6.06%
 b) 6.07%
 c) 6.08%
 d) 6.09%

10	Find the offective r	ate of interact at 10% no	10	W/bicb		tha falla	wing is	bottor
10.	Find the ellective r	ate of interest at 10% p.a.	10.	vvnicn	among			Deller
	when interest is pay	able quarterly. <i>(Scanner)</i>		investm	ent? [(Give	n: 1.0075)'	- = 1.0938]	
	a) 10.38%	b) 5%		(i) 9% pe	er annum co	ompounde	d monthly	
	c) 5.04%	d) 4%		(ii) 9.25%	6 per year si	imple inter	est	
				a) (i)		b) (ii)		
11.	Find the effective ra	ate of interest on Rs.10.000		c) Both (i) and (ii)	d) Non	e of these	
	on which interest is r	pavable half yearly at 5% n a		, (, (,	,		
		(Scanner)	10	\//hat	annual rat	a of inter	rest compo	unded
	a) 5.06%	b) 4%	15.	annual	annuar rat Ilv doubles	an invest	ment in 7	vears?
	c) 0.4%	d) 3%		c.	$\frac{1}{1}$			years:
	c) 0.470	u) 570		Given	that $2^7 = 1$.	104090	0	
12	The offective rate of	of interact corresponding a		a) 10.5	1	b) 10.40	8	
12.	nominal rate of 7%	n a convertible quarterly is		C) 10.4	I	a) Non	e	
	a) 7%	b) 7 5%	20	In how		مرينا م مريس	ofmonou	daubla
	a) 770 c) 5%	d) 7.18%	20.	at 9% p	many years	will a sum	or money	double
	C) 570	u) 7.10%			.a. compour		.: 	
13	The effective rate of	interest corresponding to a		a) 9 ye	ars	d) 10 y		
13.	nominal rate 3% n a	navable half yearly is		c) o ye	ais	u) 12.5	years	
	a) 3 2% n a	b) 3 25% p a	21	The ti	me in whic	h a sum	of money	will be
	c) 3.0225% p.a	d) none of these	21.	double	at 5% n a (of money	
	-, p			a) 10 v	ears	h) 12 v	ears	
14.	Find the effective ra	ate of interest if an amount		c) 14 2	vears	d) none	e of these	
	of Rs.20,000 is depo	sited in a bank for one year		c) i	Jeans	a) non		
	at the rate of 8% pe	r annum compounded semi	22.	In how	many years	s will a sum	n of money	double
	annually.			at 5%	p.a. compoi	und interes	st?	
	a) 8.16%	b) 8.18%		a) 15 y	ears 3 mon	ths		
	c) 8.20%	d) None		b) 14 y	ears 2 mon	ths		
				c) 14 y	ears 3 mon ⁻	ths		
15.	Rs.5,000 is invested	in a Term Deposit Scheme		d) 15 y	ears 2 mon	ths		
	that fetches int	erest 6% per annum						
	compounded quarte	erly. What is effective rate of	23.	The ti	me by whi	ch a sum	of money	would
	interest?			treble	it self at 8%	p.a C.I is		
	a) 6.101%	b) 6.115%		a) 14.2	8 years	b) 14 y	ears	
	c) 6.157%	d) 6.136%		c) 12 y	ears	d) none	e of these	
16.	Nominal rate of inte	rest is 9.9% p.a. If interest is	24.	In how	i many year	s a sum of	f money tre	bles at
	Compounded mor	nthly, What will be the		5% p.a	a. compour	nd interest	payable o	n half-
	effective rate of inte	rest (Scanner)		yearly	basis?			
	a) 10.36%	b) 9.36%		a) 18 y	ears 7 mon	ths		
	c) 11.36%	d) 9.9%		b) 18 y	ears 6 mon	ths		
47	TI ((.:	() () () () () () () () () ()		c) 18 y	ears 8 mon	ths		
17.	The effective rate of	return for 24% per annum		d) 22 y	ears 3 mon	ths		
	convertible monthly	is given as (Scanner)						
	a) 24%	U) 20.02% d) 24.24%	25.	You are	ottered an	investmen	t opportun	ity with
	C) 21.42%	u) 24.24%		the "g	uarantee"	that your	investme	nt will
				double	in 5 years.			

FO	JNDATION	
	Assuming annual compounding, what annual rate of return would this investment provide? a) 0% b) 100% c) 14.87% d) 18.74%	(1)
26.	The population of a town increases every year by 2% of the population at the beginning of that year. The number of years by which the total increase of population be 40% is a) 7 years b) 10 years c) 17 years (app) d) none of these	3
27.	The annual birth and death rates per 1,000 are 39.4 and 19.4 respectively. The number of years in which the population will be doubled assuming there is no immigration or emigration a) 35 years. b) 30 years. c) 25 years b) none of these	
28.	The useful life of a machine is estimated to be 10 years and cost Rs.10,000. Rate of depreciation is 10% p.a. The scrap value at the end of its life is a) Rs.3,486. b) Rs.4,383 c) Rs.3,400 d) none of these	3
29.	The value of scooter is Rs.10,000 find its value after 7 years if rate of depreciation is 10% p.a. (<i>Scanner</i>) a) Rs.4,782.96 b) Rs.4,278.69 c) Rs.42,079 d) Rs.42,000	
30.	Scrap value of a machine valued at Rs.10,00,000, after 10 years within depreciation at 10% p.a.: (scanner) a) Rs.3,48,678.44 b) Rs.3,84,679.45 c) Rs.4,00,000 d) Rs.3,00,000	3
31.	The value of furniture depreciates by 10% a year, it the present value of the furniture in an office is Rs.21,870, calculate the value of furniture 3 years ago <i>(Scanner)</i>	3

a) Rs.30,000 b) Rs.35,000 c) Rs.40,000 d) Rs.50,000

- 32. A machine is depreciated at the rate of 20% on reducing balance. The original cost of the machine was Rs.1,00,000 and its ultimate scrap value was Rs.30,000. The effective life of the machine is a) 4.5 years (appx.) b) 5.4 years (appx.) c) 5 years (appx.) d) none of these
- 33. A machine worth Rs.4,90,740 is depreciated at 15% on its opening value each year. When its value would reduce to Rs.2,00,000? a) 4 years 6 months (approximately) b) 4 years 2 months (approximately) c) 5 years 1 months (approximately) d) 5 years 7 months (approximately)

Anshul's father wishes to have Rs.75,000 in a 34. bank account when his first college expenses begin. How much amount his father should deposit now at 6.5% compounded annually if Anshul is to start college in 8 years hence from now? (Scanner) a) Rs.45,360 b) Rs.46,360 c) Rs.55,360 d) Rs.48,360

The cost of Machinery is Rs.1,25,000/-If its 35. useful life is estimated to be 20 years and the rate of depreciation of its cost is 10% p.a., then the scrap value of the Machinery is

	(Scanner)
a) Rs.15,187	b) Rs.15,487
c) Rs.15,387	c) Rs.15,287

36. The cost of machinery is Rs. 2,00,000 /- if its useful life is estimated to be 7 years and the rate of depreciation of its cost is 8% p.a., then the scrap value of the machinery is

a) 1,11,569	b) 1,20,169
c) 1,19,169	d) 3,42,765

- 37. At what % rate of compound interest (C.I) will a sum of money become 16 times in four years, if interest is being calculated compounding annually: (Scanner) a) r = 100%b) r = 10%c) r = 200% d) r = 20%
- 38. A sum of money invested of compound interest doubles itself in four years. It becomes

	32 times of itself at the interest in (sca) a) 12 years c) 20 years	ne same rate of compound nner) b) 16 years d) 24 years	
39.	How long will Rs.1 Rs.14,000 at 5% p.a. [Given : (1.0125) ^{12.4} = a) 3 years	2,000 take to amount to converted quarterly? = 1.1666] (Scanner) b) 3.1 years	
	c) 13.5 years	d) 12.4 years.	
40.	The ratio of princ interest value for t annually)is 216 : 127	ipal and the compound hree years (compounded . The rate of interest is	
	a) 0.1567	b) 0.1777	
	c) 0.1666	d) 0.1588	
41.	Rs. 1000 is lent at a annum compounded the gain in rupe annually. a) 0.56 c) 0.76	nominal rate of 4.5% per d quarterly. What would be ees when compounded <i>(Scanner)</i> b) 0.45 d) 0.85	
	Set		
	<u>Set</u>	<u></u>	
1.	The compound inter Rs.10,000 the rate fo being 6% and for	rest on half-yearly rests on r the first and second years the third year 9% p.a. is	
	Rs	h) 2 207	
	c) 2,285	d) None	
2.	A sum was invested the rate of interest f is 6% and 3 rd year is the sum if the amou	for 3 years as per C.I. and or first year is 9%, 2 nd year 3 % p.a. respectively. Find nt in three years is Rs.550? (Scanner)	
	a) Rs. 250	b) Rs.300	
	c) Rs. 462.16	d) Rs.350	
3.	What will be the pop present population i	oulation after 3 years when s Rs.25,000 and population	

increases at the rate of 3% in I year, at 4% in II				
year and at 5% in III	year?	(Scanner)		
a) Rs.28,119	b) Rs.29,118			
c) Rs.27,000	d) Rs.30,000			

A person deposited Rs.5,000 in a bank. The deposit was left to accumulate at 6% compounded quarterly for the first five years and at 8% compounded semi-annually for the next eight years. The compound amount at the end of 13 years is: (Scanner)
a) Rs.12621.50 b) Rs.12613.10
c) Rs.13613.10 d) None

5. A sum of Rs. x amounts to Rs. 27,900 in 3 years and to Rs. 41,850 in 6 years at certain rate percent per annum, when the interest is compounded yearly. The value of x is

a) 16,080	b) 18,600
c) 18,060	d) 16,800

6. Johnson left Rs.1,00,000 with the direction that it should be divided in such a way that his minor sons Tom, Dick and Harry aged 9, 12 and 15 years should each receive equally after attaining the age 25 years. The rate of interest being 3.5%, how much should each son receive after getting 25 years old?

a)	50,000	b)	51,994
c)	52,000	d)	None

Part - III Simple Interest + Compound Interest Set – A

- 1. Interest compounded on the principal for the entire period of borrowing is called
 - a) Simple interestb) Compound interestc) Balanced) All of the above
- 2. The principal goes on changing every year ina) Simple interestb) Compound interestc) Effective interestd) All of the above
4.

5.

6.

7.

8.

9.

3.	A bank offers two interest rate but	loan options both have sam	e s	c) 94.50	d) 108	
	charged on simple interest basis and in another interest is charged on compound interest basis.		r 11.	If the simple inte	erest on a sum of mone	y at 12%
			5.	p.a. for two yea	rs is Rs. 3,600. The co	mpound
	Which alternative	is better for the borrower		interest on the	same sum for two yea	rs at the
	a) Simple interest			same rate is:	,	
	b) Compound int	erest		a) 3816	b) 3600	
	c) Cannot sav like	this without actually		c) 3720	d) 4000	
	d) evaluating the	two options in depth		-,	-,	
	.,		12.	A compound in	nterest on a sum for 2	years is
4.	The difference between compound and simple		e	Rs.30 more tha	n the simple interest at	the rate
	interest on a cer	tain sum of money for 2 year	s	of 5% per annu	m then the sum is (sca	nner)
	at 4% p a is Rs 1	The sum (in Rs.) is: (Scanne	.)	a) Rs.11,000	b) Rs.13,000	
	a) 625	b) 630		c) Rs.12,000	d) Rs.15,000	
	c) 640	d) 635				
	c) 040	d) 000	13.	The compound	interest for a certain su	ım @ 5%
5	The difference b	petween the SI and the CI o		p.a. for first yea	ar is Rs.25. The S-I for t	the same
5.	Rs.2,400 for 2 ye	ears at 5% p.a is		money @ 5% p	.a. for 2 years will be.	(Scanner)
	a) Rs.5	b) Rs.10		a) Rs.40	b) Rs.50	
	c) Rs.16	d) Rs.6		c) Rs.60	d) Rs.70	
6.	If the difference	between simple interest an	14 L	A sum of Bs 75	500 amounts to Rs 907	5 at 10%
	compound interest is Rs.11 at the rate of 10%		0	n a linteract b		
	for two years, th	en find the sum. (Scanne)	p.a., interest b	eing compounded ye	any in a
	a) Rs.1,200 b) Rs.1,100			certain time. Th	ie simple interest (in Re	s.) on the
	c) Rs.1,000	d) None of these		same sum for t	he same time and the s	ame rate
_	T I 1100			is		
1.	The difference between the Compound			a) 1000	b) 1250	
	interest and Sim	ple interest at 10% per annur	n	c) 1800	d) 1500	
	for 4 years on R	5.10,000 is Rs (Scannel)		a) 1500	
	a) 650	b) 640	15	If the simple int	erest on a sum of mone	ev at 12%
	c) 641	d) 600		pa for two ve	ars is Rs 3,600. The co	mpound
~				interest on the	same sum for two yea	irs at the
8.	On what sum d	ifference between compound		same rate is:	(Scanner)	
	interest and simple interest for two years at 7%		6	a) Rs 3 816	b) Rs 3 806	
	p.a. interest is R	5. 29.4 (Scanner)		c) Rs 3 861	d) Rs 3 860	
	a) Rs.5,000	b) Rs.5,500		c) 1(3.3,001	u) 1(3.5,000	
	c) Rs.6,000	d) Rs.6,500				
9.	The difference between compound and simple		2		<u>Set –B</u>	
	interest at 5% r	per annum for 4 years on R	5.			
	20 000 is Rs		. 1.	If the differe	nce between the co	mpound
	a) 250	b) 277		interest comp	ounded annually and	l simple
	c) 300	d) 310		interest on a ce	rtain amount at 10% pe	er annum
	, -	,		for two years	is Rs.372, then the	principal
10.	The simple inter	est for a certain sum for 2 year	s	amount is	(Sca	nner)
	at 10% per annum is Rs.90. The corresponding		9	a) Rs.37.200	b) Rs.37.000	
	compound inter	est is (In Rs.): (Scanner)	c) Rs 37 500	d) None of the a	hove
	a) 00			c, 10.07,000		

d) None of the above

b) 95.60

a) 99

2. If an amount is kept at simple interest, it earns an interest of Rs.600 in first two years but when kept at compound interest it earns an interest of Rs.660 for the same period, then the rate of interest and principal amount respectively are: (Scanner)

a) 20%, Rs.1,200	b) 10%, Rs.1,200
c) 20%, Rs.1,500	d) 10%, Rs.1500

- 3. What is the difference (in Rs.) between the simple interest and the compound interest on a sum of Rs. 8,000 for $2\frac{2}{5}$ years at the rate of 10% p.a., when the interest is compounded yearly? (Scanner) a) 135.75 b) 129.50 c) 151.75 d) 147.20
- 4. The difference between the simple and compound interest on a certain sum for 3 year at 5% p.a. is Rs.228.75. The compound interest on the sum for 2 years at 5% p.a. is: *(scanner)* a) Rs.3,175 b) Rs.3,075 c) Rs.3,275 d) Rs.2,975.
- 5. The compound interest on a certain sum for 2 years is ₹ 41 and the simple interest is ₹ 40. Find the interest % p.a.
 a) 4 %
 b) 5 %
 c) 6 %
 d) 8 %
- 6. The difference between C.I. and S.I on a certain sum of money invested for 3 years at 6% p.a. is Rs.110.16. The sum is
 a) Rs.3,000
 b) Rs.3,700
 c) Rs.12,000
 d) Rs.10,000
- 7. Mr. X invests 'P' amount at Simple Interest rate 10% and Mr. Y invests 'Q' amount at Compound Interest rate 5% compounded annually. At the end of two years both get the same amount of interest, then the relation between two amounts P and Q is given by:

(Scanner)

a) $P = \frac{41Q}{80}$	b) $P = \frac{41Q}{40}$
c) $P = \frac{41Q}{100}$	d) $P = \frac{41Q}{200}$

ANNUITY

Synopsis

Theory of Annuity :-

If an equal amount of money is paid or received again and again at fixed interval of time for a defined period, it is called as Annuity.

- Future value (F.V.) or Accumulated value (A) is to be used when the amount is to be received in future. Eg : recurring deposit, Sinking fund.
- Present Value (P) is to be used in case of Loans or advances i.e. when we borrow the amount.

	Annuity regular	Annuity Due
1. Payment is done	End of the period	Beginning of the period
2. Key words	End of year, End of period, at the end.	Starting from now, Beginning from now,
	(By default)	Beginning from Today, As and when
		received.
3. A or F.V.	$\frac{c}{i}\left[(1+i)^n-1\right]$	$\frac{c(1+i)}{i}\left[(1+i)^n-1\right]$
4. P	$\frac{c}{i} \left[1 - (1+i)^{-n}\right]$	$\frac{c \ (1+i)}{i} \ [1-(1+i)^{-n}]$

 $i = \frac{r}{100'}$, $n \rightarrow no.$ of periods. [Check compounding frequency to find i and n].

 $C \rightarrow$ installment amount i.e. annuity amount.

A or F.V. \rightarrow Accumulated value i.e. Future value.

 $P \rightarrow Present value.$

Please Note : -

1. If the amount is paid or receive only once it is "Compound Interest" and if the amount is paid or received again & again it is "Annuity".

Provided everything remains same.

- 2. F.V. of regular annuity < F. V. of annuity due.
- 3. P of regular annuity < P of annuity due.
- 4. If a particular amount is written like (10) it means it is 10 (minus 10).

BUSINESS MATHEMATICS

<u> Part - IV</u>	
Annuity (Regular)	
Set – A	

- 1. <u>Annuities:</u>
 - a) are a stream of equal payments at unequal time intervals
 - b) are a stream of equal payments at equal time intervals
 - c) are a stream of equal payments that continue forever
 - d) None of the above
- 2. A sequence of periodic payments over a number of years is
 - a) Compound interest b) Annuity
 - c) Effective Interest d) Simple interest
- Life Insurance Policy is an example ofa) Compound Interest
 b) Annuity
 c) Effective Interest
 d) Simple interest
- In _____ first payment/receipt takes place at the end of first period
 a) Annuity
 b) Annuity regular
 c) Annuity due
 d) Annuity special
- The tomorrow's value of today's money compounded at a particular rate of interest is called
 - a) Present value of annuity
 - b) Future value of annuity
 - c) Forecast value of annuity
 - d) None of these
- 6. The today's value of tomorrow's money discounted at a particular interest rate is called
 - a) Present value of money
 - b) Future value of annuity
 - c) Forecast value of annuity
 - d) None of these
- 7. A fund created by company to meet predetermined debts or certain liabilities out of their profit at the end of every accounting year is called

a) Necessary fund c) Immediate fund

b) Sinking fund

- d) None of these
- 8. Future value of an ordinary annuity: (Scanner)

a)
$$A(n,i) = A\left[\frac{(1+i)^{n}-1}{i}\right]$$

b) $A(n,i) = A\left[\frac{(1+i)^{n}+1}{i}\right]$
c) $A(n,i) = A\left[\frac{1-(1+i)^{n}}{i}\right]$
d) $A(n,i) = A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$

- 9. The future value of an annuity of Rs.1,500 made annually for five years at interest rate 10% compounded annually is *(Scanner)*a) Rs.9,517.56 b) Rs.9,157.65
 c) Rs.9,715.56 d) Rs.9,175.65
- 10. Find the future value of an annuity of Rs.500 made annually for 7 years at interest rate of 14% compounded annually. Given that (1.14)⁷ = 2.5023.
 a) Rs.5,360.35 b) Rs.5,350.30 c) Rs.5,365.35 d) None
- 11. Rs.200 is invested at the end of each month in an account paying interest 6% per year compounded monthly. What is the future value of this annuity after 10th payment?
 a) Rs.2,040 b) Rs.2,035
 c) Rs.2,045 d) Rs.2,044
- 12. Suppose you deposit Rs. 900 per month into an account that pays 14.8% interest compound monthly. How much money will you get after 9 months?
 a) Bc 8 511

a) Rs. 8,511	b) Rs. 9,000
c) Rs. 9,200	d) Rs. 1,000

13. Find the future value of annuity of Rs. 1,000 made annually for 7 years at interest rate of 14% compounded annually. Given that (1.14)⁷ = 2.5023.

a) 10,730.7	b) 5,365.36
c) 8,756	d0 9,892.34

BUSINESS MATHEMATICS

14. The future value of annuity of Rs. 2,000 for 5 years at 5% compounded annually is given (in nearest Rs.) asa) 21051 b) 21021

.,	,
c) 15624	d) 61254

15. You want to take a world tour. Which costs Rs. 10,00,000 the cost is expected to remain, unchanged in nominal terms. You are willing to save annually Rs. 80,000 to fulfill your desire. How long will you have to wait if your savings earn a return of 14 percent per annum?

a) 7 years	b) 8 years
c) 7.17 years	d) 7.71 years

- 16. The amount of an annuity certain of Rs.150 for 12 years at 3.5% p.a. C.I is
 a) Rs.2,190.28 b) Rs.1,290.28
 c) Rs.2,180.28 d) none of these
- 17. Given annuity of Rs.100 amounts to Rs.3137.12 at 4.5% p.a C.I. The number of years will be
 a) 25 years (appx.)
 b) 20 years (appx.)
 c) 22 years
 d) none of these
- 18. How much amount is required to be invested every year so as to accumulate Rs.300000 at the end of 10 years if interest is compounded annually at 10%?
 a) Rs.17,899.62 b) Rs.18,823.62
 - c) Rs.18,829.61 d) None
- How much amount is required to be invested every year so as to accumulate Rs.3,00,000 at the end of 10 years, if interest is compounded annually at 10%? (Scanner)
 a) Rs.18,823.65 b) Rs.18,828.65

c) Rs.18,832.65 d) Rs.18,882.65

20. How much amount is required to be invested every year as to accumulate Rs.7,96,870 at the end of 10 years, if interest compounded annually at 10% given that A(10, 0.1) = 15.9374? (*Scanner*)
a) Rs 40,000 (b) Rs 4,50,000

a)	RS.40,000	D)	KS.4,50,000
c)	Rs.48,000	d)	Rs.50,000

21. Let a person invest a fixed sum at the end of each month in an account paying interest 12% per year compounded monthly. If the future value of this annuity after the 12th payment is Rs.55,000 then the amount invested every month is? *(scanner)*a) Rs.4.837 b) Rs.4.637

a)	Rs.4,837	b)	Rs.4,637
c)	Rs.4,337	d)	Rs.3,337

22. Mr. X wants to accumulate Rs. 50,00,000 at the end of 10 years. Then how much amount is required to be invested every year. If interest is compounded annually at 10%? (Given that P (10,0.10) = 15.9374298)/
a) Rs. 3,13,726.87 b) Rs. 4, 13,726.87

a) N3. 5, 15, 120.01	b) 1(3. 4 , 15,720.07
c) Rs. 3,53.726.87	d) Rs. 4,53,726.87

- 23. Dr. Nileshbhai's daughter Priya is 2 years old. He wants to get Rs. 10,00,000 when his daughter is 22 years old. He opens recurring account with post office at 10% rate of compound interest. What amount should be deposit at the end of every month? [(Given : 1.0083)²⁴⁰ = 6.194]
 a) 1604.42
 b) 1064.42
 c) 1460.42
 d) None of these
- 24. Parents want to save \$100,000 for their child's education. They plan to make fifteen equal year end payments and expect to earn an 8% annual interest rate. How much will they have to invest annually to accumulate the \$100,000?

a)	\$2,542	b)	\$3,683
c)	\$6,139	d)	\$7,285

- 25. If the amount of an annuity after 25 years at 5% p.a. C.I is Rs.50,000 the annuity will be
 a) Rs. 1,405.62
 b) Rs. 1,047.62
 c) Rs. 1,043.62
 d) none of these
- 26. A sinking fund is created for redeeming debentures worth Rs.5 lakhs at the end of 25 years. How much provision needs to be made out of profits each year provided sinking fund investments can earn interest at 4% p.a.?
 a) 12,006 b) 12,040

FOUNDATION	٧
------------	---

	c) 12,039	d) 12,035	34.	If you borrowed \$	120,000 to buy a house and
27	A sighting fringed is a	unated for underwine		financed it at 10%	6 annual interest for thirty
27.	A sinking tund is c	reated for redeeming		years, what is your	annual mortgage payment
	debentures worth Rs.5	a lacs at the end of 25		assuming that yo	ou make equal year end
	years. How much prov	ision needs to be made		payment?	
	out of profits each yea	r provided sinking fund		a) \$4,000	b) \$3,500
	investments can earn i	nterest at 4% p.a.?		c) \$5,336	d) \$12,729
		(Scanner)			
	a) Rs.12,006 b)	Rs.12,040	35.	Rakesh borrows Rs.	4 lakhs Housing Loan at 4%
	c) Rs.12.039 d`	Rs.12.035		repayable in 8 annu	al installments commencing
	-, ,,	· · · · · · · · · · · · · · · · · · ·		at the end of the fi	rst year. How much annual
20	A = Bc = 1.200 m = 1.2 vol	arc I = 0.09 V = 2		payment is necessa	ry.
20.	A = KS.1,200 H = 12 yes	ars r = 0.00, v =		a) 59411	b) 58411
	Using the formula V =	$\frac{A}{1} \left 1 - \frac{1}{(1-1)^n} \right $ value of v		c) 57411	d) 56411
	-	$1 \begin{bmatrix} (1+1)^n \end{bmatrix}$			
	will be			<u>S</u>	<u>et –B</u>
	a) Rs.3,039	b) Rs. 3,990			
	c) Rs.9930	d) none of these	1.	Paul borrows Rs.2	0,000 on condition to repay
20	T I ()			it with compound	Interest at 5% p.a. in annual
29.	The present value of a	n annuity of Rs.3000 for		instalment of Rs.2	,000 each. Find the number
	15 years at 4.5% p.a. Cl			of years in which	the debt would be paid off.
	a) Rs.23,809.41 b)	Ks.32,218.63			(Scanner)
	C) KS.32,908.41 0,	none of these		a) 10 years	b) 12 years
20	The present value of	appuits of RoE 000 por		c) 14 years	u) 15 years
50.	appum for 12 years at	1% p.a.C.L. appually is	2	S borrows Rs 5 00	000 to huy a house of he
	all 11111110112 years at 2	+ 70 p.a C.1. annually is	۷.	navs equal instal	nents for 20 years and 10%
	a) $R_{3.40,000}$ b)	none of these		interest on outsta	nding balance what will be
	c) 1(3.15,000	none of these		the equal annual i	nstalment?
31	The present value of an	annuity of Rs 80 a years		a) Rs.58,729.84	b) Rs.55.729.84
0	for 20 years at 5% p.a i	s		c) Rs.56,729.84	d) Rs.57,729.84
	a) Rs.997 (appx.)	b) Rs.900		, ,	, .
	c) Rs.1,000	d) none of these	3.	A loan of Rs.10,00	00 is to be paid back in 30
	, ,	,		equal installment	ts. The amount of each
33.	Rs.5,000 is paid every y	ear for ten years to pay		installment to cove	er the principal and at 4% p.a.
	off a loan. What is the	loan amount if interest		CI is	
	rate be 14% per	annum compounded		a) Rs.587.3	b) Rs.597.3
	annually?			c) Rs.578.3	d) none of these
	a) Rs. 26,080	b) Rs. 27,080			
	c) Rs. 25,080	d) None	4.	A company borrow	ws Rs.10,000 on condition to
				repay it with com	pound interest at 5% p.a by
34.	Rs. 2,500 is paid every	year for 10 years to pay		annual installmer	nts of Rs.1000 each. The
	off a loan. What is the	loan amount if interest		number of years b	y which the debt will be clear
	rate by 14% per	annum compounded		is	
	annually?			a) 14.2 years	b) 10 years
	a) 13,040.27	b) 15,847.90		c) 12 years	d) none of these
	c) 14,674.21	d) 16,345.11			

5.	Vipul purchases a car for Rs.5,50,000. He gets a loan of Rs.5,00,000 at 15% p.a. from a Bank and balance Rs.50,000 he pays at the time of purchase. He has to pay the whole amount of	interest on unpaid amount be 14% compounded annually? a) Rs.3,432.05 b) Rs.3,433.05 c) Rs.3,440.05 d) None
	loan in 12 equal monthly instalments with interest starting from the end of the first month. The money he has to pay at the end of every month is: [Given(1.0125) ¹² = 1.16075452] <i>(Scanner)</i> a) Rs.45,130.43 b) Rs.45,230.43 c) Rs.45.330.43 d) None of these	3. A man purchased a house valued at Rs.3,00,000. He paid Rs.2,00,000 at the time of purchase and agreed to pay the balance with interest at 12% per annum compounded half yearly in 20 equal half yearly installments. If the first installment is paid after six months from the date of purchase then the amount of each installment is
6.	 Alibaba borrows Rs.6 lakhs Housing Loan at 6% repayable in 20 annual installments commencing at the end of the first year. How much annual payment is necessary. a) 52,420 b) 52,410 c) 52,310 d) 52,320 	 a) Rs. 8,719 b) Rs. 8,769 c) Rs. 8,893 d) none of these 4. The cost of machine today is Rs. 10,00,000 its life is 5 years. If the new machine after 5 years will cost 20% more then find what amout must be set aside from yearly profit to accumulate the
7.	A person bought a house paying Rs.20,000 cash down and Rs.4,000 at the end of each year for 25 yrs. At 5% p.a. C.I. The cash down price is a) Rs. 75,872 b) Rs.76,000 c) Rs. 76,376 d) none of these	 fund @ 4% p.a. if the old machine will realize scrap value of Rs. 1,00,000 a) 2,20,340 b) 2,21,553 c) 1,84,627 d) 2,03,090 5. Appu retires at 60 years receiving a pension of 14,400 a year paid in half-yearly installments for
8.	A loan of Rs. 1,02,000 is to be paid back in 2 installments. If the rate interest is 4% p.a. compounded annually, then the total interest charged is <i>(Scanner)</i> a) 3,80 b) 4,160 c) 6,160 d) 54,080	rest of his life after reckoning his life expectation to be 13 years and that interest at 4% p.a. is payable half-yearly. What single sum is equivalent to his pension? a) 1,45,000 b) 1,44,900 c) 1,44,800 d) 1,44,700
	<u>Set –C</u>	<u>Part - V</u> Annuity (Due)
1.	A person invests Rs.500 at the end of each year with a bank which pays interest at 10% p. a C.I. annually. The amount standing to is credit one year after he has made his yearly investment for the 12 th time is. a) Rs.11,761 b) Rs.10,692 c) Rs.12,261 d) none of these	 Set – A 1. A five year annuity due has periodic cash flow of Rs. 100 each year, If the interest rate is 8% the future value of this annuity is given by a) (Rs. 100) x (future value at rate 8% for 5 years) x (0.08) b) (Rs. 100) x (future value at rate 8% for 5 years)
2.	Y bought a TV costing Rs.13,000 by making a down payment of Rs.3000 and agreeing to make equal annual payment for four years. How much would be each payment if the	x (108) c) (Rs. 100) x (future value at rate 8% for 5 years) x (1+.08)

d) (Rs. 100) x (future value at rate 8% for 5 years) x (1/0.08)

- 2 Mr. X Invests Rs.10,000 every year starting from today for next 10 years suppose interest rate is 8% per annum compounded annually. Calculate future value of the annuity: (Scanner) a) Rs.1,56,454.88 b) Rs.1,44,865.625 c) Rs.1,56,554.88 d) None of these
- Suppose your mom decides to gift you 3. Rs.10,000 every year starting from today for the next five years. You deposit this amount in a bank as and when you receive and get 10% per annum interest rate compounded annually. What is the present value of this annuity? a) Rs.41,698.70 b) Rs.42,698.70 c) Rs.41,695.70 d) None
- Suppose your parent decides to open a PPF 4. (Public Provident Found) account in a bank towards your name with Rs.10,000 every year starting from today for next 15 years. When you receive and get 8.5% per annum interest rate compounded annually. What is the present value of this annuity?(Give answer Rs. without any fraction)

(Given P (15,0.085) =	= 8.304236576)	(Scanner)
a) 83,042	b) 1,66,084	1
c) 90,101	d) 8,30,423	3

Raja aged 40 wishes his wife Rani to have Rs.40 5. lakhs at his death. If his expectation of life is another 30 years and he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?

a)	84,448	b)	84,450
c)	81,628	d)	84,077

6. A man purchased a house valued at Rs. 7,00,000. He paid Rs. 4,00,000 at the time of purchase and agreed to pay the balance with interest at 10% per annum compounded half yearly in 5 years. If the first instalmetn is paid today itself then the amount of each installment is

a) 35,924	b) 37.001
c) 34,877	d) 39,342

- 7. When comparing an annuity due with an ordinary annuity with the same payment and duration, the annuity due will always have a _____ present value and will always have a _____ future value. a) higher; higher
 - c) lower, higher

c) Same

b) higher; lower d) lower, lower

Part - VI Other Set – A

- Higher the rate of return, _____ is the future value 1. a) Higher
 - b) Lower
 - d) None of these
- 2 Higher the rate of return, _____ will be present value, (hint: present value + interest = future value) a) Higher b) Lower c) Same d) None of these
- To calculate how much money I have to save 3. today (i.e. onece) to have 1,000,000 in 30 years, I will use the formula for the a) Present value of annuity b) future value of annuity c) present value of a lump sum
 - d) future value of lump sum
- 4. To calculate how much money I have to save every month to have 1,000,000 in 30 years, I will use the formula for the a) Present value of annuity b) future value of annuity
 - c) present value of a lump sum
 - d) future value of lump sum
- 5. To calculate how much money I have will have in 30 years if I save 1,000,000 today, I use the formula for the
 - a) Present value of annuity
 - b) future value of annuity
 - c) present value of a lump sum
 - d) future value of lump sum

X has Rs. 50,000 which he wish to invest for 10 6. years. If you have been asked to find out amount to be received by X at the end of 10th yet, then you have been asked to find.

a) future value of Rs. 50,000 to be invested at present

b) Present value of Rs. 50,000 to be invested in future

c) future value of Rs. 50,0000 to be invested in future

d) present value of Rs. 50,000 to be invest at present

7. X has been appointed as manager of a bank and he will be getting monthly salary of Rs. 100,000. He can easily keep aside 50% of his salary or can use the same to repay a loan, if you have been asked to find the amount of loan which he can get at 12% p.a. of which monthly installment would be Rs. 50,000. In this case you are asked to find

a) future value of amount to be borrowed at present

b) present value of amount to be repaid in future

c) present value of amount to be borrowed in future

d) future value of amount to be borrowed in future

Rahul has sold his agriculture land for Rs. 8. 10,00,000, he decided to keep this money in bank at 15% p.a. and this amount would be withdrawn by Rahul in monthly installments over next 10 years. You have been asked to find how much amount would Rahul get every month? In this example state the true staments

1) Rs. 10,00,000 is the present value

2) Rs. 10,00,000 is the future value

- 3) monthly installment is future value
- 4) monthly installment is present value
- a) only 1 & 2 b) only 1 & 3
- c) only 2 & 4 d) all are true
- I have two alternatives to buy a car 9. (1) I can pay Rs. 15 lacs immediately (2) I can pay Rs. 16 lacs after 1 year. In this case to make a decision I should Bring amount payable after one year in the second alternative

to its _____ and then compare it with the amount payable under first alternative

- a) Present value b) future value c) actual value
 - d) annuity value
- 10. X is making 25 monthly recurring payments and he with to know following two alternative amounts (1) What will be the loan which he can get against those recurring payments which he would be making (2) What will be the amount which he would be getting after 25 years against those recurring payments. In the first case we should find _____ and in the second case we should fine a) Present value; present value b) Present value; Future value c) Future value; Present value d) Future value; Future value
- 11. If country's population grows at 3% p.a. and you have been given its current population and asked to find population 10 years back, then you have to solve this by assuming a) current population as present value and population 10 years back as future value b) current population and population 10 years back both would be treated as present value c) current population as future value and population 10 years back as present value

12. In which of the following situation we can not use formula of annuity. a) an amount is borrowed and the same has to be repaid in 15 installments b) an amount has been invested as single payment and the same is to be withdrawn in 15

installments c) a fixed sum is to be invested every year and the same would be withdrawn at the end of 15 years in one stroke

d) an amount has been borrowed and the same has to be repaid in one stroke at the end of 15 years

13. A machinery has been bought for Rs. 500,000 and it has to be depreciated at 15% p/a/ under diminishing balance method, here we should use formula of _____ with interest rate as _____

- a) Simple interest; 15% p.a.
- b) compouned interest; 15% p.a.
- c) simple interest; 15% p.a.
- d) compound interest; 15% p.a.
- 14. A student is supposed to pay monthly fees of Rs. 5,000 over 24 months. A parent has requested to accept Rs. 100,000 as one time fees which the parent would be paying at the first day of class. If we have to compare two alternatives as to which alternative is profitable to the classes, we must.

a) compare present value of installment by taking market rate of interest with one time fees b) compare future value of installments by taking market rate of interest with one time fees c) compare 1,20,000 (i.e 5,000 \times 24) with Rs. 1,00,000.

d) all the above statements are true

15. A student is supposed to pay monthly fees of Rs. 5,000 over 24 months. A parent has requested to accept Rs. 150,000 as one time fees which the parent would be paying after 24 months are over. If we have to compare two alternatives as to which alternative is profitable to the classes, we must.

a) compare present value of monthly installment with the one time fees

b) compare future value of monthly installments with the one time fees

c) compare 1,20,000 (i.e 5,000 \times 24) with Rs. 1,00,000.

d) all the above statements are true

16. A student is supposed to pay monthly fees of Rs. 5,000 over 24 months. A parent has requested to accept Rs. 110,000 as one time fees which the parent would be paying after 6 months from the day classes beings. If we have to compare two alternatives as to which alternative is profitable to the classes, we must.

a) bring one time fees to its present value and tehn compare it with monthly fees

b) bring monthly fees to its present value and then compare it with one time fees

c) bring fees payable under both alternatives to their present value and then compare

d) all the above statements are true

17. Which of the following statements is true?
a) F. V. of ordinary annuity < F.V. of annuity due
b) F.V. of ordinary annuity > F. V. of annuity due.
c P.V. of ordinary annuity > F.V. of annuity due
d) None of the above

 $\mathbf{\hat{o}}$ $\mathbf{\hat{o}}$ $\mathbf{\hat{o}}$ $\mathbf{\hat{o}}$

4B- APPLICATION OF TIME VALUE OF MONEY

(A) Leasing

- 1. In a leasing question following two alternative are given
 - (1) Buy the asset at a cost of Rs. 5,00,000

(2) Acquire the asset on lease with annual lease payments of Rs. 60,000 payable over 15 years (present value Rs. 512,540

Which alternative is better and to what extent? a) Leasing will save Rs. 12,540

- b) Buying the asset can save Rs. 12,540
- c) Both alternatives are good
- d) None of these
- 2. ABC Ltd. wants to lease out an asset costing Rs.3,60,000 for a five year period. It has fixed a rental of Rs.1,05,000 per annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded annually. Calculate the present value of this leasing.
 a) 3,60,473.40 b) 3,58,473.40

a) 3,60,473.40 b) 3,58,473 c) 3,55,473.40 d) None

- 3. ABC Ltd. wants to lease out an asset costing Rs.3,60,000 for a five year period . It has fixed a rental of Rs.1,05,000 per annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded annually on which money can be invested by the company. Is this agreement favorable to the company?
 - a) Leasing is preferable
 - b) Selling is preferable
 - c) Both are same
 - d) None
- 4. A company is considering proposal of purchasing a machine either by making full payment of Rs.4000 or by leasing it for four years at an annual rate of Rs.1,250. Which course of action is preferable, if the company can borrow money at 14% compounded annually? (Scanner) [Given : (1.14)⁴ = 1.68896]
 - a) Leasing is preferable
 - b) Should be purchased

- c) No difference
- d) None of these
- A company may obtain a machine either by leasing it for 5 years (useful life) at an annual rent of Rs.2,000 or by purchasing the machine for Rs.8,100. If the company can borrow money at 18% per annum, which alternative is preferable? (Scanner)
 - a) Leasing
- b) Purchasing

c) Can't say

- antsay
- d) None of these
- A person wants to lease out a machine costing Rs.5,00,000 for a 10 year period. It has fixed a rental of Rs.51,272 per annum payable annually starting from the end of first year. Suppose rate of interest is 10% per annum compounded annually on which money can be invested. To whom this agreement is favorable? (Scanner) a) Favour of Lessee
 - b) Favour of Lessor
 - c) Not for both
 - d) Can't be determined

(B) Investment Decision

- A machine can be purchased for Rs.50,000. Machine will contribute Rs.12,000 per year for the next five years. Assume borrowing cost is 10% per annum. Determine whether machine should be purchased or not: (scanner)
 - a) Should be purchased
 - b) Should not be purchased
 - c) Can't say about purchase
 - d) None of the above
- A machine with useful life of 8 years costs Rs. 26,000 while another machine with useful life of four year costs Rs. 15,000. The first machine saves labour expenses of Rs. 4,200 annually and the second one saves labour expenses of Rs. 5,000 annually. Determine the preferred course

of action. Assume cost of borrowing as 7% compounded per annum.

- a) Machine 1 must be purchased
- b) Machine 2 must be purchased
- c) Machine 1 & 2 both must be purchased
- d) Both machines should not be purchased
- 3. A machine with useful life of seven years costs Rs.10,000 while another machine with useful life of five years costs Rs.8,000. The first machine saves labour expenses of Rs.1,900 annually and the second one saves labour expenses of Rs.2,200 annually. Determine the preferred course of action. Assume cost of borrowing as 10% compounded per annum.
 - a) Machine 1 to be purchased
 - b) Machine 2 to be purchase
 - c) Both machines should be purchased
 - d) Both machines should not be purchased.

(C) Net Present Value

 In an investment decision following cash flows are expected

 Initial cost of project Rs. 1.5 Lacs
 Recurring cash inflows of Rs. 45,000 over 5 years (Present value Rs. 188,750)

Find NPV

a) 188,750	b) 38,750
c) Nil	d) - 38,750

 Evaluate following investment proposal Year (1) Cash inflow of Rs. 100,000 (Present value of Rs. 83,000) Year (2) Cash inflow of Rs. 50,000 (Present value of Rs. 39,000) Year (3) Cash inflow of Rs. 20,000 (Present value Rs. 11,000)

Find NPV if initial investment required in the project is 130,000

a) -3,000	b) 14,000
c) 3,000	d) 21,750

- 3. For NPV, leasing questions, investment decisions 'i' is _____
 - a) Market rate of interest
 - b) Actual interest rate
 - c) Expected rate of return
 - d) Any of these
- 4. Suppose you have the following cash flow :

Year 0 : (- 1.00), Year 1 : (+0.25), Year 2 : (+0.45), Year 3 : (+0.65) If the discount rate is 10%, then NPV of the cash flow is: a) -0.09 b) 0.09 c) 0.35 d) 1.09

5. If the cost of capital is 10% Find the net present value (NPV) of cash inflows given as (refer table)

	Year	Profit	
	1	10,000	
	2	25,000	
	3	12,000	
a) 38,767.84 b) 38,748.37			
c) 38,462.53 d) 38,74			d) 38,748.37

6. If the cost of capital be 12% per annum, then the net present value (in nearest Rs.) from the given cash flow is given as

given cash now is given as				
Year	0	1	2	3
Operating profit (in	(100)	60	40	50
thousands Rs.)				
a)31048		b) 34	185	
c) 21048		d) 24	187	

- 7. Compute the net present value for a project with a net investment of Rs.1,00,000 and net cash flows year one is Rs.55,000; for year two is Rs.80,000 and for year three is Rs.15,000. Further, the company's cost of capital is 10%?
 a) 27,350
 b) 27,350
 c) 27,385
 d) 27,385
- 8. New proposal for retail store has an upfront investment of Rs.5,00,000 returns after 1, 2, 3, & 4 years are expected to be Rs.2,00,000, Rs.1,50,000, Rs.80,000 & Rs.1,20,000 resp. If the cost of capital is 8%. State whether the proposal should be accepted or not.
 a) Reject the proposal
 - b) Accept the proposal
 - c) Can't say
 - d) insufficient data.
- 9. An asset which cost Rs. 150,000 and which has life of 10 years. This asset can saves labour cost by Rs. 30,000 per annual for whole of its life. Find NPV if discounting rate is 14%
 a) 6,483
 b) 6,210

c) 8,481

d) None

IRR (Internal Rate of Return)

- → IRR is the annual rate of growth that an investment is expected to generate
- → IRR is calculated using the same concept as NPV excpt it sets NPV equal to zero
- Suppose you have the follwing cash flow Year 0 : (- 1.00), Year 1 : (+0.25), Year 2 : (+0.45), Year 3 : (+0.65)
 If the discount rate is 10%, what can you say about the IRR of the cash flow

 a) IRR < 10%
 b) IRR = 8.8%
 c) IRR > 10%
 d) IRR = 35%

(D) Bond Valuation

- A company offering rate of interest lower than the market rate need to issue its debentures at ______ in order to get those debentures subscribed by public a) Premium b) Discount
 - c) at par

- d) any of the above
- 2. a 11% bond of Rs. 1000 having 3 years life payable at par on maturity will generate cash inflows in the form of
 - I) Annual interest Rs. 110

II) Maturity value o	of Rs. 1,000
a) Only I	b) Only II
c) Both I & II	d) Either I or II

An irredeemable bond gives annual interest of Rs. 300, an investor expects 8% interest from the given bond, at what price should the bond be purchased by that investor?
2) 24

a) 24	b) 3,750
c) 4,000	d) 24,000

- An investor intends purchasing a three year Rs.1,000 par value bond having nominal interest rate of 10%. At what price the bond may be purchased now if it matures at par and the investor requires a rate of return of 14%?
 a) Rs. 907
 b) Rs.912
 c) Rs.918
 d) None
- 5. An investor intends purchasing a two year Rs.5,000 par value bond having nominal interest

rate of 8%. At what price the bond may be purchased now if it matures at par and the investor requires a rate of return of 15%?

- a) Rs.4937 b) Rs.4650
- c) Rs.4431 d) None
- A Rs. 1,00,000 3 yrs at par bond is being sold today at Rs. 67,000. If nominal rate offered is 4% and expected rate of return is 20% what should you do.
 - a) Purchase the bond
 - b) Don't purchase
 - c) Data Insufficient
 - d) None

 A Rs. 3,00,000 2 yrs at par bond is being issued today at Rs. 2,43,000 and nomianl interest rate offered is 6%. If the expected rate of return is 16%. Then which conclusion is proper.

- a) Bond shuld be purchased as returns are above expected rate
- b) Bond should be purchased as returns are above nominal rate.
- c) Bond should not be purchased as returns are below expected rates
- d) bond should not be purchased as returns are below nominal rate

(E) Perpetuity

Perpetuity :

- (1) It is an annuity which goes on indefitely
- (2) The stream as cash flows continues with no end

$P.V. = \frac{C}{i}$, C – annuity amount , <i>i</i>	$=\frac{r}{100}$	(r – interest
--	------------------	----------------

rate also called rate of discounting)

- For a non redeemable bond we most use

 a) Annuity
 b) Perpetuity
 - c) Compound interest
 - d) simple interest

 How much money needs to be set aside if Rs. 1,000 is to be received each year and the discounting rate is 4% p.a.

a) 20,000	b) 10,000
c) 22,000	d) 25,000

 A 12% bond of Rs. 1,000 which is non redeemable, is worth _____ if expected rate of return is 10%

a) 1,000	b) 1,200
> 1 100	N 4 500

c) 1,490 d) 1,580

- A perpeuity of Rs. 1,000 if discounted at 10% is worth _____ if expected rate of return is 10%
 a) 100
 b) 1000
 c) 10,000
 d) 100,000
- 5. Determine the present value of perpetuity Rs. 10 per month for infinite period at an effective rate of interest of 14% p.a.?

a) Rs. 657	b) Rs. 757
c) Rs. 857	d) Rs. 957

6. The principal of a school wishes to award a gold medal to a student securing the highest mark in statistics in 12th Std. examination each year. If this model costs him Rs. 6,000 every year and the rate of compound interest is 10% then the fixed amount that he has to deposit in order to get the fund every year is

a) 60000
b) 600000

a) 60000	
c) 66000	

d) None of these

- Lokjagrati Trust wants to create a fund to help their employee in unexpected circumstances. If the estimated unexpected expenses per month is Rs. 5,000 and the rate of compound interest is 12% then the amount required to be deposited by the trust is
 - a) 50000 b) 500000 c) 5000000 d) None of these
- 8. If Rs.50,000 is to be received each Quarter indefinitely, How much money needs to besetaside if 8% p.a. interest can be earned.
 a) Rs.6,25,000 b) Rs.25,00,000
 c) Rs.22,00,000 d) None
- 9. Atul wishes to create a countinues stream as cash flows which give him Rs. 12,000 each month. Find the amount he needs to deposit now if the rate of discounting is 6% p.a.

a) 2,00,000	b) 6,00,000
c) 12,00,000	d) 24,00,000

10. Ramesh wants to retire and receive Rs.3,000 a month. He wants to pass this monthly payment to future generations after his death. He can earn an interest of 8% compounded annually. How much will he need to set aside to achieve his perpetuity goal?

a) Rs. 4,49,000	b) Rs. 4,50,000
c) Rs.4,44,000	d) None

- 11. If a person bought a housing by paying Rs. 45,00,000 down payment and Rs. 80,000 at the end of each year till the perpetuity, assuming the rate of interest as 16% p.a. then the present value of the house is

 a) 5,00,000
 b) 50,00,000
 c) 48,00,000
 d) 52,00,000
- 12. Your recently won a competition, and the organizer has the following menu of prizes for you to choose from. You can only choose one option. If the discount rate is 12%, which option would you choose?
 a) THB 100,000 today (t = 0)
 b) THB 180,000 in 5 years (t = 5)
 c) THB 11,400 forever starting from the end of

this year (t = 1)d) THB 18,000 every year for 10 years starting at the end of this year (t = 1)

(F) Growing Perpetuity

Growing Perpetuity : Here also the stream of cash flows is to be received every year but it also graws at some fixed rate called as growing rate (g)

 $P.V. = \frac{C}{i-g}$, (i = discounting rate, g = growing rate,

c = annuity amount)

c) 1,00,000

- Assuming that the discount rate is 7% per annum, how much would you pay to receive Rs.50, growing at 5%, annually, forever?

 a) 2,400
 b) 2,200
 c) 2,500
 d) none of these
- Assuming that the discount rate is 12% per annum, how much would you pay to receive Rs.500, per month growing at 6%, annually, forever?
 a) 8,333
 b) 12,640

PA	Found	lation	Maths	

d) none of these

- 3. If the discount rate is 14% per annum, then how much a company has to pay to receive Rs. 280 growing at 9% annually forever. (Scanner)
 a) Rs. 5,600
 b) Rs. 2,800
 c) Rs. 1,714
 d) None
- 4. Find the growing rate if Rs. 2,00,000 gives Rs.
 7,000 half yearly and the discounting rate is 8% p.a.
 a) 8% p.a.
 b) 2% p.a.
 - c) 1% p.a. d) None
- 5. If the discounting rate is 8% p.a. and growing rate is 4% p.a. how much amount each month can be paid if a person deposits Rs. 6,00,000 a) Rs. 48,000 b) Rs. 24,000 c) Rs. 4,000 d) Rs. 2,000
- When an income is to be received over finite period we use _____ and when an income is to be received over indefinite period we use _____ but when the income grows at a fixed rest then we use _____
 - a) Annuity ; compound interest; perpetuity
 - b) Simple interest; compound interest; annuity
 - c) Compound interest;annuity;perpetuity
 - d) Annuity, perpetuity; growing perpetuity

(G) CAGR

CAGR :

- (1) It is compound interest
- (2) It is compounded annual growth rate
- (3) It is used to find growth on

investments/shares/bonus/mutual funds etc.

$$CAGR = \left[\left(\frac{V_m}{V_{t0}} \right)^{\frac{1}{t_n - t_0}} - 1 \right]$$

- The concept of CAGR has similarity with _____ and it is always expressed as _____
 - a) Interest rate; percentage
 - b) Principal; absolute value
 - c) Amount; number
 - d) None of these
- A bank FD gives quarterly compounded 11% interest whereas TATA mutual fund has CAGR of 12% in such circumstances we can
 I) Compare 11% with 12% directly

II) Find effective rate of return for bank FD and then compare it with 12%

- a) Only I b) Only II c) Both I & II d) Either I or II
- 3. Given below are the revenues of a company for four years. Calculate Compound annual Growth Rate.

Rate.					
Year	2013	2014	2015	2016	
Revenues	100	120	160	210	
a) 28.06%	b) 28.74%				
c) 25.24%	d) 25.75%				

4. Given below are the revenues of a company for five years. Calculate Compound annual Growth Rate.

Year	2010	2011	2012	2013	2014
Revenues	1000	1100	970	1260	1440

 Calculate Compound annual Growth Rate.

 a) 9.54%
 b) 8.74%

 c) 10 %
 d) 10.75%

5. Find CAGR for year 6 with respect to year 2

Year	1	2	3	4	5	6
Profit	98	100	115	125	130.4	157.35
a) 10% b) 11%						
c) 12%			d) 13%			

6. Find the CAGR for the year 2011 with respect to the year 2006

Year	Price
2005	40
2006	43
2007	48
2008	51
2009	59
2010	73
2011	64
2012	68
a) 7.26%	b) 7.89%
c) 8.07%	d) 8.28%

7. Avg. share price as a company are as follows

BUSINESS MATHEMATICS

Year	Price
1995	5
1996	12
1997	18
1998	23
1999	31
2000	63
2001	68
2002	72
	•

Find CAGR for a person who purchases in year 1996 and sells in year 1999 a) 35.432% b) 37.216% c) 39.437% d) 38.513%

Avg. share price as a company are as follows 8.

Year	
1995	
1996	
1997	
1998	
1999	
2000	
2001	
2000	
	Year 1995 1996 1997 1998 1999 2000 2001 2000

Find CAGR for a person who purchases in year 1997 and sells in year 2002 a) 30% b) 28% c) 32% d) 36%

9. Let the operating profit of a manufacturer for five years is given as :

Year	Operating profit (in lakh Rs)
1	90
2	100
3	106.4
4	107.14
5	120.24
6	157.35

Then the operating profit of Compount Annual Growth Rate (CAGR) for year 6 with respect to year 2 is given at

a) 9%

b) 12%

c) 11%

10. A share has price of Rs. 150 in 2015, if it's price is Rs. 140 in 2016, then the CAGR is a) 6.67% b) -6.67% d) -3.33% c) 3.33%

d) 13%

11. If the nominal rate of growth is 17% and inflation is 9% for the five years. Let P be the Gross Domestic Product (GDP) amount at the present year then the projected real GDP after 6 vears is

J	
a) 1.587 P	b) 1.921 P
c) 1.403 P	d) 2.51 P

Chap 5 :- Permutations & Combinations

1. **Factorial :** n! stands for n x (n - 1) x (n-2) x (n-3).....1 0! = 1 (predefined)

n! = n (n-1) (n-2)!

Part - I

Factorial (Module + Scanner) Set - A

- 1. $\lfloor 0$ is a symbol equal to
 - a) 0
 - b) 1
 - c) Infinity
 - d) None of these

2. Find n if | n+1 = 30 | n-1

- a) 5
- b) 4
- c) 7
- d) none of these

3. (n + 1) ! = 20 (n − 1) !, find n a) 6

- b) 5
- c) 4
- d) 10

<u>Set - B</u>

(Scanner)

- 1. Find x if 1/9 ! + 1/10! = x/11!
 - a) 125
 - b) 121
 - c) 122
 - d) none of these

- 2. The value of N in $\frac{1}{7!} + \frac{1}{8!} = \frac{N}{9!}$ is
 - a) 81 b) 78 c) 89 d) 64
- (Scanner)

- 3. 2n can be written as
 - a) 2ⁿ {1.3.5....(2n-1)} <u>n</u>
 - b) 2^{*n*} <u>n</u>
 - c) {1.3.5....(2n -1)}
 - d) none of these

FUNDAMENTAL PRINCIPLES OF COUNTING

- 1. **Multiplication Rule :** If certain thing may be done in 'm' different ways and when it has been done, a second thing can be done in 'n' different ways then total number of ways of doing both things simultaneously = mx n. [**i.e. And means multiplication**]
- 2. Addition Rule : If there are two alternatives of doing a job, which are Mutually Exclusive (i.e one of the alternative excludes the other) the first alternative capable of being performed in m ways and second alternative capable of being performed in n ways, then the total number of ways in which the job can be done = 'm+n' ways. [i.e. OR means addition].

Permutation	Combination
1. Deals with arrangement .	1. Deals with selection .
2. Order is important	2. Order is not important .
3. Key words, arrangement order, forming a word,	3. Key words selection forming a group, team,
farming a number, rank, position, designation.	committee, panel.
4. Arrangement of r elements out of n elements is	4. Selection of r elements out of n elements is
${}^{n}\mathbf{P}_{\mathbf{r}} = \frac{n!}{(n-r)!} (n \ge r)$	${}^{n}C_{r} = \frac{n!}{r!(n-r)!} (n \ge r)$
5. When 1 particular element is always part of	5. When 1 particular element is always part of
arrangement = $r.^{n-1} P_{r-1}$	selection $=^{n-1} C_{r-1}$
6. When 1 particular element is never part of	6. When 1 particular element is never part of
arrangement = $^{n-1}$ P _r	selection $=^{n-1} C_r$

1. Permutation by default refers to linear permutations

2.
$${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$
 (That is why $0! = 1$)

- 3. ${}^{n}P_{n-1} = \frac{n!}{\left\lceil n (n-1) \right\rceil!} = \frac{n!}{1!} = n!$
- 4. Total arrangement = one particular always part of the arrangement + one particular never part of the arrangement

$${}^{n}P_{r} = r.{}^{n-1}P_{r-1} + {}^{n-1}P_{r}$$
5.
$$\sum_{r=1}^{n} r.{}^{r}P_{r} = {}^{n+1}P_{n+1} - 1$$

Г

	<u>Part - II</u> And/ OR Set - A	8.	A dealer provides you Maruti car & Van in 2 body patterns and 5 different colours. How many choices are open to you? a) 2 b) 7 c) 20 d) 10
1.	There are 6 routes for journey from station A to station B. In how many ways you may go from A to B and return if for returning you		Set - B
	make a choice of any of the routes? a) 6 b) 12 c) 36 d) 30	1.	In how many ways can 9 letters be posted in 4 letter boxes? a) 4^9 b) 4^5
2.	As per question No. (1) if you decide to take the same route you may do it in number		c) ${}^{9}P_{4}$ d) ${}^{9}C_{4}$
	of ways. a) 6 b) 12 c) 36 d) 30	2.	5 letters are written and there are five letter- boxes. The number of ways the letters can be dropped into the boxes, are in each
3.	As per question No. (1) if you decide not to take the same route you may do it in number of ways.		a) 119 b) 120 c) 121 d) none of these
	a) 6 b) 12 c) 36 d) 30		Part - III
4.	There are 10 trains plying between Calcutta and Delhi. The number of ways in which a		Set - A
	person can go from Calcutta to Delhi and return by a different train is a) 99 b) 90 c) 80 d) pope of these	1.	ⁿ P _r can also written as a) $\frac{\lfloor \underline{n} \\ \underline{n-r} \end{bmatrix}$ b) $\frac{\lfloor \underline{n} \\ \underline{r} \rfloor \underline{n-r} }$
5.	A person can go from place 'A to B' by 11		c) $\frac{ r }{ n-r }$ d) none of these
	different modes of transport but is allowed to return back to "A" by any mode other than the	2.	If ${}^{6}P_{r} = 360$, then the value of 'r' is: (Scanner)
	one earlier. The number of different ways the entire journey can be complete is-		a) 5 b) 3 c) 4 d) None of these
	a) 110 b) 10^{10}	3.	If ${}^{5}P_{r} = 60$, then the value of r is
			a) 3 b) 2
6.	There are 4 routes for going from Dumdum to Sealdah and 5 routes for going from Sealdah	4.	c) 4 d) none of these $\ln {}^{n}Pr = n (n - 1) (n - 2) \dots (n - r + 1)$, the
	to Chandhi. In how many different ways can you go from Dumdum to Chandhi via Sealdah?		number of factors is
	a) 9 b) 1 c) 20 d) None		a) n b) r-1 c) n-r d) r
7.	It there are 50 stations on a railway line how many different kinds of single first class tickets may be printed to enable a passenger to travel	5.	If ${}^{n}P_{4} = 12 {}^{n}P_{2}$ the value of n is a) 12 b) 6
	from one station to other?		c) -1 d) both 6 -1
	c) 2400 d) None	6.	If ${}^{n}P_{4} = 20$ (${}^{n}P_{2}$) then the value of 'n' is (Scanner)
			a) - 2 b) 7 c) - 2 and 7 both d) None of these
1		1	$c_j - 2$ and i both a_j inone of these

7.	ⁿ P _r ÷ ⁿ⁻¹ P _{r-1} is a) n c) (n-1)!	b) d)	n! ⁿ C _n
8.	If ${}^{n+3}P_6 \div {}^{n+2}P_4 = 14$ th a) 8 c) 5	ne va b) d)	alue of n is 4 2
9.	If ${}^{n}P_{4} = 12 {}^{n}P_{2}$, the n a) -1 c) 5	is eo b) d)	qual to 6 none of these
10.	If. ⁿ P ₃ : ⁿ P ₂ = 3 : 1, then a) 7 c) 5	n is b) d)	s equal to 4 none of these
11.	ⁿ P ₃ : ⁿ P ₂ = 2:1 a) 4 c) 5	b) d)	(Scanner) 7/2 2/7
12.	If $n_1+n_2 P_2 = 132$, $n_1-n_2 P_2 = 132$, $n_1=6$, $n_2=6$ c) $n_1=9$, $n_2=3$	= 30 t b) d)	then, $n_1 = 10$, $n_2 = 2$ none of these
13.	If ⁿ P ₁₃ : ⁿ⁺¹ P ₁₂ = 3:4, th a) 13 c) 18	ien t b) d)	the value of 'n' will be: 15 (Scanner) 31
14.	Given : P (7, k) = 60 P a) k = 9 b) k = 8 c) k = 5 d) k = 0	9 (7,	k – 3). Then : <i>scanner</i>)
15.	$^{m+n}P_2 = 56, ^{m-n}P_2 = 30$ a) m = 6, n = 2 c) m = 4, n=4) the b) d)	en m = 7, n = 1 none of these
16.	The value of $\sum_{r=1}^{10} r.^{r} P_{r}$ i a) ${}^{11}P_{11}$ c) ${}^{11}P_{11} + 1$	s b) d)	¹¹ P ₁₁ – 1 none of these
17.	Number of ways of pa 6 colours is a) 36 b) 6	ainti c) 2	ng a face of a cube by <i>(Scanner)</i> 4 d) 1

BUSINESS MATHEMATICS

18.	3 persons go into a seats. In how many v seats?	railv ways	vay carriage having 8 they may occupy the
	a) ⁸ P ₃	b)	⁸ C ₃
	c) ⁸ C ₅	d)	None
19.	How many three let using the letters of t a) 110	ters he w b)	words can be formed ords square? 120
	c) 111	d)	None
20.	How many three let using the letters of t a) 200 c) 225	ters he w b) d)	words can be formed ords hexagon? 210 None
21.	A man has 3 sons reach. In how many school, if no two of same school?	and ways his s	6 schools within his , he can send them to ons are to read in the <i>(Scanner)</i>
	-) 6 D	L.)	6D
	c) 6^3	d)	3 ⁶
22.	How many six digit t formed by using 10 being repeated)? a) 10^{6} c) $^{10}C_{6}$	elep disti b) d)	hone numbers can be inct digits (no digit is <i>(Scanner)</i> ¹⁰ P ₆
23.	If 12 school teams a contest, then the n second and third por a) 1,230 b) 1,320 c) 3,210 d) none of these	are p umb sitior	participating in a quiz per of ways the first, ns may be won is
24.	First, second and thir at an engineering fai been entered. In how the prizes be awarde a) 1,716 c) 1,714	rd pri r in v w ma ed? b) d)	zes are to be awarded which 13 exhibits have any different ways can 1,710 None
25.	The number of four I using the letters of t	etter he w	words can be formed ord DECTIONARY is

a) 5040	b) 720
c) 90	d) 10240

BUSINESS MATHEMATICS

26.	How many four digits number can be formed by using 1 27? a) ${}^{7}P_{4}$ b) ${}^{7}P_{3}$ c) ${}^{7}C_{4}$ d) None	34.	The number of permutation of the word "Allahabad" is a) $9! \div (4! \times 2!)$ b) $9! \div 4!$ c) $9!$ d) None
27.	When Jhon arrives in New York, he has eight shops to see, but he has time only to visit six of them. In how many different ways can he arrange his schedule in New York? a) 20160 b) 20150 c) 20110 d) None	35.	The number of words which can be formed by letters of the word 'ALLAHABAD' is: (Scanner) a) 7560 b) 3780 c) 30240 d) 15120
28.	In how many ways can a family consist of three children here different birthdays in a leap year <i>(Scanner)</i> a) ${}^{365}C_3$	30.	 a) 1200 b) 1250 c) 1260 d) 1300 The number of arrangements that can be made
20	b) 300 C ₃ - 3 c) 366 × 366 C ₃ ln how many different ways can a club with 10		with the word "assassination" is a) 13! ÷ [3! × 4! × (2!) ²] b) 13! ÷ [3! × 4! × 2!] c) 13!
29.	members select a President, Secretary and Treasurer, if no member can hold two offices and each member is eligible for any office? a) 715 b) 710 c) 720 d) None	38.	 d) None How many different permutations are possible from the letters of the word CALCULUS? a) 4050 b) 5040 c) 3050 d) 5050
30.	In how many different ways can five persons stand in a line for a group photograph? a) 122 b) 120 c) 115 d) None	39.	The letters of the words CALCUTTA and AMERICA are arranged in all possible ways. The ratio of the number of there arrangements is a) 1:2 b) 2:1 c) 2:2 d) none of these
31.	How many different words can be formed with the letters of the word "LIBERTY" <i>(scanner)</i> a) 4050 b) 5040 c) 5400 d) 4500	40.	There are three blue balls, four red balls and five green balls. In how many ways can they be arranged in a row? <i>(Scanner)</i> a) 26,720 b) 27,720
32.	How many different words can be formed beginning with 't' of the word "triangle"? a) 8! b) 7!		c) 27,820 d) 26,620
33.	c) 6! d) 2! × 6! How many arrangements can be made with the	41.	In how many ways can 17 billiard balls be arranged, if 7 of them are black, 6 red and 4 white?
	letter of the word "mathematics"? a) 11! ÷ (2!) ³ b) 11! ÷ (2!) ² c) 11! d) None		a) 4084080 b) 4080085 c) 4585084 d) None

8. The number of words that can be formed using Set - B the letter of "PETROL" such that the words do The number of ways in which 8 sweats of 1. not have "" in the first postion is different sizes can be distributed among 8 b) 120 a) 720 persons of different ages so that the largest c) 600 d) 54 sweat always goes to be younger assuming that each one of then gets a sweat is 9. The total number of 9 digit numbers of b) 5040 a) | 8 different digits is c) 5039 d) none of these a) 10|9 b) 8|9 c) 9|9 d) none of these 2. A garden having 6 tall trees in a row. In how many ways 5 children stand, one in a gap 10. A code word is to consist of two English between the trees in order to pose for a alphabets followed by two distinct numbers photograph? (*scanner*) between 1 and 9. How many such code words a) 24 b) 120 are there? (Scanner) c) 720 d) 30 a) 6,15,800 b) 46,800 d) 4,10,800 c) 7,19,500 There are 5 speakers A, B, C, D and E. The 3. number of ways in which A will speak always 11. The total number of sitting arrangements of 7 before B is persons in a row if one person occupies the a) 24 b) $|4\times|2$ middle seat is . d) none of these c) | 5 a) 5! b) 6! c) 2! × 5! d) None 4. How many words can be formed beginning with 'n' with the letters of the word "Sunday"? The total number of sitting arrangements of 7 12. a) 6! b) 5! persons in a row if two persons occupy the end d) None c) 4! seats is . a) 5! b) 6! How many words can be formed beginning 5. c) 2! × 5! d) None with 'n' and ending in a' with the letters of the word "Sunday"? The total number of sitting arrangements of 7 13. a) 6! b) 5! persons in a row if 3 persons sit together in any c) 4! d) None order is ____. a) 5! b) 6! How many different arrangements can be 6. c) 2! × 5! d) None made beginning with 'a' and ending with 'n' with the letters of the word "oriental"? The total number of sitting arrangements of 7 14. a) 6! b) 8! persons in a row if 3 persons sit together in a c) 4! d) None particular order is _____. a) 5! b) 6! The number of arrangements in which the 7. c) 2! × 5! d) None letters of the word 'MONDAY' be arranged so that the words thus formed begin with M and 15. The number of arrangements of the letters in do not end with N is the word 'FAILURE', so that vowels are always a) 720 b) 120 coming together is d) none of these c) 96 a) 576 b) 575 c) 570 d) none of these

BUSINESS MATHEMATICS

16.	The number of ways the letters of the word 'TRIANGLE' to be arranged so that the word 'angle' will be always present is		a) $11! \div (2!)^3$ b) $(8! \times 4!) \div (2!)^3$ c) $12! \div (2!)^3$ d) None
	a) 20 b) 60 c) 24 d) 32	23.	In how many ways the word "arrange" be arranged such that the 2 'r' s come together? a) 400 b) 440
17.	There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can these be placed on a shelf if the books on the same subject are to be together? a) 51,840 b) 50,840	24.	 c) 360 d) None In how many ways the word "arrange" be arranged such that the 2 'r's and 2 'a' s come together? a) 120 b) 120
	c) 55,830 d) None		c) 140 d) None
18.	There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are Russians. They have to stand in a row for a photograph so that the two Indians are together, the two Americans are together and so also the two Russians. Find the number of ways in which	25.	In how many ways the letters of the word "failure" can be arranged with the condition that the four vowels are always together? a) $(4!)^2$ b) 4! c) 7! d) None
	they can do so. a) 44 b) 48 c) 58 d) None	26.	The number of ways of arranging 6 boys and 4 girls in a row so that all 4 girls are together is: <i>(Scanner)</i>
19.	The number of ways in which 6 men can be arranged in a row so that the particular 3 men sit together, is a) ${}^{4}P_{4}$ b) ${}^{4}P_{4} \times {}^{3}P_{3}$		a) 6!. 4! b) 2 (7!. 4!) c) 7!. 4! d) 2. (6!. 4!)
20	c) $(\underline{3})^2$ d) none of these	27.	How many permutations can be formed from the letters of the word "DRAUGHT", if both
20.	Hindi books be arranged keeping the books of the same language together?		vowels may not be separated? (Scanner) a) 720 b) 1,440 c) 140 d) 1.000
	 a) 5! × 3! × 3! × 3! b) 5! × 3! × 3! c) ⁵P₃ d) None 	28.	In how many ways can the word "strange" be arranged so that the vowels are never
21.	There are 5 books on English, 4 Books on Tamil		a) 6! × 2! b) 7!
21.	and 3 books on Hindi. In how many ways can these books be placed on a shelf it the books	20	c) $7! \div 2!$ d) None
	on the same subjects are to be together? (Scanner)	29.	arranged so that the vowels never come
	a) 1,36,800 b) 1,83,600 c) 1,03,680		a) $7! - 6! \times 2!$ b) $7! - 6!$ c) $^{7}P_{6}$ d) None
	d) 1,63,800	30.	In how many ways the word "arrange" be
22.	In how many ways of the word "mathematics" be arranged so that the vowels occur together?		arranged such that the 2 'r' s do not come together?
		I	a) 1000 D) 300

31.	c) 800 d) None n articles are arranged in such a way that 2 particular articles never come together. The number of such arrangements is a) $(n-2) \lfloor n-1$ b) $(n-1) \lfloor n-2$ c) $\lfloor n$ d) none of these	 38. Six boys and five girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done. a) 85400 b) 86400 c) 88400 d) None
32.	10 examination papers are arranged in such a way that 2 particular articles never come together. The number of such arrangements is a) $9 \lfloor 8$ b) $\lfloor 10$ c) $8 \lfloor 9$ d) none of these	 39. The number of ways the letters of the word "signal" can be arranged such that the vowels occupy only odd positions is a) 1440 b) 240 c) 480 d) 144 40. In how many ways can the word "strange" be
33.	7 books are to be arranged in such a way so that two particular books are always at first and last place. Final the number of arrangements. (Scanner) a) 60 b) 120 c) 240 d) 480	arranged so that the vowels occupy only the odd places? a) ${}^{5}P_{5}$ b) ${}^{5}P_{5} \times {}^{4}P_{4}$ c) ${}^{5}P_{5} \times {}^{4}P_{2}$ d) None 41. The number of ways in which that letters of the word 'MOBILE' be arranged so that consonants
34.	Find the no. of arrangements such that no 2 boys are together from 5 boys & 7 girls. a) $7! \times {}^8p_5$ b) $5! \times {}^8p_5$ c) $5! \times 7!$ d) None	 always occupy the odd places is a) 36 b) 63 c) 30 d) none of these 42. If the letters word 'DAUGHTER' are to be arranged so that vowels occupy the odd places, then number of different words are
35.	Find the arrangements such that no 2 girls are together from 5 boys & 7 girls. a) $7! \times {}^6p_3$ b) $5! \times {}^6p_7$ c) $5! \times {}^7p_6$ d) not possible	 a) 2, 880 b) 676 c) 625 d) 576 43. The number of different ways the letter of the word. "DETAIL" can be arranged in such a sway that the vowels can occupy only the odd position is :
36.	Three girls and five boys are to be seated in arow so that no two girls sit together. Total no.of ways of this arrangement are: (scanner)a) 14,400b) 120c) 5P_3 d) $3! \times 5!$	a) 32 b) 36 c) 48 d) 60 44. In how many ways the vowels of the word "Allahabad" will occupy the even places? a) 120 b) 60 c) 30 d) None
37.	In how many ways 21 red balls and 19 blue balls can be arranged in a row so that no two blue balls are together? a) 1540 b) 1520 c) 1560 d) None	45. 5 Men and 4 Women to sit in a row in such a manner that the woman always occupy the even places. The number of such arrangement will be: (Scanner) a) 126 b) 1056

		1	
	c) 2080 d) 2880	ГA	In question No. (17) how many of them have
4	 6. In how many ways can the letters of the word FAILURE be arranged so that the consonants may occupy only odd positions? <i>(Scanner)</i> a) 576 b) 476 c) 376 d) 276 	54.	In question No. (47) how many of them have arrangements no 2 vowels are together? a) $8! - 4! \times 5!$ b) ${}^{6}P_{3} \times 5!$ c) $2! \times 5! \times 3!$ d) ${}^{4}P_{3} \times 5!$
4	 7. How many words can be formed with the letters of the word 'ORIENTAL' so that A and E always occupy odd places: (Scanner) a) 540 b) 8640 c) 8460 d) 8450 	55.	In question No. (47) how many of them have arrangements that consonants and vowels are always together? a) $8! - 4! \times 5!$ b) ${}^{6}P_{3} \times 5!$ c) $2! \times 5! \times 3!$ d) ${}^{4}P_{3} \times 5!$ In question No. (47) how many of them have
4	 8. The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even place is: (Scanner) a) 36 b) 144 c) 574 d) 754 		arrangements that vowels occupy odd places? a) $8! - 4! \times 5!$ b) ${}^{6}P_{3} \times 5!$ c) $2! \times 5! \times 3!$ d) ${}^{4}P_{3} \times 5!$
4	 9. How many different words can be formed with the letters of the word "triangle"? a) 8! b) 7! c) 6! d) 2! × 6! 	57.	In question No. (47) how many of them have arrangements that the relative positions of the vowels and consonants remain unchanged? a) $8! - 4! \times 5!$ b) ${}^{6}P_{3} \times 5!$ c) $2! \times 5! \times 3!$ d) $5! \times 3!$
50	 How many different words can be formed beginning with 'e' of the letters of the word "triangle"? a) 8! b) 7! c) 6! d) 2! × 6! 	58.	The number of words from the letters of the word BHARAT, in which B and H will never come together, is (Scanner)a) 360b) 240c) 120d) None of the above
5	 In question No. (47) how many of them will begin with 't' and end with 'e'? a) 8! b) 7! c) 6! d) 2! × 6! 	59.	The letters of the word "VIOLENT" are arrangedso that the vowels occupy even place only. Thenumber of permutations is (scanner)a) 144b) 120c) 24d) 72
5	 2. In question No. (47) how many of them have 't' and 'e' in the end places? a) 8! b) 7! c) 6! d) 2! × 6! 3. In question No. (47) how many of them have	60.	The number of ways the letters of the word 'COMPUTER' can be rearranged is a) 40,320 b) 40,319 c) 40,318 d) none of these
	 consonants never together? a) 8! - 4! × 5! b) ⁶P₃ × 5! c) 2! × 5! × 3! d) ⁴P₃ × 5! 	61.	The number of words that can be made by rearranging the letters of the word APURNA so that vowels and consonants appear alternate is a) 18 b) 35 c) 36 d) none of these

JPA Foundation Maths

In a group of boys the number of arrangement 62. of 4 boys is 12 times the number of arrangements of 2 boys. The number of boys in the group is a) 10 b) 8 c) 6 d) none of these 63. If six times the number of permutations of 'n' items taken 3 at a time is equal to seven times the number of permutation of (n-1) items taken 3 at a time, then the value of 'n' will be: (Scanner) a) 7 b) 9 c) 13 d) 21 64. The number of permutations of 10 different things taken 4 at a time in which one particular thing never occurs is a) 3,020 b) 3,025 c) 3.024 d) none of these 65. The number of arrangements of 10 different things taken 4 at a time in which one particular thing always occurs is a) 2015 b) 2016 c) 2014 d) none of these Find the number of arrangements of 5 things 66. taken out of 12 things, in which one particular thing must always be included. (Scanner) a) 39,000 b) 37,600 d) 36,000 c) 39,600 67. $^{(n-1)}P_r + r.^{(n-1)}P_{(r-1)}$ is equal to b) $\lfloor n / (\lfloor r \rfloor n - r)$ a) ⁿC_r c) ⁿP_r d) none of these

CIRCULAR PERMUTATIONS

Synopsis

Arrangement of 'n' elements at 'n' places can be done in (n-1)! Ways.

Use $\frac{(n-1)!}{2}$ in following scenarios.

- 1. Same 2 neighbors cannot interchange among themselves (or interchange of neighbors is considered to be same).
- 2. Clockwise and anticlockwise relation is considered to be same. This is observed while.
 - a) Forming a garland (from flowers).
 - b) Forming a necklace (from beads).

Part - IV Circular Permutations Set - A

- The number of ways in which 7 girls form a ring is
 a) 700
 b) 710
 - c) 720 d) none of these
- 2. In how many ways can 8 boys form a ring?
 a) 7! ÷ 2
 b) 7!
 c) 8!
 d) 8! ÷ 2
- 3. In how many ways can 4 persons sit at a round table for a group discussions?
 - a) 4 b) 6 c) 5 d) None
- 4. In how many ways 6 men can sit at a round table so that all shall not have the same neighbours in any two occasions?

a)	5! ÷ 2	b)	5!	
c)	$(7!)^2$	d)	7!	

5. If 50 different jewels can be set to form a necklace then the number of ways is

a) $\frac{1}{2}$ 50 b) $\frac{1}{2}$ 49c) | 49 d) none of these

- 6. The number of ways in which 8 different beads be strung on a necklace is
 - a) 2500 b) 2520
 - c) 2250 d) none of these

<u>Set - B</u>

The number of ways in which 7 boys sit in a round table so that two particular boys may sit together is

- a) 240
- b) 200

1.

- c) 120
- d) none of these
- 2. The chief ministers of 17 states meet to discuss the hike in oil price at a round table. In how many ways they seat themselves if the Kerala and Bengal chief ministers choose to sit together?
 - a) 15! × 2!
 - b) 17! × 2!
 - c) 16! × 2!
 - d) None
- 5 persons are sitting in a round table in such way that Tallest Person is always on the rightside of the shortest person; the number of such arrangements is
 - a) 6 b) 12
 - c) 24 d) none of these
- 4. In how many ways can 6 boys and 6 girls be seated around a table so that no 2 boys are adjacent?
 - a) 4! × 5!
 - b) 5! × 6!
 - c) ⁶P₆
 - d) $5 \times {}^{6}P_{6}$

- 5. In how many ways can 4 Americans and 4 English men be seated at a round table so that no 2 Americans may be together?
 a) 4! × 3!
 b) ⁴P₄
 - c) $3 \times {}^{4}P_{4}$ d) ${}^{4}C_{4}$
- 6. In how many ways can a party of 4 men and 4 woman be seated at a circular table, so that no two woman are adjacent? (Scanner)
 a) 164
 b) 174
 c) 144
 d) 154
- 7. The number of ways 5 boys and 5 girls can be seated at a round table, so no two boys are adjacent is _____.
 a) 2550 b) 2880
 c) 625 d) 2476

<u>Set - C</u>

- 1. 3 ladies and 3 gents can be seated at a round table so that any two and only two of the ladies sit together. The number of ways is
 - a) 70 b) 27
 - c) 72 d) none of these

Q'S BASED ON NUMBERS

Steps :-

- 1. Check the given digits (if any).
- 2. Number to be formed is of how many digits
- 3. Repetation of digits is allowed or not.
- 4. Is '0' (zero) given in the digits.
- 5. Think first regarding that place where there is restriction.
- 6. If the repetation of digits is not allowed and there is more than 1 restriction then use "BABA BREAKING"

<u>Part - V</u> Q's on numbers Set - A

- 4 digit numbers to be formed out of the figures
 0, 1, 2, 3, 4 (no digit is repeated) then number
 of such numbers is
 - a) 120 b) 20 c) 96. d) none of these
- 2. How many telephones connections may be allotted with 8 digits form the numbers 0 1 29?
 - a) 10⁸
 - b) 10!
 - c) ¹⁰C₈
 - d) ¹⁰P₈

<u>Set - B</u>

1.	How many six digit numbers can be formed out
	of 4 59 no digits being repeated?

- a) 6! 5! b) 6!
- c) 6! + 5! d) None
- In terms of question No. (1) how many of them are not divisible by 5?

a)	6! – 5!	b)	6!
c)	6! + 5!	d)	None

How many numbers can be formed with the help of 2, 3, 4, 5, 6, 1 which is not divisible by 5, given that it is a six digit no. and digits are not repeating? (Scanner)
a) 600 b) 400

- /		- /	
c)	1200	d)	1400

- 4. How many six digits numbers can be formed with the digits 9, 5, 3, 1, 7, 0?
 - a) 600 b) 720 c) 120 d) None
- 5. In terms of question No. (3) how many numbers will have 0's in ten's place?a) 600 b) 720
 - c) 120 d) None
- 6. How many numbers of seven digit number which can be formed from the digits 3,4, 5, 6, 7, 8, 9 no digits being repeated are not divisible by 5?
 a) 4320
 b) 4690
 c) 3900
 d) 3890
- In how many different ways 3 rings of a lock can not combine when each ring has digits 0 1 2......9 leading to unsuccessful events?

a)	999	b)	10 ³
c)	10!	d)	997

- 8. How many numbers between 1000 and 10000 can be formed with 1, 2, ...9?a) 3024 b) 60
 - c) 78 d) None
- 9. The number of numbers between 1,000 and 10,000, which can be formed by the digits 1, 2, 3, 4, 5, 6 without repetition is: *(Scanner)*a) 720 b) 180 c) 360 d) 540
- 10. The number of numbers lying between 100 and 1000 can be formed with the digits 1, 2, 3, 4, 5, 6, 7 is
 a) 210 b) 200

a)	210	D)	200
C)	110	d)	none of these

FOU	NDA	TION

BUSINESS MATHEMATICS

11.	How many numbers can be formed with 1 a) 3024 c) 78	betv 1, 2, . b) d)	ween 3000 and 4000 6? 60 None
12.	How many 4 digits n can be formed out o a) 24 c) 72	umb f the b) d)	ers greater than 7000 digits 3, 5, 7, 8, 9? 48 50
13.	The four digit number of the seven digits 1, digit is repeated in an than 3000 are: a) 120 c) 600	ers th 2, 3, יזע חט b) d)	at can be formed out 5, 7, 8, 9 such that no unber and are greater <i>(Scanner)</i> 480 840
14.	The number of 4 dia 5,000 can be formed and 7 (No. digit is r such is a) 72 c) 70	git n out epea b) d)	umbers greater than of the digits 3, 4, 5, 6 ated). The number of 27 none of these
15.	How many numbers be formed with the c a) 420 c) 7!	high ligits b) d)	ner than a million can 0445553? 360 None
16.	How many numbers be formed with the a) 260 b) 360 c) 280 d) 380	grea digit	ter than a million can ts 4, 5, 5, 0, 4, 5, 3 ? <i>(Scanner)</i>
	<u>Set</u>	<u>- C</u>	
1.	How many numbers be made from the di repetition is not allow a) 364 c) 728	not gits ved.	exceeding 1000 can 1, 2, 3, 4, 5, 6, 7, 8, 9 if <i>(Scanner)</i> b) 585 d) 819
2.	The number of number 1000 can be formed 9 is a) 124	bers with b)	ying between 10 and the digits 2, 3, 4, 0, 8, 120

		DUS	DIINES	
	c) 125	d)	non	e of these
3.	Find the total number 2000 that can be for 4, 5 no digit being re a) 216 c) 220	er of med epeat	num with ted ii b) d)	bers greater than the digits 1, 2, 3, n any number. 210 None
4.	How many four digit by using 1 27 wh a) 500 c) 560	ts nu ich a	mbe re gr b) d)	rs can be formed rater than 3400? 550 None
5.	How many numbers	grea	ter tl	han 23000 can be
	formed with 1, 2,5 a) 3024 c) 78	5?	b) d)	60 None
6.	The number of even can be formed with without repletion is a) 110 b) 112 c) 111 d) none of these	num n the	ibers e di <u>c</u>	greater than 300 gits 1, 2, 3, 4, 5
7.	The total number of and divisible by 5 fo that each digit does in each number is	of num ormed not d	mbe d wit occu	rs less than 1000 h 0 1 29 such r more than once
	a) 150 c) 154		b) d)	152 None

JPA Foundation Maths

COMBINATIONS

<u>pg. 103</u>

1) [Denotions ⁿ C _r , C (n, r), nCr, $\binom{n}{r}$, $n \ge r$		
2) ⁿ	$C_{\rm r} = \frac{n!}{r! (n-r)!}$		
3)	${}^{n}C_{o} = {}^{n}C_{n} = 1$		
4)	${}^{n}C_{1} = {}^{n}C_{n-1} = n$		
5)	${}^{n}C_{r} = {}^{n}C_{r-r}$		
6)	If ${}^{n}C_{x} = {}^{n}C_{y}$ then $x = y$ or $x = n - y$.		
7)	Pascal's Rule ${}^{n}C_{n,1} + {}^{n}C_{n} = {}^{n+1}C_{n}$		
8)	Selection of atleast 1 element ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{2}$	$++^{n}C = 2^{n}-1$	
- /			
	<u>Part - VI</u>	c) 6 d) none of these	
	Combinations	$1 $ The value of 1^2 $(1 + 1^2)$ is	
	Set - A	9. The value of $-C_4 + -C_3$ is a) 715 b) 710	
1.	If $C(n, r)$: $C(n, r + 1) = 1$: 2 and $C(n, r + 1)$: C	c) 716 d) none of these	
	(n, r + 2) = 2:3, determine the value of n and r		
	: (Scanner)	10. ${}^{15}C_3 + {}^{15}C_{13}$ is equal to : (Scanner)	
	a) $(14, 4)$ b) $(12, 4)$ c) $(14, 6)$ d) None	a) 10_{c_3} b) $50_{c_{16}}$	
		c) $13_{c_{16}}$ d) $13_{c_{15}}$	
2.	If ${}^{n}C_{6} / {}^{n-3}C_{3} = 91/4$ then the value of n is	11. If ${}^{500}C_{92} = {}^{499}C_{92} + {}^{n}C_{91}$ then n is	
	a) 15 b) 14 c) 13 d) None	a) 501 b) 500	
		c) 502 d) 499	
3.	If ${}^{18}C_n = {}^{18}C_{n+2}$ then the value of n is	12. Find x if ${}^{12}C_5 + 2 {}^{12}C_4 + {}^{12}C_3 = {}^{14}C_x$	
	a) 0 b) -2	a) 5 or 9 b) 6 or 9	
		c) 4 or 8 d) None	
4.	Find r if ${}^{18}C_r = {}^{18}C_{r+2}$	13. If ${}^{10}C_3 + 2$. ${}^{10}C_4 + {}^{10}C_5 = {}^{n}C_5$ then value of	n is:
	a) 6 b) 8 c) 16 d) 4	(Scar	nner)
5.	If ${}^{18}C_r = {}^{18}C_{r+2}$, the value of ${}^{r}C_5$ is	a) 10 b) 11 c) 12 d) 13	
	a) 55 b) 50		
	c) 56 d) none of these	14. If ${}^{13}C_6 + 2 {}^{13}C_5 + {}^{13}C_4 = {}^{15}C_x$ then, $x = $	nnor)
6.	If ${}^{15}C_{3r} = {}^{15}C_{r+3}$, then 'r' is equal is (Scanner)	a) 6 b) 7 c) 8 d) 9	iller)
	a) 2 b) 3 c) 4 d) 5	45 K 1000 C 999 C Y C C L	
7	If ${}^{n}C_{n} = {}^{n}C_{n}$ then ${}^{25}C_{n}$ is	15. If $1000 C_{98} = 333 C_{97} + ^{-}C_{901}$, find x : (Scal	nner)
7.	a) 24 b) 25	c) 997 d) 1000	
	c) 1 d) none of these		
_	- 29 - 24	16. ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + \dots + equals$	
8.	If ${}^{co}C_{2r}$: ${}^{24}C_{2r-4} = 225 : 11$, then the value of r is	a) $2'' - 1$ b) $2''$ c) $2^n + 1$ d) none of these	
	ají DjÖ		

17.	The value of $\sum_{r=1}^{5} {}^{5}C_{r}$	is: (Scanner)		<u>Set - B</u>
	r=1 a) 29 c) 35	b) 31 d) 26	1.	The number of ways a person can contribute to a fund out of 1 ten-rupee note, 1 five-rupee note, 1 two-rupee and 1 one rupee note is
18.	A building contractor of ten men supply. In	r needs three helpers out how many ways can these		c) 10 d) none of these
	a) 36 c) 150	e (Scanner) b) 15 d) 120	2.	A person has 8 friends. The number of ways in which he may invite one or more of them to a dinner is.
19.	A committee is to be of 12. Find the numb a committee.	e formed of 3 persons out er of ways of forming such		a) 250 b) 255 c) 200 d) none of these
	a) 225 c) 220	b) 228 d) None	3.	The number of ways in which a person can chose one or more of the four electrical appliances: T.V, Refrigerator, Washing Machine
20.	Six seats of articled 'Chartered Accound different batches of out of ten candidate a) 216	d clerks are vacant in a tant Firm' How many candidates can be chosen s? (Scanner) b) 210	4.	and a cooler is a) 15 b) 25 c) 24 d) none of these In order to pass PE-II examination minimum
21.	 c) 220 A Company wishes to two of its 6 department managers. In ho promotions can take a) 15 	 d) None o simultaneously promote ment heads to assistant w many ways these place? b) 30 	5.	 marks have to be secured in each of 7 subjects. In how many ways can a pupil fail? a) 128 b) 64 c) 127 d) 63 In how many ways can 4 people be selected at random from 6 boys and 4 girls if there are
22.	c) 20A fruit basket contair4 mangoes. How mar	d) 11 ns 7 apples, 6 bananas and ny selections of 3 fruits can		exactly 2 girls?(Scanner)a) 90b) 360c) 92d) 480
	be made so that all 3 a) 120 ways c) 168 ways	3 are apples? b) 35 ways d) 70 ways	6.	A person has ten friends of whom six are relatives. If he invites five guests such that three of them are his relatives, then the total
23.	In how many ways vowel be chosen out "logarithm"? a) 18	can a consonant and a of the letters of the word b) 15		number of ways in which he can invite themare:(Scanner)a) 30b) 60c) 120d) 75
24.	 c) 3 In how many ways vowel be chosen out "equation"? a) 18 c) 3 	 a) None can a consonant and a cof the letters of the word b) 15 d) None 	7.	A bag contains 4 red, 3 black and 2 white balls. In how many ways 3 balls can be drawn from this bag so that they include at least one black ball? <i>(Scanner)</i> a) 64 b) 46 c) 85 d) None of the above

BUSINESS MATHEMATICS

- In how many ways a committee of 6 members 8. can be formed from a group of 7 boys and 4 girls having at least 2 girls in the committee. (Scanner) a) 731 b) 137 c) 371 d) 351 9. There are 6 men and 4 women in a group, then the number of ways in which a committee of 5 persons can be formed of them, if the committee is to include at least 2 women are: (Scanner) 186 a) 180 b) c) 120 105 d) 10. Out of 7 boys and 4 girls a team of debate club of 5 is to be chosen. The number of teams such that each team includes at least one girl is a) 429 b) 439 d) 441 c) 419 Five bulbs of which three are defective are to 11. be tried in two bulb points in a dark room. Number of trials the room shall be lighted is a) 6 b) 8 d) 7 c) 5 Five bulbs of which three are defective are to 12. be tried in two lights-points in a dark-room. In how many trials the room shall be lighted? (Scanner) a) 10 b) 7 d) None of these c) 3 13. There are 7 men and 3 ladies. Find the number of ways in which a committee of 6 can be formed of them if the committee is to include atleast two ladies? b) 135 a) 150 c) 140 d) None From 7 men and 4 women a committee of 5 is 14. to be formed. In how many ways can this be done to include at least one woman? b) 440 a) 441 c) 420 d) None
- 15. Out of 7 gents and 4 ladies a committee of 5 is to be formed. The number of committees such that each committee includes at least one lady is
 - a) 400 b) 440
 - c) 441 d) none of these
- 16. A committee of 7 members is to be chosen from 6 Chartered Accountants, 4 Economists and 5 Cost Accountants. In how many ways can this be done if in the committee, there must be at least one member from each group and at least 3 Chartered Accountants?

a)	3,570	b)	3,550
C)	3,560	d)	None

17. You are selecting a cricket team of first 11 players out of 16 including 4 bowlers and 2 wicket-keepers. In how many ways you can do it so that the team contains exactly 3 bowlers and 1 wicket-keeper?

a)	960	b)	840
c)	420	d)	252

- 18. In question No. (16) would your answer be different if the team contains at least 3 bowlers and at least 1 wicket-keeper?
 - a) 2472
 - b) 960
 - c) 840
 - d) 420
- 19. A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7 guests such that 5 of them are relatives?
 - a) 330 b) 336 c) 350 d) None
- 20. A candidate is required to answer 6 out of 12 questions which are divided into two groups containing 6 questions in each group. He is not permitted to attempt not more than four from any group. The number of choices are.
 - a) 750 b) 850
 - c) 800 d) none of these

21. An examination paper consists of 12 questions divided into two parts A and B. Part A contains 7 questions and part B contains 5 questions. A candidate is required to attempt 8 questions selecting at least 3 from each part. In how many maximum ways can the candidate select the questions?

un	e questions:	(Scanner)	
a)	35	b)	175
c)	210	d)	420

22. In a paper from 2 groups of 5 questions each you have to answer any 6 questions attempting at least 2 questions from each group. This is possible in _____number of ways.

a)	50	b)	100
c)	200	d)	None

23. A question paper divided into 2 groups consisting of 3 and 4 questions respectively carries the not "it is not required to answer all the questions. One question must be answered from each group". In how many ways you can select the questions?

a)	10	b)	11
c)	12	d)	13

24. Every two persons shakes hands with each other in a party and the total number of hand shakes is 66. The number of guests in the party is

a)	11	b)	12
c)	13	d)	14

25. Number of ways of shaking hands in a group of 10 persons shaking hands to each other are: (Scanner)

a) 45 b) 54 c) 90 d) 10

- 26. If these are 40 guests in a party. If each guest takes a shake hand with all the remaining guests. Then the total number of hands shake is _____.
 a) 780
 b) 840
 c) 1,560
 d) 1,600
- 27. A Supreme Court Bench consists of 5 judges. In how many ways, the bench can give a majority division? *(Scanner)*a) 10 b) 5

- c) 15 d) 16
- 28. The Supreme Court has given a 6 to 3 decision upholding a lower court; the number of ways it can give a majority decision reversing the lower court is

a) 256	b)	276
c) 245	d)	226

29. In your college Union election you have to choose candidates. Out of 5 candidates 3 are to be elected and you are entitled to vote for any number of candidates but not exceeding the number to be elected. You can do it in _____ways.

a) 25	b)	5
c) 10	d)	None

- 30. At an election there are 5 candidates and 3 members are to be elected. A voter is entitled to vote for any number of candidates not greater than the number to be elected. The number of ways a voter choose to vote is

 a) 20
 b) 22
 c) 25
 d) none of these
- 31. In your office 4 posts have fallen vacant. In how many ways a selection out of 31 candidates can be made if one candidate is always included?
 - a) ${}^{30}C_3$ b) ${}^{30}C_4$ c) ${}^{31}C_3$ d) ${}^{31}C_4$
- 32. In question No. (30) would your answer be different if one candidate is always excluded? a) ${}^{30}C_3$ b) ${}^{30}C_4$
 - a) ${}^{31}C_3$ b) ${}^{31}C_4$ c) ${}^{31}C_3$ d) ${}^{31}C_4$
- 33. Out of 8 different balls taken three at a time without taking the same three together more that once for how many number of times you can select a particular ball?

a)	$^{7}C_{2}$	b)	⁸ C₃
c)	$^{7}P_{2}$	d)	⁸ P ₃

34. In question No. (32) for how many number of times you can select any ball?

a)	$^{7}C_{2}$	b)	⁸ C₃
c)	$^{7}P_{2}$	d)	${}^{8}P_{3}$

- 35. A committee is to be formed of 2 teachers and 3 students out of 10 teachers and 20 students. The numbers of ways in which this can be done is ____.
 - a) $^{-10}C_2 \times {}^{20}C_3$
 - b) ${}^{9}C_{1} \times {}^{20}C_{3}$
 - c) ${}^{10}C_2 \times {}^{19}C_3$
 - d) None.
- 36. In question No. (34) if a particular teacher is included the number of ways in which this can be done is
 - a) ${}^{10}C_2 \times {}^{20}C_3$
 - b) ${}^{9}C_1 \times {}^{20}C_3$
 - c) ${}^{10}C_2 \times {}^{19}C_3$
 - d) None
- 37. In question No. (34) if a particular student is excluded the number of ways in which this can be done is _____.
 - a) ${}^{10}C_2 \times {}^{20}C_3$
 - b) ${}^{9}C_{1} \times {}^{20}C_{3}$
 - c) ${}^{10}C_2 \times {}^{19}C_3$
 - d) None
- 38. A party of 6 is to be formed from 10 men and 7 women so as to include 3 men and 3 women.In how many ways the party can be formed if two particular women refuse to join it?
 - a) 4200 b) 600
 - c) 3600 d) 1200
- 39. Out of 4 gents and 6 ladies, a committee is to be formed find the number of ways the committee can be formed such that it comprises of at least 2 gents and at least the number of ladies should be double of gents. (Scanner)

a)	94	b)	132
c)	136	d)	104

- 40. In forming a committee of 5 out of 5 males and 6 females how many choices you have to make so that there are 3 males and 2 females?
 a) 150
 b) 200
 c) 1
 d) 461
- 41. In question No. (39) how many choices you have to make if there are 2 males?

- a) 150 b) 200 c) 1 d) 461
- 42. In question No. (39) how many choices you have to make if there is no female?
 - a) 150 b) 200 c) 1 d) 461
 - C) I (1) 40
- 43. In question No (39) how many choices you have to make if there is at least one female?a) 150 b) 200
 - c) 1 d) 461
- 44. In question No. (39) how many choices you have to make if there are not more than 3 males?
 - a) 200 b) 401 c) 461 d) 431
- 45. You have to make a choice of 4 balls out of one red one blue and ten white balls. The number of ways this can be done to always include the red ball is _____.
 a) ¹¹C₃
 b) ¹⁰C₃

d) None

- 46. In question No. (44) the number of ways in which this can be done to include the red ball but exclude the blue ball always is _____.
 - a) ¹¹C₃

c) ¹⁰C₄

- b) ¹⁰C₃
- c) ¹⁰C₄
- d) None
- 47. In question No. (44) the number of ways in which this can be done to exclude both the red and blues ball is _____.
 - a) ¹¹C₃
 - b) ¹⁰C₃
 - c) ¹⁰C₄
 - d) None
- 48. Out of 6 members belonging to party 'A' and 4 to party 'B' in how many ways a committee of 5 can be selected so that members of party 'A' are in a majority?
 - a) 180 b) 186
 - c) 185 d) 184

49.	How many combi counters marked there being at numbered counter a) 68 c) 64	nations can be f 1 28 taking least one odd r in each combin b) 66 d) 62	formed of 8 4 at a time and even ation?	3.	A committee of formed out of & refuses to serve i is a member. The is a) 1530 c) 1520	3 ladies 3 ladies n a com 2 numbe b) d)	and 4 gents and 7 gents. mittee in whice of such com 1500 1540	is to be Mrs. X :h Mr. Y imittees
50.	A team of 12 me persons. Then the and 'B' are together a) ${}^{n}C_{12}$ c) ${}^{n-2}C_{10}$	n is to be forme number of time er is b) ⁿ⁻¹ C1 [.] d) None	ed out of n as 2 men 'A' 1 e	4.	An examination consists of 6 c questions in Gec from each sectio many ways can t	paper juestion metry. n is to his be d	with 10 qu s in Algebra At least one c be attempted. one?	uestions and 4 juestion In how
51.	In question No. (49) 'C' 'D' and 'E' are to a) ${}^{n}C_{12}$ c) ${}^{n-3}C_{9}$)) the number of t ogether is b) ⁿ⁻¹ C ₁₁ d) None	times 3 men	5.	a) 945 c) 935 Find the number from the word EX	b) d) of way: (AMINA	940 None s of selecting 4 TION.	4 letters
52.	In question No. (4 are three times as 'E' are. Then the va a) 32 c) 9	9) it is found that often together a alue of n is b) 23 d) None	t 'A' and 'B' s 'C' 'D' and	6.	a) 130c) 133Find the number of 4 letters car "Mathematics".	b) d) of way be m	136 None s in which a s nade from th	election e word
53.	A boy has 3 librar interest in the libr want to borrow mathematics part many ways can he be borrowed? a) 41 c) 61	y tickets and 8 b rary of these 8, H Mathematics pa -I is also borrow e choose the three b) 51 d) 71 et – C	books of his ne does not art-II unless red? In how ee books to <i>(Scanner)</i>	7. 8.	 a) 130 c) 134 The number of colored by taking 4 letters is a) 70 c) 3 The number of whe equally divides a) 5775 c) 7755 	b) d) ombinat rs of the b) d) vays in v d into th b) d)	132 136 ions that can be word "comb 63 136 vhich 12 stude hree groups is 7575 none of these	e made ination" ents can
1. 2.	If ${}^{n}C_{r-1} = 56$, ${}^{n}C_{r} =$ equal to a) 8 c) 5 How many ways a made out of 15 pl is not to be selected a) 364 c) 1,001	b) 6 d) none of t a team of 11 pla ayers if one parti ed in the team. b) 728 d) 1,234	8, then r is hese yers can be cular player <i>(Scanner)</i>	9.	The number of w be equally divide a) $\lfloor 15/\lfloor (5)^4$ c) $\lfloor 15/\lfloor (5)^2$	'ays in w d amon b) d)	which 15 mang g 3 students is $15/(5)^3$ none of these	oes can ; 2
BUSINESS MATHEMATICS

COMBINATIONS (GEOMETRICAL)

Basic concepts of Geometry

- 2 points lying on a plane are always collinear.
- 3 or more points are said to be collinear if they lie on same line.
- Chord is a line joining any 2 points on a circle.
- If 3 or more lines are intersecting at the same point then they are called as concurrent.
- 1. If there are 'n' non-collinear points in a plane then,

a) no. of lines = ${}^{n}C_{2}$ b) no. of $\Delta's = {}^{n}C_{3}$

- c) no. of Quadrilaterals = ${}^{n}C_{4}$
- 2. If 'm' out of total 'n' points are collinear then,
 a) no. of lines = ⁿC₂ ^mC₂ +1
 b) no. of Δ's = ⁿC₃ ^mC₃
 c) no. of Quadrilaterals = ⁿC₄ ^mC₄
- 3. For a 'n' sided polygon maximum no of diagonals is $^{n}C_{2} n$.
- If a set of 'm' parallel lines intersects another set of 'n' parallel lines than no. of parallelograms = ⁿC₂ X ^mC₂
- Total points obtained when a set consists of n lines is such a way that no 2 are parallel and no 3 are intersecting = "C2.
- 6. Maximum distinct points obtained when n circles intersect = ⁿP₂.

Part - VII

Combinations (Geometrical)

- The number of straight lines obtained by joining 16 points on a plane, no three of them being on the same line is
 - a) 120
 - b) 110
 - c) 210
 - d) none of these
- Let S be the collection of eight points in the plane with no three points on the straight line. Find the number of triangles that have points of S as vertices.
 - a) 56 b) 50 c) 45 d) None

- 3. There are 12 points in a plane no 3 of which are collinear except that 6 points which are collinear. The number of different straight lines
 - is _____. a) 50 b) 51 c) 52 d) None
- 4. In question No. (3) the number of different triangles formed by joining the straight lines is

a)	220	b)	20
c)	200	d)	None

5. There are 12 points in a plane of which 5 are collinear. The number of triangles is

a)	200	b)	211
c)	210	d)	none of these

6.	The number of triangles that can be formed by choosing the vertices from a set of 12 points, seven of which lie on the same straight line, is:			
	a) 185 b) 175 c) 115 d) 105	(Scumer)		
7.	8 points are marked on the cir circle. The number of chord joining these in pairs is a) 25 b) 27 c) 28 d) none	rcumference of a ds obtained by e of these		
8.	Six points are on a circle. quadrilaterals that can be form a) 30 b) 360 c) 15 d) none	The number of ned are: <i>(Scanner)</i> e of the above		
9.	The number of diagonals in a a a) 30 b) 35 c) 45 d) none	decagon is e of these		
10.	A polygon has 44 diagonals t of its sides are: a) 8 b) 9 c) 10 d) 11	hen the number (Scanner)		
11. The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is				
	a) 6 b) 18 c) 12 d) 9			
12.	The number of parallelograms set of six parallel lines intersec of four parallel lines is: a) 360 b) 90 c) 180 d) 45	s, formed from a cting another set <i>(Scanner)</i>		
13.	The maximum number of section of 10 circles will be: a) 2 b) 20 c) 90 d) 180	points of inter <i>(Scanner)</i>		
	Practice Questions - Perm	utations +		
	Combination	<u>IS</u>		
Set - A				

If the elements to be arranged are to be taken from different places then we perform firstly selection and then arrangement. 1. If ${}^{n}P_{r} = 336$ and ${}^{n}C_{r} = 56$, then n and r will be a) (3, 2) b) (8, 3) c) (7, 4) d) none of these If ${}^{10}P_r = 604800$ and ${}^{10}C_r = 120$; find the value 2. of r, a) 5 b) 8 c) 7 d) None 3. If ${}^{6}P_{r} = 24 {}^{6}C_{r}$, then find r : (Scanner) a) 4 b) 6 c) 2 d) 1 If ${}^{n}P_{r} = 720$ and ${}^{n}C_{r} = 120$, then value of 'r' is: 4. (Scanner) b) 5 a) 4 c) 6 d) 3 Set – B 1. Out of 10 consonants and 4 vowels how many words can be formed each containing 6 consonant and 3 vowels? a) ${}^{10}C_6 \times {}^{4}C_3$ b) ${}^{10}C_6 \times {}^{4}C_3 \times 9!$ c) ${}^{10}C_6 \times {}^{4}C_3 \times 10!$ d) None The number of words which can be formed 2. with 2 different consonants and 1 vowel out of 7 different consonants and 3 different vowels the vowel to lie between 2 consonants is a) 3 × 7 × 6 b) $2 \times 3 \times 7 \times 6$ c) 2 × 3 × 7 d) None Set - C Find the number of ways in which an 1. arrangement of 4 letters can be made from the word "Mathematics". a) 1680 b) 756 c) 18 d) 2454 A boat's crew consist of 8 men, 3 of whom can 2 row only on one side and 2 only on the other. The number of ways in which the crew can be

> arranged is _____. a) ${}^{3}C_{1} \times (4!)^{2}$ b) ${}^{3}C_{1} \times 4!$

c) ³C₁

3 In how many ways that the crew of an eight oared be arranged so that if 3 of crew can row only on a stoke side and 2 row on the other side is _____. (Scanner)

a)	1728	b)	256
c)	164	d)	126

4. Eight guests have to be seated 4 on each side of a long rectangular table. 2 particular guests desire to sit on one side of the table and 3 on the other side. The number of ways in which the sitting arrangements can be made is

a)	1732	b) 1728
c)	1730	d) 1278

Practice Question - Other Set - A

 Compute the sum of 4 digit numbers which can be formed with the four digits 1, 3, 5, 7, if each digit is used only once in each arrangement.
 a) 105556 b) 106656

a)	105556	b)	10665
c)	106050	d)	None

2. The sum of all 4 digit number containing the digits 2, 4, 6, 8, without repetitions is
a) 1, 33, 330
b) 1, 22, 220
c) 2, 12, 220
<lic) 1, 22, 220

C)	2, 13, 330	d)	1, 33, 320

In a cross word puzzle 20 words are to be guessed of which 8 words have each an alternative solution. The number of possible solution is ____.
a) (2×8)²
b) ²⁰C₁₆

a)	(2×8)⁻	D)	-°C ₁₆
c)	²⁰ C ₈	d)	None

4. If all the permutations of the letters of the word "chalk" are written in a dictionary the rank of this word will be_____.

a)	30	b)	31
c)	32	d)	None

- 5. In how many ways it is possible to write the word "zenith" in a dictionary?
 - a) ⁶P₆ b) ⁶C₆
 - c) $^{6}P_{0}$ d) None

6. In terms of question No. (5) what is the rank or order of the word "zenith" in the dictionary?

- a) 613 b) 615
- c) 616 d) 618

<u>Set - B</u>

- 1. A computer has 5 terminals and each terminal is capable of four distinct positions including the positions of rest what is the total number of signals that can be made?
 - a) 20 b) 1020
 - c) 1023 d) None
- 2. A question paper contains 6 questions, each having an alternative. The number of ways an examine can answer one or more questions is
 - a) 720
 - b) 728
 - c) 729
 - d) none of these
- 3. The results of 8 matches (Win, Loss or Draw) are to be predicted. The number of different forecasts containing exactly 6 correct results is
 - a) 316
 - b) 214c) 112
 -) 112 1) nong -
 - d) none of these

$\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$

JPA Foundation Maths

6. SEQUENCE, SERIES & PROGRESSION

Synopsis :-

Sequence

An arrangement of numbers in a definite order according to some rule is called a sequence. 1, 3, 5, 7....is an infinite series. 2+4+6+8 is a finite series.

Progression

If the terms of a sequence follow certain pattern then the sequence is called a progression.

There are three types of progression :-

- 1. Arithmetic Progression.
- 2. Geometric Progression.
- 3. Harmonic Progression.

Arithmatic Progression

If the difference of any term and its previous term is constant then the given sequence is called an arithmetic progression.

1) nth term of A.P

 $t_n = a + (n - 1)d$

Where a = first term., n = number of terms, d = common difference, $t_n = n^{th}$ term

2. Sum of n term of A.P

 $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2} (a+1)$

Where a -first term, I = last term, d = common difference, $S_n = sum of n terms$

3) Number of numbers in A.P.

- 1. Two numbers in A.P. (a d), (a + d)
- 2. Three numbers in A.P. (a-d), a, (a + d)
- 3. Four numbers in A.P (a-3d), (a d), (a + d), (a + 3d)
- 4. Five numbers in A. P. a 2d, a d, a, a + d, a + 2d.

Part - I		10.	The two arithmetic	means between -6 and 14	
	A. P.				
	(iviodule	+ Scanner)		a) 2/3, 1/3	b) $2/3,7\frac{1}{3}$
1	Se The nth element of	t - A the sequence 1, 3, 5, 7,		c) $-2/3, -7\frac{1}{2}$	d) none of these
	is			5	
	a) n	b) 2n – 1	11	Insert two Arithme	tic means between 68 and
	c) 2n + 1	d) none of these		260	(Scapper)
				a) 132 196	(Scamer)
2.	The 20 th term of	the progression 1, 4, 7,		b) 130, 194	
	10is			c) 70, 258	
	a) 58	b) 52		d) None of the abo	ve.
	c) 50	d) none of these		.,	
r	The last to was of the		12.	Insert 4 A.M.'s betw	veen 3 and 18 : (Scanner)
5.	ic	series 5, 7, 9,to 21 terms		a) 12, 15, 9, 6	
	a) 11	b) 43		b) 6, 9, 12, 15	
	a) 44 c) 45	b) 43		c) 9, 6, 12, 15	
	C) 45	b) hone of these		d) 15, 12, 9, 6	
4.	The last term of the	e A.P. 0.6, 1.2, 1.8, to 13	13.	Divide 12.50 into fiv	e parts in A.P. such that the
	terms is			first part and the las	st part are in the ratio of 2:3
	a) 8.7	b) 7.8		a) 2, 2.25, 2.5, 2.75,	3
	c) 7.7	d) none of these		b) -2, -2.25, -2.5, -2	.75, -3
				c) 4, 4.5, 5, 5.5, 6	
5.	Find the ninth term	of the series: (Scanner)		d) -4, -4.5, -5, -5.5,	-6
	$\sqrt{2}, 5\sqrt{2}, 9\sqrt{2}, \dots$				
	a) $25\sqrt{2}$	b) $31\sqrt{2}$	14.	Divide 30 into five	parts in A.P., such that the
	c) $33\sqrt{2}$	d) $25\sqrt{2}$		first and last parts a	are in the ratio 2:3: (Scanner)
	C) 55 N 2	u) 25 V2		a) $\frac{24}{5}, \frac{27}{5}, 6, \frac{33}{5}, \frac{36}{5}$	-
6.	Which term of the	progression -1, -3, -5,is -		3 3 3 3 3 26 22 24 27	1
	39			b) $6, \frac{30}{5}, \frac{35}{5}, \frac{24}{5}, \frac{27}{5}$	-
	a) 21 st	b) 20 th		C C C C	
	c) 19 th	d) none of these		c) $\frac{27}{5}, \frac{24}{4}, \frac{30}{5}, \frac{33}{5}, 6$	5
7	Which term of the A	$P = \frac{3}{4} = \frac{4}{5}$ is $\frac{17}{7}$?		24 27 33 36	
	-) 12	$\sqrt{7}, \sqrt{7}, \sqrt{7}, \sqrt{7}, \sqrt{7}$		d) $6, \overline{5}, \overline{5}, \overline{5}, \overline{5}, \overline{5}, \overline{5}$	
	a) 13	b) 14			
	c) 15	d) 16	15.	The five numbers in	A.P. with their sum 25 and
~				the sum of their squ	uares 135 are
8.	The value C such the	at a, -3, b, 5, c are in A.P. is:		a) 3, 4, 5, 6, 7	b) 3, 3.5, 4, 4.5, 5
	a) - 7	b) 1		c) -3, -4, -5, -6, -7	d) -3, -3.5, -4, -4.5, -5
	c) 13	d) 9			
	-, . •	, -	16.	If the sum of five t	erms of AP is 75. Find the
9.	The 4 arithmetic me	ans between -2 and 23 are		third term of the se	ries (Scanner)
_ *	a) 3, 13, 8, 18	b) 18, 3, 8, 13		a) 35	b) 30
	c) 3, 8, 13, 18	d) none of these		c) 15	d) 20
	, ,	·			

d) None

c) 5, 9, 13, 17

17.	17. If the 10 th term of an A.P is twice the 4 th term, and 23 rd term is 'K' times the 8 th term, then the		
	value of 'k' is		
ć	a) 2.5	b) 3	
(c) 3.5	d) 4	
18.	The sum of three i product is 80. The a) 2, 8, 5 c) 2, 5, 8	integers in AP is 15 and their integers are b) 8, 2, 5 d) -8, -5, -2	
19.	Find three number the product is -24 a) -2, 2, 6 c) 1, 3, 5	rs in A.P. whose sum is 6 and b) -1, 1, 3 d) 1, 4, 7	
20.	Find three number the sum of whose a) -2, 2, 6 c) 1, 3, 5	rs in A.P. whose sum is 6 and square is 44. b) -1, 1, 3 d) 1, 4, 7	
21.	Find three number the sum of their cr a) -2, 2, 6 c) 1, 3, 5	rs in A.P. whose sum is 6 and ubes is 216. b) -1, 1, 3 d) 1, 4, 7	
22.	The three number product is 192 are a) 4, 6, 8 c) 8, 6, 4	s in A.P. whose sum is 18 and 	
23.	The three numbers the sum of their so a) 2, 9, 16 b) 16, 9, 2 c) both (a) and (b d) -2, -9, -16	s in A.P., whose sum is 27 and quares is 341, are	
24.	The four numbers their product is 94 a) 3, 5, 7, 9 b) 2, 4, 6, 8 c) 5, 9, 13, 17 d) None	in A.P., whose sum is 24 and 15, are	
25.	The four numbers the sum of their so a) 3, 5, 7, 9	in A.P., whose sum is 20 and quares is 120, are b) 2, 4, 6, 8	

26.	Divide 144 into three such that the larges smallest of three nut a) 48 c) 13	e parts which are in AP and t is twice the smallest, the mbers will be : (Scanner) b) 36 d) 32
27.	The four numbers second and third be the first and fourth b a) 3, 5, 7, 9 b) 2, 4, 6, 8 c) 5, 9, 13, 17 d) None	in A.P. with the sum of ing 22 and the product of peinf 85 are
28.	If the n terms of t (3n+4) : (n + 4) the	wo A.P.s are in the ratio ratio of the fourth term is
	a) 2 b) 3	c) 4 d) None
29.	The number of nu 25,556 divisible by 5 a) 5, 090 c) 5, 095	umbers between 74 and is b) 5, 097 d) none of these
30.	The sum of the serie a) -18,900 c) 19,900	s 9, 5, 1,to 100 terms is b) 18,900 d) none of these
31.	The sum of series 7+ a) 1071 c) 1171	-14+21+ to 17 th term is: b) 971 d) 1271
32.	The sum of the serie to 17 terms is a) 530 c) 535 ¹ ⁄ ₂	es 3 ¹ / ₂ + 7 + 10 ¹ / ₂ + 14 + b) 535 d) none of these
	Set	<u>; - В</u>
1.	Find the number whi sum of any number 9, 11 resultin a) -1 c) 1	ich should be added to the of terms of the A.P. 3, 5, 7, g in a perfect square. b) 0 d) None

If unity is adde terms of the A	d to the sum of any number of .P. 3, 5, 7, 9, The resulting	10.	The sum of a ser 17 and the comr	ries in A.P. is 72 the first term is mon difference -2. The number
sum is			of terms is	·
a) 'a' perfect cu	ıbe		a) 6	b) 12
b) 'a' perfect so	quare		c) 6 or 12	d) None
c) 'a' number				
d) none of thes	5e	11.	The first term of the first five term	f an A.P is 14 and the sums of ms and the first ten terms are
The sum of n t	terms of an AP is $3n^2 + 5n$. The		equal is magnit	ude but opposite in sign. The
			3 rd term of the A	AP IS
a) 8, 14, 20, 26			a) $6\frac{4}{11}$	
D) 8, 22, 42, 68			11 b) 6	
C) ZZ, 68, 114, .			D = 0	
a) none of thes	se		C) 4/11	
			d) none of these	2
The sum of a ce	ertain number of terms of an AP	12		$\Delta D = (2\pi - 1)/(2\pi - 2\pi)$
series -8, -6, -4	,IS 52. The number of terms	12.	the ptn term of	an AP is $(3p - 1)/6$. The sum of
IS -> 10	L) 12		the first h terms $(2\pi + 1)$	of the AP is
a) 12	D) 13		a) $n(3n + 1)$ b) $n(12(2n + 1))$	
C) 11	d) none of these		b) $n/12(3n + 1)$	
The number of	torms of the cories E + 7 + 0 +		c) $1/12(511-1)$	
must be tak	terms of the senes $3+7+9+$		d) none of these	2
	b) 10	12	If the sum of p t	forms of an A P is $(2n^2 - n)$ and
a) 20	d) 25	15.	its common diffe	$\frac{1}{2}$
0/15	u) 25		its common and	(Scanner)
If the sum 50 -	+ 45 + 40 + 35 + is zero	·	a) 3	h) 2
then the numb	er of terms is: (Scanner)		c) 4	d) 1
a) 22	b) 20		C) 4	G) 1
c) 21	d) 25	14	The nth term o	of the series whose sum to n
0) = 1	0,15	17.	terms is $5n^2 + 2i$	n is
The first and th	he last term of an AP are -4 and		a) $3n - 10$	
146. The sum o	f the terms is 7171. The number		b) $10n - 2$	
of terms is			c) $10n - 3$	
a) 101	b) 100		d) none of these	2
c) 99	d) none of these			-
-,	.,	15	The sum of n te	rms of an A P is $2n^2 + 3n$ Find
The number of	the terms of the series 10 +	15.	the n th term	
2 1			a) $4n + 1$	b) 4n – 1
9-+9-+9+	. will amount to 155 is		c) 2n + 1	d) 2n – 1
a) 30			0)	<i>c,</i> <u> </u>
b) 31		16.	If the sum of n	terms of an A.P be $2n^2 + 5n$.
c) both (a) & (b))		then its 'n th ' tern	n is: (Scanner)
d) none of thes	5e		a) 4n – 2	b) 3n – 4
			, c) 4n + 3	d) 3n + 4
Find the sum o	f the series:		-, -	-,
2 + 7 + 12 +		17.	If the sum of fir	st 'n' terms of an A.P. is $6n^2$ +
a) 8970	b) 8870		6n, then the fou	rth term of the series:
c) 7630	d) 9875			(Scanner)
	If unity is addet terms of the A sum is a) 'a' perfect cu b) 'a' perfect cu c) 'a' number d) none of thes The sum of n the series is a) 8, 14, 20, 26 b) 8, 22, 42, 68 c) 22, 68, 114, . d) none of thes The sum of a co series -8, -6, -4 is a) 12 c) 11 The number of must be take a) 20 c) 15 If the sum 50 - then the numb a) 22 c) 21 The first and the 146. The sum of of terms is a) 101 c) 99 The number of $9\frac{2}{3} + 9\frac{1}{3} + 9 + \dots$ a) 30 b) 31 c) both (a) & (b d) none of thes Find the sum of $2 + 7 + 12 + \dots$ a) 8970 c) 7630	If unity is added to the sum of any number of terms of the A.P. 3, 5, 7, 9, The resulting sum is a) 'a' perfect cube b) 'a' perfect square c) 'a' number d) none of these The sum of n terms of an AP is $3n^2 + 5n$. The series is a) 8, 14, 20, 26 b) 8, 22, 42, 68 c) 22, 68, 114, d) none of these The sum of a certain number of terms of an AP series -8, -6, -4,is 52. The number of terms is a) 12 b) 13 c) 11 d) none of these The number of terms of the series $5+7+9+$ must be taken so that the sum may be 480 a) 20 b) 10 c) 15 d) 25 If the sum 50 + 45 + 40 + 35 + is zero, then the number of terms is: (Scanner) a) 22 b) 20 c) 21 d) 25 The first and the last term of an AP are -4 and 146. The sum of the terms is 7171. The number of terms is a) 101 b) 100 c) 99 d) none of these The number of the terms of the series 10 + $9\frac{2}{3}+9\frac{1}{3}+9+$ will amount to 155 is a) 30 b) 31 c) both (a) & (b) d) none of these Find the sum of the series: 2+7+12+297. (Scanner) a) 8970 b) 8870 c) 7630 d) 9875	If unity is added to the sum of any number of terms of the A.P. 3, 5, 7, 9, The resulting sum is10.a) 'a' perfect cube b) 'a' perfect square () 'a' number (d) none of these11.The sum of n terms of an AP is $3n^2 + 5n$. The series is a) 8, 14, 20, 26 b) 8, 22, 42, 68 () 22, 68, 114, d) none of these11.The sum of a certain number of terms of an AP series -8, -6, -4,is 52. The number of terms is a) 12 b) 13 c) 11 c) 11 d) none of these12.The number of terms of the series $5+7+9+$ must be taken so that the sum may be 480 a) 20 b) 10 c) 15 d) 2513.If the sum $50 + 45 + 40 + 35 + $ is zero, then the number of terms is: $(Scanner)$ a) 22 b) 20 c) 21 d) 2514.The first and the last term of an AP are -4 and 146. The sum of the terms of the series $10 + 9\frac{2}{3} + 9\frac{1}{3} + 9 + will amount to 155 isa) 30b) 31c) both (a) & (b)d) none of these15.Find the sum of the series:2 + 7 + 12 +$	If unity is added to the sum of any number of terms of the A.P. 3, 5, 7, 9, The resulting sum is a) 'a' perfect cube b) 'a' perfect square c) 'a' number d) none of these10. The sum of a set is 17 and the corn of terms is a) 6 c) 6 or 12The sum of n terms of an AP is $3n^2 + 5n$. The series is a) 8, 14, 20, 26 b) 8, 22, 42, 68 c) 22, 68, 114, d) none of these11. The first term of the first five ter equal is magnit 3^{rd} term of the A a) $6\frac{4}{11}$ b) 6 c) 4/11 d) none of theseThe sum of a certain number of terms of an AP series -8, -6, -4,is 52. The number of terms is a) 12 b) 13 c) 11 d) none of theseThe number of terms of the series $5+7+9+$ must be taken so that the sum may be 480 a) 20 b) 10 c) 15 d) 25If the sum 50 + 45 + 40 + 35 + is zero, then the number of terms is: a) 101 b) 100 c) 22 c) 21 d) none of theseThe number of the terms is 7171 . The number of terms is a) 101 b) 100 c) 99 d) none of theseThe number of the terms of the series 10 + $9\frac{2}{3} + 9\frac{1}{3} + 9 + will amount to 155 isa) 30b) 31c) both (a) & (b)d) none of theseThe number of the series:2+7+12 +$

	a) 120 c) 48	b) 72 d) 24		a) 44 c) 19	b) 22 d) 11	
18.	If the sum of 'n' to Progression) is 2n ² , a) 20 c) 18	erms of an AP (Arithmetic the fifth term is b) 50 d) 25	26.	If the sum of Progression (A.P) 164, then the valu a) 27 c) 24	'n' terms of is 3n ² + 5n and ue of m is: b) 28 d) 26	an Arithmetic d its m th term is (Scanner)
19.	In an A.P., if commo terms is 49, 7 th term	on difference is 2, Sum of n n is 13 then n = (Scanner)	27.	If a, b, c are in then the value of	Arithmetic Pro a – b + c is:	gression (A.P.) (Scanner)
	a) 0 c) 7	b) 5 d) 13		a) a c) b	b) -b d) c	
20.	If third term and s eighteen and thirty first twenty terms w a) 540 c) 740	eventh term of an A.P are respectively, then sum of ill be: (Scanner) b) 610 d) 810	28.	If a, b, c, d are in a a) $a^2 - 3b^2 + 3c^2 - b) a^2 + 3b^2 + 3c^2$ c) $a^2 + 3b^2 + 3c^2 - c) a^2 + 3b^2 + 3c^2 - d)$ None	A.P. then $d^{2} = 0$ $d^{2} = 0$ $d^{2} = 0$	
21.	The 4 th term of an and the 7 th term ex by 1. Find the fir difference 'd'.	A.P. is three times the first ceeds twice the third term st term 'a' and common (Scanner)	29.	If a, b, c, d, e are i a) $a - b - d + e =$ c) $b - 2c + d = 0$	n A.P. then 0 b) a – 2c + d) all the al	e = 0 pove
	a) a = 3, d = 2 b) a = 4, d = 3 c) a = 5, d = 4 d) a = 6, d = 5		30.	If a, b, c are in A.F (a ³ + 4b ³ + c ³)/ [b a) 1 b) 2	P. then the valu (a ² + c ²)] is c) 3	e of d) None
22.	An Arithmetic progr	ression has 13 terms whose	31.	If a, b, c are in A. + c^2 /(ab + bc + c	P. then the valu ca) is	ue of (a ² + 4ac
	is:	(Scanner)		a) I b) 2	C) 3	d) None
	c) 9	d) 2	32.	If a, b, c be respe an A.P. the value	ctively p th , q th a of a(g – r) +b(r	nd r th terms of – p) + c(p – a)
23.	If the sum of the 4 th an A.P. is 8, what is t of the progression? a) 60 c) 110	^a term and the 12 th term of he sum of the first 15 terms (Scanner) b) 120 d) 150	33.	is a) 0 c) -1 If a, b, c be the sur	b) 1 d) None ms of p, q, r terr	ns respectively
24.	lf 8 th term of an A. terms is a) 15 c) 225	P is 15, then sum of its 15 (Scanner) b) 0 d) 225/2		of an A.P. the valu (c/r) (p-q) is a) 0 c) -1	ue of (a/p) (q-r) b) 1 d) None	+ (b/q) (r-p) +
25.	The sum of the third is 8. Find the sum of progression.	d and ninth term of an A.P. of the first 11 terms of the (Scanner)	34.	If S_1 , S_2 , S_3 be the the first term of respective comm + S_3) / S_2 is	sums of n term f each being on differences	s of three A.P.s unity and the 1, 2, 3 then $(S_1$

	a) 1	b) 2	c) -1	d) None	3.	The sum of all na and 1000 which a	atural numbers between ² re multiple of 5 is:	100
35.	lf S ₁ , S ₂ , S ₃ b	e the respe	ctively the	e sum of n, 2n,			(Scannel	r)
	3n 6 terms a	an A.P. the	value of –	$\frac{S_3}{1}$ is given		a) 98,450	b) 96,450	
			($\mathbf{S}_2 - \mathbf{S}_1$)		c) 97,450	d) 95,450	
	by. a) 1	b) 2	c) 3	d) None	4.	Find the sum of a 250 and 1,000 wh	all natural numbers betwe ich are exactly divisible by	een / 3 :
36.	The m th terr	n of an A.P	. is n and	n th term is m.			(Scannel	r)
	The r ^m term	of it is		2		a) 1,56,375	D) 1,50,357	
	a) $m + n + i$	· ()) n + m – .	2r		C) 1,03,575	u) 1,03,337	
	C) m + n + r	/2 0)) m + n – i		5	The sum of all nur	mbers between 100 and 10	000
37	If the P th ter	m of an A I	P is 'a' an	d the a th term		which are divisible	e by 11 will be:	
57.	is 'p', then it	ts r th term is	. 15 q un	(Scanner)			(Scanner)	
	a) $p + q - r$			(Beanner)		a) 44550	b) 66770	
	b) p + q + r					c) 55440	d) 33440	
	c) p – q – r							
	d) p – q				6.	The sum of all na	atural numbers between S	500
						and 1000 which a	re divisible by 13, is	
38.	If the p th ter	m of an A.P	. is q and	the q th term is		a) 28,405	b) 24,805	
	p the value	of the (p +	q) ^m term i	is		C) 28,540	d) None of these	
	a) 0	b) 1	c) -1	d) None	7	The sum of n	atural numbers unto '	200
20	The sum of	n torms of r	an A D is a	r and the sum	7.	excluding those d	ivisible by 5 is	200
59.	of a terms is	n The sun	an A.F. is (a of n + a	terms is		a) 20,100	b) 4,100	
	a) - $(p + q)$	b) b)				c) 16,000	d) None	
	c) $(p - q)^2$	d)	$p^2 - q^2$					
			·		8.	The sum of all nat	ural numbers from 100 to 3	300
40.	The p th term	n of an A.P.	is 1/q an	d the q th term		which are exactly	divisible by 4 and 5 is	
	is 1/p. The s	um of the p	oq th term i	s		a) 2,200	b) 2,000	
	a) $\frac{1}{2}(pq+1)$	b)	$\frac{1}{2}(pq-1)$)		c) 2,220	d) None of these	
	2 c) pa + 1	ď	2 1 na – 1		9.	The sum of all nat	ural numbers from 100 to 3	300
	o) p q	.,				which are exactly	divisible by 4 or 5 is	
						a) 10, 200	b) 15,200	
		<u>Set - (</u>	<u>c</u>			c) 16,200	d) none of these	
					10	The income of a	person is Rs 5 00 000 in	the
1.	The sum of	all two Digi	it odd nun	nbers is	10.	firm in the first ve	ar and he receives an incre	ase
	-) 2475	L-)	(S)	canner)		of Rs.15,000 per	vear for next 10 years.	The
	a) 2475 c) 4950	(D (D	25/5			total amount he r	eceives in 10 years is:	
	C) 4930	a)	5043				(Scannel	r)
2.	The sum of	all odd nur	nbers bet	ween 200 and		a) Rs.56,75,000	b) Rs.72,50,000	
	300 is					c) Rs.15,67,500	d) None of these	
	a) 11, 600	b)	12,490					
	c) 12,500	d)	24, 750		11.	It each month Rs. ²	100 increases in any sum th	nen
						sum of first mont	sum after 10 months, if h is Rs.2,000. (Scanne l	the r)

12.	a) Rs.24,500 b) Rs.24,000 c) Rs.50,000 d) Rs.60,000 A man employed in a company is promised a salary of Rs.3,000 every month for the first year and an increment of Rs.1,000 in his monthly salary every succeeding year. How much does the man earn from the company in 20 years? (Scanner) a) Rs.30,00,000 b) Rs.27,50,000 c) Rs.19,10,000 d) Rs.7,90,000	18.	than he did in the preceding year. The amount of money he saved in the 1 st year was a) 1000 b) Rs.1500 c) Rs.1200 d) none of these A person pays Rs.975 by monthly instalment each less then the former by Rs.5. The first instalmentis Rs.100. The time by which the entire amount will be paid is a) 10 months b) 15 months c) 14 months d) none of these
13.	A person is employed in a company at Rs.3000 per month and he would get an increase of Rs.100 per year. Find the total amount which he receives in 25 years. a) Rs.1,05,000 b) Rs.12,60,000 c) Rs.12,50,000 d) None	19.	A person pays Rs.975 in monthly instalments, each instalment is less than former by Rs.5. The amount of first instalment is Rs.100. In what time will the entire amount be paid? (Scanner) a) 26 months b) 15 months c) Both (a) & (b) d) 18 months
14.	A contractor who fails to complete a building in a certain specified time is compelled to forfeit Rs.200 for the first day of extra time required and thereafter forfeited amount is increased by Rs.25 for every day. If he loses Rs.9,450, for how many days did he over-run the contract time? (Scanner) a) 19 days b) 21 days c) 23 days d) 25 days	20.	The sum of the series – 8, -6, -4,n terms is 52. The number of terms n is (Scanner) a) 11 b) 12 c) 13 d) 10 <u>Set - D</u> The sum of n terms of two A.P. s are in the ratio of (7n-5)/(5n+17). Then theterm of the
15.	A sum of Rs.6240 is paid off in 30 instalments such that each instalment is Rs.10 more than the proceeding installment. The value of the 1 st instalment is a) Rs.36 b) Rs. 30 c) Rs.60 d) none of these		a) 12 b) 6 c) 3 d) None
16.	On 1 st January every year a person buys National Saving Certificates of value exceeding that of his last year's purchase by Rs.100. After 10 years, he finds that the total value of the certificates purchased by him is Rs.54,500. Find the value of certificates purchased by him in the first year: (Scanner) a) Rs.6,000 b) Rs.4,000 c) Rs.5,000 d) Rs.5,500		
17.	A person saved Rs.16,500 in ten years. In each year after the first year he saved Rs.100 more		

Geometric Progression

If the ratio of any term and its previous term is constant then the given sequence is called as geometric Progression.

- **1)** $\mathbf{n^{th}}$ term of G.P. $t_n = ar^{n-1}$
- 2) Sum of n term of G.P

1.
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 when $r > 1$
2. $S_n = \frac{a(1 - r^n)}{1 - r}$ when $r < 1$

- 3. S_n = (middle term) x (no. of terms)
- 4. If r = 1, $S_n = na$.
- 5. If r = -1
 - $S_n = a$, n is odd
 - $S_n = 0$, n is zero.

Where a = first term, r = commo ratio, n = number of terms, Sn = sum of n terms

3. Number of numbers in G.P.

- 1. Two numbers in G.P a/r, ar
- 2. Three numbers in G.P a/r, a, ar
- 3. Four numbers in G.P. a/r^3 , a/r, ar, ar^3
- 4. Five numbers in G.P. $\frac{a}{r^2}$, $\frac{a}{r}$, a, ar, ar^2

<u> Part - II</u>

G. P. (Module + Scanner) Set - A

1. The 7th term of the series 6, 12, 24,is a) 384 b) 834

- c) 438 d) None of these
- 2. t₈ of the series 6, 12, 24,....is
 a) 786
 b) 768
 c) 867
 d) None of these
- The last term of the series 1, 2, 4,to 10 terms is
 a) 512
 b) 256
 - c) 1024 d) None of these
- 4. t₁₂ of the series -128, 64, -32,is
 a) -1/16
 b) 16
 c) 1/16
 d) None of these

- 5. The 4th term of the series 0.04, 0.2, 1,is
 a) 0.5
 b) 1/2
 c) 5
 d) None of these
- 6. The last term of the series 1, -3, 9, -27 up to 7 terms is
 a) 297
 b) 729
 c) 927
 d) None of these
- 7. The last term of the series x^2 , x, 1, ...to 31 terms is a) x^{28} b) 1/xc) $1/x^{28}$ d) None of these
- 8. The nth term of the series 16, 8, 4,....In 1/2^{17.}The value of n is
 a) 20
 b) 21
 c) 22
 d) None of these

9.	Find the no. of terms 25, 5, 1, $\frac{1}{3125}$ a) 6 b) 7	s of the series (Scanner) c) 8 d) 9
10.	In a G.P. the sixth ter ratio is 3, then th (Scanner)	m is 729 and the common ne first term of G.P. is:
	a) 2 b) 3	c) 4 d) /
11.	The sum of 3 number product is 729. The r a) 3, 27, 9 c) 3, 9, 27	ers of a G P is 39 and their numbers are b) 9, 3, 27 d) None of these
12.	The product of 3 nur sum of squares is 81 a) 9, 3, 27 c) 3, 9, 27	nbers in G P is 729 and the 9. The numbers are b) 27, 3, 9 d) None of these
13.	If the sum of three the sum of their squa	numbers in G.P. is 21 and ares is 189 the numbers are
	 a) 3, 6, 12 c) Both	b) 12, 6, 3 d) None
14.	If the continued pro G.P. is 27 and the su is 39 the numbers ar a) 1, 3, 9 c) Both	oduct of three numbers in m of their product in pairs re b) 9, 3, 1 d) None
15.	Find three numbers is 21, and the sum o	in G.P. such that their sum f their squares is 189:
	a) 5, 7, 9 c) 3, 6, 12	b) 3, 7, 11 d) 4, 8, 9
16.	Find the three number and the sum of their p a) 4, 12, 36 c) 5, 17, 30	ers in G.P whose sum is 52 product in pairs is 624. b) 10, 16, 26 d) None of these
17.	Four geometric mea a) 12, 36, 108, 324 c) 10, 36, 108, 320	ns between 4 and 972 are b) 12, 24, 108, 320 d) None of these

18. If the third term of a G.P. is the square of the first and the fifth term is 64 the series would be

```
a) 4+8+16+32+....
b) 4 - 8 + 16 - 32 + .....
c) both
d) None
```

- 19. The second term of a G P is 24 and the fifth term is 81. The series is
 a) 16, 36, 24, 54,...
 b) 24, 36, 53,...
 c) 16, 24, 36, 54,...
 - d) None of these

<u>Set - B</u>

- Sum of the series 1 + 3 + 9 + 27 + is 364. The number of terms is

 a) 5
 b) 6
 c) 8
 d) None of these
- 2. The number of terms to be taken so that 1 + 2 + 4 + 8 + will be 8191 is
 a) 10 b) 13
 c) 12 d) None of these
- How many terms of the G.P. 1, 4, 16... are to be taken to have their sum 341?
 a) 8 b) 5 c) 3 d) None
- 4. The sum of how many terms of the sequence 256, 128, 64, is 511. (Scanner)
 a) 8
 b) 9
 c) 7
 d) None of these.
- 5. The sum of the series -2, 6, -18,to 7 terms is
 a) -1094
 b) 1094
 c) -1049
 d) None of these
- 6. The sum of the series 243, 81, 27,to 8 terms is

b)
$$\left(36\frac{13}{30}\right)$$

c) $36\frac{1}{9}$ d) None of these

a) 36

7.	If you save 1 paise 4 paise the succee your total savings in a) Rs.163 c) Rs.163.83	today, 2 paise the next day ding day and so on, then n two weeks will be b) Rs.183 d) None of these	15.	The sum of the serie a) $2^n - 1$ b) $2n - 1$ c) $1/2^n - 1$ d) None of these	es 1 + 2 + 4 + 8 +to n term
8.	The sum of n terms	of a G.P. whose first terms	16.	The least value of r	h for which $\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^6} >$
	1 and the common	ratio is $\frac{1}{2}$, is equal to $1\frac{1}{128}$.		a) 9	b) 10
	The value of n is			c) 7	d) 8
	a) 7	b) 8			
	C) 6	d) None of these	17.	If x, y, z are in G.P., t	then
9.	If the sum of n terr 128 and common r	ms of a G.P. with last term		a) $y^2 = xz$ c) $2y = x + z$	b) $y (z^2 + x^2) = x (z^2 + y^2)$ d) None of these
	is		18.	If x, y, z are the term	ns in G.P. then the terms x^2
	a) 8	b) 5		$+ y^{2}$, xy + yz, y ² + z ²	² are in: (Scanner)
	c) 3	d) None		a) A.P.	b) G.P.
10	The least value of	n far high the sure of a		c) H.P.	d) None of these
10.	terms of the series than 7000 is	$1 + 3 + 3^2 + \dots$ is greater	19.	If a, b, c are in G.P. $c(a^2+b^2)$ is	then the value of $a(b^2+c^2)$ -
	a) 9 b) 10	c) 8 d) 7		a) 0	b) 1
11.	The sum of 1 + 1/3	+ 1/3 ² + 1/3 ³ + + 1/3 ⁿ⁻¹		c) -1	d) None
	is a) 2/3	b) 3/2	20.	If a, b, c, d are in G cd)-(c+a)(b ² -c ²) is	.P. then the value of b(ab-
	c) 4/5	d) None of these		a) 0	b) 1
12	The nth element of	the sequence -1 2 -4 8		c) -1	d) None
	is		21.	lfa, b, c, d are i	n G.P. then the value of
	a) (-1) ⁿ 2 ⁿ⁻¹			$(ab+bc+cd)^2-(a^2+b^2)$	$(b^2 + c^2)(b^2 + c^2 + d^2)$ is
	b) 2 ⁿ⁻¹			a) 0	b) 1
	c) 2^n			c) -1	d) None
	u) none of these		22	If a b c d ara in C r	then ath his curd arain
13.	The sum to ∞ of the	e series -5, 25, -125, 625,	22.	a) A P	b) G P
	Can be written as			c) H.P.	d) None
	a) $\sum_{k=1}^{\infty} (-5)^{k}$	b) $\sum_{k=1}^{\infty} 5^k$			
	k=1	k=1	23.	If a, b, c are in G.P.	then $a^2 + b^2$, $ab+bc$, b^2+c^2
	c) $\sum_{k=1}^{k} -5^{k}$	d) none of these		are in	
	<i>k</i> =1			a) A.P. c) H P	d) None
14.	The sum of the serie	es 1-1+1-1+1-1+ to 100		c, m	
	terms is equal to		24.	If a, b, c are in G.P.	then the value of (a-b+c)
	a) 1	b) -1		(a+b+c) ² -(a+b+c)(a	$^{2}+b^{2}+c^{2}$) is given by
	c) 0	d) 50		a) 0	b) 1
				C) - I	a) None

25.	If a, b, c are in G.P. then the value of $c(a^2+b^2)$ is given by a) 0 b) 1 c) -1 d)	f a(b ² +c ²)-) None	2.
26.	If a, b, c are in G.P. then the value of + $b^{-3} + c^{-3}$)-($a^3 + b^3 + c^3$) is given by a) 0 b) 1 c) -1 d)	a²b²c² (a ⁻³) None	3.
27.	If a, b, c, d are in G.P. then $(a-b)^2$, (b are in a) A.P. b) G.P. c) H.P. d)	$(-c)^{2}$, $(c-d)^{2}$	
28.	If a, b, c, d are in G.P. then the va $c)^{2}+(c-a)^{2}+(d-b)^{2}-(a-d)^{2}$ is given by a) 0 b) 1 c) -1 d)	lue of (b-	
29.	If a, b, c are the p^{th} , $q^{th}andr^{th}$ terms respectively the value of a^{q-r} . $b^{r-p}.c^{p-q}$ a) 0 b) 1 c) -1 d)	s of a G.P. is None	4.
30.	In a G.P. if the $(p+q)^{th}$ term is m and $q)^{th}$ term is n then the p^{th} term is a) $\sqrt{(mn)}$ b) mn c) $(m+n)$ d) $(m-n)$	d the (p – 	5.
31.	In a G.P, the product of the first the 27/8. The middle term is a) 3/2 b) 2/3 c) 2/5 d) None of the	nree terms se	6.
32.	In a G.P. If the fourth term is '3' product of first seven terms is: a) 3^5 b) 3^7 c) 3^6	then the Scanner) d) 3 ⁸	7.
33.	The 3 rd term of a G.P. is $\frac{2}{3}$ and the $\frac{2}{81}$, then the 1 st term is (Scan) a) 6 b) $\frac{1}{3}$ c) 9 d) 2 <u>Set - C</u>	6 th term is ner)	8.
1.	The population of a country was 5 2005 and is growing at 2% p.a population is the year 2015 is estimated	5 crore in a C.I. the ated as	

b) 60.05 crore

d) None of these

2.	At 10% C.I. p.a., a sum of money accumulate to			
	Rs.9625 in 5 years.	. The sum invested initially is		
	a) Rs.5976	b) Rs.5970		
	c) Rs.5870	d) Rs.5370		

3. A person borrows Rs.8,000 at 2.76% Simple Interest per annum. The principal and the interest are to be paid in the 10 monthly instalments. If each instalment is double the preceding one, find the value of the last instalment.

a) 4090	b) 4096
c) 4095	d) None

- 4. If (a-b), (b-c), (c-a) are in G.P. then the value of $(a+b+c)^2-3(ab+bc+ca)$ is given by a) 0 b) 1 c) -1 d) None
- 5. The sum of the first 20 terms of a G.P is 244 times the sum of its first 10 terms. The common ratio is a) $\pm\sqrt{3}$ b) ± 3 c) $\sqrt{3}$ d) None of these
- 6. The sum of first eight terms of G.P. is five times the sum of the first four terms. The common ratio is _____.

a) √2	b) -√2
c) both	d) None

7. The sum of first 20 terms of a GP is 1025 times the sum of first 10 terms of same GP then common ratio is: **(Scanner)**

a)
$$\sqrt{2}$$
 b) 2
c) $2\sqrt{2}$ d) 1/2

8. The sum of the series $\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}} + \dots$ to 18

terms is

a) 9841
$$\frac{(1+\sqrt{3})}{\sqrt{3}}$$
 b) 9841

c)
$$\frac{9841}{\sqrt{3}}$$
 d) None of these

JPA Foundation Maths

a) 57.05 crore

c) 67.05 crore

BUSINESS MATHEMATICS

Sum of infinite terms of geometric Progression

5	$S_{\infty} = \frac{a}{1-r}, r < 1.$					
	<u>Pai</u> S ∞ F (Module Se	r <u>t - III</u> For G.P. + Scanner) t - A	7.	The sum of the infi + is a) $4\frac{1}{12}$ b) c) 12 d)	nite GP 14, -2, +2 $12\frac{1}{4}$ None of these	/7, -2/49,
1.	The number 2.3535 a) $\frac{235}{99}$ c) $\frac{230}{99}$	b) $\frac{234}{99}$ d) $\frac{233}{99}$	8.	If the first term of term by 2 and the series is a) 10, 8, 32/5 b) 10, 8, 5/2 c) 10, 10/3, 10/9 d) None	a G.P. exceeds th e sum to infinity	e second is 50 the
2.	The sum upto infir 0.16 + is a) 5 c) 8	hity of the series 4 + 0.8 + b) 10 d) None	1.	The sum upto $\sqrt{2} + 1/\sqrt{2} + 1/(2\sqrt{2})$	e t - B infinity of the	e series
3.	The sum upto infini 1/18 + is a) 3/4 c) 1/2	ity of the series 1/2 + 1/6 + b) 1/4 d) None	2.	a) $2\sqrt{2}$ c) 4 Sum upto ∞ of the s	b) 2 d) None series $8+4\sqrt{2}+4+$.is
4.	The sum of the infin $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ a) 1.95 c) 1.75	nite G.P. is equal to: (Scanner) b) 1.5 d) None of these	3.	a) $6(2+\sqrt{2})$ c) $4(2+\sqrt{2})$ The sum upto $(\sqrt{2}+1)+1+(\sqrt{2}-1)$ a) $(1/2)(4+3\sqrt{2})$	d) $4(2 - \sqrt{2})$ infinity of the $(1 - \sqrt{2})$	e series
5.	Find the sum $2, \frac{4}{y}, \frac{8}{y^2}, \frac{16}{y^3}$; if a) $\frac{2y}{y-2}$ c) $\frac{3y}{y-2}$	of the infinite terms y > 2 (Scanner) b) $\frac{4y}{y-2}$ d) None of these.	4.	b) $(1/2) (4-3\sqrt{2})$ c) $4+3\sqrt{2}$ d) None The sum upto infin $^{1}+2^{-4})+(2^{-2}+2^{-6})+$ a) $7/3$ c) $4/7$	ity of the series (1 is b) 3/7 d) None	+2 ⁻²)+(2 ⁻
6.	The sum of the infir + is a) 0.33 c) 0.75	nite G.P. 1 – 1/3 + 1/9 – 1/27 b) 0.57 d) None of these	5.	Sum upto∞ of 1 +1/3 ⁴ +1/2 ⁵ +1/3 ⁶ +. a) 19/24 c) 5/24	the series 1/2+7 is b) 24/19 d) None	1/3 ² +1/2 ³
JFA	rounuauon ™auis					µg. 140

BUSINESS MATHEMATICS

The sum upto infinity of the series 2/3 + 5/9 +6. 2/27 + 5/81 + Is 1. a) 11/8 b) 8/11 c) 3/11 d) None The sum upto infinity of the series 4/7-7. $5/7^2 + 4/7^3 - 5/7^4 + \dots$ is a) 23/48 b) 25/48 c) 1/2 d) None 2. 8. Sum upto infinity of series. $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{2^5} + \dots$ (Scanner) b) 24/19 a) 19/24 c) 5/24 d) None If $x = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots \infty$ 3. 9. $y = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots \infty$ Find xy. (Scanner) a) 0 b) 1 c) -1 a) 2 c) 8/9 d) $\frac{1}{2}$ 4. 10. If the sum of infinite terms in a G.P. is 2 and the sum of their squares is 4/3 the series is a) 1, 1/2, 1/4 b) 1, -1/2, 1/4 c) -1, -1/2, -1/4 c) (n/2) (n+1) d) None 5. The first term of a G.P. where second term is 2 11. and sum of infinite term is 8 will be: (Scanner) a) 6 b) 3 c) 4 d) 1 12. Find the product of : $(243), (243)^{1/6}, (243)^{1/36}, \dots$ (Scanner) a) 1,024 b) 27 c) 729 d) 246 13. The sum of terms of an infinite GP is 15. And the sum of the squares of the term is 45. Find the common ratio. (Scanner) a) 3/2 b) 1 d) 2/3 c) -2/3

Set - C If $y = 1 + x + x^2 + \dots \infty$ then x =(Scanner) a) $\frac{y-1}{y}$ b) $\frac{y+1}{y}$ d) $\frac{y}{y-1}$ c) $\frac{y}{y+1}$ If $1+a+a^2+...$ $\infty = x$ and $1+b+b^2+....\infty = y$ then 1 + ab + a^2b^2 +..... ∞ = z,then z is given by a) (xy)/(x+y-1)b) (xy)/(x-y-1)c) (xy)/(x+y+1)d) None If $x = a + a/r + a/r^2 + ...\infty$, $y = b - b/r + b/r^2 - b/r + b/r^2$ ∞ , and $z = c + c/r^2 + c/r^4 +\infty$, then the value of $\frac{xy}{z} - \frac{ab}{c}$ is b) 1 d) None If S_1 , S_2 , S_3 , S_n are the sums of infinite G.P.s whose first terms are 1, 2, 3 N and whose common ratios are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{(n+1)}$ then the value of $S_1+S_2+S_3+\ldots S_n$ is a) (n/2) (n+3) b) (n/2) (n+2)

A certain ball when dropped to the ground rebounds to $\frac{4^m}{5}$ of the height from which it falls; it is dropped from a height of 100 metres find the total distance it travels before finally coming to rest: a) 600mh) 700m

d) $n^2/2$

a) 600m	D) 700m
c) 900m	d) 200m

Some Formula

Synopsis :

If a & b are the 2 number then :

- 1) A.M = $\frac{a+b}{2}$
- 2) G. M. = \sqrt{ab}
- 3) H.M. = $\frac{2ab}{a+b}$
- 4) A. M. \geq G. M. \geq H. M.
- 5) $(G.M.)^2 = A.M. \times H.M.$

i.e. G.M. is the geometric mean between A.M. & H. M.

- 6) If a & b are unequal then A. M. > G. M. > H. M.
- 7) Quadratic Equations having a and b as its roots is, $x^2 = 2Ax + G^2 = 0$.
- 8) If 'n' means are inserted between a & b then the sum of the means is $\frac{n(a+b)}{2}$.

Part - IV

Means Medule + Scanne

(Module + Scanner)

Set - A

- The arithmetic mean between 33 and 77 is

 a) 50
 b) 45
 c) 55
 d) none of these
- 2. The A.M. of two positive numbers is 40 and their G. M. is 24. The numbers are
 a) (72, 8)
 b) (70, 10)
 c) (60, 20)
 d) None of these
- 3. The sum of four numbers in G. P. is 60 and the A.M. of the first and the last is 18. The numbers area) 4, 8, 16, 32b) 4, 16, 8, 32
 - a) 4, 8, 16, 32 c) 16, 8, 4, 20 d) None of these
- 4. If the terms 2x, (x+10) and (3x+2) be in A.P., the value of x is
 a) 7 b) 10
 - c) 6 d) None of these
- 5. (x + 1), 3x, (4x + 2) are in A.P. Find the value of x (Scanner)
 a) 2 b) 3
 c) 4 d) 5
- 6. The value of K, for which the terms 7K + 3, 4K
 5, 2K + 10 are in A.P., is (Scanner)
 a) 13 b) 13

c) 23

c) 15/2

d) -23

- 7. The value of x such that 8x + 4, 6x 2, 2x + 7 will form an AP is
 a) 15
 b) 2
 - d) none of the these
- 8. Find two numbers whose A.M. is 10 and G.M. is 8. (Scanner)
 a) [10, 10]
 b) [16, 4]
 c) [18, 2]
 d) [14, 6]
- 9. Find the two numbers whose geometric mean is 5 and arithmetic mean in 7.5. (Scanner)
 a) 10 and 5
 b) 13.09 and 1.91
 c) 12 and 3
 d) None of the above
- 10. If the AM and GM of two numbers is 6.5 and 6 the no. s' are : (Scanner)
 a) 3 and 2
 b) 9 and 4
 c) 81 and 16
 d) None
- 11. Find the numbers whose arithmetic mean is 12.5 and geometric mean is 10. (Scanner)
 a) 20 and 5
 b) 10 and 5
 c) 5 and 4
 d) None of these
- 12. If AM and HM for two numbers are 5 and 3.2 respectively. GM will be: (Scanner)
 a) 20
 b) 16
 c) 4
 d) 5

13. If A be the A.M. of two positive unequal a) 6 b) 10 quantities x and y and G be their G.M, then c) 8 d) 12 a) A < G b) A > G Part - V c) $A \ge G$ d) A ≤ G A.P + G.P(Module + Scanner) 14. A.M is never _____ than G.M. Set - A b) less a) more 1. The sum of three numbers in G.P. is 70. If the c) maximum d) minimum two extremes by multiplied each by 4 and the mean by 5, the products are in AP. The 15. t_4 of a G.P. in x, $t_{10} = y$ and $t_{16} = z$. Then numbers are b) z² = xy d) none o a) $x^2 = yz$ a) 12, 18, 40 c) $y^2 = zx$ d) none of these b) 10, 20, 60 c) 40, 20, 10 16. If a, b, x, y, z are positive numbers such that a, d) None of these x, b are in A.P. and a, y, b are in G.P. and z=(2ab)/(a+b) then Three numbers are in AP and their sum is 21. If 2. a) x, y, z are in G.P. b) $x \ge y \ge z$ 1, 5, 15 are added to them respectively, they d) None c) both form a G.P. The numbers are a) 5, 7, 9 b) 9, 5, 7 Set - B c) 7, 5, 9 d) None of these If Geometric mean (G.M.) of a, b, c, d is 3, then 1. 3. Three numbers whose sum is 15 are in A.P. but G.M. of $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$, $\frac{1}{d}$ will be: if they are added by 1, 4, 19 respectively they (Scanner) are in G.P. The numbers are ____. a) 1/3 a) 2, 5, 8 b) 26, 5, -16 b) 3 c) Both d) None c) 81 d) 1/81 The numbers x, 8, y are in G.P. and the numbers 4. x, y, -8 are in A.P. The values of x, y are _____. If G be Geometric Mean between two numbers 2. a) 16, 4 b) 4, 16 a and b, then the value of $\frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2}$ is c) both d) None equal to (Scanner) 5. The numbers x, 8, y are in G.P. and the numbers a) G² b) 3 G² x, y, -8 are in A.P. The value of x and y are c) 1/G² d) 2/G2 a) (-8, -8) b) (16, 4) c) (8, 8) d) Both A & B 3. Geometric Mean of P, P², P³, Pⁿ: (Scanner) 6. If a, b, c are in A.P. and x, y, z in G.P. then the 1+nvalue of x^{b-c}.y^{c-a}.z^{a-b} is _ b) P^{2} a) Pⁿ⁺¹ a) 0 b) 1 n(n+1) c) -1 d) None c) P⁻² d) None of the above 7. If a, b, c are in A.P. and x, y, z are in G.P, then 4. Between the two numbers whose sum is $\frac{13}{c}$, an the value of $x^{(b-c)}.y^{(c-a)}.z^{(a-b)}$ is: (Scanner) even number of A.M is inserted. If the sum of a) 1 b) 0

c) b(c - a) d) None

arithmetic mean exceeds their number by unity, then number of arithmetic means inserted are –

- If a, b, c are in A.P. and x, y, z in G.P. then the 8. value of $(x^b.y^c.z^a) \div (x^c.y^a.z^b)$ is _____ a) 0 b) 1 c) -1 d) None If a $^{1/x} = b^{1/y} = c^{1/z}$ and a, b, c are in G.P; the x, 9. (Scanner) y, z are in: a) A.P. b) G.P. c) Both (a) & (b) d) None 10. The sum of 3 numbers in A.P. is 15. If 1, 4 and 19 be added to them respectively, the results are is G.P. The numbers are a) 26, 5, -16 b) 2, 8, 5 c) 5, 8, 2 d) None of these 11. If p, q and r are in A.P. and x, y, z are in G.P. then x^{q-r} . y^{r-p} . z^{p-q} is equal to a) 0 b) -1 c) 1 d) None of these 12. Given x, y, z are in G.P. and $x^{p} = y^{q} = z^{\sigma}$, then 1/p, 1/q, $1/\sigma$ are in a) A.P. b) G.P. c) Both A.P. and G.P. d) None of these 13. If a, b, c are in A.P. a, x, b are in G.P. and b, y, c are in G.P then x^2 , b^2 , y^2 are in a) A.P. b) G.P. d) None c) H.P. 14. If a, b-a, c-a are in G.P. and a=b/3=c/5 then a, b, c are in a) A.P. b) G.P. d) None c) H.P.
- 15. If x, y, z are in A.P. and x, y, (z + 1) are in G.P. then
 - a) $(x z)^2 = 4x$ b) $z^2 = (x - y)$ c) z = x - yd) none of these

Set - C

- The first, second and seventh term of A.P. are in G.P. and the common difference is 2, the 2nd term of A.P. is: (Scanner)

 a) 5/2
 b) 2
 c) 3/2
 d) 1/2
- 2. The sum of three numbers in a geometric progression is 28. When 7.2 and 1 are subtracted from the first, second and third numbers respectively, then the resulting numbers are in arithmetic progression. What is the sum of squares of the original three numbers?

a) 510	b) 456
c) 400	d) 336

a)
$$1/9 \{n - (1 - (0, 1)^n)\}$$

b) $1/9 \{n - (1 - (0, 1)^n)/9\}$
c) $n - 1 - (0, 1)^n / 9$
d) None of these
10. The sum of the series:
 $0.5 + 0.55 + 0.555 + \dots$ to n terms is:
a) $\frac{5n}{9} + \frac{5}{9} [1 - (0, 1)^n]$
b) $\frac{5n}{9} - \frac{5}{81} [1 - (0, 1)^n]$
c) $\frac{5n}{9} + \frac{5}{81} [1 - (0, 1)^n]$
d) $\frac{5n}{9} + \frac{5}{81} [1 - (0, 1)^n]$
11. The sum of $1.03 + (1.03)^2 + (1.03)^3 + \dots$ To n terms
is
a) $103 ((1.03)^n - 1)$
b) $103/3 ((1.03)^n - 1)$
c) $(1.03)^n - 1$
d) None of these
20.
12. The sum of n terms of the series $0.3 + 0.03 + 0.033 + 0.03 + 0.033 + 0.03 + 0.033 + 0$

a) (n/2) $(6n^2+3n-1)$ b) (n/2) (6n²-3n-1) c) $(n/3) (6n^2 + 3n - 1)$ d) None The sum of n terms of the series 1.2+2.3+3.4 +...is a) (n/3)(n + 1)(n + 2)b) (n/2) (n + 1) (n + 2)c) (n/5)(n + 1)(n + 2)d) None The sum of n terms of 1.4, 3.7, 5.10 is a) (n/2) (4n²+5n-1) b) $n(4n^2+5n-1)$ c) (n/2) (4n²-5n-1) d) None The sum of n terms of 1^2 , 3^2 , 5^2 , 7^2 , is a) $(n/3) (4n^2 - 1)$ b) $(n/2) (4n^2 - 1)$ c) $(n/3) (4n^2+1)$ d) None The sum of n terms of 1, (1 + 2), (1 + 2 + 3) is a) (n/3)(n + 1)(n - 2)b) (n/3) (n + 1) (n + 2) c) n(n + 1) (n + 2)d) None The sum of n terms of the series 2.4.6 + 4.6.8 +6.8.10 +is a) $2n(n^3+6n^2+11n+6)$ b) $2n(n^3-6n^2+11n-6)$ c) $n(n^3+6n^2+11n+6)$ d) $n(n^3+6n^2+11n-6)$ The sum of n terms of the series $1.3^2 + 4.4^2 + 7.5^2 + 10.6^2 + \dots$ is a) (n/12) (n+1) (9n²+49n+44)-8n b) (n/12) (n+1) (9n²+49n+44)+8n c) (n/6) (2n+1) (9n²+49n+44)-8n d) None The sum of n terms of the series 4 + 6 + 9 + 13.... ls a) $(n/6) (n^2 + 3n + 20)$ b) (n/6) (n + 1) (n + 2)

BUSINESS MATHEMATICS

24.	c) $(n/3) (n + 1) (n + 2)$ d) None The sum of n terms of the series $1.2.3 + 2.3.4 + 3.4.5 +is$ a) $(n/4) (n+1) (n+2) (n+3)$ b) $(n/3) (n+1) (n+2) (n+3)$ c) $(n/2) (n+1) (n+2) (n+3)$ d) None	
25.	The sum of n terms of the series $2.3^2+5.4^2+8.5^2+$ is a) n/12) (9n ³ +62n ² +123n+22) b) (n/12) (9n ³ -62n ² +123n-22) c) (n/6) (9n ³ +62n ² +123n+22) d) None	
26.	The sum of n terms of the series $1 + (1 + 3) + (1 + 3 + 5) + \dots$ is a) $(n/6) (n + 1) (2n + 1)$ b) $(n/6) (n + 1) (n + 2)$ c) $(n/6) (n + 1) (2n + 1)$ d) None	
27.	The sum of n terms of the series $1^2+(1^2+2^2)+(1^2+2^2+3^2)+$ is a) $(n/12) (n + 1)^2 (n + 2)$ b) $(n/12) (n - 1)^2 (n + 2)$ c) $(n/12) (n^2 - 1) (n + 2)$ d) None	
28.	The sum of n terms of the series $4 + 14 + 30 + 52 + 80 +$ a) $n(n+1)^2$ b) $n(n-1)^2$ c) $n(n^2-1)$ d) None	
29.	The sum of n terms of the series $1/1+1/(1+2)+1/(1+2+3)+$ is a) $2n(n+1)^{-1}$ b) $n(n+1)$ c) $2n(n-1)^{-1}$ d) None	
30.	The sum of n terms of the series $1/(3.8)+1/(8.13)+1/(13.18)+$ is a) $(n/3) (5n+3)^{-1}$ b) $(n/2) (5n+3)^{-1}$ c) $(n/2) (5n-3)^{-1}$ d) None	
31.	The sum of n terms of the series $1/(4.9)+1/(9.14)+1/(14.19)+1/(19.24)+$ is a) $(n/4) (5n+4)^{-1}$ b) $(n/4) (5n+4)$ c) $(n/4) (5n-4)^{-1}$ d) None	

32.	The sum to n terms o	of the series 11, 23, 59, 167		
	a) 3 ⁿ⁺¹ +5n –3 c) 3 ⁿ + 5n – 3	b) 3 ⁿ⁺¹ +5n+3 d) None		
33.	The sum of n $1.2+3.2^2+5.2^3+7.2^4+$ a) $(n-1)2^{n+2}-2^{n+1}+6$ c) $(n-1)2^{n+2}-2^{n+1}-6$	terms of the series is b) (n+1)2 ⁿ⁺² -2 ⁿ⁺¹ +6 d) None		
34.	2 ⁴ⁿ -1 is divisible by a) 15 c) 6	b) 4 d) 64		
35.	n(n-1)(2n-1) is divisit	ble by		
	a) 15	b) 4		
	c) 6	d) 64		
36.	3 ⁿ -2n-1 is divisible b	v		
	a) 15	b) 4		
	c) 6	d) 64		
37.	7^{2n} +16n-1 is divisible	e by		
	a) 15	b) 4		
	c) 6	d) 64		
Set - B				
1	The sum of p	torms of the sories		
1.	$1^{2}/1 + (1^{2}+2^{2})/(1+2) +$	$(1^2+2^2+3^2)/(1+2+3)+$ is		
	a) (n/3)(n+2)	b) (n/3)(n+1)		
	c) (n/3)(n+3)	d) None		
2.	The sum of n terms on n.2 ⁿ is is given by	f the series whose n th term		
	a) (n-1)2 ⁿ⁺¹ +2	b) (n+1)2 ⁿ⁺¹ +2		
	c) (n-1)2 ⁿ +2	d) None		
3.	The sum of n terms of 5.3^{n+1} +2n is is given a) $(5/2)(3^{n+2}-9)+n(n+1)$ b) $(5/3)(3^{n+2}-9)+n(n+1)$ c) $(5/2)(3^{n+2}+9)+n(n+1)$ d) None	f the series whose n th term by -1) -1) +1)		
4.	The sum of n terms of $3n^2 + 2n$ is is given by a) $(n/2)(n+1)(2n+3)$	f the series whose n th term y		

b) (n/2)(n+1)(3n+2)

c) (n/2)(n+1)(3n-2) d) (n/2)(n+1)(2n-3)

- 5. The sum of n terms of the series $1^{3}/1+(1^{3}+2^{3})/2+(1^{3}+2^{3}+3^{3})/3+...$ is a) (n/48)(n+1)(n+2)(3n+5)b) (n/24)(n+1)(n+2)(3n+5)c) (n/48)(n+1)(n+2)(5n+3)d) None
- 6. The sum of n terms of the series $1+(1+1/3)+(1+1/3+1/3^2)+\dots$ is a) $(3/2)(1-3^{-n})$ b) $(3/2)[n-(1/2)(1-3^{-n})]$ c) Both d) None
- 7. The nth terms of the series is $1/(4.7) + 1/(7.10) + 1/(10.13) + \dots$ Is a) $(1/3)[(3n+1)^{-1} - (3n+4)^{-1}]$ b) $(1/3)[(3n-1)^{-1} - (3n+4)^{-1}]$ c) $(1/3)[(3n+1)^{-1} - (3n-4)^{-1}]$ d) None
- 8. In question No. (7) the sum of the series upto n is
 a) (n/4)(3n+4)⁻¹
 b) (n/4)(3n-4)⁻¹
 c) (n/2)(3n+4)⁻¹
 d) None
- - a) $\frac{1}{4} \left[1 \left(\frac{1}{5}\right)^n \right]$ b) $\frac{1}{5} \left[1 - \left(\frac{1}{4}\right)^n \right]$
 - c) Both
 - d) None
- 10. Find the sum to n terms of $(1-1/n) + (1-2/n) + (1-3/n) + \dots$ a) $\frac{1}{2}(n-1)$ b) $\frac{1}{2}(n+1)$ c) (n-1) d) (n+1)
- 11. The sum of n terms of (1/n)(n-1), (1/n) (n-2), (1/n) (n-3).... Is
 a) 0
 b) (1/2) (n-1)
 c) (1/2)(n+1)
 d) None
- 12. The sum of n terms of the series n.1+(n-1).2+(n-2).3+is
 a) (n/6)(n+1)(n+2)
 b) (n/3)(n+1)(n+2)

c) (n/2)(n+1)(n+2) d) None

Set - C

- 1. The sum of n terms of the series is $1/\sqrt{3}+1+3/\sqrt{3}+...$ a) $(1/6) (3+\sqrt{3}) (3^{n/2}-1)$ b) $(1/6) (\sqrt{3}+1) (3^{n/2}-1)$ c) $(1/6) (3+\sqrt{3}) (3^{n/2}+1)$ d) None
- 2. The sum of n terms of a+b, 2a, 3a-b,is
 a) n(a-b)+2b
 b) n(a+b)
 c) both the above
 d) None
- 3. The arithmetic mean of the square of first 2n natural numbers is:

a)
$$\frac{1}{6}(2n+1)(4n-1)$$

b) $\frac{1}{6}(2n-1)(4n-1)$
c) $\frac{1}{6}(2n-1)(4n+1)$
d) $\frac{1}{6}(2n+1)(4n+1)$

- 4. The sum of n terms of $(x + y)^2$, $(x^2 + y^2)$, $(x y)^2$,.. is a) $(x + y)^2 - 2(n - 1)xy$ b) $n(x + y)^2 - n(n - 1)xy$ c) both the above d) None
- 5. The sum of n terms of the series 5/2 1 + 2/5- ls a) (1/14) (5ⁿ + 2ⁿ)/5ⁿ⁻² b) (1/14) (5ⁿ - 2ⁿ)/5ⁿ⁻² c) both d) None

	<u>Part - VII</u> Other <u>Set - A</u>	3.	If a, b, c are in A.P. then (a/bc) (b + + a), (c/ab) (a + b) are in a) A.P. b) G.P. c) H.P. d) None	c), (b/ca) (c
1.	$\sum_{i=1}^{7} \sqrt{2i-1}$ can be written as		<u>Set – C</u>	
	a) $\sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{13}$ b) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11} + 2\sqrt{13}$ c) $2\sqrt{9} + 2\sqrt{7} + 2\sqrt{11} + 2\sqrt{13}$ d) none of these	1.	If $(b + c)^{-1}$, $(c + a)^{-1}$, $(a + b)^{-1}$ are in b^2 , c^2 are ina) A.P.b) G.P.c) H.P.d) None	A.P. then a ² ,
2.	The first three terms of sequence when nth term t_n is $n^2 - 2n$ are a) -1, 0, 3 b) 1, 0, 2 c) -1, 0, -3 d) none of these	2.	If a ² , b ² , c ² are in A.P. then (b + c), b) are in a) A.P. b) G.P. c) H.P. d) None	(c + a), (a +
3.	If S_n the sum of first n terms in a series is given by $2n^2 + 3n$ the series is in a) A.P. b) G.P. c) H.P. d) None	3.	If 'S' be the sum, 'P' the product and of the reciprocals of n terms in a G. theof S ⁿ and R ⁻ⁿ . a) Arithmetic Mean b) Geome c) Harmonic Mean d) None	l 'R' the sum P. then 'P' is etric Mean
4.	If a b c are in A.P. then (b + c), (c + a), (a + b) are in a) A.P. b) G.P. c) H.P. d) None	1.	<u>Set - D</u> If $(b - c)^2$, $(c - a)^2$, $(a - b)^2$ are in A.	P. then (b –
5.	If a, b, c are in A.P. as well as in G.P. then – a) They are also in H.P. (Harmonic Progression)		c), (c – a), (a – b) are m a) A.P. b) G.P. c) H.P. d) None	
	b) Their reciprocals are in A.P.c) Both (a) and (b) are trued) Both (a) and (b) are false	2.	If $(b + c - a)/a$, $(c + a - b)/b$, $(a + b A.P. then a, b, c are ina) A.P. b) G.P.$	– c)/c are in
	<u>Set - B</u>		c) H.P. d) None	
1.	If a, b, $(c+1)$ are in G.P. and $a = (b-c)^2$ then a, b, c are in		$\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$	
	a) A.P. b) G.P. c) H.P. d) None			
2.	If a, b, c are in A.P. then a ² (b + c), b ² (c + a), c ² (a + b) are in a) A.P. b) G.P. c) H.P. d) None			

7. SETS RELATION AND FUNCTIONS

Synopsis :

Sets :

A set is a collection of well defined objects. Set is always denoted by capital letters and elements of set are denoted by small letters.

Methods of describing a set is

- 1. Roster Method (List Method, Tabular Method) and
- 2. Set Builder form (Rule Method and Algebraic Method)
- > Under Roster method we just make a list of all elements of the set and put them under { }
- > Set builder method consist of listing the properties common to all the element of the set.

Type of Sets

1. Null set (Empty set, Void Set)

A set containing no elements is called Empty set. This set is also known as void set, null set. It is denoted by { $\$ } OR \emptyset

2. Singleton set

A set having only one element is called Singleton set.

3. Finite Set

Set in which the number of elements is finite or countable is called Finite set.

4. Infinite Set

Set in which the number of elements is infinite or uncountable is called as Infinite Set.

5. Equal Set

Two sets are said to be equal if and only if they contains same elements $A \subset B$, $B \subset A$ then two sets of A & B are Equal set.

6. Equivalent sets

Two sets are said to be equivalent set if and only if they contains same number of elements. For two finite set A & B if n(A) = n(B) then A and B are known as Equivalent sets.

7. Subset And Super set

If every element of a set A is an element of set B then set A is a subset of B then the set B is known as Super set of A.

It is denoted by $A \subseteq B$. i.e. A is subset of B.

 $B \supseteq A$ ie. B is super set of A.

8. Proper Subset

If A is a subset of B but A is not equal to B then A is called a Proper subset of B. If number of elements 'A' is less than that of 'B" then A is Proper-sub set of B. For Proper Subset B contains at least one extra element. It is denoted by $A \subset B$.

9. Universal Set

A set which contains all sets under consideration as sub-set, is called Universal Set. It is denoted by U.

10. Power Set

A set whose elements are all the subset of a set 'A' is called the Power Set of 'A'. Denoted as P (A) If n (A) = m, n (p (A)) = m.

Important Notes

- 1. The number of elements is a set A is called Cardinal number.
- 2. A B consist of all elements of A which are not in B. A B = A \cap B'.
- 3. B A consist of all elements of B which are not in A. B A = B \cap A'.
- 4. Every set is subset of itself.
- 5. Null set is subset of every set.
- 6. Universal set is superset of all sets
- 7. Number of Subsets are given by 2^n , which n is number of elements of set.
- 8. No. of proper subsets of a set of n elements is $2^n 1$.
- 9. De-morgan's Law

$$(\mathsf{A} \cup \mathsf{B})' = (\mathsf{A}' \cap \mathsf{B}')$$

 $(\mathsf{A} \cap \mathsf{B})' = (\mathsf{A}' \cup \mathsf{B}')$

10. The symmetric difference of two set A and B denoted by A Δ B, Which is defined as A Δ B = (A - B) \cup (B - A).

Venn Diagram

Venn diagram is diagrammatic representation of sets.

Venn diagrams are generally denoted by rectangle, circle, triangle etc.

	<u>Pa</u> S Se	<u>ets</u> t - A	11.	Let A = {a, b}. Set o set of A denoted b a) 2 c) 3	f subsets of A is called pow by P(A). Now n(P(A) is b) 4 d) none of these	/er
1.	The null set is repre a) { Φ} c) Φ	esented by b) { 0 } d) none of these	12.	The no. of subsets	of the set {3, 4, 5} is: (Scanner)	
	C) -	d) Holle of these		a) 4	b) 8	
2.	The set of cubes of a) a finite set	the natural number is b) an infinite set		c) 16	d) 32	
	c) a null set	d) none of these	13.	The number of su the word Allahaba	bsets of the set formed d is: (Scanner ,	by)
3.	The set {2 ^x x is an is	y positive rational number}		a) 128 c) 32	b) 16 d) 64	
	a) an infinite set	b) a null set				
	c) a finite set	d) none of these	14.	The numbers of {3,4,5,6,7} is:	proper sub set of the s (Scanner,	;et)
4.	The set of cubes of	natural numbers is		a) 32	b) 31	
		(Scanner)		c) 30	d) 25	
	a) Null set					
	b) Finite set		15.	{n(n+1)/2 : n is a p	ositive integer} is	
	c) Infinite set			a) a finite set	b) an infinite set	
	d) A finite set of the	ree numbers		c) is an empty set	d) none of these	
5.	{1 – (-1) ^x } for all inte a) {0} c) {0, 2}	egral x is the set b) {2} d) none of these	Usir 10, ⁻ Univ 14, -	ng Q.16 to Q.19 If P 15}, versal Set S = {1, 2, 3 15}	= {1, 2, 3, 5, 7}, Q = {1, 3, , 4, 5, 6, 7, 8, 9, 10, 11, 12, 7	6, 13,
6.	The set {x 0< x < 5	i} represents the set when x	16.	The cardinal numb	per of P $\bigcap Q$ is	
	may take integral v	alues only		a) 3	b) 2	
	a) {0, 1, 2, 3, 4, 5}	b) {1, 2, 3, 4}		c) 0	d) none of these	
	c) {1, 2, 3, 4, 5}	d) none of these				
_			17.	The cardinal numb	per of P \bigcup Q is	
7.	If A = {1, 2, 3, 5, 7},	and B = { x^2 : $x \in A$ }		a) 10	b) 9	
	a) n(b) = n(A) c) n(A) = n(B)	b) n(B) > n(A) d) n(B) < n(B)		c) 8	d) none of these	
•	T I . (0.0.4.6.0		18.	n (P [′]) is		
8.	The set {0, 2, 4, 6, 8	, 10} can be written as		a) 10	b) 5	
	a) {2x 0 < x < 5} c) {2x : 0 ≤ x ≤ 5}	b) {x : 0 < x < 5} d) none of these		c) 6	d) none of these	
			19.	n(Q [']) is		
9.	The number of sub	osets of a set containing n		a) 4	b) 10	
	elements is			c) 6	d) none of these	
	a) 2 ⁿ	b) 2 ⁻ⁿ		,	,	
	c) n	d) none of these				
10.	The number of sub	sets of the set {2, 3, 5} is				
	a) 3	b) 8				
	c) 6	d) none of these				

20.	E is a set of positive even number and O is a set of positive odd numbers, then E U O is a a) set of whole numbers b) N c) a set of rational number d) none of these		
21.	A = $\{2, 3, 5, 7\}$, B $\{4, 6, 8, 10\}$ then A \bigcap B can be written as a) $\{\}$ b) $\{\Phi\}$ c) (AUB)' d) none of these		
22.	(A \bigcup B)' is equal to a) (A \cap B)' b) A \bigcup B' c) A' \cap B' d) none of these		
23.	$(A \cap B)'$ is equal toa) $(A' \cup B)'$ b) $A' \cup B'$ c) $A' \cap B'$ d) none of these		
24.	If A = {a, b, c, d, e, f} B = {a, e, i, o, u} and C = {m, n, o, p, q, r, s, t, u} then A \cup B is a) {a, b, c, d, e, f, i, o, u} b) {a, b, c, i, o, u} c) {d, e, f, i, o, u} d) None		
25.	As per question No.(23) A U C is a) {a, b, c, d, e, f, m, n, o, p, q, r, s, t, u} b) {a, b, c, s, t, u} c) {d, e, f, p, q, r} d) None		
26.	As per question No. (23) B ∪ C is a) {a, e, i, o, u, m, n, p, q, r, s, t} b) {a, e, i, r, s, t} c) {i, o, u, p, q, r} d) None		
27.	As per question No. (23) A – B is a) {b, c, d, f} b) {a, e, i, o} c) {m, n, p, q} d) None		
28.	As per question No. (23) A ∩ B a) {a, e} b) {i, o} c) {o, u} d) None		

29.	As per question No. (23) is B ∩ C a) {a, e} b) {i, o} c) {o, u} d) None
30.	As per question No. (23) is A ∪ (B – C) is a) {a, b, c, d, e, f, i} b) {a, b, c, d, e, f, o} c) {a, b, c, d, e, f, u} d) None
31.	As per question No. (23) A ∪ B ∪ C is a) {a, b, c, d, e, f, i, o, u, m, n, p, q, r, s, t} b) {a, b, c, r, s, t} c) {d, e, f, n, p, q} d) None
32.	As per question No. (23) $A \cap B \cap C$ is a) ϕ b) {a, e} c) {m, n} d) None
33.	If A = {3, 4, 5, 6} B = {3, 7, 9, 5} and C = {6, 8, 10, 12, 7} then A' is (given that the universal set U = {3, 4,, 11, 12, 13} a) {7, 8,12, 13} b) {4, 6, 8, 10,13} c) {3, 4, 5, 9, 11, 13} d) None
34.	As per question No. (32) with the same order of options (a), (b), (c) and (d) the set B' is
35.	As per question No. (32) with the same order of options (a), (b), (c) and (d) the set C' is
36.	As per question No. (32) the set (A')' is a) {3, 4, 5, 6} b) {3, 7, 9, 5} c) {8, 10, 11, 12, 13} d) None
37.	As per question No. (32) the set (B')' is a) {3, 4, 5, 6} b) {3, 7, 9, 5} c) {8, 10, 11, 12, 13} d) None
38.	As per question No. (32) the set (A ∪ B)' is a) {3, 4, 5, 6} b) {3, 7, 9, 5} c) {8, 10, 11, 12, 13} d) None
39.	As per question No. (32) the set (A ∩ B)'is a) {8, 10, 11, 12, 13} b) {4, 6, 7,13} c) {3, 4, 5, 7, 8,13} d) None

40.	As per question No. (32) the set A' ∪ C' is a) {8, 10, 11, 12, 13} b) {4, 6, 7,13} c) {3, 4, 5, 7, 8,13} d) None	49.	As per question No. (47) the set $(A \cup B) \cap (A \cup C)$ is a) {3, 4, 6, 12} b) {1, 6, 9, 10} c) {2, 5, 6, 11} d) None
41.	If A = {1, 2,9}, B = {2, 4, 6, 8} C = {1, 3, 5, 7, 9} D = {3, 4, 5} and E = {3, 5} what is set S if it is also given that S \subset D and S $\not\subset$ B a) {3, 5} b) {2, 4} c) {7, 9} d) None	50.	If V = {0, 1, 2,9}, X={0, 2, 4, 6, 8}, Y = {3, 5, 7} and Z = {3, 7} then $Y \cup Z$, $(V \cup Y) \cap X$, $(X \cup Z) \cup V$ are respectively:- a) {3, 5, 7}, {0, 2, 4, 6, 8}, {0, 1, 2,9} b) {2, 4, 6}, {0, 2, 4, 6, 8}, {0, 1, 2,9} c) {2, 4, 6}, {0, 1, 2,9}, {0, 2, 4, 6, 8} d) None
42.	As per question No. (40) what is set S if it is also given that $S \subset B$ and $S \not\subset C$ a) {3, 5} b) {2, 4} c) {7, 9} d) None	51.	In question No. (49) $(X \cup Y) \cap Z$ and $(\phi \cup V) \cap \phi$ are respectively:- a) {0, 2, 4, 6, 8}, ϕ b) {3, 7}, ϕ
43.	If U = {1, 2,9} be the universal set A = {1, 2, 3, 4} and B = {2, 4, 6, 8} then the A ∪ B is a) {1, 2, 3, 4, 6, 8} b) {2, 4} c) {5, 6, 7, 8, 9} d) {5, 7, 9}	52.	c) $\{3, 5, 7\}, \phi$ d) None A U A is equal to a) A b) E c) ϕ d) none of these
44.	As per question No. (42) with the same order of options (a) (b) (c) and (d) he set $A \cap B$ is	53.	A \cap A is equal to a) ϕ b) A c) E d) none of these
45.	As per question No. (42) with the same order of options (a) (b) (c) and (d) the set A' is	54.	A \bigcup E is equal to (E is a superset of A)
46.	As per question No. (42) with the same order of options (a) (b) (c) and (d) the set (A \cup B)' is		a) A b) E c) ϕ d) none of these
47.	As per question No. (42) the set (A ∩ B)' is a) {1, 2, 3, 4, 6, 8} b) {2, 4} c) {5, 6, 7, 8, 9} d) {1, 3, 5, 6, 7, 8, 9}	55. 56.	$A \cap E$ is equal to (E is a superset of A) $a) A$ $b) E$ $c) \phi$ $d)$ none of these $E \cup E$ is equal to (E is a superset of A) $a) E$ $b) \phi$
48.	If the universal set is X = {x:x \in N, 1 \leq x \leq 12} and A = {1, 9, 10}, B = {3, 4, 6, 11, 12} and C = {2, 5, 6} are subsets of X then set A \cup (B \cap C) is 	57.	c) 2E b) ϕ d) none of these A \cap E' is equal to (E is a universal set) a) E b) ϕ c) A d) none of these
	d) {1, 6, 9, 10} c) {2, 5, 6, 11} d) None	58.	$A \cap \phi$ is equal to (E is a superset of A)a) Eb) Ec) ϕ d) none of these

59.	A U A' is equal to (E a) E c) A	is a universal b) φ d) none of th	set) nese	
60.	If $A = \{p, q, r, s\}$ $B = \{q, s, t\}$ $C = \{m, q, n\}$ Find $C - (A \land B)$ a) $\{m, n\}$ c) $\{r, s\}$	b) {p, q} d) {p, r}	(Scanner)	
61.	If $A = \{x : x^2 - 3x + B = \{x : x^2 + 4x - B - A \text{ is Equal to} a\} \{-6\}$ c) {1,2}	2 = 0}, 12 = 0}, then b) {1} d) {2, -6}	(Scanner)	
62.	For any two sets A at to (where' denotes of a) $B - A$ c) $A' - B'$	nd B the set (A compliment o (Scanne b) A – B d) B' – A'	UB')' is Equal f the set) :r)	
63.	If the universal set E <25}, A = {2, 6, 8, 14 a) $(A \cap B)' = A' \cup B'$ b) $(A \cap B)' = A' \cap B'$ c) $(A' \cap B)' = \phi$ d) none of these	= {x x is a po , 22}, B = {4, 8	sitive integer , 10, 14} then	
64.	If $A \subset B$, then which	one of the foll	owing is true	
	a) $A \cap B = B$ c) $A \cap B = A^1$	b) $A \cup B = B$ d) $A \cap B = \varphi$		
65.	If set A = $\begin{cases} x : \frac{x}{2} \in z, \\ B = \{x : x \text{ is one digitation} \\ and C = \begin{cases} x : \frac{x}{3} \in N, \\ then A \cap (B \cap C) \text{ is exp} \\ a \end{pmatrix} \varphi$ c) Set B	$0 \le x \le 10 \bigg\}.$ t prime numbers $x \le 12 \bigg\}$ equal to – b) Set A d) Set C	(Scanner) er}	
66.	If $A = \{1, 2, 3, 4, 5, B = \{1, 3, 4, 5, 7, (A - B) \cup C \}$ a) $\{2, 6\}$ c) $\{2, 6, 8, 9\}$, 6, 7, 8, 9} 7, 8}; C = {2, 6, b) {2, 6, 8} d) None	(Scanner) , 8} then find	

<u>Set - B</u>				
1.	If E = {1, 2, 3, 4, 5, 6 satisfying 5 + x > 10 a) {5, 6, 7, 8, 9} c) {7, 8, 9}	5, 7, 8, 9}, the subset of E is b) {6, 7, 8, 9} d) none of these		
2.	If $A \triangle B = (A-B) \bigcup ($ = {3, 5, 7} then $A \triangle B$ a) {1, 2, 4, 5, 7} c) {1, 2, 3, 4, 5, 7}	B-A) and A = {1, 2, 3, 4}, B is b) {3} d) none of these		
	[Hint : If A and B are $A - B = \{x : x \in A, x \notin A\}$	any two sets, then EB}.		
3.	For any two sets A where A' represent t A a) $A \cap B$ c) A' \cup B	and B, A \cap (A' \cup B) =, the compliment of the set (Scanner) b) A \cup B d) None of these		
4.	If A = {1, 2, 3, 4} B = 9} then a) A \cap B $\neq \phi$, B \cap C \neq C = ϕ b) A \cap B = ϕ , B \cap C = ϕ c) A \cap B $\neq \phi$, B \cap C \neq ϕ d) None	{2, 3, 7, 9} and C = {1, 4, 7, ϕ , A \cap C $\neq \phi$, but A \cap B \cap = ϕ , A \cap C = ϕ , A \cap B \cap C ϕ , A \cap C $\neq \phi$, A \cap B \cap C \neq		
5.	The sets V = $\{x / x + 0\}$ and S = $\{x : x^2 + x\}$ another if x is equal to a) -2 c) $\frac{1}{2}$	2 = 0}, R = $\{x / x^2 + 2x = -2 = 0\}$ are equal to one to b) 2 d) none of these		
6.	If V = {x:x + 2 \leq 0} R S = {x:x ² +4x+4=0} th value of x equal to a) 0 c) -2	= {x:x ² + x-2=0, x < 0} and en V, R, S are equal for the b) -1 d) None		
7.	If R is the set of positis the set of real numbers $R \subseteq E$ c) $E \subset R$	tive rational number and E abers then b) $R \subset E$ d) none of these		

If N is the set of natural numbers and I is the 8. set of positive integers, then a) N = I b) N \subset I c) N \subset I d) none of these 9. If I is the set of isosceles triangles and E is the set of equilateral triangles, then a) $I \subset E$ b) $E \subset I$ c) E = I d) none of these 10. If R is the set of isosceles right angled triangles and I is set of isosceles triangles, then a) R = I b) $R \supset I$ c) $R \subset I$ d) none of these 11. If $A = \{a, b, c, d\}$ list the element of power set P (a) a) ϕ , {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d} {c, d} b) {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} c) {a, b, c, d} d) All the above elements are in P (a) 12. Following set notations represent: $A \subset B$; $x \notin A$; $A \supset B$; {0}; $A \not\subset B$ a) A is a proper subset of B; x is not an element of A; A contains B; singleton with an only element zero; A is not contained in B. b) A is a proper subset of B; x is an element of A; A contains B; singleton with an only element zero; A is contained in B. c) A is a proper subset of B; x is not an element of A; A does not contains B; contains elements other than zero; A is not contained in B. d) None 13. Represent the following sets in set notation:-Set of all alphabets in English language, set off all odd integers less than 25, set of all odd integers, set of positive integers x satisfying the equation $x^{2} + 5x + 7 = 0$: a) A = {x : x is an alphabet in English}, I = {x : x is an odd integer>25}, I = {2, 4, 6, 8...} I = { } b) A = {x : x is an alphabet in English}, I = {x : x is an odd integer < 25}, I = {1, 3, 5, 7...} I = { } c) $A = \{x : x \text{ is an alphabet in English}\}, I = \{x : x \text{ is } x \in x \}$ an odd integer £ 25}, $I = \{1, 3, 5, 7...\}$ $I = \{x: x^2 + y\}$ 5x + 7 = 0d) None

14. Rewrite the following sets in a set builder form:

A={a, e, l, o, u} B={1, 2, 3, 4....} C is a set of integers between – 15 and 15.
a) A = {x:x is a consonant}, B = {x:x is an irrational number}, C = {x:-15 < x < 15 ∧ x is a fraction}
b) A = {x:x is a vowel}, B = {x:x is a natural number}, C = {x: -15³x³15 ∧ x is a whole number}
c) A = {x:x is a vowel}, B = {x:x is a natural number}, C = {x: -15 < x < 15, x is a natural number}, C = {x: -15 < x < 15, x is a natural number}

15. What is the relationship between the following sets?

A = {x:x is a letter in the word *flower*}

- B = {x:x is a letter in the word *flow*}
- C = {x:x is a letter in the word *wolf*}
- D = {x:x is a letter in the word *follow*}
- a) B=C=D and all these are subsets of the set Ab) B=C≠D
- c) B≠C≠D
- d) None
- 16. Comment on the correctness or otherwise of the following statements: (i) {a, b, c} = {c, b, a} (ii) {a, c, a, d, c, d} \subseteq {a, c, d} (iii) {b} \in {{b}} (iv) {b} \subset {{b}} and $\phi \subset$ {{b}}. a) Only (iv) is incorrect b) (i) (ii) are incorrect c) (ii) (iii) are incorrect
 - d) All are incorrect
- 17. If A = {a, b, c}, B = {a, b}, C = {a, b, d}, D = {c, d} and E = {d} state which of the following statements are correct : - (i) B \subset A (ii) D \neq C (iii) C \supset E (iv) D \subset E (v) D \subset B (vi) D = A (vii) B \subset C (viii) E \subset A (ix) E \subset B (x) a \in A (xi) a \subset C (xii) {a} \in A (xiii) {a} \subset A a) (i) (ii) (iii) (ix) (x) (xiii) only are correct b) (ii) (ii) (iv) (x) (xiii) only are correct c) (i) (ii) (iv) (ix) (xiii) only are correct d) None
- 18. Let A = {0}, B = {0, 1}, C = ϕ D = { ϕ }, E = {x|x is a human being 300 years old}, F = {x | x \in A and x \in B} state which of the following statements are true: (i) A \subset B (ii) B = F (iii) C \subset D (iv) C = E (v) A = F (vi) F = 1 and (vii) E = C = D

19.	a) (i) (iii) (iv) and (v) only are true b) (i) (ii) (iii) and (iv) are true c) (i) (ii) (iii) and (vi) only are true d) None If A = {0, 1} state which of the following statements are true; $= (i) (1) = A (ii) (1) = A (iii)$	25.	A town has a total population of 50,000. Out of it 28,000 read the newspaper X and 23,000 read Y while 4,000 read both the papers. The number of persons not reading X and Y both is a) 2,000 b) 3,000 c) 2,500 d) none of these
	$\phi \in A$ (iv) $0 \in A$ (v) $1 \subset A$ (vi) $\{0\} \in A$ (vii) $\phi \subset A$ a) (i) (iv) and (vii) only are true b) (i) (iv) and (vi) only are true c) (ii) (iii) and (vi) only are true d) None	26.	Out of 20 members in a family, 11 like to taketea and 14 like coffee. Assume that each onelikes at least one of the two drinks. Find howmany like both coffee and tea:(Scanner)a) 2b) 3c) 4d) 5
20.	State whether the following sets are finite, infinite or empty: - (i) $X = \{1, 2, 3,500\}$ (ii) $Y = \{y: y = a^2; a \text{ is an integer}\}$ (iii) $A = \{x:x \text{ is a positive integer multiple of }2\}$ (iv) $B = \{x:x \text{ is an integer which is a perfect rootof 26 < x < 35\}a) finite, infinite, infinite, empty$	27.	In a group of 70 people, 45 speak Hindi, 33 speak English and 10 speak neither Hindi nor English. Find how many can speak both English as well as Hindi: <i>(Scanner)</i> a) 13 b) 19 c) 18 d) 28
	b) infinite, infinite, finite, empty c) infinite, finite, infinite, empty d) None	28.	There are 40 students, 30 of them passed in English, 25 of them passed in Maths and 15 of them passed in both. Assuming that every Student has passed at least in one subject.
21.	If four members a, b, c, d of a decision making body are in a meeting to pass a resolution where rule of majority prevails list the wining coalitions. Given that a, b, c, d own 50%, 20%, 15%, 15% shares each.		How many students' passed in English only butnot in Maths.(Scanner)a) 15b) 20c) 10d) 25
	 a) {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b, c, d} b) {b, c, d}, {a} c) {b, c}, {b, d}, {c, d}, {b}, {c}, {d}, φ d) None 	29.	In a class of 50 students, 35 opted for Mathematics and 37 opted for Commerce. The number of such students who opted for both Mathematics and Commerce are:
			a) 13 b) 15
22.	As per question No. (21) with same order of options (a) (b) (c) and (d) list the blocking		c) 22 d) 28
22	conditions.	30.	In a class of 80 students, 35% students can play only cricket, 45% students can play only table
23.	As per question No. (21) with same order of options (a) (b) (c) and (d) list the losing conditions.		tennis and the remaining students can play both the games. In all how many students can play cricket? <i>(Scanner)</i> a) 55 b) 44
24.	If A has 32 elements, B has 42 elements and A U B has 62 elements, the number of elements in A \bigcap B is		c) 36 d) 28
	a) 12 b) 74		

31. In a group of students 80 can speak Hindi, 60 can speak English and 40 can speak English and Hindi both, then number of students is: (Scanner)
a) 100 b) 140

c) 180 d)

- 32. In a class of 35 students, 24 like to play cricket and 16 like to play football. Also each student likes to play at least one of the two games. How many students like to play both cricket and football? (Scanner)
 a) 5 b) 11
 b) 11
 c) 19 d) 8
- 33. In a group of 20 children, 8 drink tea but not coffee and 13 like tea. The number of children drinking coffee but not tea is
 a) 6
 b) 7
 - c) 1 d) none of these
- 34. Let \cup be the universal set, A and B are the subsets of \cup . If $n(\cup) = 650$, n(A) = 310, $n(A \cap B) = 95$ and n(B) = 190, then $n(\overline{A} \cap \overline{B})$ is equal to $(\overline{A} \text{ and } B \text{ are the complement of A and B, respectively}).$

a) 400	b) 200
c) 300	d) 245

- 35. At a certain conference of 100 people there are 29 Indian women and 23 Indian men. Out of these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. The number of women doctors attending the conference is
 - a) 2 b) 4 c) 1 d) none of these

<u>Set - C</u>

 In a survey of 300 companies, the number of ompanies using different meadia – Newspapers N), Radio (R) and Television (T) are as follows:

 $\begin{aligned} n(N) &= 200, \ n(R) &= 100, \ n(T) &= 40 \ n \ (N \cap R) &= \\ 50, \ n(R \cap T) &= 20, \ n(N \cap T) &= 25 \ and \ n(N \cap R \cap T) \\ T) &= 5. \ Find the numbers of companies using \\ none of these media: (scanner) \\ a) 20 \ companies b) 250 \ companies \end{aligned}$

c) 30 companies

d) 50 companies

2. Out of total 150 students 45 passed in Accounts 50 in Maths. 30 in Costing 30 in both Accounts and Maths. 32 in both Maths and Costing 35 in both Accounts and Costing. 25 students passed in all the three subjects. Find the number who passed at least in any one of the subjects.

a) 63	b) 53
c) 73	d) None

3. Of the 200 candidates who were interviewed for a position at call centre, 100 had a twowheeler, 70 had a credit card and 140 had a mobile phone, 40 of them had both a twowheeler and a credit card, 30 had both a credit card and a mobile phone, 60 had both a twowheeler and a mobile phone, and 10 had all three. How many candidates had none of the three? (Scanner)

three?	(Scanner
a) 0	b) 20
c) 10	d) 18

4. After qualifying out of 400 professionals, 112 joined industry, 120 started practice and 160 joined as paid assistants. There were 32, who were in both practice and service 40 in both practice and assistantship and 20 in both industry and assistantship. There were 12 who did all the three. Find how many could not get any of these.

a) 88 b) 244 c) 122 d) None

- 5. As per question No. (4) with the same order of options (a) (b) (c) and (d) find how many of them did only one of these.
- 6. On a survey of 100 boys it was found that 50 used white shirt 40 red and 30 blue. 20 were habituated in using both white and red shirts 15 both red and blue shirts and 10 blue and white shirts. Find the number of boys using all the colours.

a) 20	b) 25
c) 30	d) None

BUSINESS MATHEMATICS

7. A survey of 1000 customers revealed the following in respect of their buying habits of different grades:

A grade only	180
A and c grades	80
C grade	480
A grade but not B grade	230
A grade	360
C and B grades	80
None	140
How many buy B grade?	

now many buy b grade:	
a) 280	b) 400
c) 50	d) None

- As per question No. (7) with the same order of options (a) (b) (c) and (d) how many buy C grade if and only if they do not buy B grade?
- As per question No. (7) with the same order of options (a) (b) (c) and (d) how many buy C and B grades but not the A grade?
- 10. Out 2000 staff 48% preferred coffee 54% tea and 64% cocoa. Of the total 28% used coffee and tea 32% tea and cocoa and 30% coffee and cocoa. Only 6% did none of these. Find the number having all the three.
 a) 360 b) 280
 - c) 160 d) None
- 11. As per question No.(10) with the same order of options (a), (b), (c) and (d) find the number having tea and cocoa but not coffee.
- 12. As per question No.(10) with the same order of options (a), (b), (c) and (d) find the number having only coffee.
- 13. In a town of 20,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is:

	(Scanner)
a) 6600	b) 6300
c) 5600	d) 600
0,0000	a) 000

- 14. For a group of 200 persons, 100 are interested in music, 70 in photography and 40 in swimming, Further more 40 are interested in both music and photography, 30 in both music and swimming, 20 in photography and swimming and 10 in all the three. How many are interested in photography but not in music and swimming? *(Scanner)*a) 30 b) 15 c) 25 d) 20
- 15. Complaints about works canteen had been about Mess (M) Food (F) and Service (S). Total complaints 173 were received as follows: $n(M) = 110, n(F) = 55, n(S) = 67, n(M \cap F \cap S')$ $= 20, n(M \cap S \cap F') = 11 and n(F \cap S \cap M') =$ 16. Determine the complaints about all the three. a) 6 b) 53 c) 35 d) None
- 16. As per question No. (15) with the same order of options(a), (b), (c) and (d) determine the complaints about two or more than two.
- 17. Out of 60 students 25 failed in paper (1), 24 in paper (2), 32 in paper (3), 9 in paper (1) alone, 6 in paper (2) alone, 5 in papers (2) and (3) alone and 3 in papers (1) and (2) alone. Find how many failed in all the three papers.

a) 10	b) 60
c) 50	d) None

- 18. As per question No. (17) how many passed in all the three papers?a) 10b) 60c) 50d) None
- 19. Out of 1000 students 658 failed in the aggregate, 166 in the aggregate and in group-I 434 in aggregate and in group-II, 372 in group-I, 590 in group-II and 126 in both the groups. Find out how many failed in all the three.

a) 106 b) 224 c) 206 d) 464

20. As per question No.(19) how many failed in the aggregate but not in group-II?a) 106 b) 224 c) 206 d) 464

21.	As per question No.(19) how many failed in group-I but not in the aggregate? a) 106 b) 224 c) 206 d) 464
22.	As per question No.(19) how many failed in group-II but not in group-I?
	a) 106 b) 224 c) 206 d) 464
23.	As per question No.(19) how many failed in aggregate or group-II but not in group-I? a) 206 b) 464 c) 628 d) 164
24.	As per question No.(19) how many failed in aggregate but not in group-I and group-II? a) 206 b) 464 c) 628 d) 164
25.	Out of group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry, 4 teach Mathematics and Physics but none teach both Mathematics and Chemistry. a) How many teach Chemistry and Physics b) how many teach only Physics? a) 2, 3 b) 3, 2 c) 4, 6 d) 6, 4
26.	The number of items in the set A is 40, in the Set B is 32, in the Set C is 50, in both A and B is 4, in both A and C is 5; in both B and C is 7, in all the set is 2. How many are in only one set? a) 65 b) 110 c) 96 d) 84
27.	A marketing research team interviews 50 people about their drinking habits of tea coffee or milk or ABC respectively. Following data is obtained but the Manager is not sure whether these are consistent. Category No. Category No. ABC 3 A 42 AB 7 B 17 BC 13 C 27 AC 18 a) Inconsistent since $42 + 17 + 27 - 7 - 13 - 18$ $+ 3 \neq 50$ b) Consistent c) Cannot determine due to data insufficiency d) None
28.	In a market survey you have obtained the following data which you like to examine regarding its correctness:

Did not use the brand	Percentage answering
	'Yes'
April	59
May	62
June	62
April & May	35
May & June	33
April & June	31
April May June	22

a) Inconsistent since 59 + 62 + 62 – 35 – 33 – 31 + 22 ≠ 100

b) Consistent

c) Cannot determine due to data insufficiencyd) None

29. In his report an Inspector of an assembly line showed in respect of 100 units the following which you are require to examine.

Defect	No. of pieces
Strength (S)	35
Flexibility (F)	40
Radius (R)	18
S and F	7
S and R	11
F and R	12
SFR	3

a) No. of pieces with radius defect alone was -2 which was impossible

b) Report may be accepted

c) Cannot be determined due to data insufficiency

d) None

30. As per question No.(6) if 10 boys did not use any of the white red or blue colours and 20 boys used all the colours offer your comments.
a) Inconsistent since 50 + 40 + 30 - 20 - 15 - 10 + 20 ≠ 90

b) Consistent

c) Cannot determine due to data insufficiencyd) None

A sample of income group of 1172 families was surveyed and noticed that for income groups < Rs.6000/-, 6000/- to Rs.10999/-, Rs.11000/-, to Rs.15999/- Rs.16000 and above, no TV set is available to 70, 50, 20, 50 families one set is available to 152, 308, 114, 46 families and two

	or more sets are available to 10, 174, 84, 94 families. If A = {x x is a family owning two or more sets}, B = {x x is a family with one set,} C = {x x is a family with income less than Rs.6000/-}, D = {x x is a family with income Rs.6000/- to Rs.10999/-}, E = {x x is a family with income Rs.11000/- to Rs.15999/-}, find the number of families in each of the following sets (i) C \rightarrow R			If S M L T I denote short medium long terms skilled and indirect workers respectively find the number of workers in set M. a) 42 b) 8 c) 10 d) 43			
			36.	Consider the number of w a) 42 b	e problei orkers in b) 8	m No. (35) 1 set L ∩ I. c) 10	and find the d) 43
	 (i) A ∪ E a) 152, 580 c) 152, 50 	b) 152, 20 d) 152, 496	37.	Consider the number of w a) 42	e problei orkers in b) 8	m No. (35) 1 set S ∩ T ∩ c) 10	and find the l. d) 43
32.	As per question NC families in each of th (i) $(A \cup B)' \cap E$ (ii) (C a) 20, 50 c) 152,50	b. (31) find the number of the following sets:- $\cup D \cup E \cap (A \cup B)'$ b) 152, 20 d) 20, 140	38.	Consider the number of w a) 42	e problei orkers in b) 8	m No. (35) n set (M ∪ L) c) 10	and find the \cap (T \cup I). d) 43
33.	As per question No. sets in set notation:- i) {x x is a family with	(31) express the following one set and income of less	59.	number of w a) 42 I	orkers in b) 44	ni No. (53) i set S' ∪ (S' c) 43	 and find the ∩ I)'. d) 99
	than Rs.11000/-} ii) $\{x x \text{ is a family with Rs.16000/-}}$ a) (C \cup D) \cap B b) (c) Both d) N	th no set and income over $A \cup B$)' \cap (C' \cap D' \cap E') None	40.	Consider the set of the members. Pa a) $(S \cup M)' >$ c) $(S \cup M)' =$	problem pair ha air is (S ∪ L L	n No. (35). F s more wo 9 M)' or L: - b) (S ∪ d) None	ind out which orkers as its M)' < L e
34.	As per question No. (31) (express the following sets in set notation:- i) {x x is a family with two or more sets or income of Rs.11000/- to Rs.15999/-} ii) {x x is a family with no set}		41.	Consider the problem No. (35). Find out which set of the pair has more workers as its members. Pair is $(I \cap T)'$ or $S - (I \cap S')$: - a) $(I \cap T)' > [S - (I \cap S')]$ b) $(I \cap T)' < [S - (I \cap S')]$			
	a) (A U E) c) Both	b) (A U B)' d) None		c) $(I \cap T)' = [1 d)$ None	S – (I ∩ S	5′)]	

35. Consider the following data:-

	Skilled	Unskille	Skilled	Unskille
	&	d &	&	d &
	Direct	Direct	Indirec	Indirect
	Worke	Worker	t	Worker
	r		Worke	
			r	
Short	6	8	10	20
Term				
Mediu	7	10	16	9
m Term				
Long	3	2	8	0
Term				

the number	er of work	ers i	n set M		-	
a) 42	b) 8	c) 1	0	d) 43		
Consider number of	the probl f workers	em I in se [.]	No. (35) t L ∩ I.	and	find	the
a) 42	b) 8	c) 1	0	d) 4	43	
Consider number of	the probl f workers	em I in se	No. (35) t S ∩ T ⊂	and	find	the
a) 42	b) 8	c) 1	0	d) 4	43	
Consider	the probl	em l in se	No. (35) t (M ∪ I)	and	find	the
a) 42	b) 8	c) 1	0	d) 4	43	
Consider	the probl	em I in se	No. (35) t S' い (S'	and $\cap \mathbb{N}'$	find	the
a) 42	b) 44	c) 4	13	d) 9	99	
Consider the problem No. (35). Find out which						
set of the pair has more workers as its						its
members. Pair is (S \cup M)' or L: -						
a) $(S \cup M)$	' > L		b) (S ∪	M)′ ≺	< L	
c) (S \cup M)	= L		d) Non	е		
Relations

- **A. Relation :** Let A and B be two sets, then a relation R from A to B is a subset of A x B. A relation R consists of the following:
 - Two sets say A and B
 - An open sentence P(x, y) in which P(a, b) is either true or false for any ordered pair $\{a, b\} \in A \times B$, then R is called a relation from A to B and is denoted by $R = \{A, B, P(x, y)\}$.

B. Types of Relations :

1. Equivalence Relation : Let S = {a, b, c, d, ...} be any set then the relation R is a subset of the product set SxS. A relation R on a set S is said to be an equivalence relation on S if it is –

(a) **Reflexive :** A relation on a set S is said to be reflexive if every element of S is related to itself. Thus, R is reflexive if R contains all ordered pairs of the form (a, a) in S x S.

(b) Symmetric : A relation R on set S is said to be symmetric if (a, b) (a, b) $\in R \Rightarrow (b, a) \in R$ for all a, b $\in R$.

(c) **Transitive:** A relation R on set S is said to be transitive relation if $(a, b) \in R$ and $(b, c) \in R$. $(a, c) \in R$ for a, b, $c \in R$. [Refer Illustration 7]

- **2.** Universal Relation : Relation $A \times A \subseteq A \times A$ is called the universal relation on A.
- **3.** Identity Relation : $I_A = \{(a, a) : a \in A\}$ on set A is called the identity relation on A. Example: Let A = $\{1, 2, 3\}$ then I = $\{(1, 1), (2, 2), (3, 3)\}$
- **4.** Inverse Relation : If R be a relation on A, then the relation R-1 on A, defined by R-1 = {(b, a) : (a, b) ∈ R} is called as inverse Relation on A.
- **C. Domain and Range of a Relation :** If R is a relation from A to B. Then the set of all first co-ordinates of elements of R is called the domain of R, while the set of all second co-ordinates of elements of R is called the range of R.

Ex : Relation R = {(1, 3) (2, 5) (7, 9)}. Domain (R) = {1, 2, 7} Range (R)= {3, 5, 9}.

	<u>Part -II</u>		
	Relations	9.	If A = {2, 3}, B = {4, 5}, C = {5, 6} then A × (B \cup
	<u>Set - A</u>		C) is a) {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
1.	If the set P has 3 elements, Q four and R twothen the sep P × Q × R containsa) 9 elementsb) 20 elementsc) 24 elementsd) none of these		b) {(2, 5, (3, 5)} c) {(2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (4, 6), (5, 5), (5, 6)} d) None of these
2.	Let P = {1, 2, x}, Q = {a, x, y}, R = {x, y, z} then P × Q is	10.	As per question No.(10) with the same order of options (a) (b) (c) and (d) the set A \times (B \cap C) is
	a) {(1, a), (1, x), (1, y), (2, a), (2, x), (2, y), (x, a), (x, x), (x, y)} b) {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z), (x, x), (x, y), (x, z)}	11.	As per question No. (10) with the same order of options (a) (b) (c) and (d) the set (A \times B) \cup (B \times C) is
	c) {(a, x), (a, y), (a, z), (x, x), (x, y), (x, z), (y, x), (y, y), (y, z)} d) {(1, x), (1, y), (2, x), (2, y), (x, x), (x, y)}	12.	If A = {2,3}, B = {4,5}, C = {5, 6}, then A × (B \cap C) = (Scanner) a) {(5,2), (5,3)} b) {(2,5), (3,5)} c) $J(2,4)$ (3,5) d) $J(3,5)$ (2,6)
3.	As per question No.(3) with the same order of options (a) (b) (c) and (d) then the set $P \times R$ is	13.	If A = {1, 2, 3, 4, 5}, B = {2, 4} and C = {1, 3, 5}
4.	As per question No.(3) with the same order of options (a) (b) (c) and (d) then the set $Q \times R$ is		then $(A - C) \times B$ is (Scanner) a) {(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), (5, 4)} b) {(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)}
5.	As per question No.(3) with the same order of options (a) (b) (c) and (d) then the set ($P \times Q$) $\cap (P \times R)$ is	14	c) $\{(2, 2), (4, 2), (4, 4), (4, 5)\}$ d) $\{(2, 2), (2, 4), (4, 2), (4, 4)\}$
6.	As per question No.(3) the set $(R \times Q) \cap (R \times P)$ is	14.	a) {1, 6} b) {6, 7} c) {1, 2} d) None of these
	a) {(a, x), (a, y), (a, z), (x, x), (x, y), (x, z), (y, x), (y, y), (y, z)} b) {(1, x), (1, y), (2, x), (2, y), (x, x), (x, y)} c) {(x, x), (y, x), (z, x)}	15.	The range of {(3, 0), (2, 0), (1, 0), (0, 0)} is a) {0, 0} b) {0} c) {0, 0, 0, 0} d) none of these
	d) {(1, a) (1, x), (1, y), (2, a), (2, x), (2, y), (x, a), (x, x) (x, y), (x, 1), (x, 2), (y, 1), (y, 2), (y, x), (z, 1), (z, 2), (z, x)}	16.	The range of {(1,0), (2,0), (3,0), (4,0), (0,0)} isa) {1,2,3,4,0}b) {0}(Scanner)c) {1,2,3,4,}d) None of these
7.	As per question No. (3) with the same order of options (a) (b) (c) and (d) as in question No.(7) the set (P × Q) \cup (R × P)	17.	If A = $\{1,2\}$ and B = $\{3,4\}$. Determine the number of relations from A and B: <i>(scanner)</i> a) 3 b) 16 c) 5 d) 6
8.	Identify the elements of P if set Q = $\{1, 2, 3\}$ andP × Q = $\{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)\}$ a) $\{3, 4, 5\}$ b) $\{4, 5, 6\}$ c) $\{5, 6, 7\}$ d) None		

.

<u>Set - B</u>					
	By using R = Reflexive; T = Transitive, S = Symmetric and E = Equivalence from Q. No. 1 to				
1.	"Is equal to" over the s is a) T k c) R c	et of all rat o) S d) E	ional numbers		
2.	{(x, y) / x ∈ ×, y ∈ y, y a) R b) S	= x} is c) T	d) E		
3.	{(x,y) / x + y = 2x wh integers}, is a) R b) S	ere x and c) T	y are positive d) E		
4.	"Is smaller than" over is a) Transitive (T) c) Reflexive (R)	the set of b) Sym d) Equi	eggs in a box metric (S) ivalence (E)		
5.	"Is the square of" over a) R b c) T c	r n set of re b) S d) none of	eal numbers is these	1	
6.	"is perpendicular to" lines in a given plane i a) R k c) T c	over the s is o) S d) E	et of straight		
7.	On the set of lines, b relation. a) Reflexive b) Symmetric c) Transitive d) None of these	being perp	endicular is a <i>(Scanner)</i>		
8.	"is the reciprocal of" . zero real numbers is a) S b) R c) T d) none of these	Over tl	ne set of non-		
9.	"has the same father children a) R b c) T c	as" O o) S d) E	ver the set of		

.

In the set N of all natural numbers the relation 10. R defined by a R b "if and only if, a divide b", then the relation R is: (Scanner) a) Partial order relation b) Equivalence relation c) Symmetric relation d) None of these 11. Let $A = \{1, 2, 3\}$, then the relation R = (1, 1), (2, 3)(Scanner) 3), (2, 2), (3, 3), (1, 2)} is a) Symmetric b) Transitive c) Reflexive d) Equivalence 12. If $S = \{1,2,3\}$ then the relation $\{(1,1), (2,2), (1$ (2,1)} is symmetric and (Scanner) a) Reflexive but not transitive b) Reflexive as well as transitive c) Transitive but not reflexive d) Neither transitive nor reflexive If a is related to b if and only if the difference 13. in a and b is an even integer. This relation is a) Symmetric, reflexive but not transitive b) Symmetric transitive but not reflexive c) transitive reflexive but not symmetric d) equivalence relation

BUSINESS MATHEMATICS

Functions

1. Relation and Function : Any subset of the product set XY is said to define a relation from X to Y and any relation from X to Y in which no two different ordered pairs have the same first element is called a function. A function is represented as $f : X \rightarrow Y$. **Example :** $f : X \rightarrow Y = \{(1, 2), (3, 4)\}$ is a valid function between X and Y, whereas $f : X \rightarrow Y = \{(4, 2), (4, -2)\}$ is not a valid function between X and Y since a single element of X (4) is mapped to two elements in Y (2 and -2). **Note :** One more essential feature of a function is that every element of X should be mapped to Y. But the reverse not be true.

- 2. **Image :** The element y is called the image of x under the f and is denoted by f(x), i.e., y = f(x), and x is called the pre-image of y.
- 3. **Domain & Co-domain :** If $A \rightarrow B$, A is called the Domain and set B is called the Co-Domain of f.
- 4. **Range :** The set of all images of the elements of A under the mapping f is called the range of f and is denoted by f(X) or R_f , where $f(X) = \{f(x) | x \in X\}$. In general, $f(X) \subseteq Y$. **Example :** We consider the rule f(x) = X2. Let $A = \{1, 2, 3, 4...\}$. Then f(1) = 1; f(2) = 4; f(3) = 9; f(4) = 16. Then clearly each element in a has a unique image in B. Here domain (f) = $\{1, 2, 3, 4\}$ and Range (f) = $\{1, 4, 9, 16\}$.

5. Types of functions :

(a) One to One Function (Injective) : In f: $A \rightarrow B$. If different elements in A have different images in B, then f is said to be a one -one or an Injective Function or Mapping. Example: Let $A = \{1, 2\}$ and $B = \{2, 4, 6\}$. Let us consider f : $A \rightarrow B$: f(x) = 2x. f(1) = 2; f(2) = 4; f(3) = 6. f is function from A to B such that different elements in A have different images in B and hence is one – one.

(b) **Into Function :** If in A B, there exists even a single element in B having no pre-image in A, then f is said to be an Into function. Example: Let A = {2, 3, 5, 7} and B = {0, 1, 3, 5, 7}. Let us consider $f : A \rightarrow B$;; F (x) = x - 2. Then f(2) = 0; f(3) = 1; f(5) = 3 & f(7) = 5. It is clear that f is a function from A to B. Here there exists an element 7 In B, having no pre-image in A. So, if is an into function.

- (c) Onto Function (Surjective): A function f defined from the set X to the set Y is said to be an onto function if every element in the co-domain is mapped to by some element in its domain. Example : $A = \{1,2, 3\}, B = \{2, 4, 6\}, the F(x) = 2x$ gives, f(1) = 2, f(2) = 4, f(3) = 6 therefore F(x) is an onto function, since all the images in B have a pre-image in A.
- (d) Bijection (One- One Onto) : A mapping which is both injective and surjective is called a bijection. In other words, a mapping f: X → Y is called one-one onto (Bijection) if the following conditions are satisfied:
 - Each element in X is mapped to a different element of Y.
 - Given any element of y ∈ Y, there exists an element x ∈ X and such that y = f (x), i.e.. every element of Y has a pre-image.
 - Example : A = {1, 2, 4}, B = {2, 4, 6}, then F(x) = 2x gives, f(1) = 2, f (2) = 4, therefore
 F(x) is a one to onto function, since all the images in B have a preimage of A and all the images are mapped to only one image.
- (e) Many to one : A mapping (from the set X to the set Y is said to be many-one if f(a) = f(b) even if $a \neq b$, $a, b \in X$. f(a), f(b) = Y. In other words, if a given element of Y may have more than one pre-image but no element of X can have more than one f-image, then mapping is said to be many-one. Example : Let $f: A \rightarrow B$: be {(-2,5), (2,5), (3,6)}. The same is a many to one function since, there are two pre-images with the same image.
- **(f) Identify Mapping :** A mapping f defined from the set X to the set X is said to be Identify mapping if every element $x \in X$ is mapped to itself, i.e. in case of identity mapping f(x) = x, $\forall x \in X$, f(x) = X. The identify mapping is always one-one and onto, i.e. it is always a Bijection.
- (g) Constant Mapping : Let $f : A \rightarrow B$, defined in such a way that all the elements in A have the same image in B, then f is said to be a constant function. In other words, a function $f : X \rightarrow Y$ is constant function if the range of f is Singleton Set. Example : Let $A = \{1, 2, 3\}$ and $B = \{5, 7, 9\}$. Let $f A \rightarrow B : f(x) = 5$ for all $x \in A$. Then, all the elements in A have the same image namely 5 in B.
- (h) Inverse Function : Let f be a function defined from the set X to the set Y, i.e., $f : X \to Y$ and g be a function defined from the set Y to the set X, i.e., g : Y X; then function g is said to be inverse of f if $\{f(x)\} = x, \forall x \in X$ and the function g is denoted by f-1. A function g which possesses an inverse is called invertible.
- (i) Composite function : Let $f : A \to B$ and $g : B \to C$; then the composite of the functions f and g, denoted by gof or fg is a mapping gof : $A \to C$ such that (gof) (x) = g f(x)], $\forall x \in A$ and g[f(x)] $\in C$.

Many to One

2

2

3

BUSINESS MATHEMATICS

- (j) Even Function : A function y = f(x) is called an even function of x if f(x) = f(-x) for all the values of x. Example: $y = x^2$ is an even function as : $(-x)^2 = x^2$.
- (k) Odd function : A function y = f(x) is said to be an odd function of x if f(-x) = f(x) for all the values of x. **Example :** $f(x) = x^3$ is an odd function of x as : $(-x)^3 = x^3 = f(x)$.
- (I) Equality of two functions: Two functions f and g are said to be equal if they are defined on the same domain X and if f(x) = g(x), $\forall x \in X$.

6. Other Terms

(a) Inverse image of an element : Let f be a function defined from the set X to the set Y, then the inverse image of an element $b \in Y$ under f is denoted by $f^{-1}(b)$ to be read as f inverse b and $f^{-1}(b) = \{x \mid x \in X \text{ and } f(x) \in B\}$. Obviously, $f^{-1}(B)$ is a subset of X and $f^{-1}[f(x)] = X$.

(b) Inverse image of a subset : Let f be a function defined from the set X to the set Y and B be a subset of Y, i.e., B \subseteq Y. then the inverse of B under f is given by f⁻¹ (B) = { x | x \in X and f(x) \in B}. Obviously, f-1 (B) is a subset of x and f⁻¹ [f(X)] = X.

Part -III Functions Set - A

- If A = {x, y, z}, B = {a, b, c, d}, then which of the following relation from the set A to set B is a function? (Scanner)

 a) {(x, a), (x, b), (y, c), (z, d)}
 b) {(x, a), (y, b), (z, d)}
 c) {(x, c), (z, b), (z, c)}
 d) {a, z), (b, y), (c, z), (d, x)}
- 2. Identity the function from the following:

(Scanner)

a) {(1,1), (1,2), (1,3)}
b) {(1,1), (2,1),(2,3)}
c) {(1,2), (2,2,), (3,2),(4,2)}
d) None of these

3. If A = {a, b, c, d}; B = {p, q, r, s} which of the following relation is a function from A to B (Scanner) a) $R_1 = \{(a, p), (b, q), (c, s)\}$

b) $R_2 = \{(p, a), (b, r), (d, s)\}$ c) $R_3 = \{(b, p), (c, s), (b, r)\}$ d) $R_4 = \{(a, p), (b, r), (c, q), (d, s)\}$

- 4. X = {x, y, w, z}, y = {1,2,3,4} H = {(x,1), (y, 2), (y, 3), (z, 4), (x, 4)} (Scanner) a) H is a function from X to Y b) H is not a function from X to Y c) H is a relation from Y to X d) None of the above
- 5. Let A={1,2,3} and B={6,4,7}. Then, the relation R={(2,4), (3,6)} will be: (Scanner)
 a) Function from A to B
 b) Function from B to A
 c) Both A and B
 d) Not a function
- 6. Let the domain of x be the set {1}. Which of the following functions are equal to 1
 a) f(x) = x², g(x) = x
 b) f(a) = x, g(x) = 1-x
 c) f(x) = x² + x + 2, g(x) = (x + 1)²
 d) none of these
- 7. If f(x) = 1/1-x, f(-1) is a) 0 b) $\frac{1}{2}$ c) 1 d) none of these
- 8. If g(x) = (x-1)/x, g(-1/2) is a) 1 b) 2 c) 3/2 d) 3

9.	If $f(x) = x^2 - 1$ and	$d g(x) = \frac{x}{x}$	$\frac{1}{2}$ then $\frac{1}{2}$	$\frac{f(3)}{f(3)+g(3)}$ is		c) 1
	a) 5/4 c) 3/5	b) 4/5 d) 5/3		-	18	. If A
	-, -, -	., ., .				a) {(
10.	If $f(x) = x^3 - x^2 + (x + 1)^2 + (x + 1$	• x + 1 the	en the va	lue of [f(1)	+	b) {(
	f(-1)]/2 will be a) 5	h) 2				d) {(
	c) 0	d) -2			19	Whi
11.	f f(x) = x + x	-2l. then i	redefine	the function	1.	
	Hence find f (3.5	5), f (-2), f	(1.5).	(1
	a) 5, 6, 2	b) 2, 4, 5	5			(a)
	c) 7, 6, 5	d) 0, 2, 5	5			
12.	If $f(x) = x+3$, $g(x) = x+3$	$x) = x^{2}$,	then f(x)	.g(x) is		
	a) $(x + 3)^2$					
	c) $x^3 + 3x^2$					(h)
	d) none of thes	e				(0)
13.	{(x, y) x <y} td="" wh<=""><td>ere x, y ∈I</td><td>R is</td><td></td><td></td><td></td></y}>	ere x, y ∈I	R is			
	a) not a functio	n				
	b) a function	opina				(c)
	d) none of thes	e				(C)
14.	$\{(x, y), y = x^2\}$ w	here x, y e	≡ R is			
	a) not a functio	n				
	b) a function	nina				. 1
	d) none of thes	e				(d
15.	$\{(x, y) \mid x = 4\} w$	here x, y 🤅	∈ R is a			
	a) not a functio	n				
	b) function	oning				
	d) none of thes	e			1	The
16	$\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \neq \mathbf{y} = \mathbf{y}$	51 where y		2	1.	a) o
10.	a) not a functio	n	α, y ∈ 1 13	a		c) m
	b) a composite	function			2	lf Δ
	c) one-one map d) none of thes	oping e			<u> </u>	2, 4
	$r^2 - 25$					a) C
17.	If $f(x) = \frac{x - 25}{x - 5}$,	then f(5)	IS	(Scanner)		b) C
	a) U	ו (ס				c) N

<u>Set - B</u>

Х

- 1. The function $f(x) = 2^x$ is a) one-one mapping b) one-many c) many-one d) none of these 2. If A = { $\pm 2, \pm \cdot 3$ }, B = {1, 4 9} and F = {(2, 4),
- 2. If A = $\{\pm 2, \pm \cdot 3\}$, B = $\{1, 4, 9\}$ and F = $\{(2, 4), (-2, 4), (3, 9), (-3, 4)\}$ then 'F' is defined as: (Scanner)
 - a) One to one function from A into B.
 - b) One to one function from A onto B.
 - c) Many to one function from A onto B.

	d) Many to one function from A into B.				
3.	If N be the set of all natural numbers and E be the set of all even natural numbers then the function f: $N \rightarrow E$, such that $f(x) = 2x$ for all $X \in$ <i>N</i> is (Scanner) a) One-one onto b) One-one into c) Many-one onto d) constant	1			
4.	A is $\{1,2,3,4\}$ and B is $\{1,4,9,16,25\}$ if a function fis defined from set A to B where $f(x) = x^2$ thenthe range of f is:(scanner)a) $\{1,2,3,4\}$ b) $\{1,4,9,16\}$ c) $\{1,4,9,16,25\}$ d) None of these				
5.	The range of the function $f: N \to N$; $f(x) = (-1)^{x-1}$, is (Scanner) a) {0, -1} b) {1, -1} c) {1, 0} d) {1, 0, -1}				
6.	The range of the function $f(x) = \log_{10} (1 + x)$ for the domain of real values of x when $0 \le x \le 9$ is a) [0, 1] b) (0, 1) c) [0, 2] d) none of these	2			
7.	If F : A \rightarrow R is a real valued function defined by f(x) = $\frac{1}{x}$, then A = (Scanner) a) R b) R - {1} c) R - {0} d) R - N	3			
8.	The number of elements in range of constantfunction is(Scanner)a) Oneb) Zeroc) Infinited) Indetermined	2			
9.	f(x = 3+x, for - 3 < x < 0 and 3 - 2x for 0 < x < 3, then Value of f(2) will be	5			
10.	Let $f: R \to R$ be such that $f(x) = 2^x$, then $f(x + y)$ equals:(Scanner)a) $f(x) + f(y)$ b) $f(x)$. $f(y)$ c) $f(x) \div f(y)$ d) None of these	6			
11.	If $f(x) = x+3$, $g(x) = x^2$, then fog(x) is a) $x^2 + 3$ b) $x^2 + x + 3$ c) $(x + 3)^2$ d) none of these				

12.	If $f(x) = x + 3$, $g(x) = a$ a) $(x + 3)^2$ c) $x^2 (x + 3)$,	x^2 , the g of (x) is b) $x^2 + 3$ d) none of these	
13.	Let R is the set of refunction f :R \rightarrow R ar + 1 and g(x) = 2x - a) 4x ² + 6x + 1 c) 4x ² - 6x + 1	eal numbers, such e defined by f(x) = 3. Find (fog) : (Sc b) x ² + 6x + 1 d) x ² - 6x + 1	that the = x ² + 3x anner)
14.	If $f(x) = x + 2$, $g(x) = x + 2$	= 7 ^x , then g of (x) (Sc	= anner)
	a) 7 ^x . x + 2.7 ^x c) 49 (7 ^x)	b) 7 ^x + 2 d) None of these	2
	<u>Se</u>	<u>t - C</u>	
1.	If $f(x) = 1/1 - x$ and g a) x	(x) = $(x-1)/x$, than b) $1/x$	fog(x) is
	C) -x	d) none of these	
2.	If f(x) = 1/1-x and g a) x-1 c) 1/x	(x) = (x-1)/x, than b) x d) none of these	g of(x) is
3.	If $f(x) = \frac{x}{\sqrt{1+x^2}}$ and g	$(x) = \frac{x}{\sqrt{1-x^2}}$ Find fo	g? Inner)
	a) x c) $\frac{x}{\sqrt{1-x^2}}$	b) $\frac{1}{x}$ d) $x\sqrt{1-x^2}$	
4.	If f(x) = x ² and g(x) = a) go f(3) = 3 c) go f(9) = 3	= \sqrt{x} then b) go f(-3) = 9 d) go f(-9) = 3	(Scanner)
5.	If $f : R \rightarrow R$, $f(x) = x$ 1 Then fog (-2) eq a) 6 c) -2	x + 1, G : R → R g(uals tob) 5d) None	(x) = x ² + (Scanner)
6.	If f(x) = 2x + 2 and fog (4) is: a) 18 b) 22	g(x) = x ² , then the c) 34	value of <i>(Scanner)</i> d) 128
7.	If $f(x) = x^2 - 1$ a fog(3) - gof(-3) = a) 71 b) 61	and $g(x) = 2x + x $ c) 41	3 , then <i>(Scanner)</i> d) 51

c) $1 - \frac{1}{x}$ d) $\frac{1}{x} - 1$

If A = $\{1, 2, 3, 4\}$, B = $\{2, 4, 6, 8\}$, f (1) = 2, f(2) 8. = 4, f (3) = 6 and f (4) = 8, And f : $A \rightarrow B$ then f⁻¹ is : (Scanner) a) {(2,1), (4,2), (6,3), (8,4)} b) {(1,2), (2,4), (3,6), (4,8)} c) {(1, 4), (2,2), (3,6), (4, 8)} d) None of these A = {1 2 3 410} a relation on A, R = {(x, y) / x 9. + y = 10, x ϵ A, Y ϵ A, x \geq Y} then domain of R⁻ 1 is (Scanner) a) {1, 2, 3, 4, 5} b) {0, 3, 5, 7, 9} c) {1, 2, 4, 5, 6, 7} d) None 10. The Inverse function f^{-1} of f(x) = 2x is b) $\frac{x}{2}$ a) 1/2x c) 1/x d) none of these The inverse function f^{-1} of f(x) = 100x is: 11. (Scanner) a) $\frac{x}{100}$ b) $\frac{1}{100x}$ c) $\frac{1}{r}$ d) None of these 12. The inverse function f^{-1} of f(y) = 3y is _____ b) y/3 a) 1/3y d) 1/y c) -3y If f R \rightarrow R is a function, defined by f(x) = 10x -13. 7, if $q(x) = f^{-1}(x)$, then q(x) is equal to (Scanner) a) $\frac{1}{10r-7}$ b) $\frac{1}{10x+7}$ c) $\frac{x+7}{10}$ d) $\frac{x-7}{10}$ 14. If $f : R \rightarrow R$, f(x) = 2x + 7, then the inverse of f (Scanner) is: a) (x – 7)/2 b) (x + 7)/2c) (x − 3)/2 d) None 15. If f(x) = 1/1-x, then $f^{-1}(x)$ is a) 1-x b) (x-1)/x d) none of these c) x/(x-1) 16. If $u(x) = \frac{1}{1-x}$, then $u^{-1}(x)$ is : a) $\frac{1}{r-1}$ b) 1 − *x*

17. If $f(x) = \frac{2+x}{2-x}$, then $f^{-1}(x)$: (Scanner) a) $\frac{2(x-1)}{x+1}$ b) $\frac{2(x+1)}{x-1}$ d) $\frac{x-1}{x \perp 1}$ c) $\frac{x+1}{x-1}$ 18. If $f(x) = \log_{10} x$ find $f^{-1}(x)$ a) e^x 10[×] b) c) \log_{x}^{10} d) None 19. Find $f^{-1}(3)$ if f(x) = 3x - 1. a) $\frac{1}{3}$ c) $\frac{4}{3}$ b) 1 d) 2 Find $f^{-1}(2) - 2f^{-1}(-1)$ a) $\frac{4}{5}$ b) 20. a) $\frac{4}{5}$ c) $\frac{6}{5}$ b) -1 d) 1 If f(x) = 2x + h then find f(x + h) - 2f(x)21. (Scanner) a) h – 2x b) 2x – h c) 2x + h d) None of these 22. If $f(x) = x^2 + x - 1$ and 4f(x) = f(2x) then find 'x'. (Scanner) a) 4/3 b) 3/2 c) - 3/4 d) None of these 23. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ then $f\left(\frac{2x}{1+x^2}\right) =$ b) 2 f(x) a) f(x) c) 3 f(x) d) - f(x)24. Find the Domain & Range if f(x) = 2xa) R, R b) R - {0}, R c) R, R – {0} d) None 25. Find the Domain & Range, if $f(x) = \frac{x-1}{2}$ a) R – {1}, R b) R, R

d) None

c) R, R – {1}

JPA Foundation Maths

26. Find the domain & Range if $f(x) = \frac{3x}{x-1}$ a) R – {1}, R – {3} b) R - {1}, R - {1} c) R - {3}, R - {3}, d) R - {3}, R - {1} 27. Find the domain & Range if $f(x) = \frac{4+x}{3+x}$ a) R , R – {-3} b) R - {-3}, R - {2} c) R – {-3}, R – {1} d) $R - \{1\}, R - \{3\}$ 28. Find the domain of $f(x) = \sqrt{x-3}$ a) R b) (3,∞) d) (−3,∞) c) [3, ∞) 29. Find the domain and Range if $f(x)\sqrt{x+5}$ a) $(-5,\infty), (-\infty,\infty)$ b) $(-5, \infty), (0, \infty)$ c) [-5, ∞), (0, ∞) d) $[-5, \infty], [0, \infty]$ 30. Find the domain if $f(x) = \sqrt{1 - x^2}$ b) [-1, 1] a) (-1, 1) d) $(-\infty, -1)$ c) (1,∞) 31. Find the domain and Range if $f(x) = \sqrt{4 - x^2}$ a) [-2, 2], [-2, 2] b) [-2, 2], [0, 2] c) (-2, 2), (0, 2) d) None 32. The range of the function f defined by f(x) = $\sqrt{16-x^2}$ a) [-4, 0] b) [-4, 4] c) [0, 4] d) (-4, 4)

1.

2.

3.

4.

5.

6.

7.

8.

Chap 8 A :- Derivatives

Part - IDirect (Module + Scanner) Set - AIf $y=x^3$ then dy/dx is a) $x^4/4$ b) - $x^4/4$ c) $3x^2$ d) - $3x^2$	9. If $y=2x^2 + x$ then dy/dx is a) $4x + 1$ b) $2(x-1)$ c) $x + 1$ d) $x - 1$ 10. If $y=4x^3-7x^4$ then dy/dx is a) $2x(-14x^2 + 6)$ b) $2x(14x^2 - 6x)$ c) $2x(-14x^2 + 6x)$ d) None
If $y = x^{2/3}$ then dy/dx is a) $(2/3)x^{-1/3}$ b) $(3/5)x^{-5/3}$ c) $(-3/5)x^{-5/3}$ d) None	11. If $u = 3t^4 + 5t^3 + 2t^2 + t + 4$, then the value of $\frac{du}{dt}$ at $t = -1$ is: (Scanner) a) 0 b) 1 c) 2 d) 5
If $y=x^{\circ}$ then dy/dx is a) $-8x^{-9}$ b) $8x^{-9}$ c) $-8x^{9}$ d) $8x^{9}$ If $y=5x^{2}$ then dy/dx is a) $10x$ b) $5x$ c) $2x$ d) None	12. If $y=7x^4+3x^3-9x+5$ then dy/dx is a) $28x^3+9(x+1)$ (x-1) b) $28x^3+9(x+1)^2$ c) $28x^3+9(x-1)^2$ d) None
If $y=x^{-1/2}$ then dy/dx is a) $(-1/2)x^{-3/2}$ b) $(1/2)x^{-3/2}$ c) $(1/2)x^{3/2}$ d) None If $y=-3x^{-7/3}$ then dy/dx is	13. If $y=x+4x^{-1}-2x^{-7}$ then dy/dx is a) $1-4x^{-2} + 14x^{-8}$ b) $1+4x^{-2} - 14x^{-8}$ c) $1+4x^{-2} + 14x^{-8}$ d) None
a) $7x^{10/3}$ b) $-7x^{10/3}$ c) $(-7/3)x^{-10/3}$ d) None If $y = \frac{1}{\sqrt{x}}$ then $\frac{dy}{dx}$ is equal to a) $\frac{1}{\sqrt{x}}$	14. If $y = (4/3)x^3 - (6/7)x^7 + 4x^{-3}$ then dy/dx is a) $4x^2-6x^6-12x^{-4}$ b) $4x^2+6x^6-12x^{-4}$ c) $4x^2+6x^6+12x^{-4}$ d) None
b) $\frac{-1}{x\sqrt{x}}$ c) $-\frac{1}{2x\sqrt{x}}$ d) none of these	15. If $y=9x^{4}-7x^{3}+8x^{2}-8x^{-1}+10x^{-3}$ then dy/dx is a) $36x^{3}-21x^{2}+16x+8x^{-2}-30x^{-4}$ b) $36x^{3}-21x^{2}+16x-8x^{-2}+30x^{-4}$ c) $36x^{3}+21x^{2}+16x+8x^{-2}+30x^{-4}$ d) None
y = $3x^2 + 5x - 2$ find $\frac{dy}{dx}$ a) $6x + 5$ b) $6x - 5$ c) $5 + 6x$ d) None	16. If $y = x (x - 1) (x - 2)$ then $\frac{dy}{dx}$ is a) $3x^2 - 6x + 2$ b) $-6x + 2$ c) $3x^2 + 2$ d) none of these

BUSINESS MATHEMATICS

				c) ax ^{x-1} + a ^x log a	d) None of the above.
17.	$y = \frac{1}{3}x^3 - 5x^2 + 6x - \frac{1}{3}x^3 - 5x^2 + 6x - \frac{1}{3}x^3 - 5x^2 + 6x - \frac{1}{3}x^3 - $	$2\log x + 3$ find $\frac{dy}{dx}$	5.	Let $f(x)\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$	then f'(2) is equal to
	a) $x^2 - 10x + 6 - \frac{2}{-10}$	b) x ² +10x+6- ²		a) 3/4	b) 1/2
	x	x		c) 0	d) none of these
	c) $x^2 - 10x - 6 + \frac{2}{x}$	d) None		1.2.	
			6.	If y = $(x-x^{-1})^{2}$ then dy	$\frac{1}{dx}$ is
18.	lf Y = x (x-1) (x-2) th	nen dy/dx is		a) $2x - 2x^{3}$	d) $2x + 2x^{3}$
	a) – 6x	b) $3x^2 - 6x + 2$			
	C) 6X+4	d) 3x ² – 6x	7.	If $y = (x^{1/3} - x^{-1/3})^3$ then	dy/dx is
10	х. а. а . ()	dy		a) $1+x^{-2}-x^{-2/3}-x^{-4/3}$	b) $1+x^{-2}+x^{-2/3}-x^{-4/3}$
19.	$y = a^{+} + x^{a} + a^{a}$ find	$\frac{1}{dx}$		c) $1 + x^{-2} + x^{-2/3} + x^{-4/3}$	d) None
	a) a ^x log a + ax ^{a-1}	b) a ^x log a + ax ^{a+ 1}	8	$ f v = [(1-x)/x]^2$ then	n dv/dx is
	c) a ^x log a - ax ^{a-1}	d) None	0.	a) $2(x^{-3} + x^{-2})$	b) $2(-x^{-3} + x^{-2})$
20	The derivative of (x^2)	-1)/v is		c) $2(x^{-3} - x^{-2})$	d) None
20.	a) $1 + 1/x^2$	b) $1-1/x^2$			
	c) 1/x ²	d) none of these		<u>Se</u>	<u>t - C</u>
				r^2	r^3 r^n .
21.	The differential coef	fficients of $(x^2 + 1)/x$ is	1.	$ f \qquad y = 1 + x + \frac{x}{2!}$	$+\frac{n}{3!}+\dots+\frac{n}{n}+\dots$ then
	a) $1 + 1/x^2$	D) I-I/X ²		$\frac{dy}{dy} = 2$	
	C) 1/X	d) none of these		dx	
22	$d \begin{bmatrix} 2 \log 2x \end{bmatrix}$			a) y	b) -y d) popo of those
22.	$\frac{dx}{dx} \begin{bmatrix} 2 & 0 \end{bmatrix} =$	(Scanner)		C) U	d) hole of these
	a) 1	b) 0		\mathbf{x}^2	\mathbf{x}^3 \mathbf{x}^n
	c) 1/2	d) 2 [^] . log ₂ x	2.	If $y = 1 + x + \frac{1}{2!}$	$\frac{1}{3!}$ + + $\frac{1}{n}$ + ∞ then
	Se	t-B		$\frac{dy}{dt}$ – v is equal to:	(Scanner)
	<u></u>	<u> </u>		dx	(Scamer)
1	$xy = 1$ then $y^2 + \frac{dy}{dy}$	r = ? (Scanner)		a) 1	b) - 1 d) Nana
••	dx			() ()	a) None
	a) 1	b) 0 d) None of the above	3.	If $f(x) = {}^{x}C_{3}$; then $f'(x)$	1) = ? (Scanner)
	() 2	d) None of the above		a) $\frac{1}{-}$	
2.	If $f(x) = x^2 - 6x + 8t$	then f'(5) – f'(8) is equal to		6	
	a) f'(2)	b) 3f'(2)		b) $\frac{-1}{2}$	
	c) 2f'(2)	d) none of these		6 5	
2	If $f(x) = x^k$ and $f'(1)$.	- 10 the value of k is		c) $\frac{5}{6}$	
Э.	a) 10	b) -10		5	
	c) 1/10 d)	none of these		a) <u>-</u>	
4.	Given, $y = (e^{a \log x} + e^{a \log x})$	$e^{x \log a}$) then $\frac{dy}{dx}$ (Scanner)			
	$x^{a-1} + x^{x} + x^{x}$	dx			
	ajax + a 109 X	ujax ta luya			

I

Part-II
Product rule/Quotient rule7.If
$$y=(3x^2+5)(2x^3+x+7)$$
 then dy/dx is
a) $30x^4+39x^4+42x+5$
b) $30x^4+39x^4+42x+5$
c) $30x^4+39x^4+42x+5x$
d) None1. $y = e^x\log x$ find $\frac{dy}{dx}$.
a) $\frac{e^x}{x}(1+x\log x)$
b) $\frac{x}{e^x}(1+x\log x)$
c) $\frac{e^x}{x}(1-x\log x)$
d) None8.If $f(x) = a^x x^x$ then find $f(x)$.
($x = 1 \log a$]
d) $f(x) [\frac{1}{a} + \log a]$
d) $f(x) [\frac{1}{a} + \log a]$
d) $f(x) [\frac{1}{a} + \log a]$ 2. $y = 2^x \cdot x^2_r \log \frac{dy}{dx}$.
c) $x^2 > \log_2 2 + 5 \cdot 2^x x^4$
c) $x^2 > \log_2 2 + 5 \cdot 2^x x^4$
c) $x^2 > \log_2 2 + 5 \cdot 2^x x^4$
c) $x^2 > \log_2 2 + 5 \cdot 2^x x^4$
c) $x^2 > \log_2 2 + 2^x x^4$
d) None9. $y = e^x/\log x$, find $\frac{dy}{dx}$.
a) $\frac{e^x(x\log x+1)}{x(\log x)^2}$
d) None3. $y = 2^x \log 2\log x$
d) $\frac{2^x}{x} - 2^x \log 2\log x$
c) $\frac{2^x}{x} - 2^x \log 2\log x$
d) None9. $y = e^x/\log x$, find $\frac{dy}{dx}$.
a) $\frac{2^{xe^x} - x^{e^x}}{(e^x)^2} = \frac{x(2-x)}{e^x}$
d) None4. $\frac{d}{dx}(x, \log x)$
c) $\frac{e^x}{x} + \log x$
d) None $(2e^{x^x} - x^{e^x}) = \frac{x(2-x)}{e^x}$
d) None5.The derivative of $x^2 \log x$ is
a) $12x^2 + 21 \log x$
d) $x^2 (\log x)$
c) $2\log x$
d) $x^2 (\log x)$ $(2e^{x^x} + x^{e^x}) = \frac{x(2-x)}{e^x}$
d) $x^3 (4-x)/e^x$ 6.If $y=(3x^2+1)(x^3+2x)$ then dy/dx is
a) $15x^4+21x^2+2$
b) $15x^3+21x^2+2$
d) None $12. y = \frac{2x}{3x^2+7}$ find $\frac{dy}{dx}$.
a) $\frac{2(7+6x^2)}{(3x^2+7)^2}$
d) $x^2(e^{x}-7)^2$
d) None

If $y = (3x^2 + 5x) (7x + 4)^{-1}$ then dy/dx is 6. a) $(21x^2 + 24x + 20) (7x + 4)^{-2}$ b) $(21x^2 + 20x + 24) (7x + 4)^{-2}$ c) $(21x^2 + 24x + 4) (7x + 4)^{-2}$ d) None If $y = (2x + 1) (3x + 1) (4x + 1)^{-1}$ then dy/dx is 7. a) $(24x^2 + 12x + 1) (4x + 1)^{-2}$ b) $(24x^2 + 12x + 3) (4x + 1)^{-2}$ c) $(24x^2 + 12x + 5) (4x + 1)^{-2}$ d) None 8. If $y = (5x^4 - 6x^2 - 7x + 8) / (5x - 6)$ then dy/dx is a) $(75x^4 - 120x^3 - 30x^2 + 72x + 2) (5x-6)^{-2}$ b) $(75x^4 - 120x^3 + 30x^2 - 72x + 2) (5x-6)^{-2}$ c) $(75x^4 - 120x^3 - 30x^2 + 72x - 2) (5x-6)^{-2}$ d) None If y=(x+1)(2x-1) / (x-3) then dy/dx is 9. a) $2(x^2-6x-1)/(x-3)^2$ b) $2(x^2+6x-1)/(x-3)^2$ c) $2(x^2+6x+1)/(x-3)^2$ d) None 10. If $y=2x^{3/2}(x^{1/2}+2)(x^{1/2}-1)$ then dy/dx is a) $4x+(5x-6)x^{1/2}$ b) $4x+(5x-3)x^{1/2}$ c) $4x + (5x-2) x^{1/2}$ d) None Set - C If $y = \frac{e^{3x} - e^{2x}}{e^{3x} + e^{2x}}$, then $\frac{dy}{dx}$ is equal to a) 2e^{5x} b) $1/(e^{5x} + e^{2x})^2$ c) $e^x / (1 + e^x)$ d) $\frac{2e^x}{(e^x+1)^2}$ If f(x) = $\frac{4-2x}{2+3x+3x^2}$ then the values of x for 2. which f'(x) = 0 is 5

a)
$$2(1 \pm \sqrt{\frac{2}{3}})$$

b) $(1 \pm \sqrt{3})$
c) 2

d) none of these

	<u>Part - III</u>		<u>Set - B</u>
	Chain Rule		
	Set - A	1.	If y=(3x ² -7) ^{1/2} then dy/dx is a) 3x(3x ² -7) ^{-1/2}
1	If y-log Ex then dy/dy is		b) 6x(3x ² -7) ^{-1/2}
١.	$r y = r \log 5x \ r r r r r \log 5x r r r r r \log 5x r r r r r r r r r r r r r r r r r r $		c) $3x(3x^2-7)^{1/2}$
	a) x b) x		d) None
		2	
2	The derivative of x^{3x^2-6x+2} :	Ζ.	If $y = (3x^2 - 5x^2 + 8)^2$ then dy/dx is $2(2x^3 - 5x^2 + 8)^2$ ($9x^2 - 10x^3$)
Ζ.	The derivative of e is $20(1 - 5x)^5$		a) $3(3x^{-}5x^{+}6) = (9x^{-}10x)$ b) $3(3x^{3}5x^{2}+8)^{2} (9x^{2}+10x)$
	a) $50(1-5x)^{5}$		$(3) 3(3x^{3}-5x^{2}+8)^{2} (10x^{2}-9x)$
	b) $(1-5x)$ c) $6(x-1)e^{3x^2-6x+2}$		d) None
	d) none of these		
	a) none of these	3.	If $y = (6x^5 - 7x^3 + 9)^{-1/3}$ then dy/dx is
2	If $f(x) = e^{ax^2 + bx + c}$ the f'(x) is		a) (-1/3) (6x ⁵ -7x ³ +9) ^{-4/3} (30x ⁴ -21x ²)
5.	$\prod_{x \neq 1} f(x) = e \qquad		b) (1/3) (6x ⁵ -7x ³ +9) ^{-4/3} (30x ⁴ -21x ²)
	a) $e^{ax + bx + c}$		c) (-1/3) (6x ⁵ -7x ³ +9) ^{4/3} (30x ⁴ -21x ²)
	b) e^{ax^2+bx+c} (2ax+b)		d) None
	c) 2ax + b		$15 \cdot (a \cdot c^2 + b \cdot c + a)^{1/2} + b + a + c + c + c + c$
	d) none of these	4.	$H y = (dx + bx + c)^{-1/2}$
			a) $(1/2) (2ax + b) (ax + bx + c)$ b) $(-1/2) (2ax + b) (ax^2 + bx + c)^{-1/2}$
4.	The derivative of $y = \sqrt{x+1}$ is		b) $(-1/2) (2dx + b) (dx + bx + c)$ c) $(1/2) (2x + 2b) (2x^2 + bx + c)^{-1/2}$
	a) $1 / \sqrt{x+1}$ b) $-1 / \sqrt{x+1}$		d) None
	c) $1/2 \sqrt{r+1}$ d) none of these		
		5.	If $y = (2x^4 + 3x^3 - 5x + 6)^{-1/3}$ then dy/dx is
_	dy . dy		a) $(-1/3) (2x^4 + 3x^3 - 5x + 6)^{-4/3} (8x^3 + 9x^2 - 5)$
5.	If $y = e^{\sqrt{2x}}$ then $\frac{1}{dx}$ is equal to		b) $(1/3) (2x^4 + 3x^3 - 5x + 6)^{-4/3} (8x^3 + 9x^2 - 5)$
	$e^{\sqrt{2x}}$		c) $(1/3) (2x^4 + 3x^3 - 5x + 6)^{4/3} (8x^3 + 9x^2 - 5)$
	a) $\frac{1}{\sqrt{2x}}$ b) $e^{\sqrt{2x}}$		d) None
	$e^{\sqrt{2x}}$		
	c) $\frac{e}{\sqrt{2}r}$ d) none of these	6.	The derivative of the function $\sqrt{x} + \sqrt{x}$ is
			a) <u>1</u>
c	If $f(x) = 2e^{x^4}$ there $f'(x) = 4 - 3f(x) + {1 \choose 1} f(x)$		$2\sqrt{x} + \sqrt{x}$
6.	If $I(x) = 3e^{-1}$ then $I'(x) = 4x^{3}I(x) + (\frac{1}{3})I(0) = 1$		b) $1 + \frac{1}{2}$
	f'(0) is equal to		$\frac{1}{2\sqrt{x}}$
	a) 0 b) e^{x^2}		c) $1 (1 + 1)$
	c) 1 d) -1		$C_{j} \frac{1}{2\sqrt{x+\sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}}\right)$
			d) none of these
7.	Let $y = \sqrt{2x} + 3^{2x}$ then $\frac{dy}{dx}$ is equal to		
	dx	7	If $y = \log \sqrt{x + \sqrt{x^2 + a^2}}$ then dy/dy is
	a) $(1/\sqrt{2x}) + 2.3^{\epsilon x} \log_{e} 3$	1.	a) $(1/2) (x^2 + a^2)^{-1/2}$
	b) 1/ $\sqrt{2x}$		h) $(-1/2)$ $(x^2 + a^2)^{-1/2}$
	c) 2.3 ^{2x} log _e 3		c) $(1/2) (x^2 + a^2)^{1/2}$
	d) none of these		d) None
			.,

8.

9.

BUSINESS MATHEMATICS

8. If
$$y = \log \left(\frac{5-4x^2}{3+5x^2}\right)$$
, then $\frac{dy}{dx} =$ (Scanner)
a) $\frac{8}{4x-5} - \frac{10}{3+5x}$
b) $(4x^2-5) - (3+5x^2)$
c) $\frac{8x}{4x^2-5} - \frac{10x}{3+5x^2}$
d) $8x - 10$
9. Differentiate the following w.r.t. x:
 $\log(x+\sqrt{x^2+a^2})$
a) $\frac{\sqrt{x^2-a^2}}{1}$
b) $\frac{1}{\sqrt{x^2-a^2}}$
c) $\frac{1}{\sqrt{x^2-a^2}}$
d) None
1.
10. If $y = \sqrt{x^2 + m^2}$ then y y₁ (where y₁ = dy/dx) is
equal to
a) $-x$
b) x
c) $1/x$
d) none of these
2.
11. If $y = \left(x + \sqrt{x^2 + m^2}\right)^n$ then dy/dx is equal to
(Scanner)
a) ny
b) ny/ $\sqrt{x^2 + m^2}$
c) $-ny/\sqrt{x^2 + m^2}$
d) none of these
12. If $y = \log[(x-1)^{1/2} - (x+1)^{1/2}]$ then dy/dx is
a) $(1/2) (x^2 - 1)^{1/2}$
c) $(1/2) (x^2 - 1)^{1/2}$
d) None
13. Differential Co-efficient of loge
 $(\sqrt{x-1} + \sqrt{x+1})$ with respect to x is: (Scanner)
a) $\frac{1}{2\sqrt{x^2+1}}$

c)
$$\frac{1}{2(x^2 - 1)}$$

d) $\frac{1}{\sqrt{x - 1} + \sqrt{x + 1}}$

1

 \sim

Differentiate the following w.r.t. x: $\log\left(\sqrt{x-a} + \sqrt{x-b}\right).$

a)
$$\frac{1}{\sqrt{x-a}\sqrt{x-b}}$$

b)
$$\frac{1}{2\sqrt{x-a}\sqrt{x-b}}$$

c)
$$\frac{1}{4\sqrt{x-a}\sqrt{x-b}}$$

d) None

Set - C

- If $y = +\sqrt{x/m} + \sqrt{m/x}$ then 2xy dy/dx x/m +m/x is equal to a) 0 b) 1 c) -1 d) none of these If $y = (x + \sqrt{x^2 - 1})^m$ then $(x^2 - 1) (dy/dx)^2 - m^2y^2$ is ___ a) -1 b) 1 d) none of these c) 0 If $y = e^x + e^{-x}$ then $\frac{dy}{dx} - \sqrt{y^2 - 4}$ is equal to a) 1 b) -1 c) 0 d) none of these
- If $y = [(x^2 + a^2)^{1/2} + (x^2 + b^2)^{1/2}]^{-1}$ then dy/dx is a) $x(a^2-b^2)^{-1}[(x^2+a^2)^{-1/2}-(x^2+b^2)^{-1/2}]$ b) $(a^2-b^2)^{-1}[(x^2+a^2)^{-1/2}-(x^2+b^2)^{-1/2}]$ c) $x(a^2-b^2)^{-1}[(x^2+a^2)^{1/2}+(x^2+b^2)^{1/2}]$ d) $(a^2-b^2)^{-1}[(x^2+a^2)^{1/2}+(x^2+b^2)^{1/2}]$

BUSINESS MATHEMATICS

Part - IV Logarithmic Function Set - A

1.	Differentiate x ^x w.r.t x.		(Scanner
	a) x ^x (1 + log x)	b) y/x	
	c) - y/x	d) y + x ^x log x	

- 2. If $y = x^x$ then the value of [dy/dx]/y is a) logx + 1 b) logx-1c) log(x+1) d) None
- 3. If $y = x^{\log x}$ then dy/dx is a) $2x^{\log x-1}$.logx b) $x^{\log x-1}$.logx c) $2x^{\log x+1}$.logx d) None
- 4. If $y = x^{1/x}$ then the value of [dy/dx]/y is a) $x^{-2}(1-\log x)$ b) $x^{2}(1-\log x)$ c) $x^{-2}(1+\log x)$ d) None
- 5. If $y = (1+x)^{2x}$ then the value of [dy/dx]/y is a) $2[x(x+1)^{-1} + \log(x + 1)]$ b) $x(x+1)^{-1} + \log(x + 1)$ c) $2[x(x+1)^{-1} - \log(x + 1)]$ d) None
- 6. Differentiate $e^{(x^x)}$: (Scanner) a) (1 + log x) b) x^x (1 + log x) c) $e^{(x^x)}$ (1 + log x) x^x d) e^{x^x} (1 + log x)
- 7. If y=x^a + a^x + x^x + a^a a being a constant then dy/dx is

 a) ax^{a-1}+a^xloga+x^x (logx+1)
 b) ax^{a-1}+a^xloga+x^x (logx-1)
 c) ax^{a-1}+a^xloga-x^x (logx+1)
 d) None

<u>Set - B</u>

- 1. If $y = x^{x^{x}}$ then the value of dy/dx is a) $x^{x^{x}} [x^{x-1} + \log x \cdot x^{x} (1 + \log x)]$ b) $x^{x^{x}} [x^{x-1} + \log x \cdot (1 + \log x)]$ c) $x^{x^{x}} [x^{x-1} + \log x \cdot x^{x} (1 - \log x)]$ d) $x^{x^{x}} [x^{x-1} + \log x \cdot (1 - \log x)]$
- 2. If $y = (x^{x})^{x}$ then dy/dx is a) $x^{x^{2+1}}(1+2\log x)$ b) $x^{x^{2+1}}(1+\log x)$ c) $x^{x^{2+1}}(1-\log x)$ d) None
- 3. If $y = x^2 e^{5x} (3x + 1)^{-1/2} (2x-1)^{-1/3}$ then the value of [dy/dx] / y is a) $5+2x^{-1} - (3/2) (3x + 1)^{-1} - (2/3) (2x-1)^{-1}$ b) $5+2x^{-1} - (2/3) (3x + 1)^{-1} - (3/2) (2x-1)^{-1}$ c) $5+2x^{-1} - (2/3) (3x + 1)^{-1} + (3/2) (2x-1)^{-1}$ d) None
- 4. If $y = x^{1/2} (5-2x)^{2/3} (4-3x)^{-3/4} (7-4x)^{-4/5}$ then the value of [dy/dx]/y is a) $(1/2)x^{-1} - (4/3) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ b) $(1/2)x^{-1} - (3/4) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ c) $(1/2)x^{-1} + (4/3) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ d) None
- 5. If $y = e^{5/x} (2x^2 1)^{1/2}$ then the value of [dy/dx]/y is a) $(2x^3 - 10x^2 + 5)x^{-2} (2x^2 - 1)^{-1}$ b) $(2x^3 - 5x^2 + 10)x^{-2} (2x^2 - 1)^{-1}$ c) $(2x^3 + 10x^2 - 5)x^{-2} (2x^2 - 1)^{-1}$ d) None

6. If $y = (2-x) (3-x)^{1/2} (1+x)^{-1/2}$ then the value of [dy/dx]/y is a) $(x-2)^{-1} + (1/2) (x-3)^{-1} - (1/2) (1+x)^{-1}$ b) $(x-2)^{-1} + (x-3)^{-1} - (1+x)^{-1}$ c) $(x-2)^{-1} - (1/2) (x-3)^{-1} + (1/2) (1+x)^{-1}$ d) None

<u>Set</u> - C

7. If
$$y = \log \{ e^{x}[(x-2)/(x+3)]^{3/4} \}$$
 then dy/dx is
a) $1 + (3/4) (x-2)^{-1} - (3/4) (x+3)^{-1}$
b) $1 - (3/4) (x-2)^{-1} + (3/4) (x+3)^{-1}$
c) $1 + (3/4) (x-2)^{-1} + (3/4) (x+3)^{-1}$
d) None
8. If $y = (x+a) (x+b) (x+c) (x+d) / (x-a) (x-b) (x-c) (x-d) then the value of $(dy/dx)/y$ is
a) $(x+a)^{-1} + (x+b)^{-1} + (x+c)^{-1} + (x+d)^{-1} - (x-a)^{-1} - (x-b)^{-1} - (x-c)^{-1} - (x-d)^{-1}$
b) $(x+a)^{-1} - (x+b)^{-1} + (x-c)^{-1} - (x+d)^{-1} + (x-a)^{-1} - (x-b)^{-1} + (x-c)^{-1} + (x-d)^{-1} - (x+a)^{-1} - (x+b)^{-1} + (x-c)^{-1} + (x-d)^{-1} - (x+a)^{-1} - (x+b)^{-1} + (x-c)^{-1} - (x+d)^{-1}$
d) None
9. If $y = \log[e^{3x}(5x-3)^{1/3} (4x+2)^{-1/3}]$ then dy/dx is
a) $3 + (1/3) [5/(5x-3) - 4 / (4x+2)]$
b) $3 - (1/3) [5/(5x-3) - 4 / (4x+2)]$
c) $3 + (1/3) [5/(5x-3) - 4 / (4x+2)]$
d) None
10. If $y = \sqrt{\frac{1-x}{1+x}}$, then $\frac{dy}{dx}$ is equal to - (scanner)
a) $\frac{y}{x^2 - 1}$ b) $\frac{y}{1-x^2}$
c) $\frac{y}{1+x^2}$ d) $\frac{y}{y^2 - 1}$
11. If $y = x^{\log(\log x)}$ then the value of $[dy/dx]/y$ is given
by
a) $x^{-1}[1 + \log(\log x)]$
b) $x^{-1}[1 - \log(\log x)]$
c) $x[1 + \log(\log x)]$
d) $x [1 - \log(\log x)]$
c) $x[1 + \log(\log x)]$
d) $x [1 - \log(\log x)]$
c) $\frac{x^2 - 1}{x^2 - 4}$
c) $\frac{1}{x^2 - 4}$
d) none of these$

1. If $f(x) = \left\{ \frac{(a+x)}{(1+x)} \right\}^{a+1+2x}$ the value of f'(0) is a) a^{a+1} b) $a^{a+1} \left[\frac{1-a^2}{a} + 2\log a \right]$ c) 2 log a d) none of these Part - V **Implicit Function** Set - A If $x^3 - 2x^2y^2 + 5x + y - 5 = 0$ then $\frac{dy}{dx}$ at x = 1, y 1. = 1 is equal to a) 4/3 b) -4/3 c) 3/4 d) none of these If $x^3 - xy^2 + 3y^2 + 2 = 0$ then dy/dx is 2. a) $(y^2 - 3x^2) / [2y(3-x)]$ b) $(y^2 - 3x^2) / [2y(x-3)]$ c) $(y^2 - 3x^2) / [2y(3+x)]$ d) None If $x^2 - y^2 + 3x - 5y = 0$ then dy/dx is 3. a) $(2x+3)(2y+5)^{-1}$ b) (2x+3) (2y-5)⁻¹ c) (2x-3) (2y-5)⁻¹ d) None If $x^3 - 2x^2y^2 + 5x + y = 5$, then $\frac{dy}{dx}$ at x = 1 and y 4. = 1 is: (Scanner) a) 4/3 b) - 5/4 d) - 4/3 c) 4/5 If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ then 5. dy/dx is a) -(ax + hy + g) / (hx + by + f)b) (ax + hy + q) / (hx + by + f)c) (ax - hy + q) / (hx - by + f)d) None

6. If
$$\frac{x^3}{a^2} - \frac{x^3}{a^2} = 1$$
, $\frac{dy}{dx}$ can be expressed as
a) $\frac{x}{y}$ b) $\frac{x}{\sqrt{x^2 - a^2}}$
c) $\frac{1}{\sqrt{x^2 - 1}}$ d) none of these
d) none of these
3. $x^3 + y^3 - 3ay = 0$, $\frac{dy}{dx}$ can be found out as
a) $\frac{dy}{y} - x^2$
c) $\frac{dy}{y^3 + ax}$
d) none of these
4. If $x^n y^n = (x +)^{n+n}$, then find $\frac{dy}{dx}$; (scenner)
a) $\frac{q}{y} + x^2$
d) none of these
5. If $x^0 y^1 = (x +)^{n+n}$, then find $\frac{dy}{dx}$; (scenner)
a) $\frac{q}{y} + x^2$
d) none of these
5. If $x^0 y^1 = (x +)^{n+n}$, then find $\frac{dy}{dx}$; (scenner)
a) $\frac{q}{y} + x^2$
b) $\frac{q}{x}$
c) $\frac{q}{x} + 10x + y$ / $[x(5x + 1)]$
d) None
9. If $x^2 + y^2 - 2x = 0$ then dy/dx is
a) $(1 \times 1/y)$
b) $(3x^2 + 10x + y)$ / $[x(5x + 1)]$
c) $(-3x^2 + 10x + y)$ / $[x(5x + 1)]$
d) None
9. If $x^2 + y^2 - 2x = 0$ then dy/dx is
a) $(1 \times 1/y)$
b) $(1 + x) / y$
c) $(-1/y)^{n}$
d) None
10. For the curve $x^2 + y^2 + 2gx + 2hy = 0$, the value
of $\frac{dy}{dx}$ at $(0, 0)$ is
a) $-g/h$
b) $\frac{g}{2}$
(1. If $2^x - 2^y = 2^{x-y}$ then $\frac{dy}{dx}$ at $x = y = 2$ (scenner)
a) $\frac{y^2}{x}$ ($(1 + y)\log x$)]
d) y' ($(1 + y)\log x$)]
d) none of these
2. If $xy (x - y) = 0$, find $\frac{dy}{dx}$; (scenner)
a) $\frac{y^2(2x - x)}{x(2x - y)}$ b) $\frac{x}{x(2x - y)}$
c) $\frac{x(2x - y)}{x(2y - x)}$ c) $\frac{x(2x - y)}{y(2y - x)}$
c) $\frac{y'(2x - x)}{x(2x - y)}$ d) None of these
9. If $\log (x/y) = x + y$, $\frac{dy}{dx}$ may be found to be
a) $\frac{x(1 - x)}{x(1 - y)}$ b) $\frac{y}{x}$
c) $\frac{1 - x}{1 + y}$ d) none of these

i.

BUSINESS MATHEMATICS

If $x(1 + y)^{1/2} + y (1 + x)^{1/2} = 0$ then dy/dx is 3. 10. Given $e^{-xy} - 4xy = 0$, $\frac{dy}{dx}$ can be proved to be a) -(1+x)⁻² b) $(1+x)^{-2}$ c) $-(1+x^2)^{-2}$ d) $(1+x^2)^{-2}$ (Scanner) a) - y/xb) y/xPart - VI c) x/y d) none of these **Parametric Function** Set - A If $x^y = e^{x-y}$ then dy/dx is 11. (Scanner) a) $\log x / (1 - \log x)^2$ Given x = at², y = 2at; $\frac{dy}{dx}$ is calculated as 1. b) $\log x / (1 + \log x)^2$ c) logx / (1-logx) (Scanner) d) logx / (1+logx) b) -1/t a) t c) 1/t d) none of these 12. If $y = \log_y x$, then $\frac{dy}{dx}$ is equal to: (Scanner) a) $\frac{1}{x+\log y}$ b) $\frac{1}{x+x\log y}$ c) $\frac{1}{1+x\log y}$ d) $\frac{1}{y+\log x}$ Given x = 2t + 5, y = t² - 2; $\frac{dy}{dx}$ is calculated as 2. (Scanner) a) t b) -1/t d) none of these c) 1/t x = 2t + 5 and y = $t^2 - 5$, then $\frac{dy}{dx} = ?$ 3. 13. If x = y log (xy), then $\frac{dy}{dx}$ is equal to: **(Scanner)** a) $\frac{x+y}{dxx(1+logxy)}$ b) $\frac{x-y}{x(1+logxy)}$ c) $\frac{x+y}{x(logx+logy)}$ d) $\frac{x-y}{x(logx+logy)}$ (Scanner) b) - 1/t a) t c) 1/t d) 0 If x = 3t² -1, y = t³ -t, then $\frac{dy}{dx}$ is equal to 4. Set - C a) $\frac{3t^2 - 1}{\epsilon_1}$ $\frac{dy}{dx}$ is b) 3t²-1 If $x^{y}.y^{x} = M$, where M is constant then 1. c) $\frac{3t-1}{6t}$ equal to d) none of these a) $\frac{-y}{x}$ b) $\frac{-y(y + x \log y)}{x(y \log x + x)}$ 5. If x = c t, y = c/t, then $\frac{dy}{dx}$ is equal to: (Scanner) c) $\frac{y + x \log y}{y \log x + x}$ a) 1/t b) t.e^t c) $-1/t^2$ d) None of these. d) none of these If x = log t, y = e^t, then $\frac{dy}{dx}$ = 6. (Scanner) If $x^y = y^x$, then $\frac{dy}{dx}$ gives : 2. (Scanner) a) 1/t b) t.e^t c) - 1/t2 d) None of these a) $\frac{x(x \log y - y)}{y(y \log x - x)}$ Let x = at³, y = $\frac{a}{t^2}$ Then $\frac{dy}{dx}$ = 7. (Scanner) b) $\frac{x(y\log x - x)}{y(x\log y - y)}$ a) $\frac{-1}{t^6}$ b) $\frac{-3a}{t^6}$ c) $\frac{1}{3at^6}$ c) $\frac{y(x \log y - y)}{x(y \log x - x)}$ d) None of these d) None of the above

BUSINESS MATHEMATICS

If x = at², y = 2at then $\left| \frac{dy}{dx} \right|_{t=2}$ is equal to 8. (Scanner) a) 1/2 b) -2 1. c) -1/2 d) none of these If $x = at^3 + bt^2 - t$ and $y = at^2 - 2bt$, then the 9. value of $\frac{dy}{dx}$ at t = 0 is : (Scanner) a) 2b b) -2b c) $\frac{1}{2b}$ d) $-\frac{1}{2h}$ <u>Set - B</u> 3. Given x = t + t⁻¹ and y = t - t⁻¹ the value of $\frac{dy}{dx}$ 1. at t = 2 is a) 3/5 b) -3/5 d) none of these c) 5/3 4. If $x = (1 - t^2)/(1 + t^2) y = 2t/(1 + t^2)$ then dy/dx 2. at t = 1 is a) 1/2 b) 1 c) 0 d) none of these 5. Set - C If x = $3at / (1+t^3)$, y = $3at^2/(1 + t^3)$, then dy/dx 1. is a) $(2t - t^4) / (1 - 2t^3)$ 6. b) $(2t - t^4) / (1 + 2t^3)$ c) $(2t + t^4) / (1+2t^3)$ d) None 7.

Part - VII Second order derivative Set - B If $y = ae^{mx} + be^{-mx}$ then d^2y/dx^2 is a) m²y b) my c) $-m^2y$ d) -my 2. If y = ae^{nx} + be^{-nx}, then $\frac{d^2y}{dx^2}$ is equal to _____ (Scanner) a) n²y b) $-n^2y$ c) ny d) None of these If $y = (\log x) / x$ then d^2y/dx^2 is a) (2logx-3) / x³ b) (3logx-2) / x³ c) $(2\log x+3) / x^{3}$ d) None Find the second derivative of $y = \sqrt{x+1}$ (Scanner) a) $\frac{1}{2}(x + 1)^{-\frac{1}{2}}$ b) $-1/4 (x + 1)^{-3/2}$ c) $1/4 (x+1)^{-\frac{1}{2}}$ d) None of these If $y = x^m e^{nx}$ then d^2y/dx^2 is a) $m(m-1)x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^2x^m e^{nx}$ b) $m(1-m)x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^2x^m e^{nx}$ c) $m(m+1)x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^2x^m e^{nx}$ d) None If y = x^x then $\frac{d^2Y}{dx^2}$ = ____ (Scanner) a) $\frac{dY}{dx}(1 + \log x) + Y \frac{d}{dx}(1 + \log x)$ b) $\frac{dY}{dx}(1 + \log x) + \frac{d}{dx}(1 + \log x)$ c) $\frac{dY}{dx}(1 + \log x) - Y \frac{d}{dx}(1 + \log x)$ d) $\frac{dY}{dx}(1 + \log x) - \frac{d}{dx}(1 + \log x)$ Find the fourth derivative of log $[(3x+4)^{1/2}]$ a) $-243(3x+4)^{-4}$ b) 243(3x+4)⁻⁴ c) $-243(4x+3)^{-4}$ d) None

BUSINESS MATHEMATICS

	<u>Set - C</u>	3.	If $y = [x+(1+x^2)^{1/2}]^m$ then the value of the expression $(1+x^2)d^2y / dx^2 + xdy/dx - m^2y$ is
1.	For the functions $y = x^3 - 3x$, the value of $\frac{d^2y}{dx^2}$ at		a) 0 b) 1 c) -1 d) None
	which $\frac{1}{dx}$ is zero, is (Scanner)		
	a) ± 1 b) ± 3 c) ± 6 d) None of these.	4.	If $y = a[x+(x^2-1)^{1/2}]^n + b[x-(x^2-1)^{1/2}]^n$ the value of the expression $(x^2-1)d^2y / dx^2 + xdy / dx-n^2y$ is
2.	If $y = ae^{2x} + bxe^{2x}$ where a and b are constants the value of the expression $d^2y/dx^2 - 4dy/dx + 4y$ is a) 0 b) 1		a) 0 b) 1 c) -1 d) None
	c) -1 d) None		
3.	If $x^{2} + y^{2} = 4$ then (Scanner)		<u>Part - VIII</u> Slope Gradient
	a) $y \frac{d^2 y}{dx^2} \left(2 \frac{dy}{dx}\right) + 1 = 0$		Set - A
	b) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$ c) $y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 - 1 = 0$	1.	Find the gradient of the curve $y = 3x^2 - 5x + 4$ at the point (1, 2).
	d) $y \frac{d^2 y}{dx^2} + 2(\frac{dy}{dx})^2 + 1 = 0$		b) 0
			c) 1
4.	If x = at ² and y = 2 at then d^2y/dx^2 is a) $1/(2at^3)$ b) $-1/(2at^3)$	2	d) None The eradient of the sum $a_1 = 2x^3 - 2x^2 - 12x$
	c) 2at ³ d) None	۷.	8 at $x = 0$ is a) - 12 b) 12
5	If $x = (1 - t) / (1 + t)$ and $y = (2t) / (1 + t)$ then		c) 0 d) none of these
5.	d^2y/dx^2 is	3	The gradient of the curve $y = 2y^3 - 5y^2 - 3y$ at y
	a) 0 b) 1	5.	= 0 is
	c) -1 d) None		a) 3
	Set D		b) – 3
	<u>Set - D</u>		c) 1/3
1	$ f_{1}y_{1} - (y+1)^{1/2} - (y-1)^{1/2}$ the value of the		d) none of these
1.	expression (x^2-1) d ² y / dx ² + xdy / dx-y/4 is given by a) 0	4.	The slope of the tangent at the point (2 -2) to the curve $x^2 + xy + y^2 - 4 = 0$ is given by (Scanner)
	b) 1		a) 0
	c) - I d) Nope		b) 1
			d) None
2.	If y = $log[x+(1+x^2)^{1/2}]$ the value of the expression (x ² + 1) d ² y / dx ² + xdy / dx is a) 0 b) 1		, -
	c) - I d) None		

BUSINESS MATHEMATICS

	<u>Set - B</u>	3. The points on the curve $y = x^3 - x^2 - x + 1$, where the tangent is parallel to $x - axis$ are
1.	The slope of the tangent to the curve $y = \frac{x-1}{x+2}$ at x = 2 is: (Scanner) a) $\frac{3}{2}$ b) $-\frac{3}{2}$	a) $\left(\frac{-1}{3}, \frac{32}{27}\right)$ and (1,0) c) (1,0) and (1,1) d) (0, 1) and (1, 1)
2.	c) $\frac{1}{4}$ d) $-\frac{1}{4}$ The curve $y^2 = ux^3 + v$ passes through the point P(2, 3) and $\frac{dx}{dt} = 4$ at P. The values of u and v	Part - IX Applications of derivatives Set - A
	are a) $(u = 2, v = 7)$ b) $(u = 2, v = -7)$ c) $(u = -2, v = -7)$ d) $(0, -1)$	1. The cost function for the production of x units of a commodity is given by $C(x) = 2x^3 - 15x^2 + 36x + 15$ The cost will be minimum when 'x' is equal to (Scanner)
3.	The gradient of the curve $y + px + qy = 0$ at (1, 1) is $\frac{1}{2}$. The values of p and q are a) (-1, 1) b) (2, -1) c) (1, 2) d) (0, -1)	c) 1 d) 2 c) 1 d) 4 2. If the given cost function of commodity is given by C 150 y $5x^2 + x^3$ here C stends for cost
4.	The gradient of the curve $y - xy + 2px + 3qy = 0$ at the point (3, 2) is $\frac{-2}{3}$. The values of p and q are a) (1/2, 1/2) b) (2, 2) c) (-1/2, -1/2) d) (1/2, 1/6)	by C = $150 \times -5x^2 + \frac{1}{6}$, here C stands for cost and x stands for output, if the average cost is equal to the marginal cost then the output x = $\frac{1}{3}$. (Scanner) a) 5 b) 10 c) 15 d) 20
5.	The equation of the tangent to the curve, $f = x^3$ - 2x + 3, at the point (2, 7) is (Scanner) a) y = 2x - 13 b) y = 10x c) y = 10x - 13 d) y = 10 <u>Set - C</u>	3. The total cost function of a firm is $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10$ where C(x) is the total cost and x is output. A tax at the rate of Rs.2 per unit of output is imposed and the producer adds it to his cost. If the market demand function is given byp = (2530 - 5x) where p is the price per unit of output, find the output maximizing profit a) 50 b) 80
1.	The slope of the tangent to the curve $y = x^2 - x$ at the point, where the line $y = 2$ cuts the curve in the lst quadrant, is a) 2 b) 3 c) -3 d) none of these	4. The total cost function of a firm is $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10$ where C(x) is the total cost and x is output. A tax at the rate of Rs.2 per unit of
2.	The slope of the tangent to the curve $y = \sqrt{4 - x^2}$ at the point, where the ordinate and the abscissa are equal, is (Scanner) a) -1 b) 1 c) 0 d) none of these	output is imposed and the producer adds it to his cost. If the market demand function is given by p = (2530 – 5x) where p is the price per unit of output, find the price per unit maximizing profit. a) Rs.2080 b) Rs.2280. c) Rs.2575 d) none

5.	The cost function of	a company is given by:
	$C(x) = 100x - 8x^2 +$	$\frac{x^3}{3}$, where x denotes the
	output. Find the lamarginal cost is min a) 6 c) 8	evel of output at which: imum b) 7 d) 9
6.	The cost function of	a company is given by:
	$C(x) = 100x - 8x^2 +$	$\frac{x^3}{2}$, where x denotes the
	output. Find the leve average cost is mini a) 52 c) 14	el of output at which: mum b) 12 d) none
7.	The cost function of	a company is given by:
	$C(x) = 100x - 8x^2 +$	$\frac{x^3}{3}$, where x denotes the
	output. Find the mir a) 55 c) 65	nimum Average cost b) 52 d) none
8.	The cost of produci $x^3/3$. The marginal	ng x units is $500 - 20x^2 +$ cost is minimum at x =
	a) 5 c) 20	b) 10 d) 50
9.	In a market there a people. If they allo monthly profit, in r $-8x^2 + 400x - 1000$ shops should they profit. a) 0 c) 25	re 30 shops to allocate to ocate x shops then their upees, is given by, $P(x) =$ 0, then the number of allocate to maximize the b) 30 d) 10
10.	The cost of function $x^3/3, 0 \le x \le 100$ for the items is given the marginal profit v a) 751 c) 676	and the demand function h by. $p(x) = 125 + 500x - x^2 + 1000$ h by. $p(x) = 1500 - x$, then when 18 items are sold is b) 571 d) 875

11 A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend Rs.2 lakhs for the technical information. The cost of setting up the machine is Rs.88,000 and the cost of producing each unit is Rs.30, while each floppy could be sold at Rs.45. Find the total cost function for producing x floppies a) 30x + 2,88,000 b) 30x + 2,80,000 c) 30x - 2,88,000 d) none

12. A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend Rs.2 lakhs for the technical informations. The cost of setting up the machine is Rs.88,000 and the cost of producing each unit is Rs.30, while each floppy could be sold at Rs.45. Find the break-even point.

a) 20,200	b) 19,200		
c) 15,200	d) none		

13. A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is Rs.9 lakhs. The additional cost for producing each clock is Rs.300. each clock is sold at Rs.750. During the first month, 1,500 clocks are produced and sold.

What profit or loss the company incurs during the first month, when all the 1,500 clocks are sold?

a) 2,15,000profit	b) 2,25,000 profit
c) 2,25,000loss	d) 2,20,000 loss

14. A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is Rs.9 lakhs. The additional cost for producing each clock is Rs.300. each clock is sold at Rs.750. During the first month, 1,500 clocks are produced and sold. Determine the break-even point.
a) 1,500

u) 1,500	D) 2,000
c) 3.000	d) none

15. The speed of a train at a distance x (from the starting point) is given by $3x^2 - 5x + 4$. What is the rate of change (of distance) at x = 1?

a) -1	b) 0
c) 1	d) 2

 $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$

BUSINESS MATHEMATICS

	Chap- 8B-	INTEG	RATION
	<u>Part - I</u> <u>Direct</u> (Module + Scanner) <u>Set – A</u>	7.	$\int (x^{4} + 3/x) dx \text{ is equal to}$ a) $x^{5}/5 + 3 \log x $ b) $1/5 x^{5} + 3 \log x + k$ c) $1/5x^{5} + k$ d) none of these
1.	Integrate w.r.t x, $x^{6/5}$ a) $(5/11)x^{11/5} + k$ b) $(11/5)x^{11/5} + k$ c) $(1/5)x^{1/5} + k$ d) None	8.	Given $f(x) = 4x^3 + 3x^2 - 2x + 5$ and $\int f(x) dx$ is a) $x^4 + x^3 - x^2 + 5$ b) $x^4 + x^3 - x^2 + 5x + k$
2.	Integrate w.r.t x, $x^{4/3}$ a) $(3/7)x^{7/3} + k$ b) $(7/3)x^{7/3} + k$ c) $(1/3)x^{1/3} + k$ d) None	9.	c) $12x^{2} + 6x - 2x^{2}$ d) none of these $\int (1-3x)(1+x)dx$ is equal to a) $x - x^{2} - x^{3}$ b) $x^{3} - x^{2} + x$
3.	Integrate w.r.t x, $x^{-1/2}$ a) $2x^{1/2} + k$ b) $(1/2)x^{1/2} + k$ c) $-(3/2)x^{-3/2} + k$ d) None	10.	c) $x - x^2 - x^3 + k$ d) none of these Integrate w.r.t x, $(3x^{-1} + 4x^2 - 3x + 8)$ a) $3\log x - (4/3)x^3 + (3/2)x^2 - 8x + k$ b) $3\log x + (4/3)x^3 - (3/2)x^2 + 8x + k$
4.	Integrate w.r.t x, $5x^2$ a) $(5/3)x^3 + k$ b) $(3/5)x^3 + k$ c) $5x + k$ d) $10x$	11.	c) $3\log x + (4/3)x^3 + (3/2)x^2 + 8x + k$ d) None Integrate w.r.t x, (3-2x-x ⁴) a) $3x - x^2 - x^5/5 + k$ b) $3x + x^2 - x^5/5 + k$
5.	Integration of $3 - 2x - x^4$ will become a) $-x^2 - x^5/5$ b) $3x - x^2 - \frac{x^5}{5} + k$ c) $3x - x^2 + \frac{x^5}{5} + k$ d) none of these	12.	c) $3x+x^2+x^5/5 + k$ d) None Integrate w.r.t x, $(x^4 + 1) / x^2$ a) $x^3/3-1/x + k$ b) $1/x-x^3/3 + k$ c) $x^3/3+1/x + k$ d) None
6.	Evaluate $\int (x^2 - 1) dx$ a) $x^5/5 - 2/3 x^3 + x + k$ b) $\frac{x^3}{3} - x + k$ c) 2x d) none of these	13.	Integrate w.r.t x, $(4x^3 + 3x^2 - 2x + 5)$ a) $x^4 + x^3 - x^2 + 5x + k$ b) $x^4 - x^3 + x^2 - 5x + k$ c) $x^4 + x^3 - x^2 + 5x + k$ d) None

BUSINESS MATHEMATICS

14. Integrate w.r.t x, $(x^{1/2} - x^{-1/2})$ a) $(2/3)x^{3/2} - 2x^{1/2} + k$ b) $(3/2)x^{3/2} - (1/2)x^{1/2} + k$ c) $-(1/2)x^{-1/2} - (3/2)x^{-3/2} + k$ d) None	21. $\int_{0}^{2} 3x^{2} dx$ is a) 7 b) -8 c) 8 d) none of these
15. Integrate w.r.t x, $(7x^2-3x+8-x^{-1/2}+x^{-1}+x^{-2})$ a) $(7/3)x^3 - (3/2)x^2 + 8x-2x^{1/2} + \log x - x^{-1} + k$	22. Evaluate $\int_{1}^{4} (2x+5) dx$ and the value is
b) $(3/7)x^3 - (2/3)x^2 + 8x - (1/2)x^{1/2} + \log x + x^{-1} + k$ c) $(7/2)x^3 + (2/2)x^2 + 9x + 2x^{1/2} + \log x + x^{-1} + k$	a) 3 b) 10 c) 30 d) none of these
c) $(7/3)x^2 + (3/2)x^2 + 8x + 2x^{3/2} + \log x + x^3 + k$ d) None	23. $\int_{1}^{4} (2x + 5) dx$ and the value is: (Scanner)
16. $\int \left[\sqrt{x} - 1 / \sqrt{x} \right] dx$ is equal to	c) 30 d) None
a) $\frac{2}{3}x^{3/2} - 2x^{1/2} + k$	24. Evaluate $\int_{0}^{1} (2x^2 - x^3) dx$ and the value is
b) $\frac{1}{3}\sqrt{x} - 2\sqrt{x} + k$ c) $\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} + k$	a) 4/3 + k b) 5/12 c) - 4/3 d) none of these
$2\sqrt{x}$ $2x\sqrt{x}$ d) None	25. $\int_{1}^{3} (1 + 3x - x^{3}) dx$ is equal to (Scanner)
17. Integrate $(x + a)^n$ and the result will be a) $\frac{(x+a)^{n+1}}{n+1} + k$ b) $\frac{(x+a)^{n+1}}{n+1}$	c) 3 d) None
c) $(x + a)^{n+1}$ d) none of these	<u>Set – B</u>
18. $\int (4x+5)^{6} dx$ a) 1/28 (4x + 5) ⁷ + k b) (4x + 5) ⁷ /7 + k c) (4x + 5) ⁷ /7 d) none of these	1. Integrate w.r.t x, $(x^{1/2}-x/2+2x^{-1/2})$ a) $(2/3)x^{3/2}-(1/4)x^2 + 4x^{1/2} + k$ b) $(3/2)x^{3/2}-(1/4)x^2 + 4x^{1/2}$ c) $(2/3)x^{3/2}+(1/4)x^2 + 4x^{1/2}$ d) None
19. $\int a^{x} dx$ (Scanner) a) x^{1} (1+log x) b) 1 + log x	2. Integrate w.r.t x, $(1-3x)(1+x)$ a) $x-x^2-x^3+k$ b) $x-x^2+x^3+k$ c) $x+x^2+x^3+k$ d) None
c) x. log x d) $\frac{a^x}{\log a}$ + c	3. Integrate w.r.t x, $(ax + bx^{-3} + cx^{-7})x^2$ a) $(1/4)ax^4 + blogx - (1/4)cx^{-4} + k$ b) $4ax^4 + blogx - 4cx^{-4} + k$
20. $\int (a)^{2x} dx $ (Scanner) a) $\frac{a^{2x}}{2\log a} + c$	c) $(1/4)ax^4 + blogx+(1/4)cx^{-4} + k$ d) None
b) $\frac{2 a^{2x}}{\log a}$ + c c) $\frac{a^{2x} \cdot \log a}{2}$ + c d) None of these	4. Integrate w.r.t x, $x^{-1}[ax^3 + bx^2 + cx + d]$ a) $(1/3)ax^3 + (1/2)bx^2 + cx + d \log x + k$ b) $3ax^3 + 2bx^2 + cx + d \log x + k$ c) $2ax + b - dx^{-2} + k$ d) None

Г

5.	Integrate w.r.t x, $x^{-3}[4x^6+3x^5+2x^4+x^3+x^2+1]$ a) $x^4 + x^3 + x^2 + x + \log x - (1/2)x^{-2} + k$ b) $x^4 + x^3 + x^2 + x + \log x + (1/2)x^{-2} + k$ c) $x^4 + x^3 + x^2 + x + \log x + 2x^{-2} + k$ d) None	12.	I
6.	Integrate w.r.t x, $[2^{x} + (1/2)e^{-x} + 4x^{-1} - x^{-1/3}]$ a) $2^{x} / \log 2 - (1/2)e^{-x} + 4\log x - (3/2)x^{2/3} + k$ b) $2^{x} / \log 2 + (1/2)e^{-x} + 4\log x + (3/2)x^{2/3} + k$ c) $2^{x} / \log 2 - 2e^{-x} + 4\log x - (2/3)x^{2/3} + k$ d) None	13.	
7.	Integrate w.r.t x, $(x^2 - 3x + x^{1/3} + 7)x^{-1/2}$ a) $(2/5)x^{5/2} - 2x^{3/2} + (6/5)x^{5/6} + 14x^{1/2} + k$ b) $(5/2)x^{5/2} - 2x^{3/2} + (5/6)x^{5/6} + 14x^{1/2} + k$ c) $(2/5)x^{5/2} + 2x^{3/2} + (6/5)x^{5/6} + 14x^{1/2} + k$ d) None	14.	a c l t
8.	$\int \sqrt{x} + \frac{1}{\sqrt{x}} dx$ (Scanner) a) $2x^{1/2} (\frac{1}{3}x - 1) + k$ b) $2x^{1/2} (\frac{1}{3}x + 1) + k$ c) $2 (\frac{1}{3}x + x^{1/2}) + k$ d) None of these	15.	E
9.	Integrate w.r.t x, $(x^2-1)^2$ a) $x^5/5-(2/3)x^3+x+k$ b) $x^5/5+(2/3)x^3+x+k$ c) $x^5/5+(3/2)x^3+x+k$ d) None	16.	ā
10.	Integrate w.r.t x, $\left(x - \frac{1}{x}\right)^3$ a) $x^4/4 - (3/2)x^2 + 3\log x + x^{-2}/2 + k$ b) $x^4/4 + (3/2)x^2 + 3\log x + x^{-2}/2 + k$ c) $x^4/4 - (2/3)x^2 + 3\log x + x^{-2}/2 + k$ d) None	17.	l u a
11.	Evaluate the integral $\int (1-x)^3 / x dx$ and the answer is equal to a) $\log x - 3x + 3/2x^2 + k$ b) $\log x - 2 + 3x^2 + k$ c) $\log x + 3x^2 + k$ d) none of these	18.	(a) b) c) d)

12.	If $f'(x) = 3x^2 - \frac{2}{3}$	$\frac{2}{f^{2}}$, $f(1) = 0$ and $f(x) = $
	a) $\frac{x^3}{3} - x^2 - 2$ b) $x^3 + x^2 + 2$ c) $x^3 + \frac{2}{x} - 3$ d) None	(Scanner)
13.	$\int_{0}^{4} \sqrt{3x+4} dx \text{ is ec}$ a) 9/112 c) 11/9	jual to b) 112/9 d) none of these
14.	The value of \int_{0}^{1} a) 1 b) 1 - $\sqrt{3/2}$ c) $\sqrt{3} - \sqrt{2}$ d) c) $\sqrt{2} - \sqrt{3}$	$\sqrt{2} \frac{dx}{\sqrt{3-2x}}$ is (Scanner)
15.	Evaluate $\int_{2}^{4} (3x - a) 104$ c) 10	2) ² dx and the value is b) 100 d) none of these.
16.	$\int_{0}^{4} \frac{(x+1)(x+4)}{\sqrt{x}} dx$ a) 51 $\frac{1}{5}$	dx is equal is b) 48/5
	c) 48	d) $55\frac{7}{15}$
17.	Integrate w.r.t 2 upper limit 11 c a) 33 b) 100/3 c) 98/3 d) None	x, (2x+3) ^{1/2} from lower limit 3 to of x
18.	$\int log(a^{x})dx =$ a) log a $\left(\frac{x^{2}}{2}\right)$ + c b) log a $\left(\frac{x}{2}\right)$ + c c) x log a ^x + c d) x log a ^x + c	(Scanner)

 $\int 2^{3x} \cdot 3^{2x} \cdot 5^x \cdot dx =$ 19. $\int \frac{e^{\log_e x}}{x} dx$ is : 2. (Scanner) (Scanner) a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log (720)} + c$ b) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log (360)} + c$ c) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log (180)} + c$ d) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log (90)} + c$ a) x⁻¹ + C b) x + C c) $x^2 + C$ d) None 20. The integral of $(e^{3x} + e^{-3x}) / e^{x}$ is : (Scanner) a) $\frac{e^{2x}}{2} + \frac{e^{-4x}}{4} + C$ b) $\frac{e^{2x}}{2} - \frac{e^{-4x}}{4} + C$ c) $e^{2x} - e^{-4x} + C$ 3. If f'(x) = x - 1, the equation of a curve y = f(x)passing through the point (1, 0) is given by d) None of these a) $y = x^2 - 2x + 1$ b) $y = x^2 / 2 - x + 1$ 21. $\int_0^1 (e^x + e^{-x}) dx$ is : (Scanner) c) $y = x^2 / 2 - x + 1/2$ a) $e - e^{-1}$ d) none of these b) e⁻¹ – e c) $e + e^{-1}$ 4. The equation of the curve in the form y = f(x) if d) one the curve passes through the point (1, 0) and f'(x) = 2x - 1 is a) $y = x^2 - x$ 22. $\int_{0}^{2} \frac{x+2}{x+1} dx$ is b) $x = y^2 - y$ c) $y = x^2$ a) 2 + $log_e 2$ b) 2 + $log_e 3$ d) none of these d) none of these c) log_e3 The equation of the curve which passes 5. 23. $\int_0^1 \left(\frac{1-x}{1+x}\right) dx$: (Scanner) through the point (1, 3) and has the slope 4x a) 2 log 2 – 1 3 at any point (x, y) is b) 4 log 2 – 1 a) $y = 2x^3 - 3x + 4$ c) 2 log 2 b) $y = 2x^2 - 3x + 4$ d) None of these c) x = $2y^2 - 3y + 4$ d) none of these 24. The value of $\int_{1}^{2} \frac{1-x}{1+x} dx$ is equal to : **(Scanner)** a) $\log_{\frac{3}{2}} - 1$ Part - II b) $2 \log \frac{3}{2} - 1$ **Substitution** c) $\frac{1}{2}\log_{\frac{3}{2}} - 1$ Set – A d) $\frac{1}{2} \log \frac{2}{2} = 1$ 1. $\int_{1}^{2} \frac{2x}{1+x^2} dx$ is equal to <u>Set – C</u> a) log_e (5/2) 1. $\int \frac{1}{\sqrt{3r+4} - \sqrt{3r+1}} dx.$ (Scanner) b) $\log_e 5 - \log_e 2 + k$ c) log_e (2/5) a) $\frac{2}{27} [(3x + 4)^{3/2} - (3x + 1)^{3/2}] + c$ d) none of these b) $\frac{2}{27} |(3x + 4)^{3/2} + (3x + 1)^{3/2}] + c$ $\int_{1}^{2} \frac{x}{x^{2}+2} dx =$ a) $\log \sqrt{2}$ b) $\log \sqrt{3}$ c) $\log \frac{1}{\sqrt{2}}$ d) $\log \frac{1}{\sqrt{3}}$ 2. (Scanner) c) $\frac{\tilde{2}}{3}[(3x + 4)^{3/2} - (3x + 1)^{3/2}] + c$ d) None of these.

BUSINESS MATHEMATICS

3. The value of
$$\int_{1}^{2} \frac{x}{x^{2}+1} dx$$
 is equal to : (Scanner)
a) $\log_{e}(\frac{5}{2})$
b) $\frac{1}{2}\log_{e}(\frac{5}{2})$
c) $\log_{e}(5) - \log_{e}2 + c$
d) None of these.
4. Evaluate $\int \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx$ and the value is
a) $\log_{e} |e^{x} + e^{x}| + k$
c) $\log_{e} |e^{x} + e^{x}| + k$
d) none of these
5. $\int x(x^{2} + 4)^{5} dx$ is equal to
a) $(x^{2} + 4)^{6} + c$
b) $\frac{1}{12} (x^{2} + 4)^{6} + c$
c) $\frac{1}{6} (x^{2} + 4)^{6} + c$
d) None of the above
6. $\int x(x^{2} + 4)^{5} dx$
a) $(x^{2} + 4)^{6} + k$
b) $1/12 (x^{2} + 4)^{6} + k$
c) $(x^{2} + 4)^{6} + k$
d) none of these
7. Integrate w.r.t x, $x(x^{2} + 3)^{-2}$
a) $-(1/2) (x^{2} + 3)^{-1} + k$
b) $(1/2) (x^{2} + 3)^{-1} + k$
c) $2 (x^{2} + 3)^{-1} + k$
d) None
8. Integrate w.r.t x, $(x^{2} + 1)^{1/n} 3x$
a) $(3/2) (x^{2} + 1)^{1/n} / (1-n) + k$
b) $(3/2) (x^{2} + 1)^{1/n} / (1-n) + k$
d) None
9. Integrate w.r.t x, $(x^{3} + 2)^{2} 3x^{2}$
a) $(1/3) (x^{3} + 2)^{3} + k$
c) $3x^{2}(x^{3} + 2)^{3} + k$
c) $3x^{2}(x^{3} + 2)^{3} + k$
d) $9x^{2}(x^{3} + 2)^{3} + k$
d) $9x^{2}(x^{3} + 2)^{3} + k$
10. $\int 8x^{2} / (x^{3} + 2)^{2} + k$

b) $-\frac{4}{3(x^3+2)^2}+k$ c) $\frac{4}{3(x^3+2)^2} + k$ d) none of these 11. Integrate w.r.t x, $(x^3 + 2)^{1/2}x^2$ a) $(2/9) (x^3 + 2)^{3/2} + k$ b) (2/3) $(x^3 + 2)^{3/2} + k$ c) $(9/2) (x^3 + 2)^{3/2} + k$ d) None Integrate w.r.t x, $(x^3 + 2)^{-3} 8x^2$ 12. a) $-(4/3)(x^3 + 2)^{-2} + k$ b) $(4/3) (x^3 + 2)^{-2} + k$ c) $(2/3) (x^3 + 2)^{-2} + k$ d) None 13. Integrate w.r.t x, $(x^3 + 2)^{-1/4}x^2$ a) $(4/9) (x^3 + 2)^{3/4} + k$ b) $(9/4) (x^3 + 2)^{3/4} + k$ c) $(3/4) (x^3 + 2)^{3/4} + k$ d) None <u>Set – B</u> $\int \frac{1}{x(1+\log x)^2} dx \text{ is equal to}$ a) $-\frac{1}{2(1+\log x)^2} + C$ b) $\frac{1}{(1+\log x)} + C$ c) $-\frac{1}{(1+\log x)} + C$ 1. (Scanner) d) None of these Integrate w.r.t x, $1/[x(logx)^2]$ 2. a) -1/logx + k b) 1/logx + k c) logx d) None $\int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} dx \text{ is equal to } = \underline{\qquad}$ 3. (Scanner) a) $\frac{2\sqrt{2}}{\log_e^3}$ b) 0 c) $\frac{2}{\log_e^3} (3^{\sqrt{2}} - 1)$ d) $\frac{3^{\sqrt{2}}}{\sqrt{2}}$

4. Integrate w.r.t. x. 1/[klogxlog(logx)]
a) log(log(logx))+k
b) log (log(x)+k
c) log x + k
d) x⁺
5. Integrate with respect to x. 1/[x(log x)²]
a) -1/log x + k
b) 1/log x + k
c) log x
d) x⁺
6. Evaluate
$$\int_{0}^{2} \frac{dx}{x(1+\log x)^{2}}$$
 and the value is and the
value is
a) 3/2 b) 2/3
c) 26/3 d) 1/2 (log.5)
7. $\int (e^{x} + e^{x})^{2} + k$
b) $\frac{1}{2}(e^{x} - e^{x})^{2} + k$
c) $e^{x} + k$
d) none of these
8. Solve : $\int \frac{(\log x^{x})^{2}}{(x^{2} + 1)^{2} + k}$
d) $\frac{1}{2}(e^{x} - e^{x})^{2} + k$
c) $\frac{1}{2}(e^{x} - e^{x})^{2} + k$
d) none of these
9. $\int x^{x} (1+\log x) dx$ is equal to
a) $x^{x} \log x^{3} + c$
c) $\frac{x^{2}}{2} + k$
d) $\frac{1}{2}(\frac{x^{2} - 1}{x^{2}})e^{x^{2}} dx$. The value is
a) $e^{x} (\log x)^{3} + c$
c) $\frac{x^{2}}{2} + k$
d) $\frac{1}{2}(\frac{x^{2} - 1}{x^{2}})e^{x^{2}} dx$. The value is
a) $e^{x} (\log x)^{2} + c$
10. Evaluate $\int_{1}^{2} \frac{(x^{2} - 1)}{(x^{2} - 1) + k}$
c) $e^{x} (k - 1)$
b) $e^{x} (k - 1)$
c) $e^{x} (k -$

a) 2 log 2 b) - 3/4

c) 2 log 2 – ³/₄

d) none of these

Integrate w.r.t x, xlogx 2. a) $(1/4)x^{2}\log(x^{2}/e) + k$ b) $(1/2)x^{2}\log(x^{2}/e) + k$ c) $(1/4)x^{2}\log(x/e) + k$ d) None Using integration by parts $\int x^3 \log x dx$ 3. a) $x^4/16 + k$ b) $x^4/16 (4 \log x - 1) + k$ c) $4 \log x - 1 + k$ d) none of these 4. Evaluate $\int x e^x dx$ (Scanner) a) $e^{x}(x + 1) + c$ b) e^x (x- 1) + c c) $e^{x} + c$ d) $x - e^{x} + c$ $\int x^2 e^x \, \mathrm{dx}$. 5. (Scanner) a) 2x.e^x b) $e^{x}(x^{2}-2x)$ c) $x^2 \cdot e^x - e^x \cdot (2x) + 2$ d) $e^{x}(x-1)$ $\int x^2 e^{3x} dx$ is : 6. (Scanner) a) $x^2 \cdot e^{3x} - 2xe^{3x} + 2e^{3x} + C$ b) $\frac{e^{3x}}{3} - \frac{x \cdot e^{3x}}{9} + 2e^{3x} + C$ c) $\frac{x^2 \cdot e^{3x}}{3} - \frac{2x \cdot e^{3x}}{9} + \frac{2}{27}e^{3x} + C$ d) None of these Set – B Evaluate $\int xe^x dx$ and the value is 1. a) -1 b) 10 c) 10/9 d) +1 $\int \log x^2 dx$ is equal to 2. a) x (log x – 1) + k b) 2x (log x – 1) + k c) 2 (log x – 1) + k d) none of these $\int x \log x \, dx$ is equal to 3.

 $\int \log(\log x) / x \, dx$ is 4. a) log (log x – 1) + k b) log x – 1 + k c) $\log x [\log (\log x) - 1] + c$ d) none of these 5. Integrate w.r.t x, xⁿ logx a) $x^{n+1} (n+1)^{-1} [logx-(n+1)^{-1}] + c$ b) $x^{n-1} (n-1)^{-1} [logx-(n-1)^{-1}] + c$ c) $x^{n+1}(n+1)^{-1}[logx+(n+1)^{-1}] + c$ d) None $\int (\log x)^2 x \, dx$ is equal to 6. a) $\frac{x^2}{2} \left[(\log x)^2 - \log x + \frac{1}{2} \right] + k$ b) $(\log x)^2 - \log x + \frac{1}{2} + k$ c) $\frac{x^2}{2} \left[(\log x)^2 + \frac{1}{2} \right] + k$ d) none of these $\int (\log x)^2 dx$ & the result is put logx = t = \therefore x = 7. et a) x $(\log x)^2 - 2x \log x + 2x + k$ b) x $(loqx)^{2} - 2x + k$ c) 2x logx – 2x + k d) none of these Part - IV Integrals of the type Set – A $\int \frac{1}{x^2 - a^2} dx, \int \frac{1}{a^2 - x^2} dx, \int \frac{1}{\sqrt{a^2 + x^2}}, \int \frac{1}{\sqrt{x^2 - a^2}}$ $\int \frac{1}{r^2 - a^2}$ 1. a) $\log x - \frac{a}{x+a} + k$ b) $\log (x - a) - \log (x + a) + k$ c) $\frac{1}{2a} \log\left(\frac{x-a}{x+a}\right) + k$ d) none of these

2.

Evaluate :
$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$
:
a) $\frac{1}{2} \log(x + \sqrt{x^2 + a^2}) + C$
b) $\log(x + \sqrt{x^2 + a^2}) + C$
c) $\log(x\sqrt{x^2 + a^2}) + C$
d) $\frac{1}{2} \log(x\sqrt{x^2 + a^2}) + C$

<u>Set – B</u>

(Scanner)

 Integrate w.r.t x, (25-x²)⁻¹ from lower limit 3 to upper limit 4 of x

 a) (3/4)log(1/5) + k
 b) (1/5)log(3/2)
 c) (1/5)log(4/3) + k
 d) (3/4)log5 + k

<u>Set – C</u>

1. Integrate w.r.t x, $(3x + 7) (2x^2 + 3x - 2)^{-1}$ a) $(3/4)\log(2x^2 + 3x - 2) + (19/20) \log [(2x - 1) / {2(x + 2)}] + k$ b) $(3/4)\log(2x^2 + 3x - 2) + \log[(2x - 1) / {2(x + 2)}] + k$ c) $(3/4)\log(2x^2 + 3x - 2) + (19/20) \log [2(2x - 1)(x + 2)] + k$ d) None

```
2. Integrate w.r.t x, (x+1) (3+2x-x^2)^{-1}
a) -(1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c
b) (1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c
c) -(1/2)\log(3+2x-x^2)+(1/2)\log[(x-3)/(x+1)]+c
d) None
```

3. Integrate w.r.t x, (x+1)
$$(5x^2+8x-4)^{-1/2}$$

a) (1/5) $(5x^2 + 8x-4)^{1/2} + [1/(5\sqrt{5})]\log[5{x+4/5+(x^2 + 8x/5-4/5)^{1/2} (1/6)}]+c$
b) (1/5) $(5x^2 + 8x-4)^{1/2} + [1/(5\sqrt{5})]\log[5{x+4/5+(x^2 - 8x/5+4/5)^{1/2} (1/6)}]+c$
c) (1/5) $(5x^2 + 8x-4)^{1/2} + [1/(5\sqrt{5})] \log[(5x+4)/5 + (x^2 + 8x/5-4/5)^{1/2}]+c$
d) None

<u>Set – D</u>

1. Integrate w.r.t x, $(5x^2 + 8x + 4)^{-1/2}$ a) $(1/\sqrt{5})\log[{\sqrt{5}x+4}/\sqrt{5}+(5x^2+8x+4)^{1/2}]+c$ b) $\sqrt{5}\log[{\sqrt{5}x+4}/\sqrt{5}+(5x^2+8x+4)^{1/2}]+c$ c) $(1/\sqrt{5})\log[{\sqrt{5}x+4}/\sqrt{5}+(5x^2+8x+4)^{1/2}]+c$ d) None

$\frac{Part - V}{Integrals of the type}$ $\frac{Set - A}{\int e^{x} \{f(x) + f'(x)\} dx} = e^{x} f(x) + C.$

1. The value of $\int e^x [f(x) + f^1(x)] dx =$ _____

(Scanner)

(Scanner)

a)
$$e^{x} f(x) + c$$

b) $e^{x} f^{1}(x) + c$
c) $\left[\frac{f^{1}(x)}{f(x)}\right] + c$
d) $e^{x} \left[\frac{f(x)}{f^{1}(x)}\right] + c$

2. $\int e^{x} (x^{2} + 2x) dx =$ a) $x^{x} \cdot e^{2} + c$ b) $e^{x} \cdot x + c$ c) $e^{x} x^{2} + c$ d) $-e^{x} \cdot x + c$

3.
$$\int \frac{e^x (x \log x + 1)}{x} dx$$
 is equal to
a) $e^x \log x + k$
b) $e^x + k$
c) $\log x + k$
d) none of these

4. Integrate w.r.t x, $e^{x}(1 + x \log x)x^{-1}$ a) $e^{x} \log x + k$ b) $-e^{x} \log x + k$ c) $e^{x} x^{-1} + k$ d) None

(Scanner)

<u>Set – B</u>

- 1. $\int_{1}^{e} \frac{e^{x}(x \log_{e} x + 1)}{x} dx \text{ is equal to:}$ (Scanner) a) e + 1 b) e^{e} c) e - 1 d) $e^{x} + 1$
- 2. $\int xe^{x} / (x+1)^{2} dx$ is equal to a) $e^{x}/(x+1) + k$ b) $e^{x} / x + k$ c) $e^{x} + k$ d) none of these
- 3. $\int xe^{x}(x+1)^{-2} dx$ a) $e^{x}(x+1)^{-1} + c$ b) $e^{x}(x+1)^{-2}$ c) $xe^{x}(x+1)^{-1} + c$ d) None
- 4. Integrate w.r.t x, $e^{x} (1 + x) (2 + x)^{-2}$ a) $e^{x} (2+x)^{-1} + k$ b) $-e^{x} (2+x)^{-1} + k$ c) $(1/2)e^{x} (2+x)^{-1} + k$ d) None
- 5. Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx$ and the value is a) $\frac{e^x}{1-x} + k$ b) $e^x + k$ c) $\frac{1}{1-x} + k$ d) none of these
- 6. $\int \frac{e^{x}}{(1+x)^{3}} dx \int \frac{e^{x}}{2(1+x)^{2}} dx =$ (Scanner) a) 0 b) $\frac{e^{x}}{2(1+x)^{2}} + C$ c) $-\frac{e^{x}}{2(1+x)^{2}} + C$ d) $\frac{e^{x}}{(1+x)^{2}} + C$

Part - VI Partial fraction

Set – A

1. Evaluate $\int \frac{1}{(x-1)(x-2)} dx$: (Scanner) a) $\log\left(\frac{x-2}{x-1}\right) + C$ b) $\log\left[(x-2)(x-1)\right] + C$ c) $\log\left[\frac{x-2}{x-1}\right] + C$

Set – B

- 1. $\int \frac{6x+4}{(x-2)(x-3)} dx \text{ is equal to}$ a) 22 log (x-3) - 16 (x-2) b) 11 log (x-3) - 8 (x-2) c) 22 log (x-3) - 16 log (x-2) d) 22 log (x-3) + 16 log (x-2)
- 2. Integrate w.r.t x, x(x-1)⁻¹ (2x + 1)⁻¹
 a) (1/3) [log(x-1)+(1/2)log(2x+1)]+k
 b) (1/3) [log(x-1)+log (2x+1)]+k
 c) (1/3) [log(x-1)-(1/2)log(2x+1)]+k
 d) None
- 3. Integrate w.r.t x, 1/(2x²-x-1)
 a) (1/3)log [(x-1)/(2x+1)]+c
 b) -(1/3)log [2(x-1)/(2x+1)]+c
 c) (1/3)log [2(1-x)/(2x+1)]
 d) None
- 4. $\int \frac{3x}{(x^2 x 2)} dx$ is a) $2 \log_e |x - 2| + \log_e |x + 1| + k$ b) $2 \log_e |x - 2| - \log_e |x + 1| + k$ c) $\log_e |x - 2| + \log_e |x + 1| + k$ d) none of these
- 5. The value of $\int_0^1 \frac{dx}{(1+x)(2+x)}$ is: a) \log_4^3 b) \log_4^4 c) \log_4^3 d) None
- 6. $\int (x+5)dx / (x+1)(x+2)^2$ a) 4 log (x + 1) - 4 log (x + 2) + 3/x + 2 + k

(Scanner)

b) 4 log (x + 2) - 3/x + 2 + k
c) 4 log (x + 1) - 4 log (x + 2)
d) none of these
7. Integrate w.r.t x, (x-x³)⁻¹
a) (1/2)log[x²/(1-x²)] + k
b) (1/2)log[x²/(1-x²)] + k
d) None
Set - C
1.
$$\int \frac{1}{x(x^5+1)} dx$$
 (scanner)
a) log $\frac{x^5}{x^5-1} + C$ b) $\frac{1}{5} log(\frac{x^5}{x^5+1}) + C$
c) $\frac{1}{3} log(\frac{x^5}{x^5+1}) + C$ d) $\frac{1}{3} log(\frac{x^5+1}{x^5}) + C$
2. $\int \frac{x}{(x^2+1)(x^2+2)} dx$ is equal to ______ (scanner)
a) log($\frac{x^2+1}{x^2+2} + c$ [1. $\int \frac{1}{2} log(\frac{x^5+1}{x^2+1}) + C$
c) $\frac{1}{2} log(\frac{x^2+2}{x^2+1}) + c$ [2. $\int \frac{x}{(x^2+1)(x^2+2)} dx$ is equal to ______ (scanner)
a) log($\frac{x^2+1}{x^2+2} + c$ [3. Integrate w.r.t x, x³[(x-a) (x-b) (x-c)]⁻¹ given that 1/A=(a-b) (a-c)/a³, 1/B=(b-a) (b-c)/b³, 1/C = (c-a) (a-c)/a³, 1/B=(b-a) (b-c)/b³, 1/C = (c-a) (a-c)/a³, 1/B=(b-a) (b-c)/b³, 1/C = (c-a) (c-b)/c³, 1/B=(b-a) (b-c)/c³, 1/C = (c-a) (c-b)/c³, 1/B=(b-a) (b-c)/b³, 1/C = (c-a) (c-b)/c³, 1/B=(b-a) (b-c)/c³, 1/C = (c-a) (c-b)/c³, 1/B=(b-a) (b-c)/c³, 1/C = (c-a) (c-b)/c³, 1/C = (c-a) (c-b)/c³, 1/C = (c-a) (c-b)/c³, 1/C = (c-a) (c-b)/c³, 1/C = (c-a)

a)
$$\int_{0}^{a} 2f(x) dx$$

b) $\int_{-a}^{a} f(x) dx$
c) 0
d) $\int_{-a}^{a} -f(x) dx$
2. Find the value of ${}^{3}\int_{-3} x\sqrt{8-x^{2}} dx$ (Scanner)
a) 1 b) -1
c) 0 d) None of these
3. The value of $\int_{2}^{3} f(5-x) dx - \int_{2}^{3} f(x) dx$ is:
(Scanner)
a) 1 b) 0
c) -1 d) None
Set - B
1. $\int_{-1}^{1} (2x^{2} - x^{3}) dx$ (Scanner)
a) 4/3 b) 1
c) 2 d) 2/3
2. Solve : $\int_{-1}^{1} (e^{x} - e^{-x}) dx$ (Scanner)
a) 0
b) 1
c) 12
d) None of these above
3. The value of $\int_{-2}^{2} f(x) dx$, where $f(x) = 1 + x, x \le 0$; $f(x) = 1 - 2x, x \ge 0$ is
a) 20 b) -2
c) -4 d) 0
4. The value of $\int_{0}^{2} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{2-x}} dx$ is: (Scanner)
a) 0 b) 3
c) 2 d) 1
5. $\int_{0}^{5} \frac{x^{2} dx}{x^{2} + (5-x)^{2}}$ is equal to _____. (Scanner)
a) 5

